Sample records for blocking plasminogen binding

  1. Analysis of Paracoccidioides secreted proteins reveals fructose 1,6-bisphosphate aldolase as a plasminogen-binding protein.

    PubMed

    Chaves, Edilânia Gomes Araújo; Weber, Simone Schneider; Báo, Sonia Nair; Pereira, Luiz Augusto; Bailão, Alexandre Melo; Borges, Clayton Luiz; Soares, Célia Maria de Almeida

    2015-02-27

    Despite being important thermal dimorphic fungi causing Paracoccidioidomycosis, the pathogenic mechanisms that underlie the genus Paracoccidioides remain largely unknown. Microbial pathogens express molecules that can interact with human plasminogen, a protein from blood plasma, which presents fibrinolytic activity when activated into plasmin. Additionally, plasmin exhibits the ability of degrading extracellular matrix components, favoring the pathogen spread to deeper tissues. Previous work from our group demonstrated that Paracoccidioides presents enolase, as a protein able to bind and activate plasminogen, increasing the fibrinolytic activity of the pathogen, and the potential for adhesion and invasion of the fungus to host cells. By using proteomic analysis, we aimed to identify other proteins of Paracoccidioides with the ability of binding to plasminogen. In the present study, we employed proteomic analysis of the secretome, in order to identify plasminogen-binding proteins of Paracoccidioides, Pb01. Fifteen proteins were present in the fungal secretome, presenting the ability to bind to plasminogen. Those proteins are probable targets of the fungus interaction with the host; thus, they could contribute to the invasiveness of the fungus. For validation tests, we selected the protein fructose 1,6-bisphosphate aldolase (FBA), described in other pathogens as a plasminogen-binding protein. The protein FBA at the fungus surface and the recombinant FBA (rFBA) bound human plasminogen and promoted its conversion to plasmin, potentially increasing the fibrinolytic capacity of the fungus, as demonstrated in fibrin degradation assays. The addition of rFBA or anti-rFBA antibodies was capable of reducing the interaction between macrophages and Paracoccidioides, possibly by blocking the binding sites for FBA. These data reveal the possible participation of the FBA in the processes of cell adhesion and tissue invasion/dissemination of Paracoccidioides. These data indicate that Paracoccidioides is a pathogen that has several plasminogen-binding proteins that likely play important roles in pathogen-host interaction. In this context, FBA is a protein that might be involved somehow in the processes of invasion and spread of the fungus during infection.

  2. Role of the urokinase plasminogen activator receptor in mediating impaired efferocytosis of anti-SSA/Ro-bound apoptotic cardiocytes: Implications in the pathogenesis of congenital heart block.

    PubMed

    Briassouli, Paraskevi; Komissarova, Elena V; Clancy, Robert M; Buyon, Jill P

    2010-08-06

    Binding of maternal anti-Ro/La antibodies to cognate antigen expressed on apoptotic cardiocytes decreases clearance by healthy cardiocytes, which may contribute to the development of autoimmune associated congenital heart block and fatal cardiomyopathy. Given recent evidence implicating the urokinase plasminogen activator receptor (uPAR) as a "don't eat me" signal during efferocytosis, experiments addressed whether surface bound anti-Ro antibodies inhibit apoptotic cell removal via an effect on the expression/function of the urokinase-type plasminogen activator protease uPA/uPAR system. As assessed by flow cytometry and confocal microscopy, uPAR colocalizes and interacts with Ro60 on the surface of apoptotic human fetal cardiocytes. Blocking of uPAR enhances phagocytosis of apoptotic cardiocytes by healthy cardiocytes and reverses the anti-Ro60-dependent impaired clearance of apoptotic cardiocytes. Binding of anti-Ro60 antibodies to apoptotic cardiocytes results in increased uPAR expression, as well as enhanced uPA activity. The binding of anti-Ro60 did not alter other surface molecules involved in cell recognition (calreticulin, CD31, or CD47). These data suggest that increased uPAR expression and uPA activity induced by anti-Ro60 binding to the apoptotic fetal cardiocyte provide a molecular basis by which these antibodies inhibit efferocytosis and ultimately lead to scar of the fetal conduction system and working myocardium.

  3. Inhibition of cell surface mediated plasminogen activation by a monoclonal antibody against alpha-Enolase.

    PubMed

    López-Alemany, Roser; Longstaff, Colin; Hawley, Stephen; Mirshahi, Massoud; Fábregas, Pere; Jardí, Merce; Merton, Elizabeth; Miles, Lindsey A; Félez, Jordi

    2003-04-01

    Localization of plasmin activity on leukocyte surfaces plays a critical role in fibrinolysis as well as in pathological and physiological processes in which cells must degrade the extracellular matrix in order to migrate. The binding of plasminogen to leukocytic cell lines induces a 30- to 80-fold increase in the rate of plasminogen activation by tissue-type (tPA) and urokinase-type (uPA) plasminogen activators. In the present study we have examined the role of alpha-enolase in plasminogen activation on the cell surface. We produced and characterized a monoclonal antibody (MAb) 11G1 against purified alpha-enolase, which abrogated about 90% of cell-dependent plasminogen activation by either uPA or tPA on leukocytoid cell lines of different lineages: B-lymphocytic, T-lymphocytic, granulocytic, and monocytic cells. In addition, MAb 11G1 also blocked enhancement of plasmin formation by peripheral blood neutrophils and monocytes. In contrast, MAb 11G1 did not affect plasmin generation in the presence of fibrin, indicating that this antibody did not interact with fibrinolytic components in the absence of cells. These data suggest that, although leukocytic cells display several molecules that bind plasminogen, alpha-enolase is responsible for the majority of the promotion of plasminogen activation on the surfaces of leukocytic cells. Copyright 2003 Wiley-Liss, Inc.

  4. Subunits of the Pyruvate Dehydrogenase Cluster of Mycoplasma pneumoniae Are Surface-Displayed Proteins that Bind and Activate Human Plasminogen

    PubMed Central

    Gründel, Anne; Friedrich, Kathleen; Pfeiffer, Melanie; Jacobs, Enno; Dumke, Roger

    2015-01-01

    The dual role of glycolytic enzymes in cytosol-located metabolic processes and in cell surface-mediated functions with an influence on virulence is described for various micro-organisms. Cell wall-less bacteria of the class Mollicutes including the common human pathogen Mycoplasma pneumoniae possess a reduced genome limiting the repertoire of virulence factors and metabolic pathways. After the initial contact of bacteria with cells of the respiratory epithelium via a specialized complex of adhesins and release of cell-damaging factors, surface-displayed glycolytic enzymes may facilitate the further interaction between host and microbe. In this study, we described detection of the four subunits of pyruvate dehydrogenase complex (PDHA-D) among the cytosolic and membrane-associated proteins of M. pneumoniae. Subunits of PDH were cloned, expressed and purified to produce specific polyclonal guinea pig antisera. Using colony blotting, fractionation of total proteins and immunofluorescence experiments, the surface localization of PDHA-C was demonstrated. All recombinant PDH subunits are able to bind to HeLa cells and human plasminogen. These interactions can be specifically blocked by the corresponding polyclonal antisera. In addition, an influence of ionic interactions on PDHC-binding to plasminogen as well as of lysine residues on the association of PDHA-D with plasminogen was confirmed. The PDHB subunit was shown to activate plasminogen and the PDHB-plasminogen complex induces degradation of human fibrinogen. Hence, our data indicate that the surface-associated PDH subunits might play a role in the pathogenesis of M. pneumoniae infections by interaction with human plasminogen. PMID:25978044

  5. Plasminogen associates with phosphatidylserine-exposing platelets and contributes to thrombus lysis under flow

    PubMed Central

    Whyte, Claire S.; Swieringa, Frauke; Mastenbroek, Tom G.; Lionikiene, Ausra S.; Lancé, Marcus D.; van der Meijden, Paola E. J.; Heemskerk, Johan W. M.

    2015-01-01

    The interaction of plasminogen with platelets and their localization during thrombus formation and fibrinolysis under flow are not defined. Using a novel model of whole blood thrombi, formed under flow, we examine dose-dependent fibrinolysis using fluorescence microscopy. Fibrinolysis was dependent upon flow and the balance between fibrin formation and plasminogen activation, with tissue plasminogen activator-mediated lysis being more efficient than urokinase plasminogen activator-mediated lysis. Fluorescently labeled plasminogen radiates from platelet aggregates at the base of thrombi, primarily in association with fibrin. Hirudin attenuates, but does not abolish plasminogen binding, denoting the importance of fibrin. Flow cytometry revealed that stimulation of platelets with thrombin/convulxin significantly increased the plasminogen signal associated with phosphatidylserine (PS)-exposing platelets. Binding was attenuated by tirofiban and Gly-Pro-Arg-Pro amide, confirming a role for fibrin in amplifying plasminogen binding to PS-exposing platelets. Confocal microscopy revealed direct binding of plasminogen and fibrinogen to different platelet subpopulations. Binding of plasminogen and fibrinogen co-localized with PAC-1 in the center of spread platelets. In contrast, PS-exposing platelets were PAC-1 negative, and bound plasminogen and fibrinogen in a protruding “cap.” These data show that different subpopulations of platelets harbor plasminogen by diverse mechanisms and provide an essential scaffold for the accumulation of fibrinolytic proteins that mediate fibrinolysis under flow. PMID:25712989

  6. Tranexamic acid in treatment of melasma: A comprehensive review of clinical studies.

    PubMed

    Taraz, Mohammad; Niknam, Somayeh; Ehsani, Amir Houshang

    2017-05-01

    Melasma is a human melanogenesis dysfunction that results in localized, chronic acquired hyperpigmentation of the skin. It has a significant impact on appearance, causing psychosocial and emotional distress, and reducing the quality of life of the affected patients. Tranexamic acid (TA) is a plasmin inhibitor used to prevent abnormal fibrinolysis to reduce blood loss and exerts its effect by reversibly blocking lysine binding sites on plasminogen molecules, thus inhibiting plasminogen activator (PA) from converting plasminogen to plasmin. As plasminogen also exists in human epidermal basal cells and cultured human keratinocyte are known to produce PA, there is basic rationale that TA will affect keratinocyte function and interaction. A thorough literature review indicates that while TA is used through various route of administration including oral, topical, and intradermal injection and as adjutant therapy with laser to treat melasma, its efficacy is not established adequately. Further studies are needed to clarify the role of TA in treatment of melasma. © 2017 Wiley Periodicals, Inc.

  7. Inhibition of plasminogen activator inhibitor-1 binding to endocytosis receptors of the low-density-lipoprotein receptor family by a peptide isolated from a phage display library

    PubMed Central

    Jensen, Jan K.; Malmendal, Anders; Schiøtt, Birgit; Skeldal, Sune; Pedersen, Katrine E.; Celik, Leyla; Nielsen, Niels Chr.; Andreasen, Peter A.; Wind, Troels

    2006-01-01

    The functions of the serpin PAI-1 (plasminogen activator inhibitor-1) are based on molecular interactions with its target proteases uPA and tPA (urokinase-type and tissue-type plasminogen activator respectively), with vitronectin and with endocytosis receptors of the low-density-lipoprotein family. Understanding the significance of these interactions would be facilitated by the ability to block them individually. Using phage display, we have identified the disulfide-constrained peptide motif CFGWC with affinity for natural human PAI-1. The three-dimensional structure of a peptide containing this motif (DVPCFGWCQDA) was determined by liquid-state NMR spectroscopy. A binding site in the so-called flexible joint region of PAI-1 was suggested by molecular modelling and validated through binding studies with various competitors and site-directed mutagenesis of PAI-1. The peptide with an N-terminal biotin inhibited the binding of the uPA–PAI-1 complex to the endocytosis receptors low-density-lipoprotein-receptor-related protein 1A (LRP-1A) and very-low-density-lipoprotein receptor (VLDLR) in vitro and inhibited endocytosis of the uPA–PAI-1 complex in U937 cells. We conclude that the isolated peptide represents a novel approach to pharmacological interference with the functions of PAI-1 based on inhibition of one specific molecular interaction. PMID:16813566

  8. Plasminogen fragments K 1-3 and K 5 bind to different sites in fibrin fragment DD.

    PubMed

    Grinenko, T V; Kapustianenko, L G; Yatsenko, T A; Yusova, O I; Rybachuk, V N

    2016-01-01

    Specific plasminogen-binding sites of fibrin molecule are located in Аα148-160 regions of C-terminal domains. Plasminogen interaction with these sites initiates the activation process of proenzyme and subsequent fibrin lysis. In this study we investigated the binding of plasminogen fragments K 1-3 and K 5 with fibrin fragment DD and their effect on Glu-plasminogen interaction with DD. It was shown that the level of Glu-plasminogen binding to fibrin fragment DD is decreased by 50-60% in the presence of K 1-3 and K 5. Fragments K 1-3 and K 5 have high affinity to fibrin fragment DD (Kd is 0.02 for K 1-3 and 0.054 μМ for K 5). K 5 interaction is independent and K 1-3 is partly dependent on C-terminal lysine residues. K 1-3 interacts with complex of fragment DD-immobilized K 5 as well as K 5 with complex of fragment DD-immobilized K 1-3. The plasminogen fragments do not displace each other from binding sites located in fibrin fragment DD, but can compete for the interaction. The results indicate that fibrin fragment DD contains different binding sites for plasminogen kringle fragments K 1-3 and K 5, which can be located close to each other. The role of amino acid residues of fibrin molecule Аα148-160 region in interaction with fragments K 1-3 and K 5 is discussed.

  9. Interaction of Trypanosoma evansi with the plasminogen-plasmin system.

    PubMed

    Acosta, Héctor; Rondón-Mercado, Rocío; Avilán, Luisana; Concepción, Juan Luis

    2016-08-15

    Trypanosoma evansi is a widely-distributed haemoflagellated parasite of veterinary importance that infects a variety of mammals including horses, mules, camels, buffalos, cattle and deer. It is the causal agent of a trypanosomiasis known as Surra which produces epidemics of great economic importance in Africa, Asia and South America. The main pathology includes an enlarged spleen with hypertrophy of lymphoid follicles, congested lungs, neuronal degeneration and meningoencephalitis, where migration of the parasites from the blood to the tissues is essential. Most cells, including pathogenic cells, use diverse strategies for tissue invasion, such as the expression of surface receptors to bind plasminogen or plasmin. In this work, we show that T. evansi is able to bind plasminogen and plasmin on its surface. The analysis of this binding revealed a high affinity dissociation constant (Kd of 0.080±0.009μM) and 1×10(5) plasminogen binding sites per cell. Also a second population of receptors with a Kd of 0.255±0.070μM and 3.2×10(4) plasminogen binding sites per cell was determined. Several proteins with molecular masses between ∼18 and ∼70kDa are responsible for this binding. This parasite-plasminogen interaction may be important in the establishment of the infection in the vertebrate host, where the physiological concentration of available plasminogen is around 2μM. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Stimulation of cell-surface urokinase-type plasminogen activator activity and cell migration in vascular endothelial cells by a novel hexapeptide analogue of neurotensin.

    PubMed

    Ushiro, S; Mizoguchi, K; Yoshida, S; Jimi, S; Fujiwara, T; Yoshida, M; Wei, E T; Kitabgi, P; Amagaya, S; Ono, M; Kuwano, M

    1997-12-01

    To investigate if neurotensin (NT) could induce activation of urokinase-type plasminogen activator (uPA) in vascular endothelial cells, we utilized the acetyl-NT (8-13) analogue, TJN-950, in which the C-terminal leucine is reduced to leucinol. TJN-950 inhibited the binding of 125I-NT to membranes of newborn rat brains and of COS-7 cells transfected with rat NT receptor cDNA, but at 10(4) higher doses than NT (8-13). However, TJN-950 was as effective as NT in inducing the fibrinolytic activity in bovine vascular aortic and human umbilical vein endothelial cells, and enhanced the migration of vascular endothelial cells. Moreover, administration of TJN-950 induced neovascularization in the rat cornea in vivo. TJN-950 had no effect on expression of uPA, plasminogen activator inhibitor-1 or uPA receptor mRNA. The binding of 125I-TJN-950 to cell membranes was blocked by unlabeled uPA and TJN-950, but not the amino-terminal or 12-32 fragment of uPA. TJN-950 may enhance uPA activity in vascular endothelial cells by interacting with the uPA receptor, resulting in induction of angiogenesis.

  11. Penicillin binding protein 3 of Staphylococcus aureus NCTC 8325-4 binds and activates human plasminogen.

    PubMed

    Kylväjä, Riikka; Ojalehto, Tuomas; Kainulainen, Veera; Virkola, Ritva; Westerlund-Wikström, Benita

    2016-08-04

    Staphylococcus aureus is a versatile pathogen expressing a number of virulence-associated adhesive molecules. In a previous study, we generated in a secretion-competent Escherichia coli strain a library of random FLAG-tag positive (FTP) polypeptides of S. aureus. To identify adhesive proteins and gain additional knowledge on putative virulence factors of S. aureus, we here screened the FTP library against human serum proteins. Staphylococcus aureus NCTC 8325-4, origin of the FTP library, adhered to immobilized plasminogen in vitro. In an enzyme-linked immunoassay a C-terminal part of penicillin binding protein 3 (PBP3), included in the FTP library, bound to immobilized plasminogen. We expressed and purified full-length PBP3 and its C-terminal fragments as recombinant proteins. In a time-resolved fluorometry-based assay the PBP3 polypeptides bound to immobilized plasminogen. The polypeptides enhanced formation of plasmin from plasminogen as analyzed by cleavage of a chromogenic plasmin substrate. The present findings, although preliminary, demonstrate reliably that S. aureus NCTC 8325-4 adheres to immobilized plasminogen in vitro and that the adhesion may be mediated by a C-terminal fragment of the PBP3 protein. The full length PBP3 and the penicillin binding C-terminal domain of PBP3 expressed as recombinant proteins bound plasminogen and activated plasminogen to plasmin. These phenomena were inhibited by the lysine analogue ε-aminocaproic acid suggesting that the binding is mediated by lysine residues. A detailed molecular description of surface molecules enhancing the virulence of S. aureus will aid in understanding of its pathogenicity and help in design of antibacterial drugs in the future.

  12. Specificity determinants in the interaction of apolipoprotein(a) kringles with tetranectin and LDL.

    PubMed

    Caterer, Nigel R; Graversen, Jonas H; Jacobsen, Christian; Moestrup, Søren K; Sigurskjold, Bent W; Etzerodt, Michael; Thøgersen, Hans C

    2002-11-01

    Lipoprotein(a) is composed of low density lipoprotein and apolipoprotein(a). Apolipoprotein(a) has evolved from plasminogen and contains 10 different plasminogen kringle 4 homologous domains [KIV(1-110)]. Previous studies indicated that lipoprotein(a) non-covalently binds the N-terminal region of lipoprotein B100 and the plasminogen kringle 4 binding plasma protein tetranectin. In this study recombinant KIV(2), KIV(7) and KIV(10) derived from apolipoprotein(a) were produced in E. coli and the binding to tetranectin and low density lipoprotein was examined. Only KIV(10) bound to tetranectin and binding was similar to that of plasminogen kringle 4 to tetranectin. Only KIV(7) bound to LDL. In order to identify the residues responsible for the difference in specificity between KIV(7) and KIV(10), a number of surface-exposed residues located around the lysine binding clefts were exchanged. Ligand binding analysis of these derivatives showed that Y62, and to a minor extent W32 and E56, of KIV(7) are important for LDL binding to KIV(7), whereas R32 and D56 of KIV(10) are required for tetranectin binding of KIV(10).

  13. Seahorse-derived peptide suppresses invasive migration of HT1080 fibrosarcoma cells by competing with intracellular α-enolase for plasminogen binding and inhibiting uPA-mediated activation of plasminogen.

    PubMed

    Kim, Yong-Tae; Kim, Se-kwon; Jeon, You-Jin; Park, Sun Joo

    2014-12-01

    α-Enolase is a glycolytic enzyme and a surface receptor for plasminogen. α-Enolase-bound plasminogen promotes tumor cell invasion and cancer metastasis by activating plasmin and consequently degrading the extracellular matrix degradation. Therefore, α-enolase and plasminogen are novel targets for cancer therapy. We found that the amino acid sequence of a peptide purified from enzymatic hydrolysates of seahorse has striking similarities to that of α-enolase. In this study, we report that this peptide competes with cellular α-enolase for plasminogen binding and suppresses urokinase plasminogen activator (uPA)-mediated activation of plasminogen, which results in decreased invasive migration of HT1080 fibrosarcoma cells. In addition, the peptide treatment decreased the expression levels of uPA compared to that of untreated controls. These results provide new insight into the mechanism by which the seahorse-derived peptide suppresses invasive properties of human cancer cells. Our findings suggest that this peptide could emerge as a potential therapeutic agent for cancer.

  14. Seahorse-derived peptide suppresses invasive migration of HT1080 fibrosarcoma cells by competing with intracellular α-enolase for plasminogen binding and inhibiting uPA-mediated activation of plasminogen

    PubMed Central

    Kim, Yong-Tae; Kim, Se-kwon; Jeon, You-Jin; Park, Sun Joo

    2014-01-01

    α-Enolase is a glycolytic enzyme and a surface receptor for plasminogen. α-Enolase-bound plasminogen promotes tumor cell invasion and cancer metastasis by activating plasmin and consequently degrading the extracellular matrix degradation. Therefore, α-enolase and plasminogen are novel targets for cancer therapy. We found that the amino acid sequence of a peptide purified from enzymatic hydrolysates of seahorse has striking similarities to that of α-enolase. In this study, we report that this peptide competes with cellular α-enolase for plasminogen binding and suppresses urokinase plasminogen activator (uPA)-mediated activation of plasminogen, which results in decreased invasive migration of HT1080 fibrosarcoma cells. In addition, the peptide treatment decreased the expression levels of uPA compared to that of untreated controls. These results provide new insight into the mechanism by which the seahorse-derived peptide suppresses invasive properties of human cancer cells. Our findings suggest that this peptide could emerge as a potential therapeutic agent for cancer. [BMB Reports 2014; 47(12): 691-696] PMID:24602611

  15. Plasmin cleaves fibrinogen and the human complement proteins C3b and C5 in the presence of Leptospira interrogans proteins: A new role of LigA and LigB in invasion and complement immune evasion.

    PubMed

    Castiblanco-Valencia, Mónica Marcela; Fraga, Tatiana Rodrigues; Pagotto, Ana Helena; Serrano, Solange Maria de Toledo; Abreu, Patricia Antonia Estima; Barbosa, Angela Silva; Isaac, Lourdes

    2016-05-01

    Plasminogen is a single-chain glycoprotein found in human plasma as the inactive precursor of plasmin. When converted to proteolytically active plasmin, plasmin(ogen) regulates both complement and coagulation cascades, thus representing an important target for pathogenic microorganisms. Leptospira interrogans binds plasminogen, which is converted to active plasmin. Leptospiral immunoglobulin-like (Lig) proteins are surface exposed molecules that interact with extracellular matrix components and complement regulators, including proteins of the FH family and C4BP. In this work, we demonstrate that these multifunctional molecules also bind plasminogen through both N- and C-terminal domains. These interactions are dependent on lysine residues and are affected by ionic strength. Competition assays suggest that plasminogen does not share binding sites with C4BP or FH on Lig proteins at physiological molar ratios. Plasminogen bound to Lig proteins is converted to proteolytic active plasmin in the presence of urokinase-type plasminogen activator (uPA). Lig-bound plasmin is able to cleave the physiological substrates fibrinogen and the complement proteins C3b and C5. Taken together, our data point to a new role of LigA and LigB in leptospiral invasion and complement immune evasion. Plasmin(ogen) acquisition by these versatile proteins may contribute to Leptospira infection, favoring bacterial survival and dissemination inside the host. Copyright © 2016. Published by Elsevier GmbH.

  16. Myelin basic protein stimulates plasminogen activation via tissue plasminogen activator following binding to independent l-lysine-containing domains.

    PubMed

    Gonzalez-Gronow, Mario; Fiedler, Jenny L; Farias Gomez, Cristian; Wang, Fang; Ray, Rupa; Ferrell, Paul D; Pizzo, Salvatore V

    2017-08-26

    Myelin basic protein (MBP) is a key component of myelin, the specialized lipid membrane that encases the axons of all neurons. Both plasminogen (Pg) and tissue-type plasminogen activator (t-PA) bind to MBP with high affinity. We investigated the kinetics and mechanisms involved in this process using immobilized MBP and found that Pg activation by t-PA is significantly stimulated by MBP. This mechanism involves the binding of t-PA via a lysine-dependent mechanism to the Lys 91 residue of the MBP NH 2 -terminal region Asp 82 -Pro 99 , and the binding of Pg via a lysine-dependent mechanism to the Lys 122 residue of the MBP COOH-terminal region Leu 109 -Gly 126 . In this context, MBP mimics fibrin and because MBP is a plasmin substrate, our results suggest direct participation of the Pg activation system on MBP physiology. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. The tissue-type plasminogen activator–plasminogen activator inhibitor 1 complex promotes neurovascular injury in brain trauma: evidence from mice and humans

    PubMed Central

    Sashindranath, Maithili; Sales, Eunice; Daglas, Maria; Freeman, Roxann; Samson, Andre L.; Cops, Elisa J.; Beckham, Simone; Galle, Adam; McLean, Catriona; Morganti-Kossmann, Cristina; Rosenfeld, Jeffrey V.; Madani, Rime; Vassalli, Jean-Dominique; Su, Enming J.; Lawrence, Daniel A.

    2012-01-01

    The neurovascular unit provides a dynamic interface between the circulation and central nervous system. Disruption of neurovascular integrity occurs in numerous brain pathologies including neurotrauma and ischaemic stroke. Tissue plasminogen activator is a serine protease that converts plasminogen to plasmin, a protease that dissolves blood clots. Besides its role in fibrinolysis, tissue plasminogen activator is abundantly expressed in the brain where it mediates extracellular proteolysis. However, proteolytically active tissue plasminogen activator also promotes neurovascular disruption after ischaemic stroke; the molecular mechanisms of this process are still unclear. Tissue plasminogen activator is naturally inhibited by serine protease inhibitors (serpins): plasminogen activator inhibitor-1, neuroserpin or protease nexin-1 that results in the formation of serpin:protease complexes. Proteases and serpin:protease complexes are cleared through high-affinity binding to low-density lipoprotein receptors, but their binding to these receptors can also transmit extracellular signals across the plasma membrane. The matrix metalloproteinases are the second major proteolytic system in the mammalian brain, and like tissue plasminogen activators are pivotal to neurological function but can also degrade structures of the neurovascular unit after injury. Herein, we show that tissue plasminogen activator potentiates neurovascular damage in a dose-dependent manner in a mouse model of neurotrauma. Surprisingly, inhibition of activity following administration of plasminogen activator inhibitor-1 significantly increased cerebrovascular permeability. This led to our finding that formation of complexes between tissue plasminogen activator and plasminogen activator inhibitor-1 in the brain parenchyma facilitates post-traumatic cerebrovascular damage. We demonstrate that following trauma, the complex binds to low-density lipoprotein receptors, triggering the induction of matrix metalloproteinase-3. Accordingly, pharmacological inhibition of matrix metalloproteinase-3 attenuates neurovascular permeability and improves neurological function in injured mice. Our results are clinically relevant, because concentrations of tissue plasminogen activator: plasminogen activator inhibitor-1 complex and matrix metalloproteinase-3 are significantly elevated in cerebrospinal fluid of trauma patients and correlate with neurological outcome. In a separate study, we found that matrix metalloproteinase-3 and albumin, a marker of cerebrovascular damage, were significantly increased in brain tissue of patients with neurotrauma. Perturbation of neurovascular homeostasis causing oedema, inflammation and cell death is an important cause of acute and long-term neurological dysfunction after trauma. A role for the tissue plasminogen activator–matrix metalloproteinase axis in promoting neurovascular disruption after neurotrauma has not been described thus far. Targeting tissue plasminogen activator: plasminogen activator inhibitor-1 complex signalling or downstream matrix metalloproteinase-3 induction may provide viable therapeutic strategies to reduce cerebrovascular permeability after neurotrauma. PMID:22822039

  18. Endogenously Generated Plasmin at the Vascular Wall Injury Site Amplifies Lysine Binding Site-Dependent Plasminogen Accumulation in Microthrombi

    PubMed Central

    Brzoska, Tomasz; Tanaka-Murakami, Aki; Suzuki, Yuko; Sano, Hideto; Kanayama, Naohiro; Urano, Tetsumei

    2015-01-01

    The fibrinolytic system plays a pivotal role in the regulation of hemostasis; however, it remains unclear how and when the system is triggered to induce thrombolysis. Using intra-vital confocal fluorescence microscopy, we investigated the process of plasminogen binding to laser-induced platelet-rich microthrombi generated in the mesenteric vein of transgenic mice expressing green fluorescent protein (GFP). The accumulation of GFP-expressing platelets as well as exogenously infused Alexa Fluor 568-labeled Glu-plasminogen (Glu-plg) on the injured vessel wall was assessed by measuring the increase in the corresponding fluorescence intensities. Glu-plg accumulated in a time-dependent manner in the center of the microthrombus, where phosphatidylserine is exposed on platelet surfaces and fibrin formation takes place. The rates of binding of Glu-plg in the presence of ε-aminocaproic acid and carboxypeptidase B, as well as the rates of binding of mini-plasminogen lacking kringle domains 1-4 and lysine binding sites, were significantly lower than that of Glu-plg alone, suggesting that the binding was dependent on lysine binding sites. Furthermore, aprotinin significantly suppressed the accumulation of Glu-plg, suggesting that endogenously generated plasmin activity is a prerequisite for the accumulation. In spite of the endogenous generation of plasmin and accumulation of Glu-plg in the center of microthrombi, the microthrombi did not change in size during the 2-hour observation period. When human tissue plasminogen activator was administered intravenously, Glu-plg further accumulated and the microthrombi were lysed. Glu-plg appeared to accumulate in the center of microthrombi in the early phase of microthrombus formation, and plasmin activity and lysine binding sites were required for this accumulation. PMID:25806939

  19. Polyphosphate colocalizes with factor XII on platelet-bound fibrin and augments its plasminogen activator activity

    PubMed Central

    Lionikiene, Ausra S.; Georgiev, Georgi; Klemmer, Anja; Brain, Chelsea; Kim, Paul Y.

    2016-01-01

    Activated factor XII (FXIIa) has plasminogen activator capacity but its relative contribution to fibrinolysis is considered marginal compared with urokinase and tissue plasminogen activator. Polyphosphate (polyP) is released from activated platelets and mediates FXII activation. Here, we investigate the contribution of polyP to the plasminogen activator function of αFXIIa. We show that both polyP70, of the chain length found in platelets (60-100 mer), and platelet-derived polyP significantly augment the plasminogen activation capacity of αFXIIa. PolyP70 stimulated the autoactivation of FXII and subsequent plasminogen activation, indicating that once activated, αFXIIa remains bound to polyP70. Indeed, complex formation between polyP70 and αFXIIa provides protection against autodegradation. Plasminogen activation by βFXIIa was minimal and not enhanced by polyP70, highlighting the importance of the anion binding site. PolyP70 did not modulate plasmin activity but stimulated activation of Glu and Lys forms of plasminogen by αFXIIa. Accordingly, polyP70 was found to bind to FXII, αFXIIa, and plasminogen, but not βFXIIa. Fibrin and polyP70 acted synergistically to enhance αFXIIa-mediated plasminogen activation. The plasminogen activator activity of the αFXIIa-polyP70 complex was modulated by C1 inhibitor and histidine-rich glycoprotein, but not plasminogen activator inhibitors 1 and 2. Platelet polyP and FXII were found to colocalize on the activated platelet membrane in a fibrin-dependent manner and decorated fibrin strands extending from platelet aggregates. We show that in the presence of platelet polyP and the downstream substrate fibrin, αFXIIa is a highly efficient and favorable plasminogen activator. Our data are the first to document a profibrinolytic function of platelet polyP. PMID:27694320

  20. Polyphosphate colocalizes with factor XII on platelet-bound fibrin and augments its plasminogen activator activity.

    PubMed

    Mitchell, Joanne L; Lionikiene, Ausra S; Georgiev, Georgi; Klemmer, Anja; Brain, Chelsea; Kim, Paul Y; Mutch, Nicola J

    2016-12-15

    Activated factor XII (FXIIa) has plasminogen activator capacity but its relative contribution to fibrinolysis is considered marginal compared with urokinase and tissue plasminogen activator. Polyphosphate (polyP) is released from activated platelets and mediates FXII activation. Here, we investigate the contribution of polyP to the plasminogen activator function of αFXIIa. We show that both polyP 70 , of the chain length found in platelets (60-100 mer), and platelet-derived polyP significantly augment the plasminogen activation capacity of αFXIIa. PolyP 70 stimulated the autoactivation of FXII and subsequent plasminogen activation, indicating that once activated, αFXIIa remains bound to polyP 70 Indeed, complex formation between polyP 70 and αFXIIa provides protection against autodegradation. Plasminogen activation by βFXIIa was minimal and not enhanced by polyP 70 , highlighting the importance of the anion binding site. PolyP 70 did not modulate plasmin activity but stimulated activation of Glu and Lys forms of plasminogen by αFXIIa. Accordingly, polyP 70 was found to bind to FXII, αFXIIa, and plasminogen, but not βFXIIa. Fibrin and polyP 70 acted synergistically to enhance αFXIIa-mediated plasminogen activation. The plasminogen activator activity of the αFXIIa-polyP 70 complex was modulated by C1 inhibitor and histidine-rich glycoprotein, but not plasminogen activator inhibitors 1 and 2. Platelet polyP and FXII were found to colocalize on the activated platelet membrane in a fibrin-dependent manner and decorated fibrin strands extending from platelet aggregates. We show that in the presence of platelet polyP and the downstream substrate fibrin, αFXIIa is a highly efficient and favorable plasminogen activator. Our data are the first to document a profibrinolytic function of platelet polyP. © 2016 by The American Society of Hematology.

  1. Antibiotic modulation of the plasminogen binding ability of viridans group streptococci.

    PubMed

    Teles, Cristina; Smith, Andrew; Lang, Sue

    2012-01-01

    The ability of viridans group streptococci to bind human plasminogen and its subsequent activation into plasmin may contribute to the pathogenesis of infective endocarditis (IE) by leading to a decreased stability of the streptococcal vegetation and facilitating dehiscence of emboli. At levels greater than or equal to their MICs, penicillin, vancomycin, and linezolid are efficacious in the treatment of streptococcal endocarditis. However, at sub-MICs, antibiotics can modulate the expression of bacterial genes, including virulence-associated genes, which can have counterproductive effects on the treatment of endocarditis. The effects of 1/8× and 1/4× MICs of penicillin, vancomycin, and linezolid on the plasminogen binding ability of IE isolates Streptococcus mitis 881/956, Streptococcus oralis 12601, and Streptococcus sanguinis 12403 were assessed phenotypically and the expression of plasminogen receptors α-enolase and glyceraldehyde 3-phosphate dehydrogenase of S. oralis 12601 when exposed to 1/4× MIC of penicillin, was analyzed through quantitative reverse transcription (qRT)-PCR. The plasminogen binding ability of S. mitis 881/956 and S. sanguinis 12403 remained unaffected by exposure to sub-MICs of all of the antibiotics tested, while that of S. oralis 12601 was significantly enhanced by all of the antibiotics tested at sub-MICs. qRT-PCR analysis of S. oralis 12601 demonstrated an upregulation of the eno and gapdh genes, indicating an overexpression of plasminogen receptors. These findings suggest that for some endocarditis isolates, the effect of antibiotic sub-MICs, in addition to a reduced antibacterial effect, may influence the clinical response to nonsurgical therapy. It remains difficult to accurately predict isolate responses to sub-MIC antimicrobials since there appears to be interspecies variation.

  2. Binding of human plasminogen by the lipoprotein LipL46 of Leptospira interrogans.

    PubMed

    Santos, Jadson V; Pereira, Priscila R M; Fernandes, Luis G V; Siqueira, Gabriela Hase; de Souza, Gisele O; Souza Filho, Antônio; Vasconcellos, Silvio A; Heinemann, Marcos B; Chapola, Erica G B; Nascimento, Ana L T O

    2018-02-01

    Leptospirosis is a widespread zoonosis caused by pathogenic Leptospira. Bacteria disseminate via the bloodstream and colonize the renal tubules of reservoir hosts. Leptospiral surface-exposed proteins are important targets, because due to their location they can elicit immune response and mediate adhesion and invasion processes. LipL46 has been previously reported to be located at the leptospiral outer membrane and recognized by antibodies present in serum of infected hamsters. In this study, we have confirmed the cellular location of this protein by immunofluorescence and FACS. We have cloned and expressed the recombinant protein LipL46 in its soluble form. LipL46 was recognized by confirmed leptospirosis human serum, suggesting its expression during infection. Binding screening of LipL46 with extracellular matrix (ECM) and plasma components showed that this protein interacts with plasminogen. The binding is dose-dependent on protein concentration, but saturation was not reached with the range of protein concentration used. Kringle domains of plasminogen and lysine residues of the recombinant protein are involved in the binding because the lysine analog, amino caproic acid (ACA) almost totally inhibited the reaction. The interaction of LipL46 with plasminogen generates plasmin in the presence of plasminogen activator uPA. Because plasmin generated at the leptospiral surface can degrade ECM molecules and decrease opsonophagocytosis, we tentatively infer that Lip46 has a role in helping the invasion process of pathogenic Leptospira. Copyright © 2017. Published by Elsevier Ltd.

  3. Characterization of a Novel Class of Polyphenolic Inhibitors of Plasminogen Activator Inhibitor-1*

    PubMed Central

    Cale, Jacqueline M.; Li, Shih-Hon; Warnock, Mark; Su, Enming J.; North, Paul R.; Sanders, Karen L.; Puscau, Maria M.; Emal, Cory D.; Lawrence, Daniel A.

    2010-01-01

    Plasminogen activator inhibitor type 1, (PAI-1) the primary inhibitor of the tissue-type (tPA) and urokinase-type (uPA) plasminogen activators, has been implicated in a wide range of pathological processes, making it an attractive target for pharmacologic inhibition. Currently available small-molecule inhibitors of PAI-1 bind with relatively low affinity and do not inactivate PAI-1 in the presence of its cofactor, vitronectin. To search for novel PAI-1 inhibitors with improved potencies and new mechanisms of action, we screened a library selected to provide a range of biological activities and structural diversity. Five potential PAI-1 inhibitors were identified, and all were polyphenolic compounds including two related, naturally occurring plant polyphenols that were structurally similar to compounds previously shown to provide cardiovascular benefit in vivo. Unique second generation compounds were synthesized and characterized, and several showed IC50 values for PAI-1 between 10 and 200 nm. This represents an enhanced potency of 10–1000-fold over previously reported PAI-1 inactivators. Inhibition of PAI-1 by these compounds was reversible, and their primary mechanism of action was to block the initial association of PAI-1 with a protease. Consistent with this mechanism and in contrast to previously described PAI-1 inactivators, these compounds inactivate PAI-1 in the presence of vitronectin. Two of the compounds showed efficacy in ex vivo plasma and one blocked PAI-1 activity in vivo in mice. These data describe a novel family of high affinity PAI-1-inactivating compounds with improved characteristics and in vivo efficacy, and suggest that the known cardiovascular benefits of dietary polyphenols may derive in part from their inactivation of PAI-1. PMID:20061381

  4. Identification and characterization of Taenia solium enolase as a plasminogen-binding protein.

    PubMed

    Ayón-Núñez, Dolores A; Fragoso, Gladis; Espitia, Clara; García-Varela, Martín; Soberón, Xavier; Rosas, Gabriela; Laclette, Juan P; Bobes, Raúl J

    2018-06-01

    The larval stage of Taenia solium (cysticerci) is the causal agent of human and swine cysticercosis. When ingested by the host, T. solium eggs are activated and hatch in the intestine, releasing oncospheres that migrate to various tissues and evolve into cysticerci. Plasminogen (Plg) receptor proteins have been reported to play a role in migration processes for several pathogens. This work is aimed to identify Plg-binding proteins in T. solium cysticerci and determine whether T. solium recombinant enolase (rTsEnoA) is capable of specifically binding and activating human Plg. To identify Plg-binding proteins, a 2D-SDS-PAGE ligand blotting was performed, and recognized spots were identified by MS/MS. Seven proteins from T. solium cysticerci were found capable of binding Plg: fascicilin-1, fasciclin-2, enolase, MAPK, annexin, actin, and cytosolic malate dehydrogenase. To determine whether rTsEnoA binds human Plg, a ligand blotting was performed and the results were confirmed by ELISA both in the presence and absence of εACA, a competitive Plg inhibitor. Finally, rTsEnoA-bound Plg was activated to plasmin in the presence of tPA. To better understand the evolution of enolase isoforms in T. solium, a phylogenetic inference analysis including 75 enolase amino acid sequences was conducted. The origin of flatworm enolase isoforms, except for Eno4, is independent of their vertebrate counterparts. Therefore, herein we propose to designate tapeworm protein isoforms as A, B, C, and 4. In conclusion, recombinant enolase showed a strong plasminogen binding and activating activity in vitro. T. solium enolase could play a role in parasite invasion along with other plasminogen-binding proteins. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Analysis of a two-domain binding site for the urokinase-type plasminogen activator-plasminogen activator inhibitor-1 complex in low-density-lipoprotein-receptor-related protein.

    PubMed

    Andersen, O M; Petersen, H H; Jacobsen, C; Moestrup, S K; Etzerodt, M; Andreasen, P A; Thøgersen, H C

    2001-07-01

    The low-density-lipoprotein-receptor (LDLR)-related protein (LRP) is composed of several classes of domains, including complement-type repeats (CR), which occur in clusters that contain binding sites for a multitude of different ligands. Each approximately 40-residue CR domain contains three conserved disulphide linkages and an octahedral Ca(2+) cage. LRP is a scavenging receptor for ligands from extracellular fluids, e.g. alpha(2)-macroglobulin (alpha(2)M)-proteinase complexes, lipoprotein-containing particles and serine proteinase-inhibitor complexes, like the complex between urokinase-type plasminogen activator (uPA) and the plasminogen activator inhibitor-1 (PAI-1). In the present study we analysed the interaction of the uPA-PAI-1 complex with an ensemble of fragments representing a complete overlapping set of two-domain fragments accounting for the ligand-binding cluster II (CR3-CR10) of LRP. By ligand blotting, solid-state competition analysis and surface-plasmon-resonance analysis, we demonstrate binding to multiple CR domains, but show a preferential interaction between the uPA-PAI-1 complex and a two-domain fragment comprising CR domains 5 and 6 of LRP. We demonstrate that surface-exposed aspartic acid and tryptophan residues at identical positions in the two homologous domains, CR5 and CR6 (Asp(958,CR5), Asp(999,CR6), Trp(953,CR5) and Trp(994,CR6)), are critical for the binding of the complex as well as for the binding of the receptor-associated protein (RAP) - the folding chaperone/escort protein required for transport of LRP to the cell surface. Accordingly, the present work provides (1) an identification of a preferred binding site within LRP CR cluster II; (2) evidence that the uPA-PAI-1 binding site involves residues from two adjacent protein domains; and (3) direct evidence identifying specific residues as important for the binding of uPA-PAI-1 as well as for the binding of RAP.

  6. Urokinase links plasminogen activation and cell adhesion by cleavage of the RGD motif in vitronectin.

    PubMed

    De Lorenzi, Valentina; Sarra Ferraris, Gian Maria; Madsen, Jeppe B; Lupia, Michela; Andreasen, Peter A; Sidenius, Nicolai

    2016-07-01

    Components of the plasminogen activation system including urokinase (uPA), its inhibitor (PAI-1) and its cell surface receptor (uPAR) have been implicated in a wide variety of biological processes related to tissue homoeostasis. Firstly, the binding of uPA to uPAR favours extracellular proteolysis by enhancing cell surface plasminogen activation. Secondly, it promotes cell adhesion and signalling through binding of the provisional matrix protein vitronectin. We now report that uPA and plasmin induces a potent negative feedback on cell adhesion through specific cleavage of the RGD motif in vitronectin. Cleavage of vitronectin by uPA displays a remarkable receptor dependence and requires concomitant binding of both uPA and vitronectin to uPAR Moreover, we show that PAI-1 counteracts the negative feedback and behaves as a proteolysis-triggered stabilizer of uPAR-mediated cell adhesion to vitronectin. These findings identify a novel and highly specific function for the plasminogen activation system in the regulation of cell adhesion to vitronectin. The cleavage of vitronectin by uPA and plasmin results in the release of N-terminal vitronectin fragments that can be detected in vivo, underscoring the potential physiological relevance of the process. © 2016 The Authors.

  7. Aβ delays fibrin clot lysis by altering fibrin structure and attenuating plasminogen binding to fibrin

    PubMed Central

    Zamolodchikov, Daria

    2012-01-01

    Alzheimer disease is characterized by the presence of increased levels of the β-amyloid peptide (Aβ) in the brain parenchyma and cerebral blood vessels. This accumulated Aβ can bind to fibrin(ogen) and render fibrin clots more resistant to degradation. Here, we demonstrate that Aβ42 specifically binds to fibrin and induces a tighter fibrin network characterized by thinner fibers and increased resistance to lysis. However, Aβ42-induced structural changes cannot be the sole mechanism of delayed lysis because Aβ overlaid on normal preformed clots also binds to fibrin and delays lysis without altering clot structure. In this regard, we show that Aβ interferes with the binding of plasminogen to fibrin, which could impair plasmin generation and fibrin degradation. Indeed, plasmin generation by tissue plasminogen activator (tPA), but not streptokinase, is slowed in fibrin clots containing Aβ42, and clot lysis by plasmin, but not trypsin, is delayed. Notably, plasmin and tPA activities, as well as tPA-dependent generation of plasmin in solution, are not decreased in the presence of Aβ42. Our results indicate the existence of 2 mechanisms of Aβ42 involvement in delayed fibrinolysis: (1) through the induction of a tighter fibrin network composed of thinner fibers, and (2) through inhibition of plasmin(ogen)–fibrin binding. PMID:22238323

  8. Inhibitory Monoclonal Antibodies against Mouse Proteases Raised in Gene-Deficient Mice Block Proteolytic Functions in vivo

    PubMed Central

    Lund, Ida K.; Rasch, Morten G.; Ingvarsen, Signe; Pass, Jesper; Madsen, Daniel H.; Engelholm, Lars H.; Behrendt, Niels; Høyer-Hansen, Gunilla

    2012-01-01

    Identification of targets for cancer therapy requires the understanding of the in vivo roles of proteins, which can be derived from studies using gene-targeted mice. An alternative strategy is the administration of inhibitory monoclonal antibodies (mAbs), causing acute disruption of the target protein function(s). This approach has the advantage of being a model for therapeutic targeting. mAbs for use in mouse models can be obtained through immunization of gene-deficient mice with the autologous protein. Such mAbs react with both species-specific epitopes and epitopes conserved between species. mAbs against proteins involved in extracellular proteolysis, including plasminogen activators urokinase plasminogen activator (uPA), tissue-type plasminogen activator (tPA), their inhibitor PAI-1, the uPA receptor (uPAR), two matrix metalloproteinases (MMP9 and MMP14), as well as the collagen internalization receptor uPARAP, have been developed. The inhibitory mAbs against uPA and uPAR block plasminogen activation and thereby hepatic fibrinolysis in vivo. Wound healing, another plasmin-dependent process, is delayed by an inhibitory mAb against uPA in the adult mouse. Thromboembolism can be inhibited by anti-PAI-1 mAbs in vivo. In conclusion, function-blocking mAbs are well-suited for targeted therapy in mouse models of different diseases, including cancer. PMID:22754528

  9. Network of Surface-Displayed Glycolytic Enzymes in Mycoplasma pneumoniae and Their Interactions with Human Plasminogen

    PubMed Central

    Gründel, Anne; Pfeiffer, Melanie; Jacobs, Enno

    2015-01-01

    In different bacteria, primarily cytosolic and metabolic proteins are characterized as surface localized and interacting with different host factors. These moonlighting proteins include glycolytic enzymes, and it has been hypothesized that they influence the virulence of pathogenic species. The presence of surface-displayed glycolytic enzymes and their interaction with human plasminogen as an important host factor were investigated in the genome-reduced and cell wall-less microorganism Mycoplasma pneumoniae, a common agent of respiratory tract infections of humans. After successful expression of 19 glycolytic enzymes and production of polyclonal antisera, the localization of proteins in the mycoplasma cell was characterized using fractionation of total proteins, colony blot, mild proteolysis and immunofluorescence of M. pneumoniae cells. Eight glycolytic enzymes, pyruvate dehydrogenases A to C (PdhA-C), glyceraldehyde-3-phosphate dehydrogenase (GapA), lactate dehydrogenase (Ldh), phosphoglycerate mutase (Pgm), pyruvate kinase (Pyk), and transketolase (Tkt), were confirmed as surface expressed and all are able to interact with plasminogen. Plasminogen bound to recombinant proteins PdhB, GapA, and Pyk was converted to plasmin in the presence of urokinase plasminogen activator and plasmin-specific substrate d-valyl-leucyl-lysine-p-nitroanilide dihydrochloride. Furthermore, human fibrinogen was degraded by the complex of plasminogen and recombinant protein PdhB or Pgm. In addition, surface-displayed proteins (except PdhC) bind to human lung epithelial cells, and the interaction was reduced significantly by preincubation of cells with antiplasminogen. Our results suggest that plasminogen binding and activation by different surface-localized glycolytic enzymes of M. pneumoniae may play a role in successful and long-term colonization of the human respiratory tract. PMID:26667841

  10. The interplay between tissue plasminogen activator domains and fibrin structures in the regulation of fibrinolysis: kinetic and microscopic studies

    PubMed Central

    Thelwell, Craig; Williams, Stella C.; Silva, Marta M. C. G.; Szabó, László; Kolev, Krasimir

    2011-01-01

    Regulation of tissue-type plasminogen activator (tPA) depends on fibrin binding and fibrin structure. tPA structure/function relationships were investigated in fibrin formed by high or low thrombin concentrations to produce a fine mesh and small pores, or thick fibers and coarse structure, respectively. Kinetics studies were performed to investigate plasminogen activation and fibrinolysis in the 2 types of fibrin, using wild-type tPA (F-G-K1-K2-P, F and K2 binding), K1K1-tPA (F-G-K1-K1-P, F binding), and delF-tPA (G-K1-K2-P, K2 binding). There was a trend of enzyme potency of tPA > K1K1-tPA > delF-tPA, highlighting the importance of the finger domain in regulating activity, but the differences were less apparent in fine fibrin. Fine fibrin was a better surface for plasminogen activation but more resistant to lysis. Scanning electron and confocal microscopy using orange fluorescent fibrin with green fluorescent protein-labeled tPA variants showed that tPA was strongly associated with agglomerates in coarse but not in fine fibrin. In later lytic stages, delF-tPA-green fluorescent protein diffused more rapidly through fibrin in contrast to full-length tPA, highlighting the importance of finger domain-agglomerate interactions. Thus, the regulation of fibrinolysis depends on the starting nature of fibrin fibers and complex dynamic interaction between tPA and fibrin structures that vary over time. PMID:20966169

  11. The heparin-binding site in tetranectin is located in the N-terminal region and binding does not involve the carbohydrate recognition domain.

    PubMed Central

    Lorentsen, R H; Graversen, J H; Caterer, N R; Thogersen, H C; Etzerodt, M

    2000-01-01

    Tetranectin is a homotrimeric plasma and extracellular-matrix protein that binds plasminogen and complex sulphated polysaccharides including heparin. In terms of primary and tertiary structure, tetranectin is related to the collectin family of Ca(2+)-binding C-type lectins. Tetranectin is encoded in three exons. Exon 3 encodes the carbohydrate recognition domain, which binds to kringle 4 in plasminogen at low levels of Ca(2+). Exon 2 encodes an alpha-helix, which is necessary and sufficient to govern the trimerization of tetranectin by assembling into a triple-helical coiled-coil structural element. Here we show that the heparin-binding site in tetranectin resides not in the carbohydrate recognition domain but within the N-terminal region, comprising the 16 amino acid residues encoded by exon 1. In particular, the lysine residues in the decapeptide segment KPKKIVNAKK (tetranectin residues 6-15) are shown to be of primary importance in heparin binding. PMID:10727405

  12. The heparin-binding site in tetranectin is located in the N-terminal region and binding does not involve the carbohydrate recognition domain.

    PubMed

    Lorentsen, R H; Graversen, J H; Caterer, N R; Thogersen, H C; Etzerodt, M

    2000-04-01

    Tetranectin is a homotrimeric plasma and extracellular-matrix protein that binds plasminogen and complex sulphated polysaccharides including heparin. In terms of primary and tertiary structure, tetranectin is related to the collectin family of Ca(2+)-binding C-type lectins. Tetranectin is encoded in three exons. Exon 3 encodes the carbohydrate recognition domain, which binds to kringle 4 in plasminogen at low levels of Ca(2+). Exon 2 encodes an alpha-helix, which is necessary and sufficient to govern the trimerization of tetranectin by assembling into a triple-helical coiled-coil structural element. Here we show that the heparin-binding site in tetranectin resides not in the carbohydrate recognition domain but within the N-terminal region, comprising the 16 amino acid residues encoded by exon 1. In particular, the lysine residues in the decapeptide segment KPKKIVNAKK (tetranectin residues 6-15) are shown to be of primary importance in heparin binding.

  13. Staphylokinase has distinct modes of interaction with antimicrobial peptides, modulating its plasminogen-activation properties

    PubMed Central

    Nguyen, Leonard T.; Vogel, Hans J.

    2016-01-01

    Staphylokinase (Sak) is a plasminogen activator protein that is secreted by many Staphylococcus aureus strains. Sak also offers protection by binding and inhibiting specific antimicrobial peptides (AMPs). Here, we evaluate Sak as a more general interaction partner for AMPs. Studies with melittin, mCRAMP, tritrpticin and bovine lactoferricin indicate that the truncation of the first ten residues of Sak (SakΔN10), which occurs in vivo and uncovers important residues in a bulge region, improves its affinity for AMPs. Melittin and mCRAMP have a lower affinity for SakΔN10, and in docking studies, they bind to the N-terminal segment and bulge region of SakΔN10. By comparison, lactoferricin and tritrpticin form moderately high affinity 1:1 complexes with SakΔN10 and their cationic residues form several electrostatic interactions with the protein’s α-helix. Overall, our work identifies two distinct AMP binding surfaces on SakΔN10 whose occupation would lead to either inhibition or promotion of its plasminogen activating properties. PMID:27554435

  14. Inhibition of PAI-1 Antiproteolytic Activity Against tPA by RNA Aptamers

    PubMed Central

    Damare, Jared; Brandal, Stephanie

    2014-01-01

    Plasminogen activator inhibitor-1 (PAI-1; SERPINE1) inhibits the plasminogen activators: tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA). Elevated levels of PAI-1 have been correlated with an increased risk for cardiovascular disease. Pharmacologically suppressing PAI-1 might prevent, or successfully treat PAI-1 related vascular diseases. This can potentially be accomplished by using small RNA molecules (aptamers). This study's goal is to develop RNA aptamers to a region of PAI-1 that will prevent the ability of PAI-1 to interact with the plasminogen activators. The aptamers were generated through a systematic evolution of ligands via exponential enrichment approach that ensures the creation of RNA molecules that bind to our target protein, PAI-1. In vitro assays were used to determine the effect of these aptamers on PAI-1's inhibitory activity. Three aptamers that bind to PAI-1 with affinities in the nanomolar range were isolated. The aptamer clones R10-4 and R10-2 inhibited PAI-1's antiproteolytic activity against tPA and disrupted PAI-1's ability to form a stable covalent complex with tPA. Increasing aptamer concentrations correlated positively with an increase in cleaved PAI-1. To the best of our knowledge, this is the first report of RNA molecules that inhibit the antiproteolytic activity of PAI-1. PMID:24922319

  15. Binding of anti-SSA antibodies to apoptotic fetal cardiocytes stimulates urokinase plasminogen activator (uPA)/uPA receptor-dependent activation of TGF-β and potentiates fibrosis.

    PubMed

    Briassouli, Paraskevi; Rifkin, Daniel; Clancy, Robert M; Buyon, Jill P

    2011-11-15

    In congenital heart block (CHB), binding of maternal anti-SSA/Ro Abs to fetal apoptotic cardiocytes impairs their removal by healthy cardiocytes and increases urokinase plasminogen activator (uPA)/uPA receptor (uPAR)-dependent plasmin activation. Because the uPA/uPAR system plays a role in TGF-β activation, we evaluated whether anti-Ro binding to apoptotic cardiocytes enhances plasmin-mediated activation of TGF-β, thereby promoting a profibrosing phenotype. Supernatants from cocultures of healthy cardiocytes and apoptotic cardiocytes bound by IgG from a mother whose child had CHB (apoptotic-CHB-IgG [apo-CHB-IgG]) exhibited significantly increased levels of active TGF-β compared with supernatants from cocultures of healthy cardiocytes and apoptotic cardiocytes preincubated with IgG from a healthy donor. Treatment of the culture medium with anti-TGF-β Ab or TGF-β inhibitor (SB431542) abrogated the luciferase response, thereby confirming TGF-β dependency. Increased uPA levels and activity were present in supernatants generated from cocultures of healthy cardiocytes and apo-CHB-IgG cardiocytes compared with healthy cardiocytes and apoptotic cardiocytes preincubated with IgG from a healthy donor, respectively. Treatment of apo-CHB-IgG cardiocytes with anti-uPAR or anti-uPA Abs or plasmin inhibitor aprotinin prior to coculturing with healthy cardiocytes attenuated TGF-β activation. Supernatants derived from cocultures of healthy cardiocytes and apo-CHB-IgG cardiocytes promoted Smad2 phosphorylation and fibroblast transdifferentiation, as evidenced by increased smooth muscle actin and collagen expression, which decreased when fibroblasts were treated with supernatants from cocultures pretreated with uPAR Abs. These data suggested that binding of anti-Ro Abs to apoptotic cardiocytes triggers TGF-β activation, by virtue of increasing uPAR-dependent uPA activity, thus initiating and amplifying a cascade of events that promotes myofibroblast transdifferentiation and scar.

  16. Structural Basis of Interaction between Urokinase-Type Plasminogen Activator and Its Receptor

    PubMed Central

    Barinka, Cyril; Parry, Graham; Callahan, Jennifer; Shaw, David E.; Kuo, Alice; Bdeir, Khalil; Cines, Douglas B.; Mazar, Andrew; Lubkowski, Jacek

    2009-01-01

    Summary Recent studies indicate that binding of urokinase-type plasminogen activator (uPA) to its high affinity receptor (uPAR), orchestrates uPAR interactions with other cellular components that play a pivotal role in diverse (patho-)physiological processes including wound healing, angiogenesis, inflammation, and cancer metastasis. However, notwithstanding the wealth of biochemical data available describing the activities of uPAR, little is known as to the exact mode of uPAR-uPA interactions and the presumed conformational changes that accompanying uPA-uPAR engagement. Here we report the crystal structure of soluble urokinase plasminogen activator receptor (suPAR), which contains the three domains of the wild-type receptor but lacks the cell surface anchoring sequence, in complex with the amino terminal fragment of urokinase-type plasminogen activator (ATF), at the resolution of 2.8 Å. We also report the 1.9 Å crystal structure of the free ATF. Our results provide a structural basis, represented by conformational changes induced in uPAR, for several published biochemical observations describing the nature of uPAR-uPA interactions and provide insight into mechanisms that may be responsible for the cellular responses induced by uPA binding. PMID:16979660

  17. Epsilon-aminocaproic acid prevents high glucose and insulin induced-invasiveness in MDA-MB-231 breast cancer cells, modulating the plasminogen activator system.

    PubMed

    Viedma-Rodríguez, Rubí; Martínez-Hernández, María Guadalupe; Flores-López, Luis Antonio; Baiza-Gutman, Luis Arturo

    2018-01-01

    Obesity and type II diabetes mellitus have contributed to the increase of breast cancer incidence worldwide. High glucose concentration promotes the proliferation of metastatic cells, favoring the activation of the plasminogen/plasmin system, thus contributing to tumor progression. The efficient formation of plasmin is dependent on the binding of plasminogen to the cell surface. We studied the effect of ε-aminocaproic acid (EACA), an inhibitor of the binding of plasminogen to cell surface, on proliferation, migration, invasion, epithelial-mesenchymal transition (EMT), and plasminogen activation system, in metastatic MDA-MB-231 breast cancer cells grown in a high glucose microenvironment and treated with insulin. MDA-MB-231 cells were treated with EACA 12.5 mmol/L under high glucose 30 mmol/L (HG) and high glucose and insulin 80 nmol/L (HG-I) conditions, evaluating: cell population growth, % of viability, migratory, and invasive abilities, as well as the expression of uPA, its receptor (uPAR), and its inhibitor (PAI-1), by real-time reverse transcription-polymerase chain reaction (RT-PCR) and Western blot, MMP-2 and MMP-9 mRNAs were evaluated by RT-PCR. Markers of EMT were evaluated by Western blot. Additionally, the presence of active uPA was studied by gel zymography, using casein-plasminogen as substrates. EACA prevented the increase in cell population, migration and invasion induced by HG and insulin, which was associated with the inhibition of EMT and the attenuation of HG- and insulin-dependent expression of uPA, uPAR, PAI-1, MMP-2, MMP-9, α-enolase (ENO A), and HCAM. The interaction of plasminogen to the cell surface and plasmin formation are mediators of the prometastasic action of hyperglycemia and insulin, potentially, EACA can be employed in the prevention and as adjuvant treatment of breast tumorigenesis promoted by hyperglycemia and insulin.

  18. The Interaction of Streptococcal Enolase with Canine Plasminogen: The Role of Surfaces in Complex Formation

    PubMed Central

    Balhara, Vinod; Deshmukh, Sasmit S.; Kálmán, László; Kornblatt, Jack A.

    2014-01-01

    The enolase from Streptococcus pyogenes (Str enolase F137L/E363G) is a homo-octamer shaped like a donut. Plasminogen (Pgn) is a monomeric protein composed of seven discrete separated domains organized into a lock washer. The enolase is known to bind Pgn. In past work we searched for conditions in which the two proteins would bind to one another. The two native proteins in solution would not bind under any of the tried conditions. We found that if the structures were perturbed binding would occur. We stated that only the non-native Str enolase or Pgn would interact such that we could detect binding. We report here the results of a series of dual polarization interferometry (DPI) experiments coupled with atomic force microscopy (AFM), isothermal titration calorimetry (ITC), dynamic light scattering (DLS), and fluorescence. We show that the critical condition for forming stable complexes of the two native proteins involves Str enolase binding to a surface. Surfaces that attract Str enolase are a sufficient condition for binding Pgn. Under certain conditions, Pgn adsorbed to a surface will bind Str enolase. PMID:24520380

  19. Phosphatidylserine as an anchor for plasminogen and its plasminogen receptor, Histone H2B, to the macrophage surface

    PubMed Central

    DAS, R.; PLOW, E. F.

    2013-01-01

    Summary Background Plasminogen (Plg) binding to cell surface Plg receptors (Plg-Rs) on the surface of macrophages facilitates Plg activation and migration of these cells. Histone H2B (H2B) acts as a Plg-R and its cell surface expression is upregulated when monocytes are differentiated to macrophages via a pathway dependent on L-type Ca2+ channels and intracellular Ca2+. Objectives We sought to investigate the mechanism by which H2B, a protein without a transmembrane domain, is retained on themacrophage surface. Methods THP-1 monocytoid cells were induced to differentiate with interferon gamma + Vitamin D3 or to undergo apoptosis by treatment with camptothecin. Flow cytometry and cell surface biotinylation followed by Western blotting were used to measure the interrelationship between Plg binding, cell surface expression of H2B and outermembrane exposure of phosphatidylserine (PS). Results H2B interacted directly with PS via an electrostatic interaction. Anti-PS or PS binding proteins, annexin V and protein S, diminished H2B interaction with PS on the surface of differentiated or apoptotic cells and these same reagents inhibited Plg binding to these cells. L-type Ca2+ channels played a significant role in PS exposure, H2B surface expression and Plg binding induced either by differentiation or apoptosis. Conclusions These data suggest that H2B tethers to the surface of cells by interacting with PS on differentiated or apoptotic monocytoid cells. L-type Ca2+ channels regulate PS exposure on the surface of these cells. The exposed PS interacts directly with H2B and hence provides sites for Plg to bind to. PMID:21040449

  20. Targeting of antibody-conjugated plasminogen activators to the pulmonary vasculature.

    PubMed

    Muzykantov, V R; Barnathan, E S; Atochina, E N; Kuo, A; Danilov, S M; Fisher, A B

    1996-11-01

    Thrombolytic therapy has not been widely used for pulmonary embolism due to less than optimal results with conventional plasminogen activators. We propose a new approach to deliver plasminogen activators to the luminal surface of the pulmonary vasculature to potentially improve dissolution of pulmonary thromboemboli. Our previous studies have documented that a monoclonal antibody (mAb) to angiotensin-converting enzyme (anti-angiotensin-converting enzyme mAb 9B9) accumulates in the lungs of various animal species after systemic administration. We coupled 125I-labeled biotinylated plasminogen activators (single-chain urokinase plasminogen activator, tissue-type plasminogen activator and streptokinase) to biotinylated mAb 9B9, using streptavidin as a cross-linker. The fibrinolytic activity of plasminogen activators was not changed significantly by either biotinylation or by coupling to streptavidin. Antibody-conjugated plasminogen activators bind to the antigen immobilized in plastic wells and provide lysis of fibrin clots formed in these wells. Therefore, antibody-conjugated plasminogen activators bound to their target antigen retain their capacity to activate plasminogen. One hour after i.v. injection of mAb 9B9-conjugated radiolabeled biotinylated single-chain urokinase plasminogen activator, biotinylated tissue-type plasminogen activator or biotinylated-streptokinase in rats, the level of radiolabel was 7.4 +/- 0.8, 5.9 +/- 0.4 and 3.6 +/- 0.4% of injected dose/g (ID/g) of lung tissue vs. 0.5 +/- 0.01, 0.3 +/- 0.01 and 0.6 +/- 0.3% ID/g after injection of the same activators conjugated with control mouse IgG (P < .01 in all cases). Injection of mAb 9B9-conjugated radiolabeled plasminogen activator led to its rapid pulmonary uptake with a peak value 6.2 +/- 1.2% ID/g attained 3 hr after injection. One day later, 2.2 +/- 0.5% of the injected radioactivity was found per gram of lung tissue, although the blood level was 0.13 +/- 0.03% ID/g (lung/blood ratio 16.7 +/- 0.3). Therefore, conjugation of plasminogen activators with anti-angiotensin-converting enzyme mAb 9B9 provides their specific targeting to and prolonged association with the pulmonary vasculature. These results provide a basis for study of the local pulmonary fibrinolysis by mAb 9B9-conjugated plasminogen activators.

  1. Binding of high molecular weight kininogen to human endothelial cells is mediated via a site within domains 2 and 3 of the urokinase receptor.

    PubMed Central

    Colman, R W; Pixley, R A; Najamunnisa, S; Yan, W; Wang, J; Mazar, A; McCrae, K R

    1997-01-01

    The urokinase receptor (uPAR) binds urokinase-type plasminogen activator (u-PA) through specific interactions with uPAR domain 1, and vitronectin through interactions with a site within uPAR domains 2 and 3. These interactions promote the expression of cell surface plasminogen activator activity and cellular adhesion to vitronectin, respectively. High molecular weight kininogen (HK) also stimulates the expression of cell surface plasminogen activator activity through its ability to serve as an acquired receptor for prekallikrein, which, after its activation, may directly activate prourokinase. Here, we report that binding of the cleaved form of HK (HKa) to human umbilical vein endothelial cells (HUVEC) is mediated through zinc-dependent interactions with uPAR. These occur through a site within uPAR domains 2 and 3, since the binding of 125I-HKa to HUVEC is inhibited by vitronectin, anti-uPAR domain 2 and 3 antibodies and soluble, recombinant uPAR (suPAR), but not by antibody 7E3, which recognizes the beta chain of the endothelial cell vitronectin receptor (integrin alphavbeta3), or fibrinogen, another alphavbeta3 ligand. We also demonstrate the formation of a zinc-dependent complex between suPAR and HKa. Interactions of HKa with endothelial cell uPAR may underlie its ability to promote kallikrein-dependent cell surface plasmin generation, and also explain, in part, its antiadhesive properties. PMID:9294114

  2. Urokinase-type plasminogen activator receptor (uPAR) ligation induces a raft-localized integrin signaling switch that mediates the hypermotile phenotype of fibrotic fibroblasts.

    PubMed

    Grove, Lisa M; Southern, Brian D; Jin, Tong H; White, Kimberly E; Paruchuri, Sailaja; Harel, Efrat; Wei, Ying; Rahaman, Shaik O; Gladson, Candece L; Ding, Qiang; Craik, Charles S; Chapman, Harold A; Olman, Mitchell A

    2014-05-02

    The urokinase-type plasminogen activator receptor (uPAR) is a glycosylphosphatidylinositol-linked membrane protein with no cytosolic domain that localizes to lipid raft microdomains. Our laboratory and others have documented that lung fibroblasts from patients with idiopathic pulmonary fibrosis (IPF) exhibit a hypermotile phenotype. This study was undertaken to elucidate the molecular mechanism whereby uPAR ligation with its cognate ligand, urokinase, induces a motile phenotype in human lung fibroblasts. We found that uPAR ligation with the urokinase receptor binding domain (amino-terminal fragment) leads to enhanced migration of fibroblasts on fibronectin in a protease-independent, lipid raft-dependent manner. Ligation of uPAR with the amino-terminal fragment recruited α5β1 integrin and the acylated form of the Src family kinase, Fyn, to lipid rafts. The biological consequences of this translocation were an increase in fibroblast motility and a switch of the integrin-initiated signal pathway for migration away from the lipid raft-independent focal adhesion kinase pathway and toward a lipid raft-dependent caveolin-Fyn-Shc pathway. Furthermore, an integrin homologous peptide as well as an antibody that competes with β1 for uPAR binding have the ability to block this effect. In addition, its relative insensitivity to cholesterol depletion suggests that the interactions of α5β1 integrin and uPAR drive the translocation of α5β1 integrin-acylated Fyn signaling complexes into lipid rafts upon uPAR ligation through protein-protein interactions. This signal switch is a novel pathway leading to the hypermotile phenotype of IPF patient-derived fibroblasts, seen with uPAR ligation. This uPAR dependent, fibrotic matrix-selective, and profibrotic fibroblast phenotype may be amenable to targeted therapeutics designed to ameliorate IPF.

  3. PEGylated DX-1000: pharmacokinetics and antineoplastic activity of a specific plasmin inhibitor.

    PubMed

    Devy, Laetitia; Rabbani, Shafaat A; Stochl, Mark; Ruskowski, Mary; Mackie, Ian; Naa, Laurent; Toews, Mark; van Gool, Reinoud; Chen, Jie; Ley, Art; Ladner, Robert C; Dransfield, Daniel T; Henderikx, Paula

    2007-11-01

    Novel inhibitors of the urokinase-mediated plasminogen (plg) activation system are potentially of great clinical benefit as anticancer treatments. Using phage display, we identified DX-1000 a tissue factor pathway inhibitor-derived Kunitz domain protein which is a specific high-affinity inhibitor of plasmin (pln) (K(i) = 99 pM). When tested in vitro, DX-1000 blocks plasmin-mediated pro-matrix metalloproteinase-9 (proMMP-9) activation on cells and dose-dependently inhibits tube formation, while not significantly affecting hemostasis and coagulation. However, this low-molecular weight protein inhibitor ( approximately 7 kDa) exhibits rapid plasma clearance in mice and rabbits, limiting its potential clinical use in chronic diseases. After site-specific PEGylation, DX-1000 retains its activity and exhibits a decreased plasma clearance. This PEGylated derivative is effective in vitro, as well as potent in inhibiting tumor growth of green fluorescent protein (GFP)-labeled MDA-MB-231 cells. 4PEG-DX-1000 treatment causes a significant reduction of urokinase-type plasminogen activator (uPA) and plasminogen expressions, a reduction of tumor proliferation, and vascularization. 4PEG-DX-1000 treatment significantly decreases the level of active mitogen-activated protein kinase (MAPK) in the primary tumors and reduces metastasis incidence. Together, our results demonstrate the potential value of plasmin inhibitors as therapeutic agents for blocking breast cancer growth and metastasis.

  4. Different mechanisms are involved in the antibody mediated inhibition of ligand binding to the urokinase receptor: a study based on biosensor technology.

    PubMed

    List, K; Høyer-Hansen, G; Rønne, E; Danø, K; Behrendt, N

    1999-01-01

    Certain monoclonal antibodies are capable of inhibiting the biological binding reactions of their target proteins. At the molecular level, this type of effect may be brought about by completely different mechanisms, such as competition for common binding determinants, steric hindrance or interference with conformational properties of the receptor critical for ligand binding. This distinction is central when employing the antibodies as tools in the elucidation of the structure-function relationship of the protein in question. We have studied the effect of monoclonal antibodies against the urokinase plasminogen activator receptor (uPAR), a protein located on the surface of various types of malignant and normal cells which is involved in the direction of proteolytic degradation reactions in the extracellular matrix. We show that surface plasmon resonance/biomolecular interaction analysis (BIA) can be employed as a highly useful tool to characterize the inhibitory mechanism of specific antagonist antibodies. Two inhibitory antibodies against uPAR, mAb R3 and mAb R5, were shown to exhibit competitive and non-competitive inhibition, respectively, of ligand binding to the receptor. The former antibody efficiently blocked the receptor against subsequent ligand binding but was unable to promote the dissociation of a preformed receptor-ligand complex. The latter antibody was capable of binding the preformed complex, forming a transient trimolecular assembly, and promoting the dissociation of the uPA/uPAR complex. The continuous recording of binding and dissociation, obtained in BIA, is central in characterizing these phenomena. The identification of a non-competitive inhibitory mechanism against this receptor reveals the presence of a determinant which influences the binding properties of a remote site in the molecular structure and which could be an important target for a putative synthetic antagonist.

  5. Dimerization controls the lipid raft partitioning of uPAR/CD87 and regulates its biological functions

    PubMed Central

    Cunningham, Orla; Andolfo, Annapaola; Santovito, Maria Lisa; Iuzzolino, Lucia; Blasi, Francesco; Sidenius, Nicolai

    2003-01-01

    The urokinase-type plasminogen activator receptor (uPAR/CD87) is a glycosylphosphatidylinositol-anchored membrane protein with multiple functions in extracellular proteolysis, cell adhesion, cell migration and proliferation. We now report that cell surface uPAR dimerizes and that dimeric uPAR partitions preferentially to detergent-resistant lipid rafts. Dimerization of uPAR did not require raft partitioning as the lowering of membrane cholesterol failed to reduce dimerization and as a transmembrane uPAR chimera, which does not partition to lipid rafts, also dimerized efficiently. While uPA bound to uPAR independently of its membrane localization and dimerization status, uPA-induced uPAR cleavage was strongly accelerated in lipid rafts. In contrast to uPA, the binding of Vn occurred preferentially to raft- associated dimeric uPAR and was completely blocked by cholesterol depletion. PMID:14609946

  6. Urokinase-Type Plasminogen Activator Receptor Is Internalized by Different Mechanisms in Polarized and Nonpolarized Madin–Darby Canine Kidney Epithelial Cells

    PubMed Central

    Vilhardt, Frederik; Nielsen, Morten; Sandvig, Kirsten; van Deurs, Bo

    1999-01-01

    Accumulated data indicate that endocytosis of the glycosylphosphatidyl-inositol-anchored protein urokinase plasminogen activator receptor (uPAR) depends on binding of the ligand uPA:plasminogen activator inhibitor-1 (PAI-1) and subsequent interaction with internalization receptors of the low-density lipoprotein receptor family, which are internalized through clathrin-coated pits. This interaction is inhibited by receptor-associated protein (RAP). We show that uPAR with bound uPA:PAI-1 is capable of entering cells in a clathrin-independent process. First, HeLaK44A cells expressing mutant dynamin efficiently internalized uPA:PAI-1 under conditions in which transferrin endocytosis was blocked. Second, in polarized Madin–Darby canine kidney (MDCK) cells, which expressed human uPAR apically, the low basal rate of uPAR ligand endocytosis, which could not be inhibited by RAP, was increased by forskolin or phorbol ester (phorbol 12-myristate 13-acetate), which selectively up-regulate clathrin-independent endocytosis from the apical domain of epithelial cells. Third, in subconfluent nonpolarized MDCK cells, endocytosis of uPA:PAI-1 was only decreased marginally by RAP. At the ultrastructural level uPAR was largely excluded from clathrin-coated pits in these cells and localized in invaginated caveolae only in the presence of cross-linking antibodies. Interestingly, a larger fraction of uPAR in nonpolarized relative to polarized MDCK cells was insoluble in Triton X-100 at 0°C, and by surface labeling with biotin we also show that internalized uPAR was mainly detergent insoluble, suggesting a correlation between association with detergent-resistant membrane microdomains and higher degree of clathrin-independent endocytosis. Furthermore, by cryoimmunogold labeling we show that 5–10% of internalized uPAR in nonpolarized, but not polarized, MDCK cells is targeted to lysosomes by a mechanism that is regulated by ligand occupancy. PMID:9880335

  7. Vibrio parahaemolyticus enolase is an adhesion-related factor that binds plasminogen and functions as a protective antigen.

    PubMed

    Jiang, Wei; Han, Xiangan; Wang, Quan; Li, Xintong; Yi, Li; Liu, Yongjie; Ding, Chan

    2014-06-01

    Vibrio parahaemolyticus, an emerging food and waterborne pathogen, is a leading cause of seafood poisoning worldwide. Surface proteins can directly participate in microbial virulence by facilitating pathogen dissemination via interactions with host factors. Screening and identification of protective antigens is important for developing therapies against V. parahaemolyticus infections. Here, we systematically characterized a novel immunogenic enolase of V. parahaemolyticus. The enolase gene of V. parahaemolyticus ATCC33847 was cloned, sequenced, and expressed in Escherichia coli BL21. Enzymatic assays revealed that the purified recombinant V. parahaemolyticus enolase protein catalyzes the dehydration of 2-phospho-D-glycerate to phosphoenolpyruvate. Western blot analysis showed that V. parahaemolyticus enolase was detectable in the extracellular, outer membrane (OM) and cytoplasmic protein fractions using antibodies against the recombinant enolase. Surface expression of enolase was further confirmed by immunogold staining and mass spectrometry (liquid chromatography-tandem mass spectrometry) analysis of OM protein profiles. Notably, V. parahaemolyticus enolase was identified as a human plasminogen-binding protein with the enzyme-linked immunosorbent assay. The values obtained for adherence and inhibition suggest a role of surface-exposed enolase in epithelial adherence of V. parahaemolyticus. We further showed that enolase confers efficient immunity against challenge with a lethal dose of V. parahaemolyticus in a mouse model. To our knowledge, this is the first study to demonstrate the plasminogen-binding activity of enolase that is an adhesion-related factor of V. parahaemolyticus. Our findings collectively imply that enolase plays important roles in pathogenicity, supporting its utility as a novel vaccine candidate against V. parahaemolyticus infection.

  8. Biochemical actions of glucocorticoids on macrophages in culture. Specific inhibition of elastase, collagenase, and plasminogen activator secretion and effects on other metabolic functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Werb, Z.

    1978-01-01

    The effects of glucocorticoids on biochemical functions of macrophages from man, mouse, rabbit, and guinea pig were examined. Secretion of plasminogen activator by human peripheral blood monocytes was decreased 50% with 1 nM dexamethasone. Differentiation of murine monocytic and granulocytic colonies in agar from bone marrow precursors was decreased 50% at 7 days with 20 nM dexamethasone. Secretion of elastase, collagenase, and plasminogen activator by resident and thioglycollate-elicited mouse peritoneal macrophages was decreased by dexamethasone, cortisol, and triamcinolone acetonide (1 to 1,000 nM), but not by progesterone, estradiol, and dihydrotestosterone (1,000 nM); in contast, secretion of lysozyme was not affectedmore » by glucocorticoids. The inhibition of macrophage secretion by dexamethasone was both time and dose dependent. Inhibition of macrophage secretion increased with increasing glucocorticoid concentration. Half-maximum inhibition of secretion of elastase, collagenase, and plasminogen activator was seen at dexamethasone concentrations (1 to 10 nM) similar to those that half-saturated the specific glucocorticoid receptors. At high concentrations of dexamethasone (100 to 1,000 nM) the secretion of plasminogen activator was inhibited to a greater extent (>95%) than the secretion of elastase (60 to 80%).Progesterone alone had no effect on secretion, but blocked the inhibitory effects of dexamethasone and cortisol. Secretion of collagenase, neutral proteinases, and plasminogen activator by elicited rabbit alveolar macrophages was inhibited with glucocorticoids (0.1 to 100 nM) but not with progesterone or sex steroids. Secretion of a neutral elastinolytic proteinase by guinea pig alveolar macrophages was also inhibited by dexamethasone.« less

  9. Surface-Expressed Enolase Contributes to the Pathogenesis of Clinical Isolate SSU of Aeromonas hydrophila▿

    PubMed Central

    Sha, Jian; Erova, Tatiana E.; Alyea, Rebecca A.; Wang, Shaofei; Olano, Juan P.; Pancholi, Vijay; Chopra, Ashok K.

    2009-01-01

    In this study, we demonstrated that the surface-expressed enolase from diarrheal isolate SSU of Aeromonas hydrophila bound to human plasminogen and facilitated the latter's tissue-type plasminogen activator-mediated activation to plasmin. The bacterial surface-bound plasmin was more resistant to the action of its specific physiological inhibitor, the antiprotease α2-antiplasmin. We found that immunization of mice with purified recombinant enolase significantly protected the animals against a lethal challenge dose of wild-type (WT) A. hydrophila. Minimal histological changes were noted in organs from mice immunized with enolase and then challenged with WT bacteria compared to severe pathological changes found in the infected and nonimmunized group of animals. This correlated with the smaller bacterial load of WT bacteria in the livers and spleens of enolase-immunized mice than that found in the nonimmunized controls. We also showed that the enolase gene could potentially be important for the viability of A. hydrophila SSU as we could delete the chromosomal copy of the enolase gene only when another copy of the targeted gene was supplied in trans. By site-directed mutagenesis, we altered five lysine residues located at positions 343, 394, 420, 427, and 430 of enolase in A. hydrophila SSU; the mutated forms of enolase were hyperexpressed in Escherichia coli, and the proteins were purified. Our results indicated that lysine residues at positions 420 and 427 of enolase were crucial in plasminogen-binding activity. We also identified a stretch of amino acid residues (252FYDAEKKEY260) in the A. hydrophila SSU enolase involved in plasminogen binding. To our knowledge, this is the first report of the direct involvement of surface-expressed enolase in the pathogenesis of A. hydrophila SSU infections and of any gram-negative bacteria in general. PMID:19270100

  10. Regulation of Plasminogen Activation on Cell Surfaces and Fibrin.

    PubMed

    Urano, Tetsumei; Castellino, Francis J; Suzuki, Yuko

    2018-05-20

    The fibrinolytic system dissolves fibrin and maintains vascular patency. Recent advances in imaging analyses allowed visualization of the spatiotemporal regulatory mechanism of fibrinolysis, as well as its regulation by other plasma haemostasis cofactors. Vascular endothelial cells (VECs) retain tissue-type plasminogen activator (tPA) after secretion and maintain high plasminogen (plg) activation potential on their surfaces. As in plasma, the serpin, plasminogen activator inhibitor type 1 (PAI-1), regulates fibrinolytic potential via inhibition of the VEC surface-bound plg activator, tPA. Once fibrin is formed, plg activation by tPA is initiated and effectively amplified on the surface of fibrin, and fibrin is rapidly degraded. The specific binding of plg and tPA to lytic edges of partly degraded fibrin via newly generated C-terminal lysine residues, which amplifies fibrin digestion, is a central aspect of this pathophysiological mechanism. Thrombomodulin (TM) plays a role in the attenuation of the plg binding on fibrin and the associated fibrinolysis, which is reversed by a carboxypeptidase B inhibitor. This suggests that the plasma procarboxypeptidase B, thrombin activatable fibrinolysis inhibitor (TAFI), which is activated by thrombin bound to TM on VECs, is a critical aspect of the regulation of plg activation on VECs and subsequent fibrinolysis. Platelets also contain PAI-1, TAFI, TM and the fibrin crosslinking enzyme, Factor (F) XIIIa, and either secrete or expose these agents upon activation in order to regulate fibrinolysis. In this review, the native machinery of plg activation and fibrinolysis, as well as their spatiotemporal regulatory mechanisms, as revealed by imaging analyses, are discussed. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  11. Reduced Plasminogen Binding and Delayed Activation Render γ′-Fibrin More Resistant to Lysis than γA-Fibrin*

    PubMed Central

    Kim, Paul Y.; Vu, Trang T.; Leslie, Beverly A.; Stafford, Alan R.; Fredenburgh, James C.; Weitz, Jeffrey I.

    2014-01-01

    Fibrin (Fn) clots formed from γ′-fibrinogen (γ′-Fg), a variant with an elongated γ-chain, are resistant to lysis when compared with clots formed from the predominant γA-Fg, a finding previously attributed to differences in clot structure due to delayed thrombin-mediated fibrinopeptide (FP) B release or impaired cross-linking by factor XIIIa. We investigated whether slower lysis of γ′-Fn reflects delayed plasminogen (Pg) binding and/or activation by tissue plasminogen activator (tPA), reduced plasmin-mediated proteolysis of γ′-Fn, and/or altered cross-linking. Clots formed from γ′-Fg lysed more slowly than those formed from γA-Fg when lysis was initiated with tPA/Pg when FPA and FPB were both released, but not when lysis was initiated with plasmin, or when only FPA was released. Pg bound to γ′-Fn with an association rate constant 22% lower than that to γA-Fn, and the lag time for initiation of Pg activation by tPA was longer with γ′-Fn than with γA-Fn. Once initiated, however, Pg activation kinetics were similar. Factor XIIIa had similar effects on clots formed from both Fg isoforms. Therefore, slower lysis of γ′-Fn clots reflects delayed FPB release, which results in delayed binding and activation of Pg. When clots were formed from Fg mixtures containing more than 20% γ′-Fg, the upper limit of the normal level, the delay in lysis was magnified. These data suggest that circulating levels of γ′-Fg modulate the susceptibility of clots to lysis by slowing Pg activation by tPA and provide another example of the intimate connections between coagulation and fibrinolysis. PMID:25128532

  12. Identification and functional characterization of alpha-enolase from Taenia pisiformis metacestode.

    PubMed

    Zhang, Shaohua; Guo, Aijiang; Zhu, Xueliang; You, Yanan; Hou, Junling; Wang, Qiuxia; Luo, Xuenong; Cai, Xuepeng

    2015-04-01

    Enolase belongs to glycolytic enzymes with moonlighting functions. The role of enolase in Taenia species is still poorly understood. In this study, the full length of cDNA encoding for Taenia pisiformis alpha-enolase (Tpeno) was cloned from larval parasites and soluble recombinant Tpeno protein (rTpeno) was produced. Western blot indicated that both rTpeno and the native protein in excretion-secretion antigens from the larvae were recognized by anti-rTpeno monoclonal antibodies (MAbs). The primary structure of Tpeno showed the presence of a highly conserved catalytic site for substrate binding and an enolase signature motif. rTpeno enzymatic activities of catalyzing the reversible dehydration of 2-phosphoglycerate (2-PGA) to phosphoenolpyruvate (PEP) and vice versa were shown to be 30.71 ± 2.15 U/mg (2-PGA to PEP) and 11.29 ± 2.38 U/mg (PEP to 2-PGA), respectively. Far-Western blotting showed that rTpeno could bind to plasminogen, however its binding ability was inhibited by ϵ-aminocaproic acid (ϵACA) in a competitive ELISA test. Plasminogen activation assay showed that plasminogen bound to rTpeno could be converted into active plasmin using host-derived activators. Immunohistochemistry and immunofluorescence indicated that Tpeno was distributed in the bladder wall of the metacestode and the periphery of calcareous corpuscles. In addition, a vaccine trial showed that the enzyme could produce a 36.4% protection rate in vaccinated rabbits against experimental challenges from T. pisiformis eggs. These results suggest that Tpeno with multiple functions may play significant roles in the migration, growth, development and adaptation of T. pisiformis for survival in the host environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. An Active Site Water Network in the Plasminogen Activator Pla from Yersinia pestis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eren, Elif; Murphy, Megan; Goguen, Jon

    2010-08-13

    The plasminogen activator Pla from Yersinia pestis is an outer membrane protease (omptin) that is important for the virulence of plague. Here, we present the high-resolution crystal structure of wild-type, enzymatically active Pla at 1.9 {angstrom}. The structure shows a water molecule located between active site residues D84 and H208, which likely corresponds to the nucleophilic water. A number of other water molecules are present in the active site, linking residues important for enzymatic activity. The R211 sidechain in loop L4 is close to the nucleophilic water and possibly involved in the stabilization of the oxyanion intermediate. Subtle conformational changesmore » of H208 result from the binding of lipopolysaccharide to the outside of the barrel, explaining the unusual dependence of omptins on lipopolysaccharide for activity. The Pla structure suggests a model for the interaction with plasminogen substrate and provides a more detailed understanding of the catalytic mechanism of omptin proteases.« less

  14. Characterization of the Annonaceous acetogenin, annonacinone, a natural product inhibitor of plasminogen activator inhibitor-1

    NASA Astrophysics Data System (ADS)

    Pautus, Stéphane; Alami, Mouad; Adam, Fréderic; Bernadat, Guillaume; Lawrence, Daniel A.; de Carvalho, Allan; Ferry, Gilles; Rupin, Alain; Hamze, Abdallah; Champy, Pierre; Bonneau, Natacha; Gloanec, Philippe; Peglion, Jean-Louis; Brion, Jean-Daniel; Bianchini, Elsa P.; Borgel, Delphine

    2016-11-01

    Plasminogen activator inhibitor-1 (PAI-1) is the main inhibitor of the tissue type and urokinase type plasminogen activators. High levels of PAI-1 are correlated with an increased risk of thrombotic events and several other pathologies. Despite several compounds with in vitro activity being developed, none of them are currently in clinical use. In this study, we evaluated a novel PAI-1 inhibitor, annonacinone, a natural product from the Annonaceous acetogenins group. Annonacinone was identified in a chromogenic screening assay and was more potent than tiplaxtinin. Annonacinone showed high potency ex vivo on thromboelastography and was able to potentiate the thrombolytic effect of tPA in vivo in a murine model. SDS-PAGE showed that annonacinone inhibited formation of PAI-1/tPA complex via enhancement of the substrate pathway. Mutagenesis and molecular dynamics allowed us to identify annonacinone binding site close to helix D and E and β-sheets 2A.

  15. Inhibitory Effects of Lysine Analogues on t-PA Induced Whole Blood Clot Lysis

    DTIC Science & Technology

    1994-01-01

    aminocaproic acid (EACA) and trans-4-amino- methyl cyclohexane carboxylic acid (AMCA) are used to prevent excessive bleeding in patients with... aminocaproic acid (EACA) and the others have lower affinity binding sites (K&=5 mM) (5). The lysine analogues EACA and trans-4-aniinomethyl...JL, Wissler FC. Quantitative determination of the binding of epsilon- aminocaproic acid to native plasminogen. J Biol Chem 253, 727-732, 1978. 6

  16. Selection of High-Affinity Peptidic Serine Protease Inhibitors with Increased Binding Entropy from a Back-Flip Library of Peptide-Protease Fusions.

    PubMed

    Sørensen, Hans Peter; Xu, Peng; Jiang, Longguang; Kromann-Hansen, Tobias; Jensen, Knud J; Huang, Mingdong; Andreasen, Peter A

    2015-09-25

    We have developed a new concept for designing peptidic protein modulators, by recombinantly fusing the peptidic modulator, with randomized residues, directly to the target protein via a linker and screening for internal modulation of the activity of the protein. We tested the feasibility of the concept by fusing a 10-residue-long, disulfide-bond-constrained inhibitory peptide, randomized in selected positions, to the catalytic domain of the serine protease murine urokinase-type plasminogen activator. High-affinity inhibitory peptide variants were identified as those that conferred to the fusion protease the lowest activity for substrate hydrolysis. The usefulness of the strategy was demonstrated by the selection of peptidic inhibitors of murine urokinase-type plasminogen activator with a low nanomolar affinity. The high affinity could not have been predicted by rational considerations, as the high affinity was associated with a loss of polar interactions and an increased binding entropy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Thrombin stimulates increased plasminogen activator inhibitor-1 release from liver compared to lung endothelium.

    PubMed

    Huebner, Benjamin R; Moore, Ernest E; Moore, Hunter B; Gonzalez, Eduardo; Kelher, Marguerite R; Sauaia, Angela; Banerjee, Anirban; Silliman, Christopher C

    2018-05-01

    Plasminogen activator inhibitor-1 (PAI-1) is a major regulator of the fibrinolytic system, covalently binding to tissue plasminogen activator and blocking its activity. Fibrinolysis shutdown is evident in the majority of severely injured patients in the first 24 h and is thought to be due to PAI-1. The source of this PAI-1 is thought to be predominantly endothelial cells, but there are known organ-specific differences, with higher levels thought to be in the liver. Thrombin generation is also elevated in injured patients and is a potent stimulus for PAI-1 release in human umbilical endothelial cells. We hypothesize that thrombin induces liver endothelial cells to release increased amounts of PAI-1, versus pulmonary endothelium, consisting of both stored PAI-1 and a larger contribution from de novo PAI-1 synthesis. Human liver sinusoidal endothelial cells (LSECs) and human microvascular lung endothelial cells (HMVECs) were stimulated in vitro ± thrombin (1 and 5 IU/mL) for 15-240 min, the supernatants were collected, and PAI-1 was measured by enzyme-linked immunosorbent assays. To elucidate the PAI-1 contribution from storage versus de novo synthesis, cycloheximide (10 μg/mL) was added before thrombin in separate experiments. While both LSECs and HMVECs rapidly stimulated PAI-1 release, LSECs released more PAI-1 than HMVECs in response to high-dose thrombin, whereas low-dose thrombin did not provoke immediate release. LSECs continued to release PAI-1 over the ensuing 240 min, whereas HMVECs did not. Cycloheximide did not inhibit early PAI-1 release from LSECs but did at the later time points (30-240 min). Thrombin elicits increased amounts of PAI-1 release from liver endothelium compared with lung, with a small presynthesized stored contribution and a later, larger increase in PAI-1 release via de novo synthesis. This study suggests that the liver may be an important therapeutic target for inhibition of the hypercoagulable surgical patient and the associated complications that result. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Fibrin(ogen) is internalized and degraded by activated human monocytoid cells via Mac-1 (CD11b/CD18): a nonplasmin fibrinolytic pathway.

    PubMed

    Simon, D I; Ezratty, A M; Francis, S A; Rennke, H; Loscalzo, J

    1993-10-15

    Fibrin(ogen) (FGN) is important for hemostasis and wound healing and is cleared from sites of injury primarily by the plasminogen activator system. However, there is emerging evidence in plasminogen activator-deficient transgenic mice that nonplasmin pathways may be important in fibrin(ogen)olysis, as well. Given the proximity of FGN and monocytes within the occlusive thrombus at sites of vascular injury, we considered the possibility that monocytes may play an ancillary role in the degradation and clearance of fibrin. We found that monocytes possess an alternative fibrinolytic pathway that uses the integrin Mac-1, which directly binds and internalizes FGN, resulting in its lysosomal degradation. At 4 degrees C, FGN binds to U937 monocytoid cells in a specific and saturable manner with a kd of 1.8 mumol/L. Binding requires adenosine diphosphate stimulation and is calcium-dependent. At 37 degrees C, FGN and fibrin monomer (FM) are internalized and degraded at rates of 0.37 +/- 0.13 and 0.55 +/- 0.03 microgram/10(6) cells/h by U937 cells, 1.38 +/- 0.02 and 1.20 +/- 0.30 microgram/10(6) cells/h by THP-1 cells, and 2.10 +/- 0.20 and 2.52 +/- 0.18 micrograms/10(6) cells/h by human peripheral blood mononuclear cells, respectively. The serine protease inhibitors, PPACK and aprotinin, and the specific elastase inhibitor, AAPVCK, do not significantly inhibit degradation. However, degradation is inhibited by chloroquine, suggesting that a lysosomal pathway is involved. Factor X, a competitive ligand with FGN for the Mac-1 receptor, also blocks degradation, as does a monoclonal antibody to the alpha-subunit of Mac-1. Autoradiography of radioiodinated, internalized FGN shows that FGN proteolysis by the pathway produces a unique degradation pattern distinct from that observed with plasmin. In a fibrin clot lysis assay, Mac-1-mediated fibrinolysis contributed significantly to total fibrinolysis. In summary, FGN is internalized and degraded by activated human monocytoid cells via Mac-1 in the absence of plasmin, thereby providing an alternative fibrinolytic pathway. Thus, in addition to the function of cell adhesion, integrins may also act as receptors that mediate the internalization and degradation of bound ligands.

