Science.gov

Sample records for blocks gap junction

  1. Gap Junctions

    PubMed Central

    Nielsen, Morten Schak; Axelsen, Lene Nygaard; Sorgen, Paul L.; Verma, Vandana; Delmar, Mario; Holstein-Rathlou, Niels-Henrik

    2013-01-01

    Gap junctions are essential to the function of multicellular animals, which require a high degree of coordination between cells. In vertebrates, gap junctions comprise connexins and currently 21 connexins are known in humans. The functions of gap junctions are highly diverse and include exchange of metabolites and electrical signals between cells, as well as functions, which are apparently unrelated to intercellular communication. Given the diversity of gap junction physiology, regulation of gap junction activity is complex. The structure of the various connexins is known to some extent; and structural rearrangements and intramolecular interactions are important for regulation of channel function. Intercellular coupling is further regulated by the number and activity of channels present in gap junctional plaques. The number of connexins in cell-cell channels is regulated by controlling transcription, translation, trafficking, and degradation; and all of these processes are under strict control. Once in the membrane, channel activity is determined by the conductive properties of the connexin involved, which can be regulated by voltage and chemical gating, as well as a large number of posttranslational modifications. The aim of the present article is to review our current knowledge on the structure, regulation, function, and pharmacology of gap junctions. This will be supported by examples of how different connexins and their regulation act in concert to achieve appropriate physiological control, and how disturbances of connexin function can lead to disease. © 2012 American Physiological Society. Compr Physiol 2:1981-2035, 2012. PMID:23723031

  2. Carbon Tetrachloride at Hepatotoxic Levels Blocks Reversibly Gap Junctions between Rat Hepatocytes

    NASA Astrophysics Data System (ADS)

    Saez, J. C.; Bennett, M. V. L.; Spray, D. C.

    1987-05-01

    Electrical coupling and dye coupling between pairs of rat hepatocytes were reversibly reduced by brief exposure to halogenated methanes (CBrCl3, CCl4, and CHCl3). The potency of different halomethanes in uncoupling hepatocytes was comparable to their hepatotoxicity in vivo, and the rank order was the same as that of their tendency to form free radicals. The effect of carbon tetrachloride (CCl4) on hepatocytes was substantially reduced by prior treatment with SKF 525A, an inhibitor of cytochrome P-450, and by exposure to the reducing reagent β -mercaptoethanol. Halomethane uncoupling occurred with or without extracellular calcium and did not change intracellular concentrations of calcium and hydrogen ions or the phosphorylation state of the main gap-junctional protein. Thus the uncoupling appears to depend on cytochrome P-450 oxidative metabolism in which free radicals are generated and may result from oxidation of the gap-junctional protein or of a regulatory molecule that leads to closure of gap-junctional channels. Decreases in junctional conductance may be a rapid cellular response to injury that protects healthy cells by uncoupling them from unhealthy ones.

  3. Block of gap junctions eliminates aberrant activity and restores light responses during retinal degeneration.

    PubMed

    Toychiev, Abduqodir H; Ivanova, Elena; Yee, Christopher W; Sagdullaev, Botir T

    2013-08-28

    Retinal degeneration leads to progressive photoreceptor cell death, resulting in vision loss. Subsequently, inner retinal neurons develop aberrant synaptic activity, compounding visual impairment. In retinal ganglion cells, light responses driven by surviving photoreceptors are obscured by elevated levels of aberrant spiking activity. Here, we demonstrate in rd10 mice that targeting disruptive neuronal circuitry with a gap junction antagonist can significantly reduce excessive spiking. This treatment increases the sensitivity of the degenerated retina to light stimuli driven by residual photoreceptors. Additionally, this enhances signal transmission from inner retinal neurons to ganglion cells, potentially allowing the retinal network to preserve the fidelity of signals either from prosthetic electronic devices, or from cells optogenetically modified to transduce light. Thus, targeting maladaptive changes to the retina allows for treatments to use existing neuronal tissue to restore light sensitivity, and to augment existing strategies to replace lost photoreceptors. PMID:23986234

  4. Block of Gap Junctions Eliminates Aberrant Activity and Restores Light Responses during Retinal Degeneration

    PubMed Central

    Toychiev, Abduqodir H.; Ivanova, Elena; Yee, Christopher W.

    2013-01-01

    Retinal degeneration leads to progressive photoreceptor cell death, resulting in vision loss. Subsequently, inner retinal neurons develop aberrant synaptic activity, compounding visual impairment. In retinal ganglion cells, light responses driven by surviving photoreceptors are obscured by elevated levels of aberrant spiking activity. Here, we demonstrate in rd10 mice that targeting disruptive neuronal circuitry with a gap junction antagonist can significantly reduce excessive spiking. This treatment increases the sensitivity of the degenerated retina to light stimuli driven by residual photoreceptors. Additionally, this enhances signal transmission from inner retinal neurons to ganglion cells, potentially allowing the retinal network to preserve the fidelity of signals either from prosthetic electronic devices, or from cells optogenetically modified to transduce light. Thus, targeting maladaptive changes to the retina allows for treatments to use existing neuronal tissue to restore light sensitivity, and to augment existing strategies to replace lost photoreceptors. PMID:23986234

  5. Quantification of gap junction selectivity.

    PubMed

    Ek-Vitorín, Jose F; Burt, Janis M

    2005-12-01

    Gap junctions, which are essential for functional coordination and homeostasis within tissues, permit the direct intercellular exchange of small molecules. The abundance and diversity of this exchange depends on the number and selectivity of the comprising channels and on the transjunctional gradient for and chemical character of the permeant molecules. Limited knowledge of functionally significant permeants and poor detectability of those few that are known have made it difficult to define channel selectivity. Presented herein is a multifaceted approach to the quantification of gap junction selectivity that includes determination of the rate constant for intercellular diffusion of a fluorescent probe (k2-DYE) and junctional conductance (gj) for each junction studied, such that the selective permeability (k2-DYE/gj) for dyes with differing chemical characteristics or junctions with differing connexin (Cx) compositions (or treatment conditions) can be compared. In addition, selective permeability can be correlated using single-channel conductance when this parameter is also measured. Our measurement strategy is capable of detecting 1) rate constants and selective permeabilities that differ across three orders of magnitude and 2) acute changes in that rate constant. Using this strategy, we have shown that 1) the selective permeability of Cx43 junctions to a small cationic dye varied across two orders of magnitude, consistent with the hypothesis that the various channel configurations adopted by Cx43 display different selective permeabilities; and 2) the selective permeability of Cx37 vs. Cx43 junctions was consistently and significantly lower. PMID:16093281

  6. Aberrant expression and function of gap junctions during carcinogenesis.

    PubMed Central

    Yamasaki, H

    1991-01-01

    Gap junctional intercellular communication plays a key role in the maintenance of homeostasis in multicellular organisms. Reflecting deranged homeostasis in cancer cells, most transformed or cancerous cells show aberrant gap junctional intercellular communication; they have decreased junctional communication between each other and/or with surrounding normal cells. Studies with in vitro cell transformation and animal carcinogenesis models suggest an involvement of blocked intercellular communication in later stages of carcinogenesis. Analysis of expression of gap junction proteins (connexins) and corresponding mRNA indicates that a number of regulation sites are involved in aberrant function of gap junctions during carcinogenesis. Suppression of transformed phenotypes is often seen when transformed cells are physically in contact with their normal counterparts. Some studies suggest that gap junctional intercellular communication is involved in such tumor suppression. PMID:1663449

  7. Modulation of adrenal gap junction expression.

    PubMed

    Murray, S A; Shah, U S

    1998-01-01

    To increase our knowledge of the role of peptide hormone stimulation in gap junction protein expression and adrenal cortical cell function, primary rat adrenal cortical cells were treated with adrenocorticotropin, and gap junction proteins were measured. Immunocytochemistry and western blot analysis were used to detect and characterize gap junction type and distribution. The gap junction protein, connexin 43 (alpha 1), was detected. Analysis of six connexin protein types did not reveal gap junction species other than alpha 1. Cells of the inner adrenal cortical zones, zonae fasciculata and reticularis, were demonstrated to have the highest number of gap junctions per cell in the adrenal gland. Adrenal cell cultures enriched for the two inner cortical adrenal zones were established and demonstrated also to express alpha 1 gap junction protein. Adrenocorticotropin (40 mUnits/ml) and dibutyryl cyclic adenosine monophosphate (1 mM) treatments increased alpha 1 gap junction protein levels and decreased cell proliferation rates in the cell cultures. The results are consistent with the hypothesis that gap junction expression can be regulated by adrenocorticotropin acting through the second messenger cyclic adenosine monophosphate. It can be suggested that gap junction expression in the adrenal gland may be under hormonal influence, and that gap junctions serve as passage for movement of molecules involved in control of cell proliferation. PMID:9694574

  8. Downregulation of gap junctions in cancer cells.

    PubMed

    Leithe, Edward; Sirnes, Solveig; Omori, Yasufumi; Rivedal, Edgar

    2006-12-01

    Gap junctions are intercellular plasma membrane domains enriched in channels that allow direct exchange of ions and small molecules between adjacent cells. Gap junction channels are composed of a family of transmembrane proteins called connexin. Connexins play important roles in the regulation of cell growth and differentiation. Cancer cells usually have downregulated levels of gap junctions, and several lines of evidence suggest that loss of gap junctional intercellular communication is an important step in carcinogenesis. In support of this hypothesis are studies showing that reexpression of connexins in cancer cells causes normalization of cell growth control and reduced tumor growth. To gain a more detailed understanding of the role of connexins as tumor suppressors, a clearer picture of the mechanisms involved in loss of gap junctions in cancer cells is needed. Furthermore, defining the mechanisms involved in downregulation of connexins in carcinogenesis will be an important step toward utilizing the potential of connexins as targets in cancer prevention and therapy. Various mechanisms are involved in the loss of gap junctions in cancer cells, ranging from loss of connexin gene transcription to aberrant trafficking of connexin proteins. This review will discuss our current knowledge on the molecular mechanisms involved in the downregulation of gap junctions in cancer cells. PMID:17425504

  9. Terbinafine inhibits gap junctional intercellular communication.

    PubMed

    Lee, Ju Yeun; Yoon, Sei Mee; Choi, Eun Ju; Lee, Jinu

    2016-09-15

    Terbinafine is an antifungal agent that selectively inhibits fungal sterol synthesis by blocking squalene epoxidase. We evaluated the effect of terbinafine on gap junctional intercellular communication (GJIC). Fluorescence recovery after photobleaching (FRAP) and I-YFP GJIC assays revealed that terbinafine inhibits GJIC in a reversible and dose-dependent manner in FRT-Cx43 and LN215 cells. Treatment with terbinafine did not affect Cx43 phosphorylation status or intracellular Ca(2+) concentration, well-known action mechanisms of various GJIC blockers. While a structurally related chemical, naftifine, attenuated GJIC, epigallocatechin gallate, another potent squalene epoxidase inhibitor with a different structure, did not. These results suggest that terbinafine inhibits GJIC with a so far unknown mechanism of action. PMID:27487578

  10. Adrenocortical Gap Junctions and Their Functions

    PubMed Central

    Bell, Cheryl L.; Murray, Sandra A.

    2016-01-01

    Adrenal cortical steroidogenesis and proliferation are thought to be modulated by gap junction-mediated direct cell–cell communication of regulatory molecules between cells. Such communication is regulated by the number of gap junction channels between contacting cells, the rate at which information flows between these channels, and the rate of channel turnover. Knowledge of the factors regulating gap junction-mediated communication and the turnover process are critical to an understanding of adrenal cortical cell functions, including development, hormonal response to adrenocorticotropin, and neoplastic dedifferentiation. Here, we review what is known about gap junctions in the adrenal gland, with particular attention to their role in adrenocortical cell steroidogenesis and proliferation. Information and insight gained from electrophysiological, molecular biological, and imaging (immunocytochemical, freeze fracture, transmission electron microscopic, and live cell) techniques will be provided. PMID:27445985

  11. Increasing gap junctional coupling: a tool for dissecting the role of gap junctions.

    PubMed

    Axelsen, Lene Nygaard; Haugan, Ketil; Stahlhut, Martin; Kjølbye, Anne-Louise; Hennan, James K; Holstein-Rathlou, Niels-Henrik; Petersen, Jørgen Søberg; Nielsen, Morten Schak

    2007-03-01

    Much of our current knowledge about the physiological and pathophysiological role of gap junctions is based on experiments where coupling has been reduced by either chemical agents or genetic modification. This has brought evidence that gap junctions are important in many physiological processes. In a number of cases, gap junctions have been implicated in the initiation and progress of disease, and experimental uncoupling has been used to investigate the exact role of coupling. The inverse approach, i.e., to increase coupling, has become possible in recent years and represents a new way of testing the role of gap junctions. The aim of this review is to summarize the current knowledge obtained with agents that selectively increase gap junctional intercellular coupling. Two approaches will be reviewed: increasing coupling by the use of antiarrhythmic peptide and its synthetic analogs and by interfering with the gating of gap junctional channels.

  12. Clathrin and Cx43 gap junction plaque endoexocytosis

    SciTech Connect

    Nickel, Beth M.; DeFranco, B. Hewa; Gay, Vernon L.; Murray, Sandra A.

    2008-10-03

    In earlier transmission electron microscopic studies, we have described pentilaminar gap junctional membrane invaginations and annular gap junction vesicles coated with short, electron-dense bristles. The similarity between these electron-dense bristles and the material surrounding clathrin-coated pits led us to suggest that the dense bristles associated with gap junction structures might be clathrin. To confirm that clathrin is indeed associated with annular gap junction vesicles and gap junction plaques, quantum dot immuno-electron microscopic techniques were used. We report here that clathrin associates with both connexin 43 (Cx43) gap junction plaques and pentilaminar gap junction vesicles. An important finding was the preferential localization of clathrin to the cytoplasmic surface of the annular or of the gap junction plaque membrane of one of the two contacting cells. This is consistent with the possibility that the direction of gap junction plaque internalization into one of two contacting cells is regulated by clathrin.

  13. Structure and function of gap junction proteins: role of gap junction proteins in embryonic heart development.

    PubMed

    Ahir, Bhavesh K; Pratten, Margaret K

    2014-01-01

    Intercellular (cell-to-cell) communication is a crucial and complex mechanism during embryonic heart development. In the cardiovascular system, the beating of the heart is a dynamic and key regulatory process, which is functionally regulated by the coordinated spread of electrical activity through heart muscle cells. Heart tissues are composed of individual cells, each bearing specialized cell surface membrane structures called gap junctions that permit the intercellular exchange of ions and low molecular weight molecules. Gap junction channels are essential in normal heart function and they assist in the mediated spread of electrical impulses that stimulate synchronized contraction (via an electrical syncytium) of cardiac tissues. This present review describes the current knowledge of gap junction biology. In the first part, we summarise some relevant biochemical and physiological properties of gap junction proteins, including their structure and function. In the second part, we review the current evidence demonstrating the role of gap junction proteins in embryonic development with particular reference to those involved in embryonic heart development. Genetics and transgenic animal studies of gap junction protein function in embryonic heart development are considered and the alteration/disruption of gap junction intercellular communication which may lead to abnormal heart development is also discussed.

  14. Isolation and purification of gap junction channels.

    PubMed

    Stauffer, K A; Kumar, N M; Gilula, N B; Unwin, N

    1991-10-01

    This paper reports methods we have developed to solubilize gap junction channels, or connexons, from isolated gap junctions and to purify them in milligram quantities. Two sources of material are used: rat liver gap junctions and gap junctions produced by infecting insect cells with a baculovirus containing the cDNA for human liver beta 1 protein (connexin 32). Complete solubilization is obtained with long chain detergents (lauryl dimethyl amineoxide, dodecyl maltoside) and requires high ionic strength and high pH as well as reducing conditions. The purification involves chromatography on hydroxylapatite and gel filtration on Superose 6. A homogeneous product is indicated by a single band on a silver-stained gel and a homogeneous population of doughnut-shaped particles under the electron microscope. These particles have hexameric symmetry. The purified connexons have a tendency to form aggregates: filaments and sheets. The filaments grow by end-to-end association of connexons and are nonpolar, suggesting that the connexons are paired as in the cell-to-cell channel. The sheets grow by lateral association of the filaments.

  15. Lycopene oxidation product enhances gap junctional communication.

    PubMed

    Aust, O; Ale-Agha, N; Zhang, L; Wollersen, H; Sies, H; Stahl, W

    2003-10-01

    Carotenoids as well as their metabolites and oxidation products stimulate gap junctional communication (GJC) between cells, which is thought to be one of the protective mechanisms related to cancer-preventive activities of these compounds. Increased intake of lycopene by consumption of tomatoes or tomato products has been epidemiologically associated with a diminished risk of prostate cancer. Here, we report a stimulatory effect of a lycopene oxidation product on GJC in rat liver epithelial WB-F344 cells. The active compound was obtained by complete in vitro oxidation of lycopene with hydrogen peroxide/osmium tetroxide. For structural analysis high performance liquid chromatography, gas chromatography coupled with mass spectrometry, ultraviolet/visible-, and infrared spectrophotometry were applied. The biologically active oxidation product was identified as 2,7,11-trimethyl-tetradecahexaene-1,14-dial. The present data indicate a potential role of lycopene degradation products in cell signaling enhancing cell-to-cell communication via gap junctions. PMID:12909274

  16. Isolated Liver Gap Junctions: Gating of Transjunctional Currents is Similar to That in Intact Pairs of Rat Hepatocytes

    NASA Astrophysics Data System (ADS)

    Spray, D. C.; Saez, J. C.; Brosius, D.; Benneti, M. V. L.; Hertzberg, E. L.

    1986-08-01

    We have shown previously that conductance of rat liver gap junctions is blocked by an affinity-purified polyclonal antibody generated against rat liver junctional membranes, is not affected by moderate transjunctional or transmembrane potentials, and is reversibly decreased by cytoplasmic acidification and perfusion with octanol. We have now recorded currents from isolated liver gap junctions using patch electrodes dipped through a layer of mixed lipids whose concentrations match those of isolated liver appositional membranes. These currents are blocked by the same polyclonal antibody, are insensitive to moderate voltages imposed across the pipette tip, and are reversibly blocked by similar concentrations of H ions and octanol as are junctions in situ. The currents are likely to be gap junctional in origin; their block by low pH and other agents indicates that the gating mechanisms are intrinsic to the gap junctions themselves and presumably result from conformational change in the channel-forming protein.

  17. Gap junction dysfunction in the prefrontal cortex induces depressive-like behaviors in rats.

    PubMed

    Sun, Jian-Dong; Liu, Yan; Yuan, Yu-He; Li, Jing; Chen, Nai-Hong

    2012-04-01

    Growing evidence has implicated glial anomalies in the pathophysiology of major depression disorder (MDD). Gap junctional communication is a main determinant of astrocytic function. However, it is unclear whether gap junction dysfunction is involved in MDD development. This study investigates changes in the function of astrocyte gap junction occurring in the rat prefrontal cortex (PFC) after chronic unpredictable stress (CUS), a rodent model of depression. Animals exposed to CUS and showing behavioral deficits in sucrose preference test (SPT) and novelty suppressed feeding test (NSFT) exhibited significant decreases in diffusion of gap junction channel-permeable dye and expression of connexin 43 (Cx43), a major component of astrocyte gap junction, and abnormal gap junctional ultrastructure in the PFC. Furthermore, we analyzed the effects of typical antidepressants fluoxetine and duloxetine and glucocorticoid receptor (GR) antagonist mifepristone on CUS-induced gap junctional dysfunction and depressive-like behaviors. The cellular and behavioral alterations induced by CUS were reversed and/or blocked by treatment with typical antidepressants or mifepristone, indicating that the mechanism of their antidepressant action may involve the amelioration of gap junction dysfunction and the cellular changes may be related to GR activation. We then investigated the effects of pharmacological gap junction blockade in the PFC on depressive-like behaviors. The results demonstrate that carbenoxolone (CBX) infusions induced anhedonia in SPT, and anxiety in NSFT, and Cx43 mimetic peptides Gap27 and Gap26 also induced anhedonia, a core symptom of depression. Together, this study supports the hypothesis that gap junction dysfunction contributes to the pathophysiology of depression.

  18. Gap junctions in the nervous system.

    PubMed

    Rozental, R; Giaume, C; Spray, D C

    2000-04-01

    Synapses are classically defined as close connections between two nerve cells or between a neuronal cell and a muscle or gland cell across which a chemical signal (i.e., a neurotransmitter) and/or an electrical signal (i.e., current-carrying ions) can pass. The definition of synapse was developed by Charles Sherrington and by Ramon y Cajal at the beginning of this century and refined by John Eccles and Bernard Katz 50 years later; in this collection of papers, the definition of synapses is discussed further in the chapter by Mike Bennett. who provided the first functional demonstration of electrical transmission via gap junction channels between vertebrate neurons. As is evidenced by the range of topics covered in this issue, research dealing with gap junctions in the nervous system has expanded enormously in the past decade, major findings being that specific cell types in the brain expresses specific types of connexins and that expression patterns coincide with tissue compartmentalization and function and that these compartments change during development.

  19. Communication Through Gap Junctions in the Endothelium.

    PubMed

    Schmidt, K; Windler, R; de Wit, C

    2016-01-01

    A swarm of fish displays a collective behavior (swarm behavior) and moves "en masse" despite the huge number of individual animals. In analogy, organ function is supported by a huge number of cells that act in an orchestrated fashion and this applies also to vascular cells along the vessel length. It is obvious that communication is required to achieve this vital goal. Gap junctions with their modular bricks, connexins (Cxs), provide channels that interlink the cytosol of adjacent cells by a pore sealed against the extracellular space. This allows the transfer of ions and charge and thereby the travel of membrane potential changes along the vascular wall. The endothelium provides a low-resistance pathway that depends crucially on connexin40 which is required for long-distance conduction of dilator signals in the microcirculation. The experimental evidence for membrane potential changes synchronizing vascular behavior is manifold but the functional verification of a physiologic role is still open. Other molecules may also be exchanged that possibly contribute to the synchronization (eg, Ca(2+)). Recent data suggest that vascular Cxs have more functions than just facilitating communication. As pharmacological tools to modulate gap junctions are lacking, Cx-deficient mice provide currently the standard to unravel their vascular functions. These include arteriolar dilation during functional hyperemia, hypoxic pulmonary vasoconstriction, vascular collateralization after ischemia, and feedback inhibition on renin secretion in the kidney.

  20. Communication Through Gap Junctions in the Endothelium.

    PubMed

    Schmidt, K; Windler, R; de Wit, C

    2016-01-01

    A swarm of fish displays a collective behavior (swarm behavior) and moves "en masse" despite the huge number of individual animals. In analogy, organ function is supported by a huge number of cells that act in an orchestrated fashion and this applies also to vascular cells along the vessel length. It is obvious that communication is required to achieve this vital goal. Gap junctions with their modular bricks, connexins (Cxs), provide channels that interlink the cytosol of adjacent cells by a pore sealed against the extracellular space. This allows the transfer of ions and charge and thereby the travel of membrane potential changes along the vascular wall. The endothelium provides a low-resistance pathway that depends crucially on connexin40 which is required for long-distance conduction of dilator signals in the microcirculation. The experimental evidence for membrane potential changes synchronizing vascular behavior is manifold but the functional verification of a physiologic role is still open. Other molecules may also be exchanged that possibly contribute to the synchronization (eg, Ca(2+)). Recent data suggest that vascular Cxs have more functions than just facilitating communication. As pharmacological tools to modulate gap junctions are lacking, Cx-deficient mice provide currently the standard to unravel their vascular functions. These include arteriolar dilation during functional hyperemia, hypoxic pulmonary vasoconstriction, vascular collateralization after ischemia, and feedback inhibition on renin secretion in the kidney. PMID:27451099

  1. Mutational analysis of gap junction formation.

    PubMed Central

    Dahl, G; Werner, R; Levine, E; Rabadan-Diehl, C

    1992-01-01

    The paired oocyte cell-cell channel assay was used to investigate the mechanisms involved in the process of formation of gap junction channels. Single oocytes, injected with connexin-specific mRNAs, accumulate a pool of precursors from which cell-cell channels can form rapidly upon pairing. Several lines of evidence, including immunohistochemistry and surface labeling, indicate that part of this precursor pool is located in the cell membrane, probably in the form of closed hemichannels. The homophilic binding of hemichannels to each other can be mimicked by synthetic peptides representing the extracellular loop sequences of connexin32. The peptides specifically suppress channel formation. A crucial role is established for the six cysteines in the extracellular domains that are conserved in all vertebrate gap junction proteins. Change of any of these cysteines into serines results in absolute loss of function of the mutant connexin. The effects of thiol-specific reagents on channel formation suggest that docking and/or opening of channels involves disulfide exchange. Several of the variable amino acids in the extracellular loop sequences were found to determine specificity of connexin-connexin interactions. Images FIGURE 2 PMID:1376165

  2. TEMPORAL CHANGE IN GAP JUNCTION FUNCTION IN PRIMARY HEPATOCYTES

    EPA Science Inventory

    TEMPORAL CHANGES IN GAP JUNCTION FUNCTION IN PRIMARY *

    The objective of this study was to examine the reduction in gap junction communication (GJC) in primary hepatocytes due to coincident melatonin and magnetic field treatments to determine if these conditions could prov...

  3. Osmotic forces and gap junctions in spreading depression: a computational model

    NASA Technical Reports Server (NTRS)

    Shapiro, B. E.

    2001-01-01

    In a computational model of spreading depression (SD), ionic movement through a neuronal syncytium of cells connected by gap junctions is described electrodiffusively. Simulations predict that SD will not occur unless cells are allowed to expand in response to osmotic pressure gradients and K+ is allowed to move through gap junctions. SD waves of [K+]out approximately 25 to approximately 60 mM moving at approximately 2 to approximately 18 mm/min are predicted over the range of parametric values reported in gray matter, with extracellular space decreasing up to approximately 50%. Predicted waveform shape is qualitatively similar to laboratory reports. The delayed-rectifier, NMDA, BK, and Na+ currents are predicted to facilitate SD, while SK and A-type K+ currents and glial activity impede SD. These predictions are consonant with recent findings that gap junction poisons block SD and support the theories that cytosolic diffusion via gap junctions and osmotic forces are important mechanisms underlying SD.

  4. Presence of functional gap junctions in human embryonic stem cells.

    PubMed

    Wong, Raymond C B; Pébay, Alice; Nguyen, Linh T V; Koh, Karen L L; Pera, Martin F

    2004-01-01

    Gap junctions are intercellular channels that allow both chemical and electrical signaling between two adjacent cells. Gap junction intercellular communication has been implicated in the regulation of various cellular processes, including cell migration, cell proliferation, cell differentiation, and cell apoptosis. This study aimed to determine the presence and functionality of gap junctions in human embryonic stem cells (hESCs). Using reverse transcription--polymerase chain reaction and immunocytochemistry, we demonstrate that human ES cells express two gap junction proteins, connexin 43 and connexin 45. Western blot analysis revealed the presence of three phosphorylated forms (nonphosphorylated [NP], P1, and P2) of connexin 43, NP being prominent. Moreover, scrape loading/dye transfer assay indicates that human ES cells are coupled through functional gap junctions that are inhibited by protein kinase C activation and extracellular signal-regulated kinase inhibition.

  5. Differences between liver gap junction protein and lens MIP 26 from rat: implications for tissue specificity of gap junctions.

    PubMed

    Nicholson, B J; Takemoto, L J; Hunkapiller, M W; Hood, L E; Revel, J P

    1983-03-01

    Liver gap junctions and gap-junction-like structures from eye lenses are each comprised of a single major protein (Mr 28,000 and 26,000, respectively). These proteins display different two-dimensional peptide fingerprints, distinct amino acid compositions, nonhomologous N-terminal amino acid sequences and different sensitivities to proteases when part of the intact junction. However, the junctional protein of each tissue is well conserved between species, as demonstrated previously for lens and now for liver in several mammalian species. The possiblity of tissue-specific gap junction proteins is discussed in the light of data suggesting that rat heart gap junctions are comprised of yet a third protein. PMID:6299583

  6. Gap junction modulation and its implications for heart function

    PubMed Central

    Kurtenbach, Stefan; Kurtenbach, Sarah; Zoidl, Georg

    2014-01-01

    Gap junction communication (GJC) mediated by connexins is critical for heart function. To gain insight into the causal relationship of molecular mechanisms of disease pathology, it is important to understand which mechanisms contribute to impairment of gap junctional communication. Here, we present an update on the known modulators of connexins, including various interaction partners, kinases, and signaling cascades. This gap junction network (GJN) can serve as a blueprint for data mining approaches exploring the growing number of publicly available data sets from experimental and clinical studies. PMID:24578694

  7. Gap junctions/hemichannels modulate interkinetic nuclear migration in the forebrain precursors

    PubMed Central

    Liu, Xiuxin; Hashimoto-Torii, Kazue; Torii, Masaaki; Ding, Chen; Rakic, Pasko

    2010-01-01

    During mitotic division in the telencephalic proliferative ventricular zone (VZ), the nuclei of the neural precursors move basally away from the ventricular surface for DNA synthesis, and apically return to the surface for mitotic division; a process known as interkinetic migration or “to-and-fro” nuclear translocation. The cell, which remains attached to the ventricular surface, either continues cycling, or exits the cycle and migrates to the subventricular zone (SVZ) or the developing cortical plate. While gap junctions/hemichannels are known to modulate DNA synthesis via Ca2+ waves, the role of Ca+ oscillations and the mechanism of nuclear translocation in the VZ precursors are unclear. Here we provide evidence that during apical nuclear migration, VZ precursors display dynamic spontaneous Ca2+ transients, which depend on functional gap junctions/hemichannels via ATP release and Ca2+ mobilizing messenger diffusion. Furthermore, we found that blocking gap junctions/hemichannels or shRNA mediated knockdown of connexin 43 (Cx43) retards the apically directed interkinetic nuclear migration accompanied with changes in the nuclear length/width ratio. In addition, we demonstrated that blocking functional gap junctions/hemichannels induces phosphorylation of small GTPase cdc42 in the VZ precursors. The basal phase of interkinetic migration is much slower and appears to be mediated passively by mechanical forces after cell division. Our findings indicate that functional interference with gap junctions/hemichannels during embryonic development may lead to abnormal corticogenesis and dysfunction of the cerebral cortex in adult organisms. PMID:20335455

  8. Gap Junctions and Biophysical Regulation of Bone Cells

    PubMed Central

    Lloyd, Shane A. J.

    2013-01-01

    Communication between osteoblasts, osteoclasts, and osteocytes is integral to their ability to build and maintain the skeletal system and respond to physical signals. Various physiological mechanisms, including nerve communication, hormones, and cytokines, play an important role in this process. More recently, the important role of direct, cell–cell communication via gap junctions has been established. In this review, we demonstrate the integral role of gap junctional intercellular communication (GJIC) in skeletal physiology and bone cell mechanosensing. PMID:23762015

  9. Anchored PKA as a gatekeeper for gap junctions

    PubMed Central

    Pidoux, Guillaume; Taskén, Kjetil

    2015-01-01

    Anchored protein kinase A (PKA) bound to A Kinase Anchoring Protein (AKAP) mediates effects of localized increases in cAMP in defined subcellular microdomains and retains the specificity in cAMP-PKA signaling to distinct extracellular stimuli. Gap junctions are pores between adjacent cells constituted by connexin proteins that provide means of communication and transfer of small molecules. While the PKA signaling is known to promote human trophoblast cell fusion, the gap junction communication through connexin 43 (Cx43) is a prerequisite for this process. We recently demonstrated that trophoblast fusion is regulated by ezrin, a known AKAP, which binds to Cx43 and delivers PKA in the vicinity gap junctions. We found that disruption of the ezrin-Cx43 interaction abolished PKA-dependent phosphorylation of Cx43 as well as gap junction communication and subsequently cell fusion. We propose that the PKA-ezrin-Cx43 macromolecular complex regulating gap junction communication constitutes a general mechanism to control opening of Cx43 gap junctions by phosphorylation in response to cAMP signaling in various cell types. PMID:26478781

  10. Fixed-Gap Tunnel Junction for Reading DNA Nucleotides

    PubMed Central

    2015-01-01

    Previous measurements of the electronic conductance of DNA nucleotides or amino acids have used tunnel junctions in which the gap is mechanically adjusted, such as scanning tunneling microscopes or mechanically controllable break junctions. Fixed-junction devices have, at best, detected the passage of whole DNA molecules without yielding chemical information. Here, we report on a layered tunnel junction in which the tunnel gap is defined by a dielectric layer, deposited by atomic layer deposition. Reactive ion etching is used to drill a hole through the layers so that the tunnel junction can be exposed to molecules in solution. When the metal electrodes are functionalized with recognition molecules that capture DNA nucleotides via hydrogen bonds, the identities of the individual nucleotides are revealed by characteristic features of the fluctuating tunnel current associated with single-molecule binding events. PMID:25380505

  11. Reduction of Gap Junctional Conductance by Microinjection of Antibodies against the 27-kDa Liver Gap Junction Polypeptide

    NASA Astrophysics Data System (ADS)

    Hertzberg, E. L.; Spray, D. C.; Bennett, M. V. L.

    1985-04-01

    Antibody raised against isolated rat liver gap junctions was microinjected into coupled cells in culture to assess its influence on gap junctional conductance. A rapid inhibition of fluorescent dye transfer and electrical coupling was produced in pairs of freshly dissociated adult rat hepatocytes and myocardial cells as well as in pairs of superior cervical ganglion neurons from neonatal rats cultured under conditions in which electrotonic synapses form. The antibodies have been shown by indirect immunofluorescence to bind to punctate regions of the plasma membrane in liver. By immunoreplica analysis of rat liver homogenates, plasma membranes, and isolated gap junctions resolved on NaDodSO4/polyacrylamide gels, binding was shown to be specific for the 27-kDa major polypeptide of gap junctions. This and similar antibodies should provide a tool for further investigation of the role of cell-cell communication mediated by gap junctions and indicate that immunologically similar polypeptides comprise gap junctions in adult mammalian cells derived from all three germ layers.

  12. Gap Junctions between Photoreceptor Cells in the Vertebrate Retina

    PubMed Central

    Raviola, Elio; Gilula, Norton B.

    1973-01-01

    In the outer plexiform layer of the retina the synaptic endings of cone cells make specialized junctions with each other and with the endings of rod cells. The ultrastructure of these interreceptor junctions is described in retinas of monkeys, rabbits, and turtles, in thin sections of embedded specimens and by the freeze-fracturing technique. Cone-to-rod junctions are ribbon-like areas of close membrane approximation. On either side of the narrowing of the intercellular space, the junctional membranes contain a row of particles located on the fracture face A (cytoplasmic leaflet), while the complementary element, a row of single depressions, is located on fracture face B. The particle rows are surrounded by a membrane region that is devoid of particulate inclusions and bears an adherent layer of dense cytoplasmic material. Cone-to-cone junctions in some places are identical to cone-to-rod junctions, while in other places they closely resemble typical gap junctions (nexus). Interreceptor junctions, therefore, represent a morphological variant of the gap junction, and probably mediate electrotonic coupling between neighboring photoreceptor cells. Images PMID:4198274

  13. Hexadecameric structure of an invertebrate gap junction channel.

    PubMed

    Oshima, Atsunori; Matsuzawa, Tomohiro; Murata, Kazuyoshi; Tani, Kazutoshi; Fujiyoshi, Yoshinori

    2016-03-27

    Innexins are invertebrate-specific gap junction proteins with four transmembrane helices. These proteins oligomerize to constitute intercellular channels that allow for the passage of small signaling molecules associated with neural and muscular electrical activity. In contrast to the large number of structural and functional studies of connexin gap junction channels, few structural studies of recombinant innexin channels are reported. Here we show the three-dimensional structure of two-dimensionally crystallized Caenorhabditis elegans innexin-6 (INX-6) gap junction channels. The N-terminal deleted INX-6 proteins are crystallized in lipid bilayers. The three-dimensional reconstruction determined by cryo-electron crystallography reveals that a single INX-6 gap junction channel comprises 16 subunits, a hexadecamer, in contrast to chordate connexin channels, which comprise 12 subunits. The channel pore diameters at the cytoplasmic entrance and extracellular gap region are larger than those of connexin26. Two bulb densities are observed in each hemichannel, one in the pore and the other at the cytoplasmic side of the hemichannel in the channel pore pathway. These findings imply a structural diversity of gap junction channels among multicellular organisms. PMID:26883891

  14. The role of gap junctions in stretch-induced atrial fibrillation

    PubMed Central

    Ueda, Norihiro; Yamamoto, Mitsuru; Honjo, Haruo; Kodama, Itsuo; Kamiya, Kaichiro

    2014-01-01

    Aims The aim of this study was to investigate the role of gap junctions in atrial fibrillation (AF) by analysing the effects of a gap junction enhancer and blocker on AF vulnerability and electrophysiological properties of isolated hearts. Methods and results The acute atrial stretch model of AF in the isolated rabbit heart was used. Sustained AF (SAF) was induced by a burst of high-frequency stimulation of the Bachmann's bundle. The effective refractory period (ERP) was measured, and the total conduction time (TCT) and the pattern of conduction of the anterior surface of the left atrium were monitored by using an optical mapping system. The effect of enhancing gap junction function by 100–1000 nM rotigaptide (ZP123) and block by 30 μM carbenoxolone on these parameters was measured. SAF inducibility was increased with an elevation of intra-atrial pressure. Enhanced gap junction conductance induced by treatment with 100–1000 nM rotigaptide reduced SAF inducibility, and the gap junction blocker carbenoxolone increased SAF inducibility. In the absence of gap junction enhancer or blocker, normal conduction was observed at 0 cmH2O. When intra-atrial pressure was raised to 12 cmH2O, the conduction pattern was changed to a heterogeneous zig-zag pattern and TCT was prolonged. Conduction pattern was not affected by either agent. Rotigaptide shortened TCT, whereas carbenoxolone prolonged TCT. ERP was significantly shortened with an increase in intra-atrial pressure, but ERP was unaffected by either agent. Conclusion Gap junction modulators changed AF inducibility through their effects on atrial conduction, not by altering ERP. PMID:25183791

  15. An electrostatic mechanism for Ca(2+)-mediated regulation of gap junction channels.

    PubMed

    Bennett, Brad C; Purdy, Michael D; Baker, Kent A; Acharya, Chayan; McIntire, William E; Stevens, Raymond C; Zhang, Qinghai; Harris, Andrew L; Abagyan, Ruben; Yeager, Mark

    2016-01-01

    Gap junction channels mediate intercellular signalling that is crucial in tissue development, homeostasis and pathologic states such as cardiac arrhythmias, cancer and trauma. To explore the mechanism by which Ca(2+) blocks intercellular communication during tissue injury, we determined the X-ray crystal structures of the human Cx26 gap junction channel with and without bound Ca(2+). The two structures were nearly identical, ruling out both a large-scale structural change and a local steric constriction of the pore. Ca(2+) coordination sites reside at the interfaces between adjacent subunits, near the entrance to the extracellular gap, where local, side chain conformational rearrangements enable Ca(2+)chelation. Computational analysis revealed that Ca(2+)-binding generates a positive electrostatic barrier that substantially inhibits permeation of cations such as K(+) into the pore. Our results provide structural evidence for a unique mechanism of channel regulation: ionic conduction block via an electrostatic barrier rather than steric occlusion of the channel pore. PMID:26753910

  16. An electrostatic mechanism for Ca2+-mediated regulation of gap junction channels

    PubMed Central

    Bennett, Brad C.; Purdy, Michael D.; Baker, Kent A.; Acharya, Chayan; McIntire, William E.; Stevens, Raymond C.; Zhang, Qinghai; Harris, Andrew L.; Abagyan, Ruben; Yeager, Mark

    2016-01-01

    Gap junction channels mediate intercellular signalling that is crucial in tissue development, homeostasis and pathologic states such as cardiac arrhythmias, cancer and trauma. To explore the mechanism by which Ca2+ blocks intercellular communication during tissue injury, we determined the X-ray crystal structures of the human Cx26 gap junction channel with and without bound Ca2+. The two structures were nearly identical, ruling out both a large-scale structural change and a local steric constriction of the pore. Ca2+ coordination sites reside at the interfaces between adjacent subunits, near the entrance to the extracellular gap, where local, side chain conformational rearrangements enable Ca2+chelation. Computational analysis revealed that Ca2+-binding generates a positive electrostatic barrier that substantially inhibits permeation of cations such as K+ into the pore. Our results provide structural evidence for a unique mechanism of channel regulation: ionic conduction block via an electrostatic barrier rather than steric occlusion of the channel pore. PMID:26753910

  17. Gap junctions in developing thalamic and neocortical neuronal networks.

    PubMed

    Niculescu, Dragos; Lohmann, Christian

    2014-12-01

    The presence of direct, cytoplasmatic, communication between neurons in the brain of vertebrates has been demonstrated a long time ago. These gap junctions have been characterized in many brain areas in terms of subunit composition, biophysical properties, neuronal connectivity patterns, and developmental regulation. Although interesting findings emerged, showing that different subunits are specifically regulated during development, or that excitatory and inhibitory neuronal networks exhibit various electrical connectivity patterns, gap junctions did not receive much further interest. Originally, it was believed that gap junctions represent simple passageways for electrical and biochemical coordination early in development. Today, we know that gap junction connectivity is tightly regulated, following independent developmental patterns for excitatory and inhibitory networks. Electrical connections are important for many specific functions of neurons, and are, for example, required for the development of neuronal stimulus tuning in the visual system. Here, we integrate the available data on neuronal connectivity and gap junction properties, as well as the most recent findings concerning the functional implications of electrical connections in the developing thalamus and neocortex.

  18. Microwave resonant activation in hybrid single-gap/two-gap Josephson tunnel junctions

    NASA Astrophysics Data System (ADS)

    Carabello, Steven; Lambert, Joseph G.; Mlack, Jerome; Dai, Wenqing; Li, Qi; Chen, Ke; Cunnane, Daniel; Xi, X. X.; Ramos, Roberto C.

    2016-09-01

    Microwave resonant activation is a powerful, straightforward technique to study classical and quantum systems, experimentally realized in Josephson junction devices cooled to very low temperatures. These devices typically consist of two single-gap superconductors separated by a weak link. We report the results of the first resonant activation experiments on hybrid thin film Josephson junctions consisting of a multi-gap superconductor (MgB2) and a single-gap superconductor (Pb or Sn). We can interpret the plasma frequency in terms of theories both for conventional and hybrid junctions. Using these models, we determine the junction parameters including critical current, resistance, and capacitance and find moderately high quality factors of Q0˜ 100 for these junctions.

  19. [Gap junctions: A new therapeutic target in major depressive disorder?].

    PubMed

    Sarrouilhe, D; Dejean, C

    2015-11-01

    Major depressive disorder is a multifactorial chronic and debilitating mood disease with high lifetime prevalence and is associated with excess mortality, especially from cardiovascular diseases and through suicide. The treatments of this disease with tricyclic antidepressants and monoamine oxidase inhibitors are poorly tolerated and those that selectively target serotonin and norepinephrine re-uptake are not effective in all patients, showing the need to find new therapeutic targets. Post-mortem studies of brains from patients with major depressive disorders described a reduced expression of the gap junction-forming membrane proteins connexin 30 and connexin 43 in the prefrontal cortex and the locus coeruleus. The use of chronic unpredictable stress, a rodent model of depression, suggests that astrocytic gap junction dysfunction contributes to the pathophysiology of major depressive disorder. Chronic treatments of rats with fluoxetine and of rat cultured cortical astrocytes with amitriptyline support the hypothesis that the upregulation of gap junctional intercellular communication between brain astrocytes could be a novel mechanism for the therapeutic effect of antidepressants. In conclusion, astrocytic gap junctions are emerging as a new potential therapeutic target for the treatment of patients with major depressive disorder.

  20. Remodelling of gap junctions and connexin expression in diseased myocardium

    PubMed Central

    Severs, Nicholas J.; Bruce, Alexandra F.; Dupont, Emmanuel; Rothery, Stephen

    2008-01-01

    Gap junctions form the cell-to-cell pathways for propagation of the precisely orchestrated patterns of current flow that govern the regular rhythm of the healthy heart. As in most tissues and organs, multiple connexin types are expressed in the heart: connexin43 (Cx43), Cx40 and Cx45 are found in distinctive combinations and relative quantities in different, functionally-specialized subsets of cardiac myocyte. Mutations in genes that encode connexins have only rarely been identified as being a cause of human cardiac disease, but remodelling of connexin expression and gap junction organization are well documented in acquired adult heart disease, notably ischaemic heart disease and heart failure. Remodelling may take the form of alterations in (i) the distribution of gap junctions and (ii) the amount and type of connexins expressed. Heterogeneous reduction in Cx43 expression and disordering in gap junction distribution feature in human ventricular disease and correlate with electrophysiologically identified arrhythmic changes and contractile dysfunction in animal models. Disease-related alterations in Cx45 and Cx40 expression have also been reported, and some of the functional implications of these are beginning to emerge. Apart from ventricular disease, various features of gap junction organization and connexin expression have been implicated in the initiation and persistence of the most common form of atrial arrhythmia, atrial fibrillation, though the disparate findings in this area remain to be clarified. Other major tasks ahead focus on the Purkinje/working ventricular myocyte interface and its role in normal and abnormal impulse propagation, connexin-interacting proteins and their regulatory functions, and on defining the precise functional properties conferred by the distinctive connexin co-expression patterns of different myocyte types in health and disease. PMID:18519446

  1. Aquaporin 0 enhances gap junction coupling via its cell adhesion function and interaction with connexin 50.

    PubMed

    Liu, Jialu; Xu, Ji; Gu, Sumin; Nicholson, Bruce J; Jiang, Jean X

    2011-01-15

    Both connexin 50 (Cx50) and aquaporin 0 (AQP0) have important roles in lens development and homeostasis, and their mutations are associated with human congenital cataracts. We have previously shown that Cx50 directly interacts with AQP0. Here, we demonstrate the importance of the Cx50 intracellular loop (IL) domain in mediating the interaction with AQP0 in the lens in vivo. AQP0 significantly increased (~20-30%) the intercellular coupling and conductance of Cx50 gap junctions. However, this increase was not observed when the IL domain was replaced with those from other lens connexins. The Cx50-AQP0 interaction had no effect on Cx50 hemichannel function. A fusion protein containing three extracellular loop domains of AQP0 efficiently blocked the cell-to-cell adhesion of AQP0 and attenuated the stimulatory effect of AQP0 on Cx50 gap junction conductance. These data suggest that the specific interaction between Cx50 and AQP0 enhances the coupling of Cx50 gap junctions, but not hemichannels, through the cell adhesion function of AQP0. This result establishes a physiological role of AQP0 in the functional regulation of gap junction channels.

  2. Dependence of paranodal junctional gap width on transverse bands.

    PubMed

    Rosenbluth, Jack; Petzold, Chris; Peles, Elior

    2012-08-15

    Mouse mutants with paranodal junctional (PNJ) defects display variable degrees of neurological impairment. In this study we compare control paranodes with those from three mouse mutants that differ with respect to a conspicuous PNJ component, the transverse bands (TBs). We hypothesize that TBs link the apposed junctional membranes together at a fixed distance and thereby determine the width of the junctional gap, which may in turn determine the extent to which nodal action currents can be short-circuited underneath the myelin sheath. Electron micrographs of aldehyde-fixed control PNJs, in which TBs are abundant, show a consistent junctional gap of ∼3.5 nm. In Caspr-null PNJs, which lack TBs entirely, the gap is wider (∼6-7 nm) and more variable. In CST-null PNJs, which have only occasional TBs, the mean PNJ gap width is comparable to that in Caspr-null mice. In the shaking mutant, in contrast, which has approximately 60% of the normal complement of TBs, mean PNJ gap width is not significantly different from that in controls. Correspondingly, shaking mice are much less impaired neurologically than either Caspr-null or CST-null mice. We conclude that in the absence or gross diminution of TBs, mean PNJ gap width increases significantly and suggest that this difference could underlie some of the neurological impairment seen in those mutants. Surprisingly, even in the absence of TBs, paranodes are to some extent maintained in their usual form, implying that in addition to TBs, other factors govern the formation and maintenance of overall paranodal structure. PMID:22434587

  3. Gap junctions in the heart of the adult Protopterus aethiopicus.

    PubMed

    Scheuermann, D W; de Maziere, A

    1984-07-01

    In thin sections and in freeze-fracture replicas small and sparse gap junctions appear to be developed on the longitudinal plasma membrane of Protopterus cardiac cells near a macula or fascia adhaerens. By thin-section electron microscopy, they had septalaminar profiles with a length between 0.042 and 0.260 micron. In freeze-fracture images they appear on the P-fracture face as maculate particle aggregations with complementary pits on the E-fracture face. Particles with a central intercellular channel could be observed. The average center-to-center distance between neighbouring particles or pits is 10.05 +/- 1.87 nm (N = 2429). The diameter of the junctional maculae in replicas lies between 0.037 and 0.229 nm. The particle packing density increases in larger maculate aggregations, while particle-free areas emerge which could be related to the degradation or reformation of gap junctions Atypical configurations of gap junctions observed in the myocardium of lower vertebrates are rarely encountered in this primitive vertebrate. PMID:6485893

  4. Length and energy gap dependences of thermoelectricity in nanostructured junctions.

    PubMed

    Asai, Yoshihiro

    2013-04-17

    The possibilities of an enhanced thermoelectric figure of merit value, ZT, in a nanostructured junction are examined for a wide range of parameter values in a theoretical model. Our research shows that the figure of merit can take a very large maximum, which depends both on the length and the energy gap values. The maximum of ZT is achieved when the Fermi level of the electrodes is aligned to the edge of the electronic transmission function of the junction, where both the conductance and the Seebeck constant are significantly enhanced. On the basis of our results, we conclude that nanowires and molecular junctions form a special class of systems where a large ZT can be expected in some cases. PMID:23528878

  5. Opening Hemichannels in Nonjunctional Membrane Stimulates Gap Junction Formation

    PubMed Central

    Beahm, Derek L.; Hall, James E.

    2004-01-01

    We studied gap junction formation in pairs of Xenopus laevis oocytes expressing connexins that form functional hemichannels and found no correlation between junctional conductance (Gj) and whole-cell hemichannel conductances (Ghemi) within the first few hours of pairing. However, opening hemichannels to a threshold current stimulated a rapid Gj increase. Moreover, cx46 hemichannel current stimulated cx40 Gj even though cx40 and cx46 do not form heteromeric or heterotypic gap junctions. Initial growth rate and final steady-state level of stimulated Gj were proportional to the product of hemichannel conductances. External calcium affected the growth rate of stimulated Gj but not the final steady-state value. Time constants of formation were short in low [Ca2+]out (3 min in 200 μM Ca2+) and long in high [Ca2+]out (15 min in 1 mM Ca2+), but in oocyte pairs pretreated with lectins to reduce steric hindrance imposed by large membrane glycoproteins the time constant was short and Ca2+-independent. We suggest that hemichannel activity stimulates Gj by collapsing the extracellular volume between membranes to allow the end-to-end binding between hemichannels. These studies suggest the possibility that functional hemichannels could trigger or enhance junctional formation in vivo in response to appropriate stimuli. PMID:14747314

  6. Motor neurons control locomotor circuit function retrogradely via gap junctions.

    PubMed

    Song, Jianren; Ampatzis, Konstantinos; Björnfors, E Rebecka; El Manira, Abdeljabbar

    2016-01-21

    Motor neurons are the final stage of neural processing for the execution of motor behaviours. Traditionally, motor neurons have been viewed as the 'final common pathway', serving as passive recipients merely conveying to the muscles the final motor program generated by upstream interneuron circuits. Here we reveal an unforeseen role of motor neurons in controlling the locomotor circuit function via gap junctions in zebrafish. These gap junctions mediate a retrograde analogue propagation of voltage fluctuations from motor neurons to control the synaptic release and recruitment of the upstream V2a interneurons that drive locomotion. Selective inhibition of motor neurons during ongoing locomotion de-recruits V2a interneurons and strongly influences locomotor circuit function. Rather than acting as separate units, gap junctions unite motor neurons and V2a interneurons into functional ensembles endowed with a retrograde analogue computation essential for locomotor rhythm generation. These results show that motor neurons are not a passive recipient of motor commands but an integral component of the neural circuits responsible for motor behaviour.

  7. Human Articular Chondrocytes Express Multiple Gap Junction Proteins

    PubMed Central

    Mayan, Maria D.; Carpintero-Fernandez, Paula; Gago-Fuentes, Raquel; Martinez-de-Ilarduya, Oskar; Wang, Hong-Zhang; Valiunas, Virginijus; Brink, Peter; Blanco, Francisco J.

    2014-01-01

    Osteoarthritis (OA) is the most common joint disease and involves progressive degeneration of articular cartilage. The aim of this study was to investigate if chondrocytes from human articular cartilage express gap junction proteins called connexins (Cxs). We show that human chondrocytes in tissue express Cx43, Cx45, Cx32, and Cx46. We also find that primary chondrocytes from adults retain the capacity to form functional voltage-dependent gap junctions. Immunohistochemistry experiments in cartilage from OA patients revealed significantly elevated levels of Cx43 and Cx45 in the superficial zone and down through the next approximately 1000 μm of tissue. These zones corresponded with regions damaged in OA that also had high levels of proliferative cell nuclear antigen. An increased number of Cxs may help explain the increased proliferation of cells in clusters that finally lead to tissue homeostasis loss. Conversely, high levels of Cxs in OA cartilage reflect the increased number of adjacent cells in clusters that are able to interact directly by gap junctions as compared with hemichannels on single cells in normal cartilage. Our data provide strong evidence that OA patients have a loss of the usual ordered distribution of Cxs in the damaged zones and that the reductions in Cx43 levels are accompanied by the loss of correct Cx localization in the nondamaged areas. PMID:23416160

  8. The connexin43 mimetic peptide Gap19 inhibits hemichannels without altering gap junctional communication in astrocytes

    PubMed Central

    Abudara, Verónica; Bechberger, John; Freitas-Andrade, Moises; De Bock, Marijke; Wang, Nan; Bultynck, Geert; Naus, Christian C.; Leybaert, Luc; Giaume, Christian

    2014-01-01

    In the brain, astrocytes represent the cellular population that expresses the highest amount of connexins (Cxs). This family of membrane proteins is the molecular constituent of gap junction channels and hemichannels that provide pathways for direct cytoplasm-to-cytoplasm and inside-out exchange, respectively. Both types of Cx channels are permeable to ions and small signaling molecules allowing astrocytes to establish dynamic interactions with neurons. So far, most pharmacological approaches currently available do not distinguish between these two channel functions, stressing the need to develop new specific molecular tools. In astrocytes two major Cxs are expressed, Cx43 and Cx30, and there is now evidence indicating that at least Cx43 operates as a gap junction channel as well as a hemichannel in these cells. Based on studies in primary cultures as well as in acute hippocampal slices, we report here that Gap19, a nonapeptide derived from the cytoplasmic loop of Cx43, inhibits astroglial Cx43 hemichannels in a dose-dependent manner, without affecting gap junction channels. This peptide, which not only selectively inhibits hemichannels but is also specific for Cx43, can be delivered in vivo in mice as TAT-Gap19, and displays penetration into the brain parenchyma. As a result, Gap19 combined with other tools opens up new avenues to decipher the role of Cx43 hemichannels in interactions between astrocytes and neurons in physiological as well as pathological situations. PMID:25374505

  9. Models and methods for in vitro testing of hepatic gap junctional communication

    PubMed Central

    Willebrords, Joost; Vinken, Mathieu

    2015-01-01

    Inherent to their pivotal roles in controlling all aspects of the liver cell life cycle, hepatocellular gap junctions are frequently disrupted upon impairment of the homeostatic balance, as occurs during liver toxicity. Hepatic gap junctions, which are mainly built up by connexin32, are specifically targeted by tumor promoters and epigenetic carcinogens. This renders inhibition of gap junction functionality a suitable indicator for the in vitro detection of nongenotoxic hepatocarcinogenicity. The establishment of a reliable liver gap junction inhibition assay for routine in vitro testing purposes requires a cellular system in which gap junctions are expressed at an in vivo-like level as well as an appropriate technique to probe gap junction activity. Both these models and methods are discussed in the current paper, thereby focusing on connexin32-based gap junctions. PMID:26420514

  10. Gap junction pleiomorphism in the root system of the rhizocephalans (Arthropoda: Crustacea).

    PubMed

    van Deurs, B; Dantzer, V; Bresciani, J

    1982-06-01

    We have studied gap junctions in the root system of four different species of rhizocephalans (Arthropoda: Crustacea) using freeze-fracture. Numerous and often very extensive gap junctions are present between the root cells. They are of the characteristic E-type also found in other arthropods. Large junctional particles (ca. 13 nm) are located predominantly on the E-face, while complementary pits and a few dislocated particles are present on the P-face. The gap junctions show a remarkable pleiomorphism. Small macular gap junctions with rather densely packed particles, larger irregularly shaped gap junctions, often forming bands with intervening particle-free membrane domains, and gap junctions with widely dispersed particles are observed. These features are documented both in material after conventional preparation including glutaraldehyde fixation and glycerol cryoprotection and in material frozen directly in a nitrogen slush without any preceding preparation, and are discussed in relation to possible functional significance. PMID:7117269

  11. CHLORAL HYDRATE DECREASES GAP JUNCTION COMMUNICATION IN RAT LIVER EPITHELIAL CELLS

    EPA Science Inventory

    Chloral hydrate decreases gap junction communication in rat liver epithelial cells

    Gap junction communication (GJC) is involved in controlling cell proliferation and differentiation. Connexins (Cx) that make up these junctions are composed of a closely related group of m...

  12. Blockade of Gap Junction Hemichannel Suppresses Disease Progression in Mouse Models of Amyotrophic Lateral Sclerosis and Alzheimer's Disease

    PubMed Central

    Takeuchi, Hideyuki; Mizoguchi, Hiroyuki; Doi, Yukiko; Jin, Shijie; Noda, Mariko; Liang, Jianfeng; Li, Hua; Zhou, Yan; Mori, Rarami; Yasuoka, Satoko; Li, Endong; Parajuli, Bijay; Kawanokuchi, Jun; Sonobe, Yoshifumi; Sato, Jun; Yamanaka, Koji; Sobue, Gen; Mizuno, Tetsuya; Suzumura, Akio

    2011-01-01

    Background Glutamate released by activated microglia induces excitotoxic neuronal death, which likely contributes to non-cell autonomous neuronal death in neurodegenerative diseases, including amyotrophic lateral sclerosis and Alzheimer's disease. Although both blockade of glutamate receptors and inhibition of microglial activation are the therapeutic candidates for these neurodegenerative diseases, glutamate receptor blockers also perturbed physiological and essential glutamate signals, and inhibitors of microglial activation suppressed both neurotoxic/neuroprotective roles of microglia and hardly affected disease progression. We previously demonstrated that activated microglia release a large amount of glutamate specifically through gap junction hemichannel. Hence, blockade of gap junction hemichannel may be potentially beneficial in treatment of neurodegenerative diseases. Methods and Findings In this study, we generated a novel blood-brain barrier permeable gap junction hemichannel blocker based on glycyrrhetinic acid. We found that pharmacologic blockade of gap junction hemichannel inhibited excessive glutamate release from activated microglia in vitro and in vivo without producing notable toxicity. Blocking gap junction hemichannel significantly suppressed neuronal loss of the spinal cord and extended survival in transgenic mice carrying human superoxide dismutase 1 with G93A or G37R mutation as an amyotrophic lateral sclerosis mouse model. Moreover, blockade of gap junction hemichannel also significantly improved memory impairments without altering amyloid β deposition in double transgenic mice expressing human amyloid precursor protein with K595N and M596L mutations and presenilin 1 with A264E mutation as an Alzheimer's disease mouse model. Conclusions Our results suggest that gap junction hemichannel blockers may represent a new therapeutic strategy to target neurotoxic microglia specifically and prevent microglia-mediated neuronal death in various

  13. Glissandi: transient fast electrocorticographic oscillations of steadily increasing frequency, explained by temporally increasing gap junction conductance

    PubMed Central

    Cunningham, Mark O.; Roopun, Anita; Schofield, Ian S.; Whittaker, Roger G.; Duncan, Roderick; Russell, Aline; Jenkins, Alistair; Nicholson, Claire; Whittington, Miles A.; Traub, Roger D.

    2012-01-01

    Purpose We describe a form of very fast oscillation (VFO) in patient electrocorticographic (ECoG) recordings, that can occur prior to ictal events, in which the frequency increases steadily from ~30–40 Hz to >120 Hz, over a period of seconds. We dub these events “glissandi” and describe a possible model for them. Methods Four patients with epilepsy had presurgical evaluations (with ECoG obtained in two of them), and excised tissue was studied in vitro, from 3 of the patients. Glissandi were seen spontaneously in vitro, associated with ictal events; using acute slices of rat neocortex; and they were simulated using a network model of 15,000 detailed layer V pyramidal neurons, coupled by gap junctions. Key findings Glissandi were observed to arise from human temporal neocortex. In vitro, they lasted 0.2 to 4.1 seconds, prior to ictal onset. Similar events were observed in the rat in vitro, in layer V of frontal neocortex, when alkaline solution was pressure-ejected; glissandi persisted when GABAA, GABAB, and NMDA and AMPA receptors were blocked. Non-alkaline conditions, prevented glissando generation. In network simulations, it was found that steadily increasing gap junction conductance would lead to the observed steady increase in VFO field frequency. This occurred because increasing gap junction conductance shortened the time required for an action potential to cross from cell to cell. Significance The in vitro and modeling data are consistent with the hypothesis that glissandi arise when pyramidal cell gap junction conductances rise over time, possibly as a result of an alkaline fluctuation in brain pH. PMID:22686654

  14. Switch in Gap Junction Protein Expression is Associated with Selective Changes in Junctional Permeability During Keratinocyte Differentiation

    NASA Astrophysics Data System (ADS)

    Brissette, Janice L.; Kumar, Nalin M.; Gilula, Norton B.; Hall, James E.; Dotto, G. Paolo

    1994-07-01

    Gap junctional communication provides a mechanism for regulating multicellular activities by allowing the exchange of small diffusible molecules between neighboring cells. The diversity of gap junction proteins may exist to form channels that have different permeability properties. We report here that induction of terminal differentiation in mouse primary keratinocytes by calcium results in a specific switch in gap junction protein expression. Expression of α_1 (connexin 43) and β_2 (connexin 26) gap junction proteins is down-modulated, whereas that of β_3 (connexin 31) and β_4 (connexin 31.1) proteins is induced. Although both proliferating and differentiating keratinocytes are electrically coupled, there are significant changes in the permeability properties of the junctions to small molecules. In parallel with the changes in gap junction protein expression during differentiation, the intercellular transfer of the small dyes neurobiotin, carboxyfluorescein, and Lucifer yellow is significantly reduced, whereas that of small metabolites, such as nucleotides and amino acids, proceeds unimpeded. Thus, a switch in gap junction protein expression in differentiating keratinocytes is accompanied by selective changes in junctional permeability that may play an important role in the coordinate control of the differentiation process.

  15. Switch in gap junction protein expression is associated with selective changes in junctional permeability during keratinocyte differentiation.

    PubMed Central

    Brissette, J L; Kumar, N M; Gilula, N B; Hall, J E; Dotto, G P

    1994-01-01

    Gap junctional communication provides a mechanism for regulating multicellular activities by allowing the exchange of small diffusible molecules between neighboring cells. The diversity of gap junction proteins may exist to form channels that have different permeability properties. We report here that induction of terminal differentiation in mouse primary keratinocytes by calcium results in a specific switch in gap junction protein expression. Expression of alpha 1 (connexin 43) and beta 2 (connexin 26) gap junction proteins is down-modulated, whereas that of beta 3 (connexin 31) and beta 4 (connexin 31.1) proteins is induced. Although both proliferating and differentiating keratinocytes are electrically coupled, there are significant changes in the permeability properties of the junctions to small molecules. In parallel with the changes in gap junction protein expression during differentiation, the intercellular transfer of the small dyes neurobiotin, carboxyfluorescein, and Lucifer yellow is significantly reduced, whereas that of small metabolites, such as nucleotides and amino acids, proceeds unimpeded. Thus, a switch in gap junction protein expression in differentiating keratinocytes is accompanied by selective changes in junctional permeability that may play an important role in the coordinate control of the differentiation process. Images PMID:8022804

  16. Sputtered Metal Oxide Broken Gap Junctions for Tandem Solar Cells

    NASA Astrophysics Data System (ADS)

    Johnson, Forrest

    Broken gap metal oxide junctions have been created for the first time by sputtering using ZnSnO3 for the n-type material and Cu 2O or CuAlO2 for the p-type material. Films were sputtered from either ceramic or metallic targets at room temperature from 10nm to 220nm thick. The band structure of the respective materials have theoretical work functions which line up with the band structure for tandem CIAGS/CIGS solar cell applications. Multiple characterization methods demonstrated consistent ohmic I-V profiles for devices on rough surfaces such as ITO/glass and a CIAGS cell. Devices with total junction specific contact resistance of under 0.001 Ohm-cm2 have been achieved with optical transmission close to 100% using 10nm films. Devices showed excellent stability up to 600°C anneals over 1hr using ZnSnO3 and CuAlO2. These films were also amorphous -a great diffusion barrier during top cell growth at high temperatures. Rapid Thermal Anneal (RTA) demonstrated the ability to shift the band structure of the whole device, allowing for tuning it to align with adjacent solar layers. These results remove a key barrier for mass production of multi-junction thin film solar cells.

  17. Gap junction proteins and their role in spinal cord injury

    PubMed Central

    Tonkin, Ryan S.; Mao, Yilin; O’Carroll, Simon J.; Nicholson, Louise F. B.; Green, Colin R.; Gorrie, Catherine A.; Moalem-Taylor, Gila

    2015-01-01

    Gap junctions are specialized intercellular communication channels that are formed by two hexameric connexin hemichannels, one provided by each of the two adjacent cells. Gap junctions and hemichannels play an important role in regulating cellular metabolism, signaling, and functions in both normal and pathological conditions. Following spinal cord injury (SCI), there is damage and disturbance to the neuronal elements of the spinal cord including severing of axon tracts and rapid cell death. The initial mechanical disruption is followed by multiple secondary cascades that cause further tissue loss and dysfunction. Recent studies have implicated connexin proteins as playing a critical role in the secondary phase of SCI by propagating death signals through extensive glial networks. In this review, we bring together past and current studies to outline the distribution, changes and roles of various connexins found in neurons and glial cells, before and in response to SCI. We discuss the contribution of pathologically activated connexin proteins, in particular connexin 43, to functional recovery and neuropathic pain, as well as providing an update on potential connexin specific pharmacological agents to treat SCI. PMID:25610368

  18. Role of Gap Junctions and Hemichannels in Parasitic Infections

    PubMed Central

    Subiabre, Mario; Figueroa, Felipe; Schalper, Kurt Alex; Osorio, Luis; González, Jorge; Sáez, Juan Carlos

    2013-01-01

    In vertebrates, connexins (Cxs) and pannexins (Panxs) are proteins that form gap junction channels and/or hemichannels located at cell-cell interfaces and cell surface, respectively. Similar channel types are formed by innexins in invertebrate cells. These channels serve as pathways for cellular communication that coordinate diverse physiologic processes. However, it is known that many acquired and inherited diseases deregulate Cx and/or Panx channels, condition that frequently worsens the pathological state of vertebrates. Recent evidences suggest that Cx and/or Panx hemichannels play a relevant role in bacterial and viral infections. Nonetheless, little is known about the role of Cx- and Panx-based channels in parasitic infections of vertebrates. In this review, available data on changes in Cx and gap junction channel changes induced by parasitic infections are summarized. Additionally, we describe recent findings that suggest possible roles of hemichannels in parasitic infections. Finally, the possibility of new therapeutic designs based on hemichannel blokers is presented. PMID:24236292

  19. Focal gap junction uncoupling and spontaneous ventricular ectopy.

    PubMed

    Gutstein, David E; Danik, Stephan B; Lewitton, Steve; France, David; Liu, Fangyu; Chen, Franklin L; Zhang, Jie; Ghodsi, Newsha; Morley, Gregory E; Fishman, Glenn I

    2005-09-01

    Genetic studies in the mouse have demonstrated that conditional cardiac-restricted loss of connexin43 (Cx43), the major ventricular gap junction protein, is highly arrhythmogenic. However, whether more focal gap junction remodeling, as is commonly seen in acquired cardiomyopathies, influences the propensity for arrhythmogenesis is not known. We examined electrophysiological properties and the frequency of spontaneous and inducible arrhythmias in genetically engineered chimeric mice derived from injection of Cx43-deficient embryonic stem cells into wild-type recipient blastocysts. Chimeric mice had numerous well-circumscribed microscopic Cx43-negative foci in their hearts, comprising approximately 15% of the total surface area as determined by immunohistochemical analysis. Systolic function in the chimeric mice was significantly depressed as measured echocardiographically (19.0% decline in fractional shortening compared with controls, P < 0.05) and by invasive hemodynamics (17.6% reduction in change of pressure over time, P < 0.01). Chimeras had significantly more spontaneous arrhythmic events than controls (P < 0.01), including frequent runs of nonsustained ventricular tachycardia in some of the chimeric mice. However, in contrast to mice with conditional cardiac-resricted loss of Cx43 in the heart, no sustained ventricular tachyarrhythmias were observed. We conclude that focal areas of uncoupling in the myocardium increase the likelihood of arrhythmic triggers, but more widespread uncoupling is required to support sustained arrhythmias. PMID:15894579

  20. Focal gap junction uncoupling and spontaneous ventricular ectopy

    PubMed Central

    Gutstein, David E.; Danik, Stephan B.; Lewitton, Steve; France, David; Liu, Fangyu; Chen, Franklin L.; Zhang, Jie; Ghodsi, Newsha; Morley, Gregory E.; Fishman, Glenn I.

    2009-01-01

    Genetic studies in the mouse have demonstrated that conditional cardiac-restricted loss of connexin43 (Cx43), the major ventricular gap junction protein, is highly arrhythmogenic. However, whether more focal gap junction remodeling, as is commonly seen in acquired cardiomyopathies, influences the propensity for arrhythmogenesis is not known. We examined electrophysiological properties and the frequency of spontaneous and inducible arrhythmias in genetically engineered chimeric mice derived from injection of Cx43-deficient embryonic stem cells into wild-type recipient blastocysts. Chimeric mice had numerous well-circumscribed microscopic Cx43-negative foci in their hearts, comprising ~15% of the total surface area as determined by immunohistochemical analysis. Systolic function in the chimeric mice was significantly depressed as measured echocardiographically (19.0% decline in fractional shortening compared with controls, P < 0.05) and by invasive hemodynamics (17.6% reduction in change of pressure over time, P < 0.01). Chimeras had significantly more spontaneous arrhythmic events than controls (P < 0.01), including frequent runs of nonsustained ventricular tachycardia in some of the chimeric mice. However, in contrast to mice with conditional cardiac-resticted loss of Cx43 in the heart, no sustained ventricular tachyarrhythmias were observed. We conclude that focal areas of uncoupling in the myocardium increase the likelihood of arrhythmic triggers, but more widespread uncoupling is required to support sustained arrhythmias. PMID:15894579

  1. Gap-Junction Channels Dysfunction in Deafness and Hearing Loss

    PubMed Central

    Acuña, Rodrigo; Figueroa, Vania; Maripillan, Jaime; Nicholson, Bruce

    2009-01-01

    Abstract Gap-junction channels connect the cytoplasm of adjacent cells, allowing the diffusion of ions and small metabolites. They are formed at the appositional plasma membranes by a family of related proteins named connexins. Mutations in connexins 26, 31, 30, 32, and 43 have been associated with nonsyndromic or syndromic deafness. The majority of these mutations are inherited in an autosomal recessive manner, but a few of them have been associated with dominantly inherited hearing loss. Mutations in the connexin26 gene (GJB2) are the most common cause of genetic deafness. This review summarizes the most relevant and recent information about different mutations in connexin genes found in human patients, with emphasis on GJB2. The possible effects of the mutations on channel expression and function are discussed, in addition to their possible physiologic consequences for inner ear physiology. Finally, we propose that connexin channels (gap junctions and hemichannels) may be targets for age-related hearing loss induced by oxidative damage. Antioxid. Redox Signal. 11, 309–322. PMID:18837651

  2. Organization of connexons in isolated rat liver gap junctions.

    PubMed

    Gogol, E; Unwin, N

    1988-07-01

    Gap junction plaques from rat liver plasma membranes have been subjected to a range of detergent treatments in order to evaluate systematically the influence of different isolation procedures on their structure. The separation of the connexons was found to vary depending on the conditions used. In the absence of detergent the center-to-center separation of the connexons is, on average, approximately 90 A, and they are arranged on a hexagonal lattice so that the symmetry of the double-layered structure approximates to p6m in projection (or p622 in three-dimensions). Exposure to increasing concentration of detergent reduces the connexon separation to values below 80 A. More severe detergent treatment leads to disintegration of the gap junction plaques. Specimens with center-to-center separations smaller than 86 A show progressively larger deviation from p6m symmetry, seen as apparent rotations of the connexon assemblies within the crystal lattice. This reorganization occurs with both ice-embedded and negatively-stained specimens, using ionic or nonionic detergents, and therefore is probably a packing readjustment caused by depletion of intervening lipid molecules. PMID:3416022

  3. Gap junction networks in mushroom bodies participate in visual learning and memory in Drosophila.

    PubMed

    Liu, Qingqing; Yang, Xing; Tian, Jingsong; Gao, Zhongbao; Wang, Meng; Li, Yan; Guo, Aike

    2016-01-01

    Gap junctions are widely distributed in the brains across species and play essential roles in neural information processing. However, the role of gap junctions in insect cognition remains poorly understood. Using a flight simulator paradigm and genetic tools, we found that gap junctions are present in Drosophila Kenyon cells (KCs), the major neurons of the mushroom bodies (MBs), and showed that they play an important role in visual learning and memory. Using a dye coupling approach, we determined the distribution of gap junctions in KCs. Furthermore, we identified a single pair of MB output neurons (MBONs) that possess a gap junction connection to KCs, and provide strong evidence that this connection is also required for visual learning and memory. Together, our results reveal gap junction networks in KCs and the KC-MBON circuit, and bring new insight into the synaptic network underlying fly's visual learning and memory. PMID:27218450

  4. Effects of microgravity on liposome-reconstituted cardiac gap junction channeling activity

    NASA Technical Reports Server (NTRS)

    Claassen, D. E.; Spooner, B. S.

    1989-01-01

    Effects of microgravity on cardiac gap junction channeling activity were investigated aboard NASA zero-gravity aircraft. Liposome-reconstituted gap junctions were assayed for channel function during free-fall, and the data were compared with channeling at 1 g. Control experiments tested for 0 g effects on the structural stability of liposomes, and on the enzyme-substrate signalling system of the assay. The results demonstrate that short periods of microgravity do not perturb reconstituted cardiac gap junction channeling activity.

  5. Octanol, a gap junction uncoupling agent, changes intracellular [H+] in rat astrocytes.

    PubMed

    Pappas, C A; Rioult, M G; Ransom, B R

    1996-01-01

    Octanol rapidly closes gap junction channels but its mechanism of action is not known. Because intracellular [H+], pHi, also affects the conductance of gap junctions, we studied octanol's effects on pHi in cultured rat astrocytes, which are highly coupled cells. Octanol (1 mM) caused an acid shift in the pHi of 90% of rat hippocampal astrocytes which averaged -0.19 +/- 0.09 pH units in magnitude. In 58% of the cells tested, a biphasic change in pHi was seen; octanol produced an initial acidification lasting approximately 10 min that was followed by a persistent alkalinization. The related gap junction uncoupling agent, heptanol, had similar effects on pHi. Octanol-induced changes in pHi were similar in nominally HCO(3-)-free and HCO(3-)-containing solutions, although the rate of initial acidification was significantly greater in the presence of HCO3-. The initial acidification was inhibited in the presence of the stilbene DIDS, an inhibitor of Na+/HCO3- cotransport, indicating that octanol caused acidification by blocking this powerful acid extruder. The alkalinization was inhibited by amiloride which blocks the Na+/H+ exchanger (NHE), an acid extruder, suggesting that the alkaline shift induced by octanol was caused by stimulation of NHE. As expected, octanol's effects on astrocytic pHi were prevented by removal of external Na+, which blocks both Na+/HCO3- cotransport and NHE. Octanol had only small effects on intracellular Ca2+ (Ca2+i) in astrocytes. Hepatocytes which, like astrocytes, are strongly coupled to one another, showed no change in pHi with octanol application. Fluorescence recovery after photobleaching (FRAP) was used to study the effect of changes in astrocyte pHi on degree of coupling in hippocampal astrocytes. Coupling was decreased by intracellular acid shifts approximately -0.2 pH units in size. Octanol's effects on astrocyte pHi were complex but a prompt initial acidification was nearly always seen and could contribute to the uncoupling action of

  6. Oncogenic extracellular HSP70 disrupts the gap-junctional coupling between capillary cells

    PubMed Central

    Thuringer, Dominique; Berthenet, Kevin; Cronier, Laurent; Jego, Gaetan; Solary, Eric; Garrido, Carmen

    2015-01-01

    High levels of circulating heat shock protein 70 (HSP70) are detected in many cancers. In order to explore the effects of extracellular HSP70 on human microvascular endothelial cells (HMEC), we initially used gap-FRAP technique. Extracellular human HSP70 (rhHSP70), but not rhHSP27, blocks the gap-junction intercellular communication (GJIC) between HMEC, disrupts the structural integrity of HMEC junction plaques, and decreases connexin43 (Cx43) expression, which correlates with the phosphorylation of Cx43 serine residues. Further exploration of these effects identified a rapid transactivation of the Epidermal Growth Factor Receptor in a Toll-Like Receptor 4-dependent manner, preceding its internalization. In turn, cytosolic Ca2+ oscillations are generated. Both GJIC blockade and Ca2+ mobilization partially depend on ATP release through Cx43 and pannexin (Panx-1) channels, as demonstrated by blocking activity or expression of channels, and inactivating extracellular ATP. By monitoring dye-spreading into adjacent cells, we show that HSP70 released from human monocytes in response to macrophage colony-stimulating factor, prevents the formation of GJIC between monocytes and HMEC. Therapeutic manipulation of this pathway could be of interest in inflammatory and tumor growth. PMID:25868858

  7. Chlorpromazine reduces the intercellular communication via gap junctions in mammalian cells

    SciTech Connect

    Orellana, Juan A.; Palacios-Prado, Nicolas; Saez, Juan C. . E-mail: jsaez@bio.puc.cl

    2006-06-15

    In the work presented herein, we evaluated the effect of chlorpromazine (CPZ) on gap junctions expressed by two mammalian cell types; Gn-11 cells (cell line derived from mouse LHRH neurons) and rat cortical astrocytes maintained in culture. We also attempted to elucidate possible mechanisms of action of CPZ effects on gap junctions. CPZ, in concentrations comparable with doses used to treat human diseases, was found to reduce the intercellular communication via gap junctions as evaluated with measurements of dye coupling (Lucifer yellow). In both cell types, maximal inhibition of functional gap junctions was reached within about 1 h of treatment with CPZ, an recovery was almost complete at about 5 h after CPZ wash out. In both cell types, CPZ treatment increased the phosphorylation state of connexin43 (Cx43), a gap junction protein subunit. Moreover, CPZ reduced the reactivity of Cx43 (immunofluorescence) at cell interfaces and concomitantly increased its reactivity in intracellular vesicles, suggesting an increased retrieval from and/or reduced insertion into the plasma membrane. CPZ also caused cellular retraction reducing cell-cell contacts in a reversible manner. The reduction in contact area might destabilize existing gap junctions and abrogate formation of new ones. Moreover, the CPZ-induced reduction in gap junctional communication may depend on the connexins (Cxs) forming the junctions. If Cx43 were the only connexin expressed, MAPK-dependent phosphorylation of this connexin would induce closure of gap junction channels.

  8. Gap junction-mediated electrical transmission: regulatory mechanisms and plasticity

    PubMed Central

    Pereda, Alberto E.; Curti, Sebastian; Hoge, Gregory; Cachope, Roger; Flores, Carmen E.; Rash, John E.

    2012-01-01

    The term synapse applies to cellular specializations that articulate the processing of information within neural circuits by providing a mechanism for the transfer of information between two different neurons. There are two main modalities of synaptic transmission: chemical and electrical. While most efforts have been dedicated to the understanding of the properties and modifiability of chemical transmission, less is still known regarding the plastic properties of electrical synapses, whose structural correlate is the gap junction. A wealth of data indicates that, rather than passive intercellular channels, electrical synapses are more dynamic and modifiable than was generally perceived. This article will discuss the factors determining the strength of electrical transmission and review current evidence demonstrating its dynamic properties. Like their chemical counterparts, electrical synapses can also be plastic and modifiable. PMID:22659675

  9. Microinjection Technique for Assessment of Gap Junction Function.

    PubMed

    Fridman, Michael D; Liu, Jun; Sun, Yu; Hamilton, Robert M

    2016-01-01

    Gap junctions are essential for the proper function of many native mammalian tissues including neurons, cardiomyocytes, embryonic tissues, and muscle. Assessing these channels is therefore fundamental to understanding disease pathophysiology, developing therapies for a multitude of acquired and genetic conditions, and providing novel approaches to drug delivery and cellular communication. Microinjection is a robust, albeit difficult, technique, which provides considerable information that is superior to many of the simpler techniques due to its ability to isolate cells, quantify kinetics, and allow cross-comparison of multiple cell lines. Despite its user-dependent nature, the strengths of the technique are considerable and with the advent of new, automation technologies may improve further. This text describes the basic technique of microinjection and briefly discusses modern automation advances that can improve the success rates of this technique.

  10. Mouse rods signal through gap junctions with cones

    PubMed Central

    Asteriti, Sabrina; Gargini, Claudia; Cangiano, Lorenzo

    2014-01-01

    Rod and cone photoreceptors are coupled by gap junctions (GJs), relatively large channels able to mediate both electrical and molecular communication. Despite their critical location in our visual system and evidence that they are dynamically gated for dark/light adaptation, the full impact that rod–cone GJs can have on cone function is not known. We recorded the photovoltage of mouse cones and found that the initial level of rod input increased spontaneously after obtaining intracellular access. This process allowed us to explore the underlying coupling capacity to rods, revealing that fully coupled cones acquire a striking rod-like phenotype. Calcium, a candidate mediator of the coupling process, does not appear to be involved on the cone side of the junctional channels. Our findings show that the anatomical substrate is adequate for rod–cone coupling to play an important role in vision and, possibly, in biochemical signaling among photoreceptors. DOI: http://dx.doi.org/10.7554/eLife.01386.001 PMID:24399457

  11. Methamphetamine compromises gap junctional communication in astrocytes and neurons.

    PubMed

    Castellano, Paul; Nwagbo, Chisom; Martinez, Luis R; Eugenin, Eliseo A

    2016-05-01

    Methamphetamine (meth) is a central nervous system (CNS) stimulant that results in psychological and physical dependency. The long-term effects of meth within the CNS include neuronal plasticity changes, blood-brain barrier compromise, inflammation, electrical dysfunction, neuronal/glial toxicity, and an increased risk to infectious diseases including HIV. Most of the reported meth effects in the CNS are related to dysregulation of chemical synapses by altering the release and uptake of neurotransmitters, especially dopamine, norepinephrine, and epinephrine. However, little is known about the effects of meth on connexin (Cx) containing channels, such as gap junctions (GJ) and hemichannels (HC). We examined the effects of meth on Cx expression, function, and its role in NeuroAIDS. We found that meth altered Cx expression and localization, decreased GJ communication between neurons and astrocytes, and induced the opening of Cx43/Cx36 HC. Furthermore, we found that these changes in GJ and HC induced by meth treatment were mediated by activation of dopamine receptors, suggesting that dysregulation of dopamine signaling induced by meth is essential for GJ and HC compromise. Meth-induced changes in GJ and HC contributed to amplified CNS toxicity by dysregulating glutamate metabolism and increasing the susceptibility of neurons and astrocytes to bystander apoptosis induced by HIV. Together, our results indicate that connexin containing channels, GJ and HC, are essential in the pathogenesis of meth and increase the sensitivity of the CNS to HIV CNS disease. Methamphetamine (meth) is an extremely addictive central nervous system stimulant. Meth reduced gap junctional (GJ) communication by inducing internalization of connexin-43 (Cx43) in astrocytes and reducing expression of Cx36 in neurons by a mechanism involving activation of dopamine receptors (see cartoon). Meth-induced changes in Cx containing channels increased extracellular levels of glutamate and resulted in higher

  12. Osteoclastogenesis is influenced by modulation of gap junctional communication with antiarrhythmic peptides.

    PubMed

    Kylmäoja, Elina; Kokkonen, Hanna; Kauppinen, Kyösti; Hussar, Piret; Sato, Tetsuji; Haugan, Ketil; Larsen, Bjarne Due; Tuukkanen, Juha

    2013-03-01

    Osteoclasts are formed by the fusion of mononuclear precursor cells of the monocyte-macrophage lineage. Among several putative mechanisms, gap-junctional intercellular communication (GJC) has been proposed to have a role in osteoclast fusion and bone resorption. We examined the role of GJC in osteoclastogenesis and in vitro bone resorption with mouse bone marrow hematopoietic stem cells and RAW 264.7 cells. Blocking of gap junctions with 18-α-glycyrrhetinic acid (18GA) led to inhibition of osteoclastogenesis and in vitro bone resorption. Similarly, the GJC inhibitor GAP27 inhibited osteoclast formation. GJC modulation with the antiarrhythmic peptides (AAPs) led to increased amounts of multinuclear RAW 264.7 osteoclasts as well as increased number of nuclei per multinuclear cell. In the culture of bone marrow hematopoietic stem cells in the presence of bone marrow stromal cells AAP reduced the number of osteoclasts, and coculture of MC3T3-E1 preosteoblasts with RAW 264.7 macrophages prevented the action of AAPs to promote osteoclastogenesis. The present data indicate that AAPs modulate the fusion of the pure culture of cells of the monocyte-macrophage lineage. However, the fusion is influenced by GJC in cells of the osteoblast lineage.

  13. Regulation of Gap Junction Dynamics by UNC-44/ankyrin and UNC-33/CRMP through VAB-8 in C. elegans Neurons

    PubMed Central

    Yan, Dong

    2016-01-01

    Gap junctions are present in both vertebrates and invertebrates from nematodes to mammals. Although the importance of gap junctions has been documented in many biological processes, the molecular mechanisms underlying gap junction dynamics remain unclear. Here, using the C. elegans PLM neurons as a model, we show that UNC-44/ankyrin acts upstream of UNC-33/CRMP in regulation of a potential kinesin VAB-8 to control gap junction dynamics, and loss-of-function in the UNC-44/UNC-33/VAB-8 pathway suppresses the turnover of gap junction channels. Therefore, we first show a signal pathway including ankyrin, CRMP, and kinesin in regulating gap junctions. PMID:27015090

  14. ORIENTATION REQUIREMENT TO DETECT MAGNETIC FIELD-INDUCTED ALTERATION OF GAP JUNCTION COMMUNICATION IN EPITHELIAL CELLS

    EPA Science Inventory

    ORIENTATION REQUIREMENT TO DETECT MAGNETIC FIELD-INDUCED ALTERATION OF GAP JUNCTION COMMUNICATION IN EPITHELIAL CELLS.
    OBJECTIVE: We have shown that functional gap junction communication as measured by Lucifer yellow dye transfer (DT) in Clone-9 rat liver epithelial cells, c...

  15. GAP JUNCTION COMMUNICATON IN A TRANSFECTED HUMAN CELL LINE: ACTION OF MELATONIN AND MAGNETIC FIELDS

    EPA Science Inventory

    GAP JUNCTION COMMUNICTION IN TRANSFECTED HUMAN CELL LINE: ACTION OF MELATONIN AND MAGNETIC FIELDS.

    OBJECTIVE: We previously showed that functional gap junction communication (GJC), as monitored by dye transfer (DT), could be enhanced in mouse C3H 10T112 cells and in mouse...

  16. Regulation of neuronal axon specification by glia-neuron gap junctions in C. elegans

    PubMed Central

    Meng, Lingfeng; Zhang, Albert; Jin, Yishi; Yan, Dong

    2016-01-01

    Axon specification is a critical step in neuronal development, and the function of glial cells in this process is not fully understood. Here, we show that C. elegans GLR glial cells regulate axon specification of their nearby GABAergic RME neurons through GLR-RME gap junctions. Disruption of GLR-RME gap junctions causes misaccumulation of axonal markers in non-axonal neurites of RME neurons and converts microtubules in those neurites to form an axon-like assembly. We further uncover that GLR-RME gap junctions regulate RME axon specification through activation of the CDK-5 pathway in a calcium-dependent manner, involving a calpain clp-4. Therefore, our study reveals the function of glia-neuron gap junctions in neuronal axon specification and shows that calcium originated from glial cells can regulate neuronal intracellular pathways through gap junctions. DOI: http://dx.doi.org/10.7554/eLife.19510.001 PMID:27767956

  17. Neuronal gap junction coupling as the primary determinant of the extent of glutamate-mediated excitotoxicity

    PubMed Central

    Fontes, Joseph D.

    2013-01-01

    In the mammalian central nervous system (CNS), coupling of neurons by gap junctions (electrical synapses) increases during early postnatal development, then decreases, but increases in the mature CNS following neuronal injury, such as ischemia, traumatic brain injury and epilepsy. Glutamate-dependent neuronal death also occurs in the CNS during development and neuronal injury, i.e., at the time when neuronal gap junction coupling is increased. Here, we review our recent studies on regulation of neuronal gap junction coupling by glutamate in developing and injured neurons and on the role of gap junctions in neuronal cell death. A modified model of the mechanisms of glutamate-dependent neuronal death is discussed, which includes neuronal gap junction coupling as a critical part of these mechanisms. PMID:24178243

  18. Functionally Active Gap Junctions between Connexin 43-Positive Mesenchymal Stem Cells and Glioma Cells.

    PubMed

    Gabashvili, A N; Baklaushev, V P; Grinenko, N F; Levinskii, A B; Mel'nikov, P A; Cherepanov, S A; Chekhonin, V P

    2015-05-01

    The formation of functional gap junctions between mesenchymal stem cells and cells of low-grade rat glioma C6 cells was studied in in vitro experiments. Immunocytochemical analysis with antibodies to connexin 43 extracellular loop 2 showed that mesenchymal stem cells as well as C6 glioma cells express the main astroglial gap junction protein connexin 43. Analysis of migration activity showed that mesenchymal stem cells actively migrate towards C6 glioma cells. During co-culturing, mesenchymal stem cells and glioma C6 form functionally active gap junctions mediating the transport of cytoplasmic dye from glioma cells to mesenchymal stem cells in the opposite direction. Fluorometry showed that the intensity of transport of low-molecular substances through heterologous gap junctions between mesenchymal stem cells and glioma cells is similar to that through homologous gap junctions between glioma cells. This phenomenon can be used for the development of new methods of cell therapy of high-grade gliomas.

  19. Does transmembrane communication through gap junctions enable stem cells to overcome stromal inhibition?

    PubMed

    Rosendaal, M; Mayen, A; de Koning, A; Dunina-Barkovskaya, T; Krenács, T; Ploemacher, R

    1997-08-01

    When long-term bone marrow cultures are treated with Amphotericin B (AB) their haemopoietic stem cells (HSC) cease growing. This is not a toxic effect of the drug because once that is removed, HSC resume clonal growth and, given sufficient time, form as many cells as HSC in untreated cultures. Amphotericin B-evoked inhibition of blood formation is probably mediated by transmembrane communication between HSC and stroma for the following reasons: (1) AB does not stop HSC forming colony-forming units in culture (CFU-c) when HSC are separated from stroma by culturing them on Transwell inserts above the stroma. (2) Conditioned media (CM) from AB-containing or normal long-term cultures (LTC) does not inhibit normal marrow cells forming colonies in semi-solid cultures without stromal underlays. (3) AB itself does not stop bone marrow cells forming colonies in semi-solid cultures nor does it stop stromal cells growing or prejudice their long-term maintenance. (4) Furthermore, growing stromal cells with AB does not alter the number of transcripts they form for cytokines and chemokines to any large extent, including TGF-beta1. We have extensive, though circumstantial, evidence that gap junctions are involved in this communication. AB only stopped the growth of HSC when we blocked intercellular communication via gap junctions (GJIC) (tested by micro-injection of lucifer yellow). Lipophilic compounds that do not affect GJIC had no effect on the growth of HSC. Looking at a series of stromal cell lines from foetal liver and neonatal bone marrow we found that extensive GJIC correlated with stromal support of the late-appearing clones formed by primitive HSC (week 3-5 cobblestone-area forming cells, CAFC). We propose that the proliferation of HSC is regulated via transmembrane communication between stromal and HSC. Our findings support the proposal that gap junctions play a part in this stromal-dependent regulation. PMID:9264382

  20. Propofol depresses cisplatin cytotoxicity via the inhibition of gap junctions.

    PubMed

    Zhang, Yuan; Wang, Xiyan; Wang, Qin; Ge, Hui; Tao, Liang

    2016-06-01

    The general anesthetic, propofol, affects chemotherapeutic activity, however, the mechanism underlying its effects remains to be fully elucidated. Our previous study showed that tramadol and flurbiprofen depressed the cytotoxicity of cisplatin via the inhibition of gap junction (GJ) intercellular communication (GJIC) in connexin (Cx)32 HeLa cells. The present study investigated whether the effects of propofol on the cytotoxicity of cisplatin were mediated by GJ in U87 glioma cells and Cx26‑transfected HeLa cells. Standard colony formation assay was used to determine the cytotoxicity of cisplatin. Parachute dye coupling assay was used to measure GJ function, and western blot analysis was used to determine the expression levels of Cx32. The results revealed that exposure of the U87 glioma cells and the Cx26-transfected HeLa cells to cisplatin for 1 h reduced clonogenic survival in low density cultures (without GJs) and high density cultures (with GJs). However, the toxic effect was higher in the high density culture. In addition, pretreatment of the cells with propofol significantly reduced cisplatin‑induced cytotoxicity, but only in the presence of functional GJs. Furthermore, propofol significantly inhibited dye coupling through junctional channels, and a long duration of exposure of the cells to propofol downregulated the expression levels of Cx43 and Cx26. These results demonstrated that the inhibition of GJIC by propofol affected the therapeutic efficacy of chemotherapeutic drugs. The present study provides evidence of a novel mechanism underlying the effects of analgesics in counteracting chemotherapeutic efficiency. PMID:27082707

  1. Abundance of gap junctions at glutamatergic mixed synapses in adult Mosquitofish spinal cord neurons

    PubMed Central

    Serrano-Velez, Jose L.; Rodriguez-Alvarado, Melanie; Torres-Vazquez, Irma I.; Fraser, Scott E.; Yasumura, Thomas; Vanderpool, Kimberly G.; Rash, John E.; Rosa-Molinar, Eduardo

    2014-01-01

    “Dye-coupling”, whole-mount immunohistochemistry for gap junction channel protein connexin 35 (Cx35), and freeze-fracture replica immunogold labeling (FRIL) reveal an abundance of electrical synapses/gap junctions at glutamatergic mixed synapses in the 14th spinal segment that innervates the adult male gonopodium of Western Mosquitofish, Gambusia affinis (Mosquitofish). To study gap junctions’ role in fast motor behavior, we used a minimally-invasive neural-tract-tracing technique to introduce gap junction-permeant or -impermeant dyes into deep muscles controlling the gonopodium of the adult male Mosquitofish, a teleost fish that rapidly transfers (complete in <20 mS) spermatozeugmata into the female reproductive tract. Dye-coupling in the 14th spinal segment controlling the gonopodium reveals coupling between motor neurons and a commissural primary ascending interneuron (CoPA IN) and shows that the 14th segment has an extensive and elaborate dendritic arbor and more gap junctions than do other segments. Whole-mount immunohistochemistry for Cx35 results confirm dye-coupling and show it occurs via gap junctions. Finally, FRIL shows that gap junctions are at mixed synapses and reveals that >50 of the 62 gap junctions at mixed synapses are in the 14th spinal segment. Our results support and extend studies showing gap junctions at mixed synapses in spinal cord segments involved in control of genital reflexes in rodents, and they suggest a link between mixed synapses and fast motor behavior. The findings provide a basis for studies of specific roles of spinal neurons in the generation/regulation of sex-specific behavior and for studies of gap junctions’ role in regulating fast motor behavior. Finally, the CoPA IN provides a novel candidate neuron for future studies of gap junctions and neural control of fast motor behaviors. PMID:25018700

  2. A voltage-dependent gap junction in Drosophila melanogaster.

    PubMed Central

    Verselis, V K; Bennett, M V; Bargiello, T A

    1991-01-01

    Steady-state and kinetic analyses of gap junctional conductance, gi, in salivary glands of Drosophila melanogaster third instar larvae reveal a strong and complex voltage dependence that can be elicited by two types of voltages. Voltages applied between the cells, i.e., transjunctional voltages, Vj, and those applied between the cytoplasm and the extracellular space, inside-outside voltages, Vi,o, markedly alter gj. Alteration of Vi-o while holding Vj = O,i.e., by equal displacement of the voltages in the cells, causes gj to increase to a maximum on hyperpolarization and to decrease to near zero on depolarization. These conductance changes associated with Vi-o are fit by a model in which there are two independent gates in series, one in each series, one in each membrane, where each gate is equally sensitive to Vi-o and exhibits first order kinetics. Vj's generated by applying voltage steps of either polarity to either cell, substantially reduce gj. These conductance changes exhibit complex kinetics that depend on Vi-o as well as Vj. At more positive Vi-o's, the changes in gj have two phases, an early phase consisting of of a decrease in gj for either polarity of Vj and a later phase consisting of an increase in gj on hyperpolarizing either cell and a decrease on depolarizing either cell. At negative Vi-o's in the plateau region of the gj-Vi-o relation, the later slow increase in gj is absent on hyperpolarizing either cell. Also, the early decrease in gj for either polarity of Vj is faster the more positive the Vi-o. The complex time course elicited by applying voltage steps to one cell can be explained as combined actions of Vi-o and Vj, with the early phase ascribable to Vj, but influenced by Vi-o, and the later phase to the changes in Vi-o associated with the generation of Vj. The substantially different kinetics and sensitivity of changes in gj by Vi-o and Vj suggests that the mechanisms of gating by these two voltages are different. Evidently, these gap-junction

  3. Simvastatin protects Sertoli cells against cisplatin cytotoxicity through enhanced gap junction intercellular communication.

    PubMed

    Wang, Lingzhi; Peng, Jianxin; Huang, Huansen; Wang, Qin; Yu, Meiling; Tao, Liang

    2015-10-01

    Cisplatin, an important chemotherapeutic agent against testicular germ cell cancer, induces testicular toxicity on Leydig and Sertoli cells, leading to serious side-effects such as azoospermia and infertility. In a previous study, it was found that simvastatin enhanced the sensitivity of Leydig tumor cells to chemotherapeutic toxicity through the enhancement of gap junction functions. In the present study, the effect of simvastatin on the sensitivity of normal Sertoli cells to cisplatin and the role of gap junctions in such effects was investigated. The results showed that, simvastatin attenuated cisplatin toxicity only when cells exhibited high-density culture where gap junctional formation was possible. When gap junction function was decreased by the gap junction inhibitor or by siRNA targeting connexin 43, the protective effect of simvastatin to cisplatin toxicity was substantially attenuated. Simvastatin also enhanced gap junction functions between Sertoli cells. This effect was mediated by the reduction of PKC-mediated connexin phosphorylation, thereby increasing connexin 43 membrane localization. Thus, simvastatin-induced enhancement of gap junction‑mediated intercellular communication attenuated cisplatin toxicity on Sertoli cells. This result indicated that enhancement of gap junction function by simvastatin may have bilateral beneficial effects on cisplatin‑based chemotherapy, enhancing cisplatin killing on cancer while ameliorating the reproduction toxicity.

  4. Single-junction solar cells with the optimum band gap for terrestrial concentrator applications

    DOEpatents

    Wanlass, Mark W.

    1994-01-01

    A single-junction solar cell having the ideal band gap for terrestrial concentrator applications. Computer modeling studies of single-junction solar cells have shown that the presence of absorption bands in the direct spectrum has the effect of "pinning" the optimum band gap for a wide range of operating conditions at a value of 1.14.+-.0.02 eV. Efficiencies exceeding 30% may be possible at high concentration ratios for devices with the ideal band gap.

  5. Modulatory Effects of Connexin-43 Expression on Gap Junction Intercellular Communications with Mast Cells and Fibroblasts

    PubMed Central

    Pistorio, Ashey L.; Ehrlich, H. Paul

    2011-01-01

    The influence of mast cells upon aberrant wound repair and excessive fibrosis has supportive evidence, but the mechanism for these mast cell activities is unclear. It is proposed that heterocellular gap junctional intercellular communication (GJIC) between fibroblasts and mast cells directs some fibroblast activities. An in vitro model was used employing a rodent derived peritoneal mast cell line (RMC-1) and human dermal derived fibroblasts. The influence of the expression of the gap junction channel structural protein, connexin 43 (Cx-43) on heterocellular GJIC, the expression of microtubule β-tubulin and microfilament α smooth muscle actin (SMA) were investigated. The knockdown of Cx-43 by siRNA in RMC-1 cells completely blocked GJIC between RMC-1 cells. SiRNA knockdown of Cx-43 within fibroblasts only dampened GJIC between fibroblasts. It appears Cx-43 is the only expressed connexin in RMC-1 cells. Fibroblasts express other connexins that participate in GJIC between fibroblasts in the absence of Cx-43 expression. Heterocellular GJIC between RMC-1 cells and fibroblasts transformed fibroblasts into myofibroblasts, expressing α SMA within cytoplasmic stress fibers. The knockdown of Cx-43 in RMC-1 cells increased β-tubulin expression, but its knockdown in fibroblasts reduced β-tubulin expression. Knocking down the expression of Cx-43 in fibroblasts limited α SMA expression. Cx-43 participation is critical for heterocellular GJIC between mast cells and fibroblasts, which may herald a novel direction for controlling fibrosis. PMID:21328609

  6. Gap junctions as targets for cancer chemoprevention and chemotherapy.

    PubMed

    Trosko, J E; Ruch, R J

    2002-12-01

    The development of the most efficacious strategy for the prevention and treatment of cancers is based on understanding the underlying mechanisms of carcinogenesis. This includes the knowledge that the carcinogenic process is a multi-step, multi-mechanism process and that no two cancers are alike, in spite of some apparent universal characteristics, such as their inability to have growth control, to terminally differentiate, to apoptose abnormally and to have an apparent extended or immortalized life span. The multi-step process, involving the "initiation" of a single cell via some irreversible process, with the clonal expansion of this initiated cell by suppressing growth control and inhibiting apoptosis (promotion step), leads to a situation whereby additional genetic and epigenetic events can take place (progression step) to confer the necessary phenotypes of invasiveness, and metasis (neoplastic stage). While it is clear that, in principle, prevention of each of these three steps is possible, in practical terms, while it would make sense to minimize the initiation step, one can never reduce this step to zero. On the other hand, since the promotion step is the rate-limiting step of carcinogenesis, intervening to block this step makes the most sense. Also, by understanding the ultimate biological function that confers growth control, terminal differentiation or apoptosis for cells, there is even some hope of treating some, but not all, malignant cells such that they can regain some ability to perform these vital cellular functions. Gap junctional intercellular communication (GJIC) has been speculated to be a necessary, if not sufficient, biological function of metazoan cells for the regulation of growth control, differentiation and apoptosis of normal progenitor cells. Normal, contact-inhibited fibroblast and epithelial cells have functional GJIC, while most, if not all, tumor cells have dysfunctional homologous or heterologous GJIC. Cancer cells are characterized

  7. Gap Junction Intercellular Communication Mediates Ammonia-Induced Neurotoxicity.

    PubMed

    Bobermin, Larissa Daniele; Arús, Bernardo Assein; Leite, Marina Concli; Souza, Diogo Onofre; Gonçalves, Carlos-Alberto; Quincozes-Santos, André

    2016-02-01

    Astrocytes are important brain targets of ammonia, a neurotoxin implicated in the development of hepatic encephalopathy. During hyperammonemia, the pivotal role of astrocytes in brain function and homeostasis is impaired. These cells are abundantly interconnected by gap junctions (GJ), which are intercellular channels that allow the exchange of signaling molecules and metabolites. This communication may also increase cellular vulnerability during injuries, while GJ uncoupling could limit the extension of a lesion. Therefore, the current study was performed to investigate whether astrocyte coupling through GJ contributes to ammonia-induced cytotoxicity. We found that carbenoxolone (CBX), an effective GJ blocker, prevented the following effects induced by ammonia in astrocyte primary cultures: (1) decrease in cell viability and membrane integrity; (2) increase in reactive oxygen species production; (3) decrease in GSH intracellular levels; (4) GS activity; (5) pro-inflammatory cytokine release. On the other hand, CBX had no effect on C6 astroglial cells, which are poorly coupled via GJ. To our knowledge, this study provides the first evidence that GJ play a role in ammonia-induced cytotoxicity. Although more studies in vivo are required to confirm our hypothesis, our data suggest that GJ communication between astrocytes may transmit damage signals and excitotoxic components from unhealthy to normal cells, thereby contributing to the propagation of the neurotoxicity of ammonia. PMID:26646155

  8. Gap Junction Intercellular Communication Mediates Ammonia-Induced Neurotoxicity.

    PubMed

    Bobermin, Larissa Daniele; Arús, Bernardo Assein; Leite, Marina Concli; Souza, Diogo Onofre; Gonçalves, Carlos-Alberto; Quincozes-Santos, André

    2016-02-01

    Astrocytes are important brain targets of ammonia, a neurotoxin implicated in the development of hepatic encephalopathy. During hyperammonemia, the pivotal role of astrocytes in brain function and homeostasis is impaired. These cells are abundantly interconnected by gap junctions (GJ), which are intercellular channels that allow the exchange of signaling molecules and metabolites. This communication may also increase cellular vulnerability during injuries, while GJ uncoupling could limit the extension of a lesion. Therefore, the current study was performed to investigate whether astrocyte coupling through GJ contributes to ammonia-induced cytotoxicity. We found that carbenoxolone (CBX), an effective GJ blocker, prevented the following effects induced by ammonia in astrocyte primary cultures: (1) decrease in cell viability and membrane integrity; (2) increase in reactive oxygen species production; (3) decrease in GSH intracellular levels; (4) GS activity; (5) pro-inflammatory cytokine release. On the other hand, CBX had no effect on C6 astroglial cells, which are poorly coupled via GJ. To our knowledge, this study provides the first evidence that GJ play a role in ammonia-induced cytotoxicity. Although more studies in vivo are required to confirm our hypothesis, our data suggest that GJ communication between astrocytes may transmit damage signals and excitotoxic components from unhealthy to normal cells, thereby contributing to the propagation of the neurotoxicity of ammonia.

  9. Gap Junctions in the Ventral Hippocampal-Medial Prefrontal Pathway Are Involved in Anxiety Regulation

    PubMed Central

    Schoenfeld, Timothy J.; Kloth, Alexander D.; Hsueh, Brian; Runkle, Matthew B.; Kane, Gary A.; Wang, Samuel S.-H.

    2014-01-01

    Anxiety disorders are highly prevalent but little is known about their underlying mechanisms. Gap junctions exist in brain regions important for anxiety regulation, such as the ventral hippocampus (vHIP) and mPFC, but their functions in these areas have not been investigated. Using pharmacological blockade of neuronal gap junctions combined with electrophysiological recordings, we found that gap junctions play a role in theta rhythm in the vHIP and mPFC of adult mice. Bilateral infusion of neuronal gap junction blockers into the vHIP decreased anxiety-like behavior on the elevated plus maze and open field. Similar anxiolytic effects were observed with unilateral infusion of these drugs into the vHIP combined with contralateral infusion into the mPFC. No change in anxious behavior was observed with gap junction blockade in the unilateral vHIP alone or in the bilateral dorsal HIP. Since physical exercise is known to reduce anxiety, we examined the effects of long-term running on the expression of the neuronal gap junction protein connexin-36 among inhibitory interneurons and found a reduction in the vHIP. Despite this change, we observed no alteration in theta frequency or power in long-term runners. Collectively, these findings suggest that neuronal gap junctions in the vHIP–mPFC pathway are important for theta rhythm and anxiety regulation under sedentary conditions but that additional mechanisms are likely involved in running-induced reduction in anxiety. PMID:25411496

  10. Heterotypic gap junctions at glutamatergic mixed synapses are abundant in goldfish brain

    PubMed Central

    Rash, John E.; Kamasawa, Naomi; Vanderpool, Kimberly G.; Yasumura, Thomas; O'Brien, John; Nannapaneni, Srikant; Pereda, Alberto E.; Nagy, James I.

    2014-01-01

    Gap junctions provide for direct intercellular electrical and metabolic coupling. The abundance of gap junctions at “large myelinated club ending” synapses on Mauthner cells of the teleost brain provided a convenient model to correlate anatomical and physiological properties of electrical synapses. There, presynaptic action potentials were found to evoke short-latency electrical “pre-potentials” immediately preceding their accompanying glutamate-induced depolarizations, making these the first unambiguously identified “mixed” (i.e., chemical plus electrical) synapses in the vertebrate CNS. We recently showed that gap junctions at these synapses exhibit asymmetric electrical resistance (i.e., electrical rectification), which we correlated with total molecular asymmetry of connexin composition in their apposing gap junction hemiplaques, with Cx35 restricted to axon terminal hemiplaques and Cx34.7 restricted to apposing Mauthner cell plasma membranes. We now show that similarly heterotypic neuronal gap junctions are abundant throughout goldfish brain, with labeling exclusively for Cx35 in presynaptic hemiplaques and exclusively for Cx34.7 in postsynaptic hemiplaques. Moreover, the vast majority of these asymmetric gap junctions occur at glutamatergic axon terminals. The widespread distribution of heterotypic gap junctions at glutamatergic mixed synapses throughout goldfish brain and spinal cord implies that pre- vs. postsynaptic asymmetry at electrical synapses evolved early in the chordate lineage. We propose that the advantages of the molecular and functional asymmetry of connexins at electrical synapses that are so prominently expressed in the teleost CNS are unlikely to have been abandoned in higher vertebrates. However, to create asymmetric coupling in mammals, where most gap junctions are composed of Cx36 on both sides, would require some other mechanism, such as differential phosphorylation of connexins on opposite sides of the same gap junction or

  11. Conduction abnormalities and ventricular arrhythmogenesis: The roles of sodium channels and gap junctions

    PubMed Central

    Tse, Gary; Yeo, Jie Ming

    2015-01-01

    Ventricular arrhythmias arise from disruptions in the normal orderly sequence of electrical activation and recovery of the heart. They can be categorized into disorders affecting predominantly cellular depolarization or repolarization, or those involving action potential (AP) conduction. This article briefly discusses the factors causing conduction abnormalities in the form of unidirectional conduction block and reduced conduction velocity (CV). It then examines the roles that sodium channels and gap junctions play in AP conduction. Finally, it synthesizes experimental results to illustrate molecular mechanisms of how abnormalities in these proteins contribute to such conduction abnormalities and hence ventricular arrhythmogenesis, in acquired pathologies such as acute ischaemia and heart failure, as well as inherited arrhythmic syndromes. PMID:26839915

  12. Adipocytes in both brown and white adipose tissue of adult mice are functionally connected via gap junctions: implications for Chagas disease.

    PubMed

    Burke, Shoshana; Nagajyothi, Fnu; Thi, Mia M; Hanani, Menachem; Scherer, Philipp E; Tanowitz, Herbert B; Spray, David C

    2014-11-01

    Adipose tissue serves as a host reservoir for the protozoan Trypanosoma cruzi, the causative organism in Chagas disease. Gap junctions interconnect cells of most tissues, serving to synchronize cell activities including secretion in glandular tissue, and we have previously demonstrated that gap junctions are altered in various tissues and cells infected with T. cruzi. Herein, we examined the gap junction protein connexin 43 (Cx43) expression in infected adipose tissues. Adipose tissue is the largest endocrine organ of the body and is also involved in other physiological functions. In mammals, it is primarily composed of white adipocytes. Although gap junctions are a prominent feature of brown adipocytes, they have not been explored extensively in white adipocytes, especially in the setting of infection. Thus, we examined functional coupling in both white and brown adipocytes in mice. Injection of electrical current or the dye Lucifer Yellow into adipocytes within fat tissue spread to adjacent cells, which was reduced by treatment with agents known to block gap junctions. Moreover, Cx43 was detected in both brown and white fat tissue. At thirty and ninety days post-infection, Cx43 was downregulated in brown adipocytes and upregulated in white adipocytes. Gap junction-mediated intercellular communication likely contributes to hormone secretion and other functions in white adipose tissue and to nonshivering thermogenesis in brown fat, and modulation of the coupling by T. cruzi infection is expected to impact these functions.

  13. Adipocytes in both brown and white adipose tissue of adult mice are functionally connected via gap junctions: implications for Chagas disease

    PubMed Central

    Burke, Shoshana; Nagajyothi, Fnu; Thi, Mia M.; Hanani, Menachem; Scherer, Philipp E.; Tanowitz, Herbert B.; Spray, David C.

    2015-01-01

    Adipose tissue serves as a host reservoir for the protozoan Trypanosoma cruzi, the causative organism in Chagas disease. Gap junctions interconnect cells of most tissues, serving to synchronize cell activities including secretion in glandular tissue, and we have previously demonstrated that gap junctions are altered in various tissues and cells infected with T. cruzi. Herein, we examined the gap junction protein connexin 43 (Cx43) expression in infected adipose tissues. Adipose tissue is the largest endocrine organ of the body and is also involved in other physiological functions. In mammals, it is primarily composed of white adipocytes. Although gap junctions are a prominent feature of brown adipocytes, they have not been explored extensively in white adipocytes, especially in the setting of infection. Thus, we examined functional coupling in both white and brown adipocytes in mice. Injection of electrical current or the dye Lucifer Yellow into adipocytes within fat tissue spread to adjacent cells, which was reduced by treatment with agents known to block gap junctions. Moreover, Cx43 was detected in both brown and white fat tissue. At thirty and ninety days post-infection, Cx43 was downregulated in brown adipocytes and upregulated in white adipocytes. Gap junction-mediated intercellular communication likely contributes to hormone secretion and other functions in white adipose tissue and to nonshivering thermogenesis in brown fat, and modulation of the coupling by T. cruzi infection is expected to impact these functions. PMID:25150689

  14. Modulation of cardiac gap junction expression and arrhythmic susceptibility.

    PubMed

    Danik, Stephan B; Liu, Fangyu; Zhang, Jie; Suk, H Jacqueline; Morley, Gregory E; Fishman, Glenn I; Gutstein, David E

    2004-11-12

    Connexin43 (Cx43), the predominant ventricular gap junction protein, is critical for maintaining normal cardiac electrical conduction, and its absence in the mouse heart results in sudden arrhythmic death. The mechanisms linking reduced Cx43 abundance in the heart and inducibility of malignant ventricular arrhythmias have yet to be established. In this report, we investigate arrhythmic susceptibility in a murine model genetically engineered to express progressively decreasing levels of Cx43. Progressively older cardiac-restricted Cx43 conditional knockout (CKO) mice were selectively bred to produce a heart-specific Cx43-deficient subline ("O-CKO" mice) in which the loss of Cx43 in the heart occurs more gradually. O-CKO mice lived significantly longer than the initial series of CKO mice but still died suddenly and prematurely. At 25 days of age, cardiac Cx43 protein levels decreased to 59% of control values (P<0.01), but conduction velocity was not significantly decreased and no O-CKO mice were inducible into sustained ventricular tachyarrhythmias. By 45 days of age, cardiac Cx43 abundance had decreased in a heterogeneous fashion to 18% of control levels, conduction velocity had slowed to half of that observed in control hearts, and 80% of O-CKO mice were inducible into lethal tachyarrhythmias. Enhanced susceptibility to induced arrhythmias was not associated with altered invasive hemodynamic measurements or changes in ventricular effective refractory period. Thus, moderately severe reductions in Cx43 abundance are associated with slowing of impulse propagation and a dramatic increase in the susceptibility to inducible ventricular arrhythmias. PMID:15499029

  15. Modulation of Cardiac Gap Junction Expression and Arrhythmic Susceptibility

    PubMed Central

    Danik, Stephan B.; Liu, Fangyu; Zhang, Jie; Suk, H. Jacqueline; Morley, Gregory E.; Fishman, Glenn I.; Gutstein, David E.

    2010-01-01

    Connexin43 (Cx43), the predominant ventricular gap junction protein, is critical for maintaining normal cardiac electrical conduction, and its absence in the mouse heart results in sudden arrhythmic death. The mechanisms linking reduced Cx43 abundance in the heart and inducibility of malignant ventricular arrhythmias have yet to be established. In this report, we investigate arrhythmic susceptibility in a murine model genetically engineered to express progressively decreasing levels of Cx43. Progressively older cardiac-restricted Cx43 conditional knockout (CKO) mice were selectively bred to produce a heart-specific Cx43-deficient subline (“O-CKO” mice) in which the loss of Cx43 in the heart occurs more gradually. O-CKO mice lived significantly longer than the initial series of CKO mice but still died suddenly and prematurely. At 25 days of age, cardiac Cx43 protein levels decreased to 59% of control values (P<0.01), but conduction velocity was not significantly decreased and no O-CKO mice were inducible into sustained ventricular tachyarrhythmias. By 45 days of age, cardiac Cx43 abundance had decreased in a heterogeneous fashion to 18% of control levels, conduction velocity had slowed to half of that observed in control hearts, and 80% of O-CKO mice were inducible into lethal tachyarrhythmias. Enhanced susceptibility to induced arrhythmias was not associated with altered invasive hemodynamic measurements or changes in ventricular effective refractory period. Thus, moderately severe reductions in Cx43 abundance are associated with slowing of impulse propagation and a dramatic increase in the susceptibility to inducible ventricular arrhythmias. PMID:15499029

  16. Molecular Transport Junctions Created By Self-Contacting Gapped Nanowires.

    PubMed

    Lim, Jong Kuk; Lee, One-Sun; Jang, Jae-Won; Petrosko, Sarah Hurst; Schatz, George C; Mirkin, Chad A

    2016-08-01

    Molecular transport junctions (MTJs) are important components in molecular electronic devices. However, the synthesis of MTJs remains a significant challenge, as the dimensions of the junction must be tailored for each experiment, based on the molecular lengths. A novel methodology is reported for forming MTJs, taking advantage of capillary and van der Waals forces. PMID:27364594

  17. Innexin gap junctions in nerve cells coordinate spontaneous contractile behavior in Hydra polyps.

    PubMed

    Takaku, Yasuharu; Hwang, Jung Shan; Wolf, Alexander; Böttger, Angelika; Shimizu, Hiroshi; David, Charles N; Gojobori, Takashi

    2014-01-01

    Nerve cells and spontaneous coordinated behavior first appeared near the base of animal evolution in the common ancestor of cnidarians and bilaterians. Experiments on the cnidarian Hydra have demonstrated that nerve cells are essential for this behavior, although nerve cells in Hydra are organized in a diffuse network and do not form ganglia. Here we show that the gap junction protein innexin-2 is expressed in a small group of nerve cells in the lower body column of Hydra and that an anti-innexin-2 antibody binds to gap junctions in the same region. Treatment of live animals with innexin-2 antibody eliminates gap junction staining and reduces spontaneous body column contractions. We conclude that a small subset of nerve cells, connected by gap junctions and capable of synchronous firing, act as a pacemaker to coordinate the contraction of the body column in the absence of ganglia. PMID:24394722

  18. Innexin gap junctions in nerve cells coordinate spontaneous contractile behavior in Hydra polyps

    NASA Astrophysics Data System (ADS)

    Takaku, Yasuharu; Hwang, Jung Shan; Wolf, Alexander; Böttger, Angelika; Shimizu, Hiroshi; David, Charles N.; Gojobori, Takashi

    2014-01-01

    Nerve cells and spontaneous coordinated behavior first appeared near the base of animal evolution in the common ancestor of cnidarians and bilaterians. Experiments on the cnidarian Hydra have demonstrated that nerve cells are essential for this behavior, although nerve cells in Hydra are organized in a diffuse network and do not form ganglia. Here we show that the gap junction protein innexin-2 is expressed in a small group of nerve cells in the lower body column of Hydra and that an anti-innexin-2 antibody binds to gap junctions in the same region. Treatment of live animals with innexin-2 antibody eliminates gap junction staining and reduces spontaneous body column contractions. We conclude that a small subset of nerve cells, connected by gap junctions and capable of synchronous firing, act as a pacemaker to coordinate the contraction of the body column in the absence of ganglia.

  19. Chloral hydrate decreases gap junction communications in rat liver epithelial cells

    EPA Science Inventory

    Gap junction communication (GJC) is involved in controlling cell proliferation and differentiation. Alterations in GJC are associated with carcinogenesis, but the mechanisms involvedareunknown.Chloralhydrate(CH), a by-productofchlorinedisinfection ofwater,is carcinogenic in mice,...

  20. Gap size dependent transition from direct tunneling to field emission in single molecule junctions.

    PubMed

    Xiang, Dong; Zhang, Yi; Pyatkov, Feliks; Offenhäusser, Andreas; Mayer, Dirk

    2011-04-28

    I/V characteristics recorded in mechanically controllable break junctions revealed that field emission transport is enhanced in single molecule junctions as the gap size between two nanoelectrodes is reduced. This observation indicates that Fowler-Nordheim tunneling occurs not only for intermolecular but also for intramolecular electron transport driven by a reduced energy barrier at short tunneling distances.

  1. Death of Neurons following Injury Requires Conductive Neuronal Gap Junction Channels but Not a Specific Connexin.

    PubMed

    Fontes, Joseph D; Ramsey, Jon; Polk, Jeremy M; Koop, Andre; Denisova, Janna V; Belousov, Andrei B

    2015-01-01

    Pharmacological blockade or genetic knockout of neuronal connexin 36 (Cx36)-containing gap junctions reduces neuronal death caused by ischemia, traumatic brain injury and NMDA receptor (NMDAR)-mediated excitotoxicity. However, whether Cx36 gap junctions contribute to neuronal death via channel-dependent or channel-independent mechanism remains an open question. To address this, we manipulated connexin protein expression via lentiviral transduction of mouse neuronal cortical cultures and analyzed neuronal death twenty-four hours following administration of NMDA (a model of NMDAR excitotoxicity) or oxygen-glucose deprivation (a model of ischemic injury). In cultures prepared from wild-type mice, over-expression and knockdown of Cx36-containing gap junctions augmented and prevented, respectively, neuronal death from NMDAR-mediated excitotoxicity and ischemia. In cultures obtained form from Cx36 knockout mice, re-expression of functional gap junction channels, containing either neuronal Cx36 or non-neuronal Cx43 or Cx31, resulted in increased neuronal death following insult. In contrast, the expression of communication-deficient gap junctions (containing mutated connexins) did not have this effect. Finally, the absence of ethidium bromide uptake in non-transduced wild-type neurons two hours following NMDAR excitotoxicity or ischemia suggested the absence of active endogenous hemichannels in those neurons. Taken together, these results suggest a role for neuronal gap junctions in cell death via a connexin type-independent mechanism that likely relies on channel activities of gap junctional complexes among neurons. A possible contribution of gap junction channel-permeable death signals in neuronal death is discussed. PMID:26017008

  2. Death of Neurons following Injury Requires Conductive Neuronal Gap Junction Channels but Not a Specific Connexin

    PubMed Central

    Fontes, Joseph D.; Ramsey, Jon; Polk, Jeremy M; Koop, Andre; Denisova, Janna V.; Belousov, Andrei B.

    2015-01-01

    Pharmacological blockade or genetic knockout of neuronal connexin 36 (Cx36)-containing gap junctions reduces neuronal death caused by ischemia, traumatic brain injury and NMDA receptor (NMDAR)-mediated excitotoxicity. However, whether Cx36 gap junctions contribute to neuronal death via channel-dependent or channel-independent mechanism remains an open question. To address this, we manipulated connexin protein expression via lentiviral transduction of mouse neuronal cortical cultures and analyzed neuronal death twenty-four hours following administration of NMDA (a model of NMDAR excitotoxicity) or oxygen-glucose deprivation (a model of ischemic injury). In cultures prepared from wild-type mice, over-expression and knockdown of Cx36-containing gap junctions augmented and prevented, respectively, neuronal death from NMDAR-mediated excitotoxicity and ischemia. In cultures obtained form from Cx36 knockout mice, re-expression of functional gap junction channels, containing either neuronal Cx36 or non-neuronal Cx43 or Cx31, resulted in increased neuronal death following insult. In contrast, the expression of communication-deficient gap junctions (containing mutated connexins) did not have this effect. Finally, the absence of ethidium bromide uptake in non-transduced wild-type neurons two hours following NMDAR excitotoxicity or ischemia suggested the absence of active endogenous hemichannels in those neurons. Taken together, these results suggest a role for neuronal gap junctions in cell death via a connexin type-independent mechanism that likely relies on channel activities of gap junctional complexes among neurons. A possible contribution of gap junction channel-permeable death signals in neuronal death is discussed. PMID:26017008

  3. Kinase programs spatiotemporally regulate gap junction assembly and disassembly: Effects on wound repair.

    PubMed

    Solan, Joell L; Lampe, Paul D

    2016-02-01

    Gap junctions are highly ordered plasma membrane domains that are constantly assembled, remodeled and turned over due to the short half-life of connexins, the integral membrane proteins that form gap junctions. Connexin 43 (Cx43), by far the most widely expressed connexin, is phosphorylated at multiple serine residues in the cytoplasmic, C-terminal region allowing for exquisite cellular control over gap junctional communication. This is evident during epidermal wounding where spatiotemporal changes in connexin expression occur as cells are instructed whether to die, proliferate or migrate to promote repair. Early gap junctional communication is required for initiation of keratinocyte migration, but accelerated Cx43 turnover is also critical for proper wound healing at later stages. These events are controlled via a "kinase program" where sequential phosphorylation of Cx43 leads to reductions in Cx43's half-life and significant depletion of gap junctions from the plasma membrane within several hours. The complex regulation of gap junction assembly and turnover affords several steps where intervention might speed wound healing. PMID:26706150

  4. Targeting motifs and functional parameters governing the assembly of connexins into gap junctions.

    PubMed Central

    Martin, P E; Steggles, J; Wilson, C; Ahmad, S; Evans, W H

    2000-01-01

    To study the assembly of gap junctions, connexin--green-fluorescent-protein (Cx--GFP) chimeras were expressed in COS-7 and HeLa cells. Cx26-- and Cx32--GFP were targeted to gap junctions where they formed functional channels that transferred Lucifer Yellow. A series of Cx32--GFP chimeras, truncated from the C-terminal cytoplasmic tail, were studied to identify amino acid sequences governing targeting from intracellular assembly sites to the gap junction. Extensive truncation of Cx32 resulted in failure to integrate into membranes. Truncation of Cx32 to residue 207, corresponding to removal of most of the 78 amino acids on the cytoplasmic C-terminal tail, led to arrest in the endoplasmic reticulum and incomplete oligomerization. However, truncation to amino acid 219 did not impair Cx oligomerization and connexon hemichannels were targeted to the plasma membrane. It was concluded that a crucial gap-junction targeting sequence resides between amino acid residues 207 and 219 on the cytoplasmic C-terminal tail of Cx32. Studies of a Cx32E208K mutation identified this as one of the key amino acids dictating targeting to the gap junction, although oligomerization of this site-specific mutation into hexameric hemichannels was relatively unimpaired. The studies show that expression of these Cx--GFP constructs in mammalian cells allowed an analysis of amino acid residues involved in gap-junction assembly. PMID:10861240

  5. Gap junction networks in mushroom bodies participate in visual learning and memory in Drosophila

    PubMed Central

    Liu, Qingqing; Yang, Xing; Tian, Jingsong; Gao, Zhongbao; Wang, Meng; Li, Yan; Guo, Aike

    2016-01-01

    Gap junctions are widely distributed in the brains across species and play essential roles in neural information processing. However, the role of gap junctions in insect cognition remains poorly understood. Using a flight simulator paradigm and genetic tools, we found that gap junctions are present in Drosophila Kenyon cells (KCs), the major neurons of the mushroom bodies (MBs), and showed that they play an important role in visual learning and memory. Using a dye coupling approach, we determined the distribution of gap junctions in KCs. Furthermore, we identified a single pair of MB output neurons (MBONs) that possess a gap junction connection to KCs, and provide strong evidence that this connection is also required for visual learning and memory. Together, our results reveal gap junction networks in KCs and the KC-MBON circuit, and bring new insight into the synaptic network underlying fly’s visual learning and memory. DOI: http://dx.doi.org/10.7554/eLife.13238.001 PMID:27218450

  6. Neuronal gap junctions play a role in the secondary neuronal death following controlled cortical impact.

    PubMed

    Belousov, Andrei B; Wang, Yongfu; Song, Ji-Hoon; Denisova, Janna V; Berman, Nancy E; Fontes, Joseph D

    2012-08-22

    In the mammalian CNS, excessive release of glutamate and overactivation of glutamate receptors are responsible for the secondary (delayed) neuronal death following neuronal injury, including ischemia, traumatic brain injury (TBI) and epilepsy. Recent studies in mice showed a critical role for neuronal gap junctions in NMDA receptor-mediated excitotoxicity and ischemia-mediated neuronal death. Here, using controlled cortical impact (CCI) in adult mice, as a model of TBI, and Fluoro-Jade B staining for analysis of neuronal death, we set to determine whether neuronal gap junctions play a role in the CCI-mediated secondary neuronal death. We report that 24h post-CCI, substantial neuronal death is detected in a number of brain regions outside the injury core, including the striatum. The striatal neuronal death is reduced both in wild-type mice by systemic administration of mefloquine (a relatively selective blocker of neuronal gap junctions) and in knockout mice lacking connexin 36 (neuronal gap junction protein). It is also reduced by inactivation of group II metabotropic glutamate receptors (with LY341495) which, as reported previously, control the rapid increase in neuronal gap junction coupling following different types of neuronal injury. The results suggest that neuronal gap junctions play a critical role in the CCI-induced secondary neuronal death. PMID:22781494

  7. Inhibition of connexin43 gap junction channels by the endocrine disruptor ioxynil

    SciTech Connect

    Leithe, Edward; Kjenseth, Ane; Bruun, Jarle; Sirnes, Solveig; Rivedal, Edgar

    2010-08-15

    Gap junctions are intercellular plasma membrane domains containing channels that mediate transport of ions, metabolites and small signaling molecules between adjacent cells. Gap junctions play important roles in a variety of cellular processes, including regulation of cell growth and differentiation, maintenance of tissue homeostasis and embryogenesis. The constituents of gap junction channels are a family of trans-membrane proteins called connexins, of which the best-studied is connexin43. Connexin43 functions as a tumor suppressor protein in various tissue types and is frequently dysregulated in human cancers. The pesticide ioxynil has previously been shown to act as an endocrine disrupting chemical and has multiple effects on the thyroid axis. Furthermore, both ioxynil and its derivative ioxynil octanoate have been reported to induce tumors in animal bioassays. However, the molecular mechanisms underlying the possible tumorigenic effects of these compounds are unknown. In the present study we show that ioxynil and ioxynil octanoate are strong inhibitors of connexin43 gap junction channels. Both compounds induced rapid loss of connexin43 gap junctions at the plasma membrane and increased connexin43 degradation. Ioxynil octanoate, but not ioxynil, was found to be a strong activator of ERK1/2. The compounds also had different effects on the phosphorylation status of connexin43. Taken together, the data show that ioxynil and ioxynil octanoate are potent inhibitors of intercellular communication via gap junctions.

  8. Effect of gap junction uncoupling in full-grown Bufo arenarum ovarian follicles: participation of cAMP in meiotic arrest.

    PubMed

    Villecco, E I; Aybar, M J; Genta, S B; Sánchez, S S; Sánchez Riera, A N

    2000-05-01

    The aim of the present study was to determine the presence of the connexins Cx43, Cx32 and Cx26 in Bufo arenarum ovarian follicles during the breeding season as well as to analyse the possible alterations in the meiotic process when connexins are blocked by specific antibodies. Western blot analysis revealed that the Cx43 and Cx32 proteins were present but not Cx26. We demonstrated that the anti-Cx43 and anti-Cx32 antibodies produced the uncoupling of the gap junctions. When these junctions are blocked the maturation process is triggered in the oocytes. We determined that dbcAMP exerts an inhibitory effect on the maturation induced by the uncoupling of the gap junctions when the oocytes are injected or pretreated with this metabolite. We propose the idea that cAMP is the regulatory molecule in meiotic arrest in this amphibian species. PMID:10857588

  9. Sulforaphane counteracts aggressiveness of pancreatic cancer driven by dysregulated Cx43-mediated gap junctional intercellular communication

    PubMed Central

    Zhang, Yiyao; Isayev, Orkhan; Heilmann, Katharina; Schoensiegel, Frank; Liu, Li; Nessling, Michelle; Richter, Karsten; Labsch, Sabrina; Nwaeburu, Clifford C.; Mattern, Juergen; Gladkich, Jury; Giese, Nathalia; Werner, Jens; Schemmer, Peter; Gross, Wolfgang; Gebhard, Martha M.; Gerhauser, Clarissa; Schaefer, Michael; Herr, Ingrid

    2014-01-01

    The extreme aggressiveness of pancreatic ductal adenocarcinoma (PDA) has been associated with blocked gap junctional intercellular communication (GJIC) and the presence of cancer stem cells (CSCs). We examined whether disturbed GJIC is responsible for a CSC phenotype in established and primary cancer cells and patient tissue of PDA using interdisciplinary methods based in physiology, cell and molecular biology, histology and epigenetics. Flux of fluorescent dyes and gemcitabine through gap junctions (GJs) was intact in less aggressive cells but not in highly malignant cells with morphological dysfunctional GJs. Among several connexins, only Cx43 was expressed on the cell surface of less aggressive and GJIC-competent cells, whereas Cx43 surface expression was absent in highly malignant, E-cadherin-negative and GJIC-incompetent cells. The levels of total Cx43 protein and Cx43 phosphorylated at Ser368 and Ser279/282 were high in normal tissue but low to absent in malignant tissue. si-RNA-mediated inhibition of Cx43 expression in GJIC-competent cells prevented GJIC and induced colony formation and the expression of stem cell-related factors. The bioactive substance sulforaphane enhanced Cx43 and E-cadherin levels, inhibited the CSC markers c-Met and CD133, improved the functional morphology of GJs and enhanced GJIC. Sulforaphane altered the phosphorylation of several kinases and their substrates and inhibition of GSK3, JNK and PKC prevented sulforaphane-induced CX43 expression. The sulforaphane-mediated expression of Cx43 was not correlated with enhanced Cx43 RNA expression, acetylated histone binding and Cx43 promoter de-methylation, suggesting that posttranslational phosphorylation is the dominant regulatory mechanism. Together, the absence of Cx43 prevents GJIC and enhances aggressiveness, whereas sulforaphane counteracts this process, and our findings highlight dietary co-treatment as a viable treatment option for PDA. PMID:24742583

  10. Evidence for hemi-gap junctional channels in isolated horizontal cells of the skate retina.

    PubMed

    Malchow, R P; Qian, H; Ripps, H

    1993-06-15

    Prolonged depolarization of isolated, voltage-clamped skate retinal horizontal cells produces an outward current that exhibit a late onset and develops slowly with time. This current, which we refer to as the Q-current, is associated with an increase in membrane conductance, and is present when other voltage-gated conductances have been pharmacologically blocked. The reversal potential for the Q-current, obtained using tail current analysis, was close to 0 mV. The magnitude of the current was greatly reduced by superfusion with 25 mM acetate, and by 4 mM cobalt chloride, 2 mM 1-octanol, and a saturated solution of the general anesthetic halothane. In addition, the low-molecular weight fluorescent dye Lucifer yellow, applied extracellularly, entered the cells during activation of the Q-current, whereas a 3 kD dextran-fluorescein complex did not cross the cell membrane. The effects of divalent cations, the non-specific nature of the ionic current suggested by its reversal potential, the entry of Lucifer yellow, and the ability of acetate, halothane, cobalt, and octanol to block the current lead us to hypothesize that the Q-current results from the opening of hemi-gap junctional channels that mediate electrical coupling between skate horizontal cells. PMID:7688816

  11. Gap Junctions Contribute to Ictal/Interictal Genesis in Human Hypothalamic Hamartomas.

    PubMed

    Wu, Jie; Gao, Ming; Rice, Stephen G; Tsang, Candy; Beggs, John; Turner, Dharshaun; Li, Guohui; Yang, Bo; Xia, Kunkun; Gao, Fenfei; Qiu, Shenfeng; Liu, Qiang; Kerrigan, John F

    2016-06-01

    Human hypothalamic hamartoma (HH) is a rare subcortical lesion associated with treatment-resistant epilepsy. Cellular mechanisms responsible for epileptogenesis are unknown. We hypothesized that neuronal gap junctions contribute to epileptogenesis through synchronous activity within the neuron networks in HH tissue. We studied surgically resected HH tissue with Western-blot analysis, immunohistochemistry, electron microscopy, biocytin microinjection of recorded HH neurons, and microelectrode patch clamp recordings with and without pharmacological blockade of gap junctions. Normal human hypothalamus tissue was used as a control. Western blots showed increased expression of both connexin-36 (Cx36) and connexin-43 (Cx43) in HH tissue compared with normal human mammillary body tissue. Immunohistochemistry demonstrated that Cx36 and Cx43 are expressed in HH tissue, but Cx36 was mainly expressed within neuron clusters while Cx43 was mainly expressed outside of neuron clusters. Gap-junction profiles were observed between small HH neurons with electron microscopy. Biocytin injection into single recorded small HH neurons showed labeling of adjacent neurons, which was not observed in the presence of a neuronal gap-junction blocker, mefloquine. Microelectrode field recordings from freshly resected HH slices demonstrated spontaneous ictal/interictal-like discharges in most slices. Bath-application of gap-junction blockers significantly reduced ictal/interictal-like discharges in a concentration-dependent manner, while not affecting the action-potential firing of small gamma-aminobutyric acid (GABA) neurons observed with whole-cell patch-clamp recordings from the same patient's HH tissue. These results suggest that neuronal gap junctions between small GABAergic HH neurons participate in the genesis of epileptic-like discharges. Blockade of gap junctions may be a new therapeutic strategy for controlling seizure activity in HH patients.