  19. X-ray crystal structure of plasmin with tranexamic acid-derived active site inhibitors.

    PubMed

    Law, Ruby H P; Wu, Guojie; Leung, Eleanor W W; Hidaka, Koushi; Quek, Adam J; Caradoc-Davies, Tom T; Jeevarajah, Devadharshini; Conroy, Paul J; Kirby, Nigel M; Norton, Raymond S; Tsuda, Yuko; Whisstock, James C

    2017-05-09

    The zymogen protease plasminogen and its active form plasmin perform key roles in blood clot dissolution, tissue remodeling, cell migration, and bacterial pathogenesis. Dysregulation of the plasminogen/plasmin system results in life-threatening hemorrhagic disorders or thrombotic vascular occlusion. Accordingly, inhibitors of this system are clinically important. Currently, tranexamic acid (TXA), a molecule that prevents plasminogen activation through blocking recruitment to target substrates, is the most widely used inhibitor for the plasminogen/plasmin system in therapeutics. However, TXA lacks efficacy on the active form of plasmin. Thus, there is a need to develop specific inhibitors that target the protease active site. Here we report the crystal structures of plasmin in complex with the novel YO ( trans -4-aminomethylcyclohexanecarbonyl-l-tyrosine- n -octylamide) class of small molecule inhibitors. We found that these inhibitors form key interactions with the S1 and S3' subsites of the catalytic cleft. Here, the TXA moiety of the YO compounds inserts into the primary (S1) specificity pocket, suggesting that TXA itself may function as a weak plasmin inhibitor, a hypothesis supported by subsequent biochemical and biophysical analyses. Mutational studies reveal that F587 of the S' subsite plays a key role in mediating the inhibitor interaction. Taken together, these data provide a foundation for the future development of small molecule inhibitors to specifically regulate plasmin function in a range of diseases and disorders.

  20. X-ray crystal structure of plasmin with tranexamic acid–derived active site inhibitors

    PubMed Central

    Wu, Guojie; Leung, Eleanor W. W.; Hidaka, Koushi; Quek, Adam J.; Caradoc-Davies, Tom T.; Jeevarajah, Devadharshini; Kirby, Nigel M.; Norton, Raymond S.; Tsuda, Yuko; Whisstock, James C.

    2017-01-01

    The zymogen protease plasminogen and its active form plasmin perform key roles in blood clot dissolution, tissue remodeling, cell migration, and bacterial pathogenesis. Dysregulation of the plasminogen/plasmin system results in life-threatening hemorrhagic disorders or thrombotic vascular occlusion. Accordingly, inhibitors of this system are clinically important. Currently, tranexamic acid (TXA), a molecule that prevents plasminogen activation through blocking recruitment to target substrates, is the most widely used inhibitor for the plasminogen/plasmin system in therapeutics. However, TXA lacks efficacy on the active form of plasmin. Thus, there is a need to develop specific inhibitors that target the protease active site. Here we report the crystal structures of plasmin in complex with the novel YO (trans-4-aminomethylcyclohexanecarbonyl-l-tyrosine-n-octylamide) class of small molecule inhibitors. We found that these inhibitors form key interactions with the S1 and S3′ subsites of the catalytic cleft. Here, the TXA moiety of the YO compounds inserts into the primary (S1) specificity pocket, suggesting that TXA itself may function as a weak plasmin inhibitor, a hypothesis supported by subsequent biochemical and biophysical analyses. Mutational studies reveal that F587 of the S′ subsite plays a key role in mediating the inhibitor interaction. Taken together, these data provide a foundation for the future development of small molecule inhibitors to specifically regulate plasmin function in a range of diseases and disorders. PMID:29296720

  1. Discovery of novel urokinase plasminogen activator (uPA) inhibitors using ligand-based modeling and virtual screening followed by in vitro analysis.

    PubMed

    Al-Sha'er, Mahmoud A; Khanfar, Mohammad A; Taha, Mutasem O

    2014-01-01

    Urokinase plasminogen activator (uPA)-a serine protease-is thought to play a central role in tumor metastasis and angiogenesis and, therefore, inhibition of this enzyme could be beneficial in treating cancer. Toward this end, we explored the pharmacophoric space of 202 uPA inhibitors using seven diverse sets of inhibitors to identify high-quality pharmacophores. Subsequently, we employed genetic algorithm-based quantitative structure-activity relationship (QSAR) analysis as a competition arena to select the best possible combination of pharmacophoric models and physicochemical descriptors that can explain bioactivity variation within the training inhibitors (r (2) 162 = 0.74, F-statistic = 64.30, r (2) LOO = 0.71, r (2) PRESS against 40 test inhibitors = 0.79). Three orthogonal pharmacophores emerged in the QSAR equation suggesting the existence of at least three binding modes accessible to ligands within the uPA binding pocket. This conclusion was supported by receiver operating characteristic (ROC) curve analyses of the QSAR-selected pharmacophores. Moreover, the three pharmacophores were comparable with binding interactions seen in crystallographic structures of bound ligands within the uPA binding pocket. We employed the resulting pharmacophoric models and associated QSAR equation to screen the national cancer institute (NCI) list of compounds. The captured hits were tested in vitro. Overall, our modeling workflow identified new low micromolar anti-uPA hits.

  2. Thrombin-activable fibrinolysis inhibitor attenuates (DD)E-mediated stimulation of plasminogen activation by reducing the affinity of (DD)E for tissue plasminogen activator. A potential mechanism for enhancing the fibrin specificity of tissue plasminogen activator.

    PubMed

    Stewart, R J; Fredenburgh, J C; Rischke, J A; Bajzar, L; Weitz, J I

    2000-11-24

    A complex of d-dimer noncovalently associated with fragment E ((DD)E), a degradation product of cross-linked fibrin that binds tissue plasminogen activator (t-PA) and plasminogen (Pg) with affinities similar to those of fibrin, compromises the fibrin specificity of t-PA by stimulating systemic Pg activation. In this study, we examined the effect of thrombin-activable fibrinolysis inhibitor (TAFI), a latent carboxypeptidase B (CPB)-like enzyme, on the stimulatory activity of (DD)E. Incubation of (DD)E with activated TAFI (TAFIa) or CPB (a) produces a 96% reduction in the capacity of (DD)E to stimulate t-PA-mediated activation of Glu- or Lys-Pg by reducing k(cat) and increasing K(m) for the reaction; (b) induces the release of 8 mol of lysine/mol of (DD)E, although most of the stimulatory activity is lost after release of only 4 mol of lysine/mol (DD)E; and (c) reduces the affinity of (DD)E for Glu-Pg, Lys-Pg, and t-PA by 2-, 4-, and 160-fold, respectively. Because TAFIa- or CPB-exposed (DD)E produces little stimulation of Glu-Pg activation by t-PA, (DD)E is not degraded into fragment E and d-dimer, the latter of which has been reported to impair fibrin polymerization. These data suggest a novel role for TAFIa. By attenuating systemic Pg activation by (DD)E, TAFIa renders t-PA more fibrin-specific.

  3. Cell Surface Translocation of Annexin A2 Facilitates Glutamate-induced Extracellular Proteolysis*

    PubMed Central

    Valapala, Mallika; Maji, Sayantan; Borejdo, Julian; Vishwanatha, Jamboor K.

    2014-01-01

    Glutamate-induced elevation in intracellular Ca2+ has been implicated in excitotoxic cell death. Neurons respond to increased glutamate levels by activating an extracellular proteolytic cascade involving the components of the plasmin-plasminogen system. AnxA2 is a Ca2+-dependent phospholipid binding protein and serves as an extracellular proteolytic center by recruiting the tissue plasminogen activator and plasminogen and mediating the localized generation of plasmin. Ratiometric Ca2+ imaging and time-lapse confocal microscopy demonstrated glutamate-induced Ca2+ influx. We showed that glutamate translocated both endogenous and AnxA2-GFP to the cell surface in a process dependent on the activity of the NMDA receptor. Glutamate-induced translocation of AnxA2 is dependent on the phosphorylation of tyrosine 23 at the N terminus, and mutation of tyrosine 23 to a non-phosphomimetic variant inhibits the translocation process. The cell surface-translocated AnxA2 forms an active plasmin-generating complex, and this activity can be neutralized by a hexapeptide directed against the N terminus. These results suggest an involvement of AnxA2 in potentiating glutamate-induced cell death processes. PMID:24742684

  4. Composite poly(methyl methacrylate-methacrylic acid-2-hydroxyethyl methacrylate) latex for immunoassay. The case of plasminogen.

    PubMed

    Miksa, B; Wilczynska, M; Cierniewski, C; Basinska, T; Slomkowski, S

    1995-01-01

    Poly(methyl methacrylate-methacrylic acid-2-hydroxyethyl methacrylate) latex (ACRYLAT) was synthesized by radical precipitation polymerization. The mass median diameter (MMD) and the geometrical standard deviation (GSD) of the ACRYLAT particles were 138 nm and 1.2, respectively. The concentration of the titrable carboxylic groups in the surface layer of latex particles was equal to 8.41 x 10(-6) mol m-2. Latex was able to bind up to 2.82 x 10(-7) mol of 1-aminopyrene per 1 m2 of the surface of the latex particles due to the ionic interactions between carboxylate anions and ammonium cations of protonated 1-aminopyrene. ACRYLAT was able to immobilize covalently human serum albumin in amounts up to 0.23 mg m-2. Aggregation of ACRYLAT with immobilized HSA, induced with specific antibodies (anti-HSA), was investigated turbidimetrically. The results indicated that in the model turbidimetric immunoassay, ACRYLAT coated with HSA can be used for the detection of anti-HSA in the goat anti-HSA serum diluted from 50 to 7000-fold. Immobilization of rabbit antibodies to plasminogen (anti-Plg) to ACRYLAT via the epsilon-aminocaproic acid linkers provided particles which were used for the development of the turbidimetric immunoassay for plasminogen. In this assay plasminogen could be detected in concentration ranging from 0.75 to 75 micrograms ml-1 in the blood plasma.

  5. A neurokinin 1 receptor antagonist decreases postoperative peritoneal adhesion formation and increases peritoneal fibrinolytic activity.

    PubMed

    Reed, Karen L; Fruin, A Brent; Gower, Adam C; Stucchi, Arthur F; Leeman, Susan E; Becker, James M

    2004-06-15

    Fibrous adhesions remain a major sequela of abdominal surgery. The proinflammatory peptide substance P (SP), known to participate in inflammatory events, may play a key role in adhesion formation. This hypothesis was tested by using an antagonist, CJ-12,255 (Pfizer), that blocks the binding of SP to the neurokinin 1 receptor (NK-1R). Adhesion formation was surgically induced in the peritoneum of rats receiving daily doses of the NK-1R antagonist (NK-1RA; 5.0 or 10.0 mg/kg per day) or saline. On postoperative day 7, both the low and high doses of NK-1RA significantly (P < 0.05) reduced adhesion formation by 45% and 53%, respectively, compared with controls. Subsequently, the effect of NK-1RA administration on peritoneal fibrinolytic activity was investigated to determine a potential mechanism for SP action in the peritoneum. Samples were collected from nonoperated controls and from animals 24 h postsurgery that were administered either NK-1RA or saline. Fibrinolytic activity in peritoneal fluid was assayed by zymography, and expression of tissue plasminogen activator (tPA) and plasminogen activator inhibitor 1, both regulators of fibrinolytic activity, was assessed in peritoneal tissue and fluid by RT-PCR and bioassay, respectively. NK-1RA administration led to a marked (P < 0.05) increase in tPA mRNA levels in peritoneal tissue compared with nonoperated and saline-administered animals. Likewise, NK-1RA administration significantly (P < 0.05) increased tPA in the peritoneal fluid. These data suggest that activation of the NK-1R promotes peritoneal adhesion formation by limiting fibrinolytic activity in the postoperative peritoneum, thus enabling fibrinous adhesions to persist.

  6. High-level expression of a novel recombinant human plasminogen activator (rhPA) in the milk of transgenic rabbits and its thrombolytic bioactivity in vitro.

    PubMed

    Song, Shaozheng; Ge, Xin; Cheng, Yaobin; Lu, Rui; Zhang, Ting; Yu, Baoli; Ji, Xueqiao; Qi, Zhengqiang; Rong, Yao; Yuan, Yuguo; Cheng, Yong

    2016-08-01

    The human tissue-type plasminogen activator (tPA) is a key kinase of fibrinolysis that plays an important role in dissolving fibrin clots to promote thrombolysis. The recombinant human plasminogen activator (rhPA) has more thrombolytic advantages than the wild type tPA. To increase the half-life and thrombolytic activity of tPA, a mutant containing only the essential K2 fibrin-binding and P activating plasminogen domains of the wild type tPA was cloned. This fragment was then inserted into goat β-casein regulatory sequences. Then, a mammary gland-specific expression vector, PCL25/rhPA, was constructed, and the transgenic rabbits were generated. In this study, 18 live transgenic founders (12♀, 6♂) were generated using pronuclear microinjection. Six transgenic rabbits were obtained, and the expression levels of rhPA in the milk had a range of 15.2-630 µg/ml. A fibrin agarose plate assay of rhPA showed that it had strong thrombolytic bioactivity in vitro, and the highest specific activity was >360 (360 times more than that of alteplase). The results indicated that the rhPA containing only the K2 and P domains is efficiently expressed with higher thrombolytic bioactivity in the milk of transgenic rabbits. Our study also demonstrated a new method for the large-scale production of clinically relevant recombinant pharmaceutical proteins in the mammary glands of transgenic rabbits.

  7. [Insulin-like growth factor-binding protein-1: a new biochemical marker of nonalcoholic fatty liver disease?].

    PubMed

    Graffigna, Mabel Nora; Belli, Susana H; de Larrañaga, Gabriela; Fainboim, Hugo; Estepo, Claudio; Peres, Silvia; García, Natalia; Levalle, Oscar

    2009-03-01

    to assess the presence of nonalcoholic fatty liver disease in patients with risk factors for this pathology (obesity, dyslipidemia, metabolic syndrome and diabetes type 2) and to determine the role of insulin, HOMA index, insulin-like growth factor-binding protein-1, sex hormone-binding globulin and plasminogen activator inhibitor type 1, as biochemical markers. Ninety-one patients with risk factors for nonalcoholic fatty liver disease were evaluated. Serum transaminases, insulin, sex hormone-binding globulin, insulin-like growth factor-binding protein-1 and plasminogen activator inhibitor type 1 were measured. The diagnosis of fatty liver was performed by ultrasonography and liver biopsies were performed to 31 subjects who had steatosis by ultrasonography and high alanine aminotransferase. Nonalcoholic fatty liver disease was present in 65 out of 91 patients (71,4%). Liver biopsy performed to 31 subjects confirmed nonalcoholic steatohepatitis. Twenty-five patients had different degrees of fibrosis. Those individuals with fatty liver had higher waist circumference, serum levels of triglycerides, insulin and HOMA index, and lower serum insulin-like growth factor-binding protein-1 concentration. The degree ofhepatic steatosis by ultrasonography was positively correlated to waist circumference, triglycerides, insulin and HOMA index (p<0,003; p<0,003; p<0,002 and p<0,001, respectively), and was negatively correlated to HDL-cholesterol and insulin-like growth factor-binding protein-1 (p<0,025 and p<0,018, respectively). We found a high prevalence of NAFLD in patients with risk factors, most of them overweight or obese. Although SHBG and PAI-1 have a closely relationship to insulin resistance, they did not show to be markers of NAFLD. Regardless of low IGFBP-1 levels associated with NAFLD, serum IGFBP-1 measure is less accessible than insulin and triglycerides levels, HOMA index and waist circumference. Moreover, it is not a better marker for NAFLD than the above mentioned.

  8. Interaction of fucoidan with proteases and inhibitors of coagulation and fibrinolysis.

    PubMed

    Minix, R; Doctor, V M

    1997-09-01

    The interactions of fucoidan with glutamic plasminogen (Glu-Plg), two-chain tissue plasminogen activator (t-PA), LMwt-urokinase, thrombin, and antithrombin III (AT-III) were investigated using fucoidan-sepharose affinity chromatography. The results showed 1) a high degree of affinity between fucoidan-sepharose and Glu-Plg; Lmwt-urokinase and thrombin while t-Pa and AT-III did not bind with fucoidan-sepharose. 2) The double reciprocal plot for the LMwt-urokinase activation of Glu-Plg showed that plasminogen activator inhibitor (PAI-1) inhibited this reaction in a noncompetitive manner and that the presence of fucoidan decreased Km for this interaction by 50% and increased Kcat by 30-fold, 3) The double reciprocal plot for the t-PA activation of Glu-Plg showed that PAI-1 inhibited this reaction in a competitive manner and that fucoidan in conjunction with 6-aminohexanoic acid (6-AH) increased Kcat for this interaction by 5-fold without affecting Km. 4) Fucoidan enhanced the interaction of thrombin with both AT-III and heparin cofactor II (HC-II) and it was more effective than unfractionated heparin of LMwt-heparin in enhancing the interaction of HC-II with thrombin.

  9. Interaction of Leptospira Elongation Factor Tu with Plasminogen and Complement Factor H: A Metabolic Leptospiral Protein with Moonlighting Activities

    PubMed Central

    Abe, Cecília M.; Monaris, Denize; Morais, Zenaide M.; Souza, Gisele O.; Vasconcellos, Sílvio A.; Isaac, Lourdes; Abreu, Patrícia A. E.; Barbosa, Angela S.

    2013-01-01

    The elongation factor Tu (EF-Tu), an abundant bacterial protein involved in protein synthesis, has been shown to display moonlighting activities. Known to perform more than one function at different times or in different places, it is found in several subcellular locations in a single organism, and may serve as a virulence factor in a range of important human pathogens. Here we demonstrate that Leptospira EF-Tu is surface-exposed and performs additional roles as a cell-surface receptor for host plasma proteins. It binds plasminogen in a dose-dependent manner, and lysine residues are critical for this interaction. Bound plasminogen is converted to active plasmin, which, in turn, is able to cleave the natural substrates C3b and fibrinogen. Leptospira EF-Tu also acquires the complement regulator Factor H (FH). FH bound to immobilized EF-Tu displays cofactor activity, mediating C3b degradation by Factor I (FI). In this manner, EF-Tu may contribute to leptospiral tissue invasion and complement inactivation. To our knowledge, this is the first description of a leptospiral protein exhibiting moonlighting activities. PMID:24312361

  10. Rationale for the selective administration of tranexamic acid to inhibit fibrinolysis in the severely injured patient.

    PubMed

    Moore, Ernest E; Moore, Hunter B; Gonzalez, Eduardo; Sauaia, Angela; Banerjee, Anirban; Silliman, Christopher C

    2016-04-01

    Postinjury fibrinolysis can manifest as three distinguishable phenotypes: 1) hyperfibrinolysis, 2) physiologic, and 3) hypofibrinolysis (shutdown). Hyperfibrinolysis is associated with uncontrolled bleeding due to clot dissolution; whereas, fibrinolysis shutdown is associated with organ dysfunction due to microvascular occlusion. The incidence of fibrinolysis phenotypes at hospital arrival in severely injured patients is: 1) hyperfibrinolysis 18%, physiologic 18%, and shutdown 64%. The mechanisms responsible for dysregulated fibrinolysis following injury remain uncertain. Animal work suggests hypoperfusion promotes fibrinolysis, while tissue injury inhibits fibrinolysis. Clinical experience is consistent with these observations. The predominant mediator of postinjury hyperfibrinolysis appears to be tissue plasminogen activator (tPA) released from ischemic endothelium. The effects of tPA are accentuated by impaired hepatic clearance. Fibrinolysis shutdown, on the other hand, may occur from inhibition of circulating tPA, enhanced clot strength impairing the binding of tPA and plasminogen to fibrin, or the inhibition of plasmin. Plasminogen activator inhibitor -1 (PAI-1) binding of circulating tPA appears to be a major mechanism for postinjury shutdown. The sources of PAI-1 include endothelium, platelets, and organ parenchyma. The laboratory identification of fibrinolysis phenotype, at this moment, is best determined with viscoelastic hemostatic assays (TEG, ROTEM). While D-dimer and plasmin antiplasmin (PAP) levels corroborate fibrinolysis, they do not provide real-time assessment of the circulating blood capacity. Our clinical studies indicate that fibrinolysis is a very dynamic process and our experimental work suggests plasma first resuscitation reverses hyperfibrinolysis. Collectively, we believe recent clinical and experimental work suggest antifibrinolytic therapy should be employed selectively in the acutely injured patient, and optimally guided by TEG or ROTEM. © 2016 AABB.

  11. Clot accumulation characteristics of plasminogen-bearing liposomes in a flow-system. Groningen Utrecht Institute for Drug Exploration.

    PubMed

    Heeremans, J L; Prevost, R; Feitsma, H; Kluft, C; Crommelin, D J

    1998-01-01

    In this study, the clot accumulation properties of liposome-coupled plasminogen were compared to those of free (non-liposomal) plasminogen in an in vitro, closed-loop, flow-system. After introduction of a clot into the closed system, double-radiolabelled plasminogen-liposomes were administered and the accumulation of radiolabel on the entire clot was measured. Liposomal plasminogen showed improved accumulation over free plasminogen, on both a fibrin clot and a whole blood clot. Moreover, once liposomal plasminogen was fibrin associated, it could not be washed away with buffer, in contrast to free plasminogen. Liposomal plasminogen was able to compete successfully with an excess of free plasminogen. The plateau levels for the accumulated amount of plasminogen depended on the incubated amount of plasminogen and were influenced by partial degradation of the clot. Furthermore, it was shown that a threshold liposomal plasminogen surface-density was needed for optimum clot accumulation.

  12. The Pathogenesis of Traumatic Coagulopathy

    DTIC Science & Technology

    2015-01-01

    reduction in death due to haemorrhage in trauma patients given tranexamic acid (TXA), which inhibits activation of plasminogen to plasmin [36, 37]. Other...in combination with red cells and tranexamic acid , with extremely limited use of colloid or crystalloid infusions [76–82], a practice known as...blocked by tranexamic acid . Journal of Trauma and Acute Care Surgery 2013; 74: 482–8. 15. Martini WZ, Pusateri AE, Uscilowicz JM, Delgado AV, Holcomb

  13. Sepsis-Induced Coagulation in the Baboon Lung Is Associated with Decreased Tissue Factor Pathway Inhibitor

    PubMed Central

    Tang, Haiwang; Ivanciu, Lacramioara; Popescu, Narcis; Peer, Glenn; Hack, Erik; Lupu, Cristina; Taylor, Fletcher B.; Lupu, Florea

    2007-01-01

    Increased tissue factor (TF)-dependent procoagulant activity in sepsis may be partly due to decreased expression or function of tissue factor pathway inhibitor (TFPI). To test this hypothesis, baboons were infused with live Escherichia coli and sacrificed after 2, 8, or 24 hours. Confocal and electron microscopy revealed increased leukocyte infiltration and fibrin deposition in the intravascular and interstitial compartments. Large amounts of TF were detected by immunostaining in leukocytes and platelet-rich microthrombi. TF induction was documented by quantitative reverse transcriptase-polymerase chain reaction, enzyme-linked immunosorbent assay, and coagulation assays. Lung-associated TFPI antigen and mRNA decreased during sepsis, and TFPI activity diminished abruptly at 2 hours. Blocking antibodies against TFPI increased fibrin deposition in septic baboon lungs, suggesting that TF-dependent coagulation might be aggravated by reduced endothelial TFPI. Decreased TFPI activity coincided with the release of tissue plasminogen activator and the peak of plasmin generation, suggesting that TFPI could undergo proteolytic inactivation by plasmin. Enhanced plasmin produced in septic baboons by infusion of blocking antibodies against plasminogen activator inhibitor-1 led to decreased lung-associated TFPI and unforeseen massive fibrin deposition. We conclude that activation of TF-driven coagulation not adequately countered by TFPI may underlie the widespread thrombotic complications of sepsis. PMID:17640967

  14. A label-free photoelectrochemical biosensor for urokinase-type plasminogen activator detection based on a g-C3N4/CdS nanocomposite.

    PubMed

    Liu, Xing-Pei; Chen, Jing-Shuai; Mao, Chang-Jie; Niu, He-Lin; Song, Ji-Ming; Jin, Bao-Kang

    2018-09-26

    Herein, we established a novel ultrasensitive photoelectrochemical biosensor for detecting urokinase-type plasminogen activator (u-PA), based on a g-C 3 N 4 /CdS nanocomposite. The prepared nanocomposite was characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, ultraviolet-visible absorption spectroscopy, and Fourier transform infrared spectroscopy, thus indicating that the nanocomposite was prepared successfully. In the typical process, the prepared nanocomposite was deposited on the surface of a bare FTO electrode. After being air-dried, the g-C 3 N 4 /CdS nanocomposite modified electrode was successively incubated with antibody against urokinase-type plasminogen activator and the blocking agent BSA to produce a photoelectrochemical biosensor for u-PA. In the presence of target u-PA antigen, the photocurrent response of the prepared biosensor electrode decreased significantly. The proposed novel photoelectrochemical biosensor exhibited good sensitivity, specificity, and reproducibility for u-PA detection, and a low detection limit of 33 fg mL -1 , ranging from 1 μg mL -1 -0.1 pg mL -1 . The proposed strategy should provide a promising method for detection of other biomarkers. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Depletion of tissue plasminogen activator attenuates lung ischemia-reperfusion injury via inhibition of neutrophil extravasation.

    PubMed

    Zhao, Yunge; Sharma, Ashish K; LaPar, Damien J; Kron, Irving L; Ailawadi, Gorav; Liu, Yuan; Jones, David R; Laubach, Victor E; Lau, Christine L

    2011-05-01

    Ischemia-reperfusion (IR) injury following lung transplantation remains a major source of early morbidity and mortality. Histologically, this inflammatory process is characterized by neutrophil infiltration and activation. We previously reported that lung IR injury was significantly attenuated in plasminogen activator inhibitor-1-deficient mice. In this study, we explored the potential role of tissue plasminogen activator (tPA) in a mouse lung IR injury model. As a result, tPA knockout (KO) mice were significantly protected from lung IR injury through several mechanisms. At the cellular level, tPA KO specifically blocked neutrophil extravasation into the interstitium, and abundant homotypic neutrophil aggregation (HNA) was detected in the lung microvasculature of tPA KO mice after IR. At the molecular level, inhibition of neutrophil extravasation was associated with reduced expression of platelet endothelial cell adhesion molecule-1 mediated through the tPA/ LDL receptor-related protein/NF-κB signaling pathway, whereas increased P-selectin triggered HNA. At the functional level, tPA KO mice incurred significantly decreased vascular permeability and improved lung function following IR. Protection from lung IR injury in tPA KO mice occurs through a fibrinolysis-independent mechanism. These results suggest that tPA could serve as an important therapeutic target for the prevention and treatment of acute IR injury after lung transplantation.

  16. Synthesis and characterization of an 111In-labeled peptide for the in vivo localization of human cancers expressing the urokinase-type plasminogen activator receptor (uPAR)

    PubMed Central

    Liu, Dijie; Overbey, Douglas; Watkinson, Lisa; Giblin, Michael F.

    2009-01-01

    This study describes the synthesis and preliminary biologic evaluation of an 111Inlabeled peptide antagonist of the urokinase-type plasminogen activator receptor (uPAR) as a potential probe for assessing metastatic potential of human breast cancer in vivo. The peptide (NAc-dD-CHA-F-dS-dR-Y-L-W-S-βAla)2-K-K(DOTA)-NH2 was synthesized and conjugated with the DOTA chelating moiety via conventional Solid-Phase Peptide Synthesis (SPPS), purified by reversed-phase HPLC, and characterized by MALDI-TOF MS and receptor binding assay. In vitro receptor binding studies demonstrated an IC50 of 240 ± 125 nM for the peptide, compared with IC50’s of 0.44 ± 0.02 and 0.75 ± 0.01 nM for the amino terminal fragment (ATF) of the urokinase-type plasminogen activator (uPA) and full-length uPA, respectively. In vivo biodistribution studies were carried out using SCID mice bearing MDA-MB-231 human breast cancer xenografts. Biodistribution data was collected at 1, 4, and 24 hr post-injection of 111In-DOTA-peptide, and compared with data obtained using a scrambled control peptide, as well as with data obtained using wild-type ATF radiolabeled with I-125. Biodistribution studies showed rapid elimination of the 111In-labeled peptide from the blood pool, with 0.12 ± 0.06% ID/g remaining in blood at 4 hr pi. Elimination was seen primarily via the renal/urinary route, with 83.9 ± 2.2%ID in the urine at the same timepoint. Tumor uptake at this time was 0.53 ± 0.11%ID/g, resulting in tumor: blood and tumor: muscle ratios of 4.2 and 9.4, respectively. Uptake in tumor was significantly higher than that obtained using a scrambled control peptide that showed no specific binding to uPAR (p < 0.05). In vitro and ex vivo results both suggested that the magnitude of tumor-specific binding was reduced in this model by endogenous expression of uPA. The results indicate that radiolabeled peptide uPAR antagonists may find application in the imaging and therapy of uPAR-expressing breast cancers in vivo. PMID:19354275

  17. Tissue plasminogen activator (tPA) and matrix metalloproteinases in the pathogenesis of stroke: therapeutic strategies.

    PubMed

    Adibhatla, Rao Muralikrishna; Hatcher, James F

    2008-06-01

    Today there exists only one FDA-approved treatment for ischemic stroke; i.e., the serine protease tissue-type plasminogen activator (tPA). In the aftermath of the failed stroke clinical trials with the nitrone spin trap/radical scavenger, NXY-059, a number of articles raised the question: are we doing the right thing? Is the animal research truly translational in identifying new agents for stroke treatment? This review summarizes the current state of affairs with plasminogen activators in thrombolytic therapy. In addition to therapeutic value, potential side effects of tPA also exist that aggravate stroke injury and offset the benefits provided by reperfusion of the occluded artery. Thus, combinational options (ultrasound alone or with microspheres/nanobubbles, mechanical dissociation of clot, activated protein C (APC), plasminogen activator inhibitor-1 (PAI-1), neuroserpin and CDP-choline) that could offset tPA toxic side effects and improve efficacy are also discussed here. Desmoteplase, a plasminogen activator derived from the saliva of Desmodus rotundus vampire bat, antagonizes vascular tPA-induced neurotoxicity by competitively binding to low-density lipoprotein related-receptors (LPR) at the blood-brain barrier (BBB) interface, minimizing the tPA uptake into brain parenchyma. tPA can also activate matrix metalloproteinases (MMPs), a family of endopeptidases comprised of 24 mammalian enzymes that primarily catalyze the turnover and degradation of the extracellular matrix (ECM). MMPs have been implicated in BBB breakdown and neuronal injury in the early times after stroke, but also contribute to vascular remodeling, angiogenesis, neurogenesis and axonal regeneration during the later repair phase after stroke. tPA, directly or by activation of MMP-9, could have beneficial effects on recovery after stroke by promoting neurovascular repair through vascular endothelial growth factor (VEGF). However, any treatment regimen directed at MMPs must consider their pleiotropic nature and the likelihood of either beneficial or detrimental effects that might depend on the timing of the treatment in relation to the stage of brain injury.

  18. Expression profiles of glyceraldehyde-3-phosphate dehydrogenase from Clonorchis sinensis: a glycolytic enzyme with plasminogen binding capacity.

    PubMed

    Hu, Yue; Zhang, Erhong; Huang, Lisi; Li, Wenfang; Liang, Pei; Wang, Xiaoyun; Xu, Jin; Huang, Yan; Yu, Xinbing

    2014-12-01

    Globally, 15-20 million people are infected with Clonorchis sinensis (C. sinensis) which results in clonorchiasis. In China, clonorchiasis is considered to be one of the fastest-growing food-borne parasitic diseases. That more key molecules of C. sinensis are characterized will be helpful to understand biology and pathogenesis of the carcinogenic liver fluke. Glyceraldehyde-3-phosphate dehydrogenases (GAPDHs) from many species have functions other than their catalytic role in glycolysis. In the present study, we analyzed the sequence and structure of GAPDH from C. sinensis (CsGAPDH) by using bioinformatics tools and obtained its recombinant protein by prokaryotic expression system, to learn its expression profiles and molecular property. CsGAPDH could bind to human intrahepatic biliary epithelial cell in vivo and in vitro by the method of immunofluorescence assays. CsGAPDH also disturbed in lumen of biliary tract near to the parasite in the liver of infected rat. Western blotting analysis together with immunofluorescence assay indicated that CsGAPDH was a component of excretory/secretory proteins (CsESPs) and a surface-localized protein of C. sinensis. Quantitative real-time PCR (Q-PCR) and Western blotting demonstrated that CsGAPDHs are expressed at the life stages of adult worm, metacercaria, and egg, but the expression levels were different from each other. Recombinant CsGAPDH (rCsGAPDH) was confirmed to have the capacity to catalyze the conversion of glyceraldehyde 3-phosphate to D-glycerate 1,3-bisphosphate which was inhibited by AMP in a dose-dependent manner. In addition, rCsGAPDH was able to interact with human plasminogen in a dose-dependent manner by ELISA. The interaction could be inhibited by lysine. The plasminogen binding capacity of rCsGAPDH along with the distribution of CsGAPDH in vivo and in the liver of C. sinensis-infected rat hinted that surface-localized CsGAPDH might play an important role in host invasion of the worm besides its glycolytic activity. Our work will be a cornerstone for getting more messages about CsGAPDH and its role in biology and parasitism of C. sinensis.

  19. Statins Increase Plasminogen Activator Inhibitor Type 1 Gene Transcription through a Pregnane X Receptor Regulated Element

    PubMed Central

    Stanley, Frederick M.; Linder, Kathryn M.; Cardozo, Timothy J.

    2015-01-01

    Plasminogen activator inhibitor type 1 (PAI-1) is a multifunctional protein that has important roles in inflammation and wound healing. Its aberrant regulation may contribute to many disease processes such as heart disease. The PAI-1 promoter is responsive to multiple inputs including cytokines, growth factors, steroids and oxidative stress. The statin drugs, atorvastatin, mevastatin and rosuvastatin, increased basal and stimulated expression of the PAI-1 promoter 3-fold. A statin-responsive, nuclear hormone response element was previously identified in the PAI-1 promoter, but it was incompletely characterized. We characterized this direct repeat (DR) of AGGTCA with a 3-nucleotide spacer at -269/-255 using deletion and directed mutagenesis. Deletion or mutation of this element increased basal transcription from the promoter suggesting that it repressed PAI-1 transcription in the unliganded state. The half-site spacing and the ligand specificity suggested that this might be a pregnane X receptor (PXR) responsive element. Computational molecular docking showed that atorvastatin, mevastatin and rosuvastatin were structurally compatible with the PXR ligand-binding pocket in its agonist conformation. Experiments with Gal4 DNA binding domain fusion proteins showed that Gal4-PXR was activated by statins while other DR + 3 binding nuclear receptor fusions were not. Overexpression of PXR further enhanced PAI-1 transcription in response to statins. Finally, ChIP experiments using Halo-tagged PXR and RXR demonstrated that both components of the PXR-RXR heterodimer bound to this region of the PAI-1 promoter. PMID:26379245

  20. Nuclear Factor YY1 Inhibits Transforming Growth Factor β- and Bone Morphogenetic Protein-Induced Cell Differentiation

    PubMed Central

    Kurisaki, Keiko; Kurisaki, Akira; Valcourt, Ulrich; Terentiev, Alexei A.; Pardali, Katerina; ten Dijke, Peter; Heldin, Carl-Henrik; Ericsson, Johan; Moustakas, Aristidis

    2003-01-01

    Smad proteins transduce transforming growth factor β (TGF-β) and bone morphogenetic protein (BMP) signals that regulate cell growth and differentiation. We have identified YY1, a transcription factor that positively or negatively regulates transcription of many genes, as a novel Smad-interacting protein. YY1 represses the induction of immediate-early genes to TGF-β and BMP, such as the plasminogen activator inhibitor 1 gene (PAI-1) and the inhibitor of differentiation/inhibitor of DNA binding 1 gene (Id-1). YY1 inhibits binding of Smads to their cognate DNA elements in vitro and blocks Smad recruitment to the Smad-binding element-rich region of the PAI-1 promoter in vivo. YY1 interacts with the conserved N-terminal Mad homology 1 domain of Smad4 and to a lesser extent with Smad1, Smad2, and Smad3. The YY1 zinc finger domain mediates the association with Smads and is necessary for the repressive effect of YY1 on Smad transcriptional activity. Moreover, downregulation of endogenous YY1 by antisense and small interfering RNA strategies results in enhanced transcriptional responses to TGF-β or BMP. Ectopic expression of YY1 inhibits, while knockdown of endogenous YY1 enhances, TGF-β- and BMP-induced cell differentiation. In contrast, overexpression or knockdown of YY1 does not affect growth inhibition induced by TGF-β or BMP. Accordingly, YY1 does not interfere with the regulation of immediate-early genes involved in the TGF-β growth-inhibitory response, the cell cycle inhibitors p15 and p21, and the proto-oncogene c-myc. In conclusion, YY1 represses Smad transcriptional activities in a gene-specific manner and thus regulates cell differentiation induced by TGF-β superfamily pathways. PMID:12808092

  1. Blockade by phosphorothioate aptamers of advanced glycation end products-induced damage in cultured pericytes and endothelial cells.

    PubMed

    Higashimoto, Yuichiro; Matsui, Takanori; Nishino, Yuri; Taira, Junichi; Inoue, Hiroyoshi; Takeuchi, Masayoshi; Yamagishi, Sho-Ichi

    2013-11-01

    Advanced glycation end products (AGEs) not only inhibit DNA synthesis of retinal pericytes, but also elicit vascular hyperpermeability, pathological angiogenesis, and thrombogenic reactions by inducing vascular endothelial growth factor (VEGF) and plasminogen activator inhibitor-1 (PAI-1) through the interaction with the receptor for AGEs (RAGE), thereby being involved in the pathogenesis of diabetic retinopathy. In this study, we screened novel phosphorothioate-modified aptamers directed against AGEs (AGEs-thioaptamers) using a combinatorial chemistry in vitro, and examined whether these aptamers could inhibit the AGE-induced damage in both retinal pericytes and human umbilical vein endothelial cells (HUVECs). We identified 11 AGEs-thioaptamers; among them, clones #4, #7s and #9s aptamers had higher binding affinity to AGEs-human serum albumin (HSA) than the others. Surface plasmon resonance analysis revealed that KD values of #4s, #7s and #9s were 0.63, 0.36, and 0.57nM, respectively. Furthermore, these 3 clones dose-dependently restored the decrease in DNA synthesis in AGE-exposed pericytes. AGEs significantly increased RAGE, VEGF and PAI-1 mRNA levels in HUVEC, all of which were completely blocked by the treatment with 20nM clone #4s aptamer. Quartz crystal microbalance analysis confirmed that #4s aptamer dose-dependently inhibited the binding of AGEs-HSA to RAGE. Our present study demonstrated that AGEs-thioaptamers could inhibit the harmful effects of AGEs in pericytes and HUVEC by suppressing the binding of AGEs to RAGE. Blockade by AGEs-thioaptamers of the AGEs-RAGE axis might be a novel therapeutic strategy for diabetic retinopathy. © 2013.

  2. [Clinical and etiopathogenetic role of plasminogen and metaloproteinase systems in the tumor growth. Pericellular proteolysis of extracellular matrix and tumor growth].

    PubMed

    Cosić, Sanda Jelisavac; Kovac, Zdenko

    2011-01-01

    Pericellular proteolysis is a cascade process involved in degradation of extracellular matrix. This process is included in various physiological and pathological processes. Pericellullar proteolysis has major functions like degradation of tissue stroma and weakening of intercellular connections but it also has a function in the synthesis of bioactive molecules (cytokines, growth factors and inhibitory factors). Plasminogen system is involved in fibrinolysis and starts metalloproteinase activation. Activity of proteolytic molecules is controlled by the rate of zymogenic activation, half-life of molecules, and action of inhibitory molecules. Inhibition is achieved through direct binding of inhibitor and enzyme and takes a few steps. Pericellular proteolysis is involved in tumor invasion and metastasis, inflammatory reaction, degenerative diseases and other diseases. Pathophysiological regulation of pericellular proteolysis in mentioned diseases contributes to clinical properties of diseases and has diagnostic and therapeutic importance.

  3. The effects of residual platelets in plasma on plasminogen activator inhibitor-1 and plasminogen activator inhibitor-1-related assays.

    PubMed

    Pieters, Marlien; Barnard, Sunelle A; Loots, Du Toit; Rijken, Dingeman C

    2017-01-01

    Due to controversial evidence in the literature pertaining to the activity of plasminogen activator inhibitor-1 in platelets, we examined the effects of residual platelets present in plasma (a potential pre-analytical variable) on various plasminogen activator inhibitor-1 and plasminogen activator inhibitor-1-related assays. Blood samples were collected from 151 individuals and centrifuged at 352 and 1500 g to obtain plasma with varying numbers of platelet. In a follow-up study, blood samples were collected from an additional 23 individuals, from whom platelet-poor (2000 g), platelet-containing (352 g) and platelet-rich plasma (200 g) were prepared and analysed as fresh-frozen and after five defrost-refreeze cycles (to determine the contribution of in vitro platelet degradation). Plasminogen activator inhibitor-1 activity, plasminogen activator inhibitor-1 antigen, tissue plasminogen activator/plasminogen activator inhibitor-1 complex, plasma clot lysis time, β-thromboglobulin and plasma platelet count were analysed. Platelet α-granule release (plasma β-thromboglobulin) showed a significant association with plasminogen activator inhibitor-1 antigen levels but weak associations with plasminogen activator inhibitor-1 activity and a functional marker of fibrinolysis, clot lysis time. Upon dividing the study population into quartiles based on β-thromboglobulin levels, plasminogen activator inhibitor-1 antigen increased significantly across the quartiles while plasminogen activator inhibitor-1 activity and clot lysis time tended to increase in the 4th quartile only. In the follow-up study, plasma plasminogen activator inhibitor-1 antigen was also significantly influenced by platelet count in a concentration-dependent manner. Plasma plasminogen activator inhibitor-1 antigen levels increased further after complete platelet degradation. Residual platelets in plasma significantly influence plasma plasminogen activator inhibitor-1 antigen levels mainly through release of latent plasminogen activator inhibitor-1 with limited effects on plasminogen activator inhibitor-1 activity, tissue plasminogen activator/plasminogen activator inhibitor-1 complex or plasma clot lysis time. Platelets may however also have functional effects on plasma fibrinolytic potential in the presence of high platelet counts, such as in platelet-rich plasma.

  4. Plasminogen binding inhibitors demonstrate unwanted activities on GABAA and glycine receptors in human iPSC derived neurons.

    PubMed

    Kristensson, Lisbeth; Lundin, Anders; Gustafsson, David; Fryklund, Jan; Fex, Tomas; Louise, Delsing; Ryberg, Erik

    2018-05-11

    Plasminogen binding inhibitors (PBIs) reduce the risk of bleeding in hemorrhagic conditions. However, generic PBIs are also associated with an increased risk of seizures, an adverse effect linked to unwanted activities towards inhibitory neuronal receptors. Development of novel PBIs serve to remove compounds with such properties, but progress is limited by a lack of higher throughput methods with human translatability. Herein we apply human induced pluripotent stem cell (hiPSC) derived neurons in combination with dynamic mass redistribution (DMR) technology to demonstrate robust and reproducible modulation of both GABA A and glycine receptors. These cells respond to GABA (EC 50 0.33 ± 0.18 μM), glycine (EC 50 11.0 ± 3.7 μM) and additional ligands in line with previous reports from patch clamp technologies. Additionally, we identify and characterize a competitive antagonistic behavior of the prototype inhibitor and drug tranexamic acid (TXA). Finally, we demonstrate proof of concept for effective counter-screening of lead series compounds towards unwanted GABA A receptor activities. No activity was observed for a previously identified PBI candidate drug, AZD6564, whereas a discontinued analog, AZ13267257, could be characterized as a potent GABA A receptor agonist. Copyright © 2018. Published by Elsevier B.V.

  5. Protein Corona in Response to Flow: Effect on Protein Concentration and Structure.

    PubMed

    Jayaram, Dhanya T; Pustulka, Samantha M; Mannino, Robert G; Lam, Wilbur A; Payne, Christine K

    2018-04-09

    Nanoparticles used in cellular applications encounter free serum proteins that adsorb onto the surface of the nanoparticle, forming a protein corona. This protein layer controls the interaction of nanoparticles with cells. For nanomedicine applications, it is important to consider how intravenous injection and the subsequent shear flow will affect the protein corona. Our goal was to determine if shear flow changed the composition of the protein corona and if these changes affected cellular binding. Colorimetric assays of protein concentration and gel electrophoresis demonstrate that polystyrene nanoparticles subjected to flow have a greater concentration of serum proteins adsorbed on the surface, especially plasminogen. Plasminogen, in the absence of nanoparticles, undergoes changes in structure in response to flow, characterized by fluorescence and circular dichroism spectroscopy. The protein-nanoparticle complexes formed from fetal bovine serum after flow had decreased cellular binding, as measured with flow cytometry. In addition to the relevance for nanomedicine, these results also highlight the technical challenges of protein corona studies. The composition of the protein corona was highly dependent on the initial mixing step: rocking, vortexing, or flow. Overall, these results reaffirm the importance of the protein corona in nanoparticle-cell interactions and point toward the challenges of predicting corona composition based on nanoparticle properties. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  6. Fructose-1,6-bisphosphate aldolase of Neisseria meningitidis binds human plasminogen via its C-terminal lysine residue.

    PubMed

    Shams, Fariza; Oldfield, Neil J; Lai, Si Kei; Tunio, Sarfraz A; Wooldridge, Karl G; Turner, David P J

    2016-04-01

    Neisseria meningitidis is a leading cause of fatal sepsis and meningitis worldwide. As for commensal species of human neisseriae, N. meningitidis inhabits the human nasopharynx and asymptomatic colonization is ubiquitous. Only rarely does the organism invade and survive in the bloodstream leading to disease. Moonlighting proteins perform two or more autonomous, often dissimilar, functions using a single polypeptide chain. They have been increasingly reported on the surface of both prokaryotic and eukaryotic organisms and shown to interact with a variety of host ligands. In some organisms moonlighting proteins perform virulence-related functions, and they may play a role in the pathogenesis of N. meningitidis. Fructose-1,6-bisphosphate aldolase (FBA) was previously shown to be surface-exposed in meningococci and involved in adhesion to host cells. In this study, FBA was shown to be present on the surface of both pathogenic and commensal neisseriae, and surface localization and anchoring was demonstrated to be independent of aldolase activity. Importantly, meningococcal FBA was found to bind to human glu-plasminogen in a dose-dependent manner. Site-directed mutagenesis demonstrated that the C-terminal lysine residue of FBA was required for this interaction, whereas subterminal lysine residues were not involved. © 2016 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  7. Characterization of Novel OmpA-Like Protein of Leptospira interrogans That Binds Extracellular Matrix Molecules and Plasminogen

    PubMed Central

    Oliveira, Rosane; de Morais, Zenaide Maria; Gonçales, Amane Paldes; Romero, Eliete Caló; Vasconcellos, Silvio Arruda; Nascimento, Ana L. T. O.

    2011-01-01

    Leptospira interrogans is the etiological agent of leptospirosis, a zoonotic disease of human and veterinary concern. The identification of novel proteins that mediate host-pathogen interactions is important for understanding the bacterial pathogenesis as well as to identify protective antigens that would help fight the disease. We describe in this work the cloning, expression, purification and characterization of three predicted leptospiral membrane proteins, LIC10258, LIC12880 (Lp30) and LIC12238. We have employed Escherichia coli BL21 (SI) strain as a host expression system. Recently, we have identified LIC12238 as a plasminogen (PLG)-binding receptor. We show now that Lp30 and rLIC10258 are also PLG-receptors of Leptospira, both exhibiting dose-dependent and saturating binding (K D, 68.8±25.2 nM and 167.39±60.1 nM, for rLIC10258 and rLIC12880, respectively). In addition, LIC10258, which is a novel OmpA-like protein, binds laminin and plasma fibronectin ECM molecules and hence, it was named Lsa66 (Leptospiral surface adhesin of 66 kDa). Binding of Lsa66 to ECM components was determined to be specific, dose-dependent and saturable, with a K D of 55.4±15.9 nM to laminin and of 290.8±11.8 nM to plasma fibronectin. Binding of the recombinant proteins to PLG or ECM components was assessed by using antibodies against each of the recombinant proteins obtained in mice and confirmed by monoclonal anti-polyhistidine antibodies. Lsa66 caused partial inhibition on leptospiral adherence to immobilized ECM and PLG. Moreover, this adhesin and rLIC12238 are recognized by antibodies in serum samples of confirmed leptospirosis cases. Thus, Lsa66 is a novel OmpA-like protein with dual activity that may promote the attachment of Leptospira to host tissues and may contribute to the leptospiral invasion. To our knowledge, this is the first leptospiral protein with ECM and PLG binding properties reported to date. PMID:21755014

  8. Characterization of novel OmpA-like protein of Leptospira interrogans that binds extracellular matrix molecules and plasminogen.

    PubMed

    Oliveira, Rosane; de Morais, Zenaide Maria; Gonçales, Amane Paldes; Romero, Eliete Caló; Vasconcellos, Silvio Arruda; Nascimento, Ana L T O

    2011-01-01

    Leptospira interrogans is the etiological agent of leptospirosis, a zoonotic disease of human and veterinary concern. The identification of novel proteins that mediate host-pathogen interactions is important for understanding the bacterial pathogenesis as well as to identify protective antigens that would help fight the disease. We describe in this work the cloning, expression, purification and characterization of three predicted leptospiral membrane proteins, LIC10258, LIC12880 (Lp30) and LIC12238. We have employed Escherichia coli BL21 (SI) strain as a host expression system. Recently, we have identified LIC12238 as a plasminogen (PLG)-binding receptor. We show now that Lp30 and rLIC10258 are also PLG-receptors of Leptospira, both exhibiting dose-dependent and saturating binding (K(D), 68.8±25.2 nM and 167.39±60.1 nM, for rLIC10258 and rLIC12880, respectively). In addition, LIC10258, which is a novel OmpA-like protein, binds laminin and plasma fibronectin ECM molecules and hence, it was named Lsa66 (Leptospiral surface adhesin of 66 kDa). Binding of Lsa66 to ECM components was determined to be specific, dose-dependent and saturable, with a K(D) of 55.4±15.9 nM to laminin and of 290.8±11.8 nM to plasma fibronectin. Binding of the recombinant proteins to PLG or ECM components was assessed by using antibodies against each of the recombinant proteins obtained in mice and confirmed by monoclonal anti-polyhistidine antibodies. Lsa66 caused partial inhibition on leptospiral adherence to immobilized ECM and PLG. Moreover, this adhesin and rLIC12238 are recognized by antibodies in serum samples of confirmed leptospirosis cases. Thus, Lsa66 is a novel OmpA-like protein with dual activity that may promote the attachment of Leptospira to host tissues and may contribute to the leptospiral invasion. To our knowledge, this is the first leptospiral protein with ECM and PLG binding properties reported to date.

  9. Plasminogen activation independent of uPA and tPA maintains wound healing in gene-deficient mice

    PubMed Central

    Lund, Leif R; Green, Kirsty A; Stoop, Allart A; Ploug, Michael; Almholt, Kasper; Lilla, Jennifer; Nielsen, Boye S; Christensen, Ib J; Craik, Charles S; Werb, Zena; Danø, Keld; Rømer, John

    2006-01-01

    Simultaneous ablation of the two known activators of plasminogen (Plg), urokinase-type (uPA) and the tissue-type (tPA), results in a substantial delay in skin wound healing. However, wound closure and epidermal re-epithelialization are significantly less impaired in uPA;tPA double-deficient mice than in Plg-deficient mice. Skin wounds in uPA;tPA-deficient mice treated with the broad-spectrum matrix metalloproteinase (MMP) inhibitor galardin (N-[(2R)-2-(hydroxamido-carbonylmethyl)-4-methylpentanoyl]-L-tryptophan methylamide) eventually heal, whereas skin wounds in galardin-treated Plg-deficient mice do not heal. Furthermore, plasmin is biochemically detectable in wound extracts from uPA;tPA double-deficient mice. In vivo administration of a plasma kallikrein (pKal)-selective form of the serine protease inhibitor ecotin exacerbates the healing impairment of uPA;tPA double-deficient wounds to a degree indistinguishable from that observed in Plg-deficient mice, and completely blocks the activity of pKal, but not uPA and tPA in wound extracts. These findings demonstrate that an additional plasminogen activator provides sufficient plasmin activity to sustain the healing process albeit at decreased speed in the absence of uPA, tPA and galardin-sensitive MMPs and suggest that pKal plays a role in plasmin generation. PMID:16763560

  10. Depletion of tissue plasminogen activator attenuates lung ischemia-reperfusion injury via inhibition of neutrophil extravasation

    PubMed Central

    Zhao, Yunge; Sharma, Ashish K.; LaPar, Damien J.; Kron, Irving L.; Ailawadi, Gorav; Liu, Yuan; Jones, David R.; Laubach, Victor E.

    2011-01-01

    Ischemia-reperfusion (IR) injury following lung transplantation remains a major source of early morbidity and mortality. Histologically, this inflammatory process is characterized by neutrophil infiltration and activation. We previously reported that lung IR injury was significantly attenuated in plasminogen activator inhibitor-1-deficient mice. In this study, we explored the potential role of tissue plasminogen activator (tPA) in a mouse lung IR injury model. As a result, tPA knockout (KO) mice were significantly protected from lung IR injury through several mechanisms. At the cellular level, tPA KO specifically blocked neutrophil extravasation into the interstitium, and abundant homotypic neutrophil aggregation (HNA) was detected in the lung microvasculature of tPA KO mice after IR. At the molecular level, inhibition of neutrophil extravasation was associated with reduced expression of platelet endothelial cell adhesion molecule-1 mediated through the tPA/ LDL receptor-related protein/NF-κB signaling pathway, whereas increased P-selectin triggered HNA. At the functional level, tPA KO mice incurred significantly decreased vascular permeability and improved lung function following IR. Protection from lung IR injury in tPA KO mice occurs through a fibrinolysis-independent mechanism. These results suggest that tPA could serve as an important therapeutic target for the prevention and treatment of acute IR injury after lung transplantation. PMID:21378024

  11. Tissue Plasminogen Activator Binding to Superparamagnetic Iron Oxide Nanoparticle—Covalent Versus Adsorptive Approach

    NASA Astrophysics Data System (ADS)

    Friedrich, Ralf P.; Zaloga, Jan; Schreiber, Eveline; Tóth, Ildikó Y.; Tombácz, Etelka; Lyer, Stefan; Alexiou, Christoph

    2016-06-01

    Functionalized superparamagnetic iron oxide nanoparticles are frequently used to develop vehicles for drug delivery, hyperthermia, and photodynamic therapy and as tools used for magnetic separation and purification of proteins or for biomolecular imaging. Depending on the application, there are various possible covalent and non-covalent approaches for the functionalization of particles, each of them shows different advantages and disadvantages for drug release and activity at the desired location.

  12. Overexpression of SERBP1 (Plasminogen activator inhibitor 1 RNA binding protein) in human breast cancer is correlated with favourable prognosis.

    PubMed

    Serce, Nuran Bektas; Boesl, Andreas; Klaman, Irina; von Serényi, Sonja; Noetzel, Erik; Press, Michael F; Dimmler, Arno; Hartmann, Arndt; Sehouli, Jalid; Knuechel, Ruth; Beckmann, Matthias W; Fasching, Peter A; Dahl, Edgar

    2012-12-13

    Plasminogen activator inhibitor 1 (PAI-1) overexpression is an important prognostic and predictive biomarker in human breast cancer. SERBP1, a protein that is supposed to regulate the stability of PAI-1 mRNA, may play a role in gynaecological cancers as well, since upregulation of SERBP1 was described in ovarian cancer recently. This is the first study to present a systematic characterisation of SERBP1 expression in human breast cancer and normal breast tissue at both the mRNA and the protein level. Using semiquantitative realtime PCR we analysed SERBP1 expression in different normal human tissues (n = 25), and in matched pairs of normal (n = 7) and cancerous breast tissues (n = 7). SERBP1 protein expression was analysed in two independent cohorts on tissue microarrays (TMAs), an initial evaluation set, consisting of 193 breast carcinomas and 48 normal breast tissues, and a second large validation set, consisting of 605 breast carcinomas. In addition, a collection of benign (n = 2) and malignant (n = 6) mammary cell lines as well as breast carcinoma lysates (n = 16) were investigated for SERBP1 expression by Western blot analysis. Furthermore, applying non-radioisotopic in situ hybridisation a subset of normal (n = 10) and cancerous (n = 10) breast tissue specimens from the initial TMA were analysed for SERBP1 mRNA expression. SERBP1 is not differentially expressed in breast carcinoma compared to normal breast tissue, both at the RNA and protein level. However, recurrence-free survival analysis showed a significant correlation (P = 0.008) between abundant SERBP1 expression in breast carcinoma and favourable prognosis. Interestingly, overall survival analysis also displayed a tendency (P = 0.09) towards favourable prognosis when SERBP1 was overexpressed in breast cancer. The RNA-binding protein SERBP1 is abundantly expressed in human breast cancer and may represent a novel breast tumour marker with prognostic significance. Its potential involvement in the plasminogen activator protease cascade warrants further investigation.

  13. Role of tissue-type plasminogen activator and plasminogen activator inhibitor-1 in psychological stress and depression.

    PubMed

    Tsai, Shih-Jen

    2017-12-22

    Major depressive disorder is a common illness worldwide, but the pathogenesis of the disorder remains incompletely understood. The tissue-type plasminogen activator-plasminogen proteolytic cascade is highly expressed in the brain regions involved in mood regulation and neuroplasticity. Accumulating evidence from animal and human studies suggests that tissue-type plasminogen activator and its chief inhibitor, plasminogen activator inhibitor-1, are related to stress reaction and depression. Furthermore, the neurotrophic hypothesis of depression postulates that compromised neurotrophin brain-derived neurotrophic factor (BDNF) function is directly involved in the pathophysiology of depression. In the brain, the proteolytic cleavage of proBDNF, a BDNF precursor, to mature BDNF through plasmin represents one mechanism that can change the direction of BDNF action. We also discuss the implications of tissue-type plasminogen activator and plasminogen activator inhibitor-1 alterations as biomarkers for major depressive disorder. Using drugs that increase tissue-type plasminogen activator or decrease plasminogen activator inhibitor-1 levels may open new avenues to develop conceptually novel therapeutic strategies for depression treatment.

  14. Cavity Versus Ligand Shape Descriptors: Application to Urokinase Binding Pockets.

    PubMed

    Cerisier, Natacha; Regad, Leslie; Triki, Dhoha; Camproux, Anne-Claude; Petitjean, Michel

    2017-11-01

    We analyzed 78 binding pockets of the human urokinase plasminogen activator (uPA) catalytic domain extracted from a data set of crystallized uPA-ligand complexes. These binding pockets were computed with an original geometric method that does NOT involve any arbitrary parameter, such as cutoff distances, angles, and so on. We measured the deviation from convexity of each pocket shape with the pocket convexity index (PCI). We defined a new pocket descriptor called distributional sphericity coefficient (DISC), which indicates to which extent the protein atoms of a given pocket lie on the surface of a sphere. The DISC values were computed with the freeware PCI. The pocket descriptors and their high correspondences with ligand descriptors are crucial for polypharmacology prediction. We found that the protein heavy atoms lining the urokinases binding pockets are either located on the surface of their convex hull or lie close to this surface. We also found that the radii of the urokinases binding pockets and the radii of their ligands are highly correlated (r = 0.9).

  15. Plasminogen stimulates propagation of protease-resistant prion protein in vitro.

    PubMed

    Mays, Charles E; Ryou, Chongsuk

    2010-12-01

    To clarify the role of plasminogen as a cofactor for prion propagation, we conducted functional assays using a cell-free prion protein (PrP) conversion assay termed protein misfolding cyclic amplification (PMCA) and prion-infected cell lines. Here, we report that plasminogen stimulates propagation of the protease-resistant scrapie PrP (PrP(Sc)). Compared to control PMCA conducted without plasminogen, addition of plasminogen in PMCA using wild-type brain material significantly increased PrP conversion, with an EC(50) = ∼56 nM. PrP conversion in PMCA was substantially less efficient with plasminogen-deficient brain material than with wild-type material. The activity stimulating PrP conversion was specific for plasminogen and conserved in its kringle domains. Such activity was abrogated by modification of plasminogen structure and interference of PrP-plasminogen interaction. Kinetic analysis of PrP(Sc) generation demonstrated that the presence of plasminogen in PMCA enhanced the PrP(Sc) production rate to ∼0.97 U/μl/h and reduced turnover time to ∼1 h compared to those (∼0.4 U/μl/h and ∼2.5 h) obtained without supplementation. Furthermore, as observed in PMCA, plasminogen and kringles promoted PrP(Sc) propagation in ScN2a and Elk 21(+) cells. Our results demonstrate that plasminogen functions in stimulating conversion processes and represents the first cellular protein cofactor that enhances the hypothetical mechanism of prion propagation.

  16. Fibrinolytic and procoagulant activities of Yersinia pestis and Salmonella enterica.

    PubMed

    Korhonen, T K

    2015-06-01

    Pla of the plague bacterium Yersinia pestis and PgtE of the enteropathogen Salmonella enterica are surface-exposed, transmembrane β-barrel proteases of the omptin family that exhibit a complex array of interactions with the hemostatic systems in vitro, and both proteases are established virulence factors. Pla favors fibrinolysis by direct activation of plasminogen, inactivation of the serpins plasminogen activator inhibitor-1 and α2-antiplasmin, inactivation of the thrombin-activable fibrinolysis inhibitor, and activation of single-chain urokinase. PgtE is structurally very similar but exhibits partially different functions and differ in expression control. PgtE proteolysis targets control aspects of fibrinolysis, and mimicry of matrix metalloproteinases enhances cell migration that should favor the intracellular spread of the bacterium. Enzymatic activity of both proteases is strongly influenced by the environment-induced variations in lipopolysaccharide that binds to the β-barrel. Both proteases cleave the tissue factor pathway inhibitor and thus also express procoagulant activity. © 2015 International Society on Thrombosis and Haemostasis.

  17. The activation of plasminogen by Hageman factor (Factor XII) and Hageman factor fragments.

    PubMed Central

    Goldsmith, G H; Saito, H; Ratnoff, O S

    1978-01-01

    Activation of plasminogen through surface-mediated reactions is well recognized. In the presence of kaolin, purified Hageman factor (Factor XII) changed plasminogen to plasmin, as assayed upon a synthetic amide substrate and by fibrinolysis. Kinetic studies suggested an enzymatic action of Hageman factor upon its substrate, plasminogen. Hageman factor fragments, at a protein concentration equivalent to whole Hageman factor, activated plasminogen to a lesser extent. These protein preparations were not contaminated with other agents implicated in surface-mediated fibrinolysis. Diisopropyl fluorophosphate treatment of plasminogen did not inhibit its activation by Hageman factor. These studies indicate that Hageman factor has a hitherto unsuspected function, the direct activation of plasminogen. PMID:659637

  18. Plasminogen replacement therapy for the treatment of children and adults with congenital plasminogen deficiency

    PubMed Central

    Nakar, Charles; Parker, Joseph M.; Albert, Gary R.; Moran, John E.; Thibaudeau, Karen; Thukral, Neelam; Hardesty, Brandon M.; Laurin, Pierre; Sandset, Per Morten

    2018-01-01

    Congenital plasminogen deficiency is caused by mutations in PLG, the gene coding for production of the zymogen plasminogen, and is an ultrarare disorder associated with abnormal accumulation or growth of fibrin-rich pseudomembranous lesions on mucous membranes. Left untreated, these lesions may impair organ function and impact quality of life. Plasminogen replacement therapy should provide an effective treatment of the manifestations of congenital plasminogen deficiency. An open-label phase 2/3 study of human Glu-plasminogen administered IV at 6.6 mg/kg every 2 to 4 days in 15 patients with congenital plasminogen deficiency is ongoing. Reported here are data on 14 patients who completed at least 12 weeks of treatment. The primary end point was an increase in trough plasminogen activity levels by at least an absolute 10% above baseline. The secondary end point was clinical success, defined as ≥50% improvement in lesion number/size or functionality impact from baseline. All patients achieved at least an absolute 10% increase in trough plasminogen activity above baseline. Clinical success was observed in all patients with clinically visible (conjunctiva and gingiva), nonvisible (nasopharynx, bronchus, colon, kidney, cervix, and vagina), and wound-healing manifestations of the disease. Therapeutic effects were rapid, as all but 2 lesions resolved or improved after 4 weeks of treatment. Human Glu-plasminogen was well tolerated in both children and adults. This study provides critical first evidence of the clinical utility of ongoing replacement therapy with human Glu-plasminogen for the treatment of children and adults with congenital plasminogen deficiency. This trial was registered at www.clinicaltrials.gov as #NCT02690714. PMID:29321155

  19. Host Genes and Resistance/Sensitivity to Military Priority Pathogens

    DTIC Science & Technology

    2010-06-01

    Publications 1. Clinton, S. R., J . E. Bina, T. P. Hatch, M. A. Whitt, and M. A. Miller. 2010. Binding and activation of host plasminogen on the surface...outcomes Publications 1. Boon AC, Debeauchamp J , Krauss S, Rubrum A, Webb AD, Webster RG, McElhaney J , Webby RJ. Cross-reactive neutralizing...antibodies directed against pandemic H1N1 2009 virus are protective in a highly sensitive DBA/2 influenza mouse model. J Virol. 2010; in print

  20. Novel Leptospira interrogans protein Lsa32 is expressed during infection and binds laminin and plasminogen.

    PubMed

    Domingos, Renan F; Fernandes, Luis G; Romero, Eliete C; de Morais, Zenaide M; Vasconcellos, Silvio A; Nascimento, Ana L T O

    2015-04-01

    Pathogenic Leptospira is the aetiological agent of leptospirosis, a life-threatening disease of human and veterinary concern. The quest for novel antigens that could mediate host-pathogen interactions is being pursued. Owing to their location, these antigens have the potential to elicit numerous activities, including immune response and adhesion. This study focuses on a hypothetical protein of Leptospira, encoded by the gene LIC11089, and its three derived fragments: the N-terminal, intermediate and C terminus regions. The gene coding for the full-length protein and fragments was cloned and expressed in Escherichia coli BL21(SI) strain by using the expression vector pAE. The recombinant protein and fragments tagged with hexahistidine at the N terminus were purified by metal affinity chromatography. The leptospiral full-length protein, named Lsa32 (leptospiral surface adhesin, 32 kDa), adheres to laminin, with the C terminus region being responsible for this interaction. Lsa32 binds to plasminogen in a dose-dependent fashion, generating plasmin when an activator is provided. Moreover, antibodies present in leptospirosis serum samples were able to recognize Lsa32. Lsa32 is most likely a new surface protein of Leptospira, as revealed by proteinase K susceptibility. Altogether, our data suggest that this multifaceted protein is expressed during infection and may play a role in host-L. interrogans interactions. © 2015 The Authors.

  1. The fibrinolytic system: A new target for treatment of depression with psychedelics.

    PubMed

    Idell, R D; Florova, G; Komissarov, A A; Shetty, S; Girard, R B S; Idell, S

    2017-03-01

    Current understanding of the neurobiology of depression has grown over the past few years beyond the traditional monoamine theory of depression to include chronic stress, inflammation and disrupted synaptic plasticity. Tissue plasminogen activator (tPA) is a key factor that not only promotes fibrinolysis via the activation of plasminogen, but also contributes to regulation of synaptic plasticity and neurogenesis through plasmin-mediated activation of a probrain derived neurotrophic factor (BDNF) to mature BDNF. ProBDNF activation could potentially be supressed by competition with fibrin for plasmin and tPA. High affinity binding of plasmin and tPA to fibrin could result in a decrease of proBDNF activation during brain inflammation leading to fibrosis further perpetuating depressed mood. There is a paucity of data explaining the possible role of the fibrinolytic system or aberrant extravascular fibrin deposition in depression. We propose that within the brain, an imbalance between tPA and urokinase plasminogen activator (uPA) and plasminogen activator inhibitor-1 (PAI-1) and neuroserpin favors the inhibitors, resulting in changes in neurogenesis, synaptic plasticity, and neuroinflammation that result in depressive behavior. Our hypothesis is that peripheral inflammation mediates neuroinflammation, and that cytokines such as tumor necrosis factor alpha (TNF-α) can inhibit the fibrinolytic system by up- regulating PAI-1 and potentially neuroserpin. We propose that the decrement of the activity of tPA and uPA occurs with downregulation of uPA in part involving the binding and clearance from the surface of neural cells of uPA/PAI-1 complexes by the urokinase receptor uPAR. We infer that current antidepressants and ketamine mitigate depressive symptoms by restoring the balance of the fibrinolytic system with increased activity of tPA and uPA with down-regulated intracerebral expression of their inhibitors. We lastly hypothesize that psychedelic 5-ht2a receptor agonists, such as psilocybin, can improve mood through anti- inflammatory and pro-fibrinolytic effects that include blockade of TNF-α activity leading to decreased PAI-1 activity and increased clearance. The process involves disinhibition of tPA and uPA with subsequent increased cleavage of proBDNF which promotes neurogenesis, decreased neuroinflammation, decreased fibrin deposition, normalized glial-neuronal cross-talk, and optimally functioning neuro-circuits involved in mood. We propose that psilocybin can alleviate deleterious changes in the brain caused by chronic stress leading to restoration of homeostatic brain fibrinolytic capacity leading to euthymia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Ethanol and liver: Recent insights into the mechanisms of ethanol-induced fatty liver

    PubMed Central

    Liu, Jinyao

    2014-01-01

    Alcoholic fatty liver disease (AFLD), a potentially pathologic condition, can progress to steatohepatitis, fibrosis, and cirrhosis, leading to an increased probability of hepatic failure and death. Alcohol induces fatty liver by increasing the ratio of reduced form of nicotinamide adenine dinucleotide to oxidized form of nicotinamide adenine dinucleotide in hepatocytes; increasing hepatic sterol regulatory element-binding protein (SREBP)-1, plasminogen activator inhibitor (PAI)-1, and early growth response-1 activity; and decreasing hepatic peroxisome proliferator-activated receptor-α activity. Alcohol activates the innate immune system and induces an imbalance of the immune response, which is followed by activated Kupffer cell-derived tumor necrosis factor (TNF)-α overproduction, which is in turn responsible for the changes in the hepatic SREBP-1 and PAI-1 activity. Alcohol abuse promotes the migration of bone marrow-derived cells (BMDCs) to the liver and then reprograms TNF-α expression from BMDCs. Chronic alcohol intake triggers the sympathetic hyperactivity-activated hepatic stellate cell (HSC) feedback loop that in turn activates the HSCs, resulting in HSC-derived TNF-α overproduction. Carvedilol may block this feedback loop by suppressing sympathetic activity, which attenuates the progression of AFLD. Clinical studies evaluating combination therapy of carvedilol with a TNF-α inhibitor to treat patients with AFLD are warranted to prevent the development of alcoholic liver disease. PMID:25356030

  3. Small molecule antagonists of the urokinase (uPA): urokinase receptor (uPAR) interaction with high reported potencies show only weak effects in cell-based competition assays employing the native uPAR ligand.

    PubMed

    De Souza, Melissa; Matthews, Hayden; Lee, Jodi A; Ranson, Marie; Kelso, Michael J

    2011-04-15

    Binding of the urokinase-type plasminogen activator (uPA) to its cell-surface-bound receptor uPAR and upregulation of the plasminogen activation system (PAS) correlates with increased metastasis and poor prognosis in several tumour types. Disruptors of the uPA:uPAR interaction represent promising anti-tumour/metastasis agents and several approaches have been explored for this purpose, including the use of small molecule antagonists. Two highly potent non-peptidic antagonists 1 and 2 (IC(50)1=0.8 nM, IC(50)2=33 nM) from the patent literature were reportedly identified using competition assays employing radiolabelled uPAR-binding uPA fragments and appeared as useful pharmacological tools for studying the PAS. Before proceeding to such studies, confirmation was sought that 1 and 2 retained their potencies in physiologically relevant cell-based competition assays employing uPAR's native binding partner high molecular weight uPA (HMW-uPA). This study describes a new solution phase synthesis of 1, a mixed solid/solution phase synthesis of 2 and reports the activities of 1 and 2 in semi-quantitative competition flow cytometry assays and quantitative cell-based uPA activity assays that employed HMW-uPA as the competing ligand. The flow cytometry experiments revealed that high concentrations of 2 (10-100 μM) are required to compete with HMW-uPA for uPAR binding and that 1 shows no antagonist effects at 100 μM. The cell-based enzyme activity assays similarly revealed that 1 and 2 are poor inhibitors of cell surface-bound HMW-uPA activity (IC(50) >100 μM for 1 and 2). The report highlights the dangers of identifying false-positive lead uPAR antagonists from competition assays employing labelled competing ligands other than the native HMW-uPA. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Progesterone Directly and Rapidly Inhibits GnRH Neuronal Activity via Progesterone Receptor Membrane Component 1

    PubMed Central

    Bashour, Nicholas Michael

    2012-01-01

    GnRH neurons are essential for reproduction, being an integral component of the hypothalamic-pituitary-gonadal axis. Progesterone (P4), a steroid hormone, modulates reproductive behavior and is associated with rapid changes in GnRH secretion. However, a direct action of P4 on GnRH neurons has not been previously described. Receptors in the progestin/adipoQ receptor family (PAQR), as well as progesterone receptor membrane component 1 (PgRMC1) and its partner serpin peptidase inhibitor, clade E (nexin, plasminogen activator inhibitor type 1) mRNA binding protein 1 (SERBP1), have been shown to mediate rapid progestin actions in various tissues, including the brain. This study shows that PgRMC1 and SERBP1, but not PAQR, are expressed in prenatal GnRH neurons. Expression of PgRMC1 and SERBP1 was verified in adult mouse GnRH neurons. To investigate the effect of P4 on GnRH neuronal activity, calcium imaging was used on primary GnRH neurons maintained in explants. Application of P4 significantly decreased the activity of GnRH neurons, independent of secretion of gamma-aminobutyric acidergic and glutamatergic input, suggesting a direct action of P4 on GnRH neurons. Inhibition was not blocked by RU486, an antagonist of the classic nuclear P4 receptor. Inhibition was also maintained after uncoupling of the inhibitory regulative G protein (Gi/o), the signal transduction pathway used by PAQR. However, AG-205, a PgRMC1 ligand and inhibitor, blocked the rapid P4-mediated inhibition, and inhibition of protein kinase G, thought to be activated downstream of PgRMC1, also blocked the inhibitory activity of P4. These data show for the first time that P4 can act directly on GnRH neurons through PgRMC1 to inhibit neuronal activity. PMID:22822163

  5. Estriol-induced fibrinolysis due to the activation of plasminogen to plasmin by nitric oxide synthesis in platelets.

    PubMed

    Jana, Pradipta; Maiti, Smarajit; Kahn, Nighat N; Sinha, Asru K

    2015-04-01

    Estriol, an oestrogen, at 0.6 nmol/l was reported to inhibit ADP-induced platelet aggregation through nitric oxide synthesis. As nitric oxide has been reported to cause fibrinolysis due to the activation of plasminogen to plasmin, the role of estriol as a fibrinolytic agent was investigated. Also, the mechanism of estriol-induced nitric oxide synthesis in anucleated platelets was investigated. The estriol-induced lysis of platelet-rich plasma (PRP) clot was determined by photography of the clot lysis and by the assay of fibrin degradation products in the lysate and was obtained by SDS-PAGE. Nitric oxide was determined by methemoglobin method. The platelet membrane protein was isolated from the platelets by using Triton X-100 (0.05% v/v). The binding of estriol to the protein was determined by Scatchard plot by using an ELISA for estriol. Estriol at 0.6 nmol/l was found to lyse the clotted PRP due to fibrinolysis that produced fibrin degradation products in the lysate. The amino acid analysis of the platelet membrane protein, which resembles with nitric oxide synthase (NOS) activity, was activated nearly 10-fold over the control in the presence of estriol and was identified to be a human serum albumin precursor (Mr. 69 kDa) that binds to estriol with Kd1 of 6.0 × 10 mol/l and 39 ± 2 molecules of estriol bound the NOS molecule. The estriol-induced nitric oxide is capable of inducing fibrinolysis of the clotted PRP. The binding of estriol to platelet membrane NOS activated the enzyme in the absence of DNA in the platelet.

  6. Characterization of two new putative adhesins of Leptospira interrogans.

    PubMed

    Figueredo, Jupciana M; Siqueira, Gabriela H; de Souza, Gisele O; Heinemann, Marcos B; Vasconcellos, Silvio A; Chapola, Erica G B; Nascimento, Ana L T O

    2017-01-01

    We here report the characterization of two novel proteins encoded by the genes LIC11122 and LIC12287, identified in the genome sequences of Leptospira interrogans, annotated, respectively, as a putative sigma factor and a hypothetical protein. The CDSs LIC11122 and LIC12287 have signal peptide SPII and SPI and are predicted to be located mainly at the cytoplasmic membrane of the bacteria. The genes were cloned and the proteins expressed using Escherichia coli. Proteinase K digestion showed that both proteins are surface exposed. Evaluation of interaction of recombinant proteins with extracellular matrix components revealed that they are laminin binding and they were called Lsa19 (LIC11122) and Lsa14 (LIC12287), for Leptospiral-surface adhesin of 19 and 14 kDa, respectively. The bindings were dose-dependent on protein concentration, reaching saturation, fulfilling the ligand-binding criteria. Reactivity of the recombinant proteins with leptospirosis human sera has shown that Lsa19 and, to a lesser extent, Lsa14, are recognized by antibodies, suggesting that, most probably, Lsa19 is expressed during infection. The proteins interact with plasminogen and generate plasmin in the presence of urokinase-type plasminogen activator. Plasmin generation in Leptospira has been associated with tissue penetration and immune evasion strategies. The presence of a sigma factor on the cell surface playing a secondary role, probably mediating host -pathogen interaction, suggests that LIC11122 is a moonlighting protein candidate. Although the biological significance of these putative adhesins will require the generation of mutants, our data suggest that Lsa19 is a potential candidate for future evaluation of its role in adhesion/colonization activities during L. interrogans infection.

  7. 21 CFR 866.5715 - Plasminogen immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866.5715 Plasminogen immunological test system. (a) Identification. A plasminogen immunological test system is a device... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Plasminogen immunological test system. 866.5715...

  8. Cavity Versus Ligand Shape Descriptors: Application to Urokinase Binding Pockets

    PubMed Central

    Cerisier, Natacha; Regad, Leslie; Triki, Dhoha; Camproux, Anne-Claude

    2017-01-01

    Abstract We analyzed 78 binding pockets of the human urokinase plasminogen activator (uPA) catalytic domain extracted from a data set of crystallized uPA–ligand complexes. These binding pockets were computed with an original geometric method that does NOT involve any arbitrary parameter, such as cutoff distances, angles, and so on. We measured the deviation from convexity of each pocket shape with the pocket convexity index (PCI). We defined a new pocket descriptor called distributional sphericity coefficient (DISC), which indicates to which extent the protein atoms of a given pocket lie on the surface of a sphere. The DISC values were computed with the freeware PCI. The pocket descriptors and their high correspondences with ligand descriptors are crucial for polypharmacology prediction. We found that the protein heavy atoms lining the urokinases binding pockets are either located on the surface of their convex hull or lie close to this surface. We also found that the radii of the urokinases binding pockets and the radii of their ligands are highly correlated (r = 0.9). PMID:28570103

  9. Carboxyl‐terminal Heparin‐binding Fragments of Platelet Factor 4 Retain the Blocking Effect on the Receptor Binding of Basic Fibroblast Growth Factor

    PubMed Central

    Waki, Michinori; Ohno, Motonori; Kuwano, Michihiko; Sakata, Toshiie

    1993-01-01

    Platelet factor 4 (PF‐4) blocks the binding of basic fibroblast growth factor (bFGF) to its receptor. In the present study, we constructed carboxyl‐terminal fragments, which represent the heparin‐binding region of the PF‐4 molecule, and examined whether these synthetic peptides retain the blocking effects on the receptor binding of bFGF. Synthetic peptides inhibited the receptor binding of bFGF. Furthermore, they inhibited the migration and tube formation of bovine capillary endothelial cells in culture (these phenomena are dependent on endogenous bFGF). PMID:8320164

  10. Pivotal role of tissue plasminogen activator in the mechanism of action of electroconvulsive therapy.

    PubMed

    Hoirisch-Clapauch, Silvia; Mezzasalma, Marco A U; Nardi, Antonio E

    2014-02-01

    Electroconvulsive therapy is an important treatment option for major depressive disorders, acute mania, mood disorders with psychotic features, and catatonia. Several hypotheses have been proposed as electroconvulsive therapy's mechanism of action. Our hypothesis involves many converging pathways facilitated by increased synthesis and release of tissue-plasminogen activator. Human and animal experiments have shown that tissue-plasminogen activator participates in many mechanisms of action of electroconvulsive therapy or its animal variant, electroconvulsive stimulus, including improved N-methyl-D-aspartate receptor-mediated signaling, activation of both brain-derived neurotrophic factor and vascular endothelial growth factor, increased bioavailability of zinc, purinergic release, and increased mobility of dendritic spines. As a result, tissue-plasminogen activator helps promote neurogenesis in limbic structures, modulates synaptic transmission and plasticity, improves cognitive function, and mediates antidepressant effects. Notably, electroconvulsive therapy seems to influence tissue-plasminogen activator metabolism. For example, electroconvulsive stimulus increases the expression of glutamate decarboxylase 65 isoform in γ-aminobutyric acid-releasing neurons, which enhances the release of tissue-plasminogen activator, and the expression of p11, a protein involved in plasminogen and tissue-plasminogen activator assembling. This paper reviews how electroconvulsive therapy correlates with tissue-plasminogen activator. We suggest that interventions aiming at increasing tissue-plasminogen activator levels or its bioavailability - such as daily aerobic exercises together with a carbohydrate-restricted diet, or normalization of homocysteine levels - be evaluated in controlled studies assessing response and remission duration in patients who undergo electroconvulsive therapy.

  11. Urokinase plasminogen activator mRNA is induced by IL-1alpha and TNF-alpha in in vitro acantholysis.

    PubMed

    Feliciani, Claudio; Toto, Paola; Wang, Binghe; Sauder, Daniel N; Amerio, Pierluigi; Tulli, Antonio

    2003-08-01

    The role of urokinase type plasminogen activator (uPA) has been well documented in the pathogenesis of pemphigus vulgaris (PV). Activation of plasminogen into active serine protease plasmin initiates extracellular proteolysis leading to acantholysis but the mechanisms underlying this process are not clearly understood. We have previously shown that keratinocyte derived cytokines IL-1alpha and TNF-alpha are involved in PV-induced acantholysis. In the present study we sought to examine whether keratinocyte-derived IL-1alpha and TNF-alpha are correlated with uPA induction in keratinocytes during acantholysis. Normal human keratinocytes were incubated with diluted PV serum. mRNAs for IL-1alpha, TNF-alpha and uPA were examined with RT-PCR at various time points and acantholysis was measured. IL-1alpha, TNF-alpha and uPA mRNAs were all induced in keratinocytes following PV serum stimulation; IL-1alpha/TNF-alpha mRNAs' expression was earlier than the expression of uPA mRNA. To further examine the role of IL-1alpha, TNF-alpha and uPA in acantholysis, we performed antibody blocking studies. Anti-IL-1alpha, anti-TNF-alpha and anti-uPA antibodies suppressed acantholysis by 76%, 80% and 90%, respectively. In addition, anti-IL-1alpha and anti-TNF-alpha antibodies inhibited uPA mRNA induction, whereas anti-uPA antibodies did not alter IL-1alpha/TNF-alpha mRNAs' expression. Our results confirm the role of uPA in acantholysis and suggest an involvement of IL-1alpha/TNF-alpha in uPA induction.

  12. Overexpression of SERBP1 (Plasminogen activator inhibitor 1 RNA binding protein) in human breast cancer is correlated with favourable prognosis

    PubMed Central

    2012-01-01

    Background Plasminogen activator inhibitor 1 (PAI-1) overexpression is an important prognostic and predictive biomarker in human breast cancer. SERBP1, a protein that is supposed to regulate the stability of PAI-1 mRNA, may play a role in gynaecological cancers as well, since upregulation of SERBP1 was described in ovarian cancer recently. This is the first study to present a systematic characterisation of SERBP1 expression in human breast cancer and normal breast tissue at both the mRNA and the protein level. Methods Using semiquantitative realtime PCR we analysed SERBP1 expression in different normal human tissues (n = 25), and in matched pairs of normal (n = 7) and cancerous breast tissues (n = 7). SERBP1 protein expression was analysed in two independent cohorts on tissue microarrays (TMAs), an initial evaluation set, consisting of 193 breast carcinomas and 48 normal breast tissues, and a second large validation set, consisting of 605 breast carcinomas. In addition, a collection of benign (n = 2) and malignant (n = 6) mammary cell lines as well as breast carcinoma lysates (n = 16) were investigated for SERBP1 expression by Western blot analysis. Furthermore, applying non-radioisotopic in situ hybridisation a subset of normal (n = 10) and cancerous (n = 10) breast tissue specimens from the initial TMA were analysed for SERBP1 mRNA expression. Results SERBP1 is not differentially expressed in breast carcinoma compared to normal breast tissue, both at the RNA and protein level. However, recurrence-free survival analysis showed a significant correlation (P = 0.008) between abundant SERBP1 expression in breast carcinoma and favourable prognosis. Interestingly, overall survival analysis also displayed a tendency (P = 0.09) towards favourable prognosis when SERBP1 was overexpressed in breast cancer. Conclusions The RNA-binding protein SERBP1 is abundantly expressed in human breast cancer and may represent a novel breast tumour marker with prognostic significance. Its potential involvement in the plasminogen activator protease cascade warrants further investigation. PMID:23236990

  13. Molecular bases of protective immune responses against botulinum neurotoxin A--how antitoxin antibodies block its action.

    PubMed

    Atassi, M Zouhair; Dolimbek, Behzod Z; Steward, Lance E; Aoki, K Roger

    2007-01-01

    In studies from this laboratory, we localized the regions on the H chain of botulinum neurotoxin A (BoNT/A) that are recognized by anti-BoNT/A antibodies (Abs) and block the activity of the toxin in vivo. These Abs were obtained from cervical dystonia patients who had been treated with BoNT/A and had become unresponsive to the treatment, as well as blocking Abs raised in mouse, horse, and chicken. We also localized the regions involved in BoNT/A binding to mouse brain synaptosomes (snp). Comparison of spatial proximities in the three-dimensional structure of the Ab-binding regions and the snp binding showed that except for one, the Ab-binding regions either coincide or overlap with the snp regions. It should be folly expected that protective Abs when bound to the toxin at sites that coincide or overlap with snp binding would prevent the toxin from binding to nerve synapse and therefore block toxin entry into the neuron. Thus, analysis of the locations of the Ab-binding and the snp-binding regions provides a molecular rationale for the ability of protecting Abs to block BoNT/A action in vivo.

  14. Krüppel-like factor 17 inhibits urokinase plasminogen activator gene expression to suppress cell invasion through the Src/p38/MAPK signaling pathway in human lung adenocarcinoma

    PubMed Central

    Huang, Shuai; Li, Jiong; Liu, Xiao-Yan; Pan, Xing-Fei; Wang, Qin-Qin; Chen, Li; Lin, Ming-Juan; Huang, Zhi-Hong; Ma, Hong-Ming; Wu, Yi; Liu, Sheng-Ming; Zhou, Yan-Bin

    2017-01-01

    Krüppel-like factor 17 (KLF17) has been reported to be involved in invasion and metastasis suppression in lung cancer, but the molecular mechanisms underlying the anti-invasion and anti-metastasis roles of KLF17 in lung cancer are not fully illustrated. Here, we showed that KLF17 inhibited the invasion of A549 and H322 cells; the anti-invasion effect of KLF17 was associated with the suppression of urokinase plasminogen activator (uPA/PLAU) expression. KLF17 can bind with the promoter of uPA and inhibit its expression. Enforced expression of uPA abrogated the anti-invasion effect of KLF17 in A549 and H322 cells. In addition, immunohistochemistry staining showed that the protein expression of KLF17 was negatively correlated with that of uPA in archived samples from patients with lymph node metastasis of lung adenocarcinoma (rho = −0.62, P = 0.01). The mutually exclusive expression of KLF17 with uPA could predict lymph node metastasis for lung adenocarcinoma (AUC = 0.758, P = 0.005). Enforced expression of KLF17 inhibited the expression of phosphorylated Src and phosphorylated p38/MAPK in A549 and H322 cells. The invasiveness of the cells were suppressed by treating with sb203580 (p38/MAPK inhibitor) or HY-13805 (PP2, Src inhibitor). furthermore, p38/MAPK inhibition could block the KLF17-induced reduction of p-p38/MAPK and uPA, and Src inhibition enhanced the KLF17-induced suppression of p-Src and uPA in A549 and H322 cells. In conclusion, our study indicated that KLF17 suppressed the uPA-mediated invasion of lung adenocarcinoma. The Src and p38/MAPK signaling pathways were suggested as mediators of KLF17-induced uPA inhibition, thus providing evidence that KLF17 might be a potential anti-invasion candidate for lung adenocarcinoma. PMID:28454121

  15. Complement Evasion by Pathogenic Leptospira.

    PubMed

    Fraga, Tatiana Rodrigues; Isaac, Lourdes; Barbosa, Angela Silva

    2016-01-01

    Leptospirosis is a neglected infectious disease caused by spirochetes from the genus Leptospira . Pathogenic microorganisms, notably those which reach the blood circulation such as Leptospira , have evolved multiple strategies to escape the host complement system, which is important for innate and acquired immunity. Leptospira avoid complement-mediated killing through: (i) recruitment of host complement regulators; (ii) acquisition of host proteases that cleave complement proteins on the bacterial surface; and, (iii) secretion of proteases that inactivate complement proteins in the Leptospira surroundings. The recruitment of host soluble complement regulatory proteins includes the acquisition of Factor H (FH) and FH-like-1 (alternative pathway), C4b-binding protein (C4BP) (classical and lectin pathways), and vitronectin (Vn) (terminal pathway). Once bound to the leptospiral surface, FH and C4BP retain cofactor activity of Factor I in the cleavage of C3b and C4b, respectively. Vn acquisition by leptospires may result in terminal pathway inhibition by blocking C9 polymerization. The second evasion mechanism lies in plasminogen (PLG) binding to the leptospiral surface. In the presence of host activators, PLG is converted to enzymatically active plasmin, which is able to degrade C3b, C4b, and C5 at the surface of the pathogen. A third strategy used by leptospires to escape from complement system is the active secretion of proteases. Pathogenic, but not saprophytic leptospires, are able to secrete metalloproteases that cleave C3 (central complement molecule), Factor B (alternative pathway), and C4 and C2 (classical and lectin pathways). The purpose of this review is to fully explore these complement evasion mechanisms, which act together to favor Leptospira survival and multiplication in the host.

  16. Complement Evasion by Pathogenic Leptospira

    PubMed Central

    Fraga, Tatiana Rodrigues; Isaac, Lourdes; Barbosa, Angela Silva

    2016-01-01

    Leptospirosis is a neglected infectious disease caused by spirochetes from the genus Leptospira. Pathogenic microorganisms, notably those which reach the blood circulation such as Leptospira, have evolved multiple strategies to escape the host complement system, which is important for innate and acquired immunity. Leptospira avoid complement-mediated killing through: (i) recruitment of host complement regulators; (ii) acquisition of host proteases that cleave complement proteins on the bacterial surface; and, (iii) secretion of proteases that inactivate complement proteins in the Leptospira surroundings. The recruitment of host soluble complement regulatory proteins includes the acquisition of Factor H (FH) and FH-like-1 (alternative pathway), C4b-binding protein (C4BP) (classical and lectin pathways), and vitronectin (Vn) (terminal pathway). Once bound to the leptospiral surface, FH and C4BP retain cofactor activity of Factor I in the cleavage of C3b and C4b, respectively. Vn acquisition by leptospires may result in terminal pathway inhibition by blocking C9 polymerization. The second evasion mechanism lies in plasminogen (PLG) binding to the leptospiral surface. In the presence of host activators, PLG is converted to enzymatically active plasmin, which is able to degrade C3b, C4b, and C5 at the surface of the pathogen. A third strategy used by leptospires to escape from complement system is the active secretion of proteases. Pathogenic, but not saprophytic leptospires, are able to secrete metalloproteases that cleave C3 (central complement molecule), Factor B (alternative pathway), and C4 and C2 (classical and lectin pathways). The purpose of this review is to fully explore these complement evasion mechanisms, which act together to favor Leptospira survival and multiplication in the host. PMID:28066433

  17. Fighting malaria with engineered symbiotic bacteria from vector mosquitoes.

    PubMed

    Wang, Sibao; Ghosh, Anil K; Bongio, Nicholas; Stebbings, Kevin A; Lampe, David J; Jacobs-Lorena, Marcelo

    2012-07-31

    The most vulnerable stages of Plasmodium development occur in the lumen of the mosquito midgut, a compartment shared with symbiotic bacteria. Here, we describe a strategy that uses symbiotic bacteria to deliver antimalaria effector molecules to the midgut lumen, thus rendering host mosquitoes refractory to malaria infection. The Escherichia coli hemolysin A secretion system was used to promote the secretion of a variety of anti-Plasmodium effector proteins by Pantoea agglomerans, a common mosquito symbiotic bacterium. These engineered P. agglomerans strains inhibited development of the human malaria parasite Plasmodium falciparum and rodent malaria parasite Plasmodium berghei by up to 98%. Significantly, the proportion of mosquitoes carrying parasites (prevalence) decreased by up to 84% for two of the effector molecules, scorpine, a potent antiplasmodial peptide and (EPIP)(4), four copies of Plasmodium enolase-plasminogen interaction peptide that prevents plasminogen binding to the ookinete surface. We demonstrate the use of an engineered symbiotic bacterium to interfere with the development of P. falciparum in the mosquito. These findings provide the foundation for the use of genetically modified symbiotic bacteria as a powerful tool to combat malaria.

  18. Computational analysis of blood clot dissolution using a vibrating catheter tip.

    PubMed

    Lee, Jeong Hyun; Oh, Jin Sun; Yoon, Bye Ri; Choi, Seung Hong; Rhee, Kyehan; Jho, Jae Young; Han, Moon Hee

    2012-04-01

    We developed a novel concept of endovascular thrombolysis that employs a vibrating electroactive polymer actuator. In order to predict the efficacy of thrombolysis using the developed vibrating actuator, enzyme (plasminogen activator) perfusion into a clot was analyzed by solving flow fields and species transport equations considering the fluid structure interaction. In vitro thrombolysis experiments were also performed. Computational results showed that plasminogen activator perfusion into a clot was enhanced by actuator vibration at frequencies of 1 and 5 Hz. Plasminogen activator perfusion was affected by the actuator oscillation frequencies and amplitudes that were determined by electromechanical characteristics of a polymer actuator. Computed plasminogen activator perfused volumes were compared with experimentally measured dissolved clot volumes. The computed plasminogen activator perfusion volumes with threshold concentrations of 16% of the initial plasminogen activator concentration agreed well with the in vitro experimental data. This study showed the effectiveness of actuator oscillation on thrombolysis and the validity of the computational plasminogen activator perfusion model for predicting thrombolysis in complex flow fields induced by an oscillating actuator.

  19. Keeping the blood flowing—plasminogen activator genes and feeding behavior in vampire bats

    NASA Astrophysics Data System (ADS)

    Tellgren-Roth, Åsa; Dittmar, Katharina; Massey, Steven E.; Kemi, Cecilia; Tellgren-Roth, Christian; Savolainen, Peter; Lyons, Leslie A.; Liberles, David A.

    2009-01-01

    The blood feeding vampire bats emerged from New World leaf-nosed bats that fed on fruit and insects. Plasminogen activator, a serine protease that regulates blood coagulation, is known to be expressed in the saliva of Desmodus rotundus (common vampire bat) and is thought to be a key enzyme for the emergence of blood feeding in vampire bats. To better understand the evolution of this biological function, we studied the plasminogen activator (PA) genes from all vampire bat species in light of their feeding transition to bird and subsequently mammalian blood. We include the rare species Diphylla ecaudata and Diaemus youngi, where plasminogen activator had not previously been studied and demonstrate that PA gene duplication observed in Desmodus is not essential to the vampire phenotype, but relates to the emergence of predominant mammalian blood feeding in this species. Plasminogen activator has evolved through gene duplication, domain loss, and sequence evolution leading to change in fibrin-specificity and susceptibility to plasminogen activator inhibitor-1. Before undertaking this study, only the four plasminogen activator isoforms from Desmodus were known. The evolution of vampire bat plasminogen activators can now be linked phylogenetically to the transition in feeding behavior among vampire bat species from bird to mammalian blood.