  12. Single-junction solar cells with the optimum band gap for terrestrial concentrator applications

    DOEpatents

    Wanlass, M.W.

    1994-12-27

    A single-junction solar cell is described having the ideal band gap for terrestrial concentrator applications. Computer modeling studies of single-junction solar cells have shown that the presence of absorption bands in the direct spectrum has the effect of ''pinning'' the optimum band gap for a wide range of operating conditions at a value of 1.14[+-]0.02 eV. Efficiencies exceeding 30% may be possible at high concentration ratios for devices with the ideal band gap. 7 figures.

  13. Netrin and Frazzled regulate presynaptic gap junctions at a Drosophila giant synapse.

    PubMed

    Orr, Brian O; Borgen, Melissa A; Caruccio, Phyllis M; Murphey, Rodney K

    2014-04-16

    Netrin and its receptor, Frazzled, dictate the strength of synaptic connections in the giant fiber system (GFS) of Drosophila melanogaster by regulating gap junction localization in the presynaptic terminal. In Netrin mutant animals, the synaptic coupling between a giant interneuron and the "jump" motor neuron was weakened and dye coupling between these two neurons was severely compromised or absent. In cases in which Netrin mutants displayed apparently normal synaptic anatomy, half of the specimens exhibited physiologically defective synapses and dye coupling between the giant fiber (GF) and the motor neuron was reduced or eliminated, suggesting that gap junctions were disrupted in the Netrin mutants. When we examined the gap junctions with antibodies to Shaking-B (ShakB) Innexin, they were significantly decreased or absent in the presynaptic terminal of the mutant GF. Frazzled loss of function mutants exhibited similar defects in synaptic transmission, dye coupling, and gap junction localization. These data are the first to show that Netrin and Frazzled regulate the placement of gap junctions presynaptically at a synapse. PMID:24741033

  14. Signal transmission between gap-junctionally coupled passive cables is most effective at an optimal diameter.

    PubMed

    Nadim, Farzan; Golowasch, Jorge

    2006-06-01

    We analyze simple morphological configurations that represent gap-junctional coupling between neuronal processes or between muscle fibers. Specifically, we use cable theory and simulations to examine the consequences of current flow from one cable to other gap-junctionally coupled passive cables. When the proximal end of the first cable is voltage clamped, the amplitude of the electrical signal in distal portions of the second cable depends on the cable diameter. However, this amplitude does not simply increase if cable diameter is increased, as expected from the larger length constant; instead, an optimal diameter exists. The optimal diameter arises because the dependency of voltage attenuation along the second cable on cable diameter follows two opposing rules. As cable diameter increases, the attenuation decreases because of a larger length constant yet increases because of a reduction in current density arising from the limiting effect of the gap junction on current flow into the second cable. The optimal diameter depends on the gap junction resistance and cable parameters. In branched cables, dependency on diameter is local and thus may serve to functionally compartmentalize branches that are coupled to other cells. Such compartmentalization may be important when periodic signals or action potentials cause the current flow across gap junctions.

  15. LRP6 acts as a scaffold protein in cardiac gap junction assembly.

    PubMed

    Li, Jun; Li, Changming; Liang, Dandan; Lv, Fei; Yuan, Tianyou; The, Erlinda; Ma, Xiue; Wu, Yahan; Zhen, Lixiao; Xie, Duanyang; Wang, Shiyi; Liu, Yuan; Huang, Jian; Shi, Jingyi; Liu, Yi; Shi, Dan; Xu, Liang; Lin, Li; Peng, Luying; Cui, Jianmin; Zhu, Weidong; Chen, Yi-Han

    2016-01-01

    Low-density lipoprotein receptor-related protein 6 (LRP6) is a Wnt co-receptor in the canonical Wnt/β-catenin signalling. Here, we report the scaffold function of LRP6 in gap junction formation of cardiomyocytes. Cardiac LRP6 is spatially restricted to intercalated discs and binds to gap junction protein connexin 43 (Cx43). A deficiency in LRP6 disrupts Cx43 gap junction formation and thereby impairs the cell-to-cell coupling, which is independent of Wnt/β-catenin signalling. The defect in Cx43 gap junction resulting from LRP6 reduction is attributable to the defective traffic of de novo Cx43 proteins from the endoplasmic reticulum to the Golgi apparatus, leading to the lysosomal degradation of Cx43 proteins. Accordingly, the hearts of conditional cardiac-specific Lrp6-knockout mice consistently exhibit overt reduction of Cx43 gap junction plaques without any abnormality in Wnt signalling and are predisposed to lethal arrhythmias. These findings uncover a distinct role of LRP6 as a platform for intracellular protein trafficking.

  16. Gap state charge induced spin-dependent negative differential resistance in tunnel junctions

    NASA Astrophysics Data System (ADS)

    Jiang, Jun; Zhang, X.-G.; Han, X. F.

    2016-04-01

    We propose and demonstrate through first-principles calculation a new spin-dependent negative differential resistance (NDR) mechanism in magnetic tunnel junctions (MTJ) with cubic cation disordered crystals (CCDC) AlO x or Mg1-x Al x O as barrier materials. The CCDC is a class of insulators whose band gap can be changed by cation doping. The gap becomes arched in an ultrathin layer due to the space charge formed from metal-induced gap states. With an appropriate combination of an arched gap and a bias voltage, NDR can be produced in either spin channel. This mechanism is applicable to 2D and 3D ultrathin junctions with a sufficiently small band gap that forms a large space charge. It provides a new way of controlling the spin-dependent transport in spintronic devices by an electric field. A generalized Simmons formula for tunneling current through junction with an arched gap is derived to show the general conditions under which ultrathin junctions may exhibit NDR.

  17. Gap state charge induced spin-dependent negative differential resistance in tunnel junctions

    NASA Astrophysics Data System (ADS)

    Jiang, Jun; Zhang, X.-G.; Han, X. F.

    2016-04-01

    We propose and demonstrate through first-principles calculation a new spin-dependent negative differential resistance (NDR) mechanism in magnetic tunnel junctions (MTJ) with cubic cation disordered crystals (CCDC) AlO x or Mg1‑x Al x O as barrier materials. The CCDC is a class of insulators whose band gap can be changed by cation doping. The gap becomes arched in an ultrathin layer due to the space charge formed from metal-induced gap states. With an appropriate combination of an arched gap and a bias voltage, NDR can be produced in either spin channel. This mechanism is applicable to 2D and 3D ultrathin junctions with a sufficiently small band gap that forms a large space charge. It provides a new way of controlling the spin-dependent transport in spintronic devices by an electric field. A generalized Simmons formula for tunneling current through junction with an arched gap is derived to show the general conditions under which ultrathin junctions may exhibit NDR.

  18. Connexin32 gap junction channels in stably transfected cells: unitary conductance.

    PubMed Central

    Moreno, A P; Eghbali, B; Spray, D C

    1991-01-01

    Pairs of SKHep1 cells, which are derived from a highly metastatic human hepatoma, were studied using the whole cell voltage clamp technique with patch-type electrodes containing CsCl as the major ionic species. In 12 of 81 cell pairs, current flow through junctional membranes was detectable; in the remaining 69 cell pairs, junctional conductance was less than the noise limit of our recording apparatus (worst case: 10 pS). Macroscopic junctional conductance (gj) in the small percentage of pairs where it was detectable ranged from 100 to 600 pS. Unitary junctional conductance (gamma j) determined in the lowest conductance pairs or after reducing conductance with a short exposure to the uncoupling agent halothane was 25-35 pS. To study properties of gap junction channels formed of connexin32, the parental SKHep1 cell line was stably transfected with a plasmid containing cDNA that encodes connexin32, the major gap junction protein of rat liver cells. In 85 of 98 pairs of voltage clamped connexin32-transfected SKHep1 cells, macroscopic gj was greater than 1 nS; gj increased with time after dissociation (from 1.8 +/- 0.6 [mean +/- SE; n = 7] nS at 2 h after plating to 9.3 +/- 2.2 [n = 9] nS, the maximal value, at 24 h). Unitary conductance of gap junction channels between pairs of transfected SKHep1 cells was measured in low conductance pairs and after reducing gj by exposure to halothane or heptanol. Histograms of gamma j values in transfected cells, in 10 experiments where greater than 100 transitions were measurable, displayed two peaks; 120-130 pS and 25-35 pS. The smaller size corresponded to channels that were occasionally detected in the parental cells. We therefore conclude that connexin32 forms gap junctions channels of the 120-130 pS size class. PMID:1722119

  19. A high throughput assay of diffusion through Cx43 gap junction channels with a microfluidic chip

    PubMed Central

    Bathany, Cédric; Beahm, Derek; Felske, James D.; Sachs, Frederick; Hua, Susan Z.

    2011-01-01

    This paper describes a microfluidic-based assay capable of measuring gap-junction mediated dye diffusion in cultured cells. The technique exploits multi-stream laminar flow to selectively expose cells to different environments, enabling continuous loading of cells in one compartment while monitoring, in real time, dye diffusion into cells of a neighboring compartment. A simple one dimensional diffusion model fit to the data extracted the diffusion coefficient of four different dyes, 5-(6)-carboxyfluorescein (CFDA), 5-chloromethylfluorescein (CMFDA), Oregon green 488 carboxylic acid and calcein. Different inhibitors were assayed for their ability to reduce dye coupling. The chip can screen multiple inhibitors in parallel in the same cell preparation, demonstrating its potential for high throughput. The technique provides a convenient method to measure gap junction mediated diffusion and a screen for drugs that affect gap junction communication. PMID:21182279

  20. Gap junctions enhancer combined with Vaughan Williams class III antiarrhythmic drugs, a promising antiarrhythmic method?

    PubMed

    Li, Lian-dong; Zhang, Cun-tai; Ruan, Lei; Ni, Ming-ke; Quan, Xiao-qing

    2011-01-01

    Arrhythmias is one of the leading causes of death in the world. Current antiarrhythmic drugs are limited by unsatisfactory efficacy and adverse effects such as proarrhythmias. Reentry mechanism plays an important role in persistence of arrhythmias. Reentry can only continue when reentry path-length is longer than cardiac wavelength which is equal to the product of conduction velocity (CV) and effective refractory period (ERP). Gap junctions uncoupling is associated with proarrhythmic CV slowing and transmural dispersion of repolarization (TDR) increasing in many cardiac diseases. Vaughan Williams class III antiarrhythmic drugs prolong ERP with an augmented TDR which is the main mechanism of the proarrhythmic effects. Gap junctions enhancer can augment CV and diminish TDR. As a result, gap junctions enhancer combined with class III drugs may be a promising antiarrhythmic method.

  1. Gap junctions and connexin hemichannels in the regulation of haemostasis and thrombosis.

    PubMed

    Vaiyapuri, Sakthivel; Flora, Gagan D; Gibbins, Jonathan M

    2015-06-01

    Platelets are involved in the maintenance of haemostasis but their inappropriate activation leads to thrombosis, a principal trigger for heart attack and ischaemic stroke. Although platelets circulate in isolation, upon activation they accumulate or aggregate together to form a thrombus, where they function in a co-ordinated manner to prevent loss of blood and control wound repair. Previous report (1) indicates that the stability and functions of a thrombus are maintained through sustained, contact-dependent signalling between platelets. Given the role of gap junctions in the co-ordination of tissue responses, it was hypothesized that gap junctions may be present within a thrombus and mediate intercellular communication between platelets. Therefore studies were performed to explore the presence and functions of connexins in platelets. In this brief review, the roles of hemichannels and gap junctions in the control of thrombosis and haemostasis and the future directions for this research will be discussed.

  2. Astrocytic gap junctional networks suppress cellular damage in an in vitro model of ischemia

    SciTech Connect

    Shinotsuka, Takanori; Yasui, Masato; Nuriya, Mutsuo

    2014-02-07

    Highlights: • Astrocytes exhibit characteristic changes in [Ca{sup 2+}]{sub i} under OGD. • Astrocytic [Ca{sup 2+}]{sub i} increase is synchronized with a neuronal anoxic depolarization. • Gap junctional couplings protect neurons as well as astrocytes during OGD. - Abstract: Astrocytes play pivotal roles in both the physiology and the pathophysiology of the brain. They communicate with each other via extracellular messengers as well as through gap junctions, which may exacerbate or protect against pathological processes in the brain. However, their roles during the acute phase of ischemia and the underlying cellular mechanisms remain largely unknown. To address this issue, we imaged changes in the intracellular calcium concentration ([Ca{sup 2+}]{sub i}) in astrocytes in mouse cortical slices under oxygen/glucose deprivation (OGD) condition using two-photon microscopy. Under OGD, astrocytes showed [Ca{sup 2+}]{sub i} oscillations followed by larger and sustained [Ca{sup 2+}]{sub i} increases. While the pharmacological blockades of astrocytic receptors for glutamate and ATP had no effect, the inhibitions of gap junctional intercellular coupling between astrocytes significantly advanced the onset of the sustained [Ca{sup 2+}]{sub i} increase after OGD exposure. Interestingly, the simultaneous recording of the neuronal membrane potential revealed that the onset of the sustained [Ca{sup 2+}]{sub i} increase in astrocytes was synchronized with the appearance of neuronal anoxic depolarization. Furthermore, the blockade of gap junctional coupling resulted in a concurrent faster appearance of neuronal depolarizations, which remain synchronized with the sustained [Ca{sup 2+}]{sub i} increase in astrocytes. These results indicate that astrocytes delay the appearance of the pathological responses of astrocytes and neurons through their gap junction-mediated intercellular network under OGD. Thus, astrocytic gap junctional networks provide protection against tissue damage

  3. Gap-junction disassembly and connexin 43 dephosphorylation induced by 18 beta-glycyrrhetinic acid.

    PubMed

    Guan, X; Wilson, S; Schlender, K K; Ruch, R J

    1996-07-01

    Gap-junction channels connect the interiors of adjacent cells and can be arranged into aggregates or plaques consisting of hundreds to thousands of channel particles. The mechanism of channel aggregation into plaques and whether plaques can disaggregate are not known. Many carcinogenic and tumor-promoting chemicals have been identified that inhibit cell-cell gap-junctional coupling. Here, we provide morphological evidence that 18 beta-glycyrrhetinic acid (18 beta-GA), a saponin isolated from licorice root that is an inhibitor of gap-junctional communication, caused the disassembly of gap-junction plaques in WB-F344 rat liver epithelial cells. This effect was dose (5-40 microM) and time dependent (1-4 h treatment). Gap-junction channels in WB-F344 cells are comprised of connexin 43 (Cx43), and the protein is phosphorylated to a species known as Cx43-P2 coincident with the assembly of channels into plaques. Consistent with this, the disassembly of plaques induced by 18 beta-GA was correlated with decreases in Cx43-P2 levels and increases in nonphosphorylated Cx43. Biochemical evidence indicated that these changes in the P2 and NP forms of Cx43 represented 18 beta-GA-induced dephosphorylation of Cx43-P2 and not its degradation or the inhibition of Cx43-NP phosphorylation. Okadaic acid and calyculin A, which are inhibitors of type 1 and type 2A protein phosphatases, prevented the dephosphorylation of Cx43, suggesting that one or both of these phosphatases were involved in Cx43 dephosphorylation. These data indicate that 18 beta-GA causes type 1 or type 2A protein phosphatase-mediated Cx43 dephosphorylation coincident with the disassembly of gap-junction plaques.

  4. The Mr 28,000 gap junction proteins from rat heart and liver are different but related.

    PubMed

    Nicholson, B J; Gros, D B; Kent, S B; Hood, L E; Revel, J P

    1985-06-10

    The sequence of the amino-terminal 32 residues of the rat heart Mr 28,000 gap junction protein presented here allows, for the first time, a sequence comparison of gap junctional proteins from different tissues (heart and liver). Comparison of the rat heart gap junction protein sequence and that available from rat liver reveals 43% sequence identity and conservative changes at an additional 25% of the positions. Both proteins exhibit a hydrophobic domain which could represent a transmembrane span of the junction. This result unequivocally demonstrates the existence of at least two forms of the gap junction protein. As yet, no homology is evident between the gap junctional proteins of either heart or liver and main intrinsic protein from rat eye lens. PMID:2987225

  5. Modulation of gap junction transcript and protein expression during pregnancy in the rat

    PubMed Central

    1990-01-01

    The expression of three different gap junction transcripts, alpha 1 (Cx43), beta 1 (Cx32), and beta 2 (Cx26) was examined in several organs during pregnancy in the rat. In all of the organs that were examined-- uterus, ovary, heart, and liver--there was a strong correlation between levels of gap junction mRNA and gap junction antigens that were detected at different stages of pregnancy. A striking change in alpha 1 transcript levels (a 5.5-fold increase) was detected in the uterine myometrium on the day before parturition. This elevation of the alpha 1 transcript is thought to be associated with the formation of gap junctions that are required for synchronizing the contractility of the myometrial cells during parturition. 2 d before parturition, there was a detectable elevation of beta 2 transcripts and protein in the endometrial epithelium, which was then followed by a dramatic decrease in beta 2 gap junctional protein on the day before parturition. There was also a substantial elevation of alpha 1 transcripts (a 6.7-fold increase) in the stromal regions of the ovary on the day before parturition that was identical to the temporal pattern of alpha 1 expression in the myometrium. In all three instances--the alpha 1 transcripts in the myometrium, beta 2 transcripts in the endometrium, and alpha 1 transcripts in the ovary--the transcript modulation appeared to be cell specific, because the changes in transcript levels of these three gene products occurred independently of the poly(A) + RNA concentrations at the same pregnancy stages in the respective organs. There were no specific changes detected in gap junction transcript levels in the heart and liver during pregnancy. These observations indicate that a cell-specific modulation of gap junction expression occurs in two regions of the uterus and the ovary during pregnancy. Further, it appears that the same gap junction gene in different organs, such as the alpha 1 gene in the uterine myometrium and the heart, can be

  6. Relating specific connexin co-expression ratio to connexon composition and gap junction function.

    PubMed

    Desplantez, T; Grikscheit, K; Thomas, N M; Peters, N S; Severs, N J; Dupont, E

    2015-12-01

    Cardiac connexin 43 (Cx43), Cx40 and Cx45 are co-expressed at distinct ratios in myocytes. This pattern is considered a key factor in regulating the gap junction channels composition, properties and function and remains poorly understood. This work aims to correlate gap junction function with the connexin composition of the channels at accurate ratios Cx43:Cx40 and Cx43:Cx45. Rat liver epithelial cells that endogenously express Cx43 were stably transfected to induce expression of accurate levels of Cx40 or Cx45 that may be present in various areas of the heart (e.g. atria and ventricular conduction system). Induction of Cx40 does not increase the amounts of junctional connexins (Cx43 and Cx40), whereas induction of Cx45 increases the amounts of junctional connexins (Cx43 and Cx45). Interestingly, the non-junctional fraction of Cx43 remains unaffected upon induction of Cx40 and Cx45. Co-immunoprecipitation studies show low level of Cx40/Cx43 heteromerisation and undetectable Cx45/Cx43 heteromerisation. Functional characterisation shows that induction of Cx40 and Cx45 decreases Lucifer Yellow transfer. Electrical coupling is decreased by Cx45 induction, whereas it is decreased at low induction of Cx40 and increased at high induction. These data indicate a fine regulation of the gap junction channel make-up in function of the type and the ratio of co-expressed Cxs that specifically regulates chemical and electrical coupling. This reflects specific gap junction function in regulating impulse propagation in the healthy heart, and a pro-arrhythmic potential of connexin remodelling in the diseased heart. PMID:26550940

  7. Connexin26 regulates assembly and maintenance of cochlear gap junction macromolecular complex for normal hearing

    NASA Astrophysics Data System (ADS)

    Kamiya, Kazusaku; Fukunaga, Ichiro; Hatakeyama, Kaori; Ikeda, Katsuhisa

    2015-12-01

    Hereditary deafness affects about 1 in 2000 children and GJB2 gene mutation is most frequent cause for this disease in the world. GJB2 encodes connexin26 (Cx26), a component in cochlear gap junction. Recently, we found macromolecular change of gap junction plaques with two different types of Cx26 mutation as major classification of clinical case, one is a model of dominant negative type, Cx26R75W+ and the other is conditional gene deficient mouse, Cx26f/fP0Cre as a model for insufficiency of gap junction protein [6]. Gap junction composed mainly of Cx26 and Cx30 in wild type mice formed large planar gap junction plaques (GJP). In contrast, Cx26R75W+ and Cx26f/fP0Cre showed fragmented small round GJPs around the cell border. In Cx26f/fP0Cre, some of the cells with Cx26 expression due to their cellular mosaicism showed normal large GJP with Cx26 and Cx30 only at the cell junction site between two Cx26 positive cells. These indicate that bilateral Cx26 expressions from both adjacent cells are essential for the formation of the cochlear linear GJP, and it is not compensated by other cochlear Connexins such as Connexin30. In the present study, we demonstrated a new molecular pathology in most common hereditary deafness with different types of Connexin26 mutations, and this machinery can be a new target for drag design of hereditary deafness.

  8. Connexins: a myriad of functions extending beyond assembly of gap junction channels

    PubMed Central

    Dbouk, Hashem A; Mroue, Rana M; El-Sabban, Marwan E; Talhouk, Rabih S

    2009-01-01

    Connexins constitute a large family of trans-membrane proteins that allow intercellular communication and the transfer of ions and small signaling molecules between cells. Recent studies have revealed complex translational and post-translational mechanisms that regulate connexin synthesis, maturation, membrane transport and degradation that in turn modulate gap junction intercellular communication. With the growing myriad of connexin interacting proteins, including cytoskeletal elements, junctional proteins, and enzymes, gap junctions are now perceived, not only as channels between neighboring cells, but as signaling complexes that regulate cell function and transformation. Connexins have also been shown to form functional hemichannels and have roles altogether independent of channel functions, where they exert their effects on proliferation and other aspects of life and death of the cell through mostly-undefined mechanisms. This review provides an updated overview of current knowledge of connexins and their interacting proteins, and it describes connexin modulation in disease and tumorigenesis. PMID:19284610

  9. Oxaliplatin enhances gap junction-mediated coupling in cell cultures of mouse trigeminal ganglia.

    PubMed

    Poulsen, Jeppe Nørgaard; Warwick, Rebekah; Duroux, Meg; Hanani, Menachem; Gazerani, Parisa

    2015-08-01

    Communications between satellite glial cells and neighboring neurons within sensory ganglia may contribute to neuropathic and inflammatory pain. To elucidate the role of satellite glial cells in chemotherapy-induced pain, we examined the effects of oxaliplatin on the gap junction-mediated coupling between these cells. We also examined whether the gap junction blocker, carbenoxolone, can reverse the coupling. Primary cultures of mice trigeminal ganglia, 24-48h after cell isolation, were used. Satellite glial cells were injected with Lucifer yellow in the presence or absence of oxaliplatin (60 μM). In addition, the effect of carbenoxolone (100 μM) on coupling, and the expression of connexin 43 proteins were evaluated. Dye coupling between adjacent satellite glial cells was significantly increased (2.3-fold, P<0.05) following a 2h incubation with oxaliplatin. Adding carbenoxolone to the oxaliplatin-treated cultures reversed oxaliplatin-evoked coupling to baseline (P<0.05). Immunostaining showed no difference between expression of connexin 43 in control and oxaliplatin-treated cultures. Our findings indicated that oxaliplatin-increased gap junction-mediated coupling between satellite glial cells in primary cultures of mouse trigeminal ganglia, and carbenoxolone reversed this effect. Hence, it is proposed that increased gap junction-mediated coupling was seen between satellite glial cells in TG. This observation together with our previous data obtained from a behavioral study suggests that this phenomenon might contribute to chemotherapy-induced nociception following oxaliplatin treatment. PMID:25999145

  10. A unified framework for spiking and gap-junction interactions in distributed neuronal network simulations

    PubMed Central

    Hahne, Jan; Helias, Moritz; Kunkel, Susanne; Igarashi, Jun; Bolten, Matthias; Frommer, Andreas; Diesmann, Markus

    2015-01-01

    Contemporary simulators for networks of point and few-compartment model neurons come with a plethora of ready-to-use neuron and synapse models and support complex network topologies. Recent technological advancements have broadened the spectrum of application further to the efficient simulation of brain-scale networks on supercomputers. In distributed network simulations the amount of spike data that accrues per millisecond and process is typically low, such that a common optimization strategy is to communicate spikes at relatively long intervals, where the upper limit is given by the shortest synaptic transmission delay in the network. This approach is well-suited for simulations that employ only chemical synapses but it has so far impeded the incorporation of gap-junction models, which require instantaneous neuronal interactions. Here, we present a numerical algorithm based on a waveform-relaxation technique which allows for network simulations with gap junctions in a way that is compatible with the delayed communication strategy. Using a reference implementation in the NEST simulator, we demonstrate that the algorithm and the required data structures can be smoothly integrated with existing code such that they complement the infrastructure for spiking connections. To show that the unified framework for gap-junction and spiking interactions achieves high performance and delivers high accuracy in the presence of gap junctions, we present benchmarks for workstations, clusters, and supercomputers. Finally, we discuss limitations of the novel technology. PMID:26441628

  11. Impaired Astrocytic Gap Junction Coupling and Potassium Buffering in a Mouse Model of Tuberous Sclerosis Complex

    PubMed Central

    Xu, Lin; Zeng, Ling-Hui; Wong, Michael

    2009-01-01

    Abnormalities in astrocytes occur in the brains of patients with Tuberous Sclerosis Complex (TSC) and may contribute to the pathogenesis of neurological dysfunction in this disease. Here, we report that knock-out mice with Tsc1 gene inactivation in glia (Tsc1GFAPCKO mice) exhibit decreased expression of the astrocytic connexin protein, Cx43, and an associated impairment in gap junction coupling between astrocytes. Correspondingly, hippocampal slices from Tsc1GFAPCKO mice have increased extracellular potassium concentration in response to stimulation. This impaired potassium buffering can be attributed to abnormal gap junction coupling, as a gap junction inhibitor elicits an additional increase in potassium concentration in control, but not Tsc1GFAPCKO slices. Furthermore, treatment with a mammalian target of rapamycin inhibitor reverses the deficient Cx43 expression and impaired potassium buffering. These findings suggest that Tsc1 inactivation in astrocytes causes defects in astrocytic gap junction coupling and potassium clearance, which may contribute to epilepsy in Tsc1GFAPCKO mice. PMID:19385061

  12. Oxaliplatin enhances gap junction-mediated coupling in cell cultures of mouse trigeminal ganglia.

    PubMed

    Poulsen, Jeppe Nørgaard; Warwick, Rebekah; Duroux, Meg; Hanani, Menachem; Gazerani, Parisa

    2015-08-01

    Communications between satellite glial cells and neighboring neurons within sensory ganglia may contribute to neuropathic and inflammatory pain. To elucidate the role of satellite glial cells in chemotherapy-induced pain, we examined the effects of oxaliplatin on the gap junction-mediated coupling between these cells. We also examined whether the gap junction blocker, carbenoxolone, can reverse the coupling. Primary cultures of mice trigeminal ganglia, 24-48h after cell isolation, were used. Satellite glial cells were injected with Lucifer yellow in the presence or absence of oxaliplatin (60 μM). In addition, the effect of carbenoxolone (100 μM) on coupling, and the expression of connexin 43 proteins were evaluated. Dye coupling between adjacent satellite glial cells was significantly increased (2.3-fold, P<0.05) following a 2h incubation with oxaliplatin. Adding carbenoxolone to the oxaliplatin-treated cultures reversed oxaliplatin-evoked coupling to baseline (P<0.05). Immunostaining showed no difference between expression of connexin 43 in control and oxaliplatin-treated cultures. Our findings indicated that oxaliplatin-increased gap junction-mediated coupling between satellite glial cells in primary cultures of mouse trigeminal ganglia, and carbenoxolone reversed this effect. Hence, it is proposed that increased gap junction-mediated coupling was seen between satellite glial cells in TG. This observation together with our previous data obtained from a behavioral study suggests that this phenomenon might contribute to chemotherapy-induced nociception following oxaliplatin treatment.

  13. Electrical signal transmission in a bone cell network: the influence of a discrete gap junction

    NASA Technical Reports Server (NTRS)

    Zhang, D.; Weinbaum, S.; Cowin, S. C.

    1998-01-01

    A refined electrical cable model is formulated to investigate the role of a discrete gap junction in the intracellular transmission of electrical signals in an electrically coupled system of osteocytes and osteoblasts in an osteon. The model also examines the influence of the ratio q between the membrane's electrical time constant and the characteristic time of pore fluid pressure, the circular, cylindrical geometry of the osteon, and key simplifying assumptions in our earlier continuous cable model (see Zhang, D., S. C. Cowin, and S. Weinbaum. Electrical signal transmission and gap junction regulation in a bone cell network: A cable model for an osteon. Ann. Biomed. Eng. 25:379-396, 1997). Using this refined model, it is shown that (1) the intracellular potential amplitude at the osteoblastic end of the osteonal cable retains the character of a combination of a low-pass and a high-pass filter as the corner frequency varies in the physiological range; (2) the presence of a discrete gap junction near a resting osteoblast can lead to significant modulation of the intracellular potential and current in the osteoblast for measured values of the gap junction coupling strength; and (3) the circular, cylindrical geometry of the osteon is well simulated by the beam analogy used in Zhang et al.

  14. A Functional Assay for Gap Junctional Examination; Electroporation of Adherent Cells on Indium-Tin Oxide

    PubMed Central

    Geletu, Mulu; Guy, Stephanie; Firth, Kevin; Raptis, Leda

    2014-01-01

    In this technique, cells are cultured on a glass slide that is partly coated with indium-tin oxide (ITO), a transparent, electrically conductive material. A variety of molecules, such as peptides or oligonucleotides can be introduced into essentially 100% of the cells in a non-traumatic manner.  Here, we describe how it can be used to study intercellular, gap junctional communication. Lucifer yellow penetrates into the cells when an electric pulse, applied to the conductive surface on which they are growing, causes pores to form through the cell membrane. This is electroporation. Cells growing on the nonconductive glass surface immediately adjacent to the electroporated region do not take up Lucifer yellow by electroporation but do acquire the fluorescent dye as it is passed to them via gap junctions that link them to the electroporated cells. The results of the transfer of dye from cell to cell can be observed microscopically under fluorescence illumination. This technique allows for precise quantitation of gap junctional communication. In addition, it can be used for the introduction of peptides or other non-permeant molecules, and the transfer of small electroporated peptides via gap junctions to inhibit the signal in the adjacent, non-electroporated cells is a powerful demonstration of signal inhibition. PMID:25350637

  15. INTEGRIN-MEDIATED CELL ATTACHMENT SHOWS TIME-DEPENDENT UPREGULATION OF GAP JUNCTION COMMUNICATION.

    EPA Science Inventory


    Integrin-mediated Cell Attachment Shows Time-Dependent Upregulation of Gap Junction
    Communication

    Rachel Grindstaff and Carl Blackman, National Health & Environmental Effects Research
    Laboratory, Office of Research and Development, US EPA, Research Triang...

  16. A unified framework for spiking and gap-junction interactions in distributed neuronal network simulations.

    PubMed

    Hahne, Jan; Helias, Moritz; Kunkel, Susanne; Igarashi, Jun; Bolten, Matthias; Frommer, Andreas; Diesmann, Markus

    2015-01-01

    Contemporary simulators for networks of point and few-compartment model neurons come with a plethora of ready-to-use neuron and synapse models and support complex network topologies. Recent technological advancements have broadened the spectrum of application further to the efficient simulation of brain-scale networks on supercomputers. In distributed network simulations the amount of spike data that accrues per millisecond and process is typically low, such that a common optimization strategy is to communicate spikes at relatively long intervals, where the upper limit is given by the shortest synaptic transmission delay in the network. This approach is well-suited for simulations that employ only chemical synapses but it has so far impeded the incorporation of gap-junction models, which require instantaneous neuronal interactions. Here, we present a numerical algorithm based on a waveform-relaxation technique which allows for network simulations with gap junctions in a way that is compatible with the delayed communication strategy. Using a reference implementation in the NEST simulator, we demonstrate that the algorithm and the required data structures can be smoothly integrated with existing code such that they complement the infrastructure for spiking connections. To show that the unified framework for gap-junction and spiking interactions achieves high performance and delivers high accuracy in the presence of gap junctions, we present benchmarks for workstations, clusters, and supercomputers. Finally, we discuss limitations of the novel technology. PMID:26441628

  17. Intrinsic Islet Heterogeneity and Gap Junction Coupling Determine Spatiotemporal Ca2+ Wave Dynamics

    PubMed Central

    Benninger, Richard K.P.; Hutchens, Troy; Head, W. Steven; McCaughey, Michael J.; Zhang, Min; Le Marchand, Sylvain J.; Satin, Leslie S.; Piston, David W.

    2014-01-01

    Insulin is released from the islets of Langerhans in discrete pulses that are linked to synchronized oscillations of intracellular free calcium ([Ca2+]i). Associated with each synchronized oscillation is a propagating calcium wave mediated by Connexin36 (Cx36) gap junctions. A computational islet model predicted that waves emerge due to heterogeneity in β-cell function throughout the islet. To test this, we applied defined patterns of glucose stimulation across the islet using a microfluidic device and measured how these perturbations affect calcium wave propagation. We further investigated how gap junction coupling regulates spatiotemporal [Ca2+]i dynamics in the face of heterogeneous glucose stimulation. Calcium waves were found to originate in regions of the islet having elevated excitability, and this heterogeneity is an intrinsic property of islet β-cells. The extent of [Ca2+]i elevation across the islet in the presence of heterogeneity is gap-junction dependent, which reveals a glucose dependence of gap junction coupling. To better describe these observations, we had to modify the computational islet model to consider the electrochemical gradient between neighboring β-cells. These results reveal how the spatiotemporal [Ca2+]i dynamics of the islet depend on β-cell heterogeneity and cell-cell coupling, and are important for understanding the regulation of coordinated insulin release across the islet. PMID:25468351

  18. Gap junction networks can generate both ripple-like and fast ripple-like oscillations

    PubMed Central

    Simon, Anna; Traub, Roger D.; Vladimirov, Nikita; Jenkins, Alistair; Nicholson, Claire; Whittaker, Roger G.; Schofield, Ian; Clowry, Gavin J.; Cunningham, Mark O.; Whittington, Miles A.

    2014-01-01

    Fast ripples (FRs) are network oscillations, defined variously as having frequencies of > 150 to > 250 Hz, with a controversial mechanism. FRs appear to indicate a propensity of cortical tissue to originate seizures. Here, we demonstrate field oscillations, at up to 400 Hz, in spontaneously epileptic human cortical tissue in vitro, and present a network model that could explain FRs themselves, and their relation to ‘ordinary’ (slower) ripples. We performed network simulations with model pyramidal neurons, having axons electrically coupled. Ripples (< 250 Hz) were favored when conduction of action potentials, axon to axon, was reliable. Whereas ripple population activity was periodic, firing of individual axons varied in relative phase. A switch from ripples to FRs took place when an ectopic spike occurred in a cell coupled to another cell, itself multiply coupled to others. Propagation could then start in one direction only, a condition suitable for re-entry. The resulting oscillations were > 250 Hz, were sustained or interrupted, and had little jitter in the firing of individual axons. The form of model FR was similar to spontaneously occurring FRs in excised human epileptic tissue. In vitro, FRs were suppressed by a gap junction blocker. Our data suggest that a given network can produce ripples, FRs, or both, via gap junctions, and that FRs are favored by clusters of axonal gap junctions. If axonal gap junctions indeed occur in epileptic tissue, and are mediated by connexin 26 (recently shown to mediate coupling between immature neocortical pyramidal cells), then this prediction is testable. PMID:24118191

  19. FREQUENCY-DEPENDENT CHANGES IN GAP JUNCTION FUNCTION IN PRIMARY HEPATOCYTES

    EPA Science Inventory

    FREQUENCY-DEPENDENT CHANGES IN GAP JUNCTION FUNCTION IN PRIMARY HEPATOCYTES. X. Wang1 *, D.E. Housel *, J. Page2, C.F. Blackmanl. 1 National Health and Environmental Effects Research Laboratory, USEPA, Research Triangle Park, North Carolina 27711 USA, 2Oakland, California USA
    ...

  20. INFLUENCE OF SODIUM ARSENITE ON GAP JUNCTION COMMUNICATION IN RAT LIVER EPITHELIAL CELLS

    EPA Science Inventory

    Influence of sodium arsenite on gap junction communication in rat-Iiver epitheiial cells.

    Arsenic is known to cause certain types of cancers, hepatitis, cirrhosis and neurological disorders as well as cardiovascular and reproductive effects and skin lesions. The mechanism...

  1. A unified framework for spiking and gap-junction interactions in distributed neuronal network simulations.

    PubMed

    Hahne, Jan; Helias, Moritz; Kunkel, Susanne; Igarashi, Jun; Bolten, Matthias; Frommer, Andreas; Diesmann, Markus

    2015-01-01

    Contemporary simulators for networks of point and few-compartment model neurons come with a plethora of ready-to-use neuron and synapse models and support complex network topologies. Recent technological advancements have broadened the spectrum of application further to the efficient simulation of brain-scale networks on supercomputers. In distributed network simulations the amount of spike data that accrues per millisecond and process is typically low, such that a common optimization strategy is to communicate spikes at relatively long intervals, where the upper limit is given by the shortest synaptic transmission delay in the network. This approach is well-suited for simulations that employ only chemical synapses but it has so far impeded the incorporation of gap-junction models, which require instantaneous neuronal interactions. Here, we present a numerical algorithm based on a waveform-relaxation technique which allows for network simulations with gap junctions in a way that is compatible with the delayed communication strategy. Using a reference implementation in the NEST simulator, we demonstrate that the algorithm and the required data structures can be smoothly integrated with existing code such that they complement the infrastructure for spiking connections. To show that the unified framework for gap-junction and spiking interactions achieves high performance and delivers high accuracy in the presence of gap junctions, we present benchmarks for workstations, clusters, and supercomputers. Finally, we discuss limitations of the novel technology.

  2. Application of SCAM (substituted cysteine accessibility method) to gap junction intercellular channels.

    PubMed

    Skerrett, M; Kasperek, E; Cao, F L; Shin, J H; Aronowitz, J; Ahmed, S; Nicholson, B J

    2001-01-01

    The pore-lining residues of gap junction channels determine their permeability to ions and small cellular metabolites. These residues can be identified through systematic cysteine substitution and accessibility analysis, commonly known as SCAM (Substituted Cysteine Accessibility Method). However, application of this technique to intercellular channels is more complicated than for their transmembrane counterparts. We have utilized a novel dual-oocyte perfusion device to apply cysteine reagents to the cytoplasmic face of paired, voltage-clamped Xenopus oocytes. In this configuration, a large and irreversible cysteine reagent MBB (maliemidobutyryl biocytin, mw 537) was shown to readily traverse the gap junction pore and induce conductance changes upon reaction of accessible sites. Of the 11 reactive sites identified, 6 were located in M3, where they span the bilayer. They display a periodicity characteristic of the tilted helix that lines the pore in the gap junction structure of Unger et al. (1999). Access to several of the other sites was attributed to aqueous crevices between transmembrane helices. Reactive sites were slightly different than those identified for gap junction hemichannels (Zhou et al. 1997), suggesting that conformational changes occur upon docking.

  3. LIMITATIONS IN THE USE OF MAGNETIC FIELDS TO EXAMINE GAP JUNCTION COMMUNICATION

    EPA Science Inventory

    OBJECTIVE: We have previously shown that gap junction communication (GJC) in mouse primary hepatocytes can be enhanced by treatment with physiological levels of melatonin, and that 45-Hz magnetic fields can eliminate this enhancement in a time-dependent manner. The objective of t...

  4. Regulation of gap junction channels and hemichannels by phosphorylation and redox changes: a revision.

    PubMed

    Pogoda, Kristin; Kameritsch, Petra; Retamal, Mauricio A; Vega, José L

    2016-01-01

    Post-translational modifications of connexins play an important role in the regulation of gap junction and hemichannel permeability. The prerequisite for the formation of functional gap junction channels is the assembly of connexin proteins into hemichannels and their insertion into the membrane. Hemichannels can affect cellular processes by enabling the passage of signaling molecules between the intracellular and extracellular space. For the intercellular communication hemichannels from one cell have to dock to its counterparts on the opposing membrane of an adjacent cell to allow the transmission of signals via gap junctions from one cell to the other. The controlled opening of hemichannels and gating properties of complete gap junctions can be regulated via post-translational modifications of connexins. Not only channel gating, but also connexin trafficking and assembly into hemichannels can be affected by post-translational changes. Recent investigations have shown that connexins can be modified by phosphorylation/dephosphorylation, redox-related changes including effects of nitric oxide (NO), hydrogen sulfide (H2S) or carbon monoxide (CO), acetylation, methylation or ubiquitination. Most of the connexin isoforms are known to be phosphorylated, e.g. Cx43, one of the most studied connexin at all, has 21 reported phosphorylation sites. In this review, we provide an overview about the current knowledge and relevant research of responsible kinases, connexin phosphorylation sites and reported effects on gap junction and hemichannel regulation. Regarding the effects of oxidants we discuss the role of NO in different cell types and tissues and recent studies about modifications of connexins by CO and H2S.

  5. High band gap 2-6 and 3-5 tunneling junctions for silicon multijunction solar cells

    NASA Technical Reports Server (NTRS)

    Daud, Taher (Inventor); Kachare, Akaram H. (Inventor)

    1986-01-01

    A multijunction silicon solar cell of high efficiency is provided by providing a tunnel junction between the solar cell junctions to connect them in series. The tunnel junction is comprised of p+ and n+ layers of high band gap 3-5 or 2-6 semiconductor materials that match the lattice structure of silicon, such as GaP (band gap 2.24 eV) or ZnS (band gap 3.6 eV). Each of which has a perfect lattice match with silicon to avoid defects normally associated with lattice mismatch.

  6. A fluorescence photobleaching assay of gap junction-mediated communication between human cells.

    PubMed

    Wade, M H; Trosko, J E; Schindler, M

    1986-04-25

    Gap junction-mediated communication between contiguous cells has been implicated in the regulation of cell proliferation and differentiation. This report describes a new technique to measure cell-cell communication, gap fluorescence redistribution after photobleaching, which is based on the diffusion-dependent return of 6-carboxyfluorescein-mediated fluorescence in a photobleached cell that is in contact with other fluorescently labeled cells. Fluorescence recovery rates are interpreted as dye transport across gap junctions. Results of experiments on normal human fibroblasts and human teratocarcinoma cells show that this technique can measure rapid dye transfer and detect inhibition of communication (between teratocarcinoma cells) by the tumor promoters 12-O-tetradecanoyl-phorbol-13-acetate and the pesticide dieldrin. PMID:3961495

  7. Cytoplasmic bridges and gap junctions in an insect cell line (Aedes albopictus).

    PubMed

    Bukauskas, F F; Kempf, C; Weingart, R

    1992-11-01

    Cell pairs of an insect cell line (Aedes albopictus, clone C6/36) were used study simultaneously the diffusional and electrical properties of intercellular junctions. Diffusion studies involved injection of fluorescent molecules into one cell of a cell pair and visual inspection of their intercellular redistribution. Electrical measurements involved a dual voltage clamp method and whole-cell recording with patch pipette. The voltage clamp protocol was aimed at examining the dependency of the junctional conductance, gj, on membrane potential, Vm. Cell pairs exhibiting a voltage-dependent gj were found to allow intercellular diffusion of Lucifer Yellow CH (molecular mass, 443 Da), but not of FITC-dextran (molecular mass, 4,400 Da). This response pattern is consistent with the presence of gap junctions in the intercellular junctions. Cell pairs showing no voltage dependence of gj were found to permit intercellular diffusion of both Lucifer Yellow CH and FITC-dextran (dextran labelled with fluorescein isothiocyanate). This behaviour is compatible with the presence of cytoplasmic bridges connecting the two adjacent cells. Hence, in culture the cells investigated express two kinds of intercellular structures, gap junctions and cytoplasmic bridges.

  8. Rescue of perfluorooctanesulfonate (PFOS)-mediated Sertoli cell injury by overexpression of gap junction protein connexin 43

    PubMed Central

    Li, Nan; Mruk, Dolores D.; Chen, Haiqi; Wong, Chris K. C.; Lee, Will M.; Cheng, C. Yan

    2016-01-01

    Perfluorooctanesulfonate (PFOS) is an environmental toxicant used in developing countries, including China, as a stain repellent for clothing, carpets and draperies, but it has been banned in the U.S. and Canada since the late 2000s. PFOS perturbed the Sertoli cell tight junction (TJ)-permeability barrier, causing disruption of actin microfilaments in cell cytosol, perturbing the localization of cell junction proteins (e.g., occluden-ZO-1, N-cadherin-ß-catenin). These changes destabilized Sertoli cell blood-testis barrier (BTB) integrity. These findings suggest that human exposure to PFOS might induce BTB dysfunction and infertility. Interestingly, PFOS-induced Sertoli cell injury associated with a down-regulation of the gap junction (GJ) protein connexin43 (Cx43). We next investigated if overexpression of Cx43 in Sertoli cells could rescue the PFOS-induced cell injury. Indeed, overexpression of Cx43 in Sertoli cells with an established TJ-barrier blocked the disruption in PFOS-induced GJ-intercellular communication, resulting in the re-organization of actin microfilaments, which rendered them similar to those in control cells. Furthermore, cell adhesion proteins that utilized F-actin for attachment became properly distributed at the cell-cell interface, resealing the disrupted TJ-barrier. In summary, Cx43 is a good target that might be used to manage PFOS-induced reproductive dysfunction. PMID:27436542

  9. Rescue of perfluorooctanesulfonate (PFOS)-mediated Sertoli cell injury by overexpression of gap junction protein connexin 43

    NASA Astrophysics Data System (ADS)

    Li, Nan; Mruk, Dolores D.; Chen, Haiqi; Wong, Chris K. C.; Lee, Will M.; Cheng, C. Yan

    2016-07-01

    Perfluorooctanesulfonate (PFOS) is an environmental toxicant used in developing countries, including China, as a stain repellent for clothing, carpets and draperies, but it has been banned in the U.S. and Canada since the late 2000s. PFOS perturbed the Sertoli cell tight junction (TJ)-permeability barrier, causing disruption of actin microfilaments in cell cytosol, perturbing the localization of cell junction proteins (e.g., occluden-ZO-1, N-cadherin-ß-catenin). These changes destabilized Sertoli cell blood-testis barrier (BTB) integrity. These findings suggest that human exposure to PFOS might induce BTB dysfunction and infertility. Interestingly, PFOS-induced Sertoli cell injury associated with a down-regulation of the gap junction (GJ) protein connexin43 (Cx43). We next investigated if overexpression of Cx43 in Sertoli cells could rescue the PFOS-induced cell injury. Indeed, overexpression of Cx43 in Sertoli cells with an established TJ-barrier blocked the disruption in PFOS-induced GJ-intercellular communication, resulting in the re-organization of actin microfilaments, which rendered them similar to those in control cells. Furthermore, cell adhesion proteins that utilized F-actin for attachment became properly distributed at the cell-cell interface, resealing the disrupted TJ-barrier. In summary, Cx43 is a good target that might be used to manage PFOS-induced reproductive dysfunction.

  10. Rescue of perfluorooctanesulfonate (PFOS)-mediated Sertoli cell injury by overexpression of gap junction protein connexin 43.

    PubMed

    Li, Nan; Mruk, Dolores D; Chen, Haiqi; Wong, Chris K C; Lee, Will M; Cheng, C Yan

    2016-01-01

    Perfluorooctanesulfonate (PFOS) is an environmental toxicant used in developing countries, including China, as a stain repellent for clothing, carpets and draperies, but it has been banned in the U.S. and Canada since the late 2000s. PFOS perturbed the Sertoli cell tight junction (TJ)-permeability barrier, causing disruption of actin microfilaments in cell cytosol, perturbing the localization of cell junction proteins (e.g., occluden-ZO-1, N-cadherin-ß-catenin). These changes destabilized Sertoli cell blood-testis barrier (BTB) integrity. These findings suggest that human exposure to PFOS might induce BTB dysfunction and infertility. Interestingly, PFOS-induced Sertoli cell injury associated with a down-regulation of the gap junction (GJ) protein connexin43 (Cx43). We next investigated if overexpression of Cx43 in Sertoli cells could rescue the PFOS-induced cell injury. Indeed, overexpression of Cx43 in Sertoli cells with an established TJ-barrier blocked the disruption in PFOS-induced GJ-intercellular communication, resulting in the re-organization of actin microfilaments, which rendered them similar to those in control cells. Furthermore, cell adhesion proteins that utilized F-actin for attachment became properly distributed at the cell-cell interface, resealing the disrupted TJ-barrier. In summary, Cx43 is a good target that might be used to manage PFOS-induced reproductive dysfunction. PMID:27436542

  11. Cell-to-cell communication in intact taste buds through ATP signalling from pannexin 1 gap junction hemichannels.

    PubMed

    Dando, Robin; Roper, Stephen D

    2009-12-15

    Isolated taste cells, taste buds and strips of lingual tissue from taste papillae secrete ATP upon taste stimulation. Taste bud receptor (Type II) cells have been identified as the source of ATP secretion. Based on studies on isolated taste buds and single taste cells, we have postulated that ATP secreted from receptor cells via pannexin 1 hemichannels acts within the taste bud to excite neighbouring presynaptic (Type III) cells. This hypothesis, however, remains to be tested in intact tissues. In this report we used confocal Ca(2+) imaging and lingual slices containing intact taste buds to test the hypothesis of purinergic signalling between taste cells in a more integral preparation. Incubating lingual slices with apyrase reversibly blocked cell-to-cell communication between receptor cells and presynaptic cells, consistent with ATP being the transmitter. Inhibiting pannexin 1 gap junction hemichannels with CO(2)-saturated buffer or probenecid significantly reduced cell-cell signalling between receptor cells and presynaptic cells. In contrast, anandamide, a blocker of connexin gap junction channels, had no effect of cell-to-cell communication in taste buds. These findings are consistent with the model for peripheral signal processing via ATP and pannexin 1 hemichannels in mammalian taste buds.

  12. Cell-to-cell communication in intact taste buds through ATP signalling from pannexin 1 gap junction hemichannels

    PubMed Central

    Dando, Robin; Roper, Stephen D

    2009-01-01

    Isolated taste cells, taste buds and strips of lingual tissue from taste papillae secrete ATP upon taste stimulation. Taste bud receptor (Type II) cells have been identified as the source of ATP secretion. Based on studies on isolated taste buds and single taste cells, we have postulated that ATP secreted from receptor cells via pannexin 1 hemichannels acts within the taste bud to excite neighbouring presynaptic (Type III) cells. This hypothesis, however, remains to be tested in intact tissues. In this report we used confocal Ca2+ imaging and lingual slices containing intact taste buds to test the hypothesis of purinergic signalling between taste cells in a more integral preparation. Incubating lingual slices with apyrase reversibly blocked cell-to-cell communication between receptor cells and presynaptic cells, consistent with ATP being the transmitter. Inhibiting pannexin 1 gap junction hemichannels with CO2-saturated buffer or probenecid significantly reduced cell–cell signalling between receptor cells and presynaptic cells. In contrast, anandamide, a blocker of connexin gap junction channels, had no effect of cell-to-cell communication in taste buds. These findings are consistent with the model for peripheral signal processing via ATP and pannexin 1 hemichannels in mammalian taste buds. PMID:19884319

  13. Role of gap junction channel in the development of beat-to-beat action potential repolarization variability and arrhythmias.

    PubMed

    Magyar, Janos; Banyasz, Tamas; Szentandrassy, Norbert; Kistamas, Kornel; Nanasi, Peter P; Satin, Jonathan

    2015-01-01

    The short-term beat-to-beat variability of cardiac action potential duration (SBVR) occurs as a random alteration of the ventricular repolarization duration. SBVR has been suggested to be more predictive of the development of lethal arrhythmias than the action potential prolongation or QT prolongation of ECG alone. The mechanism underlying SBVR is not completely understood but it is known that SBVR depends on stochastic ion channel gating, intracellular calcium handling and intercellular coupling. Coupling of single cardiomyocytes significantly decreases the beat-to-beat changes in action potential duration (APD) due to the electrotonic current flow between neighboring cells. The magnitude of this electrotonic current depends on the intercellular gap junction resistance. Reduced gap junction resistance causes greater electrotonic current flow between cells, and reduces SBVR. Myocardial ischaemia (MI) is known to affect gap junction channel protein expression and function. MI increases gap junction resistance that leads to slow conduction, APD and refractory period dispersion, and an increase in SBVR. Ultimately, development of reentry arrhythmias and fibrillation are associated post-MI. Antiarrhythmic drugs have proarrhythmic side effects requiring alternative approaches. A novel idea is to target gap junction channels. Specifically, the use of gap junction channel enhancers and inhibitors may help to reveal the precise role of gap junctions in the development of arrhythmias. Since cell-to-cell coupling is represented in SBVR, this parameter can be used to monitor the degree of coupling of myocardium.

  14. Gap Junctions Contribute to the Regulation of Walking-Like Activity in the Adult Mudpuppy (Necturus Maculatus)

    PubMed Central

    Lavrov, Igor; Fox, Lyle; Shen, Jun; Han, Yingchun; Cheng, Jianguo

    2016-01-01

    Although gap junctions are widely expressed in the developing central nervous system, the role of electrical coupling of neurons and glial cells via gap junctions in the spinal cord in adults is largely unknown. We investigated whether gap junctions are expressed in the mature spinal cord of the mudpuppy and tested the effects of applying gap junction blocker on the walking-like activity induced by NMDA or glutamate in an in vitro mudpuppy preparation. We found that glial and neural cells in the mudpuppy spinal cord expressed different types of connexins that include connexin 32 (Cx32), connexin 36 (Cx36), connexin 37 (Cx37), and connexin 43 (Cx43). Application of a battery of gap junction blockers from three different structural classes (carbenexolone, flufenamic acid, and long chain alcohols) substantially and consistently altered the locomotor-like activity in a dose-dependent manner. In contrast, these blockers did not significantly change the amplitude of the dorsal root reflex, indicating that gap junction blockers did not inhibit neuronal excitability nonselectively in the spinal cord. Taken together, these results suggest that gap junctions play a significant modulatory role in the spinal neural networks responsible for the generation of walking-like activity in the adult mudpuppy. PMID:27023006

  15. Gap Junctions Contribute to the Regulation of Walking-Like Activity in the Adult Mudpuppy (Necturus Maculatus).

    PubMed

    Lavrov, Igor; Fox, Lyle; Shen, Jun; Han, Yingchun; Cheng, Jianguo

    2016-01-01

    Although gap junctions are widely expressed in the developing central nervous system, the role of electrical coupling of neurons and glial cells via gap junctions in the spinal cord in adults is largely unknown. We investigated whether gap junctions are expressed in the mature spinal cord of the mudpuppy and tested the effects of applying gap junction blocker on the walking-like activity induced by NMDA or glutamate in an in vitro mudpuppy preparation. We found that glial and neural cells in the mudpuppy spinal cord expressed different types of connexins that include connexin 32 (Cx32), connexin 36 (Cx36), connexin 37 (Cx37), and connexin 43 (Cx43). Application of a battery of gap junction blockers from three different structural classes (carbenexolone, flufenamic acid, and long chain alcohols) substantially and consistently altered the locomotor-like activity in a dose-dependent manner. In contrast, these blockers did not significantly change the amplitude of the dorsal root reflex, indicating that gap junction blockers did not inhibit neuronal excitability nonselectively in the spinal cord. Taken together, these results suggest that gap junctions play a significant modulatory role in the spinal neural networks responsible for the generation of walking-like activity in the adult mudpuppy. PMID:27023006

  16. Two Classes of Gap Junction Channels Mediate Soma-Germline Interactions Essential for Germline Proliferation and Gametogenesis in Caenorhabditis elegans

    PubMed Central

    Starich, Todd A.; Hall, David H.; Greenstein, David

    2014-01-01

    In all animals examined, somatic cells of the gonad control multiple biological processes essential for germline development. Gap junction channels, composed of connexins in vertebrates and innexins in invertebrates, permit direct intercellular communication between cells and frequently form between somatic gonadal cells and germ cells. Gap junctions comprise hexameric hemichannels in apposing cells that dock to form channels for the exchange of small molecules. Here we report essential roles for two classes of gap junction channels, composed of five innexin proteins, in supporting the proliferation of germline stem cells and gametogenesis in the nematode Caenorhabditis elegans. Transmission electron microscopy of freeze-fracture replicas and fluorescence microscopy show that gap junctions between somatic cells and germ cells are more extensive than previously appreciated and are found throughout the gonad. One class of gap junctions, composed of INX-8 and INX-9 in the soma and INX-14 and INX-21 in the germ line, is required for the proliferation and differentiation of germline stem cells. Genetic epistasis experiments establish a role for these gap junction channels in germline proliferation independent of the glp-1/Notch pathway. A second class of gap junctions, composed of somatic INX-8 and INX-9 and germline INX-14 and INX-22, is required for the negative regulation of oocyte meiotic maturation. Rescue of gap junction channel formation in the stem cell niche rescues germline proliferation and uncovers a later channel requirement for embryonic viability. This analysis reveals gap junctions as a central organizing feature of many soma–germline interactions in C. elegans. PMID:25195067

  17. Neural progenitor cells isolated from the subventricular zone present hemichannel activity and form functional gap junctions with glial cells

    PubMed Central

    Talaverón, Rocío; Fernández, Paola; Escamilla, Rosalba; Pastor, Angel M.; Matarredona, Esperanza R.; Sáez, Juan C.

    2015-01-01

    The postnatal subventricular zone (SVZ) lining the walls of the lateral ventricles contains neural progenitor cells (NPCs) that generate new olfactory bulb interneurons. Communication via gap junctions between cells in the SVZ is involved in NPC proliferation and in neuroblast migration towards the olfactory bulb. SVZ NPCs can be expanded in vitro in the form of neurospheres that can be used for transplantation purposes after brain injury. We have previously reported that neurosphere-derived NPCs form heterocellular gap junctions with host glial cells when they are implanted after mechanical injury. To analyze functionality of NPC-glial cell gap junctions we performed dye coupling experiments in co-cultures of SVZ NPCs with astrocytes or microglia. Neurosphere-derived cells expressed mRNA for at least the hemichannel/gap junction channel proteins connexin 26 (Cx26), Cx43, Cx45 and pannexin 1 (Panx1). Dye coupling experiments revealed that gap junctional communication occurred among neurosphere cells (incidence of coupling: 100%). Moreover, hemichannel activity was also detected in neurosphere cells as evaluated in time-lapse measurements of ethidium bromide uptake. Heterocellular coupling between NPCs and glial cells was evidenced in co-cultures of neurospheres with astrocytes (incidence of coupling: 91.0 ± 4.7%) or with microglia (incidence of coupling: 71.9 ± 6.7%). Dye coupling in neurospheres and in co-cultures was inhibited by octanol, a gap junction blocker. Altogether, these results suggest the existence of functional hemichannels and gap junction channels in postnatal SVZ neurospheres. In addition, they demonstrate that SVZ-derived NPCs can establish functional gap junctions with astrocytes or microglia. Therefore, cell-cell communication via gap junctions and hemichannels with host glial cells might subserve a role in the functional integration of NPCs after implantation in the damaged brain. PMID:26528139

  18. Neural progenitor cells isolated from the subventricular zone present hemichannel activity and form functional gap junctions with glial cells.

    PubMed

    Talaverón, Rocío; Fernández, Paola; Escamilla, Rosalba; Pastor, Angel M; Matarredona, Esperanza R; Sáez, Juan C

    2015-01-01

    The postnatal subventricular zone (SVZ) lining the walls of the lateral ventricles contains neural progenitor cells (NPCs) that generate new olfactory bulb interneurons. Communication via gap junctions between cells in the SVZ is involved in NPC proliferation and in neuroblast migration towards the olfactory bulb. SVZ NPCs can be expanded in vitro in the form of neurospheres that can be used for transplantation purposes after brain injury. We have previously reported that neurosphere-derived NPCs form heterocellular gap junctions with host glial cells when they are implanted after mechanical injury. To analyze functionality of NPC-glial cell gap junctions we performed dye coupling experiments in co-cultures of SVZ NPCs with astrocytes or microglia. Neurosphere-derived cells expressed mRNA for at least the hemichannel/gap junction channel proteins connexin 26 (Cx26), Cx43, Cx45 and pannexin 1 (Panx1). Dye coupling experiments revealed that gap junctional communication occurred among neurosphere cells (incidence of coupling: 100%). Moreover, hemichannel activity was also detected in neurosphere cells as evaluated in time-lapse measurements of ethidium bromide uptake. Heterocellular coupling between NPCs and glial cells was evidenced in co-cultures of neurospheres with astrocytes (incidence of coupling: 91.0 ± 4.7%) or with microglia (incidence of coupling: 71.9 ± 6.7%). Dye coupling in neurospheres and in co-cultures was inhibited by octanol, a gap junction blocker. Altogether, these results suggest the existence of functional hemichannels and gap junction channels in postnatal SVZ neurospheres. In addition, they demonstrate that SVZ-derived NPCs can establish functional gap junctions with astrocytes or microglia. Therefore, cell-cell communication via gap junctions and hemichannels with host glial cells might subserve a role in the functional integration of NPCs after implantation in the damaged brain.

  19. A versatile optical junction using photonic band-gap guidance and self collimation

    SciTech Connect

    Gupta, Man Mohan; Medhekar, Sarang

    2014-09-29

    We show that it is possible to design two photonic crystal (PC) structures such that an optical beam of desired wavelength gets guided within the line defect of the first structure (photonic band gap guidance) and the same beam gets guided in the second structure by self-collimation. Using two dimensional simulation of a design made of the combination of these two structures, we propose an optical junction that allows for crossing of two optical signals of same wavelength and same polarization with very low crosstalk. Moreover, the junction can be operated at number of frequencies in a wide range. Crossing of multiple beams with very low cross talk is also possible. The proposed junction should be important in future integrated photonic circuits.

  20. A rapid and sensitive assay of intercellular coupling by voltage imaging of gap junction networks

    PubMed Central

    2013-01-01

    Background A variety of mechanisms that govern connexin channel gating and permeability regulate coupling in gap junction networks. Mutations in connexin genes have been linked to several pathologies, including cardiovascular anomalies, peripheral neuropathy, skin disorders, cataracts and deafness. Gap junction coupling and its patho–physiological alterations are commonly assayed by microinjection experiments with fluorescent tracers, which typically require several minutes to allow dye transfer to a limited number of cells. Comparable or longer time intervals are required by fluorescence recovery after photobleaching experiments. Paired electrophysiological recordings have excellent time resolution but provide extremely limited spatial information regarding network connectivity. Results Here, we developed a rapid and sensitive method to assay gap junction communication using a combination of single cell electrophysiology, large–scale optical recordings and a digital phase–sensitive detector to extract signals with a known frequency from Vf2.1.Cl, a novel fluorescent sensor of plasma membrane potential. Tests performed in HeLa cell cultures confirmed that suitably encoded Vf2.1.Cl signals remained confined within the network of cells visibly interconnected by fluorescently tagged gap junction channels. We used this method to visualize instantly intercellular connectivity over the whole field of view (hundreds of cells) in cochlear organotypic cultures from postnatal mice. A simple resistive network model reproduced accurately the spatial dependence of the electrical signals throughout the cellular network. Our data suggest that each pair of cochlear non−sensory cells of the lesser epithelial ridge is coupled by ~1500 gap junction channels, on average. Junctional conductance was reduced by 14% in cochlear cultures harboring the T5M mutation of connexin30, which induces a moderate hearing loss in connexin30T5M/T5M knock–in mice, and by 91% in cultures from

  1. Application of stochastic automata networks for creation of continuous time Markov chain models of voltage gating of gap junction channels.

    PubMed

    Snipas, Mindaugas; Pranevicius, Henrikas; Pranevicius, Mindaugas; Pranevicius, Osvaldas; Paulauskas, Nerijus; Bukauskas, Feliksas F

    2015-01-01

    The primary goal of this work was to study advantages of numerical methods used for the creation of continuous time Markov chain models (CTMC) of voltage gating of gap junction (GJ) channels composed of connexin protein. This task was accomplished by describing gating of GJs using the formalism of the stochastic automata networks (SANs), which allowed for very efficient building and storing of infinitesimal generator of the CTMC that allowed to produce matrices of the models containing a distinct block structure. All of that allowed us to develop efficient numerical methods for a steady-state solution of CTMC models. This allowed us to accelerate CPU time, which is necessary to solve CTMC models, ~20 times. PMID:25705700

  2. Effect of sound on gap-junction-based intercellular signaling: Calcium waves under acoustic irradiation

    NASA Astrophysics Data System (ADS)

    Deymier, P. A.; Swinteck, N.; Runge, K.; Deymier-Black, A.; Hoying, J. B.

    2015-11-01

    We present a previously unrecognized effect of sound waves on gap-junction-based intercellular signaling such as in biological tissues composed of endothelial cells. We suggest that sound irradiation may, through temporal and spatial modulation of cell-to-cell conductance, create intercellular calcium waves with unidirectional signal propagation associated with nonconventional topologies. Nonreciprocity in calcium wave propagation induced by sound wave irradiation is demonstrated in the case of a linear and a nonlinear reaction-diffusion model. This demonstration should be applicable to other types of gap-junction-based intercellular signals, and it is thought that it should be of help in interpreting a broad range of biological phenomena associated with the beneficial therapeutic effects of sound irradiation and possibly the harmful effects of sound waves on health.

  3. Effect of sound on gap-junction-based intercellular signaling: Calcium waves under acoustic irradiation.

    PubMed

    Deymier, P A; Swinteck, N; Runge, K; Deymier-Black, A; Hoying, J B

    2015-01-01

    We present a previously unrecognized effect of sound waves on gap-junction-based intercellular signaling such as in biological tissues composed of endothelial cells. We suggest that sound irradiation may, through temporal and spatial modulation of cell-to-cell conductance, create intercellular calcium waves with unidirectional signal propagation associated with nonconventional topologies. Nonreciprocity in calcium wave propagation induced by sound wave irradiation is demonstrated in the case of a linear and a nonlinear reaction-diffusion model. This demonstration should be applicable to other types of gap-junction-based intercellular signals, and it is thought that it should be of help in interpreting a broad range of biological phenomena associated with the beneficial therapeutic effects of sound irradiation and possibly the harmful effects of sound waves on health.

  4. Molecular cloning of cDNA for rat liver gap junction protein

    PubMed Central

    1986-01-01

    An affinity-purified antibody directed against the 27-kD protein associated with isolated rat liver gap junctions was produced. Light and electron microscopic immunocytochemistry showed that this antigen was localized specifically to the cytoplasmic surfaces of gap junctions. The antibody was used to select cDNA from a rat liver library in the expression vector lambda gt11. The largest cDNA selected contained 1,494 bp and coded for a protein with a calculated molecular mass of 32,007 daltons. Northern blot analysis indicated that brain, kidney, and stomach express an mRNA with similar size and homology to that expressed in liver, but that heart and lens express differently sized, less homologous mRNA. PMID:3013898

  5. SLO BK Potassium Channels Couple Gap Junctions to Inhibition of Calcium Signaling in Olfactory Neuron Diversification.

    PubMed

    Alqadah, Amel; Hsieh, Yi-Wen; Schumacher, Jennifer A; Wang, Xiaohong; Merrill, Sean A; Millington, Grethel; Bayne, Brittany; Jorgensen, Erik M; Chuang, Chiou-Fen

    2016-01-01

    The C. elegans AWC olfactory neuron pair communicates to specify asymmetric subtypes AWCOFF and AWCON in a stochastic manner. Intercellular communication between AWC and other neurons in a transient NSY-5 gap junction network antagonizes voltage-activated calcium channels, UNC-2 (CaV2) and EGL-19 (CaV1), in the AWCON cell, but how calcium signaling is downregulated by NSY-5 is only partly understood. Here, we show that voltage- and calcium-activated SLO BK potassium channels mediate gap junction signaling to inhibit calcium pathways for asymmetric AWC differentiation. Activation of vertebrate SLO-1 channels causes transient membrane hyperpolarization, which makes it an important negative feedback system for calcium entry through voltage-activated calcium channels. Consistent with the physiological roles of SLO-1, our genetic results suggest that slo-1 BK channels act downstream of NSY-5 gap junctions to inhibit calcium channel-mediated signaling in the specification of AWCON. We also show for the first time that slo-2 BK channels are important for AWC asymmetry and act redundantly with slo-1 to inhibit calcium signaling. In addition, nsy-5-dependent asymmetric expression of slo-1 and slo-2 in the AWCON neuron is necessary and sufficient for AWC asymmetry. SLO-1 and SLO-2 localize close to UNC-2 and EGL-19 in AWC, suggesting a role of possible functional coupling between SLO BK channels and voltage-activated calcium channels in AWC asymmetry. Furthermore, slo-1 and slo-2 regulate the localization of synaptic markers, UNC-2 and RAB-3, in AWC neurons to control AWC asymmetry. We also identify the requirement of bkip-1, which encodes a previously identified auxiliary subunit of SLO-1, for slo-1 and slo-2 function in AWC asymmetry. Together, these results provide an unprecedented molecular link between gap junctions and calcium pathways for terminal differentiation of olfactory neurons.

  6. Pharmacological blockade of gap junctions induces repetitive surging of extracellular potassium within the locust CNS.

    PubMed

    Spong, Kristin E; Robertson, R Meldrum

    2013-10-01

    The maintenance of cellular ion homeostasis is crucial for optimal neural function and thus it is of great importance to understand its regulation. Glial cells are extensively coupled by gap junctions forming a network that is suggested to serve as a spatial buffer for potassium (K(+)) ions. We have investigated the role of glial spatial buffering in the regulation of extracellular K(+) concentration ([K(+)]o) within the locust metathoracic ganglion by pharmacologically inhibiting gap junctions. Using K(+)-sensitive microelectrodes, we measured [K(+)]o near the ventilatory neuropile while simultaneously recording the ventilatory rhythm as a model of neural circuit function. We found that blockade of gap junctions with either carbenoxolone (CBX), 18β-glycyrrhetinic acid (18β-GA) or meclofenamic acid (MFA) reliably induced repetitive [K(+)]o surges and caused a progressive impairment in the ability to maintain baseline [K(+)]o levels throughout the treatment period. We also show that a low dose of CBX that did not induce surging activity increased the vulnerability of locust neural tissue to spreading depression (SD) induced by Na(+)/K(+)-ATPase inhibition with ouabain. CBX pre-treatment increased the number of SD events induced by ouabain and hindered the recovery of [K(+)]o back to baseline levels between events. Our results suggest that glial spatial buffering through gap junctions plays an essential role in the regulation of [K(+)]o under normal conditions and also contributes to a component of [K(+)]o clearance following physiologically elevated levels of [K(+)]o. PMID:23916994

  7. Mathematical modeling of gap junction coupling and electrical activity in human β-cells

    NASA Astrophysics Data System (ADS)

    Loppini, Alessandro; Braun, Matthias; Filippi, Simonetta; Gram Pedersen, Morten

    2015-12-01

    Coordinated insulin secretion is controlled by electrical coupling of pancreatic β-cells due to connexin-36 gap junctions. Gap junction coupling not only synchronizes the heterogeneous β-cell population, but can also modify the electrical behavior of the cells. These phenomena have been widely studied with mathematical models based on data from mouse β-cells. However, it is now known that human β-cell electrophysiology shows important differences to its rodent counterpart, and although human pancreatic islets express connexin-36 and show evidence of β-cell coupling, these aspects have been little investigated in human β-cells. Here we investigate theoretically, the gap junction coupling strength required for synchronizing electrical activity in a small cluster of cells simulated with a recent mathematical model of human β-cell electrophysiology. We find a lower limit for the coupling strength of approximately 20 pS (i.e., normalized to cell size, ˜2 pS pF-1) below which spiking electrical activity is asynchronous. To confront this theoretical lower bound with data, we use our model to estimate from an experimental patch clamp recording that the coupling strength is approximately 100-200 pS (10-20 pS pF-1), similar to previous estimates in mouse β-cells. We then investigate the role of gap junction coupling in synchronizing and modifying other forms of electrical activity in human β-cell clusters. We find that electrical coupling can prolong the period of rapid bursting electrical activity, and synchronize metabolically driven slow bursting, in particular when the metabolic oscillators are in phase. Our results show that realistic coupling conductances are sufficient to promote synchrony in small clusters of human β-cells as observed experimentally, and provide motivation for further detailed studies of electrical coupling in human pancreatic islets.

  8. SLO BK Potassium Channels Couple Gap Junctions to Inhibition of Calcium Signaling in Olfactory Neuron Diversification

    PubMed Central

    Schumacher, Jennifer A.; Wang, Xiaohong; Merrill, Sean A.; Millington, Grethel; Bayne, Brittany; Jorgensen, Erik M.; Chuang, Chiou-Fen

    2016-01-01

    The C. elegans AWC olfactory neuron pair communicates to specify asymmetric subtypes AWCOFF and AWCON in a stochastic manner. Intercellular communication between AWC and other neurons in a transient NSY-5 gap junction network antagonizes voltage-activated calcium channels, UNC-2 (CaV2) and EGL-19 (CaV1), in the AWCON cell, but how calcium signaling is downregulated by NSY-5 is only partly understood. Here, we show that voltage- and calcium-activated SLO BK potassium channels mediate gap junction signaling to inhibit calcium pathways for asymmetric AWC differentiation. Activation of vertebrate SLO-1 channels causes transient membrane hyperpolarization, which makes it an important negative feedback system for calcium entry through voltage-activated calcium channels. Consistent with the physiological roles of SLO-1, our genetic results suggest that slo-1 BK channels act downstream of NSY-5 gap junctions to inhibit calcium channel-mediated signaling in the specification of AWCON. We also show for the first time that slo-2 BK channels are important for AWC asymmetry and act redundantly with slo-1 to inhibit calcium signaling. In addition, nsy-5-dependent asymmetric expression of slo-1 and slo-2 in the AWCON neuron is necessary and sufficient for AWC asymmetry. SLO-1 and SLO-2 localize close to UNC-2 and EGL-19 in AWC, suggesting a role of possible functional coupling between SLO BK channels and voltage-activated calcium channels in AWC asymmetry. Furthermore, slo-1 and slo-2 regulate the localization of synaptic markers, UNC-2 and RAB-3, in AWC neurons to control AWC asymmetry. We also identify the requirement of bkip-1, which encodes a previously identified auxiliary subunit of SLO-1, for slo-1 and slo-2 function in AWC asymmetry. Together, these results provide an unprecedented molecular link between gap junctions and calcium pathways for terminal differentiation of olfactory neurons. PMID:26771544

  9. Antofine-induced connexin43 gap junction disassembly in rat astrocytes involves protein kinase Cβ.

    PubMed

    Huang, Yu-Fang; Liao, Chih-Kai; Lin, Jau-Chen; Jow, Guey-Mei; Wang, Hwai-Shi; Wu, Jiahn-Chun

    2013-03-01

    Antofine, a phenanthroindolizidine alkaloid derived from Cryptocaryachinensis and Ficusseptica in the Asclepiadaceae milkweed family, is cytotoxic for various cancer cell lines. In this study, we demonstrated that treatment of rat primary astrocytes with antofine induced dose-dependent inhibition of gap junction intercellular communication (GJIC), as assessed by scrape-loading 6-carboxyfluorescein dye transfer. Levels of Cx43 protein were also decreased in a dose- and time-dependent manner following antofine treatment. Double-labeling immunofluorescence microscopy showed that antofine (10ng/ml) induced endocytosis of surface gap junctions into the cytoplasm, where Cx43 was co-localized with the early endosome marker EEA1. Inhibition of lysosomes or proteasomes by co-treatment with antofine and their respective specific inhibitors, NH4Cl or MG132, partially inhibited the antofine-induced decrease in Cx43 protein levels, but did not inhibit the antofine-induced inhibition of GJIC. After 30min of treatment, antofine induced a rapid increase in the intracellular Ca(2+) concentration and activation of protein kinase C (PKC)α/βII, which was maintained for at least 6h. Co-treatment of astrocytes with antofine and the intracellular Ca(2+) chelator BAPTA-AM prevented downregulation of Cx43 and inhibition of GJIC. Moreover, co-treatment with antofine and a specific PKCβ inhibitor prevented endocytosis of gap junctions, downregulation of Cx43, and inhibition of GJIC. Taken together, these findings indicate that antofine induces Cx43 gap junction disassembly by the PKCβ signaling pathway. Inhibition of GJIC by antofine may undermine the neuroprotective effect of astrocytes in CNS. PMID:23403203

  10. Calcium-induced calcium release and gap junctions mediate large-scale calcium waves in olfactory ensheathing cells in situ.

    PubMed

    Stavermann, Maren; Meuth, Patrick; Doengi, Michael; Thyssen, Anne; Deitmer, Joachim W; Lohr, Christian

    2015-08-01

    Olfactory ensheathing cells (OECs) are a specialised type of glial cells, supporting axon growth and guidance during development and regeneration of the olfactory nerve and the nerve layer of the olfactory bulb. We measured calcium signalling in OECs in olfactory bulb in-toto preparations using confocal and epifluorescence microscopy and the calcium indicator Fluo-4. We identified two subpopulations of olfactory bulb OECs: OECs in the outer sublamina of the nerve layer responded to purinergic neurotransmitters such as adenosine triphosphate with calcium transients, while OECs in the inner sublamina of the nerve layer did not respond to neurotransmitters. However, the latter generated spontaneous calcium waves that covered hundreds of cells. These calcium waves persisted in the presence of tetrodotoxin and in calcium-free saline, but were abolished after calcium store depletion with cyclopiazonic acid or inositol trisphosphate receptor blockage with 2-APB. Calcium waves could be triggered by laser photolysis of caged inositol trisphosphate. Blocking purinoceptors with PPADS had no effect on calcium wave propagation, whereas blocking gap junctions with carbenoxolone or meclofenamic acid entirely suppressed calcium waves. Increasing calcium buffer capacity in OECs with NP-EGTA ("caged" Ca(2+)) prevented calcium wave generation, and laser photolysis of NP-EGTA in a small group of OECs resulted in a calcium increase in the irradiated cells followed by a calcium wave. We conclude that calcium waves in OECs can be initiated by calcium-induced calcium release via InsP3 receptors and propagate through gap junctions, while purinergic signalling is not involved.

  11. Robert Feulgen Prize Lecture. Distribution and role of gap junctions in normal myocardium and human ischaemic heart disease.

    PubMed

    Green, C R; Severs, N J

    1993-02-01

    In the heart, individual cardiac muscle cells are linked by gap junctions. These junctions form low resistance pathways along which the electrical impulse flows rapidly and repeatedly between all the cells of the myocardium, ensuring their synchronous contraction. To obtain probes for mapping the distribution of gap junctions in cardiac tissue, polyclonal antisera were raised to three synthetic peptides, each matching different cytoplasmically exposed portions of the sequence of connexin43, the major gap-junctional protein reported in the heart. The specificity of each antiserum for the peptide to which it was raised was established by dot blotting. New methods were developed for isolating enriched fractions of gap junctions from whole heart and from dissociated adult myocytes, in which detergent-treatment and raising the temperature (potentially damaging steps in previously described techniques) are avoided. Analysis of these fractions by SDS-polyacrylamide gel electrophoresis revealed major bands at 43 kDa (matching the molecular mass of connexin43) and at 70 kDa. Western blot experiments using our antisera indicated that both the 43-kDa and the 70-kDa bands represent cardiac gap-junctional proteins. Pre-embedding immunogold labelling of isolated gap junctions and post-embedding immunogold labelling of Lowicryl-embedded whole tissue demonstrated the specific binding of the antibodies to ultrastructurally defined gap junctions. One antiserum (raised to residues 131-142) was found to be particularly effective for cytochemical labelling. Using this antiserum for immunofluorescence labelling in combination with confocal scanning laser microscopy enabled highly sensitive detection and three-dimensional mapping of gap junctions through thick slices of cardiac tissue. By means of the serial optical sectioning ability of the confocal microscope, images of the entire gap junction population of complete en face-viewed disks were reconstructed. These reconstructions reveal

  12. Robert Feulgen Prize Lecture. Distribution and role of gap junctions in normal myocardium and human ischaemic heart disease.

    PubMed

    Green, C R; Severs, N J

    1993-02-01

    In the heart, individual cardiac muscle cells are linked by gap junctions. These junctions form low resistance pathways along which the electrical impulse flows rapidly and repeatedly between all the cells of the myocardium, ensuring their synchronous contraction. To obtain probes for mapping the distribution of gap junctions in cardiac tissue, polyclonal antisera were raised to three synthetic peptides, each matching different cytoplasmically exposed portions of the sequence of connexin43, the major gap-junctional protein reported in the heart. The specificity of each antiserum for the peptide to which it was raised was established by dot blotting. New methods were developed for isolating enriched fractions of gap junctions from whole heart and from dissociated adult myocytes, in which detergent-treatment and raising the temperature (potentially damaging steps in previously described techniques) are avoided. Analysis of these fractions by SDS-polyacrylamide gel electrophoresis revealed major bands at 43 kDa (matching the molecular mass of connexin43) and at 70 kDa. Western blot experiments using our antisera indicated that both the 43-kDa and the 70-kDa bands represent cardiac gap-junctional proteins. Pre-embedding immunogold labelling of isolated gap junctions and post-embedding immunogold labelling of Lowicryl-embedded whole tissue demonstrated the specific binding of the antibodies to ultrastructurally defined gap junctions. One antiserum (raised to residues 131-142) was found to be particularly effective for cytochemical labelling. Using this antiserum for immunofluorescence labelling in combination with confocal scanning laser microscopy enabled highly sensitive detection and three-dimensional mapping of gap junctions through thick slices of cardiac tissue. By means of the serial optical sectioning ability of the confocal microscope, images of the entire gap junction population of complete en face-viewed disks were reconstructed. These reconstructions reveal

  13. Estrogenic compounds inhibit gap junctional intercellular communication in mouse Leydig TM3 cells

    SciTech Connect

    Iwase, Yumiko . E-mail: Iwase.Yumiko@mg.m-pharma.co.jp; Fukata, Hideki . E-mail: fukata@faculty.chiba-u.jp; Mori, Chisato . E-mail: cmori@faculty.chiba-u.jp

    2006-05-01

    Some estrogenic compounds are reported to cause testicular disorders in humans and/or experimental animals by direct action on Leydig cells. In carcinogenesis and normal development, gap junctional intercellular communication (GJIC) plays an essential role in maintaining homeostasis. In this study, we examine the effects of diethylstilbestrol (DES, a synthetic estrogen), 17{beta}-estradiol (E{sub 2}, a natural estrogen), and genistein (GEN, a phytoestrogen) on GJIC between mouse Leydig TM3 cells using Lucifer yellow microinjection. The three compounds tested produced GJIC inhibition in the TM3 cells after 24 h. Gradually, 10 {mu}M DES began to inhibit GJIC for 24 h and this effect was observed until 72 h. On the other hand, both 20 {mu}M E{sub 2} and 25 {mu}M GEN rapidly inhibited GJIC in 6 h and 2 h, respectively. The effects continued until 24 h, but weakened by 72 h. Furthermore, a combined effect at {mu}M level between DES and E{sub 2} on GJIC inhibition was observed, but not between GEN and E{sub 2}. DES and E{sub 2} showed GJIC inhibition at low dose levels (nearly physiological estrogen levels) after 72 h, but GEN did not. DES-induced GJIC inhibition at 10 pM and 10 {mu}M was completely counteracted by ICI 182,780 (ICl), an estrogen receptor antagonist. On the other hand, the inhibitory effects on GJIC with E{sub 2} (10 pM and 20 {mu}M) and GEN (25 {mu}M) were partially blocked by ICI or calphostin C, a protein kinase C (PKC) inhibitor, and were completely blocked by the combination of ICI and calphostin C. These results demonstrate that DES inhibits GJIC between Leydig cells via the estrogen receptor (ER), and that E{sub 2} and GEN inhibit GJIC via ER and PKC. These estrogenic compounds may have different individual nongenotoxic mechanism including PKC pathway on testicular carcinogenesis or development.

  14. Zebrafish Cx35: cloning and characterization of a gap junction gene highly expressed in the retina.

    PubMed

    McLachlan, Elizabeth; White, Thomas W; Ugonabo, Chioma; Olson, Carl; Nagy, James I; Valdimarsson, Gunnar

    2003-09-15

    The vertebrate connexin gene family encodes protein subunits of gap junction channels, which provide a route for direct intercellular communication. Consequently, gap junctions play a vital role in many developmental and homeostatic processes. Aberrant functioning of gap junctions is implicated in many human diseases. Zebrafish are an ideal vertebrate model to study development of the visual system as they produce transparent embryos that develop rapidly, thereby facilitating morphological and behavioral testing. In this study, zebrafish connexin35 has been cloned from a P1 artificial chromosome (PAC) library. Sequence analysis shows a high degree of similarity to the Cx35/36 orthologous group, which are expressed primarily in nervous tissue, including the retina. The gene encodes a 304-amino acid protein with a predicted molecular weight of approximately 35 kDa. Injection of zebrafish Cx35 RNA into paired Xenopus oocytes elicited intercellular electrical coupling with weak voltage sensitivity. In development, Cx35 is first detectable by Northern analysis and RT-PCR, at 2 days post-fertilization (2 dpf), and in the adult it is expressed in the brain and retina. Immunohistochemical analysis revealed that the Cx35 protein is expressed in two sublaminae of the inner plexiform layer of the adult retina. A similar pattern was seen in the 4 and 5 dpf retina, but no labeling was detected in the retina of earlier embryos.

  15. Sequence and developmental expression of mRNA coding for a gap junction protein in Xenopus

    PubMed Central

    1988-01-01

    Cloned complementary DNAs representing the complete coding sequence for an embryonic gap junction protein in the frog Xenopus laevis have been isolated and sequenced. The cDNAs hybridize with an RNA of 1.5 kb that is first detected in gastrulating embryos and accumulates throughout gastrulation and neurulation. By the tailbud stage, the highest abundance of the transcript is found in the region containing ventroposterior endoderm and the rudiment of the liver. In the adult, transcripts are present in the lungs, alimentary tract organs, and kidneys, but are not detected in the brain, heart, body wall and skeletal muscles, spleen, or ovary. The gene encoding this embryonic gap junction protein is present in only one or a few copies in the frog genome. In vitro translation of RNA synthesized from the cDNA template produces a 30-kD protein, as predicted by the coding sequence. This product has extensive sequence similarity to mammalian gap junction proteins in its putative transmembrane and extracellular domains, but has diverged substantially in two of its intracellular domains. PMID:2843548

  16. Carcinoma-astrocyte gap junctions promote brain metastasis by cGAMP transfer.

    PubMed

    Chen, Qing; Boire, Adrienne; Jin, Xin; Valiente, Manuel; Er, Ekrem Emrah; Lopez-Soto, Alejandro; Jacob, Leni S; Patwa, Ruzeen; Shah, Hardik; Xu, Ke; Cross, Justin R; Massagué, Joan

    2016-05-26

    Brain metastasis represents a substantial source of morbidity and mortality in various cancers, and is characterized by high resistance to chemotherapy. Here we define the role of the most abundant cell type in the brain, the astrocyte, in promoting brain metastasis. We show that human and mouse breast and lung cancer cells express protocadherin 7 (PCDH7), which promotes the assembly of carcinoma-astrocyte gap junctions composed of connexin 43 (Cx43). Once engaged with the astrocyte gap-junctional network, brain metastatic cancer cells use these channels to transfer the second messenger cGAMP to astrocytes, activating the STING pathway and production of inflammatory cytokines such as interferon-α (IFNα) and tumour necrosis factor (TNF). As paracrine signals, these factors activate the STAT1 and NF-κB pathways in brain metastatic cells, thereby supporting tumour growth and chemoresistance. The orally bioavailable modulators of gap junctions meclofenamate and tonabersat break this paracrine loop, and we provide proof-of-principle that these drugs could be used to treat established brain metastasis. PMID:27225120

  17. TWO INNEXINS OF Spodoptera litura INFLUENCES HEMICHANNEL AND GAP JUNCTION FUNCTIONS IN CELLULAR IMMUNE RESPONSES.

    PubMed

    Pang, Zunyu; Li, Ming; Yu, Dongshuai; Yan, Zhang; Liu, Xinyi; Ji, Xinglai; Yang, Yang; Hu, Jiansheng; Luo, Kaijun

    2015-09-01

    Insect cellular immune responses include encapsulation, nodule formation, and phagocytosis. Hemichannels and gap junctions are involved in these cellular actions. Innexins (Inxs: analogous to the vertebrate connexins) form hemichannels and gap junctions, but the molecular mechanisms underlying their biology is still unclear. In this article, we reported a steady-state level of Inxs (SpliInxs) in hemocytes of Spodoptera litura, which formed nonfunctional hemichannels on the cell surface to maintain normal metabolism. We also reported that two innnexins (SpliInx2 and SpliInx3) were expressed significantly higher in hemocytes compared to other tissues, suggesting that they play important roles in hemocytes. Amino acid analysis found that two cysteine residues in two extracellular loops provided the capability for SpliInx2 and SpliInx3 hemichannels to dock into gap junctions. Western blotting demonstrated that both extracellular and intracellular loops of SpliInx3 and the extracellular loops of SpliInx2 might undergo posttranslational modification during the formation of a steady-state hemichannel. During hemichannel formation, SpliInx2 presented as one isoform, while SpliInx3 presented as three isoforms. These results provide fundamental knowledge for further study of how steady-state levels of SpliInxs are dynamically adjusted to perform cellular immune responses under immune challenge. PMID:25939810

  18. Modulation of human cell responses to space radiation by gap-junction communication

    NASA Astrophysics Data System (ADS)

    Autsavapromporn, Narongchai; de Toledo, Sonia M.; Buonanno, Manuela; Yang, Zhi; Harris, Andrew; Jay-Gerin, Jean-Paul; Azzam, Edouard

    Understanding the biological effects of space radiation and their underlying mechanism is critical to estimating the health risk associated with human exploration of space. A coordinated interaction of multiple cellular processes is likely involved in the sensing and processing of stressful effects induced by different types of space radiation. Here, we focused on the role of gap-junction intercellular communication (GJIC) in responses of human cells exposed to 1 GeV/n protons or 56 Fe-ions. We compared the results with data obtained in human cells exposed, in parallel, to γ-rays or α-particles. As expected, a higher level of cell killing and DNA damage, per unit dose, was induced in confluent, density-inhibited cells (98% in G0 /G1 ) exposed to α-particles or energetic 56 Fe-ions than γ-rays or protons. Strikingly, greatly attenuated effects occurred when sub-confluent cultures, synchronized in G0 /G1 ,were exposed to 56 Fe-ions. These data suggest that direct intercellular communication is involved in the effects of high linear energy transfer (LET) 56 Fe-ions. To examine the role of gap-junctions in propagating stressful effect, confluent cultures were exposed to 56 Fe-ions or α-particles and incubated for various time periods at 37° C in the presence or absence of the gap-junction inhibitor α-glycyrrhetinic acid (AGA). No repair of potentially lethal radiation damage occurred in cells incubated in the absence of AGA. In contrast, inhibition of functional GJIC significantly enhanced clonogenic survival of irradiated cells. To test the role of junctional channel permeability in the observed effects, we used human adenocarcinoma (HeLa) cells in which specific connexins (Cx) can be expressed in the absence of endogenous connexins. Whereas HeLa cells with selective inducible expression of Cx26 gap-junctions promoted radiation toxic effects, expression of Cx32 junctional channels in HeLa cells promoted pro-survival effects. Experiments are in progress to

  19. Effects of mechanical forces and stretch on intercellular gap junction coupling.

    PubMed

    Salameh, Aida; Dhein, Stefan

    2013-01-01

    Mechanical forces provide fundamental physiological stimulus in living organisms. Recent investigations demonstrated how various types of mechanical load, like strain, pressure, shear stress, or cyclic stretch can affect cell biology and gap junction intercellular communication (GJIC). Depending on the cell type, the type of mechanical load and on strength and duration of application, these forces can induce hypertrophic processes and modulate the expression and function of certain connexins such as Cx43, while others such as Cx37 or Cx40 are reported to be less mechanosensitive. In particular, not only expression but also subcellular localization of Cx43 is altered in cardiomyocytes submitted to cyclic mechanical stretch resulting in the typical elongated cell shape with an accentuation of Cx43 at the cell poles. In the heart both cardiomyocytes and fibroblasts can alter their GJIC in response to mechanical load. In the vasculature both endothelial cells and smooth muscle cells are subject to strain and cyclic stretch resulting from the pulsatile flow. In addition, vascular endothelial cells are mainly affected by shear stress resulting from the blood flow parallel to their surface. These mechanical forces lead to a regulation of GJIC in vascular tissue. In bones, osteocytes and osteoblasts are coupled via gap junctions, which also react to mechanical forces. Since gap junctions are involved in regulation of cell growth and differentiation, the mechanosensitivity of the regulation of these channels might open new perspectives to explain how cells can respond to mechanical load, and how stretch induces self-organization of a cell layer which might have implications for embryology and the development of organs. This article is part of a Special Issue entitled: The Communicating junctions, roles and dysfunctions. PMID:22245380

  20. The Carboxyl Tail of Connexin32 Regulates Gap Junction Assembly in Human Prostate and Pancreatic Cancer Cells*

    PubMed Central

    Katoch, Parul; Mitra, Shalini; Ray, Anuttoma; Kelsey, Linda; Roberts, Brett J.; Wahl, James K.; Johnson, Keith R.; Mehta, Parmender P.

    2015-01-01

    Connexins, the constituent proteins of gap junctions, are transmembrane proteins. A connexin (Cx) traverses the membrane four times and has one intracellular and two extracellular loops with the amino and carboxyl termini facing the cytoplasm. The transmembrane and the extracellular loop domains are highly conserved among different Cxs, whereas the carboxyl termini, often called the cytoplasmic tails, are highly divergent. We have explored the role of the cytoplasmic tail of Cx32, a Cx expressed in polarized and differentiated cells, in regulating gap junction assembly. Our results demonstrate that compared with the full-length Cx32, the cytoplasmic tail-deleted Cx32 is assembled into small gap junctions in human pancreatic and prostatic cancer cells. Our results further document that the expression of the full-length Cx32 in cells, which express the tail-deleted Cx32, increases the size of gap junctions, whereas the expression of the tail-deleted Cx32 in cells, which express the full-length Cx32, has the opposite effect. Moreover, we show that the tail is required for the clustering of cell-cell channels and that in cells expressing the tail-deleted Cx32, the expression of cell surface-targeted cytoplasmic tail alone is sufficient to enhance the size of gap junctions. Our live-cell imaging data further demonstrate that gap junctions formed of the tail-deleted Cx32 are highly mobile compared with those formed of full-length Cx32. Our results suggest that the cytoplasmic tail of Cx32 is not required to initiate the assembly of gap junctions but for their subsequent growth and stability. Our findings suggest that the cytoplasmic tail of Cx32 may be involved in regulating the permeability of gap junctions by regulating their size. PMID:25548281

  1. Gap junctions and other mechanisms of cell-cell communication regulate basal insulin secretion in the pancreatic islet.

    PubMed

    Benninger, R K P; Head, W Steven; Zhang, Min; Satin, Leslie S; Piston, David W

    2011-11-15

    Cell-cell communication in the islet of Langerhans is important for the regulation of insulin secretion. Gap-junctions coordinate oscillations in intracellular free-calcium ([Ca(2+)](i)) and insulin secretion in the islet following elevated glucose. Gap-junctions can also ensure that oscillatory [Ca(2+)](i) ceases when glucose is at a basal levels. We determine the roles of gap-junctions and other cell-cell communication pathways in the suppression of insulin secretion under basal conditions. Metabolic, electrical and insulin secretion levels were measured from islets lacking gap-junction coupling following deletion of connexion36 (Cx36(-/-)), and these results were compared to those obtained using fully isolated β-cells. K(ATP) loss-of-function islets provide a further experimental model to specifically study gap-junction mediated suppression of electrical activity. In isolated β-cells or Cx36(-/-) islets, elevations in [Ca(2+)](i) persisted in a subset of cells even at basal glucose. Isolated β-cells showed elevated insulin secretion at basal glucose; however, insulin secretion from Cx36(-/-) islets was minimally altered. [Ca(2+)](i) was further elevated under basal conditions, but insulin release still suppressed in K(ATP) loss-of-function islets. Forced elevation of cAMP led to PKA-mediated increases in insulin secretion from islets lacking gap-junctions, but not from islets expressing Cx36 gap junctions. We conclude there is a redundancy in how cell-cell communication in the islet suppresses insulin release. Gap junctions suppress cellular heterogeneity and spontaneous [Ca(2+)](i) signals, while other juxtacrine mechanisms, regulated by PKA and glucose, suppress more distal steps in exocytosis. Each mechanism is sufficiently robust to compensate for a loss of the other and still suppress basal insulin secretion.

  2. Analysis of Full-Test tools and their limitations as applied to terminal junction blocks

    NASA Technical Reports Server (NTRS)

    Smith, J. L.

    1983-01-01

    Discovery of unlocked contacts in Deutsch Block terminal junctions in Solid Rocket Booster flight hardware prompted an investigation into pull test techniques to help insure against possible failures. Internal frictional forces between socket and pin and between wire and grommet were examined. Pull test force must be greater than internal friction yet less than the crimp strength of the pin or socket. For this reason, a 100 percent accurate test is impossible. Test tools were evaluated. Available tools are adequate for pull testing.

  3. Gap junctions on hippocampal mossy fiber axons demonstrated by thin-section electron microscopy and freeze fracture replica immunogold labeling.

    PubMed

    Hamzei-Sichani, Farid; Kamasawa, Naomi; Janssen, William G M; Yasumura, Thomas; Davidson, Kimberly G V; Hof, Patrick R; Wearne, Susan L; Stewart, Mark G; Young, Steven R; Whittington, Miles A; Rash, John E; Traub, Roger D

    2007-07-24

    Gap junctions have been postulated to exist between the axons of excitatory cortical neurons based on electrophysiological, modeling, and dye-coupling data. Here, we provide ultrastructural evidence for axoaxonic gap junctions in dentate granule cells. Using combined confocal laser scanning microscopy, thin-section transmission electron microscopy, and grid-mapped freeze-fracture replica immunogold labeling, 10 close appositions revealing axoaxonic gap junctions ( approximately 30-70 nm in diameter) were found between pairs of mossy fiber axons ( approximately 100-200 nm in diameter) in the stratum lucidum of the CA3b field of the rat ventral hippocampus, and one axonal gap junction ( approximately 100 connexons) was found on a mossy fiber axon in the CA3c field of the rat dorsal hippocampus. Immunogold labeling with two sizes of gold beads revealed that connexin36 was present in that axonal gap junction. These ultrastructural data support computer modeling and in vitro electrophysiological data suggesting that axoaxonic gap junctions play an important role in the generation of very fast (>70 Hz) network oscillations and in the hypersynchronous electrical activity of epilepsy. PMID:17640909

  4. Transient suppression of gap junctional intercellular communication after exposure to 100-nanosecond pulsed electric fields.

    PubMed

    Steuer, Anna; Schmidt, Anke; Labohá, Petra; Babica, Pavel; Kolb, Juergen F

    2016-12-01

    Gap junctional intercellular communication (GJIC) is an important mechanism that is involved and affected in many diseases and injuries. So far, the effect of nanosecond pulsed electric fields (nsPEFs) on the communication between cells was not investigated. An in vitro approach is presented with rat liver epithelial WB-F344 cells grown and exposed in a monolayer. In order to observe sub-lethal effects, cells were exposed to pulsed electric fields with a duration of 100ns and amplitudes between 10 and 20kV/cm. GJIC strongly decreased within 15min after treatment but recovered within 24h. Gene expression of Cx43 was significantly decreased and associated with a reduced total amount of Cx43 protein. In addition, MAP kinases p38 and Erk1/2, involved in Cx43 phosphorylation, were activated and Cx43 became hyperphosphorylated. Immunofluorescent staining of Cx43 displayed the disassembly of gap junctions. Further, a reorganization of the actin cytoskeleton was observed whereas tight junction protein ZO-1 was not significantly affected. All effects were field- and time-dependent and most pronounced within 30 to 60min after treatment. A better understanding of a possible manipulation of GJIC by nsPEFs might eventually offer a possibility to develop and improve treatments. PMID:27439151

  5. Transient suppression of gap junctional intercellular communication after exposure to 100-nanosecond pulsed electric fields.

    PubMed

    Steuer, Anna; Schmidt, Anke; Labohá, Petra; Babica, Pavel; Kolb, Juergen F

    2016-12-01

    Gap junctional intercellular communication (GJIC) is an important mechanism that is involved and affected in many diseases and injuries. So far, the effect of nanosecond pulsed electric fields (nsPEFs) on the communication between cells was not investigated. An in vitro approach is presented with rat liver epithelial WB-F344 cells grown and exposed in a monolayer. In order to observe sub-lethal effects, cells were exposed to pulsed electric fields with a duration of 100ns and amplitudes between 10 and 20kV/cm. GJIC strongly decreased within 15min after treatment but recovered within 24h. Gene expression of Cx43 was significantly decreased and associated with a reduced total amount of Cx43 protein. In addition, MAP kinases p38 and Erk1/2, involved in Cx43 phosphorylation, were activated and Cx43 became hyperphosphorylated. Immunofluorescent staining of Cx43 displayed the disassembly of gap junctions. Further, a reorganization of the actin cytoskeleton was observed whereas tight junction protein ZO-1 was not significantly affected. All effects were field- and time-dependent and most pronounced within 30 to 60min after treatment. A better understanding of a possible manipulation of GJIC by nsPEFs might eventually offer a possibility to develop and improve treatments.

  6. Entrainment, retention, and transport of freely swimming fish in junction gaps between commercial barges operating on the Illinois Waterway

    USGS Publications Warehouse

    Davis, Jeremiah J.; Jackson, Patrick; Engel, Frank; LeRoy, Jessica Z.; Neeley, Rebecca N.; Finney, Samuel T.; Murphy, Elizabeth

    2016-01-01

    Large Electric Dispersal Barriers were constructed in the Chicago Sanitary and Ship Canal (CSSC) to prevent the transfer of invasive fish species between the Mississippi River Basin and the Great Lakes Basin while simultaneously allowing the passage of commercial barge traffic. We investigated the potential for entrainment, retention, and transport of freely swimming fish within large gaps (> 50 m3) created at junction points between barges. Modified mark and capture trials were employed to assess fish entrainment, retention, and transport by barge tows. A multi-beam sonar system enabled estimation of fish abundance within barge junction gaps. Barges were also instrumented with acoustic Doppler velocity meters to map the velocity distribution in the water surrounding the barge and in the gap formed at the junction of two barges. Results indicate that the water inside the gap can move upstream with a barge tow at speeds near the barge tow travel speed. Water within 1 m to the side of the barge junction gaps was observed to move upstream with the barge tow. Observed transverse and vertical water velocities suggest pathways by which fish may potentially be entrained into barge junction gaps. Results of mark and capture trials provide direct evidence that small fish can become entrained by barges, retained within junction gaps, and transported over distances of at least 15.5 km. Fish entrained within the barge junction gap were retained in that space as the barge tow transited through locks and the Electric Dispersal Barriers, which would be expected to impede fish movement upstream.

  7. Specific motifs in the external loops of connexin proteins can determine gap junction formation between chick heart myocytes.

    PubMed Central

    Warner, A; Clements, D K; Parikh, S; Evans, W H; DeHaan, R L

    1995-01-01

    1. Gap junction formation was compared in the absence and presence of small peptides containing extracellular loop sequences of gap junction (connexin) proteins by measuring the time taken for pairs of spontaneously beating embryonic chick heart myoballs to synchronize beat rates. Test peptides were derived from connexin 32. Non-homologous peptides were used as controls. Control pairs took 42 +/- 0.5 min (mean +/- S.E.M.; n = 1088) to synchronize. 2. Connexins 32 and 43, but not 26, were detected in gap junction plaques. The density and distribution of connexin immunolabelling varied between myoballs. 3. Peptides containing conserved motifs from extracellular loops 1 and 2 delayed gap junction formation. The steep portion of the dose-response relation lay between 30 and 300 microM peptide. 4. In loop 1, the conserved motifs QPG and SHVR were identified as being involved in junction formation. In loop 2, the conserved SRPTEK motif was important. The ability of peptides containing the SRPTEK motif to interfere with the formation of gap junctions was enhanced by amino acids from the putative membrane-spanning region. 5. Peptides from loop 1 and loop 2 were equivalently effective; there was no synergism between them. 6. The inclusion of conserved cysteines in test peptides did not make them more effective in the competition assay. Images Figure 1 PMID:8576861

  8. Autophagy and gap junctional intercellular communication inhibition are involved in cadmium-induced apoptosis in rat liver cells

    SciTech Connect

    Zou, Hui; Zhuo, Liling; Han, Tao; Hu, Di; Yang, Xiaokang; Wang, Yi; Yuan, Yan; Gu, Jianhong; Bian, Jianchun; Liu, Xuezhong; Liu, Zongping

    2015-04-17

    Cadmium (Cd) is known to induce hepatotoxicity, yet the underlying mechanism of how this occurs is not fully understood. In this study, Cd-induced apoptosis was demonstrated in rat liver cells (BRL 3A) with apoptotic nuclear morphological changes and a decrease in cell index (CI) in a time- and concentration-dependent manner. The role of gap junctional intercellular communication (GJIC) and autophagy in Cd-induced apoptosis was investigated. Cd significantly induced GJIC inhibition as well as downregulation of connexin 43 (Cx43). The prototypical gap junction blocker carbenoxolone disodium (CBX) exacerbated the Cd-induced decrease in CI. Cd treatment was also found to cause autophagy, with an increase in mRNA expression of autophagy-related genes Atg-5, Atg-7, Beclin-1, and microtubule-associated protein light chain 3 (LC3) conversion from cytosolic LC3-I to membrane-bound LC3-II. The autophagic inducer rapamycin (RAP) prevented the Cd-induced CI decrease, while the autophagic inhibitor chloroquine (CQ) caused a further reduction in CI. In addition, CBX promoted Cd-induced autophagy, as well as changes in expression of Atg-5, Atg-7, Beclin-1 and LC3. CQ was found to block the Cd-induced decrease in Cx43 and GJIC inhibition, whereas RAP had opposite effect. These results demonstrate that autophagy plays a protective role during Cd-induced apoptosis in BRL 3A cells during 6 h of experiment, while autophagy exacerbates Cd-induced GJIC inhibition which has a negative effect on cellular fate. - Highlights: • GJIC and autophagy is crucial for biological processes. • Cd exposure causes GJIC inhibition and autophagy increase in BRL 3A cells. • Autophagy protects Cd induced BRL 3A cells apoptosis at an early stage. • Autophagy exacerbates Cd-induced GJIC inhibition. • GJIC plays an important role in autophagy induced cell death or survival.

  9. Gap junctional coupling is essential for epithelial repair in the avian cochlea.

    PubMed

    Jagger, Daniel J; Nickel, Regina; Forge, Andrew

    2014-11-26

    The loss of auditory hair cells triggers repair responses within the population of nonsensory supporting cells. When hair cells are irreversibly lost from the mammalian cochlea, supporting cells expand to fill the resulting lesions in the sensory epithelium, an initial repair process that is dependent on gap junctional intercellular communication (GJIC). In the chicken cochlea (the basilar papilla or BP), dying hair cells are extruded from the epithelium and supporting cells expand to fill the lesions and then replace hair cells via mitotic and/or conversion mechanisms. Here, we investigated the involvement of GJIC in the initial epithelial repair process in the aminoglycoside-damaged BP. Gentamicin-induced hair cell loss was associated with a decrease of chicken connexin43 (cCx43) immunofluorescence, yet cCx30-labeled gap junction plaques remained. Fluorescence recovery after photobleaching experiments confirmed that the GJIC remained robust in gentamicin-damaged explants, but regionally asymmetric coupling was no longer evident. Dye injections in slice preparations from undamaged BP explants identified cell types with characteristic morphologies along the neural-abneural axis, but these were electrophysiologically indistinct. In gentamicin-damaged BP, supporting cells expanded to fill space formerly occupied by hair cells and displayed more variable electrophysiological phenotypes. When GJIC was inhibited during the aminoglycoside damage paradigm, the epithelial repair response halted. Dying hair cells were retained within the sensory epithelium and supporting cells remained unexpanded. These observations suggest that repair of the auditory epithelium shares common mechanisms across vertebrate species and emphasize the importance of functional gap junctions in maintaining a homeostatic environment permissive for subsequent hair cell regeneration.

  10. Regulation of gap junction function and Connexin 43 expression by cytochrome P450 oxidoreductase (CYPOR)

    SciTech Connect

    Polusani, Srikanth R.; Kar, Rekha; Riquelme, Manuel A.; Masters, Bettie Sue; Panda, Satya P.

    2011-08-05

    Highlights: {yields} Humans with severe forms of cytochrome P450 oxidoreductase (CYPOR) mutations show bone defects as observed in Antley-Bixler Syndrome. {yields} First report showing knockdown of CYPOR in osteoblasts decreased Connexin 43 (Cx43) protein levels. Cx43 is known to play an important role in bone modeling. {yields} Knockdown of CYPOR decreased Gap Junctional Intercellular Communication and hemichannel activity. {yields} Knockdown of CYPOR decreased Cx43 in mouse primary calvarial osteoblasts. {yields} Decreased Cx43 expression was observed at the transcriptional level. -- Abstract: Cytochrome P450 oxidoreductase (CYPOR) is a microsomal electron-transferring enzyme containing both FAD and FMN as co-factors, which provides the reducing equivalents to various redox partners, such as cytochromes P450 (CYPs), heme oxygenase (HO), cytochrome b{sub 5} and squalene monooxygenase. Human patients with severe forms of CYPOR mutation show bone defects such as cranio- and humeroradial synostoses and long bone fractures, known as Antley-Bixler-like Syndrome (ABS). To elucidate the role of CYPOR in bone, we knocked-down CYPOR in multiple osteoblast cell lines using RNAi technology. In this study, knock-down of CYPOR decreased the expression of Connexin 43 (Cx43), known to play a critical role in bone formation, modeling, and remodeling. Knock-down of CYPOR also decreased Gap Junction Intercellular Communication (GJIC) and hemichannel activity. Promoter luciferase assays revealed that the decrease in expression of Cx43 in CYPOR knock-down cells was due to transcriptional repression. Primary osteoblasts isolated from bone specific Por knock-down mice calvariae confirmed the findings in the cell lines. Taken together, our study provides novel insights into the regulation of gap junction function by CYPOR and suggests that Cx43 may play an important role(s) in CYPOR-mediated bone defects seen in patients.

  11. Long-range gap junctional signaling controls oncogene-mediated tumorigenesis in Xenopus laevis embryos.

    PubMed

    Chernet, Brook T; Fields, Chris; Levin, Michael

    2014-01-01

    In addition to the immediate microenvironment, long-range signaling may be an important component of cancer. Molecular-genetic analyses have implicated gap junctions-key mediators of cell-cell communication-in carcinogenesis. We recently showed that the resting voltage potential of distant cell groups is a key determinant of metastatic transformation and tumor induction. Here, we show in the Xenopus laevis model that gap junctional communication (GJC) is a modulator of the long-range bioelectric signaling that regulates tumor formation. Genetic disruption of GJC taking place within tumors, within remote host tissues, or between the host and tumors significantly lowers the incidence of tumors induced by KRAS mutations. The most pronounced suppression of tumor incidence was observed upon GJC disruption taking place farther away from oncogene-expressing cells, revealing a role for GJC in distant cells in the control of tumor growth. In contrast, enhanced GJC communication through the overexpression of wild-type connexin Cx26 increased tumor incidence. Our data confirm a role for GJC in tumorigenesis, and reveal that this effect is non-local. Based on these results and on published data on movement of ions through GJs, we present a quantitative model linking the GJC coupling and bioelectrical state of cells to the ability of oncogenes to initiate tumorigenesis. When integrated with data on endogenous bioelectric signaling during left-right patterning, the model predicts differential tumor incidence outcomes depending on the spatial configurations of gap junction paths relative to tumor location and major anatomical body axes. Testing these predictions, we found that the strongest influence of GJ modulation on tumor suppression by hyperpolarization occurred along the embryonic left-right axis. Together, these data reveal new, long-range aspects of cancer control by the host's physiological parameters. PMID:25646081

  12. Gap junctional coupling is essential for epithelial repair in the avian cochlea.

    PubMed

    Jagger, Daniel J; Nickel, Regina; Forge, Andrew

    2014-11-26

    The loss of auditory hair cells triggers repair responses within the population of nonsensory supporting cells. When hair cells are irreversibly lost from the mammalian cochlea, supporting cells expand to fill the resulting lesions in the sensory epithelium, an initial repair process that is dependent on gap junctional intercellular communication (GJIC). In the chicken cochlea (the basilar papilla or BP), dying hair cells are extruded from the epithelium and supporting cells expand to fill the lesions and then replace hair cells via mitotic and/or conversion mechanisms. Here, we investigated the involvement of GJIC in the initial epithelial repair process in the aminoglycoside-damaged BP. Gentamicin-induced hair cell loss was associated with a decrease of chicken connexin43 (cCx43) immunofluorescence, yet cCx30-labeled gap junction plaques remained. Fluorescence recovery after photobleaching experiments confirmed that the GJIC remained robust in gentamicin-damaged explants, but regionally asymmetric coupling was no longer evident. Dye injections in slice preparations from undamaged BP explants identified cell types with characteristic morphologies along the neural-abneural axis, but these were electrophysiologically indistinct. In gentamicin-damaged BP, supporting cells expanded to fill space formerly occupied by hair cells and displayed more variable electrophysiological phenotypes. When GJIC was inhibited during the aminoglycoside damage paradigm, the epithelial repair response halted. Dying hair cells were retained within the sensory epithelium and supporting cells remained unexpanded. These observations suggest that repair of the auditory epithelium shares common mechanisms across vertebrate species and emphasize the importance of functional gap junctions in maintaining a homeostatic environment permissive for subsequent hair cell regeneration. PMID:25429127

  13. Simvastatin Sodium Salt and Fluvastatin Interact with Human Gap Junction Gamma-3 Protein.

    PubMed

    Marsh, Andrew; Casey-Green, Katherine; Probert, Fay; Withall, David; Mitchell, Daniel A; Dilly, Suzanne J; James, Sean; Dimitri, Wade; Ladwa, Sweta R; Taylor, Paul C; Singer, Donald R J

    2016-01-01

    Finding pleiomorphic targets for drugs allows new indications or warnings for treatment to be identified. As test of concept, we applied a new chemical genomics approach to uncover additional targets for the widely prescribed lipid-lowering pro-drug simvastatin. We used mRNA extracted from internal mammary artery from patients undergoing coronary artery surgery to prepare a viral cardiovascular protein library, using T7 bacteriophage. We then studied interactions of clones of the bacteriophage, each expressing a different cardiovascular polypeptide, with surface-bound simvastatin in 96-well plates. To maximise likelihood of identifying meaningful interactions between simvastatin and vascular peptides, we used a validated photo-immobilisation method to apply a series of different chemical linkers to bind simvastatin so as to present multiple orientations of its constituent components to potential targets. Three rounds of biopanning identified consistent interaction with the clone expressing part of the gene GJC3, which maps to Homo sapiens chromosome 7, and codes for gap junction gamma-3 protein, also known as connexin 30.2/31.3 (mouse connexin Cx29). Further analysis indicated the binding site to be for the N-terminal domain putatively 'regulating' connexin hemichannel and gap junction pores. Using immunohistochemistry we found connexin 30.2/31.3 to be present in samples of artery similar to those used to prepare the bacteriophage library. Surface plasmon resonance revealed that a 25 amino acid synthetic peptide representing the discovered N-terminus did not interact with simvastatin lactone, but did bind to the hydrolysed HMG CoA inhibitor, simvastatin acid. This interaction was also seen for fluvastatin. The gap junction blockers carbenoxolone and flufenamic acid also interacted with the same peptide providing insight into potential site of binding. These findings raise key questions about the functional significance of GJC3 transcripts in the vasculature and

  14. Simvastatin Sodium Salt and Fluvastatin Interact with Human Gap Junction Gamma-3 Protein.

    PubMed

    Marsh, Andrew; Casey-Green, Katherine; Probert, Fay; Withall, David; Mitchell, Daniel A; Dilly, Suzanne J; James, Sean; Dimitri, Wade; Ladwa, Sweta R; Taylor, Paul C; Singer, Donald R J

    2016-01-01

    Finding pleiomorphic targets for drugs allows new indications or warnings for treatment to be identified. As test of concept, we applied a new chemical genomics approach to uncover additional targets for the widely prescribed lipid-lowering pro-drug simvastatin. We used mRNA extracted from internal mammary artery from patients undergoing coronary artery surgery to prepare a viral cardiovascular protein library, using T7 bacteriophage. We then studied interactions of clones of the bacteriophage, each expressing a different cardiovascular polypeptide, with surface-bound simvastatin in 96-well plates. To maximise likelihood of identifying meaningful interactions between simvastatin and vascular peptides, we used a validated photo-immobilisation method to apply a series of different chemical linkers to bind simvastatin so as to present multiple orientations of its constituent components to potential targets. Three rounds of biopanning identified consistent interaction with the clone expressing part of the gene GJC3, which maps to Homo sapiens chromosome 7, and codes for gap junction gamma-3 protein, also known as connexin 30.2/31.3 (mouse connexin Cx29). Further analysis indicated the binding site to be for the N-terminal domain putatively 'regulating' connexin hemichannel and gap junction pores. Using immunohistochemistry we found connexin 30.2/31.3 to be present in samples of artery similar to those used to prepare the bacteriophage library. Surface plasmon resonance revealed that a 25 amino acid synthetic peptide representing the discovered N-terminus did not interact with simvastatin lactone, but did bind to the hydrolysed HMG CoA inhibitor, simvastatin acid. This interaction was also seen for fluvastatin. The gap junction blockers carbenoxolone and flufenamic acid also interacted with the same peptide providing insight into potential site of binding. These findings raise key questions about the functional significance of GJC3 transcripts in the vasculature and

  15. Voltage-dependent gating of single gap junction channels in an insect cell line.

    PubMed Central

    Bukauskas, F F; Weingart, R

    1994-01-01

    De novo formation of cell pairs was used to examine the gating properties of single gap junction channels. Two separate cells of an insect cell line (clone C6/36, derived from the mosquito Aedes albopictus) were pushed against each other to provoke formation of gap junction channels. A dual voltage-clamp method was used to control the voltage gradient between the cells (Vj) and measure the intercellular current (Ij). The first sign of channel activity was apparent 4.7 min after cell contact. Steady-state coupling reached after 30 min revealed a conductance of 8.7 nS. Channel formation involved no leak between the intra- and extracellular space. The first opening of a newly formed channel was slow (25-28 ms). Each preparation passed through a phase with only one operational gap junction channel. This period was exploited to examine the single channel properties. We found that single channels exhibit several conductance states with different conductances gamma j; a fully open state (gamma j(main state)), several substates (gamma j(substates)), a residual state (gamma j(residual)) and a closed state (gamma j(closed)). The gamma j(main state) was 375 pS, and gamma j(residual) ranged from 30 to 90 pS. The transitions between adjacent substates were 1/7-1/4 of gamma j(main state). Vj had no effect on gamma j(main state), but slightly affected gamma j (residual). The lj transitions involving gamma j(closed) were slow (15-60 ms), whereas those not involving gamma j(closed) were fast (< 2 ms). An increase in Vj led to a decrease in open channel probability. Depolarization of the membrane potential (Vm) increased the incidence of slow transitions leading to gamma j(closed). We conclude that insect gap junctions possess two gates, a fast gate controlled by Vj and giving rise to gamma j(substates) and gamma j(residual), and a slow gate sensitive to Vm and able to close the channel completely. PMID:7524710

  16. Regulation of gap-junctional communication between cumulus cells during in vitro maturation in swine, a gap-FRAP study.

    PubMed

    Santiquet, Nicolas W; Develle, Yann; Laroche, Anthony; Robert, Claude; Richard, François J

    2012-08-01

    Intercellular gap-junctional communication (GJC) plays an important role in ovarian cell physiology. Closure of GJC has been proposed to be involved in oocyte maturation, particularly in the resumption of meiosis, both in vivo and in vitro, by controlling the flow of meiosis inhibitors, such as cAMP and cGMP. Understanding how GJC dynamics are regulated during in vitro maturation (IVM) could provide a powerful tool for controlling meiotic resumption and oocyte maturation in vitro. Since little is known about the GJC dynamic regulation between cumulus cells, we have developed an assay based on recovery of calcein fluorescence in photobleached cumulus cells, a gap-FRAP assay. The GJC profile has been characterized during the first hours of porcine IVM. We showed that equine chorionic gonadotropin (eCG) and epidermal growth factor (EGF) down-regulated GJC effectiveness between cumulus cells. However, human chorionic gonadotropin was not down-regulating GJC effectiveness. We also showed that the GJC network expanded during this period and that this effect was not regulated by gonadotropins. Porcine follicular fluid present in the maturation medium also had an impact on GJC regulation, increasing GJC network establishment and the effectiveness of calcein transfer rate between cumulus cells. These results show that both eCG and EGF are regulating the decrease in GJC effectiveness after 4.5 h of IVM, while the network extension is gonadotropin independent. Regulation of GJC between cumulus cells would then be specifically regulated during in vitro IVM.

  17. Large band gaps in radial phononic crystal structure with round mass block

    NASA Astrophysics Data System (ADS)

    Gao, Nansha; Wu, Jiu Hui; Jing, Li; Lu, Kuan; Yu, Lie

    2016-06-01

    Using the finite element method, we theoretically study the vibration properties of radial phononic crystal (RPC) structure with round mass block. The band structures, transmission spectra, and displacement fields of eigenmode are given to estimate the starting and cut-off frequency of band gaps. Compared to the contrast structure, numerical calculation results show that RPC structure with round mass block can yield several band gaps below 150 kHz. The physical mechanism of band gaps are attributed to the coupling between the longitudinal vibration in round mass block and vibrations in outer frame or coating layer. By changing geometrical dimensions r of round mass block, we can shift the location and width of band gaps. Significantly, as the increase of geometric parameter ratio a1/a2, band width shifts and the more new band gaps appear; the more bands become flat at this moment because of the stronger multiple vibration coupling effect plays a more prominent role in the opening of band gaps. These vibration properties of RPC structure with round mass block can potentially be applied to optimize band gaps, generate filters, and design acoustic devices.

  18. THE APPEARANCE AND STRUCTURE OF INTERCELLULAR CONNECTIONS DURING THE ONTOGENY OF THE RABBIT OVARIAN FOLLICLE WITH PARTICULAR REFERENCE TO GAP JUNCTIONS

    PubMed Central

    Albertini, David F.; Anderson, Everett

    1974-01-01

    Lanthanum tracer and freeze-fracture electron microscope techniques were used to study junctional complexes between granulosa cells during the differentiation of the rabbit ovarian follicle. For convenience we refer to cells encompassing the oocyte, before antrum and gap junction formation, as follicle cells. After the appearance of an antrum and gap junctions we call the cells granulosa cells. Maculae adherentes are found at the interfaces of oocyte-follicle-granulosa cells throughout folliculogenesis. Gap junctions are first detected in follicles when the antrum appears. In early antral follicles typical large gap junctions are randomly distributed between granulosa cells. In freeze-fracture replicas, they are characterized by polygonally packed 90-Å particles arranged in rows separated by nonparticulate A-face membrane. A particle-sparse zone surrounds gap junctions and is frequently occupied by small particle aggregates of closely packed intramembranous particles. The gap junctions of granulosa cells appear to increase in size with further differentiation of the follicle. The granulosa cells of large Graafian follicles are adjoined by small and large gap junctions; annular gap junctions are also present. The large gap junctions are rarely surrounded by a particle-free zone on their A-faces, but are further distinguished by particle rows displaying a higher degree of organization. PMID:4417791

  19. Tracking Dynamic Gap Junctional Coupling in Live Cells by Local Photoactivation and Fluorescence Imaging.

    PubMed

    Yang, Song; Li, Wen-Hong

    2016-01-01

    Intercellular communication through gap junction channels is crucial for maintaining cell homeostasis and synchronizing physiological functions of tissues and organs. In this chapter, we present a noninvasive fluorescence imaging assay termed LAMP (local activation of a molecular fluorescent probe) that consists of the following steps: loading cells with a caged and cell permeable coumarin probe (NPE-HCCC2/AM), locally photolyzing the caged coumarin in one or a subpopulation of coupled cells, monitoring cell-cell dye transfer by digital fluorescence microscopy, and post-acquisition analysis to quantify the rate of junction dye transfer using Fick's equation. The LAMP assay can be conveniently carried out in fully intact cells to assess the extent and degree of cell coupling, and is compatible with other fluorophores emitting at different wavelengths to allow multicolor imaging. Moreover, by carrying out multiple photo-activations in a coupled cell pair, LAMP assay can track changes in cell coupling strength between coupled cells, hence providing a powerful method for investigating the regulation of junctional coupling by cellular biochemical changes. PMID:27207295

  20. The gap junction channel. Its aqueous nature as indicated by deuterium oxide effects.

    PubMed Central

    Verselis, V; Brink, P R

    1986-01-01

    The effects of temperature and solvent substitution with deuterium oxide (D2O) on axoplasmic (ga) and gap junctional (gj) conductances were examined in the earthworm septate median giant axon (MGA). The temperature coefficients (Q10) for ga and gj were 1.4 and 1.5, respectively, between 5 and 15 degrees C. Substitution with D2O rapidly reduced both ga and gj by 20% and increased the Q10's to 1.5 and 1.8, respectively. The reduction in ga upon substitution with D2O and with cooling in either solvent reflects the changes that occur in solvent viscosity, which indicates that ion mobility in axoplasm, as in free solution, is primarily governed by viscous properties of the solvent. The similar initial reduction observed for gj suggests that solvent occupies the gap junction channel volume and influences transjunctional ion mobility. With time there was a further reduction in gj at 20 degrees C and a larger Q10 in D2O. The enhanced effects of D2O on gj cannot be accounted for by solvent viscosity alone and may be due to an increased hydration of the channels and/or the transport ions and by isotope effects of hydrogen-deuterium exchange on the channel protein that reduce gj. PMID:3024751

  1. Gap junction channel. Its aqueous nature as indicated by deuterium oxide effects

    SciTech Connect

    Verselis, V.; Brink, P.R.

    1986-11-01

    The effects of temperature and solvent substitution with deuterium oxide (D2O) on axoplasmic (ga) and gap junctional (gj) conductances were examined in the earthworm septate median giant axon (MGA). The temperature coefficients (Q10) for ga and gj were 1.4 and 1.5, respectively, between 5 and 15 degrees C. Substitution with D/sub 2/O rapidly reduced both ga and gj by 20% and increased the Q10's to 1.5 and 1.8, respectively. The reduction in ga upon substitution with D/sub 2/O and with cooling in either solvent reflects the changes that occur in solvent viscosity, which indicates that ion mobility in axoplasm, as in free solution, is primarily governed by viscous properties of the solvent. The similar initial reduction observed for gj suggests that solvent occupies the gap junction channel volume and influences transjunctional ion mobility. With time there was a further reduction in gj at 20 degrees C and a larger Q10 in D/sub 2/O. The enhanced effects of D/sub 2/O on gj cannot be accounted for by solvent viscosity alone and may be due to an increased hydration of the channels and/or the transport ions and by isotope effects of hydrogen-deuterium exchange on the channel protein that reduce gj.

  2. Gap junctions mediate STAT5-independent β-casein expression in CID-9 mammary epithelial cells.

    PubMed

    Talhouk, Rabih S; Khalil, Antoine A; Bajjani, Rachid; Rahme, Gilbert J; El-Sabban, Marwan E

    2011-10-01

    Crosstalk between gap junction intracellular communication (GJIC), STAT5 and OCT-1 in gap junction (GJ)-dependent β-casein expression was investigated. CID-9 mammary cells plated with prolactin on non-adherent substratum (poly-HEMA) expressed β-casein independent of STAT5 only in the presence of the GJIC inducer, cAMP. Nuclear STAT5 levels were not detectable. By contrast, cells on EHS-drip expressed β-casein in a STAT5-dependent manner and nuclear STAT5 levels were up-regulated. A 75 kDa OCT-1 isoform was detected in conditions that induced β-casein expression regardless of substratum. Interestingly, 40 and 28 kDa OCT-1 isoforms were induced in cells on polyHEMA with cAMP. Electrophoretic mobility shift assays (EMSA) for OCT-1 revealed two band shifts in cells on polyHEMA with cAMP and on EHS-drip, which were repressed by the GJIC inhibitor, 18α-GA. These studies demonstrated that mammary cells on polyHEMA expressed β-casein in response to prolactin in a pathway that involves GJIC and OCT-1 and is independent of STAT5 nuclear translocation.

  3. Hereditary mucoepithelial dysplasia: a disease apparently of desmosome and gap junction formation.

    PubMed Central

    Witkop, C J; White, J G; King, R A; Dahl, M V; Young, W G; Sauk, J J

    1979-01-01

    A previously unrecognized autosomal dominant syndrome affecting oral, nasal, vaginal, urethral, anal, bladder, and conjunctival mucosa with cataracts, follicular keratosis, nonscarring alopecia, and terminal lung disease is described in a four-generation kindred of German extraction. Severe photophobia, tearing, and nystagmus in infancy heralds the development of keratitis, corneal vascularization, and lens cataracts. Repeated corneal transplants have failed. Red, periorificial mucosal lesions involving the above structures are noted by 1 year of age and may persist throughout life. Chronic rhinorrhea and repeated upper respiratory infections frequently progress to bilateral pneumonia accompanied by loss of hair, diarrhea, occasional melena, enuresis, pyuria, and hematuria. Spontaneous pneumothorax is frequent, terminating in fibrocystic-type lung disease and cor pulmonale. Women have had repeated abnormal vaginal PAP smears. Histologically the mucosal epithelium shows dyshesion, thinning of the epithelial layer, and dyskeratosis. Mucosal PAP smears show lack of epithelial maturation, cytoplasmic vacuoles and inclusions, and individual cell dyskeratosis. Histochemically there is a lack of cornification and keratinization. Ultrastructural studies show lack of keratohyalin granules, a paucity of desmosomes, intercellular accumulations, cytoplasmic vacuolization, and formation of bands and aggregates of filamentous fibers and structures in the cytoplasm resembling desmosomes and gap junctions. The condition is probably a panepithelial cell defect of desmosomal and gap junction structure most prominently affecting mucosal epithelia associated with an increased susceptibility to a variety of adventitious organisms. Images Fig. 2-5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 PMID:484550

  4. Experimental febrile seizures impair interastrocytic gap junction coupling in juvenile mice.

    PubMed

    Khan, Dilaware; Dupper, Alexander; Deshpande, Tushar; Graan, Pierre N E De; Steinhäuser, Christian; Bedner, Peter

    2016-09-01

    Prolonged and focal febrile seizures (FSs) have been associated with the development of temporal lobe epilepsy (TLE), although the underlying mechanism and the contribution of predisposing risk factors are still poorly understood. Using a kainate model of TLE, we previously provided strong evidence that interruption of astrocyte gap junction-mediated intercellular communication represents a crucial event in epileptogenesis. To elucidate this aspect further, we induced seizures in immature mice by hyperthermia (HT) to study the consequences of FSs on the hippocampal astrocytic network. Changes in interastrocytic coupling were assessed by tracer diffusion studies in acute slices from mice 5 days after experimental FS induction. The results reveal that HT-induced FSs cause a pronounced reduction of astrocyte gap junctional coupling in the hippocampus by more than 50%. Western blot analysis indicated that reduced connexin43 protein expression and/or changes in the phosphorylation status account for this astrocyte dysfunction. Remarkably, uncoupling occurred in the absence of neuronal death and reactive gliosis. These data provide a mechanistic link between FSs and the subsequent development of TLE and further strengthen the emerging view that astrocytes have a central role in the pathogenesis of this disorder. © 2016 Wiley Periodicals, Inc. PMID:26931373

  5. Treatment with the gap junction modifier rotigaptide (ZP123) reduces infarct size in rats with chronic myocardial infarction.

    PubMed

    Haugan, Ketil; Marcussen, Niels; Kjølbye, Anne Louise; Nielsen, Morten Schak; Hennan, James K; Petersen, Jørgen Søberg

    2006-02-01

    Treatment with non-selective drugs (eg, long-chain alcohols, halothane) that reduce gap junction intercellular communication (GJIC) is associated with reduced infarct size after myocardial infarction (MI). Therefore, it has been suggested that gap junction intercellular communication stimulating compounds may increase infarct size. The antiarrhythmic peptide analogue rotigaptide (ZP123) increases cardiac gap junction intercellular communication and the purpose of the present study was to examine the effects of rotigaptide treatment on infarct size. Myocardial infarction was induced in male rats by ligation of the left anterior descending artery (LAD). Rats (n = 156) were treated with rotigaptide at three dose levels or vehicle from the onset of ischemia and for 3 weeks following LAD occlusion. Infarct size was determined using histomorphometry after 3 weeks treatment. Rotigaptide treatment producing steady state plasma levels of 0.8 +/- 0.1, 5.5 +/- 0.5, and 86 +/- 8 nmol/L had no effect on mortality, but reduced infarct size to 90 +/- 10% (P = 0.41), 67 +/- 7% (P = 0.005), and 82 +/- 7% (P = 0.13), respectively relative to vehicle-treated myocardial infarction rats (100 +/- 12%). In contrast to what was predicted, our data demonstrates that rotigaptide treatment was associated with a significant infarct size reduction. We conclude that whereas treatment with non-selective inhibitors of gap junction intercellular communication cause a reduction in infarct size, this information cannot be extrapolated to the effects of compounds that selectively increase gap junction intercellular communication.