  20. Potent antitumor activity of a urokinase-activated engineered anthrax toxin

    NASA Astrophysics Data System (ADS)

    Liu, Shihui; Aaronson, Hannah; Mitola, David J.; Leppla, Stephen H.; Bugge, Thomas H.

    2003-01-01

    The acquisition of cell-surface urokinase plasminogen activator activity is a hallmark of malignancy. We generated an engineered anthrax toxin that is activated by cell-surface urokinase in vivo and displays limited toxicity to normal tissue but broad and potent tumoricidal activity. Native anthrax toxin protective antigen, when administered with a chimeric anthrax toxin lethal factor, Pseudomonas exotoxin fusion protein, was extremely toxic to mice, causing rapid and fatal organ damage. Replacing the furin activation sequence in anthrax toxin protective antigen with an artificial peptide sequence efficiently activated by urokinase greatly attenuated toxicity to mice. In addition, the mutation conferred cell-surface urokinase-dependent toxin activation in vivo, as determined by using a panel of plasminogen, plasminogen activator, plasminogen activator receptor, and plasminogen activator inhibitor-deficient mice. Surprisingly, toxin activation critically depended on both urokinase plasminogen activator receptor and plasminogen in vivo, showing that both proteins are essential cofactors for the generation of cell-surface urokinase. The engineered toxin displayed potent tumor cell cytotoxicity to a spectrum of transplanted tumors of diverse origin and could eradicate established solid tumors. This tumoricidal activity depended strictly on tumor cell-surface plasminogen activation. The data show that a simple change of protease activation specificity converts anthrax toxin from a highly lethal to a potent tumoricidal agent.

  1. Active Plasma Kallikrein Localizes to Mast Cells and Regulates Epithelial Cell Apoptosis, Adipocyte Differentiation, and Stromal Remodeling during Mammary Gland Involution*

    PubMed Central

    Lilla, Jennifer N.; Joshi, Ravi V.; Craik, Charles S.; Werb, Zena

    2009-01-01

    The plasminogen cascade of serine proteases directs both development and tumorigenesis in the mammary gland. Plasminogen can be activated to plasmin by urokinase-type plasminogen activator (uPA), tissue-type plasminogen activator (tPA), and plasma kallikrein (PKal). The dominant plasminogen activator for mammary involution is PKal, a serine protease that participates in the contact activation system of blood coagulation. We observed that the prekallikrein gene (Klkb1) is expressed highly in the mammary gland during stromal remodeling periods including puberty and postlactational involution. We used a variant of ecotin (ecotin-PKal), a macromolecular inhibitor of serine proteases engineered to be highly specific for active PKal, to demonstrate that inhibition of PKal with ecotin-PKal delays alveolar apoptosis, adipocyte replenishment, and stromal remodeling in the involuting mammary gland, producing a phenotype resembling that resulting from plasminogen deficiency. Using biotinylated ecotin-PKal, we localized active PKal to connective tissue-type mast cells in the mammary gland. Taken together, these results implicate PKal as an effector of the plasminogen cascade during mammary development. PMID:19297327

  2. Successful Tissue Plasminogen Activator for a Patient with Stroke After Stanford Type A Aortic Dissection Treatment.

    PubMed

    Matsuzono, Kosuke; Suzuki, Masayuki; Arai, Naoto; Kim, Younhee; Ozawa, Tadashi; Mashiko, Takafumi; Shimazaki, Haruo; Koide, Reiji; Fujimoto, Shigeru

    2018-07-01

    Some stroke patients with the acute aortic dissection receiving thrombolysis treatment resulted in fatalities. Thus, the concurrent acute aortic dissection is the contraindication for the intravenous recombinant tissue-type plasminogen activator. However, the safety and the effectiveness of the intravenous recombinant tissue-type plasminogen activator therapy are not known in patients with stroke some days after acute aortic dissection treatment. Here, we first report a case of a man with a cardioembolism due to the nonvalvular atrial fibrillation, who received the intravenous recombinant tissue-type plasminogen activator therapy 117 days after the traumatic Stanford type A acute aortic dissection operation. Without the intravenous recombinant tissue-type plasminogen activator therapy, the prognosis was expected to be miserable. However, the outcome was good with no complication owing to the intravenous recombinant tissue-type plasminogen activator therapy. Our case suggests the effectiveness and the safety of the intravenous recombinant tissue-type plasminogen activator therapy to the ischemic stroke some days after acute aortic dissection treatment. Copyright © 2018 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  3. Full-length soluble urokinase plasminogen activator receptor down-modulates nephrin expression in podocytes

    PubMed Central

    Alfano, Massimo; Cinque, Paola; Giusti, Guido; Proietti, Silvia; Nebuloni, Manuela; Danese, Silvio; D’Alessio, Silvia; Genua, Marco; Portale, Federica; Lo Porto, Manuela; Singhal, Pravin C.; Rastaldi, Maria Pia; Saleem, Moin A.; Mavilio, Domenico; Mikulak, Joanna

    2015-01-01

    Increased plasma level of soluble urokinase-type plasminogen activator receptor (suPAR) was associated recently with focal segmental glomerulosclerosis (FSGS). In addition, different clinical studies observed increased concentration of suPAR in various glomerular diseases and in other human pathologies with nephrotic syndromes such as HIV and Hantavirus infection, diabetes and cardiovascular disorders. Here, we show that suPAR induces nephrin down-modulation in human podocytes. This phenomenon is mediated only by full-length suPAR, is time-and dose-dependent and is associated with the suppression of Wilms’ tumor 1 (WT-1) transcription factor expression. Moreover, an antagonist of αvβ3 integrin RGDfv blocked suPAR-induced suppression of nephrin. These in vitro data were confirmed in an in vivo uPAR knock out Plaur−/− mice model by demonstrating that the infusion of suPAR inhibits expression of nephrin and WT-1 in podocytes and induces proteinuria. This study unveiled that interaction of full-length suPAR with αvβ3 integrin expressed on podocytes results in down-modulation of nephrin that may affect kidney functionality in different human pathologies characterized by increased concentration of suPAR. PMID:26380915

  4. PAI-1 (Plasminogen Activator Inhibitor-1) Expression Renders Alternatively Activated Human Macrophages Proteolytically Quiescent

    PubMed Central

    Hohensinner, Philipp J.; Baumgartner, Johanna; Kral-Pointner, Julia B.; Uhrin, Pavel; Ebenbauer, Benjamin; Thaler, Barbara; Doberer, Konstantin; Stojkovic, Stefan; Demyanets, Svitlana; Fischer, Michael B.; Huber, Kurt; Schabbauer, Gernot; Speidl, Walter S.

    2017-01-01

    Objective— Macrophages are versatile immune cells capable of polarizing into functional subsets depending on environmental stimulation. In atherosclerotic lesions, proinflammatory polarized macrophages are associated with symptomatic plaques, whereas Th2 (T-helper cell type 2) cytokine–polarized macrophages are inversely related with disease progression. To establish a functional cause for these observations, we analyzed extracellular matrix degradation phenotypes in polarized macrophages. Approach and Results— We provide evidence that proinflammatory polarized macrophages rely on membrane-bound proteases including MMP-14 (matrix metalloproteinase-14) and the serine protease uPA (urokinase plasminogen activator) together with its receptor uPAR for extracellular matrix degradation. In contrast, Th2 cytokine alternatively primed macrophages do not show different proteolytic activity in comparison to unpolarized macrophages and lack increased localization of MMP-14 and uPA receptor to the cell membrane. Nonetheless, they express the highest amount of the serine protease uPA. However, uPA activity is blocked by similarly increased expression of its inhibitor PAI-1 (plasminogen activator inhibitor 1). When inhibiting PAI-1 or when analyzing macrophages deficient in PAI-1, Th2 cytokine–polarized macrophages display the same matrix degradation capability as proinflammatory-primed macrophages. Within atherosclerotic lesions, macrophages positive for the alternative activation marker CD206 express high levels of PAI-1. In addition, to test changed tissue remodeling capacities of alternatively activated macrophages, we used a bleomycin lung injury model in mice reconstituted with PAI-1−/− bone marrow. These results supported an enhanced remodeling phenotype displayed by increased fibrosis and elevated MMP activity in the lung after PAI-1 loss. Conclusions— We were able to demonstrate matrix degradation dependent on membrane-bound proteases in proinflammatory stimulated macrophages and a forced proteolytical quiescence in alternatively polarized macrophages by the expression of PAI-1. PMID:28818858

  5. The Effect of Levonorgestrel on Fibrinolytic Factors in Human Endometrial Endothelial Cells.

    PubMed

    Pakrashi, Tarita; Taylor, Joelle E; Nelson, Ashley; Archer, David F; Jacot, Terry

    2016-11-01

    The levonorgestrel-releasing intrauterine system is considered a highly effective treatment of heavy menstrual bleeding (HMB). While LNG has established effects on the stromal and glandular compartments of the endometrial tissue, its effect on the endometrial endothelial cells has not been investigated. We examined whether LNG regulates fibrinolytic factors, tissue plasminogen activator (tPA), and urokinase plasminogen activator (uPA) secreted by human endometrial endothelial cells (HEECs) and determined the steroid receptor through which LNG exerts its effect on the endothelium. The HEECs were treated with LNG or progesterone and levels of tPA and plasminogen activator inhibitor 1 (PAI-1) measured. The HEECs were specifically examined for the presence of androgen receptors through Western blot. Levonorgestrel ± flutamide were added to HEECs and the levels of tPA and uPA were examined. An enzyme-linked immunosorbent assay performed on culture media confirmed a statistically significant decrease in tPA levels in cells treated with LNG (77.80% ± 8.0% of control; n = 5, P < .05 vs control) but not progesterone. The androgen receptor (110 kDa) was detected in HEEC lysates. The decrease in tPA was blocked by the addition of flutamide (101.3% ± 16% of control), a classic nonsteroidal androgen receptor blocker. There was no change in uPA or PAI-1 levels in cells treated with LNG. Levonorgestrel decreases tPA levels through the androgen receptor in HEECs. Thus, LNG inhibits tPA secretion by the endometrial endothelial cell. This response suggests reduction in HMB with LNG-IUS could reflect an LNG-mediated promotion of hemostasis. © The Author(s) 2016.

  6. Leukocyte- and endothelial-derived microparticles: a circulating source for fibrinolysis

    PubMed Central

    Lacroix, Romaric; Plawinski, Laurent; Robert, Stéphane; Doeuvre, Loïc; Sabatier, Florence; Martinez de Lizarrondo, Sara; Mezzapesa, Anna; Anfosso, Francine; Leroyer, Aurelie S.; Poullin, Pascale; Jourde, Noémie; Njock, Makon-Sébastien; Boulanger, Chantal M.; Anglés-Cano, Eduardo; Dignat-George, Françoise

    2012-01-01

    Background We recently assigned a new fibrinolytic function to cell-derived microparticles in vitro. In this study we explored the relevance of this novel property of microparticles to the in vivo situation. Design and Methods Circulating microparticles were isolated from the plasma of patients with thrombotic thrombocytopenic purpura or cardiovascular disease and from healthy subjects. Microparticles were also obtained from purified human blood cell subpopulations. The plasminogen activators on microparticles were identified by flow cytometry and enzyme-linked immunosorbent assays; their capacity to generate plasmin was quantified with a chromogenic assay and their fibrinolytic activity was determined by zymography. Results Circulating microparticles isolated from patients generate a range of plasmin activity at their surface. This property was related to a variable content of urokinase-type plasminogen activator and/or tissue plasminogen activator. Using distinct microparticle subpopulations, we demonstrated that plasmin is generated on endothelial and leukocyte microparticles, but not on microparticles of platelet or erythrocyte origin. Leukocyte-derived microparticles bear urokinase-type plasminogen activator and its receptor whereas endothelial microparticles carry tissue plasminogen activator and tissue plasminogen activator/inhibitor complexes. Conclusions Endothelial and leukocyte microparticles, bearing respectively tissue plasminogen activator or urokinase-type plasminogen activator, support a part of the fibrinolytic activity in the circulation which is modulated in pathological settings. Awareness of this blood-borne fibrinolytic activity conveyed by microparticles provides a more comprehensive view of the role of microparticles in the hemostatic equilibrium. PMID:22733025

  7. Galectin-8 induces partial epithelial–mesenchymal transition with invasive tumorigenic capabilities involving a FAK/EGFR/proteasome pathway in Madin–Darby canine kidney cells

    PubMed Central

    Oyanadel, Claudia; Holmes, Christopher; Pardo, Evelyn; Retamal, Claudio; Shaughnessy, Ronan; Smith, Patricio; Cortés, Priscilla; Bravo-Zehnder, Marcela; Metz, Claudia; Feuerhake, Teo; Romero, Diego; Roa, Juan Carlos; Montecinos, Viviana; Soza, Andrea; González, Alfonso

    2018-01-01

    Epithelial cells can acquire invasive and tumorigenic capabilities through epithelial–mesenchymal-transition (EMT). The glycan-binding protein galectin-8 (Gal-8) activates selective β1-integrins involved in EMT and is overexpressed by certain carcinomas. Here we show that Gal-8 overexpression or exogenous addition promotes proliferation, migration, and invasion in nontumoral Madin–Darby canine kidney (MDCK) cells, involving focal-adhesion kinase (FAK)-mediated transactivation of the epidermal growth factor receptor (EGFR), likely triggered by α5β1integrin binding. Under subconfluent conditions, Gal-8–overexpressing MDCK cells (MDCK-Gal-8H) display hallmarks of EMT, including decreased E-cadherin and up-regulated expression of vimentin, fibronectin, and Snail, as well as increased β-catenin activity. Changes related to migration/invasion included higher expression of α5β1 integrin, extracellular matrix-degrading MMP13 and urokinase plasminogen activator/urokinase plasminogen activator receptor (uPA/uPAR) protease systems. Gal-8–stimulated FAK/EGFR pathway leads to proteasome overactivity characteristic of cancer cells. Yet MDCK-Gal-8H cells still develop apical/basolateral polarity reverting EMT markers and proteasome activity under confluence. This is due to the opposite segregation of Gal-8 secretion (apical) and β1-integrins distribution (basolateral). Strikingly, MDCK-Gal-8H cells acquired tumorigenic potential, as reflected in anchorage-independent growth in soft agar and tumor generation in immunodeficient NSG mice. Therefore, Gal-8 can promote oncogenic-like transformation of epithelial cells through partial and reversible EMT, accompanied by higher proliferation, migration/invasion, and tumorigenic properties. PMID:29298841

  8. Lsa30, a novel adhesin of Leptospira interrogans binds human plasminogen and the complement regulator C4bp.

    PubMed

    Souza, Natalie M; Vieira, Monica L; Alves, Ivy J; de Morais, Zenaide M; Vasconcellos, Silvio A; Nascimento, Ana L T O

    2012-09-01

    Pathogenic Leptospira is the etiological agent of leptospirosis, a life-threatening disease that affects populations worldwide. Surface proteins have the potential to promote several activities, including adhesion. This work aimed to study the leptospiral coding sequence (CDS) LIC11087, genome annotated as hypothetical outer membrane protein. The LIC11087 gene was cloned and expressed in Escherichia coli BL21 (DE3) strain by using the expression vector pAE. The recombinant protein tagged with N-terminal 6XHis was purified by metal-charged chromatography and characterized by circular dichroism (CD) spectroscopy. The recombinant protein has the ability to mediate attachment to the extracellular matrix (ECM) components, laminin and plasma fibronectin, and was named Lsa30 (Leptospiral surface adhesin of 30 kDa). Lsa30 binds to laminin and to plasma fibronectin in a dose-dependent and saturable manner, with dissociation equilibrium constants (K(D)) of 292 ± 24 nm and 157 ± 35 nm, respectively. Moreover, the Lsa30 is a plasminogen (PLG) receptor, capable of generating plasmin, in the presence of activator. This protein may interfere with the complement cascade by interacting with C4bp regulator. The Lsa30 is probably a new surface protein of Leptospira as revealed by immunofluorescence assays with living organisms and the reactivity with antibodies present in serum samples of experimentally infected hamsters. Thus, Lsa30 is a novel versatile protein that may play a role in mediating adhesion and may help pathogenic Leptospira to overcome tissue barriers and to escape the immune system. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Characterization of three novel adhesins of Leptospira interrogans.

    PubMed

    Siqueira, Gabriela H; Atzingen, Marina V; Alves, Ivy J; de Morais, Zenaide M; Vasconcellos, Silvio A; Nascimento, Ana L T O

    2013-12-01

    We report cloning, expression, purification, and characterization of three predicted leptospiral membrane proteins (LIC11360, LIC11009, and LIC11975). In silico analysis and proteinase K accessibility data suggest that these proteins might be surface exposed. We show that proteins encoded by LIC11360, LIC11009 and LIC11975 genes interact with laminin in a dose-dependent and saturable manner. The proteins are referred to as leptospiral surface adhesions 23, 26, and 36 (Lsa23, Lsa26, and Lsa36), respectively. These proteins also bind plasminogen and generate active plasmin. Attachment of Lsa23 and Lsa36 to fibronectin occurs through the involvement of the 30-kDa and 70-kDa heparin-binding domains of the ligand. Dose-dependent, specific-binding of Lsa23 to the complement regulator C4BP and to a lesser extent, to factor H, suggests that this protein may interfere with the complement cascade pathways. Leptospira spp. may use these interactions as possible mechanisms during the establishment of infection.

  10. Characterization of Three Novel Adhesins of Leptospira interrogans

    PubMed Central

    Siqueira, Gabriela H.; Atzingen, Marina V.; Alves, Ivy J.; de Morais, Zenaide M.; Vasconcellos, Silvio A.; Nascimento, Ana L. T. O.

    2013-01-01

    We report cloning, expression, purification, and characterization of three predicted leptospiral membrane proteins (LIC11360, LIC11009, and LIC11975). In silico analysis and proteinase K accessibility data suggest that these proteins might be surface exposed. We show that proteins encoded by LIC11360, LIC11009 and LIC11975 genes interact with laminin in a dose-dependent and saturable manner. The proteins are referred to as leptospiral surface adhesions 23, 26, and 36 (Lsa23, Lsa26, and Lsa36), respectively. These proteins also bind plasminogen and generate active plasmin. Attachment of Lsa23 and Lsa36 to fibronectin occurs through the involvement of the 30-kDa and 70-kDa heparin-binding domains of the ligand. Dose-dependent, specific-binding of Lsa23 to the complement regulator C4BP and to a lesser extent, to factor H, suggests that this protein may interfere with the complement cascade pathways. Leptospira spp. may use these interactions as possible mechanisms during the establishment of infection. PMID:23958908

  11. Fibrinogen and fibrin.

    PubMed

    Weisel, John W

    2005-01-01

    Fibrinogen is a large, complex, fibrous glycoprotein with three pairs of polypeptide chains linked together by 29 disulfide bonds. It is 45 nm in length, with globular domains at each end and in the middle connected by alpha-helical coiled-coil rods. Both strongly and weakly bound calcium ions are important for maintenance of fibrinogen's structure and functions. The fibrinopeptides, which are in the central region, are cleaved by thrombin to convert soluble fibrinogen to insoluble fibrin polymer, via intermolecular interactions of the "knobs" exposed by fibrinopeptide removal with "holes" always exposed at the ends of the molecules. Fibrin monomers polymerize via these specific and tightly controlled binding interactions to make half-staggered oligomers that lengthen into protofibrils. The protofibrils aggregate laterally to make fibers, which then branch to yield a three-dimensional network-the fibrin clot-essential for hemostasis. X-ray crystallographic structures of portions of fibrinogen have provided some details on how these interactions occur. Finally, the transglutaminase, Factor XIIIa, covalently binds specific glutamine residues in one fibrin molecule to lysine residues in another via isopeptide bonds, stabilizing the clot against mechanical, chemical, and proteolytic insults. The gene regulation of fibrinogen synthesis and its assembly into multichain complexes proceed via a series of well-defined steps. Alternate splicing of two of the chains yields common variant molecular isoforms. The mechanical properties of clots, which can be quite variable, are essential to fibrin's functions in hemostasis and wound healing. The fibrinolytic system, with the zymogen plasminogen binding to fibrin together with tissue-type plasminogen activator to promote activation to the active enzyme plasmin, results in digestion of fibrin at specific lysine residues. Fibrin(ogen) also specifically binds a variety of other proteins, including fibronectin, albumin, thrombospondin, von Willebrand factor, fibulin, fibroblast growth factor-2, vascular endothelial growth factor, and interleukin-1. Studies of naturally occurring dysfibrinogenemias and variant molecules have increased our understanding of fibrinogen's functions. Fibrinogen binds to activated alphaIIbbeta3 integrin on the platelet surface, forming bridges responsible for platelet aggregation in hemostasis, and also has important adhesive and inflammatory functions through specific interactions with other cells. Fibrinogen-like domains originated early in evolution, and it is likely that their specific and tightly controlled intermolecular interactions are involved in other aspects of cellular function and developmental biology.

  12. Effects of hypoxia and reoxygenation on the expression levels of the urokinase-type plasminogen activator, its inhibitor plasminogen activator inhibitor type-1 and the urokinase-type plasminogen activator receptor in human head and neck tumour cells.

    PubMed

    Sprague, Lisa D; Tomaso, Herbert; Mengele, Karin; Schilling, Daniela; Bayer, Christine; Stadler, Peter; Schmitt, Manfred; Molls, Michael

    2007-05-01

    One aim during oncological radiation therapy is to induce reoxygenation in hypoxic tumours in order to enhance radiosensitivity and ultimately increase cell death. In squamous cell carcinomas of the head and neck (SCCHN), hypoxia is considered a pivotal physiological modulator for malignant progression, whereby the plasminogen activation system is involved in overlapping functions such as the shaping of the extracellular matrix, cell proliferation and signal transduction. Since little is known about reoxygenation and the plasminogen activation system in SCCHN, three human SCCHN cell lines (BHY, FaDu, and CAL27) and a non-transformed control cell line (VH7) were exposed to hypoxic (<0.5% O2) conditions for up to 72 h and subsequently reoxygenated for 24 h at normoxic conditions. The mRNA expression of the urokinase-type plasminogen activator (uPA), the plasminogen activator inhibitor type-1 (PAI-1) and the urokinase-type plasminogen activator receptor (uPAR) was assessed by means of real-time semi-quantitative RT-PCR, and the protein expression was determined by immunoenzymometric quantification (ELISA). Both hypoxia and reoxygenation induced statistically significant changes in uPA, PAI-1 and uPAR mRNA and protein levels in the various cell lines investigated, showing that oxygen tension is a strong modulator of the plasminogen activation system in vitro. However, no uniform correlation pattern was found between the mRNA and protein levels analysed over all three time-points (24, 48, and 72 h) and oxygen treatment variants (N, H, R) nor according to oxygen treatment conditions over all three time-points. Changes in oxygen tension could therefore be modulating the fragile balance between the various components of the plasminogen activation system in SSCHN ultimately leading to an increased tumour matrix disruption, alterations in cell invasiveness, and the dissemination of tumour cells to distant organs.

  13. Similarities in transcription factor IIIC subunits that bind to the posterior regions of internal promoters for RNA polymerase III.

    PubMed

    Matsutani, Sachiko

    2004-08-09

    In eukaryotes, RNA polymerase III (RNAP III) transcribes the genes for small RNAs like tRNAs, 5S rRNA, and several viral RNAs, and short interspersed repetitive elements (SINEs). The genes for these RNAs and SINEs have internal promoters that consist of two regions. These two regions are called the A and B blocks. The multisubunit transcription factor TFIIIC is required for transcription initiation of RNAP III; in transcription of tRNAs, the B-block binding subunit of TFIIIC recognizes a promoter. Although internal promoter sequences are conserved in eukaryotes, no evidence of homology between the B-block binding subunits of vertebrates and yeasts has been reported previously. Here, I reported the results of PSI-BLAST searches using the B-block binding subunits of human and Shizosacchromyces pombe as queries, showing that the same Arabidopsis proteins were hit with low E-values in both searches. Comparison of the convergent iterative alignments obtained by these PSI-BLAST searches revealed that the vertebrate, yeast, and Arabidopsis proteins have similarities in their N-terminal one-third regions. In these regions, there were three domains with conserved sequence similarities, one located in the N-terminal end region. The N-terminal end region of the B-block binding subunit of Saccharomyces cerevisiae is tentatively identified as a HMG box, which is the DNA binding motif. Although I compared the alignment of the N-terminal end regions of the B-block binding subunits, and their homologs, with that of the HMG boxes, it is not clear whether they are related. Molecular phylogenetic analyses using the small subunit rRNA and ubiquitous proteins like actin and alpha-tubulin, show that fungi are more closely related to animals than either is to plants. Interestingly, the results obtained in this study show that, with respect to the B-block binding subunits of TFIIICs, animals appear to be evolutionarily closer to plants than to fungi.

  14. Targeting of peptide conjugated magnetic nanoparticles to urokinase plasminogen activator receptor (uPAR) expressing cells

    NASA Astrophysics Data System (ADS)

    Hansen, Line; Unmack Larsen, Esben Kjær; Nielsen, Erik Holm; Iversen, Frank; Liu, Zhuo; Thomsen, Karen; Pedersen, Michael; Skrydstrup, Troels; Nielsen, Niels Chr.; Ploug, Michael; Kjems, Jørgen

    2013-08-01

    Ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles are currently being used as a magnetic resonance imaging (MRI) contrast agent in vivo, mainly by their passive accumulation in tissues of interest. However, a higher specificity can ideally be achieved when the nanoparticles are targeted towards cell specific receptors and this may also facilitate specific drug delivery by an enhanced target-mediated endocytosis. We report efficient peptide-mediated targeting of magnetic nanoparticles to cells expressing the urokinase plasminogen activator receptor (uPAR), a surface biomarker for poor patient prognosis shared by several cancers including breast, colorectal, and gastric cancers. Conjugation of a uPAR specific targeting peptide onto polyethylene glycol (PEG) coated USPIO nanoparticles by click chemistry resulted in a five times higher uptake in vitro in a uPAR positive cell line compared to nanoparticles carrying a non-binding control peptide. In accordance with specific receptor-mediated recognition, a low uptake was observed in the presence of an excess of ATF, a natural ligand for uPAR. The uPAR specific magnetic nanoparticles can potentially provide a useful supplement for tumor patient management when combined with MRI and drug delivery.Ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles are currently being used as a magnetic resonance imaging (MRI) contrast agent in vivo, mainly by their passive accumulation in tissues of interest. However, a higher specificity can ideally be achieved when the nanoparticles are targeted towards cell specific receptors and this may also facilitate specific drug delivery by an enhanced target-mediated endocytosis. We report efficient peptide-mediated targeting of magnetic nanoparticles to cells expressing the urokinase plasminogen activator receptor (uPAR), a surface biomarker for poor patient prognosis shared by several cancers including breast, colorectal, and gastric cancers. Conjugation of a uPAR specific targeting peptide onto polyethylene glycol (PEG) coated USPIO nanoparticles by click chemistry resulted in a five times higher uptake in vitro in a uPAR positive cell line compared to nanoparticles carrying a non-binding control peptide. In accordance with specific receptor-mediated recognition, a low uptake was observed in the presence of an excess of ATF, a natural ligand for uPAR. The uPAR specific magnetic nanoparticles can potentially provide a useful supplement for tumor patient management when combined with MRI and drug delivery. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr32922d

  15. Characteristics of the level-of-evidence-1 disease forecast cancer biomarkers uPA and its inhibitor PAI-1.

    PubMed

    Mengele, Karin; Napieralski, Rudolf; Magdolen, Viktor; Reuning, Ute; Gkazepis, Apostolos; Sweep, Fred; Brünner, Nils; Foekens, John; Harbeck, Nadia; Schmitt, Manfred

    2010-10-01

    In cancer, the serine protease urokinase-type plasminogen activator, its inhibitor (plasminogen activator inhibitor type-1) and the receptor (CD87), among other proteolytic factors, are involved in tumor cell dissemination and turnover of the extracellular matrix. Unsurprisingly, a battery of very uniform data, amassed since the end of the 1990s, has put these members of the plasminogen activation system into the forefront of prognostic/predictive cancer biomarkers relevant to predict the clinical course of cancer patients and their response to cancer therapy. The present review focuses on the molecular characteristics of the disease forecast biomarkers urokinase-type plasminogen activator and plasminogen activator inhibitor type-1, and techniques to quantitatively assess these cancer biomarkers, in the context of potential clinical application and personalized disease management.

  16. Epitopes in α8β1 and other RGD-binding integrins delineate classes of integrin-blocking antibodies and major binding loops in α subunits

    PubMed Central

    Nishimichi, Norihisa; Kawashima, Nagako; Yokosaki, Yasuyuki

    2015-01-01

    Identification of epitopes for integrin-blocking monoclonal antibodies (mAbs) has aided our understanding of structure-function relationship of integrins. We mapped epitopes of chicken anti-integrin-α8-subunit-blocking mAbs by mutational analyses, examining regions that harboured all mapped epitopes recognized by mAbs against other α-subunits in the RGD-binding-integrin subfamily. Six mAbs exhibited blocking function, and these mAbs recognized residues on the same W2:41-loop on the top-face of the β-propeller. Loop-tips sufficiently close to W2:41 (<25 Å) contained within a footprint of the mAbs were mutated, and the loop W3:34 on the bottom face was identified as an additional component of the epitope of one antibody, clone YZ5. Binding sequences on the two loops were conserved in virtually all mammals, and that on W3:34 was also conserved in chickens. These indicate 1) YZ5 binds both top and bottom loops, and the binding to W3:34 is by interactions to conserved residues between immunogen and host species, 2) five other blocking mAbs solely bind to W2:41 and 3) the α8 mAbs would cross-react with most mammals. Comparing with the mAbs against the other α-subunits of RGD-integrins, two classes were delineated; those binding to “W3:34 and an top-loop”, and “solely W2:41”, accounting for 82% of published RGD-integrin-mAbs. PMID:26349930

  17. Epitopes in α8β1 and other RGD-binding integrins delineate classes of integrin-blocking antibodies and major binding loops in α subunits.

    PubMed

    Nishimichi, Norihisa; Kawashima, Nagako; Yokosaki, Yasuyuki

    2015-09-09

    Identification of epitopes for integrin-blocking monoclonal antibodies (mAbs) has aided our understanding of structure-function relationship of integrins. We mapped epitopes of chicken anti-integrin-α8-subunit-blocking mAbs by mutational analyses, examining regions that harboured all mapped epitopes recognized by mAbs against other α-subunits in the RGD-binding-integrin subfamily. Six mAbs exhibited blocking function, and these mAbs recognized residues on the same W2:41-loop on the top-face of the β-propeller. Loop-tips sufficiently close to W2:41 (<25 Å) contained within a footprint of the mAbs were mutated, and the loop W3:34 on the bottom face was identified as an additional component of the epitope of one antibody, clone YZ5. Binding sequences on the two loops were conserved in virtually all mammals, and that on W3:34 was also conserved in chickens. These indicate 1) YZ5 binds both top and bottom loops, and the binding to W3:34 is by interactions to conserved residues between immunogen and host species, 2) five other blocking mAbs solely bind to W2:41 and 3) the α8 mAbs would cross-react with most mammals. Comparing with the mAbs against the other α-subunits of RGD-integrins, two classes were delineated; those binding to "W3:34 and an top-loop", and "solely W2:41", accounting for 82% of published RGD-integrin-mAbs.

  18. Protein-Binding RNA Aptamers Affect Molecular Interactions Distantly from Their Binding Sites

    PubMed Central

    Dupont, Daniel M.; Thuesen, Cathrine K.; Bøtkjær, Kenneth A.; Behrens, Manja A.; Dam, Karen; Sørensen, Hans P.; Pedersen, Jan S.; Ploug, Michael; Jensen, Jan K.; Andreasen, Peter A.

    2015-01-01

    Nucleic acid aptamer selection is a powerful strategy for the development of regulatory agents for molecular intervention. Accordingly, aptamers have proven their diligence in the intervention with serine protease activities, which play important roles in physiology and pathophysiology. Nonetheless, there are only a few studies on the molecular basis underlying aptamer-protease interactions and the associated mechanisms of inhibition. In the present study, we use site-directed mutagenesis to delineate the binding sites of two 2´-fluoropyrimidine RNA aptamers (upanap-12 and upanap-126) with therapeutic potential, both binding to the serine protease urokinase-type plasminogen activator (uPA). We determine the subsequent impact of aptamer binding on the well-established molecular interactions (plasmin, PAI-1, uPAR, and LRP-1A) controlling uPA activities. One of the aptamers (upanap-126) binds to the area around the C-terminal α-helix in pro-uPA, while the other aptamer (upanap-12) binds to both the β-hairpin of the growth factor domain and the kringle domain of uPA. Based on the mapping studies, combined with data from small-angle X-ray scattering analysis, we construct a model for the upanap-12:pro-uPA complex. The results suggest and highlight that the size and shape of an aptamer as well as the domain organization of a multi-domain protein such as uPA, may provide the basis for extensive sterical interference with protein ligand interactions considered distant from the aptamer binding site. PMID:25793507

  19. OmpL1 Is an Extracellular Matrix- and Plasminogen-Interacting Protein of Leptospira spp.

    PubMed Central

    Fernandes, Luis G. V.; Vieira, Monica L.; Kirchgatter, Karin; Alves, Ivy J.; de Morais, Zenaide M.; Vasconcellos, Silvio A.; Romero, Eliete C.

    2012-01-01

    Leptospirosis is a zoonosis with multisystem involvement caused by pathogenic strains of the genus Leptospira. OmpL1 is an outer membrane protein of Leptospira spp. that is expressed during infection. In this work, we investigated novel features of this protein. We describe that OmpL1 is a novel leptospiral extracellular matrix (ECM)-binding protein and a plasminogen (PLG) receptor. The recombinant protein was expressed in Escherichia coli BL21(DE3) Star/pLysS as inclusion bodies, refolded, and purified by metal-chelating chromatography. The protein presented a typical β-strand secondary structure, as evaluated by circular dichroism spectroscopy. The recombinant protein reacted with antibodies in serum samples from convalescent leptospirosis patients with a high specificity compared to serum samples from individuals with unrelated diseases. These data strengthen the usefulness of OmpL1 as a diagnostic marker of leptospirosis. The characterization of the immunogenicity of recombinant OmpL1 in inoculated BALB/c mice showed that the protein has the capacity to elicit humoral and cellular immune responses, as denoted by high antibody titers and the proliferation of lymphocytes. We demonstrate that OmpL1 has the ability to mediate attachment to laminin and plasma fibronectin, with KD (equilibrium dissociation constant) values of 2,099.93 ± 871.03 nM and 1,239.23 ± 506.85 nM, respectively. OmpL1 is also a PLG receptor, with a KD of 368.63 ± 121.23 nM, capable of generating enzymatically active plasmin. This is the first report that shows and characterizes OmpL1 as an ECM-interacting and a PLG-binding protein of Leptospira spp. that may play a role in bacterial pathogenesis when expressed during infection. PMID:22802342

  20. OmpL1 is an extracellular matrix- and plasminogen-interacting protein of Leptospira spp.

    PubMed

    Fernandes, Luis G V; Vieira, Monica L; Kirchgatter, Karin; Alves, Ivy J; de Morais, Zenaide M; Vasconcellos, Silvio A; Romero, Eliete C; Nascimento, Ana L T O

    2012-10-01

    Leptospirosis is a zoonosis with multisystem involvement caused by pathogenic strains of the genus Leptospira. OmpL1 is an outer membrane protein of Leptospira spp. that is expressed during infection. In this work, we investigated novel features of this protein. We describe that OmpL1 is a novel leptospiral extracellular matrix (ECM)-binding protein and a plasminogen (PLG) receptor. The recombinant protein was expressed in Escherichia coli BL21(DE3) Star/pLysS as inclusion bodies, refolded, and purified by metal-chelating chromatography. The protein presented a typical β-strand secondary structure, as evaluated by circular dichroism spectroscopy. The recombinant protein reacted with antibodies in serum samples from convalescent leptospirosis patients with a high specificity compared to serum samples from individuals with unrelated diseases. These data strengthen the usefulness of OmpL1 as a diagnostic marker of leptospirosis. The characterization of the immunogenicity of recombinant OmpL1 in inoculated BALB/c mice showed that the protein has the capacity to elicit humoral and cellular immune responses, as denoted by high antibody titers and the proliferation of lymphocytes. We demonstrate that OmpL1 has the ability to mediate attachment to laminin and plasma fibronectin, with K(D) (equilibrium dissociation constant) values of 2,099.93 ± 871.03 nM and 1,239.23 ± 506.85 nM, respectively. OmpL1 is also a PLG receptor, with a K(D) of 368.63 ± 121.23 nM, capable of generating enzymatically active plasmin. This is the first report that shows and characterizes OmpL1 as an ECM-interacting and a PLG-binding protein of Leptospira spp. that may play a role in bacterial pathogenesis when expressed during infection.

  1. Fibrin Accumulation Secondary to Loss of Plasmin-Mediated Fibrinolysis Drives Inflammatory Osteoporosis in Mice

    PubMed Central

    Cole, Heather A.; Ohba, Tetsuro; Nyman, Jeffry S.; Hirotaka, Haro; Cates, Justin M. M.; Flick, Matthew J.; Degen, Jay L.; Schoenecker, Jonathan G.

    2015-01-01

    Objective Osteoporosis is a skeletal disorder characterized by low bone mass and increased bone fragility associated with aging, menopause, smoking, obesity, or diabetes. Persistent inflammation has been identified as an instigating factor in progressive bone loss. In addition to the role of fibrin in coagulation, inordinate fibrin deposition within a tissue matrix results in increased local inflammation. Given that fibrin accumulation is a hallmark of osteoporosis-related co-morbidities, we undertook this study to test the hypothesis that persistent fibrin deposition causes inflammatory osteoporosis. Methods Multiple imaging modalities, bone integrity metrics, and histologic analyses were employed to evaluate skeletal derangements in relation to fibrin deposition, circulating fibrinogen levels, and systemic markers of inflammation in mice that were plasminogen deficient and in plasminogen-deficient mice that were concomitantly either fibrinogen deficient or carrying a mutant form of fibrinogen lacking the αMβ2 binding motif. Results Mice generated with a genetic deficit in the key fibrinolytic protease, plasmin, uniformly developed severe osteoporosis. Furthermore, the development of osteoporosis was fibrin(ogen) dependent, and the derangements in the bone remodeling unit were mechanistically tied to fibrin(ogen)-mediated activation of osteoclasts via activation of the leukocyte integrin receptor αMβ2 on monocytes and secondary stimulation of osteoblasts by RANKL. Notably, the genetic elimination of fibrin(ogen) or the expression of a mutant form of fibrinogen retaining clotting function but lacking the αMβ2 binding motif prevented the degenerative skeletal phenotypes, resulting in normal local and systemic cytokine levels. Conclusion Taken together, these data reveal for the first time that fibrin promotes inflammation-driven systemic osteoporosis, which suggests a novel association between hemostasis, inflammation, and bone biology. PMID:24664548

  2. Fibrin accumulation secondary to loss of plasmin-mediated fibrinolysis drives inflammatory osteoporosis in mice.

    PubMed

    Cole, Heather A; Ohba, Tetsuro; Nyman, Jeffry S; Hirotaka, Haro; Cates, Justin M M; Flick, Matthew J; Degen, Jay L; Schoenecker, Jonathan G

    2014-08-01

    Osteoporosis is a skeletal disorder characterized by low bone mass and increased bone fragility associated with aging, menopause, smoking, obesity, or diabetes. Persistent inflammation has been identified as an instigating factor in progressive bone loss. In addition to the role of fibrin in coagulation, inordinate fibrin deposition within a tissue matrix results in increased local inflammation. Given that fibrin accumulation is a hallmark of osteoporosis-related comorbidities, we undertook this study to test the hypothesis that persistent fibrin deposition causes inflammatory osteoporosis. Multiple imaging modalities, bone integrity metrics, and histologic analyses were employed to evaluate skeletal derangements in relation to fibrin deposition, circulating fibrinogen levels, and systemic markers of inflammation in mice that were plasminogen deficient and in plasminogen-deficient mice that were concomitantly either fibrinogen deficient or carrying a mutant form of fibrinogen lacking the αM β2 binding motif. Mice generated with a genetic deficit in the key fibrinolytic protease, plasmin, uniformly developed severe osteoporosis. Furthermore, the development of osteoporosis was fibrin(ogen) dependent, and the derangements in the bone remodeling unit were mechanistically tied to fibrin(ogen)-mediated activation of osteoclasts via activation of the leukocyte integrin receptor αM β2 on monocytes and secondary stimulation of osteoblasts by RANKL. Notably, the genetic elimination of fibrin(ogen) or the expression of a mutant form of fibrinogen retaining clotting function but lacking the αM β2 binding motif prevented the degenerative skeletal phenotypes, resulting in normal local and systemic cytokine levels. Taken together, these data reveal for the first time that fibrin promotes inflammation-driven systemic osteoporosis, which suggests a novel association between hemostasis, inflammation, and bone biology. Copyright © 2014 by the American College of Rheumatology.

  3. α‐Conotoxin M1 (CTx) blocks αδ binding sites of adult nicotinic receptors while ACh binding at αε sites elicits only small and short quantal synaptic currents

    PubMed Central

    Dudel, Josef

    2014-01-01

    Abstract In ‘embryonic’ nicotinic receptors, low CTx concentrations are known to block only the αδ binding site, whereas binding of ACh at the αγ‐site elicits short single channel openings and short bursts. In adult muscles the αγ‐ is replaced by the αε‐site. Quantal EPSCs (qEPSCs) were elicited in adult muscles by depolarization pulses and recorded through a perfused macropatch electrode. One to 200 nmol L−1 CTx reduced amplitudes and decay time constants of qEPSCs, but increased their rise times. CTx block at the αδ binding sites was incomplete: The qEPSCs still contained long bursts from not yet blocked receptors, whereas their average decay time constants were reduced by a short burst component generated by ACh binding to the αε‐site. Two nanomolar CTx applied for 3 h reduced the amplitudes of qEPSCs to less than half with a constant slope. The equilibrium concentration of the block is below 1 nmol L−1 and lower than that of embryonic receptors. CTx‐block increased in proportion to CTx concentrations (average rate 2 × 104 s−1·mol−1 L). Thus, the reactions of ‘embryonic’ and of adult nicotinic receptors to block by CTx are qualitatively the same. – The study of the effects of higher CTx concentrations or of longer periods of application of CTx was limited by presynaptic effects of CTx. Even low CTx concentrations severely reduced the release of quanta by activating presynaptic M2 receptors at a maximal rate of 6 × 105 s−1·mol−1 L. When this dominant inhibition was prevented by blocking the M2 receptors with methoctramine, activation of M1 receptors was unmasked and facilitated release. PMID:25501436

  4. The influence of opioids on urokinase plasminogen activator on protein and mRNA level in MCF-7 breast cancer cell line.

    PubMed

    Gach, Katarzyna; Szemraj, Janusz; Fichna, Jakub; Piestrzeniewicz, Mariola; Delbro, Dick S; Janecka, Anna

    2009-10-01

    Urokinase plasminogen activator plays a key role in tumor-associated processes, increasing cancer cell invasion and metastasis, and is therefore used as a marker in cancer prognosis. In this study, we have determined the effect of mu-opioid receptor agonists and antagonists on the urokinase plasminogen activator secretion in MCF-7 cell line. It was shown that mu-opioid receptor agonists, such as morphine and endomorphins, greatly stimulate urokinase plasminogen activator secretion, while naloxone and MOR-selective antagonists elicit the opposite effect. The same tendency was observed also on the urokinase plasminogen activator mRNA level. However, neither agonists nor antagonists had any effect on proliferation of MCF-7 cells. The findings reported in this study may be useful in designing further experiments aimed at elucidating the role of the opioid system in cancer cells.

  5. Modulation of enrofloxacin binding in OmpF by Mg2+ as revealed by the analysis of fast flickering single-porin current

    PubMed Central

    Brauser, Annemarie; Schroeder, Indra; Gutsmann, Thomas; Cosentino, Cristian; Moroni, Anna; Winterhalter, Mathias

    2012-01-01

    One major determinant of the efficacy of antibiotics on Gram-negative bacteria is the passage through the outer membrane. During transport of the fluoroquinolone enrofloxacin through the trimeric outer membrane protein OmpF of Escherichia coli, the antibiotic interacts with two binding sites within the pore, thus partially blocking the ionic current. The modulation of one affinity site by Mg2+ reveals further details of binding sites and binding kinetics. At positive membrane potentials, the slow blocking events induced by enrofloxacin in Mg2+-free media are converted to flickery sojourns at the highest apparent current level (all three pores flickering). This indicates weaker binding in the presence of Mg2+. Analysis of the resulting amplitude histograms with β distributions revealed the rate constants of blocking (kOB) and unblocking (kBO) in the range of 1,000 to 120,000 s−1. As expected for a bimolecular reaction, kOB was proportional to blocker concentration and kBO independent of it. kOB was approximately three times lower for enrofloxacin coming from the cis side than from the trans side. The block was not complete, leading to a residual conductivity of the blocked state being ∼25% of that of the open state. Interpretation of the results has led to the following model: fast flickering as caused by interaction of Mg2+ and enrofloxacin is related to the binding site at the trans side, whereas the cis site mediates slow blocking events which are also found without Mg2+. The difference in the accessibility of the binding sites also explains the dependency of kOB on the side of enrofloxacin addition and yields a means of determining the most plausible orientation of OmpF in the bilayer. The voltage dependence suggests that the dipole of the antibiotic has to be adequately oriented to facilitate binding. PMID:22689827

  6. N-butanol extracts of Morinda citrifolia suppress advanced glycation end products (AGE)-induced inflammatory reactions in endothelial cells through its anti-oxidative properties.

    PubMed

    Ishibashi, Yuji; Matsui, Takanori; Isami, Fumiyuki; Abe, Yumi; Sakaguchi, Tatsuya; Higashimoto, Yuichiro; Yamagishi, Sho-Ichi

    2017-03-04

    Advanced glycation end products (AGEs), senescent macroprotein derivatives formed during a normal aging process and acceleratedly under diabetic conditions, play a role in atherosclerotic cardiovascular disease. AGEs cause endothelial cell (EC) damage, an initial trigger for atherosclerosis through the interaction with a receptor for AGEs (RAGE). We have previously shown that n-butanol extracts of Morinda citrifolia (noni), a plant belonging to the family Rubiaceae, block the binding of AGEs to RAGE in vitro. In this study, we examined the effects of n-butanol extracts of noni on reactive oxygen species (ROS) generation and inflammatory reactions on AGE-exposed human umbilical vein ECs (HUVECs). HUVECs were treated with 100 μg/ml AGE-bovine serum albumin (AGE-BSA) or non-glycated BSA in the presence or absence of 670 ng/ml n-butanol extracts of noni for 4 h. Then ROS generation and inflammatory and gene expression in HUVECs were evaluated by dihydroethidium staining and real-time reverse transcription-polymerase chain reaction analyses, respectively. THP-1 cell adhesion to HUVECs was measured after 2-day incubation of AGE-BSA or BSA in the presence or absence of 670 ng/ml n-butanol extracts of noni. N-butanol extracts of noni at 670 ng/ml significantly inhibited the AGE-induced ROS generation and RAGE, intercellular adhesion molecule-1 and plasminogen activator inhibitor-1 gene expressions in HUVECs. AGEs significantly increased monocytic THP-1 cell adhesion to HUVECs, which was also prevented by 670 ng/ml n-butanol extracts of noni. The present study demonstrated for the first time that N-butanol extracts of noni could suppress the AGE-induced inflammatory reactions in HUVECs through its anti-oxidative properties via blocking of the interaction of AGEs with RAGE. Inhibition of the AGE-RAGE axis by n-butanol extracts of noni may be a novel nutraceutical strategy for the treatment of cardiovascular disease.

  7. Effects of lipoprotein(a) on thrombolysis.

    PubMed

    von Hodenberg, E; Pestel, E; Kreuzer, J; Freitag, M; Bode, C

    1994-01-01

    Lipoprotein(a) (Lp(a)) and plasminogen share a high degree of structural homology. Therefore it has been suggested that elevated levels of Lp(a) may inhibit the profibrinolytic activity at the cell surface and increase the risk of thrombosis by competitive inhibition of plasminogen. In the present study we evaluated whether high levels of Lp(a) affect thrombolytic therapy in patients with acute myocardial infarction. Forty-one patients with acute myocardial infarction were treated with a combination of recombinant tissue-type plasminogen activator and human single-chain urokinase-type plasminogen activator. Coronary patency was assessed angiographically 90 min after initiation of treatment. Thrombolysis was successful in 30 and unsuccessful in 11 patients. Patients with high Lp(a) levels (> 25 mg/dl) (n = 9) responded equally well to thrombolytic therapy (8 of 9, patency 89%) as did patients with normal or low levels of Lp(a) (22 of 32, patency 70%, difference P > 0.1). The results demonstrate that high levels of Lp(a) do not influence thrombolysis in patients with acute myocardial infarction when low-dose pharmacologic concentrations of recombinant tissue-type plasminogen activator and human single chain urokinase-type plasminogen activator are applied in combination.

  8. Intracellular activation of the fibrinolytic cascade in the Quebec Platelet Disorder.

    PubMed

    Sheth, Prameet M; Kahr, Walter H A; Haq, M Anwar; Veljkovic, Dragoslava Kika; Rivard, Georges E; Hayward, Catherine P M

    2003-08-01

    The Quebec Platelet Disorder (QPD) is an unusual bleeding disorder associated with increased platelet stores of urokinase-type plasminogen activator (u-PA) and proteolysis of platelet alpha-granule proteins. The increased u-PA and proteolyzed plasminogen in QPD platelets led us to investigate possible contributions of intracellular plasmin generation to QPD alpha-granule proteolysis. ELISA indicated there were normal amounts of plasminogen and plasmin-alpha(2)-antiplasmin (PAP) complexes in QPD plasmas. Like normal platelets, QPD platelets contained only a small proportion of the blood plasminogen, however, they contained an increased amount of PAP complexes compared to normal platelets (P < 0.005). The quantities of plasminogen stored in platelets were important to induce QPD-like proteolysis of normal alpha-granule proteins by two chain u-PA (tcu-PA) in vitro. Moreover, adding supplemental plasminogen to QPD, but not to control, platelet lysates, triggered further alpha-granule protein proteolysis to forms that comigrated with plasmin degraded proteins. These data suggest the generation of increased but limiting amounts of plasmin within platelets is involved in producing the unique phenotypic changes to alpha-granule proteins in QPD platelets. The QPD is the only known bleeding disorder associated with chronic, intracellular activation of the fibrinolytic cascade.

  9. Human basic fibroblast growth factor fused with Kringle4 peptide binds to a fibrin scaffold and enhances angiogenesis.

    PubMed

    Zhao, Wenxue; Han, Qianqian; Lin, Hang; Sun, Wenjie; Gao, Yuan; Zhao, Yannan; Wang, Bin; Wang, Xia; Chen, Bing; Xiao, Zhifeng; Dai, Jianwu

    2009-05-01

    Appropriate three-dimensional (3D) scaffolds and signal molecules could accelerate tissue regeneration and wound repair. In this work, we targeted human basic fibroblast growth factor (bFGF), a potent angiogenic factor, to a fibrin scaffold to improve therapeutic angiogenesis. We fused bFGF to the Kringle4 domain (K4), a fibrin-binding peptide from human plasminogen, to endow bFGF with specific fibrin-binding ability. The recombinant K4bFGF bound specifically to the fibrin scaffold so that K4bFGF was delivered in a site-specific manner, and the fibrin scaffold provided 3D support for cell migration and proliferation. Subcutaneous implantation of the fibrin scaffolds bound with K4bFGF but not with bFGF induced neovascularization. Immunohistochemical analysis showed significantly more proliferation cells in the fibrin scaffolds incorporated with K4bFGF than in those with bFGF. Moreover, the regenerative tissues were integrated well with the fibrin scaffolds, suggesting its good biocompatibility. In summary, targeted delivery of K4bFGF could potentially improve therapeutic angiogenesis.

  10. Expression of the plasminogen activator system and the inhibitors PAI-1 and PAI-2 in posttraumatic lesions of the CNS and brain injuries following dramatic circulatory arrests: an immunohistochemical study.

    PubMed

    Dietzmann, K; von Bossanyi, P; Krause, D; Wittig, H; Mawrin, C; Kirches, E

    2000-01-01

    Plasminogen activators as inducible extracellular serine proteases are involved in a variety of processes, such as the degradation of brain structures. In regions of brain degradation, an increase in the expression of genes encoding cytokines and proteinases has recently been demonstrated. We tested the hypothesis, whether the plasminogen activator system as well as the plasminogen activator inhibitors are expressed and possibly involved in a proteolytic cascade that breaks down the extracellular matrix as a result of ischemic or posttraumatic brain destructions. To study this supposition, we investigated immunohistochemically the expression of tPA, uPA and its receptor, the plasminogen activator inhibitors PAI-1 and PAI-2, tetranectin as well as the laminin breakdown as an event of secondary brain injury. Brain tissue from 21 autopsy cases with severe brain injuries, material from 14 ischemic infarcts and 11 controls with acute hypoxia were used. All components of the plasminogen activator system studied were over-expressed immunohistochemically in reactive astrocytes, microglia and endothelial cells around the lesion zone. Tetranectin showed an analogous distribution to the plasminogen activator system. A reduced immunoreactivity of laminin within the identical region of destruction was detected concomitant with laminin remnants in perivascular macrophages, so that a remarkable role of the plasmin cascade in the degradation of extracellular matrix proteins in the brain is taken into consideration.

  11. Vaccine-Induced Plasma IgA Specific for the C1 Region of the HIV-1 Envelope Blocks Binding and Effector Function of IgG

    DTIC Science & Technology

    2013-05-28

    uninfected vaccine recipients in RV144. Moreover, Env-specific IgA antibodies from RV144 vaccinees blocked the binding of ADCC-mediating mAb to HIV-1 Env... vaccine re- cipients in the case control study. There was a significantly greater number of infected vaccinees with IgA/IgG ratio >1e-02 (A1 Congp140 Env... vaccine efficacy. Second, we demonstrated that IgA mAbs isolated from RV144 vaccinees can both inhibit Env binding and block ADCC function of vaccine

  12. Modulation by bicuculline and penicillin of the block by t-butyl-bicyclo-phosphorothionate (TBPS) of GABAA-receptor mediated Cl−-current responses in rat striatal neurones

    PubMed Central

    Behrends, Jan C

    2000-01-01

    T-butyl-bicyclo-phosphorothionate (TBPS) is a prototypical representative of the cage-convulsants which act through a use-dependent block of the GABAA-receptor-ionophore complex. Using current recordings from cultured neurones of rat striatum the manner was investigated in which two antagonists, bicuculline and penicillin, presumably acting at the agonist binding site and in the ionic channel, respectively, modify the rate of block by TBPS. Penicillin (5 or 10 mM) did not slow the rate of block by TBPS, but produced a significant enhancement of block rate, which, however, was inversely related to the degree of antagonism by penicillin of the GABA-induced current. Bicuculline (10 μM) reduced the rate of block by TBPS. However, this effect was 3 fold weaker than its GABA-antagonistic action. The slowing of block rate and the current antagonism exhibited a biphasic, positive-negative relationship. Co-application of bicuculline (100 μM) in a concentration that produced nearly complete antagonism and TBPS (10 μM) resulted in a marked (∼40%) reduction of subsequent GABA response amplitudes compatible with a direct, bicuculline-induced conformational change in the receptor required for the binding of and block by TBPS. The lack of protection afforded by the channel blocker penicillin as well as the lack of correlation between bicuculline antagonism of the Cl−-current and its efficiency in protecting against TBPS block is evidence against an open channel blocking mechanism for TBPS. TBPS does, therefore, not appear to gain access to its binding site via the open pore but through alternative routes regulated from the agonist binding site. PMID:10694249

  13. Mutation of the C/EBP binding sites in the Rous sarcoma virus long terminal repeat and gag enhancers.

    PubMed Central

    Ryden, T A; de Mars, M; Beemon, K

    1993-01-01

    Several C/EBP binding sites within the Rous sarcoma virus (RSV) long terminal repeat (LTR) and gag enhancers were mutated, and the effect of these mutations on viral gene expression was assessed. Minimal site-specific mutations in each of three adjacent C/EBP binding sites in the LTR reduced steady-state viral RNA levels. Double mutation of the two 5' proximal LTR binding sites resulted in production of 30% of wild-type levels of virus. DNase I footprinting analysis of mutant DNAs indicated that the mutations blocked C/EBP binding at the affected sites. Additional C/EBP binding sites were identified upstream of the 3' LTR and within the 5' end of the LTRs. Point mutations in the RSV gag intragenic enhancer region, which blocked binding of C/EBP at two of three adjacent C/EBP sites, also reduced virus production significantly. Nuclear extracts prepared from both chicken embryo fibroblasts (CEFs) and chicken muscle contained proteins binding to the same RSV DNA sites as did C/EBP, and mutations that prevented C/EBP binding also blocked binding of these chicken proteins. It appears that CEFs and chicken muscle contain distinct proteins binding to these RSV DNA sites; the CEF binding protein was heat stable, as is C/EBP, while the chicken muscle protein was heat sensitive. Images PMID:8386280

  14. Insulin-like growth factor binding proteins initiate cell death and extracellular matrix remodeling in the mammary gland.

    PubMed

    Flint, D J; Boutinaud, M; Tonner, E; Wilde, C J; Hurley, W; Accorsi, P A; Kolb, A F; Whitelaw, C B A; Beattie, J; Allan, G J

    2005-08-01

    We have demonstrated that insulin-like growth factor binding protein-5 (IGFBP-5) production by mammary epithelial cells increases dramatically during forced involution of the mammary gland in rats, mice and pigs. We proposed that growth hormone (GH) increases the survival factor IGF-I, whilst prolactin (PRL) enhances the effects of GH by decreasing the concentration of IGFBP-5, which would otherwise inhibit the actions of IGFs. To demonstrate a causal relationship between IGFBP-5 and cell death, we created transgenic mice expressing IGFBP-5, specifically, in the mammary gland. DNA content in the mammary glands of transgenic mice was decreased as early as day 10 of pregnancy. Mammary cell number and milk synthesis were both decreased by approximately 50% during the first 10 days of lactation. The concentrations of the pro-apoptotic molecule caspase-3 was increased in transgenic animals whilst the concentrations of two pro-survival molecules Bcl-2 and Bcl-x were both decreased. In order to examine whether IGFBP-5 acts by inhibiting the survival effect of IGF-I, we examined IGF receptor- and Akt-phoshorylation and showed that both were inhibited. These studies also indicated that the effects of IGFBP-5 could be mediated in part by IGF-independent effects involving potential interactions with components of the extracellular matrix involved in tissue remodeling, such as components of the plasminogen system, and the matrix metallo-proteinases (MMPs). Mammary development was normalised in transgenic mice by R3-IGF-I, an analogue of IGF-I which binds weakly to IGFBPs, although milk production was only partially restored. In contrast, treatment with prolactin was able to inhibit early involutionary processes in normal mice but was unable to prevent this in mice over-expressing IGFBP-5, although it was able to inhibit activation of MMPs. Thus, IGFBP-5 can simultaneously inhibit IGF action and activate the plasminogen system thereby coordinating cell death and tissue remodeling processes. The ability to separate these properties, using mutant IGFBPs, is currently under investigation.

  15. Efficient copackaging and cotransport yields postsynaptic colocalization of neuromodulators associated with synaptic plasticity.

    PubMed

    Lochner, J E; Spangler, E; Chavarha, M; Jacobs, C; McAllister, K; Schuttner, L C; Scalettar, B A

    2008-09-01

    Recent data suggest that tissue plasminogen activator (tPA) influences long-term plasticity at hippocampal synapses by converting plasminogen into plasmin, which then generates mature brain-derived neurotrophic factor (mBDNF) from its precursor, proBDNF. Motivated by this hypothesis, we used fluorescent chimeras, expressed in hippocampal neurons, to elucidate (1) mechanisms underlying plasminogen secretion from hippocampal neurons, (2) if tPA, plasminogen, and proBDNF are copackaged and cotransported in hippocampal neurons, especially within dendritic spines, and (3) mechanisms mediating the transport of these neuromodulators to sites of release. We find that plasminogen chimeras traffic through the regulated secretory pathway of hippocampal neurons in dense-core granules (DCGs) and that tPA, plasminogen, and proBDNF chimeras are extensively copackaged in DCGs throughout hippocampal neurons. We also find that 80% of spines that contain DCGs contain chimeras of these neuromodulators in the same DCG. Finally, we demonstrate, for the first time, that neuromodulators undergo cotransport along dendrites in rapidly mobile DCGs, indicating that neuromodulators can be efficiently recruited into active spines. These results support the hypothesis that tPA mediates synaptic activation of BDNF by demonstrating that tPA, plasminogen, and proBDNF colocalize in DCGs in spines, where these neuromodulators can undergo activity-dependent release and then interact and/or mediate changes that influence synaptic efficacy. The results also raise the possibility that frequency-dependent changes in extents of neuromodulator release from DCGs influence the direction of plasticity at hippocampal synapses by altering the relative proportions of two proteins, mBDNF and proBDNF, that exert opposing effects on synaptic efficacy.

  16. BI-2 destabilizes HIV-1 cores during infection and Prevents Binding of CPSF6 to the HIV-1 Capsid.

    PubMed

    Fricke, Thomas; Buffone, Cindy; Opp, Silvana; Valle-Casuso, Jose; Diaz-Griffero, Felipe

    2014-12-11

    The recently discovered small-molecule BI-2 potently blocks HIV-1 infection. BI-2 binds to the N-terminal domain of HIV-1 capsid. BI-2 utilizes the same capsid pocket used by the small molecule PF74. Although both drugs bind to the same pocket, it has been proposed that BI-2 uses a different mechanism to block HIV-1 infection when compared to PF74. This work demonstrates that BI-2 destabilizes the HIV-1 core during infection, and prevents the binding of the cellular factor CPSF6 to the HIV-1 core. Overall this short-form paper suggests that BI-2 is using a similar mechanism to the one used by PF74 to block HIV-1 infection.

  17. Energetics of dendrimer binding to HIV-1 gp120-CD4 complex and mechanismic aspects of its role as an entry-inhibitor

    NASA Astrophysics Data System (ADS)

    Saurabh, Suman; Sahoo, Anil Kumar; Maiti, Prabal K.

    2016-10-01

    Experiments and computational studies have established that de-protonated dendrimers (SPL7013 and PAMAM) act as entry-inhibitors of HIV. SPL7013 based Vivagel is currently under clinical development. The dendrimer binds to gp120 in the gp120-CD4 complex, destabilizes it by breaking key contacts between gp120 and CD4 and prevents viral entry into target cells. In this work, we provide molecular details and energetics of the formation of the SPL7013-gp120-CD4 ternary complex and decipher modes of action of the dendrimer in preventing viral entry. It is also known from experiments that the dendrimer binds weakly to gp120 that is not bound to CD4. It binds even more weakly to the CD4-binding region of gp120 and thus cannot directly block gp120-CD4 complexation. In this work, we examine the feasibility of dendrimer binding to the gp120-binding region of CD4 and directly blocking gp120-CD4 complex formation. We find that the process of the dendrimer binding to CD4 can compete with gp120-CD4 binding due to comparable free energy change for the two processes, thus creating a possibility for the dendrimer to directly block gp120-CD4 complexation by binding to the gp120-binding region of CD4.

  18. Diabetes-Induced Superoxide Anion and Breakdown of the Blood-Retinal Barrier: Role of the VEGF/uPAR Pathway

    PubMed Central

    El-Remessy, Azza B.; Franklin, Telina; Ghaley, Nagla; Yang, Jinling; Brands, Michael W.; Caldwell, Ruth B.; Behzadian, Mohamed Ali

    2013-01-01

    Diabetes-induced breakdown of the blood-retinal barrier (BRB) has been linked to hyperglycemia-induced expression of vascular endothelial growth factor (VEGF) and is likely mediated by an increase in oxidative stress. We have shown that VEGF increases permeability of retinal endothelial cells (REC) by inducing expression of urokinase plasminogen activator receptor (uPAR). The purpose of this study was to define the role of superoxide anion in VEGF/uPAR expression and BRB breakdown in diabetes. Studies were performed in streptozotocin diabetic rats and mice and high glucose (HG) treated REC. The superoxide dismutase (SOD) mimetic tempol blocked diabetes-induced permeability and uPAR expression in rats and the cell permeable SOD inhibited HG-induced expression of uPAR and VEGF in REC. Inhibiting VEGFR blocked HG-induced expression of VEGF and uPAR and GSK-3β phosphorylation in REC. HG caused β-catenin translocation from the plasma membrane into the cytosol and nucleus. Treatment with HG-conditioned media increased REC paracellular permeability that was blocked by anti-uPA or anti-uPAR antibodies. Moreover, deletion of uPAR blocked diabetes-induced BRB breakdown and activation of MMP-9 in mice. Together, these data indicate that diabetes-induced oxidative stress triggers BRB breakdown by a mechanism involving uPAR expression through VEGF-induced activation of the GSK3β/β-catenin signaling pathway. PMID:23951261

  19. LINE-1 ORF1 protein localizes in stress granules with other RNA-binding proteins, including components of RNA interference RNA-induced silencing complex.

    PubMed

    Goodier, John L; Zhang, Lili; Vetter, Melissa R; Kazazian, Haig H

    2007-09-01

    LINE-1 retrotransposons constitute one-fifth of human DNA and have helped shape our genome. A full-length L1 encodes a 40-kDa RNA-binding protein (ORF1p) and a 150-kDa protein (ORF2p) with endonuclease and reverse transcriptase activities. ORF1p is distinctive in forming large cytoplasmic foci, which we identified as cytoplasmic stress granules. A phylogenetically conserved central region of the protein is critical for wild-type localization and retrotransposition. Yeast two-hybrid screens revealed several RNA-binding proteins that coimmunoprecipitate with ORF1p and colocalize with ORF1p in foci. Two of these proteins, YB-1 and hnRNPA1, were previously reported in stress granules. We identified additional proteins associated with stress granules, including DNA-binding protein A, 9G8, and plasminogen activator inhibitor RNA-binding protein 1 (PAI-RBP1). PAI-RBP1 is a homolog of VIG, a part of the Drosophila melanogaster RNA-induced silencing complex (RISC). Other RISC components, including Ago2 and FMRP, also colocalize with PAI-RBP1 and ORF1p. We suggest that targeting ORF1p, and possibly the L1 RNP, to stress granules is a mechanism for controlling retrotransposition and its associated genetic and cellular damage.

  20. Two-sided block of a dual-topology F- channel.

    PubMed

    Turman, Daniel L; Nathanson, Jacob T; Stockbridge, Randy B; Street, Timothy O; Miller, Christopher

    2015-05-05

    The Fluc family is a set of small membrane proteins forming F(-)-specific electrodiffusive ion channels that rescue microorganisms from F(-) toxicity during exposure to weakly acidic environments. The functional channel is built as a dual-topology homodimer with twofold symmetry parallel to the membrane plane. Fluc channels are blocked by nanomolar-affinity fibronectin-domain monobodies originally selected from phage-display libraries. The unusual symmetrical antiparallel dimeric architecture of Flucs demands that the two chemically equivalent monobody-binding epitopes reside on opposite ends of the channel, a double-sided blocking situation that has never before presented itself in ion channel biophysics. However, it is not known if both sites can be simultaneously occupied, and if so, whether monobodies bind independently or cooperatively to their transmembrane epitopes. Here, we use direct monobody-binding assays and single-channel recordings of a Fluc channel homolog to reveal a novel trimolecular blocking behavior that reveals a doubly occupied blocked state. Kinetic analysis of single-channel recordings made with monobody on both sides of the membrane shows substantial negative cooperativity between the two blocking sites.

  1. Complement-mediated bactericidal activity of anti-factor H binding protein monoclonal antibodies against the meningococcus relies upon blocking factor H binding.

    PubMed

    Giuntini, Serena; Reason, Donald C; Granoff, Dan M

    2011-09-01

    Binding of the complement-downregulating protein factor H (fH) to the surface of the meningococcus is important for survival of the organism in human serum. The meningococcal vaccine candidate factor H binding protein (fHbp) is an important ligand for human fH. While some fHbp-specific monoclonal antibodies (MAbs) block binding of fH to fHbp, the stoichiometry of blocking in the presence of high serum concentrations of fH and its effect on complement-mediated bactericidal activity are unknown. To investigate this question, we constructed chimeric antibodies in which the human IgG1 constant region was paired with three murine fHbp-specific binding domains designated JAR 3, JAR 5, and MAb502. By surface plasmon resonance, the association rates for binding of all three MAbs to immobilized fHbp were >50-fold higher than that for binding of fH to fHbp, and the MAb dissociation rates were >500-fold lower than that for fH. While all three MAbs elicited similar C1q-dependent C4b deposition on live bacteria (classical complement pathway), only those antibodies that inhibited binding of fH to fHbp (JAR 3 and JAR 5) had bactericidal activity with human complement. MAb502, which did not inhibit fH binding, had complement-mediated bactericidal activity only when tested with fH-depleted human complement. When an IgG1 anti-fHbp MAb binds to sparsely exposed fHbp on the bacterial surface, there appears to be insufficient complement activation for bacteriolysis unless fH binding also is inhibited. The ability of fHbp vaccines to elicit protective antibodies, therefore, is likely to be enhanced if the antibody repertoire is of high avidity and includes fH-blocking activity.

  2. Functional cloning of the proto-oncogene brain factor-1 (BF-1) as a Smad-binding antagonist of transforming growth factor-beta signaling.

    PubMed

    Rodriguez, C; Huang, L J; Son, J K; McKee, A; Xiao, Z; Lodish, H F

    2001-08-10

    Using the plasminogen activator inhibitor (PAI) promoter to drive the expression of a reporter gene (mouse CD2), we devised a system to clone negative regulators of the transforming growth factor-beta (TGF-beta) signaling pathway. We infected a TGF-beta-responsive cell line (MvLu1) with a retroviral cDNA library, selecting by fluorescence-activated cell sorter single cells displaying low PAI promoter activity in response to TGF-beta. Using this strategy we cloned the proto-oncogene brain factor-1 (BF-1). BF-1 represses the PAI promoter in part by associating with both unphosphorylated Smad3 (in the cytoplasm) and phosphorylated Smad3 (in the nucleus), thus preventing its binding to DNA. BF-1 also associates with Smad1, -2, and -4; the Smad MH2 domain binds to BF-1, and the C-terminal segment of BF-1 is uniquely and solely required for binding to Smads. Further, BF-1 represses another TGF-beta-induced promoter (p15), it up-regulates a TGF-beta-repressed promoter (Cyclin A), and it reverses the growth arrest caused by TGF-beta. Our results suggest that BF-1 is a general inhibitor of TGF-beta signaling and as such may play a key role during brain development.

  3. Novel actions of tissue-type plasminogen activator in chronic kidney disease: a paradigm shift

    PubMed Central

    Hu, Kebin; Mars, Wendy M.; Liu, Youhua

    2009-01-01

    Tissue-type plasminogen activator (tPA) is traditionally viewed as a simple serine protease whose main function is to convert plasminogen into biologically active plasmin. As a protease, tPA plays a crucial role in regulating blood fibrinolysis, in maintaining the homeostasis of extracellular matrix (ECM) and in modulating the post-translational activation of growth factors. However, emerging evidence indicates that tPA may also function as a cytokine that transmits its signal across the cell membrane, initiates a diverse array of intracellular signaling, and dictates gene expression in the nuclei. Structurally, tPA is a kringle-containing protein that shares significant similarity to other classic cytokines such as hepatocyte growth factor (HGF) and macrophage-stimulating protein (MSP). Although there is no dedicated receptor, tPA binds to the cell membrane low density lipoprotein (LDL) receptor-related protein-1 (LRP-1), triggers LRP-1 tyrosine phosphorylation, and activates various intracellular signaling. As a cytokine, tPA plays a pivotal role in the pathogenesis of renal interstitial fibrosis through diverse mechanisms. It induces matrix matelloproteinase-9 (MMP-9) gene expression in renal interstitial fibroblasts, which causes the destruction of the tubular basement membrane (TBM), thereby facilitating tubular epithelial to mesenchymal transition (EMT). tPA also potentiates myofibroblast activation from quiescent interstitial fibroblasts through LRP-1-mediated recruitment of β1 integrin signaling. Furthermore, tPA acts as a survival factor that protects renal interstitial fibroblasts/myofibroblasts from apoptosis, thereby resulting in an expansion of myofibroblast populations in diseased kidney. Together, a growing body of evidence has implicated tPA as a fibrogenic cytokine that promotes the progression of kidney diseases. These new findings have radically changed our conception of tPA in renal fibrogenesis and represent a paradigm shift towards uncovering its cytokine function. A better understanding of renal tPA biology will ultimately translate into more rational therapeutic remedies for patients with chronic kidney fibrosis. PMID:18508579

  4. Enhanced functional stability of plasminogen activator inhibitor-1 in patients with livedoid vasculopathy.

    PubMed

    Agirbasli, Mehmet; Eren, Mesut; Eren, Fatih; Murphy, Sheila B; Serdar, Zehra A; Seckin, Dilek; Zara, Tuba; Cem Mat, M; Demirkesen, Cuyan; Vaughan, Douglas E

    2011-07-01

    Livedoid vasculopathy (LV) is a chronic, recurrent, painful cutaneous disease with distinctive clinical features and an uncertain etiology. The skin lesions are recognizable by focal purpura, depigmentation and shallow ulcers. Thrombophilic conditions occur frequently in patients with LV. While no definitive treatment exists for LV, smoking cessation, antiplatelet therapy, immunosuppressive treatment, and anabolic steroids are often included in the therapeutic ladder. Recently, a possible link between LV and impaired fibrinolysis was established as cutaneous LV lesions responded to tissue plasminogen activator (t-PA) infusion suggesting that inhibition of the fibrinolysis through plasminogen activator inhibitor-1 (PAI-1) activity may determine the disease course in patients with LV. In this study, we investigated PAI-1 antigen (Ag) and activity levels in 20 patients with biopsy proven LV (mean age 26 ± 11, M/F = 7/13, median disease duration 3.5 years). All patients received antiplatelet treatment with aspirin and/or dipyrimadole and 14 patients received anabolic steroids or immunosuppressive treatment. Fasting PAI-1 Ag and activity levels were measured at 9 AM in all patients. Both Ag (34 (26) ng/ml) (median (interquartile range)) and specific activity (17 (23) IU/fmole) levels of PAI-1 were moderately elevated in LV patients compared to the controls, however, PAI-1 kinetic studies demonstrated markedly enhanced stability of PAI-1 activity in plasma from patients with LV. Specific activity at 16 h was significantly higher than expected specific activity levels (7 (11) vs. 0.07 (0.09) IU/fmole, P < 0.01). While the exact mechanism of increased stability of PAI-1 activity is not known, it may be due to post-translational modifications or increased binding affinity for a stabilizing cofactor. In conclusion, enhanced stability of PAI-1 may contribute to the pathophysiology of LV, and systemic or local treatment with PAI-1 inhibitors may offer a potential treatment alternative in patients with LV.

  5. Fibrin-Enhanced Canonical Wnt Signaling Directs Plasminogen Expression in Cementoblasts

    PubMed Central

    Rahman, Saeed Ur; Ryoo, Hyun-Mo

    2017-01-01

    Cementum is a mineralized layer on the tooth’s root surface and facilitates the biomechanical anchoring of fibrous connective tissues as a part of tooth-supportive complexes. Previously, we observed that OCCM30 cementoblasts cultured on fibrin matrices underwent apoptosis due to fibrin degradation through the expression of proteases. Here, we demonstrated that OCCM30 on fibrin matrices (OCCM30-fibrin) enhanced canonical Wnt signaling, which directed to plasminogen expression. The OCCM30-fibrin showed higher levels of Wnt3a expression, nuclear translocation of β-catenin, and T-cell factor (TCF) optimal motif (TOP) reporter activity than the cells on tissue culture dishes (OCCM30-TCD), indicating that the OCCM30-fibrin enhanced canonical Wnt/β-catenin signaling. Also, OCCM30-fibrin expressed biomineralization-associated markers at higher levels than OCCM30-TCD, of which levels were further increased with LiCl, a Wnt signaling activator. The OCCM30 cementoblasts simultaneously showed that high levels of plasminogen, a critical component of fibrinolysis, were expressed in the OCCM30-fibrin. Activation of canonical Wnt signaling with LiCl treatment or with forced lymphoid enhancer factor 1 (LEF1)-expression increased the expression of plasminogen. On the contrary, the inhibition of canonical Wnt signaling with siRNAs against Wnt3a or β-catenin abrogated fibrin-enhanced plasminogen expression. Furthermore, there are three conserved putative response elements for the LEF1/β-catenin complex in the plasminogen proximal promoter regions (−900 to +54). Site-directed mutations and chromatin immunoprecipitation indicated that canonical Wnt signaling directed plasminogen expression. Taken together, this study suggests that fibrin-based materials can modulate functional periodontal formations in controlling cementoblast differentiation and fibrin degradation. PMID:29120400

  6. Reprogrammed streptokinases develop fibrin-targeting and dissolve blood clots with more potency than tissue plasminogen activator

    PubMed Central

    SAZONOVA, I. Y.; MCNAMEE, R. A.; HOUNG, A. K.; KING, S. M.; HEDSTROM, L.; REED, G. L.

    2013-01-01

    Summary Background: Given the worldwide epidemic of cardiovascular diseases, a more effective means of dissolving thrombi that cause heart attacks, could markedly reduce death, disability and healthcare costs. Plasminogen activators (PAs) such as streptokinase (SK) and tissue plasminogen activator (TPA) are currently used to dissolve fibrin thrombi. SK is cheaper and more widely available, but it appears less effective because it lacks TPA’s fibrin-targeted properties that focus plasminogen activation on the fibrin surface. Objective: We examined whether re-programming SK’s mechanism of action would create PAs with greater fibrin-targeting and potency than TPA. Methods and Results: When fibrinogen consumption was measured in human plasma, reprogrammed molecules SKΔ1 and SKΔ59 were 5-fold and > 119-fold more fibrin-dependent than SK (P < 0.0001), and 2-fold and > 50-fold more fibrin-dependent than TPA (P < 0.001). The marked fibrin-targeting of SKΔ59 was due to the fact that: (i) it did not generate plasmin in plasma, (ii) it was rapidly inhibited by α2-antiplasmin, and (iii) it only processed fibrin-bound plasminogen. To assess the fibrin-targeting and therapeutic potential of these PAs in vivo, a novel ‘humanized’ fibrinolysis model was created by reconstituting plasminogen-deficient mice with human plasminogen. When compared with TPA, SKΔ1 and SKΔ59 were 4-fold (P < 0.0001) and 2-fold (P < 0.003) more potent at dissolving blood clots in vivo, respectively, on a mass-dose basis and 2–3 logs more potent than TPA (P < 0.0001) when doses were calibrated by standard activity assays. Conclusion: These experiments suggest that reprogramming SK’s mechanism of action markedly enhances fibrin-targeting and creates, in comparison with TPA, activators with greater fibrinolytic potency. PMID:19566545

  7. Reprogrammed streptokinases develop fibrin-targeting and dissolve blood clots with more potency than tissue plasminogen activator.

    PubMed

    Sazonova, I Y; McNamee, R A; Houng, A K; King, S M; Hedstrom, L; Reed, G L

    2009-08-01

    Given the worldwide epidemic of cardiovascular diseases, a more effective means of dissolving thrombi that cause heart attacks, could markedly reduce death, disability and healthcare costs. Plasminogen activators (PAs) such as streptokinase (SK) and tissue plasminogen activator (TPA) are currently used to dissolve fibrin thrombi. SK is cheaper and more widely available, but it appears less effective because it lacks TPA's fibrin-targeted properties that focus plasminogen activation on the fibrin surface. We examined whether re-programming SK's mechanism of action would create PAs with greater fibrin-targeting and potency than TPA. When fibrinogen consumption was measured in human plasma, reprogrammed molecules SKDelta1 and SKDelta59 were 5-fold and > 119-fold more fibrin-dependent than SK (P < 0.0001), and 2-fold and > 50-fold more fibrin-dependent than TPA (P < 0.001). The marked fibrin-targeting of SKDelta59 was due to the fact that: (i) it did not generate plasmin in plasma, (ii) it was rapidly inhibited by alpha2-antiplasmin, and (iii) it only processed fibrin-bound plasminogen. To assess the fibrin-targeting and therapeutic potential of these PAs in vivo, a novel 'humanized' fibrinolysis model was created by reconstituting plasminogen-deficient mice with human plasminogen. When compared with TPA, SKDelta1 and SKDelta59 were 4-fold (P < 0.0001) and 2-fold (P < 0.003) more potent at dissolving blood clots in vivo, respectively, on a mass-dose basis and 2-3 logs more potent than TPA (P < 0.0001) when doses were calibrated by standard activity assays. These experiments suggest that reprogramming SK's mechanism of action markedly enhances fibrin-targeting and creates, in comparison with TPA, activators with greater fibrinolytic potency.

  8. Efficient co-packaging and co-transport yields post-synaptic co-localization of neuromodulators associated with synaptic plasticity

    PubMed Central

    Lochner, J. E.; Spangler, E.; Chavarha, M.; Jacobs, C.; McAllister, K.; Schuttner, L. C.; Scalettar, B. A.

    2009-01-01

    Recent data suggest that tissue plasminogen activator (tPA) influences long-term plasticity at hippocampal synapses by converting plasminogen into plasmin, which then generates mature brain-derived neurotrophic factor (mBDNF) from its precursor, proBDNF. Motivated by this hypothesis, we used fluorescent chimeras, expressed in hippocampal neurons, to elucidate (1) mechanisms underlying plasminogen secretion from hippocampal neurons, (2) if tPA, plasminogen, and proBDNF are co-packaged and co-transported in hippocampal neurons, especially within dendritic spines, and (3) mechanisms mediating the transport of these neuromodulators to sites of release. We find that plasminogen chimeras traffic through the regulated secretory pathway of hippocampal neurons in dense-core granules (DCGs) and that tPA, plasminogen, and proBDNF chimeras are extensively co-packaged in DCGs throughout hippocampal neurons. We also find that 80% of spines that contain DCGs contain chimeras of these neuromodulators in the same DCG. Finally, we demonstrate, for the first time, that neuromodulators undergo co-transport along dendrites in rapidly mobile DCGs, indicating that neuromodulators can be efficiently recruited into active spines. These results support the hypothesis that tPA mediates synaptic activation of BDNF by demonstrating that tPA, plasminogen, and proBDNF co-localize in DCGs in spines, where these neuromodulators can undergo activity-dependent release and then interact and/or mediate changes that influence synaptic efficacy. The results also raise the possibility that frequency-dependent changes in extents of neuromodulator release from DCGs influence the direction of plasticity at hippocampal synapses by altering the relative proportions of two proteins, mBDNF and proBDNF, that exert opposing effects on synaptic efficacy. PMID:18563704

  9. Endotoxin induction of an inhibitor of plasminogen activator in bovine pulmonary artery endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The effects of bacterial lipopolysaccharide (endotoxin) on the fibrinolytic activity of bovine pulmonary artery endothelial cells were examined. Endotoxin suppressed the net fibrinolytic activity of cell extracts and conditioned media in a dose-dependent manner. The effects of endotoxin required at least 6 h for expression. Cell extracts and conditioned media contained a 44-kDa urokinase-like plasminogen activator. Media also contained multiple plasminogen activators with molecular masses of 65-75 and 80-100 kDa. Plasminogen activators in extracts and media were unchanged by treatment of cells with endotoxin. Diisopropyl fluorophosphate (DFP)-abolished fibrinolytic activity of extracts and conditioned media. DFP-treated samples from endotoxin-treated but notmore » untreated cells inhibited urokinase and tissue plasminogen activator, but not plasmin. Inhibitory activity was lost by incubation at pH 3 or heating to 56/sup 0/C for 10 min. These treatments did not affect inhibitory activity of fetal bovine serum. Incubation of /sup 125/I-urokinase with DFP-treated medium from endotoxin-treated cells produced an inactive complex with an apparent molecular mass of 80-85 kDa.« less

  10. Virtual screening using molecular simulations.

    PubMed

    Yang, Tianyi; Wu, Johnny C; Yan, Chunli; Wang, Yuanfeng; Luo, Ray; Gonzales, Michael B; Dalby, Kevin N; Ren, Pengyu

    2011-06-01

    Effective virtual screening relies on our ability to make accurate prediction of protein-ligand binding, which remains a great challenge. In this work, utilizing the molecular-mechanics Poisson-Boltzmann (or Generalized Born) surface area approach, we have evaluated the binding affinity of a set of 156 ligands to seven families of proteins, trypsin β, thrombin α, cyclin-dependent kinase (CDK), cAMP-dependent kinase (PKA), urokinase-type plasminogen activator, β-glucosidase A, and coagulation factor Xa. The effect of protein dielectric constant in the implicit-solvent model on the binding free energy calculation is shown to be important. The statistical correlations between the binding energy calculated from the implicit-solvent approach and experimental free energy are in the range of 0.56-0.79 across all the families. This performance is better than that of typical docking programs especially given that the latter is directly trained using known binding data whereas the molecular mechanics is based on general physical parameters. Estimation of entropic contribution remains the barrier to accurate free energy calculation. We show that the traditional rigid rotor harmonic oscillator approximation is unable to improve the binding free energy prediction. Inclusion of conformational restriction seems to be promising but requires further investigation. On the other hand, our preliminary study suggests that implicit-solvent based alchemical perturbation, which offers explicit sampling of configuration entropy, can be a viable approach to significantly improve the prediction of binding free energy. Overall, the molecular mechanics approach has the potential for medium to high-throughput computational drug discovery. Copyright © 2011 Wiley-Liss, Inc.

  11. Role of Endogenous Factors in Response of Erythrocyte Membrane in Patients with Cardiovascular Diseases under Conditions of Ischemic Exposure.

    PubMed

    Pivovarov, Yu I; Kuznetsova, E E; Koryakina, L B; Gorokhova, V G; Kuril'skaya, T E

    2015-05-01

    We studied specific features of erythrocyte membrane response to short-term occlusion of the brachial artery in patients with cardiovascular pathology. Under ischemic conditions, processes of sorption were primarily intensified in patients with effort angina and processes of hemoglobin binding with erythrocyte membrane predominated in patients with essential hypertension. These changes in the cell membrane were related to modulation of aggregation properties of erythrocytes (in patients with angina) and plasminogen activity (in patients with essential hypertension). They can also be associated with changes in glucose levels (effort angina) and uric acid (essential hypertension) whose effects can be significantly modified by other endogenous factors.

  12. Binding Blocks: Building the Universe One Nucleus at a Time

    ERIC Educational Resources Information Center

    Diget, C. Aa.; Pastore, A.; Leech, K.; Haylett, T.; Lock, S.; Sanders, T.; Shelley, M.; Willett, H. V.; Keegans, J.; Sinclair, L.; Simpson, E. C.

    2017-01-01

    We present a new teaching and outreach activity based around the construction of a three-dimensional chart of isotopes using LEGO® bricks. The activity, "binding blocks", demonstrates nuclear and astrophysical processes through a seven-meter chart of all nuclear isotopes, built from over 26000 LEGO® bricks. It integrates A-Level and GCSE…

  13. Block of Inactivation-deficient Na+ Channels by Local Anesthetics in Stably Transfected Mammalian Cells

    PubMed Central

    Wang, Sho-Ya; Mitchell, Jane; Moczydlowski, Edward; Wang, Ging Kuo

    2004-01-01

    According to the classic modulated receptor hypothesis, local anesthetics (LAs) such as benzocaine and lidocaine bind preferentially to fast-inactivated Na+ channels with higher affinities. However, an alternative view suggests that activation of Na+ channels plays a crucial role in promoting high-affinity LA binding and that fast inactivation per se is not a prerequisite for LA preferential binding. We investigated the role of activation in LA action in inactivation-deficient rat muscle Na+ channels (rNav1.4-L435W/L437C/A438W) expressed in stably transfected Hek293 cells. The 50% inhibitory concentrations (IC50) for the open-channel block at +30 mV by lidocaine and benzocaine were 20.9 ± 3.3 μM (n = 5) and 81.7 ± 10.6 μM (n = 5), respectively; both were comparable to inactivated-channel affinities. In comparison, IC50 values for resting-channel block at −140 mV were >12-fold higher than those for open-channel block. With 300 μM benzocaine, rapid time-dependent block (τ ≈ 0.8 ms) of inactivation-deficient Na+ currents occurred at +30 mV, but such a rapid time-dependent block was not evident at −30 mV. The peak current at −30 mV, however, was reduced more severely than that at +30 mV. This phenomenon suggested that the LA block of intermediate closed states took place notably when channel activation was slow. Such closed-channel block also readily accounted for the LA-induced hyperpolarizing shift in the conventional steady-state inactivation measurement. Our data together illustrate that the Na+ channel activation pathway, including most, if not all, transient intermediate closed states and the final open state, promotes high-affinity LA binding. PMID:15545401

  14. Decoy Plasminogen Receptor Containing a Selective Kunitz-Inhibitory Domain

    PubMed Central

    2015-01-01

    Kunitz domain 1 (KD1) of tissue factor pathway inhibitor-2 in which P2′ residue Leu17 (bovine pancreatic trypsin inhibitor numbering) is mutated to Arg selectively inhibits the active site of plasmin with ∼5-fold improved affinity. Thrombin cleavage (24 h extended incubation at a 1:50 enzyme-to-substrate ratio) of the KD1 mutant (Leu17Arg) yielded a smaller molecule containing the intact Kunitz domain with no detectable change in the active-site inhibitory function. The N-terminal sequencing and MALDI-TOF/ESI data revealed that the starting molecule has a C-terminal valine (KD1L17R-VT), whereas the smaller molecule has a C-terminal lysine (KD1L17R-KT). Because KD1L17R-KT has C-terminal lysine, we examined whether it could serve as a decoy receptor for plasminogen/plasmin. Such a molecule might inhibit plasminogen activation as well as the active site of generated plasmin. In surface plasmon resonance experiments, tissue plasminogen activator (tPA) and Glu-plasminogen bound to KD1L17R-KT (Kd ∼ 0.2 to 0.3 μM) but not to KD1L17R-VT. Furthermore, KD1L17R-KT inhibited tPA-induced plasma clot fibrinolysis more efficiently than KD1L17R-VT. Additionally, compared to ε-aminocaproic acid KD1L17R-KT was more effective in reducing blood loss in a mouse liver-laceration injury model, where the fibrinolytic system is activated. In further experiments, the micro(μ)-plasmin–KD1L17R-KT complex inhibited urokinase-induced plasminogen activation on phorbol-12-myristate-13-acetate-stimulated U937 monocyte-like cells, whereas the μ-plasmin–KD1L17R-VT complex failed to inhibit this process. In conclusion, KD1L17R-KT inhibits the active site of plasmin as well as acts as a decoy receptor for the kringle domain(s) of plasminogen/plasmin; hence, it limits both plasmin generation and activity. With its dual function, KD1L17R-KT could serve as a preferred agent for controlling plasminogen activation in pathological processes. PMID:24383758

  15. Decoy plasminogen receptor containing a selective Kunitz-inhibitory domain.

    PubMed

    Kumar, Yogesh; Vadivel, Kanagasabai; Schmidt, Amy E; Ogueli, Godwin I; Ponnuraj, Sathya M; Rannulu, Nalaka; Loo, Joseph A; Bajaj, Madhu S; Bajaj, S Paul

    2014-01-28

    Kunitz domain 1 (KD1) of tissue factor pathway inhibitor-2 in which P2' residue Leu17 (bovine pancreatic trypsin inhibitor numbering) is mutated to Arg selectively inhibits the active site of plasmin with ∼5-fold improved affinity. Thrombin cleavage (24 h extended incubation at a 1:50 enzyme-to-substrate ratio) of the KD1 mutant (Leu17Arg) yielded a smaller molecule containing the intact Kunitz domain with no detectable change in the active-site inhibitory function. The N-terminal sequencing and MALDI-TOF/ESI data revealed that the starting molecule has a C-terminal valine (KD1L17R-VT), whereas the smaller molecule has a C-terminal lysine (KD1L17R-KT). Because KD1L17R-KT has C-terminal lysine, we examined whether it could serve as a decoy receptor for plasminogen/plasmin. Such a molecule might inhibit plasminogen activation as well as the active site of generated plasmin. In surface plasmon resonance experiments, tissue plasminogen activator (tPA) and Glu-plasminogen bound to KD1L17R-KT (Kd ∼ 0.2 to 0.3 μM) but not to KD1L17R-VT. Furthermore, KD1L17R-KT inhibited tPA-induced plasma clot fibrinolysis more efficiently than KD1L17R-VT. Additionally, compared to ε-aminocaproic acid KD1L17R-KT was more effective in reducing blood loss in a mouse liver-laceration injury model, where the fibrinolytic system is activated. In further experiments, the micro(μ)-plasmin-KD1L17R-KT complex inhibited urokinase-induced plasminogen activation on phorbol-12-myristate-13-acetate-stimulated U937 monocyte-like cells, whereas the μ-plasmin-KD1L17R-VT complex failed to inhibit this process. In conclusion, KD1L17R-KT inhibits the active site of plasmin as well as acts as a decoy receptor for the kringle domain(s) of plasminogen/plasmin; hence, it limits both plasmin generation and activity. With its dual function, KD1L17R-KT could serve as a preferred agent for controlling plasminogen activation in pathological processes.

  16. Generation and characterization of function-blocking anti-ectodysplasin A (EDA) monoclonal antibodies that induce ectodermal dysplasia.

    PubMed

    Kowalczyk-Quintas, Christine; Willen, Laure; Dang, Anh Thu; Sarrasin, Heidi; Tardivel, Aubry; Hermes, Katharina; Schneider, Holm; Gaide, Olivier; Donzé, Olivier; Kirby, Neil; Headon, Denis J; Schneider, Pascal

    2014-02-14

    Development of ectodermal appendages, such as hair, teeth, sweat glands, sebaceous glands, and mammary glands, requires the action of the TNF family ligand ectodysplasin A (EDA). Mutations of the X-linked EDA gene cause reduction or absence of many ectodermal appendages and have been identified as a cause of ectodermal dysplasia in humans, mice, dogs, and cattle. We have generated blocking antibodies, raised in Eda-deficient mice, against the conserved, receptor-binding domain of EDA. These antibodies recognize epitopes overlapping the receptor-binding site and prevent EDA from binding and activating EDAR at close to stoichiometric ratios in in vitro binding and activity assays. The antibodies block EDA1 and EDA2 of both mammalian and avian origin and, in vivo, suppress the ability of recombinant Fc-EDA1 to rescue ectodermal dysplasia in Eda-deficient Tabby mice. Moreover, administration of EDA blocking antibodies to pregnant wild type mice induced in developing wild type fetuses a marked and permanent ectodermal dysplasia. These function-blocking anti-EDA antibodies with wide cross-species reactivity will enable study of the developmental and postdevelopmental roles of EDA in a variety of organisms and open the route to therapeutic intervention in conditions in which EDA may be implicated.

  17. Generation and Characterization of Function-blocking Anti-ectodysplasin A (EDA) Monoclonal Antibodies That Induce Ectodermal Dysplasia*

    PubMed Central

    Kowalczyk-Quintas, Christine; Willen, Laure; Dang, Anh Thu; Sarrasin, Heidi; Tardivel, Aubry; Hermes, Katharina; Schneider, Holm; Gaide, Olivier; Donzé, Olivier; Kirby, Neil; Headon, Denis J.; Schneider, Pascal

    2014-01-01

    Development of ectodermal appendages, such as hair, teeth, sweat glands, sebaceous glands, and mammary glands, requires the action of the TNF family ligand ectodysplasin A (EDA). Mutations of the X-linked EDA gene cause reduction or absence of many ectodermal appendages and have been identified as a cause of ectodermal dysplasia in humans, mice, dogs, and cattle. We have generated blocking antibodies, raised in Eda-deficient mice, against the conserved, receptor-binding domain of EDA. These antibodies recognize epitopes overlapping the receptor-binding site and prevent EDA from binding and activating EDAR at close to stoichiometric ratios in in vitro binding and activity assays. The antibodies block EDA1 and EDA2 of both mammalian and avian origin and, in vivo, suppress the ability of recombinant Fc-EDA1 to rescue ectodermal dysplasia in Eda-deficient Tabby mice. Moreover, administration of EDA blocking antibodies to pregnant wild type mice induced in developing wild type fetuses a marked and permanent ectodermal dysplasia. These function-blocking anti-EDA antibodies with wide cross-species reactivity will enable study of the developmental and postdevelopmental roles of EDA in a variety of organisms and open the route to therapeutic intervention in conditions in which EDA may be implicated. PMID:24391090

  18. Participation of mitochondrial diazepam binding inhibitor receptors in the anticonflict, antineophobic and anticonvulsant action of 2-aryl-3-indoleacetamide and imidazopyridine derivatives.

    PubMed

    Auta, J; Romeo, E; Kozikowski, A; Ma, D; Costa, E; Guidotti, A

    1993-05-01

    The 2-hexyl-indoleacetamide derivative, FGIN-1-27 [N,N-di-n-hexyl-2- (4-fluorophenyl)indole-3-acetamide], and the imidazopyridine derivative, alpidem, both bind with high affinity to glial mitochondrial diazepam binding inhibitor receptors (MDR) and increase mitochondrial steroidogenesis. Although FGIN-1-27 is selective for the MDR, alpidem also binds to the allosteric modulatory site of the gamma-aminobutyric acidA receptor where the benzodiazepines bind. FGIN-1-27 and alpidem, like the neurosteroid 3 alpha,21-dehydroxy-5 alpha-pregnane-20-one (THDOC), clonazepam and zolpidem (the direct allosteric modulators of gamma-aminobutyric acidA receptors) delay the onset of isoniazid and metrazol-induced convulsions. The anti-isoniazid convulsant action of FGIN-1-27 and alpidem, but not that of THDOC, is blocked by PK 11195. In contrast, flumazenil blocked completely the anticonvulsant action of clonazepam and zolpidem and partially blocked that of alpidem, but it did not affect the anticonvulsant action of THDOC and FGIN-1-27. Alpidem, like clonazepam, zolpidem and diazepam, but not THDOC or FGIN-1-27, delay the onset of bicuculline-induced convulsions. In two animal models of anxiety, the neophobic behavior in the elevated plus maze test and the conflict-punishment behavior in the Vogel conflict test, THDOC and FGIN-1-27 elicited anxiolytic-like effects in a manner that is flumazenil insensitive, whereas alpidem elicited a similar anxiolytic effect, but is partially blocked by flumazenil. Whereas PK 11195 blocked the effect of FGIN-1-27 and partially blocked alpidem, it did not affect THDOC in both animal models of anxiety.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Blocking of Single α-Hemolysin Pore by Rhodamine Derivatives.

    PubMed

    Rokitskaya, Tatyana I; Nazarov, Pavel A; Golovin, Andrey V; Antonenko, Yuri N

    2017-06-06

    Measurements of ion conductance through α-hemolysin pore in a bilayer lipid membrane revealed blocking of the ion channel by a series of rhodamine 19 and rhodamine B esters. The longest dwell closed time of the blocking was observed with rhodamine 19 butyl ester (C4R1), whereas the octyl ester (C8R1) was of poor effect. Voltage asymmetry in the binding kinetics indicated that rhodamine derivatives bound to the stem part of the aqueous pore lumen. The binding frequency was proportional to a quadratic function of rhodamine concentrations, thereby showing that the dominant binding species were rhodamine dimers. Two levels of the pore conductance and two dwell closed times of the pore were found. The dwell closed times lengthened as the voltage increased, suggesting impermeability of the channel for the ligands. Molecular docking analysis revealed two distinct binding sites within the lumen of the stem of the α-hemolysin pore for the C4R1 dimer, but only one binding site for the C8R1 dimer. The blocking of the α-hemolysin nanopore by rhodamines could be utilized in DNA sequencing as additional optical sensing owing to bright fluorescence of rhodamines if used for DNA labeling. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  20. The implementation of binding blocks in the classroom

    NASA Astrophysics Data System (ADS)

    Wright, A. J.; Willett, H. V.; Beanland, S. R.; Carson, M.; Davies, R. A.; Duffett, G.; Pastore, A.

    2017-09-01

    We discuss a series of activities for A-level students which can be carried out using the binding blocks three dimensional chart of nuclides. The planned activities cover four main sections which can be linked to the A-level curriculum; nuclear decays (as seen through the different colours on the chart), medical physics (medical isotopes highlighted on the chart), fusion on Earth (binding energy demonstrated through tower heights) and stellar fusion (which has a limit at 56Fe, illustrated by the decreasing tower heights).

  1. Modulation of the malignant phenotype with the urokinase-type plasminogen activator and the type I plasminogen activator inhibitor.

    PubMed

    Sordat, B; Reiter, L; Cajot, J F

    1990-12-02

    Gene transfer techniques were utilized to evaluate the role of urokinase-type plasminogen activator (uPA) and plasminogen activator inhibitor type 1 (PAI-1) in enhancing or preventing the expression of the invasive malignant phenotype, respectively. Mouse L-cell transfectants expressing human uPA or human PAI-1 as well as mouse B16 transfectants expressing mouse uPA or human PAI-1 were generated. These transfectants were tested using a variety of experimental methods including smooth muscle cell matrix solubilization in vitro, lung colony formation in vivo and co-cultures of antagonist-expressing cells in vitro. Results from these studies provide direct evidence for an enhancing role of uPA in malignant invasion and experimental metastasis and for a modulatory role of PAI-1 in tumor cell-mediated breakdown of extracellular matrices.

  2. Studies on a complex mechanism for the activation of plasminogen by kaolin and by chloroform: the participation of Hageman factor and additional cofactors

    PubMed Central

    Ogston, Derek; Ogston, C. Marie; Ratnoff, Oscar D.; Forbes, Charles D.

    1969-01-01

    As demonstrated by others, fibrinolytic activity was generated in diluted, acidified normal plasma exposed to kaolin, a process requiring Hageman factor (Factor XII). Generation was impaired by adsorbing plasma with glass or similar agents under conditions which did not deplete its content of Hageman factor or plasminogen. The defect could be repaired by addition of a noneuglobulin fraction of plasma or an agent or agents eluted from diatomaceous earth which had been exposed to normal plasma. The restorative agent, tentatively called Hageman factor-cofactor, was partially purified by chromatography and had an apparent molecular weight of approximately 165,000. It could be distinguished from plasma thromboplastin antecedent (Factor XI) and plasma kallikrein, other substrates of Hageman factor, and from the streptokinase-activated pro-activator of plasminogen. Evidence is presented that an additional component may be needed for the generation of fibrinolytic activity in mixtures containing Hageman factor, HF-cofactor, and plasminogen. The long-recognized generation of plasmin activity in chloroform-treated euglobulin fractions of plasma was found to be dependent upon the presence of Hageman factor. Whether chloroform activation of plasminogen requires Hageman factor-cofactor was not determined, but glass-adsorbed plasma, containing Hageman factor and plasminogen, did not generate appreciable fibrinolytic or caseinolytic activity. These studies emphasize the complex nature of the mechanisms which lead to the generation of plasmin in human plasma. PMID:4241814

  3. The fibrinolytic mechanism of defibrotide: effect of defibrotide on plasmin activity.

    PubMed

    Echart, Cinara L; Graziadio, Barbara; Somaini, Simona; Ferro, Laura I; Richardson, Paul G; Fareed, Jawed; Iacobelli, Massimo

    2009-12-01

    Fibrinolytic activity has been shown to be reduced in many vascular diseases, including hepatic veno-occlusive disease after stem cell transplantation, a microangiopathy characterized by sinusoidal endothelial cell injury. Defibrotide is a polydisperse oligonucleotide with antithrombotic, profibrinolytic, anti-ischemic, and antiadhesive properties. Numerous clinical studies have shown promising activity of defibrotide in the treatment and prevention of veno-occlusive disease, with minimal toxicity. In corollary laboratory studies, defibrotide has been shown to decrease plasminogen activator inhibitor-1, increase tissue plasminogen activator levels, and increase overall plasma fibrinolytic activity in patients. Plasmin, a potent and nonspecific serine protease, plays a pivotal role in fibrinolysis by virtue of its ability to effectively degrade fibrin clots. In this study, defibrotide increases the activity of plasmin in hydrolyzing its substrate in a dose-dependent and length-dependent manner. Similar concentration-dependent effects of defibrotide were observed when plasmin was generated by tissue plasminogen activator or urokinase activation of plasminogen. In contrast, defibrotide had no direct effect on the activation of plasminogen to plasmin. Defibrotide was also able to enhance the activity of plasmin in degrading fibrin clot formed from fibrinogen, plasminogen, and thrombin. This effect was also concentration-dependent and directly correlated with the enzymatic activity of plasmin. This study therefore demonstrates that defibrotide is capable of enhancing the activity of plasmin and so contributes to its fibrinolytic activity. Taken together, these results support the effect of defibrotide in restoring the fibrinolytic vascular phenotype, in microangiopathic conditions such as veno-occlusive disease.

  4. Engineering streptokinase for generation of active site-labeled plasminogen analogs*

    PubMed Central

    Laha, Malabika; Panizzi, Peter; Nahrendorf, Matthias; Bock, Paul E.

    2011-01-01

    We previously demonstrated that streptokinase (SK) can be used to generate active site-labeled fluorescent analogs of plasminogen (Pg) by virtue of its non-proteolytic activation of the zymogen. The method is versatile and allows for stoichiometric and active site-specific incorporation of any one of many molecular probes. The limitation of the labeling approach is that it is both time-consuming and low yield. Here we demonstrate an improved method for the preparation of labeled Pg analogs by the use of an engineered SK mutant fusion protein with both COOH- and NH2-terminal His6-tags. The NH2-terminal tag is followed by a tobacco etch virus proteinase cleavage site to ensure that the SK Ile1 residue, essential for conformational activation of Pg, is preserved. The SK COOH-terminal Lys414 residue and residues Arg253-Leu260 in the SK β-domain were deleted to prevent cleavage by plasmin (Pm), and to disable Pg substrate binding to the SK·Pg*/Pm catalytic complexes, respectively. Near-elimination of Pm generation with the SKΔ(R253-L260)ΔK414-His6 mutant increased the yield of labeled Pg 2.6-fold and reduced the time required >2-fold. The versatility of the labeling method was extended to the application of Pg labeled with a near-infrared probe to quantitate Pg receptors on immune cells by flow cytometry. PMID:21570944

  5. Regulatory elements involved in constitutive and phorbol ester-inducible expression of the plasminogen activator inhibitor type 2 gene promoter.

    PubMed Central

    Cousin, E; Medcalf, R L; Bergonzelli, G E; Kruithof, E K

    1991-01-01

    Gene transcription rates and mRNA levels of plasminogen activator inhibitor type 2 (PAI-2) are markedly induced by the tumor promoting agent phorbol 12-myristate 13-acetate (PMA) in human HT1080 fibrosarcoma cells. To identify promoter elements required for basal-, and phorbol ester-inducible expression, deletion mutants of the PAI-1 promoter fused to the chloramphenicol acetyl transferase (CAT) reporter gene, were transiently expressed in HT1080 cells. Constitutive CAT activity was expressed from constructs containing more than 215 bp of promoter sequence, whereas deletion to position -91 bp abolished CAT gene expression. Treatment of transfected cells with PMA resulted in a three- to ten-fold increase in CAT expression from all constructs except from the construct shortened to position -91. DNAse1 protection analysis of the promoter region between -215 and the transcription initiation site revealed numerous protected regions, including two AP1-like binding sites (AP1a and AP1b) and one CRE-like element. Site-directed mutagenesis of the AP1a site or of the CRE-like site resulted in the loss of basal CAT activity and abolished the PMA effect, whereas mutagenesis of AP1b only partially inhibited basal and PMA-mediated expression. Our results suggest that the PAI-2 promoter contains at least two elements required for basal gene transcription and PMA-mediated induction. Images PMID:1650454

  6. Receptor-Targeted Nanoparticles for In Vivo Imaging of Breast Cancer

    PubMed Central

    Yang, Lily; Peng, Xiang-Hong; Wang, Y. Andrew; Wang, Xiaoxia; Cao, Zehong; Ni, Chunchun; Karna, Prasanthi; Zhang, Xinjian; Wood, William C.; Gao, Xiaohu; Nie, Shuming; Mao, Hui

    2009-01-01

    Purpose Cell surface receptor-targeted magnetic iron oxide (IO) nanoparticles provide molecular magnetic resonance imaging (MRI) contrast agents for improving specificity of the detection of human cancer. Experimental design The present study reports the development of a novel targeted IO nanoparticle using a recombinant peptide containing the amino-terminal fragment (ATF) of urokinase plasminogen activator conjugated to IO nanoparticles (ATF-IO). This nanoparticle targets urokinase plasminogen activator receptor (uPAR), which is overexpressed in breast cancer tissues. Results ATF-IO nanoparticles are able to specifically bind to and be internalized by uPAR-expressing tumor cells. Systemic delivery of ATF-IO nanoparticles into mice bearing subcutaneous and intraperitoneal mammary tumors leads to the accumulation of the particles in tumors, generating a strong MRI contrast detectable by a clinical MRI scanner at a field strength of 3 Tesla. Target specificity of ATF-IO nanoparticles demonstrated by in vivo MRI is further confirmed by near infrared (NIR) fluorescence imaging of the mammary tumors using NIR dye-labeled ATF peptides conjugated to IO nanoparticles. Furthermore, mice administered ATF-IO nanoparticles exhibit lower uptake of the particles in the liver and spleen compared to those receiving non-targeted IO nanoparticles. Conclusions Our results suggest that uPAR-targeted ATF-IO nanoparticles have potential as molecularly-targeted, dual modality imaging agents for in vivo imaging of breast cancer. PMID:19584158

  7. Xenon is an inhibitor of tissue-plasminogen activator: adverse and beneficial effects in a rat model of thromboembolic stroke

    PubMed Central

    David, Hélène N; Haelewyn, Benoît; Risso, Jean-Jacques; Colloc'h, Nathalie; Abraini, Jacques H

    2010-01-01

    Preclinical evidence in rodents has proven that xenon may be a very promising neuroprotective agent for treating acute ischemic stroke. This has led to the general thinking that clinical trials with xenon could be initiated in acute stroke patients in a next future. However, an unappreciated physicochemical property of xenon has been that this gas also binds to the active site of a series of serine proteases. Because the active site of serine proteases is structurally conserved, we have hypothesized and investigated whether xenon may alter the catalytic efficiency of tissue-type plasminogen activator (tPA), a serine protease that is the only approved therapy for acute ischemic stroke today. Here, using molecular modeling and in vitro and in vivo studies, we show (1) xenon is a tPA inhibitor; (2) intraischemic xenon dose dependently inhibits tPA-induced thrombolysis and subsequent reduction of ischemic brain damage; (3) postischemic xenon virtually suppresses ischemic brain damage and tPA-induced brain hemorrhages and disruption of the blood–brain barrier. Taken together, these data indicate (1) xenon should not be administered before or together with tPA therapy; (2) xenon could be a golden standard for treating acute ischemic stroke if given after tPA-induced reperfusion, with both unique neuroprotective and antiproteolytic (anti-hemorrhaging) properties. PMID:20087367

  8. The conserved potassium channel filter can have distinct ion binding profiles: Structural analysis of rubidium, cesium, and barium binding in NaK2K

    PubMed Central

    Lam, Yee Ling; Zeng, Weizhong; Sauer, David Bryant

    2014-01-01

    Potassium channels are highly selective for K+ over the smaller Na+. Intriguingly, they are permeable to larger monovalent cations such as Rb+ and Cs+ but are specifically blocked by the similarly sized Ba2+. In this study, we used structural analysis to determine the binding profiles for these permeant and blocking ions in the selectivity filter of the potassium-selective NaK channel mutant NaK2K and also performed permeation experiments using single-channel recordings. Our data revealed that some ion binding properties of NaK2K are distinct from those of the canonical K+ channels KcsA and MthK. Rb+ bound at sites 1, 3, and 4 in NaK2K, as it does in KcsA. Cs+, however, bound predominantly at sites 1 and 3 in NaK2K, whereas it binds at sites 1, 3, and 4 in KcsA. Moreover, Ba2+ binding in NaK2K was distinct from that which has been observed in KcsA and MthK, even though all of these channels show similar Ba2+ block. In the presence of K+, Ba2+ bound to the NaK2K channel at site 3 in conjunction with a K+ at site 1; this led to a prolonged block of the channel (the external K+-dependent Ba2+ lock-in state). In the absence of K+, however, Ba2+ acts as a permeating blocker. We found that, under these conditions, Ba2+ bound at sites 1 or 0 as well as site 3, allowing it to enter the filter from the intracellular side and exit from the extracellular side. The difference in the Ba2+ binding profile in the presence and absence of K+ thus provides a structural explanation for the short and prolonged Ba2+ block observed in NaK2K. PMID:25024267

  9. The conserved potassium channel filter can have distinct ion binding profiles: structural analysis of rubidium, cesium, and barium binding in NaK2K.

    PubMed

    Lam, Yee Ling; Zeng, Weizhong; Sauer, David Bryant; Jiang, Youxing

    2014-08-01

    Potassium channels are highly selective for K(+) over the smaller Na(+). Intriguingly, they are permeable to larger monovalent cations such as Rb(+) and Cs(+) but are specifically blocked by the similarly sized Ba(2+). In this study, we used structural analysis to determine the binding profiles for these permeant and blocking ions in the selectivity filter of the potassium-selective NaK channel mutant NaK2K and also performed permeation experiments using single-channel recordings. Our data revealed that some ion binding properties of NaK2K are distinct from those of the canonical K(+) channels KcsA and MthK. Rb(+) bound at sites 1, 3, and 4 in NaK2K, as it does in KcsA. Cs(+), however, bound predominantly at sites 1 and 3 in NaK2K, whereas it binds at sites 1, 3, and 4 in KcsA. Moreover, Ba(2+) binding in NaK2K was distinct from that which has been observed in KcsA and MthK, even though all of these channels show similar Ba(2+) block. In the presence of K(+), Ba(2+) bound to the NaK2K channel at site 3 in conjunction with a K(+) at site 1; this led to a prolonged block of the channel (the external K(+)-dependent Ba(2+) lock-in state). In the absence of K(+), however, Ba(2+) acts as a permeating blocker. We found that, under these conditions, Ba(2+) bound at sites 1 or 0 as well as site 3, allowing it to enter the filter from the intracellular side and exit from the extracellular side. The difference in the Ba(2+) binding profile in the presence and absence of K(+) thus provides a structural explanation for the short and prolonged Ba(2+) block observed in NaK2K. © 2014 Lam et al.

  10. The blocking reagent optimization for the magnetoelastic biosensor

    NASA Astrophysics Data System (ADS)

    Hu, Jiajia; Chai, Yating; Horikawa, Shin; Wikle, Howard C.; Wang, Feng'en; Du, Songtao; Chin, Bryan A.; Hu, Jing

    2015-06-01

    The wireless phage-based magnetoelastic (ME) biosensor has proven to be promising for real-time detection of pathogenic bacteria on fresh produces. The ME biosensor consists of a freestanding ME resonator as the signal transducer and filamentous phage as the biomolecular-recognition element, which can specifically bind to a pathogen of interest. Due to the Joule magnetostriction effect, the biosensors can be placed into mechanical resonance when subjected to a time-varying magnetic field alternating at the sensor's resonant frequency. Upon the attachment of the target pathogen, the mass of the biosensor increases, thereby decreasing its resonant frequency. This paper presents an investigation of blocking reagents immobilization for detecting Salmonella Typhimurium on fresh food surfaces. Three different blocking reagents (BSA, SuperBlock blocking buffer, and blocker BLOTTO) were used and compared. The optical microscope was used for bacterial cells binding observation. Student t-test was used to statistically analysis the experiment results. The results shows that SuperBlock blocking buffer and blocker BLOTTO have much better blocking performance than usually used BSA.

  11. Fibrinolysis and Proliferative Endarteritis: Two Related Processes in Chronic Infections? The Model of the Blood-Borne Pathogen Dirofilaria immitis

    PubMed Central

    González-Miguel, Javier; Morchón, Rodrigo; Siles-Lucas, Mar; Simón, Fernando

    2015-01-01

    The interaction between blood-borne pathogens and fibrinolysis is one of the most important mechanisms that mediate invasion and the establishment of infectious agents in their hosts. However, overproduction of plasmin (final product of the route) has been related in other contexts to proliferation and migration of the arterial wall cells and degradation of the extracellular matrix. We have recently identified fibrinolysis-activating antigens from Dirofilaria immitis, a blood-borne parasite whose key pathological event (proliferative endarteritis) is produced by similar mechanisms to those indicated above. The objective of this work is to study how two of this antigens [actin (ACT) and fructose-bisphosphate aldolase (FBAL)] highly conserved in pathogens, activate fibrinolysis and to establish a relationship between this activation and the development of proliferative endarteritis during cardiopulmonary dirofilariasis. We demonstrate that both proteins bind plasminogen, enhance plasmin generation, stimulate the expression of the fibrinolytic activators tPA and uPA in endothelial cell cultures and are located on the surface of the worm in contact with the host’s blood. ELISA, western blot and immunofluorescence techniques were employed for this purpose. Additionally, the implication of lysine residues in this interaction was analyzed by bioinformatics. The involvement of plasmin generated by the ACT/FBAL and plasminogen binding in cell proliferation and migration, and degradation of the extracellular matrix were shown in an “in vitro” model of endothelial and smooth muscle cells in culture. The obtained results indicate that ACT and FBAL from D. immitis activate fibrinolysis, which could be used by the parasite like a survival mechanism to avoid the clot formation. However, long-term overproduction of plasmin can trigger pathological events similar to those described in the emergence of proliferative endarteritis. Due to the high degree of evolutionary conservation of these antigens, similar processes may occur in other blood-borne pathogens. PMID:25875022

  12. CRYO-EM STRUCTURES OF THE ACTIN:TROPOMYOSIN FILAMENT REVEAL THE MECHANISM FOR THE TRANSITION FROM C- TO M-STATE

    PubMed Central

    Sousa, Duncan R.; Stagg, Scott M.; Stroupe, M. Elizabeth

    2013-01-01

    Tropomyosin is a key factor in the molecular mechanisms that regulate the binding of myosin motors to actin filaments in most eukaryotic cells. This regulation is achieved by the azimuthal repositioning of tropomyosin along the actin:tropomyosin:troponin thin filament to block or expose myosin binding sites on actin. In striated muscle, including involuntary cardiac muscle, tropomyosin regulates muscle contraction by coupling Ca2+ binding to troponin with myosin binding to the thin filament. In smooth muscle, the switch is the post-translational modification of the myosin. Depending on the activation state of troponin and the binding state of myosin, tropomyosin can occupy the blocked, closed, or open position on actin. Using native cryogenic 3DEM, we have directly resolved and visualized cardiac and gizzard muscle tropomyosin on filamentous actin in the position that corresponds to the closed state. From the 8-Å resolution structure of the reconstituted Ac:Tm filament formed with gizzard-derived Tm we discuss two possible mechanisms for the transition from closed to open state and describe the role Tm plays in blocking myosin tight binding in the closed state position. PMID:24021812

  13. Evidence for specific annexin I-binding proteins on human monocytes.

    PubMed Central

    Goulding, N J; Pan, L; Wardwell, K; Guyre, V C; Guyre, P M

    1996-01-01

    Recombinant human annexin I and a monoclonal antibody specific for this protein (mAb 1B) were used to investigate surface binding of this member of the annexin family of proteins to peripheral blood monocytes. Flow cytometric analysis demonstrated trypsin-sensitive, saturable binding of annexin I to human peripheral blood monocytes but not to admixed lymphocytes. A monoclonal antibody that blocks the anti-phospholipase activity of annexin I also blocked its binding to monocytes. These findings suggest the presence of specific binding sites on monocytes. Furthermore, surface iodination, immunoprecipitation and SDS/PAGE analysis were used to identify two annexin I-binding proteins on the surface of monocytes with molecular masses of 15 kDa and 18 kDa respectively. The identification and characterization of these annexin I-binding molecules should help us to better understand the specific interactions of annexin I with monocytes that lead to down-regulation of pro-inflammatory cell functions. PMID:8687405

  14. Photonic Activation of Plasminogen Induced by Low Dose UVB

    PubMed Central

    Correia, Manuel; Snabe, Torben; Thiagarajan, Viruthachalam; Petersen, Steffen Bjørn; Campos, Sara R. R.; Baptista, António M.; Neves-Petersen, Maria Teresa

    2015-01-01

    Activation of plasminogen to its active form plasmin is essential for several key mechanisms, including the dissolution of blood clots. Activation occurs naturally via enzymatic proteolysis. We report that activation can be achieved with 280 nm light. A 2.6 fold increase in proteolytic activity was observed after 10 min illumination of human plasminogen. Irradiance levels used are in the same order of magnitude of the UVB solar irradiance. Activation is correlated with light induced disruption of disulphide bridges upon UVB excitation of the aromatic residues and with the formation of photochemical products, e.g. dityrosine and N-formylkynurenine. Most of the protein fold is maintained after 10 min illumination since no major changes are observed in the near-UV CD spectrum. Far-UV CD shows loss of secondary structure after illumination (33.4% signal loss at 206 nm). Thermal unfolding CD studies show that plasminogen retains a native like cooperative transition at ~70 ºC after UV-illumination. We propose that UVB activation of plasminogen occurs upon photo-cleavage of a functional allosteric disulphide bond, Cys737-Cys765, located in the catalytic domain and in van der Waals contact with Trp761 (4.3 Å). Such proximity makes its disruption very likely, which may occur upon electron transfer from excited Trp761. Reduction of Cys737-Cys765 will result in likely conformational changes in the catalytic site. Molecular dynamics simulations reveal that reduction of Cys737-Cys765 in plasminogen leads to an increase of the fluctuations of loop 760–765, the S1-entrance frame located close to the active site. These fluctuations affect the range of solvent exposure of the catalytic triad, particularly of Asp646 and Ser74, which acquire an exposure profile similar to the values in plasmin. The presented photonic mechanism of plasminogen activation has the potential to be used in clinical applications, possibly together with other enzymatic treatments for the elimination of blood clots. PMID:25635856

  15. Progesterone receptor membrane component-1 (PGRMC1) is the mediator of progesterone's antiapoptotic action in spontaneously immortalized granulosa cells as revealed by PGRMC1 small interfering ribonucleic acid treatment and functional analysis of PGRMC1 mutations.

    PubMed

    Peluso, John J; Romak, Jonathan; Liu, Xiufang

    2008-02-01

    Progesterone (P4) receptor membrane component-1 (PGRMC1) and its binding partner, plasminogen activator inhibitor 1 RNA binding protein (PAIRBP1) are thought to form a complex that functions as membrane receptor for P4. The present investigations confirm PGRMC1's role in this membrane receptor complex by demonstrating that depleting PGMRC1 with PGRMC1 small interfering RNA results in a 60% decline in [(3)H]P4 binding and the loss of P4's antiapoptotic action. Studies conducted on partially purified GFP-PGRMC1 fusion protein indicate that [(3)H]P4 specifically binds to PGRMC1 at a single site with an apparent K(d) of about 35 nm. In addition, experiments using various deletion mutations reveal that the entire PGRMC1 molecule is required for maximal [(3)H]P4 binding and P4 responsiveness. Analysis of the binding data also suggests that the P4 binding site is within a segment of PGRMC1 that is composed of the transmembrane domain and the initial segment of the C terminus. Interestingly, PAIRBP1 appears to bind to the C terminus between amino acids 70-130, which is distal to the putative P4 binding site. Taken together, these data provide compelling evidence that PGRMC1 is the P4 binding protein that mediates P4's antiapoptotic action. Moreover, the deletion mutation studies indicate that each domain of PGRMC1 plays an essential role in modulating PGRMC1's capacity to both bind and respond to P4. Additional studies are required to more precisely delineate the role of each PGRMC1 domain in transducing P4's antiapoptotic action.

  16. Resolving distinct molecular origins for copper effects on PAI-1.

    PubMed

    Bucci, Joel C; McClintock, Carlee S; Chu, Yuzhuo; Ware, Gregory L; McConnell, Kayla D; Emerson, Joseph P; Peterson, Cynthia B

    2017-10-01

    Components of the fibrinolytic system are subjected to stringent control to maintain proper hemostasis. Central to this regulation is the serpin plasminogen activator inhibitor-1 (PAI-1), which is responsible for specific and rapid inhibition of fibrinolytic proteases. Active PAI-1 is inherently unstable and readily converts to a latent, inactive form. The binding of vitronectin and other ligands influences stability of active PAI-1. Our laboratory recently observed reciprocal effects on the stability of active PAI-1 in the presence of transition metals, such as copper, depending on the whether vitronectin was also present (Thompson et al. Protein Sci 20:353-365, 2011). To better understand the molecular basis for these copper effects on PAI-1, we have developed a gel-based copper sensitivity assay that can be used to assess the copper concentrations that accelerate the conversion of active PAI-1 to a latent form. The copper sensitivity of wild-type PAI-1 was compared with variants lacking N-terminal histidine residues hypothesized to be involved in copper binding. In these PAI-1 variants, we observed significant differences in copper sensitivity, and these data were corroborated by latency conversion kinetics and thermodynamics of copper binding by isothermal titration calorimetry. These studies identified a copper-binding site involving histidines at positions 2 and 3 that confers a remarkable stabilization of PAI-1 beyond what is observed with vitronectin alone. A second site, independent from the two histidines, binds metal and increases the rate of the latency conversion.

  17. Plasminogen Activator Production Accompanies Loss of Anchorage Regulation in Transformation of Primary Rat Embryo Cells by Simian Virus 40

    PubMed Central

    Pollack, R.; Risser, R.; Conlon, S.; Rifkin, D.

    1974-01-01

    We have isolated several lines of rat embryo cells transformed by simian virus 40. All these lines are fully transformed with regard to saturation density and serum sensitivity, but they differ greatly in their anchorage dependence, as assayed by efficiency of plating in methyl cellulose suspension. This set of lines reveals a consistent relation of plasminogen activator production to plating efficiency in methyl cellulose. T-antigen-positive transformed lines that synthesize activator grow in methyl cellulose suspension, while T-antigen-positive transformed lines that do not synthesize activator fail to form colonies in suspension. Normal rat embryo cells produce very little plasminogen activator and do not grow in methyl cellulose. Sera that permit high levels of plasmin formation and activity support growth in semi-solid medium better than sera whose plasminogen is activated poorly and/or sera that contain inhibitors to plasmin. PMID:4373730

  18. Quebec platelet disorder: features, pathogenesis and treatment.

    PubMed

    Diamandis, Maria; Veljkovic, D Kika; Maurer-Spurej, Elisabeth; Rivard, Georges E; Hayward, Catherine P M

    2008-03-01

    Quebec platelet disorder (QPD) is a rare, autosomal-dominant, inherited bleeding disorder that is associated with unique abnormalities in fibrinolysis. Its hallmark features are delayed-onset bleeding following hemostatic challenges that responds to fibrinolytic inhibitor therapy and increased expression and storage of the fibrinolytic enzyme urokinase plasminogen activator in platelets, without increased plasma urokinase plasminogen activator or systemic fibrinolysis. The increased urokinase plasminogen activator in QPD platelets is only partially inhibited, and, as a result, there is intraplatelet generation of plasmin, and secondary degradation of many platelet alpha-granule proteins. During clot formation, the urokinase plasminogen activator released by QPD platelets leads to platelet-dependent increased fibrinolysis, and this is postulated to be a major contributor to QPD bleeding. The focus of the present review is to summarize the current state of knowledge on QPD, including the history of this disorder, its clinical and laboratory features, and recommended approaches for its diagnosis and treatment.

  19. Antagonism of Lidocaine Inhibition by Open-Channel Blockers That Generate Resurgent Na Current

    PubMed Central

    Bant, Jason S.; Aman, Teresa K.; Raman, Indira M.

    2013-01-01

    Na channels that generate resurgent current express an intracellular endogenous open-channel blocking protein, whose rapid binding upon depolarization and unbinding upon repolarization minimizes fast and slow inactivation. Na channels also bind exogenous compounds, such as lidocaine, which functionally stabilize inactivation. Like the endogenous blocking protein, these use-dependent inhibitors bind most effectively at depolarized potentials, raising the question of how lidocaine-like compounds affect neurons with resurgent Na current. We therefore recorded lidocaine inhibition of voltage-clamped, tetrodotoxin-sensitive Na currents in mouse Purkinje neurons, which express a native blocking protein, and in mouse hippocampal CA3 pyramidal neurons with and without a peptide from the cytoplasmic tail of NaVβ4 (the β4 peptide), which mimics endogenous open-channel block. To control channel states during drug exposure, lidocaine was applied with rapid-solution exchange techniques during steps to specific voltages. Inhibition of Na currents by lidocaine was diminished by either the β4 peptide or the native blocking protein. In peptide-free CA3 cells, prolonging channel opening with a site-3 toxin, anemone toxin II, reduced lidocaine inhibition; this effect was largely occluded by open-channel blockers, suggesting that lidocaine binding is favored by inactivation but prevented by open-channel block. In constant 100 μM lidocaine, current-clamped Purkinje cells continued to fire spontaneously. Similarly, the β4 peptide reduced lidocaine-dependent suppression of spiking in CA3 neurons in slices. Thus, the open-channel blocking protein responsible for resurgent current acts as a natural antagonist of lidocaine. Neurons with resurgent current may therefore be less susceptible to use-dependent Na channel inhibitors used as local anesthetic, antiarrhythmic, and anticonvulsant drugs. PMID:23486968

  20. Tetrapentylammonium block of chloramine-T and veratridine modified rat brain type IIA sodium channels

    PubMed Central

    Ghatpande, A S; Rao, S; Sikdar, S K

    2001-01-01

    Tetrapentylammonium (TPeA) block of rat brain type IIA sodium channel α subunit was studied using whole cell patch clamp. Results indicate that TPeA blocks the inactivating brain sodium channel in a potential and use-dependent manner similar to that of the cardiac sodium channel. Removal of inactivation using chloramine-T (CT) unmasks a time-dependent block by TPeA consistent with slow blocking kinetics. On the other hand, no time dependence is observed when inactivation is abolished by modification with veratridine. TPeA does not bind in a potential-dependent fashion to veratridine-modified channels and does not significantly affect gating of veratridine-modified channels suggesting that high affinity binding of TPeA to the brain sodium channel is lost after veratridine modification. PMID:11309247

  1. Role of the pH in state-dependent blockade of hERG currents

    NASA Astrophysics Data System (ADS)

    Wang, Yibo; Guo, Jiqing; Perissinotti, Laura L.; Lees-Miller, James; Teng, Guoqi; Durdagi, Serdar; Duff, Henry J.; Noskov, Sergei Yu.

    2016-10-01

    Mutations that reduce inactivation of the voltage-gated Kv11.1 potassium channel (hERG) reduce binding for a number of blockers. State specific block of the inactivated state of hERG block may increase risks of drug-induced Torsade de pointes. In this study, molecular simulations of dofetilide binding to the previously developed and experimentally validated models of the hERG channel in open and open-inactivated states were combined with voltage-clamp experiments to unravel the mechanism(s) of state-dependent blockade. The computations of the free energy profiles associated with the drug block to its binding pocket in the intra-cavitary site display startling differences in the open and open-inactivated states of the channel. It was also found that drug ionization may play a crucial role in preferential targeting to the open-inactivated state of the pore domain. pH-dependent hERG blockade by dofetilie was studied with patch-clamp recordings. The results show that low pH increases the extent and speed of drug-induced block. Both experimental and computational findings indicate that binding to the open-inactivated state is of key importance to our understanding of the dofetilide’s mode of action.

  2. Prevotella intermedia stimulates tissue-type plasminogen activator and plasminogen activator inhibitor-2 expression via multiple signaling pathways in human periodontal ligament cells.

    PubMed

    Guan, Su-Min; He, Jian-Jun; Zhang, Ming; Shu, Lei

    2011-06-01

    Prevotella intermedia is an important periodontal pathogen that induces various inflammatory and immune responses. In this study, we investigated the effects of P. intermedia on the plasminogen system in human periodontal ligament (hPDL) cells and explored the signaling pathways involved. Using semi-quantitative reverse transcription (RT)-PCR and quantitative real-time RT-qPCR, we demonstrated that P. intermedia challenge increased tissue-type plasminogen activator (tPA) and plasminogen activator inhibitor (PAI)-2 expression in a concentration- and time-dependent manner, but exerted no influence on urokinase-type plasminogen activator and PAI-1mRNA expression in hPDL cells. Prevotella intermedia stimulation also enhanced tPA protein secretion as confirmed by enzyme-linked immunosorbent assay. Western blot results revealed that P. intermedia treatment increased phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 kinase (p38). ERK, JNK and protein kinase C inhibitors significantly attenuated the P. intermedia-induced tPA and PAI-2 expression. Furthermore, p38 and phosphatidylinositol 3-kinase inhibitors markedly decreased PAI-2 expression, whereas they showed no or little inhibition on tPA expression. In contrast, inhibition of protein kinase A greatly enhanced the upregulatory effect of P. intermedia on tPA and PAI-2 expression. Our results suggest that P. intermedia may contribute to periodontal tissue destruction by upregulating tPA and PAI-2 expression in hPDL cells via multiple signaling pathways. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  3. Azadirachtin interacts with the tumor necrosis factor (TNF) binding domain of its receptors and inhibits TNF-induced biological responses.

    PubMed

    Thoh, Maikho; Kumar, Pankaj; Nagarajaram, Hampathalu A; Manna, Sunil K

    2010-02-19

    The role of azadirachtin, an active component of a medicinal plant Neem (Azadirachta indica), on TNF-induced cell signaling in human cell lines was investigated. Azadirachtin blocks TNF-induced activation of nuclear factor kappaB (NF-kappaB) and also expression of NF-kappaB-dependent genes such as adhesion molecules and cyclooxygenase 2. Azadirachtin inhibits the inhibitory subunit of NF-kappaB (IkappaB alpha) phosphorylation and thereby its degradation and RelA (p65) nuclear translocation. It blocks IkappaB alpha kinase (IKK) activity ex vivo, but not in vitro. Surprisingly, azadirachtin blocks NF-kappaB DNA binding activity in transfected cells with TNF receptor-associated factor (TRAF)2, TNF receptor-associated death domain (TRADD), IKK, or p65, but not with TNFR, suggesting its effect is at the TNFR level. Azadirachtin blocks binding of TNF, but not IL-1, IL-4, IL-8, or TNF-related apoptosis-inducing ligand (TRAIL) with its respective receptors. Anti-TNFR antibody or TNF protects azadirachtin-mediated down-regulation of TNFRs. Further, in silico data suggest that azadirachtin strongly binds in the TNF binding site of TNFR. Overall, our data suggest that azadirachtin modulates cell surface TNFRs thereby decreasing TNF-induced biological responses. Thus, azadirachtin exerts an anti-inflammatory response by a novel pathway, which may be beneficial for anti-inflammatory therapy.

  4. Azadirachtin Interacts with the Tumor Necrosis Factor (TNF) Binding Domain of Its Receptors and Inhibits TNF-induced Biological Responses*

    PubMed Central

    Thoh, Maikho; Kumar, Pankaj; Nagarajaram, Hampathalu A.; Manna, Sunil K.

    2010-01-01

    The role of azadirachtin, an active component of a medicinal plant Neem (Azadirachta indica), on TNF-induced cell signaling in human cell lines was investigated. Azadirachtin blocks TNF-induced activation of nuclear factor κB (NF-κB) and also expression of NF-κB-dependent genes such as adhesion molecules and cyclooxygenase 2. Azadirachtin inhibits the inhibitory subunit of NF-κB (IκBα) phosphorylation and thereby its degradation and RelA (p65) nuclear translocation. It blocks IκBα kinase (IKK) activity ex vivo, but not in vitro. Surprisingly, azadirachtin blocks NF-κB DNA binding activity in transfected cells with TNF receptor-associated factor (TRAF)2, TNF receptor-associated death domain (TRADD), IKK, or p65, but not with TNFR, suggesting its effect is at the TNFR level. Azadirachtin blocks binding of TNF, but not IL-1, IL-4, IL-8, or TNF-related apoptosis-inducing ligand (TRAIL) with its respective receptors. Anti-TNFR antibody or TNF protects azadirachtin-mediated down-regulation of TNFRs. Further, in silico data suggest that azadirachtin strongly binds in the TNF binding site of TNFR. Overall, our data suggest that azadirachtin modulates cell surface TNFRs thereby decreasing TNF-induced biological responses. Thus, azadirachtin exerts an anti-inflammatory response by a novel pathway, which may be beneficial for anti-inflammatory therapy. PMID:20018848

  5. Improved neovascularization and wound repair by targeting human basic fibroblast growth factor (bFGF) to fibrin.

    PubMed

    Zhao, Wenxue; Han, Qianqian; Lin, Hang; Gao, Yuan; Sun, Wenjie; Zhao, Yannan; Wang, Bin; Chen, Bing; Xiao, Zhifeng; Dai, Jianwu

    2008-10-01

    Targeted therapy is a new generation of therapeutics, where two critical factors are involved. One is the particular molecular target, and the other is the specific target-binding drug. In this work, the fibrin, a main component of plasma clot at wound sites, was used as the target for human bFGF, aiming to improve therapeutic neovascularization and wound repair. To endow bFGF with fibrin-targeting ability, a fibrin-binding peptide Kringle1 (K1), derived from human plasminogen, was fused to human bFGF. The recombinant K1bFGF showed high fibrin and plasma-clot-binding ability. When applied to the wound sites with plasma clots, K1bFGF induced robust neovascularization and improved wound healing. To extend the application of K1bFGF to other cases where no plasma clots exist, we developed a fibrin-scaffold/K1bFGF system. This system could induce localized neovascularization by delivery of K1bFGF in a sustained and site-targeting manner, and provide a microenvironment promoting cell growth and tissue regeneration. In summary, we successfully used the pathologic environment fibrin clot as the target for bFGF, and based on which bFGF was designed into a targeting agent by introduction of a fibrin-binding peptide. This provides a potential approach to improve therapeutic neovascularization and wound repair.

  6. Identifying a Small Molecule Blocking Antigen Presentation in Autoimmune Thyroiditis.

    PubMed

    Li, Cheuk Wun; Menconi, Francesca; Osman, Roman; Mezei, Mihaly; Jacobson, Eric M; Concepcion, Erlinda; David, Chella S; Kastrinsky, David B; Ohlmeyer, Michael; Tomer, Yaron

    2016-02-19

    We previously showed that an HLA-DR variant containing arginine at position 74 of the DRβ1 chain (DRβ1-Arg74) is the specific HLA class II variant conferring risk for autoimmune thyroid diseases (AITD). We also identified 5 thyroglobulin (Tg) peptides that bound to DRβ1-Arg74. We hypothesized that blocking the binding of these peptides to DRβ1-Arg74 could block the continuous T-cell activation in thyroiditis needed to maintain the autoimmune response to the thyroid. The aim of the current study was to identify small molecules that can block T-cell activation by Tg peptides presented within DRβ1-Arg74 pockets. We screened a large and diverse library of compounds and identified one compound, cepharanthine that was able to block peptide binding to DRβ1-Arg74. We then showed that Tg.2098 is the dominant peptide when inducing experimental autoimmune thyroiditis (EAT) in NOD mice expressing human DRβ1-Arg74. Furthermore, cepharanthine blocked T-cell activation by thyroglobulin peptides, in particular Tg.2098 in mice that were induced with EAT. For the first time we identified a small molecule that can block Tg peptide binding and presentation to T-cells in autoimmune thyroiditis. If confirmed cepharanthine could potentially have a role in treating human AITD. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Echinostoma caproni: identification of enolase in excretory/secretory products, molecular cloning, and functional expression.

    PubMed

    Marcilla, Antonio; Pérez-García, Ana; Espert, Ana; Bernal, Dolores; Muñoz-Antolí, Carla; Esteban, José Guillermo; Toledo, Rafael

    2007-09-01

    In order to investigate molecules that could be involved in host-trematode relationships, we have analysed the excretory/secretory products (ESP) of Echinostoma caproni following a proteomic approach. Actin, Gluthathione S-transferase (GST) and enolase have been identified in the ESP. Enolase, observed to be one of the most abundant proteins, was further characterized. The molecular cloning and in vitro expression in Escherichia coli of E. caproni enolase allowed us to determine that the protein contains 431 amino acids and a theoretical MW of 46272 Da. E. caproni enolase shows high homology to other trematode enolases. The recombinant protein binds specifically to human plasminogen in vitro, as observed for the native protein, confirming its properties as a host-interacting molecule.

  8. LeuT-Desipramine Structure Reveals How Antidepressants Block Neurotransmitter Reuptake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou,Z.; Zhen, J.; Karpowich, N.

    2007-01-01

    Tricyclic antidepressants exert their pharmacological effect -- inhibiting the reuptake of serotonin, norepinephrine, and dopamine -- by directly blocking neurotransmitter transporters (SERT, NET, and DAT, respectively) in the presynaptic membrane. The drug-binding site and the mechanism of this inhibition are poorly understood. We determined the crystal structure at 2.9 angstroms of the bacterial leucine transporter (LeuT), a homolog of SERT, NET, and DAT, in complex with leucine and the antidepressant desipramine. Desipramine binds at the inner end of the extracellular cavity of the transporter and is held in place by a hairpin loop and by a salt bridge. This bindingmore » site is separated from the leucine-binding site by the extracellular gate of the transporter. By directly locking the gate, desipramine prevents conformational changes and blocks substrate transport. Mutagenesis experiments on human SERT and DAT indicate that both the desipramine-binding site and its inhibition mechanism are probably conserved in the human neurotransmitter transporters.« less

  9. Dose-ranging study of the novel recombinant plasminogen activator BM 06.022 in healthy volunteers.

    PubMed

    Martin, U; von Möllendorff, E; Akpan, W; Kientsch-Engel, R; Kaufmann, B; Neugebauer, G

    1991-10-01

    The novel recombinant plasminogen activator BM 06.022 consists of the kringle 2 and protease domains of human tissue-type plasminogen activator and is unglycosylated because of its expression in Escherichia coli cells. Pharmacokinetics for activity and hemostatic effects of BM 06.022 were studied in 18 healthy male volunteers after an intravenous bolus injection over 2 minutes. BM 06.022 was administered successively at doses of 0.1125, 0.55, 2.2, 3.3, 4.4, and 5.5 MU to three volunteers. Plasma fibrinogen was unchanged; effects of BM 06.022 were observed on plasminogen only at higher doses, and dose-dependent effects were seen on alpha 2-antiplasmin and fibrin D-dimers. The concentration of plasminogen and alpha 2-antiplasmin was 87% +/- 3% and 79% +/- 3%, respectively, of baseline 2 hours after injection of 5.5 MU of BM 06.022. Fibrin D-dimers were highest with 1147 +/- 380 ng/ml at 5.5 MU of BM 06.022. The area under the activity concentration-time curve (AUC) increased dose-dependently and linearly. At 5.5 MU of BM 06.022, the AUC was 313 +/- 47 IU.hr.ml-1, the total plasma clearance was 306 +/- 40 ml/min, and the half-life was 14.4 +/- 1.1 minutes.

  10. Functional Stability of Plasminogen Activator Inhibitor-1

    PubMed Central

    Kuru, Pinar; Toksoy Oner, Ebru; Agirbasli, Mehmet

    2014-01-01

    Plasminogen activator inhibitor-1 (PAI-1) is the main inhibitor of plasminogen activators, such as tissue-type plasminogen activator (t-PA) and urokinase-type plasminogen activator (u-PA), and a major regulator of the fibrinolytic system. PAI-1 plays a pivotal role in acute thrombotic events such as deep vein thrombosis (DVT) and myocardial infarction (MI). The biological effects of PAI-1 extend far beyond thrombosis including its critical role in fibrotic disorders, atherosclerosis, renal and pulmonary fibrosis, type-2 diabetes, and cancer. The conversion of PAI-1 from the active to the latent conformation appears to be unique among serpins in that it occurs spontaneously at a relatively rapid rate. Latency transition is believed to represent a regulatory mechanism, reducing the risk of thrombosis from a prolonged antifibrinolytic action of PAI-1. Thus, relying solely on plasma concentrations of PAI-1 without assessing its function may be misleading in interpreting the role of PAI-1 in many complex diseases. Environmental conditions, interaction with other proteins, mutations, and glycosylation are the main factors that have a significant impact on the stability of the PAI-1 structure. This review provides an overview on the current knowledge on PAI-1 especially importance of PAI-1 level and stability and highlights the potential use of PAI-1 inhibitors for treating cardiovascular disease. PMID:25386620

  11. Erythroblast Transformation by the Friend Spleen Focus-Forming Virus Is Associated with a Block in Erythropoietin-Induced STAT1 Phosphorylation and DNA Binding and Correlates with High Expression of the Hematopoietic Phosphatase SHP-1

    PubMed Central

    Nishigaki, Kazuo; Hanson, Charlotte; Ohashi, Takashi; Spadaccini, Angelo; Ruscetti, Sandra

    2006-01-01

    Infection of mice with Friend spleen focus-forming virus (SFFV) results in a multistage erythroleukemia. In the first stage, the SFFV envelope glycoprotein interacts with the erythropoietin receptor and a short form of the receptor tyrosine kinase sf-Stk, resulting in constitutive activation of signal transducing molecules and the development of erythropoietin (Epo)-independent erythroid hyperplasia and polycythemia. The second stage results from the outgrowth of a rare virus-infected erythroid cell that expresses nonphysiological levels of the myeloid transcription factor PU.1. These cells exhibit a differentiation block and can be grown as murine erythroleukemia (MEL) cell lines. In this study, we examined SFFV MEL cells to determine whether their transformed phenotype was associated with a block in the activation of any Epo signal-transducing molecules. Our studies indicate that Epo- or SFFV-induced activation of STAT1/3 DNA binding activity is blocked in SFFV MEL cells. The block is at the level of tyrosine phosphorylation of STAT1, although Jak2 phosphorylation is not blocked in these cells. In contrast to Epo, alpha interferon can induce STAT1 phosphorylation and DNA binding in SFFV MEL cells. The SFFV-transformed cells were shown to express elevated levels of the hematopoietic phosphatase SHP-1, and treatment of the cells with a phosphatase inhibitor restored STAT1 tyrosine phosphorylation. MEL cells derived from Friend murine leukemia virus (MuLV) or ME26 MuLV-infected mice, which do not express PU.1, express lower levels of SHP-1 and are not blocked in STAT1/3 DNA-binding activity. Our studies suggest that SFFV-infected erythroid cells become transformed when differentiation signals activated by STAT1/3 are blocked due to high SHP-1 levels induced by inappropriate expression of the PU.1 protein. PMID:16731906

  12. The Streptococcus pyogenes serotype M49 Nra-Ralp3 transcriptional regulatory network and its control of virulence factor expression from the novel eno ralp3 epf sagA pathogenicity region.

    PubMed

    Kreikemeyer, Bernd; Nakata, Masanobu; Köller, Thomas; Hildisch, Hendrikje; Kourakos, Vassilios; Standar, Kerstin; Kawabata, Shigetada; Glocker, Michael O; Podbielski, Andreas

    2007-12-01

    Many Streptococcus pyogenes (group A streptococcus [GAS]) virulence factor- and transcriptional regulator-encoding genes cluster together in discrete genomic regions. Nra is a central regulator of the FCT region. Previous studies exclusively described Nra as a transcriptional repressor of adhesin and toxin genes. Here transcriptome and proteome analysis of a serotype M49 GAS strain and an isogenic Nra mutant of this strain revealed the complete Nra regulon profile. Nra is active in all growth phases tested, with the largest regulon in the transition phase. Almost exclusively, virulence factor-encoding genes are repressed by Nra; these genes include the GAS pilus operon, the capsule synthesis operon, the cytolysin-mediated translocation system genes, all Mga region core virulence genes, and genes encoding other regulators, like the Ihk/Irr system, Rgg, and two additional RofA-like protein family regulators. Surprisingly, our experiments revealed that Nra additionally acts as a positive regulator, mostly for genes encoding proteins and enzymes with metabolic functions. Epidemiological investigations revealed strong genetic linkage of one particular Nra-repressed regulator, Ralp3 (SPy0735), with a gene encoding Epf (extracellular protein factor from Streptococcus suis). In a serotype-specific fashion, this ralp3 epf gene block is integrated, most likely via transposition, into the eno sagA virulence gene block, which is present in all GAS serotypes. In GAS serotypes M1, M4, M12, M28, and M49 this novel discrete genetic region is therefore designated the eno ralp3 epf sagA (ERES) pathogenicity region. Functional experiments showed that Epf is a novel GAS plasminogen-binding protein and revealed that Ralp3 activity counteracts Nra and MsmR regulatory activity. In addition to the Mga and FCT regions, the ERES region is the third discrete chromosomal pathogenicity region. All of these regions are transcriptionally linked, adding another level of complexity to the known GAS growth phase-dependent regulatory network.

  13. The Streptococcus pyogenes Serotype M49 Nra-Ralp3 Transcriptional Regulatory Network and Its Control of Virulence Factor Expression from the Novel eno ralp3 epf sagA Pathogenicity Region▿ †

    PubMed Central

    Kreikemeyer, Bernd; Nakata, Masanobu; Köller, Thomas; Hildisch, Hendrikje; Kourakos, Vassilios; Standar, Kerstin; Kawabata, Shigetada; Glocker, Michael O.; Podbielski, Andreas

    2007-01-01

    Many Streptococcus pyogenes (group A streptococcus [GAS]) virulence factor- and transcriptional regulator-encoding genes cluster together in discrete genomic regions. Nra is a central regulator of the FCT region. Previous studies exclusively described Nra as a transcriptional repressor of adhesin and toxin genes. Here transcriptome and proteome analysis of a serotype M49 GAS strain and an isogenic Nra mutant of this strain revealed the complete Nra regulon profile. Nra is active in all growth phases tested, with the largest regulon in the transition phase. Almost exclusively, virulence factor-encoding genes are repressed by Nra; these genes include the GAS pilus operon, the capsule synthesis operon, the cytolysin-mediated translocation system genes, all Mga region core virulence genes, and genes encoding other regulators, like the Ihk/Irr system, Rgg, and two additional RofA-like protein family regulators. Surprisingly, our experiments revealed that Nra additionally acts as a positive regulator, mostly for genes encoding proteins and enzymes with metabolic functions. Epidemiological investigations revealed strong genetic linkage of one particular Nra-repressed regulator, Ralp3 (SPy0735), with a gene encoding Epf (extracellular protein factor from Streptococcus suis). In a serotype-specific fashion, this ralp3 epf gene block is integrated, most likely via transposition, into the eno sagA virulence gene block, which is present in all GAS serotypes. In GAS serotypes M1, M4, M12, M28, and M49 this novel discrete genetic region is therefore designated the eno ralp3 epf sagA (ERES) pathogenicity region. Functional experiments showed that Epf is a novel GAS plasminogen-binding protein and revealed that Ralp3 activity counteracts Nra and MsmR regulatory activity. In addition to the Mga and FCT regions, the ERES region is the third discrete chromosomal pathogenicity region. All of these regions are transcriptionally linked, adding another level of complexity to the known GAS growth phase-dependent regulatory network. PMID:17893125

  14. The epitope of monoclonal antibodies blocking erythrocyte invasion by Plasmodium falciparum map to the dimerization and receptor glycan binding sites of EBA-175.

    PubMed

    Ambroggio, Xavier; Jiang, Lubin; Aebig, Joan; Obiakor, Harold; Lukszo, Jan; Narum, David L

    2013-01-01

    The malaria parasite, Plasmodium falciparum, and related parasites use a variety of proteins with Duffy-Binding Like (DBL) domains to bind glycoproteins on the surface of host cells. Among these proteins, the 175 kDa erythrocyte binding antigen, EBA-175, specifically binds to glycophorin A on the surface of human erythrocytes during the process of merozoite invasion. The domain responsible for glycophorin A binding was identified as region II (RII) which contains two DBL domains, F1 and F2. The crystal structure of this region revealed a dimer that is presumed to represent the glycophorin A binding conformation as sialic acid binding sites and large cavities are observed at the dimer interface. The dimer interface is largely composed of two loops from within each monomer, identified as the F1 and F2 β-fingers that contact depressions in the opposing monomers in a similar manner. Previous studies have identified a panel of five monoclonal antibodies (mAbs) termed R215 to R218 and R256 that bind to RII and inhibit invasion of erythrocytes to varying extents. In this study, we predict the F2 β-finger region as the conformational epitope for mAbs, R215, R217, and R256, and confirm binding for the most effective blocking mAb R217 and R215 to a synthetic peptide mimic of the F2 β-finger. Localization of the epitope to the dimerization and glycan binding sites of EBA-175 RII and site-directed mutagenesis within the predicted epitope are consistent with R215 and R217 blocking erythrocyte invasion by Plasmodium falciparum by preventing formation of the EBA-175- glycophorin A complex.

  15. Locking mechanisms in degree-4 vertex origami structures

    NASA Astrophysics Data System (ADS)

    Fang, Hongbin; Li, Suyi; Xu, Jian; Wang, K. W.

    2016-04-01

    Origami has emerged as a potential tool for the design of mechanical metamaterials and metastructures whose novel properties originate from their crease patterns. Most of the attention in origami engineering has focused on the wellknown Miura-Ori, a folded tessellation that is flat-foldable for folded sheet and stacked blocks. This study advances the state of the art and expands the research field to investigate generic degree-4 vertex (4-vertex) origami, with a focus on facet-binding. In order to understand how facet-binding attributes to the mechanical properties of 4-vertex origami structures, geometries of the 4-vertex origami cells are analyzed and analytically expressed. Through repeating and stacking 4-vertex cells, origami sheets and stacked origami blocks can be constructed. Geometry analyses discover four mechanisms that will lead to the self-locking of 4-vertex origami cells, sheets, and stacked blocks: in-cell facet-binding, inlayer facet-binding, inter-layer facet binding, and in-layer and inter-layer facet-bindings. These mechanisms and the predicted self-locking phenomena are verified through 3D simulations and prototype experiments. Finally, this paper briefly introduces the unusual mechanical properties caused by the locking of 4-vertex origami structures. The research reported in this paper could foster a new breed of self-locking structures with various engineering applications.

  16. On optimizing the blocking step of indirect enzyme-linked immunosorbent assay for Epstein-Barr virus serology.

    PubMed

    Lim, Chun Shen; Krishnan, Gopala; Sam, Choon Kook; Ng, Ching Ching

    2013-01-16

    Because blocking agent occupies most binding surface of a solid phase, its ability to prevent nonspecific binding determines the signal-to-noise ratio (SNR) and reliability of an enzyme-linked immunosorbent assay (ELISA). We demonstrate a stepwise approach to seek a compatible blocking buffer for indirect ELISA, via a case-control study (n=176) of Epstein-Barr virus (EBV)-associated nasopharyngeal carcinoma (NPC). Regardless of case-control status, we found that synthetic polymer blocking agents, mainly Ficoll and poly(vinyl alcohol) (PVA) were able to provide homogeneous backgrounds among samples, as opposed to commonly used blocking agents, notably nonfat dry milk (NFDM). The SNRs for NPC samples that correspond to blocking using PVA were approximately 3-fold, on average, higher than those blocking using NFDM. Both intra- and inter-assay precisions of PVA-based assays were <14%. A blocking agent of choice should have tolerable sample backgrounds from both cases and controls to ensure the reliability of an immunoassay. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Fab antibodies capable of blocking T cells by competitive binding have the identical specificity but a higher affinity to the MHC-peptide-complex than the T cell receptor.

    PubMed

    Neumann, Frank; Sturm, Christine; Hülsmeyer, Martin; Dauth, Nina; Guillaume, Philippe; Luescher, Immanuel F; Pfreundschuh, Michael; Held, Gerhard

    2009-08-15

    In transplant rejection, graft versus host or autoimmune diseases T cells are mediating the pathophysiological processes. Compared to unspecific pharmacological immune suppression specific inhibition of those T cells, that are involved in the disease, would be an alternative and attractive approach. T cells are activated after their T cell receptor (TCR) recognizes an antigenic peptide displayed by the Major Histocompatibility Complex (MHC). Molecules that interact with MHC-peptide-complexes in a specific fashion should block T cells with identical specificity. Using the model of the SSX2 (103-111)/HLA-A*0201 complex we investigated a panel of MHC-peptide-specific Fab antibodies for their capacity blocking specific T cell clones. Like TCRs all Fab antibodies reacted with the MHC complex only when the SSX2 (103-111) peptide was displayed. By introducing single amino acid mutations in the HLA-A*0201 heavy chain we identified the K66 residue as the most critical binding similar to that of TCRs. However, some Fab antibodies did not inhibit the reactivity of a specific T cell clone against peptide pulsed, artificial targets, nor cells displaying the peptide after endogenous processing. Measurements of binding kinetics revealed that only those Fab antibodies were capable of blocking T cells that interacted with an affinity in the nanomolar range. Fab antibodies binding like TCRs with affinities on the lower micromolar range did not inhibit T cell reactivity. These results indicate that molecules that block T cells by competitive binding with the TCR must have the same specificity but higher affinity for the MHC-peptide-complex than the TCR.

  18. Effect of PEG-PDMAEMA Block Copolymer Architecture on Polyelectrolyte Complex Formation with Heparin.

    PubMed

    Välimäki, Salla; Khakalo, Alexey; Ora, Ari; Johansson, Leena-Sisko; Rojas, Orlando J; Kostiainen, Mauri A

    2016-09-12

    Heparin is a naturally occurring polyelectrolyte consisting of a sulfated polysaccharide backbone. It is widely used as an anticoagulant during major surgical operations. However, the associated bleeding risks require rapid neutralization after the operation. The only clinically approved antidote for heparin is protamine sulfate, which is, however, ineffective against low molecular weight heparin and can cause severe adverse reactions in patients. In this study, the facile synthesis of cationic-neutral diblock copolymers and their effective heparin binding is presented. Poly(ethylene glycol)-poly(2-(dimethylamino)ethyl methacrylate) (PEG-PDMAEMA) block copolymers were synthesized in two steps via atom-transfer radical polymerization (ATRP) using PEG as a macroinitiator. Solution state binding between heparin and a range of PEG-PDMAEMA block copolymers and one homopolymer was studied with dynamic light scattering and methylene blue displacement assay. Also in vitro binding in plasma was studied by utilizing a chromogenic heparin anti-Xa assay. Additionally, quartz crystal microbalance and multiparametric surface plasmon resonance were used to study the surface adsorption kinetics of the polymers on a heparin layer. It was shown that the block copolymers and heparin form electrostatically bound complexes with varying colloidal properties, where the block lengths play a key role in controlling the heparin binding affinity, polyelectrolyte complex size and surface charge. With the optimized polymers (PEG114PDMAEMA52 and PEG114PDMAEMA100), heparin could be neutralized in a dose-dependent manner, and bound efficiently into small neutral complexes, with a hydrodynamic radius less than 100 nm. These complexes had only a limited effect on cell viability. Based on these studies, our approach paves the way for the development of new polymeric heparin binding agents.

  19. A collaborative sequential meta-analysis of individual patient data from randomized trials of endovascular therapy and tPA vs. tPA alone for acute ischemic stroke: ThRombEctomy And tPA (TREAT) analysis: statistical analysis plan for a sequential meta-analysis performed within the VISTA-Endovascular collaboration.

    PubMed

    MacIsaac, Rachael L; Khatri, Pooja; Bendszus, Martin; Bracard, Serge; Broderick, Joseph; Campbell, Bruce; Ciccone, Alfonso; Dávalos, Antoni; Davis, Stephen M; Demchuk, Andrew; Diener, Hans-Christoph; Dippel, Diederik; Donnan, Geoffrey A; Fiehler, Jens; Fiorella, David; Goyal, Mayank; Hacke, Werner; Hill, Michael D; Jahan, Reza; Jauch, Edward; Jovin, Tudor; Kidwell, Chelsea S; Liebeskind, David; Majoie, Charles B; Martins, Sheila Cristina Ouriques; Mitchell, Peter; Mocco, J; Muir, Keith W; Nogueira, Raul; Saver, Jeffrey L; Schonewille, Wouter J; Siddiqui, Adnan H; Thomalla, Götz; Tomsick, Thomas A; Turk, Aquilla S; White, Philip; Zaidat, Osama; Lees, Kennedy R

    2015-10-01

    Endovascular treatment has been shown to restore blood flow effectively. Second-generation medical devices such as stent retrievers are now showing overwhelming efficacy in clinical trials, particularly in conjunction with intravenous recombinant tissue plasminogen activator. This statistical analysis plan utilizing a novel, sequential approach describes a prospective, individual patient data analysis of endovascular therapy in conjunction with intravenous recombinant tissue plasminogen activator agreed upon by the Thrombectomy and Tissue Plasminogen Activator Collaborative Group. This protocol will specify the primary outcome for efficacy, as 'favorable' outcome defined by the ordinal distribution of the modified Rankin Scale measured at three-months poststroke, but with modified Rankin Scales 5 and 6 collapsed into a single category. The primary analysis will aim to answer the questions: 'what is the treatment effect of endovascular therapy with intravenous recombinant tissue plasminogen activator compared to intravenous tissue plasminogen activator alone on full scale modified Rankin Scale at 3 months?' and 'to what extent do key patient characteristics influence the treatment effect of endovascular therapy?'. Key secondary outcomes include effect of endovascular therapy on death within 90 days; analyses of modified Rankin Scale using dichotomized methods; and effects of endovascular therapy on symptomatic intracranial hemorrhage. Several secondary analyses will be considered as well as expanding patient cohorts to intravenous recombinant tissue plasminogen activator-ineligible patients, should data allow. This collaborative meta-analysis of individual participant data from randomized trials of endovascular therapy vs. control in conjunction with intravenous thrombolysis will demonstrate the efficacy and generalizability of endovascular therapy with intravenous thrombolysis as a concomitant medication. © 2015 World Stroke Organization.

  20. Effect of chain length on binding of fatty acids to Pluronics in microemulsions.

    PubMed

    James-Smith, Monica A; Shekhawat, Dushyant; Cheung, Sally; Moudgil, Brij M; Shah, Dinesh O

    2008-03-15

    We investigated the effect of fatty acid chain length on the binding capacity of drug and fatty acid to Pluronic F127-based microemulsions. This was accomplished by using turbidity experiments. Pluronic-based oil-in-water microemulsions of various compositions were synthesized and titrated to turbidity with concentrated Amitriptyline, an antidepressant drug. Sodium salts of C(8), C(10), or C(12) fatty acid were used in preparation of the microemulsion and the corresponding binding capacities were observed. It has been previously determined that, for microemulsions prepared with sodium caprylate (C(8) fatty acid soap), a maximum of 11 fatty acid molecules bind to the microemulsion per 1 molecule of Pluronic F127 and a maximum of 12 molecules of Amitriptyline bind per molecule of F127. We have found that with increasing the chain length of the fatty acid salt component of the microemulsion, the binding capacity of both the fatty acid and the Amitriptyline to the microemulsion decreases. For sodium salts of C(8), C(10) and C(12) fatty acids, respectively, a maximum of approximately 11, 8.4 and 8.3 molecules of fatty acid molecules bind to 1 Pluronic F127 molecule. We propose that this is due to the decreasing number of free monomers with increasing chain length. As chain length increases, the critical micelle concentration (cmc) decreases, thus leading to fewer monomers. Pluronics are symmetric tri-block copolymers consisting of propylene oxide (PO) and ethylene oxide (EO). The polypropylene oxide block, PPO is sandwiched between two polyethylene oxide (PEO) blocks. The PEO blocks are hydrophilic while PPO is hydrophobic portion in the Pluronic molecule. Due to this structure, we propose that the fatty acid molecules that are in monomeric form most effectively diffuse between the PEO "tails" and bind to the hydrophobic PPO groups.

  1. Generation of tumour-necrosis-factor-alpha-specific affibody molecules capable of blocking receptor binding in vitro.

    PubMed

    Jonsson, Andreas; Wållberg, Helena; Herne, Nina; Ståhl, Stefan; Frejd, Fredrik Y

    2009-08-17

    Affibody molecules specific for human TNF-alpha (tumour necrosis factor-alpha) were selected by phage-display technology from a library based on the 58-residue Protein A-derived Z domain. TNF-alpha is a proinflammatory cytokine involved in several inflammatory diseases and, to this day, four TNF-alpha-blocking protein pharmaceuticals have been approved for clinical use. The phage selection generated 18 unique cysteine-free affibody sequences of which 12 were chosen, after sequence cluster analysis, for characterization as proteins. Biosensor binding studies of the 12 Escherichia coli-produced and IMAC (immobilized-metal-ion affinity chromatography)-purified affibody molecules revealed three variants that demonstrated the strongest binding to human TNF-alpha. These three affibody molecules were subjected to kinetic binding analysis and also tested for their binding to mouse, rat and pig TNF-alpha. For ZTNF-alpha:185, subnanomolar affinity (KD=0.1-0.5 nM) for human TNF-alpha was demonstrated, as well as significant binding to TNF-alpha from the other species. Furthermore, the binding site was found to overlap with the binding site for the TNF-alpha receptor, since this interaction could be efficiently blocked by the ZTNF-alpha:185 affibody. When investigating six dimeric affibody constructs with different linker lengths, and one trimeric construct, it was found that the inhibition of the TNF-alpha binding to its receptor could be further improved by using dimers with extended linkers and/or a trimeric affibody construct. The potential implication of the results for the future design of affibody-based reagents for the diagnosis of inflammation is discussed.

  2. A key agonist-induced conformational change in the cannabinoid receptor CB1 is blocked by the allosteric ligand Org 27569.

    PubMed

    Fay, Jonathan F; Farrens, David L

    2012-09-28

    Allosteric ligands that modulate how G protein-coupled receptors respond to traditional orthosteric drugs are an exciting and rapidly expanding field of pharmacology. An allosteric ligand for the cannabinoid receptor CB1, Org 27569, exhibits an intriguing effect; it increases agonist binding, yet blocks agonist-induced CB1 signaling. Here we explored the mechanism behind this behavior, using a site-directed fluorescence labeling approach. Our results show that Org 27569 blocks conformational changes in CB1 that accompany G protein binding and/or activation, and thus inhibit formation of a fully active CB1 structure. The underlying mechanism behind this behavior is that simultaneous binding of Org 27569 produces a unique agonist-bound conformation, one that may resemble an intermediate structure formed on the pathway to full receptor activation.

  3. Influence of natural humic acids and synthetic phenolic polymers on fibrinolysis

    NASA Astrophysics Data System (ADS)

    Klöcking, Hans-Peter

    The influence of synthetic and natural phenolic polymers on the release of plasminogen activator was studied in an isolated, perfused, vascular preparation (pig ear). Of the tested synthetic phenolic polymers, the oxidation products of caffeic acid (KOP) and 3,4-dihydroxyphenylacetic acid (3,4-DHPOP), at a concentration of 50 µg/ml perfusate, were able to increase the plasminogen activator activity by 70%. The oxidation products of chlorogenic acid (CHOP), hydrocaffeic acid (HYKOP), pyrogallol (PYROP) and gallic acid (GALOP), at the same concentration, exerted no influence on the release of plasminogen activator. Of the naturally occurring humic acids, the influence of sodium humate was within the same order of magnitude as KOP and 3,4-DHPOP. Ammonium humate was able to increase the plasminogen activator release only at a concentration of 100 µg/ml perfusate. In rats, the t-PA activity increased after i.v. application of 10 mg/kg of KOP, Na-HS or NH4-HS.

  4. Glycation induces formation of amyloid cross-beta structure in albumin.

    PubMed

    Bouma, Barend; Kroon-Batenburg, Loes M J; Wu, Ya-Ping; Brünjes, Bettina; Posthuma, George; Kranenburg, Onno; de Groot, Philip G; Voest, Emile E; Gebbink, Martijn F B G

    2003-10-24

    Amyloid fibrils are components of proteinaceous plaques that are associated with conformational diseases such as Alzheimer's disease, transmissible spongiform encephalopathies, and familial amyloidosis. Amyloid polypeptides share a specific quarternary structure element known as cross-beta structure. Commonly, fibrillar aggregates are modified by advanced glycation end products (AGE). In addition, AGE formation itself induces protein aggregation. Both amyloid proteins and protein-AGE adducts bind multiligand receptors, such as receptor for AGE, CD36, and scavenger receptors A and B type I, and the serine protease tissue-type plasminogen activator (tPA). Based on these observations, we hypothesized that glycation induces refolding of globular proteins, accompanied by formation of cross-beta structure. Using transmission electron microscopy, we demonstrate here that glycated albumin condensates into fibrous or amorphous aggregates. These aggregates bind to amyloid-specific dyes Congo red and thioflavin T and to tPA. In contrast to globular albumin, glycated albumin contains amino acid residues in beta-sheet conformation, as measured with circular dichroism spectropolarimetry. Moreover, it displays cross-beta structure, as determined with x-ray fiber diffraction. We conclude that glycation induces refolding of initially globular albumin into amyloid fibrils comprising cross-beta structure. This would explain how glycated ligands and amyloid ligands can bind to the same multiligand "cross-beta structure" receptors and to tPA.

  5. Gp120/CD4 blocking antibodies are frequently elicited in ART-naïve chronically HIV-1 infected individuals.

    PubMed

    Carrillo, Jorge; Molinos-Albert, Luis Manuel; Rodríguez de la Concepción, Maria Luisa; Marfil, Silvia; García, Elisabet; Derking, Ronald; Sanders, Rogier W; Clotet, Bonaventura; Blanco, Julià

    2015-01-01

    Antibodies with the ability to block the interaction of HIV-1 envelope glycoprotein (Env) gp120 with CD4, including those overlapping the CD4 binding site (CD4bs antibodies), can protect from infection by HIV-1, and their elicitation may be an interesting goal for any vaccination strategy. To identify gp120/CD4 blocking antibodies in plasma samples from HIV-1 infected individuals we have developed a competitive flow cytometry-based functional assay. In a cohort of treatment-naïve chronically infected patients, we showed that gp120/CD4 blocking antibodies were frequently elicited (detected in 97% plasma samples) and correlated with binding to trimeric HIV-1 envelope glycoproteins. However, no correlation was observed between functional CD4 binding blockade data and titer of CD4bs antibodies determined by ELISA using resurfaced gp120 proteins. Consistently, plasma samples lacking CD4bs antibodies were able to block the interaction between gp120 and its receptor, indicating that antibodies recognizing other epitopes, such as PGT126 and PG16, can also play the same role. Antibodies blocking CD4 binding increased over time and correlated positively with the capacity of plasma samples to neutralize the laboratory-adapted NL4.3 and BaL virus isolates, suggesting their potential contribution to the neutralizing workforce of plasma in vivo. Determining whether this response can be boosted to achieve broadly neutralizing antibodies may provide valuable information for the design of new strategies aimed to improve the anti-HIV-1 humoral response and to develop a successful HIV-1 vaccine.

  6. Gp120/CD4 Blocking Antibodies Are Frequently Elicited in ART-Naïve Chronically HIV-1 Infected Individuals

    PubMed Central

    Carrillo, Jorge; Molinos-Albert, Luis Manuel; de la Concepción, Maria Luisa Rodríguez; Marfil, Silvia; García, Elisabet; Derking, Ronald; Sanders, Rogier W.; Clotet, Bonaventura; Blanco, Julià

    2015-01-01

    Antibodies with the ability to block the interaction of HIV-1 envelope glycoprotein (Env) gp120 with CD4, including those overlapping the CD4 binding site (CD4bs antibodies), can protect from infection by HIV-1, and their elicitation may be an interesting goal for any vaccination strategy. To identify gp120/CD4 blocking antibodies in plasma samples from HIV-1 infected individuals we have developed a competitive flow cytometry-based functional assay. In a cohort of treatment-naïve chronically infected patients, we showed that gp120/CD4 blocking antibodies were frequently elicited (detected in 97% plasma samples) and correlated with binding to trimeric HIV-1 envelope glycoproteins. However, no correlation was observed between functional CD4 binding blockade data and titer of CD4bs antibodies determined by ELISA using resurfaced gp120 proteins. Consistently, plasma samples lacking CD4bs antibodies were able to block the interaction between gp120 and its receptor, indicating that antibodies recognizing other epitopes, such as PGT126 and PG16, can also play the same role. Antibodies blocking CD4 binding increased over time and correlated positively with the capacity of plasma samples to neutralize the laboratory-adapted NL4.3 and BaL virus isolates, suggesting their potential contribution to the neutralizing workforce of plasma in vivo. Determining whether this response can be boosted to achieve broadly neutralizing antibodies may provide valuable information for the design of new strategies aimed to improve the anti-HIV-1 humoral response and to develop a successful HIV-1 vaccine. PMID:25803681

  7. Number and brightness image analysis reveals ATF-induced dimerization kinetics of uPAR in the cell membrane

    PubMed Central

    Hellriegel, Christian; Caiolfa, Valeria R.; Corti, Valeria; Sidenius, Nicolai; Zamai, Moreno

    2011-01-01

    We studied the molecular forms of the GPI-anchored urokinase plasminogen activator receptor (uPAR-mEGFP) in the human embryo kidney (HEK293) cell membrane and demonstrated that the binding of the amino-terminal fragment (ATF) of urokinase plasminogen activator is sufficient to induce the dimerization of the receptor. We followed the association kinetics and determined precisely the dimeric stoichiometry of uPAR-mEGFP complexes by applying number and brightness (N&B) image analysis. N&B is a novel fluctuation-based approach for measuring the molecular brightness of fluorophores in an image time sequence in live cells. Because N&B is very sensitive to long-term temporal fluctuations and photobleaching, we have introduced a filtering protocol that corrects for these important sources of error. Critical experimental parameters in N&B analysis are illustrated and analyzed by simulation studies. Control experiments are based on mEGFP-GPI, mEGFP-mEGFP-GPI, and mCherry-GPI, expressed in HEK293. This work provides a first direct demonstration of the dimerization of uPAR in live cells. We also provide the first methodological guide on N&B to discern minor changes in molecular composition such as those due to dimerization events, which are involved in fundamental cell signaling mechanisms.—Hellriegel, C., Caiolfa, V. R., Corti, V., Sidenius, N., Zamai, M. Number and brightness image analysis reveals ATF-induced dimerization kinetics of uPAR in the cell membrane. PMID:21602447

  8. Exploring blocking assays using Octet, ProteOn, and Biacore biosensors.

    PubMed

    Abdiche, Yasmina N; Malashock, Dan S; Pinkerton, Alanna; Pons, Jaume

    2009-03-15

    We demonstrate the use of label-free real-time optical biosensors in competitive binding assays by epitope binning a panel of antibodies. We describe three assay orientations that we term in tandem, premix, and classical sandwich blocking, and we perform each of them on three platforms: ForteBio's Octet QK, Bio-Rad's ProteOn XPR36, and GE Healthcare's Biacore 3000. By testing whether antibodies block one another's binding to their antigen in a pairwise fashion, we establish a blocking profile for each antibody relative to the others in the panel. The blocking information is then used to create "bins" of antibodies with similar epitopes. The advantages and disadvantages of each biosensor, factors to consider when deciding on the most appropriate blocking assay orientation for a particular interaction system, and tips for dealing with ambiguous data are discussed. The data from our different assay orientations and biosensors agree very well, establishing these machines as valuable tools for characterizing antibody epitopes and multiprotein complexes of biological significance.

  9. Specificity and effector mechanisms of autoantibodies in congenital heart block.

    PubMed

    Wahren-Herlenius, Marie; Sonesson, Sven-Erik

    2006-12-01

    Complete congenital atrio-ventricular (AV) heart block develops in 2-5% of fetuses of Ro/SSA and La/SSB autoantibody-positive pregnant women. During pregnancy, the Ro/SSA and La/SSB antibodies are transported across the placenta and affect the fetus. Emerging data suggest that this happens by a two-stage process. In the first step, maternal autoantibodies bind fetal cardiomyocytes, dysregulate calcium homestasis and induce apoptosis in affected cells. This step might clinically correspond to a first-degree heart block, and be reversible. La/SSB antibodies can bind apoptotic cardiomyocytes and thus increase Ig deposition in the heart. The tissue damage could, as a second step, lead to spread of inflammation in genetically pre-disposed fetuses, progressing to fibrosis and calcification of the AV-node and subsequent complete congenital heart block. Early intrauterine treatment of an incomplete AV-block with fluorinated steroids has been shown to prevent progression of the heart block, making it clinically important to find specific markers to identify the high-risk pregnancies.

  10. SKI promotes Smad3 linker phosphorylations associated with the tumor-promoting trait of TGFbeta.

    PubMed

    Lin, Qiushi; Chen, Dahu; Timchenko, Nikolai A; Medrano, Estela E

    2010-05-01

    The transcriptional co-regulator SKI is a potent inhibitor of TGFbeta-growth inhibitory signals. SKI binds to receptor-activated Smads in the nucleus, forming repressor complexes containing HDACs, mSin3, NCoR, and other protein partners. Alternatively, SKI binds to activated Smads in the cytoplasm, preventing their nuclear translocation. SKI is necessary for anchorage-independent growth of melanoma cells in vitro, and most important, for human melanoma xenograft growth in vivo. We recently identified a novel role of SKI in TGFbeta signaling. SKI promotes the switch of Smad3 from repressor of proliferation to activator of oncogenesis by facilitating phosphorylations in the linker domain. High levels of endogenous SKI are required by the tumor promoting trait of TGFbeta to induce expression of the plasminogen-activator inhibitor-1 (PAI-1), sustained expression of C-Myc and for aborting upregulation of p21(Waf-1). Here we discuss how SKI diversifies and amplifies its functions by associating with multiple protein partners and by promoting Smad3 linker phosphorylation(s) in response to TGFbeta signaling in melanoma cells.

  11. Recombinant tissue plasminogen activator as a novel treatment option for infective endocarditis: a retrospective clinical study in 32 children.

    PubMed

    Levitas, Aviva; Krymko, Hanna; Richardson, Justin; Zalzstein, Eli; Ioffe, Viktoriya

    2016-01-01

    Infective endocarditis is a life-threatening infectious syndrome, with high morbidity and mortality. Current treatments for infective endocarditis include intravenous antibiotics, surgery, and involve a lengthy hospital stay. We hypothesised that adjunctive recombinant tissue plasminogen activator treatment for infective endocarditis may facilitate faster resolution of vegetations and clearance of positive blood cultures, and therefore decrease morbidity and mortality. This retrospective study included follow-up of patients, from 1997 through 2014, including clinical presentation, causative organism, length of treatment, morbidity, and mortality. We identified 32 patients, all of whom were diagnosed with endocarditis and were treated by recombinant tissue plasminogen activator. Among all, 27 patients (93%) had positive blood cultures, with the most frequent organisms being Staphylococcus epidermis (nine patients), Staphylococcus aureus (six patients), and Candida (nine patients). Upon treatment, in 31 patients (97%), resolution of vegetations and clearance of blood cultures occurred within hours to few days. Out of 32 patients, one patient (3%) died and three patients (9%) suffered embolic or haemorrhagic events, possibly related to the recombinant tissue plasminogen activator. None of the patients required surgical intervention to assist vegetation resolution. In conclusion, it appears that recombinant tissue plasminogen activator may become an adjunctive treatment for infective endocarditis and may decrease morbidity as compared with current guidelines. Prospective multi-centre studies are required to validate our findings.

  12. Evaluation of Prognostic Values of Tissue Plasminogen Activator and Plasminogen Activator Inhibitor-1 in Crimean-Congo Hemorrhagic Fever Patients

    PubMed Central

    Gurbuz, Yunus; Ozturk, Baris; Tutuncu, Emin Ediz; Sencan, Irfan; Cicek Senturk, Gonul; Altay, Fatma Aybala

    2015-01-01

    Background: Crimean-Congo hemorrhagic fever (CCHF) is a widespread disease in Turkey, and was responsible for many deaths in endemic regions during the last decade. The pathogenesis of the disease is not fully understood yet. Objectives: In this study we aimed to determine the levels of tissue plasminogen activator (tPA) and Plasminogen activator inhibitor-1 (PAI-1) as predictors of prognosis in CCHF. Patients and Methods: Patients who were diagnosed by the polymerase chain reaction (PCR) and IgM positivity in the reference laboratory were included in this study. Tissue Plasminogen activator and PAI-1 levels were measured by the enzyme linked immunosorbent assay (ELISA) using a commercial kit (human t-PA ELISA and human PAL-1 ELISA; BioVendor research and diagnostic products, BioVendor-Laboratorni medicina a.s., Brno, Czech Republic). Results: A total of 46 patients participated in this study. The significant differences between recovering patients and the patients who died, regarding Aspartate aminotransferase (AST), Creatine Phosphokinase (CPK), Lactate Dehydrogenase (LDH), Prothrombin Time (PT), activated Partial Thromboplastin time (aPTT), and thrombocyte and fibrinogen levels, were consistent with many clinical studies in the literature. The fatal cases were found to have higher tPA and PAI-1 levels in contrast to the patients who completely recovered. Conclusions: We think that these findings may help the progress of understanding of CCHF pathogenesis. PMID:26587219

  13. [In vitro function of outer membrane protease T of Escherichia coli K1 pathogenic strain].

    PubMed

    Hui, Changye; Guo, Yan; Wu, Shuchi; Peng, Liang; Cao, Hong; Huang, Shenghe

    2010-01-01

    Plasminogen activation and antimicrobial peptide hydrolysis contribute to pathogens invasion and survival in vivo. To demonstrate the expression of outer membrane protease T in E. coli K1 pathogenic strain E44, its activity of plasminogen activator and protamine hydrolysis. After Benzamidine Sepharose Fast Flow and SOURCE 30Q chromatography, we got E44 outer membrane mixed fraction, and examined its activity of plasminogen activation with chromogenic substrate S-2251 method. An ompT deletion mutant of E44 was constructed by using the suicide vector pCVD442, termed as E44ompT. We examined 0.1 mg/mL cationic antimicrobial peptide protamine susceptibility of E44, ompT mutant strain E44ompT and E44ompT harboring pUCT, which was constructed by inserting complete ompT open reading frame into pUC13. We got about 37 kDa E44 membrane extract, which could activate plasminogen, and activation was membrane extract dose dependent. This confirmed the expression of outer membrane protease T in the outer membrane of E44. E44ompT was, more susceptible to 0.1 mg/mL protamine than E44, and E440mpT was partially complemented by pUCT. Outer membrane protease T is expressed in E. coli K1 pathogenic strain E44, and can activate plasminogen and hydrolyze protamine.

  14. Increased expression of urokinase plasminogen activator in Quebec platelet disorder is linked to megakaryocyte differentiation

    PubMed Central

    Veljkovic, D. Kika; Rivard, Georges E.; Diamandis, Maria; Blavignac, Jessica; Cramer-Bordé, Elisabeth M.

    2009-01-01

    Quebec platelet disorder (QPD) is an inherited bleeding disorder associated with increased urokinase plasminogen activator (uPA) in platelets but not in plasma, intraplatelet plasmin generation, and α-granule protein degradation. These abnormalities led us to investigate uPA expression by QPD CD34+ progenitors, cultured megakaryocytes, and platelets, and whether uPA was stored in QPD α-granules. Although QPD CD34+ progenitors expressed normal amounts of uPA, their differentiation into megakaryocytes abnormally increased expression of the uPA gene but not the flanking genes for vinculin or calcium/calmodulin-dependent protein kinase IIγ on chromosome 10. The increased uPA production by cultured QPD megakaryocytes mirrored their production of α-granule proteins, which was normal. uPA was localized to QPD α-granules and it showed extensive colocalization with α-granule proteins in both cultured QPD megakaryocytes and platelets, and with plasminogen in QPD platelets. In QPD megakaryocytes, cultured without or with plasma as a source of plasminogen, α-granule proteins were stored undegraded and this was associated with much less uPA-plasminogen colocalization than in QPD platelets. Our studies indicate that the overexpression of uPA in QPD emerges with megakaryocyte differentiation, without altering the expression of flanking genes, and that uPA is costored with α-granule proteins prior to their proteolysis in QPD. PMID:19029443

  15. Increased expression of urokinase plasminogen activator in Quebec platelet disorder is linked to megakaryocyte differentiation.

    PubMed

    Veljkovic, D Kika; Rivard, Georges E; Diamandis, Maria; Blavignac, Jessica; Cramer-Bordé, Elisabeth M; Hayward, Catherine P M

    2009-02-12

    Quebec platelet disorder (QPD) is an inherited bleeding disorder associated with increased urokinase plasminogen activator (uPA) in platelets but not in plasma, intraplatelet plasmin generation, and alpha-granule protein degradation. These abnormalities led us to investigate uPA expression by QPD CD34(+) progenitors, cultured megakaryocytes, and platelets, and whether uPA was stored in QPD alpha-granules. Although QPD CD34(+) progenitors expressed normal amounts of uPA, their differentiation into megakaryocytes abnormally increased expression of the uPA gene but not the flanking genes for vinculin or calcium/calmodulin-dependent protein kinase IIgamma on chromosome 10. The increased uPA production by cultured QPD megakaryocytes mirrored their production of alpha-granule proteins, which was normal. uPA was localized to QPD alpha-granules and it showed extensive colocalization with alpha-granule proteins in both cultured QPD megakaryocytes and platelets, and with plasminogen in QPD platelets. In QPD megakaryocytes, cultured without or with plasma as a source of plasminogen, alpha-granule proteins were stored undegraded and this was associated with much less uPA-plasminogen colocalization than in QPD platelets. Our studies indicate that the overexpression of uPA in QPD emerges with megakaryocyte differentiation, without altering the expression of flanking genes, and that uPA is costored with alpha-granule proteins prior to their proteolysis in QPD.

  16. Structural basis for norovirus neutralization by an HBGA blocking human IgA antibody.

    PubMed

    Shanker, Sreejesh; Czakó, Rita; Sapparapu, Gopal; Alvarado, Gabriela; Viskovska, Maria; Sankaran, Banumathi; Atmar, Robert L; Crowe, James E; Estes, Mary K; Prasad, B V Venkataram

    2016-10-04

    Human noroviruses (HuNoVs) cause sporadic and epidemic gastroenteritis worldwide. They are classified into two major genogroups (GI and GII), with each genogroup further divided into multiple genotypes. Susceptibility to these viruses is influenced by genetically determined histo-blood group antigen (HBGA) expression. HBGAs function as cell attachment factors by binding to a surface-exposed region in the protruding (P) domain of the capsid protein. Sequence variations in this region that result in differential HBGA binding patterns and antigenicity are suggested to form a basis for strain diversification. Recent studies show that serum antibodies that block HBGA binding correlate with protection against illness. Although genogroup-dependent variation in HBGA binding specificity is structurally well characterized, an understanding of how antibodies block HBGA binding and how genotypic variations affect such blockade is lacking. Our crystallographic studies of the GI.1 P domain in complex with the Fab fragment of a human IgA monoclonal antibody (IgA 5I2) with HBGA blocking activity show that the antibody recognizes a conformational epitope formed by two surface-exposed loop clusters in the P domain. The antibody engulfs the HBGA binding site but does not affect its structural integrity. An unusual feature of the antigen recognition by IgA 5I2 is the predominant involvement of the CDR light chain 1 in contrast to the commonly observed CDR heavy chain 3, providing a unique perspective into antibody diversity in antigen recognition. Identification of the antigenic site in the P domain shows how genotypic variations might allow escape from antibody neutralization and exemplifies the interplay between antigenicity and HBGA specificity in HuNoV evolution.

  17. Inhibition of EBV-mediated membrane fusion by anti-gHgL antibodies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sathiyamoorthy, Karthik; Jiang, Jiansen; Mohl, Britta S.

    Herpesvirus entry into cells requires the coordinated action of multiple virus envelope glycoproteins, including gH, gL, and gB. For EBV, the gp42 protein assembles into complexes with gHgL heterodimers and binds HLA class II to activate gB-mediated membrane fusion with B cells. EBV tropism is dictated by gp42 levels in the virion, as it inhibits entry into epithelial cells while promoting entry into B cells. The gHgL and gB proteins are targets of neutralizing antibodies and potential candidates for subunit vaccine development, but our understanding of their neutralizing epitopes and the mechanisms of inhibition remain relatively unexplored. Here we studiedmore » the structures and mechanisms of two anti-gHgL antibodies, CL40 and CL59, that block membrane fusion with both B cells and epithelial cells. We determined the structures of the CL40 and CL59 complexes with gHgL using X-ray crystallography and EM to identify their epitope locations. CL59 binds to the C-terminal domain IV of gH, while CL40 binds to a site occupied by the gp42 receptor binding domain. CL40 binding to gHgL/gp42 complexes is not blocked by gp42 and does not interfere with gp42 binding to HLA class II, indicating that its ability to block membrane fusion with B cells represents a defect in gB activation. Furthermore, these data indicate that anti-gHgL neutralizing antibodies can block gHgL-mediated activation of gB through different surface epitopes and mechanisms.« less

  18. Inhibition of EBV-mediated membrane fusion by anti-gHgL antibodies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sathiyamoorthy, Karthik; Jiang, Jiansen; Möhl, Britta S.

    Herpesvirus entry into cells requires the coordinated action of multiple virus envelope glycoproteins, including gH, gL, and gB. For EBV, the gp42 protein assembles into complexes with gHgL heterodimers and binds HLA class II to activate gB-mediated membrane fusion with B cells. EBV tropism is dictated by gp42 levels in the virion, as it inhibits entry into epithelial cells while promoting entry into B cells. The gHgL and gB proteins are targets of neutralizing antibodies and potential candidates for subunit vaccine development, but our understanding of their neutralizing epitopes and the mechanisms of inhibition remain relatively unexplored. Here we studiedmore » the structures and mechanisms of two anti-gHgL antibodies, CL40 and CL59, that block membrane fusion with both B cells and epithelial cells. We determined the structures of the CL40 and CL59 complexes with gHgL using X-ray crystallography and EM to identify their epitope locations. CL59 binds to the C-terminal domain IV of gH, while CL40 binds to a site occupied by the gp42 receptor binding domain. CL40 binding to gHgL/gp42 complexes is not blocked by gp42 and does not interfere with gp42 binding to HLA class II, indicating that its ability to block membrane fusion with B cells represents a defect in gB activation. These data indicate that anti-gHgL neutralizing antibodies can block gHgL-mediated activation of gB through different surface epitopes and mechanisms.« less

  19. Inhibition of EBV-mediated membrane fusion by anti-gHgL antibodies

    DOE PAGES

    Sathiyamoorthy, Karthik; Jiang, Jiansen; Mohl, Britta S.; ...

    2017-09-22

    Herpesvirus entry into cells requires the coordinated action of multiple virus envelope glycoproteins, including gH, gL, and gB. For EBV, the gp42 protein assembles into complexes with gHgL heterodimers and binds HLA class II to activate gB-mediated membrane fusion with B cells. EBV tropism is dictated by gp42 levels in the virion, as it inhibits entry into epithelial cells while promoting entry into B cells. The gHgL and gB proteins are targets of neutralizing antibodies and potential candidates for subunit vaccine development, but our understanding of their neutralizing epitopes and the mechanisms of inhibition remain relatively unexplored. Here we studiedmore » the structures and mechanisms of two anti-gHgL antibodies, CL40 and CL59, that block membrane fusion with both B cells and epithelial cells. We determined the structures of the CL40 and CL59 complexes with gHgL using X-ray crystallography and EM to identify their epitope locations. CL59 binds to the C-terminal domain IV of gH, while CL40 binds to a site occupied by the gp42 receptor binding domain. CL40 binding to gHgL/gp42 complexes is not blocked by gp42 and does not interfere with gp42 binding to HLA class II, indicating that its ability to block membrane fusion with B cells represents a defect in gB activation. Furthermore, these data indicate that anti-gHgL neutralizing antibodies can block gHgL-mediated activation of gB through different surface epitopes and mechanisms.« less

  20. Chloroquine Analog Interaction with C2- and Iota-Toxin in Vitro and in Living Cells.

    PubMed

    Kronhardt, Angelika; Beitzinger, Christoph; Barth, Holger; Benz, Roland

    2016-08-10

    C2-toxin from Clostridium botulinum and Iota-toxin from Clostridium perfringens belong both to the binary A-B-type of toxins consisting of two separately secreted components, an enzymatic subunit A and a binding component B that facilitates the entry of the corresponding enzymatic subunit into the target cells. The enzymatic subunits are in both cases actin ADP-ribosyltransferases that modify R177 of globular actin finally leading to cell death. Following their binding to host cells' receptors and internalization, the two binding components form heptameric channels in endosomal membranes which mediate the translocation of the enzymatic components Iota a and C2I from endosomes into the cytosol of the target cells. The binding components form ion-permeable channels in artificial and biological membranes. Chloroquine and related 4-aminoquinolines were able to block channel formation in vitro and intoxication of living cells. In this study, we extended our previous work to the use of different chloroquine analogs and demonstrate that positively charged aminoquinolinium salts are able to block channels formed in lipid bilayer membranes by the binding components of C2- and Iota-toxin. Similarly, these molecules protect cultured mammalian cells from intoxication with C2- and Iota-toxin. The aminoquinolinium salts did presumably not interfere with actin ADP-ribosylation or receptor binding but blocked the pores formed by C2IIa and Iota b in living cells and in vitro. The blocking efficiency of pores formed by Iota b and C2IIa by the chloroquine analogs showed interesting differences indicating structural variations between the types of protein-conducting nanochannels formed by Iota b and C2IIa.