  6. Virally-expressed connexin26 restores gap junction function in the cochlea of conditional Gjb2 knockout mice

    PubMed Central

    Yu, Qing; Wang, Yunfeng; Chang, Qing; Wang, Jianjun; Gong, Shushen; Li, Huawei; Lin, Xi

    2013-01-01

    Mutations in GJB2, which codes for the gap junction protein connexin26, are the most common causes of human nonsyndromic hereditary deafness. We inoculated modified adeno-associated viral vectors into the scala media of early postnatal conditional Gjb2 knockout mice to drive exogenous connexin26 expression. We found extensive virally-expressed connexin26 in cells lining the scala media, and intercellular gap junction network was re-established in the organ of Corti of mutant mouse cochlea. Widespread ectopic connexin26 expression neither formed ectopic gap junctions nor affected normal hearing thresholds in wild type mice, suggesting that autonomous cellular mechanisms regulate proper membrane trafficking of exogenously-expressed connexin26 and govern the functional manifestation of them. Functional recovery of gap-junction-mediated coupling among the supporting cells was observed. We found that both cell death in the organ of Corti and degeneration of spiral ganglion neurons in the cochlea of mutant mice were substantially reduced, although auditory brainstem responses did not show significant hearing improvement. This is the first report demonstrating that virally-mediated gene therapy restored extensive gap junction intercellular network among cochlear non-sensory cells in vivo. Such a treatment performed at early postnatal stages resulted in a partial rescue of disease phenotypes in the cochlea of the mutant mice. PMID:24225640

  7. Role of connexin-based gap junction channels and hemichannels in ischemia-induced cell death in nervous tissue

    PubMed Central

    Contreras, Jorge E.; Sánchez, Helmuth A.; Véliz, Loreto P.; Bukauskas, Feliksas F.; Bennett, Michael V.L.; Sáez, Juan C.

    2013-01-01

    Gap junction channels and hemichannels formed of connexin subunits are found in most cell types in vertebrates. Gap junctions connect cells via channels not open to the extracellular space and permit the passage of ions and molecules of ~1 kDa. Single connexin hemichannels, which are connexin hexamers, are present in the surface membrane before docking with a hemichannel in an apposed membrane. Because of their high conductance and permeability in cell–cell channels, it had been thought that connexin hemichannels remained closed until docking to form a cell–cell channel. Now it is clear that at least some hemichannels can open to allow passage of molecules between the cytoplasm and extracellular space. Here we review evidence that gap junction channels may allow intercellular diffusion of necrotic or apoptotic signals, but may also allow diffusion of ions and substances from healthy to injured cells, thereby contributing to cell survival. Moreover, opening of gap junction hemichannels may exacerbate cell injury or mediate paracrine or autocrine signaling. In addition to the cell specific features of an ischemic insult, propagation of cell damage and death within affected tissues may be affected by expression and regulation of gap junction channels and hemichannels formed by connexins. PMID:15572178

  8. Reduction and Redistribution of Gap and Adherens Junction Proteins After Ischemia and Reperfusion

    PubMed Central

    Tansey, Erin E.; Kwaku, Kevin F.; Hammer, Peter E.; Cowan, Douglas B.; Federman, Micheline; Levitsky, Sidney; McCully, James D.

    2007-01-01

    Background Previous studies have demonstrated that alterations in myocardial structure, consistent with tissue and sarcomere disruption as well as myofibril dissociation, occur after myocardial ischemia and reperfusion. In this study we determine the onset of these structural changes and their contribution to electrical conduction. Methods Langendorff perfused rabbit hearts (n = 47) were subjected to 0, 5, 10, 15, 20, 25, and 30 minutes global ischemia, followed by 120 minutes reperfusion. Hemodynamics were recorded and tissue samples were collected for histochemical and immunohistochemical studies. Orthogonal epicardial conduction velocities were measured, with temperature controlled, in a separate group of 10 hearts subjected to 0 or 30 minutes of global ischemia, followed by 120 minutes of reperfusion. Results Histochemical and quantitative light microscopy spatial analysis showed significantly increased longitudinal and transverse interfibrillar separation after 15 minutes or more of ischemia (p < 0.05 versus control). Confocal immunohistochemistry and Western blot analysis demonstrated significant reductions (p < .05 versus control) of the intercellular adherens junction protein, N-cadherin, and the active phosphorylated isoform of the principal gap junction protein, connexin 43 at more than 15 minutes of ischemia. Cellular redistribution of connexin 43 was also evidenced on immunohistochemistry. No change in integrin-β1, an extracellular matrix attachment protein, or in epicardial conduction velocity anisotropy was observed. Conclusions These data indicate that there are significant alterations in the structural integrity of the myocardium as well as gap and adherens junction protein expression with increasing global ischemia time. The changes occur coincident with previously observed significant decreases in postischemic functional recovery, but are not associated with altered expression of matrix binding proteins or electrical anisotropic conduction. PMID

  9. Gap-junctional properties of electrically coupled skate horizontal cells in culture.

    PubMed

    Qian, H; Malchow, R P; Ripps, H

    1993-01-01

    Whole-cell voltage-clamp recordings were used to examine the unusual pharmacological properties of the electrical coupling between rod-driven horizontal cells in skate retina as revealed previously by receptive-field measurements (Qian & Ripps, 1992). The junctional resistance was measured in electrically coupled cell pairs that had been enzymatically isolated and maintained in culture; the typical value was about 19.92 M omega (n = 45), more than an order of magnitude lower than the nonjunctional membrane resistance. These data and the intercellular spread of the fluorescent dye Lucifer Yellow provide a good indication that skate horizontal cells are well coupled. The junctional conductance between cells was not modulated by the neurotransmitters dopamine (200 microM) or GABA (1 mM), nor was it affected by the membrane-permeable analogues of cAMP or cGMP, or the adenylate cyclase activator, forskolin. Although resistant to agents that have been reported to alter horizontal-cell coupling in cone-driven horizontal cells, the junctional conductance between paired horizontal cells of skate was greatly reduced by the application of 20 mM acetate, which is known to effectively reduce intracellular pH. Together with the results obtained in situ on the receptive-field properties of skate horizontal cells, these findings indicate that the gap-junctional properties of rod-driven horizontal cells of the skate are fundamentally different from those of cone-driven horizontal cells in other species. This raises the possibility that there is more than one class of electrical synapse on vertebrate horizontal cells. PMID:8485091

  10. Connexin-47 and connexin-32 in gap junctions of oligodendrocyte somata, myelin sheaths, paranodal loops and Schmidt-Lanterman incisures: implications for ionic homeostasis and potassium siphoning.

    PubMed

    Kamasawa, N; Sik, A; Morita, M; Yasumura, T; Davidson, K G V; Nagy, J I; Rash, J E

    2005-01-01

    The subcellular distributions and co-associations of the gap junction-forming proteins connexin 47 and connexin 32 were investigated in oligodendrocytes of adult mouse and rat CNS. By confocal immunofluorescence light microscopy, abundant connexin 47 was co-localized with astrocytic connexin 43 on oligodendrocyte somata, and along myelinated fibers, whereas connexin 32 without connexin 47 was co-localized with contactin-associated protein (caspr) in paranodes. By thin-section transmission electron microscopy, connexin 47 immunolabeling was on the oligodendrocyte side of gap junctions between oligodendrocyte somata and astrocytes. By freeze-fracture replica immunogold labeling, large gap junctions between oligodendrocyte somata and astrocyte processes contained much more connexin 47 than connexin 32. Along surfaces of internodal myelin, connexin 47 was several times as abundant as connexin 32, and in the smallest gap junctions, often occurred without connexin 32. In contrast, connexin 32 was localized without connexin 47 in newly-described autologous gap junctions in Schmidt-Lanterman incisures and between paranodal loops bordering nodes of Ranvier. Thus, connexin 47 in adult rodent CNS is the most abundant connexin in most heterologous oligodendrocyte-to-astrocyte gap junctions, whereas connexin 32 is the predominant if not sole connexin in autologous ("reflexive") oligodendrocyte gap junctions. These results clarify the locations and connexin compositions of heterologous and autologous oligodendrocyte gap junctions, identify autologous gap junctions at paranodes as potential sites for modulating paranodal electrical properties, and reveal connexin 47-containing and connexin 32-containing gap junctions as conduits for long-distance intracellular and intercellular movement of ions and associated osmotic water. The autologous gap junctions may regulate paranodal electrical properties during saltatory conduction. Acting in series and in parallel, autologous and

  11. Long-range gap junctional signaling controls oncogene-mediated tumorigenesis in Xenopus laevis embryos

    PubMed Central

    Chernet, Brook T.; Fields, Chris; Levin, Michael

    2015-01-01

    In addition to the immediate microenvironment, long-range signaling may be an important component of cancer. Molecular-genetic analyses have implicated gap junctions—key mediators of cell-cell communication—in carcinogenesis. We recently showed that the resting voltage potential of distant cell groups is a key determinant of metastatic transformation and tumor induction. Here, we show in the Xenopus laevis model that gap junctional communication (GJC) is a modulator of the long-range bioelectric signaling that regulates tumor formation. Genetic disruption of GJC taking place within tumors, within remote host tissues, or between the host and tumors significantly lowers the incidence of tumors induced by KRAS mutations. The most pronounced suppression of tumor incidence was observed upon GJC disruption taking place farther away from oncogene-expressing cells, revealing a role for GJC in distant cells in the control of tumor growth. In contrast, enhanced GJC communication through the overexpression of wild-type connexin Cx26 increased tumor incidence. Our data confirm a role for GJC in tumorigenesis, and reveal that this effect is non-local. Based on these results and on published data on movement of ions through GJs, we present a quantitative model linking the GJC coupling and bioelectrical state of cells to the ability of oncogenes to initiate tumorigenesis. When integrated with data on endogenous bioelectric signaling during left-right patterning, the model predicts differential tumor incidence outcomes depending on the spatial configurations of gap junction paths relative to tumor location and major anatomical body axes. Testing these predictions, we found that the strongest influence of GJ modulation on tumor suppression by hyperpolarization occurred along the embryonic left-right axis. Together, these data reveal new, long-range aspects of cancer control by the host's physiological parameters. PMID:25646081

  12. The beneficial effects of cumulus cells and oocyte-cumulus cell gap junctions depends on oocyte maturation and fertilization methods in mice

    PubMed Central

    Zhou, Cheng-Jie; Wu, Sha-Na; Shen, Jiang-Peng; Wang, Dong-Hui; Kong, Xiang-Wei; Lu, Angeleem; Li, Yan-Jiao; Zhou, Hong-Xia; Zhao, Yue-Fang

    2016-01-01

    Cumulus cells are a group of closely associated granulosa cells that surround and nourish oocytes. Previous studies have shown that cumulus cells contribute to oocyte maturation and fertilization through gap junction communication. However, it is not known how this gap junction signaling affects in vivo versus in vitro maturation of oocytes, and their subsequent fertilization and embryonic development following insemination. Therefore, in our study, we performed mouse oocyte maturation and insemination using in vivo- or in vitro-matured oocyte-cumulus complexes (OCCs, which retain gap junctions between the cumulus cells and the oocytes), in vitro-matured, denuded oocytes co-cultured with cumulus cells (DCs, which lack gap junctions between the cumulus cells and the oocytes), and in vitro-matured, denuded oocytes without cumulus cells (DOs). Using these models, we were able to analyze the effects of gap junction signaling on oocyte maturation, fertilization, and early embryo development. We found that gap junctions were necessary for both in vivo and in vitro oocyte maturation. In addition, for oocytes matured in vivo, the presence of cumulus cells during insemination improved fertilization and blastocyst formation, and this improvement was strengthened by gap junctions. Moreover, for oocytes matured in vitro, the presence of cumulus cells during insemination improved fertilization, but not blastocyst formation, and this improvement was independent of gap junctions. Our results demonstrate, for the first time, that the beneficial effect of gap junction signaling from cumulus cells depends on oocyte maturation and fertilization methods. PMID:26966678

  13. Functional assessment of gap junctions in monolayer and three-dimensional cultures of human tendon cells using fluorescence recovery after photobleaching

    PubMed Central

    Kuzma-Kuzniarska, Maria; Yapp, Clarence; Pearson-Jones, Thomas W.; Jones, Andrew K.; Hulley, Philippa A.

    2014-01-01

    Abstract. Gap junction-mediated intercellular communication influences a variety of cellular activities. In tendons, gap junctions modulate collagen production, are involved in strain-induced cell death, and are involved in the response to mechanical stimulation. The aim of the present study was to investigate gap junction-mediated intercellular communication in healthy human tendon-derived cells using fluorescence recovery after photobleaching (FRAP). The FRAP is a noninvasive technique that allows quantitative measurement of gap junction function in living cells. It is based on diffusion-dependent redistribution of a gap junction-permeable fluorescent dye. Using FRAP, we showed that human tenocytes form functional gap junctions in monolayer and three-dimensional (3-D) collagen I culture. Fluorescently labeled tenocytes following photobleaching rapidly reacquired the fluorescent dye from neighboring cells, while HeLa cells, which do not communicate by gap junctions, remained bleached. Furthermore, both 18 β-glycyrrhetinic acid and carbenoxolone, standard inhibitors of gap junction activity, impaired fluorescence recovery in tendon cells. In both monolayer and 3-D cultures, intercellular communication in isolated cells was significantly decreased when compared with cells forming many cell-to-cell contacts. In this study, we used FRAP as a tool to quantify and experimentally manipulate the function of gap junctions in human tenocytes in both two-dimensional (2-D) and 3-D cultures. PMID:24390370

  14. Functional assessment of gap junctions in monolayer and three-dimensional cultures of human tendon cells using fluorescence recovery after photobleaching

    NASA Astrophysics Data System (ADS)

    Kuzma-Kuzniarska, Maria; Yapp, Clarence; Pearson-Jones, Thomas W.; Jones, Andrew K.; Hulley, Philippa A.

    2014-01-01

    Gap junction-mediated intercellular communication influences a variety of cellular activities. In tendons, gap junctions modulate collagen production, are involved in strain-induced cell death, and are involved in the response to mechanical stimulation. The aim of the present study was to investigate gap junction-mediated intercellular communication in healthy human tendon-derived cells using fluorescence recovery after photobleaching (FRAP). The FRAP is a noninvasive technique that allows quantitative measurement of gap junction function in living cells. It is based on diffusion-dependent redistribution of a gap junction-permeable fluorescent dye. Using FRAP, we showed that human tenocytes form functional gap junctions in monolayer and three-dimensional (3-D) collagen I culture. Fluorescently labeled tenocytes following photobleaching rapidly reacquired the fluorescent dye from neighboring cells, while HeLa cells, which do not communicate by gap junctions, remained bleached. Furthermore, both 18 β-glycyrrhetinic acid and carbenoxolone, standard inhibitors of gap junction activity, impaired fluorescence recovery in tendon cells. In both monolayer and 3-D cultures, intercellular communication in isolated cells was significantly decreased when compared with cells forming many cell-to-cell contacts. In this study, we used FRAP as a tool to quantify and experimentally manipulate the function of gap junctions in human tenocytes in both two-dimensional (2-D) and 3-D cultures.

  15. Involvement of Gap Junctions in Tumorigenesis: Transfection of Tumor Cells with Connexin 32 cDNA Retards Growth In vivo

    NASA Astrophysics Data System (ADS)

    Eghbali, B.; Kessler, J. A.; Reid, L. M.; Roy, C.; Spray, D. C.

    1991-12-01

    Gap junction channels provide a pathway for exchange of ions and small molecules between coupled cells, and this exchange is believed to be critical for normal tissue growth and development. As a test for a role of gap junction-mediated intercellular communication in control of cell growth, we have compared growth rates of communication-deficient human tumor cells (SKHep1) with clones stably transfected with cDNA encoding the rat liver gap junction protein connexin 32. In culture, growth rates for parental and transfected clones were similar. However, when sizes of tumors were evaluated following injection of these clones into athymic nude mice, growth rates for two well-coupled clones were significantly lower than for communication-deficient or poorly coupled clones. This study demonstrates that growth rate of these tumor cells in situ is negatively correlated with strength of intercellular communication.

  16. [Involvement of gap junctions in stimulation of in vitro maturation of the common frog oocytes by low progesterone concentrations].

    PubMed

    Skoblina, M N

    2004-01-01

    The inhibitor of gap junctions 18alpha-glycerretinic acid inhibits the maturation of follicle-enclosed common frog oocytes stimulated by low progesterone concentrations. The inhibitory effect of 18alpha-glycerretinic acid does not depend on concentrations within the limits of 5-40 microM. The inhibitory progesterone concentrations differ markedly in different females. The inhibitory effects of actinomycin D (5 microg/ml) and 18alpha-glycerretinic acid (5 microg/ml) were expressed when the same progesterone concentrations were used. When injected in an intact oocyte, Lucifer yellow was transported into the follicle cells, thus suggesting the presence of gap junction between these latter and the oocyte. The data obtained suggest that the previously described transcription-dependent factor formed in the follicle cells under the influence of low progesterone concentrations and stimulating oocyte maturation is transported in the oocyte along gap junctions.

  17. Establishment of the Dual Whole Cell Recording Patch Clamp Configuration for the Measurement of Gap Junction Conductance.

    PubMed

    Veenstra, Richard D

    2016-01-01

    The development of the patch clamp technique has enabled investigators to directly measure gap junction conductance between isolated pairs of small cells with resolution to the single channel level. The dual patch clamp recording technique requires specialized equipment and the acquired skill to reliably establish gigaohm seals and the whole cell recording configuration with high efficiency. This chapter describes the equipment needed and methods required to achieve accurate measurement of macroscopic and single gap junction channel conductances. Inherent limitations with the dual whole cell recording technique and methods to correct for series access resistance errors are defined as well as basic procedures to determine the essential electrical parameters necessary to evaluate the accuracy of gap junction conductance measurements using this approach. PMID:27207298

  18. GnRH Episodic Secretion Is Altered by Pharmacological Blockade of Gap Junctions: Possible Involvement of Glial Cells.

    PubMed

    Pinet-Charvet, Caroline; Geller, Sarah; Desroziers, Elodie; Ottogalli, Monique; Lomet, Didier; Georgelin, Christine; Tillet, Yves; Franceschini, Isabelle; Vaudin, Pascal; Duittoz, Anne

    2016-01-01

    Episodic release of GnRH is essential for reproductive function. In vitro studies have established that this episodic release is an endogenous property of GnRH neurons and that GnRH secretory pulses are associated with synchronization of GnRH neuron activity. The cellular mechanisms by which GnRH neurons synchronize remain largely unknown. There is no clear evidence of physical coupling of GnRH neurons through gap junctions to explain episodic synchronization. However, coupling of glial cells through gap junctions has been shown to regulate neuron activity in their microenvironment. The present study investigated whether glial cell communication through gap junctions plays a role in GnRH neuron activity and secretion in the mouse. Our findings show that Glial Fibrillary Acidic Protein-expressing glial cells located in the median eminence in close vicinity to GnRH fibers expressed Gja1 encoding connexin-43. To study the impact of glial-gap junction coupling on GnRH neuron activity, an in vitro model of primary cultures from mouse embryo nasal placodes was used. In this model, GnRH neurons possess a glial microenvironment and were able to release GnRH in an episodic manner. Our findings show that in vitro glial cells forming the microenvironment of GnRH neurons expressed connexin-43 and displayed functional gap junctions. Pharmacological blockade of the gap junctions with 50 μM 18-α-glycyrrhetinic acid decreased GnRH secretion by reducing pulse frequency and amplitude, suppressed neuronal synchronization and drastically reduced spontaneous electrical activity, all these effects were reversed upon 18-α-glycyrrhetinic acid washout.

  19. ABUNDANCE AND ULTRASTRUCTURAL DIVERSITY OF NEURONAL GAP JUNCTIONS IN THE OFF AND ON SUBLAMINAE OF THE INNER PLEXIFORM LAYER OF RAT AND MOUSE RETINA

    PubMed Central

    KAMASAWA, N.; FURMAN, C. S.; DAVIDSON, K. G. V.; SAMPSON, J. A.; MAGNIE, A. R.; GEBHARDT, B. R.; KAMASAWA, M.; YASUMURA, T.; ZUMBRUNNEN, J. R.; PICKARD, G. E.; NAGY, J. I.; RASH, J. E.

    2007-01-01

    Neuronal gap junctions are abundant in both outer and inner plexiform layers of the mammalian retina. In the inner plexiform layer (IPL), ultrastructurally-identified gap junctions were reported primarily in the functionally-defined and anatomically-distinct ON sublamina, with few reported in the OFF sublamina. We used freeze-fracture replica immunogold labeling and confocal microscopy to quantitatively analyze the morphologies and distributions of neuronal gap junctions in the IPL of adult rat and mouse retina. Under “baseline” conditions (photopic illumination/general anesthesia), 649 neuronal gap junctions immunogold-labeled for connexin36 were identified in rat IPL, of which 375 were photomapped to OFF vs. ON sublaminae. In contrast to previous reports, the volume-density of gap junctions was equally abundant in both sublaminae. Five distinctive morphologies of gap junctions were identified: conventional crystalline and non-crystalline “plaques” (71% and 3%), plus unusual “string” (14%), “ribbon” (7%) and “reticular” (2%) forms. Plaque and reticular gap junctions were distributed throughout the IPL. However, string and ribbon gap junctions were restricted to the OFF sublamina, where they represented 48% of gap junctions in that layer. In string and ribbon junctions, curvilinear strands of connexons were dispersed over 5 to 20 times the area of conventional plaques having equal numbers of connexons. To define morphologies of gap junctions under different light-adaptation conditions, we examined an additional 1150 gap junctions from rats and mice prepared after 30 min of photopic, mesopic and scotopic illumination, with and without general anesthesia. Under these conditions, string and ribbon gap junctions remained abundant in the OFF sublamina and absent in the ON sublamina. Abundant gap junctions in the OFF sublamina of these two rodents with rod-dominant retinas revealed previously-undescribed but extensive pathways for inter

  20. Simvastatin Sodium Salt and Fluvastatin Interact with Human Gap Junction Gamma-3 Protein

    PubMed Central

    Marsh, Andrew; Casey-Green, Katherine; Probert, Fay; Withall, David; Mitchell, Daniel A.; Dilly, Suzanne J.; James, Sean; Dimitri, Wade; Ladwa, Sweta R.; Taylor, Paul C.; Singer, Donald R. J.

    2016-01-01

    Finding pleiomorphic targets for drugs allows new indications or warnings for treatment to be identified. As test of concept, we applied a new chemical genomics approach to uncover additional targets for the widely prescribed lipid-lowering pro-drug simvastatin. We used mRNA extracted from internal mammary artery from patients undergoing coronary artery surgery to prepare a viral cardiovascular protein library, using T7 bacteriophage. We then studied interactions of clones of the bacteriophage, each expressing a different cardiovascular polypeptide, with surface-bound simvastatin in 96-well plates. To maximise likelihood of identifying meaningful interactions between simvastatin and vascular peptides, we used a validated photo-immobilisation method to apply a series of different chemical linkers to bind simvastatin so as to present multiple orientations of its constituent components to potential targets. Three rounds of biopanning identified consistent interaction with the clone expressing part of the gene GJC3, which maps to Homo sapiens chromosome 7, and codes for gap junction gamma-3 protein, also known as connexin 30.2/31.3 (mouse connexin Cx29). Further analysis indicated the binding site to be for the N-terminal domain putatively ‘regulating’ connexin hemichannel and gap junction pores. Using immunohistochemistry we found connexin 30.2/31.3 to be present in samples of artery similar to those used to prepare the bacteriophage library. Surface plasmon resonance revealed that a 25 amino acid synthetic peptide representing the discovered N-terminus did not interact with simvastatin lactone, but did bind to the hydrolysed HMG CoA inhibitor, simvastatin acid. This interaction was also seen for fluvastatin. The gap junction blockers carbenoxolone and flufenamic acid also interacted with the same peptide providing insight into potential site of binding. These findings raise key questions about the functional significance of GJC3 transcripts in the vasculature and

  1. Expression of functional gap junctions and regulation by fluid flow in osteocyte-like MLO-Y4 cells.

    PubMed

    Cheng, B; Zhao, S; Luo, J; Sprague, E; Bonewald, L F; Jiang, J X

    2001-02-01

    Osteocytes are thought to be mechanosensory cells that respond to mechanical stress by sending signals to other bone cells to initiate bone remodeling. An osteocyte-like cell line MLO-Y4 provides a model system to examine whether gap junctions participate in the regulation of osteocyte function and signaling by mechanical stress. In this study, we show that MLO-Y4 cells are coupled and that gap junction channels mediate this coupling. Biochemical analyses show that connexin 43 (Cx43) is a major gap junction protein expressed in MLO-Y4 cells and approximately 5% of Cx43 protein is phosphorylated. MLO-Y4 cells were exposed to mechanical stress using a parallel plate flow chamber to model bone fluid flow shear stress. Fluid flow increased significantly the length of the dendritic processes, a morphological characteristic of osteocytes. A redistribution of the gap junction protein, Cx43 also was observed from a location circling the nucleus to punctate spots in the cytoplasm and in the dendritic processes. "Scrape-loading" dye transfer analyses showed that fluid flow increased intercellular coupling and increased the number of cells coupled immediately after fluid flow treatment, in direct proportion to shear stress magnitude. Although intercellular coupling continued to increase, stimulation of Cx43 protein expression during the poststress period was found to be biphasic. Cx43 protein was elevated 30 minutes after application of stress but decreased at 24 h poststress. Pulsating fluid flow had a similar stimulatory effect as steady fluid flow on gap junctions. However, this stimulatory effect in osteocyte-like cells was not observed in osteoblast-like 2T3 cells. Together, these results show that fluid flow has stimulatory effects on osteocyte-like MLO-Y4 cells with early effects on cellular morphology, opening of gap junctions, and redistribution of Cx43 protein and delayed effects on Cx43 protein expression. The high expression of Cx43 and its location in the

  2. Mouse Hepatitis Virus Infection Remodels Connexin43-Mediated Gap Junction Intercellular Communication In Vitro and In Vivo

    PubMed Central

    Basu, Rahul; Banerjee, Kaveri; Bose, Abhishek

    2015-01-01

    ABSTRACT Gap junctions (GJs) form intercellular channels which directly connect the cytoplasm between neighboring cells to facilitate the transfer of ions and small molecules. GJs play a major role in the pathogenesis of infection-associated inflammation. Mutations of gap junction proteins, connexins (Cxs), cause dysmyelination and leukoencephalopathy. In multiple sclerosis (MS) patients and its animal model experimental autoimmune encephalitis (EAE), Cx43 was shown to be modulated in the central nervous system (CNS). The mechanism behind Cx43 alteration and its role in MS remains unexplored. Mouse hepatitis virus (MHV) infection-induced demyelination is one of the best-studied experimental animal models for MS. Our studies demonstrated that MHV infection downregulated Cx43 expression at protein and mRNA levels in vitro in primary astrocytes obtained from neonatal mouse brains. After infection, a significant amount of Cx43 was retained in endoplasmic reticulum/endoplasmic reticulum Golgi intermediate complex (ER/ERGIC) and GJ plaque formation was impaired at the cell surface, as evidenced by a reduction of the Triton X-100 insoluble fraction of Cx43. Altered trafficking and impairment of GJ plaque formation may cause the loss of functional channel formation in MHV-infected primary astrocytes, as demonstrated by a reduced number of dye-coupled cells after a scrape-loading Lucifer yellow dye transfer assay. Upon MHV infection, a significant downregulation of Cx43 was observed in the virus-infected mouse brain. This study demonstrates that astrocytic Cx43 expression and function can be modulated due to virus stress and can be an appropriate model to understand the basis of cellular mechanisms involved in the alteration of gap junction intercellular communication (GJIC) in CNS neuroinflammation. IMPORTANCE We found that MHV infection leads to the downregulation of Cx43 in vivo in the CNS. In addition, results show that MHV infection impairs Cx43 expression in addition

  3. Effect of reabsorbed recombination radiation on the saturation current of direct gap p-n junctions

    NASA Technical Reports Server (NTRS)

    Von Roos, O.; Mavromatis, H.

    1984-01-01

    The application of the radiative transfer theory for semiconductors to p-n homojunctions subject to low level injection conditions is discussed. By virtue of the interaction of the radiation field with free carriers across the depletion layer, the saturation current density in Shockley's expression for the diode current is reduced at high doping levels. The reduction, due to self-induced photon generation, is noticeable for n-type material owing to the small electron effective mass in direct band-gap III-V compounds. The effect is insignificant in p-type material. At an equilibrium electron concentration of 2 x 10 to the 18th/cu cm in GaAs, a reduction of the saturation current density by 15 percent is predicted. It is concluded that realistic GaAs p-n junctions possess a finite thickness.

  4. Gap junctions are involved in cell migration in the early postnatal subventricular zone.

    PubMed

    Marins, Mônica; Xavier, Anna L R; Viana, Nathan B; Fortes, Fábio S A; Fróes, Maira M; Menezes, João R L

    2009-09-15

    The massive migration of neuroblasts and young neurons through the anterior extension of the postnatal subventricular zone (SVZ), known as the rostral migratory stream (RMS) is still poorly understood on its molecular basis. In this work, we investigated the involvement of gap junctional communication (GJC) in the robust centrifugal migration from SVZ/RMS explants obtained from early postnatal (P4) rats. Cells were dye-coupled in homocellular and heterocellular pairings and expressed at least two connexins, Cx 43 and 45. Treatment with the uncoupler agent carbenoxolone (CBX, 10-100 microM) reversibly reduced outgrowth from SVZ explants, while its inactive analog, glycyrhizinic acid (GZA), had no effect. Consistent with a direct effect on cell migration, time-lapse video microscopy show that different pharmacological uncouplers cause an abrupt and reversible arrest of cell movement in explants. Our results indicate that GJC is positively involved in the migration of neuroblasts within the SVZ/RMS.

  5. Managing the complexity of communication: regulation of gap junctions by post-translational modification

    PubMed Central

    Axelsen, Lene N.; Calloe, Kirstine; Holstein-Rathlou, Niels-Henrik; Nielsen, Morten S.

    2013-01-01

    Gap junctions are comprised of connexins that form cell-to-cell channels which couple neighboring cells to accommodate the exchange of information. The need for communication does, however, change over time and therefore must be tightly controlled. Although the regulation of connexin protein expression by transcription and translation is of great importance, the trafficking, channel activity and degradation are also under tight control. The function of connexins can be regulated by several post translational modifications, which affect numerous parameters; including number of channels, open probability, single channel conductance or selectivity. The most extensively investigated post translational modifications are phosphorylations, which have been documented in all mammalian connexins. Besides phosphorylations, some connexins are known to be ubiquitinated, SUMOylated, nitrosylated, hydroxylated, acetylated, methylated, and γ-carboxyglutamated. The aim of the present review is to summarize our current knowledge of post translational regulation of the connexin family of proteins. PMID:24155720

  6. Reverberation of excitation in neuronal networks interconnected through voltage-gated gap junction channels

    PubMed Central

    Maciunas, Kestutis; Snipas, Mindaugas; Paulauskas, Nerijus

    2016-01-01

    We combined Hodgkin–Huxley equations and gating models of gap junction (GJ) channels to simulate the spread of excitation in two-dimensional networks composed of neurons interconnected by voltage-gated GJs. Each GJ channel contains two fast and slow gates, each exhibiting current–voltage (I-V) rectification and gating properties that depend on transjunctional voltage (Vj). The data obtained show how junctional conductance (gj), which is necessary for synchronization of the neuronal network, depends on its size and the intrinsic firing rate of neurons. A phase shift between action potentials (APs) of neighboring neurons creates bipolar, short-lasting Vj spikes of approximately ±100 mV that induce Vj gating, leading to a small decay of gj, which can accumulate into larger decays during bursting activity of neurons. We show that I-V rectification of GJs in local regions of the two-dimensional network of neurons can lead to unidirectional AP transfer and consequently to reverberation of excitation. This reverberation can be initiated by a single electrical pulse and terminated by a low-amplitude pulse applied in a specific window of reverberation cycle. Thus, the model accounts for the influence of dynamically modulatable electrical synapses in shaping the function of a neuronal network and the formation of reverberation, which, as proposed earlier, may be important for the development of short-term memory and its consolidation into long-term memory. PMID:26880752

  7. Intercellular signaling via cyclic GMP diffusion through gap junctions restarts meiosis in mouse ovarian follicles

    PubMed Central

    Shuhaibar, Leia C.; Egbert, Jeremy R.; Norris, Rachael P.; Lampe, Paul D.; Nikolaev, Viacheslav O.; Thunemann, Martin; Wen, Lai; Feil, Robert; Jaffe, Laurinda A.

    2015-01-01

    Meiosis in mammalian oocytes is paused until luteinizing hormone (LH) activates receptors in the mural granulosa cells of the ovarian follicle. Prior work has established the central role of cyclic GMP (cGMP) from the granulosa cells in maintaining meiotic arrest, but it is not clear how binding of LH to receptors that are located up to 10 cell layers away from the oocyte lowers oocyte cGMP and restarts meiosis. Here, by visualizing intercellular trafficking of cGMP in real-time in live follicles from mice expressing a FRET sensor, we show that diffusion of cGMP through gap junctions is responsible not only for maintaining meiotic arrest, but also for rapid transmission of the signal that reinitiates meiosis from the follicle surface to the oocyte. Before LH exposure, the cGMP concentration throughout the follicle is at a uniformly high level of ∼2–4 μM. Then, within 1 min of LH application, cGMP begins to decrease in the peripheral granulosa cells. As a consequence, cGMP from the oocyte diffuses into the sink provided by the large granulosa cell volume, such that by 20 min the cGMP concentration in the follicle is uniformly low, ∼100 nM. The decrease in cGMP in the oocyte relieves the inhibition of the meiotic cell cycle. This direct demonstration that a physiological signal initiated by a stimulus in one region of an intact tissue can travel across many layers of cells via cyclic nucleotide diffusion through gap junctions could provide a general mechanism for diverse cellular processes. PMID:25775542

  8. Modulated gap junctional intercellular communication as a biomarker of PAH epigenetic toxicity: structure-function relationship.

    PubMed Central

    Upham, B L; Weis, L M; Trosko, J E

    1998-01-01

    Cancer is a multistage multimechanism process involving gene and/or chromosomal mutations (genotoxic events), altered gene expression at the transcriptional, translational, and post-translational levels (epigenetic events), and altered cell survival (proliferation and apoptosis or necrosis), resulting in an imbalance of the organism's homeostasis. Maintenance of the organism's homeostasis depends on the intricate coordination of genetic and metabolic events between cells via extracellular and intercellular communication mechanisms. The release of a quiescent cell, whether normal or premalignant, from the suppressing effects of communicating neighbors requires the downregulation of intercellular communication via gap junctions, thereby allowing factors that control intracellular events to exceed a critical mass necessary for the cell to either proliferate or undergo apoptosis. Therefore, determining the role an environmental pollutant must play in the multistage carcinogenic process includes mechanisms of epigenetic toxicity such as the effects of a compound on gap junctional intercellular communication (GJIC). A classic example of a class of compounds in which determination of carcinogenicity focused on genotoxic events and ignored epigenetic events is polycyclic aromatic hydrocarbons (PAHs). The study of structure-activity relationships of PAHs has focused exclusively on the genotoxic and tumor-initiating properties of the compound. We report on the structure-activity relationships of two- to four-ringed PAHs on GJIC in a rat liver epithelial cell line. PAHs containing a bay or baylike region were more potent inhibitors of GJIC than the linear PAHs that do not contain these regions. These are some of the first studies of determine the epigenetic toxicity of PAHs at the epigenetic level. Images Figure 1 PMID:9703481

  9. Radiation induced bystander effect by GAP junction channels in human fibroblast cell

    NASA Astrophysics Data System (ADS)

    Furusawa, Y.; Shao, C.; Aoki, M.; Kobayashi, Y.; Funayama, T.; Ando, K.

    The chemical factor involved in bystander effect and its transfer pathway were investigated in a confluent human fibroblast cell (AG1522) population. Micronuclei (MN) and G1-phase arrest were detected in cells irradiated by carbon (~100 keV/μm) ions at HIMAC. A very low dose irradiation showed a high effectiveness in producing MN, suggesting a bystander effect. This effectiveness was enhanced by 8-Br-cAMP treatment that increases gap junctional intercellular communication (GJIC). On the other hand, the effect was reduced by 5% DMSO treatment, which reduce the reactive oxygen species (ROS), and suppressed by 100 μM lindane treatment, an inhibitor of GJIC. In addition, the radiation-induced G1-phase arrest was also enhanced by cAMP, and reduced or suppressed by DMSO or lindane. A microbeam device (JAERI) was also used for these studies. It was found that exposing one single cell in a confluent cell population to exactly one argon (~1260 keV/μm) or neon (~430 keV/ μm) ion, additional MN could be detected in many other unirradiated cells. The yield of MN increased with the number of irradiated cells. However, there was no significant difference in the MN induction when the cells were irradiated by increasing number of particles. MN induction by bystander effect was partly reduced by DMSO, and effectively suppressed by lindane. Our results obtained from both random irradiation and precise numbered irradiation indicate that both GJIC and ROS contributed to the radiation-induced bystander effect, but the cell gap junction channels likely play an essential role in the release and transfer of radiation-induced chemical factors.

  10. N-cadherin haploinsufficiency affects cardiac gap junctions and arrhythmic susceptibility

    PubMed Central

    Li, Jifen; Levin, Mark D; Xiong, Yanming; Petrenko, Nataliya; Patel, Vickas V.; Radice, Glenn L.

    2008-01-01

    Cardiac-specific deletion of the murine gene (Cdh2) encoding the cell adhesion molecule, N-cadherin, results in disassembly of the intercalated disc (ICD) structure and sudden arrhythmic death. Connexin 43 (Cx43)-containing gap junctions are significantly reduced in the heart after depleting N-cadherin, therefore we hypothesized that animals expressing half the normal levels of N-cadherin would exhibit an intermediate phenotype. We examined the effect of N-cadherin haploinsufficiency on Cx43 expression and susceptibility to induced arrhythmias in mice either wild-type or heterozygous for the Cx43 (Gja1)-null allele. An increase in hypophosphorylated Cx43 accompanied by a modest decrease in total Cx43 protein levels was observed in the N-cadherin heterozygous mice. Consistent with these findings N-cadherin heterozygotes exhibited increased susceptibility to ventricular arrhythmias compared to wild-type mice. Quantitative immunofluorescence microscopy revealed a reduction in size of large Cx43-containing plaques in the N-cadherin heterozygous animals compared to wild-type. Gap junctions were further decreased in number and size in the N-cad/Cx43 compound heterozygous mice with increased arrhythmic susceptibility compared to the single mutants. The scaffold protein, ZO-1, was reduced at the ICD in N-cadherin heterozygous cardiomyocytes providing a possible explanation for the reduction in Cx43 plaque size. These data provide further support for the intimate relationship between N-cadherin and Cx43 in the heart, and suggest that germline mutations in the human N-cadherin (Cdh2) gene may predispose patients to increased risk of cardiac arrhythmias. PMID:18201716

  11. Intercellular signaling via cyclic GMP diffusion through gap junctions restarts meiosis in mouse ovarian follicles.

    PubMed

    Shuhaibar, Leia C; Egbert, Jeremy R; Norris, Rachael P; Lampe, Paul D; Nikolaev, Viacheslav O; Thunemann, Martin; Wen, Lai; Feil, Robert; Jaffe, Laurinda A

    2015-04-28

    Meiosis in mammalian oocytes is paused until luteinizing hormone (LH) activates receptors in the mural granulosa cells of the ovarian follicle. Prior work has established the central role of cyclic GMP (cGMP) from the granulosa cells in maintaining meiotic arrest, but it is not clear how binding of LH to receptors that are located up to 10 cell layers away from the oocyte lowers oocyte cGMP and restarts meiosis. Here, by visualizing intercellular trafficking of cGMP in real-time in live follicles from mice expressing a FRET sensor, we show that diffusion of cGMP through gap junctions is responsible not only for maintaining meiotic arrest, but also for rapid transmission of the signal that reinitiates meiosis from the follicle surface to the oocyte. Before LH exposure, the cGMP concentration throughout the follicle is at a uniformly high level of ∼2-4 μM. Then, within 1 min of LH application, cGMP begins to decrease in the peripheral granulosa cells. As a consequence, cGMP from the oocyte diffuses into the sink provided by the large granulosa cell volume, such that by 20 min the cGMP concentration in the follicle is uniformly low, ∼100 nM. The decrease in cGMP in the oocyte relieves the inhibition of the meiotic cell cycle. This direct demonstration that a physiological signal initiated by a stimulus in one region of an intact tissue can travel across many layers of cells via cyclic nucleotide diffusion through gap junctions could provide a general mechanism for diverse cellular processes.

  12. Dysfunction of mitochondria and deformed gap junctions in the heart of IL-18-deficient mice.

    PubMed

    Li, Wen; Jin, Denan; Hata, Masaki; Takai, Shinji; Yamanishi, Kyosuke; Shen, Weili; El-Darawish, Yosif; Yamanishi, Hiromichi; Okamura, Haruki

    2016-08-01

    Interleukin-18 (IL-18) was discovered as an interferon-γ-inducing factor and has been regarded as a proinflammatory cytokine. However, IL-18 is ubiquitously expressed both in immune/inflammatory cells and in nonimmune cells, and its biological roles have not been sufficiently elucidated. Here, we demonstrate that IL-18-deficient [IL-18 knockout (KO)] mice have heart abnormalities that may be related to impaired autophagy. In endurance running tests, IL-18KO mice ran significantly shorter distances compared with wild-type (WT) mice. Echocardiographs indicated disability in the systolic and diastolic functions of the IL-18KO mouse heart. Immunostaining of connexin 43 showed heterogeneous localization of gap junctions in the lateral membranes of the IL-18KO cardiac myocytes. Western blotting analysis revealed decreased phosphorylated connexin 43 in the IL-18KO heart. Electron microscopy revealed unusual localization of intercalated disks, swollen or damaged mitochondria, and broad, indistinct Z-lines in the IL-18KO heart. In accordance with the morphological observation, mitochondrial respiratory function, including that of complexes I and IV, was impaired, and production of reactive oxygen species was augmented in IL-18KO hearts. Notably, levels of LC3-II were markedly lower in the IL-18KO hearts than in WT hearts. In the culture of cardiac myocytes of IL-18KO neonates, exogenous IL-18 upregulated LC3-II and increased the number of intact mitochondria with high mitochondrial membrane potential. These results indicated that IL-18 has roles apart from those as a proinflammatory cytokine in cardiac myocytes and suggested that IL-18 contributes to the homeostatic maintenance of mitochondrial function and gap-junction turnover in cardiac myocytes, possibly by upregulating autophagy.

  13. Photoperiod-Dependent Effects of 4-tert-Octylphenol on Adherens and Gap Junction Proteins in Bank Vole Seminiferous Tubules

    PubMed Central

    Kuras, Paulina; Lydka-Zarzycka, Marta; Bilinska, Barbara

    2013-01-01

    In the present study we evaluated in vivo and in vitro effects of 4-tert-octylphenol (OP) on the expression and distribution of adherens and gap junction proteins, N-cadherin, β-catenin, and connexin 43 (Cx43), in testes of seasonally breeding rodents, bank voles. We found that in bank vole testes expression and distribution of N-cadherin, β-catenin, and Cx43 were photoperiod dependent. Long-term treatment with OP (200 mg/kg b.w.) resulted in the reduction of junction proteins expressions (P < 0.05, P < 0.01) and their delocalization in the testes of males kept in long photoperiod, whereas in short-day animals slight increase of Cx43 (P < 0.05), N-cadherin, and β-catenin (statistically nonsignificant) levels was observed. Effects of OP appeared to be independent of FSH and were maintained during in vitro organ culture, indicating that OP acts directly on adherens and gap junction proteins in the testes. An experiment performed using an antiestrogen ICI 182,780 demonstrated that the biological effects of OP on β-catenin and Cx43 involve an estrogen receptor-mediated response. Taken together, in bank vole organization of adherens and gap junctions and their susceptibility to OP are related to the length of photoperiod. Alterations in cadherin/catenin and Cx43-based junction may partially result from activation of estrogen receptor α and/or β signaling pathway. PMID:23737770

  14. High performance as-grown and annealed high band gap tunnel junctions: Te behavior at the interface

    NASA Astrophysics Data System (ADS)

    Bedair, S. M.; Harmon, Jeffrey L.; Carlin, C. Zachary; Hashem Sayed, Islam E.; Colter, P. C.

    2016-05-01

    The performance of n+-InGaP(Te)/p+-AlGaAs(C) high band gap tunnel junctions (TJ) is critical for achieving high efficiency in multijunction photovoltaics. Several limitations for as grown and annealed TJ can be attributed to the Te doping of InGaP and its behavior at the junction interface. Te atoms in InGaP tend to get attached at step edges, resulting in a Te memory effect. In this work, we use the peak tunneling current (Jpk) in this TJ as a diagnostic tool to study the behavior of the Te dopant at the TJ interface. Additionally, we used our understanding of Te behavior at the interface, guided by device modeling, to modify the Te source shut-off procedure and the growth rate. These modifications lead to a record performance for both the as-grown (2000 A/cm2) and annealed (1000 A/cm2) high band gap tunnel junction.

  15. Relative Roles of Gap Junction Channels and Cytoplasm in Cell-to-Cell Diffusion of Fluorescent Tracers

    NASA Astrophysics Data System (ADS)

    Safranyos, Richard G. A.; Caveney, Stanley; Miller, James G.; Petersen, Nils O.

    1987-04-01

    Intercellular (tissue) diffusion of molecules requires cytoplasmic diffusion and diffusion through gap junctional (or cell-to-cell) channels. The rates of tissue and cytoplasmic diffusion of fluorescent tracers, expressed as an effective diffusion coefficient, De, and a cytoplasmic diffusion coefficient, Dcyt, have been measured among the developing epidermal cells of a larval beetle, Tenebrio molitor L., to determine the contribution of the junctional channels to intercellular diffusion. Tracer diffusion was measured by injecting fluorescent tracers into cells and quantitating the rate of subsequent spread into adjacent cells. Cytoplasmic diffusion was determined by fluorescence photobleaching. These experiments show that gap junctional channels constitute approximately 70-80% of the total cell-to-cell resistance to the diffusion of organic tracers at high concentrations in this tissue. At low concentrations, however, the binding of tracer to cytoplasm slows down the cytoplasmic diffusion, which may limit intercellular diffusion.

  16. Activation of L-type calcium channels is required for gap junction-mediated intercellular calcium signaling in osteoblastic cells

    NASA Technical Reports Server (NTRS)

    Jorgensen, Niklas Rye; Teilmann, Stefan Cuoni; Henriksen, Zanne; Civitelli, Roberto; Sorensen, Ole Helmer; Steinberg, Thomas H.

    2003-01-01

    The propagation of mechanically induced intercellular calcium waves (ICW) among osteoblastic cells occurs both by activation of P2Y (purinergic) receptors by extracellular nucleotides, resulting in "fast" ICW, and by gap junctional communication in cells that express connexin43 (Cx43), resulting in "slow" ICW. Human osteoblastic cells transmit intercellular calcium signals by both of these mechanisms. In the current studies we have examined the mechanism of slow gap junction-dependent ICW in osteoblastic cells. In ROS rat osteoblastic cells, gap junction-dependent ICW were inhibited by removal of extracellular calcium, plasma membrane depolarization by high extracellular potassium, and the L-type voltage-operated calcium channel inhibitor, nifedipine. In contrast, all these treatments enhanced the spread of P2 receptor-mediated ICW in UMR rat osteoblastic cells. Using UMR cells transfected to express Cx43 (UMR/Cx43) we confirmed that nifedipine sensitivity of ICW required Cx43 expression. In human osteoblastic cells, gap junction-dependent ICW also required activation of L-type calcium channels and influx of extracellular calcium.

  17. The B[a]P-increased intercellular communication via translocation of connexin-43 into gap junctions reduces apoptosis

    SciTech Connect

    Tekpli, X.; Rivedal, E.; Gorria, M.; Landvik, N.E.; Rissel, M.; Dimanche-Boitrel, M.-T.; Baffet, G.; Holme, J.A.; Lagadic-Gossmann, D.

    2010-01-15

    Gap junctions are channels in plasma membrane composed of proteins called connexins. These channels are organized in special domains between cells, and provide for direct gap junctional intercellular communication (GJIC), allowing diffusion of signalling molecules < 1 kD. GJIC regulates cell homeostasis and notably the balance between proliferation, cell cycle arrest, cell survival and apoptosis. Here, we have investigated benzo[a]pyrene (B[a]P) effects on GJIC and on the subcellular localization of the major protein of gap junction: connexin-43 (Cx43). Our results showed that B[a]P increased GJIC between mouse hepatoma Hepa1c1c7 cells via translocation of Cx43 from Golgi apparatus and lipid rafts into gap junction plaques. Interestingly, inhibition of GJIC by chlordane or small interference RNA directed against Cx43 enhanced B[a]P-induced apoptosis in Hepa1c1c7 cells. The increased apoptosis caused by inhibition of GJIC appeared to be mediated by ERK/MAPK pathway. It is suggested that B[a]P could induce transfer of cell survival signal or dilute cell death signal via regulation of ERK/MAPK through GJIC.

  18. Gap junctional communication modulates gene transcription by altering the recruitment of Sp1 and Sp3 to connexin-response elements in osteoblast promoters

    NASA Technical Reports Server (NTRS)

    Stains, Joseph P.; Lecanda, Fernando; Screen, Joanne; Towler, Dwight A.; Civitelli, Roberto

    2003-01-01

    Loss-of-function mutations of gap junction proteins, connexins, represent a mechanism of disease in a variety of tissues. We have shown that recessive (gene deletion) or dominant (connexin45 overexpression) disruption of connexin43 function results in osteoblast dysfunction and abnormal expression of osteoblast genes, including down-regulation of osteocalcin transcription. To elucidate the molecular mechanisms of gap junction-sensitive transcriptional regulation, we systematically analyzed the rat osteocalcin promoter for sensitivity to gap junctional intercellular communication. We identified an Sp1/Sp3 containing complex that assembles on a minimal element in the -70 to -57 region of the osteocalcin promoter in a gap junction-dependent manner. This CT-rich connexin-response element is necessary and sufficient to confer gap junction sensitivity to the osteocalcin proximal promoter. Repression of osteocalcin transcription occurs as a result of displacement of the stimulatory Sp1 by the inhibitory Sp3 on the promoter when gap junctional communication is perturbed. Modulation of Sp1/Sp3 recruitment also occurs on the collagen Ialpha1 promoter and translates into gap junction-sensitive transcriptional control of collagen Ialpha1 gene expression. Thus, regulation of Sp1/Sp3 recruitment to the promoter may represent a potential general mechanism for transcriptional control of target genes by signals passing through gap junctions.

  19. Down-regulation of membrana granulosa cell gap junctions is correlated with irreversible commitment to resume meiosis in golden Syrian hamster oocytes.

    PubMed

    Racowsky, C; Baldwin, K V; Larabell, C A; DeMarais, A A; Kazilek, C J

    1989-08-01

    One of the currently popular hypotheses for the regulation of meiotic resumption in mammalian oocytes proposes that the preovulatory surge of luteinizing hormone causes down-regulation of follicular gap junctions, which in turn disrupts transfer of a meiotic arrester from the somatic cells into the oocyte. The present study has investigated this hypothesis by examining the integrity of membrana granulosa cell gap junctions during the period of irreversible commitment to maturation of golden Syrian hamster oocytes in vivo. Our results have revealed a significant progressive decrease in the fractional area of cell surface occupied by gap junction membrane with increasing percentage of oocytes irreversibly committed to mature (1.946% and 0.921% fractional gap junction area at 0% and 100% oocytes irreversibly committed to mature, respectively, P less than 0.05). This net loss of membrana granulosa cell gap junctions from the cell surface was accompanied by a significant decrease in density of gap junction particles, whether they were arranged in rectilinear or non-rectilinear packing patterns. Furthermore, the number of gap junction particles per unit area of surface membrane scanned also underwent a significant progressive decrease with increasing percentage of oocytes irreversibly committed to mature. These data with the hamster are consistent with the hypothesis that down-regulation of membrana granulosa cell gap junctions may be of central importance in the regulation of gonadotropic stimulation of meiotic resumption in mammalian oocytes.

  20. Transient photocurrent in molecular junctions: singlet switching on and triplet blocking.

    PubMed

    Petrov, E G; Leonov, V O; Snitsarev, V

    2013-05-14

    The kinetic approach adapted to describe charge transmission in molecular junctions, is used for the analysis of the photocurrent under conditions of moderate light intensity of the photochromic molecule. In the framework of the HOMO-LUMO model for the single electron molecular states, the analytic expressions describing the temporary behavior of the transient and steady state sequential (hopping) as well as direct (tunnel) current components have been derived. The conditions at which the current components achieve their maximal values are indicated. It is shown that if the rates of charge transmission in the unbiased molecular diode are much lower than the intramolecular singlet-singlet excitation/de-excitation rate, and the threefold degenerated triplet excited state of the molecule behaves like a trap blocking the charge transmission, a possibility of a large peak-like transient switch-on photocurrent arises.

  1. Involvement of the adrenal glands and testis in gap junction formation via testosterone within the male rat anterior pituitary gland.

    PubMed

    Sakuma, Eisuke; Wada, Ikuo; Otsuka, Takanobu; Wakabayashi, Kenjiro; Ito, Kinya; Soji, Tsuyoshi; Herbert, Damon C

    2012-12-01

    We investigated the influence of testicular and adrenal androgens on the presence of gap junctions between folliculo-stellate cells in the anterior pituitary glands of 60-day-old Wistar-Imamichi strain male rats. The animals were separated into six groups: Group A served as the controls and had free access to a normal diet and water, Group B was given a normal diet and 0.9% NaCl for their drinking water as the controls of adrenalectomized groups, Group C was castrated, Group D was adrenalectomized, Group E was both castrated and adrenalectomized, and Group F was also both castrated and adrenalectomized. In addition, the animals of Group F were administered a dose of testosterone that is known to produce high physiological levels of the hormones in plasma. Five rats from each group were sacrificed 1, 2, 3, 4, 5, 6, and 7 days after their respective operation, and the anterior pituitary glands were removed and prepared for observation by transmission electron microscopy. We quantified the number of follicles and gap junctions and calculated the rate of occurrence as the ratio of the number of gap junctions existing between folliculo-stellate cells per intersected follicle profile. Simultaneous removal of adrenal glands with castration resulted in a significantly decrease in the number of gap junctions, whereas the administration of testosterone to these rats compensated for this change. These observations indicate that the preservation of gap junctions between folliculo-stellate cells is mainly dependent on androgens from both the testes and adrenal glands in adult male rats.

  2. Amitriptyline up-regulates connexin43-gap junction in rat cultured cortical astrocytes via activation of the p38 and c-Fos/AP-1 signalling pathway

    PubMed Central

    Morioka, N; Suekama, K; Zhang, F F; Kajitani, N; Hisaoka-Nakashima, K; Takebayashi, M; Nakata, Y

    2014-01-01

    Background and Purpose Intercellular communication via gap junctions, comprised of connexin (Cx) proteins, allow for communication between astrocytes, which in turn is crucial for maintaining CNS homeostasis. The expression of Cx43 is decreased in post-mortem brains from patients with major depression. A potentially novel mechanism of tricyclic antidepressants is to increase the expression and functioning of gap junctions in astrocytes. Experimental Approach The effect of amitriptyline on the expression of Cx43 and gap junction intercellular communication (GJIC) in rat primary cultured cortical astrocytes was investigated. We also investigated the role of p38 MAPK intracellular signalling pathway in the amitriptyline-induced expression of Cx43 and GJIC. Key Results Treatment with amitriptyline for 48 h significantly up-regulated Cx43 mRNA, protein and GJIC. The up-regulation of Cx43 was not monoamine-related since noradrenaline, 5-HT and dopamine did not induce Cx43 expression and pretreatment with α- and β-adrenoceptor antagonists had no effect. Intracellular signalling involved p38 MAPK, as amitriptyline significantly increased p38 MAPK phosphorylation and Cx43 expression and GJIC were significantly blocked by the p38 inhibitor SB 202190. Furthermore, amitriptyline-induced Cx43 expression and GJIC were markedly reduced by transcription factor AP-1 inhibitors (curcumin and tanshinone IIA). The translocation of c-Fos from the cytosol and the nucleus of cortical astrocytes was increased by amitriptyline, and this response was dependent on p38 activity. Conclusion and Implication These findings indicate a novel mechanism of action of amitriptyline through cortical astrocytes, and further suggest that targeting this mechanism could lead to the development of a new class of antidepressants. PMID:24641259

  3. Heart Rate and Extracellular Sodium and Potassium Modulation of Gap Junction Mediated Conduction in Guinea Pigs

    PubMed Central

    Entz, Michael; George, Sharon A.; Zeitz, Michael J.; Raisch, Tristan; Smyth, James W.; Poelzing, Steven

    2016-01-01

    Background: Recent studies suggested that cardiac conduction in murine hearts with narrow perinexi and 50% reduced connexin43 (Cx43) expression is more sensitive to relatively physiological changes of extracellular potassium ([K+]o) and sodium ([Na+]o). Purpose: Determine whether similar [K+]o and [Na+]o changes alter conduction velocity (CV) sensitivity to pharmacologic gap junction (GJ) uncoupling in guinea pigs. Methods: [K+]o and [Na+]o were varied in Langendorff perfused guinea pig ventricles (Solution A: [K+]o = 4.56 and [Na+]o = 153.3 mM. Solution B: [K+]o = 6.95 and [Na+]o = 145.5 mM). Gap junctions were inhibited with carbenoxolone (CBX) (15 and 30 μM). Epicardial CV was quantified by optical mapping. Perinexal width was measured with transmission electron microscopy. Total and phosphorylated Cx43 were evaluated by western blotting. Results: Solution composition did not alter CV under control conditions or with 15μM CBX. Decreasing the basic cycle length (BCL) of pacing from 300 to 160 ms decreased CV uniformly with both solutions. At 30 μM CBX, a change in solution did not alter CV either longitudinally or transversely at BCL = 300 ms. However, reducing BCL to 160 ms caused CV to decrease more in hearts perfused with Solution B than A. Solution composition did not alter perinexal width, nor did it change total or phosphorylated serine 368 Cx43 expression. These data suggest that the solution dependent CV changes were independent of altered perinexal width or GJ coupling. Action potential duration was always shorter in hearts perfused with Solution B than A, independent of pacing rate and/or CBX concentration. Conclusions: Increased heart rate and GJ uncoupling can unmask small CV differences caused by changing [K+]o and [Na+]o. These data suggest that modulating extracellular ionic composition may be a novel anti-arrhythmic target in diseases with abnormal GJ coupling, particularly when heart rate cannot be controlled. PMID:26869934

  4. The gap junction inhibitor 2-aminoethoxy-diphenyl-borate protects against acetaminophen hepatotoxicity by inhibiting cytochrome P450 enzymes and c-jun N-terminal kinase activation

    SciTech Connect

    Du, Kuo; Williams, C. David; McGill, Mitchell R.; Xie, Yuchao; Farhood, Anwar; Vinken, Mathieu; Jaeschke, Hartmut

    2013-12-15

    Acetaminophen (APAP) hepatotoxicity is the leading cause of acute liver failure in the US. Although many aspects of the mechanism are known, recent publications suggest that gap junctions composed of connexin32 function as critical intercellular communication channels which transfer cytotoxic mediators into neighboring hepatocytes and aggravate liver injury. However, these studies did not consider off-target effects of reagents used in these experiments, especially the gap junction inhibitor 2-aminoethoxy-diphenyl-borate (2-APB). In order to assess the mechanisms of protection of 2-APB in vivo, male C56Bl/6 mice were treated with 400 mg/kg APAP to cause extensive liver injury. This injury was prevented when animals were co-treated with 20 mg/kg 2-APB and was attenuated when 2-APB was administered 1.5 h after APAP. However, the protection was completely lost when 2-APB was given 4–6 h after APAP. Measurement of protein adducts and c-jun-N-terminal kinase (JNK) activation indicated that 2-APB reduced both protein binding and JNK activation, which correlated with hepatoprotection. Although some of the protection was due to the solvent dimethyl sulfoxide (DMSO), in vitro experiments clearly demonstrated that 2-APB directly inhibits cytochrome P450 activities. In addition, JNK activation induced by phorone and tert-butylhydroperoxide in vivo was inhibited by 2-APB. The effects against APAP toxicity in vivo were reproduced in primary cultured hepatocytes without use of DMSO and in the absence of functional gap junctions. We conclude that the protective effect of 2-APB was caused by inhibition of metabolic activation of APAP and inhibition of the JNK signaling pathway and not by blocking connexin32-based gap junctions. - Highlights: • 2-APB protected against APAP-induced liver injury in mice in vivo and in vitro • 2-APB protected by inhibiting APAP metabolic activation and JNK signaling pathway • DMSO inhibited APAP metabolic activation as the solvent of 2-APB

  5. Gap-Junctional Single-Channel Permeability for Fluorescent Tracers in Mammalian Cell Cultures

    PubMed Central

    Eckert, Reiner

    2006-01-01

    We have developed a simple dye transfer method that allows quantification of the gap-junction permeability of small cultured cells. Fluorescent dyes (calcein and Lucifer yellow) were perfused into one cell of an isolated cell pair using a patch-type micropipette in the tight-seal whole cell configuration. Dye spreading into the neighboring cells was monitored using a low-light charge-coupled device camera. Permeation rates for calcein and Lucifer yellow were then estimated by fitting the time course of the fluorescence intensities in both cells. For curve fitting, we used a set of model equations derived from a compartment model of dye distribution. The permeation rates were correlated to the total ionic conductance of the gap junction measured immediately after the perfusion experiment. Assuming that dye permeation is through a unit-conductance channel, we were then able to calculate the single-channel permeance for each tracer dye. We have applied this technique to HeLa cells stably transfected with rat-Cx46 and Cx43, and to BICR/M1Rk cells, a rat mammary tumor cell line that has very high dye coupling through endogenous Cx43 channels. Scatter plots of permeation rates versus junctional conductance did not show a strictly linear correlation of ionic versus dye permeance, as would have been expected for a simple pore. Instead, we found that the data scatter within a wide range of different single-channel permeances. In BICR/M1Rk cells, the lower limiting single-channel permeance is 2.2 ± 2.0 × 10−12 mm3/s and the upper limit is 50 × 10−12 mm3/s for calcein and 6.8 ± 2.8 × 10−12 mm3/s and 150 × 10−12 mm3/s for Lucifer yellow, respectively. In HeLa-Cx43 transfectants we found 2.0 ± 2.4 × 10−12 mm3/s and 95 × 10−12 mm3/s for calcein and 2.1 ± 6.8 × 10−12 mm3/s and 80 × 10−12 mm3/s for Lucifer yellow, and in HeLa-Cx46 transfectants 1.7 ± 0.3 × 10−12 mm3/s and 120 × 10−12 mm3/s for calcein and 1.3 ± 1.1 × 10−12 mm3/s and 34 × 10

  6. Bay or baylike regions of polycyclic aromatic hydrocarbons were potent inhibitors of Gap junctional intercellular communication.

    PubMed Central

    Weis, L M; Rummel, A M; Masten, S J; Trosko, J E; Upham, B L

    1998-01-01

    Many polycyclic aromatic hydrocarbons (PAHs) are known carcinogens, and a considerable amount of research has been devoted to predicting the tumor-initiating potential of PAHs based on chemical structure. However, there has been little research into the effects of PAHs on the epigenetic events of tumor promotion and no structural correlation has been made thereof. Gap junctional intercellular communication (GJIC) activity was used in this study as an epigenetic biomarker to determine the structure-activity relationships of twelve different PAHs. The PAHs used were naphthalene, 1-methylnaphthalene, 2-methylnaphthalene, anthracene, 1-methylanthracene, 2-methylanthracene, 9-methylanthracene, 9, 10-dimethylanthracene, phenanthrene, fluorene, 1-methylfluorene, and fluoranthene. Results showed that PAHs containing bay or baylike regions inhibited GJIC more than did the linear PAHs. The nonnaphthalene PAHs were not cytotoxic as determined by a vital dye uptake assay, but the naphthalene compounds were cytotoxic at the higher doses, indicating that the down regulation of GJIC by these naphthalenes could be a consequence of general membrane damage. Inhibition of GJIC by all the inhibitory PAHs was reversed when the cells were refreshed with PAH-free growth medium. Inhibition of GJIC occurred within 0.5-5 min and correlated with the aqueous solubility of the PAHs. The present study revealed that there are structural determinants of epigenetic toxicity as determined by GJIC activity. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 PMID:9417772

  7. Extract from the Zooxanthellate Jellyfish Cotylorhiza tuberculata Modulates Gap Junction Intercellular Communication in Human Cell Cultures

    PubMed Central

    Leone, Antonella; Lecci, Raffaella Marina; Durante, Miriana; Piraino, Stefano

    2013-01-01

    On a global scale, jellyfish populations in coastal marine ecosystems exhibit increasing trends of abundance. High-density outbreaks may directly or indirectly affect human economical and recreational activities, as well as public health. As the interest in biology of marine jellyfish grows, a number of jellyfish metabolites with healthy potential, such as anticancer or antioxidant activities, is increasingly reported. In this study, the Mediterranean “fried egg jellyfish” Cotylorhiza tuberculata (Macri, 1778) has been targeted in the search forputative valuable bioactive compounds. A medusa extract was obtained, fractionated, characterized by HPLC, GC-MS and SDS-PAGE and assayed for its biological activity on breast cancer cells (MCF-7) and human epidermal keratinocytes (HEKa). The composition of the jellyfish extract included photosynthetic pigments, valuable ω-3 and ω-6 fatty acids, and polypeptides derived either from jellyfish tissues and their algal symbionts. Extract fractions showed antioxidant activity and the ability to affect cell viability and intercellular communication mediated by gap junctions (GJIC) differentially in MCF-7and HEKa cells. A significantly higher cytotoxicity and GJIC enhancement in MCF-7 compared to HEKa cells was recorded. A putative action mechanism for the anticancer bioactivity through the modulation of GJIC has been hypothesized and its nutraceutical and pharmaceutical potential was discussed. PMID:23697954

  8. Anomalous Inner-Gap Structure in Transport Characteristics of Superconducting Junctions with Degraded Interfaces.

    PubMed

    Zhitlukhina, E; Devyatov, I; Egorov, O; Belogolovskii, M; Seidel, P

    2016-12-01

    Quantitative description of charge transport across tunneling and break-junction devices with novel superconductors encounters some problems not present or not as severe for traditional superconducting materials. In this work, we explain unexpected features in related transport characteristics as an effect of a degraded nanoscaled sheath at the superconductor surface. A model capturing the main aspects of the ballistic charge transport across hybrid superconducting structures with normally conducting nanometer-thick interlayers is proposed. The calculations are based on a scattering formalism taking into account Andreev electron-into-hole (and inverse) reflections at normal metal-superconductor interfaces as well as transmission and backscattering events in insulating barriers between the electrodes. Current-voltage characteristics of such devices exhibit a rich diversity of anomalous (from the viewpoint of the standard theory) features, in particular shift of differential-conductance maxima at gap voltages to lower positions and appearance of well-defined dips instead expected coherence peaks. We compare our results with related experimental data. PMID:26842791

  9. Fast structural responses of gap junction membrane domains to AB5 toxins.

    PubMed

    Majoul, Irina V; Gao, Liang; Betzig, Eric; Onichtchouk, Daria; Butkevich, Eugenia; Kozlov, Yuri; Bukauskas, Feliksas; Bennett, Michael V L; Lippincott-Schwartz, Jennifer; Duden, Rainer

    2013-10-29

    Gap junctions (GJs) represent connexin-rich membrane domains that connect interiors of adjoining cells in mammalian tissues. How fast GJs can respond to bacterial pathogens has not been known previously. Using Bessel beam plane illumination and confocal spinning disk microscopy, we found fast (~500 ms) formation of connexin-depleted regions (CDRs) inside GJ plaques between cells exposed to AB5 toxins. CDR formation appears as a fast redistribution of connexin channels within GJ plaques with minor changes in outline or geometry. CDR formation does not depend on membrane trafficking or submembrane cytoskeleton and has no effect on GJ conductance. However, CDR responses depend on membrane lipids, can be modified by cholesterol-clustering agents and extracellular K(+) ion concentration, and influence cAMP signaling. The CDR response of GJ plaques to bacterial toxins is a phenomenon observed for all tested connexin isoforms. Through signaling, the CDR response may enable cells to sense exposure to AB5 toxins. CDR formation may reflect lipid-phase separation events in the biological membrane of the GJ plaque, leading to increased connexin packing and lipid reorganization. Our data demonstrate very fast dynamics (in the millisecond-to-second range) within GJ plaques, which previously were considered to be relatively stable, long-lived structures.