  1. Chloroquine Analog Interaction with C2- and Iota-Toxin in Vitro and in Living Cells

    PubMed Central

    Kronhardt, Angelika; Beitzinger, Christoph; Barth, Holger; Benz, Roland

    2016-01-01

    C2-toxin from Clostridium botulinum and Iota-toxin from Clostridium perfringens belong both to the binary A-B-type of toxins consisting of two separately secreted components, an enzymatic subunit A and a binding component B that facilitates the entry of the corresponding enzymatic subunit into the target cells. The enzymatic subunits are in both cases actin ADP-ribosyltransferases that modify R177 of globular actin finally leading to cell death. Following their binding to host cells’ receptors and internalization, the two binding components form heptameric channels in endosomal membranes which mediate the translocation of the enzymatic components Iota a and C2I from endosomes into the cytosol of the target cells. The binding components form ion-permeable channels in artificial and biological membranes. Chloroquine and related 4-aminoquinolines were able to block channel formation in vitro and intoxication of living cells. In this study, we extended our previous work to the use of different chloroquine analogs and demonstrate that positively charged aminoquinolinium salts are able to block channels formed in lipid bilayer membranes by the binding components of C2- and Iota-toxin. Similarly, these molecules protect cultured mammalian cells from intoxication with C2- and Iota-toxin. The aminoquinolinium salts did presumably not interfere with actin ADP-ribosylation or receptor binding but blocked the pores formed by C2IIa and Iota b in living cells and in vitro. The blocking efficiency of pores formed by Iota b and C2IIa by the chloroquine analogs showed interesting differences indicating structural variations between the types of protein-conducting nanochannels formed by Iota b and C2IIa. PMID:27517960

  2. FXIa and platelet polyphosphate as therapeutic targets during human blood clotting on collagen/tissue factor surfaces under flow

    PubMed Central

    Zhu, Shu; Travers, Richard J.; Morrissey, James H.

    2015-01-01

    Factor XIIa (FXIIa) and factor XIa (FXIa) contribute to thrombosis in animal models, whereas platelet-derived polyphosphate (polyP) may potentiate contact or thrombin-feedback pathways. The significance of these mediators in human blood under thrombotic flow conditions on tissue factor (TF) –bearing surfaces remains inadequately resolved. Human blood (corn trypsin inhibitor treated [4 μg/mL]) was tested by microfluidic assay for clotting on collagen/TF at TF surface concentration ([TF]wall) from ∼0.1 to 2 molecules per μm2. Anti-FXI antibodies (14E11 and O1A6) or polyP-binding protein (PPXbd) were used to block FXIIa-dependent FXI activation, FXIa-dependent factor IX (FIX) activation, or platelet-derived polyP, respectively. Fibrin formation was sensitive to 14E11 at 0 to 0.1 molecules per µm2 and sensitive to O1A6 at 0 to 0.2 molecules per µm2. However, neither antibody reduced fibrin generation at ∼2 molecules per µm2 when the extrinsic pathway became dominant. Interestingly, PPXbd reduced fibrin generation at low [TF]wall (0.1 molecules per µm2) but not at zero or high [TF]wall, suggesting a role for polyP distinct from FXIIa activation and requiring low extrinsic pathway participation. Regardless of [TF]wall, PPXbd enhanced fibrin sensitivity to tissue plasminogen activator and promoted clot retraction during fibrinolysis concomitant with an observed PPXbd-mediated reduction of fibrin fiber diameter. This is the first detection of endogenous polyP function in human blood under thrombotic flow conditions. When triggered by low [TF]wall, thrombosis may be druggable by contact pathway inhibition, although thrombolytic susceptibility may benefit from polyP antagonism regardless of [TF]wall. PMID:26136249

  3. Expression of PRSS, the plasminogen activator system and its activity in the ovine placentome during Stage 2 of parturition

    USDA-ARS?s Scientific Manuscript database

    The molecular mechanisms responsible for placenta separation are not completely understood. We know placentomes from cases of retained placenta possess limited matrix-metalloprotease (MMP) activity and retained placenta occurs at a greater incidence during induced parturition. The plasminogen activ...

  4. 21 CFR 866.5715 - Plasminogen immunological test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Section 866.5715 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... substance from which plasmin, a blood-clotting factor, is formed) in serum, other body fluids, and tissues. Measurement of plasminogen levels may aid in the diagnosis of fibrinolytic (blood-clotting) disorders. (b...

  5. 21 CFR 866.5715 - Plasminogen immunological test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Section 866.5715 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... substance from which plasmin, a blood-clotting factor, is formed) in serum, other body fluids, and tissues. Measurement of plasminogen levels may aid in the diagnosis of fibrinolytic (blood-clotting) disorders. (b...

  6. 21 CFR 866.5715 - Plasminogen immunological test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Section 866.5715 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... substance from which plasmin, a blood-clotting factor, is formed) in serum, other body fluids, and tissues. Measurement of plasminogen levels may aid in the diagnosis of fibrinolytic (blood-clotting) disorders. (b...

  7. 21 CFR 866.5715 - Plasminogen immunological test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Section 866.5715 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... substance from which plasmin, a blood-clotting factor, is formed) in serum, other body fluids, and tissues. Measurement of plasminogen levels may aid in the diagnosis of fibrinolytic (blood-clotting) disorders. (b...

  8. Metabolic factors, adipose tissue, and plasminogen activator inhibitor-1 levels in Type 2 diabetes

    USDA-ARS?s Scientific Manuscript database

    Plasminogen activator inhibitor-1 (PAI-1) production by adipose tissue is increased in obesity, and its circulating levels are high in type 2 diabetes. PAI-1 increases cardiovascular risk by favoring clot stability, interfering with vascular remodeling, or both. We investigated in obese diabetic per...

  9. Viral Epitopes and Monoclonal Antibodies: Isolation of Blocking Antibodies that Inhibit Virus Neutralization

    NASA Astrophysics Data System (ADS)

    Massey, Richard J.; Schochetman, Gerald

    1981-07-01

    The inability of pathogenic animal viruses to be completely neutralized by antibodies can lead to chronic viral infections in which infectious virus persists even in the presence of excess neutralizing antibody. A mechanism that results in this nonneutralized fraction of virus was defined by the topographical relationships of viral epitopes identified with monoclonal antibodies wherein monoclonal antibodies bind to virus and sterically block the binding of neutralizing antibodies.

  10. A monoclonal antibody against PDGF B-chain inhibits PDGF-induced DNA synthesis in C3H fibroblasts and prevents binding of PDGF to its receptor.

    PubMed

    Vassbotn, F S; Langeland, N; Hagen, I; Holmsen, H

    1990-09-01

    A monoclonal antibody (MAb 6D11) against platelet-derived growth factor (PDGF) was studied. We found that the MAb 6D11 in concentrations equimolar to PDGF blocked the [3H]thymidine incorporation in C3H/10T1/2 C18 fibroblasts stimulated by PDGF B-B and PDGF A-B. This inhibition was overcome by high doses of PDGF. The [3H]thymidine incorporation stimulated by other growth factors (aFGF, bFGF and bombesin) was not inhibited by the antibody. The MAb 6D11 blocked receptor binding of PDGF B-B, but not PDGF A-A. These findings suggest that the MAb 6D11 abolishes PDGF-induced DNA synthesis by blocking PDGF receptor binding. In this communication we demonstrate an isoform-specific monoclonal antibody against PDGF.

  11. Glycosaminoglycans mediate retention of the poxvirus type I interferon binding protein at the cell surface to locally block interferon antiviral responses

    PubMed Central

    Montanuy, Imma; Alejo, Ali; Alcami, Antonio

    2011-01-01

    Eradication of smallpox was accomplished 30 yr ago, but poxviral infections still represent a public health concern due to the potential release of variola virus or the emergence of zoonotic poxviruses, such as monkeypox virus. A critical determinant of poxvirus virulence is the inhibition of interferons (IFNs) by the virus-encoded type I IFN-binding protein (IFNα/βBP). This immunomodulatory protein is secreted and has the unique property of interacting with the cell surface in order to prevent IFN-mediated antiviral responses. However, the mechanism of its attachment to the cell surface remains unknown. Using surface plasmon resonance and cell-binding assays, we report that the IFNα/βBP from vaccinia virus, the smallpox vaccine, interacts with cell surface glycosaminoglycans (GAGs). Analysis of the contribution of different regions of the protein to cell surface binding demonstrated that clusters of basic residues in the first immunoglobulin domain mediate GAG interactions. Furthermore, mutation of the GAG-interaction motifs does not affect its IFN-binding and -blocking capacity. Functional conservation of GAG-binding sites is demonstrated for the IFNα/βBP from variola and monkeypox viruses, extending our understanding of immune modulation by the most virulent human poxviruses. These results are relevant for the design of improved vaccines and intervention strategies.—Montanuy, I., Alejo, A., Alcami, A. Glycosaminoglycans mediate retention of the poxvirus type I interferon binding protein at the cell surface to locally block interferon antiviral responses. PMID:21372110

  12. Highly stable biocompatible inorganic nanoparticles by self-assembly of triblock-copolymer ligands.

    PubMed

    Pöselt, Elmar; Fischer, Steffen; Foerster, Stephan; Weller, Horst

    2009-12-15

    A novel type of ligand for biofunctionalization of nanoparticles is presented that comprises tailor-made triblock-copolymers consisting of a polyethylene imine binding block, a hydrophobic polycaprolactone and a terminal functionalized polyethelene oxide block. Phase transfer to water occurs simply by ligand and water addition and removal of the organic solvents. It is shown that the intermediate polycaprolacton block favors the attachment to the particle surface and shields the binding groups effectively from the solution. As a consequence, the particles exhibit an outstanding stability in various aqueous media for biological studies and give easy access to specific coupling reactions at the terminal end groups of the polyethylene oxide block. Controlling the ligand exchange parameters leads to self-assembly to either individual encapsulated nanoparticles or to multifunctional nanobeads.

  13. A High Content Drug Screen Identifies Ursolic Acid as an Inhibitor of Amyloid β Protein Interactions with Its Receptor CD36*

    PubMed Central

    Wilkinson, Kim; Boyd, Justin D.; Glicksman, Marcie; Moore, Kathryn J.; El Khoury, Joseph

    2011-01-01

    A pathological hallmark of Alzheimer disease (AD) is deposition of amyloid β (Aβ) in the brain. Aβ binds to microglia via a receptor complex that includes CD36 leading to production of proinflammatory cytokines and neurotoxic reactive oxygen species and subsequent neurodegeneration. Interruption of Aβ binding to CD36 is a potential therapeutic strategy for AD. To identify pharmacologic inhibitors of Aβ binding to CD36, we developed a 384-well plate assay for binding of fluorescently labeled Aβ to Chinese hamster ovary cells stably expressing human CD36 (CHO-CD36) and screened an Food and Drug Administration-approved compound library. The assay was optimized based on the cells' tolerance to dimethyl sulfoxide, Aβ concentration, time required for Aβ binding, reproducibility, and signal-to-background ratio. Using this assay, we identified four compounds as potential inhibitors of Aβ binding to CD36. These compounds were ursolic acid, ellipticine, zoxazolamine, and homomoschatoline. Of these compounds, only ursolic acid, a naturally occurring pentacyclic triterpenoid, successfully inhibited binding of Aβ to CHO-CD36 cells in a dose-dependent manner. The ursolic acid effect reached a plateau at ∼20 μm, with a maximal inhibition of 64%. Ursolic acid also blocked binding of Aβ to microglial cells and subsequent ROS production. Our data indicate that cell-based high-content screening of small molecule libraries for their ability to block binding of Aβ to its receptors is a useful tool to identify novel inhibitors of receptors involved in AD pathogenesis. Our data also suggest that ursolic acid is a potential therapeutic agent for AD via its ability to block Aβ-CD36 interactions. PMID:21835916

  14. Replication of damaged DNA in vitro is blocked by p53

    PubMed Central

    Zhou, Jianmin; Prives, Carol

    2003-01-01

    The tumor suppressor protein p53 may have other roles and functions in addition to its well-documented ability to serve as a sequence-specific transcriptional activator in response to DNA damage. We showed previously that p53 can block the replication of polyomavirus origin-containing DNA (Py ori-DNA) in vitro when p53 binding sites are present on the late side of the Py ori. Here we have both further extended these observations and have also examined whether p53 might be able to bind directly to and inhibit the replication of damaged DNA. We found that p53 strongly inhibits replication of γ-irradiated Py ori-DNA and such inhibition requires both the central DNA binding domain and the extreme C-terminus of the p53 protein. An endogenous p53 binding site lies within the Py origin and is required for the ability of p53 to block initiation of replication from γ-irradiated Py ori-DNA, suggesting the possibility of DNA looping caused by p53 binding both non-specifically to sites of DNA damage and specifically to the endogenous site in the polyomavirus origin. Our results thus suggest the possibility that under some circumstances p53 might serve as a direct regulator of DNA replication and suggest as well an additional function for cooperation between its two autonomous DNA binding domains. PMID:12853603

  15. Analyses of Interactions Between Heparin and the Apical Surface Proteins of Plasmodium falciparum

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kyousuke; Takano, Ryo; Takemae, Hitoshi; Sugi, Tatsuki; Ishiwa, Akiko; Gong, Haiyan; Recuenco, Frances C.; Iwanaga, Tatsuya; Horimoto, Taisuke; Akashi, Hiroomi; Kato, Kentaro

    2013-11-01

    Heparin, a sulfated glycoconjugate, reportedly inhibits the blood-stage growth of the malaria parasite Plasmodium falciparum. Elucidation of the inhibitory mechanism is valuable for developing novel invasion-blocking treatments based on heparin. Merozoite surface protein 1 has been reported as a candidate target of heparin; however, to better understand the molecular mechanisms involved, we characterized the molecules that bind to heparin during merozoite invasion. Here, we show that heparin binds only at the apical tip of the merozoite surface and that multiple heparin-binding proteins localize preferentially in the apical organelles. To identify heparin-binding proteins, parasite proteins were fractionated by means of heparin affinity chromatography and subjected to immunoblot analysis with ligand-specific antibodies. All tested members of the Duffy and reticulocyte binding-like families bound to heparin with diverse affinities. These findings suggest that heparin masks the apical surface of merozoites and blocks interaction with the erythrocyte membrane after initial attachment.

  16. Extracellular proteases as targets for drug development

    PubMed Central

    Cudic, Mare

    2015-01-01

    Proteases constitute one of the primary targets in drug discovery. In the present review, we focus on extracellular proteases (ECPs) because of their differential expression in many pathophysiological processes, including cancer, cardiovascular conditions, and inflammatory, pulmonary, and periodontal diseases. Many new ECP inhibitors are currently under clinical investigation and a significant increase in new therapies based on protease inhibition can be expected in the coming years. In addition to directly blocking the activity of a targeted protease, one can take advantage of differential expression in disease states to selectively deliver therapeutic or imaging agents. Recent studies in targeted drug development for the metalloproteases (matrix metalloproteinases, adamalysins, pappalysins, neprilysin, angiotensin-converting enzyme, metallocarboxypeptidases, and glutamate carboxypeptidase II), serine proteases (elastase, coagulation factors, tissue/urokinase plasminogen activator system, kallikreins, tryptase, dipeptidyl peptidase IV), cysteine proteases (cathepsin B), and renin system are discussed herein. PMID:19689354

  17. A Blocking Group Scan Using a Spherical Organometallic Complex Identifies an Unprecedented Binding Mode with Potent Activity In Vitro and In Vivo for the Opioid Peptide Dermorphin.

    PubMed

    Strack, Martin; Bedini, Andrea; Yip, King T; Lombardi, Sara; Siegmund, Daniel; Stoll, Raphael; Spampinato, Santi M; Metzler-Nolte, Nils

    2016-10-04

    Herein, the selective enforcement of one particular receptor-ligand interaction between specific domains of the μ-selective opioid peptide dermorphin and the μ opioid receptor is presented. For this, a blocking group scan is described which exploits the steric demand of a bis(quinolinylmethyl)amine rhenium(I) tricarbonyl complex conjugated to a number of different, strategically chosen positions of dermorphin. The prepared peptide conjugates lead to the discovery of two different binding modes: An expected N-terminal binding mode corresponds to the established view of opioid peptide binding, whereas an unexpected C-terminal binding mode is newly discovered. Surprisingly, both binding modes provide high affinity and agonistic activity at the μ opioid receptor in vitro. Furthermore, the unprecedented C-terminal binding mode shows potent dose-dependent antinociception in vivo. Finally, in silico docking studies support receptor activation by both dermorphin binding modes and suggest a biological relevance for dermorphin itself. Relevant ligand-protein interactions are similar for both binding modes, which is in line with previous protein mutation studies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. SCM, the M Protein of Streptococcus canis Binds Immunoglobulin G

    PubMed Central

    Bergmann, Simone; Eichhorn, Inga; Kohler, Thomas P.; Hammerschmidt, Sven; Goldmann, Oliver; Rohde, Manfred; Fulde, Marcus

    2017-01-01

    The M protein of Streptococcus canis (SCM) is a virulence factor and serves as a surface-associated receptor with a particular affinity for mini-plasminogen, a cleavage product of the broad-spectrum serine protease plasmin. Here, we report that SCM has an additional high-affinity immunoglobulin G (IgG) binding activity. The ability of a particular S. canis isolate to bind to IgG significantly correlates with a scm-positive phenotype, suggesting a dominant role of SCM as an IgG receptor. Subsequent heterologous expression of SCM in non-IgG binding S. gordonii and Western Blot analysis with purified recombinant SCM proteins confirmed its IgG receptor function. As expected for a zoonotic agent, the SCM-IgG interaction is species-unspecific, with a particular affinity of SCM for IgGs derived from human, cats, dogs, horses, mice, and rabbits, but not from cows and goats. Similar to other streptococcal IgG-binding proteins, the interaction between SCM and IgG occurs via the conserved Fc domain and is, therefore, non-opsonic. Interestingly, the interaction between SCM and IgG-Fc on the bacterial surface specifically prevents opsonization by C1q, which might constitute another anti-phagocytic mechanism of SCM. Extensive binding analyses with a variety of different truncated SCM fragments defined a region of 52 amino acids located in the central part of the mature SCM protein which is important for IgG binding. This binding region is highly conserved among SCM proteins derived from different S. canis isolates but differs significantly from IgG-Fc receptors of S. pyogenes and S. dysgalactiae sub. equisimilis, respectively. In summary, we present an additional role of SCM in the pathogen-host interaction of S. canis. The detailed analysis of the SCM-IgG interaction should contribute to a better understanding of the complex roles of M proteins in streptococcal pathogenesis. PMID:28401063

  19. A Lipoprotein Receptor Cluster IV Mutant Preferentially Binds Amyloid-β and Regulates Its Clearance from the Mouse Brain*

    PubMed Central

    Sagare, Abhay P.; Bell, Robert D.; Srivastava, Alaka; Sengillo, Jesse D.; Singh, Itender; Nishida, Yoichiro; Chow, Nienwen; Zlokovic, Berislav V.

    2013-01-01

    Soluble low density lipoprotein receptor-related protein-1 (sLRP1) binds ∼70% of amyloid β-peptide (Aβ) in human plasma. In Alzheimer disease (AD) and individuals with mild cognitive impairment converting to AD, plasma sLRP1 levels are reduced and sLRP1 is oxidized, which results in diminished Aβ peripheral binding and higher levels of free Aβ in plasma. Experimental studies have shown that free circulating Aβ re-enters the brain and that sLRP1 and/or its recombinant wild type cluster IV (WT-LRPIV) prevent Aβ from entering the brain. Treatment of Alzheimer APPsw+/0 mice with WT-LRPIV has been shown to reduce brain Aβ pathology. In addition to Aβ, LRPIV binds multiple ligands. To enhance LRPIV binding for Aβ relative to other LRP1 ligands, we generated a library of LRPIV-derived fragments and full-length LRPIV variants with glycine replacing aspartic acid residues 3394, 3556, and 3674 in the calcium binding sites. Compared with WT-LRPIV, a lead LRPIV-D3674G mutant had 1.6- and 2.7-fold higher binding affinity for Aβ40 and Aβ42 in vitro, respectively, and a lower binding affinity for other LRP1 ligands (e.g. apolipoprotein E2, E3, and E4 (1.3–1.8-fold), tissue plasminogen activator (2.7-fold), matrix metalloproteinase-9 (4.1-fold), and Factor Xa (3.8-fold)). LRPIV-D3674G cleared mouse endogenous brain Aβ40 and Aβ42 25–27% better than WT-LRPIV. A 3-month subcutaneous treatment of APPsw+/0 mice with LRPIV-D3674G (40 μg/kg/day) reduced Aβ40 and Αβ42 levels in the hippocampus, cortex, and cerebrospinal fluid by 60–80% and improved cerebral blood flow responses and hippocampal function at 9 months of age. Thus, LRPIV-D3674G is an efficient new Aβ clearance therapy. PMID:23580652

  20. Ethnicity and lipoprotein(a) polymorphism in Native Mexican populations.

    PubMed

    Cardoso-Saldaña, G; De La Peña-Díaz, A; Zamora-González, J; Gomez-Ortega, R; Posadas-Romero, C; Izaguirre-Avila, R; Malvido-Miranda, E; Morales-Anduaga, M E; Anglés-Cano, E

    2006-01-01

    Lp(a) is a lipoparticle of unknown function mainly present in primates and humans. It consists of a low-density lipoprotein and apo(a), a polymorphic glycoprotein. Apo(a) shares sequence homology and fibrin binding with plasminogen, inhibiting its fibrinolytic properties. Lp(a) is considered a link between atherosclerosis and thrombosis. Marked inter-ethnic differences in Lp(a) concentration related to the genetic polymorphism of apo(a) have been reported in several populations. The study examined the structural and functional features of Lp(a) in three Native Mexican populations (Mayos, Mazahuas and Mayas) and in Mestizo subjects. We determined the plasma concentration of Lp(a) by immunonephelometry, apo(a) isoforms by Western blot, Lp(a) fibrin binding by immuno-enzymatic assay and short tandem repeat (STR) polymorphic marker genetic analysis by capillary electrophoresis. Mestizos presented the less skewed distribution and the highest median Lp(a) concentration (13.25 mg dL(-1)) relative to Mazahuas (8.2 mg dL(-1)), Mayas (8.25 mg dL(-1)) and Mayos (6.5 mg dL(-1)). Phenotype distribution was different in Mayas and Mazahuas as compared with the Mestizo group. The higher Lp(a) fibrin-binding capacity was found in the Maya population. There was an inverse relationship between the size of apo(a) polymorphs and both Lp(a) levels and Lp(a) fibrin binding. There is evidence of significative differences in Lp(a) plasma concentration and phenotype distribution in the Native Mexican and the Mestizo group.

  1. Ski acts as a co-repressor with Smad2 and Smad3 to regulate the response to type β transforming growth factor

    PubMed Central

    Xu, Weidong; Angelis, Konstantina; Danielpour, David; Haddad, Maher M.; Bischof, Oliver; Campisi, Judith; Stavnezer, Ed; Medrano, Estela E.

    2000-01-01

    The c-ski protooncogene encodes a transcription factor that binds DNA only in association with other proteins. To identify co-binding proteins, we performed a yeast two-hybrid screen. The results of the screen and subsequent co-immunoprecipitation studies identified Smad2 and Smad3, two transcriptional activators that mediate the type β transforming growth factor (TGF-β) response, as Ski-interacting proteins. In Ski-transformed cells, all of the Ski protein was found in Smad3-containing complexes that accumulated in the nucleus in the absence of added TGF-β. DNA binding assays showed that Ski, Smad2, Smad3, and Smad4 form a complex with the Smad/Ski binding element GTCTAGAC (SBE). Ski repressed TGF-β-induced expression of 3TP-Lux, the natural plasminogen activator inhibitor 1 promoter and of reporter genes driven by the SBE and the related CAGA element. In addition, Ski repressed a TGF-β-inducible promoter containing AP-1 (TRE) elements activated by a combination of Smads, Fos, and/or Jun proteins. Ski also repressed synergistic activation of promoters by combinations of Smad proteins but failed to repress in the absence of Smad4. Thus, Ski acts in opposition to TGF-β-induced transcriptional activation by functioning as a Smad-dependent co-repressor. The biological relevance of this transcriptional repression was established by showing that overexpression of Ski abolished TGF-β-mediated growth inhibition in a prostate-derived epithelial cell line. PMID:10811875

  2. Ski acts as a co-repressor with Smad2 and Smad3 to regulate the response to type beta transforming growth factor.

    PubMed

    Xu, W; Angelis, K; Danielpour, D; Haddad, M M; Bischof, O; Campisi, J; Stavnezer, E; Medrano, E E

    2000-05-23

    The c-ski protooncogene encodes a transcription factor that binds DNA only in association with other proteins. To identify co-binding proteins, we performed a yeast two-hybrid screen. The results of the screen and subsequent co-immunoprecipitation studies identified Smad2 and Smad3, two transcriptional activators that mediate the type beta transforming growth factor (TGF-beta) response, as Ski-interacting proteins. In Ski-transformed cells, all of the Ski protein was found in Smad3-containing complexes that accumulated in the nucleus in the absence of added TGF-beta. DNA binding assays showed that Ski, Smad2, Smad3, and Smad4 form a complex with the Smad/Ski binding element GTCTAGAC (SBE). Ski repressed TGF-beta-induced expression of 3TP-Lux, the natural plasminogen activator inhibitor 1 promoter and of reporter genes driven by the SBE and the related CAGA element. In addition, Ski repressed a TGF-beta-inducible promoter containing AP-1 (TRE) elements activated by a combination of Smads, Fos, and/or Jun proteins. Ski also repressed synergistic activation of promoters by combinations of Smad proteins but failed to repress in the absence of Smad4. Thus, Ski acts in opposition to TGF-beta-induced transcriptional activation by functioning as a Smad-dependent co-repressor. The biological relevance of this transcriptional repression was established by showing that overexpression of Ski abolished TGF-beta-mediated growth inhibition in a prostate-derived epithelial cell line.

  3. Ethnicity and lipoprotein(a) polymorphism in Native Mexican populations

    PubMed Central

    Cardoso-Saldaña, Guillermo; De La Peña-Díaz, Aurora; Zamora-González, José; Gomez-Ortega, Rocio; Posadas-Romero, Carlos; Izaguirre-Avila, Raul; Malvido-Miranda, Elsa; Morales-Anduaga, Maria Elena; Angles-Cano, Eduardo

    2006-01-01

    Background Lp(a) is a lipoparticle of unknown function mainly present in primates and humans. It consists of a low-density lipoprotein and apo(a), a polymorphic glycoprotein. Apo(a) shares sequence homology and fibrin-binding with plasminogen inhibiting its fibrinolytic properties. Lp(a) is considered a link between atherosclerosis and thrombosis. Marked inter-ethnic differences in Lp(a) concentration related to the genetic polymorphism of apo(a), have been reported in several populations. Aim To study the structural and functional features of Lp(a) in three Native Mexican populations (Mayos, Mazahuas and Mayas) and in Mestizo subjects. Methods We determined the plasma concentration of Lp(a) by immunonephelometry, apo(a) isoforms by Western blot, Lp(a) fibrin-binding by immuno-enzymatic assay and STR polymorphic markers genetic analysis by capillary electrophoresis. Results Mestizos presented the less skewed distribution and the highest median Lp(a) concentration (13.25 mg/dL) relative to Mazahuas (8.2 mg/dL), Mayas (8.25 mg/dL) and Mayos (6.5 mg/dL). Phenotype distribution was different in Mayas and Mazahuas as compared to the Mestizo group. The higher Lp(a) fibrin-binding capacity was found in the Maya population. There was an inverse relationship between the size of apo(a) polymorphs and both Lp(a) levels and Lp(a) fibrin binding. Conclusion There is evidence of significative differences in Lp(a) plasma concentration and phenotype distribution in Native Mexican and the Mestizo group. PMID:16684693

  4. Dissecting linear and conformational epitopes on the native thyrotropin receptor.

    PubMed

    Ando, Takao; Latif, Rauf; Daniel, Samira; Eguchi, Katsumi; Davies, Terry F

    2004-11-01

    The TSH receptor (TSHR) is the primary antigen in Graves' disease. In this condition, autoantibodies to the TSHR that have intrinsic thyroid-stimulating activity develop. We studied the epitopes on the native TSHR using polyclonal antisera and monoclonal antibodies (mAbs) derived from an Armenian hamster model of Graves' disease. Of 14 hamster mAbs analyzed, five were shown to bind to conformational epitopes including one mAb with potent thyroid-stimulating activity. Overlapping conformational epitopes were determined by cell-binding competition assays using fluorescently labeled mAbs. We identified two distinct conformational epitopes: epitope A for both stimulating and blocking mAbs and epitope B for only blocking mAbs. Examination of an additional three mouse-derived stimulating TSHR-mAbs also showed exclusive binding to epitope A. The remaining nine hamster-derived mAbs were neutral or low-affinity blocking antibodies that recognized linear epitopes within the TSHR cleaved region (residues 316-366) (epitope C). Serum from the immunized hamsters also recognized conformational epitopes A and B but, in addition, also contained high levels of TSHR-Abs interacting within the linear epitope C region. In summary, these studies indicated that the natively conformed TSHR had a restricted set of epitopes recognized by TSHR-mAbs and that the binding site for stimulating TSHR-Abs was highly conserved. However, high-affinity TSHR-blocking antibodies recognized two conformational epitopes, one of which was indistinguishable from the thyroid-stimulating epitope. Hence, TSHR-stimulating and blocking antibodies cannot be distinguished purely on the basis of their conformational epitope recognition.

  5. Molecular basis of immunogenicity to botulinum neurotoxins and uses of the defined antigenic regions.

    PubMed

    Atassi, M Z

    2015-12-01

    Intensive research in this laboratory over the last 19 years has aimed at understanding the molecular bases for immune recognition of botulinum neurotoxin, types A and B and the role of anti-toxin immune responses in defense against the toxin. Using 92 synthetic 19-residue peptides that overlapped by 5 residues and comprised an entire toxin (A or B) we determined the peptides' ability to bind anti-toxin Abs of human, mouse, horse and chicken. We also localized the epitopes recognized by Abs of cervical dystonia patients who developed immunoresistance to correlate toxin during treatment with BoNT/A or BoNT/B. For BoNT/A, patients' blocking Abs bound to 13 regions (5 on L and 8 on H subunit) on the surface and the response to each region was under separate MHC control. The responses were defined by the structure of the antigen and by the MHC of the host. The antigenic regions coincided or overlapped with synaptosomes (SNPS) binding regions. Antibody binding blocked the toxin's ability to bind to neuronal cells. In fact selected synthetic peptides were able to inhibit the toxin's action in vivo. A combination of three synthetic strong antigenic peptides detected blocking Abs in 88% of immunoresistant patients' sera. Administration of selected epitopes, pre-linked at their N(α) group to monomethoxyployethylene glycol, into mice with ongoing blocking anti-toxin Abs, reduced blocking Ab levels in the recipients. This may be suitable for clinical applications. Defined epitopes should also be valuable in synthetic vaccines design. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Up-Regulation of PAI-1 and Down-Regulation of uPA Are Involved in Suppression of Invasiveness and Motility of Hepatocellular Carcinoma Cells by a Natural Compound Berberine.

    PubMed

    Wang, Xuanbin; Wang, Ning; Li, Hongliang; Liu, Ming; Cao, Fengjun; Yu, Xianjun; Zhang, Jingxuan; Tan, Yan; Xiang, Longchao; Feng, Yibin

    2016-04-16

    Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death and its prognosis remains poor due to the high risk of tumor recurrence and metastasis. Berberine (BBR) is a natural compound derived from some medicinal plants, and accumulating evidence has shown its potent anti-tumor activity with diverse action on tumor cells, including inducing cancer cell death and blocking cell cycle and migration. Molecular targets of berberine involved in its inhibitory effect on the invasiveness remains not yet clear. In this study, we identified that berberine exhibits a potent inhibition on the invasion and migration of HCC cells. This was accompanied by a dose-dependent down-regulation of expression of Cyclooxygenase-2 (COX-2), nuclear factor kappa B (NF-κB), urokinase-type plasminogen activator (uPA) and matrix metalloproteinase (MMP)-9 in berberine-treated HCC cells. Furthermore, berberine inactivated p38 and Erk1/2 signaling pathway in HCC cells. Primarily, this may be attributed to the up-regulation of plasminogen activator inhibitor-1 (PAI-1), a tumor suppressor that can antagonize uPA receptor and down-regulation of uPA. Blockade of uPA receptor-associated pathways leads to reduced invasiveness and motility of berberine-treated HCC cells. In conclusion, our findings identified for the first time that inactivation of uPA receptor by up-regulation of PAI-1 and down-regulation of uPA is involved in the inhibitory effect of berberine on HCC cell invasion and migration.

  7. Molecular mechanism inhibiting human hepatocarcinoma cell invasion by 6-shogaol and 6-gingerol.

    PubMed

    Weng, Chia-Jui; Chou, Chai-Ping; Ho, Chi-Tang; Yen, Gow-Chin

    2012-08-01

    We previously demonstrated that 6-shogaol and 6-gingerol, two active compounds in ginger (Zingiber officinale), possess antiinvasive activity against highly metastatic hepatoma cells. The aims of this study were to evaluate the inhibitory effect and molecular mechanism underlying the transcription and translation of matrix metalloproteinases (MMPs) and urokinase-type plasminogen activator (uPA) in Hep3B cells as well as the antiangiogenic activity of 6-gingerol and 6-shogaol. By gelatin zymography and luciferase reporter gene assays, we found that 6-gingerol and 6-shogaol regulate MMP-2/-9 transcription. Moreover, 6-gingerol directly decreased expression of uPA, but the 6-shogaol-mediated decrease in uPA was accompanied by up-regulation of plasminogen activator inhibitor (PAI)-1. 6-Gingerol and 6-shogaol concentrations of ≥ 10 μM and ≥ 2.5 μM, respectively, significantly inhibited the phosphorylation of mitogen-activated protein kinase (MAPK) and PI3K/Akt signaling, the activation of NF-κB, and the translocation of NF-κB and STAT3. Incubation of 6-gingerol or 6-shogaol with human umbilical vein endothelial cells or rat aortas significantly attenuated tube formation. 6-Shogaol and 6-gingerol effectively inhibit invasion and metastasis of hepatocellular carcinoma through diverse molecular mechanisms, including inhibition of the MAPK and PI3k/Akt pathways and NF-κB and STAT3 activities to suppress expression of MMP-2/-9 and uPA and block angiogenesis. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Determinants of hypofibrinolysis in patients with digestive tract cancer.

    PubMed

    Gronostaj, Katarzyna; Richter, Piotr; Nowak, Wojciech; Undas, Anetta

    2016-01-01

    Recently, we demonstrated that digestive tract cancer (DTC) is associated with reduced fibrin clot permeability and impaired fibrinolysis. We investigated determinants of fibrinolysis in DTC patients. In 44 consecutive patients with DTC and 47 controls matched for age, sex, and cardiovascular risk, we evaluated fibrinolysis proteins, platelet activation markers, thrombin formation, together with plasma clot lysis time assays in the absence (CLT) and presence of carboxypeptidase potato inhibitor (CLT CPI) that blocks thrombin activatable fibrinolysis inhibitor (TAFI). In the DTC group CLT (by 22.3%) and CLT CPI (by 27.4%) were longer compared with controls. The DTC patients had higher plasma fibrinolysis inhibitors, plasminogen activator inhibitor 1 (PAI-1) (by 18.2%), TAFI activity (by 17.3%), and antigen (by 11.2%). The patients had markedly increased platelet markers - soluble CD40 ligand (by 338%) and P-selectin (by 97%), together with von Willebrand factor (vWF) antigen (by 61%). Thrombin-antithrombin complexes (TAT) (by 48.7%) and soluble thrombomodulin (sTM) (by 17.2%) were also increased in the DTC group (all p < 0.05). Patients with high-grade tumours (n = 26) compared with remainders (n = 18) had longer CLT, higher tissue-type plasminogen activator antigen, both TAFI antigen and activity levels, vWF, and sTM. Multiple regression analysis after adjustment for potential confounders showed that independent predictors of CLT in DTC patients were TAT, TAFI activity, and vWF. The only independent predictor of CLT CPI was TAT. Hypofibrinolysis in DTC patients is largely driven by enhanced thrombin generation, TAFI, and endothelial injury.

  9. Temperature Effects on Kinetics of KV11.1 Drug Block Have Important Consequences for In Silico Proarrhythmic Risk Prediction.

    PubMed

    Windley, Monique J; Mann, Stefan A; Vandenberg, Jamie I; Hill, Adam P

    2016-07-01

    Drug block of voltage-gated potassium channel subtype 11.1 human ether-a-go-go related gene (Kv11.1) (hERG) channels, encoded by the KCNH2 gene, is associated with reduced repolarization of the cardiac action potential and is the predominant cause of acquired long QT syndrome that can lead to fatal cardiac arrhythmias. Current safety guidelines require that potency of KV11.1 block is assessed in the preclinical phase of drug development. However, not all drugs that block KV11.1 are proarrhythmic, meaning that screening on the basis of equilibrium measures of block can result in high attrition of potentially low-risk drugs. The basis of the next generation of drug-screening approaches is set to be in silico risk prediction, informed by in vitro mechanistic descriptions of drug binding, including measures of the kinetics of block. A critical issue in this regard is characterizing the temperature dependence of drug binding. Specifically, it is important to address whether kinetics relevant to physiologic temperatures can be inferred or extrapolated from in vitro data gathered at room temperature in high-throughout systems. Here we present the first complete study of the temperature-dependent kinetics of block and unblock of a proarrhythmic drug, cisapride, to KV11.1. Our data highlight a complexity to binding that manifests at higher temperatures and can be explained by accumulation of an intermediate, non-blocking encounter-complex. These results suggest that for cisapride, physiologically relevant kinetic parameters cannot be simply extrapolated from those measured at lower temperatures; rather, data gathered at physiologic temperatures should be used to constrain in silico models that may be used for proarrhythmic risk prediction. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  10. Synthesis of carboxylic block copolymers via reversible addition fragmentation transfer polymerization for tooth erosion prevention.

    PubMed

    Lei, Y; Wang, T; Mitchell, J W; Qiu, J; Kilpatrick-Liverman, L

    2014-12-01

    Dental professionals are seeing a growing population of patients with visible signs of dental erosion. The approach currently being used to address the problem typically leverages the enamel protection benefits of fluoride. In this report, an alternative new block copolymer with a hydrophilic polyacrylic acid (PAA) block and a hydrophobic poly(methyl methacrylate) (PMMA) block was developed to similarly reduce the mineral loss from enamel under acidic conditions. This series of PMMA-b-PAA block copolymers was synthesized by reversible addition fragmentation transfer (RAFT) polymerization. Their structures were characterized by gel permeation chromatography (GPC) and (1)H nuclear magnetic resonance (NMR) spectra. The molar fractions of acrylic acid (AA) in the final block copolymer were finely controlled from 0.25 to 0.94, and the molecular weight (Mn) of PMMA-b-PAA was controlled from 10 kDa to 90 kDa. The binding capability of the block copolymer with hydroxyapatite (HAP) was investigated by ultraviolet-visible spectroscopy (UV-Vis) and Fourier transform infrared (FTIR) spectroscopy. FTIR spectra confirmed that the PMMA-b-PAA block copolymer could bind to HAP via bridging bidentate bonds. Both UV-Vis and FTIR spectra additionally indicated that a high polymer concentration and low solution pH favored the polymer binding to HAP. The erosion-preventing efficacy of the PMMA-b-PAA block copolymer in inhibiting HAP mineral loss was quantitatively evaluated by atomic absorption spectroscopy (AAS). Based on the results, polymer treatment reduced the amount of calcium released by 27% to 30% in comparison with the unprotected samples. Scanning electron microscope (SEM) observations indicated that PMMA-b-PAA polymer treatment protected enamel from acid erosion. This new amphiphilic block copolymer has significant potential to be integrated into dentifrices or mouthrinses as an alternative non-fluoride ingredient to reduce tooth erosion. © International & American Associations for Dental Research.

  11. Synthesis of Carboxylic Block Copolymers via Reversible Addition Fragmentation Transfer Polymerization for Tooth Erosion Prevention

    PubMed Central

    Lei, Y.; Wang, T.; Mitchell, J.W.; Qiu, J.; Kilpatrick-Liverman, L.

    2014-01-01

    Dental professionals are seeing a growing population of patients with visible signs of dental erosion. The approach currently being used to address the problem typically leverages the enamel protection benefits of fluoride. In this report, an alternative new block copolymer with a hydrophilic polyacrylic acid (PAA) block and a hydrophobic poly(methyl methacrylate) (PMMA) block was developed to similarly reduce the mineral loss from enamel under acidic conditions. This series of PMMA-b-PAA block copolymers was synthesized by reversible addition fragmentation transfer (RAFT) polymerization. Their structures were characterized by gel permeation chromatography (GPC) and 1H nuclear magnetic resonance (NMR) spectra. The molar fractions of acrylic acid (AA) in the final block copolymer were finely controlled from 0.25 to 0.94, and the molecular weight (Mn) of PMMA-b-PAA was controlled from 10 kDa to 90 kDa. The binding capability of the block copolymer with hydroxyapatite (HAP) was investigated by ultraviolet–visible spectroscopy (UV-Vis) and Fourier transform infrared (FTIR) spectroscopy. FTIR spectra confirmed that the PMMA-b-PAA block copolymer could bind to HAP via bridging bidentate bonds. Both UV-Vis and FTIR spectra additionally indicated that a high polymer concentration and low solution pH favored the polymer binding to HAP. The erosion-preventing efficacy of the PMMA-b-PAA block copolymer in inhibiting HAP mineral loss was quantitatively evaluated by atomic absorption spectroscopy (AAS). Based on the results, polymer treatment reduced the amount of calcium released by 27% to 30% in comparison with the unprotected samples. Scanning electron microscope (SEM) observations indicated that PMMA-b-PAA polymer treatment protected enamel from acid erosion. This new amphiphilic block copolymer has significant potential to be integrated into dentifrices or mouthrinses as an alternative non-fluoride ingredient to reduce tooth erosion. PMID:25248611

  12. Comparative effectiveness of Calabadion and sugammadex to reverse non-depolarizing neuromuscular blocking agents

    PubMed Central

    Haerter, Friederike; Simons, Jeroen Cedric Peter; Foerster, Urs; Duarte, Ingrid Moreno; Diaz-Gil, Daniel; Ganapati, Shweta; Eikermann-Haerter, Katharina; Ayata, Cenk; Zhang, Ben; Blobner, Manfred; Isaacs, Lyle; Eikermann, Matthias

    2015-01-01

    Background We evaluated the comparative effectiveness of calabadion 2 to reverse non-depolarizing neuromuscular blocking agents (NMBAs) by binding and inactivation. Methods The dose-response relationship of drugs to reverse vecuronium, rocuronium, and cisatracurium-induced neuromuscular block (NMB) was evaluated in vitro (competition binding assays and urine analysis), ex vivo (n=34; phrenic nerve hemidiaphragm preparation) and in vivo (n=108; quadriceps femoris muscle of the rat). Cumulative dose-response curves of calabadions, neostigmine, or sugammadex were created ex vivo at steady-state deep NMB. In living rats, we studied the dose-response relationship of the test drugs to reverse deep block under physiological conditions and we measured the amount of calabadion 2 excreted in the urine. Results In vitro experiments showed that calabadion 2 binds rocuronium with 89 times the affinity of sugammadex (Ka = 3.4 × 109 M−1 and Ka = 3.8 × 107 M−1). Urine analysis (proton nuclear magnetic resonance), competition binding assays and ex vivo study results obtained in the absence of metabolic deactivation are in accordance with an 1:1 binding ratio of sugammadex and calabadion 2 toward rocuronium. In living rats, calabadion 2 dose-dependently and rapidly reversed all NMBAs tested. The molar potency of calabadion 2 to reverse vecuronium and rocuronium was higher compared to sugammadex. Calabadion 2 was eliminated renally, and did not affect blood pressure or heart rate. Conclusion Calabadion 2 reverses NMB-induced by benzylisoquinolines and steroidal NMBAs in rats more effectively, i.e. faster, than sugammadex. Calabadion 2 is eliminated in the urine and well tolerated in rats. PMID:26418697

  13. Mesd Is a Universal Inhibitor of Wnt Co-receptor LRP5/6 and Blocks Wnt/β-catenin Signaling in Cancer Cells†

    PubMed Central

    Lu, Wenyan; Liu, Chia-Chen; Thottassery, Jaideep V.; Bu, Guojun; Li, Yonghe

    2010-01-01

    Mesd is a specialized chaperone for the low-density lipoprotein receptor-related protein-5 (LRP5) and LRP6. In our previous studies, we found that Mesd binds to mature LRP6 on the cell surface and blocks the binding of Wnt antagonist Dickkopf-1(Dkk1) to LRP6. Herein, we demonstrated that Mesd also binds to LRP5 with a high affinity, and is a universal inhibitor of LRP5/6 ligands. Mesd not only blocks Wnt antagonists Dkk1 and Sclerostin binding to LRP5/6, but also inhibits Wnt3A and Rspondin1-induced Wnt/β-catenin signaling in LRP5/6 expressing cells. We also found that Mesd, Dkk1 and Sclerostin compete with one another for binding to LRP5 and LRP6 at the cell surface. More importantly, we demonstrated that Mesd is able to suppress LRP6 phosphorylation and Wnt/β-catenin signaling in prostate cancer PC-3 cells, and inhibits PC-3 cell proliferation. Our results indicate that recombinant Mesd protein is a useful tool for studying Wnt/β-catenin signaling on the cell surface, and has a potential therapeutic role in Wnt-dependent cancers. PMID:20446724

  14. The Epstein-Barr virus Bcl-2 homolog, BHRF1, blocks apoptosis by binding to a limited amount of Bim.

    PubMed

    Desbien, Anthony L; Kappler, John W; Marrack, Philippa

    2009-04-07

    Current knowledge suggests that the balance between life and death within a cell can be controlled by the stable engagement of Bcl-2-related proapoptotic proteins such as Bak, Bax, and Bim by survival proteins such as Bcl-2. BHRF1 is a prosurvival molecule from Epstein-Barr virus that has a high degree of homology to Bcl-2. To understand how BHRF1 blocks apoptosis, BHRF1 and mutants of BHRF1 were expressed in primary cells and an IL-2-dependent T cell line. BHRF1 bound the Executioner Bak and, when cells were cultured without cytokines, BHRF1 associated with Bim. A point mutation that lost the ability to bind Bak retained its ability to bind Bim and to protect cells. This result demonstrated that it was the capacity of BHRF1 to bind Bim, not Bak, that provided protection. Interestingly, the amount of Bim bound by BHRF1 was minimal when compared with the amount of Bim induced by apoptosis. Thus, BHRF1 does not act by simply absorbing the excess Bim produced while cells prepare for death. Rather, BHRF1 may act either by binding preferentially the most lethal form of Bim or by acting catalytically on Bim to block apoptosis.

  15. Carboxamide SIRT1 inhibitors block DBC1 binding via an acetylation-independent mechanism

    PubMed Central

    Hubbard, Basil P; Loh, Christine; Gomes, Ana P; Li, Jun; Lu, Quinn; Doyle, Taylor LG; Disch, Jeremy S; Armour, Sean M; Ellis, James L; Vlasuk, George P; Sinclair, David A

    2013-01-01

    SIRT1 is an NAD+-dependent deacetylase that counteracts multiple disease states associated with aging and may underlie some of the health benefits of calorie restriction. Understanding how SIRT1 is regulated in vivo could therefore lead to new strategies to treat age-related diseases. SIRT1 forms a stable complex with DBC1, an endogenous inhibitor. Little is known regarding the biochemical nature of SIRT1-DBC1 complex formation, how it is regulated and whether or not it is possible to block this interaction pharmacologically. In this study, we show that critical residues within the catalytic core of SIRT1 mediate binding to DBC1 via its N-terminal region, and that several carboxamide SIRT1 inhibitors, including EX-527, can completely block this interaction. We identify two acetylation sites on DBC1 that regulate its ability to bind SIRT1 and suppress its activity. Furthermore, we show that DBC1 itself is a substrate for SIRT1. Surprisingly, the effect of EX-527 on SIRT1-DBC1 binding is independent of DBC1 acetylation. Together, these data show that protein acetylation serves as an endogenous regulatory mechanism for SIRT1-DBC1 binding and illuminate a new path to developing small-molecule modulators of SIRT1. PMID:23892437

  16. Carboxamide SIRT1 inhibitors block DBC1 binding via an acetylation-independent mechanism.

    PubMed

    Hubbard, Basil P; Loh, Christine; Gomes, Ana P; Li, Jun; Lu, Quinn; Doyle, Taylor Lg; Disch, Jeremy S; Armour, Sean M; Ellis, James L; Vlasuk, George P; Sinclair, David A

    2013-07-15

    SIRT1 is an NAD (+) -dependent deacetylase that counteracts multiple disease states associated with aging and may underlie some of the health benefits of calorie restriction. Understanding how SIRT1 is regulated in vivo could therefore lead to new strategies to treat age-related diseases. SIRT1 forms a stable complex with DBC1, an endogenous inhibitor. Little is known regarding the biochemical nature of SIRT1-DBC1 complex formation, how it is regulated and whether or not it is possible to block this interaction pharmacologically. In this study, we show that critical residues within the catalytic core of SIRT1 mediate binding to DBC1 via its N-terminal region, and that several carboxamide SIRT1 inhibitors, including EX-527, can completely block this interaction. We identify two acetylation sites on DBC1 that regulate its ability to bind SIRT1 and suppress its activity. Furthermore, we show that DBC1 itself is a substrate for SIRT1. Surprisingly, the effect of EX-527 on SIRT1-DBC1 binding is independent of DBC1 acetylation. Together, these data show that protein acetylation serves as an endogenous regulatory mechanism for SIRT1-DBC1 binding and illuminate a new path to developing small-molecule modulators of SIRT1.

  17. Using lidocaine and benzocaine to link sodium channel molecular conformations to state-dependent antiarrhythmic drug affinity.

    PubMed

    Hanck, Dorothy A; Nikitina, Elena; McNulty, Megan M; Fozzard, Harry A; Lipkind, Gregory M; Sheets, Michael F

    2009-08-28

    Lidocaine and other antiarrhythmic drugs bind in the inner pore of voltage-gated Na channels and affect gating use-dependently. A phenylalanine in domain IV, S6 (Phe1759 in Na(V)1.5), modeled to face the inner pore just below the selectivity filter, is critical in use-dependent drug block. Measurement of gating currents and concentration-dependent availability curves to determine the role of Phe1759 in coupling of drug binding to the gating changes. The measurements showed that replacement of Phe1759 with a nonaromatic residue permits clear separation of action of lidocaine and benzocaine into 2 components that can be related to channel conformations. One component represents the drug acting as a voltage-independent, low-affinity blocker of closed channels (designated as lipophilic block), and the second represents high-affinity, voltage-dependent block of open/inactivated channels linked to stabilization of the S4s in domains III and IV (designated as voltage-sensor inhibition) by Phe1759. A homology model for how lidocaine and benzocaine bind in the closed and open/inactivated channel conformation is proposed. These 2 components, lipophilic block and voltage-sensor inhibition, can explain the differences in estimates between tonic and open-state/inactivated-state affinities, and they identify how differences in affinity for the 2 binding conformations can control use-dependence, the hallmark of successful antiarrhythmic drugs.

  18. Peroxisome Proliferator-Activated Receptor-γ Ligands Alter Breast Cancer Cell Motility through Modulation of the Plasminogen Activator System

    PubMed Central

    Carter, Jennifer C.; Church, Frank C.

    2011-01-01

    We investigated peroxisome proliferator-activated receptor-γ (PPAR-γ) ligands effect on cell motility and the plasminogen activator system using normal MCF-10A and malignant MCF-10CA1 cell lines. Ciglitazone reduced both wound-induced migration and chemotaxis. However, the effect was not reversed with pretreatment of cells with the PPAR-γ-specific antagonist GW9662. Immunoblot analysis of conditioned media showed ciglitazone decreased plasminogen activator inhibitor-1 (PAI-1) in both cell lines; this effect was also unaltered by PPAR-γ antagonism. Alternatively, treatment with the ω-6 fatty acid arachidonic acid (ArA), but not the ω-3 fatty acid docosahexanoic acid, increased both MCF-10A cell migration and cell surface uPA activity. Pretreatment with a PPAR-γ antagonist reversed these effects, suggesting that ArA mediates its effect on cell motility and uPA activity through PPAR-γ activation. Collectively, the data suggest PPAR-γ ligands have a differential effect on normal and malignant cell migration and the plasminogen activation system, resulting from PPAR-γ-dependent and PPAR-γ-independent effects. PMID:22131991

  19. Plasminogen activator inhibitor links obesity and thrombotic cerebrovascular diseases: The roles of PAI-1 and obesity on stroke.

    PubMed

    Chen, Rui; Yan, Jinchuan; Liu, Peijing; Wang, Zhongqun; Wang, Cuiping

    2017-06-01

    One of the global socioeconomic phenomena occurred during the last decades is the increased prevalence of obesity, with direct consequence on the risk of developing thrombotic disorders. As the physiological inhibitor of tissue plasminogen activator (tPA) and urokinase plasminogen activator (uPA), plasminogen activator inhibitor-1 (PAI-1) is well known for its role in fibrinolysis. More and more evidences have shown that PAI-1 involves in physiopathologic mechanisms of many diseases and metabolic disorder. Increased serum level of PAI-1 has been observed in obesity and it also contributes to the development of adipose tissue and then has effects on obesity. Meantime, obesity affects also the PAI-1 levels. These evidences indicate the complicated interaction between PAI-1 and obesity. Many clinic studies have confirmed that obesity relates to the stroke outcome although there are many contradictory results. Simultaneously, correlation is found between plasma PAI-1 and thrombotic cerebrovascular diseases. This article reviews contemporary knowledge regarding the complex interplay of obesity, PAI-1 and stroke.

  20. Effect of reoxygenation on the hypoxia-induced up-regulation of serine protease inhibitor PAI-1 in head and neck cancer cells.

    PubMed

    Sprague, Lisa D; Mengele, Karin; Schilling, Daniela; Geurts-Moespot, Anneke; Sweep, Fred C G J; Stadler, Peter; Schmitt, Manfred; Molls, Michael

    2006-01-01

    In squamous cell carcinoma of the head and neck (SCCHN), hypoxia is considered a crucial physiological modulator for malignant progression, wherebythe plasminogen activation system is involved in overlapping functions such as moulding of the extracellular matrix, cell proliferation and signal transduction. Little is known about the effects of reoxygenation on the plasminogen activation system in SCCHN cells. Three human SCCHN cell lines (BHY, CAL27, FaDu) and a non-transformed human fibroblast cell line (VH7) were exposed to hypoxic (<0.5% O(2)) conditions for up to 72 h and subsequently reoxygenated at normoxic conditions for 24 h. Urokinase-type plasminogen activator (uPA) and plasminogen activator inhibitor-1 (PAI-1) protein concentration and former protein activity were determined by ELISA and complex ELISA, respectively. Reoxygenation induced significant changes in cell-associated and secreted PAI-1 protein compared to the normoxic control. Significant increase in cell-associated and secreted uPA protein after reoxygenation was only observed for some of the cell lines. Determination of uPA-PAI-1 complex formation revealed the release of active protein into the cell supernatant. The beneficial role of reoxygenation during radiation therapy is widely accepted. However, reoxygenation does not seem to counteract the effects induced by hypoxia on the plasminogen activation system. Fatally irradiated reoxygenat- ed tumour cells might still produce sufficient amounts of 'harmful' protein and thus initiate a path for invasion and metastasis for surviving tumour cells.

  1. A novel embryo culture media supplement that improves pregnancy rates in mice.

    PubMed

    Highet, A R; Bianco-Miotto, T; Pringle, K G; Peura, A; Bent, S; Zhang, J; Nottle, M B; Thompson, J G; Roberts, C T

    2017-03-01

    The preimplantation embryo in vivo is exposed to numerous growth factors in the female reproductive tract, which are not recapitulated in embryo culture media in vitro The IGF2 and plasminogen activator systems facilitate blastocyst development. We hypothesized that the addition of IGF2 in combination with urokinase plasminogen activator (uPA) and plasminogen could improve rates of blastocyst hatching and implantation in mice. B6BcF1 and CBAB6F2 mouse embryos were divided into one of four supplemented culture media treatment groups: (1) control (media only); (2) 12.5 nM IGF2; (3) 10 µg/mL uPA and 5 µg/mL plasminogen; or (4) a combination of IGF2, uPA and plasminogen treatments. Embryo development to blastocyst stage and hatching were assessed before transfer to pseudopregnant recipient females and implantation, pregnancy rates and postnatal growth were assessed. After 90.5 h of culture, IGF2 + U + P treatment increased the percentage of B6BcF1 embryos that were hatching/hatched and percentage developing to blastocyst stage compared with controls (P < 0.02). Following B6BcF1 embryo transfer, IGF2 + U + P treatment increased implantation sites at day 8 of pregnancy compared with controls (P < 0.05). Replication in the CBAB6F2 mouse strain showed significant improvements in pregnancy rates at days 8 and 18 but not in blastocyst development. No adverse effects were seen on gestational age, litter size or birthweight, or the reproductive capacity of offspring of IGF2 + U + P treated embryos. For embryos susceptible to detrimental effects of in vitro culture, IGF2, uPA and plasminogen supplementation of culture media can improve pregnancy success, but the effect of treatment is dependent on the mouse strain. © 2017 Society for Reproduction and Fertility.

  2. Effects of Heparin and ε-Aminocaproic Acid in Dogs on Plasmin- 125I Generation in Response to Urokinase Injections and Venous Injury

    PubMed Central

    Takeda, Y.; Parkhill, T. R.; Nakabayashi, M.

    1972-01-01

    The isotopic method described previously for quantification of plasmin- 125I by disc gel electrophoresis was modified by inclusion of euglobulin precipitation to expand its applicability to plasmas containing low radioactivity of plasmin- 125I and plasminogen- 125I. It was found that the euglobulin precipitation method precipitates 72.4±2.1 (sd)% of both plasmin- 125I and plasminogen- 125I. Using this method and plasminogen- 125I as a tracer, studies were first made of the effects of heparin and ε-aminocaproic acid in dogs on plasmin- 125I generation in responese to a single injection of urokinase and to venous injury; second, of the effects of venous occlusion and thrombosis on plasmin- 125I generation; and third, in vitro studies of plasminogen- 125I affinity to fibrin and its activation in blood clots. The venous injury was produced by the damage of venous endothelium by an injection of 90% phenol and the thrombosis by a thrombin injection into an occluded vein. Heparin and ε-aminocaproic acid under the present experimental conditions inhibited about 78 and 100%, respectively of plasmin- 125I generation by the urokinase injection. Similar inhibitory effects of heparin and ε-aminocaproic acid were observed on plasmin- 125I generation in response to venous injury. The venous occlusion caused a small degree of plasmin- 125I generation, but thrombin thrombosis did not seem to stimulate the generation of plasmin- 125I. The in vitro studies showed that plasminogen- 125I does not have a specific affinity to fibrin and is incorporated into blood clots in approximately equal concentrations as those in serum during clotting processes, and that blood clots per se do not stimulate plasmin- 125I generation. These results suggest that injured veins release considerable amounts of vascular plasminogen activators into circulation and that these play an important role in thrombus dissolution in vivo. PMID:4262519

  3. Uncovering the dual role of RHAMM as an HA receptor and a regulator of CD44 expression in RHAMM-expressing mesenchymal progenitor cells.

    PubMed

    Veiseh, Mandana; Leith, Sean J; Tolg, Cornelia; Elhayek, Sallie S; Bahrami, S Bahram; Collis, Lisa; Hamilton, Sara; McCarthy, James B; Bissell, Mina J; Turley, Eva

    2015-01-01

    The interaction of hyaluronan (HA) with mesenchymal progenitor cells impacts trafficking and fate after tissue colonization during wound repair and these events contribute to diseases such as cancer. How this interaction occurs is poorly understood. Using 10T½ cells as a mesenchymal progenitor model and fluorescent (F-HA) or gold-labeled HA (G-HA) polymers, we studied the role of two HA receptors, RHAMM and CD44, in HA binding and uptake in non-adherent and adherent mesenchymal progenitor (10T½) cells to mimic aspects of cell trafficking and tissue colonization. We show that fluorescent labeled HA (F-HA) binding/uptake was high in non-adherent cells but dropped over time as cells became increasingly adherent. Non-adherent cells displayed both CD44 and RHAMM but only function-blocking anti-RHAMM and not anti-CD44 antibodies significantly reduced F-HA binding/uptake. Adherent cells, which also expressed CD44 and RHAMM, primarily utilized CD44 to bind to F-HA since anti-CD44 but not anti-RHAMM antibodies blocked F-HA uptake. RHAMM overexpression in adherent 10T½ cells led to increased F-HA uptake but this increased binding remained CD44 dependent. Further studies showed that RHAMM-transfection increased CD44 mRNA and protein expression while blocking RHAMM function reduced expression. Collectively, these results suggest that cellular microenvironments in which these receptors function as HA binding proteins differ significantly, and that RHAMM plays at least two roles in F-HA binding by acting as an HA receptor in non-attached cells and by regulating CD44 expression and display in attached cells. Our findings demonstrate adhesion-dependent mechanisms governing HA binding/ uptake that may impact development of new mesenchymal cell-based therapies.

  4. Uncovering the dual role of RHAMM as an HA receptor and a regulator of CD44 expression in RHAMM-expressing mesenchymal progenitor cells

    PubMed Central

    Veiseh, Mandana; Leith, Sean J.; Tolg, Cornelia; Elhayek, Sallie S.; Bahrami, S. Bahram; Collis, Lisa; Hamilton, Sara; McCarthy, James B.; Bissell, Mina J.; Turley, Eva

    2015-01-01

    The interaction of hyaluronan (HA) with mesenchymal progenitor cells impacts trafficking and fate after tissue colonization during wound repair and these events contribute to diseases such as cancer. How this interaction occurs is poorly understood. Using 10T½ cells as a mesenchymal progenitor model and fluorescent (F-HA) or gold-labeled HA (G-HA) polymers, we studied the role of two HA receptors, RHAMM and CD44, in HA binding and uptake in non-adherent and adherent mesenchymal progenitor (10T½) cells to mimic aspects of cell trafficking and tissue colonization. We show that fluorescent labeled HA (F-HA) binding/uptake was high in non-adherent cells but dropped over time as cells became increasingly adherent. Non-adherent cells displayed both CD44 and RHAMM but only function-blocking anti-RHAMM and not anti-CD44 antibodies significantly reduced F-HA binding/uptake. Adherent cells, which also expressed CD44 and RHAMM, primarily utilized CD44 to bind to F-HA since anti-CD44 but not anti-RHAMM antibodies blocked F-HA uptake. RHAMM overexpression in adherent 10T½ cells led to increased F-HA uptake but this increased binding remained CD44 dependent. Further studies showed that RHAMM-transfection increased CD44 mRNA and protein expression while blocking RHAMM function reduced expression. Collectively, these results suggest that cellular microenvironments in which these receptors function as HA binding proteins differ significantly, and that RHAMM plays at least two roles in F-HA binding by acting as an HA receptor in non-attached cells and by regulating CD44 expression and display in attached cells. Our findings demonstrate adhesion-dependent mechanisms governing HA binding/ uptake that may impact development of new mesenchymal cell-based therapies. PMID:26528478

  5. Double hydrophilic block copolymer controlled growth and self-assembly of CaCO3 multilayered structures at the air/water interface.

    PubMed

    Gao, Yun-Xiang; Yu, Shu-Hong; Guo, Xiao-Hui

    2006-07-04

    Double hydrophilic block copolymers PEG-b-PEI-linear with different PEI block lengths have been examined for CaCO3 mineralization at the air/water interface. The results demonstrated that either PEI length or the solution acidity had a significant influence on the morphogenesis of vaterite crystals at the air/water interface. A possible mechanism for the stratification of CaCO3 vaterite crystals has been proposed. Increasing either PEI length or the initial pH value of the solution will decrease the density of the PEG block anchored on the binding interface and result in exposing more space as binding interface to solution and favoring the subnucleation and stratification growth on the polymer-CaCO3 interface. In contrast, higher density of PEG blocks will stabilize the growing crystals more efficiently and inhibit subnucleation on the polymer-CaCO3 interface, and thus prevent the formation of stratified structures. This study provides an example that it is possible to access morphogenesis of calcium carbonate structures by a combination of a block copolymer with the air/water interface.

  6. Stimulation of plasmin activity in cultured human fibroblast cells by Porphyromonas endodontalis.

    PubMed

    Oikawa, T; Ogura, N; Akiba, M; Abiko, Y; Takiguchi, H; Izumi, H

    1993-09-01

    1. Plasmin activity in the conditioned medium of Gin-1 cells, a human gingival fibroblast cell line, was stimulated by Porphyromonas endodontalis, a putative pathogen of oral submucous abscesses, in a time- and dose-dependent manner. 2. P. endodontalis stimulated the activity of plasminogen activator in both the conditioned medium and the cell lysate. The plasminogen activator in Gin-1 cells was approx. 50 kDa by zymography. 3. The conditioned medium of Gin-1 cells exposed to P. endodontalis stimulated the conversion of human serum prekallikrein to kallikrein. 4. These results suggested that P. endodontalis stimulates the plasminogen activator-plasmin system in Gin-1 cells, and that activated plasmin plays a role in the progress of periodontal tissue inflammation.

  7. Lingual Haematoma due to Tenecteplase in a Patient with Acute Myocardial Infarction

    PubMed Central

    Bal, Muhlis; Salturk, Ziya; Ateş, Ahmet Hakan; Yağcı, Serkan; Coşkun Bal, Gökçen

    2013-01-01

    The use of intravenous thrombolytic agents has revolutionised the treatment of acute myocardial infarction. However, the improvement in mortality rate achieved with these drugs is tempered by the risk of serious bleeding complications, including intracranial haemorrhage. Tenecteplase is a genetically engineered mutant tissue plasminogen activator. Haemorrhagic complications of tissue plasminogen activator (tPA) are well known. Compared to other tPAs, tenecteplase use leads to lower rates of bleeding complications. Here, we report a case of unusual site of spontaneous bleeding, intralingual haematoma during tenecteplase therapy following acute myocardial infarction, which caused significant upper airway obstruction and required tracheotomy to maintain the patient's airway. Clinical dilemmas related to securing the airway or reversing the effects of tissue plasminogen activator are discussed. PMID:23862086

  8. Binding blocks: building the Universe one nucleus at a time

    NASA Astrophysics Data System (ADS)

    Diget, C. Aa; Pastore, A.; Leech, K.; Haylett, T.; Lock, S.; Sanders, T.; Shelley, M.; Willett, H. V.; Keegans, J.; Sinclair, L.; Simpson, E. C.; Binding Blocks Collaboration

    2017-03-01

    We present a new teaching and outreach activity based around the construction of a three-dimensional chart of isotopes using \\text{LEG}{{\\text{O}}\\circledR} bricks5. The activity, binding blocks, demonstrates nuclear and astrophysical processes through a seven-meter chart of all nuclear isotopes, built from over 26 000 \\text{LEG}{{\\text{O}}\\circledR} bricks. It integrates A-Level and GCSE curricula across areas of nuclear physics, astrophysics, and chemistry, including: nuclear decays (through the colours in the chart); nuclear binding energy (through tower heights); production of chemical elements in the cosmos; fusion processes in stars and fusion energy on Earth; as well as links to medical physics, particularly diagnostics and radiotherapy.

  9. Long non-coding RNA CRYBG3 blocks cytokinesis by directly binding G-actin.

    PubMed

    Pei, Hailong; Hu, Wentao; Guo, Ziyang; Chen, Huaiyuan; Ma, Ji; Mao, Weidong; Li, Bingyan; Wang, Aiqing; Wan, Jianmei; Zhang, Jian; Nie, Jing; Zhou, Guangming; Hei, Tom K

    2018-06-22

    The dynamic interchange between monomeric globular actin (G-actin) and polymeric filamentous actin filaments (F-actin) is fundamental and essential to many cellular processes including cytokinesis and maintenance of genomic stability. Here we report that the long non-coding RNA LNC CRYBG3 directly binds G-actin to inhibit its polymerization and formation of contractile rings, resulting in M-Phase cell arrest. Knockdown of LNC CRYBG3 in tumor cells enhanced their malignant phenotypes. Nucleotide sequence 228-237 of the full-length LNC CRYBG3 and the ser14 domain of beta-actin are essential for their interaction, and mutation of either of these sites abrogated binding of LNC CRYBG3 to G-actin. Binding of LNC CRYBG3 to G-actin blocked nuclear localization of MAL, which consequently kept serum response factor (SRF) away from the promoter region of several immediate early genes, including JUNB and Arp3, which are necessary for cellular proliferation, tumor growth, adhesion, movement, and metastasis. These findings reveal a novel lncRNA-actin-MAL-SRF pathway and highlight LNC CRYBG3 as a means to block cytokinesis and treat cancer by targeting the actin cytoskeleton. Copyright ©2018, American Association for Cancer Research.

  10. Platelets Contain Tissue Factor Pathway Inhibitor-2 Derived from Megakaryocytes and Inhibits Fibrinolysis*

    PubMed Central

    Vadivel, Kanagasabai; Ponnuraj, Sathya-Moorthy; Kumar, Yogesh; Zaiss, Anne K.; Bunce, Matthew W.; Camire, Rodney M.; Wu, Ling; Evseenko, Denis; Herschman, Harvey R.; Bajaj, Madhu S.; Bajaj, S. Paul

    2014-01-01

    Tissue factor pathway inhibitor-2 (TFPI-2) is a homologue of TFPI-1 and contains three Kunitz-type domains and a basic C terminus region. The N-terminal domain of TFPI-2 is the only inhibitory domain, and it inhibits plasma kallikrein, factor XIa, and plasmin. However, plasma TFPI-2 levels are negligible (≤20 pm) in the context of influencing clotting or fibrinolysis. Here, we report that platelets contain significant amounts of TFPI-2 derived from megakaryocytes. We employed RT-PCR, Western blotting, immunohistochemistry, and confocal microscopy to determine that platelets, MEG-01 megakaryoblastic cells, and bone marrow megakaryocytes contain TFPI-2. ELISA data reveal that TFPI-2 binds factor V (FV) and partially B-domain-deleted FV (FV-1033) with Kd ∼9 nm and binds FVa with Kd ∼100 nm. Steady state analysis of surface plasmon resonance data reveal that TFPI-2 and TFPI-1 bind FV-1033 with Kd ∼36–48 nm and bind FVa with Kd ∼252–456 nm. Further, TFPI-1 (but not TFPI-1161) competes with TFPI-2 in binding to FV. These data indicate that the C-terminal basic region of TFPI-2 is similar to that of TFPI-1 and plays a role in binding to the FV B-domain acidic region. Using pull-down assays and Western blots, we show that TFPI-2 is associated with platelet FV/FVa. TFPI-2 (∼7 nm) in plasma of women at the onset of labor is also, in part, associated with FV. Importantly, TFPI-2 in platelets and in plasma of pregnant women inhibits FXIa and tissue-type plasminogen activator-induced clot fibrinolysis. In conclusion, TFPI-2 in platelets from normal or pregnant subjects and in plasma from pregnant women binds FV/Va and regulates intrinsic coagulation and fibrinolysis. PMID:25262870

  11. Depigmented allergoids reveal new epitopes with capacity to induce IgG blocking antibodies.

    PubMed

    López-Matas, M Angeles; Gallego, Mayte; Iraola, Víctor; Robinson, Douglas; Carnés, Jerónimo

    2013-01-01

    The synthesis of allergen-specific blocking IgGs that interact with IgE after allergen immunotherapy (SIT) has been related to clinical efficacy. The objectives were to investigate the epitope specificity of IgG-antibodies induced by depigmented-polymerized (Dpg-Pol) allergoids and unmodified allergen extracts, and examine IgE-blocking activity of induced IgG-antibodies. Rabbits were immunized with native and Dpg-Pol extracts of birch pollen, and serum samples were obtained. Recognition of linear IgG-epitopes of Bet v 1 and Bet v 2 and the capacity of these IgG-antibodies to block binding of human-IgE was determined. Serum from rabbits immunized with native extracts recognised 11 linear epitopes from Bet v 1, while that from Dpg-Pol-immunized animals recognised 8. For Bet v 2, 8 epitopes were recognized by IgG from native immunized animals, and 9 from Dpg-Pol immunized one. Dpg-Pol and native immunized serum did not always recognise the same epitopes, but specific-IgG from both could block human-IgE binding sites for native extract. Depigmented-polymerized birch extract stimulates the synthesis of specific IgG-antibodies which recognize common but also novel epitopes compared with native extracts. IgG-antibodies induced by Dpg-Pol effectively inhibit human-IgE binding to allergens which may be part of the mechanism of action of SIT.

  12. Strontium and barium in aqueous solution and a potassium channel binding site

    NASA Astrophysics Data System (ADS)

    Chaudhari, Mangesh I.; Rempe, Susan B.

    2018-06-01

    Ion hydration structure and free energy establish criteria for understanding selective ion binding in potassium (K+) ion channels and may be significant to understanding blocking mechanisms as well. Recently, we investigated the hydration properties of Ba2+, the most potent blocker of K+ channels among the simple metal ions. Here, we use a similar method of combining ab initio molecular dynamics simulations, statistical mechanical theory, and electronic structure calculations to probe the fundamental hydration properties of Sr2+, which does not block bacterial K+ channels. The radial distribution of water around Sr2+ suggests a stable 8-fold geometry in the local hydration environment, similar to Ba2+. While the predicted hydration free energy of -331.8 kcal/mol is comparable with the experimental result of -334 kcal/mol, the value is significantly more favorable than the -305 kcal/mol hydration free energy of Ba2+. When placed in the innermost K+ channel blocking site, the solvation free energies and lowest energy structures of both Sr2+ and Ba2+ are nearly unchanged compared with their respective hydration properties. This result suggests that the block is not attributable to ion trapping due to +2 charge, and differences in blocking behavior arise due to free energies associated with the exchange of water ligands for channel ligands instead of free energies of transfer from water to the binding site.

  13. Polyvalent immunoglobulin binding is an obstacle to accurate measurement of specific antibodies with ELISA despite inclusion of blocking agents.

    PubMed

    Loeffler, David A; Klaver, Andrea C

    2017-11-01

    Specific antibody concentrations are frequently measured in serum (and plasma and intravenous immunoglobulin) samples by enzyme-linked immunosorbent assay (ELISA). The standard negative control involves incubation of buffer alone on antigen-coated wells. The immunoreactivity that develops in antigen-coated wells in which diluted serum has been incubated is assumed to represent specific antibody binding. This approach can result in marked overestimation of specific antibody levels, because serum contains specific polyvalent antibodies which bind, primarily with low affinity, to multiple antigens (including those on ELISA plates) despite the use of blocking agents. Non-denaturing purification of serum IgG, followed by assessment of the antigen binding or antigen-binding affinity of this purified IgG, can reduce but not eliminate the problem of polyvalent antibody binding in indirect ELISAs. Alternatively, polyvalent antibody binding can be estimated by incubating a diluted serum sample on wells coated with an irrelevant protein (such as bovine serum albumin or a scrambled peptide sequence) or buffer alone, then subtracting this reactivity from the sample's binding to wells coated with the antigen of interest. Polyvalent binding of immunoglobulins must be accounted for in order to obtain accurate ELISA measurements of serum, plasma, or intravenous immunoglobulin antibodies. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Protein painting reveals solvent-excluded drug targets hidden within native protein–protein interfaces

    PubMed Central

    Luchini, Alessandra; Espina, Virginia; Liotta, Lance A.

    2014-01-01

    Identifying the contact regions between a protein and its binding partners is essential for creating therapies that block the interaction. Unfortunately, such contact regions are extremely difficult to characterize because they are hidden inside the binding interface. Here we introduce protein painting as a new tool that employs small molecules as molecular paints to tightly coat the surface of protein–protein complexes. The molecular paints, which block trypsin cleavage sites, are excluded from the binding interface. Following mass spectrometry, only peptides hidden in the interface emerge as positive hits, revealing the functional contact regions that are drug targets. We use protein painting to discover contact regions between the three-way interaction of IL1β ligand, the receptor IL1RI and the accessory protein IL1RAcP. We then use this information to create peptides and monoclonal antibodies that block the interaction and abolish IL1β cell signalling. The technology is broadly applicable to discover protein interaction drug targets. PMID:25048602

  15. E(y)2/Sus1 is required for blocking PRE silencing by the Wari insulator in Drosophila melanogaster.

    PubMed

    Erokhin, Maksim; Parshikov, Alexander; Georgiev, Pavel; Chetverina, Darya

    2010-06-01

    Chromatin insulators affect interactions between promoters and enhancers/silencers and function as barriers to the spread of repressive chromatin. Recently, we have found an insulator, named Wari, located on the 3' side of the white gene. Here, we show that the previously identified 368-bp core of this insulator is sufficient for blocking Polycomb response element-mediated silencing. Although Wari does not contain binding sites for known insulator proteins, the E(y)2 and CP190 proteins bind to Wari as well as to the Su(Hw)-containing insulators in vivo. It may well be that these proteins are recruited to the insulator by as yet unidentified DNA-binding protein. Partial inactivation of E(y)2 in a weak e(y)2 ( u1 ) mutation impairs only the anti-silencing but not the enhancer-blocking activity of the Wari insulator. Thus, the E(y)2 protein in different Drosophila insulators serves to protect gene expression from silencing.

  16. Human immunodeficiency virus type 1 gp41 antibodies that mask membrane proximal region epitopes: antibody binding kinetics, induction, and potential for regulation in acute infection.

    PubMed

    Alam, S Munir; Scearce, Richard M; Parks, Robert J; Plonk, Kelly; Plonk, Steven G; Sutherland, Laura L; Gorny, Miroslaw K; Zolla-Pazner, Susan; Vanleeuwen, Stacie; Moody, M Anthony; Xia, Shi-Mao; Montefiori, David C; Tomaras, Georgia D; Weinhold, Kent J; Karim, Salim Abdool; Hicks, Charles B; Liao, Hua-Xin; Robinson, James; Shaw, George M; Haynes, Barton F

    2008-01-01

    Two human monoclonal antibodies (MAbs) (2F5 and 4E10) against the human immunodeficiency virus type 1 (HIV-1) envelope g41 cluster II membrane proximal external region (MPER) broadly neutralize HIV-1 primary isolates. However, these antibody specificities are rare, are not induced by Env immunization or HIV-1 infection, and are polyspecific and also react with lipids such as cardiolipin or phosphatidylserine. To probe MPER anti-gp41 antibodies that are produced in HIV-1 infection, we have made two novel murine MAbs, 5A9 and 13H11, against HIV-1 gp41 envelope that partially cross-blocked 2F5 MAb binding to Env but did not neutralize HIV-1 primary isolates or bind host lipids. Competitive inhibition assays using labeled 13H11 MAb and HIV-1-positive patient plasma samples demonstrated that cluster II 13H11-blocking plasma antibodies were made in 83% of chronically HIV-1 infected patients and were acquired between 5 to 10 weeks after acute HIV-1 infection. Both the mouse 13H11 MAb and the three prototypic cluster II human MAbs (98-6, 126-6, and 167-D) blocked 2F5 binding to gp41 epitopes to variable degrees; the combination of 98-6 and 13H11 completely blocked 2F5 binding. These data provide support for the hypothesis that in some patients, B cells make nonneutralizing cluster II antibodies that may mask or otherwise down-modulate B-cell responses to immunogenic regions of gp41 that could be recognized by B cells capable of producing antibodies like 2F5.

  17. Evaluation of two novel leptospiral proteins for their interaction with human host components.

    PubMed

    Silva, Lucas P; Fernandes, Luis G V; Vieira, Monica L; de Souza, Gisele O; Heinemann, Marcos B; Vasconcellos, Silvio A; Romero, Eliete C; Nascimento, Ana L T O

    2016-07-01

    Pathogenic species of the genus Leptospira are the etiological agents of leptospirosis, the most widespread zoonosis. Mechanisms involved in leptospiral pathogenesis are not well understood. By data mining the genome sequences of Leptospira interrogans we have identified two proteins predicted to be surface exposed, LIC10821 and LIC10064. Immunofluorescence and proteinase K assays confirmed that the proteins are exposed. Reactivity of the recombinant proteins with human sera has shown that rLIC10821, but not rLIC10064, is recognized by antibodies in confirmed leptospirosis serum samples, suggesting its expression during infection. The rLIC10821 was able to bind laminin, in a dose-dependent fashion, and was called Lsa37 (leptospiral surface adhesin of 37 kDa). Studies with human plasma components demonstrated that rLIC10821 interacts with plasminogen (PLG) and fibrinogen (Fg). The binding of Lsa37 with PLG generates plasmin when PLG activator was added. Fibrin clotting reduction was observed in a thrombin-catalyzed reaction, when Fg was incubated with Lsa37, suggesting that this protein may interfere in the coagulation cascade during the disease. Although LIC10064 protein is more abundant than the corresponding Lsa37, binding activity with all the components tested was not detected. Thus, Lsa37 is a novel versatile adhesin that may mediate Leptospira-host interactions. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. The Extracellular Protein Factor Epf from Streptococcus pyogenes Is a Cell Surface Adhesin That Binds to Cells through an N-terminal Domain Containing a Carbohydrate-binding Module*

    PubMed Central

    Linke, Christian; Siemens, Nikolai; Oehmcke, Sonja; Radjainia, Mazdak; Law, Ruby H. P.; Whisstock, James C.; Baker, Edward N.; Kreikemeyer, Bernd

    2012-01-01

    Streptococcus pyogenes is an exclusively human pathogen. Streptococcal attachment to and entry into epithelial cells is a prerequisite for a successful infection of the human host and requires adhesins. Here, we demonstrate that the multidomain protein Epf from S. pyogenes serotype M49 is a streptococcal adhesin. An epf-deficient mutant showed significantly decreased adhesion to and internalization into human keratinocytes. Cell adhesion is mediated by the N-terminal domain of Epf (EpfN) and increased by the human plasma protein plasminogen. The crystal structure of EpfN, solved at 1.6 Å resolution, shows that it consists of two subdomains: a carbohydrate-binding module and a fibronectin type III domain. Both fold types commonly participate in ligand receptor and protein-protein interactions. EpfN is followed by 18 repeats of a domain classified as DUF1542 (domain of unknown function 1542) and a C-terminal cell wall sorting signal. The DUF1542 repeats are not involved in adhesion, but biophysical studies show they are predominantly α-helical and form a fiber-like stalk of tandem DUF1542 domains. Epf thus conforms with the widespread family of adhesins known as MSCRAMMs (microbial surface components recognizing adhesive matrix molecules), in which a cell wall-attached stalk enables long range interactions via its adhesive N-terminal domain. PMID:22977243

  19. The extracellular protein factor Epf from Streptococcus pyogenes is a cell surface adhesin that binds to cells through an N-terminal domain containing a carbohydrate-binding module.

    PubMed

    Linke, Christian; Siemens, Nikolai; Oehmcke, Sonja; Radjainia, Mazdak; Law, Ruby H P; Whisstock, James C; Baker, Edward N; Kreikemeyer, Bernd

    2012-11-02

    Streptococcus pyogenes is an exclusively human pathogen. Streptococcal attachment to and entry into epithelial cells is a prerequisite for a successful infection of the human host and requires adhesins. Here, we demonstrate that the multidomain protein Epf from S. pyogenes serotype M49 is a streptococcal adhesin. An epf-deficient mutant showed significantly decreased adhesion to and internalization into human keratinocytes. Cell adhesion is mediated by the N-terminal domain of Epf (EpfN) and increased by the human plasma protein plasminogen. The crystal structure of EpfN, solved at 1.6 Å resolution, shows that it consists of two subdomains: a carbohydrate-binding module and a fibronectin type III domain. Both fold types commonly participate in ligand receptor and protein-protein interactions. EpfN is followed by 18 repeats of a domain classified as DUF1542 (domain of unknown function 1542) and a C-terminal cell wall sorting signal. The DUF1542 repeats are not involved in adhesion, but biophysical studies show they are predominantly α-helical and form a fiber-like stalk of tandem DUF1542 domains. Epf thus conforms with the widespread family of adhesins known as MSCRAMMs (microbial surface components recognizing adhesive matrix molecules), in which a cell wall-attached stalk enables long range interactions via its adhesive N-terminal domain.

  20. Fibrin Formation, Structure and Properties

    PubMed Central

    Weisel, John W.; Litvinov, Rustem I.

    2017-01-01

    Fibrinogen and fibrin are essential for hemostasis and are major factors in thrombosis, wound healing, and several other biological functions and pathological conditions. The X-ray crystallographic structure of major parts of fibrin(ogen), together with computational reconstructions of missing portions and numerous biochemical and biophysical studies, have provided a wealth of data to interpret molecular mechanisms of fibrin formation, its organization, and properties. On cleavage of fibrinopeptides by thrombin, fibrinogen is converted to fibrin monomers, which interact via knobs exposed by fibrinopeptide removal in the central region, with holes always exposed at the ends of the molecules. The resulting half-staggered, double-stranded oligomers lengthen into protofibrils, which aggregate laterally to make fibers, which then branch to yield a three-dimensional network. Much is now known about the structural origins of clot mechanical properties, including changes in fiber orientation, stretching and buckling, and forced unfolding of molecular domains. Studies of congenital fibrinogen variants and post-translational modifications have increased our understanding of the structure and functions of fibrin(ogen). The fibrinolytic system, with the zymogen plasminogen binding to fibrin together with tissue-type plasminogen activator to promote activation to the active proteolytic enzyme, plasmin, results in digestion of fibrin at specific lysine residues. In spite of a great increase in our knowledge of all these interconnected processes, much about the molecular mechanisms of the biological functions of fibrin(ogen) remains unknown, including some basic aspects of clotting, fibrinolysis, and molecular origins of fibrin mechanical properties. Even less is known concerning more complex (patho)physiological implications of fibrinogen and fibrin. PMID:28101869

  1. tPA variant tPA-A296-299 Prevents impairment of cerebral autoregulation and necrosis of hippocampal neurons after stroke by inhibiting upregulation of ET-1.

    PubMed

    Armstead, William M; Hekierski, Hugh; Yarovoi, Serge; Higazi, Abd Al-Roof; Cines, Douglas B

    2018-01-01

    Tissue-type plasminogen activator (tPA) is neurotoxic and exacerbates uncoupling of cerebral blood flow (CBF) and metabolism after stroke, yet it remains the sole FDA-approved drug for treatment of ischemic stroke. Upregulation of c-Jun-terminal kinase (JNK) after stroke contributes to tPA-mediated impairment of autoregulation, but the role of endothelin-1 (ET-1) is unknown. Based on the Glasgow Coma Scale, impaired autoregulation is linked to adverse outcomes after TBI, but correlation with hippocampal histopathology after stroke has not been established. We propose that given after stroke, tPA activates N-Methyl-D-Aspartate receptors (NMDA-Rs) and upregulates ET-1 in a JNK dependent manner, imparing autoregulation and leading to histopathology. After stroke, CBF was reduced in the hippocampus and reduced further during hypotension, which did not occur in hypotensive sham pigs, indicating impairment of autoregulation. Autoregulation and necrosis of hippocampal CA1 and CA3 neurons were further impaired by tPA, but were preserved by the ET-1 antagonist BQ 123 and tPA-A, 296-299 a variant that is fibrinolytic but does not bind to NMDA-Rs. Expression of ET-1 was increased by stroke and potentiated by tPA but returned to sham levels by tPA-A 296-299 and the JNK antagonist SP600125. Results show that JNK releases ET-1 after stroke. Tissue-type plasminogen activator -A 296-299 prevents impairment of cerebral autoregulation and histopathology after stroke by inhibiting upregulation of ET-1. © 2017 Wiley Periodicals, Inc.

  2. Using Lidocaine and Benzocaine to Link Sodium Channel Molecular Conformations to State-Dependent Antiarrhythmic Drug Affinity

    PubMed Central

    Hanck, Dorothy A.; Nikitina, Elena; McNulty, Megan M.; Fozzard, Harry A.; Lipkind, Gregory M.; Sheets, Michael F.

    2009-01-01

    Rationale Lidocaine and other antiarrhythmic drugs bind in the inner pore of voltage-gated Na channels and affect gating use-dependently. A phenylalanine in domain IV, S6 (Phe1759 in NaV1.5), modeled to face the inner pore just below the selectivity filter, is critical in use-dependent drug block. Objective Measurement of gating currents and concentration-dependent availability curves to determine the role of Phe1759 in coupling of drug binding to the gating changes. Methods & Results The measurements showed that replacement of Phe1759 with a non-aromatic residue permits clear separation of action of lidocaine and benzocaine into two components that can be related to channel conformations. One component represents the drug acting as a voltage-independent, low-affinity blocker of closed channels (designated as lipophilic block), and the second represents high-affinity, voltage-dependent block of open/inactivated channels linked to stabilization of the S4's in domains III and IV (designated as voltage-sensor inhibition) by Phe1759. A homology model for how lidocaine and benzocaine bind in the closed and open/inactivated channel conformation is proposed. Conclusions These two components, lipophilic block and voltage-sensor inhibition, can explain the differences in estimates between tonic and open-state/inactivated-state affinities, and they identify how differences in affinity for the two binding conformations can control use-dependence, the hallmark of successful antiarrhythmic drugs. PMID:19661462

  3. On the binding of calcium by micelles composed of carboxy-modified pluronics measured by means of differential potentiometric titration and modeled with a self-consistent-field theory.

    PubMed

    Lauw, Y; Leermakers, F A M; Cohen Stuart, M A; Pinheiro, J P; Custers, J P A; van den Broeke, L J P; Keurentjes, J T F

    2006-12-19

    We perform differential potentiometric titration measurements for the binding of Ca2+ ions to micelles composed of the carboxylic acid end-standing Pluronic P85 block copolymer (i.e., CAE-85 (COOH-(EO)26-(PO)39-(EO)26-COOH)). Two different ion-selective electrodes (ISEs) are used to detect the free calcium concentration; the first ISE is an indicator electrode, and the second is a reference electrode. The titration is done by adding the block copolymers to a known solution of Ca2+ at neutral pH and high enough temperature (above the critical micellization temperature CMT) and various amount of added monovalent salt. By measuring the difference in the electromotive force between the two ISEs, the amount of Ca2+ that is bound by the micelles is calculated. This is then used to determine the binding constant of Ca2+ with the micelles, which is a missing parameter needed to perform molecular realistic self-consistent-field (SCF) calculations. It turns out that the micelles from block copolymer CAE-85 bind Ca2+ ions both electrostatically and specifically. The specific binding between Ca2+ and carboxylic groups in the corona of the micelles is modeled through the reaction equilibrium -COOCa+ <==> -COO- + Ca2+ with pKCa = 1.7 +/- 0.06.

  4. Phagocytosis Escape by a Staphylococcus aureus Protein That Connects Complement and Coagulation Proteins at the Bacterial Surface

    PubMed Central

    Medina, Eva; van Rooijen, Willemien J.; Spaan, András N.; van Kessel, Kok P. M.; Höök, Magnus; Rooijakkers, Suzan H. M.

    2013-01-01

    Upon contact with human plasma, bacteria are rapidly recognized by the complement system that labels their surface for uptake and clearance by phagocytic cells. Staphylococcus aureus secretes the 16 kD Extracellular fibrinogen binding protein (Efb) that binds two different plasma proteins using separate domains: the Efb N-terminus binds to fibrinogen, while the C-terminus binds complement C3. In this study, we show that Efb blocks phagocytosis of S. aureus by human neutrophils. In vitro, we demonstrate that Efb blocks phagocytosis in plasma and in human whole blood. Using a mouse peritonitis model we show that Efb effectively blocks phagocytosis in vivo, either as a purified protein or when produced endogenously by S. aureus. Mutational analysis revealed that Efb requires both its fibrinogen and complement binding residues for phagocytic escape. Using confocal and transmission electron microscopy we show that Efb attracts fibrinogen to the surface of complement-labeled S. aureus generating a ‘capsule’-like shield. This thick layer of fibrinogen shields both surface-bound C3b and antibodies from recognition by phagocytic receptors. This information is critical for future vaccination attempts, since opsonizing antibodies may not function in the presence of Efb. Altogether we discover that Efb from S. aureus uniquely escapes phagocytosis by forming a bridge between a complement and coagulation protein. PMID:24348255

  5. Differential Regulation of PAI-1 in Hantavirus Cardiopulmonary Syndrome and Hemorrhagic Fever With Renal Syndrome.

    PubMed

    Bellomo, Carla; Korva, Miša; Papa, Anna; Mäkelä, Satu; Mustonen, Jukka; Avšič-Županc, Tatjana; Vaheri, Antti; Martinez, Valeria P; Strandin, Tomas

    2018-02-01

    We analyzed the levels of circulating tissue plasminogen activator (tPA) and plasminogen activator inhibitor (PAI)-1 in acute hantavirus cardiopulmonary syndrome (HCPS) and hemorrhagic fever with renal syndrome (HFRS). The levels of tPA commonly increased in both diseases, whereas PAI-1 correlated with disease severity in HCPS but not in HFRS.

  6. Effects of Lewis lung carcinoma on trabecular microstructural changes in wild-type and plasminogen activator inhibitor-1 deficient mice fed a high-fat diet

    USDA-ARS?s Scientific Manuscript database

    Bone is a major target organ of metastasis. The present study investigated the effects of Lewis lung carcinoma (LLC) on trabecular microstructural changes, using tomographic analysis, in distal femur and lumbar 4 vertebra from LLC-bearing wild-type and plasminogen activator inhibitor-1 (PAI-1) defi...

  7. Fiber intake and plasminogen activator inhibitor-1 in type 2 diabetes: Look AHEAD (Action for Health in Diabetes) Trial findings at baseline and 1 year

    USDA-ARS?s Scientific Manuscript database

    Plasminogen activator inhibitor 1 (PAI-1) is elevated in obese individuals with type 2 diabetes and may contribute, independently of traditional factors, to increased cardiovascular disease risk. Fiber intake may decrease PAI-1 levels. We examined the associations of fiber intake and its changes wit...

  8. Inhibitory and blocking monoclonal antibody epitopes on merozoite surface protein 1 of the malaria parasite Plasmodium falciparum.

    PubMed

    Uthaipibull, C; Aufiero, B; Syed, S E; Hansen, B; Guevara Patiño, J A; Angov, E; Ling, I T; Fegeding, K; Morgan, W D; Ockenhouse, C; Birdsall, B; Feeney, J; Lyon, J A; Holder, A A

    2001-04-13

    Merozoite surface protein 1 (MSP-1) is a precursor to major antigens on the surface of Plasmodium spp. merozoites, which are involved in erythrocyte binding and invasion. MSP-1 is initially processed into smaller fragments; and at the time of erythrocyte invasion one of these of 42 kDa (MSP-1(42)) is subjected to a second processing, producing 33 kDa and 19 kDa fragments (MSP-1(33) and MSP-1(19)). Certain MSP-1-specific monoclonal antibodies (mAbs) react with conformational epitopes contained within the two epidermal growth factor domains that comprise MSP-1(19), and are classified as either inhibitory (inhibit processing of MSP-1(42) and erythrocyte invasion), blocking (block the binding and function of the inhibitory mAb), or neutral (neither inhibitory nor blocking). We have mapped the epitopes for inhibitory mAbs 12.8 and 12.10, and blocking mAbs such as 1E1 and 7.5 by using site-directed mutagenesis to change specific amino acid residues in MSP-1(19) and abolish antibody binding, and by using PEPSCAN to measure the reaction of the antibodies with every octapeptide within MSP-1(42). Twenty-six individual amino acid residue changes were made and the effect of each on the binding of mAbs was assessed by Western blotting and BIAcore analysis. Individual changes had either no effect, or reduced, or completely abolished the binding of individual mAbs. No two antibodies had an identical pattern of reactivity with the modified proteins. Using PEPSCAN each mAb reacted with a number of octapeptides, most of which were derived from within the first epidermal growth factor domain, although 1E1 also reacted with peptides spanning the processing site. When the single amino acid changes and the reactive peptides were mapped onto the three-dimensional structure of MSP-1(19), it was apparent that the epitopes for the mAbs could be defined more fully by using a combination of both mutagenesis and PEPSCAN than by either method alone, and differences in the fine specificity of binding for all the different antibodies could be distinguished. The incorporation of several specific amino acid changes enabled the design of proteins that bound inhibitory but not blocking antibodies. These may be suitable for the development of MSP-1-based vaccines against malaria. Copyright 2001 Academic Press.

  9. Identification and immunological characterization of the ligand domain of Plasmodium vivax reticulocyte binding protein 1a.

    PubMed

    Ntumngia, Francis B; Thomson-Luque, Richard; Galusic, Sandra; Frato, Gabriel; Frischmann, Sarah; Peabody, David S; Chackerian, Bryce; Ferreira, Marcelo U; King, Christopher L; Adams, John H

    2018-05-07

    Erythrocyte invasion by malaria parasites is essential for blood-stage development. Consequently, parasite proteins critically involved in erythrocyte invasion such as the Plasmodium vivax reticulocyte-binding proteins (RBPs) that mediate preferential invasion of reticulocytes are considered potential vaccine targets. Thus, targeting the RBPs could prevent blood-stage infection and disease. The RBPs are large and little is known about their functional domains and whether individuals naturally exposed to P. vivax acquire binding-inhibitory antibodies to these critical binding regions. This study aims at functionally and immunologically characterize Plasmodium vivax RBP1a. Recombinant proteins of overlapping fragments of RBP1a were used to determine binding specificity to erythrocytes and immunogenicity in laboratory animals. Naturally-acquired antibody response to these proteins was evaluated using serum samples from individuals in endemic regions. The N-terminal extracellular region, RBP1157-650 (RBP1:F8) was determined to bind both reticulocytes and normocytes, with a preference for immature reticulocytes. Antibodies elicited against rRBP1:F8 blocked RBP1:F8-erythrocyte binding. Naturally-acquired anti-RBP1 binding-inhibitory antibodies were detected in serum of P. vivax exposed-individuals from Papua New Guinea and Brazil. Recombinant RBP1:F8 binds human erythrocytes, elicits artificially-induced functional blocking antibodies and is a target of naturally acquired binding-inhibitory antibodies.

  10. Molecular Simulation of Receptor Occupancy and Tumor Penetration of an Antibody and Smaller Scaffolds: Application to Molecular Imaging.

    PubMed

    Orcutt, Kelly D; Adams, Gregory P; Wu, Anna M; Silva, Matthew D; Harwell, Catey; Hoppin, Jack; Matsumura, Manabu; Kotsuma, Masakatsu; Greenberg, Jonathan; Scott, Andrew M; Beckman, Robert A

    2017-10-01

    Competitive radiolabeled antibody imaging can determine the unlabeled intact antibody dose that fully blocks target binding but may be confounded by heterogeneous tumor penetration. We evaluated the hypothesis that smaller radiolabeled constructs can be used to more accurately evaluate tumor expressed receptors. The Krogh cylinder distributed model, including bivalent binding and variable intervessel distances, simulated distribution of smaller constructs in the presence of increasing doses of labeled antibody forms. Smaller constructs <25 kDa accessed binding sites more uniformly at large distances from blood vessels compared with larger constructs and intact antibody. These observations were consistent for different affinity and internalization characteristics of constructs. As predicted, a higher dose of unlabeled intact antibody was required to block binding to these distant receptor sites. Small radiolabeled constructs provide more accurate information on total receptor expression in tumors and reveal the need for higher antibody doses for target receptor blockade.

  11. Anchorless surface associated glycolytic enzymes from Lactobacillus plantarum 299v bind to epithelial cells and extracellular matrix proteins.

    PubMed

    Glenting, Jacob; Beck, Hans Christian; Vrang, Astrid; Riemann, Holger; Ravn, Peter; Hansen, Anne Maria; Antonsson, Martin; Ahrné, Siv; Israelsen, Hans; Madsen, Søren

    2013-06-12

    An important criterion for the selection of a probiotic bacterial strain is its ability to adhere to the mucosal surface. Adhesion is usually mediated by proteins or other components located on the outer cell surface of the bacterium. In the present study we characterized the adhesive properties of two classical intracellular enzymes glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and enolase (ENO) isolated from the outer cell surface of the probiotic bacterium Lactobacillus plantarum 299v. None of the genes encoded signal peptides or cell surface anchoring motifs that could explain their extracellular location on the bacterial surface. The presence of the glycolytic enzymes on the outer surface was verified by western blotting using polyclonal antibodies raised against the specific enzymes. GAPDH and ENO showed a highly specific binding to plasminogen and fibronectin whereas GAPDH but not ENO showed weak binding to mucin. Furthermore, a pH dependent and specific binding of GAPDH and ENO to intestinal epithelial Caco-2 cells at pH 5 but not at pH 7 was demonstrated. The results showed that these glycolytic enzymes could play a role in the adhesion of the probiotic bacterium L. plantarum 299v to the gastrointestinal tract of the host. Finally, a number of probiotic as well non-probiotic Lactobacillus strains were analyzed for the presence of GAPDH and ENO on the outer surface, but no correlation between the extracellular location of these enzymes and the probiotic status of the applied strains was demonstrated. Copyright © 2013 Elsevier GmbH. All rights reserved.

  12. Fibrin monomer increases platelet adherence to tumor cells in a flowing system: a possible role in metastasis?

    PubMed

    Biggerstaff, J P; Seth, N B; Meyer, T V; Amirkhosravi, A; Francis, J L

    1998-12-15

    Considerable evidence exists linking hemostasis and malignancy. Platelet adhesion to tumor cells has been implicated in the metastatic process. Plasma fibrinogen (Fg) and fibrin (Fn) monomer, increased in cancer, may play a role in tumor biology. Binding of Fn monomer to tumor cells and its effect on platelet-tumor cell adhesion in a flowing system were studied. Fn monomer was produced by adding thrombin (1 micro/mL) to FXIII- and plasminogen-free Fg in the presence of Gly-Pro-Arg-Pro (GPRP) amide. Fn monomer binding to live A375 cells was visualized by confocal laser scanning microscopy (CLSM). Adherent cells were perfused for 1h with Fn monomer, washed and stained in situ with anti-human Fn (American Biogenetic Sciences, Inc.) followed by goat anti-mouse IgG(FITC). Platelet adherence to Fn monomer treated A375 cells was performed under flow conditions by passing platelets (5x10(4)/microl 0.25 mL/min; labeled with the carbocyanine dye DiI) over the tumor cells for 30 min. CLSM images were obtained after washing. There was considerable binding of Fn monomer, but not Fg alone. Platelets adhered relatively weakly to untreated A375 cells and this was not significantly affected by pre-treatment of the tumor cells with fibrinogen or thrombin. However, pre-treatment with Fn monomer resulted in extensive platelet binding to tumor cells, suggesting that coagulation activation and the subsequent increase in circulating Fn monomer may enhance platelet adhesion to circulating tumor cells and thereby facilitate metastatic spread.

  13. Sulforaphane inhibits TNF-α-induced adhesion molecule expression through the Rho A/ROCK/NF-κB signaling pathway.

    PubMed

    Hung, Chi-Nan; Huang, Hui-Pei; Wang, Chau-Jong; Liu, Kai-Li; Lii, Chong-Kuei

    2014-10-01

    Endothelial dysfunction is an early indicator of cardiovascular diseases. Increased stimulation of tumor necrosis factor-α (TNF-α) triggers the inflammatory mediator secretion of endothelial cells, leading to atherosclerotic risk. In this study, we investigated whether sulforaphane (SFN) affected the expression of intracellular adhesion molecule-1 (ICAM-1) in TNF-α-induced ECV 304 endothelial cells. Our data showed that SFN attenuated TNF-α-induced expression of ICAM-1 in ECV 304 cells. Pretreatment of ECV 304 cells with SFN inhibited dose-dependently the secretion of proinflammatory cytokines, such as interleukin (IL)-1β, IL-6, and IL-8. SFN inhibited TNF-α-induced nuclear factor-κB (NF-κB) DNA binding activity. Furthermore, SFN decreased TNF-α-mediated phosphorylation of IκB kinase (IKK) and IκBα, Rho A, ROCK, ERK1/2, and plasminogen activator inhibitor-1 (PAI-1) levels. Collectively, SFN inhibited the NF-κB DNA binding activity and downregulated the TNF-α-mediated induction of ICAM-1 in endothelial cells by inhibiting the Rho A/ROCK/NF-κB signaling pathway, suggesting the beneficial effects of SFN on suppression of inflammation within the atherosclerotic lesion.

  14. Vitamin D binding protein-macrophage activating factor directly inhibits proliferation, migration, and uPAR expression of prostate cancer cells.

    PubMed

    Gregory, Kalvin J; Zhao, Bing; Bielenberg, Diane R; Dridi, Sami; Wu, Jason; Jiang, Weihua; Huang, Bin; Pirie-Shepherd, Steven; Fannon, Michael

    2010-10-18

    Vitamin D binding protein-macrophage activating factor (DBP-maf) is a potent inhibitor of tumor growth. Its activity, however, has been attributed to indirect mechanisms such as boosting the immune response by activating macrophages and inhibiting the blood vessel growth necessary for the growth of tumors. In this study we show for the first time that DBP-maf exhibits a direct and potent effect on prostate tumor cells in the absence of macrophages. DBP-maf demonstrated inhibitory activity in proliferation studies of both LNCaP and PC3 prostate cancer cell lines as well as metastatic clones of these cells. Flow cytometry studies with annexin V and propidium iodide showed that this inhibitory activity is not due to apoptosis or cell death. DBP-maf also had the ability to inhibit migration of prostate cancer cells in vitro. Finally, DBP-maf was shown to cause a reduction in urokinase plasminogen activator receptor (uPAR) expression in prostate tumor cells. There is evidence that activation of this receptor correlates with tumor metastasis. These studies show strong inhibitory activity of DBP-maf on prostate tumor cells independent of its macrophage activation.

  15. Vitamin D Binding Protein-Macrophage Activating Factor Directly Inhibits Proliferation, Migration, and uPAR Expression of Prostate Cancer Cells

    PubMed Central

    Bielenberg, Diane R.; Dridi, Sami; Wu, Jason; Jiang, Weihua; Huang, Bin; Pirie-Shepherd, Steven; Fannon, Michael

    2010-01-01

    Background Vitamin D binding protein-macrophage activating factor (DBP-maf) is a potent inhibitor of tumor growth. Its activity, however, has been attributed to indirect mechanisms such as boosting the immune response by activating macrophages and inhibiting the blood vessel growth necessary for the growth of tumors. Methods and Findings In this study we show for the first time that DBP-maf exhibits a direct and potent effect on prostate tumor cells in the absence of macrophages. DBP-maf demonstrated inhibitory activity in proliferation studies of both LNCaP and PC3 prostate cancer cell lines as well as metastatic clones of these cells. Flow cytometry studies with annexin V and propidium iodide showed that this inhibitory activity is not due to apoptosis or cell death. DBP-maf also had the ability to inhibit migration of prostate cancer cells in vitro. Finally, DBP-maf was shown to cause a reduction in urokinase plasminogen activator receptor (uPAR) expression in prostate tumor cells. There is evidence that activation of this receptor correlates with tumor metastasis. Conclusions These studies show strong inhibitory activity of DBP-maf on prostate tumor cells independent of its macrophage activation. PMID:20976141

  16. A two-step recognition of signal sequences determines the translocation efficiency of proteins.

    PubMed Central

    Belin, D; Bost, S; Vassalli, J D; Strub, K

    1996-01-01

    The cytosolic and secreted, N-glycosylated, forms of plasminogen activator inhibitor-2 (PAI-2) are generated by facultative translocation. To study the molecular events that result in the bi-topological distribution of proteins, we determined in vitro the capacities of several signal sequences to bind the signal recognition particle (SRP) during targeting, and to promote vectorial transport of murine PAI-2 (mPAI-2). Interestingly, the six signal sequences we compared (mPAI-2 and three mutated derivatives thereof, ovalbumin and preprolactin) were found to have the differential activities in the two events. For example, the mPAI-2 signal sequence first binds SRP with moderate efficiency and secondly promotes the vectorial transport of only a fraction of the SRP-bound nascent chains. Our results provide evidence that the translocation efficiency of proteins can be controlled by the recognition of their signal sequences at two steps: during SRP-mediated targeting and during formation of a committed translocation complex. This second recognition may occur at several time points during the insertion/translocation step. In conclusion, signal sequences have a more complex structure than previously anticipated, allowing for multiple and independent interactions with the translocation machinery. Images PMID:8599930

  17. A two-step recognition of signal sequences determines the translocation efficiency of proteins.

    PubMed

    Belin, D; Bost, S; Vassalli, J D; Strub, K

    1996-02-01

    The cytosolic and secreted, N-glycosylated, forms of plasminogen activator inhibitor-2 (PAI-2) are generated by facultative translocation. To study the molecular events that result in the bi-topological distribution of proteins, we determined in vitro the capacities of several signal sequences to bind the signal recognition particle (SRP) during targeting, and to promote vectorial transport of murine PAI-2 (mPAI-2). Interestingly, the six signal sequences we compared (mPAI-2 and three mutated derivatives thereof, ovalbumin and preprolactin) were found to have the differential activities in the two events. For example, the mPAI-2 signal sequence first binds SRP with moderate efficiency and secondly promotes the vectorial transport of only a fraction of the SRP-bound nascent chains. Our results provide evidence that the translocation efficiency of proteins can be controlled by the recognition of their signal sequences at two steps: during SRP-mediated targeting and during formation of a committed translocation complex. This second recognition may occur at several time points during the insertion/translocation step. In conclusion, signal sequences have a more complex structure than previously anticipated, allowing for multiple and independent interactions with the translocation machinery.

  18. In vitro regulation of pericellular proteolysis in prostatic tumor cells treated with bombesin.

    PubMed

    Festuccia, C; Guerra, F; D'Ascenzo, S; Giunciuglio, D; Albini, A; Bologna, M

    1998-01-30

    Bombesin is a potent inducer of signal trasduction pathways involved in the proliferation and invasion of androgen-insensitive prostatic tumor cells. This study examines the bombesin-mediated modulation of pericellular proteolysis, monitoring cell capability to migrate and invade basement membranes, using a chemo-invasion assay and analyzing protease production. The results suggest that bombesin could modulate the invasive potential of prostatic cell lines regulating secretion and cell-surface uptake of uPA and MMP-9 activation. In fact, in PC3 and DU145 cells but not in LNCaP cells, urokinase-type plasminogen activator (uPA) and plasminogen activator inhibitor-1 (PAI-1) are induced by bombesin treatment. Bombesin also stimulates cell proliferation and this effect can be inhibited blocking uPA by antibodies and/or uPA inhibitor p-aminobenzamidine. Moreover, HMW-uPA induces cell proliferation in LNCaP cells, which do not produce uPA in the basal conditions, while PC3 and DU145 cell growth is supported by autocrine production of uPA. The increment of uPA activity on the external plasma membrane causes an increased pericellular plasmin activation. This effect is inhibited by antibodies against uPA and by p-aminobenzamidine. Similarly to EGF, bombesin stimulates secretion and activation of MMP-9 and TIMP-1 production. MMP-9 activation can be also obtained by HMW-uPA treatment, suggesting that plasma-membrane-bound uPA can start a proteolytic cascade involving MMP-9. Therefore, in in vitro assays, bombesin is able to modulate pericellular proteolysis and cell proliferation, differently distributing and activating proteolytic activities. This effect can be related to the "non-random" degradation of the extracellular matrix in which membrane uPA-uPAreceptor complexes could start bombesin-induced directional protein degradation during metastatic spread.

  19. Inhibition of Myocardin-Related Transcription Factor/Serum Response Factor Signaling Decreases Lung Fibrosis and Promotes Mesenchymal Cell Apoptosis

    PubMed Central

    Sisson, Thomas H.; Ajayi, Iyabode O.; Subbotina, Natalya; Dodi, Amos E.; Rodansky, Eva S.; Chibucos, Lauren N.; Kim, Kevin K.; Keshamouni, Venkateshwar G.; White, Eric S.; Zhou, Yong; Higgins, Peter D.R.; Larsen, Scott D.; Neubig, Richard R.; Horowitz, Jeffrey C.

    2016-01-01

    Myofibroblasts are crucial to the pathogenesis of tissue fibrosis. Their formation of stress fibers results in the release of myocardin-related transcription factor (MRTF), a transcriptional coactivator of serum response factor (SRF). MRTF-A (Mkl1)-deficient mice are protected from lung fibrosis. We hypothesized that the SRF/MRTF pathway inhibitor CCG-203971 would modulate myofibroblast function in vitro and limit lung fibrosis in vivo. Normal and idiopathic pulmonary fibrosis lung fibroblasts were treated with/without CCG-203971 (N-[4-chlorophenyl]-1-[3-(2-furanyl)benzoyl]-3-piperidine carboxamide) and/or Fas-activating antibody in the presence/absence of transforming growth factor (TGF)-β1, and apoptosis was assessed. In vivo studies examined the effect of therapeutically administered CCG-203971 on lung fibrosis in two distinct murine models of fibrosis induced by bleomycin or targeted type II alveolar epithelial injury. In vitro, CCG-203971 prevented nuclear localization of MRTF-A; increased the apoptotic susceptibility of normal and idiopathic pulmonary fibrosis fibroblasts; blocked TGF-β1–induced myofibroblast differentiation; and inhibited TGF-β1–induced expression of fibronectin, X-linked inhibitor of apoptosis, and plasminogen activator inhibitor-1. TGF-β1 did not protect fibroblasts or myofibroblasts from apoptosis in the presence of CCG-203971. In vivo, CCG-203971 significantly reduced lung collagen content in both murine models while decreasing alveolar plasminogen activator inhibitor-1 and promoting myofibroblast apoptosis. These data support a central role of the SRF/MRTF pathway in the pathobiology of lung fibrosis and suggest that its inhibition can help resolve lung fibrosis by promoting fibroblast apoptosis. PMID:25681733

  20. Numerical Simulation of Rheological, Chemical and Hydromechanical Processes of Thrombolysis

    NASA Astrophysics Data System (ADS)

    Khramchenkov, E.; Khramchenkov, M.

    2015-04-01

    Mathematical model of clot lysis in blood vessels is developed on the basis of equations of convection-diffusion. Fibrin of the clot is considered stationary solid phase, and plasminogen, plasmin and plasminogen-activators - as dissolved fluid phases. As a result of numerical solution of the model predictions of lysis process are gained. Important influence of clot swelling on the process of lysis is revealed.

  1. High-fat diet enhances and plasminogen activator inhibitor-1 deficiency attenuates bone loss in mice with Lewis Lung carcinoma

    USDA-ARS?s Scientific Manuscript database

    This study determined the effects of a high-fat diet and plasminogen activator inhibitor-1 deficiency (PAI-1-/-) on bone structure in mice bearing Lewis lung carcinoma (LLC) in lungs. Reduction in bone volume fraction (BV/TV) by 22% and 21%, trabecular number (Tb.N) by 8% and 4% and bone mineral de...

  2. Influenza A virus strains that circulate in humans differ in the ability of their NS1 proteins to block the activation of IRF3 and interferon-β transcription.

    PubMed

    Kuo, Rei-Lin; Zhao, Chen; Malur, Meghana; Krug, Robert M

    2010-12-20

    We demonstrate that influenza A virus strains that circulate in humans differ markedly in the ability of their NS1 proteins to block the activation of IRF3 and interferon-β transcription. Strong activation occurs in cells infected with viruses expressing NS1 proteins of seasonal H3N2 and H2N2 viruses, whereas activation is blocked in cells infected with viruses expressing NS1 proteins of some, but not all seasonal H1N1 viruses. The NS1 proteins of the 2009 H1N1 and H5N1 viruses also block these activations. The difference in this NS1 function is mediated largely by the C-terminal region of the effector domain, which contains the only amino acid (K or E at position 196) that covaries with the functional difference. Further, we show that TRIM25 binds the NS1 protein whether or not IRF3 activation is blocked, demonstrating that binding of TRIM25 by the NS1 protein does not necessarily lead to the blocking of IRF3 activation. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. BlockLogo: visualization of peptide and sequence motif conservation

    PubMed Central

    Olsen, Lars Rønn; Kudahl, Ulrich Johan; Simon, Christian; Sun, Jing; Schönbach, Christian; Reinherz, Ellis L.; Zhang, Guang Lan; Brusic, Vladimir

    2013-01-01

    BlockLogo is a web-server application for visualization of protein and nucleotide fragments, continuous protein sequence motifs, and discontinuous sequence motifs using calculation of block entropy from multiple sequence alignments. The user input consists of a multiple sequence alignment, selection of motif positions, type of sequence, and output format definition. The output has BlockLogo along with the sequence logo, and a table of motif frequencies. We deployed BlockLogo as an online application and have demonstrated its utility through examples that show visualization of T-cell epitopes and B-cell epitopes (both continuous and discontinuous). Our additional example shows a visualization and analysis of structural motifs that determine specificity of peptide binding to HLA-DR molecules. The BlockLogo server also employs selected experimentally validated prediction algorithms to enable on-the-fly prediction of MHC binding affinity to 15 common HLA class I and class II alleles as well as visual analysis of discontinuous epitopes from multiple sequence alignments. It enables the visualization and analysis of structural and functional motifs that are usually described as regular expressions. It provides a compact view of discontinuous motifs composed of distant positions within biological sequences. BlockLogo is available at: http://research4.dfci.harvard.edu/cvc/blocklogo/ and http://methilab.bu.edu/blocklogo/ PMID:24001880

  4. Block of Brain Sodium Channels by Peptide Mimetics of the Isoleucine, Phenylalanine, and Methionine (IFM) Motif from the Inactivation Gate

    PubMed Central

    Eaholtz, Galen; Colvin, Anita; Leonard, Daniele; Taylor, Charles; Catterall, William A.

    1999-01-01

    Inactivation of sodium channels is thought to be mediated by an inactivation gate formed by the intracellular loop connecting domains III and IV. A hydrophobic motif containing the amino acid sequence isoleucine, phenylalanine, and methionine (IFM) is required for the inactivation process. Peptides containing the IFM motif, when applied to the cytoplasmic side of these channels, produce two types of block: fast block, which resembles the inactivation process, and slow, use-dependent block stimulated by strong depolarizing pulses. Fast block by the peptide ac-KIFMK-NH2, measured on sodium channels whose inactivation was slowed by the α-scorpion toxin from Leiurus quinquestriatus (LqTx), was reversed with a time constant of 0.9 ms upon repolarization. In contrast, control and LqTx-modified sodium channels were slower to recover from use-dependent block. For fast block, linear peptides of three to six amino acid residues containing the IFM motif and two positive charges were more effective than peptides with one positive charge, whereas uncharged IFM peptides were ineffective. Substitution of the IFM residues in the peptide ac-KIFMK-NH2 with smaller, less hydrophobic residues prevented fast block. The positively charged tripeptide IFM-NH2 did not cause appreciable fast block, but the divalent cation IFM-NH(CH2)2NH2 was as effective as the pentapeptide ac-KIFMK-NH2. The constrained peptide cyclic KIFMK containing two positive charges did not cause fast block. These results indicate that the position of the positive charges is unimportant, but flexibility or conformation of the IFM-containing peptide is important to allow fast block. Slow, use-dependent block was observed with IFM-containing peptides of three to six residues having one or two positive charges, but not with dipeptides or phenylalanine-amide. In contrast to its lack of fast block, cyclic KIFMK was an effective use-dependent blocker. Substitutions of amino acid residues in the tripeptide IFM-NH2 showed that large hydrophobic residues are preferred in all three positions for slow, use-dependent block. However, substitution of the large hydrophobic residue diphenylalanine or the constrained residues phenylglycine or tetrahydroisoquinoline for phe decreased potency, suggesting that this phe residue must be able to enter a restricted hydrophobic pocket during the binding of IFM peptides. Together, the results on fast block and slow, use-dependent block indicate that IFM peptides form two distinct complexes of different stability and structural specificity with receptor site(s) on the sodium channel. It is proposed that fast block represents binding of these peptides to the inactivation gate receptor, while slow, use-dependent block represents deeper binding of the IFM peptides in the pore. PMID:9925825

  5. Cooperative Binding of Cyclodextrin Dimers to Isoflavone Analogues Elucidated by Free Energy Calculations.

    PubMed

    Zhang, Haiyang; Tan, Tianwei; Hetényi, Csaba; Lv, Yongqin; van der Spoel, David

    2014-04-03

    Dimerization of cyclodextrin (CD) molecules is an elementary step in the construction of CD-based nanostructured materials. Cooperative binding of CD cavities to guest molecules facilitates the dimerization process and, consequently, the overall stability and assembly of CD nanostructures. In the present study, all three dimerization modes (head-to-head, head-to-tail, and tail-to-tail) of β-CD molecules and their binding to three isoflavone drug analogues (puerarin, daidzin, and daidzein) were investigated in explicit water surrounding using molecular dynamics simulations. Total and individual contributions from the binding partners and solvent environment to the thermodynamics of these binding reactions are quantified in detail using free energy calculations. Cooperative drug binding to two CD cavities gives an enhanced binding strength for daidzin and daidzein, whereas for puerarin no obvious enhancement is observed. Head-to-head dimerization yields the most stable complexes for inclusion of the tested isoflavones (templates) and may be a promising building block for construction of template-stabilized CD nanostructures. Compared to the case of CD monomers, the desolvation of CD dimers and entropy changes upon complexation prove to be influential factors of cooperative binding. Our results shed light on key points of the design of CD-based supramolecular assemblies. We also show that structure-based calculation of binding thermodynamics can quantify stabilization caused by cooperative effects in building blocks of nanostructured materials.

  6. Dose dependency of outcomes of intrapleural fibrinolytic therapy in new rabbit empyema models

    PubMed Central

    Florova, Galina; Azghani, Ali O.; Buchanan, Ann; Boren, Jake; Allen, Timothy; Rahman, Najib M.; Koenig, Kathleen; Chamiso, Mignote; Karandashova, Sophia; Henry, James; Idell, Steven

    2016-01-01

    The incidence of empyema (EMP) is increasing worldwide; EMP generally occurs with pleural loculation and impaired drainage is often treated with intrapleural fibrinolytic therapy (IPFT) or surgery. A number of IPFT options are used clinically with empiric dosing and variable outcomes in adults. To evaluate mechanisms governing intrapleural fibrinolysis and disease outcomes, models of Pasteurella multocida and Streptococcus pneumoniae were generated in rabbits and the animals were treated with either human tissue (tPA) plasminogen activator or prourokinase (scuPA). Rabbit EMP was characterized by the development of pleural adhesions detectable by chest ultrasonography and fibrinous coating of the pleura. Similar to human EMP, rabbits with EMP accumulated sizable, 20- to 40-ml fibrinopurulent pleural effusions associated with extensive intrapleural organization, significantly increased pleural thickness, suppression of fibrinolytic and plasminogen-activating activities, and accumulation of high levels of plasminogen activator inhibitor 1, plasminogen, and extracellular DNA. IPFT with tPA (0.145 mg/kg) or scuPA (0.5 mg/kg) was ineffective in rabbit EMP (n = 9 and 3 for P. multocida and S. pneumoniae, respectively); 2 mg/kg tPA or scuPA IPFT (n = 5) effectively cleared S. pneumoniae-induced EMP collections in 24 h with no bleeding observed. Although intrapleural fibrinolytic activity for up to 40 min after IPFT was similar for effective and ineffective doses of fibrinolysin, it was lower for tPA than for scuPA treatments. These results demonstrate similarities between rabbit and human EMP, the importance of pleural fluid PAI-1 activity, and levels of plasminogen in the regulation of intrapleural fibrinolysis and illustrate the dose dependency of IPFT outcomes in EMP. PMID:27343192

  7. Extracellular Collagen Promotes Interleukin-1β-Induced Urokinase-Type Plasminogen Activator Production by Human Corneal Fibroblasts.

    PubMed

    Sugioka, Koji; Kodama-Takahashi, Aya; Yoshida, Koji; Aomatsu, Keiichi; Okada, Kiyotaka; Nishida, Teruo; Shimomura, Yoshikazu

    2017-03-01

    Keratocytes maintain homeostasis of the corneal stroma through synthesis, secretion, and degradation of collagen fibrils of the extracellular matrix. Given that these cells are essentially embedded in a collagen matrix, keratocyte-collagen interactions may play a key role in regulation of the expression or activation of enzymes responsible for matrix degradation including urokinase-type plasminogen activator (uPA), plasmin, and matrix metalloproteinases (MMPs). We examined the effect of extracellular collagen on the production of uPA by corneal fibroblasts (activated keratocytes) stimulated with the proinflammatory cytokine interleukin-1β (IL-1β). Human corneal fibroblasts were cultured either on plastic or in a three-dimensional gel of type I collagen. Plasminogen activators were detected by fibrin zymography, whereas the IL-1 receptor (IL-1R) and MMPs were detected by immunoblot analysis. Collagen degradation by corneal fibroblasts was assessed by measurement of hydroxyproline in acid hydrolysates of culture supernatants. Collagen and IL-1β synergistically increased the synthesis and secretion of uPA in corneal fibroblasts. Collagen also upregulated IL-1R expression in the cells in a concentration-dependent manner. The conversion of extracellular plasminogen to plasmin, as well as the plasminogen-dependent activation of MMP-1 and MMP-3 and degradation of collagen apparent in three-dimensional cultures of corneal fibroblasts exposed to IL-1β, were all abolished by a selective uPA inhibitor. Collagen and IL-1β cooperate to upregulate uPA production by corneal fibroblasts. Furthermore, IL-1β-induced collagen degradation by these cells appears to be strictly dependent on uPA expression and mediated by a uPA-plasmin-MMP pathway.

  8. Immunohistochemical analysis of the gingiva with periodontitis of type I plasminogen deficiency compared to gingiva with gingivitis and periodontitis and healthy gingiva.

    PubMed

    Kurtulus Waschulewski, Idil; Gökbuget, Aslan Y; Christiansen, Nina M; Ziegler, Maike; Schuster, Volker; Wahl, Gerhard; Götz, Werner

    2016-12-01

    Type I plasminogen deficiency (Plgdef) is an uncommon chronic inflammation of mucous membranes. Gingival enlargements usually proceed with progressive periodontal destruction and tooth-loss. Plasmin(ogen)-independent enzymatic mechanisms for fibrin clearance have already been discussed in the literature. Our primary objective was to verify, immunohistochemically, the occurrence of different enzymatic factors involved in tissue breakdown of inflamed compared to healthy gingiva. Secondly, we tried to find out, if these patients have a similar microbiological profile to the patients with known gingivitis and periodontitis. Immunohistochemical analysis of enzymes elastase, plasminogen (plg), cathepsin G, matrix-metalloproteinase (MMP)-3 and MMP-7 and of glycoprotein fibrinogen were performed with gingival tissues from 3 healthy controls, 8 patients with Plgdef and 3 patients with gingivitis and periodontitis. Furthermore, plaque from 5 patients with plasminogen deficiency were also obtained to determine the microbiological profile. Significantly high numbers of elastase positive leukocytes were detected in all samples. Staining for MMP-3 and MMP-7 was seen in samples with gingivitis and periodontitis with a stronger staining in samples with periodontitis by Plgdef. Fibrinogen was detectable in all samples. Staining for plg was stronger in samples with periodontitis than in other samples. Staining for cathepsin G was weak in gingivitis and periodontitis. Subgingival microbial flora showed elevated colony forming units of Prevotella intermedia/nigrescens, Fusobacterium spp., Eikenella corrodens, Porphyromonas gingivalis and viridans streptococci. Strong staining of elastase, MMP-3 and MMP-7 and weak staining of plg in Plgdef samples supports the plasmin(ogen) - independent fibrin clearance. Similar subgingival microbiological flora was observed in periodontitis with Plgdef as in other periodontal diseases. Further investigations should determine the exact pathomechanism and focus on effective treatment methods of this entity. Copyright © 2016. Published by Elsevier Ltd.

  9. Dose dependency of outcomes of intrapleural fibrinolytic therapy in new rabbit empyema models.

    PubMed

    Komissarov, Andrey A; Florova, Galina; Azghani, Ali O; Buchanan, Ann; Boren, Jake; Allen, Timothy; Rahman, Najib M; Koenig, Kathleen; Chamiso, Mignote; Karandashova, Sophia; Henry, James; Idell, Steven

    2016-08-01

    The incidence of empyema (EMP) is increasing worldwide; EMP generally occurs with pleural loculation and impaired drainage is often treated with intrapleural fibrinolytic therapy (IPFT) or surgery. A number of IPFT options are used clinically with empiric dosing and variable outcomes in adults. To evaluate mechanisms governing intrapleural fibrinolysis and disease outcomes, models of Pasteurella multocida and Streptococcus pneumoniae were generated in rabbits and the animals were treated with either human tissue (tPA) plasminogen activator or prourokinase (scuPA). Rabbit EMP was characterized by the development of pleural adhesions detectable by chest ultrasonography and fibrinous coating of the pleura. Similar to human EMP, rabbits with EMP accumulated sizable, 20- to 40-ml fibrinopurulent pleural effusions associated with extensive intrapleural organization, significantly increased pleural thickness, suppression of fibrinolytic and plasminogen-activating activities, and accumulation of high levels of plasminogen activator inhibitor 1, plasminogen, and extracellular DNA. IPFT with tPA (0.145 mg/kg) or scuPA (0.5 mg/kg) was ineffective in rabbit EMP (n = 9 and 3 for P. multocida and S. pneumoniae, respectively); 2 mg/kg tPA or scuPA IPFT (n = 5) effectively cleared S. pneumoniae-induced EMP collections in 24 h with no bleeding observed. Although intrapleural fibrinolytic activity for up to 40 min after IPFT was similar for effective and ineffective doses of fibrinolysin, it was lower for tPA than for scuPA treatments. These results demonstrate similarities between rabbit and human EMP, the importance of pleural fluid PAI-1 activity, and levels of plasminogen in the regulation of intrapleural fibrinolysis and illustrate the dose dependency of IPFT outcomes in EMP. Copyright © 2016 the American Physiological Society.

  10. Gingival crevicular fluid tissue/blood vessel-type plasminogen activator and plasminogen activator inhibitor-2 levels in patients with rheumatoid arthritis: effects of nonsurgical periodontal therapy.

    PubMed

    Kurgan, Ş; Önder, C; Balcı, N; Fentoğlu, Ö; Eser, F; Balseven, M; Serdar, M A; Tatakis, D N; Günhan, M

    2017-06-01

    The aim of this study was to evaluate the effect of nonsurgical periodontal therapy on clinical parameters and gingival crevicular fluid levels of tissue/blood vessel-type plasminogen activator (t-PA) and plasminogen activator inhibitor-2 (PAI-2) in patients with periodontitis, with or without rheumatoid arthritis (RA). Fifteen patients with RA and chronic periodontitis (RA-P), 15 systemically healthy patients with chronic periodontitis (H-P) and 15 periodontally and systemically healthy volunteers (C) were included in the study. Plaque index, gingival index, probing pocket depth, clinical attachment level, bleeding on probing, gingival crevicular fluid t-PA and PAI-2 levels, erythrocyte sedimentation rate, serum C-reactive protein and disease activity score were evaluated at baseline and 3 mo after mechanical nonsurgical periodontal therapy. All periodontal clinical parameters were significantly higher in the RA-P and H-P groups compared with the C group (p < 0.001) and decreased significantly after treatment (p < 0.001). Pretreatment t-PA levels were highest in the RA-P group and significantly decreased post-treatment (p = 0.047). Pre- and post-treatment PAI-2 levels were significantly lower in controls compared with both periodontitis groups (p < 0.05). Gingival crevicular fluid volume and the levels of t-PA and PAI-2 were significantly correlated. In patients with periodontitis and RA, nonsurgical periodontal therapy reduced the pretreatment gingival crevicular fluid t-PA levels, which were significantly correlated with gingival crevicular fluid PAI-2 levels. The significantly higher t-PA and PAI-2 gingival crevicular fluid levels in periodontal patients, regardless of systemic status, suggest that the plasminogen activating system plays a role in the disease process of periodontitis. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Gene expression of fibrinolytic factors urokinase plasminogen activator and plasminogen activator inhibitor-1 in rabbit temporo-mandibular joint cartilage with disc displacement.

    PubMed

    Zhan, Jing; Gu, Zhi-yuan; Wu, Li-qun; Zhang, Yin-kai; Hu, Ji-an

    2005-06-20

    The urokinase plasminogen activator system is believed to play an important role in degradation of the extracellular matrix associated with cartilage and bone destruction; however its precise roles in temporomandibular disorders have not yet been clarified. The aims of this study were to investigate the gene expression of fibrinolytic factors urokinase plasminogen activator (uPA) and plasminogen activator inhibitor-1 (PAI-1) in the articular cartilage of rabbit temporomandibular joint (TMJ) with disc displacement (DD) and to probe the relationship between fibrinolytic activity and cartilage remodeling. Disc displacement of right joints was performed in 36 of 78 rabbits under investigation. The animals were sacrificed at 4 days and 1, 2, 4, 8 and 12 weeks after surgery, respectively. The right joints of these animals were harvested and processed for the examination of mRNA expression of uPA and PAI-1 in articular cartilage using in situ hybridization techniques. The expression of uPA and PAI-1 was co-expressed weakly in the chondrocytes from transitive zone to hypertrophic zone and mineralized zone, while no hybridizing signals were shown in proliferative zone and superficial zone in control rabbits. The most striking was the up-regulation of uPA and PAI-1 mRNA in 4-day rabbits postoperatively at the onset of cartilage degeneration. The strongest hybridizing signals for uPA and PAI-1 were seen in 2-week rabbits postoperatively. After 2 weeks, the expression of uPA and PAI-1 began to decrease and reached nearly normal level at 12 weeks. The expression of the uPA/PAI-1 system coincides with the pathological changes in condylar cartilage after DD. The uPA/PAI-1 system may be one of the essential mediators in articular cartilage remodeling.

  12. Platelets from patients with the Quebec platelet disorder contain and secrete abnormal amounts of urokinase-type plasminogen activator.

    PubMed

    Kahr, W H; Zheng, S; Sheth, P M; Pai, M; Cowie, A; Bouchard, M; Podor, T J; Rivard, G E; Hayward, C P

    2001-07-15

    The Quebec platelet disorder (QPD) is an autosomal dominant platelet disorder associated with delayed bleeding and alpha-granule protein degradation. The degradation of alpha-granule, but not plasma, fibrinogen in patients with the QPD led to the investigation of their platelets for a protease defect. Unlike normal platelets, QPD platelets contained large amounts of fibrinolytic serine proteases that had properties of plasminogen activators. Western blot analysis, zymography, and immunodepletion experiments indicated this was because QPD platelets contained large amounts of urokinase-type plasminogen activator (u-PA) within a secretory compartment. u-PA antigen was not increased in all QPD plasmas, whereas it was increased more than 100-fold in QPD platelets (P <.00009), which contained increased u-PA messenger RNA. Although QPD platelets contained 2-fold more plasminogen activator inhibitor 1 (PAI-1) (P <.0008) and 100-fold greater u-PA-PAI-1 complexes (P <.0002) than normal platelets, they contained excess u-PA activity, predominantly in the form of two chain (tcu-PA), which required additional PAI-1 for full inhibition. There was associated proteolysis of plasminogen in QPD platelets, to forms that comigrated with plasmin. When similar amounts of tcu-PA were incubated with normal platelet secretory proteins, many alpha-granule proteins were proteolyzed to forms that resembled degraded QPD platelet proteins. These data implicate u-PA in the pathogenesis of alpha-granule protein degradation in the QPD. Although patients with the QPD have normal to increased u-PA levels in their plasma, without evidence of systemic fibrinogenolysis, their increased platelet u-PA could contribute to bleeding by accelerating fibrinolysis within the hemostatic plug. QPD is the only inherited bleeding disorder in humans known to be associated with increased u-PA.

  13. Promotion of Wound Healing by an Agonist of Adenosine A2A Receptor Is Dependent on Tissue Plasminogen Activator.

    PubMed

    Montesinos, M Carmen; Desai-Merchant, Avani; Cronstein, Bruce N

    2015-12-01

    Impaired wound healing, as it occurs in diabetes mellitus or long-term corticoid treatment, is commonly associated with disability, diminished quality of life, and high economic costs. Selective agonists of the A2A receptor subtype of adenosine, an endogenous regulator of inflammation, promote tissue repair in animal models, both healthy and with impaired healing. Plasmin-mediated proteolysis of fibrin and other matrix proteins is essential for cell migration at sites of injury. Since adenosine A2A receptor activation increases plasminogen activator release from macrophages and mast cells, we studied the effect of a selective agonist, CGS-21680, on full-thickness excisional wound closure in wild-type, urokinase plasminogen activator (uPA)-deficient, and tissue plasminogen activator (tPA)-deficient mice. Wound closure was impaired in tPA- and uPA-deficient mice as compared with wild-type mice, and topical application of CGS-21680 significantly increased the rate at which wounds closed in wild-type mice and uPA-deficient mice, but not in tPA-deficient mice. Immunostaining of tissue sections showed that tPA was present in endothelial cells and histiocytes by day 3 post-wound and also by day 6. In contrast, uPA was more prominent in these cell types only by day 6 post-wound. Our results confirm that plasminogen activation contributes to wound repair and are consistent with the hypothesis that adenosine A2A receptor activation promotes wound closure by a mechanism that depends upon tPA, but not uPA. Moreover, our results suggest that topical adenosine A2A receptor agonists may be useful in promotion of wound closure in patients with impaired wound healing.

  14. Depigmented Allergoids Reveal New Epitopes with Capacity to Induce IgG Blocking Antibodies

    PubMed Central

    López-Matas, M. Angeles; Gallego, Mayte; Iraola, Víctor; Robinson, Douglas; Carnés, Jerónimo

    2013-01-01

    Background. The synthesis of allergen-specific blocking IgGs that interact with IgE after allergen immunotherapy (SIT) has been related to clinical efficacy. The objectives were to investigate the epitope specificity of IgG-antibodies induced by depigmented-polymerized (Dpg-Pol) allergoids and unmodified allergen extracts, and examine IgE-blocking activity of induced IgG-antibodies. Methods. Rabbits were immunized with native and Dpg-Pol extracts of birch pollen, and serum samples were obtained. Recognition of linear IgG-epitopes of Bet v 1 and Bet v 2 and the capacity of these IgG-antibodies to block binding of human-IgE was determined. Results. Serum from rabbits immunized with native extracts recognised 11 linear epitopes from Bet v 1, while that from Dpg-Pol-immunized animals recognised 8. For Bet v 2, 8 epitopes were recognized by IgG from native immunized animals, and 9 from Dpg-Pol immunized one. Dpg-Pol and native immunized serum did not always recognise the same epitopes, but specific-IgG from both could block human-IgE binding sites for native extract. Conclusions. Depigmented-polymerized birch extract stimulates the synthesis of specific IgG-antibodies which recognize common but also novel epitopes compared with native extracts. IgG-antibodies induced by Dpg-Pol effectively inhibit human-IgE binding to allergens which may be part of the mechanism of action of SIT. PMID:24222901

  15. Cationic polymers for DNA origami coating - examining their binding efficiency and tuning the enzymatic reaction rates.

    PubMed

    Kiviaho, Jenny K; Linko, Veikko; Ora, Ari; Tiainen, Tony; Järvihaavisto, Erika; Mikkilä, Joona; Tenhu, Heikki; Nonappa; Kostiainen, Mauri A

    2016-06-02

    DNA origamis are fully tailored, programmable, biocompatible and readily functionalizable nanostructures that provide an excellent foundation for the development of sophisticated drug-delivery systems. However, the DNA origami objects suffer from certain drawbacks such as low cell-transfection rates and low stability. A great deal of studies on polymer-based transfection agents, mainly focusing on polyplex formation and toxicity, exists. In this study, the electrostatic binding between a brick-like DNA origami and cationic block-copolymers was explored. The effect of the polymer structure on the binding was investigated and the toxicity of the polymer-origami complexes evaluated. The study shows that all of the analyzed polymers had a suitable binding efficiency irrespective of the block structure. It was also observed that the toxicity of polymer-origami complexes was insignificant at the biologically relevant concentration levels. Besides brick-like DNA origamis, tubular origami carriers equipped with enzymes were also coated with the polymers. By adjusting the amount of cationic polymers that cover the DNA structures, we showed that it is possible to control the enzyme kinetics of the complexes. This work gives a starting point for further development of biocompatible and effective polycation-based block copolymers that can be used in coating different DNA origami nanostructures for various bioapplications.

  16. Further analyses of human kidney cell populations separated on the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Stewart, Robin M.; Todd, Paul; Cole, Kenneth D.; Morrison, Dennis R.

    1992-01-01

    Cultured human embryonic kidney cells were separated into electrophoretic subpopulations in laboratory experiments and in two separation experiments on the STS-8 (Challenger) Space Shuttle flight using the mid-deck Continuous Flow Electrophoretic Separator (CFES). Populations of cells from each fraction were cultured for the lifetime of the cells, and supernatant medium was withdrawn and replaced at 4-day intervals. Withdrawn medium was frozen at -120 C for subsequent analysis. Enzyme assays, antibodies and gel electrophoresis were used as analytical tools for the detection and quantization of plasminogen activators in these samples. These assays of frozen-culture supernatant fluids confirmed the electrophoretic separation of plasminogen-activator-producing cells from nonproducing cells, the isolation of cells capable of sustained production, and the separation of cells that produce different plasminogen activators from one other.

  17. Tissue plasminogen activator (tPA) as a reporter gene in transient gene expression.

    PubMed

    Cheng, S M; Lee, S G; Kalyan, N K; McCloud, S; Levner, M; Hung, P P

    1987-01-01

    Using the gene coding for tissue plasminogen activator (tPA) as a reporter gene, a transient gene expression system has been established. Vectors containing the full-length cDNA of tPA with its signal sequences were introduced into mammalian recipient cells by a modified gene transfer procedure. Thirty hours after transfection, the secreted tPA was found in serum-free medium and measured by a fibrin-agarose plate assay (FAPA). In this assay, tPA converts plasminogen into plasmin which then degrades high-Mr fibrin to produce cleared zones. The sizes of these zones correspond to quantities of tPA. The combination of transient tPA expression system and the FAPA provides a quick, sensitive, quantitative and non-destructive method to examine the strength of eukaryotic regulatory elements in tissue-culture cells.

  18. Voltage-dependent blockade of muscle Na+ channels by guanidinium toxins

    PubMed Central

    1984-01-01

    Na+ channels from rat muscle plasma membrane vesicles were inserted into neutral planar phospholipid bilayers and were activated by batrachotoxin. Single channel blocking events induced by the addition of various guanidinium toxins were analyzed to derive the rates of channel-toxin association and dissociation. Blocking by tetrodotoxin, saxitoxin, and six natural saxitoxin derivatives containing sulfate or hydroxyl groups were studied. Although the binding affinities vary over 2,000-fold, all of the toxins exhibit identical voltage dependence of the blocking reactions, regardless of the toxin's net charge. The results suggest that the voltage dependence of toxin binding is due to a voltage-dependent conformational equilibrium of the toxin receptor, rather than to direct entry of the charged toxin molecule into the applied transmembrane electric field. PMID:6096479

  19. Interaction between rose bengal and different protein components.

    PubMed

    Tseng, S C; Zhang, S H

    1995-07-01

    Bindings of rose bengal to several proteins were determined by Sephadex G-75 chromatography. Their respective blocking effect against dye uptake was demonstrated in an assay using a rabbit corneal epithelial cell layer. The total binding capacity of nonmucin proteins was measured using fluorometry and Scatchard analysis. The results showed that albumin, lactoferrin, transferrin, and lysozyme could--but serum prealbumin, IgA, carboxymethyl cellulose (CMC), and Sepharose 4B-purified porcine stomach mucin (PSM) could not--bind rose bengal. Lysozyme formed precipitates with rose bengal. Sufficient concentrations of albumin, lactoferrin, transferrin, or lysozyme premixed with rose bengal could block dye uptake by cells, but IgA and serum prealbumin could not. Premixed PSM was not as effective as precoated PSM in blocking dye uptake. The dissociation constant (Kd) was 1.2 x 10(-7) M, 3.6 x 10(-7) M, 3.9 x 10(-7) M, and 1.6 x 10(-6) M for albumin, transferrin, lactoferrin, and lysozyme, respectively. Based on these values, the total maximal binding capacity of nonmucin proteins in normal 7-microliters tears was extrapolated to be 0.249 micrograms rose bengal, which is too small to explain the negative staining of rose bengal on the normal ocular surface. Rose bengal, but not fluorescein, could interact with carbohydrate-containing Sephadex, CMC, and PSM to slow down its elution via Sephadex column chromatography. Therefore, the normal negative staining to rose bengal might be caused by the blocking effect of preocular mucus tear layer, which serves as a diffusion barrier. Rose bengal remains a unique dye for detecting the protective function of the preocular mucus tear.

  20. Uninvolved Skin from Psoriatic Patients Develops Signs of Involved Psoriatic Skin after Being Grafted onto Nude Mice

    NASA Astrophysics Data System (ADS)

    Fraki, Jorma E.; Briggaman, Robert A.; Lazarus, Gerald S.

    1982-02-01

    Clinically involved psoriatic epidermis maintains its histological appearance, increased labeling index, and increased level of plasminogen activator after being grafted onto athymic nude mice. Uninvolved psoriatic epidermis develops increases in plasminogen activator activity after being grafted onto athymic nude mice; this is accompanied by an increased labeling index. Thus, psoriatic skin can develop markers of psoriasis independent of the host.

  1. Unusual cause of aborted sudden cardiac death in a teen athlete: homozygosity for the 4G allele of the plasminogen activase inhibitor type 1 gene.

    PubMed

    Phillips, Susie B; Batlivala, Sarosh; Knudson, Jarrod D

    2015-10-01

    Common aetiologies of sudden cardiac death in children include coronary anomalies, channelopathies, and cardiomyopathies. Less frequently, hypercoagulable states cause sudden arrest. We report an unusual case of aborted sudden cardiac death in a teenager, ultimately found to have homozygosity for the 4G allele of the plasminogen activase inhibitor type 1 gene.

  2. Effects of a high-fat diet on spontaneous metastasis of Lewis lung carcinoma in plasminogen activator inhibitor-1 deficient and wild-type mice

    USDA-ARS?s Scientific Manuscript database

    We investigated the effects of plasminogen activator inhibitor-1 (PAI-1) deficiency on spontaneous metastasis of Lewis lung carcinoma (LLC) in PAI-1 deficient (PAI-1-/-) and wildtype mice (C57BL/6J background) fed the AIN93G diet or that diet modified with 45% calories from fat. The high-fat diet i...

  3. Variable Resistance to Plasminogen Activator Initiated Fibrinolysis for Intermediate-Risk Pulmonary Embolism.

    PubMed

    Stubblefield, William B; Alves, Nathan J; Rondina, Matthew T; Kline, Jeffrey A

    2016-01-01

    We examine the clinical significance and biomarkers of tissue plasminogen activator (tPA)-catalyzed clot lysis time (CLT) in patients with intermediate-risk pulmonary embolism (PE). Platelet-poor, citrated plasma was obtained from patients with PE. Healthy age- and sex-matched patients served as disease-negative controls. Fibrinogen, α2-antiplasmin, plasminogen, thrombin activatable fibrinolysis inhibitor (TAFI), plasminogen activator Inhibitor 1 (PAI-1), thrombin time and D-dimer were quantified. Clotting was induced using CaCl2, tissue factor, and phospholipid. Lysis was induced using 60 ng/mL tPA. Time to 50% clot lysis (CLT) was assessed by both thromboelastography (TEG) and turbidimetry (A405). Compared with disease-negative controls, patients with PE exhibited significantly longer mean CLT on TEG (+2,580 seconds, 95% CI 1,380 to 3,720 sec). Patients with PE and a short CLT who were treated with tenecteplase had increased risk of bleeding, whereas those with long CLT had significantly worse exercise tolerance and psychometric testing for quality of life at 3 months. A multivariate stepwise removal regression model selected PAI-1 and TAFI as predictive biomarkers of CLT. The CLT from TEG predicted increased risk of bleeding and clinical failure with tenecteplase treatment for intermediate-risk PE. Plasmatic PAI-1 and TAFI were independent predictors of CLT.

  4. Exploiting three kinds of interface propensities to identify protein binding sites.

    PubMed

    Liu, Bin; Wang, Xiaolong; Lin, Lei; Dong, Qiwen; Wang, Xuan

    2009-08-01

    Predicting the binding sites between two interacting proteins provides important clues to the function of a protein. In this study, we present a building block of proteins called order profiles to use the evolutionary information of the protein sequence frequency profiles and apply this building block to produce a class of propensities called order profile interface propensities. For comparisons, we revisit the usage of residue interface propensities and binary profile interface propensities for protein binding site prediction. Each kind of propensities combined with sequence profiles and accessible surface areas are inputted into SVM. When tested on four types of complexes (hetero-permanent complexes, hetero-transient complexes, homo-permanent complexes and homo-transient complexes), experimental results show that the order profile interface propensities are better than residue interface propensities and binary profile interface propensities. Therefore, order profile is a suitable profile-level building block of the protein sequences and can be widely used in many tasks of computational biology, such as the sequence alignment, the prediction of domain boundary, the designation of knowledge-based potentials and the protein remote homology detection.

  5. Chemical and genetic wrappers for improved phage and RNA display.

    PubMed

    Lamboy, Jorge A; Tam, Phillip Y; Lee, Lucie S; Jackson, Pilgrim J; Avrantinis, Sara K; Lee, Hye J; Corn, Robert M; Weiss, Gregory A

    2008-11-24

    An Achilles heel inherent to all molecular display formats, background binding between target and display system introduces false positives into screens and selections. For example, the negatively charged surfaces of phage, mRNA, and ribosome display systems bind with unacceptably high nonspecificity to positively charged target molecules, which represent an estimated 35% of proteins in the human proteome. Here we report the first systematic attempt to understand why a broad class of molecular display selections fail, and then solve the underlying problem for both phage and RNA display. Firstly, a genetic strategy was used to introduce a short, charge-neutralizing peptide into the solvent-exposed, negatively charged phage coat. The modified phage (KO7(+)) reduced or eliminated nonspecific binding to the problematic high-pI proteins. In the second, chemical approach, nonspecific interactions were blocked by oligolysine wrappers in the cases of phage and total RNA. For phage display applications, the peptides Lys(n) (where n=16 to 24) emerged as optimal for wrapping the phage. Lys(8), however, provided effective wrappers for RNA binding in assays against the RNA binding protein HIV-1 Vif. The oligolysine peptides blocked nonspecific binding to allow successful selections, screens, and assays with five previously unworkable protein targets.

  6. Production and characterization of monoclonal antibodies to the protective antigen component of Bacillus anthracis toxin.

    PubMed Central

    Little, S F; Leppla, S H; Cora, E

    1988-01-01

    Thirty-six monoclonal antibodies to the protective antigen protein of Bacillus anthracis exotoxin have been characterized for affinity, antibody subtype, competitive binding to antigenic regions, and ability to neutralize lethal and edema toxin activities. At least 23 antigenic regions were detected on protective antigen by a blocking, enzyme-linked immunosorbent assay. Two clones, 3B6 and 14B7, competed for a single antigenic region and neutralized the activity of both the lethal toxin in vivo (Fisher 344 rat) and the edema toxin in vitro (CHO cells). These two antibodies blocked the binding of 125I-labeled protective antigen to FRL-103 cells. Our results support the proposal that binding of protective antigen to cell receptors is required for expression of toxicity. Images PMID:3384478

  7. Cationic polymers for DNA origami coating - examining their binding efficiency and tuning the enzymatic reaction rates

    NASA Astrophysics Data System (ADS)

    Kiviaho, Jenny K.; Linko, Veikko; Ora, Ari; Tiainen, Tony; Järvihaavisto, Erika; Mikkilä, Joona; Tenhu, Heikki; Nonappa, Affc; Kostiainen, Mauri A.

    2016-06-01

    DNA origamis are fully tailored, programmable, biocompatible and readily functionalizable nanostructures that provide an excellent foundation for the development of sophisticated drug-delivery systems. However, the DNA origami objects suffer from certain drawbacks such as low cell-transfection rates and low stability. A great deal of studies on polymer-based transfection agents, mainly focusing on polyplex formation and toxicity, exists. In this study, the electrostatic binding between a brick-like DNA origami and cationic block-copolymers was explored. The effect of the polymer structure on the binding was investigated and the toxicity of the polymer-origami complexes evaluated. The study shows that all of the analyzed polymers had a suitable binding efficiency irrespective of the block structure. It was also observed that the toxicity of polymer-origami complexes was insignificant at the biologically relevant concentration levels. Besides brick-like DNA origamis, tubular origami carriers equipped with enzymes were also coated with the polymers. By adjusting the amount of cationic polymers that cover the DNA structures, we showed that it is possible to control the enzyme kinetics of the complexes. This work gives a starting point for further development of biocompatible and effective polycation-based block copolymers that can be used in coating different DNA origami nanostructures for various bioapplications.DNA origamis are fully tailored, programmable, biocompatible and readily functionalizable nanostructures that provide an excellent foundation for the development of sophisticated drug-delivery systems. However, the DNA origami objects suffer from certain drawbacks such as low cell-transfection rates and low stability. A great deal of studies on polymer-based transfection agents, mainly focusing on polyplex formation and toxicity, exists. In this study, the electrostatic binding between a brick-like DNA origami and cationic block-copolymers was explored. The effect of the polymer structure on the binding was investigated and the toxicity of the polymer-origami complexes evaluated. The study shows that all of the analyzed polymers had a suitable binding efficiency irrespective of the block structure. It was also observed that the toxicity of polymer-origami complexes was insignificant at the biologically relevant concentration levels. Besides brick-like DNA origamis, tubular origami carriers equipped with enzymes were also coated with the polymers. By adjusting the amount of cationic polymers that cover the DNA structures, we showed that it is possible to control the enzyme kinetics of the complexes. This work gives a starting point for further development of biocompatible and effective polycation-based block copolymers that can be used in coating different DNA origami nanostructures for various bioapplications. Electronic supplementary information (ESI) available: Details of materials, syntheses of the polymers, fabrication and purification of DNA origamis, luminescence decay assays, agarose gel electrophoresis, ethidium bromide displacement assay, MTT assay and TEM characterization. See DOI: 10.1039/c5nr08355a

  8. Putting life on ice: bacteria that bind to frozen water

    PubMed Central

    Bernheim, Reut; Guo, Shuaiqi; Davies, Peter L.; Braslavsky, Ido

    2016-01-01

    Ice-binding proteins (IBPs) are typically small, soluble proteins produced by cold-adapted organisms to help them avoid ice damage by either resisting or tolerating freezing. By contrast, the IBP of the Antarctic bacterium Marinomonas primoryensis is an extremely long, 1.5 MDa protein consisting of five different regions. The fourth region, a 34 kDa domain, is the only part that confers ice binding. Bioinformatic studies suggest that this IBP serves as an adhesin that attaches the bacteria to ice to keep it near the top of the water column, where oxygen and nutrients are available. Using temperature-controlled cells and a microfluidic apparatus, we show that M. primoryensis adheres to ice and is only released when melting occurs. Binding is dependent on the mobility of the bacterium and the functionality of the IBP domain. A polyclonal antibody raised against the IBP region blocks bacterial ice adhesion. This concept may be the basis for blocking biofilm formation in other bacteria, including pathogens. Currently, this IBP is the only known example of an adhesin that has evolved to bind ice. PMID:27534698

  9. Putting life on ice: bacteria that bind to frozen water.

    PubMed

    Bar Dolev, Maya; Bernheim, Reut; Guo, Shuaiqi; Davies, Peter L; Braslavsky, Ido

    2016-08-01

    Ice-binding proteins (IBPs) are typically small, soluble proteins produced by cold-adapted organisms to help them avoid ice damage by either resisting or tolerating freezing. By contrast, the IBP of the Antarctic bacterium Marinomonas primoryensis is an extremely long, 1.5 MDa protein consisting of five different regions. The fourth region, a 34 kDa domain, is the only part that confers ice binding. Bioinformatic studies suggest that this IBP serves as an adhesin that attaches the bacteria to ice to keep it near the top of the water column, where oxygen and nutrients are available. Using temperature-controlled cells and a microfluidic apparatus, we show that M. primoryensis adheres to ice and is only released when melting occurs. Binding is dependent on the mobility of the bacterium and the functionality of the IBP domain. A polyclonal antibody raised against the IBP region blocks bacterial ice adhesion. This concept may be the basis for blocking biofilm formation in other bacteria, including pathogens. Currently, this IBP is the only known example of an adhesin that has evolved to bind ice. © 2016 The Authors.

  10. Discovery, development, and clinical application of sugammadex sodium, a selective relaxant binding agent

    PubMed Central

    Welliver, Mark; McDonough, John; Kalynych, Nicholas; Redfern, Robert

    2008-01-01

    Neuromuscular blockade, induced by neuromuscular blocking agents, has allowed prescribed immobility, improved surgical exposure, optimal airway management conditions, and facilitated mechanical ventilation. However, termination of the effects of neuromuscular blocking agents has, until now, remained limited. A novel cyclodextrin encapsulation process offers improved termination of the paralytic effects of aminosteroidal non-depolarizing neuromuscular blocking agents. Sugammadex sodium is the first in a new class of drug called selective relaxant binding agents. Currently, in clinical trials, sugammadex, a modified gamma cyclodextrin, has shown consistent and rapid termination of neuromuscular blockade with few side effects. The pharmacology of cyclodextrins in general and sugammadex in particular, together with the results of current clinical research are reviewed. The ability of sugammadex to terminate the action of neuromuscular blocking agents by direct encapsulation is compared to the indirect competitive antagonism of their effects by cholinesterase inhibitors. Also discussed are the clinical implications that extend beyond fast, effective reversal, including numerous potential perioperative benefits. PMID:19920893

  11. Heat stable antigen (mouse CD24) supports myeloid cell binding to endothelial and platelet P-selectin.

    PubMed

    Aigner, S; Ruppert, M; Hubbe, M; Sammar, M; Sthoeger, Z; Butcher, E C; Vestweber, D; Altevogt, P

    1995-10-01

    P-selectin is a Ca(2+)-dependent lectin that participates in leukocyte adhesion to vascular endothelium and platelets. Myeloid cells and a subset of T lymphocytes express carbohydrate ligands at the cell surface. Previously, we suggested that heat stable antigen (HSA/mouse CD24), an extensively glycosylated cell surface molecule on many mouse cells, is a ligand for P-selectin. Here we show that HSA mediates the binding of monocytic cells and neutrophils to P-selectin. The monocytic cell lines ESb-MP and J774, peritoneal exudate cells, and bone marrow neutrophils could bind to lipopolysaccharide-activated bend3 endothelioma cells under rotation-induced shear forces and this binding was inhibited by mAb to P-selectin and HSA. Blocking was weak at room temperature but more efficient at 4 degrees C when integrin-mediated binding was decreased. Also the adhesion of neutrophils to stimulated platelets expressing P-selectin was blocked by HSA- and P-selectin-specific mAb. Latex beads coated with purified HSA from myeloid cells bound to activated endothelioma cells or platelets, and the binding was similarly blocked by mAb to P-selectin and HSA respectively. The HSA-coated beads were stained with P-selectin-IgG, very weakly with L-selectin-IgG but not with E-selectin-IgG. The staining was dependent on divalent cations and treatment with endoglycosidase F or neuraminidase indicated that sialylated N-linked glycans were recognized. The presence of these glycans was confirmed by biosynthetic labeling studies. Our data suggest that HSA, in addition to the recently identified 160 kDa glycoprotein ligand on mouse neutrophils, belongs to a group of monospecific P-selectin ligands on myeloid cells.

  12. Reverse actin sliding triggers strong myosin binding that moves tropomyosin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bekyarova, T.I.; Reedy, M.C.; Baumann, B.A.J.

    2008-09-03

    Actin/myosin interactions in vertebrate striated muscles are believed to be regulated by the 'steric blocking' mechanism whereby the binding of calcium to the troponin complex allows tropomyosin (TM) to change position on actin, acting as a molecular switch that blocks or allows myosin heads to interact with actin. Movement of TM during activation is initiated by interaction of Ca{sup 2+} with troponin, then completed by further displacement by strong binding cross-bridges. We report x-ray evidence that TM in insect flight muscle (IFM) moves in a manner consistent with the steric blocking mechanism. We find that both isometric contraction, at highmore » [Ca{sup 2+}], and stretch activation, at lower [Ca{sup 2+}], develop similarly high x-ray intensities on the IFM fourth actin layer line because of TM movement, coinciding with x-ray signals of strong-binding cross-bridge attachment to helically favored 'actin target zones.' Vanadate (Vi), a phosphate analog that inhibits active cross-bridge cycling, abolishes all active force in IFM, allowing high [Ca{sup 2+}] to elicit initial TM movement without cross-bridge attachment or other changes from relaxed structure. However, when stretched in high [Ca{sup 2+}], Vi-'paralyzed' fibers produce force substantially above passive response at pCa {approx} 9, concurrent with full conversion from resting to active x-ray pattern, including x-ray signals of cross-bridge strong-binding and TM movement. This argues that myosin heads can be recruited as strong-binding 'brakes' by backward-sliding, calcium-activated thin filaments, and are as effective in moving TM as actively force-producing cross-bridges. Such recruitment of myosin as brakes may be the major mechanism resisting extension during lengthening contractions.« less

  13. The neurotrophin-inducible gene Vgf regulates hippocampal function and behavior through a brain-derived neurotrophic factor-dependent mechanism.

    PubMed

    Bozdagi, Ozlem; Rich, Erin; Tronel, Sophie; Sadahiro, Masato; Patterson, Kamara; Shapiro, Matthew L; Alberini, Cristina M; Huntley, George W; Salton, Stephen R J

    2008-09-24

    VGF is a neurotrophin-inducible, activity-regulated gene product that is expressed in CNS and PNS neurons, in which it is processed into peptides and secreted. VGF synthesis is stimulated by BDNF, a critical regulator of hippocampal development and function, and two VGF C-terminal peptides increase synaptic activity in cultured hippocampal neurons. To assess VGF function in the hippocampus, we tested heterozygous and homozygous VGF knock-out mice in two different learning tasks, assessed long-term potentiation (LTP) and depression (LTD) in hippocampal slices from VGF mutant mice, and investigated how VGF C-terminal peptides modulate synaptic plasticity. Treatment of rat hippocampal slices with the VGF-derived peptide TLQP62 resulted in transient potentiation through a mechanism that was selectively blocked by the BDNF scavenger TrkB-Fc, the Trk tyrosine kinase inhibitor K252a (100 nm), and tPA STOP, an inhibitor of tissue plasminogen activator (tPA), an enzyme involved in pro-BDNF cleavage to BDNF, but was not blocked by the NMDA receptor antagonist APV, anti-p75(NTR) function-blocking antiserum, or previous tetanic stimulation. Although LTP was normal in slices from VGF knock-out mice, LTD could not be induced, and VGF mutant mice were impaired in hippocampal-dependent spatial learning and contextual fear conditioning tasks. Our studies indicate that the VGF C-terminal peptide TLQP62 modulates hippocampal synaptic transmission through a BDNF-dependent mechanism and that VGF deficiency in mice impacts synaptic plasticity and memory in addition to depressive behavior.

  14. The Neurotrophin-Inducible Gene Vgf Regulates Hippocampal Function and Behavior Through a BDNF-Dependent Mechanism

    PubMed Central

    Bozdagi, Ozlem; Rich, Erin; Tronel, Sophie; Sadahiro, Masato; Patterson, Kamara; Shapiro, Matthew L.; Alberini, Cristina M.; Huntley, George W.; Salton, Stephen R. J.

    2009-01-01

    VGF is a neurotrophin-inducible, activity-regulated gene product that is expressed in CNS and PNS neurons, where it is processed into peptides and secreted. VGF synthesis is stimulated by BDNF, a critical regulator of hippocampal development and function, and two VGF C-terminal peptides increase synaptic activity in cultured hippocampal neurons. To assess VGF function in the hippocampus, we tested heterozygous and homozygous VGF knockout mice in two different learning tasks, assessed long-term potentiation (LTP) and depression (LTD) in hippocampal slices from VGF mutant mice, and investigated how VGF C-terminal peptides modulate synaptic plasticity. Treatment of rat hippocampal slices with the VGF-derived peptide TLQP62 resulted in transient potentiation through a mechanism that was selectively blocked by the BDNF scavenger TrkB-Fc, the Trk tyrosine kinase inhibitor K252a (100 nM), and by tPASTOP, an inhibitor of tissue plasminogen activator (tPA), an enzyme involved in pro-BDNF cleavage to BDNF, but was not blocked by the NMDA receptor antagonist APV, anti-p75NTR function-blocking antiserum, nor by prior tetanic stimulation. Although LTP was normal in slices from VGF knockout mice, LTD could not be induced, and VGF mutant mice were impaired in hippocampal-dependent spatial learning and contextual fear conditioning tasks. Our studies indicate that the VGF C-terminal peptide TLQP62 modulates hippocampal synaptic transmission through a BDNF-dependent mechanism, and that VGF deficiency in mice impacts synaptic plasticity and memory in addition to depressive behavior. PMID:18815270

  15. Fine Specificity of Plasmodium vivax Duffy Binding Protein Binding Engagement of the Duffy Antigen on Human Erythrocytes

    PubMed Central

    Siddiqui, Asim A.; Xainli, Jia; Schloegel, Jesse; Carias, Lenore; Ntumngia, Francis; Shoham, Menachem; Casey, Joanne L.; Foley, Michael; Adams, John H.

    2012-01-01

    Plasmodium vivax invasion of human erythrocytes requires interaction of the P. vivax Duffy binding protein (PvDBP) with its host receptor, the Duffy antigen (Fy) on the erythrocyte surface. Consequently, PvDBP is a leading vaccine candidate. The binding domain of PvDBP lies in a cysteine-rich portion of the molecule called region II (PvDBPII). PvDBPII contains three distinct subdomains based upon intramolecular disulfide bonding patterns. Subdomain 2 (SD2) is highly polymorphic and is thought to contain many key residues for binding to Fy, while SD1 and SD3 are comparatively conserved and their role in Fy binding is not well understood. To examine the relative contributions of the different subdomains to binding to Fy and their abilities to elicit strain-transcending binding-inhibitory antibodies, we evaluated recombinant proteins from SD1+2, SD2, SD3, and SD3+, which includes 24 residues of SD2. All of the recombinant subdomains, except for SD2, bound variably to human erythrocytes, with constructs containing SD3 showing the best binding. Antisera raised in laboratory animals against SD3, SD3+, and SD2+3 inhibited the binding of full-length PvDBPII, which is strain transcending, whereas antisera generated to SD1+2 and SD2 failed to generate blocking antibodies. All of the murine monoclonal antibodies generated to full-length PvDBPII that had significant binding-inhibitory activity recognized only SD3. Thus, SD3 binds Fy and elicits blocking antibodies, indicating that it contains residues critical to Fy binding that could be the basis of a strain-transcending candidate vaccine against P. vivax. PMID:22615246

  16. Fine specificity of Plasmodium vivax Duffy binding protein binding engagement of the Duffy antigen on human erythrocytes.

    PubMed

    Siddiqui, Asim A; Xainli, Jia; Schloegel, Jesse; Carias, Lenore; Ntumngia, Francis; Shoham, Menachem; Casey, Joanne L; Foley, Michael; Adams, John H; King, Christopher L

    2012-08-01

    Plasmodium vivax invasion of human erythrocytes requires interaction of the P. vivax Duffy binding protein (PvDBP) with its host receptor, the Duffy antigen (Fy) on the erythrocyte surface. Consequently, PvDBP is a leading vaccine candidate. The binding domain of PvDBP lies in a cysteine-rich portion of the molecule called region II (PvDBPII). PvDBPII contains three distinct subdomains based upon intramolecular disulfide bonding patterns. Subdomain 2 (SD2) is highly polymorphic and is thought to contain many key residues for binding to Fy, while SD1 and SD3 are comparatively conserved and their role in Fy binding is not well understood. To examine the relative contributions of the different subdomains to binding to Fy and their abilities to elicit strain-transcending binding-inhibitory antibodies, we evaluated recombinant proteins from SD1+2, SD2, SD3, and SD3+, which includes 24 residues of SD2. All of the recombinant subdomains, except for SD2, bound variably to human erythrocytes, with constructs containing SD3 showing the best binding. Antisera raised in laboratory animals against SD3, SD3+, and SD2+3 inhibited the binding of full-length PvDBPII, which is strain transcending, whereas antisera generated to SD1+2 and SD2 failed to generate blocking antibodies. All of the murine monoclonal antibodies generated to full-length PvDBPII that had significant binding-inhibitory activity recognized only SD3. Thus, SD3 binds Fy and elicits blocking antibodies, indicating that it contains residues critical to Fy binding that could be the basis of a strain-transcending candidate vaccine against P. vivax.

  17. Isolation and characterization of iron chelators from turmeric (Curcuma longa): selective metal binding by curcuminoids.

    PubMed

    Messner, Donald J; Surrago, Christine; Fiordalisi, Celia; Chung, Wing Yin; Kowdley, Kris V

    2017-10-01

    Iron overload disorders may be treated by chelation therapy. This study describes a novel method for isolating iron chelators from complex mixtures including plant extracts. We demonstrate the one-step isolation of curcuminoids from turmeric, the medicinal food spice derived from Curcuma longa. The method uses iron-nitrilotriacetic acid (NTA)-agarose, to which curcumin binds rapidly, specifically, and reversibly. Curcumin, demethoxycurcumin, and bisdemethoxycurcumin each bound iron-NTA-agarose with comparable affinities and a stoichiometry near 1. Analyses of binding efficiencies and purity demonstrated that curcuminoids comprise the primary iron binding compounds recovered from a crude turmeric extract. Competition of curcuminoid binding to the iron resin was used to characterize the metal binding site on curcumin and to detect iron binding by added chelators. Curcumin-Iron-NTA-agarose binding was inhibited by other metals with relative potency: (>90% inhibition) Cu 2+  ~ Al 3+  > Zn 2+  ≥ Ca 2+  ~ Mg 2+  ~ Mn 2+ (<20% inhibition). Binding was also inhibited by pharmaceutical iron chelators (desferoxamine or EDTA) or by higher concentrations of weak iron chelators (citrate or silibinin). Investigation of the physiological effects of iron binding by curcumin revealed that curcumin uptake by cultured cells was reduced >80% by addition of iron to the media; uptake was completely restored by desferoxamine. Ranking of metals by relative potencies for blocking curcumin uptake agreed with their relative potencies in blocking curcumin binding to iron-NTA-agarose. We conclude that curcumin can selectively bind toxic metals including iron in a physiological setting, and propose inhibition of curcumin binding to iron-NTA-agarose for iron chelator screening.

  18. Biochemical assays on plasminogen activators and hormones from kidney sources

    NASA Technical Reports Server (NTRS)

    Barlow, Grant H.; Lewis, Marian L.; Morrison, Dennis R.

    1988-01-01

    Investigations were established for the purpose of analyzing the conditioned media from human embryonic kidney cell subpopulations separated in space by electrophoresis. This data is based on the experiments performed on STS-8 on the continuous flow electrophoresis system. The primary biological activity that was analyzed was plasminogen activator activity, but some assays for erythropoeitin and human granulocyte colony stimulating activity were also performed. It is concluded that a battery of assays are required to completely define the plasminogen activator profile of a conditioned media from cell culture. Each type of assay measures different parts of the mixture and are influenced by different parameters. The functional role of each assay is given along with an indication of which combination of assays are required to answer specific questions. With this type of information it is possible by combinations of assays with mathematical analysis to pinpoint a specific component of the system.

  19. Highly potent fibrinolytic serine protease from Streptomyces.

    PubMed

    Uesugi, Yoshiko; Usuki, Hirokazu; Iwabuchi, Masaki; Hatanaka, Tadashi

    2011-01-05

    We introduce a highly potent fibrinolytic serine protease from Streptomyces omiyaensis (SOT), which belongs to the trypsin family. The fibrinolytic activity of SOT was examined using in vitro assays and was compared with those of known fibrinolytic enzymes such as plasmin, tissue-type plasminogen activator (t-PA), urokinase, and nattokinase. Compared to other enzymes, SOT showed remarkably higher hydrolytic activity toward mimic peptides of fibrin and plasminogen. The fibrinolytic activity of SOT is about 18-fold higher than that of plasmin, and is comparable to that of t-PA by fibrin plate assays. Furthermore, SOT had some plasminogen activator-like activity. Results show that SOT and nattokinase have very different fibrinolytic and fibrinogenolytic modes, engendering significant synergetic effects of SOT and nattokinase on fibrinolysis. These results suggest that SOT presents important possibilities for application in the therapy of thrombosis. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Monoclonal Antibodies to the V2 Domain of MN-rgp120: Fine Mapping of Epitopes and Inhibition of α4β7 Binding

    PubMed Central

    Nakamura, Gerald R.; Fonseca, Dora P. A. J.; O'Rourke, Sara M.; Vollrath, Aaron L.; Berman, Phillip W.

    2012-01-01

    Background Recombinant gp120 (MN-rgp120) was a major component of the AIDSVAX B/E vaccine used in the RV144 trial. This was the first clinical trial to show that vaccination could prevent HIV infection in humans. A recent RV144 correlates of protection study found that protection correlated with the presence of antibodies to the V2 domain. It has been proposed that antibodies to the α4β7 binding site in the V2 domain might prevent HIV-1 infection by blocking the ability of virions to recognize α4β7 on activated T-cells. In this study we investigated the specificity of monoclonal antibodies (MAbs) to the V2 domain of MN-rgp120 and examined the possibility that these antibodies could inhibit the binding of MN-rgp120 to the α4β7 integrin. Methodology/Principal Findings Nine MAbs to the V2 domain were isolated from mice immunized with recombinant envelope proteins. The ability of these MAbs to inhibit HIV infection, block the binding of gp120 to CD4, and block the binding of MN-rgp120 to the α4β7 integrin was measured. Mutational analysis showed that eight of the MAbs recognized two immunodominant clusters of amino acids (166–168 and 178–183) located at either end of the C strand within the four-strand anti-parallel sheet structure comprising the V1/V2 domain. Conclusions/Significance These studies showed that the antigenic structure of the V2 domain is exceedingly complex and that MAbs isolated from mice immunized with MN-rgp120 exhibited a high level of strain specificity compared to MAbs to the V2 domain isolated from HIV-infected humans. We found that immunization with MN-rgp120 readily elicits antibodies to the V2 domain and some of these were able to block the binding of MN-rgp120 to the α4β7 integrin. PMID:22720026

  1. Imaging analyses of coagulation-dependent initiation of fibrinolysis on activated platelets and its modification by thrombin-activatable fibrinolysis inhibitor.

    PubMed

    Brzoska, Tomasz; Suzuki, Yuko; Sano, Hideto; Suzuki, Seiichirou; Tomczyk, Martyna; Tanaka, Hiroki; Urano, Tetsumei

    2017-04-03

    Using intravital confocal microscopy, we observed previously that the process of platelet phosphatidylserine (PS) exposure, fibrin formation and lysine binding site-dependent plasminogen (plg) accumulation took place only in the centre of thrombi, not at their periphery. These findings prompted us to analyse the spatiotemporal regulatory mechanisms underlying coagulation and fibrinolysis. We analysed the fibrin network formation and the subsequent lysis in an in vitro experiment using diluted platelet-rich plasma supplemented with fluorescently labelled coagulation and fibrinolytic factors, using confocal laser scanning microscopy. The structure of the fibrin network formed by supplemented tissue factor was uneven and denser at the sites of coagulation initiation regions (CIRs) on PS-exposed platelets. When tissue-type plasminogen activator (tPA; 7.5 nM) was supplemented, labelled plg (50 nM) as well as tPA accumulated at CIRs, from where fibrinolysis started and gradually expanded to the peripheries. The lysis time at CIRs and their peripheries (50 µm from the CIR) were 27.9 ± 6.6 and 44.4 ± 9.7 minutes (mean ± SD, n=50 from five independent experiments) after the addition of tissue factor, respectively. Recombinant human soluble thrombomodulin (TMα; 2.0 nM) attenuated the CIR-dependent plg accumulation and strongly delayed fibrinolysis at CIRs. A carboxypeptidase inhibitor dose-dependently enhanced the CIR-dependent fibrinolysis initiation, and at 20 µM it completely abrogated the TMα-induced delay of fibrinolysis. Our findings are the first to directly present crosstalk between coagulation and fibrinolysis, which takes place on activated platelets' surface and is further controlled by thrombin-activatable fibrinolysis inhibitor (TAFI).

  2. Joint analysis of multiple biomarkers for identifying type 2 diabetes in middle-aged and older Chinese: a cross-sectional study

    PubMed Central

    Wu, Hongyu; Yu, Zhijie; Qi, Qibin; Li, Huaixing; Sun, Qi

    2011-01-01

    Objective Identifying individuals with high risk of type 2 diabetes is important. To evaluate discriminatory ability of multiple biomarkers for type 2 diabetes in a Chinese population. Methods Plasma adiponectin, plasminogen activator inhibitor-1, retinol-binding protein 4, resistin, C-reactive protein, interleukin 6 (IL-6), tumour necrosis factor α receptor 2 and ferritin were measured in a population-based sample of 3189 Chinese (1419 men and 1770 women) aged 50–70 years. A weighted biomarkers risk score (BRS) was developed based on the strength of associations of these biomarkers with type 2 diabetes. The discriminatory ability was tested by the area under receiver operating characteristics curve (AUC). Results Adiponectin, plasminogen activator inhibitor-1, IL-6 and ferritin were independently associated with the prevalence of type 2 diabetes, and they were used to calculate the biomarkers risk score (BRS). After adjustment for the confounding factors, the ORs for type 2 diabetes and impaired fasting glucose with each point increment of BRS were 1.28 (95% CI 1.22 to 1.34) and 1.16 (1.12 to 1.20), respectively. Compared with those in the lowest quintile of the BRS, the participants in the highest quintile have an OR (95% CI) of 6.67 (4.21 to 10.55) for type 2 diabetes. The area under the curve for the BRS and conventional risk factors alone was 0.73 and 0.76, respectively, and substantially increased to 0.81 after combining both BRS and conventional risk factors (p<0.001). Conclusions These data suggest that combining multiple biomarkers and conventional risk factors might substantially enhance the ability to identify individuals with type 2 diabetes. More prospective data are warranted to confirm this observation. PMID:22021786

  3. Fisetin Inhibits Migration and Invasion of Human Cervical Cancer Cells by Down-Regulating Urokinase Plasminogen Activator Expression through Suppressing the p38 MAPK-Dependent NF-κB Signaling Pathway

    PubMed Central

    Chou, Ruey-Hwang; Hsieh, Shu-Ching; Yu, Yung-Luen; Huang, Min-Hsien; Huang, Yi-Chang; Hsieh, Yi-Hsien

    2013-01-01

    Fisetin (3,3’,4’,7-tetrahydroxyflavone), a naturally occurring flavonoid, has been reported to inhibit proliferation and induce apoptosis in several cancer types. However, its effect on the anti-metastatic potential of cervical cancer cells remains unclear. In the present study, we found that fisetin inhibits the invasion and migration of cervical cancer cells. The expression and activity of urokinase plasminogen activator (uPA) was significantly suppressed by fisetin in a dose-dependent manner. We also demonstrated that fisetin reduces the phosphorylation of p38 MAPK, but not that of ERK1/2, JNK1/2, or AKT. Addition of a p38 MAPK inhibitor, SB203580, further enhanced the inhibitory effect of fisetin on the expression and activity of uPA and the invasion and motility in cervical cancer cells. Fisetin suppressed the TPA (tetradecanoylphorbol-13-acetate)-induced activation of p38 MAPK and uPA, and inhibited the TPA-enhanced migratory and invasive abilities. Furthermore, the promoter activity of the uPA gene was dramatically repressed by fisetin, which disrupted the nuclear translocation of NF-κB and its binding amount on the promoter of the uPA gene, and these suppressive effects could be further enhanced by SB203580. This study provides strong evidence for the molecular mechanism of fisetin in inhibiting the aggressive phenotypes by repression of uPA via interruption of p38 MAPK-dependent NF-κB signaling pathway in cervical cancer cells and thus contributes insight to the potential of using fisetin as a therapeutic strategy against cervical cancer by inhibiting migration and invasion. PMID:23940799

  4. Endothelial function and insulin resistance in polycystic ovary syndrome: the effects of medical therapy.

    PubMed

    Teede, Helena J; Meyer, Caroline; Hutchison, Samantha K; Zoungas, Sophia; McGrath, Barry P; Moran, Lisa J

    2010-01-01

    To assess the interaction between insulin resistance and endothelial function and the optimal treatment strategy addressing cardiovascular risk in polycystic ovary syndrome. Randomized controlled trial. Controlled clinical study. Overweight age- and body mass index-matched women with polycystic ovary syndrome. Six months metformin (1 g two times per day, n = 36) or oral contraceptive pill (OCP) (35 microg ethinyl E(2)-2 mg cytoproterone acetate, n = 30). Fasting and oral glucose tolerance test glucose and insulin levels, endothelial function (flow-mediated dilation, asymmetric dimethylarginine, plasminogen activator inhibitor-1, von Willebrand factor), inflammatory markers (high-sensitivity C-reactive protein), lipids, and hyperandrogenism. The OCP increased levels of glucose and insulin on oral glucose tolerance test, high-sensitivity C-reactive protein, triglycerides, and sex-hormone binding globulin and decreased levels of low-density lipoprotein cholesterol and T. Metformin decreased levels of fasting insulin, oral glucose tolerance test insulin, high-density lipoprotein cholesterol, and high-sensitivity C-reactive protein. Flow-mediated dilation increased only with metformin (+2.2% +/- 4.8%), whereas asymmetric dimethylarginine decreased equivalently for OCP and metformin (-0.3 +/- 0.1 vs. -0.1 +/- 0.1 mmol/L). Greater decreases in plasminogen activator inhibitor-1 occurred for the OCP than for metformin (-1.8 +/- 1.6 vs. -0.7 +/- 1.7 U/mL). In polycystic ovary syndrome, metformin improves insulin resistance, inflammatory markers, and endothelial function. The OCP worsens insulin resistance and glucose homeostasis, inflammatory markers, and triglycerides and has neutral or positive endothelial effects. The effect of the OCP on cardiovascular risk in polycystic ovary syndrome is unclear. Copyright 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  5. A novel polymorphism in the PAI-1 gene promoter enhances gene expression. A novel pro-thrombotic risk factor?

    PubMed

    Liguori, Renato; Quaranta, Sandro; Di Fiore, Rosanna; Elce, Ausilia; Castaldo, Giuseppe; Amato, Felice

    2014-12-01

    Plasminogen activator inhibitor-1 (PAI-1) is the major physiological inhibitor of tissue-type plasminogen activator in plasma and the most important regulator of the fibrinolytic pathway. The 4G/5G polymorphism (rs1799889) in the PAI-1 promoter is associated with altered PAI-1 transcription. We have identified a new 4G/5G allele, in which a T is inserted near the 4G tract or replaces a G in the 5G tract, forming a T plus 4G (T4G) region. This new variant was first identified in two women, one had experienced juvenile myocardial infarction, the other repeated miscarriage; both had increased PAI-1 plasma activity. In view of the important influence of this promoter region on PAI-1 protein plasma level, we performed in vitro evaluation of the effects of the T4G variant on the transcription activity of the PAI-1 gene promoter. In silico prediction analysis showed that presence of the T4G allele disrupts the E-Box region upstream of the T4G variant, altering the affinity of the target sequence for E-Box binding factors like upstream stimulatory factor-1 (USF-1). Basal T4G promoter activity was 50% higher compared to 4G and 5G variants, but it was less stimulated by USF-1 overexpression. We also analyzed the effects of IL-1β and IL-6 on the PAI-1 promoter activity of our three constructs and showed that the T4G variant was less affected by IL-1β than the other variants. These findings indicate that the T4G variant may be a novel risk factor for thrombotic events. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Post-Transcriptional Regulation of Urokinase-type Plasminogen Activator Receptor Expression in Lipopolysaccharide-induced Acute Lung Injury

    PubMed Central

    Bhandary, Yashodhar P.; Velusamy, Thirunavukkarasu; Shetty, Praveenkumar; Shetty, Rashmi S.; Idell, Steven; Cines, Douglas B.; Jain, Deepika; Bdeir, Khalil; Abraham, Edward; Tsuruta, Yuko; Shetty, Sreerama

    2009-01-01

    Rationale: Urokinase-type plasminogen activator (uPA) receptor (uPAR) is required for the recruitment of neutrophils in response to infection. uPA induces its own expression in lung epithelial cells, which involves its interaction with cell surface uPAR. Regulation of uPAR expression is therefore crucial for uPA-mediated signaling in infectious acute lung injury (ALI). Objectives: To determine the role of uPA in uPAR expression during ALI caused by sepsis. Methods: We used Western blot, Northern blot, Northwestern assay, and immunohistochemistry. Phosphate-buffered saline– and lipopolysaccharide (LPS)-treated wild-type and uPA−/− mice were used. Measurements and Main Results: Biological activities of uPA, including proteolysis, cell adhesion, migration, proliferation, and differentiation, are dependent on its association with uPAR. Bacterial endotoxin (LPS) is a major cause of pulmonary dysfunction and infection-associated mortality. The present study shows that LPS induces uPAR expression both in vitro and in vivo, and that the mechanism involves post-transcriptional stabilization of uPAR mRNA by reciprocal interaction of phosphoglycerate kinase (PGK) and heterogeneous nuclear ribonucleoprotein C (hnRNPC) with uPAR mRNA coding region and 3′ untranslated region determinants, respectively. The process involves tyrosine phosphorylation of PGK and hnRNPC. uPA−/− mice failed to induce uPAR expression after LPS treatment. In these mice, LPS treatment failed to alter the binding of PGK and hnRNPC protein with uPAR mRNA due to lack of tyrosine phosphorylation. Conclusions: Our study shows that induction of LPS-mediated uPAR expression is mediated through tyrosine phosphorylation of PGK and hnRNPC. This involves expression of uPA as an obligate intermediary. PMID:19029002

  7. Glucose-Responsive Hybrid Nanoassemblies in Aqueous Solutions: Ordered Phenylboronic Acid within Intermixed Poly(4-hydroxystyrene)-block-poly(ethylene oxide) Block Copolymer.

    PubMed

    Matuszewska, Alicja; Uchman, Mariusz; Adamczyk-Woźniak, Agnieszka; Sporzyński, Andrzej; Pispas, Stergios; Kováčik, Lubomír; Štěpánek, Miroslav

    2015-12-14

    Coassembly behavior of the double hydrophilic block copolymer poly(4-hydroxystyrene)-block-poly(ethylene oxide) (PHOS-PEO) with three amphiphilic phenylboronic acids (PBA) differing in hydrophobicity, 4-dodecyloxyphenylboronic acid (C12), 4-octyloxyphenylboronic acid (C8), and 4-isobutoxyphenylboronic acid (i-Bu) was studied in alkaline aqueous solutions and in mixtures of NaOHaq/THF by spin-echo (1)H NMR spectroscopy, dynamic and electrophoretic light scattering, and SAXS. The study reveals that only the coassembly of C12 with PHOS-PEO provides spherical nanoparticles with intermixed PHOS and PEO blocks, containing densely packed C12 micelles. NMR measurements have shown that spatial proximity of PHOS-PEO and C12 leads to the formation of ester bonds between -OH of PHOS block and hydroxyl groups of -B(OH)2. Due to the presence of PBA moieties, the release of compounds with 1,2- or 1,3-dihydroxy groups loaded in the coassembled PHOS-PEO/PBA nanoparticles by covalent binding to PBA can be triggered by addition of a surplus of glucose that bind to PBA competitively. The latter feature has been confirmed by fluorescence measurements using Alizarin Red as a model compound. Nanoparticles were proved to exhibit swelling in response to glucose as detected by light scattering.

  8. Distinct loops in arrestin differentially regulate ligand binding within the GPCR opsin

    PubMed Central

    Sommer, Martha E.; Hofmann, Klaus Peter; Heck, Martin

    2012-01-01

    G-protein-coupled receptors are universally regulated by arrestin binding. Here we show that rod arrestin induces uptake of the agonist all-trans-retinol in only half the population of phosphorylated opsin in the native membrane. Agonist uptake blocks subsequent entry of the inverse agonist 11-cis-retinal (that is, regeneration of rhodopsin), but regeneration is not blocked in the other half of aporeceptors. Environmentally sensitive fluorophores attached to arrestin reported that conformational changes in loopV−VI (N-domain) are coupled to the entry of agonist, while loopXVIII−XIX (C-domain) engages the aporeceptor even before agonist is added. The data are most consistent with a model in which each domain of arrestin engages its own aporeceptor, and the different binding preferences of the domains lead to asymmetric ligand binding by the aporeceptors. Such a mechanism would protect the rod cell in bright light by concurrently sequestering toxic all-trans-retinol and allowing regeneration with 11-cis-retinal. PMID:22871814

  9. Distinct loops in arrestin differentially regulate ligand binding within the GPCR opsin.

    PubMed

    Sommer, Martha E; Hofmann, Klaus Peter; Heck, Martin

    2012-01-01

    G-protein-coupled receptors are universally regulated by arrestin binding. Here we show that rod arrestin induces uptake of the agonist all-trans-retinal [corrected] in only half the population of phosphorylated opsin in the native membrane. Agonist uptake blocks subsequent entry of the inverse agonist 11-cis-retinal (that is, regeneration of rhodopsin), but regeneration is not blocked in the other half of aporeceptors. Environmentally sensitive fluorophores attached to arrestin reported that conformational changes in loop(V-VI) (N-domain) are coupled to the entry of agonist, while loop(XVIII-XIX) (C-domain) engages the aporeceptor even before agonist is added. The data are most consistent with a model in which each domain of arrestin engages its own aporeceptor, and the different binding preferences of the domains lead to asymmetric ligand binding by the aporeceptors. Such a mechanism would protect the rod cell in bright light by concurrently sequestering toxic all-trans-retinal [corrected] and allowing regeneration with 11-cis-retinal.

  10. Vascular Cell Adhesion Molecule-1 Expression and Signaling During Disease: Regulation by Reactive Oxygen Species and Antioxidants

    PubMed Central

    Marchese, Michelle E.; Abdala-Valencia, Hiam

    2011-01-01

    Abstract The endothelium is immunoregulatory in that inhibiting the function of vascular adhesion molecules blocks leukocyte recruitment and thus tissue inflammation. The function of endothelial cells during leukocyte recruitment is regulated by reactive oxygen species (ROS) and antioxidants. In inflammatory sites and lymph nodes, the endothelium is stimulated to express adhesion molecules that mediate leukocyte binding. Upon leukocyte binding, these adhesion molecules activate endothelial cell signal transduction that then alters endothelial cell shape for the opening of passageways through which leukocytes can migrate. If the stimulation of this opening is blocked, inflammation is blocked. In this review, we focus on the endothelial cell adhesion molecule, vascular cell adhesion molecule-1 (VCAM-1). Expression of VCAM-1 is induced on endothelial cells during inflammatory diseases by several mediators, including ROS. Then, VCAM-1 on the endothelium functions as both a scaffold for leukocyte migration and a trigger of endothelial signaling through NADPH oxidase-generated ROS. These ROS induce signals for the opening of intercellular passageways through which leukocytes migrate. In several inflammatory diseases, inflammation is blocked by inhibition of leukocyte binding to VCAM-1 or by inhibition of VCAM-1 signal transduction. VCAM-1 signal transduction and VCAM-1-dependent inflammation are blocked by antioxidants. Thus, VCAM-1 signaling is a target for intervention by pharmacological agents and by antioxidants during inflammatory diseases. This review discusses ROS and antioxidant functions during activation of VCAM-1 expression and VCAM-1 signaling in inflammatory diseases. Antioxid. Redox Signal. 15, 1607–1638. PMID:21050132

  11. Mechanism of hERG channel block by the psychoactive indole alkaloid ibogaine.

    PubMed

    Thurner, Patrick; Stary-Weinzinger, Anna; Gafar, Hend; Gawali, Vaibhavkumar S; Kudlacek, Oliver; Zezula, Juergen; Hilber, Karlheinz; Boehm, Stefan; Sandtner, Walter; Koenig, Xaver

    2014-02-01

    Ibogaine is a psychoactive indole alkaloid. Its use as an antiaddictive agent has been accompanied by QT prolongation and cardiac arrhythmias, which are most likely caused by human ether a go-go-related gene (hERG) potassium channel inhibition. Therefore, we studied in detail the interaction of ibogaine with hERG channels heterologously expressed in mammalian kidney tsA-201 cells. Currents through hERG channels were blocked regardless of whether ibogaine was applied via the extracellular or intracellular solution. The extent of inhibition was determined by the relative pH values. Block occurred during activation of the channels and was not observed for resting channels. With increasing depolarizations, ibogaine block grew and developed faster. Steady-state activation and inactivation of the channel were shifted to more negative potentials. Deactivation was slowed, whereas inactivation was accelerated. Mutations in the binding site reported for other hERG channel blockers (Y652A and F656A) reduced the potency of ibogaine, whereas an inactivation-deficient double mutant (G628C/S631C) was as sensitive as wild-type channels. Molecular drug docking indicated binding within the inner cavity of the channel independently of the protonation of ibogaine. Experimental current traces were fit to a kinetic model of hERG channel gating, revealing preferential binding of ibogaine to the open and inactivated state. Taken together, these findings show that ibogaine blocks hERG channels from the cytosolic side either in its charged form alone or in company with its uncharged form and alters the currents by changing the relative contribution of channel states over time.

  12. Ivabradine prolongs phase 3 of cardiac repolarization and blocks the hERG1 (KCNH2) current over a concentration-range overlapping with that required to block HCN4.