  10. HPV16 E6 Controls the Gap Junction Protein Cx43 in Cervical Tumour Cells

    PubMed Central

    Sun, Peng; Dong, Li; MacDonald, Alasdair I.; Akbari, Shahrzad; Edward, Michael; Hodgins, Malcolm B.; Johnstone, Scott R.; Graham, Sheila V.

    2015-01-01

    Human papillomavirus type 16 (HPV16) causes a range of cancers including cervical and head and neck cancers. HPV E6 oncoprotein binds the cell polarity regulator hDlg (human homologue of Drosophila Discs Large). Previously we showed in vitro, and now in vivo, that hDlg also binds Connexin 43 (Cx43), a major component of gap junctions that mediate intercellular transfer of small molecules. In HPV16-positive non-tumour cervical epithelial cells (W12G) Cx43 localised to the plasma membrane, while in W12T tumour cells derived from these, it relocated with hDlg into the cytoplasm. We now provide evidence that E6 regulates this cytoplasmic pool of Cx43. E6 siRNA depletion in W12T cells resulted in restoration of Cx43 and hDlg trafficking to the cell membrane. In C33a HPV-negative cervical tumour cells expressing HPV16 or 18 E6, Cx43 was located primarily in the cytoplasm, but mutation of the 18E6 C-terminal hDlg binding motif resulted in redistribution of Cx43 to the membrane. The data indicate for the first time that increased cytoplasmic E6 levels associated with malignant progression alter Cx43 trafficking and recycling to the membrane and the E6/hDlg interaction may be involved. This suggests a novel E6-associated mechanism for changes in Cx43 trafficking in cervical tumour cells. PMID:26445057

  11. Neuroprotection in the treatment of glaucoma--A focus on connexin43 gap junction channel blockers.

    PubMed

    Chen, Ying-Shan; Green, Colin R; Danesh-Meyer, Helen V; Rupenthal, Ilva D

    2015-09-01

    Glaucoma is a form of optic neuropathy and a common cause of blindness, affecting over 60 million people worldwide with an expected rise to 80 million by 2020. Successful treatment is challenging due to the various causes of glaucoma, undetectable symptoms at an early stage and inefficient delivery of drugs to the back of the eye. Conventional glaucoma treatments focus on the reduction of elevated intraocular pressure (IOP) using topical eye drops. However, their efficacy is limited to patients who suffer from high IOP glaucoma and do not address the underlying susceptibility of retinal ganglion cells (RGC) to degeneration. Glaucoma is known as a neurodegenerative disease which starts with RGC death and eventually results in damage of the optic nerve. Neuroprotective strategies therefore offer a novel treatment option for glaucoma by not only preventing neuronal loss but also disease progression. This review firstly gives an overview of the pathophysiology of glaucoma as well as current treatment options including conventional and novel delivery strategies. It then summarizes the rational for neuroprotection as a novel therapy for glaucomatous neuropathies and reviews current potential neuroprotective strategies to preserve RGC, with a focus on connexin43 (Cx43) gap junction channel blockers.

  12. Activated immune response in an inherited leukodystrophy disease caused by the loss of oligodendrocyte gap junctions.

    PubMed

    Wasseff, Sameh K; Scherer, Steven S

    2015-10-01

    Oligodendrocyte:oligodendrocyte (O:O) gap junction (GJ) coupling is a widespread and essential feature of the CNS, and is mediated by connexin47 (Cx47) and Cx32. Loss of function mutations affecting Cx47 results in a severe leukodystrophy, Pelizeus-Merzbacher-like disease (also known as Hypomyelinating Leukodystrophy 2), which can be reproduced in mice lacking both Cx47 and Cx32. Here we report the gene expression profile of the cerebellum--an affected brain region--in mice lacking both Cx47 and Cx32. Of the 43,174 mRNA probes examined, we find decreased expression of 23 probes (corresponding to 23 genes) and increased expression of 545 probes (corresponding to 348 genes). Many of the genes with reduced expression map to oligodendrocytes, and two of them (Fa2h and Ugt8a) are involved in the synthesis of myelin lipids. Many of the genes with increased expression map to lymphocytes and microglia, and involved in leukotrienes/prostaglandins synthesis and chemokines/cytokines interactions and signaling pathways. In accord, immunostaining showed T- and B-cells in the cerebella of mutant mice as well as activated microglia and astrocytes. Thus, in addition to the loss of GJ coupling, there is a prominent immune response in mice lacking both Cx47 and Cx32.

  13. Activated Immune Response in an Inherited Leukodystrophy Disease Caused by the Loss of Oligodendrocyte Gap Junctions

    PubMed Central

    Wasseff, Sameh K.; Scherer, Steven S.

    2015-01-01

    Oligodendrocyte:oligodendrocyte (O:O) gap junction (GJ) coupling is a widespread and essential feature of the CNS, and is mediated by connexin47 (Cx47) and Cx32. Loss of function mutations affecting Cx47 results in a severe leukodystrophy, Pelizeus-Merzbacher-like disease (also known as Hypomyelinating Leukodystrophy 2), which can be reproduced in mice lacking both Cx47 and Cx32. Here we report the gene expression profile of the cerebellum – an affected brain region – in mice lacking both Cx47 and Cx32. Of the 43,174 mRNA probes examined, we find decreased expression of 23 probes (corresponding to 23 genes) and increased expression of 545 probes (corresponding to 348 genes). Many of the genes with reduced expression map to oligodendrocytes, and two of them (Fa2h and Ugt8a) are involved in the synthesis of myelin lipids. Many of the genes with increased expression map to microglia and lymphocytes, and to leukotriene/prostaglandin synthesis and chemokine/cytokine pathways. In accord, immunostaining showed activated microglia and astrocytes, as well as T- and B-cells in the cerebella of mutant mice. Thus, in addition to the loss of GJ coupling, there is a prominent immune response in mice lacking both Cx47 and Cx32. PMID:26051537

  14. Phenotypic variability in gap junction syndromic skin disorders: experience from KID and Clouston syndromes' clinical diagnostics.

    PubMed

    Kutkowska-Kaźmierczak, Anna; Niepokój, Katarzyna; Wertheim-Tysarowska, Katarzyna; Giza, Aleksandra; Mordasewicz-Goliszewska, Maria; Bal, Jerzy; Obersztyn, Ewa

    2015-08-01

    Connexins belong to the family of gap junction proteins which enable direct cell-to-cell communication by forming channels in adjacent cells. Mutations in connexin genes cause a variety of human diseases and, in a few cases, result in skin disorders. There are significant differences in the clinical picture of two rare autosomal dominant syndromes: keratitis-ichthyosis-deafness (KID) syndrome and hidrotic ectodermal dysplasia (Clouston syndrome), which are caused by GJB2 and GJB6 mutations, respectively. This is despite the fact that, in both cases, malfunctioning of the same family proteins and some overlapping clinical features (nail dystrophy, hair loss, and palmoplantar keratoderma) is observed. KID syndrome is characterized by progressive vascularizing keratitis, ichthyosiform erythrokeratoderma, and neurosensory hearing loss, whereas Clouston syndrome is characterized by nail dystrophy, hypotrichosis, and palmoplantar keratoderma. The present paper presents a Polish patient with sporadic KID syndrome caused by the mutation of p.Asp50Asn in GJB2. The patient encountered difficulties in obtaining a correct diagnosis. The other case presented is that of a family with Clouston syndrome (caused by p.Gly11Arg mutation in GJB6), who are the first reported patients of Polish origin suffering from this disorder. Phenotype diversity among patients with the same genotypes reported to date is also summarized. The conclusion is that proper diagnosis of these syndromes is still challenging and should always be followed by molecular verification. PMID:25575739

  15. Dynamics of sustained reentry in a loop model with discrete gap junction resistances

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Potse, Mark; Vinet, Alain

    2007-08-01

    The dynamics of reentry is studied in a one-dimensional loop of model cardiac cells with discrete intercellular gap junction resistance (R) . Each cell is represented by a continuous cable with ionic current given by a modified Beeler-Reuter formulation. For R below a limiting value, propagation is found to change from period-1 to quasiperiodic (QP) at a critical loop length (Lcrit) that decreases with R . Quasiperiodic reentry exists from Lcrit to a minimum length (Lmin) , which also shortens with R . The decrease of Lcrit(R) is not a simple scaling, but the bifurcation can still be predicted from the slope of the restitution curve giving the duration of the action potential as a function of the diastolic interval. However, the shape of the restitution curve changes with R . An increase of R does not seem to increase the number of possible QP solutions since, as in the continuous cable, only two QP modes of propagation were found despite an extensive search through alternative initial conditions.

  16. Chemopreventive Agents Attenuate Rapid Inhibition of Gap Junctional Intercellular Communication Induced by Environmental Toxicants.

    PubMed

    Babica, Pavel; Čtveráčková, Lucie; Lenčešová, Zuzana; Trosko, James E; Upham, Brad L

    2016-07-01

    Altered gap junctional intercellular communication (GJIC) has been associated with chemical carcinogenesis, where both chemical tumor promoters and chemopreventive agents (CPAs) are known to conversely modulate GJIC. The aim of this study was to investigate whether attenuation of chemically inhibited GJIC represents a common outcome induced by different CPAs, which could be effectively evaluated using in vitro methods. Rat liver epithelial cells WB-F344 were pretreated with a CPA for either 30 min or 24 h, and then exposed to GJIC-inhibiting concentration of a selected tumor promoter or environmental toxicant [12-O-tetradecanoylphorbol-13-acetate (TPA), lindane, fluoranthene, 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT), perfluorooctanoic acid (PFOA), or pentachlorophenol]. Out of nine CPAs tested, quercetin and silibinin elicited the most pronounced effects, preventing the dysregulation of GJIC by all the GJIC inhibitors, but DDT. Metformin and curcumin attenuated the effects of three GJIC inhibitors, whereas the other CPAs prevented the effects of two (diallyl sulfide, emodin) or one (indole-3-carbinol, thymoquinone) GJIC inhibitor. Significant attenuation of chemically induced inhibition of GJIC was observed in 27 (50%) out of 54 possible combinations of nine CPAs and six GJIC inhibitors. Our data demonstrate that in vitro evaluation of GJIC can be used as an effective screening tool for identification of chemicals with potential chemopreventive activity. PMID:27266532

  17. Chemopreventive Agents Attenuate Rapid Inhibition of Gap Junctional Intercellular Communication Induced by Environmental Toxicants.

    PubMed

    Babica, Pavel; Čtveráčková, Lucie; Lenčešová, Zuzana; Trosko, James E; Upham, Brad L

    2016-07-01

    Altered gap junctional intercellular communication (GJIC) has been associated with chemical carcinogenesis, where both chemical tumor promoters and chemopreventive agents (CPAs) are known to conversely modulate GJIC. The aim of this study was to investigate whether attenuation of chemically inhibited GJIC represents a common outcome induced by different CPAs, which could be effectively evaluated using in vitro methods. Rat liver epithelial cells WB-F344 were pretreated with a CPA for either 30 min or 24 h, and then exposed to GJIC-inhibiting concentration of a selected tumor promoter or environmental toxicant [12-O-tetradecanoylphorbol-13-acetate (TPA), lindane, fluoranthene, 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT), perfluorooctanoic acid (PFOA), or pentachlorophenol]. Out of nine CPAs tested, quercetin and silibinin elicited the most pronounced effects, preventing the dysregulation of GJIC by all the GJIC inhibitors, but DDT. Metformin and curcumin attenuated the effects of three GJIC inhibitors, whereas the other CPAs prevented the effects of two (diallyl sulfide, emodin) or one (indole-3-carbinol, thymoquinone) GJIC inhibitor. Significant attenuation of chemically induced inhibition of GJIC was observed in 27 (50%) out of 54 possible combinations of nine CPAs and six GJIC inhibitors. Our data demonstrate that in vitro evaluation of GJIC can be used as an effective screening tool for identification of chemicals with potential chemopreventive activity.

  18. The role of gap junction proteins in the development of neural network functional topology.

    PubMed

    Anava, S; Saad, Y; Ayali, A

    2013-10-01

    Gap junctions (GJs) provide a common form of intercellular communication in most animal cells and tissues, from Hydra to human, including electrical synaptic signalling. Cell coupling via GJs has an important role in development in general, and in neural network development in particular. However, quantitative studies monitoring GJ proteins throughout nervous system development are few. Direct investigations demonstrating a role for GJ proteins by way of experimental manipulation of their expression are also rare. In the current work we focused on the role of invertebrate GJ proteins (innexins) in the in vitro development of neural network functional topology, using two-dimensional neural culture preparations derived from the frontal ganglion of the desert locust, Schistocerca gregaria. Immunocytochemistry and quantitative real-time PCR revealed a dynamic expression pattern of the innexins during development of the cultured networks. Changes were observed both in the levels and in the localization of expression. Down-regulating the expression of innexins, by using double-strand RNA for the first time in locust neural cultures, induced clear changes in network morphology, as well as inhibition of synaptogenesis, thus suggesting a role for GJs during the development of the functional topology of neuronal networks.

  19. ``Hybrid'' multi-gap/single-gap Josephson junctions: Evidence of macroscopic quantum tunneling in superconducting-to-normal switching experiments on MgB2/I/Pb and MgB2/I/Sn junctions

    NASA Astrophysics Data System (ADS)

    Carabello, Steve; Lambert, Joseph; Dai, Wenqing; Li, Qi; Chen, Ke; Cunnane, Daniel; Xi, X. X.; Ramos, Roberto

    We report results of superconducting-to-normal switching experiments on MgB2/I/Pb and MgB2/I/Sn junctions, with and without microwaves. These results suggest that the switching behavior is dominated by quantum tunneling through the washboard potential barrier, rather than thermal excitations or electronic noise. Evidence includes a leveling in the standard deviation of the switching current distribution below a crossover temperature, a Lorentzian shape of the escape rate enhancement peak upon excitation by microwaves, and a narrowing in the histogram of escape counts in the presence of resonant microwave excitation relative to that in the absence of microwaves. These are the first such results reported in ``hybrid'' Josephson tunnel junctions, consisting of multi-gap and single-gap superconducting electrodes.

  20. Behavioral synergism between D(1) and D(2) dopamine receptors in mice does not depend on gap junctions.

    PubMed

    Nolan, Eileen B; Harrison, Laura M; Lahoste, Gerald J; Ruskin, David N

    2007-05-01

    Activation of the D(1) and D(2) classes of dopamine receptor in the striatum synergistically promotes motor stereotypy. The mechanism of D(1)/D(2) receptor interaction remains unclear. To investigate the involvement of electrical synaptic transmission in this phenomenon, genetic inactivation of the neuronal gap junction (GJ) protein connexin 36 and pharmacological blockade of GJs were utilized. Stereotyped motor behavior was quantified after selective activation of D(1) receptors, D(2) receptors, or both receptors. These patterns of activation were produced by injection of the agonist apomorphine (3.0 mg/kg) 30 min after either the D(2) antagonist eticlopride (0.3 mg/kg), the D(1) antagonist SCH 23390 (0.1 mg/kg) or vehicle, respectively. Mixed background C57/BL6-129SvEv mice homozygous or heterozygous for the connexin 36 "knockout" allele displayed potent synergistic interaction between D(1) and D(2) receptor activation, and did not differ significantly from wild-type mice on any measure. All genotypes demonstrated long-lasting stereotypic sniffing, chewing, and/or licking after simultaneous activation of D(1) and D(2) receptors, effects that were absent following selective D(1) or D(2) activation. Swiss-Webster mice treated with the GJ blockers carbenoxolone (35 mg/kg), octanol (350 mg/kg) or mefloquine (50 mg/kg) also demonstrated the normal synergistic interaction between D(1) and D(2) receptors, although these drugs did block the grooming stimulated by selective D(1) receptor activation, independently of D(2) receptors. While D(1) receptor-stimulated grooming depends on GJs composed of connexins or possibly pannexins, the synergistic interaction of D(1) and D(2) receptors in control of stereotypy does not involve GJs.

  1. Oxaliplatin-induced neurotoxicity is mediated through gap junction channels and hemichannels and can be prevented by octanol.

    PubMed

    Kagiava, Alexia; Theophilidis, George; Sargiannidou, Irene; Kyriacou, Kyriacos; Kleopa, Kleopas A

    2015-10-01

    Oxaliplatin-induced neurotoxicity (OIN) is a common complication of chemotherapy without effective treatment. In order to clarify the mechanisms of both acute and chronic OIN, we used an ex-vivo mouse sciatic nerve model. Exposure to 25 μM oxaliplatin caused a marked prolongation in the duration of the nerve evoked compound action potential (CAP) by nearly 1200% within 300 min while amplitude remained constant for over 20 h. This oxaliplatin effect was almost completely reversed by the gap junction (GJ) inhibitor octanol in a concentration-dependent manner. Further GJ blockers showed similar effects although with a narrower therapeutic window. To clarify the target molecule we studied sciatic nerves from connexin32 (Cx32) and Cx29 knockout (KO) mice. The oxaliplatin effect and neuroprotection by octanol partially persisted in Cx29 better than in Cx32 KO nerves, suggesting that oxaliplatin affects both, but Cx32 GJ channels more than Cx29 hemichannels. Oxaliplatin also accelerated neurobiotin uptake in HeLa cells expressing the human ortholog of Cx29, Cx31.3, as well as dye transfer between cells expressing the human Cx32, and this effect was blocked by octanol. Oxaliplatin caused no morphological changes initially (up to 3 h of exposure), but prolonged nerve exposure caused juxtaparonodal axonal edema, which was prevented by octanol. Our study indicates that oxaliplatin causes forced opening of Cx32 channels and Cx29 hemichannels in peripheral myelinated fibers leading to disruption of axonal K(+) homeostasis. The GJ blocker octanol prevents OIN at very low concentrations and should be further studied as a neuroprotectant.

  2. Effects of maturation-inducing hormone on heterologous gap junctional coupling in ovarian follicles of Atlantic croaker

    USGS Publications Warehouse

    Yoshizaki, G.; Patino, R.; Thomas, P.; Bolamba, D.; Chang, Xiaotian

    2001-01-01

    A previous ultrastructural study of heterologous (granulosa cell-oocyte) gap junction (GJ) contacts in ovarian follicles of Atlantic croaker suggested that these contacts disappear late during the process of resumption of oocyte meiosis. This observation suggested that, unlike scenarios proposed for a number of other species, uncoupling of GJ is not necessary for the onset of meiotic resumption in croaker follicles. However, the functionality of heterologous GJ contacts and the temporal association between maturation-inducing hormone (MIH)-induced changes in heterologous coupling and resumption of oocyte meiosis have not been examined in Atlantic croaker. These questions were addressed with a cell-cell coupling assay that is based on the transfer of a GJ marker, Lucifer Yellow, from oocytes to granulosa cells. Follicle-enclosed oocytes injected with Lucifer Yellow allowed transfer of the dye into the follicle cell layer, thus confirming that there is functional heterologous coupling between the oocyte and the granulosa cells. Dye transfer was observed in vitellogenic, full-grown/maturation-incompetent, and full-grown /maturation-competent follicles. Treatment of maturation-competent follicles with MIH caused a time-dependent decline in the number of follicles transferring dye. However, although GJ uncoupling in some of the follicles was observed before germinal vesicle breakdown (GVBD, index of meiotic resumption), about 50% of the follicles maintained the ability to transfer dye even after GVBD had occurred. Further, a known GJ inhibitor (phorbol 12-myristate 13-acetate) blocked heterologous GJ within a time frame similar to that seen with MIH but without inducing any of the morphological changes (including GVBD) associated with follicular maturation. In conclusion, uncoupling of heterologous GJ seems insufficient and unnecessary for the onset of meiotic resumption in ovarian follicles of Atlantic croaker. ?? 2001 Elsevier Science.

  3. Communication of Ca(2+) signals via tunneling membrane nanotubes is mediated by transmission of inositol trisphosphate through gap junctions.

    PubMed

    Lock, Jeffrey T; Parker, Ian; Smith, Ian F

    2016-10-01

    Tunneling membrane nanotubes (TNTs) are thin membrane projections linking cell bodies separated by many micrometers, which are proposed to mediate signaling and even transfer of cytosolic contents between distant cells. Several reports describe propagation of Ca(2+) signals between distant cells via TNTs, but the underlying mechanisms remain poorly understood. Utilizing a HeLa M-Sec cell line engineered to upregulate TNTs we replicated previous findings that mechanical stimulation elicits robust cytosolic Ca(2+) elevations that propagate to surrounding, physically separate cells. However, whereas this was previously interpreted to involve intercellular communication through TNTs, we found that Ca(2+) signal propagation was abolished - even in TNT-connected cells - after blocking ATP-mediated paracrine signaling with a cocktail of extracellular inhibitors. To then establish whether gap junctions may enable cell-cell signaling via TNTs under these conditions, we expressed sfGFP-tagged connexin-43 (Cx43) in HeLa M-Sec cells. We observed robust communication of mechanically-evoked Ca(2+) signals between distant but TNT-connected cells, but only when both cells expressed Cx43. Moreover, we also observed communication of Ca(2+) signals evoked in one cell by local photorelease of inositol 1,4,5-trisphosphate (IP3). Ca(2+) responses in connected cells began after long latencies at intracellular sites several microns from the TNT connection site, implicating intercellular transfer of IP3 and subsequent IP3-mediated Ca(2+) liberation, and not Ca(2+) itself, as the mediator between TNT-connected, Cx43-expressing cells. Our results emphasize the need to control for paracrine transmission in studies of cell-cell signaling via TNTs and indicate that, in this cell line, TNTs do not establish cytosolic continuity between connected cells but rather point to the crucial importance of connexins to enable communication of cytosolic Ca(2+) signals via TNTs.

  4. Role of gap junctions and protein kinase A during the development of oocyte maturational competence in Ayu (Plecoglossus altivelis)

    USGS Publications Warehouse

    Yamamoto, Y.; Yoshizaki, G.; Takeuchi, T.; Soyano, K.; Patino, R.

    2008-01-01

    Meiotic resumption in teleost oocytes is induced by a maturation-inducing hormone (MIH). The sensitivity of oocytes to MIH, also known as oocyte maturational competence (OMC), is induced by LH via mechanisms that are not fully understood. A previous study of Ayu (Plecoglossus altivelis) showed the presence of functional heterologous gap junctions (GJs) between oocytes and their surrounding granulosa cells. The objectives of this study were to determine the role of ovarian GJs and of protein kinase A (PKA) during the acquisition of OMC. We examined the effects of the specific GJ inhibitor carbenoxolone (CBX) and 18??-glycyrrhetinic acid (??-GA) on the LH-(hCG)-dependent acquisition of OMC and on MIH-(17,20??-dihydroxy-4-pregnen-3-one)-dependent meiotic resumption; measured the cAMP content of ovarian follicles during the hCG-dependent acquisition of OMC; and determined the effects of PK activators and inhibitors on hCG-dependent OMC. Production of follicular cAMP increased during the hCG-dependent acquisition of OMC. Both GJ inhibitors and the PKA inhibitor H8-dihydrochloride, but not the PKC inhibitor GF109203X, suppressed the hCG-dependent acquisition of OMC in a dose-dependent manner. The PKA activator forskolin induced OMC with a similar potency to hCG. Unlike previous observations with teleosts where disruption of heterologous GJ either blocks or stimulates meiotic resumption, treatment with GJ inhibitors did not affect MIH-dependent meiotic resumption in maturationally competent follicles of Ayu. These observations suggest that ovarian GJs are essential for LH-dependent acquisition of OMC but not for MIH-dependent meiotic resumption, and that the stimulation of OMC by LH is mediated by cAMP-dependent PKA. They are also consistent with the view that a precise balance between GJ-mediated signals (positive or negative) and oocyte maturational readiness is required for hormonally regulated meiotic resumption. ?? 2007 Elsevier Inc. All rights reserved.

  5. Connexin45-containing neuronal gap junctions in rodent retina also contain connexin36 in both apposing hemiplaques, forming bi-homotypic gap junctions, with scaffolding contributed by zonula occludens-1

    PubMed Central

    Li, Xinbo; Kamasawa, Naomi; Ciolofan, Cristina; Olson, Carl O.; Lu, Shijun; Davidson, Kimberly G.V.; Yasumura, Thomas; Shigemoto, Ryuichi; Rash, John E.; Nagy, James I.

    2008-01-01

    Mammalian retinas contain abundant neuronal gap junctions, particularly in the inner plexiform layer (IPL), where the two principal neuronal connexin proteins are Cx36 and Cx45. Currently undetermined are coupling relationships between these connexins and whether both are expressed together or separately in a neuronal subtype-specific manner. Although Cx45-expressing neurons strongly couple with Cx36-expressing neurons, possibly via heterotypic gap junctions, Cx45 and Cx36 failed to form functional heterotypic channels in vitro. We now show that Cx36 and Cx45 co-expressed in Hela cells were co-localized in immunofluorescent puncta between contacting cells, demonstrating targeting/scaffolding competence for both connexins in vitro. However, Cx36 and Cx45 expressed separately did not form immunofluorescent puncta containing both connexins, supporting lack of heterotypic coupling competence. In IPL, 87% of Cx45 immunofluorescent puncta were co-localized with Cx36, supporting either widespread heterotypic coupling or bi-homotypic coupling. Ultrastructurally, Cx45 was detected in 9% of IPL gap junction hemiplaques, 90-100% of which also contained Cx36, demonstrating connexin co-expression and co-targeting in virtually all IPL neurons that express Cx45. Moreover, double-replicas revealed both connexins in separate domains mirrored on both sides of matched hemiplaques. With prior evidence that Cx36 interacts with PDZ1 domain of ZO-1, we show that Cx45 interacts with PDZ2 domain of ZO-1, and that Cx36, Cx45 and ZO-1 co-immunoprecipitate, suggesting that ZO-1 provides for co-scaffolding of Cx45 with Cx36. These data document that in Cx45-expressing neurons of IPL, Cx45 is almost always accompanied by Cx36, forming “bi-homotypic” gap junctions, with Cx45 structurally coupling to Cx45 and Cx36 coupling to Cx36. PMID:18815262

  6. Effect of gap suppression on the ab -plane conductance spectrum of a normal-metal- da2-b2 -wave-superconductor junction

    NASA Astrophysics Data System (ADS)

    Pairor, P.; Nilmoung, S.

    2004-11-01

    We study the effect of gap suppression near the surface on the conductance spectra of normal metal-{100} and {110} da2-b2 -wave superconductor junctions using the scattering method. We find that for {100} junctions the positions of the maxima of the spectra are not always at the gap maximum of the bulk. The positions depend on the degree of the gap suppression at the interface. For {110} junctions, we find that the width of zero-bias conductance peaks (ZBCPs) in the spectra depends on the magnitude of the gap function at the interface of the junction. The ZBCP is absent when the gap function is totally suppressed at the interface. We also find that the shape of the spectra depends on the slope of the order parameter at the interface.

  7. ATP-sensitive K(+) channels (Kir6.1/SUR1) regulate gap junctional coupling in cochlear-supporting cells.

    PubMed

    Blödow, Alexander; Begandt, Daniela; Bader, Almke; Becker, Annegret; Burghard, Alice; Kühne, Daniela; Kral, Andrej; Ngezahayo, Anaclet

    2016-07-01

    Using the double whole-cell patch-clamp technique, we found that the absence of intracellular ATP led to gap junction uncoupling in cochlear-supporting Hensen cells. The uncoupling was observed as a progressive reduction of the gap junctional electrical conductance from a starting value of approximately 40 nS to less than 0.04 nS within 10-20 min. The conductance rundown was partly avoided by at least 3 mM ATP and completely suppressed by 5 mM ATP or 5'-adenylyl-imidodiphosphate (AMP-PNP), the non-hydrolysable ATP analog, in the pipette filling solution, suggesting that ATP was needed as ligand and not as a hydrolysable energy supplier or substrate for enzymatic reactions. The effect of intracellular ATP was mimicked by the external application of barium, a nonselective blocker of inwardly rectifying K(+) (Kir) channels, and glibenclamide, an inhibitor of the ATP-sensitive Kir channels (KATP). Moreover a Ba(2+)-sensitive whole-cell inward current was observed in absence of internal ATP. We propose that the internal ATP kept the KATP channels in a closed state, thereby maintaining the gap junction coupling of Hensen cells. The immunostaining of guinea pig cochlear tissue revealed for the first time the expression of the KATP channel subunits Kir6.1 and SUR1 in Hensen cells and supported the proposed hypothesis. The results suggest that KATP channels, as regulator of the gap junction coupling in Hensen cells, could be the physiological link between the metabolic state of the supporting cells and K(+) recycling in the organ of Corti. PMID:27030354

  8. ATP-sensitive K(+) channels (Kir6.1/SUR1) regulate gap junctional coupling in cochlear-supporting cells.

    PubMed

    Blödow, Alexander; Begandt, Daniela; Bader, Almke; Becker, Annegret; Burghard, Alice; Kühne, Daniela; Kral, Andrej; Ngezahayo, Anaclet

    2016-07-01

    Using the double whole-cell patch-clamp technique, we found that the absence of intracellular ATP led to gap junction uncoupling in cochlear-supporting Hensen cells. The uncoupling was observed as a progressive reduction of the gap junctional electrical conductance from a starting value of approximately 40 nS to less than 0.04 nS within 10-20 min. The conductance rundown was partly avoided by at least 3 mM ATP and completely suppressed by 5 mM ATP or 5'-adenylyl-imidodiphosphate (AMP-PNP), the non-hydrolysable ATP analog, in the pipette filling solution, suggesting that ATP was needed as ligand and not as a hydrolysable energy supplier or substrate for enzymatic reactions. The effect of intracellular ATP was mimicked by the external application of barium, a nonselective blocker of inwardly rectifying K(+) (Kir) channels, and glibenclamide, an inhibitor of the ATP-sensitive Kir channels (KATP). Moreover a Ba(2+)-sensitive whole-cell inward current was observed in absence of internal ATP. We propose that the internal ATP kept the KATP channels in a closed state, thereby maintaining the gap junction coupling of Hensen cells. The immunostaining of guinea pig cochlear tissue revealed for the first time the expression of the KATP channel subunits Kir6.1 and SUR1 in Hensen cells and supported the proposed hypothesis. The results suggest that KATP channels, as regulator of the gap junction coupling in Hensen cells, could be the physiological link between the metabolic state of the supporting cells and K(+) recycling in the organ of Corti.

  9. Pharmacological and Genetic Evidence for Gap Junctions as Potential New Insecticide Targets in the Yellow Fever Mosquito, Aedes aegypti.

    PubMed

    Calkins, Travis L; Piermarini, Peter M

    2015-01-01

    The yellow fever mosquito Aedes aegypti is an important vector of viral diseases that impact global health. Insecticides are typically used to manage mosquito populations, but the evolution of insecticide resistance is limiting their effectiveness. Thus, identifying new molecular and physiological targets in mosquitoes is needed to facilitate insecticide discovery and development. Here we test the hypothesis that gap junctions are valid molecular and physiological targets for new insecticides. Gap junctions are intercellular channels that mediate direct communication between neighboring cells and consist of evolutionarily distinct proteins in vertebrate (connexins) and invertebrate (innexins) animals. We show that the injection of pharmacological inhibitors of gap junctions (i.e., carbenoxolone, meclofenamic acid, or mefloquine) into the hemolymph of adult female mosquitoes elicits dose-dependent toxic effects, with mefloquine showing the greatest potency. In contrast, when applied topically to the cuticle, carbenoxolone was the only inhibitor to exhibit full efficacy. In vivo urine excretion assays demonstrate that both carbenoxolone and mefloquine inhibit the diuretic output of adult female mosquitoes, suggesting inhibition of excretory functions as part of their mechanism of action. When added to the rearing water of 1st instar larvae, carbenoxolone and meclofenamic acid both elicit dose-dependent toxic effects, with meclofenamic acid showing the greatest potency. Injecting a double-stranded RNA cocktail against innexins into the hemolymph of adult female mosquitoes knock down whole-animal innexin mRNA expression and decreases survival of the mosquitoes. Taken together these data indicate that gap junctions may provide novel molecular and physiological targets for the development of insecticides.

  10. Pharmacological and Genetic Evidence for Gap Junctions as Potential New Insecticide Targets in the Yellow Fever Mosquito, Aedes aegypti

    PubMed Central

    Calkins, Travis L.; Piermarini, Peter M.

    2015-01-01

    The yellow fever mosquito Aedes aegypti is an important vector of viral diseases that impact global health. Insecticides are typically used to manage mosquito populations, but the evolution of insecticide resistance is limiting their effectiveness. Thus, identifying new molecular and physiological targets in mosquitoes is needed to facilitate insecticide discovery and development. Here we test the hypothesis that gap junctions are valid molecular and physiological targets for new insecticides. Gap junctions are intercellular channels that mediate direct communication between neighboring cells and consist of evolutionarily distinct proteins in vertebrate (connexins) and invertebrate (innexins) animals. We show that the injection of pharmacological inhibitors of gap junctions (i.e., carbenoxolone, meclofenamic acid, or mefloquine) into the hemolymph of adult female mosquitoes elicits dose-dependent toxic effects, with mefloquine showing the greatest potency. In contrast, when applied topically to the cuticle, carbenoxolone was the only inhibitor to exhibit full efficacy. In vivo urine excretion assays demonstrate that both carbenoxolone and mefloquine inhibit the diuretic output of adult female mosquitoes, suggesting inhibition of excretory functions as part of their mechanism of action. When added to the rearing water of 1st instar larvae, carbenoxolone and meclofenamic acid both elicit dose-dependent toxic effects, with meclofenamic acid showing the greatest potency. Injecting a double-stranded RNA cocktail against innexins into the hemolymph of adult female mosquitoes knock down whole-animal innexin mRNA expression and decreases survival of the mosquitoes. Taken together these data indicate that gap junctions may provide novel molecular and physiological targets for the development of insecticides. PMID:26325403

  11. Gap junctions composed of connexins 41.8 and 39.4 are essential for colour pattern formation in zebrafish.

    PubMed

    Irion, Uwe; Frohnhöfer, Hans Georg; Krauss, Jana; Çolak Champollion, Tuǧba; Maischein, Hans-Martin; Geiger-Rudolph, Silke; Weiler, Christian; Nüsslein-Volhard, Christiane

    2014-01-01

    Interactions between all three pigment cell types are required to form the stripe pattern of adult zebrafish (Danio rerio), but their molecular nature is poorly understood. Mutations in leopard (leo), encoding Connexin 41.8 (Cx41.8), a gap junction subunit, cause a phenotypic series of spotted patterns. A new dominant allele, leo(tK3), leads to a complete loss of the pattern, suggesting a dominant negative impact on another component of gap junctions. In a genetic screen, we identified this component as Cx39.4 (luchs). Loss-of-function alleles demonstrate that luchs is required for stripe formation in zebrafish; however, the fins are almost not affected. Double mutants and chimeras, which show that leo and luchs are only required in xanthophores and melanophores, but not in iridophores, suggest that both connexins form heteromeric gap junctions. The phenotypes indicate that these promote homotypic interactions between melanophores and xanthophores, respectively, and those cells instruct the patterning of the iridophores.

  12. Diabetes Increases Cryoinjury Size with Associated Effects on Cx43 Gap Junction Function and Phosphorylation in the Mouse Heart.

    PubMed

    Palatinus, Joseph A; Gourdie, Robert G

    2016-01-01

    Diabetic patients develop larger myocardial infarctions and have an increased risk of death following a heart attack. The poor response to myocardial injury in the diabetic heart is likely related to the many metabolic derangements from diabetes that create a poor substrate in general for wound healing, response to injury and infection. Studies in rodents have implicated a role for the gap junction protein connexin 43 (Cx43) in regulating the injury response in diabetic skin wounds. In this study, we sought to determine whether diabetes alters Cx43 molecular interactions or intracellular communication in the cryoinjured STZ type I diabetic mouse heart. We found that epicardial cryoinjury size is increased in diabetic mice and this increase is prevented by preinjury insulin administration. Consistent with these findings, we found that intercellular coupling via gap junctions is decreased after insulin administration in diabetic and nondiabetic mice. This decrease in coupling is associated with a concomitant increase in phosphorylation of Cx43 at serine 368, a residue known to decrease channel conductance. Taken together, our results suggest that insulin regulates both gap junction-mediated intercellular communication and injury propagation in the mouse heart. PMID:27034963

  13. Microfluidic application-specific integrated device for monitoring direct cell-cell communication via gap junctions between individual cell pairs

    NASA Astrophysics Data System (ADS)

    Lee, Philip J.; Hung, Paul J.; Shaw, Robin; Jan, Lily; Lee, Luke P.

    2005-05-01

    Direct cell-cell communication between adjacent cells is vital for the development and regulation of functional tissues. However, current biological techniques are difficult to scale up for high-throughput screening of cell-cell communication in an array format. In order to provide an effective biophysical tool for the analysis of molecular mechanisms of gap junctions that underlie intercellular communication, we have developed a microfluidic device for selective trapping of cell-pairs and simultaneous optical characterizations. Two different cell populations can be brought into membrane contact using an array of trapping channels with a 2μm by 2μm cross section. Device operation was verified by observation of dye transfer between mouse fibroblasts (NIH3T3) placed in membrane contact. Integration with lab-on-a-chip technologies offers promising applications for cell-based analytical tools such as drug screening, clinical diagnostics, and soft-state biophysical devices for the study of gap junction protein channels in cellular communications. Understanding electrical transport mechanisms via gap junctions in soft membranes will impact quantitative biomedical sciences as well as clinical applications.

  14. Diabetes Increases Cryoinjury Size with Associated Effects on Cx43 Gap Junction Function and Phosphorylation in the Mouse Heart

    PubMed Central

    Palatinus, Joseph A.; Gourdie, Robert G.

    2016-01-01

    Diabetic patients develop larger myocardial infarctions and have an increased risk of death following a heart attack. The poor response to myocardial injury in the diabetic heart is likely related to the many metabolic derangements from diabetes that create a poor substrate in general for wound healing, response to injury and infection. Studies in rodents have implicated a role for the gap junction protein connexin 43 (Cx43) in regulating the injury response in diabetic skin wounds. In this study, we sought to determine whether diabetes alters Cx43 molecular interactions or intracellular communication in the cryoinjured STZ type I diabetic mouse heart. We found that epicardial cryoinjury size is increased in diabetic mice and this increase is prevented by preinjury insulin administration. Consistent with these findings, we found that intercellular coupling via gap junctions is decreased after insulin administration in diabetic and nondiabetic mice. This decrease in coupling is associated with a concomitant increase in phosphorylation of Cx43 at serine 368, a residue known to decrease channel conductance. Taken together, our results suggest that insulin regulates both gap junction-mediated intercellular communication and injury propagation in the mouse heart. PMID:27034963

  15. Implanted neural progenitor cells regulate glial reaction to brain injury and establish gap junctions with host glial cells.

    PubMed

    Talaverón, Rocío; Matarredona, Esperanza R; de la Cruz, Rosa R; Macías, David; Gálvez, Victoria; Pastor, Angel M

    2014-04-01

    Transplantation of neural stem/progenitor cells (NPCs) in the lesioned brain is able to restore morphological and physiological alterations induced by different injuries. The local microenvironment created at the site of grafting and the communication between grafted and host cells are crucial in the beneficial effects attributed to the NPC implants. We have previously described that NPC transplantation in an animal model of central axotomy restores firing properties and synaptic coverage of lesioned neurons and modulates their trophic factor content. In this study, we aim to explore anatomical relationships between implanted NPCs and host glia that might account for the implant-induced neuroprotective effects. Postnatal rat subventricular zone NPCs were isolated and grafted in adult rats after transection of the medial longitudinal fascicle. Brains were removed and analyzed eight weeks later. Immunohistochemistry for different glial markers revealed that NPC-grafted animals displayed significantly greater microglial activation than animals that received only vehicle injections. Implanted NPCs were located in close apposition to activated microglia and reactive astrocytes. The gap junction protein connexin43 was present in NPCs and glial cells at the lesion site and was often found interposed within adjacent implanted and glial cells. Gap junctions were identified between implanted NPCs and host astrocytes and less frequently between NPCs and microglia. Our results show that implanted NPCs modulate the glial reaction to lesion and establish the possibility of communication through gap junctions between grafted and host glial cells which might be involved in the restorative effects of NPC implants.

  16. Tissue and species conservation of the vertebrate and arthropod forms of the low molecular weight (16-18000) proteins of gap junctions.

    PubMed

    Buultjens, T E; Finbow, M E; Lane, N J; Pitts, J D

    1988-03-01

    Gap junctions have been isolated from four murine tissues, from rat and Xenopus laevis liver, and from Nephrops norvegicus (Norway lobster) hepatopancreas. The preparations of gap junctions from each vertebrate tissue contain a single major protein, Mr 16,000, and those from Nephrops hepatopancreas a protein, Mr 18,000. Immunocytochemical studies using affinity-purified antibodies raised against gap junctions from Nephrops show the junctional origin of the 18k protein. Immunological studies using Western blotting and biochemical studies using tryptic peptide mapping show no significant differences between the 16k junctional proteins of mouse and hence provide no evidence of tissue variation. These studies also suggest that the mouse, rat, and Xenopus 16k proteins and the Nephrops 18k protein share some common structural features.

  17. Power frequency magnetic field exposure and gap junctional communication in Clone 9 cells.

    PubMed

    Griffin, G D; Khalaf, W; Hayden, K E; Miller, E J; Dowray, V R; Creekmore, A L; Carruthers, C W; Williams, M W; Gailey, P C

    2000-06-01

    Exposure to a power-frequency magnetic field has been reported to produce a statistically significant inhibition of gap junctional communication (GJC) in Clone 9 cells that have been pre-stressed by treatment with low concentrations of chloral hydrate (CH) [C.F. Blackman, J.P. Blanchard, S.G. Benane, D.E. House, J.A. Elder, Double blind test of magnetic field effects on neurite outgrowth, Bioelectromagnetics, 19 (1998) 204-209]. This observation might provide mechanistic insight into the possible role of electromagnetic fields (EMFs) in the carcinogenic process, since cancer cells frequently show decreased or absent GJC, and tumor promoting chemicals have been observed to inhibit GJC. Magnetic field exposure conditions were 45 Hz, 23.8 microT rms + parallel DC 36.6 microT, for 30 min of exposure. The responses of Clone 9 cells to the GJC-inhibiting effects of the tumor promoter 12-O-tetradecanoylphorbol 13-acetate and the chemical CH were evaluated and compared to reported results [S.G. Benane, C.F. Blackman, D.E. House, Effects of perchloroethylene and its metabolites on intercellular communication in Clone 9 rat liver cells, J. Toxicol. Environ. Health, 48 (1996) 427-437]. Before magnetic field exposure, cells were exposed for 24 h to either 3 (nine experiments) or 5 mM (11 experiments) CH to produce GJC of 67% or 50%, respectively, relative to unexposed controls. GJC was assessed microscopically using the scrape-loading technique and a blinded protocol. No statistically significant effect was observed due to magnetic field exposure with either CH concentration.

  18. THE ROLE OF CONNEXIN-36 GAP JUNCTIONS IN ALCOHOL INTOXICATION AND CONSUMPTION

    PubMed Central

    Steffensen, Scott C.; Bradley, Katie D.; Hansen, David M.; Wilcox, Jeffrey D.; Wilcox, Rebecca S.; Allison, David W.; Merrill, Collin B.; Edwards, Jeffrey G.

    2010-01-01

    Ventral tegmental area (VTA) GABA neurons appear to be critical substrates underlying the acute and chronic effects of ethanol on dopamine (DA) neurotransmission in the mesocorticolimbic system implicated in alcohol reward. The aim of this study was to examine the role of midbrain connexin-36 (Cx36) gap junctions (GJs) in ethanol’s rewarding effects. Using behavioral, molecular and electrophysiological methods we compared the effects of ethanol in mature Cx36 knockout (KO) mice and age-matched wild-type (WT) controls. Cx36 KO mice exhibited significantly more ethanol-induced ataxia in the open field test, but less disruption in motor coordination than their WT controls in the rotarod paradigm. Cx36 KO mice and WT mice treated with the Cx36 antagonist mefloquine (MFQ) consumed significantly less ethanol than their vehicle-treated WT controls in the drink-in-the-dark procedure. The firing rate of VTA GABA neurons in WT mice was inhibited by ethanol with an IC50 of 0.25 g/kg, while VTA GABA neurons in KO mice were significantly less sensitive to ethanol. Dopamine neuron sIPSC frequency was reduced by ethanol (30 mM) in WT mice, but not affected in KO mice. Cx36 KO mice evinced a significant up-regulation in DAT and D2 receptors in the VTA, as assessed by quantitative RT-PCR. These findings demonstrate the behavioral relevance of Cx36 GJ-mediated electrical coupling between GABA neurons in mature animals, and suggest that loss of coupling between VTA GABA neurons results in disinhibition of DA neurons, a hyper-DAergic state and lowered hedonic valence for ethanol consumption. PMID:21638336

  19. Gap junction signalling mediated through connexin-43 is required for chick limb development.

    PubMed

    Makarenkova, H; Patel, K

    1999-03-15

    During chick limb development the gap junction protein Connexin-43 (Cx43) is expressed in discrete spatially restricted domains in the apical ectodermal ridge (AER) and mesenchyme of the zone of polarising activity. Antisense oligonucleotides (ODNs) were used to investigate the role of Connexin-43 (Cx43) in the development of the chick limb bud. We have used unmodified ODNs in Pluronic F-127 gel, which is liquid at low temperature but sets at room temperature and so remains situated at the point of application. As a mild surfactant, the gel increases antisense ODN penetration and supplies ODNs to the embryo continually for 12-18 h. We have shown a strong decrease in Cx43 protein expression after application of specific antisense oligonucleotides but the abundance of a closely related protein, Connexin-32 (Cx32), was not affected. Application of antisense Cx43 ODNs at stages 8-15 HH before limb outgrowth resulted in dramatic limb phenotypes. About 40% of treated embryos exhibited defects such as truncation of the limb bud, fragmentation into two or more domains, or complete splitting of the limb bud into two or three branches. Molecular analysis of antisense treated embryos failed to detect Shh or Bmp-2 in anterior structures and suggested that extra lobes seen in nicked and split limbs were not a result of establishment of new signalling centres as found after the application of FGF to the flank. However, examination of markers for the AER showed a number of abnormalities. In severely truncated specimens we were unable to detect the expression of either Fgf-4 or Fgf-8. In both nicked and split limbs the expression of these genes was discontinuous. Down-regulation of Cx43 after the antisense application could be comparable to AER removal and results in distal truncation of the limb bud. Taken together these data suggest the existence of a feedback loop between the FGFs and signalling mediated by Cx43.

  20. INHIBITION OF GAP JUNCTIONAL INTERCELLULAR COMMUNICATION BY PERFLUORINATED COMPOUNDS IN RAT LIVER AND DOLPHIN KIDNEY EPITHELIAL CELL LINES IN VITRO AND SPRAGUE-DAWLEY RATS IN VIVO

    EPA Science Inventory

    Abstract

    Gap Junctional Intercellular Communication (GJIC) is the major pathway of intercellular signal transduction, and is, thus, important for normal cell growth and function. Recent studies have revealed a global distribution of some perfluorinated organic compounds e...

  1. Multi-junction, monolithic solar cell using low-band-gap materials lattice matched to GaAs or Ge

    DOEpatents

    Olson, Jerry M.; Kurtz, Sarah R.; Friedman, Daniel J.

    2001-01-01

    A multi-junction, monolithic, photovoltaic solar cell device is provided for converting solar radiation to photocurrent and photovoltage with improved efficiency. The solar cell device comprises a plurality of semiconductor cells, i.e., active p/n junctions, connected in tandem and deposited on a substrate fabricated from GaAs or Ge. To increase efficiency, each semiconductor cell is fabricated from a crystalline material with a lattice constant substantially equivalent to the lattice constant of the substrate material. Additionally, the semiconductor cells are selected with appropriate band gaps to efficiently create photovoltage from a larger portion of the solar spectrum. In this regard, one semiconductor cell in each embodiment of the solar cell device has a band gap between that of Ge and GaAs. To achieve desired band gaps and lattice constants, the semiconductor cells may be fabricated from a number of materials including Ge, GaInP, GaAs, GaInAsP, GaInAsN, GaAsGe, BGaInAs, (GaAs)Ge, CuInSSe, CuAsSSe, and GaInAsNP. To further increase efficiency, the thickness of each semiconductor cell is controlled to match the photocurrent generated in each cell. To facilitate photocurrent flow, a plurality of tunnel junctions of low-resistivity material are included between each adjacent semiconductor cell. The conductivity or direction of photocurrent in the solar cell device may be selected by controlling the specific p-type or n-type characteristics for each active junction.

  2. Detecting and estimating rectification of gap junction conductance based on simulations of dual-cell recordings from a pair and a network of coupled cells.

    PubMed

    Fortier, Pierre A

    2010-07-21

    Gap junctions can exhibit rectification of conductance. Some reports use inequality of coupling coefficients as the first sign of the possible existence of rectification (Devor and Yarom, 2002; Fan et al., 2005; Levavi-Sivan et al., 2005; Mann-Metzer and Yarom, 1999; Nolan et al., 1999; Szabadics et al., 2001). However, mathematical modeling and simulations of electrotonic coupling between an isolated pair of neurons showed conditions where the coupling coefficients were unreliable indicators of rectification. On the other hand, the transfer resistances were found to be reliable indicators of junctional rectification. The existing mathematical model of cell coupling (Bennett, 1966; Devor and Yarom, 2002; Verselis and Veenstra, 2000) was extended in order to measure rectification of the junctional conductances directly between dual-recorded neurons whether isolated or surrounded by a simulated 3-dimensional network of heterogeneous cells whose gap junctions offered parallel paths for current flow between the recorded neurons. The results showed that the transfer resistances could still detect rectification of the gap junction linking the dual-recorded neurons when embedded in a coupled cell network and that a mathematical model could estimate the conductances in both directions through this gap junction using only data that would be available from real dual-intracellular penetrations which allow electrophysiological recordings and intracellular staining. Rectification of gap junctions in unrecorded cells of a biologically realistic coupled cell network had negligible effects on the voltage responses of the dual-recorded neurons because of minimal current passing through these surrounding cells.

  3. Ablation of Cx47 in transgenic mice leads to the loss of MUPP1, ZONAB and multiple connexins at oligodendrocyte-astrocyte gap junctions.

    PubMed

    Li, Xinbo; Penes, M; Odermatt, B; Willecke, K; Nagy, J I

    2008-10-01

    Oligodendrocytes in CNS are linked to astrocytes by heterotypic gap junctions composed of Cx32 and Cx47 in oligodendrocytes and Cx30 and Cx43 in astrocytes. These gap junctions also harbour regulatory proteins, including ZO-1 and ZONAB. Here, we investigated the localization of multi-PDZ domain protein 1 (MUPP1) at these gap junctions and examined accessory proteins and connexins associated with oligodendrocytes in Cx47-knockout mice. In every CNS region tested, punctate immunolabelling for MUPP1 was found on all oligodendrocyte somata in wild-type mice. These MUPP1-positive puncta were colocalized with punctate labelling for oligodendrocytic Cx32 or Cx47, and with astrocytic Cx30 or Cx43 at oligodendrocyte-astrocyte (O/A) gap junctions, but were not found at astrocyte-astrocyte gap junctions. In Cx47-knockout mice, immunolabelling of MUPP1 and ZONAB was absent on oligodendrocytes, whereas some ZO-1-positive puncta remained. In Cx32-knockout mice, MUPP1 and ZONAB persisted at O/A gap junctions. The absence of Cx47 in Cx47-knockout mice was accompanied by a total loss of punctate labelling for Cx30, Cx32 and Cx43 on oligodendrocyte somata, and by a dramatic increase in immunolabelling for Cx32 along myelinated fibers. These results demonstrate MUPP1 at O/A gap junctions and Cx47-dependent targeting of connexins to the plasma membranes of oligodendrocyte somata. Further, it appears that deficits in myelination reported in Cx47-knockout mice may arise not only from a loss of Cx47 but also from the accompanied loss of gap junctions and their regulatory proteins at oligodendrocyte somata, and that loss of Cx47 may be partly compensated for by elevated levels of Cx32 along myelinated fibers. PMID:18973575

  4. Ablation of Cx47 in transgenic mice leads to the loss of MUPP1, ZONAB and multiple connexins at oligodendrocyte-astrocyte gap junctions

    PubMed Central

    Li, Xinbo; Penes, M.; Odermatt, B.; Willecke, K.; Nagy, J.I.

    2009-01-01

    Oligodendrocytes in CNS are linked to astrocytes by heterotypic gap junctions composed of Cx32 and Cx47 in oligodendrocytes and Cx30 and Cx43 in astrocytes. These gap junctions also harbour regulatory proteins, including ZO-1 and ZONAB. Here, we investigated the localization of multi-PDZ domain protein 1 (MUPP1) at these gap junctions and examined accessory proteins and connexins associated with oligodendrocytes in Cx47 knockout mice. In every CNS region tested, punctate immunolabelling for MUPP1 was found on all oligodendrocyte somata in wild-type mice. These MUPP1-positive puncta were co-localized with punctate labelling for oligodendrocytic Cx32 or Cx47, and with astrocytic Cx30 or Cx43 at oligodendrocyte-astrocyte (O/A) gap junctions, but were not found at astrocyte-astrocyte gap junctions. In Cx47 knockout mice, immunolabelling of MUPP1 and ZONAB was absent on oligodendrocytes, whereas some ZO-1-positive puncta remained. In Cx32 knockout mice, MUPP1 and ZONAB persisted at O/A gap junctions. The absence of Cx47 in Cx47 knockout mice was accompanied by a total loss of punctate labelling for Cx30, Cx32 and Cx43 on oligodendrocyte somata, and by a dramatic increase of immunolabelling for Cx32 along myelinated fibers. These results demonstrate MUPP1 at O/A gap junctions and Cx47-dependent targeting of connexins to the plasma membranes of oligodendrocyte somata. Further, it appears that deficits in myelination reported in Cx47 knockout mice may arise not only from a loss of Cx47, but also from the accompanied loss of gap junctions and their regulatory proteins at oligodendrocyte somata, and that loss of Cx47 may be partly compensated by elevated levels of Cx32 along myelinated fibers. PMID:18973575

  5. Lens ion homeostasis relies on the assembly and/or stability of large connexin 46 gap junction plaques on the broad sides of differentiating fiber cells

    PubMed Central

    Cheng, Catherine; Nowak, Roberta B.; Gao, Junyuan; Sun, Xiurong; Biswas, Sondip K.; Lo, Woo-Kuen; Mathias, Richard T.

    2015-01-01

    The eye lens consists of layers of tightly packed fiber cells, forming a transparent and avascular organ that is important for focusing light onto the retina. A microcirculation system, facilitated by a network of gap junction channels composed of connexins 46 and 50 (Cx46 and Cx50), is hypothesized to maintain and nourish lens fiber cells. We measured lens impedance in mice lacking tropomodulin 1 (Tmod1, an actin pointed-end capping protein), CP49 (a lens-specific intermediate filament protein), or both Tmod1 and CP49. We were surprised to find that simultaneous loss of Tmod1 and CP49, which disrupts cytoskeletal networks in lens fiber cells, results in increased gap junction coupling resistance, hydrostatic pressure, and sodium concentration. Protein levels of Cx46 and Cx50 in Tmod1−/−;CP49−/− double-knockout (DKO) lenses were unchanged, and electron microscopy revealed normal gap junctions. However, immunostaining and quantitative analysis of three-dimensional confocal images showed that Cx46 gap junction plaques are smaller and more dispersed in DKO differentiating fiber cells. The localization and sizes of Cx50 gap junction plaques in DKO fibers were unaffected, suggesting that Cx46 and Cx50 form homomeric channels. We also demonstrate that gap junction plaques rest in lacunae of the membrane-associated actin-spectrin network, suggesting that disruption of the actin-spectrin network in DKO fibers may interfere with gap junction plaque accretion into micrometer-sized domains or alter the stability of large plaques. This is the first work to reveal that normal gap junction plaque localization and size are associated with normal lens coupling conductance. PMID:25740157

  6. Decreases in Gap Junction Coupling Recovers Ca2+ and Insulin Secretion in Neonatal Diabetes Mellitus, Dependent on Beta Cell Heterogeneity and Noise

    PubMed Central

    Westacott, Matthew J.; Hraha, Thomas H.; Pozzoli, Marina; Benninger, Richard K. P.

    2016-01-01

    Diabetes is caused by dysfunction to β-cells in the islets of Langerhans, disrupting insulin secretion and glucose homeostasis. Gap junction-mediated electrical coupling between β-cells in the islet plays a major role in coordinating a pulsatile secretory response at elevated glucose and suppressing insulin secretion at basal glucose. Previously, we demonstrated that a critical number of inexcitable cells can rapidly suppress the overall islet response, as a result of gap junction coupling. This was demonstrated in a murine model of Neonatal Diabetes Mellitus (NDM) involving expression of ATP-insensitive KATP channels, and by a multi-cellular computational model of islet electrical activity. Here we examined the mechanisms by which gap junction coupling contributes to islet dysfunction in NDM. We first verified the computational model against [Ca2+] and insulin secretion measurements in islets expressing ATP-insensitive KATP channels under different levels of gap junction coupling. We then applied this model to predict how different KATP channel mutations found in NDM suppress [Ca2+], and the role of gap junction coupling in this suppression. We further extended the model to account for stochastic noise and insulin secretion dynamics. We found experimentally and in the islet model that reductions in gap junction coupling allow progressively greater glucose-stimulated [Ca2+] and insulin secretion following expression of ATP-insensitive KATP channels. The model demonstrated good correspondence between suppression of [Ca2+] and clinical presentation of different NDM mutations. Significant recoveries in [Ca2+] and insulin secretion were predicted for many mutations upon reductions in gap junction coupling, where stochastic noise played a significant role in the recoveries. These findings provide new understanding how the islet functions as a multicellular system and for the role of gap junction channels in exacerbating the effects of decreased cellular excitability

  7. Voltage clamp limitations of dual whole-cell gap junction current and voltage recordings. I. Conductance measurements.

    PubMed

    Veenstra, R D

    2001-05-01

    Previous correction methods for series access resistance errors in the dual whole-cell configuration did not take into account the effect of nonzero resting potentials (E(rest)) and junctional reversal potentials (E(rev)). Dual whole-cell currents were modeled according to resistor-circuit analysis and two correction formulas for the measurement of junctional currents (I(j)) were assessed. The equations for I(j), derived from Kirchoff's law before and after baseline subtraction of the nonjunctional current, were assessed for accuracy under a variety of whole-cell patch-clamp recording conditions. Both equations accurately correct for dual whole-cell voltage-clamp errors provided that the cellular parameters are included in the nonbaseline subtracted I(j) derivations. Junctional conductance (g(j)) estimates are most reliable at high junctional resistance (R(j)) values and minimize the need for corrective methods based on electrode series and cellular input resistances (R(el) and R(in)). In the "open-cell" configuration, low R(j) values relative to R(in) are required for accurate g(j) estimates. These methods provide the basis for accurate quantitative measurements of junctional resistance (or conductance) of gap junction channels or connexin hemichannels in the dual whole-cell or open-cell configurations. Revaluation of V(j)-dependent gating of rat connexin40 g(j) produced nearly identical Boltzmann fits to previously published data. Continuous g(j)-V(j) curves generated by variable slope V(j) ramps provide for more accurate fits and assessment of the time-dependence of the half-inactivation voltage and net gating charge movement. PMID:11325726

  8. Gap junctions on hippocampal mossy fiber axons demonstrated by thin-section electron microscopy and freeze–fracture replica immunogold labeling

    PubMed Central

    Hamzei-Sichani, Farid; Kamasawa, Naomi; Janssen, William G. M.; Yasumura, Thomas; Davidson, Kimberly G. V.; Hof, Patrick R.; Wearne, Susan L.; Stewart, Mark G.; Young, Steven R.; Whittington, Miles A.; Rash, John E.; Traub, Roger D.

    2007-01-01

    Gap junctions have been postulated to exist between the axons of excitatory cortical neurons based on electrophysiological, modeling, and dye-coupling data. Here, we provide ultrastructural evidence for axoaxonic gap junctions in dentate granule cells. Using combined confocal laser scanning microscopy, thin-section transmission electron microscopy, and grid-mapped freeze–fracture replica immunogold labeling, 10 close appositions revealing axoaxonic gap junctions (≈30–70 nm in diameter) were found between pairs of mossy fiber axons (≈100–200 nm in diameter) in the stratum lucidum of the CA3b field of the rat ventral hippocampus, and one axonal gap junction (≈100 connexons) was found on a mossy fiber axon in the CA3c field of the rat dorsal hippocampus. Immunogold labeling with two sizes of gold beads revealed that connexin36 was present in that axonal gap junction. These ultrastructural data support computer modeling and in vitro electrophysiological data suggesting that axoaxonic gap junctions play an important role in the generation of very fast (>70 Hz) network oscillations and in the hypersynchronous electrical activity of epilepsy. PMID:17640909

  9. Regional changes of AQP0-dependent square array junction and gap junction associated with cortical cataract formation in the Emory mutant mouse.

    PubMed

    Biswas, Sondip K; Brako, Lawrence; Gu, Sumin; Jiang, Jean X; Lo, Woo-Kuen

    2014-10-01

    The Emory mutant mouse has been widely used as an animal model for human senile cataract since it develops late-onset hereditary cataract. Here, we focus on the regional changes of aquaporin-0 (AQP0) and connexins that are associated with the cortical cataract formation in the Emory mutant mice. Emory mutant and CFW wild-type mice at age 1-16 months were used in this study. By using an established photography system with dissecting microscopy, the opacities were first detected at the anterior or posterior lens center surface in Emory mice at age 7 months, and gradually extended toward the equator during the 16 months examined. Scanning EM verified that disorganized and fragmented fiber cells were associated with the areas of opacities within approximately 200 μm from the lens surface, indicating that Emory mouse cataracts belong to the cortical cataracts. Freeze-fracture TEM further confirmed that cortical cataracts exhibited extensive wavy square array junctions, small gap junctions and globules. Immunofluorescence analysis showed that in contrast to the high labeling intensity of AQP0-loop antibody, the labeling of AQP0 C-terminus antibody was decreased considerably in superficial fibers in Emory cataracts. Similarly, a significant decrease in the labeling of the antibody against Cx50 C-terminus, but not Cx46 C-terminus, occurred in superficial and outer cortical fibers in Emory cataracts. Western blotting further revealed that the C-termini of both AQP0 and Cx50 in Emory cataracts were decreased to over 50% to that of the wild-type. Thus, this systematic study concludes that the Emory mouse cataract belongs to the cortical cataract which is due to regional breakdown of superficial fibers associated with formation of AQP0-dependent wavy square array junctions, small gap junctions and globules. The marked decreases of the C-termini of both AQP0 and Cx50 in the superficial fibers may disturb the needed interaction between these two proteins during fiber cell

  10. Determination of effective optical gap in dye/TiO{sub 2} systems inspired by p-n junctions

    SciTech Connect

    Hwang, Kyung-Jun; Jeong, Yonkil E-mail: widipark@gist.ac.kr; Park, Dong-Won E-mail: widipark@gist.ac.kr

    2015-04-06

    The effective optical gap and device current limits of dye-sensitized solar cells (DSCs) were investigated. Optical gap determination was based on an approach that assumes the presence of a nanoscale p-n junction in the DSCs between the bulk TiO{sub 2} semiconductor and the dye-cluster with quantum size effect. On the basis of this approach, the effective optical gap of the dye-absorber was extracted from a relation between external quantum efficiency and photon energy. The short-circuit current density of the fabricated DSCs showed a current loss in the range from 3.7 to 5.1 mA cm{sup −2} compared to the device current limit. This current loss can be mainly attributed to the light reflection of the window layer and the native charge-transfer loss by device imperfections, including subsidiary charge-transfer loss by a nanoscale Schottky junction between TiO{sub 2} and the electrolyte.

  11. Self-Assembled Asymmetric Block Copolymer Membranes: Bridging the Gap from Ultra- to Nanofiltration.

    PubMed

    Yu, Haizhou; Qiu, Xiaoyan; Moreno, Nicolas; Ma, Zengwei; Calo, Victor Manuel; Nunes, Suzana P; Peinemann, Klaus-Viktor

    2015-11-16

    The self-assembly of block copolymers is an emerging strategy to produce isoporous ultrafiltration membranes. However, thus far, it has not been possible to bridge the gap from ultra- to nanofiltration and decrease the pore size of self-assembled block copolymer membranes to below 5 nm without post-treatment. It is now reported that the self-assembly of blends of two chemically interacting copolymers can lead to highly porous membranes with pore diameters as small as 1.5 nm. The membrane containing an ultraporous, 60 nm thin separation layer can fully reject solutes with molecular weights of 600 g mol(-1) in aqueous solutions with a water flux that is more than one order of magnitude higher than the permeance of commercial nanofiltration membranes. Simulations of the membrane formation process by dissipative particle dynamics (DPD) were used to explain the dramatic observed pore size reduction combined with an increase in water flux. PMID:26388216

  12. Pharmacological modulation of gap junction function with the novel compound rotigaptide: a promising new principle for prevention of arrhythmias.

    PubMed

    Kjølbye, Anne Louise; Haugan, Ketil; Hennan, James K; Petersen, Jørgen S

    2007-10-01

    Existing anti-arrhythmic therapy is hampered by lack of efficacy and unacceptable side effects. Thus, ventricular tachycardia and fibrillation remains the strongest predictor of in-hospital mortality in patients with myocardial infarction. In atrial fibrillation, rhythm control with conventional ion channel blockers provide no therapeutic benefit relative to rate control. Several lines of research indicate that impaired gap junctional cell-to-cell coupling between neighbouring cardiomyocytes is critical for the development of cardiac re-entry arrhythmias. Rotigaptide is the first drug that has been developed to prevent arrhythmias by re-establishing gap junctional intercellular communication. During conditions with acute cardiac ischaemia, rotigaptide effectively prevents induction of both ventricular and atrial tachyarrhythmia. Moreover, rotigaptide effectively prevents ischaemia reperfusion arrhythmias. At the cellular level, rotigaptide inhibits ischaemia-induced dephosphorylation of Ser297 and Ser368, which is considered important for the gating of connexin43 gap junction channels. No drug-related toxicity has been demonstrated at plasma concentrations 77,000 times above therapeutic concentrations. In rats and dogs, rotigaptide reduces infarct size following myocardial infarction. A series of phase I trials has been completed in which rotigaptide has been administered intravenously to ~200 healthy persons. No drug-related side effects have been demonstrated in healthy human beings. Clinical safety, tolerability and efficacy in patients with heart disease are being evaluated in ongoing clinical trials. Rotigaptide represents a pioneering pharmacological principle with a highly favourable preclinical and clinical safety profile, which makes this molecule a promising drug candidate for the prevention of cardiac arrhythmias.

  13. Developmental expression and molecular characterization of two gap junction channel proteins expressed during embryogenesis in the grasshopper Schistocerca americana.