    PubMed

    Lees-Miller, James P; Guo, Jiqing; Wang, Yibo; Perissinotti, Laura L; Noskov, Sergei Y; Duff, Henry J

    2015-08-01

    In Europe, ivabradine has recently been approved to treat patients with angina who have intolerance to beta blockers and/or heart failure. Ivabradine is considered to act specifically on the sinoatrial node by inhibiting the If current (the funny current) to slow automaticity. However, in vitro studies show that ivabradine prolongs phase 3 repolarization in ventricular tissue. No episodes of Torsades de Pointes have been reported in randomized clinical studies. The objective of this study is to assess whether ivabradine blocked the hERG1 current. In the present study we discovered that ivabradine prolongs action potential and blocks the hERG current over a range of concentrations overlapping with those required to block HCN4. Ivabradine produced tonic, rather than use-dependent block. The mutation Y652A significantly suppressed pharmacologic block of hERG by ivabradine. Disruption of C-type inactivation also suppressed block of hERG1 by ivabradine. Molecular docking and molecular dynamics simulations indicate that ivabradine may access the inner cavity of the hERG1 via a lipophilic route and has a well-defined binding site in the closed state of the channel. Structural organization of the binding pockets for ivabradine is discussed. Ivabradine blocks hERG and prolongs action potential duration. Our study is potentially important because it indicates the need for active post marketing surveillance of ivabradine. Importantly, proarrhythmia of a number of other drugs has only been discovered during post marketing surveillance. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Proteolysis of plasminogen activator inhibitor-1 by Yersinia pestis remodulates the host environment to promote virulence.

    PubMed

    Eddy, J L; Schroeder, J A; Zimbler, D L; Caulfield, A J; Lathem, W W

    2016-09-01

    Essentials Effect of plasminogen activator inhibitor (PAI)-1 on plague and its Y. pestis cleavage is unknown. An intranasal mouse model of infection was used to determine the role of PAI-1 in pneumonic plague. PAI-1 is cleaved and inactivated by the Pla protease of Y. pestis in the lung airspace. PAI-1 impacts both bacterial outgrowth and the immune response to respiratory Y. pestis infection. Click to hear Dr Bock discuss pathogen activators of plasminogen. Background The hemostatic regulator plasminogen activator inhibitor-1 (PAI-1) inactivates endogenous plasminogen activators and aids in the immune response to bacterial infection. Yersinia pestis, the causative agent of plague, produces the Pla protease, a virulence factor that is required during plague. However, the specific hemostatic proteins cleaved by Pla in vivo that contribute to pathogenesis have not yet been fully elucidated. Objectives To determine whether PAI-1 is cleaved by the Pla protease during pneumonic plague, and to define the impact of PAI-1 on Y. pestis respiratory infection in the presence or absence of Pla. Methods An intranasal mouse model of pneumonic plague was used to assess the levels of total and active PAI-1 in the lung airspace, and the impact of PAI-1 deficiency on bacterial pathogenesis, the host immune response and plasmin generation following infection with wild-type or ∆pla Y. pestis. Results We found that Y. pestis cleaves and inactivates PAI-1 in the lungs in a Pla-dependent manner. The loss of PAI-1 enhances Y. pestis outgrowth in the absence of Pla, and is associated with increased conversion of plasminogen to plasmin. Furthermore, we found that PAI-1 regulates immune cell recruitment, cytokine production and tissue permeability during pneumonic plague. Conclusions Our data demonstrate that PAI-1 is an in vivo target of the Pla protease in the lungs, and that PAI-1 is a key regulator of the pulmonary innate immune response. We conclude that the inactivation of PAI-1 by Y. pestis alters the host environment to promote virulence during pneumonic plague. © 2016 The Authors. Journal of Thrombosis and Haemostasis published by Wiley Periodicals, Inc. on behalf of International Society on Thrombosis and Haemostasis.

  14. Small Molecules Engage Hot Spots through Cooperative Binding To Inhibit a Tight Protein-Protein Interaction.

    PubMed

    Liu, Degang; Xu, David; Liu, Min; Knabe, William Eric; Yuan, Cai; Zhou, Donghui; Huang, Mingdong; Meroueh, Samy O

    2017-03-28

    Protein-protein interactions drive every aspect of cell signaling, yet only a few small-molecule inhibitors of these interactions exist. Despite our ability to identify critical residues known as hot spots, little is known about how to effectively engage them to disrupt protein-protein interactions. Here, we take advantage of the ease of preparation and stability of pyrrolinone 1, a small-molecule inhibitor of the tight interaction between the urokinase receptor (uPAR) and its binding partner, the urokinase-type plasminogen activator uPA, to synthesize more than 40 derivatives and explore their effect on the protein-protein interaction. We report the crystal structure of uPAR bound to previously discovered pyrazole 3 and to pyrrolinone 12. While both 3 and 12 bind to uPAR and compete with a fluorescently labeled peptide probe, only 12 and its derivatives inhibit the full uPAR·uPA interaction. Compounds 3 and 12 mimic and engage different hot-spot residues on uPA and uPAR, respectively. Interestingly, 12 is involved in a π-cation interaction with Arg-53, which is not considered a hot spot. Explicit-solvent molecular dynamics simulations reveal that 3 and 12 exhibit dramatically different correlations of motion with residues on uPAR. Free energy calculations for the wild-type and mutant uPAR bound to uPA or 12 show that Arg-53 interacts with uPA or with 12 in a highly cooperative manner, thereby altering the contributions of hot spots to uPAR binding. The direct engagement of peripheral residues not considered hot spots through π-cation or salt-bridge interactions could provide new opportunities for enhanced small-molecule engagement of hot spots to disrupt challenging protein-protein interactions.

  15. Activated Microglia Desialylate and Phagocytose Cells via Neuraminidase, Galectin-3, and Mer Tyrosine Kinase

    PubMed Central

    Nomura, Koji; Vilalta, Anna; Allendorf, David H.; Hornik, Tamara C.

    2017-01-01

    Activated microglia can phagocytose dying, stressed, or excess neurons and synapses via the phagocytic receptor Mer tyrosine kinase (MerTK). Galectin-3 (Gal-3) can cross-link surface glycoproteins by binding galactose residues that are normally hidden below terminal sialic acid residues. Gal-3 was recently reported to opsonize cells via activating MerTK. We found that LPS-activated BV-2 microglia rapidly released Gal-3, which was blocked by calcineurin inhibitors. Gal-3 bound to MerTK on microglia and to stressed PC12 (neuron-like) cells, and it increased microglial phagocytosis of PC12 cells or primary neurons, which was blocked by inhibition of MerTK. LPS-activated microglia exhibited a sialidase activity that desialylated PC12 cells and could be inhibited by Tamiflu, a neuraminidase (sialidase) inhibitor. Sialidase treatment of PC12 cells enabled Gal-3 to bind and opsonize the live cells for phagocytosis by microglia. LPS-induced microglial phagocytosis of PC12 was prevented by small interfering RNA knockdown of Gal-3 in microglia, lactose inhibition of Gal-3 binding, inhibition of neuraminidase with Tamiflu, or inhibition of MerTK by UNC569. LPS-induced phagocytosis of primary neurons by primary microglia was also blocked by inhibition of MerTK. We conclude that activated microglia release Gal-3 and a neuraminidase that desialylates microglial and PC12 surfaces, enabling Gal-3 binding to PC12 cells and their phagocytosis via MerTK. Thus, Gal-3 acts as an opsonin of desialylated surfaces, and inflammatory loss of neurons or synapses may potentially be blocked by inhibiting neuraminidases, Gal-3, or MerTK. PMID:28500071

  16. An antibody to the lutheran glycoprotein (Lu) recognizing the LU4 blood type variant inhibits cell adhesion to laminin α5.

    PubMed

    Kikkawa, Yamato; Miwa, Takahiro; Tohara, Yukiko; Hamakubo, Takayuki; Nomizu, Motoyoshi

    2011-01-01

    The Lutheran blood group glycoprotein (Lu), an Ig superfamily (IgSF) transmembrane receptor, is also known as basal cell adhesion molecule (B-CAM). Lu/B-CAM is a specific receptor for laminin α5, a major component of basement membranes in various tissues. Previous reports have shown that Lu/B-CAM binding to laminin α5 contributes to sickle cell vaso-occlusion. However, as there are no useful tools such as function-blocking antibodies or drugs, it is unclear how epithelial and sickled red blood cells adhere to laminin α5 via Lu/B-CAM. In this study, we discovered a function-blocking antibody that inhibits Lu binding to laminin α5 using a unique binding assay on tissue sections. To characterize the function-blocking antibody, we identified the site on Lu/B-CAM recognized by this antibody. The extracellular domain of Lu/B-CAM contains five IgSF domains, D1-D2-D3-D4-D5. The antibody epitope was localized to D2, but not to the D3 domain containing the major part of the laminin α5 binding site. Furthermore, mutagenesis studies showed that Arg(175), the LU4 blood group antigenic site, was crucial for forming the epitope and the antibody bound sufficiently close to sterically hinder the interaction with α5. Cell adhesion assay using the antibody also showed that Lu/B-CAM serves as a secondary receptor for the adhesion of carcinoma cells to laminin α5. This function-blocking antibody against Lu/B-CAM should be useful for not only investigating cell adhesion to laminin α5 but also for developing drugs to inhibit sickle cell vaso-occlusion.

  17. Blockade of Cocaine or σ Receptor Agonist Self Administration by Subtype-Selective σ Receptor Antagonists

    PubMed Central

    Hiranita, Takato; Kopajtic, Theresa A.; Rice, Kenner C.; Mesangeau, Christophe; Narayanan, Sanju; Abdelazeem, Ahmed H.; McCurdy, Christopher R.

    2016-01-01

    The identification of sigma receptor (σR) subtypes has been based on radioligand binding and, despite progress with σ1R cellular function, less is known about σR subtype functions in vivo. Recent findings that cocaine self administration experience will trigger σR agonist self administration was used in this study to assess the in vivo receptor subtype specificity of the agonists (+)-pentazocine, PRE-084 [2-(4-morpholinethyl) 1-phenylcyclohexanecarboxylate hydrochloride], and 1,3-di-o-tolylguanidine (DTG) and several novel putative σR antagonists. Radioligand binding studies determined in vitro σR selectivity of the novel compounds, which were subsequently studied for self administration and antagonism of cocaine, (+)-pentazocine, PRE-084, or DTG self administration. Across the dose ranges studied, none of the novel compounds were self administered, nor did they alter cocaine self administration. All compounds blocked DTG self administration, with a subset also blocking (+)-pentazocine and PRE-084 self administration. The most selective of the compounds in binding σ1Rs blocked cocaine self administration when combined with a dopamine transport inhibitor, either methylphenidate or nomifensine. These drug combinations did not decrease rates of responding maintained by food reinforcement. In contrast, the most selective of the compounds in binding σ2Rs had no effect on cocaine self administration in combination with either dopamine transport inhibitor. Thus, these results identify subtype-specific in vivo antagonists, and the utility of σR agonist substitution for cocaine self administration as an assay capable of distinguishing σR subtype selectivity in vivo. These results further suggest that effectiveness of dual σR antagonism and dopamine transport inhibition in blocking cocaine self administration is specific for σ1Rs and further support this dual targeting approach to development of cocaine antagonists. PMID:27189970

  18. Blocking CLEC14A-MMRN2 binding inhibits sprouting angiogenesis and tumour growth

    PubMed Central

    PJ, Noy; P, Lodhia; K, Khan; X, Zhuang; DG, Ward; AR, Verissimo; A, Bacon; R, Bicknell

    2015-01-01

    We previously identified CLEC14A as a tumour endothelial marker. Here we show CLEC14A is a regulator of sprouting angiogenesis in vitro and in vivo. Using a HUVEC spheroid sprouting assay we found CLEC14A to be a regulator of sprout initiation. Analysis of endothelial sprouting in aortic ring and in vivo subcutaneous sponge assays from clec14a+/+ and clec14a−/− mice revealed defects in sprouting angiogenesis in CLEC14A deficient animals. Tumour growth was retarded and vascularity reduced in clec14a−/− mice. Pulldown and co-immunoprecipitation experiments confirmed MMRN2 binds to the extracellular region of CLEC14A. The CLEC14A-MMRN2 interaction was interrogated using mouse monoclonal antibodies. Monoclonal antibodies were screened for their ability to block this interaction. Clone C4 but not C2 blocked CLEC14A-MMRN2 binding. C4 antibody perturbed tube formation and endothelial sprouting in vitro and in vivo, with a similar phenotype to loss of CLEC14A. Significantly, tumour growth was impaired in C4 treated animals and vascular density was also reduced in the C4 treated group. We conclude that CLEC14A-MMRN2 binding has a role in inducing sprouting angiogenesis during tumour growth, that has the potential to be manipulated in future anti-angiogenic therapy design. PMID:25745997

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawamoto, Eiji; Emergency and Critical Care Center, Mie University Hospital, 2-174 Edobashi, Tsu 514-8507; Okamoto, Takayuki, E-mail: okamotot@doc.medic.mie-u.ac.jp

    LFA-1 (αLβ2) and Mac-1 (αMβ2) integrins regulate leukocyte trafficking in health and disease by binding primarily to IgSF ligand ICAM-1 and ICAM-2 on endothelial cells. Here we have shown that the anti-coagulant molecule thrombomodulin (TM), found on the surface of endothelial cells, functions as a potentially new ligand for leukocyte integrins. We generated a recombinant extracellular domain of human TM and Fc fusion protein (TM-domains 123-Fc), and showed that pheripheral blood mononuclear cells (PBMCs) bind to TM-domains 123-Fc dependent upon integrin activation. We then demonstrated that αL integrin-blocking mAb, αM integrin-blocking mAb, and β2 integrin-blocking mAb inhibited the binding ofmore » PBMCs to TM-domains 123-Fc. Furthermore, we show that the serine/threonine-rich domain (domain 3) of TM is required for the interaction with the LFA-1 (αLβ2) and Mac-1 (αMβ2) integrins to occur on PBMCs. These results demonstrate that the LFA-1 and Mac-1 integrins on leukocytes bind to TM, thereby establishing the molecular and structural basis underlying LFA-1 and Mac-1 integrin interaction with TM on endothelial cells. In fact, integrin-TM interactions might be involved in the dynamic regulation of leukocyte adhesion with endothelial cells. - Highlights: • LFA-1 and Mac-1 integrins bind to the anti-coagulant molecule thrombomodulin. • The serine/threonine-rich domain of thrombomodulin is essential to interact with the LFA-1 and Mac-1 integrins on PBMCs. • Integrin-TM interactions might be involved in the dynamic regulation of leukocyte adhesion with endothelial cells.« less

  20. The association between the 4G/5G polymorphism in the promoter of the plasminogen activator inhibitor-1 gene and extension of postsurgical calf vein thrombosis.

    PubMed

    Ferrara, Filippo; Meli, Francesco; Raimondi, Francesco; Montalto, Salvatore; Cospite, Valentina; Novo, Giuseppina; Novo, Salvatore

    2013-04-01

    The objective of this study was to evaluate whether the presence of a plasminogen activator inhibitor type 1 (PAI-1) promoter polymorphism 4G/5G could significantly influence the proximal extension of vein thrombosis in spite of anticoagulant treatment in patients with calf vein thrombosis (CVT) following orthopaedic, urological and abdominal surgery. We studied 168 patients with CVT, who had undergone orthopaedic, urological and abdominal surgery, subdivided as follows: first, 50 patients with thrombosis progression; second, 118 patients without thrombosis progression. The 4G/5G polymorphism of the plasminogen activator inhibitor 1 was evaluated in all patients and in 70 healthy matched controls. We also studied PAI-1 activity in plasma. The presence of 4G/5G genotype was significantly increased in the group of patients with the extension of thrombotic lesions and was associated with an increase in CVT extension risk (odds ratio adjusted for sex 2.692; 95% confidence interval 1.302-4.702). Moreover, we observed a significant increase of PAI-1 plasma activity in patients with extension of thrombotic lesion vs. patients without extension (P=0.0001). Patients with 4G/5G genotype in the promoter of the plasminogen activator inhibitor - 1 gene present a higher risk of extension of thrombotic lesions.

  1. Proteases induce secretion of collagenase and plasminogen activator by fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Werb, Z.; Aggeler, J.

    1978-04-01

    We have observed that treatment of rabbit synovial fibroblasts with proteolytic enzymes can induce secretion of collagenase (EC 3.4.24.7) and plasminogen activator (EC 3.4.21.-). Cells treated for 2 to 24 hr with plasmin, trypsin, chymotrypsin, pancreatic elastase, papain, bromelain, thermolysin, or ..cap alpha..-protease but not with thrombin or neuraminidase secreted detectable amounts of collagenase within 16 to 48 hr. Treatment of fibroblasts with trypsin also induced secretion of plasminogen activator. Proteases initiated secretion of collagenase (up to 20 units per 10/sup 6/ cells per 24 hr) only when treatment produced decreased cell adhesion. Collagenase production did not depend on continuedmore » presence of proteolytic activity or on subsequent cell adhesion, spreading, or proliferation. Routine subculturing with crude trypsin also induced collagenase secretion by cells. Secretion of collagenase was prevented and normal spreading was obtained if the trypsinized cells were placed into medium containing fetal calf serum. Soybean trypsin inhibitor, ..cap alpha../sub 1/-antitrypsin, bovine serum albumin, collagen, and fibronectin did not inhibit collagenase production. Although proteases that induced collagenase secretion also removed surface glycoprotein, the kinetics of induction of cell protease secretion were different from those for removal of fibronectin. Physiological inducers of secretion of collagenase and plasminogen activator by cells have not been identified. These results suggest that extracellular proteases in conjunction with plasma proteins may govern protease secretion by cells.« less

  2. Variable Resistance to Plasminogen Activator Initiated Fibrinolysis for Intermediate-Risk Pulmonary Embolism

    PubMed Central

    Stubblefield, William B.; Alves, Nathan J.; Rondina, Matthew T.; Kline, Jeffrey A.

    2016-01-01

    Background We examine the clinical significance and biomarkers of tissue plasminogen activator (tPA)-catalyzed clot lysis time (CLT) in patients with intermediate-risk pulmonary embolism (PE). Methods Platelet-poor, citrated plasma was obtained from patients with PE. Healthy age- and sex-matched patients served as disease-negative controls. Fibrinogen, α2-antiplasmin, plasminogen, thrombin activatable fibrinolysis inhibitor (TAFI), plasminogen activator Inhibitor 1 (PAI-1), thrombin time and D-dimer were quantified. Clotting was induced using CaCl2, tissue factor, and phospholipid. Lysis was induced using 60 ng/mL tPA. Time to 50% clot lysis (CLT) was assessed by both thromboelastography (TEG) and turbidimetry (A405). Results Compared with disease-negative controls, patients with PE exhibited significantly longer mean CLT on TEG (+2,580 seconds, 95% CI 1,380 to 3,720 sec). Patients with PE and a short CLT who were treated with tenecteplase had increased risk of bleeding, whereas those with long CLT had significantly worse exercise tolerance and psychometric testing for quality of life at 3 months. A multivariate stepwise removal regression model selected PAI-1 and TAFI as predictive biomarkers of CLT. Conclusion The CLT from TEG predicted increased risk of bleeding and clinical failure with tenecteplase treatment for intermediate-risk PE. Plasmatic PAI-1 and TAFI were independent predictors of CLT. PMID:26866684

  3. Multiple therapeutic effects of progranulin on experimental acute ischaemic stroke.

    PubMed

    Kanazawa, Masato; Kawamura, Kunio; Takahashi, Tetsuya; Miura, Minami; Tanaka, Yoshinori; Koyama, Misaki; Toriyabe, Masafumi; Igarashi, Hironaka; Nakada, Tsutomu; Nishihara, Masugi; Nishizawa, Masatoyo; Shimohata, Takayoshi

    2015-07-01

    In the central nervous system, progranulin, a glycoprotein growth factor, plays a crucial role in maintaining physiological functions, and progranulin gene mutations cause TAR DNA-binding protein-43-positive frontotemporal lobar degeneration. Although several studies have reported that progranulin plays a protective role against ischaemic brain injury, little is known about temporal changes in the expression level, cellular localization, and glycosylation status of progranulin after acute focal cerebral ischaemia. In addition, the precise mechanisms by which progranulin exerts protective effects on ischaemic brain injury remains unknown. Furthermore, the therapeutic potential of progranulin against acute focal cerebral ischaemia, including combination treatment with tissue plasminogen activator, remains to be elucidated. In the present study, we aimed to determine temporal changes in the expression and localization of progranulin after ischaemia as well as the therapeutic effects of progranulin on ischaemic brain injury using in vitro and in vivo models. First, we demonstrated a dynamic change in progranulin expression in ischaemic Sprague-Dawley rats, including increased levels of progranulin expression in microglia within the ischaemic core, and increased levels of progranulin expression in viable neurons as well as induction of progranulin expression in endothelial cells within the ischaemic penumbra. We also demonstrated that the fully glycosylated mature secretory isoform of progranulin (∼88 kDa) decreased, whereas the glycosylated immature isoform of progranulin (58-68 kDa) markedly increased at 24 h and 72 h after reperfusion. In vitro experiments using primary cells from C57BL/6 mice revealed that the glycosylated immature isoform was secreted only from the microglia. Second, we demonstrated that progranulin could protect against acute focal cerebral ischaemia by a variety of mechanisms including attenuation of blood-brain barrier disruption, neuroinflammation suppression, and neuroprotection. We found that progranulin could regulate vascular permeability via vascular endothelial growth factor, suppress neuroinflammation after ischaemia via anti-inflammatory interleukin 10 in the microglia, and render neuroprotection in part by inhibition of cytoplasmic redistribution of TAR DNA-binding protein-43 as demonstrated in progranulin knockout mice (C57BL/6 background). Finally, we demonstrated the therapeutic potential of progranulin against acute focal cerebral ischaemia using a rat autologous thrombo-embolic model with delayed tissue plasminogen activator treatment. Intravenously administered recombinant progranulin reduced cerebral infarct and oedema, suppressed haemorrhagic transformation, and improved motor outcomes (P = 0.007, 0.038, 0.007 and 0.004, respectively). In conclusion, progranulin may be a novel therapeutic target that provides vascular protection, anti-neuroinflammation, and neuroprotection related in part to vascular endothelial growth factor, interleukin 10, and TAR DNA-binding protein-43, respectively. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Can the activation of plasminogen/plasmin system of the host by metabolic products of Dirofilaria immitis participate in heartworm disease endarteritis?

    PubMed

    González-Miguel, Javier; Morchón, Rodrigo; Carretón, Elena; Montoya-Alonso, José Alberto; Simón, Fernando

    2015-04-01

    Proliferative endarteritis is one of the key pathological mechanisms of cardiopulmonary dirofilariosis, a cosmopolitan parasitosis caused by Dirofilaria immitis affecting dogs and cats around the world. It has been shown that the excretory/secretory antigens from D. immitis adult worms (DiES) bind plasminogen (PLG) and activate fibrinolysis, which can lead to a survival mechanism for the parasite in its intravascular environment. However, overproduction of plasmin (final product of the route) has been related to pathological processes similar to those described in proliferative endarteritis. The aim of this study is to relate the appearance of this pathological condition with the activation of the PLG/plasmin system of the host by DiES. Cell proliferation through the crystal violet technique, cell migration by wound healing assay and degradation of the extracellular matrix by measuring collagen degradation and levels of matrix metalloproteinases were studied in an "in vitro" model using canine vascular endothelial and smooth muscle cells. These cells were treated with a mixture of DiES + PLG. Untreated cells, cells only stimulated with DiES or with PLG, or with a mixture of DiES + PLG + εACA (an inhibitor of the PLG-plasmin conversion) were employed as controls. In addition, the effect of DiES on the expression of the fibrinolytic activators tPA and uPA, the inhibitor PAI-1 and the PLG receptor Annexin A2 was analyzed in both types of cultures by western blot. Plasmin generated by DiES + PLG binding produced a significant increase in the cell proliferation and migration of the endothelial and smooth muscle cells, as well as an increase in the destruction of the extracellular matrix based on a further degradation of Type I Collagen and an increased level of matrix metalloproteinase-2. DiES also induce an increase in the expression of tPA and uPA in endothelial cells in culture, as well as a decrease in the expression of PAI-1 in both types of cells. Our study reports an interrelationship between plasmin caused by fibrinolysis activation by metabolic products of D. immitis and the appearance of pathological events similar to those described in the emergence of proliferative endarteritis in the cardiopulmonary dirofilariosis.

  5. Activity of Nanobins Targeted to the Urokinase Plasminogen Activator System

    NASA Astrophysics Data System (ADS)

    Hankins, Patrick Leon

    While innovations in nanotechnology have resulted in numerous medical advancements for the treatment of cancer, there remains an urgent unmet need for safe and efficient molecular platforms that facilitate the delivery of potent therapeutics to solid tumors. Nanoscale formulations help to overcome the poor bioavailability and systemic organ toxicity associated with many small molecule drugs. Of these nanoparticle drug delivery systems, the greatest clinical successes to date have employed simple nanoscale lipid bilayer assemblies which encase large payloads of chemotherapeutic. While the nanobin platform we have developed has seen initial success through the passive accumulation into tumors, actively targeting nanobins to tumor specific antigens has the potential to increase the therapeutic index of these nanoparticle drugs. We have identified the urokinase plasminogen activator (uPA) and its cell surface bound receptor (uPAR) as ideal targets for drug delivery due to their selective overexpression in metastatic cancers and their important role in tumor progression. From a panel of monoclonal antibodies targeted to uPA and uPAR, we have selected ATN291 and ATN658 as lead candidates for nanobin targeting based on their tumor cell binding and ability to be internalized by cells. A novel method of conjugating antibodies to liposomes was developed for our nanobin platform that preserves the high binding affinity and specificity of these antibodies. We evaluated these uPA- and uPAR-targeted nanobins in several xenograft tumor models and found that they were well-tolerated over a wide range of doses and demonstrated significantly increased antitumor efficacy over untargeted nanobins in multiple tumor types. Preliminary studies suggest that uPA-targeted nanobins are readily internalized by tumor cells, and we believe this is the mechanism for their increased antitumor effect. A method for radiolabeling nanobins with gallium-67 was developed, and preliminary SPECT-CT imaging studies showed the preferential accumulation of these nanobins in an orthotopic model of breast cancer. Due to their biocompatibility, robustness, and extensive history in the clinic, liposomes are an ideal drug delivery vehicle for the development of targeted therapies. The data presented in this thesis demonstrates the potential for active targeting to increase the therapeutic index of nanoscale drug delivery systems by increasing antitumor effect while simultaneously preventing drug uptake in peripheral tissue. In particular, targeting nanoparticles to the uPA system is a promising strategy for the treatment of many advanced, metastatic cancers.

  6. FXIa and platelet polyphosphate as therapeutic targets during human blood clotting on collagen/tissue factor surfaces under flow.

    PubMed

    Zhu, Shu; Travers, Richard J; Morrissey, James H; Diamond, Scott L

    2015-09-17

    Factor XIIa (FXIIa) and factor XIa (FXIa) contribute to thrombosis in animal models, whereas platelet-derived polyphosphate (polyP) may potentiate contact or thrombin-feedback pathways. The significance of these mediators in human blood under thrombotic flow conditions on tissue factor (TF) -bearing surfaces remains inadequately resolved. Human blood (corn trypsin inhibitor treated [4 μg/mL]) was tested by microfluidic assay for clotting on collagen/TF at TF surface concentration ([TF]wall) from ∼0.1 to 2 molecules per μm(2). Anti-FXI antibodies (14E11 and O1A6) or polyP-binding protein (PPXbd) were used to block FXIIa-dependent FXI activation, FXIa-dependent factor IX (FIX) activation, or platelet-derived polyP, respectively. Fibrin formation was sensitive to 14E11 at 0 to 0.1 molecules per µm(2) and sensitive to O1A6 at 0 to 0.2 molecules per µm(2). However, neither antibody reduced fibrin generation at ∼2 molecules per µm(2) when the extrinsic pathway became dominant. Interestingly, PPXbd reduced fibrin generation at low [TF]wall (0.1 molecules per µm(2)) but not at zero or high [TF]wall, suggesting a role for polyP distinct from FXIIa activation and requiring low extrinsic pathway participation. Regardless of [TF]wall, PPXbd enhanced fibrin sensitivity to tissue plasminogen activator and promoted clot retraction during fibrinolysis concomitant with an observed PPXbd-mediated reduction of fibrin fiber diameter. This is the first detection of endogenous polyP function in human blood under thrombotic flow conditions. When triggered by low [TF]wall, thrombosis may be druggable by contact pathway inhibition, although thrombolytic susceptibility may benefit from polyP antagonism regardless of [TF]wall. © 2015 by The American Society of Hematology.

  7. Role of ID Proteins in BMP4 Inhibition of Profibrotic Effects of TGF-β2 in Human TM Cells.

    PubMed

    Mody, Avani A; Wordinger, Robert J; Clark, Abbot F

    2017-02-01

    Increased expression of TGF-β2 in primary open-angle glaucoma (POAG) aqueous humor (AH) and trabecular meshwork (TM) causes deposition of extracellular matrix (ECM) in the TM and elevated IOP. Bone morphogenetic proteins (BMPs) regulate TGF-β2-induced ECM production. The underlying mechanism for BMP4 inhibition of TGF-β2-induced fibrosis remains undetermined. Bone morphogenic protein 4 induces inhibitor of DNA binding proteins (ID1, ID3), which suppress transcription factor activities to regulate gene expression. Our study will determine whether ID1and ID3 proteins are downstream targets of BMP4, which attenuates TGF-β2 induction of ECM proteins in TM cells. Primary human TM cells were treated with BMP4, and ID1 and ID3 mRNA, and protein expression was determined by quantitative PCR (Q-PCR) and Western immunoblotting. Intracellular ID1 and ID3 protein localization was studied by immunocytochemistry. Transformed human TM cells (GTM3 cells) were transfected with ID1 or ID3 expression vectors to determine their potential inhibitory effects on TGF-β2-induced fibronectin and plasminogen activator inhibitor-I (PAI-1) protein expression. Basal expression of ID1-3 was detected in primary human TM cells. Bone morphogenic protein 4 significantly induced early expression of ID1 and ID3 mRNA (P < 0.05) and protein in primary TM cells, and a BMP receptor inhibitor blocked this induction. Overexpression of ID1 and ID3 significantly inhibited TGF-β2-induced expression of fibronectin and PAI-1 in TM cells (P < 0.01). Bone morphogenic protein 4 induced ID1 and ID3 expression suppresses TGF-β2 profibrotic activity in human TM cells. In the future, targeting specific regulators may control the TGF-β2 profibrotic effects on the TM, leading to disease modifying IOP lowering therapies.

  8. Envelope conformational changes induced by human immunodeficiency virus type 1 attachment inhibitors prevent CD4 binding and downstream entry events.

    PubMed

    Ho, Hsu-Tso; Fan, Li; Nowicka-Sans, Beata; McAuliffe, Brian; Li, Chang-Ben; Yamanaka, Gregory; Zhou, Nannan; Fang, Hua; Dicker, Ira; Dalterio, Richard; Gong, Yi-Fei; Wang, Tao; Yin, Zhiwei; Ueda, Yasutsugu; Matiskella, John; Kadow, John; Clapham, Paul; Robinson, James; Colonno, Richard; Lin, Pin-Fang

    2006-04-01

    BMS-488043 is a small-molecule human immunodeficiency virus type 1 (HIV-1) CD4 attachment inhibitor with demonstrated clinical efficacy. The compound inhibits soluble CD4 (sCD4) binding to the 11 distinct HIV envelope gp120 proteins surveyed. Binding of BMS-488043 and that of sCD4 to gp120 are mutually exclusive, since increased concentrations of one can completely block the binding of the other without affecting the maximal gp120 binding capacity. Similarly, BMS-488043 inhibited virion envelope trimers from binding to sCD4-immunoglobulin G (IgG), with decreasing inhibition as the sCD4-IgG concentration increased, and BMS-488043 blocked the sCD4-induced exposure of the gp41 groove in virions. In both virion binding assays, BMS-488043 was active only when added prior to sCD4. Collectively, these results indicate that obstruction of gp120-sCD4 interactions is the primary inhibition mechanism of this compound and that compound interaction with envelope must precede CD4 binding. By three independent approaches, BMS-488043 was further shown to induce conformational changes within gp120 in both the CD4 and CCR5 binding regions. These changes likely prevent gp120-CD4 interactions and downstream entry events. However, BMS-488043 could only partially inhibit CD4 binding to an HIV variant containing a specific envelope truncation and altered gp120 conformation, despite effectively inhibiting the pseudotyped virus infection. Taken together, BMS-488043 inhibits viral entry primarily through altering the envelope conformation and preventing CD4 binding, and other downstream entry events could also be inhibited as a result of these induced conformational changes.

  9. Mechanism for CARMIL Protein Inhibition of Heterodimeric Actin-capping Protein*

    PubMed Central

    Kim, Taekyung; Ravilious, Geoffrey E.; Sept, David; Cooper, John A.

    2012-01-01

    Capping protein (CP) controls the polymerization of actin filaments by capping their barbed ends. In lamellipodia, CP dissociates from the actin cytoskeleton rapidly, suggesting the possible existence of an uncapping factor, for which the protein CARMIL (capping protein, Arp2/3 and myosin-I linker) is a candidate. CARMIL binds to CP via two motifs. One, the CP interaction (CPI) motif, is found in a number of unrelated proteins; the other motif is unique to CARMILs, the CARMIL-specific interaction motif. A 115-aa CARMIL fragment of CARMIL with both motifs, termed the CP-binding region (CBR), binds to CP with high affinity, inhibits capping, and causes uncapping. We wanted to understand the structural basis for this function. We used a collection of mutants affecting the actin-binding surface of CP to test the possibility of a steric-blocking model, which remained open because a region of CBR was not resolved in the CBR/CP co-crystal structure. The CP actin-binding mutants bound CBR normally. In addition, a CBR mutant with all residues of the unresolved region changed showed nearly normal binding to CP. Having ruled out a steric blocking model, we tested an allosteric model with molecular dynamics. We found that CBR binding induces changes in the conformation of the actin-binding surface of CP. In addition, ∼30-aa truncations on the actin-binding surface of CP decreased the affinity of CBR for CP. Thus, CARMIL promotes uncapping by binding to a freely accessible site on CP bound to a filament barbed end and inducing a change in the conformation of the actin-binding surface of CP. PMID:22411988

  10. Intrapleural Adenoviral Delivery of Human Plasminogen Activator Inhibitor–1 Exacerbates Tetracycline-Induced Pleural Injury in Rabbits

    PubMed Central

    Karandashova, Sophia; Florova, Galina; Azghani, Ali O.; Komissarov, Andrey A.; Koenig, Kathy; Tucker, Torry A.; Allen, Timothy C.; Stewart, Kris; Tvinnereim, Amy

    2013-01-01

    Elevated concentrations of plasminogen activator inhibitor–1 (PAI-1) are associated with pleural injury, but its effects on pleural organization remain unclear. A method of adenovirus-mediated delivery of genes of interest (expressed under a cytomegalovirus promoter) to rabbit pleura was developed and used with lacZ and human (h) PAI-1. Histology, β-galactosidase staining, Western blotting, enzymatic and immunohistochemical analyses of pleural fluids (PFs), lavages, and pleural mesothelial cells were used to evaluate the efficiency and effects of transduction. Transduction was selective and limited to the pleural mesothelial monolayer. The intrapleural expression of both genes was transient, with their peak expression at 4 to 5 days. On Day 5, hPAI-1 (40–80 and 200–400 nM of active and total hPAI-1 in lavages, respectively) caused no overt pleural injury, effusions, or fibrosis. The adenovirus-mediated delivery of hPAI-1 with subsequent tetracycline-induced pleural injury resulted in a significant exacerbation of the pleural fibrosis observed on Day 5 (P = 0.029 and P = 0.021 versus vehicle and adenoviral control samples, respectively). Intrapleural fibrinolytic therapy (IPFT) with plasminogen activators was effective in both animals overexpressing hPAI-1 and control animals with tetracycline injury alone. An increase in intrapleural active PAI-1 (from 10–15 nM in control animals to 20–40 nM in hPAI-1–overexpressing animals) resulted in the increased formation of PAI-1/plasminogen activator complexes in vivo. The decrease in intrapleural plasminogen-activating activity observed at 10 to 40 minutes after IPFT correlates linearly with the initial concentration of active PAI-1. Therefore, active PAI-1 in PFs affects the outcome of IPFT, and may be both a biomarker of pleural injury and a molecular target for its treatment. PMID:23002099

  11. Solitaire™ with the Intention for Thrombectomy as Primary Endovascular Treatment for Acute Ischemic Stroke (SWIFT PRIME) trial: protocol for a randomized, controlled, multicenter study comparing the Solitaire revascularization device with IV tPA with IV tPA alone in acute ischemic stroke.

    PubMed

    Saver, Jeffrey L; Goyal, Mayank; Bonafe, Alain; Diener, Hans-Christoph; Levy, Elad I; Pereira, Vitor M; Albers, Gregory W; Cognard, Christophe; Cohen, David J; Hacke, Werner; Jansen, Olav; Jovin, Tudor G; Mattle, Heinrich P; Nogueira, Raul G; Siddiqui, Adnan H; Yavagal, Dileep R; Devlin, Thomas G; Lopes, Demetrius K; Reddy, Vivek; du Mesnil de Rochemont, Richard; Jahan, Reza

    2015-04-01

    Early reperfusion in patients experiencing acute ischemic stroke is critical, especially for patients with large vessel occlusion who have poor prognosis without revascularization. Solitaire™ stent retriever devices have been shown to immediately restore vascular perfusion safely, rapidly, and effectively in acute ischemic stroke patients with large vessel occlusions. The aim of the study was to demonstrate that, among patients with large vessel, anterior circulation occlusion who have received intravenous tissue plasminogen activator, treatment with Solitaire revascularization devices reduces degree of disability 3 months post stroke. The study is a global multicenter, two-arm, prospective, randomized, open, blinded end-point trial comparing functional outcomes in acute ischemic stroke patients who are treated with either intravenous tissue plasminogen activator alone or intravenous tissue plasminogen activator in combination with the Solitaire device. Up to 833 patients will be enrolled. Patients who have received intravenous tissue plasminogen activator are randomized to either continue with intravenous tissue plasminogen activator alone or additionally proceed to neurothrombectomy using the Solitaire device within six-hours of symptom onset. The primary end-point is 90-day global disability, assessed with the modified Rankin Scale (mRS). Secondary outcomes include mortality at 90 days, functional independence (mRS ≤ 2) at 90 days, change in National Institutes of Health Stroke Scale at 27 h, reperfusion at 27 h, and thrombolysis in cerebral infarction 2b/3 flow at the end of the procedure. Statistical analysis will be conducted using simultaneous success criteria on the overall distribution of modified Rankin Scale (Rankin shift) and proportions of subjects achieving functional independence (mRS 0-2). © 2015 The Authors. International Journal of Stroke published by John Wiley & Sons Ltd on behalf of World Stroke Organization.

  12. Glutaraldehyde pretreatment blocks phospholipase A2 modulation of adrenergic receptors.

    PubMed

    Cohen, R M; McLellan, C; Dauphin, M; Hirata, F

    1985-01-07

    Treatment of rat cerebral cortical membranes with phospholipase A2 affects, in a parallel fashion, beta-, alpha 1- and alpha 2-adrenergic receptor binding, but not the affinity of these receptors for their respective ligands. Pretreatment of membranes with 0.1 percent glutaraldehyde blocks the effects of phospholipase A2 on adrenergic receptor binding. The results support the hypothesis that desensitization or "masking" of adrenergic receptors may involve changes in membrane lipid composition. Furthermore, glutaraldehyde may prove a useful tool in the investigation of the dynamic roles of lipids in receptor function and more specifically, their regulation and coupling to physiological events.

  13. Sugammadex as a reversal agent for neuromuscular block: an evidence-based review

    PubMed Central

    Schaller, Stefan Josef; Fink, Heidrun

    2013-01-01

    Sugammadex is the first clinical representative of a new class of drugs called selective relaxant binding agents. It has revolutionized the way anesthesiologists think about drug reversal. Sugammadex selectively binds rocuronium or vecuronium, thereby reversing their neuromuscular blocking action. Due to its 1:1 binding of rocuronium or vecuronium, it is able to reverse any depth of neuromuscular block. So far, it has been approved for use in adult patients and for pediatric patients over 2 years. Since its approval in Europe, Japan, and Australia, further insight on its use in special patient populations and specific diseases have become available. Due to its pharmacodynamic profile, sugammadex, in combination with rocuronium, may have the potential to displace succinylcholine as the “gold standard” muscle relaxant for rapid sequence induction. The use of rocuronium or vecuronium, with the potential of reverse of their action with sugammadex, seems to be safe in patients with impaired neuromuscular transmission, ie, neuromuscular diseases, including myasthenia gravis. Data from long-term use of sugammadex is not yet available. Evidence suggesting an economic advantage of using sugammadex and justifying its relatively high cost for an anesthesia-related drug, is missing. PMID:24098155

  14. A dynamic alpha-beta inter-subunit agonist signaling complex is a novel feedback mechanism for regulating L-type Ca2+ channel opening.

    PubMed

    Zhang, Rong; Dzhura, Igor; Grueter, Chad E; Thiel, William; Colbran, Roger J; Anderson, Mark E

    2005-09-01

    L-type Ca2+ channels are macromolecular protein complexes in neurons and myocytes that open in response to cell membrane depolarization to supply Ca2+ for regulating gene transcription and vesicle secretion and triggering cell contraction. L-type Ca2+ channels include a pore-forming alpha and an auxiliary beta subunit, and alpha subunit openings are regulated by cellular Ca2+ through a mechanism involving the Ca2+-sensing protein calmodulin (CaM) and CaM binding motifs in the alpha subunit cytoplasmic C terminus. Here we show that these CaM binding motifs are "auto-agonists" that increase alpha subunit openings by binding the beta subunit. The CaM binding domains are necessary and sufficient for the alpha subunit C terminus to bind the beta subunit in vitro, and excess CaM blocks this interaction. Addition of CaM binding domains to native cardiac L-type Ca2+ channels in excised cell membrane patches increases openings, and this agonist effect is prevented by excess CaM. Recombinant LTCC openings are also increased by exogenous CaM binding domains by a mechanism requiring the beta subunit, and excess CaM blocks this effect. Thus, the bifunctional ability of the alpha subunit CaM binding motifs to competitively associate with the beta subunit or CaM provides a novel paradigm for feedback control of cellular Ca2+ entry.

  15. Mannose-binding lectin binds to Ebola and Marburg envelope glycoproteins, resulting in blocking of virus interaction with DC-SIGN and complement-mediated virus neutralization.

    PubMed

    Ji, Xin; Olinger, Gene G; Aris, Sheena; Chen, Ying; Gewurz, Henry; Spear, Gregory T

    2005-09-01

    Mannose-binding lectin (MBL), a serum lectin that mediates innate immune functions including activation of the lectin complement pathway, binds to carbohydrates expressed on some viral glycoproteins. In this study, the ability of MBL to bind to virus particles pseudotyped with Ebola and Marburg envelope glycoproteins was evaluated. Virus particles bearing either Ebola (Zaire strain) or Marburg (Musoke strain) envelope glycoproteins bound at significantly higher levels to immobilized MBL compared with virus particles pseudotyped with vesicular stomatitis virus glycoprotein or with no virus glycoprotein. As observed in previous studies, Ebola-pseudotyped virus bound to cells expressing the lectin DC-SIGN (dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin). However, pre-incubation of virus with MBL blocked DC-SIGN-mediated binding to cells, suggesting that the two lectins bind at the same or overlapping sites on the Ebola glycoprotein. Neutralization experiments showed that virus pseudotyped with Ebola or Marburg (Musoke) glycoprotein was neutralized by complement, while the Marburg (Ravn strain) glycoprotein-pseudotyped virus was less sensitive to neutralization. Neutralization was partially mediated through the lectin complement pathway, since a complement source deficient in MBL was significantly less effective at neutralizing viruses pseudotyped with filovirus glycoproteins and addition of purified MBL to the MBL-deficient complement increased neutralization. These experiments demonstrated that MBL binds to filovirus envelope glycoproteins resulting in important biological effects and suggest that MBL can interact with filoviruses during infection in humans.

  16. Structure-based design of novel naproxen derivatives targeting monomeric nucleoprotein of Influenza A virus

    PubMed Central

    Tarus, Bogdan; Bertrand, Hélène; Zedda, Gloria; Di Primo, Carmelo; Quideau, Stéphane; Slama-Schwok, Anny

    2015-01-01

    The nucleoprotein (NP) binds the viral RNA genome as oligomers assembled with the polymerase in a ribonucleoprotein complex required for transcription and replication of influenza A virus. Novel antiviral candidates targeting the nucleoprotein either induced higher order oligomers or reduced NP oligomerization by targeting the oligomerization loop and blocking its insertion into adjacent nucleoprotein subunit. In this study, we used a different structure-based approach to stabilize monomers of the nucleoprotein by drugs binding in its RNA-binding groove. We recently identified naproxen as a drug competing with RNA binding to NP with antiinflammatory and antiviral effects against influenza A virus. Here, we designed novel derivatives of naproxen by fragment extension for improved binding to NP. Molecular dynamics simulations suggested that among these derivatives, naproxen A and C0 were most promising. Their chemical synthesis is described. Both derivatives markedly stabilized NP monomer against thermal denaturation. Naproxen C0 bound tighter to NP than naproxen at a binding site predicted by MD simulations and shown by competition experiments using wt NP or single-point mutants as determined by surface plasmon resonance. MD simulations suggested that impeded oligomerization and stabilization of monomeric NP is likely to be achieved by drugs binding in the RNA grove and inducing close to their binding site conformational changes of key residues hosting the oligomerization loop as observed for the naproxen derivatives. Naproxen C0 is a potential antiviral candidate blocking influenza nucleoprotein function. PMID:25333630

  17. Structure-based design of novel naproxen derivatives targeting monomeric nucleoprotein of Influenza A virus.

    PubMed

    Tarus, Bogdan; Bertrand, Hélène; Zedda, Gloria; Di Primo, Carmelo; Quideau, Stéphane; Slama-Schwok, Anny

    2015-09-01

    The nucleoprotein (NP) binds the viral RNA genome as oligomers assembled with the polymerase in a ribonucleoprotein complex required for transcription and replication of influenza A virus. Novel antiviral candidates targeting the nucleoprotein either induced higher order oligomers or reduced NP oligomerization by targeting the oligomerization loop and blocking its insertion into adjacent nucleoprotein subunit. In this study, we used a different structure-based approach to stabilize monomers of the nucleoprotein by drugs binding in its RNA-binding groove. We recently identified naproxen as a drug competing with RNA binding to NP with antiinflammatory and antiviral effects against influenza A virus. Here, we designed novel derivatives of naproxen by fragment extension for improved binding to NP. Molecular dynamics simulations suggested that among these derivatives, naproxen A and C0 were most promising. Their chemical synthesis is described. Both derivatives markedly stabilized NP monomer against thermal denaturation. Naproxen C0 bound tighter to NP than naproxen at a binding site predicted by MD simulations and shown by competition experiments using wt NP or single-point mutants as determined by surface plasmon resonance. MD simulations suggested that impeded oligomerization and stabilization of monomeric NP is likely to be achieved by drugs binding in the RNA grove and inducing close to their binding site conformational changes of key residues hosting the oligomerization loop as observed for the naproxen derivatives. Naproxen C0 is a potential antiviral candidate blocking influenza nucleoprotein function.

  18. Hydrogen ion block of the sodium pore in squid giant axons

    PubMed Central

    1983-01-01

    The block of squid axon sodium channels by H ions was studied using voltage-clamp and internal perfusion techniques. An increase in the concentration of internal permeant ions decreased the block produced by external H ions. The voltage dependence of the block was found to be nonmonotonic: it was reduced by both large positive and large negative potentials. The ability of internal ions to modify the block by external H+ is explained by a competition among these ions for a binding site within the pore. The nonmonotonic voltage dependence is consistent with this picture if the hydrogen ions are allowed to be permeant. PMID:6315859

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conroy, W.G.

    Structural relatedness between the variable region of anti-ligand antibodies and opioid binding sites allowed the generation of anti-idiotypic antibodies which recognized opioid receptors. The IgG{sub 3}k antibodies which bound to opioid receptors were obtained when an anti-morphine antiserum was the idiotype. Both antibodies bound to opioid receptors, but only one of these blocked the binding of ({sup 3}H)naloxone. The antibody which did not inhibit the binding of ({sup 3}H)naloxone was itself displaced from the receptor by opioid ligands. The unique binding properties displayed by this antibody indicated that anti-idiotypic antibodies are not always a perfect image of the original ligand,more » and therefore may be more useful than typical ligands as probes for the receptor. An auto-anti-idiotypic technique was successfully used to obtain anti-opioid receptor antibodies. Another IgG{sub 3}k antibody that blocked the binding of ({sup 3}H)naloxone to rat brain opioid receptors was obtained when a mouse was immunized with naloxone conjugated to bovine serum albumin. These data confirmed that an idiotype-anti-idiotype network which can generate an anti-receptor antibody normally functions when an opioid ligand is introduced into an animal in an immunogenic form.« less

  20. Superlattices assembled through shape-induced directional binding

    NASA Astrophysics Data System (ADS)

    Lu, Fang; Yager, Kevin G.; Zhang, Yugang; Xin, Huolin; Gang, Oleg

    2015-04-01

    Organization of spherical particles into lattices is typically driven by packing considerations. Although the addition of directional binding can significantly broaden structural diversity, nanoscale implementation remains challenging. Here we investigate the assembly of clusters and lattices in which anisotropic polyhedral blocks coordinate isotropic spherical nanoparticles via shape-induced directional interactions facilitated by DNA recognition. We show that these polyhedral blocks--cubes and octahedrons--when mixed with spheres, promote the assembly of clusters with architecture determined by polyhedron symmetry. Moreover, three-dimensional binary superlattices are formed when DNA shells accommodate the shape disparity between nanoparticle interfaces. The crystallographic symmetry of assembled lattices is determined by the spatial symmetry of the block's facets, while structural order depends on DNA-tuned interactions and particle size ratio. The presented lattice assembly strategy, exploiting shape for defining the global structure and DNA-mediation locally, opens novel possibilities for by-design fabrication of binary lattices.

  1. Molecular Insights into the Local Anesthetic Receptor within Voltage-Gated Sodium Channels Using Hydroxylated Analogs of Mexiletine

    PubMed Central

    Desaphy, Jean-François; Dipalma, Antonella; Costanza, Teresa; Carbonara, Roberta; Dinardo, Maria Maddalena; Catalano, Alessia; Carocci, Alessia; Lentini, Giovanni; Franchini, Carlo; Camerino, Diana Conte

    2011-01-01

    We previously showed that the β-adrenoceptor modulators, clenbuterol and propranolol, directly blocked voltage-gated sodium channels, whereas salbutamol and nadolol did not (Desaphy et al., 2003), suggesting the presence of two hydroxyl groups on the aromatic moiety of the drugs as a molecular requisite for impeding sodium channel block. To verify such an hypothesis, we synthesized five new mexiletine analogs by adding one or two hydroxyl groups to the aryloxy moiety of the sodium channel blocker and tested these compounds on hNav1.4 channels expressed in HEK293 cells. Concentration–response relationships were constructed using 25-ms-long depolarizing pulses at −30 mV applied from an holding potential of −120 mV at 0.1 Hz (tonic block) and 10 Hz (use-dependent block) stimulation frequencies. The half-maximum inhibitory concentrations (IC50) were linearly correlated to drug lipophilicity: the less lipophilic the drug, minor was the block. The same compounds were also tested on F1586C and Y1593C hNav1.4 channel mutants, to gain further information on the molecular interactions of mexiletine with its receptor within the sodium channel pore. In particular, replacement of Phe1586 and Tyr1593 by non-aromatic cysteine residues may help in the understanding of the role of π–π or π–cation interactions in mexiletine binding. Alteration of tonic block suggests that the aryloxy moiety of mexiletine may interact either directly or indirectly with Phe1586 in the closed sodium channel to produce low-affinity binding block, and that this interaction depends on the electrostatic potential of the drug aromatic tail. Alteration of use-dependent block suggests that addition of hydroxyl groups to the aryloxy moiety may modify high-affinity binding of the drug amine terminal to Phe1586 through cooperativity between the two pharmacophores, this effect being mainly related to drug lipophilicity. Mutation of Tyr1593 further impaired such cooperativity. In conclusion, these results confirm our former hypothesis by showing that the presence of hydroxyl groups to the aryloxy moiety of mexiletine greatly reduced sodium channel block, and provide molecular insights into the intimate interaction of local anesthetics with their receptor. PMID:22403541

  2. Identification of a New Epitope in uPAR as a Target for the Cancer Therapeutic Monoclonal Antibody ATN-658, a Structural Homolog of the uPAR Binding Integrin CD11b (αM)

    PubMed Central

    Wei, Ying; Donate, Fernando; Juarez, Jose; Parry, Graham; Chen, Liqing; Meehan, Edward J.; Ahn, Richard W.; Ugolkov, Andrey; Dubrovskyi, Oleksii; O'Halloran, Thomas V.; Huang, Mingdong; Mazar, Andrew P.

    2014-01-01

    The urokinase plasminogen activator receptor (uPAR) plays a role in tumor progression and has been proposed as a target for the treatment of cancer. We recently described the development of a novel humanized monoclonal antibody that targets uPAR and has anti-tumor activity in multiple xenograft animal tumor models. This antibody, ATN-658, does not inhibit ligand binding (i.e. uPA and vitronectin) to uPAR and its mechanism of action remains unclear. As a first step in understanding the anti-tumor activity of ATN-658, we set out to identify the epitope on uPAR to which ATN-658 binds. Guided by comparisons between primate and human uPAR, epitope mapping studies were performed using several orthogonal techniques. Systematic site directed and alanine scanning mutagenesis identified the region of aa 268–275 of uPAR as the epitope for ATN-658. No known function has previously been attributed to this epitope Structural insights into epitope recognition were obtained from structural studies of the Fab fragment of ATN-658 bound to uPAR. The structure shows that the ATN-658 binds to the DIII domain of uPAR, close to the C-terminus of the receptor, corroborating the epitope mapping results. Intriguingly, when bound to uPAR, the complementarity determining region (CDR) regions of ATN-658 closely mimic the binding regions of the integrin CD11b (αM), a previously identified uPAR ligand thought to be involved in leukocyte rolling, migration and complement fixation with no known role in tumor progression of solid tumors. These studies reveal a new functional epitope on uPAR involved in tumor progression and demonstrate a previously unrecognized strategy for the therapeutic targeting of uPAR. PMID:24465541

  3. Interactions among DIV voltage-sensor movement, fast inactivation, and resurgent Na current induced by the NaVβ4 open-channel blocking peptide

    PubMed Central

    Lewis, Amanda H.

    2013-01-01

    Resurgent Na current flows as voltage-gated Na channels recover through open states from block by an endogenous open-channel blocking protein, such as the NaVβ4 subunit. The open-channel blocker and fast-inactivation gate apparently compete directly, as slowing the onset of fast inactivation increases resurgent currents by favoring binding of the blocker. Here, we tested whether open-channel block is also sensitive to deployment of the DIV voltage sensor, which facilitates fast inactivation. We expressed NaV1.4 channels in HEK293t cells and assessed block by a free peptide replicating the cytoplasmic tail of NaVβ4 (the “β4 peptide”). Macroscopic fast inactivation was disrupted by mutations of DIS6 (L443C/A444W; “CW” channels), which reduce fast-inactivation gate binding, and/or by the site-3 toxin ATX-II, which interferes with DIV movement. In wild-type channels, the β4 peptide competed poorly with fast inactivation, but block was enhanced by ATX. With the CW mutation, large peptide-induced resurgent currents were present even without ATX, consistent with increased open-channel block upon depolarization and slower deactivation after blocker unbinding upon repolarization. The addition of ATX greatly increased transient current amplitudes and further enlarged resurgent currents, suggesting that pore access by the blocker is actually decreased by full deployment of the DIV voltage sensor. ATX accelerated recovery from block at hyperpolarized potentials, however, suggesting that the peptide unbinds more readily when DIV voltage-sensor deployment is disrupted. These results are consistent with two open states in Na channels, dependent on the DIV voltage-sensor position, which differ in affinity for the blocking protein. PMID:23940261

  4. A regulatory network to segregate the identity of neuronal subtypes.

    PubMed

    Lee, Seunghee; Lee, Bora; Joshi, Kaumudi; Pfaff, Samuel L; Lee, Jae W; Lee, Soo-Kyung

    2008-06-01

    Spinal motor neurons (MNs) and V2 interneurons (V2-INs) are specified by two related LIM-complexes, MN-hexamer and V2-tetramer, respectively. Here we show how multiple parallel and complementary feedback loops are integrated to assign these two cell fates accurately. While MN-hexamer response elements (REs) are specific to MN-hexamer, V2-tetramer-REs can bind both LIM-complexes. In embryonic MNs, however, two factors cooperatively suppress the aberrant activation of V2-tetramer-REs. First, LMO4 blocks V2-tetramer assembly. Second, MN-hexamer induces a repressor, Hb9, which binds V2-tetramer-REs and suppresses their activation. V2-INs use a similar approach; V2-tetramer induces a repressor, Chx10, which binds MN-hexamer-REs and blocks their activation. Thus, our study uncovers a regulatory network to segregate related cell fates, which involves reciprocal feedforward gene regulatory loops.

  5. The immunosuppressives FK 506 and cyclosporin A inhibit the generation of protein factors binding to the two purine boxes of the interleukin 2 enhancer.

    PubMed Central

    Brabletz, T; Pietrowski, I; Serfling, E

    1991-01-01

    Like Cyclosporin A (CsA), the macrolide FK 506 is a potent immunosuppressive that inhibits early steps of T cell activation, including the synthesis of Interleukin 2 (II-2) and numerous other lymphokines. The block of II-2 synthesis occurs at the transcriptional level. At concentrations that block T cell activation, FK 506 and CsA inhibit the proto-enhancer activity of Purine boxes of the II-2 promoter and the generation of lymphocyte-specific factors binding to the Purine boxes. Under the same conditions, the DNA binding of other II-2 enhancer factors remains unaffected by both compounds. These results support the view that FK 506 and CsA, which both inhibit the activity of peptidylprolyl cis/trans isomerases, suppress T cell activation by a similar, if not identical mechanism. Images PMID:1707162

  6. The immunosuppressives FK 506 and cyclosporin A inhibit the generation of protein factors binding to the two purine boxes of the interleukin 2 enhancer.

    PubMed

    Brabletz, T; Pietrowski, I; Serfling, E

    1991-01-11

    Like Cyclosporin A (CsA), the macrolide FK 506 is a potent immunosuppressive that inhibits early steps of T cell activation, including the synthesis of Interleukin 2 (II-2) and numerous other lymphokines. The block of II-2 synthesis occurs at the transcriptional level. At concentrations that block T cell activation, FK 506 and CsA inhibit the proto-enhancer activity of Purine boxes of the II-2 promoter and the generation of lymphocyte-specific factors binding to the Purine boxes. Under the same conditions, the DNA binding of other II-2 enhancer factors remains unaffected by both compounds. These results support the view that FK 506 and CsA, which both inhibit the activity of peptidylprolyl cis/trans isomerases, suppress T cell activation by a similar, if not identical mechanism.

  7. Molecular Mechanisms of Prostate Cancer Progression

    DTIC Science & Technology

    2003-01-01

    other drugs ( novobiocin and related hsp90 inhibitors have been shown to bind to the N-ter- coumarins) that are reported to target hsp90 are now be...undesirable for an indirect method of telomerase inhibition (data not shown). However, radicicol, which binds in the ATP- binding pocket of hsp90 and...compounds (e.g. novobiocin ) to block chaperone function using a totally different mechanism of hsp90 inhbition, as well as innovative genetic approaches

  8. Role of the Yersinia pestis plasminogen activator in the incidence of distinct septicemic and bubonic forms of flea-borne plague.

    PubMed

    Sebbane, Florent; Jarrett, Clayton O; Gardner, Donald; Long, Daniel; Hinnebusch, B Joseph

    2006-04-04

    Yersinia pestis is transmitted by fleas and causes bubonic plague, characterized by severe local lymphadenitis that progresses rapidly to systemic infection and life-threatening septicemia. Here, we show that although flea-borne transmission usually leads to bubonic plague in mice, it can also lead to primary septicemic plague. However, intradermal injection of Y. pestis, commonly used to mimic transmission by fleabite, leads only to bubonic plague. A Y. pestis strain lacking the plasmid-encoded cell-surface plasminogen activator, which is avirulent by intradermal or s.c. injection, was able to cause fatal primary septicemic plague at low incidence, but not bubonic plague, when transmitted by fleas. The results clarify a long-standing uncertainty about the etiology of primary septicemic plague and support an evolutionary scenario in which plague first emerged as a flea-borne septicemic disease of limited transmissibility. Subsequent acquisition of the plasminogen activator gene by horizontal transfer enabled the bubonic form of disease and increased the potential for epidemic spread.

  9. Proposal for the nomenclature of human plasminogen (PLG) polymorphism.

    PubMed

    Skoda, U; Bertrams, J; Dykes, D; Eiberg, H; Hobart, M; Hummel, K; Kühnl, P; Mauff, G; Nakamura, S; Nishimukai, H

    1986-01-01

    Since its discovery, human plasminogen (PLG) polymorphism has received widespread acceptance in population genetics and forensic haematology. Due to the large number of variant alleles described, a PLG reference typing and Plasminogen Symposium was held, at which a nomenclature proposal was inaugurated. The technology of comparing PLG variants was based on isoelectric focusing and subsequent detection by caseinolytic overlay and 'Western' blotting. Typing results permitted comparison of so far described variant designations and resulted in a new nomenclature proposal for PLG polymorphism. It is recommended that the two most common alleles found in all investigated races be called: PLG*A (previously also PLG*1) and PLG*B (previously also PLG*2), the known variants with acidic pI: PLG*A1 to *A3, intermediate variants: PLG*M1 to *M5, PLG*M5 being functionally inactive, and basic variants: PLG*B1 to *B3. For future classification of newly discovered variants, samples should be compared at any of the laboratories participating in the reference typing.

  10. Persons with Quebec platelet disorder have a tandem duplication of PLAU, the urokinase plasminogen activator gene.

    PubMed

    Paterson, Andrew D; Rommens, Johanna M; Bharaj, Bhupinder; Blavignac, Jessica; Wong, Isidro; Diamandis, Maria; Waye, John S; Rivard, Georges E; Hayward, Catherine P M

    2010-02-11

    Quebec platelet disorder (QPD) is an autosomal dominant bleeding disorder linked to a region on chromosome 10 that includes PLAU, the urokinase plasminogen activator gene. QPD increases urokinase plasminogen activator mRNA levels, particularly during megakaryocyte differentiation, without altering expression of flanking genes. Because PLAU sequence changes were excluded as the cause of this bleeding disorder, we investigated whether the QPD mutation involved PLAU copy number variation. All 38 subjects with QPD had a direct tandem duplication of a 78-kb genomic segment that includes PLAU. This mutation was specific to QPD as it was not present in any unaffected family members (n = 114), unrelated French Canadians (n = 221), or other persons tested (n = 90). This new information on the genetic mutation will facilitate diagnostic testing for QPD and studies of its pathogenesis and prevalence. QPD is the first bleeding disorder to be associated with a gene duplication event and a PLAU mutation.

  11. A RHAMM Mimetic Peptide Blocks Hyaluronan Signaling and Reduces Inflammation and Fibrogenesis in Excisional Skin Wounds

    PubMed Central

    Tolg, Cornelia; Hamilton, Sara R.; Zalinska, Ewa; McCulloch, Lori; Amin, Ripal; Akentieva, Natalia; Winnik, Francoise; Savani, Rashmin; Bagli, Darius J.; Luyt, Len G.; Cowman, Mary K.; McCarthy, Jim B.; Turley, Eva A.

    2013-01-01

    Hyaluronan is activated by fragmentation and controls inflammation and fibroplasia during wound repair and diseases (eg, cancer). Hyaluronan-binding peptides were identified that modify fibrogenesis during skin wound repair. Peptides were selected from 7- to 15mer phage display libraries by panning with hyaluronan-Sepharose beads and assayed for their ability to block fibroblast migration in response to hyaluronan oligosaccharides (10 kDa). A 15mer peptide (P15-1), with homology to receptor for hyaluronan mediated motility (RHAMM) hyaluronan binding sequences, was the most effective inhibitor. P15-1 bound to 10-kDa hyaluronan with an affinity of Kd = 10−7 and appeared to specifically mimic RHAMM since it significantly reduced binding of hyaluronan oligosaccharides to recombinant RHAMM but not to recombinant CD44 or TLR2,4, and altered wound repair in wild-type but not RHAMM−/− mice. One topical application of P15-1 to full-thickness excisional rat wounds significantly reduced wound macrophage number, fibroblast number, and blood vessel density compared to scrambled, negative control peptides. Wound collagen 1, transforming growth factor β-1, and α-smooth muscle actin were reduced, whereas tenascin C was increased, suggesting that P15-1 promoted a form of scarless healing. Signaling/microarray analyses showed that P15-1 blocks RHAMM-regulated focal adhesion kinase pathways in fibroblasts. These results identify a new class of reagents that attenuate proinflammatory, fibrotic repair by blocking hyaluronan oligosaccharide signaling. PMID:22889846

  12. Complex Actions of Thyroid Hormone Receptor Antagonist NH-3 on Gene Promoters in Different Cell Lines

    PubMed Central

    Shah, Vanya; Nguyen, Phuong; Nguyen, Ngoc-Ha; Togashi, Marie; Scanlan, Thomas S.; Baxter, John D.; Webb, Paul

    2014-01-01

    It is desirable to obtain new antagonists for thyroid hormone (TRs) and other nuclear receptors (NRs). We previously used X-ray structural models of TR ligand binding domains (LBDs) to design compounds, such as NH-3, that impair coactivator binding to activation function 2 (AF-2) and block thyroid hormone (triiodothyronine, T3) actions. However, TRs bind DNA and are transcriptionally active without ligand. Thus, NH-3 could modulate TR activity via effects on other coregulator interaction surfaces, such as activation function (AF-1) and corepressor binding sites. Here, we find that NH-3 blocks TR-LBD interactions with coactivators and corepressors and also inhibits activities of AF-1 and AF-2 in transfections. While NH-3 lacks detectable agonist activity at T3-activated genes in GC pituitary cells it nevertheless activates spot 14 (S14) in HTC liver cells with the latter effect accompanied by enhanced histone H4 acetylation and coactivator recruitment at the S14 promoter. Surprisingly, T3 promotes corepressor recruitment to target promoters. NH-3 effects vary; we observe transient recruitment of N-CoR to S14 in GC cells and dismissal and rebinding of N-CoR to the same promoter in HTC cells. We propose that NH-3 will generally behave as an antagonist by blocking AF-1 and AF-2 but that complex effects on coregulator recruitment may result in partial/mixed agonist effects that are independent of blockade of T3 binding in some contexts. These properties could ultimately be utilized in drug design and development of new selective TR modulators. PMID:18930112

  13. Development of cell-penetrating bispecific antibodies targeting the N-terminal domain of androgen receptor for prostate cancer therapy.

    PubMed

    Goicochea, Nancy L; Garnovskaya, Maria; Blanton, Mary G; Chan, Grace; Weisbart, Richard; Lilly, Michael B

    2017-12-01

    Castration-resistant prostate cancer cells exhibit continued androgen receptor signaling in spite of low levels of ligand. Current therapies to block androgen receptor signaling act by inhibiting ligand production or binding. We developed bispecific antibodies capable of penetrating cells and binding androgen receptor outside of the ligand-binding domain. Half of the bispecific antibody molecule consists of a single-chain variable fragment of 3E10, an anti-DNA antibody that enters cells. The other half is a single-chain variable fragment version of AR441, an anti-AR antibody. The resulting 3E10-AR441 bispecific antibody enters human LNCaP prostate cells and accumulates in the nucleus. The antibody binds to wild-type, mutant and splice variant androgen receptor. Binding affinity of 3E10-AR441 to androgen receptor (284 nM) was lower than that of the parental AR441 mAb (4.6 nM), but could be improved (45 nM) through alternative placement of the affinity tags, and ordering of the VH and VK domains. The 3E10-AR441 bispecific antibody blocked genomic signaling by wild-type or splice variant androgen receptor in LNCaP cells. It also blocked non-genomic signaling by the wild-type receptor. Furthermore, bispecific antibody inhibited the growth of C4-2 prostate cancer cells under androgen-stimulated conditions. The 3E10-AR441 biAb can enter prostate cancer cells and inhibits androgen receptor function in a ligand-independent manner. It may be an attractive prototype agent for prostate cancer therapy. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Temperature and pH Dual-Responsive Core-Brush Nanocomposite for Enrichment of Glycoproteins.

    PubMed

    Jiang, Lingdong; Messing, Maria E; Ye, Lei

    2017-03-15

    In this report, we present a novel modular approach to the immobilization of a high density of boronic acid ligands on thermoresponsive block copolymer brushes for effective enrichment of glycoproteins via their synergistic multiple covalent binding with the immobilized boronic acids. Specifically, a two-step, consecutive surface-initiated atom transfer radical polymerization (SI-ATRP) was employed to graft a flexible block copolymer brush, pNIPAm-b-pGMA, from an initiator-functionalized nanosilica surface, followed by postpolymerization modification of the pGMA moiety with sodium azide. Subsequently, an alkyne-tagged boronic acid (PCAPBA) was conjugated to the polymer brush via a Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click reaction, leading to a silica-supported polymeric hybrid material, Si@pNIPAm-b-pBA, with a potent glycol binding affinity. The obtained core-brush nanocomposite was systematically characterized with regard to particle size, morphology, organic content, brush density, and number of immobilized boronic acids. We also studied the characteristics of glycoprotein binding of the nanocomposite under different conditions. The nanocomposite showed high binding capacities for ovalbumin (OVA) (98.0 mg g -1 ) and horseradish peroxidase (HRP) (26.8 mg g -1 ) in a basic buffer (pH 9.0) at 20 °C. More importantly, by adjusting the pH and temperature, the binding capacities of the nanocomposite can be tuned, which is meaningful for the separation of biological molecules. In general, the synthetic approach developed for the fabrication of block copolymer brushes in the nanocomposite opened new opportunities for the design of more functional hybrid materials that will be useful in bioseparation and biomedical applications.

  15. The Tetrodotoxin Receptor of Voltage-Gated Sodium Channels—Perspectives from Interactions with μ-Conotoxins

    PubMed Central

    French, Robert J.; Yoshikami, Doju; Sheets, Michael F.; Olivera, Baldomero M.

    2010-01-01

    Neurotoxin receptor site 1, in the outer vestibule of the conducting pore of voltage-gated sodium channels (VGSCs), was first functionally defined by its ability to bind the guanidinium-containing agents, tetrodotoxin (TTX) and saxitoxin (STX). Subsequent studies showed that peptide μ-conotoxins competed for binding at site 1. All of these natural inhibitors block single sodium channels in an all-or-none manner on binding. With the discovery of an increasing variety of μ-conotoxins, and the synthesis of numerous derivatives, observed interactions between the channel and these different ligands have become more complex. Certain μ-conotoxin derivatives block single-channel currents partially, rather than completely, thus enabling the demonstration of interactions between the bound toxin and the channel’s voltage sensor. Most recently, the relatively small μ-conotoxin KIIIA (16 amino acids) and its variants have been shown to bind simultaneously with TTX and exhibit both synergistic and antagonistic interactions with TTX. These interactions raise new pharmacological possibilities and place new constraints on the possible structures of the bound complexes of VGSCs with these toxins. PMID:20714429

  16. Micromolar-Affinity Benzodiazepine Receptors Regulate Voltage-Sensitive Calcium Channels in Nerve Terminal Preparations

    NASA Astrophysics Data System (ADS)

    Taft, William C.; Delorenzo, Robert J.

    1984-05-01

    Benzodiazepines in micromolar concentrations significantly inhibit depolarization-sensitive Ca2+ uptake in intact nerve-terminal preparations. Benzodiazepine inhibition of Ca2+ uptake is concentration dependent and stereospecific. Micromolar-affinity benzodiazepine receptors have been identified and characterized in brain membrane and shown to be distinct from nanomolar-affinity benzodiazepine receptors. Evidence is presented that micromolar, and not nanomolar, benzodiazepine binding sites mediate benzodiazepine inhibition of Ca2+ uptake. Irreversible binding to micromolar benzodiazepine binding sites also irreversibly blocked depolarization-dependent Ca2+ uptake in synaptosomes, indicating that these compounds may represent a useful marker for identifying the molecular components of Ca2+ channels in brain. Characterization of benzodiazepine inhibition of Ca2+ uptake demonstrates that these drugs function as Ca2+ channel antagonists, because benzodiazepines effectively blocked voltage-sensitive Ca2+ uptake inhibited by Mn2+, Co2+, verapamil, nitrendipine, and nimodipine. These results indicate that micromolar benzodiazepine binding sites regulate voltage-sensitive Ca2+ channels in brain membrane and suggest that some of the neuronal stabilizing effects of micromolar benzodiazepine receptors may be mediated by the regulation of Ca2+ conductance.

  17. Structure-based virtual screening and characterization of a novel IL-6 antagonistic compound from synthetic compound database.

    PubMed

    Wang, Jing; Qiao, Chunxia; Xiao, He; Lin, Zhou; Li, Yan; Zhang, Jiyan; Shen, Beifen; Fu, Tinghuan; Feng, Jiannan

    2016-01-01

    According to the three-dimensional (3D) complex structure of (hIL-6⋅hIL-6R⋅gp 130) 2 and the binding orientation of hIL-6, three compounds with high affinity to hIL-6R and bioactivity to block hIL-6 in vitro were screened theoretically from the chemical databases, including 3D-Available Chemicals Directory (ACD) and MDL Drug Data Report (MDDR), by means of the computer-guided virtual screening method. Using distance geometry, molecular modeling and molecular dynamics trajectory analysis methods, the binding mode and binding energy of the three compounds were evaluated theoretically. Enzyme-linked immunosorbent assay analysis demonstrated that all the three compounds could block IL-6 binding to IL-6R specifically. However, only compound 1 could effectively antagonize the function of hIL-6 and inhibit the proliferation of XG-7 cells in a dose-dependent manner, whereas it showed no cytotoxicity to SP2/0 or L929 cells. These data demonstrated that the compound 1 could be a promising candidate of hIL-6 antagonist.

  18. Differences in Ribosome Binding and Sarcin/Ricin Loop Depurination by Shiga and Ricin Holotoxins.

    PubMed

    Li, Xiao-Ping; Tumer, Nilgun E

    2017-04-11

    Both ricin and Shiga holotoxins display no ribosomal activity in their native forms and need to be activated to inhibit translation in a cell-free translation inhibition assay. This is because the ribosome binding site of the ricin A chain (RTA) is blocked by the B subunit in ricin holotoxin. However, it is not clear why Shiga toxin 1 (Stx1) or Shiga toxin 2 (Stx2) holotoxin is not active in a cell-free system. Here, we compare the ribosome binding and depurination activity of Stx1 and Stx2 holotoxins with the A1 subunits of Stx1 and Stx2 using either the ribosome or a 10-mer RNA mimic of the sarcin/ricin loop as substrates. Our results demonstrate that the active sites of Stx1 and Stx2 holotoxins are blocked by the A2 chain and the B subunit, while the ribosome binding sites are exposed to the solvent. Unlike ricin, which is enzymatically active, but cannot interact with the ribosome, Stx1 and Stx2 holotoxins are enzymatically inactive but can interact with the ribosome.

  19. Evolution of sequence-defined highly functionalized nucleic acid polymers

    NASA Astrophysics Data System (ADS)

    Chen, Zhen; Lichtor, Phillip A.; Berliner, Adrian P.; Chen, Jonathan C.; Liu, David R.

    2018-03-01

    The evolution of sequence-defined synthetic polymers made of building blocks beyond those compatible with polymerase enzymes or the ribosome has the potential to generate new classes of receptors, catalysts and materials. Here we describe a ligase-mediated DNA-templated polymerization and in vitro selection system to evolve highly functionalized nucleic acid polymers (HFNAPs) made from 32 building blocks that contain eight chemically diverse side chains on a DNA backbone. Through iterated cycles of polymer translation, selection and reverse translation, we discovered HFNAPs that bind proprotein convertase subtilisin/kexin type 9 (PCSK9) and interleukin-6, two protein targets implicated in human diseases. Mutation and reselection of an active PCSK9-binding polymer yielded evolved polymers with high affinity (KD = 3 nM). This evolved polymer potently inhibited the binding between PCSK9 and the low-density lipoprotein receptor. Structure-activity relationship studies revealed that specific side chains at defined positions in the polymers are required for binding to their respective targets. Our findings expand the chemical space of evolvable polymers to include densely functionalized nucleic acids with diverse, researcher-defined chemical repertoires.

  20. Micromolar-affinity benzodiazepine receptors regulate voltage-sensitive calcium channels in nerve terminal preparations.

    PubMed Central

    Taft, W C; DeLorenzo, R J

    1984-01-01

    Benzodiazepines in micromolar concentrations significantly inhibit depolarization-sensitive Ca2+ uptake in intact nerve-terminal preparations. Benzodiazepine inhibition of Ca2+ uptake is concentration dependent and stereospecific. Micromolar-affinity benzodiazepine receptors have been identified and characterized in brain membrane and shown to be distinct from nanomolar-affinity benzodiazepine receptors. Evidence is presented that micromolar, and not nanomolar, benzodiazepine binding sites mediate benzodiazepine inhibition of Ca2+ uptake. Irreversible binding to micromolar benzodiazepine binding sites also irreversibly blocked depolarization-dependent Ca2+ uptake in synaptosomes, indicating that these compounds may represent a useful marker for identifying the molecular components of Ca2+ channels in brain. Characterization of benzodiazepine inhibition of Ca2+ uptake demonstrates that these drugs function as Ca2+ channel antagonists, because benzodiazepines effectively blocked voltage-sensitive Ca2+ uptake inhibited by Mn2+, Co2+, verapamil, nitrendipine, and nimodipine. These results indicate that micromolar benzodiazepine binding sites regulate voltage-sensitive Ca2+ channels in brain membrane and suggest that some of the neuronal stabilizing effects of micromolar benzodiazepine receptors may be mediated by the regulation of Ca2+ conductance. PMID:6328498

  1. Strategies to regulate transcription factor-mediated gene positioning and interchromosomal clustering at the nuclear periphery.

    PubMed

    Randise-Hinchliff, Carlo; Coukos, Robert; Sood, Varun; Sumner, Michael Chas; Zdraljevic, Stefan; Meldi Sholl, Lauren; Garvey Brickner, Donna; Ahmed, Sara; Watchmaker, Lauren; Brickner, Jason H

    2016-03-14

    In budding yeast, targeting of active genes to the nuclear pore complex (NPC) and interchromosomal clustering is mediated by transcription factor (TF) binding sites in the gene promoters. For example, the binding sites for the TFs Put3, Ste12, and Gcn4 are necessary and sufficient to promote positioning at the nuclear periphery and interchromosomal clustering. However, in all three cases, gene positioning and interchromosomal clustering are regulated. Under uninducing conditions, local recruitment of the Rpd3(L) histone deacetylase by transcriptional repressors blocks Put3 DNA binding. This is a general function of yeast repressors: 16 of 21 repressors blocked Put3-mediated subnuclear positioning; 11 of these required Rpd3. In contrast, Ste12-mediated gene positioning is regulated independently of DNA binding by mitogen-activated protein kinase phosphorylation of the Dig2 inhibitor, and Gcn4-dependent targeting is up-regulated by increasing Gcn4 protein levels. These different regulatory strategies provide either qualitative switch-like control or quantitative control of gene positioning over different time scales. © 2016 Randise-Hinchliff et al.

  2. Antihypertensive treatment prolongs tissue plasminogen activator door-to-treatment time: secondary analysis of the INSTINCT trial.

    PubMed

    Skolarus, Lesli E; Scott, Phillip A; Burke, James F; Adelman, Eric E; Frederiksen, Shirley M; Kade, Allison M; Kalbfleisch, Jack D; Ford, Andria L; Meurer, William J

    2012-12-01

    Identifying modifiable tissue plasminogen activator treatment delays may improve stroke outcomes. We hypothesized that prethrombolytic antihypertensive treatment (AHT) may prolong door-to-treatment time (DTT). We performed an analysis of consecutive tissue plasminogen activator-treated patients at 24 randomly selected community hospitals in the Increasing Stroke Treatment through Interventional Behavior Change Tactics (INSTINCT) trial between 2007 and 2010. DTT among stroke patients who received prethrombolytic AHT were compared with those who did not receive prethrombolytic AHT. We then calculated a propensity score for the probability of receiving prethrombolytic AHT using logistic regression with demographics, stroke risk factors, home medications, stroke severity (National Institutes of Health Stroke Scale), onset-to-door time, admission glucose, pretreatment blood pressure, emergency medical service transport, and location at time of stroke as independent variables. A paired t test was performed to compare the DTT between the propensity-matched groups. Of 534 tissue plasminogen activator-treated stroke patients analyzed, 95 received prethrombolytic AHT. In the unmatched cohort, patients who received prethrombolytic AHT had a longer DTT (mean increase, 9 minutes; 95% confidence interval, 2-16 minutes) than patients who did not. After propensity matching, patients who received prethrombolytic AHT had a longer DTT (mean increase, 10.4 minutes; 95% confidence interval, 1.9-18.8) than patients who did not receive prethrombolytic AHT. Prethrombolytic AHT is associated with modest delays in DTT. This represents a potential target for quality-improvement initiatives. Further research evaluating optimum prethrombolytic hypertension management is warranted.

  3. Plasminogen activator activity in tears of pregnant women.

    PubMed

    Csutak, Adrienne; Steiber, Zita; Tőzsér, József; Jakab, Attila; Berta, András; Silver, David M

    2017-01-01

    Plasminogen activator activity (PAA) in tears of pregnant women was investigated at various gestation times to assess the availability of plasminogen activator for aiding potential corneal wound healing processes during pregnancy. PAA was measured by a spectrophotometric method. The analysis used 91 tear samples from pregnant and non-pregnant women, supplemented with 10 additional tear PAA measurements from non-pregnant women obtained in a previous study. Tear levels of PAA in pregnant women formed a bimodal distribution. Either the tear PAA level was zero or non-zero during pregnancy. When non-zero, the tear PAA level was dissociated from gestation time and not different than non-pregnant and post-pregnant levels. The frequency of occurrence of zero level tear PAA increased with gestation: 16%, 17% and 46% had zero tear PAA in samples taken from women in the first, second and third trimester, respectively. Overall, of the tear samples taken from women during pregnancy, a total of 26% were at zero tear PAA. The remaining tear samples had non-zero tear PAA values throughout gestation equivalent to non-pregnant tear PAA values, suggesting local control of the source of PAA in tears. Given the importance of the plasminogen activator system in tears to wound healing in the cornea, and the high occurrence of zero tear PAA in our sample of pregnant women, elective corneal surgery would be contraindicated. If corneal surgery is nevertheless necessary, the tear PAA level would be worth checking and patients with low level should be closely observed during the postoperative period.

  4. The plasminogen activator system in the ovine placentome during late gestation and stage-two of parturition.

    PubMed

    McNeel, Anthony K; Cushman, Robert A; Vallet, Jeffrey L

    2013-06-01

    The process of placental separation is not completely understood. In domestic animals, especially cattle, it is important that expulsion of the fetal membranes takes place in a timely manner in order to achieve maximal reproductive efficiency. The activity of the matrix-metalloprotease (MMP) family of proteases is known to be reduced in placentomes from cases of retained placenta. Members of the MMP family are known to be activated by the plasminogen activator (PA) family of proteases. We hypothesized that the expression and activity of the PA family increase in the cotyledon and/or caruncle as parturition approaches, with maximal expression and activity at parturition. To test this hypothesis, we performed reverse-transcriptase quantitative PCR and plasminogen-casein zymography to detect the presence and activity of PA family members in the placentome leading up to and during parturition in spontaneous and dexamethasone-induced parturient ewes. The results from our experiments indicated that serine proteases inhibitor E1 (SERPINE1) mRNA abundance in the cotyledon was different between treatment groups (P = 0.0002). In the caruncle, gene expression for plasminogen activator urokinase-type (PLAU) was different (P = 0.0154), and there was a strong trend for differences in SERPINE1 expression (P = 0.0565). These results demonstrate that expression of the PA system in the placentome changes from late pregnancy to parturition, and the presence or activity of these enzymes may occur after fetal expulsion.

  5. Fibrin-specific and effective clot lysis requires both plasminogen activators and for them to be in a sequential rather than simultaneous combination.

    PubMed

    Pannell, R; Li, S; Gurewich, V

    2017-08-01

    Thrombolysis with tissue plasminogen activator (tPA) has been a disappointment and has now been replaced by an endovascular procedure whenever possible. Nevertheless, thrombolysis remains the only means by which circulation in a thrombosed artery can be restored rapidly. In contrast to tPA monotherapy, endogenous fibrinolysis uses both tPA and urokinase plasminogen activator (uPA), whose native form is a proenzyme, prouPA. This combination is remarkably effective as evidenced by the fibrin degradation product, D-dimer, which is invariably present in plasma. The two activators have complementary mechanisms of plasminogen activation and are synergistic in combination. Since tPA initiates fibrinolysis when released from the vessel wall and prouPA is in the blood, they induce fibrinolysis sequentially. It was postulated that this may be more effective and fibrin-specific. The hypothesis was tested in a model of clot lysis in plasma in which a clot was first exposed to tPA for 5 min, washed and incubated with prouPA. Lysis was compared with that of clots incubated with both activators simultaneously. The sequential combination was almost twice as effective and caused less fibrinogenolysis than the simultaneous combination (p < 0.0001) despite having significantly less tPA, as a result of the wash. A mechanism is described by which this phenomenon can be explained. The findings are believed to have significant therapeutic implications.

  6. Triazoles inhibit cholesterol export from lysosomes by binding to NPC1.

    PubMed

    Trinh, Michael N; Lu, Feiran; Li, Xiaochun; Das, Akash; Liang, Qiren; De Brabander, Jef K; Brown, Michael S; Goldstein, Joseph L

    2017-01-03

    Niemann-Pick C1 (NPC1), a membrane protein of lysosomes, is required for the export of cholesterol derived from receptor-mediated endocytosis of LDL. Lysosomal cholesterol export is reportedly inhibited by itraconazole, a triazole that is used as an antifungal drug [Xu et al. (2010) Proc Natl Acad Sci USA 107:4764-4769]. Here we show that posaconazole, another triazole, also blocks cholesterol export from lysosomes. We prepared P-X, a photoactivatable cross-linking derivative of posaconazole. P-X cross-linked to NPC1 when added to intact cells. Cross-linking was inhibited by itraconazole but not by ketoconazole, an imidazole that does not block cholesterol export. Cross-linking of P-X was also blocked by U18666A, a compound that has been shown to bind to NPC1 and inhibit cholesterol export. P-X also cross-linked to purified NPC1 that was incorporated into lipid bilayer nanodiscs. In this in vitro system, cross-linking of P-X was inhibited by itraconazole, but not by U18666A. P-X cross-linking was not prevented by deletion of the N-terminal domain of NPC1, which contains the initial binding site for cholesterol. In contrast, P-X cross-linking was reduced when NPC1 contained a point mutation (P691S) in its putative sterol-sensing domain. We hypothesize that the sterol-sensing domain has a binding site that can accommodate structurally different ligands.

  7. The PriA Replication Restart Protein Blocks Replicase Access Prior to Helicase Assembly and Directs Template Specificity through Its ATPase Activity*

    PubMed Central

    Manhart, Carol M.; McHenry, Charles S.

    2013-01-01

    The PriA protein serves as an initiator for the restart of DNA replication on stalled replication forks and as a checkpoint protein that prevents the replicase from advancing in a strand displacement reaction on forks that do not contain a functional replicative helicase. We have developed a primosomal protein-dependent fluorescence resonance energy transfer (FRET) assay using a minimal fork substrate composed of synthetic oligonucleotides. We demonstrate that a self-loading reaction, which proceeds at high helicase concentrations, occurs by threading of a preassembled helicase over free 5′-ends, an event that can be blocked by attaching a steric block to the 5′-end or coating DNA with single-stranded DNA binding protein. The specificity of PriA for replication forks is regulated by its intrinsic ATPase. ATPase-defective PriA K230R shows a strong preference for substrates that contain no gap between the leading strand and the duplex portion of the fork, as demonstrated previously. Wild-type PriA prefers substrates with larger gaps, showing maximal activity on substrates on which PriA K230R is inactive. We demonstrate that PriA blocks replicase function on forks by blocking its binding. PMID:23264623

  8. Pore Polarity and Charge Determine Differential Block of Kir1.1 and Kir7.1 Potassium Channels by Small-Molecule Inhibitor VU590.

    PubMed

    Kharade, Sujay V; Sheehan, Jonathan H; Figueroa, Eric E; Meiler, Jens; Denton, Jerod S

    2017-09-01

    VU590 was the first publicly disclosed, submicromolar-affinity (IC 50 = 0.2 μ M), small-molecule inhibitor of the inward rectifier potassium (Kir) channel and diuretic target, Kir1.1. VU590 also inhibits Kir7.1 (IC 50 ∼ 8 μ M), and has been used to reveal new roles for Kir7.1 in regulation of myometrial contractility and melanocortin signaling. Here, we employed molecular modeling, mutagenesis, and patch clamp electrophysiology to elucidate the molecular mechanisms underlying VU590 inhibition of Kir1.1 and Kir7.1. Block of both channels is voltage- and K + -dependent, suggesting the VU590 binding site is located within the pore. Mutagenesis analysis in Kir1.1 revealed that asparagine 171 (N171) is the only pore-lining residue required for high-affinity block, and that substituting negatively charged residues (N171D, N171E) at this position dramatically weakens block. In contrast, substituting a negatively charged residue at the equivalent position in Kir7.1 enhances block by VU590, suggesting the VU590 binding mode is different. Interestingly, mutations of threonine 153 (T153) in Kir7.1 that reduce constrained polarity at this site (T153C, T153V, T153S) make wild-type and binding-site mutants (E149Q, A150S) more sensitive to block by VU590. The Kir7.1-T153C mutation enhances block by the structurally unrelated inhibitor VU714 but not by a higher-affinity analog ML418, suggesting that the polar side chain of T153 creates a barrier to low-affinity ligands that interact with E149 and A150. Reverse mutations in Kir1.1 suggest that this mechanism is conserved in other Kir channels. This study reveals a previously unappreciated role of membrane pore polarity in determination of Kir channel inhibitor pharmacology. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  9. A specific l-tri-iodothyronine-binding protein in the cytosol fraction of human breast adipose tissue

    PubMed Central

    Rao, Marie Luise; Rao, Govind S.

    1982-01-01

    1. Binding of l-tri-[125I]iodothyronine to the cytosol fraction of normal human female breast adipose tissue was investigated by the charcoal adsorption method. Equilibrium of binding was reached after 120s at 25°C. 2. The l-tri-[125I]iodothyronine-binding component is a protein; this was confirmed by experiments in which binding was totally lost after heating the cytosol fraction for 10min at 100°C and in which binding was diminished after treatment with proteolytic enzymes and with thiol-group-blocking reagents. The binding protein was stable at −38°C for several months. 3. It displayed saturability, high affinity (apparent Kd 3.28nm) and a single class of binding sites. 4. High specificity for l-tri-iodothyronine and l-3,5-di-iodo-3′-isopropylthyronine was observed, whereas other iodothyronines were less effective in displacing l-tri-[125I]-iodothyronine from its binding site. 5. The binding of the hormone by the cytosol fraction did not show a pH optimum. 6. When cytosol fractions of adipose tissue from different females were subjected to radioimmunoassay for the determination of thyroxine-binding globulin a value of 0.304±0.11μg/mg of cytosol protein (mean±s.d., n=4) was obtained; the mean concentration in plasma was 0.309±0.07μg/mg of plasma protein (mean±s.d., n=3). 7. The Ka value of 6.3×108m−1 of l-tri-[125I]iodothyronine for binding to plasma, the similar thermalinactivation profiles of binding and the reactivity to thiol-group-blocking reagents were some properties common between the binding components from the cytosol fraction and plasma. 8. These results suggest that the cytosol fraction of human female breast adipose tissue contains thyroxine-binding globulin; the protein that binds l-tri-[125I]iodothyronine with high affinity and specificity appears to be similar to thyroxine-binding globulin. PMID:6289813

  10. HLA Class I Binding 9mer Peptides from Influenza A Virus Induce CD4+ T Cell Responses

    PubMed Central

    Wang, Mingjun; Larsen, Mette V.; Nielsen, Morten; Harndahl, Mikkel; Justesen, Sune; Dziegiel, Morten H.; Buus, Søren; Tang, Sheila T.; Lund, Ole; Claesson, Mogens H.

    2010-01-01

    Background Identification of human leukocyte antigen class I (HLA-I) restricted cytotoxic T cell (CTL) epitopes from influenza virus is of importance for the development of new effective peptide-based vaccines. Methodology/Principal Findings In the present work, bioinformatics was used to predict 9mer peptides derived from available influenza A viral proteins with binding affinity for at least one of the 12 HLA-I supertypes. The predicted peptides were then selected in a way that ensured maximal coverage of the available influenza A strains. One hundred and thirty one peptides were synthesized and their binding affinities for the HLA-I supertypes were measured in a biochemical assay. Influenza-specific T cell responses towards the peptides were quantified using IFNγ ELISPOT assays with peripheral blood mononuclear cells (PBMC) from adult healthy HLA-I typed donors as responder cells. Of the 131 peptides, 21 were found to induce T cell responses in 19 donors. In the ELISPOT assay, five peptides induced responses that could be totally blocked by the pan-specific anti-HLA-I antibody W6/32, whereas 15 peptides induced responses that could be completely blocked in the presence of the pan-specific anti-HLA class II (HLA-II) antibody IVA12. Blocking of HLA-II subtype reactivity revealed that 8 and 6 peptide responses were blocked by anti-HLA-DR and -DP antibodies, respectively. Peptide reactivity of PBMC depleted of CD4+ or CD8+ T cells prior to the ELISPOT culture revealed that effectors are either CD4+ (the majority of reactivities) or CD8+ T cells, never a mixture of these subsets. Three of the peptides, recognized by CD4+ T cells showed binding to recombinant DRA1*0101/DRB1*0401 or DRA1*0101/DRB5*0101 molecules in a recently developed biochemical assay. Conclusions/Significance HLA-I binding 9mer influenza virus-derived peptides induce in many cases CD4+ T cell responses restricted by HLA-II molecules. PMID:20479886

  11. Screening and characterization of a Annenix A2 binding aptamer that inhibits the proliferation of myeloma cells.

    PubMed

    Zhou, Weihua; Zhang, Yibin; Zeng, Yayue; Peng, Minyuan; Li, Hui; Sun, Shuming; Ma, Bianying; Wang, Yanpeng; Ye, Mao; Liu, Jing

    2018-06-12

    Multiple myeloma (MM) is a malignant plasma cell disease and is considered incurable. Annexin A2 (ANXA2) is closely related to the proliferation and adhesion of MM. Using protein-SELEX, we performed a screen for aptamers that bind GST-ANXA2 from a library, and GST protein was used for negative selection. The enrichment of the ssDNA pool was monitored by filter-binding assay during selection. After nine rounds of screening and high-throughput sequencing, we obtained six candidate aptamers that bind to the ANXA2 protein. The affinities of the candidate aptamers for ANXA2 were determined by ELONA. Binding of aptamer wh6 to the ANXA2 protein and to the MM cell was verified by aptamer pulldown experiment and flow cytometry, respectively. Aptamer wh6 binds the ANXA2 protein with good stability and has a dissociation constant in the nanomolar range. The binding specificity of aptamer wh6 was confirmed in vivo in nude mouse xenografts with MM cells and with MM bone marrow aspirates. Furthermore, aptamer wh6 can block MM cell adhesion to ANXA2 and block the proliferation of MM cells induced by ANXA2. In summary, wh6 can be considered a promising candidate tool for MM diagnosis and treatment. Copyright © 2018 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  12. HA Antibody-Mediated FcγRIIIa Activity Is Both Dependent on FcR Engagement and Interactions between HA and Sialic Acids.