    PubMed

    Ganfornina, M D; Sánchez, D; Herrera, M; Bastiani, M J

    1999-01-01

    Gap junctions are membrane channels that directly connect the cytoplasm of neighboring cells, allowing the exchange of ions and small molecules. Two analogous families of proteins, the connexins and innexins, are the channel-forming molecules in vertebrates and invertebrates, respectively. In order to study the role of gap junctions in the embryonic development of the nervous system, we searched for innexins in the grasshopper Schistocerca americana. Here we present the molecular cloning and sequence analysis of two novel innexins, G-Inx(1) and G-Inx(2), expressed during grasshopper embryonic development. The analysis of G-Inx(1) and G-Inx(2) proteins suggests they bear four transmembrane domains, which show strong conservation in members of the innexin family. The study of the phylogenetic relationships between members of the innexin family and the new grasshopper proteins suggests that G-Inx(1) is orthologous to the Drosophila 1(1)-ogre. However, G-Inx(2) seems to be a member of a new group of insect innexins. We used in situ hybridization with the G-Inx(1) and G-Inx(2) cDNA clones, and two polyclonal sera raised against different regions of G-Inx(1) to study the mRNA and protein expression patterns and the subcellular localization of the grasshopper innexins. G-Inx(1) is primarily expressed in the embryonic nervous system, in neural precursors and glial cells. In addition, a restricted stripe of epithelial cells in the developing limb, involved in the guidance of sensory growth cones, expresses G-Inx(1). G-Inx(2) expression is more widespread in the grasshopper embryo, but a restricted expression is found in a subset of neural precursors. The generally different but partially overlapping expression patterns of G-Inx(1) and G-Inx(2) supports the combinatorial character of gap junction formation in invertebrates, an essential property to generate specificity in this form of cell-cell communication.

  14. A variant in the carboxyl-terminus of connexin 40 alters GAP junctions and increases risk for tetralogy of Fallot

    PubMed Central

    Guida, Valentina; Ferese, Rosangela; Rocchetti, Marcella; Bonetti, Monica; Sarkozy, Anna; Cecchetti, Serena; Gelmetti, Vania; Lepri, Francesca; Copetti, Massimiliano; Lamorte, Giuseppe; Cristina Digilio, Maria; Marino, Bruno; Zaza, Antonio; den Hertog, Jeroen; Dallapiccola, Bruno; De Luca, Alessandro

    2013-01-01

    GJA5 gene (MIM no. 121013), localized at 1q21.1, encodes for the cardiac gap junction protein connexin 40. In humans, copy number variants of chromosome 1q21.1 have been associated with variable phenotypes comprising congenital heart disease (CHD), including isolated TOF. In mice, the deletion of Gja5 can cause a variety of complex CHDs, in particular of the cardiac outflow tract, corresponding to TOF in many cases. In the present study, we screened for mutations in the GJA5 gene 178 unrelated probands with isolated TOF. A heterozygous nucleotide change (c.793C>T) in exon 2 of the gene leading to the p.Pro265Ser variant at the carboxyl-terminus of the protein was found in two unrelated sporadic patients, one with classic anatomy and one with pulmonary atresia. This GJA5 missense substitution was not observed in 1568 ethnically-matched control chromosomes. Immunofluorescent staining and confocal microscopy revealed that cells expressing the mutant protein form sparse or no visible gap-junction plaques in the region of cell–cell contact. Moreover, analysis of the transfer of the gap junction permanent tracer lucifer yellow showed that cells expressing the mutant protein have a reduced rate of dye transfer compared with wild-type cells. Finally, use of a zebrafish model revealed that microinjection of the GJA5-p.Pro265Ser mutant disrupts overall morphology of the heart tube in the 37% (22/60) of embryos, compared with the 6% (4/66) of the GJA5 wild-type-injected embryos. These findings implicate GJA5 gene as a novel susceptibility gene for TOF. PMID:22713807

  15. Electronic and thermal effects in the insulator-metal phase transition in VO{sub 2} nano-gap junctions

    SciTech Connect

    Joushaghani, Arash; Jeong, Junho; Stewart Aitchison, J.; Poon, Joyce K. S.; Paradis, Suzanne; Alain, David

    2014-12-08

    By controlling the thermal transport of VO{sub 2} nano-gap junctions using device geometry, contact material, and applied voltage waveforms, the electronically induced insulator-metal phase transition is investigated in the adiabatic heating and transient carrier injection regimes. With a gradual ramping of an applied voltage on a microsecond time scale, the transition electric field threshold can be directly reduced by the Joule heating. With an abrupt applied voltage, the transition threshold is initiated by carriers injected within the first tens of nanoseconds, but the complete insulator-metal phase transition is limited by thermal redistribution times to hundreds of nanoseconds.

  16. Gap junctions mediate large-scale Turing structures in a mean-field cortex driven by subcortical noise

    NASA Astrophysics Data System (ADS)

    Steyn-Ross, Moira L.; Steyn-Ross, D. A.; Wilson, M. T.; Sleigh, J. W.

    2007-07-01

    One of the grand puzzles in neuroscience is establishing the link between cognition and the disparate patterns of spontaneous and task-induced brain activity that can be measured clinically using a wide range of detection modalities such as scalp electrodes and imaging tomography. High-level brain function is not a single-neuron property, yet emerges as a cooperative phenomenon of multiply-interacting populations of neurons. Therefore a fruitful modeling approach is to picture the cerebral cortex as a continuum characterized by parameters that have been averaged over a small volume of cortical tissue. Such mean-field cortical models have been used to investigate gross patterns of brain behavior such as anesthesia, the cycles of natural sleep, memory and erasure in slow-wave sleep, and epilepsy. There is persuasive and accumulating evidence that direct gap-junction connections between inhibitory neurons promote synchronous oscillatory behavior both locally and across distances of some centimeters, but, to date, continuum models have ignored gap-junction connectivity. In this paper we employ simple mean-field arguments to derive an expression for D2 , the diffusive coupling strength arising from gap-junction connections between inhibitory neurons. Using recent neurophysiological measurements reported by Fukuda [J. Neurosci. 26, 3434 (2006)], we estimate an upper limit of D2≈0.6cm2 . We apply a linear stability analysis to a standard mean-field cortical model, augmented with gap-junction diffusion, and find this value for the diffusive coupling strength to be close to the critical value required to destabilize the homogeneous steady state. Computer simulations demonstrate that larger values of D2 cause the noise-driven model cortex to spontaneously crystalize into random mazelike Turing structures: centimeter-scale spatial patterns in which regions of high-firing activity are intermixed with regions of low-firing activity. These structures are consistent with the

  17. Gap junction-mediated transfer of miR-145-5p from microvascular endothelial cells to colon cancer cells inhibits angiogenesis

    PubMed Central

    Thuringer, Dominique; Jego, Gaetan; Berthenet, Kevin; Hammann, Arlette; Solary, Eric; Garrido, Carmen

    2016-01-01

    Gap junctional communication between cancer cells and blood capillary cells is crucial to tumor growth and invasion. Gap junctions may transfer microRNAs (miRs) among cells. Here, we explore the impact of such a transfer in co-culture assays, using the antitumor miR-145 as an example. The SW480 colon carcinoma cells form functional gap junction composed of connexin-43 (Cx43) with human microvascular endothelial cells (HMEC). When HMEC are loaded with miR-145-5p mimics, the miR-145 level drastically increases in SW480. The functional inhibition of gap junctions, using either a gap channel blocker or siRNA targeting Cx43, prevents this increase. The transfer of miR-145 also occurs from SW480 to HMEC but not in non-contact co-cultures, excluding the involvement of soluble exosomes. The miR-145 transfer to SW480 up-regulates their Cx43 expression and inhibits their ability to promote angiogenesis. Our results indicate that the gap junctional communication can inhibit tumor growth by transferring miRs from one endothelial cell to neighboring tumor cells. This “bystander” effect could find application in cancer therapy. PMID:27058413

  18. Gap junction-mediated transfer of miR-145-5p from microvascular endothelial cells to colon cancer cells inhibits angiogenesis.

    PubMed

    Thuringer, Dominique; Jego, Gaetan; Berthenet, Kevin; Hammann, Arlette; Solary, Eric; Garrido, Carmen

    2016-05-10

    Gap junctional communication between cancer cells and blood capillary cells is crucial to tumor growth and invasion. Gap junctions may transfer microRNAs (miRs) among cells. Here, we explore the impact of such a transfer in co-culture assays, using the antitumor miR-145 as an example. The SW480 colon carcinoma cells form functional gap junction composed of connexin-43 (Cx43) with human microvascular endothelial cells (HMEC). When HMEC are loaded with miR-145-5p mimics, the miR-145 level drastically increases in SW480. The functional inhibition of gap junctions, using either a gap channel blocker or siRNA targeting Cx43, prevents this increase. The transfer of miR-145 also occurs from SW480 to HMEC but not in non-contact co-cultures, excluding the involvement of soluble exosomes. The miR-145 transfer to SW480 up-regulates their Cx43 expression and inhibits their ability to promote angiogenesis. Our results indicate that the gap junctional communication can inhibit tumor growth by transferring miRs from one endothelial cell to neighboring tumor cells. This "bystander" effect could find application in cancer therapy. PMID:27058413

  19. Minority carrier blocking to enhance the thermoelectric figure of merit in narrow-band-gap semiconductors

    NASA Astrophysics Data System (ADS)

    Bahk, Je-Hyeong; Shakouri, Ali

    2016-04-01

    We present detailed theoretical predictions on the enhancement of the thermoelectric figure of merit by minority carrier blocking with heterostructure barriers in bulk narrow-band-gap semiconductors. Bipolar carrier transport, which is often significant in a narrow-band-gap material, is detrimental to the thermoelectric energy conversion efficiency as it suppresses the Seebeck coefficient and increases the thermal conductivity. When the minority carriers are selectively prevented from participating in conduction while the transport of majority carriers is relatively unaffected by one-sided heterobarriers, the thermoelectric figure of merit can be drastically enhanced. Thermoelectric transport properties such as Seebeck coefficient, electrical conductivity, and electronic thermal conductivity including the bipolar term are calculated with and without the barriers based on the near-equilibrium Boltzmann transport equations under the relaxation time approximation to investigate the effects of minority carrier barriers on the thermoelectric figure of merit. For this, we provide details of carrier transport modeling and fitting results of experimental data for three important material systems, B i2T e3 -based alloys, M g2S i1 -xS nx , and S i1 -xG ex , that represent, respectively, near-room-temperature (300 K-500 K), midtemperature (600 K-900 K), and high-temperature (>1000 K ) applications. Theoretical maximum enhancement of thermoelectric figure of merit that can be achieved by minority carrier blocking is quantified and discussed for each of these semiconductors.

  20. HDAC inhibition amplifies gap junction communication in neural progenitors: Potential for cell-mediated enzyme prodrug therapy

    SciTech Connect

    Khan, Zahidul . E-mail: Zahidul.Khan@ki.se; Akhtar, Monira; Asklund, Thomas; Juliusson, Bengt . E-mail: Tomas.Ekstrom@ki.se

    2007-08-01

    Enzyme prodrug therapy using neural progenitor cells (NPCs) as delivery vehicles has been applied in animal models of gliomas and relies on gap junction communication (GJC) between delivery and target cells. This study investigated the effects of histone deacetylase (HDAC) inhibitors on GJC for the purpose of facilitating transfer of therapeutic molecules from recombinant NPCs. We studied a novel immortalized midbrain cell line, NGC-407 of embryonic human origin having neural precursor characteristics, as a potential delivery vehicle. The expression of gap junction protein connexin 43 (C x 43) was analyzed by western blot and immunocytochemistry. While C x 43 levels were decreased in untreated differentiating NGC-407 cells, the HDAC inhibitor 4-phenylbutyrate (4-PB) increased C x 43 expression along with increased membranous deposition in both proliferating and differentiating cells. Simultaneously, Ser 279/282-phosphorylated form of C x 43 was declined in both culture conditions by 4-PB. The 4-PB effect in NGC-407 cells was verified by using HNSC.100 human neural progenitors and Trichostatin A. Improved functional GJC is of imperative importance for therapeutic strategies involving intercellular transport of low molecular-weight compounds. We show here an enhancement by 4-PB, of the functional GJC among NGC-407 cells, as well as between NGC-407 and human glioma cells, as indicated by increased fluorescent dye transfer.

  1. Fluxes of lactate into, from, and among gap junction-coupled astrocytes and their interaction with noradrenaline.

    PubMed

    Hertz, Leif; Gibbs, Marie E; Dienel, Gerald A

    2014-01-01

    Lactate is a versatile metabolite with important roles in modulation of brain glucose utilization rate (CMRglc), diagnosis of brain-injured patients, redox- and receptor-mediated signaling, memory, and alteration of gene transcription. Neurons and astrocytes release and accumulate lactate using equilibrative monocarboxylate transporters that carry out net transmembrane transport of lactate only until intra- and extracellular levels reach equilibrium. Astrocytes have much faster lactate uptake than neurons and shuttle more lactate among gap junction-coupled astrocytes than to nearby neurons. Lactate diffusion within syncytia can provide precursors for oxidative metabolism and glutamate synthesis and facilitate its release from endfeet to perivascular space to stimulate blood flow. Lactate efflux from brain during activation underlies the large underestimation of CMRglc with labeled glucose and fall in CMRO2/CMRglc ratio. Receptor-mediated effects of lactate on locus coeruleus neurons include noradrenaline release in cerebral cortex and c-AMP-mediated stimulation of astrocytic gap junctional coupling, thereby enhancing its dispersal and release from brain. Lactate transport is essential for its multifunctional roles. PMID:25249930

  2. Connexin37 forms high conductance gap junction channels with subconductance state activity and selective dye and ionic permeabilities.

    PubMed Central

    Veenstra, R D; Wang, H Z; Beyer, E C; Ramanan, S V; Brink, P R

    1994-01-01

    Gap junctions are thought to mediate the direct intercellular coupling of adjacent cells by the open-closed gating of an aqueous pore permeable to ions and molecules of up to 1 kDa or 10-14 A in diameter. We symmetrically altered the ionic composition or asymmetrically added 6-carboxyfluorescein (6-CF, M(r) = 376), a fluorescent tracer, to pairs of connexin37-transfected mouse neuro2A cells to examine the ionic and dye permeability of human connexin37 channels. We demonstrate that the 300-pS channel formed by connexin37 has an effective relative anion/cation permeability ratio of 0.43, directly converts to at least one intermediate (63 pS) subconductance state, and that 6-CF dye transfer is accompanied by a 24% decrease in unitary channel conductance. These observations favor a new interpretation of the gap junction pore consistent with direct ion-channel interactions or electrostatic charge effects common to more conventional multistate ion channels. These results have distinct implications about the different forms of intercellular signaling (cationic, ionic, and/or biochemical) that can occur depending on the expression and conformation of the connexin channel proteins. Images FIGURE 4 FIGURE 5 FIGURE 6 PMID:7521227

  3. Effects of gap junction inhibition on contraction waves in the murine small intestine in relation to coupled oscillator theory.

    PubMed

    Parsons, Sean P; Huizinga, Jan D

    2015-02-15

    Waves of contraction in the small intestine correlate with slow waves generated by the myenteric network of interstitial cells of Cajal. Coupled oscillator theory has been used to explain steplike gradients in the frequency (frequency plateaux) of contraction waves along the length of the small intestine. Inhibition of gap junction coupling between oscillators should lead to predictable effects on these plateaux and the wave dislocation (wave drop) phenomena associated with their boundaries. It is these predictions that we wished to test. We used a novel multicamera diameter-mapping system to measure contraction along 25- to 30-cm lengths of murine small intestine. There were typically two to three plateaux per length of intestine. Dislocations could be limited to the wavefronts immediately about the terminated wave, giving the appearance of a three-pronged fork, i.e., a fork dislocation; additionally, localized decreases in velocity developed across a number of wavefronts, ending with the terminated wave, which could appear as a fork, i.e., slip dislocations. The gap junction inhibitor carbenoxolone increased the number of plateaux and dislocations and decreased contraction wave velocity. In some cases, the usual frequency gradient was reversed, with a plateau at a higher frequency than its proximal neighbor; thus fork dislocations were inverted, and the direction of propagation was reversed. Heptanol had no effect on the frequency or velocity of contractions but did reduce their amplitude. To understand intestinal motor patterns, the pacemaker network of the interstitial cells of Cajal is best evaluated as a system of coupled oscillators.

  4. Spinal astrocyte gap junction and glutamate transporter expression contributes to a rat model of bortezomib-induced peripheral neuropathy

    PubMed Central

    Robinson, Caleb R.; Dougherty, Patrick M.

    2014-01-01

    There is increasing evidence implicating astrocytes in multiple forms of chronic pain, as well as in the specific context of chemotherapy-induced peripheral neuropathy (CIPN). However, it is still unclear what the exact role of astrocytes may be in the context of CIPN. Findings in oxaliplatin and paclitaxel models have displayed altered expression of astrocytic gap junctions and glutamate transporters as means by which astrocytes may contribute to observed behavioral changes. The current study investigated whether these changes were also generalizable to the bortezomib CIPN. Changes in mechanical sensitivity were verified in bortezomib-treated animals, and these changes were prevented by co-treatment with a glial activation inhibitor (minocycline), a gap junction decoupler (carbenoxolone), and by a glutamate transporter upregulator (ceftriaxone). Immunohistochemistry data at day 30 in bortezomib-treated animals showed increases in expression of GFAP and connexin 43 but decrease in GLAST expression. These changes were prevented by co-treatment with minocycline. Follow-up Western blotting data showed a shift in connexin 43 from a non-phosphorylated state to a phosphorylated state, indicating increased trafficking of expressed connexin 43 to the cell membrane. These data suggest that increases in behavioral sensitivity to cutaneous stimuli may be tied to persistent synaptic glutamate resulting from increased calcium flow between spinal astrocytes. PMID:25446343

  5. Connexin26 Mutations Causing Palmoplantar Keratoderma and Deafness Interact with Connexin43, Modifying Gap Junction and Hemichannel Properties.

    PubMed

    Shuja, Zunaira; Li, Leping; Gupta, Shashank; Meşe, Gülistan; White, Thomas W

    2016-01-01

    Mutations in GJB2 (connexin [Cx]26) cause either deafness or deafness associated with skin diseases. That different disorders can be caused by distinct mutations within the same gene suggests that unique channel activities are influenced by each class of mutation. We have examined the functional characteristics of two human mutations, Cx26-H73R and Cx26-S183F, causing palmoplantar keratoderma (PPK) and deafness. Both failed to form gap junction channels or hemichannels when expressed alone. Coexpression of the mutants with wild-type Cx43 showed a transdominant inhibition of Cx43 gap junction channels, without reductions in Cx43 protein synthesis. In addition, the presence of mutant Cx26 shifted Cx43 channel gating and kinetics toward a more Cx26-like behavior. Coimmunoprecipitation showed Cx43 being pulled down more efficiently with mutant Cx26 than wild-type, confirming the enhanced formation of heteromeric connexons. Finally, the formation of heteromeric connexons resulted in significantly increased Cx43 hemichannel activity in the presence of Cx26 mutants. These findings suggest a common mechanism whereby Cx26 mutations causing PPK and deafness transdominantly influence multiple functions of wild-type Cx43. They also implicate a role for aberrant hemichannel activity in the pathogenesis of PPK and further highlight an emerging role for Cx43 in genetic skin diseases.

  6. Fluxes of lactate into, from, and among gap junction-coupled astrocytes and their interaction with noradrenaline

    PubMed Central

    Hertz, Leif; Gibbs, Marie E.; Dienel, Gerald A.

    2014-01-01

    Lactate is a versatile metabolite with important roles in modulation of brain glucose utilization rate (CMRglc), diagnosis of brain-injured patients, redox- and receptor-mediated signaling, memory, and alteration of gene transcription. Neurons and astrocytes release and accumulate lactate using equilibrative monocarboxylate transporters that carry out net transmembrane transport of lactate only until intra- and extracellular levels reach equilibrium. Astrocytes have much faster lactate uptake than neurons and shuttle more lactate among gap junction-coupled astrocytes than to nearby neurons. Lactate diffusion within syncytia can provide precursors for oxidative metabolism and glutamate synthesis and facilitate its release from endfeet to perivascular space to stimulate blood flow. Lactate efflux from brain during activation underlies the large underestimation of CMRglc with labeled glucose and fall in CMRO2/CMRglc ratio. Receptor-mediated effects of lactate on locus coeruleus neurons include noradrenaline release in cerebral cortex and c-AMP-mediated stimulation of astrocytic gap junctional coupling, thereby enhancing its dispersal and release from brain. Lactate transport is essential for its multifunctional roles. PMID:25249930

  7. OSCILLATING FLUID FLOW ACTIVATION OF GAP JUNCTION HEMICHANNELS INDUCES ATP RELEASE FROM MLO-Y4 OSTEOCYTES

    PubMed Central

    Genetos, Damian C.; Kephart, Curtis J.; Zhang, Yue; Yellowley, Clare E.; Donahue, Henry J.

    2010-01-01

    Mechanical loads are required for optimal bone mass. One mechanism whereby mechanical loads are transduced into localized cellular signals is strain-induced fluid flow through lacunae and canaliculi of bone. Gap junctions (GJ) between osteocytes and osteoblasts provides a mechanism whereby flow-induced signals are detected by osteocytes and transduced to osteoblasts. We have demonstrated the importance of GJ and gap junctional intercellular communication (GJIC) in intracellular calcium and prostaglandin E2 (PGE2) increases in response to flow. Unapposed connexons, or hemichannels, are themselves functional and may constitute a novel mechanotransduction mechanism. Using MC3T3-E1 osteoblasts and MLO-Y4 osteocytes, we examined the time course and mechanism of hemichannel activation in response to fluid flow, the composition of the hemichannels, and the role of hemichannels in flow-induced ATP release. We demonstrate that fluid flow activates hemichannels in MLO-Y4, but not MC3T3-E1, through a mechanism involving protein kinase C, which induces ATP and PGE2 release. PMID:17301958

  8. Molecular cloning, expression analysis, and functional characterization of connexin44.1: a zebrafish lens gap junction protein.

    PubMed

    Cason, N; White, T W; Cheng, S; Goodenough, D A; Valdimarsson, G

    2001-06-01

    The connexin family of genes codes for proteins that oligomerize into a connexon of six subunits to form one half of the gap junction channel. Gap junctions are plasma membrane structures that mediate intercellular communication by joining the cytoplasm of two cells, allowing the passage of small molecules and metabolites, and contributing significantly to the maintenance of tissue homeostasis. The signaling mediated by these junctions appears to be necessary for the correct timing of key developmental events. This communication is especially important in the avascular lens where the intercellular passage of metabolites, second messengers, and ions is necessary to maintain the correct ionic balance in the lens fibre cells, and prevent cataract formation. To characterize the role that the connexin genes play in development, a novel connexin was cloned from zebrafish. A genomic clone was isolated that contained a 1,173 base open reading frame. The nucleotide sequence in this open reading frame shows extensive sequence similarity to mouse connexin50 (Cx50), chicken Cx45.6, sheep Cx49, and human Cx50. The protein encoded by this open reading frame contains 391 amino acids, with a predicted molecular weight of 44.1 kDa and a typical connexin transmembrane topology. By using the LN54 radiation hybrid panel, the Cx44.1 gene was mapped to linkage group 1. Whole-mount in situ hybridization and Northern blot analyses were performed on zebrafish embryos at various developmental stages to characterize the developmental expression of the Cx44.1 message. The ocular lens was the only tissue in which Cx44.1 transcripts were detected. The transcripts were first detected in the lens around 24 hr post fertilization and remained detectable until 120 hr post fertilization. Electrophysiological analysis of Cx44.1 channels revealed gating properties that were virtually identical to the mouse and chicken orthologues of Cx44.1.

  9. Screening of anti-hypoxia/reoxygenation agents by an in vitro method. Part 2: Inhibition of tyrosine kinase activation prevented hypoxia/reoxygenation-induced injury in endothelial gap junctional intercellular communication.

    PubMed

    Zhang, Y W; Morita, I; Zhang, L; Shao, G; Yao, X S; Murota, S

    2000-03-01

    In this study, we demonstrated that hypoxia/reoxygenation (H/R) induced an injury in gap junctional intercellular communication (GJIC) after 2 h of reoxygenation in cultured HUVEC. Free radical scavenger (DMSO) and antioxidant (SOD) did not prevent this GJIC injury at all. Protein kinase C inhibitor (calphostin C) partly blocked this injury. However, the protein tyrosine kinase (PTK) inhibitor genistein completely inhibited this GJIC injury. Compounds 1 [laxogenin-3-O-alpha-L-arabinosyl-(1-->6)- beta-D-glucopyranoside], 2 (macrostemososide A), 3 [laxogenin-3-O-beta-D-xylopyranosyl-(1-->4)-alpha- L-arabinopyranosyl-(1-->6)-beta-D-glucopyranoside], 4 (chinenoside II), 5 (beta-sitosterol), 6 (daucosterine), 7 (ginsenoside-Rd), 29 (isocumarine), 52 (icariin), 53 (icariside), and 54 (icaritin), which showed obvious influence on H/R-induced PTK activation as stated in Part 1 (except 1), were explored for their effects on GJIC. The results showed that compounds 2-7 and 52-57 partly protected H/R-induced GJIC injury. Compounds 5 and 6 (especially 5), which showed the strongest inhibitory effects on PTK activation, completely blocked H/R-provoked GJIC injury. Compound 1, which did not influence PTK activation, failed to prevent this GJIC injury. In contrast, compound 29, which significantly promoted PTK activation, enhanced this H/R-induced GJIC injury further. Western blotting of connexin 43, an important gap junctional protein for modulating GJIC in HUVEC, revealed that interference with the gap junctional protein might be the most direct mechanism for compounds 2, 5, 29, and 53 to affect H/R-injured GJIC. PMID:10763583

  10. Impact of obesity on 7,12-dimethylbenz[a]anthracene-induced altered ovarian connexin gap junction proteins in female mice

    SciTech Connect

    Ganesan, Shanthi Nteeba, Jackson Keating, Aileen F.

    2015-01-01

    The ovarian gap junction proteins alpha 4 (GJA4 or connexin 37; CX37), alpha 1 (GJA1 or connexin 43; CX43) and gamma 1 (GJC1 or connexin 45; CX45) are involved in cell communication and folliculogenesis. 7,12-dimethylbenz[a]anthracene (DMBA) alters Cx37 and Cx43 expression in cultured neonatal rat ovaries. Additionally, obesity has an additive effect on DMBA-induced ovarian cell death and follicle depletion, thus, we investigated in vivo impacts of obesity and DMBA on CX protein levels. Ovaries were collected from lean and obese mice aged 6, 12, 18, or 24 wks. A subset of 18 wk old mice (lean and obese) were dosed with sesame oil or DMBA (1 mg/kg; ip) for 14 days and ovaries collected 3 days thereafter. Cx43 and Cx45 mRNA and protein levels decreased (P < 0.05) after 18 wks while Cx37 mRNA and protein levels decreased (P < 0.05) after 24 wks in obese ovaries. Cx37 mRNA and antral follicle protein staining intensity were reduced (P < 0.05) by obesity while total CX37 protein was reduced (P < 0.05) in DMBA exposed obese ovaries. Cx43 mRNA and total protein levels were decreased (P < 0.05) by DMBA in both lean and obese ovaries while basal protein staining intensity was reduced (P < 0.05) in obese controls. Cx45 mRNA, total protein and protein staining intensity level were decreased (P < 0.05) by obesity. These data support that obesity temporally alters gap junction protein expression and that DMBA-induced ovotoxicity may involve reduced gap junction protein function. - Highlights: • Ovarian gap junction proteins are affected by ovarian aging and obesity. • DMBA exposure negatively impacts gap junction proteins. • Altered gap junction proteins may contribute to infertility.

  11. Potassium channels in the Cx43 gap junction perinexus modulate ephaptic coupling: an experimental and modeling study.

    PubMed

    Veeraraghavan, Rengasayee; Lin, Joyce; Keener, James P; Gourdie, Robert; Poelzing, Steven

    2016-10-01

    It was recently demonstrated that cardiac sodium channels (Nav1.5) localized at the perinexus, an intercalated disc (ID) nanodomain associated with gap junctions (GJ), may contribute to electrical coupling between cardiac myocytes via an ephaptic mechanism. Impairment of ephaptic coupling by acute interstitial edema (AIE)-induced swelling of the perinexus was associated with arrhythmogenic, anisotropic conduction slowing. Given that Kir2.1 has also recently been reported to localize at intercalated discs, we hypothesized that Kir2.1 channels may reside within the perinexus and that inhibiting them may mitigate arrhythmogenic conduction slowing observed during AIE. Using gated stimulated emission depletion (gSTED) and stochastic optical reconstruction microscopy (STORM) super-resolution microscopy, we indeed find that a significant proportion of Kir2.1 channels resides within the perinexus. Moreover, whereas Nav1.5 inhibition during AIE exacerbated arrhythmogenic conduction slowing, inhibiting Kir2.1 channels during AIE preferentially increased transverse conduction velocity-decreasing anisotropy and ameliorating arrhythmia risk compared to AIE alone. Comparison of our results with a nanodomain computer model identified enrichment of both Nav1.5 and Kir2.1 at intercalated discs as key factors underlying the experimental observations. We demonstrate that Kir2.1 channels are localized within the perinexus alongside Nav1.5 channels. Further, targeting Kir2.1 modulates intercellular coupling between cardiac myocytes, anisotropy of conduction, and arrhythmia propensity in a manner consistent with a role for ephaptic coupling in cardiac conduction. For over half a century, electrical excitation in the heart has been thought to occur exclusively via gap junction-mediated ionic current flow between cells. Further, excitation was thought to depend almost exclusively on sodium channels with potassium channels being involved mainly in returning the cell to rest. Here, we

  12. Functional alterations in gut contractility after connexin36 ablation and evidence for gap junctions forming electrical synapses between nitrergic enteric neurons

    PubMed Central

    Nagy, James Imre; Urena-Ramirez, Viridiana; Ghia, Jean-Eric

    2014-01-01

    Neurons in the enteric nervous system utilize numerous neurotransmitters to orchestrate rhythmic gut smooth muscle contractions. We examined whether electrical synapses formed by gap junctions containing connexin36 also contribute to communication between enteric neurons in mouse colon. Spontaneous contractility properties and responses to electrical field stimulation and cholinergic agonist were altered in gut from connexin36 knockout vs. wild-type mice. Immunofluorescence revealed punctate labelling of connexin36 that was localized at appositions between somata of enteric neurons immunopositive for the enzyme nitric oxide synthase. There is indication for a possible functional role of gap junctions between inhibitory nitrergic enteric neurons. PMID:24548563

  13. A methodology for experimentally based determination of gap shrinkage and effective lifetimes in the emitter and base of p-n junction solar cells and other p-n junction devices

    NASA Technical Reports Server (NTRS)

    Lindholm, F. A.; Neugroschel, A.; Sah, C.-T.; Godlewski, M. P.; Brandhorst, H. W., Jr.

    1977-01-01

    An experimentally based methodology that determines the effective gap shrinkage and lifetime in the emitter of a p-n junction solar cell is described which provides an experimental means for assessing the importance of gap shrinkage relative to that of large recombination rates in the highly doped emitter. The base lifetime is also determined. The methodology pertains to a solar cell after the junction is formed, so that each material parameter determined includes the effects of the processing used in junction fabrication. The methodology consists of strategy and procedures for designing experiments and interpreting data consistently with the physical mechanisms governing device behavior. This careful linking to the device physics uncover the material parameters concealed in the data. To illustrate the procedures, they are applied to an n(+)-p solar cell having substrate resistivity of about 0.1 ohm-cm.

  14. Doping GaP Core-Shell Nanowire pn-Junctions: A Study by Off-Axis Electron Holography.

    PubMed

    Yazdi, Sadegh; Berg, Alexander; Borgström, Magnus T; Kasama, Takeshi; Beleggia, Marco; Samuelson, Lars; Wagner, Jakob B

    2015-06-10

    The doping process in GaP core-shell nanowire pn-junctions using different precursors is evaluated by mapping the nanowires' electrostatic potential distribution by means of off-axis electron holography. Three precursors, triethyltin (TESn), ditertiarybutylselenide, and silane are investigated for n-type doping of nanowire shells; among them, TESn is shown to be the most efficient precursor. Off-axis electron holography reveals higher electrostatic potentials in the regions of nanowire cores grown by the vapor-liquid-solid (VLS) mechanism (axial growth) than the regions grown parasitically by the vapor-solid (VS) mechanism (radial growth), attributed to different incorporation efficiency between VLS and VS of unintentional p-type carbon doping originating from the trimethylgallium precursor. This study shows that off-axis electron holography of doped nanowires is unique in terms of the ability to map the electrostatic potential and thereby the active dopant distribution with high spatial resolution.

  15. Gap-junctional channel and hemichannel activity of two recently identified connexin 26 mutants associated with deafness.

    PubMed

    Dalamon, Viviana; Fiori, Mariana C; Figueroa, Vania A; Oliva, Carolina A; Del Rio, Rodrigo; Gonzalez, Wendy; Canan, Jonathan; Elgoyhen, Ana B; Altenberg, Guillermo A; Retamal, Mauricio A

    2016-05-01

    Gap-junction channels (GJCs) are formed by head-to-head association of two hemichannels (HCs, connexin hexamers). HCs and GJCs are permeable to ions and hydrophilic molecules of up to Mr ~1 kDa. Hearing impairment of genetic origin is common, and mutations of connexin 26 (Cx26) are its major cause. We recently identified two novel Cx26 mutations in hearing-impaired subjects, L10P and G109V. L10P forms functional GJCs with slightly altered voltage dependence and HCs with decrease ATP/cationic dye selectivity. G109V does not form functional GJCs, but forms functional HCs with enhanced extracellular Ca(2+) sensitivity and subtle alterations in voltage dependence and ATP/cationic dye selectivity. Deafness associated with G109V could result from decreased GJCs activity, whereas deafness associated to L10P may have a more complex mechanism that involves changes in HC permeability. PMID:26769242

  16. Critical role of gap junction communication, calcium and nitric oxide signaling in bystander responses to focal photodynamic injury

    PubMed Central

    Calì, Bianca; Ceolin, Stefano; Ceriani, Federico; Bortolozzi, Mario; Agnellini, Andrielly H.R.; Zorzi, Veronica; Predonzani, Andrea; Bronte, Vincenzo

    2015-01-01

    Ionizing and nonionizing radiation affect not only directly targeted cells but also surrounding “bystander” cells. The underlying mechanisms and therapeutic role of bystander responses remain incompletely defined. Here we show that photosentizer activation in a single cell triggers apoptosis in bystander cancer cells, which are electrically coupled by gap junction channels and support the propagation of a Ca2+ wave initiated in the irradiated cell. The latter also acts as source of nitric oxide (NO) that diffuses to bystander cells, in which NO levels are further increased by a mechanism compatible with Ca2+-dependent enzymatic production. We detected similar signals in tumors grown in dorsal skinfold chambers applied to live mice. Pharmacological blockade of connexin channels significantly reduced the extent of apoptosis in bystander cells, consistent with a critical role played by intercellular communication, Ca2+ and NO in the bystander effects triggered by photodynamic therapy. PMID:25868859

  17. Critical role of gap junction communication, calcium and nitric oxide signaling in bystander responses to focal photodynamic injury.

    PubMed

    Calì, Bianca; Ceolin, Stefano; Ceriani, Federico; Bortolozzi, Mario; Agnellini, Andrielly H R; Zorzi, Veronica; Predonzani, Andrea; Bronte, Vincenzo; Molon, Barbara; Mammano, Fabio

    2015-04-30

    Ionizing and nonionizing radiation affect not only directly targeted cells but also surrounding "bystander" cells. The underlying mechanisms and therapeutic role of bystander responses remain incompletely defined. Here we show that photosentizer activation in a single cell triggers apoptosis in bystander cancer cells, which are electrically coupled by gap junction channels and support the propagation of a Ca2+ wave initiated in the irradiated cell. The latter also acts as source of nitric oxide (NO) that diffuses to bystander cells, in which NO levels are further increased by a mechanism compatible with Ca(2+)-dependent enzymatic production. We detected similar signals in tumors grown in dorsal skinfold chambers applied to live mice. Pharmacological blockade of connexin channels significantly reduced the extent of apoptosis in bystander cells, consistent with a critical role played by intercellular communication, Ca2+ and NO in the bystander effects triggered by photodynamic therapy.

  18. Gap-junctional channel and hemichannel activity of two recently identified connexin 26 mutants associated with deafness.

    PubMed

    Dalamon, Viviana; Fiori, Mariana C; Figueroa, Vania A; Oliva, Carolina A; Del Rio, Rodrigo; Gonzalez, Wendy; Canan, Jonathan; Elgoyhen, Ana B; Altenberg, Guillermo A; Retamal, Mauricio A

    2016-05-01

    Gap-junction channels (GJCs) are formed by head-to-head association of two hemichannels (HCs, connexin hexamers). HCs and GJCs are permeable to ions and hydrophilic molecules of up to Mr ~1 kDa. Hearing impairment of genetic origin is common, and mutations of connexin 26 (Cx26) are its major cause. We recently identified two novel Cx26 mutations in hearing-impaired subjects, L10P and G109V. L10P forms functional GJCs with slightly altered voltage dependence and HCs with decrease ATP/cationic dye selectivity. G109V does not form functional GJCs, but forms functional HCs with enhanced extracellular Ca(2+) sensitivity and subtle alterations in voltage dependence and ATP/cationic dye selectivity. Deafness associated with G109V could result from decreased GJCs activity, whereas deafness associated to L10P may have a more complex mechanism that involves changes in HC permeability.

  19. Role of gap-junctional communication in chemical toxicology. Final report, 15 May 1992-15 July 1995

    SciTech Connect

    Trosko, J.E.

    1995-07-17

    The overall goal of this research project was to study the mechanisms by which non-genotoxic chemicals induced multiple disease end points such as birth defects, tumor promotion, reproductive- and neuro-toxicities. The working hypothesis was that these non-genotoxic chemicals disrupted homeostatic control of cell proliferation, differentiation and adaptive responses of differentiated cells. Specifically, to test this hypothesis, gap junctional intercellular communication (GJIC) was studied. During this grant period, several techniques were developed and applied to study how various model non-genotoxic chemicals, as well as various oncogenes, interfered with GJIC to cause abnormal cell growth and differentiation. The molecular biology, biochemistry and cell biology of non-genotoxic chemical and oncogene interference with GJIC was studied using in vitro techniques, primarily with fluorescent detection of ions and molecules via laser-assisted image analyses.

  20. Optical modulation of nano-gap tunnelling junctions comprising self-assembled monolayers of hemicyanine dyes.

    PubMed

    Pourhossein, Parisa; Vijayaraghavan, Ratheesh K; Meskers, Stefan C J; Chiechi, Ryan C

    2016-01-01

    Light-driven conductance switching in molecular tunnelling junctions that relies on photoisomerization is constrained by the limitations of kinetic traps and either by the sterics of rearranging atoms in a densely packed monolayer or the small absorbance of individual molecules. Here we demonstrate light-driven conductance gating; devices comprising monolayers of hemicyanine dyes trapped between two metallic nanowires exhibit higher conductance under irradiation than in the dark. The modulation of the tunnelling current occurs faster than the timescale of the measurement (∼1 min). We propose a mechanism in which a fraction of molecules enters an excited state that brings the conjugated portion of the monolayer into resonance with the electrodes. This mechanism is supported by calculations showing the delocalization of molecular orbitals near the Fermi energy in the excited and cationic states, but not the ground state and a reasonable change in conductance with respect to the effective barrier width. PMID:27272394

  1. Optical modulation of nano-gap tunnelling junctions comprising self-assembled monolayers of hemicyanine dyes

    PubMed Central

    Pourhossein, Parisa; Vijayaraghavan, Ratheesh K.; Meskers, Stefan C. J.; Chiechi, Ryan C.

    2016-01-01

    Light-driven conductance switching in molecular tunnelling junctions that relies on photoisomerization is constrained by the limitations of kinetic traps and either by the sterics of rearranging atoms in a densely packed monolayer or the small absorbance of individual molecules. Here we demonstrate light-driven conductance gating; devices comprising monolayers of hemicyanine dyes trapped between two metallic nanowires exhibit higher conductance under irradiation than in the dark. The modulation of the tunnelling current occurs faster than the timescale of the measurement (∼1 min). We propose a mechanism in which a fraction of molecules enters an excited state that brings the conjugated portion of the monolayer into resonance with the electrodes. This mechanism is supported by calculations showing the delocalization of molecular orbitals near the Fermi energy in the excited and cationic states, but not the ground state and a reasonable change in conductance with respect to the effective barrier width. PMID:27272394

  2. Subsets of ATP-sensitive potassium channel (KATP) inhibitors increase gap junctional intercellular communication in metastatic cancer cell lines independent of SUR expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gap junctional intercellular communication (GJIC) is a process whereby cells share molecules and nutrients with each other by physical contact through cell membrane pores. In tumor cells, GJIC is often altered, suggesting that this process may be important in the context of cancer. Certain ion chan...

  3. 1.00 MeV proton radiation resistance studies of single-junction and single gap dual-junction amorphous-silicon alloy solar cells

    NASA Technical Reports Server (NTRS)

    Abdulaziz, Salman; Payson, J. S.; Li, Yang; Woodyard, James R.

    1990-01-01

    A comparative study of the radiation resistance of a-Si:H and a-SiGe:H single-junction and a-Si:H dual-junction solar cells was conducted. The cells were irradiated with 1.00-MeV protons with fluences of 1.0 x 10 to the 14th, 5.0 x 10 to the 14th and 1.0 x 10 to the 15th/sq cm and characterized using I-V and quantum efficiency measurements. The radiation resistance of single-junction cells cannot be used to explain the behavior of dual-junction cells at a fluence of 1.0 x 10 to the 15th/sq cm. The a-Si H single-junction cells degraded the least of the three cells; a-SiGe:H single-junction cells showed the largest reduction in short-circuit current, while a-Si:H dual-junction cells exhibited the largest degradation in the open-circuit voltage. The quantum efficiency of the cells degraded more in the red part of the spectrum; the bottom junction degrades first in dual-junction cells.

  4. The tight junction protein ZO-2 blocks cell cycle progression and inhibits cyclin D1 expression.

    PubMed

    Gonzalez-Mariscal, Lorenza; Tapia, Rocio; Huerta, Miriam; Lopez-Bayghen, Esther

    2009-05-01

    ZO-2 is an adaptor protein of the tight junction that belongs to the MAGUK protein family. ZO-2 is a dual localization protein that in sparse cultures is present at the cell borders and the nuclei, whereas in confluent cultures it is concentrated at the cell boundaries. Here we have studied whether ZO-2 is able to regulate the expression of cyclin D1 (CD1) and cell proliferation. We have demonstrated that ZO-2 negatively regulates CD1 transcription by interacting with c-Myc at an E box present in CD1 promoter. We have further found that ZO-2 transfection into epithelial MDCK cells triggers a diminished expression of CD1 protein and decreases the rate of cell proliferation in a wound-healing assay.

  5. Loss of responsiveness of circular smooth muscle cells from the guinea pig ileum is associated with changes in gap junction coupling.

    PubMed

    Carbone, Simona E; Wattchow, David A; Spencer, Nick J; Brookes, Simon J H

    2012-06-15

    Gap junction coupling and neuromuscular transmission to smooth muscle were studied in the first 4 h after preparations were set up in vitro. Intracellular recordings were made from smooth muscle cells of guinea pig ileum. Fast inhibitory junction potentials (IJPs) were small (1.3 ± 1.0 mV) in the first 30 min but increased significantly over the first 120 min to 15.8 ± 0.9 mV (n = 12, P < 0.001). Comparable increases in slow IJPs and excitatory junction potentials were also observed. During the same period, resting membrane potential depolarized from -58.8 ± 1.4 to -47.2 ± 0.4 mV (n = 12, P < 0.001). Input resistance, estimated by intracellular current injection, decreased in parallel (P < 0.05), and dye coupling, measured by intracellular injection of carboxyfluorescein, increased (P < 0.001). Input resistance was higher and dye coupling was less in longitudinal than circular smooth muscle cells. Gap junction blockers [carbenoxolone (100 μM), 18β-glycyrrhetinic acid (10 μM), and 2-aminoethoxydiphenyl borate (50 μM)] hyperpolarized coupled circular smooth muscle cells, reduced the amplitude of fast and slow IJPs and excitatory junction potentials, increased input resistance, and reduced dye coupling. Local application of ATP (10 mM) mimicked IJPs and showed comparable increases in amplitude over the first 120 min; carbenoxolone and 2-aminoethoxydiphenyl borate significantly reduced ATP-evoked hyperpolarizations in coupled cells. In contrast, synaptic transmission between myenteric neurons was not suppressed during the first 30 min. Gap junction coupling between circular smooth muscle cells in isolated preparations was initially disrupted but recovered over the next 120 min to a steady level. This was associated with potent effects on neuromuscular transmission and responses to exogenous ATP.

  6. Gap junction endocytosis and lysosomal degradation of connexin43-P2 in WB-F344 rat liver epithelial cells treated with DDT and lindane.

    PubMed

    Guan, X; Ruch, R J

    1996-09-01

    Treatment of WB-F344 rat liver epithelial cells with DDT (1,1-bis(p-chlorophenyl)-2,2,2-trichloroethane) or lindane induces a loss of gap junction plaques and a decrease in the phosphorylated gap junction protein connexin43-P2 (Cx43-P2), which is associated with the plaques. In this study we have considered several mechanisms. The loss of junctional plaques could be due to disaggregation of junctional particles or to endocytosis of the plaques, while the loss of Cx43-P2 could be due to dephosphorylation or degradation. Immunohistochemical analyses of DDT- or lindane-treated cells revealed a reduction in plasma membranous Cx43-positive gap junction plaques coincident with the appearance of Cx43-positive punctate cytoplasmic structures. The cytoplasmic Cx43-positive structures eventually disappeared after 4 h treatment. Diffuse Cx43-positive plasma membranous staining was not seen following DDT or lindane treatment. Western blot analyses of these cells indicated that Cx43-P2 decreased in a time-dependent manner that paralleled the disappearance of gap junction plaques from the plasma membrane. The loss of Cx43-P2 was not due to dephosphorylation, since no increase in non-phosphorylated (Cx43-NP) or other phosphorylated (Cx43-P1) forms of the protein were evident. The decrease in Cx43-P2 and the disappearance of cytoplasmic Cx43-positive structures were prevented by colchicine and chloroquine, which suggests that Cx43-P2-containing plaques were internalized and degraded in lysosomes. In addition, two small (approximately 18 and approximately 22 kDa) bands appeared in Western blots coincident with the loss of Cx43-P2 and may be degradation products of the protein. These immunohistochemical and biochemical data strongly suggest that the loss of gap junction plaques and of Cx43-P2 in WB-F344 cells treated with DDT and lindane were due to endocytosis of the plaques and degradation of Cx43-P2 in lysosomes.

  7. Gap junction as an intercellular glue: Emerging roles in cancer EMT and metastasis.

    PubMed

    Mao, Xiao-Yuan; Li, Qiu-Qi; Gao, Yuan-Feng; Zhou, Hong-Hao; Liu, Zhao-Qian; Jin, Wei-Lin

    2016-10-10

    Metastasis is a common phenomenon in the progression and dissemination of cancer. It is estimated that metastasis accounts for 90% cancer-related mortality. Although the formation of tumor metastasis is relatively well understood, the underlying molecular mechanisms responsible for the emergence of aggressive cancer phenotype are still elusive. Figuring out the mechanisms by which cancer cells evade from the tumor is beneficial for obtaining novel and effectively therapeutic approaches. Primary tumors are composed of various subpopulations of cells with heterogeneous metastatic characteristics and the occurrence of metastatic dissemination is mainly dependent upon the interactions between tumor and the surrounding microenvironment. Tumor microenvironment (TME) such as extracellular matrix, macrophages, fibroblasts, stem cells and endothelial cells can orchestrate events critical to tumor evolution toward metastasis. GJ serves as an important communication between tumor cells and stromal cells. Increased GJs coupling blocks metastatic potential in some cancer animal models such as breast cancer and melanoma. Besides, epithelial-to-mesenchymal transition (EMT) is also a crucial step in the metastatic process and there are signs that GJs contribute to cell adhesion and migration (the pathological feature of EMT) in breast cancer. Therefore, we propose that GJ serves as an intercellular glue to suppress EMT and cancer metastasis. PMID:27490999

  8. Quantitative Analysis of ZO-1 Colocalization with Cx43 Gap Junction Plaques in Cultures of Rat Neonatal Cardiomyocytes

    NASA Astrophysics Data System (ADS)

    Zhu, Ching; Barker, Ralph J.; Hunter, Andrew W.; Zhang, Yuhua; Jourdan, Jane; Gourdie, Robert G.

    2005-06-01

    The gap junction (GJ) is an aggregate of intercellular channels that facilitates cytoplasmic interchange of ions, second messengers, and other molecules of less than 1000 Da between cells. In excitable organs such as heart and brain, GJs configure extended intercellular pathways for stable and long-term propagation of action potential. In a previous study in adult rat heart, we have shown that the Drosophila disks-large related protein ZO-1 shows low to moderate colocalization at myocyte borders with the GJ protein Cx43. In the present study, we detail a protocol for characterizing the pattern and level of colocalization of ZO-1 with Cx43 in cultures of neonatal myocytes at the level of individual GJ plaques. The data indicate that ZO-1 shows on average a partial 26.6% overlap (SD = 11.3%) with Cx43 GJ plaques. There is a strong positive correlation between GJ plaque size and area of ZO-1 colocalization, indicating that the level of associated ZO-1 scales with the area of the GJ plaque. Qualitatively, the most prominent colocalization occurs at the plaque perimeter. These studies may provide insight into the presently unknown biological function of ZO-1 interaction with Cx43.

  9. Propagation Distance of the α-Particle-Induced Bystander Effect: The Role of Nuclear Traversal and Gap Junction Communication

    PubMed Central

    Gaillard, Sylvain; Pusset, David; de Toledo, Sonia M.; Fromm, Michel; Azzam, Edouard I.

    2009-01-01

    When cell populations are exposed to low-dose α-particle radiation, a significant fraction of the cells will not be traversed by a radiation track. However, stressful effects occur in both irradiated and bystander cells in the population. Characterizing these effects, and investigating their underlying mechanism(s), is critical to understanding human health risks associated with exposure to α particles. To this end, confluent normal human fibroblast cultures were grown on polyethylene terephthalate foil grafted to an ultrathin solid-state nuclear track detector and exposed under non-perturbing conditions to low-fluence α particles from a broadbeam irradiator. Irradiated and affected bystander cells were localized with micrometer precision. The stress-responsive protein p21Waf1 (also known as CDKN1A) was induced in bystander cells within a 100-µm radius from an irradiated cell. The mean propagation distance ranged from 20 to 40 µm around the intranuclear α-particle impact point, which corresponds to a set of ∼30 cells. Nuclear traversal, induced DNA damage, and gap junction communication were critical contributors to propagation of this stressful effect The strategy described here may be ideal to investigate the size of radiation-affected target and the relative contribution of different cellular organelles to bystander effects induced by energetic particles, which is relevant to radioprotection and cancer radiotherapy. PMID:19580486

  10. Exploring the Membrane Potential of Simple Dual-Membrane Systems as Models for Gap-Junction Channels.

    PubMed

    Escalona, Yerko; Garate, Jose A; Araya-Secchi, Raul; Huynh, Tien; Zhou, Ruhong; Perez-Acle, Tomas

    2016-06-21

    The conductance of ion channels can be modulated by a transmembrane potential difference, due to alterations on ion-mobility and also by changes in the pore structure. Despite the vast knowledge regarding the influence of voltage on transport properties of ion channels, little attention has been paid to describe, with atomic detail, the modulation of ionic transport in gap-junction channels (GJCs). Hence, molecular dynamics simulations were performed to explore the conductance of simple dual-membrane systems that account for the very basic features of GJCs. In doing so, we studied the influence of different charge distributions in the channel surface on these idealized systems under external electric fields, paying attention to the behavior of the electrostatic potential, ion density, ion currents, and equilibrium properties. Our results demonstrate that the incorporation of a charge distribution akin GJCs decreased anionic currents, favoring the transport of cationic species. Moreover, a thermodynamic characterization of ionic transport in these systems demonstrate the existence of a kinetic barrier that hinders anionic currents, reinforcing the role played by the internal arrangement of charges in GJCs. Overall, our results provide insights at the atomic scale on the effects of charge distributions over ionic transport, constituting a step forward into a better understanding of GJCs. PMID:27332126

  11. Effect of perfluorooctane sulfonate on viability, maturation and gap junctional intercellular communication of porcine oocytes in vitro.

    PubMed

    Domínguez, A; Salazar, Z; Arenas, E; Betancourt, M; Ducolomb, Y; González-Márquez, H; Casas, E; Teteltitla, M; Bonilla, E

    2016-09-01

    Perfluorooctane sulfonate (PFOS) is a broadly used man-made surfactant whose long half-life has led to bioaccumulation. This perfluorinated compound is ubiquitous in human body fluids. PFOS concentrations as high as 26μM in plasma have been reported in occupationally exposed populations, and high levels of PFOS in human follicular fluid have been associated with subfertility. However, the effect of PFOS on the maturation of oocytes in mammals has not been reported to date. The aim of this study was to determine the effects of PFOS during oocyte maturation. Results indicate that PFOS inhibits oocyte viability (Lethal Concentration50=32μM) and maturation (inhibition of maturation50=22μM) at physiologically relevant concentrations. In order to evaluate the mechanisms of oocyte maturation inhibition by PFOS, gap junctional intercellular communication (GJIC) between oocytes and granulosa cells was assessed. GJIC between granulosa cells and the oocyte was significantly affected during the first 8h of maturation. However, the inhibitory effect of PFOS on GJIC was not due to an alteration on the expression of connexin genes Cx43, Cx45 and Cx60. These findings suggest that occupationally exposed populations could be at risk, and that PFOS might affect oocyte maturation by interfering the GJIC in the cumulus-oocyte complexes during the first hours of maturation.

  12. Aversive Behavior in the Nematode C. elegans Is Modulated by cGMP and a Neuronal Gap Junction Network.

    PubMed

    Krzyzanowski, Michelle C; Woldemariam, Sarah; Wood, Jordan F; Chaubey, Aditi H; Brueggemann, Chantal; Bowitch, Alexander; Bethke, Mary; L'Etoile, Noelle D; Ferkey, Denise M

    2016-07-01

    All animals rely on their ability to sense and respond to their environment to survive. However, the suitability of a behavioral response is context-dependent, and must reflect both an animal's life history and its present internal state. Based on the integration of these variables, an animal's needs can be prioritized to optimize survival strategies. Nociceptive sensory systems detect harmful stimuli and allow for the initiation of protective behavioral responses. The polymodal ASH sensory neurons are the primary nociceptors in C. elegans. We show here that the guanylyl cyclase ODR-1 functions non-cell-autonomously to downregulate ASH-mediated aversive behaviors and that ectopic cGMP generation in ASH is sufficient to dampen ASH sensitivity. We define a gap junction neural network that regulates nociception and propose that decentralized regulation of ASH signaling can allow for rapid correlation between an animal's internal state and its behavioral output, lending modulatory flexibility to this hard-wired nociceptive neural circuit. PMID:27459302

  13. Less is more: minimal expression of myoendothelial gap junctions optimizes cell-cell communication in virtual arterioles.

    PubMed

    Hald, Bjørn Olav; Jacobsen, Jens Christian Brings; Sandow, Shaun L; Holstein-Rathlou, Niels-Henrik; Welsh, Donald G

    2014-08-01

    Dysfunctional electrical signalling within the arteriolar wall is a major cause of cardiovascular disease. The endothelial cell layer constitutes the primary electrical pathway, co-ordinating contraction of the overlying smooth muscle cell (SMC) layer. As myoendothelial gap junctions (MEGJs) provide direct contact between the cell layers, proper vasomotor responses are thought to depend on a high, uniform MEGJ density. However, MEGJs are observed to be expressed heterogeneously within and among vascular beds. This discrepancy is addressed in the present study. As no direct measures of MEGJ conductance exist, we employed a computational modelling approach to vary the number, conductance and distribution of MEGJs. Our simulations demonstrate that a minimal number of randomly distributed MEGJs augment arteriolar cell-cell communication by increasing conduction efficiency and ensuring appropriate membrane potential responses in SMCs. We show that electrical coupling between SMCs must be tailored to the particular MEGJ distribution. Finally, observation of non-decaying mechanical conduction in arterioles without regeneration has been a long-standing controversy in the microvascular field. As heterogeneous MEGJ distributions provide for different conduction profiles along the cell layers, we demonstrate that a non-decaying conduction profile is possible in the SMC layer of a vessel with passive electrical properties. These intriguing findings redefine the concept of efficient electrical communication in the microcirculation, illustrating how heterogeneous properties, ubiquitous in biological systems, may have a profound impact on system behaviour and how acute local and global flow control is explained from the biophysical foundations. PMID:24907303

  14. Endothelium-Derived Hyperpolarization and Coronary Vasodilation: Diverse and Integrated Roles of Epoxyeicosatrienoic Acids, Hydrogen Peroxide, and Gap Junctions.

    PubMed

    Ellinsworth, David C; Sandow, Shaun L; Shukla, Nilima; Liu, Yanping; Jeremy, Jamie Y; Gutterman, David D

    2016-01-01

    Myocardial perfusion and coronary vascular resistance are regulated by signaling metabolites released from the local myocardium that act either directly on the VSMC or indirectly via stimulation of the endothelium. A prominent mechanism of vasodilation is EDH of the arteriolar smooth muscle, with EETs and H(2)O(2) playing important roles in EDH in the coronary microcirculation. In some cases, EETs and H(2)O(2) are released as transferable hyperpolarizing factors (EDHFs) that act directly on the VSMCs. By contrast, EETs and H(2)O(2) can also promote endothelial KCa activity secondary to the amplification of extracellular Ca(2+) influx and Ca(2+) mobilization from intracellular stores, respectively. The resulting endothelial hyperpolarization may subsequently conduct to the media via myoendothelial gap junctions or potentially lead to the release of a chemically distinct factor(s). Furthermore, in human isolated coronary arterioles dilator signaling involving EETs and H(2)O(2) may be integrated, being either complimentary or inhibitory depending on the stimulus. With an emphasis on the human coronary microcirculation, this review addresses the diverse and integrated mechanisms by which EETs and H(2)O(2) regulate vessel tone and also examines the hypothesis that myoendothelial microdomain signaling facilitates EDH activity in the human heart.

  15. Electrical signal transmission and gap junction regulation in a bone cell network: a cable model for an osteon

    NASA Technical Reports Server (NTRS)

    Zhang, D.; Cowin, S. C.; Weinbaum, S.

    1997-01-01

    A cable model is formulated to estimate the spatial distribution of intracellular electric potential and current, from the cement line to the lumen of an osteon, as the frequency of the loading and the conductance of the gap junction are altered. The model predicts that the characteristic diffusion time for the spread of current along the membrane of the osteocytic processes, 0.03 sec, is nearly the same as the predicted pore pressure relaxation time in Zeng et al. (Annals of Biomedical Engineering. 1994) for the draining of the bone fluid into the osteonal canal. This approximate equality of characteristic times causes the cable to behave as a high-pass, low-pass filter cascade with a maximum in the spectral response for the intracellular potential at approximately 30 Hz. This behavior could be related to the experiments of Rubin and McLeod (Osteoporosis, Academic Press, 1996) which show that live bone appears to be selectively responsive to mechanical loading in a specific frequency range (15-30 Hz) for several species.

  16. The Role of Gap Junction Channels During Physiologic and Pathologic Conditions of the Human Central Nervous System

    PubMed Central

    Basilio, Daniel; Sáez, Juan C.; Orellana, Juan A.; Raine, Cedric S.; Bukauskas, Feliksas; Bennett, Michael V. L.; Berman, Joan W.

    2013-01-01

    Gap junctions (GJs) are expressed in most cell types of the nervous system, including neuronal stem cells, neurons, astrocytes, oligodendrocytes, cells of the blood brain barrier (endothelial cells and astrocytes) and under inflammatory conditions in microglia/macrophages. GJs connect cells by the docking of two hemichannels, one from each cell with each hemichannel being formed by 6 proteins named connexins (Cx). Unapposed hemichannels (uHC) also can be open on the surface of the cells allowing the release of different intracellular factors to the extracellular space. GJs provide a mechanism of cell-to-cell communication between adjacent cells that enables the direct exchange of intracellular messengers, such as calcium, nucleotides, IP3, and diverse metabolites, as well as electrical signals that ultimately coordinate tissue homeostasis, proliferation, differentiation, metabolism, cell survival and death. Despite their essential functions in physiological conditions, relatively little is known about the role of GJs and uHC in human diseases, especially within the nervous system. The focus of this review is to summarize recent findings related to the role of GJs and uHC in physiologic and pathologic conditions of the central nervous system. PMID:22438035

  17. Aversive Behavior in the Nematode C. elegans Is Modulated by cGMP and a Neuronal Gap Junction Network

    PubMed Central

    Krzyzanowski, Michelle C.; Wood, Jordan F.; Brueggemann, Chantal; Bowitch, Alexander; Bethke, Mary; L’Etoile, Noelle D.; Ferkey, Denise M.

    2016-01-01

    All animals rely on their ability to sense and respond to their environment to survive. However, the suitability of a behavioral response is context-dependent, and must reflect both an animal’s life history and its present internal state. Based on the integration of these variables, an animal’s needs can be prioritized to optimize survival strategies. Nociceptive sensory systems detect harmful stimuli and allow for the initiation of protective behavioral responses. The polymodal ASH sensory neurons are the primary nociceptors in C. elegans. We show here that the guanylyl cyclase ODR-1 functions non-cell-autonomously to downregulate ASH-mediated aversive behaviors and that ectopic cGMP generation in ASH is sufficient to dampen ASH sensitivity. We define a gap junction neural network that regulates nociception and propose that decentralized regulation of ASH signaling can allow for rapid correlation between an animal’s internal state and its behavioral output, lending modulatory flexibility to this hard-wired nociceptive neural circuit. PMID:27459302

  18. Less is more: minimal expression of myoendothelial gap junctions optimizes cell–cell communication in virtual arterioles

    PubMed Central

    Hald, Bjørn Olav; Jacobsen, Jens Christian Brings; Sandow, Shaun L; Holstein-Rathlou, Niels-Henrik; Welsh, Donald G

    2014-01-01

    Dysfunctional electrical signalling within the arteriolar wall is a major cause of cardiovascular disease. The endothelial cell layer constitutes the primary electrical pathway, co-ordinating contraction of the overlying smooth muscle cell (SMC) layer. As myoendothelial gap junctions (MEGJs) provide direct contact between the cell layers, proper vasomotor responses are thought to depend on a high, uniform MEGJ density. However, MEGJs are observed to be expressed heterogeneously within and among vascular beds. This discrepancy is addressed in the present study. As no direct measures of MEGJ conductance exist, we employed a computational modelling approach to vary the number, conductance and distribution of MEGJs. Our simulations demonstrate that a minimal number of randomly distributed MEGJs augment arteriolar cell–cell communication by increasing conduction efficiency and ensuring appropriate membrane potential responses in SMCs. We show that electrical coupling between SMCs must be tailored to the particular MEGJ distribution. Finally, observation of non-decaying mechanical conduction in arterioles without regeneration has been a long-standing controversy in the microvascular field. As heterogeneous MEGJ distributions provide for different conduction profiles along the cell layers, we demonstrate that a non-decaying conduction profile is possible in the SMC layer of a vessel with passive electrical properties. These intriguing findings redefine the concept of efficient electrical communication in the microcirculation, illustrating how heterogeneous properties, ubiquitous in biological systems, may have a profound impact on system behaviour and how acute local and global flow control is explained from the biophysical foundations. PMID:24907303

  19. The gap junction modifier, GAP-134 [(2S,4R)-1-(2-aminoacetyl)-4-benzamido-pyrrolidine-2-carboxylic acid], improves conduction and reduces atrial fibrillation/flutter in the canine sterile pericarditis model.

    PubMed

    Rossman, Eric I; Liu, Kun; Morgan, Gwen A; Swillo, Robert E; Krueger, Julie A; Gardell, Stephen J; Butera, John; Gruver, Matthew; Kantrowitz, Joel; Feldman, Hal S; Petersen, Jørgen S; Haugan, Ketil; Hennan, James K

    2009-06-01

    Gap junction uncoupling can alter conduction pathways and promote cardiac re-entry mechanisms that potentiate many supraventricular arrhythmias, such as atrial fibrillation (AF) and atrial flutter (AFL). Our objective was to determine whether GAP-134 [(2S,4R)-1-(2-aminoacetyl)-4-benzamido-pyrrolidine-2-carboxylic acid], a small dipeptide gap junction modifier, can improve conduction and ultimately prevent AF/AFL. In rat atrial strips subjected to metabolic stress, GAP-134 prevented significantly conduction velocity slowing at 10 nM compared with vehicle (p < 0.01). In the canine sterile pericarditis model, conduction time (CT; n = 5), atrial effective refractory period (AERP; n = 3), and AF/AFL duration/inducibility (n = 16) were measured 2 to 3 days postoperatively in conscious dogs. CT was significantly faster after GAP-134 infusion (average plasma concentration, 250 nM) at cycle lengths of 300 ms (66.2 +/- 1.0 versus 62.0 +/- 1.0 ms; p < 0.001) and 200 ms (64.4 +/- 0.9 versus 61.0 +/- 1.3 ms; p < 0.001). No significant changes in AERP were noted after GAP-134 infusion. The mean number of AF/AFL inductions per animal was significantly decreased after GAP-134 infusion (2.7 +/- 0.6 versus 1.6 +/- 0.8; p < 0.01), with total AF/AFL burden being decreased from 12,280 to 6063 s. Western blot experiments showed no change in connexin 43 expression. At concentrations exceeding those described in the AF/AFL experiments, GAP-134 had no effect on heart rate, blood pressure, or any electrocardiogram parameters. In conclusion, GAP-134 shows consistent efficacy on measures of conduction and AF/AFL inducibility in the canine sterile pericarditis model. These findings, along with its oral bioavailability, underscore its potential antiarrhythmic efficacy.

  20. Effect of byproducts from the ozonation of pyrene: biphenyl-2,2',6,6'-tetracarbaldehyde and biphenyl-2,2',6,6'-tetracarboxylic acid on gap junction intercellular communication and neutrophil function.

    PubMed

    Luster-Teasley, Stephanie L; Ganey, Patricia E; DiOrio, Mary; Ward, Joseph S; Maleczka, Robert E; Trosko, James E; Masten, Susan J

    2005-03-01

    In this study, biphenyl-2,2',6,6'-tetracarbaldehyde, an initial byproduct formed from the ozonation of pyrene, and biphenyl-2,2',6,6'-tetracarboxylic acid, a subsequent pyrene ozonation byproduct, were evaluated using two toxicology assays to compare the toxicity of ozonation byproducts with that of the parent compound. The first assay measured the potential for the compounds to block gap junctional intercellular communication (GJIC) using the scrape loading/dye transfer technique in normal WB-344 rat liver epithelial cells. The second assay evaluated the ability of the compounds to affect neutrophil function by measuring the production of superoxide in a human cell line (HL-60). Pyrene significantly blocked intercellular communication (f = 0.2-0.5) at 40 microM and complete inhibition of communication (f < 0.2) occurred at 50 microM. Gap junctional intercellular communication in cells exposed to biphenyl-2,2',6,6'-tetracarbaldehyde reached f < 0.5 at a concentration of 15 microM. At concentrations greater than 20 microM, biphenyl-2,2',6,6'-tetracarbaldehyde was cytotoxic and the inhibition of GJIC was caused by cell death. Biphenyl-2,2',6,6'-tetracarboxylic acid was neither cytotoxic nor inhibitory to GJIC at the concentrations tested (10-500 microM). Exposure to biphenyl-2,2',6,6'-tetracarbaldehyde resulted in a concentration-dependent decrease in phorbol 12-myristate 13-acetate-stimulated O2- production. Neither exposure to pyrene nor biphenyl-2,2',6,6'-tetracarboxylic acid caused a significant toxic effect on neutrophil function.