    PubMed

    Cox, Freek; Kwaks, Ted; Brandenburg, Boerries; Koldijk, Martin H; Klaren, Vincent; Smal, Bastiaan; Korse, Hans J W M; Geelen, Eric; Tettero, Lisanne; Zuijdgeest, David; Stoop, Esther J M; Saeland, Eirikur; Vogels, Ronald; Friesen, Robert H E; Koudstaal, Wouter; Goudsmit, Jaap

    2016-01-01

    Interactions with receptors for the Fc region of IgG (FcγRs) have been shown to contribute to the in vivo protection against influenza A viruses provided by broadly neutralizing antibodies (bnAbs) that bind to the viral hemagglutinin (HA) stem. In particular, Fc-mediated antibody-dependent cellular cytotoxicity (ADCC) has been shown to contribute to protection by stem-binding bnAbs. Fc-mediated effector functions appear not to contribute to protection provided by strain-specific HA head-binding antibodies. We used a panel of anti-stem and anti-head influenza A and B monoclonal antibodies with identical human IgG1 Fc domains and investigated their ability to mediate ADCC-associated FcγRIIIa activation. Antibodies which do not interfere with sialic acid binding of HA can mediate FcγRIIIa activation. However, the FcγRIIIa activation was inhibited when a mutant HA, unable to bind sialic acids, was used. Antibodies which block sialic acid receptor interactions of HA interfered with FcγRIIIa activation. The inhibition of FcγRIIIa activation by HA head-binding and sialic acid receptor-blocking antibodies was confirmed in plasma samples of H5N1 vaccinated human subjects. Together, these results suggest that in addition to Fc-FcγR binding, interactions between HA and sialic acids on immune cells are required for optimal Fc-mediated effector functions by anti-HA antibodies.

  13. Denervation does not alter the number of neuronal bungarotoxin binding sites on autonomic neurons in the frog cardiac ganglion.

    PubMed

    Sargent, P B; Bryan, G K; Streichert, L C; Garrett, E N

    1991-11-01

    The binding of neuronal bungarotoxin (n-BuTX; also known as bungarotoxin 3.1, kappa-bungarotoxin, and toxin F) was analyzed in normal and denervated parasympathetic cardiac ganglia of the frog Rana pipiens, n-BuTX blocks both EPSPs and ACh potentials at 5-20 nM, as determined by intracellular recording techniques. Scatchard analysis on homogenates indicates that cardiac ganglia have two classes of binding sites for 125I-n-BuTX: a high-affinity site with an apparent dissociation constant (Kd,app) of 1.7 nM and a Bmax (number of binding sites) of 3.8 fmol/ganglion and a low-affinity site with a Kd,app of 12 microM and a Bmax of 14 pmol/ganglion. alpha-Bungarotoxin does not appear to interfere with the binding of 125I-n-BuTX to either site. The high-affinity binding site is likely to be the functional nicotinic ACh receptor (AChR), given the similarity between its affinity for 125I-n-BuTX and the concentration of n-BuTX required to block AChR function. Light microscopic autoradiographic analysis of 125I-n-BuTX binding to the ganglion cell surface reveals that toxin binding is concentrated at synaptic sites, which were identified using a synaptic vesicle-specific antibody. Scatchard analysis of autoradiographic data reveals that 125I-n-BuTX binding to the neuronal surface is saturable and has a Kd,app similar to that of the high-affinity binding site characterized in homogenates. Surface binding of 125I-n-BuTX is blocked by nicotine, carbachol, and d-tubocurarine (IC50 less than 20 microM), but not by atropine (IC50 greater than 10 mM). Denervation of the heart increases the ACh sensitivity of cardiac ganglion cells but has no effect upon the number of high-affinity binding sites for 125I-n-BuTX in tissue homogenates. Moreover, autoradiographic analysis indicates that denervation does not alter the number of 125I-n-BuTX binding sites on the ganglion cell surface. n-BuTX is as effective in reducing ganglion cell responses to ACh in denervated ganglia as it is in normally innervated ganglia. These results suggest that denervation alters neither the total number of nicotinic AChRs in the cardiac ganglion nor the number found on the surface of ganglion cells. These autonomic neurons thus respond differently to denervation than do skeletal myofibers. The increase in ACh sensitivity displayed by cardiac ganglion cells upon denervation cannot be explained by changes in AChR number.

  14. Inhibition of experimental ascending urinary tract infection by an epithelial cell-surface receptor analogue

    NASA Astrophysics Data System (ADS)

    Edén, C. Svanborg; Freter, R.; Hagberg, L.; Hull, R.; Hull, S.; Leffler, H.; Schoolnik, G.

    1982-08-01

    It has been shown that the establishment of urinary tract infection by Escherichia coli is dependent on attachment of the bacteria to epithelial cells1-4. The attachment involves specific epithelial cell receptors, which have been characterized as glycolipids5-10. Reversible binding to cell-surface mannosides may also be important4,11-13. This suggests an approach to the treatment of infections-that of blocking bacterial attachment with cell membrane receptor analogues. Using E. coli mutants lacking one or other of the two binding specificities (glycolipid and mannose), we show here that glycolipid analogues can block in vitro adhesion and in vivo urinary tract infection.

  15. Antibodies to B7.1 define the GFCC'C" face of the N-terminal domain as critical for co-stimulatory interactions.

    PubMed

    Wang, Suyue; Veldman, Geertruida M; Stahl, Mark; Xing, Yuzhe; Tobin, James F; Erbe, David V

    2002-09-02

    Antagonists of the B7 family of co-stimulatory molecules have the potential for altering immune responses therapeutically. To better define the requirements for such inhibitors, we have mapped the binding of an entire panel of blocking antibodies specific for human B7.1. By mutagenesis, each of the residues critical for blocking antibody binding appeared to fall entirely within the N-terminal V-set domain of B7.1. Thus, although antibody-antigen interacting surfaces can be quite large, these results indicate that a relatively small portion of the GFCC'C" face of this domain is crucial for further antagonist development.

  16. Pyrrole-Imidazole Polyamides: Manual Solid-Phase Synthesis.

    PubMed

    Pauff, Steven M; Fallows, Andrew J; Mackay, Simon P; Su, Wu; Cullis, Paul M; Burley, Glenn A

    2015-12-01

    Pyrrole-imidazole polyamides (PAs) are a family of DNA-binding peptides that bind in the minor groove of double-stranded DNA (dsDNA) in a sequence-selective, programmable fashion. This protocol describes a detailed manual procedure for the solid-phase synthesis of this family of compounds. The protocol entails solution-phase synthesis of the Boc-protected pyrrole (Py) and imidazole (Im) carboxylic acid building blocks. This unit also describes the importance of choosing the appropriate condensing agent to form the amide linkages between each building block. Finally, a monomeric coupling protocol and a fragment-based approach are described that delivers PAs in 13% to 30% yield in 8 days. Copyright © 2015 John Wiley & Sons, Inc.

  17. Availability of the B beta(15-21) epitope on cross-linked human fibrin and its plasmic degradation products

    NASA Technical Reports Server (NTRS)

    Chen, F.; Haber, E.; Matsueda, G. R.

    1992-01-01

    The binding of radiolabeled monoclonal antifibrin antibody 59D8 (specific for fibrin but not fibrinogen) to a series of degraded fibrin clots showed that the availability of the B beta(15-21) epitope (against which 59D8 had been raised) was inversely proportional to the extent of clot lysis. Examination of digest supernatants revealed that the B beta(15-21) epitope was released from clots as a high molecular weight degradation product in the presence of calcium ions but that the generation of low molecular weight peptides occurred in the absence of calcium ions. To address the question of epitope accessibility, we compared levels of fibrin clot binding among four radioactively labeled antibodies: antifibrin monoclonal antibody 59D8, two antifibrinogen monoclonal antibodies that cross-reacted with fibrin, and an affinity-purified polyclonal antifibrinogen antibody. We expected that the antifibrinogen antibodies would show enhanced binding to clots in comparison with the antifibrin antibody. However, the epitope accessibility experiments showed that all four antibody preparations bound fibrin clots at comparable levels. Taken together, these studies demonstrated that one fibrin-specific epitope, B beta(15-21), remains available on clots as they undergo degradation by plasmin and, importantly, that the epitope is not solubilized at a rate faster than the rate at which the clot is itself solubilized. The availability of the B beta(15-21) epitope during the course of plasminolysis assures the potential utility of antifibrin antibodies such as 59D8 for detecting thrombi and targeting plasminogen activators.

  18. A Cyclic Peptidic Serine Protease Inhibitor: Increasing Affinity by Increasing Peptide Flexibility

    PubMed Central

    Jiang, Longguang; Paaske, Berit; Kromann-Hansen, Tobias; Jensen, Jan K.; Sørensen, Hans Peter; Liu, Zhuo; Nielsen, Jakob T.; Christensen, Anni; Hosseini, Masood; Sørensen, Kasper K.; Nielsen, Niels Christian; Jensen, Knud J.; Huang, Mingdong; Andreasen, Peter A.

    2014-01-01

    Peptides are attracting increasing interest as protease inhibitors. Here, we demonstrate a new inhibitory mechanism and a new type of exosite interactions for a phage-displayed peptide library-derived competitive inhibitor, mupain-1 (CPAYSRYLDC), of the serine protease murine urokinase-type plasminogen activator (uPA). We used X-ray crystal structure analysis, site-directed mutagenesis, liquid state NMR, surface plasmon resonance analysis, and isothermal titration calorimetry and wild type and engineered variants of murine and human uPA. We demonstrate that Arg6 inserts into the S1 specificity pocket, its carbonyl group aligning improperly relative to Ser195 and the oxyanion hole, explaining why the peptide is an inhibitor rather than a substrate. Substitution of the P1 Arg with novel unnatural Arg analogues with aliphatic or aromatic ring structures led to an increased affinity, depending on changes in both P1 - S1 and exosite interactions. Site-directed mutagenesis showed that exosite interactions, while still supporting high affinity binding, differed substantially between different uPA variants. Surprisingly, high affinity binding was facilitated by Ala-substitution of Asp9 of the peptide, in spite of a less favorable binding entropy and loss of a polar interaction. We conclude that increased flexibility of the peptide allows more favorable exosite interactions, which, in combination with the use of novel Arg analogues as P1 residues, can be used to manipulate the affinity and specificity of this peptidic inhibitor, a concept different from conventional attempts at improving inhibitor affinity by reducing the entropic burden. PMID:25545505

  19. Mechanism of action and epitopes of Clostridium difficile toxin B-neutralizing antibody bezlotoxumab revealed by X-ray crystallography.

    PubMed

    Orth, Peter; Xiao, Li; Hernandez, Lorraine D; Reichert, Paul; Sheth, Payal R; Beaumont, Maribel; Yang, Xiaoyu; Murgolo, Nicholas; Ermakov, Grigori; DiNunzio, Edward; Racine, Fred; Karczewski, Jerzy; Secore, Susan; Ingram, Richard N; Mayhood, Todd; Strickland, Corey; Therien, Alex G

    2014-06-27

    The symptoms of Clostridium difficile infections are caused by two exotoxins, TcdA and TcdB, which target host colonocytes by binding to unknown cell surface receptors, at least in part via their combined repetitive oligopeptide (CROP) domains. A combination of the anti-TcdA antibody actoxumab and the anti-TcdB antibody bezlotoxumab is currently under development for the prevention of recurrent C. difficile infections. We demonstrate here through various biophysical approaches that bezlotoxumab binds to specific regions within the N-terminal half of the TcdB CROP domain. Based on this information, we solved the x-ray structure of the N-terminal half of the TcdB CROP domain bound to Fab fragments of bezlotoxumab. The structure reveals that the TcdB CROP domain adopts a β-solenoid fold consisting of long and short repeats and that bezlotoxumab binds to two homologous sites within the CROP domain, partially occluding two of the four putative carbohydrate binding pockets located in TcdB. We also show that bezlotoxumab neutralizes TcdB by blocking binding of TcdB to mammalian cells. Overall, our data are consistent with a model wherein a single molecule of bezlotoxumab neutralizes TcdB by binding via its two Fab regions to two epitopes within the N-terminal half of the TcdB CROP domain, partially blocking the carbohydrate binding pockets of the toxin and preventing toxin binding to host cells. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Two proteins modulating transendothelial migration of leukocytes recognize novel carboxylated glycans on endothelial cells.

    PubMed

    Srikrishna, G; Panneerselvam, K; Westphal, V; Abraham, V; Varki, A; Freeze, H H

    2001-04-01

    We recently showed that a class of novel carboxylated N:-glycans was constitutively expressed on endothelial cells. Activated, but not resting, neutrophils expressed binding sites for the novel glycans. We also showed that a mAb against these novel glycans (mAbGB3.1) inhibited leukocyte extravasation in a murine model of peritoneal inflammation. To identify molecules that mediated these interactions, we isolated binding proteins from bovine lung by their differential affinity for carboxylated or neutralized glycans. Two leukocyte calcium-binding proteins that bound in a carboxylate-dependent manner were identified as S100A8 and annexin I. An intact N terminus of annexin I and heteromeric assembly of S100A8 with S100A9 (another member of the S100 family) appeared necessary for this interaction. A mAb to S100A9 blocked neutrophil binding to immobilized carboxylated glycans. Purified human S100A8/A9 complex and recombinant human annexin I showed carboxylate-dependent binding to immobilized bovine lung carboxylated glycans and recognized a subset of mannose-labeled endothelial glycoproteins immunoprecipitated by mAbGB3.1. Saturable binding of S100A8/A9 complex to endothelial cells was also blocked by mAbGB3.1. These results suggest that the carboxylated glycans play important roles in leukocyte trafficking by interacting with proteins known to modulate extravasation.

  1. Treatment of plasminogen deficiency patients with fresh frozen plasma.

    PubMed

    Kızılocak, Hande; Ozdemir, Nihal; Dikme, Gürcan; Koç, Begüm; Atabek, Ayşe Ayzıt; Çokuğraş, Haluk; İskeleli, Güzin; Dönmez-Demir, Buket; Christiansen, Nina Merete; Ziegler, Maike; Ozdağ, Hilal; Schuster, Volker; Celkan, Tiraje

    2018-02-01

    Congenital plasminogen (Plg) deficiency leads to the development of ligneous membranes on mucosal surfaces. Here, we report our experience with local and intravenous fresh frozen plasma (FFP). We retrospectively reviewed medical files of 17 patients and their eight first-degree relatives. Conjunctivitis was the main complaint. Thirteen patients were treated both with intravenous and conjunctival FFP. Venous thrombosis did not develop in any. Genetic evaluation revealed heterogeneous mutations as well as polymorphisms. Diagnosis and treatment of Plg deficiency is challenging; topical and intravenous FFP may be an alternative treatment. © 2017 Wiley Periodicals, Inc.

  2. Subdural Instillation of a Thrombolytic Agent for Treatment of Recurrent Subdural Hematoma.

    PubMed

    Frenkel, Mark B; Sarwal, Aarti; Wren, Mary Petrulis; Newey, Christopher R; Couture, Daniel E

    This study aims to report the case of a patient with recurrent subdural hemorrhage (SDH) who was administered tissue plasminogen activator through a subdural drain to enhance drainage and prevent recurrence. An 85-year-old man was treated for subacute over chronic SDH that kept on reaccumulating despite serial twist drill drainage, burr hole drainage, and craniotomy. No coagulopathy was identified with adequate blood pressure control. Treatment with tissue plasminogen activator resulted in successful drainage of the SDH, and the patient had no further recurrence at 9-month follow-up.

  3. The cholesterol-dependent cytolysins pneumolysin and streptolysin O require binding to red blood cell glycans for hemolytic activity

    PubMed Central

    Shewell, Lucy K.; Harvey, Richard M.; Higgins, Melanie A.; Day, Christopher J.; Hartley-Tassell, Lauren E.; Chen, Austen Y.; Gillen, Christine M.; James, David B. A.; Alonzo, Francis; Torres, Victor J.; Walker, Mark J.; Paton, Adrienne W.; Paton, James C.; Jennings, Michael P.

    2014-01-01

    The cholesterol-dependent cytolysin (CDC) pneumolysin (Ply) is a key virulence factor of Streptococcus pneumoniae. Membrane cholesterol is required for the cytolytic activity of this toxin, but it is not clear whether cholesterol is the only cellular receptor. Analysis of Ply binding to a glycan microarray revealed that Ply has lectin activity and binds glycans, including the Lewis histo-blood group antigens. Surface plasmon resonance analysis showed that Ply has the highest affinity for the sialyl LewisX (sLeX) structure, with a Kd of 1.88 × 10−5 M. Ply hemolytic activity against human RBCs showed dose-dependent inhibition by sLeX. Flow cytometric analysis and Western blots showed that blocking binding of Ply to the sLeX glycolipid on RBCs prevents deposition of the toxin in the membrane. The lectin domain responsible for sLeX binding is in domain 4 of Ply, which contains candidate carbohydrate-binding sites. Mutagenesis of these predicted carbohydrate-binding residues of Ply resulted in a decrease in hemolytic activity and a reduced affinity for sLeX. This study reveals that this archetypal CDC requires interaction with the sLeX glycolipid cellular receptor as an essential step before membrane insertion. A similar analysis conducted on streptolysin O from Streptococcus pyogenes revealed that this CDC also has glycan-binding properties and that hemolytic activity against RBCs can be blocked with the glycan lacto-N-neotetraose by inhibiting binding to the cell surface. Together, these data support the emerging paradigm shift that pore-forming toxins, including CDCs, have cellular receptors other than cholesterol that define target cell tropism. PMID:25422425

  4. The cholesterol-dependent cytolysins pneumolysin and streptolysin O require binding to red blood cell glycans for hemolytic activity.

    PubMed

    Shewell, Lucy K; Harvey, Richard M; Higgins, Melanie A; Day, Christopher J; Hartley-Tassell, Lauren E; Chen, Austen Y; Gillen, Christine M; James, David B A; Alonzo, Francis; Torres, Victor J; Walker, Mark J; Paton, Adrienne W; Paton, James C; Jennings, Michael P

    2014-12-09

    The cholesterol-dependent cytolysin (CDC) pneumolysin (Ply) is a key virulence factor of Streptococcus pneumoniae. Membrane cholesterol is required for the cytolytic activity of this toxin, but it is not clear whether cholesterol is the only cellular receptor. Analysis of Ply binding to a glycan microarray revealed that Ply has lectin activity and binds glycans, including the Lewis histo-blood group antigens. Surface plasmon resonance analysis showed that Ply has the highest affinity for the sialyl LewisX (sLeX) structure, with a K(d) of 1.88 × 10(-5) M. Ply hemolytic activity against human RBCs showed dose-dependent inhibition by sLeX. Flow cytometric analysis and Western blots showed that blocking binding of Ply to the sLeX glycolipid on RBCs prevents deposition of the toxin in the membrane. The lectin domain responsible for sLeX binding is in domain 4 of Ply, which contains candidate carbohydrate-binding sites. Mutagenesis of these predicted carbohydrate-binding residues of Ply resulted in a decrease in hemolytic activity and a reduced affinity for sLeX. This study reveals that this archetypal CDC requires interaction with the sLeX glycolipid cellular receptor as an essential step before membrane insertion. A similar analysis conducted on streptolysin O from Streptococcus pyogenes revealed that this CDC also has glycan-binding properties and that hemolytic activity against RBCs can be blocked with the glycan lacto-N-neotetraose by inhibiting binding to the cell surface. Together, these data support the emerging paradigm shift that pore-forming toxins, including CDCs, have cellular receptors other than cholesterol that define target cell tropism.

  5. Single-stranded DNA-binding Protein in Vitro Eliminates the Orientation-dependent Impediment to Polymerase Passage on CAG/CTG Repeats*

    PubMed Central

    Delagoutte, Emmanuelle; Goellner, Geoffrey M.; Guo, Jie; Baldacci, Giuseppe; McMurray, Cynthia T.

    2008-01-01

    Small insertions and deletions of trinucleotide repeats (TNRs) can occur by polymerase slippage and hairpin formation on either template or newly synthesized strands during replication. Although not predicted by a slippage model, deletions occur preferentially when 5′-CTG is in the lagging strand template and are highly favored over insertion events in rapidly replicating cells. The mechanism for the deletion bias and the orientation dependence of TNR instability is poorly understood. We report here that there is an orientation-dependent impediment to polymerase progression on 5′-CAG and 5′-CTG repeats that can be relieved by the binding of single-stranded DNA-binding protein. The block depends on the primary sequence of the TNR but does not correlate with the thermodynamic stability of hairpins. The orientation-dependent block of polymerase passage is the strongest when 5′-CAG is the template. We propose a “template-push” model in which the slow speed of DNA polymerase across the 5′-CAG leading strand template creates a threat to helicase-polymerase coupling. To prevent uncoupling, the TNR template is pushed out and by-passed. Hairpins do not cause the block, but appear to occur as a consequence of polymerase pass-over. PMID:18263578

  6. 2D IR spectroscopy reveals the role of water in the binding of channel-blocking drugs to the influenza M2 channel.

    PubMed

    Ghosh, Ayanjeet; Wang, Jun; Moroz, Yurii S; Korendovych, Ivan V; Zanni, Martin; DeGrado, William F; Gai, Feng; Hochstrasser, Robin M

    2014-06-21

    Water is an integral part of the homotetrameric M2 proton channel of the influenza A virus, which not only assists proton conduction but could also play an important role in stabilizing channel-blocking drugs. Herein, we employ two dimensional infrared (2D IR) spectroscopy and site-specific IR probes, i.e., the amide I bands arising from isotopically labeled Ala30 and Gly34 residues, to probe how binding of either rimantadine or 7,7-spiran amine affects the water dynamics inside the M2 channel. Our results show, at neutral pH where the channel is non-conducting, that drug binding leads to a significant increase in the mobility of the channel water. A similar trend is also observed at pH 5.0 although the difference becomes smaller. Taken together, these results indicate that the channel water facilitates drug binding by increasing its entropy. Furthermore, the 2D IR spectral signatures obtained for both probes under different conditions collectively support a binding mechanism whereby amantadine-like drugs dock in the channel with their ammonium moiety pointing toward the histidine residues and interacting with a nearby water cluster, as predicted by molecular dynamics simulations. We believe these findings have important implications for designing new anti-influenza drugs.

  7. Murine Anti-vaccinia Virus D8 Antibodies Target Different Epitopes and Differ in Their Ability to Block D8 Binding to CS-E

    PubMed Central

    Matho, Michael H.; de Val, Natalia; Miller, Gregory M.; Brown, Joshua; Schlossman, Andrew; Meng, Xiangzhi; Crotty, Shane; Peters, Bjoern; Xiang, Yan; Hsieh-Wilson, Linda C.; Ward, Andrew B.; Zajonc, Dirk M.

    2014-01-01

    The IMV envelope protein D8 is an adhesion molecule and a major immunodominant antigen of vaccinia virus (VACV). Here we identified the optimal D8 ligand to be chondroitin sulfate E (CS-E). CS-E is characterized by a disaccharide moiety with two sulfated hydroxyl groups at positions 4′ and 6′ of GalNAc. To study the role of antibodies in preventing D8 adhesion to CS-E, we have used a panel of murine monoclonal antibodies, and tested their ability to compete with CS-E for D8 binding. Among four antibody specificity groups, MAbs of one group (group IV) fully abrogated CS-E binding, while MAbs of a second group (group III) displayed widely varying levels of CS-E blocking. Using EM, we identified the binding site for each antibody specificity group on D8. Recombinant D8 forms a hexameric arrangement, mediated by self-association of a small C-terminal domain of D8. We propose a model in which D8 oligomerization on the IMV would allow VACV to adhere to heterogeneous population of CS, including CS-C and potentially CS-A, while overall increasing binding efficiency to CS-E. PMID:25474621

  8. Murine anti-vaccinia virus D8 antibodies target different epitopes and differ in their ability to block D8 binding to CS-E.

    PubMed

    Matho, Michael H; de Val, Natalia; Miller, Gregory M; Brown, Joshua; Schlossman, Andrew; Meng, Xiangzhi; Crotty, Shane; Peters, Bjoern; Xiang, Yan; Hsieh-Wilson, Linda C; Ward, Andrew B; Zajonc, Dirk M

    2014-12-01

    The IMV envelope protein D8 is an adhesion molecule and a major immunodominant antigen of vaccinia virus (VACV). Here we identified the optimal D8 ligand to be chondroitin sulfate E (CS-E). CS-E is characterized by a disaccharide moiety with two sulfated hydroxyl groups at positions 4' and 6' of GalNAc. To study the role of antibodies in preventing D8 adhesion to CS-E, we have used a panel of murine monoclonal antibodies, and tested their ability to compete with CS-E for D8 binding. Among four antibody specificity groups, MAbs of one group (group IV) fully abrogated CS-E binding, while MAbs of a second group (group III) displayed widely varying levels of CS-E blocking. Using EM, we identified the binding site for each antibody specificity group on D8. Recombinant D8 forms a hexameric arrangement, mediated by self-association of a small C-terminal domain of D8. We propose a model in which D8 oligomerization on the IMV would allow VACV to adhere to heterogeneous population of CS, including CS-C and potentially CS-A, while overall increasing binding efficiency to CS-E.

  9. Distinct Fcγ receptors mediate the effect of Serum Amyloid P on neutrophil adhesion and fibrocyte differentiation

    PubMed Central

    Cox, Nehemiah; Pilling, Darrell; Gomer, Richard H.

    2014-01-01

    The plasma protein Serum Amyloid P (SAP) reduces neutrophil adhesion, inhibits the differentiation of monocytes into fibroblast-like cells called fibrocytes, and promotes phagocytosis of cell debris by macrophages. Together, these effects of SAP reduce key aspects of inflammation and fibrosis, and SAP injections improve lung function in pulmonary fibrosis patients. SAP functions are mediated in part by Fcγ receptors, but the contribution of each Fcγ receptor is not fully understood. We found that amino acids Q55 and E126 in human SAP affect human fibrocyte differentiation and SAP binding to FcγRI. E126, K130 and Q128 affect neutrophil adhesion and SAP affinity for FcγRIIa. Q128 also affects phagocytosis by macrophages and SAP affinity for FcγRI. All the identified functionally significant amino acids in SAP form a binding site that is distinct from the previously described SAP-FcγRIIa binding site. Blocking FcγRI with an IgG blocking antibody reduces the SAP effect on fibrocyte differentiation, and ligating FcγRIIa with antibodies reduces neutrophil adhesion. Together, these results suggest that SAP binds to FcγRI on monocytes to inhibit fibrocyte differentiation, and binds to FcγRIIa on neutrophils to reduce neutrophil adhesion. PMID:25024390

  10. A potent transrepression domain in the retinoblastoma protein induces a cell cycle arrest when bound to E2F sites.

    PubMed Central

    Sellers, W R; Rodgers, J W; Kaelin, W G

    1995-01-01

    An intact T/E1A-binding domain (the pocket) is necessary, but not sufficient, for the retinoblastoma protein (RB) to bind to DNA-protein complexes containing E2F and for RB to induce a G1/S block. Indirect evidence suggests that the binding of RB to E2F may, in addition to inhibiting E2F transactivation function, generate a complex capable of functioning as a transrepressor. Here we show that a chimera in which the E2F1 transactivation domain was replaced with the RB pocket could, in a DNA-binding and pocket-dependent manner, mimic the ability of RB to repress transcription and induce a cell cycle arrest. In contrast, a transdominant negative E2F1 mutant that is capable of blocking E2F-dependent transactivation did not. Fusion of the RB pocket to a heterologous DNA-binding domain unrelated to E2F likewise generated a transrepressor protein when scored against a suitable reporter. These results suggest that growth suppression by RB is due, at least in part, to transrepression mediated by the pocket domain bound to certain promoters via E2F. Images Fig. 4 Fig. 5 PMID:8524800

  11. Enhanced resistance in Theobroma cacao against oomycete and fungal pathogens by secretion of phosphatidylinositol-3-phosphate-binding proteins

    USDA-ARS?s Scientific Manuscript database

    The internalization of oomycete and fungal pathogen effectors into host plant cells has been reported to be blocked by proteins that bind to the effectors’ cell entry receptor, phosphatidylinositol-3-phosphate (PI3P). This finding suggested a novel strategy for disease control by engineering plants ...

  12. Therapeutic Potential of Shark Anti-ICOSL VNAR Domains is Exemplified in a Murine Model of Autoimmune Non-Infectious Uveitis.

    PubMed

    Kovaleva, Marina; Johnson, Katherine; Steven, John; Barelle, Caroline J; Porter, Andrew

    2017-01-01

    Induced costimulatory ligand (ICOSL) plays an important role in the activation of T cells through its interaction with the inducible costimulator, ICOS. Suppression of full T cell activation can be achieved by blocking this interaction and has been shown to be an effective means of ameliorating disease in models of autoimmunity and inflammation. In this study, we demonstrated the ability of a novel class of anti-ICOSL antigen-binding single domains derived from sharks (VNARs) to effectively reduce inflammation in a murine model of non-infectious uveitis. In initial selections, specific VNARs that recognized human ICOSL were isolated from an immunized nurse shark phage display library and lead domains were identified following their performance in a series of antigen selectivity and in vitro bioassay screens. High potency in cell-based blocking assays suggested their potential as novel binders suitable for further therapeutic development. To test this hypothesis, surrogate anti-mouse ICOSL VNAR domains were isolated from the same phage display library and the lead VNAR clone selected via screening in binding and ICOS/ICOSL blocking experiments. The VNAR domain with the highest potency in cell-based blocking of ICOS/ICOSL interaction was fused to the Fc portion of human IgG1 and was tested in vivo in a mouse model of interphotoreceptor retinoid-binding protein-induced uveitis. The anti-mICOSL VNAR Fc, injected systemically, resulted in a marked reduction of inflammation in treated mice when compared with untreated control animals. This approach inhibited disease progression to an equivalent extent to that seen for the positive corticosteroid control, cyclosporin A, reducing both clinical and histopathological scores. These results represent the first demonstration of efficacy of a VNAR binding domain in a relevant clinical model of disease and highlight the potential of VNARs for the treatment of auto-inflammatory conditions.

  13. Antibody specificities of children living in a malaria endemic area to inhibitory and blocking epitopes on MSP-1 19 of Plasmodium falciparum.

    PubMed

    Omosun, Y O; Adoro, S; Anumudu, C I; Odaibo, A B; Uthiapibull, C; Holder, A A; Nwagwu, M; Nwuba, R I

    2009-03-01

    Merozoite surface protein-1(19) (MSP-1(19)) specific antibodies which include processing inhibitory, blocking and neutral antibodies have been identified in individuals exposed to Plasmodium falciparum. Here we intend to look at the effect of single and multiple amino acid substitutions of MSP-1(19) on the recognition by polyclonal antibodies from children living in Igbo-Ora, Nigeria. This would provide us with information on the possibility of eliciting mainly processing inhibitory antibodies with a recombinant MSP-1(19) vaccine. Blood was collected from children in the rainy season and binding of anti-MSP-1(19) antibodies to modified mutants of MSP-1(19) was analysed by ELISA. The MSP-1(19) mutant proteins with single substitutions at positions 22 (Leu-->Arg), 43 (Glu-->Leu) and 53 (Asn-->Arg) and the MSP-1(19) mutant protein with multiple substitutions at positions 27+31+34+43 (Glu-->Tyr, Leu-->Arg, Tyr-->Ser, Glu-->Leu); which had inhibitory epitopes; had the highest recognition. Children recognised both sets of mutants with different age groups having different recognition levels. The percentage of malaria positive individuals (32-80%) with antibodies that bound to the mutants MSP-1(19) containing epitopes that recognise only processing inhibitory and not blocking antibodies, were significantly different from those with antibodies that did not bind to these mutants (21-28%). The amino acid substitutions that abolished the binding of blocking antibodies without affecting the binding of inhibitory antibodies are of particular interest in the design of MSP-1(19) based malaria vaccines. Although these MSP-1(19) mutants have not been found in natural population, their recognition by polyclonal antibodies from humans naturally infected with malaria is very promising for the future use of MSP-1(19) mutants in the design of a malaria vaccine.

  14. Blockade of Cocaine or σ Receptor Agonist Self Administration by Subtype-Selective σ Receptor Antagonists.

    PubMed

    Katz, Jonathan L; Hiranita, Takato; Kopajtic, Theresa A; Rice, Kenner C; Mesangeau, Christophe; Narayanan, Sanju; Abdelazeem, Ahmed H; McCurdy, Christopher R

    2016-07-01

    The identification of sigma receptor (σR) subtypes has been based on radioligand binding and, despite progress with σ1R cellular function, less is known about σR subtype functions in vivo. Recent findings that cocaine self administration experience will trigger σR agonist self administration was used in this study to assess the in vivo receptor subtype specificity of the agonists (+)-pentazocine, PRE-084 [2-(4-morpholinethyl) 1-phenylcyclohexanecarboxylate hydrochloride], and 1,3-di-o-tolylguanidine (DTG) and several novel putative σR antagonists. Radioligand binding studies determined in vitro σR selectivity of the novel compounds, which were subsequently studied for self administration and antagonism of cocaine, (+)-pentazocine, PRE-084, or DTG self administration. Across the dose ranges studied, none of the novel compounds were self administered, nor did they alter cocaine self administration. All compounds blocked DTG self administration, with a subset also blocking (+)-pentazocine and PRE-084 self administration. The most selective of the compounds in binding σ1Rs blocked cocaine self administration when combined with a dopamine transport inhibitor, either methylphenidate or nomifensine. These drug combinations did not decrease rates of responding maintained by food reinforcement. In contrast, the most selective of the compounds in binding σ2Rs had no effect on cocaine self administration in combination with either dopamine transport inhibitor. Thus, these results identify subtype-specific in vivo antagonists, and the utility of σR agonist substitution for cocaine self administration as an assay capable of distinguishing σR subtype selectivity in vivo. These results further suggest that effectiveness of dual σR antagonism and dopamine transport inhibition in blocking cocaine self administration is specific for σ1Rs and further support this dual targeting approach to development of cocaine antagonists. U.S. Government work not protected by U.S. copyright.

  15. Block of calcium channels by enkephalin and somatostatin in neuroblastoma-glioma hybrid NG108-15 cells.

    PubMed

    Tsunoo, A; Yoshii, M; Narahashi, T

    1986-12-01

    Leucine-enkephalin, methionine-enkephalin, and morphine caused a reversible block of Ca2+ channel currents in neuroblastoma-glioma hybrid cells (NG108-15). The long-lasting (type 2) component of the Ca2+ channel current was blocked by leucine-enkephalin, while the transient (type 1) component was not affected. The enkephalin-induced blocking action was antagonized by naloxone and appears to be mediated by delta-opiate receptors. Two different aspects of the blocking effect were detected, a resting block and a recovery from block during prolonged depolarizing pulses. Recovery from block was more complete, and its time course was more rapid, with depolarization to more positive potentials. The dose dependence of the type 2 channel block at rest indicated a one-to-one binding stoichiometry, with an apparent dissociation constant of 8.8 nM. Somatostatin exerted a similar selective blocking action on the type 2 Ca2+ channel. The time- and voltage-dependent block of type 2 Ca2+ channels may provide a mechanism underlying the enkephalinergic presynaptic inhibition of transmitter release and the somatostatin block of pituitary growth hormone release.

  16. Mechanism of human antibody-mediated neutralization of Marburg virus.

    PubMed

    Flyak, Andrew I; Ilinykh, Philipp A; Murin, Charles D; Garron, Tania; Shen, Xiaoli; Fusco, Marnie L; Hashiguchi, Takao; Bornholdt, Zachary A; Slaughter, James C; Sapparapu, Gopal; Klages, Curtis; Ksiazek, Thomas G; Ward, Andrew B; Saphire, Erica Ollmann; Bukreyev, Alexander; Crowe, James E

    2015-02-26

    The mechanisms by which neutralizing antibodies inhibit Marburg virus (MARV) are not known. We isolated a panel of neutralizing antibodies from a human MARV survivor that bind to MARV glycoprotein (GP) and compete for binding to a single major antigenic site. Remarkably, several of the antibodies also bind to Ebola virus (EBOV) GP. Single-particle EM structures of antibody-GP complexes reveal that all of the neutralizing antibodies bind to MARV GP at or near the predicted region of the receptor-binding site. The presence of the glycan cap or mucin-like domain blocks binding of neutralizing antibodies to EBOV GP, but not to MARV GP. The data suggest that MARV-neutralizing antibodies inhibit virus by binding to infectious virions at the exposed MARV receptor-binding site, revealing a mechanism of filovirus inhibition. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Novel soluble, high-affinity gastrin-releasing peptide binding proteins in Swiss 3T3 fibroblasts.

    PubMed

    Kane, M A; Portanova, L B; Kelley, K; Holley, M; Ross, S E; Boose, D; Escobedo-Morse, A; Alvarado, B

    1994-01-01

    Swiss 3T3 cells contained substantial amounts of soluble and specific [125I]GRP binders. Like the membrane-associated GRP receptor, they were of high affinity, saturable, bound to GRP(14-27) affinity gels, and exhibited specificity for GRP(14-27) binding. They differed in that acid or freezing destroyed specific binding, specific binding exhibited different time and temperature effects, no detergent was required for their solubilization, ammonium sulfate fractionation yielded different profiles, the M(rs) were lower, GRP(1-16) also blocked binding, and a polyclonal anti-GRP receptor antiserum did not bind on Western blots. The isolated, soluble GRP binding protein(s) rapidly degraded [125I]GRP. These soluble GRP binding proteins may play a role in the regulation of the mitogenic effects of GRP on these cells.

  18. Linear scaffolds for multivalent targeting of melanocortin receptors.

    PubMed

    Dehigaspitiya, Dilani Chathurika; Anglin, Bobbi L; Smith, Kara R; Weber, Craig S; Lynch, Ronald M; Mash, Eugene A

    2015-12-21

    Molecules bearing one, two, three, or four copies of the tetrapeptide His-dPhe-Arg-Trp were attached to scaffolds based on ethylene glycol, glycerol, and d-mannitol by means of the copper-assisted azide-alkyne cyclization. The abilities of these compounds to block binding of a probe at the melanocortin 4 receptor were evaluated using a competitive binding assay. All of the multivalent molecules studied exhibited 30- to 40-fold higher apparent affinites when compared to a monovalent control. These results are consistent with divalent binding to receptor dimers. No evidence for tri- or tetravalent binding was obtained. Differences in the interligand spacing required for divalent binding, as opposed to tri- or tetravalent binding, may be responsible for these results.

  19. Treatment With Tissue Plasminogen Activator in the Golden Hour and the Shape of the 4.5-Hour Time-Benefit Curve in the National United States Get With The Guidelines-Stroke Population.

    PubMed

    Kim, Joon-Tae; Fonarow, Gregg C; Smith, Eric E; Reeves, Mathew J; Navalkele, Digvijaya D; Grotta, James C; Grau-Sepulveda, Maria V; Hernandez, Adrian F; Peterson, Eric D; Schwamm, Lee H; Saver, Jeffrey L

    2017-01-10

    Earlier tissue plasminogen activator treatment improves ischemic stroke outcome, but aspects of the time-benefit relationship still not well delineated are: (1) the degree of additional benefit accrued with treatment in the first 60 minutes after onset, and (2) the shape of the time-benefit curve through 4.5 hours. We analyzed patients who had acute ischemic stroke treated with intravenous tissue plasminogen activator within 4.5 hours of onset from the Get With The Guidelines-Stroke US national program. Onset-to-treatment time was analyzed as a continuous, potentially nonlinear variable and as a categorical variable comparing patients treated within 60 minutes of onset with later epochs. Among 65 384 tissue plasminogen activator-treated patients, the median onset-to-treatment time was 141 minutes (interquartile range, 110-173) and 878 patients (1.3%) were treated within the first 60 minutes. Treatment within 60 minutes, compared with treatment within 61 to 270 minutes, was associated with increased odds of discharge to home (adjusted odds ratio, 1.25; 95% confidence interval, 1.07-1.45), independent ambulation at discharge (adjusted odds ratio, 1.22; 95% confidence interval, 1.03-1.45), and freedom from disability (modified Rankin Scale 0-1) at discharge (adjusted odds ratio, 1.72; 95% confidence interval, 1.21-2.46), without increased hemorrhagic complications or in-hospital mortality. The pace of decline in benefit of tissue plasminogen activator from onset-to-treatment times of 20 through 270 minutes was mildly nonlinear for discharge to home, with more rapid benefit loss in the first 170 minutes than later, and linear for independent ambulation and in-hospital mortality. Thrombolysis started within the first 60 minutes after onset is associated with best outcomes for patients with acute ischemic stroke, and benefit declined more rapidly early after onset for the ability to be discharged home. These findings support intensive efforts to organize stroke systems of care to improve the timeliness of thrombolytic therapy in acute ischemic stroke. © 2016 American Heart Association, Inc.

  20. Mapping of melanin-concentrating hormone receptor 1 B cell epitopes predicts two major binding sites for vitiligo patient autoantibodies.

    PubMed

    Gavalas, Nikos G; Gottumukkala, Raju V S R K; Gawkrodger, David J; Watson, Philip F; Weetman, Anthony P; Kemp, E Helen

    2009-05-01

    The melanin-concentrating hormone receptor 1 (MCHR1) has been identified as a B cell autoantigen in vitiligo with antibodies to the receptor detectable in binding and function-blocking assays. Two epitope domains (amino acids 1-138 and 139-298) have been previously identified. In this study, we aimed to further define the epitope specificity of MCHR1 antibodies using phage-display technology and to identify the epitopes recognised by receptor antibodies detected in MCHR1 function-blocking assays. Antibody reactivity to MCHR1 peptides 51-80, 85-98, 154-158 and 254-260 was identified by phage-display and subsequently confirmed in phage ELISA in 2/12, 5/12, 3/12 and 6/12 of vitiligo patients, respectively. The results suggest that major autoantibody epitopes are localised in the 85-98 and 254-260 amino acid regions of MCHR1 with minor epitopes in amino acid sequences 51-80 and 154-158. Antibodies with MCHR1 function-blocking activity were determined to recognise epitope 254-260, this being the first epitope to be reported as a target site for antibodies that block the function of the receptor.

  1. Antibodies to the Central Conserved Region of Respiratory Syncytial Virus (RSV) G Protein Block RSV G Protein CX3C-CX3CR1 Binding and Cross-Neutralize RSV A and B Strains0

    PubMed Central

    Choi, Youngjoo; Mason, Caleb S.; Jones, Les P.; Crabtree, Jackelyn; Jorquera, Patricia A.

    2012-01-01

    Abstract Respiratory syncytial virus (RSV) is a primary cause of severe lower respiratory tract disease in infants, young children, and the elderly worldwide, and despite decades of effort, there remains no safe and effective vaccine. RSV modifies the host immune response during infection by CX3C chemokine mimicry adversely affecting pulmonary leukocyte chemotaxis and CX3CR1+ RSV-specific T-cell responses. In this study we investigated whether immunization of mice with RSV G protein polypeptides from strain A2 could induce antibodies that block G protein–CX3CR1 interactions of both RSV A and B strains. The results show that mice immunized with RSV A2 G polypeptides generate antibodies that block binding of RSV A2 and B1 native G proteins to CX3CR1, and that these antibodies effectively cross-neutralize both A and B strains of RSV. These findings suggest that vaccines that induce RSV G protein–CX3CR1 blocking antibodies may provide a disease intervention strategy in the efforts to develop safe and efficacious RSV vaccines. PMID:22551066

  2. Mechanism of sodium channel block by local anesthetics, antiarrhythmics, and anticonvulsants

    PubMed Central

    Tikhonov, Denis B.

    2017-01-01

    Local anesthetics, antiarrhythmics, and anticonvulsants include both charged and electroneutral compounds that block voltage-gated sodium channels. Prior studies have revealed a common drug-binding region within the pore, but details about the binding sites and mechanism of block remain unclear. Here, we use the x-ray structure of a prokaryotic sodium channel, NavMs, to model a eukaryotic channel and dock representative ligands. These include lidocaine, QX-314, cocaine, quinidine, lamotrigine, carbamazepine (CMZ), phenytoin, lacosamide, sipatrigine, and bisphenol A. Preliminary calculations demonstrated that a sodium ion near the selectivity filter attracts electroneutral CMZ but repels cationic lidocaine. Therefore, we further docked electroneutral and cationic drugs with and without a sodium ion, respectively. In our models, all the drugs interact with a phenylalanine in helix IVS6. Electroneutral drugs trap a sodium ion in the proximity of the selectivity filter, and this same site attracts the charged group of cationic ligands. At this position, even small drugs can block the permeation pathway by an electrostatic or steric mechanism. Our study proposes a common pharmacophore for these diverse drugs. It includes a cationic moiety and an aromatic moiety, which are usually linked by four bonds. PMID:28258204

  3. Mechanism of sodium channel block by local anesthetics, antiarrhythmics, and anticonvulsants.

    PubMed

    Tikhonov, Denis B; Zhorov, Boris S

    2017-04-03

    Local anesthetics, antiarrhythmics, and anticonvulsants include both charged and electroneutral compounds that block voltage-gated sodium channels. Prior studies have revealed a common drug-binding region within the pore, but details about the binding sites and mechanism of block remain unclear. Here, we use the x-ray structure of a prokaryotic sodium channel, NavMs, to model a eukaryotic channel and dock representative ligands. These include lidocaine, QX-314, cocaine, quinidine, lamotrigine, carbamazepine (CMZ), phenytoin, lacosamide, sipatrigine, and bisphenol A. Preliminary calculations demonstrated that a sodium ion near the selectivity filter attracts electroneutral CMZ but repels cationic lidocaine. Therefore, we further docked electroneutral and cationic drugs with and without a sodium ion, respectively. In our models, all the drugs interact with a phenylalanine in helix IVS6. Electroneutral drugs trap a sodium ion in the proximity of the selectivity filter, and this same site attracts the charged group of cationic ligands. At this position, even small drugs can block the permeation pathway by an electrostatic or steric mechanism. Our study proposes a common pharmacophore for these diverse drugs. It includes a cationic moiety and an aromatic moiety, which are usually linked by four bonds. © 2017 Tikhonov and Zhorov.

  4. Discovery of berberine based derivatives as anti-influenza agent through blocking of neuraminidase.

    PubMed

    Enkhtaivan, Gansukh; Muthuraman, Pandurangan; Kim, Doo Hwan; Mistry, Bhupendra

    2017-10-15

    In this study, we investigated the antiviral activity of newly synthesized berberine derivatives (BD) against influenza virus infection using several strains in in vitro and in silico. The CPE reduction, pre-incubation, NA activity inhibition and molecular docking assays were used for antiviral evaluation. The anti-influenza activities of BDs were stronger than plant-derived pure commercial berberine, and some of the BDs were more potent than control drug Oseltamivir. The cytotoxicity level was observed in the range 63.16-1639μg/mL for synthesized BDs. Additionally, BDs were detected as able to block influenza viral particles. We targeted neuraminidase one of the influenza surface protein for further probing. Moreover, BDs registered competitive NA inhibition activity comparing with Oseltamivir. The active site of viral NA subunit was fully blocked by BD as the same location as Oseltamivir. The binding energies between influenza NA subunit and BD-5 were higher than Oseltamivir. More H-bonds and NA residues were occupied by BD for stronger binding ability than Oseltamivir. These results indicated that BD inhibits various strains of influenza virus by blocking of viral NA subunit. Copyright © 2017. Published by Elsevier Ltd.

  5. A RHAMM mimetic peptide blocks hyaluronan signaling and reduces inflammation and fibrogenesis in excisional skin wounds.

    PubMed

    Tolg, Cornelia; Hamilton, Sara R; Zalinska, Ewa; McCulloch, Lori; Amin, Ripal; Akentieva, Natalia; Winnik, Francoise; Savani, Rashmin; Bagli, Darius J; Luyt, Len G; Cowman, Mary K; McCarthy, Jim B; Turley, Eva A

    2012-10-01

    Hyaluronan is activated by fragmentation and controls inflammation and fibroplasia during wound repair and diseases (eg, cancer). Hyaluronan-binding peptides were identified that modify fibrogenesis during skin wound repair. Peptides were selected from 7- to 15mer phage display libraries by panning with hyaluronan-Sepharose beads and assayed for their ability to block fibroblast migration in response to hyaluronan oligosaccharides (10 kDa). A 15mer peptide (P15-1), with homology to receptor for hyaluronan mediated motility (RHAMM) hyaluronan binding sequences, was the most effective inhibitor. P15-1 bound to 10-kDa hyaluronan with an affinity of K(d) = 10(-7) and appeared to specifically mimic RHAMM since it significantly reduced binding of hyaluronan oligosaccharides to recombinant RHAMM but not to recombinant CD44 or TLR2,4, and altered wound repair in wild-type but not RHAMM(-/-) mice. One topical application of P15-1 to full-thickness excisional rat wounds significantly reduced wound macrophage number, fibroblast number, and blood vessel density compared to scrambled, negative control peptides. Wound collagen 1, transforming growth factor β-1, and α-smooth muscle actin were reduced, whereas tenascin C was increased, suggesting that P15-1 promoted a form of scarless healing. Signaling/microarray analyses showed that P15-1 blocks RHAMM-regulated focal adhesion kinase pathways in fibroblasts. These results identify a new class of reagents that attenuate proinflammatory, fibrotic repair by blocking hyaluronan oligosaccharide signaling. Copyright © 2012 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  6. Targeted polymeric micelles for delivery of poorly soluble drugs.

    PubMed

    Torchilin, V P

    2004-10-01

    Polymeric micelles (micelles formed by amphiphilic block copolymers) demonstrate a series of attractive properties as drug carriers, such as high stability both in vitro and in vivo and good biocompatibility, and can be successfully used for the solubilization of various poorly soluble pharmaceuticals. These micelles can also be used as targeted drug delivery systems. The targeting can be achieved via the enhanced permeability and retention effect (into the areas with the compromised vasculature), by making micelles of stimuli-responsive amphiphilic block copolymers, or by attaching specific targeting ligand molecules to the micelle surface. Immunomicelles prepared by coupling monoclonal antibody molecules to p-nitrophenylcarbonyl groups on the water-exposed termini of the micelle corona-forming blocks demonstrate high binding specificity and targetability. Immunomicelles prepared with cancer-specific monoclonal antibody 2C5 specifically bind to different cancer cells in vitro and demonstrate increased therapeutic activity in vivo. This new family of pharmaceutical carriers can be used for the solubilization and targeted delivery of poorly soluble drugs to various pathological sites in the body.

  7. Identification of a unique Ca2+-binding site in rat acid-sensing ion channel 3.

    PubMed

    Zuo, Zhicheng; Smith, Rachel N; Chen, Zhenglan; Agharkar, Amruta S; Snell, Heather D; Huang, Renqi; Liu, Jin; Gonzales, Eric B

    2018-05-25

    Acid-sensing ion channels (ASICs) evolved to sense changes in extracellular acidity with the divalent cation calcium (Ca 2+ ) as an allosteric modulator and channel blocker. The channel-blocking activity is most apparent in ASIC3, as removing Ca 2+ results in channel opening, with the site's location remaining unresolved. Here we show that a ring of rat ASIC3 (rASIC3) glutamates (Glu435), located above the channel gate, modulates proton sensitivity and contributes to the formation of the elusive Ca 2+ block site. Mutation of this residue to glycine, the equivalent residue in chicken ASIC1, diminished the rASIC3 Ca 2+ block effect. Atomistic molecular dynamic simulations corroborate the involvement of this acidic residue in forming a high-affinity Ca 2+ site atop the channel pore. Furthermore, the reported observations provide clarity for past controversies regarding ASIC channel gating. Our findings enhance understanding of ASIC gating mechanisms and provide structural and energetic insights into this unique calcium-binding site.

  8. Clustering of haemostatic variables and the effect of high cashew and walnut diets on these variables in metabolic syndrome patients.

    PubMed

    Pieters, Marlien; Oosthuizen, Welma; Jerling, Johann C; Loots, Du Toit; Mukuddem-Petersen, Janine; Hanekom, Susanna M

    2005-09-01

    We investigated the effect of a high walnut and cashew diet on haemostatic variables in people with the metabolic syndrome. Factor analysis was used to determine how the haemostatic variables cluster with other components of the metabolic syndrome and multiple regression to determine possible predictors. This randomized, control, parallel, controlled-feeding trial included 68 subjects who complied with the Third National Cholesterol Education Program Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol criteria. After a 3-week run-in following the control diet, subjects were divided into three groups receiving either walnuts or cashews (20 energy%) or a control diet for 8 weeks. The nut intervention had no significant effect on von Willebrand factor antigen, fibrinogen, factor VII coagulant activity, plasminogen activator inhibitor 1 activity, tissue plasminogen activator activity or thrombin activatable fibrinolysis inhibitor. Statistically, fibrinogen clustered with the body-mass-correlates and acute phase response factors, and factor VII coagulant activity clustered with high-density lipoprotein cholesterol (HDL-C). Tissue plasminogen activator activity, plasminogen activator inhibitor 1 activity and von Willebrand factor antigen clustered into a separate endothelial function factor. HDL-C and markers of obesity were the strongest predictors of the haemostatic variables. We conclude that high walnut and cashew diets did not influence haemostatic factors in this group of metabolic syndrome subjects. The HDL-C increase and weight loss may be the main focus of dietary intervention for the metabolic syndrome. Furthermore, diet composition may have only limited effects if weight loss is not achieved.

  9. Epidermal growth factor- and hepatocyte growth factor-receptor activity in serum-free cultures of human hepatocytes.

    PubMed

    Runge, D M; Runge, D; Dorko, K; Pisarov, L A; Leckel, K; Kostrubsky, V E; Thomas, D; Strom, S C; Michalopoulos, G K

    1999-02-01

    Serum-free primary cultures of hepatocytes are a useful tool to study factors triggering hepatocyte proliferation and regeneration. We have developed a chemically defined serum-free system that allows human hepatocyte proliferation in the presence of epidermal growth factor and hepatocyte growth factor. DNA synthesis and accumulation were determined by [3H]thymidine incorporation and fluorometry, respectively. Western blot analyses and co-immunoprecipitations were used to investigate the association of proteins involved in epidermal growth factor and hepatocyte growth factor activation and signaling: epidermal growth factor receptor, hepatocyte growth factor receptor (MET), urokinase-type plasminogen activator and its receptor, and a member of the signal transducer and activator of transcription family, STAT-3. Primary human hepatocytes proliferated under serum-free conditions in a chemically defined medium for up to 12 days. Epidermal growth factor-receptor and MET were present and functional, decreasing over time. MET, urokinase-type plasminogen activator and urokinase-type plasminogen activator receptor co-precipitated to varying degrees during the culture period. STAT-3 co-precipitated with epidermal growth factor-receptor and MET to varying degrees. Proliferation of human hepatocytes can improve by modification of a chemically defined medium originally used for rat hepatocyte cultures. In these long-term cultures of human hepatocytes, hepatocyte growth factor and epidermal growth factor can stimulate growth and differentiation by interacting with their receptors and initiating downstream signaling. This involves complex formation of the receptors with other plasma membrane components for MET (urokinase-type plasminogen activator in context of its receptor) and activation of STAT-3 for both receptors.

  10. The Plasminogen Activation System Promotes Dendritic Spine Recovery and Improvement in Neurological Function After an Ischemic Stroke

    PubMed Central

    Jeanneret, Valerie; Yepes, Manuel

    2016-01-01

    Advances in neurocritical care and interventional neuroradiology have led to a significant decrease in acute ischemic stroke (AIS) mortality. In contrast, due to the lack of an effective therapeutic strategy to promote neuronal recovery among AIS survivors, cerebral ischemia is still a leading cause of disability in the world. Ischemic stroke has a harmful impact on synaptic structure and function, and plasticity-mediated synaptic recovery is associated with neurological improvement following an AIS. Dendritic spines (DSs) are specialized dendritic protrusions that receive most of the excitatory input in the brain. The deleterious effect of cerebral ischemia on DSs morphology and function has been associated with impaired synaptic transmission and neurological deterioration. However, these changes are reversible if cerebral blood flow is restored on time, and this recovery has been associated with neurological improvement following an AIS. Tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA) are two serine proteases that besides catalyzing the conversion of plasminogen into plasmin in the intravascular and pericellular environment, respectively, are also are efficient inductors of synaptic plasticity. Accordingly, recent evidence indicates that both, tPA and uPA, protect DSs from the metabolic stress associated with the ischemic injury, and promote their morphological and functional recovery during the recovery phase from an AIS. Here we will review data indicating that plasticity-induced changes in DSs and the associated post-synaptic density play a pivotal role in the recovery process from AIS, making special emphasis on the role of tPA and uPA in this process. PMID:26846991

  11. The Association of Plasminogen Activator Inhibitor Type 1 (PAI-1) Level and PAI-1 4G/5G Gene Polymorphism with the Formation and the Grade of Endometrial Cancer.

    PubMed

    Yıldırım, Malik Ejder; Karakuş, Savas; Kurtulgan, Hande Küçük; Kılıçgün, Hasan; Erşan, Serpil; Bakır, Sevtap

    2017-08-01

    Plasminogen activator inhibitor type 1 (PAI-1) is a serine protease inhibitor (Serpine 1), and it inhibits both tissue plasminogen activator and urokinase plasminogen activator which are important in fibrinolysis. We aimed to find whether there is a possible association between PAI-1 level, PAI-1 4G/5G polymorphism, and endometrial cancer. PAI-1 levels in peripheral blood were determined in 82 patients with endometrial carcinoma and 76 female healthy controls using an enzyme-linked immunoassay (ELISA). Then, the genomic DNA was extracted and screened by reverse hybridization procedure (Strip assay) to detect PAI 1 4G/5G polymorphism. The levels of PAI-1 in the patients were higher statistically in comparison to controls (P < 0.001). The distribution of PAI-1 4G/5G polymorphism was quite different between patients and controls (P = 0.008), and 4G allelic frequency was significantly higher in the patients of endometrial cancer than in controls (P = 0.026). We found significant difference between Grade 1 and Grade 2+3 patients in terms of the PAI-1 levels (P = 0.047). There was no association between PAI-1 4G/5G polymorphism and the grades of endometrial cancer (P = 0.993). Our data suggest that the level of PAI-1 and PAI-1 4G/5G gene polymorphism are effective in the formation of endometrial cancer. PAI-1 levels are also associated with the grades of endometrial cancer.

  12. Postoperative bleeding in cardiac surgery: the role of tranexamic acid in patients homozygous for the 5G polymorphism of the plasminogen activator inhibitor-1 gene.

    PubMed

    Iribarren, Jose L; Jimenez, Juan J; Hernández, Domingo; Brouard, Maitane; Riverol, Debora; Lorente, Leonardo; de La Llana, Ramiro; Nassar, Ibrahim; Perez, Rosalia; Martinez, Rafael; Mora, Maria L

    2008-04-01

    Plasminogen activator inhibitor 1 (PAI-1) attenuates the conversion of plasminogen to plasmin. Polymorphisms of the PAI-1 gene are associated with varying PAI-1 levels and risk of prothrombotic events in nonsurgical patients. The purpose of this study, a secondary analysis of a clinical trial, was to investigate whether PAI-1 genotype affects the efficacy of tranexamic acid (TA) in reducing postoperative chest tube blood loss of patients undergoing cardiopulmonary bypass. Fifty patients were classified according to PAI-1 genotype (4G/4G, 4G/5G, or 5G/5G). Twenty-four received 2 g TA before and after cardiopulmonary bypass, whereas 26 received placebo. The authors recorded data related to coagulation, fibrinolysis, and bleeding before surgery, at admission to the intensive care unit (0 h), and 4 and 24 h later. In patients not receiving TA, those with the 5G/5G genotype had significantly higher chest tube blood loss and transfusion requirements compared with patients with the other genotypes at all time points. Patients with the 5G/5G genotype receiving TA showed significantly lower blood loss compared with the placebo group. There were no significant differences in blood loss or transfusion requirements between patients with the 4G/4G genotype when TA was used. Plasminogen activator inhibitor-1 5G/5G homozygotes who did not receive TA showed significantly greater postoperative bleeding than patients with other PAI-1 genotypes. 5G/5G homozygotes who received TA showed the greatest blood-sparing benefit.

  13. Effect of pH and glucose on cultured human peritoneal mesothelial cells.

    PubMed

    Shao, J C; Yorioka, N; Nishida, Y; Yamakido, M

    1999-08-01

    We investigated the effects of various pH and glucose concentrations on the growth of human peritoneal mesothelial cells and on coagulation and fibrinolytic factors. Cells were cultured at various pH values in Ham's F-12 medium containing 1.0% foetal calf serum and supplemented with D-glucose or D-mannitol at various concentrations. After 4-48 h, cell proliferation and 3H-thymidine incorporation were determined. Coagulation and fibrinolytic factors were measured after 48 h. Glucose caused concentration-dependent inhibition of cell growth at all pH values, but the deleterious effect of low pH on cell proliferation was faster and stronger than that of high glucose. At a similar osmolality, mannitol caused less inhibition of cell proliferation than glucose. There was a glucose concentration-dependent increase of thrombin-antithrombin III complex production at all pH values. At pH 5.2, tissue-type plasminogen activator production was far lower than at higher pH values, and production of the plasminogen activator inhibitor showed a glucose concentration-dependent increase. At pH 6.5 or 7.3, however, the plasminogen activator inhibitor production decreased and tissue-type plasminogen activator production increased in a glucose concentration-dependent manner. Low pH and/or high glucose culture medium had an inhibitory effect on peritoneal mesothelial cells, with the effect of high glucose being partially related to hyperosmolality. These cells may modulate peritoneal coagulant and fibrinolytic activity, with the balance between coagulation and fibrinolysis being disturbed by low pH and/or high glucose.

  14. Activation of a Ca(2+)-dependent protein kinase involves intramolecular binding of a calmodulin-like regulatory domain

    NASA Technical Reports Server (NTRS)

    Huang, J. F.; Teyton, L.; Harper, J. F.; Evans, M. L. (Principal Investigator)

    1996-01-01

    Ca(2+)-dependent protein kinases (CDPKs) are regulated by a C-terminal calmodulin-like domain (CaM-LD). The CaM-LD is connected to the kinase by a short junction sequence which contains a pseudosubstrate autoinhibitor. To understand how the CaM-LD regulates a CDPK, a recombinant CDPK (isoform CPK-1 from Arabidopsis, accession no. L14771) was made as a fusion protein in Escherichia coli. We show here that a truncated CDPK lacking a CaM-LD (e.g. mutant delta NC-26H) can be activated by exogenous calmodulin or an isolated CaM-LD (Kact approximately 2 microM). We propose that Ca2+ activation of a CDPK normally occurs through intramolecular binding of the CaM-LD to the junction. When the junction and CaM-LD are made as two separate polypeptides, the CaM-LD can bind the junction in a Ca(2+)-dependent fashion with a dissociation constant (KD) of 6 x 10(-6) M, as determined by kinetic binding analyses. When the junction and CaM-LD are tethered in a single polypeptide (e.g. in protein JC-1), their ability to engage in bimolecular binding is suppressed (e.g. the tethered CaM-LD cannot bind a separate junction). A mutation which disrupts the putative CaM-LD binding sequence (e.g. substitution LRV-1444 to DLPG) appears to block intramolecular binding, as indicated by the restored ability of a tethered CaM-LD to engage in bimolecular binding. This mutation, in the context of a full-length enzyme (mutant KJM46H), appears to block Ca2+ activation. Thus, a disruption of intramolecular binding correlates with a disruption of the Ca2+ activation mechanism. CDPKs provide the first example of a member of the calmodulin superfamily where a target binding sequence is located within the same polypeptide.

  15. The influence of chain rigidity and the degree of sulfonation on the morphology of block copolymers as nano reactor

    NASA Astrophysics Data System (ADS)

    Hong, K.; Zhang, X.

    2005-03-01

    Polyelectrolyte block copolymer was used to form an ordered domain of ionic block as a ``nanoreactor'' due to its ability to bind oppositely charged metal ion, Zn^2+, Fe^2+ etc. The purpose of our research is to investigate the controllability of the size and morphology of domains (inorganic nano particles) by changing backbone stiffness, the charge density and the volume fraction of ionic block. Poly(styrene sulfonate) (PSS), which backbone is flexible, and poly(cyclohexadiene sulfonate) (PCHDS), which backbone is ``semiflexible'', were used as ionic blocks. We synthesized PtBS-PSS and PS-PCHDS with various degree of sulfonation and the volume fraction. Zinc oxide (ZnO) nano particles successfully formed in the ionic domain of microphase separated block copolymers. We used SANS to characterize the morphology of block copolymers and TEM for block copolymer containing ZnO nano particles. Our experimental results show that the chemistry of ``sulfonation'' of block copolymers can be successfully used to synthesize nano composite materials.

  16. White adipose tissue and cardiovascular disease.

    PubMed

    Matsuzawa, Yuji

    2005-12-01

    Adipocytes have recently been shown to secrete a variety of bioactive substances called 'adipocytokines', and have been recognized as endocrine cells. Tumour necrosis factor (TNF)-alphaalpha, plasminogen activator inhibitor-1 (PAI-1) and heparin-binding epidermal-growth-factor-like growth factor (HBEGF) are among these adipocytokines, and they contribute to the development of vascular diseases. Visfatin is a visceral fat-specific protein that may be related to the development of obesity-related diseases such as diabetes mellitus and cardiovascular disease. In contrast, adiponectin, an adipose-tissue-specific collagen-like protein, has recently been reported as an important anti-atherogenic and anti-diabetic protein. Adipocytokine secretion may be regulated dynamically by the nutritional state. Visceral fat accumulation leads to dysfunction of adipocytes (including hypersecretion of TNF-alphaalpha, PAI-1 and HBEGF, and hyposecretion of adiponectin), which results in the development of a variety of metabolic and circulatory diseases. In this review, the importance of adipocytokines, including adiponectin, is discussed with respect to cardiovascular disease.

  17. Molecular characterization of enolase gene from Taenia multiceps.

    PubMed

    Li, W H; Qu, Z G; Zhang, N Z; Yue, L; Jia, W Z; Luo, J X; Yin, H; Fu, B Q

    2015-10-01

    Taenia multiceps is a cestode parasite with its larval stage, known as Coenurus cerebralis, mainly encysts in the central nervous system of sheep and other livestocks. Enolase is a key glycolytic enzyme and represents multifunction in most organisms. In the present study, a 1617bp full-length cDNA encoding enolase was cloned from T. multiceps and designated as TmENO. A putative encoded protein of 433 amino acid residues that exhibited high similarity to helminth parasites. The recombinant TmENO protein (rTmENO) showed the catalytic and plasminogen-binding characteristics after the TmENO was subcloned and expressed in the pET30a(+) vector. The TmENO gene was transcribed during the adult and larval stages and was also identified in both cyst fluid and as a component of the adult worms and the metacestode by western blot analysis. Taken together, our results will facilitate further structural characterization for TmENO and new potential control strategies for T. multiceps. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Role of Matricellular Proteins in Disorders of the Central Nervous System.

    PubMed

    Jayakumar, A R; Apeksha, A; Norenberg, M D

    2017-03-01

    Matricellular proteins (MCPs) are actively expressed non-structural proteins present in the extracellular matrix, which rapidly turnover and possess regulatory roles, as well as mediate cell-cell interactions. MCPs characteristically contain binding sites for other extracellular proteins, cell surface receptors, growth factors, cytokines and proteases, that provide structural support for surrounding cells. MCPs are present in most organs, including brain, and play a major role in cell-cell interactions and tissue repair. Among the MCPs found in brain include thrombospondin-1/2, secreted protein acidic and rich in cysteine family (SPARC), including Hevin/SC1, Tenascin C and CYR61/Connective Tissue Growth Factor/Nov family of proteins, glypicans, galectins, plasminogen activator inhibitor (PAI-1), autotaxin, fibulin and perisostin. This review summarizes the potential role of MCPs in the pathogenesis of major neurological disorders, including Alzheimer's disease, amyotrophic lateral sclerosis, ischemia, trauma, hepatic encephalopathy, Down's syndrome, autism, multiple sclerosis, brain neoplasms, Parkinson's disease and epilepsy. Potential therapeutic opportunities of MCP's for these disorders are also considered in this review.

  19. Biotypes and ScM types of isolates of Streptococcus canis from diseased and healthy cats.

    PubMed

    Timoney, J F; Velineni, S; Ulrich, B; Blanchard, P

    2017-04-08

    Lancefield group G Streptococcus canis is a component of the normal urogenital and pharyngeal flora of the cat. It is also frequently implicated in epizootics of severe disease in closed cat colonies and animal shelters. Given the importance of S canis as a feline pathogen and relative lack of published information on characteristics potentially associated with virulence, the authors have compared isolates from healthy and diseased cats in New York and California using fermentation profiles (biotype) and ScM sequences. With few exceptions, isolates associated with disease were biotype 1. Four alleles of scm were identified of which type 1 dominated in diseased cats. Type 4 allelic variants were found only in healthy cats and all but one were biotype 2. Type 2 and 3 alleles showed extensive N-terminal variation suggesting a plasminogen-binding site as found on the type 1 allele was absent. Cat antisera to ScM were opsonobactericidal, and these potentially protective antibodies increased during convalescence. British Veterinary Association.

  20. A novel role for the integrin-binding III-10 module in fibronectin matrix assembly.

    PubMed

    Hocking, D C; Smith, R K; McKeown-Longo, P J

    1996-04-01

    Fibronectin matrix assembly is a cell-dependent process which is upregulated in tissues at various times during development and wound repair to support the functions of cell adhesion, migration, and differentiation. Previous studies have demonstrated that the alpha 5 beta 1 integrin and fibronectin's amino terminus and III-1 module are important in fibronectin polymerization. We have recently shown that fibronectin's III-1 module contains a conformationally sensitive binding site for fibronectin's amino terminus (Hocking, D.C., J. Sottile, and P.J. McKeown-Longo. 1994. J. Biol. Chem. 269: 19183-19191). The present study was undertaken to define the relationship between the alpha 5 beta 1 integrin and fibronectin polymerization. Solid phase binding assays using recombinant III-10 and III-1 modules of human plasma fibronectin indicated that the III-10 module contains a conformation-dependent binding site for the III-1 module of fibronectin. Unfolded III-10 could support the formation of a ternary complex containing both III-1 and the amino-terminal 70-kD fragment, suggesting that the III-1 module can support the simultaneous binding of III-10 and 70 kD. Both unfolded III-10 and unfolded III-1 could support fibronectin binding, but only III-10 could promote the formation of disulfide-bonded multimers of fibronectin in the absence of cells. III-10-dependent multimer formation was inhibited by both the anti-III-1 monoclonal antibody, 9D2, and amino-terminal fragments of fibronectin. A fragment of III-10, termed III-10/A, was able to block matrix assembly in fibroblast monolayers. Similar results were obtained using the III-10A/RGE fragment, in which the RGD site had been mutated to RGE, indicating that III-I0/A was blocking matrix assembly by a mechanism distinct from disruption of integrin binding. Texas red-conjugated recombinant III-1,2 localized to beta 1-containing sites of focal adhesions on cells plated on fibronectin or the III-9,10 modules of fibronectin. Monoclonal antibodies against the III-1 or the III-9,10 modules of fibronectin blocked binding of III-1,2 to cells without disrupting focal adhesions. These data suggest that a role of the alpha 5 beta 1 integrin in matrix assembly is to regulate a series of sequential self-interactions which result in the polymerization of fibronectin.

  1. The c-myb proto-oncogene and microRNA-15a comprise an active autoregulatory feedback loop in human hematopoietic cells

    PubMed Central

    Zhao, Huiwu; Kalota, Anna; Jin, Shenghao

    2009-01-01

    The c-myb proto-oncogene encodes an obligate hematopoietic cell transcription factor important for lineage commitment, proliferation, and differentiation. Given its critical functions, c-Myb regulatory factors are of great interest but remain incompletely defined. Herein we show that c-Myb expression is subject to posttranscriptional regulation by microRNA (miRNA)–15a. Using a luciferase reporter assay, we found that miR-15a directly binds the 3′-UTR of c-myb mRNA. By transfecting K562 myeloid leukemia cells with a miR-15a mimic, functionality of binding was shown. The mimic decreased c-Myb expression, and blocked the cells in the G1 phase of cell cycle. Exogenous expression of c-myb mRNA lacking the 3′-UTR partially rescued the miR-15a induced cell-cycle block. Of interest, the miR-15a promoter contained several potential c-Myb protein binding sites. Occupancy of one canonical c-Myb binding site was demonstrated by chromatin immunoprecipitation analysis and shown to be required for miR-15a expression in K562 cells. Finally, in studies using normal human CD34+ cells, we showed that c-Myb and miR-15a expression were inversely correlated in cells undergoing erythroid differentiation, and that overexpression of miR-15a blocked both erythroid and myeloid colony formation in vitro. In aggregate, these findings suggest the presence of a c-Myb–miR-15a autoregulatory feedback loop of potential importance in human hematopoiesis. PMID:18818396

  2. Pelvic adhesion and gonadotropin-releasing hormone analogue: effects of triptorelin acetate depot on coagulation and fibrinolytic activities.

    PubMed

    Di Nardo, Maria Antonietta; Annunziata, Maria Laura; Ammirabile, Massimiliano; Di Minno, Matteo Nicola Dario; Ruocco, Anna Lilia; De Falco, Marianna; Di Lieto, Andrea

    2012-06-01

    The study investigated the impact of gonadotropin-releasing hormone analogue (GnRH-a) on coagulation and fibrinolytic activities and its effectiveness in the prevention of pelvic adhesion after myomectomy. Thirty-two infertile women underwent myomectomy followed by adhesion evaluation surgery with a second-look laparoscopy. Before myomectomy, 15 women were treated with triptorelin acetate for 3 months and 17 received no treatment. Plasminogen activator inhibitor (PAI), thrombin activatable fibrinolysis inhibitor (TAFI), protein C (PC), plasminogen, α2-antiplasmin were determined by enzyme-linked immunosorbent assays and the activity of coagulation factors V and VIII by coagulometric methods. Patients treated with GnRH-a showed significant decrease in PAI, TAFI, factors V, and VIII (P < .05) and increased PC (P < .05), but no significant change in plasminogen and α2-antiplasmin levels compared with control group. The incidence, extent, and severity of adhesions were significantly lower in GnRH-a-treated patients compared with control group (P < .05), suggesting a possible critical role of the GnRH-a therapy in preventing postoperative adhesion development.

  3. Role of the Yersinia pestis plasminogen activator in the incidence of distinct septicemic and bubonic forms of flea-borne plague

    PubMed Central

    Sebbane, Florent; Jarrett, Clayton O.; Gardner, Donald; Long, Daniel; Hinnebusch, B. Joseph

    2006-01-01

    Yersinia pestis is transmitted by fleas and causes bubonic plague, characterized by severe local lymphadenitis that progresses rapidly to systemic infection and life-threatening septicemia. Here, we show that although flea-borne transmission usually leads to bubonic plague in mice, it can also lead to primary septicemic plague. However, intradermal injection of Y. pestis, commonly used to mimic transmission by fleabite, leads only to bubonic plague. A Y. pestis strain lacking the plasmid-encoded cell-surface plasminogen activator, which is avirulent by intradermal or s.c. injection, was able to cause fatal primary septicemic plague at low incidence, but not bubonic plague, when transmitted by fleas. The results clarify a long-standing uncertainty about the etiology of primary septicemic plague and support an evolutionary scenario in which plague first emerged as a flea-borne septicemic disease of limited transmissibility. Subsequent acquisition of the plasminogen activator gene by horizontal transfer enabled the bubonic form of disease and increased the potential for epidemic spread. PMID:16567636

  4. Association of late-onset Alzheimer disease with a genotype of PLAU, the gene encoding urokinase-type plasminogen activator on chromosome 10q22.2.

    PubMed

    Finckh, U; van Hadeln, K; Müller-Thomsen, T; Alberici, A; Binetti, G; Hock, C; Nitsch, R M; Stoppe, G; Reiss, J; Gal, A

    2003-08-01

    Urokinase-type plasminogen activator (uPA) converts plasminogen to plasmin. Plasmin is involved in processing of amyloid precursor protein and degrades secreted and aggregated amyloid-beta, a hallmark of Alzheimer disease (AD). PLAU, the gene encoding uPA, maps to chromosome 10q22.2 between two regions showing linkage to late-onset AD (LOAD). We genotyped a frequent C/T single nucleotide polymorphism in codon 141 of PLAU (P141L) in 347 patients with LOAD and 291 control subjects. LOAD was associated with homozygous C/C PLAU genotype in the whole sample (chi2=15.7, P=0.00039, df 2), as well as in all sub-samples stratified by gender or APOE epsilon4 carrier status (chi2> or = 6.84, P< or =0.033, df 2). Odds ratio for LOAD due to homozygosity C/C was 1.89 (95% confidence interval 1.37-2.61). PLAU is a promising new candidate gene for LOAD, with allele C (P141) being a recessive risk allele or allele T (L141) conferring protection.

  5. Indomethacin inhibits the effects of oestrogen in the anterior pituitary gland of the rat.

    PubMed

    Rosental, D G; Machiavelli, G A; Cherñavsky, A C; Speziale, N S; Burdman, J A

    1989-06-01

    Two inhibitors of prostaglandin synthesis, indomethacin and aspirin, blocked the increase of oestrogen-binding sites in the nuclear subcellular fraction, an increase which occurs after the administration of oestradiol. Consequently the biological effects of oestrogens in the anterior pituitary gland of the rat (prolactin synthesis, concentration of progesterone-binding sites and cell proliferation) are diminished. The anterior pituitary gland synthesized prostaglandin F2 alpha (PGF2 alpha), PGE2 and PGD2 from arachidonic acid. This synthesis was blocked when indomethacin was added to the culture media. Oestrogen increased the concentration of PGE2: an increase that was partially prevented by indomethacin. Prostaglandins may have an important role on the effects of oestrogen in the anterior pituitary gland of the rat.

  6. Cross-talk between PRMT1-mediated methylation and ubiquitylation on RBM15 controls RNA splicing.

    PubMed

    Zhang, Li; Tran, Ngoc-Tung; Su, Hairui; Wang, Rui; Lu, Yuheng; Tang, Haiping; Aoyagi, Sayura; Guo, Ailan; Khodadadi-Jamayran, Alireza; Zhou, Dewang; Qian, Kun; Hricik, Todd; Côté, Jocelyn; Han, Xiaosi; Zhou, Wenping; Laha, Suparna; Abdel-Wahab, Omar; Levine, Ross L; Raffel, Glen; Liu, Yanyan; Chen, Dongquan; Li, Haitao; Townes, Tim; Wang, Hengbin; Deng, Haiteng; Zheng, Y George; Leslie, Christina; Luo, Minkui; Zhao, Xinyang

    2015-11-17

    RBM15, an RNA binding protein, determines cell-fate specification of many tissues including blood. We demonstrate that RBM15 is methylated by protein arginine methyltransferase 1 (PRMT1) at residue R578, leading to its degradation via ubiquitylation by an E3 ligase (CNOT4). Overexpression of PRMT1 in acute megakaryocytic leukemia cell lines blocks megakaryocyte terminal differentiation by downregulation of RBM15 protein level. Restoring RBM15 protein level rescues megakaryocyte terminal differentiation blocked by PRMT1 overexpression. At the molecular level, RBM15 binds to pre-messenger RNA intronic regions of genes important for megakaryopoiesis such as GATA1, RUNX1, TAL1 and c-MPL. Furthermore, preferential binding of RBM15 to specific intronic regions recruits the splicing factor SF3B1 to the same sites for alternative splicing. Therefore, PRMT1 regulates alternative RNA splicing via reducing RBM15 protein concentration. Targeting PRMT1 may be a curative therapy to restore megakaryocyte differentiation for acute megakaryocytic leukemia.

  7. HARP preferentially co-purifies with RPA bound to DNA-PK and blocks RPA phosphorylation.

    PubMed

    Quan, Jinhua; Yusufzai, Timur

    2014-05-01

    The HepA-related protein (HARP/SMARCAL1) is an ATP-dependent annealing helicase that is capable of rewinding DNA structures that are stably unwound due to binding of the single-stranded DNA (ssDNA)-binding protein Replication Protein A (RPA). HARP has been implicated in maintaining genome integrity through its role in DNA replication and repair, two processes that generate RPA-coated ssDNA. In addition, mutations in HARP cause a rare disease known as Schimke immuno-osseous dysplasia. In this study, we purified HARP containing complexes with the goal of identifying the predominant factors that stably associate with HARP. We found that HARP preferentially interacts with RPA molecules that are bound to the DNA-dependent protein kinase (DNA-PK). We also found that RPA is phosphorylated by DNA-PK in vitro, while the RPA-HARP complexes are not. Our results suggest that, in addition to its annealing helicase activity, which eliminates the natural binding substrate for RPA, HARP blocks the phosphorylation of RPA by DNA-PK.

  8. Identification of a 27.8 kDa protein from flounder gill cells involved in lymphocystis disease virus binding and infection.

    PubMed

    Wang, Mu; Sheng, Xiu-Zhen; Xing, Jing; Tang, Xiao-Qian; Zhan, Wen-Bin

    2011-03-16

    In vitro, lymphocystis disease virus (LCDV) infection of flounder gill (FG) cell cultures causes obvious cytopathic effect (CPE). We describe attempts to isolate and characterize the LCDV-binding molecule(s) on the plasma membrane of FG cells that were responsible for virus entry. The results showed that the co-immunoprecipitation assay detected a 27.8 kDa molecule from FG cells that bound to LCDV. In a blocking ELISA, pre-incubation of FG cell membrane proteins with the specific antiserum developed against the 27.8 kDa protein could block LCDV binding. Similarly, antiserum against 27.8 kDa protein could also inhibit LCDV infection of FG cells in vitro. Mass spectrometric analysis established that the 27.8 kDa protein and beta-actin had a strong association. These results strongly supported the possibility that the 27.8 kDa protein was the putative receptor specific for LCDV infection of FG cells.

  9. Lignin blockers and uses thereof

    DOEpatents

    Yang, Bin [West Lebanon, NH; Wyman, Charles E [Norwich, VT

    2011-01-25

    Disclosed is a method for converting cellulose in a lignocellulosic biomass. The method provides for a lignin-blocking polypeptide and/or protein treatment of high lignin solids. The treatment enhances cellulase availability in cellulose conversion and allows for the determination of optimized pretreatment conditions. Additionally, ethanol yields from a Simultaneous Saccharification and Fermentation process are improved 5-25% by treatment with a lignin-blocking polypeptide and/or protein. Thus, a more efficient and economical method of processing lignin containing biomass materials utilizes a polypeptide/protein treatment step that effectively blocks lignin binding of cellulase.

  10. High Affinity Binding of Epibatidine to Serotonin Type 3 Receptors*

    PubMed Central

    Drisdel, Renaldo C.; Sharp, Douglas; Henderson, Tricia; Hales, Tim G.; Green, William N.

    2008-01-01

    Epibatidine and mecamylamine are ligands used widely in the study of nicotinic acetylcholine receptors (nAChRs) in the central and peripheral nervous systems. In the present study, we find that nicotine blocks only 75% of 125I-epibatidine binding to rat brain membranes, whereas ligands specific for serotonin type 3 receptors (5-HT3Rs) block the remaining 25%. 125I-Epibatidine binds with a high affinity to native 5-HT3Rs of N1E-115 cells and to receptors composed of only 5-HT3A subunits expressed in HEK cells. In these cells, serotonin, the 5-HT3R-specific antagonist MDL72222, and the 5-HT3R agonist chlorophenylbiguanide readily competed with 125I-epibatidine binding to 5-HT3Rs. Nicotine was a poor competitor for 125I-epibatidine binding to 5-HT3Rs. However, the noncompetitive nAChR antagonist mecamylamine acted as a potent competitive inhibitor of 125I-epibatidine binding to 5-HT3Rs. Epibatidine inhibited serotonin-induced currents mediated by endogenous 5-HT3Rs in neuroblastoma cell lines and 5-HT3ARs expressed in HEK cells in a competitive manner. Our results demonstrate that 5-HT3Rs are previously uncharacterized high affinity epibatidine binding sites in the brain and indicate that epibatidine and mecamylamine act as 5-HT3R antagonists. Previous studies that depended on epibatidine and mecamylamine as nAChR-specific ligands, in particular studies of analgesic properties of epibatidine, may need to be reinterpreted with respect to the potential role of 5-HT3Rs. PMID:17702741

  11. Nicotine- and methamphetamine-induced dopamine release evaluated with in-vivo binding of radiolabelled raclopride to dopamine D2 receptors: comparison with in-vivo microdialysis data.

    PubMed

    Kim, Sang Eun; Han, Seung-Moo

    2009-07-01

    The effect of substances which alter extracellular dopamine (DA) concentration has been studied by measuring changes in the binding of radiolabelled raclopride, a DA D2 receptor ligand that is sensitive to endogenous DA. To better characterize the relationship between extracellular DA concentration and DA D2 receptor binding of raclopride, we compared the changes of extracellular DA concentration (measured using in-vivo microdialysis) and in-vivo [3H]raclopride binding induced by different doses of methamphetamine (Meth) and nicotine, drugs that enhance DA release with and without blocking DA transporters (DATs), respectively, in rat striatum. Nicotine elicited a modest increase of striatal extrasynaptic extracellular DA, while Meth produced a marked increase of striatal extrasynaptic DA in a dose-dependent manner. There was a close correlation between the decrease in [3H]raclopride in-vivo binding and the increase in extrasynaptic DA concentration induced by both nicotine (r2=0.95, p<0.001) and Meth (r2=0.98, p=0.001), supporting the usefulness of the radiolabelled raclopride-binding measurement for the non-invasive assessment of DA release following interventions in the living brain. However, the linear regression analysis revealed that the ratio of percent DA increase to percent [3H]raclopride binding reduction was 25-fold higher for Meth (34.8:1) than for nicotine (1.4:1). The apparent discrepancy in the extrasynaptic DA-[3H]raclopride binding relationship between the DA-enhancing drugs with and without DAT-blocking property indicates that the competition between endogenous DA and radiolabelled raclopride takes place at the intrasynaptic rather than extrasynaptic DA D2 receptors and reflects synaptic concentration of DA.

  12. Tyrosine sulfation in N-terminal domain of human C5a receptor is necessary for binding of chemotaxis inhibitory protein of Staphylococcus aureus

    PubMed Central

    Liu, Zhen-jia; Yang, Yan-juan; Jiang, Lei; Xu, Ying-chun; Wang, Ai-xia; Du, Guan-hua; Gao, Jin-ming

    2011-01-01

    Aim: Staphylococcus aureus evades host defense through releasing several virulence proteins, such as chemotaxis inhibitory protein of staphylococcus aureus (CHIPS). It has been shown that extracellular N terminus of C5a receptor (C5aR) forms the binding domain for CHIPS, and tyrosine sulfation is emerging as a key factor in determining protein-protein interaction. The aim of this study was to evaluate the role of tyrosine sulfation of N-terminal of C5aR in its binding with CHIPS. Methods: Expression plasmids encoding C5aR and its mutants were prepared using PCR and site-directed mutagenesis and were used to transfect HEK 293T cells using calcium phosphate. Recombinant CHIPS protein was purified. Western blotting was used to examine the binding efficiency of CHIPS to C5aR or its mutants. Results: CHIPS exclusively binds to C5aR, but not to C5L2 or C3aR. A nonspecific sulfation inhibitor, sodium chlorate (50 nmol/L), diminishes the binding ability of C5aR with CHIPS. Blocking sulfation by mutation of tyrosine to phenylalanine at positions 11 and 14 of C5aR N terminus, which blocked sulfation, completely abrogates CHIPS binding. When tyrosine 14 alone was mutated to phenylalanine, the binding efficiency of recombinant CHIPS was substantially decreased. Conclusion: The results demonstrate a structural basis of C5aR-CHIPS association, in which tyrosine sulfation of N-terminal C5aR plays an important role. Our data may have potential significance in development of novel drugs for therapeutic intervention. PMID:21706042

  13. Fracture labelling of boar spermatozoa for the fucose-binding-protein (FBP).

    PubMed

    Friess, A E; Toepfer-Petersen, E; Schill, W B

    1987-01-01

    Labelling of fractured boar spermatozoa with the FUC-HRP gold method for a fucose-binding-protein (FBP) gave evidence the FBP is localized in the acrosomal matrix. All fracture faces through the acrosome from the rostral end towards the equatorial segment show similar labelling pattern. This labelling is completely blocked by preincubation of the fractured tissue with focoidan.

  14. Lipid Rafts Act as Specialized Domains for Tetanus Toxin Binding and Internalization into Neurons

    PubMed Central

    Herreros, Judit; Ng, Tony; Schiavo, Giampietro

    2001-01-01

    Tetanus (TeNT) is a zinc protease that blocks neurotransmission by cleaving the synaptic protein vesicle-associated membrane protein/synaptobrevin. Although its intracellular catalytic activity is well established, the mechanism by which this neurotoxin interacts with the neuronal surface is not known. In this study, we characterize p15s, the first plasma membrane TeNT binding proteins and we show that they are glycosylphosphatidylinositol-anchored glycoproteins in nerve growth factor (NGF)-differentiated PC12 cells, spinal cord cells, and purified motor neurons. We identify p15 as neuronal Thy-1 in NGF-differentiated PC12 cells. Fluorescence lifetime imaging microscopy measurements confirm the close association of the binding domain of TeNT and Thy-1 at the plasma membrane. We find that TeNT is recruited to detergent-insoluble lipid microdomains on the surface of neuronal cells. Finally, we show that cholesterol depletion affects a raft subpool and blocks the internalization and intracellular activity of the toxin. Our results indicate that TeNT interacts with target cells by binding to lipid rafts and that cholesterol is required for TeNT internalization and/or trafficking in neurons. PMID:11598183

  15. Borrelia burgdorferi glycosaminoglycan-binding proteins: a potential target for new therapeutics against Lyme disease.

    PubMed

    Lin, Yi-Pin; Li, Lingyun; Zhang, Fuming; Linhardt, Robert J

    2017-12-01

    The spirochete bacterium Borrelia burgdorferi sensu lato is the causative agent of Lyme disease, the most common vector-borne disease in Europe and the United States. The spirochetes can be transmitted to humans via ticks, and then spread to different tissues, leading to arthritis, carditis and neuroborreliosis. Although antibiotics have commonly been used to treat infected individuals, some treated patients do not respond to antibiotics and experience persistent, long-term arthritis. Thus, there is a need to investigate alternative therapeutics against Lyme disease. The spirochete bacterium colonization is partly attributed to the binding of the bacterial outer-surface proteins to the glycosaminoglycan (GAG) chains of host proteoglycans. Blocking the binding of these proteins to GAGs is a potential strategy to prevent infection. In this review, we have summarized the recent reports of B. burgdorferi sensu lato GAG-binding proteins and discussed the potential use of synthetic and semi-synthetic compounds, including GAG analogues, to block pathogen interaction with GAGs. Such information should motivate the discovery and development of novel GAG analogues as new therapeutics for Lyme disease. New therapeutic approaches should eventually reduce the burden of Lyme disease and improve human health.

  16. Borrelia burgdorferi glycosaminoglycan-binding proteins: a potential target for new therapeutics against Lyme disease

    PubMed Central

    Lin, Yi-Pin; Li, Lingyun; Zhang, Fuming; Linhardt, Robert J.

    2017-01-01

    The spirochete bacterium Borrelia burgdorferi sensu lato is the causative agent of Lyme disease, the most common vector-borne disease in Europe and the United States. The spirochetes can be transmitted to humans via ticks, and then spread to different tissues, leading to arthritis, carditis and neuroborreliosis. Although antibiotics have commonly been used to treat infected individuals, some treated patients do not respond to antibiotics and experience persistent, long-term arthritis. Thus, there is a need to investigate alternative therapeutics against Lyme disease. The spirochete bacterium colonization is partly attributed to the binding of the bacterial outer-surface proteins to the glycosaminoglycan (GAG) chains of host proteoglycans. Blocking the binding of these proteins to GAGs is a potential strategy to prevent infection. In this review, we have summarized the recent reports of B. burgdorferi sensu lato GAG-binding proteins and discussed the potential use of synthetic and semi-synthetic compounds, including GAG analogues, to block pathogen interaction with GAGs. Such information should motivate the discovery and development of novel GAG analogues as new therapeutics for Lyme disease. New therapeutic approaches should eventually reduce the burden of Lyme disease and improve human health. PMID:29116038

  17. Apo-states of calmodulin and CaBP1 control CaV1 voltage-gated calcium channel function through direct competition for the IQ domain

    PubMed Central

    Findeisen, Felix; Rumpf, Christine; Minor, Daniel L.

    2013-01-01

    In neurons, binding of calmodulin (CaM) or calcium-binding protein 1 (CaBP1) to the CaV1 (L-type) voltage-gated calcium channel IQ domain endows the channel with diametrically opposed properties. CaM causes calcium-dependent inactivation (CDI) and limits calcium entry, whereas CaBP1 blocks CDI and allows sustained calcium influx. Here, we combine isothermal titration calorimetry (ITC) with cell-based functional measurements and mathematical modeling to show that these calcium sensors behave in a competitive manner that is explained quantitatively by their apo-state binding affinities for the IQ domain. This competition can be completely blocked by covalent tethering of CaM to the channel. Further, we show that Ca2+/CaM has a sub-picomolar affinity for the IQ domain that is achieved without drastic alteration of calcium binding properties. The observation that the apo-forms of CaM and CaBP1 compete with each other demonstrates a simple mechanism for direct modulation of CaV1 function and suggests a means by which excitable cells may dynamically tune CaV activity. PMID:23811053

  18. Tiron Inhibits UVB-Induced AP-1 Binding Sites Transcriptional Activation on MMP-1 and MMP-3 Promoters by MAPK Signaling Pathway in Human Dermal Fibroblasts

    PubMed Central

    Zhang, Chao; Zhao, Mei; Zhang, Quan-Wu; Gao, Feng-Hou

    2016-01-01

    Recent research found that Tiron was an effective antioxidant that could act as the intracellular reactive oxygen species (ROS) scavenger or alleviate the acute toxic metal overload in vivo. In this study, we investigated the inhibitory effect of Tiron on matrix metalloproteinase (MMP)-1 and MMP-3 expression in human dermal fibroblast cells. Western blot and ELISA analysis revealed that Tiron inhibited ultraviolet B (UVB)-induced protein expression of MMP-1 and MMP-3. Real-time quantitative PCR confirmed that Tiron could inhibit UVB-induced mRNA expression of MMP-1 and MMP-3. Furthermore, Tiron significantly blocked UVB-induced activation of the MAPK signaling pathway and activator protein (AP)-1 in the downstream of this transduction pathway in fibroblasts. Through the AP-1 binding site mutation, it was found that Tiron could inhibit AP-1-induced upregulation of MMP-1 and MMP-3 expression through blocking AP-1 binding to the AP-1 binding sites in the MMP-1 and MMP-3 promoter region. In conclusion, Tiron may be a novel antioxidant for preventing and treating skin photoaging UV-induced. PMID:27486852

  19. CHMP6 and VPS4A mediate recycling of Ras to the plasma membrane to promote growth factor signaling

    PubMed Central

    Zheng, Ze-Yi; Cheng, Chiang-Min; Fu, Xin-Rong; Chen, Liuh-Yow; Xu, Lizhong; Terrillon, Sonia; Wong, Stephen T.; Bar-Sagi, Dafna; Songyang, Zhou; Chang, Eric C.

    2011-01-01

    While Ras is well-known to function on the plasma membrane (PM) to mediate growth factor signaling, increasing evidence suggests that Ras has complex roles in the cytoplasm. To uncover these roles, we screened a cDNA library and isolated H-Ras-binding proteins that also influence Ras functions. Many isolated proteins regulate trafficking involving endosomes; CHMP6/VPS20 and VPS4A, which interact with ESCRT-III, were chosen for further study. We showed that the binding is direct and occurs in endosomes. Furthermore, the binding is most efficient when H-Ras has a functional effector-binding-loop and is GTP-bound and ubiquitylated. CHMP6 and VPS4A also bound N-Ras, but not K-Ras. Repressing CHMP6 and VPS4A blocked Ras-induced transformation, which correlated with inefficient Ras localization to the PM as measured by cell fractionation and photobleaching. Moreover, silencing CHMP6 and VPS4A also blocked EGFR recycling. These data suggest that Ras interacts with key ESCRT-III components to promote recycling of itself and EGFR back to the PM to create a positive feedback loop to enhance growth factor signaling. PMID:22231449

  20. Immunoelectron microscopic double labeling of alkaline phosphatase and penicillinase with colloidal gold in frozen thin sections of Bacillus licheniformis 749/C.

    PubMed Central

    Guan, T; Ghosh, A; Ghosh, B K

    1985-01-01

    The subcellular distribution of alkaline phosphatase and penicillinase was determined by double labeling frozen thin sections of Bacillus licheniformis 749/C with colloidal gold-immunoglobulin G (IgG). Antipenicillinase and anti-alkaline phosphatase antibodies were used to prepare complexes with 5- and 15-nm colloidal gold particles, respectively. The character of the labeling of membrane-bound alkaline phosphatase and penicillinase was different: the immunolabels for alkaline phosphatase (15-nm particles) were bound to a few sites at the inner surface of the plasma membrane, and the gold particles formed clusters of various sizes at the binding sites; the immunolabels for penicillinase (5-nm particles), on the other hand, were bound to the plasma membrane in a dispersed and random fashion. In the cytoplasm, immunolabels for both proteins were distributed randomly, and the character of their binding was similar. The labeling was specific: pretreating the frozen thin sections with different concentrations of anti-alkaline phosphatase or penicillinase blocked the binding of the immunolabel prepared with the same antibody. Binding could be fully blocked by pretreatment with 800 micrograms of either antibody per ml. Images PMID:3876329

Top