  1. FSH Modulates PKAI and GPR3 Activities in Mouse Oocyte of COC in a Gap Junctional Communication (GJC)-Dependent Manner to Initiate Meiotic Resumption

    PubMed Central

    Xia, Guoliang

    2012-01-01

    Many studies have shown that cyclic adenosine-5′-monophosphate (cAMP)-dependent protein kinase A (PKA) and G-protein-coupled receptor 3 (GPR3) are crucial for controlling meiotic arrest in oocytes. However, it is unclear how gonadotropins modulate these factors to regulate oocyte maturation, especially by gap junctional communication (GJC). Using an in vitro meiosis-arrested mouse cumulus-oocyte complex (COC) culture model, we showed that there is a close relationship between follicle-stimulating hormone (FSH) and the PKA type I (PKAI) and GPR3. The effect of FSH on oocyte maturation was biphasic, initially inhibitory and then stimulatory. During FSH-induced maturation, rapid cAMP surges were observed in both cumulus cells and oocyte. Most GJC between cumulus cells and oocyte ceased immediately after FSH stimulation and recommenced after the cAMP surge. FSH-induced maturation was blocked by PKAI activator 8-AHA-cAMP. Levels of PKAI regulatory subunits and GPR3 decreased and increased, respectively, after FSH stimulation. In the presence of the GJC inhibitor carbenoxolone (CBX), FSH failed to induce the meiotic resumption and the changes in PKAI, GPR3 and cAMP surge in oocyte were no longer detected. Furthermore, GPR3 was upregulated by high cAMP levels, but not by PKAI activation. When applied after FSH stimulation, the specific phosphodiesterase 3A (PDE3A) inhibitor cilostamide immediately blocked meiotic induction, regardless of when it was administered. PKAI activation inhibited mitogen-activated protein kinase (MAPK) phosphorylation in the oocytes of COCs, which participated in the initiation of FSH-induced meiotic maturation in vitro. Just before FSH-induced meiotic maturation, cAMP, PKAI, and GPR3 returned to basal levels, and PDE3A activity and MAPK phosphorylation increased markedly. These experiments show that FSH induces a transient increase in cAMP levels and regulates GJC to control PKAI and GPR3 activities, thereby creating an inhibitory phase. After

  2. Hematopoiesis: Gap Junction Intercellular Communication is Likely to be Involved in Regulation of Stroma-dependent Proliferation of Hemopoietic Stem Cells.

    PubMed

    Ploemacher, ROB E.; Mayen, ANGELIQUE E. M.; De Koning, ALEXANDRA E.; Krenacs, TIBOR; Rosendaal, MARTIN

    2000-01-01

    The 80-100 fold increased immunohistological expression of the Gap Junction (GJ) protein Connexin-43 in murine bone marrow during the neonatal period and directly following cytoreductive treatment of adult mice suggests that the regulation of stem cell proliferation may involve GJ Intercellular Communication (GJIC). Using a series of stromal cell lines from foetal liver and neonatal bone marrow we observed that the percentage of cells with GJIC, as indicated by dye-coupling using microinjection of lucifer yellow, correlated with the stromal support for late appearing clones formed by primitive stem cells (CAFC week 3-5). In order to functionally block all GJIC between mutual stromal cells and stromal cells and hemopoietic cells, in long-term stroma-supported flask (LTC) and CAFC cultures, the lipophilic compounds amphotericin-B (AB), nystatin, alpha-glycyrrhetinic acid, tetraphenylboron, dipicrylamine and arachidonic acid were tested for their effect on GJIC and CAFC support. Only AB and nystatin, which induced complete and prolonged GJIC blockade, were able to dramatically inhibit cobblestone area (CA) formation and CFU-C generation in LTC. This inhibition could be fully abrogated by withdrawing AB within the first 2 weeks of culture. Low AB concentrations stimulated CA formation. The AB-mediated inhibition of hemopoiesis probably involved direct stromal contact with stem cells because a) AB did not inhibit CFU-C generation when stem cells were cultured in trans-well inserts above the stroma; b) conditioned media from AB-containing or normal LTC did not inhibit colony formation by normal cells in semi-solid, non-stromal cultures, and c) AB did not inhibit colony formation by bone marrow cells in semi-solid culture nor did it inhibit growth or maintenance of stromal cells. In addition, The inhibition of hemopoiesis by AB could also not be explained by changes in the amount of cytokine and chemokine transcripts, including TGF-b1, in AB-blocked stromal cells. Our

  3. MgcRacGAP restricts active RhoA at the cytokinetic furrow and both RhoA and Rac1 at cell–cell junctions in epithelial cells

    PubMed Central

    Breznau, Elaina B.; Semack, Ansley C.; Higashi, Tomohito; Miller, Ann L.

    2015-01-01

    Localized activation of Rho GTPases is essential for multiple cellular functions, including cytokinesis and formation and maintenance of cell–cell junctions. Although MgcRacGAP (Mgc) is required for spatially confined RhoA-GTP at the equatorial cortex of dividing cells, both the target specificity of Mgc's GAP activity and the involvement of phosphorylation of Mgc at Ser-386 are controversial. In addition, Mgc's function at cell–cell junctions remains unclear. Here, using gastrula-stage Xenopus laevis embryos as a model system, we examine Mgc's role in regulating localized RhoA-GTP and Rac1-GTP in the intact vertebrate epithelium. We show that Mgc's GAP activity spatially restricts accumulation of both RhoA-GTP and Rac1-GTP in epithelial cells—RhoA at the cleavage furrow and RhoA and Rac1 at cell–cell junctions. Phosphorylation at Ser-386 does not switch the specificity of Mgc's GAP activity and is not required for successful cytokinesis. Furthermore, Mgc regulates adherens junction but not tight junction structure, and the ability to regulate adherens junctions is dependent on GAP activity and signaling via the RhoA pathway. Together these results indicate that Mgc's GAP activity down-regulates the active populations of RhoA and Rac1 at localized regions of epithelial cells and is necessary for successful cytokinesis and cell–cell junction structure. PMID:25947135

  4. BAAV mediated GJB2 gene transfer restores gap junction coupling in cochlear organotypic cultures from deaf Cx26Sox10Cre mice.

    PubMed

    Crispino, Giulia; Di Pasquale, Giovanni; Scimemi, Pietro; Rodriguez, Laura; Galindo Ramirez, Fabian; De Siati, Romolo Daniele; Santarelli, Rosa Maria; Arslan, Edoardo; Bortolozzi, Mario; Chiorini, John A; Mammano, Fabio

    2011-01-01

    The deafness locus DFNB1 contains GJB2, the gene encoding connexin26 and GJB6, encoding connexin30, which appear to be coordinately regulated in the inner ear. In this work, we investigated the expression and function of connexin26 and connexin30 from postnatal day 5 to adult age in double transgenic Cx26(Sox10Cre) mice, which we obtained by crossing connexin26 floxed mice with a deleter Sox10-Cre line. Cx26(Sox10Cre) mice presented with complete connexin26 ablation in the epithelial gap junction network of the cochlea, whereas connexin30 expression was developmentally delayed; immunolabeling patterns for both connexins were normal in the cochlear lateral wall. In vivo electrophysiological measurements in Cx26(Sox10Cre) mice revealed profound hearing loss accompanied by reduction of endocochlear potential, and functional experiments performed in postnatal cochlear organotypic cultures showed impaired gap junction coupling. Transduction of these cultures with a bovine adeno associated virus vector restored connexin26 protein expression and rescued gap junction coupling. These results suggest that restoration of normal connexin levels by gene delivery via recombinant adeno associated virus could be a way to rescue hearing function in DFNB1 mouse models and, in future, lead to the development of therapeutic interventions in humans. PMID:21876744

  5. Keratitis-Ichthyosis-Deafness syndrome-associated Cx26 mutants produce nonfunctional gap junctions but hyperactive hemichannels when co-expressed with wild type Cx43

    PubMed Central

    García, Isaac E.; Maripillán, Jaime; Jara, Oscar; Ceriani, Ricardo; Palacios-Muñoz, Angelina; Ramachandran, Jayalakshimi; Olivero, Pablo; Pérez-Acle, Tomás; González, Carlos; Sáez, Juan C.; Contreras, Jorge E.; Martínez, Agustín D.

    2015-01-01

    Mutations in Cx26 gene are found in most cases of human genetic deafness. Some mutations produce syndromic deafness associated with skin disorders, like Keratitis Ichthyosis Deafness syndrome (KID). Because in the human skin Cx26 is co-expressed with other connexins, like Cx43 and Cx30, and since KID syndrome is inherited as autosomal dominant condition, it is possible that KID mutations change the way Cx26 interacts with other co-expressed connexins. Indeed, some Cx26 syndromic mutations showed gap junction dominant negative effect when co-expressed with wild type connexins, including Cx26 and Cx43. The nature of these interactions and the consequences on hemichannels and gap junction channels functions remain unknown. In this study we demonstrate that syndromic mutations at the N-terminus segment of Cx26, change connexin oligomerization compatibility, allowing aberrant interactions with Cx43. Strikingly, heteromeric oligomer formed by Cx43/Cx26 (syndromic mutants) show exacerbated hemichannel activity, but nonfunctional gap junction channels; this also occurs for those Cx26 KID mutants that do not show functional homomeric hemichannels. Heterologous expression of these hyperactive heteromeric hemichannels increases cell membrane permeability, favoring ATP release and Ca2+ overload. The functional paradox produced by oligomerization of Cx43 and Cx26 KID mutants could underlie the severe syndromic phenotype in human skin. PMID:25625422

  6. Gingko biloba extracts protect auditory hair cells from cisplatin-induced ototoxicity by inhibiting perturbation of gap junctional intercellular communication.

    PubMed

    Choi, S J; Kim, S W; Lee, J B; Lim, H J; Kim, Y J; Tian, C; So, H S; Park, R; Choung, Y-H

    2013-08-01

    Gap junctional intercellular communication (GJIC) may play an important role in the hearing process. Cisplatin is an anticancer drug that causes hearing loss and Gingko biloba extracts (EGb 761) have been used as an antioxidant and enhancer for GJIC. The purpose of this study was to examine the efficiency of EGb 761 in protecting against cisplatin-induced apoptosis and disturbance of GJIC. House Ear Institute-Organ of Corti 1 auditory cells were cultured and treated with cisplatin (50 μM) and EGb (300 μg/ml) for 24h, and then analyzed by immunocytochemistry (Annexin V/propidium iodide) and Western blots. GJIC was evaluated by scrape-loading dye transfer (SLDT). Basal turn organ of Corti (oC) explants from neonatal (p3) rats were exposed to cisplatin (1-10 μM) and EGb (50-400 μg/ml). The number of intact hair cells was counted by co-labeling with phalloidin and MyoVIIa. EGb prevented cisplatin-induced apoptosis in immunostaining and decreased caspase 3 and poly-ADP-ribose polymerase bands, which were increased in cisplatin-treated cells in Western blots. EGb prevented abnormal intracellular locations of connexin (Cx) 26, 30, 31, and 43 in cells treated with cisplatin and increased quantities of Cx bands. EGb also prevented cisplatin-induced disturbance of GJIC in SLDT. In oC explants, EGb significantly prevented hair cell damage induced by cisplatin. In animal studies, EGb significantly prevented cisplatin-induced hearing loss across 16 and 32 kHz. These results show that cisplatin induces ototoxicity including hearing loss as well as down-regulation of GJIC and inhibition of Cxs in auditory cells. EGb prevents hearing loss in cisplatin-treated rats by inhibiting down-regulation of Cx expression and GJIC. The disturbance of GJIC or Cx expression may be one of the important mechanisms of cisplatin-induced ototoxicity. PMID:23583760

  7. Gap Junctional Blockade Stochastically Induces Different Species-Specific Head Anatomies in Genetically Wild-Type Girardia dorotocephala Flatworms.

    PubMed

    Emmons-Bell, Maya; Durant, Fallon; Hammelman, Jennifer; Bessonov, Nicholas; Volpert, Vitaly; Morokuma, Junji; Pinet, Kaylinnette; Adams, Dany S; Pietak, Alexis; Lobo, Daniel; Levin, Michael

    2015-11-24

    The shape of an animal body plan is constructed from protein components encoded by the genome. However, bioelectric networks composed of many cell types have their own intrinsic dynamics, and can drive distinct morphological outcomes during embryogenesis and regeneration. Planarian flatworms are a popular system for exploring body plan patterning due to their regenerative capacity, but despite considerable molecular information regarding stem cell differentiation and basic axial patterning, very little is known about how distinct head shapes are produced. Here, we show that after decapitation in G. dorotocephala, a transient perturbation of physiological connectivity among cells (using the gap junction blocker octanol) can result in regenerated heads with quite different shapes, stochastically matching other known species of planaria (S. mediterranea, D. japonica, and P. felina). We use morphometric analysis to quantify the ability of physiological network perturbations to induce different species-specific head shapes from the same genome. Moreover, we present a computational agent-based model of cell and physical dynamics during regeneration that quantitatively reproduces the observed shape changes. Morphological alterations induced in a genomically wild-type G. dorotocephala during regeneration include not only the shape of the head but also the morphology of the brain, the characteristic distribution of adult stem cells (neoblasts), and the bioelectric gradients of resting potential within the anterior tissues. Interestingly, the shape change is not permanent; after regeneration is complete, intact animals remodel back to G. dorotocephala-appropriate head shape within several weeks in a secondary phase of remodeling following initial complete regeneration. We present a conceptual model to guide future work to delineate the molecular mechanisms by which bioelectric networks stochastically select among a small set of discrete head morphologies. Taken together

  8. Gap Junctional Blockade Stochastically Induces Different Species-Specific Head Anatomies in Genetically Wild-Type Girardia dorotocephala Flatworms

    PubMed Central

    Emmons-Bell, Maya; Durant, Fallon; Hammelman, Jennifer; Bessonov, Nicholas; Volpert, Vitaly; Morokuma, Junji; Pinet, Kaylinnette; Adams, Dany S.; Pietak, Alexis; Lobo, Daniel; Levin, Michael

    2015-01-01

    The shape of an animal body plan is constructed from protein components encoded by the genome. However, bioelectric networks composed of many cell types have their own intrinsic dynamics, and can drive distinct morphological outcomes during embryogenesis and regeneration. Planarian flatworms are a popular system for exploring body plan patterning due to their regenerative capacity, but despite considerable molecular information regarding stem cell differentiation and basic axial patterning, very little is known about how distinct head shapes are produced. Here, we show that after decapitation in G. dorotocephala, a transient perturbation of physiological connectivity among cells (using the gap junction blocker octanol) can result in regenerated heads with quite different shapes, stochastically matching other known species of planaria (S. mediterranea, D. japonica, and P. felina). We use morphometric analysis to quantify the ability of physiological network perturbations to induce different species-specific head shapes from the same genome. Moreover, we present a computational agent-based model of cell and physical dynamics during regeneration that quantitatively reproduces the observed shape changes. Morphological alterations induced in a genomically wild-type G. dorotocephala during regeneration include not only the shape of the head but also the morphology of the brain, the characteristic distribution of adult stem cells (neoblasts), and the bioelectric gradients of resting potential within the anterior tissues. Interestingly, the shape change is not permanent; after regeneration is complete, intact animals remodel back to G. dorotocephala-appropriate head shape within several weeks in a secondary phase of remodeling following initial complete regeneration. We present a conceptual model to guide future work to delineate the molecular mechanisms by which bioelectric networks stochastically select among a small set of discrete head morphologies. Taken together

  9. Connexin-43 gap junctions are involved in multiconnexin-expressing stromal support of hemopoietic progenitors and stem cells.

    PubMed

    Cancelas, J A; Koevoet, W L; de Koning, A E; Mayen, A E; Rombouts, E J; Ploemacher, R E

    2000-07-15

    Gap junctions (GJs) provide for a unique system of intercellular communication (IC) allowing rapid transport of small molecules from cell to cell. GJs are formed by a large family of proteins named connexins (Cxs). Cx43 has been considered as the predominantly expressed Cx by hematopoietic-supporting stroma. To investigate the role of the Cx family in hemopoiesis, we analyzed the expression of 11 different Cx species in different stromal cell lines derived from murine bone marrow (BM) or fetal liver (FL). We found that up to 5 Cxs are expressed in FL stromal cells (Cx43, Cx45, Cx30.3, Cx31, and Cx31.1), whereas only Cx43, Cx45, and Cx31 were clearly detectable in BM stromal cells. In vivo, the Cx43-deficient 14.5- to 15-day FL cobblestone area-forming cells (CAFC)-week 1-4 and colony-forming unit contents were 26%-38% and 39%-47% lower than in their wild-type counterparts, respectively. The reintroduction of the Cx43 gene into Cx43-deficient FL stromal cells was able to restore their diminished IC to the level of the wild-type FL stromal cells. In addition, these Cx43-reintroduced stromal cells showed an increased support ability (3.7-fold) for CAFC-week 1 in normal mouse BM and 5-fold higher supportive ability for CAFC-week 4 in 5-fluorouracil-treated BM cells as compared with Cx43-deficient FL stromal cells. These findings suggest that stromal Cx43-mediated IC, although not responsible for all GJ-mediated IC of stromal cells, plays a role in the supportive ability for hemopoietic progenitors and stem cells. (Blood. 2000;96:498-505) PMID:10887111

  10. Involvement of gap junctional intercellular communication in the bystander effect induced by broad-beam or microbeam heavy ions

    NASA Astrophysics Data System (ADS)

    Shao, Chunlin; Furusawa, Yoshiya; Kobayashi, Yasuhiko; Funayama, Tomoo

    2006-09-01

    Most of the reported bystander responses were studied by using low dose irradiation of γ-rays and light ions such as alpha-particles. In this study, primary human fibroblasts AG1522 in confluent cultures were irradiated with either broad-beam of 100 keV/μm 12C or microbeams of 380 keV/μm 20Ne and 1260 keV/μm 40Ar. When cells were irradiated with 12C ions, the induction of micronucleus (MN) had a low-dose sensitive effect, i.e. a lower dose of irradiation gave a higher yield of MN per cell-traversal. This phenomenon was further reinforced by using a microbeam to irradiate a fraction of cells within a population. Even when only a single cell was targeted with one particle of 40Ar or 20Ne, the MN yield was increased to 1.4-fold of the non-irradiated control. When the number of microbeam targeted cells increased, the MN yield per targeted-cell decreased drastically. In addition, the bystander MN induction did not vary significantly with the number and the linear energy transfer (LET) of microbeam particles. When the culture was treated with PMA, an inhibitor of gap junctional intercellular communication (GJIC), MN induction was decreased for both microbeam and broad-beam irradiations even at high-doses where all cells were hit. The present findings indicate that a GJIC-mediated signaling amplification mechanism was involved in the high-LET heavy ion irradiation induced bystander effect. Moreover, at high-doses of radiation, the bystander signals could perform a complex interaction with direct irradiation.

  11. Triple-helical DNA as a reversible block of the branch point in a partially symmetrical DNA four-arm junction.

    PubMed

    Kirby, A W; Gaskin, M N; Antezana, M A; Goodman, S J; Myers, E; Bruist, M F

    1997-08-22

    DNA branch migration is a fundamental process in genetic recombination. A new model system has been developed for studying branch migration in a small synthetic four-arm junction. A mathematical method for describing branch-point movement by discrete steps in such junctions is also presented. The key to our experimental system is the ability to fix the location of the branch point during the assembly of the junction with a reversible block. The block is provided by a short oligonucleotide that forms triplex DNA adjacent to the initial location branch point at low pH. Raising the pH causes the triplex strand to dissociate, making the branch point free to migrate. Once mobile, the branch point can run off the end of the junction. The time-course for this runoff is consistent with a random walk of the branch point. If it is assumed that one migration step moves the branch point one base-pair, the time-course gives a rate constant for one step of 1.4 second-1 at 37 degrees C in 10 mM MgCl2, 50 mM NaCl. These values are consistent with other measurements of non-enzymatic branch migration. We have also monitored the spread of the branch points directly with T4 endonuclease VII. Using EcoRI restriction endonuclease, we have shown that the binding of this protein to the arms of the junction essentially blocks branch migration through the binding site. In these experiments Ca2+ replaces Mg2+, and the enzyme does not cleave the DNA. In vivo there must be a special process to get branch points to migrate past bound proteins.

  12. Solving gap metabolites and blocked reactions in genome-scale models: application to the metabolic network of Blattabacterium cuenoti

    PubMed Central

    2013-01-01

    Background Metabolic reconstruction is the computational-based process that aims to elucidate the network of metabolites interconnected through reactions catalyzed by activities assigned to one or more genes. Reconstructed models may contain inconsistencies that appear as gap metabolites and blocked reactions. Although automatic methods for solving this problem have been previously developed, there are many situations where manual curation is still needed. Results We introduce a general definition of gap metabolite that allows its detection in a straightforward manner. Moreover, a method for the detection of Unconnected Modules, defined as isolated sets of blocked reactions connected through gap metabolites, is proposed. The method has been successfully applied to the curation of iCG238, the genome-scale metabolic model for the bacterium Blattabacterium cuenoti, obligate endosymbiont of cockroaches. Conclusion We found the proposed approach to be a valuable tool for the curation of genome-scale metabolic models. The outcome of its application to the genome-scale model B. cuenoti iCG238 is a more accurate model version named as B. cuenoti iMP240. PMID:24176055

  13. Competitive behavior of photons contributing to junction voltage jump in narrow band-gap semiconductor multi-quantum-well laser diodes at lasing threshold

    NASA Astrophysics Data System (ADS)

    Feng, Liefeng; Yang, Xiufang; Li, Yang; Li, Ding; Wang, Cunda; Yao, Dongsheng; Hu, Xiaodong; Li, Hongru

    2015-04-01

    The junction behavior of different narrow band-gap multi-quantum-well (MQW) laser diodes (LDs) confirmed that the jump in the junction voltage in the threshold region is a general characteristic of narrow band-gap LDs. The relative change in the 1310 nm LD is the most obvious. To analyze this sudden voltage change, the threshold region is divided into three stages by Ithl and Ithu, as shown in Fig. 2; Ithl is the conventional threshold, and as long as the current is higher than this threshold, lasing exists and the IdV/dI-I plot drops suddenly; Ithu is the steady lasing point, at which the separation of the quasi-Fermi levels of electron and holes across the active region (Vj) is suddenly pinned. Based on the evolutionary model of dissipative structure theory, the rate equations of the photons in a single-mode LD were deduced in detail at Ithl and Ithu. The results proved that the observed behavior of stimulated emission suddenly substituting for spontaneous emission, in a manner similar to biological evolution, must lead to a sudden increase in the injection carriers in the threshold region, which then causes the sudden increase in the junction voltage in this region.

  14. Competitive behavior of photons contributing to junction voltage jump in narrow band-gap semiconductor multi-quantum-well laser diodes at lasing threshold

    SciTech Connect

    Feng, Liefeng E-mail: lihongru@nankai.edu.cn; Yang, Xiufang; Wang, Cunda; Yao, Dongsheng; Li, Yang; Li, Ding; Hu, Xiaodong; Li, Hongru E-mail: lihongru@nankai.edu.cn

    2015-04-15

    The junction behavior of different narrow band-gap multi-quantum-well (MQW) laser diodes (LDs) confirmed that the jump in the junction voltage in the threshold region is a general characteristic of narrow band-gap LDs. The relative change in the 1310 nm LD is the most obvious. To analyze this sudden voltage change, the threshold region is divided into three stages by I{sub th}{sup l} and I{sub th}{sup u}, as shown in Fig. 2; I{sub th}{sup l} is the conventional threshold, and as long as the current is higher than this threshold, lasing exists and the IdV/dI-I plot drops suddenly; I{sub th}{sup u} is the steady lasing point, at which the separation of the quasi-Fermi levels of electron and holes across the active region (V{sub j}) is suddenly pinned. Based on the evolutionary model of dissipative structure theory, the rate equations of the photons in a single-mode LD were deduced in detail at I{sub th}{sup l} and I{sub th}{sup u}. The results proved that the observed behavior of stimulated emission suddenly substituting for spontaneous emission, in a manner similar to biological evolution, must lead to a sudden increase in the injection carriers in the threshold region, which then causes the sudden increase in the junction voltage in this region.

  15. Evolution of the Gorda Escarpment, San Andreas fault and Mendocino triple junction from multichannel seismic data collected across the northern Vizcaino block, offshore northern California

    USGS Publications Warehouse

    Godfrey, N.J.; Meltzer, A.S.; Klemperer, S.L.; Trehu, A.M.; Leitner, B.; Clarke, S.H.; Ondrus, A.

    1998-01-01

    The Gorda Escarpment is a north facing scarp immediately south of the Mendocino transform fault (the Gorda/Juan de Fuca-Pacific plate boundary) between 126??W and the Mendocino triple junction. It elevates the seafloor at the northern edge of the Vizcaino block, part of the Pacific plate, ??? 1.5 km above the seafloor of the Gorda/Juan de Fuca plate to the north. Stratigraphy interpreted from multichannel seismic data across and close to the Gorda Escarpment suggests that the escarpment is a relatively recent pop-up feature caused by north-south compression across the plate boundary. Close to 126??W. the Vizcaino block acoustic basement shallows and is overlain by sediments that thin north toward the Gorda Escarpment. These sediments are tilted south and truncated at the seafloor. By contrast, in a localized region at the eastern end of the Gorda Escarpment, close to the Mendocino triple junction, the top of acoustic basement dips north and is overlain by a 2-km-thick wedge of pre-11 Ma sedimentary rocks that thickens north, toward the Gorda Escarpment. This wedge of sediments is restricted to the northeast corner of the Vizcaino block. Unless the wedge of sediments was a preexisting feature on the Vizcaino block before it was transferred from the North American to the Pacific plate, the strong spatial correlation between the sedimentary wedge and the triple junction suggests the entire Vizcaino block, with the San Andreas at its eastern boundary, has been part of the Pacific plate since significantly before 11 Ma.

  16. Secondary "smile"-gap in the density of states of a diffusive Josephson junction for a wide range of contact types

    NASA Astrophysics Data System (ADS)

    Reutlinger, J.; Glazman, L.; Nazarov, Yu. V.; Belzig, W.

    2014-07-01

    The superconducting proximity effect leads to strong modifications of the local density of states in diffusive or chaotic cavity Josephson junctions, which displays a phase-dependent energy gap around the Fermi energy. The so-called minigap of the order of the Thouless energy ETh is related to the inverse dwell time in the diffusive region in the limit ETh≪Δ, where Δ is the superconducting energy gap. In the opposite limit of a large Thouless energy ETh≫Δ, a small new feature has recently attracted attention, namely, the appearance of a further secondary gap, which is around two orders of magnitude smaller compared to the usual superconducting gap. It appears in a chaotic cavity just below the superconducting gap edge Δ and vanishes for some value of the phase difference between the superconductors. We extend previous theory restricted to a normal cavity connected to two superconductors through ballistic contacts to a wider range of contact types. We show that the existence of the secondary gap is not limited to ballistic contacts, but is a more general property of such systems. Furthermore, we derive a criterion which directly relates the existence of a secondary gap to the presence of small transmission eigenvalues of the contacts. For generic continuous distributions of transmission eigenvalues of the contacts, no secondary gap exists, although we observe a singular behavior of the density of states at Δ. Finally, we provide a simple one-dimensional scattering model which is able to explain the characteristic "smile" shape of the secondary gap.

  17. Smooth muscle membrane potential modulates endothelium-dependent relaxation of rat basilar artery via myo-endothelial gap junctions.

    PubMed

    Allen, Tracy; Iftinca, Mircea; Cole, William C; Plane, Frances

    2002-12-15

    , but this inhibition was not observed in the combined presence of 4-AP and 18betaGA. These data indicate that 4-AP can induce an indirect inhibition of endothelium-dependent relaxation in the rat basilar artery by electrical coupling of smooth muscle membrane depolarization to the endothelium via myo-endothelial gap junctions.

  18. Influence of the spatially inhomogeneous gap distribution on the quasiparticle current in c-axis junctions involving d-wave superconductors with charge density waves.

    PubMed

    Ekino, T; Gabovich, A M; Suan Li, Mai; Szymczak, H; Voitenko, A I

    2016-11-01

    The quasiparticle tunnel current J(V) between the superconducting ab-planes along the c-axis and the corresponding conductance [Formula: see text] were calculated for symmetric junctions composed of disordered d-wave layered superconductors partially gapped by charge density waves (CDWs). Here, V is the voltage. Both the checkerboard and unidirectional CDWs were considered. It was shown that the spatial spread of the CDW-pairing strength substantially smears the peculiarities of G(V) appropriate to uniform superconductors. The resulting curves G(V) become very similar to those observed for a number of cuprates in intrinsic junctions, e.g. mesas. In particular, the influence of CDWs may explain the peak-dip-hump structures frequently found for high-T c oxides. PMID:27604150

  19. Influence of the spatially inhomogeneous gap distribution on the quasiparticle current in c-axis junctions involving d-wave superconductors with charge density waves

    NASA Astrophysics Data System (ADS)

    Ekino, T.; Gabovich, A. M.; Li, Mai Suan; Szymczak, H.; Voitenko, A. I.

    2016-11-01

    The quasiparticle tunnel current J(V) between the superconducting ab-planes along the c-axis and the corresponding conductance G(V)=\\text{d}J/\\text{d}V were calculated for symmetric junctions composed of disordered d-wave layered superconductors partially gapped by charge density waves (CDWs). Here, V is the voltage. Both the checkerboard and unidirectional CDWs were considered. It was shown that the spatial spread of the CDW-pairing strength substantially smears the peculiarities of G(V) appropriate to uniform superconductors. The resulting curves G(V) become very similar to those observed for a number of cuprates in intrinsic junctions, e.g. mesas. In particular, the influence of CDWs may explain the peak-dip-hump structures frequently found for high-T c oxides.

  20. Perineuronal satellite cells in mouse spinal ganglia express the gap junction protein connexin43 throughout life with decline in old age.

    PubMed

    Procacci, Patrizia; Magnaghi, Valerio; Pannese, Ennio

    2008-03-28

    Satellite glial cells that envelope the bodies of sensory neurons in spinal ganglia are connected to each other by gap junctions and exhibit dye coupling. These junctions may endow perineuronal satellite cells with the coordination necessary for the efficient performance of functions such as buffering of K(+) in the perineuronal microenvironment, provision of metabolic support to ganglionic neurons, and neuroprotection. Our knowledge of gap junctions has increased considerably in recent years, but little information is available on the connexins that form these junctions in spinal ganglia. In the present study we set out to determine whether the perineuronal satellite cells of mouse spinal ganglia express the connexins that are mainly present in neuroglial cells (Cx32 and Cx43). In young (3 months) mice, PCR showed the presence of both Cx32 and Cx43 transcripts. By immunocytochemistry, we localized Cx32 to axon-ensheathing Schwann cells, but not to other parts of the ganglion. We found Cx43 positivity in the perineuronal satellite cells, which were identified by their immunoreactivity to S100 protein and to glutamine synthetase. PCR showed Cx43 transcripts also in the spinal ganglia of adult (8 months) and old (24 months) animals. Cx43 immunostaining was present in satellite cells surrounding all nerve cell bodies, irrespective of size. The mean number of Cx43-immunoreactive puncta was significantly lower in the perineuronal satellite cells of aged mice compared to young and adult animals. This latter finding is consistent with observations in non-nervous tissues, and the hypothesis that a prominent decrease in Cx43 is a marker of senescence. PMID:18355632

  1. Cardiac myocyte diversity and a fibroblast network in the junctional region of the zebrafish heart revealed by transmission and serial block-face scanning electron microscopy.

    PubMed

    Lafontant, Pascal J; Behzad, Ali R; Brown, Evelyn; Landry, Paul; Hu, Norman; Burns, Alan R

    2013-01-01

    The zebrafish has emerged as an important model of heart development and regeneration. While the structural characteristics of the developing and adult zebrafish ventricle have been previously studied, little attention has been paid to the nature of the interface between the compact and spongy myocardium. Here we describe how these two distinct layers are structurally and functionally integrated. We demonstrate by transmission electron microscopy that this interface is complex and composed primarily of a junctional region occupied by collagen, as well as a population of fibroblasts that form a highly complex network. We also describe a continuum of uniquely flattened transitional cardiac myocytes that form a circumferential plate upon which the radially-oriented luminal trabeculae are anchored. In addition, we have uncovered within the transitional ring a subpopulation of markedly electron dense cardiac myocytes. At discrete intervals the transitional cardiac myocytes form contact bridges across the junctional space that are stabilized through localized desmosomes and fascia adherentes junctions with adjacent compact cardiac myocytes. Finally using serial block-face scanning electron microscopy, segmentation and volume reconstruction, we confirm the three-dimensional nature of the junctional region as well as the presence of the sheet-like fibroblast network. These ultrastructural studies demonstrate the previously unrecognized complexity with which the compact and spongy layers are structurally integrated, and provide a new basis for understanding development and regeneration in the zebrafish heart.

  2. Connexin-dependent gap junction enhancement is involved in the synergistic effect of sorafenib and all-trans retinoic acid on HCC growth inhibition

    PubMed Central

    YANG, YAN; QIN, SHU-KUI; WU, QIONG; WANG, ZI-SHU; ZHENG, RONG-SHENG; TONG, XU-HUI; LIU, HAO; TAO, LIANG; HE, XIAN-DI

    2014-01-01

    Increasing gap junction activity in tumor cells provides a target by which to enhance antineoplastic therapies. Previously, several naturally occurring agents, including all-trans retinoic acid (ATRA) have been demonstrated to increase gap junctional intercellular communication (GJIC) in a number of types of cancer cells. In the present study, we investigated in vitro whether ATRA modulates the response of human hepatocellular carcinoma (HCC) cells to sorafenib, the only proven oral drug for advanced HCC, and the underlying mechanisms. HepG2 and SMMC-7721 cells were treated with sorafenib and/or ATRA, and cell proliferation and apoptosis were analyzed; the role of GJIC was also explored. We found that ATRA, at non-toxic concentrations, enhanced sorafenib-induced growth inhibition in both HCC cell lines, and this effect was abolished by two GJIC inhibitors, 18-α-GA and oleamide. Whereas lower concentrations of sorafenib (5 μM) or ATRA (0.1 or 10 μM) alone modestly induced GJIC activity, the combination of sorafenib plus ATRA resulted in a strong enhancement of GJIC. However, the action paradigm differed in the HepG2 and SMMC-7721 cells, with the dominant effect of GJIC dependent on the cell-specific connexin increase in protein amounts and relocalization. RT-PCR assay further revealed a transcriptional modification of the key structural connexin in the two cell lines. Thus, a connexin-dependent gap junction enhancement may play a central role in ATRA plus sorafenib synergy in inhibiting HCC cell growth. Since both agents are available for human use, the combination treatment represents a future profitable strategy for the treatment of advanced HCC. PMID:24317203

  3. Prognostic Impact of Reduced Connexin43 Expression and Gap Junction Coupling of Neoplastic Stromal Cells in Giant Cell Tumor of Bone

    PubMed Central

    Balla, Peter; Maros, Mate Elod; Barna, Gabor; Antal, Imre; Papp, Gergo; Sapi, Zoltan; Athanasou, Nicholas Anthony; Benassi, Maria Serena; Picci, Pierro; Krenacs, Tibor

    2015-01-01

    Missense mutations of the GJA1 gene encoding the gap junction channel protein connexin43 (Cx43) cause bone malformations resulting in oculodentodigital dysplasia (ODDD), while GJA1 null and ODDD mutant mice develop osteopenia. In this study we investigated Cx43 expression and channel functions in giant cell tumor of bone (GCTB), a locally aggressive osteolytic lesion with uncertain progression. Cx43 protein levels assessed by immunohistochemistry were correlated with GCTB cell types, clinico-radiological stages and progression free survival in tissue microarrays of 89 primary and 34 recurrent GCTB cases. Cx43 expression, phosphorylation, subcellular distribution and gap junction coupling was also investigated and compared between cultured neoplastic GCTB stromal cells and bone marow stromal cells or HDFa fibroblasts as a control. In GCTB tissues, most Cx43 was produced by CD163 negative neoplastic stromal cells and less by CD163 positive reactive monocytes/macrophages or by giant cells. Significantly less Cx43 was detected in α-smooth muscle actin positive than α-smooth muscle actin negative stromal cells and in osteoclast-rich tumor nests than in the adjacent reactive stroma. Progressively reduced Cx43 production in GCTB was significantly linked to advanced clinico-radiological stages and worse progression free survival. In neoplastic GCTB stromal cell cultures most Cx43 protein was localized in the paranuclear-Golgi region, while it was concentrated in the cell membranes both in bone marrow stromal cells and HDFa fibroblasts. In Western blots, alkaline phosphatase sensitive bands, linked to serine residues (Ser369, Ser372 or Ser373) detected in control cells, were missing in GCTB stromal cells. Defective cell membrane localization of Cx43 channels was in line with the significantly reduced transfer of the 622 Da fluorescing calcein dye between GCTB stromal cells. Our results show that significant downregulation of Cx43 expression and gap junction coupling in

  4. Star junctions and watermelons of pure or random quantum Ising chains: finite-size properties of the energy gap at criticality

    NASA Astrophysics Data System (ADS)

    Monthus, Cécile

    2015-06-01

    We consider M  ⩾  2 pure or random quantum Ising chains of N spins when they are coupled via a single star junction at their origins or when they are coupled via two star junctions at the their two ends leading to the watermelon geometry. The energy gap is studied via a sequential self-dual real-space renormalization procedure that can be explicitly solved in terms of Kesten variables containing the initial couplings and and the initial transverse fields. In the pure case at criticality, the gap is found to decay as a power-law {ΔM}\\propto {{N}-z(M)} with the dynamical exponent z(M)=\\frac{M}{2} for the single star junction (the case M   =   2 corresponds to z   =   1 for a single chain with free boundary conditions) and z(M)   =   M  -  1 for the watermelon (the case M   =   2 corresponds to z   =   1 for a single chain with periodic boundary conditions). In the random case at criticality, the gap follows the Infinite Disorder Fixed Point scaling \\ln {ΔM}=-{{N}\\psi}g with the same activated exponent \\psi =\\frac{1}{2} as the single chain corresponding to M   =   2, and where g is an O(1) random positive variable, whose distribution depends upon the number M of chains and upon the geometry (star or watermelon).

  5. Impact of obesity on 7,12-dimethylbenz[a]anthracene-induced altered ovarian connexin gap junction proteins in female mice

    PubMed Central

    Ganesan, Shanthi; Nteeba, Jackson; Keating, Aileen F.

    2014-01-01

    The ovarian gap junction proteins alpha 4 (GJA4 or connexin 37; CX37), alpha 1 (GJA1 or connexin 43; CX43) and gamma 1 (GJC1 or connexin 45; CX45) are involved in cell communication and folliculogenesis. 7,12-dimethylbenz[a]anthracene (DMBA) alters Cx37 and Cx43 expression in cultured neonatal rat ovaries. Additionally, obesity has an additive effect on DMBA-induced ovarian cell death and follicle depletion, thus, we investigated in vivo impacts of obesity and DMBA on CX protein levels. Ovaries were collected from lean and obese mice aged 6, 12, 18, or 24 wks. A subset of 18 wk old mice (lean and obese) were dosed with sesame oil or DMBA (1mg/kg; ip) for 14 days and ovaries collected 3 days thereafter. Cx43 and Cx45 mRNA and protein levels decreased (P < 0.05) after 18 wks while Cx37 mRNA and protein levels decreased (P < 0.05) after 24 wks in obese ovaries. Cx37 mRNA and antral follicle protein staining intensity were reduced (P < 0.05) by obesity while total CX37 protein was reduced (P < 0.05) in DMBA exposed obese ovaries. Cx43 mRNA and total protein levels were decreased (P < 0.05) by DMBA in both lean and obese ovaries while basal protein staining intensity was reduced (P < 0.05) in obese controls. Cx45 mRNA, total protein and protein staining intensity level were decreased (P < 0.05) by obesity. These data support that obesity temporally alters gap junction protein expression and that DMBA-induced ovotoxicity may involve reduced gap junction protein function. PMID:25447408

  6. Participation of gap junction communication in potentially lethal damage repair and DNA damage in human fibroblasts exposed to low- or high-LET radiation

    PubMed Central

    Autsavapromporn, Narongchai; Suzuki, Masao; Plante, Ianik; Liu, Cuihua; Uchihori, Yukio; Hei, Tom K.; Azzam, Edouard I.; Murakami, Takeshi

    2014-01-01

    Existing research has not fully explained how different types of ionizing radiation (IR) modulate the responses of cell populations or tissues. In our previous work, we showed that gap junction intercellular communication (GJIC) mediates the propagation of stressful effects among irradiated cells exposed to high linear energy transfer (LET) radiations, in which almost every cells is traversed by an IR track. In the present study, we conducted an in-depth study of the role of GJIC in modulating the repair of potentially lethal damage (PLDR) and micronuclei formation in cells exposed to low- or high-LET IR. Confluent human fibroblasts were exposed in the presence or absence of a gap junction inhibitor to 200 kV X rays (LET ∼ 1.7 keV/µm), carbon ions (LET ∼ 76 keV/µm), silicon ions (LET ∼ 113 keV/µm) or iron ions (LET ∼ 400 keV/µm) that resulted in isosurvival levels. The fibroblasts were incubated for various times at 37 °C. As expected, high-LET IR were more effective than were low-LET X rays at killing cells and damaging DNA shortly after irradiation. However, when cells were held in a confluent state for several hours, PLDR associated with a reduction in DNA damage, occurred only in cells exposed to X rays. Interestingly, inhibition of GJIC eliminated the enhancement of toxic effects, which resulted in an increase of cell survival and reduction in the level of micronucleus formation in cells exposed to high, but not in those exposed to low-LET IR. The experiment shows that gap-junction communication plays an important role in the propagation of stressful effects among irradiated cells exposed to high-LET IR while GJIC has only a minimal effect on PLDR and DNA damage following low-LET irradiation. Together, our results show that PLDR and induction of DNA damage clearly depend on gap-junction communication and radiation quality. PMID:23867854

  7. The role of engineered materials in superconducting tunnel junction X-ray detectors - Suppression of quasiparticle recombination losses via a phononic band gap

    NASA Technical Reports Server (NTRS)

    Rippert, Edward D.; Ketterson, John B.; Chen, Jun; Song, Shenian; Lomatch, Susanne; Maglic, Stevan R.; Thomas, Christopher; Cheida, M. A.; Ulmer, Melville P.

    1992-01-01

    An engineered structure is proposed that can alleviate quasi-particle recombination losses via the existence of a phononic band gap that overlaps the 2-Delta energy of phonons produced during recombination of quasi-particles. Attention is given to a 1D Kronig-Penny model for phonons normally incident to the layers of a multilayered superconducting tunnel junction as an idealized example. A device with a high density of Bragg resonances is identified as desirable; both Nb/Si and NbN/SiN superlattices have been produced, with the latter having generally superior performance.

  8. Evolution of Microbial Quorum Sensing to Human Global Quorum Sensing: An Insight into How Gap Junctional Intercellular Communication Might Be Linked to the Global Metabolic Disease Crisis.

    PubMed

    Trosko, James E

    2016-06-15

    The first anaerobic organism extracted energy for survival and reproduction from its source of nutrients, with the genetic means to ensure protection of its individual genome but also its species survival. While it had a means to communicate with its community via simple secreted molecules ("quorum sensing"), the eventual shift to an aerobic environment led to multi-cellular metazoan organisms, with evolutionary-selected genes to form extracellular matrices, stem cells, stem cell niches, and a family of gap junction or "connexin" genes. These germinal and somatic stem cells responded to extracellular signals that triggered intra-cellular signaling to regulate specific genes out of the total genome. These extra-cellular induced intra-cellular signals also modulated gap junctional intercellular communication (GJIC) in order to regulate the new cellular functions of symmetrical and asymmetrical cell division, cell differentiation, modes of cell death, and senescence. Within the hierarchical and cybernetic concepts, differentiated by neurons organized in the brain of the Homo sapiens, the conscious mind led to language, abstract ideas, technology, myth-making, scientific reasoning, and moral decision-making, i.e., the creation of culture. Over thousands of years, this has created the current collision between biological and cultural evolution, leading to the global "metabolic disease" crisis.

  9. Functional expression of Ca²⁺ dependent mammalian transmembrane gap junction protein Cx43 in slime mold Dictyostelium discoideum.

    PubMed

    Kaufmann, Stefan; Weiss, Ingrid M; Eckstein, Volker; Tanaka, Motomu

    2012-03-01

    In this paper, we expressed murine gap junction protein Cx43 in Dictyostelium discoideum by introducing the specific vector pDXA. In the first step, the successful expression of Cx43 and Cx43-eGFP was verified by (a) Western blot (anti-Cx43, anti-GFP), (b) fluorescence microscopy (eGFP-Cx43 co-expression, Cx43 immunostaining), and (c) flow cytometry analysis (eGFP-Cx43 co-expression). Although the fluorescence signals from cells expressing Cx43-eGFP detected by fluorescence microscopy seem relatively low, analysis by flow cytometry demonstrated that more than 60% of cells expressed Cx43-eGFP. In order to evaluate the function of expressed Cx43 in D. discoideum, we examined the hemi-channel function of Cx43. In this series of experiments, the passive uptake of carboxyfluorescein was monitored using flow cytometric analysis. A significant number of the transfected cells showed a prominent dye uptake in the absence of Ca(2+). The dye uptake by transfected cells in the presence of Ca(2+) was even lower than the non-specific dye uptake by non-transformed Ax3 orf+ cells, confirming that Cx43 expressed in D. discoideum retains its Ca(2+)-dependent, specific gating function. The expression of gap junction proteins expressed in slime molds opens a possibility to the biological significance of intercellular communications in development and maintenance of multicellular organisms.

  10. Evolution of Microbial Quorum Sensing to Human Global Quorum Sensing: An Insight into How Gap Junctional Intercellular Communication Might Be Linked to the Global Metabolic Disease Crisis

    PubMed Central

    Trosko, James E.

    2016-01-01

    The first anaerobic organism extracted energy for survival and reproduction from its source of nutrients, with the genetic means to ensure protection of its individual genome but also its species survival. While it had a means to communicate with its community via simple secreted molecules (“quorum sensing”), the eventual shift to an aerobic environment led to multi-cellular metazoan organisms, with evolutionary-selected genes to form extracellular matrices, stem cells, stem cell niches, and a family of gap junction or “connexin” genes. These germinal and somatic stem cells responded to extracellular signals that triggered intra-cellular signaling to regulate specific genes out of the total genome. These extra-cellular induced intra-cellular signals also modulated gap junctional intercellular communication (GJIC) in order to regulate the new cellular functions of symmetrical and asymmetrical cell division, cell differentiation, modes of cell death, and senescence. Within the hierarchical and cybernetic concepts, differentiated by neurons organized in the brain of the Homo sapiens, the conscious mind led to language, abstract ideas, technology, myth-making, scientific reasoning, and moral decision–making, i.e., the creation of culture. Over thousands of years, this has created the current collision between biological and cultural evolution, leading to the global “metabolic disease” crisis. PMID:27314399

  11. The antiarrhythmic peptide rotigaptide (ZP123) increases gap junction intercellular communication in cardiac myocytes and HeLa cells expressing connexin 43

    PubMed Central

    Clarke, Thomas C; Thomas, Dafydd; Petersen, Jørgen S; Evans, W Howard; Martin, Patricia E M

    2006-01-01

    We investigated the effects of rotigaptide (ZP123), a stable hexapeptide with antiarrhythmic properties, on gap junction mediated intercellular communication in contracting rat neonatal cardiac myocytes, HL-1 cells derived from cardiac atrium and in HeLa cells transfected with cDNA encoding Cx43-GFP, Cx32-GFP, Cx26-GFP, wild-type Cx43 or wild-type Cx26. Intercellular communication was monitored before and after treatment with rotigaptide following microinjection of small fluorescent dyes (MW<1 kDa). The communication-modifying effect of rotigaptide was confined to cells expressing Cx43 since the peptide had no effect on dye transfer in HeLa cells expressing Cx32-GFP, Cx26-GFP or wild-type Cx26. In contrast, HeLa cells expressing Cx43-GFP exposed to 50 nM rotigaptide for 5 h showed a 40% increase in gap junction mediated communication. Rotigaptide (50 nM) increased intercellular dye transfer in myocytes and atrial HL-1 cells, where Cx43 is the dominant connexin. However, it caused no change in cell beating rates of cardiac myocytes. Western blot analysis showed that rotigaptide did not modify the overall level of Cx43 expression and changes in the phosphorylation status of the protein were not observed. We conclude that the effects of rotigaptide were confined to cells expressing Cx43. PMID:16415913

  12. Decreasing Cx36 Gap Junction Coupling Compensates for Overactive KATP Channels to Restore Insulin Secretion and Prevent Hyperglycemia in a Mouse Model of Neonatal Diabetes

    PubMed Central

    Nguyen, Linda M.; Pozzoli, Marina; Hraha, Thomas H.; Benninger, Richard K.P.

    2014-01-01

    Mutations to the ATP-sensitive K+ channel (KATP channel) that reduce the sensitivity of ATP inhibition cause neonatal diabetes mellitus via suppression of β-cell glucose-stimulated free calcium activity ([Ca2+]i) and insulin secretion. Connexin-36 (Cx36) gap junctions also regulate islet electrical activity; upon knockout of Cx36, β-cells show [Ca2+]i elevations at basal glucose. We hypothesized that in the presence of overactive ATP-insensitive KATP channels, a reduction in Cx36 would allow elevations in glucose-stimulated [Ca2+]i and insulin secretion to improve glucose homeostasis. To test this, we introduced a genetic knockout of Cx36 into mice that express ATP-insensitive KATP channels and measured glucose homeostasis and islet metabolic, electrical, and insulin secretion responses. In the normal presence of Cx36, after expression of ATP-insensitive KATP channels, blood glucose levels rapidly rose to >500 mg/dL. Islets from these mice showed reduced glucose-stimulated [Ca2+]i and no insulin secretion. In mice lacking Cx36 after expression of ATP-insensitive KATP channels, normal glucose levels were maintained. Islets from these mice had near-normal glucose-stimulated [Ca2+]i and insulin secretion. We therefore demonstrate a novel mechanism by which islet function can be recovered in a monogenic model of diabetes. A reduction of gap junction coupling allows sufficient glucose-stimulated [Ca2+]i and insulin secretion to prevent the emergence of diabetes. PMID:24458355

  13. Stimulus complexity dependent memory impairment and changes in motor performance after deletion of the neuronal gap junction protein connexin36 in mice.

    PubMed

    Frisch, C; De Souza-Silva, M A; Söhl, G; Güldenagel, M; Willecke, K; Huston, J P; Dere, E

    2005-02-10

    Gap junction channels, composed of connexin (Cx) proteins, are conduits for intercellular communication and metabolic exchange in the central nervous system. Connexin36 (Cx36) is expressed in distinct subpopulations of neurons throughout the mammalian brain. Deletion of the Cx36 gene in the mouse affected power and frequency of gamma and sharp wave-ripple oscillations, putative correlates of memory engram inscription. Here, we present a behavioral analysis of Cx36-deficient mice. Activity patterns, exploratory- and anxiety-related responses were largely unaffected by elimination of Cx36, while sensorimotor capacities and learning and memory processes were impaired. Repeated testing on the rotarod suggested that the Cx36-deficient mice showed slower motor-coordination learning. After a retention interval of 24 h the Cx36-deficient mice showed habituation to an open-field, but failed to habituate to a more complex spatial environment (Y-maze). A more pronounced memory impairment was found when Cx36 knockout mice had to remember recently explored objects. Cx36-deficient mice were unable to recognize objects after short delays of 15 and 45 min. These data suggest that lack of Cx36 induces memory impairments that vary in dependence of the complexity of the stimuli presented. Our results suggest that neuronal gap junctions incorporating Cx36 play a role in learning and memory.

  14. Rescue of Notch signaling in cells incapable of GDP-L-fucose synthesis by gap junction transfer of GDP-L-fucose in Drosophila.

    PubMed

    Ayukawa, Tomonori; Matsumoto, Kenjiroo; Ishikawa, Hiroyuki O; Ishio, Akira; Yamakawa, Tomoko; Aoyama, Naoki; Suzuki, Takuya; Matsuno, Kenji

    2012-09-18

    Notch (N) is a transmembrane receptor that mediates cell-cell interactions to determine many cell-fate decisions. N contains EGF-like repeats, many of which have an O-fucose glycan modification that regulates N-ligand binding. This modification requires GDP-L-fucose as a donor of fucose. The GDP-L-fucose biosynthetic pathways are well understood, including the de novo pathway, which depends on GDP-mannose 4,6 dehydratase (Gmd) and GDP-4-keto-6-deoxy-D-mannose 3,5-epimerase/4-reductase (Gmer). However, the potential for intercellularly supplied GDP-L-fucose and the molecular basis of such transportation have not been explored in depth. To address these points, we studied the genetic effects of mutating Gmd and Gmer on fucose modifications in Drosophila. We found that these mutants functioned cell-nonautonomously, and that GDP-L-fucose was supplied intercellularly through gap junctions composed of Innexin-2. GDP-L-fucose was not supplied through body fluids from different isolated organs, indicating that the intercellular distribution of GDP-L-fucose is restricted within a given organ. Moreover, the gap junction-mediated supply of GDP-L-fucose was sufficient to support the fucosylation of N-glycans and the O-fucosylation of the N EGF-like repeats. Our results indicate that intercellular delivery is a metabolic pathway for nucleotide sugars in live animals under certain circumstances.

  15. Tunneling conductance in a gapped graphene-based normal metal-insulator-d-wave superconductor junction: Case of massive Dirac electrons

    NASA Astrophysics Data System (ADS)

    Goudarzi, H.; Khezerlou, M.

    2010-12-01

    Using the extended Blonder-Tinkham-Klapwijk formalism, the normal conductance spectra in a normal/insulator/d-wave superconductor gapped graphene junction, considering effect of asymmetric pairing potential (anisotropic d-wave) is investigated in the limit of a thin barrier. The charged Dirac carriers in this structure are treated as massive relativistic particles. The exact solutions of Dirac-Bogoliubov-de Gennes Hamiltonain for three normal gapped graphene, insulator and superconductor region of junction and related normal and Andreev reflection coefficients are obtained. In this work, we focus to study in detail the effect of rotated angle α caused by d-wave order parameter of superconductor in tunneling conductance behavior in our system. In particular, the conductance spectra in terms of the bias voltage eV, the d-wave superconducting orientation angular α and also the electrostatic potentials U0 and V0 is plotted. It is shown that by increasing rotated angle α in that case of U0→∞ and mv2F/ EF=0.99, the maximum of resonant peak of normal conductance decreases and also the position of peak shifts from eV/Δ=1 to progressively lower values. We also observe an oscillatory behavior of conductance versus insulator potential V0.

  16. Keratitis-ichthyosis-deafness syndrome-associated Cx26 mutants produce nonfunctional gap junctions but hyperactive hemichannels when co-expressed with wild type Cx43.

    PubMed

    García, Isaac E; Maripillán, Jaime; Jara, Oscar; Ceriani, Ricardo; Palacios-Muñoz, Angelina; Ramachandran, Jayalakshmi; Olivero, Pablo; Perez-Acle, Tomas; González, Carlos; Sáez, Juan C; Contreras, Jorge E; Martínez, Agustín D

    2015-05-01

    Mutations in Cx26 gene are found in most cases of human genetic deafness. Some mutations produce syndromic deafness associated with skin disorders, like the Keratitis-Ichthyosis-Deafness syndrome (KID). Because in the human skin connexin 26 (Cx26) is co-expressed with other connexins, like Cx43 and Cx30, and as the KID syndrome is inherited as autosomal dominant condition, it is possible that KID mutations change the way Cx26 interacts with other co-expressed connexins. Indeed, some Cx26 syndromic mutations showed gap junction dominant negative effect when co-expressed with wild-type connexins, including Cx26 and Cx43. The nature of these interactions and the consequences on hemichannels and gap junction channel (GJC) functions remain unknown. In this study, we demonstrate that syndromic mutations, at the N terminus segment of Cx26, change connexin oligomerization compatibility, allowing aberrant interactions with Cx43. Strikingly, heteromeric oligomer formed by Cx43/Cx26 (syndromic mutants) shows exacerbated hemichannel activity but nonfunctional GJCs; this also occurs for those Cx26 KID mutants that do not show functional homomeric hemichannels. Heterologous expression of these hyperactive heteromeric hemichannels increases cell membrane permeability, favoring ATP release and Ca(2+) overload. The functional paradox produced by oligomerization of Cx43 and Cx26 KID mutants could underlie the severe syndromic phenotype in human skin.

  17. Evolution of Microbial Quorum Sensing to Human Global Quorum Sensing: An Insight into How Gap Junctional Intercellular Communication Might Be Linked to the Global Metabolic Disease Crisis.

    PubMed

    Trosko, James E

    2016-01-01

    The first anaerobic organism extracted energy for survival and reproduction from its source of nutrients, with the genetic means to ensure protection of its individual genome but also its species survival. While it had a means to communicate with its community via simple secreted molecules ("quorum sensing"), the eventual shift to an aerobic environment led to multi-cellular metazoan organisms, with evolutionary-selected genes to form extracellular matrices, stem cells, stem cell niches, and a family of gap junction or "connexin" genes. These germinal and somatic stem cells responded to extracellular signals that triggered intra-cellular signaling to regulate specific genes out of the total genome. These extra-cellular induced intra-cellular signals also modulated gap junctional intercellular communication (GJIC) in order to regulate the new cellular functions of symmetrical and asymmetrical cell division, cell differentiation, modes of cell death, and senescence. Within the hierarchical and cybernetic concepts, differentiated by neurons organized in the brain of the Homo sapiens, the conscious mind led to language, abstract ideas, technology, myth-making, scientific reasoning, and moral decision-making, i.e., the creation of culture. Over thousands of years, this has created the current collision between biological and cultural evolution, leading to the global "metabolic disease" crisis. PMID:27314399

  18. Functional expression of Ca²⁺ dependent mammalian transmembrane gap junction protein Cx43 in slime mold Dictyostelium discoideum.

    PubMed

    Kaufmann, Stefan; Weiss, Ingrid M; Eckstein, Volker; Tanaka, Motomu

    2012-03-01

    In this paper, we expressed murine gap junction protein Cx43 in Dictyostelium discoideum by introducing the specific vector pDXA. In the first step, the successful expression of Cx43 and Cx43-eGFP was verified by (a) Western blot (anti-Cx43, anti-GFP), (b) fluorescence microscopy (eGFP-Cx43 co-expression, Cx43 immunostaining), and (c) flow cytometry analysis (eGFP-Cx43 co-expression). Although the fluorescence signals from cells expressing Cx43-eGFP detected by fluorescence microscopy seem relatively low, analysis by flow cytometry demonstrated that more than 60% of cells expressed Cx43-eGFP. In order to evaluate the function of expressed Cx43 in D. discoideum, we examined the hemi-channel function of Cx43. In this series of experiments, the passive uptake of carboxyfluorescein was monitored using flow cytometric analysis. A significant number of the transfected cells showed a prominent dye uptake in the absence of Ca(2+). The dye uptake by transfected cells in the presence of Ca(2+) was even lower than the non-specific dye uptake by non-transformed Ax3 orf+ cells, confirming that Cx43 expressed in D. discoideum retains its Ca(2+)-dependent, specific gating function. The expression of gap junction proteins expressed in slime molds opens a possibility to the biological significance of intercellular communications in development and maintenance of multicellular organisms. PMID:22330805

  19. Morphological transformation and effect on gap junction intercellular communication in Syrian hamster embryo cells as screening tests for carcinogens devoid of mutagenic activity.

    PubMed

    Rivedal, E; Mikalsen, S O; Sanner, T

    2000-04-01

    A large fraction of chemicals observed to cause cancer in experimental animals is devoid of mutagenic activity. It is therefore of importance to develop methods that can be used to detect and study environmental carcinogenic agents that do not interact directly with DNA. Previous studies have indicated that induction of in vitro cell transformation and inhibition of gap junction intercellular communication are endpoints that could be useful for the detection of non-genotoxic carcinogens. In the present work, 13 compounds [chlordane, Arochlor 1260, di(2-ethylhexyl)phthalate, 1,1,1-trichloro-2, 2-bis(4-chlorophenyl)ethane, limonene, sodium fluoride, ethionine, o-anisidine, benzoyl peroxide, o-vanadate, phenobarbital, 12-O-tetradecanoylphorbol 13-acetate and clofibrate] have been tested for their ability to induce morphological transformation and affect intercellular communication in Syrian hamster embryo cells. The substances were selected on the basis of being proven or suspected non-genotoxic carcinogens, and thus difficult to detect in short-term tests. The data show that nine of the 13 compounds induced morphological transformation, and seven of the 13 inhibited intercellular communication in hamster embryo cells. Taken together, 12 of the 13 substances either induced transformation or caused inhibition of communication. The data suggest that the combined use of morphological transformation and gap junction intercellular communication in Syrian hamster embryo cells may be beneficial when screening for non-genotoxic carcinogens. PMID:10793297

  20. Gap junctional intercellular communication as a biological "Rosetta stone" in understanding, in a systems biological manner, stem cell behavior, mechanisms of epigenetic toxicology, chemoprevention and chemotherapy.

    PubMed

    Trosko, James E

    2007-08-01

    In spite of the early speculation by Loewenstein that one of the critical distinguishing phenotypes of cancers from normal cells was the dysfunction of gap junctional intercellular communication (GJIC), this hypothesis has not captured the attention of most birth defects and cancer researchers. Moreover, even with later demonstrations that factors that influence normal development and carcinogenesis by modulating GJIC, such as chemical teratogens and tumor-promoting chemicals, inflammatory factors, hormones and growth factors, antisense connexin genes, knockout mouse models, human inherited mutated connexin genes, si-connexin RNA, chemopreventive and chemotherapeutic chemicals, it is rare that one sees any reference to these studies by the mainstream investigators in these fields. Based on the assumption that the evolutionarily conserved connexin genes found in metazoans are needed for normal development and the maintenance of health and T. Dobzhansky's statement "Nothing in biology makes sense except in the light of evolution," a short review of the roles of endogenous and exogenous modulators of GJIC will be made in the context of the multistage, multimechanism process of carcinogenesis, the stem cell theory of carcinogenesis, the discovery and characterization of normal adult stem "cancer stem" cells and the observation that two distinct classes of GJIC-deficient cancer cells are known. The implications of these observations to a "systems biological" view of the role of gap junctions and the nutritional prevention and treatment of several chronic diseases and cancer will be discussed.

  1. Damage from dissection is associated with reduced neuro-musclar transmission and gap junction coupling between circular muscle cells of guinea pig ileum, in vitro.

    PubMed

    Carbone, Simona E; Wattchow, David A; Spencer, Nick J; Hibberd, Timothy J; Brookes, Simon J H

    2014-01-01

    Excitatory and inhibitory junction potentials of circular smooth muscle cells in guinea pig ileum and colon are suppressed 30-90 min after setting up in vitro preparations. We have previously shown this "unresponsive" period is associated with a transient loss of dye coupling between smooth muscle cells, which subsequently recovers over the ensuing 30-90 min; junction potentials recover in parallel with dye coupling (Carbone et al., 2012). Here, we investigated which components of dissection trigger the initial loss of coupling. Intracellular recordings were made from circular muscle cells of guinea pig ileum with micropipettes containing 5% carboxyfluorescein. After allowing 90-120 min for junction potentials to reach full amplitude, we re-cut all 4 edges of the preparation more than 1 mm from the recording sites. This caused a reduction in the amplitude of IJPs from 17.2 ± 0.7 mV to 9.5 ± 1.5 mV (P < 0.001, n = 12) and a significant reduction in dye coupling. Both recovered within 60 min. We repeated this experiment (n = 4), recording both 1 and 4 mm from the cut edge: both sites were equally affected by re-cutting the sides of the preparation. Equilibrated preparations were stretched to 150% of their original length, this had no significant effect on junction potentials or dye coupling. Setting up preparations in low calcium solution did not prevent the initial suppression of IJPs and dye coupling. Application of 3 μM indomethacin (n = 3), 10 μM ketotifen (n = 4) or 10 μM forskolin during dissection did not prevent the suppression of IJPs and dye coupling. If dissection damage was reduced, by leaving the mucosa and submucosa attached to the circular muscle, IJPs showed less initial suppression than in preparations where the layers were dissected off. We conclude that physical damage to the gut wall triggers loss of gap junction coupling and neuromuscular transmission, this is not due to stretch, influx of calcium ions, release of prostaglandins or mast cell

  2. Three-junction solar cell

    DOEpatents

    Ludowise, Michael J.

    1986-01-01

    A photovoltaic solar cell is formed in a monolithic semiconductor. The cell contains three junctions. In sequence from the light-entering face, the junctions have a high, a medium, and a low energy gap. The lower junctions are connected in series by one or more metallic members connecting the top of the lower junction through apertures to the bottom of the middle junction. The upper junction is connected in voltage opposition to the lower and middle junctions by second metallic electrodes deposited in holes 60 through the upper junction. The second electrodes are connected to an external terminal.

  3. Mutation Analysis of Gap Junction Protein Beta 1 and Genotype–Phenotype Correlation in X-linked Charcot–Marie–Tooth Disease in Chinese Patients

    PubMed Central

    Sun, Bo; Chen, Zhao-Hui; Ling, Li; Li, Yi-Fan; Liu, Li-Zhi; Yang, Fei; Huang, Xu-Sheng

    2016-01-01

    Background: Among patients with Charcot–Marie–Tooth disease (CMT), the X-linked variant (CMTX) caused by gap junction protein beta 1 (GJB1) gene mutation is the second most frequent type, accounting for approximately 90% of all CMTX. More than 400 mutations have been identified in the GJB1 gene that encodes connexin 32 (CX32). CX32 is thought to form gap junctions that promote the diffusion pathway between cells. GJB1 mutations interfere with the formation of the functional channel and impair the maintenance of peripheral myelin, and novel mutations are continually discovered. Methods: We included 79 unrelated patients clinically diagnosed with CMT at the Department of Neurology of the Chinese People's Liberation Army General Hospital from December 20, 2012, to December 31, 2015. Clinical examination, nerve conduction studies, and molecular and bioinformatics analyses were performed to identify patients with CMTX1. Results: Nine GJB1 mutations (c.283G>A, c.77C>T, c.643C>T, c.515C>T, c.191G>A, c.610C>T, c.490C>T, c.491G>A, and c.44G>A) were discovered in nine patients. Median motor nerve conduction velocities of all nine patients were < 38 m/s, resembling CMT Type 1. Three novel mutations, c.643C>T, c.191G>A, and c.610C>T, were revealed and bioinformatics analyses indicated high pathogenicity. Conclusions: The three novel missense mutations within the GJB1 gene broaden the mutational diversity of CMT1X. Molecular analysis of family members and bioinformatics analyses of the afflicted patients confirmed the pathogenicity of these mutations. PMID:27098783

  4. Tamoxifen and raloxifene modulate gap junction coupling during early phases of retinoic acid-dependent neuronal differentiation of NTera2/D1 cells

    PubMed Central

    Dahm, Liane; Klugmann, Fanny; Gonzalez-Algaba, Angeles

    2010-01-01

    Gap junctions (GJ) represent a cellular communication system known to influence neuronal differentiation and survival. To assess a putative role of this system for neural effects of tamoxifen (TAM) and raloxifene (RAL), we used the human teratocarcinoma cell line NTera2/D1, retinoic acid (RA)-dependent neuronal differentiation of which is regulated by gap junctions formed of connexin43 (Cx43). As demonstrated by Western blot analysis, concentrations above 1 µmol/l for TAM, and 0.1 µmol/l for RAL lead to a temporary time- and concentration-dependent increase in Cx43 immunoreactivity, which reached a peak for TAM after 1 day and for RAL after 2 days. Immunocytochemical stainings revealed the increase in Cx43 immunoreactivity to result from an accumulation in intracellular compartments such as the Golgi apparatus or lysosomes. In addition, TAM and RAL were able to prevent the RA-dependent decrease of Cx43 immunoreactivity in NTera2/D1 cells, normally observed during neuronal differentiation. This suggested a suppression of neuronal differentiation to result from these substances. According to this, treatment of NTera2/D1 cells with 10 µmol/l TAM or RAL during weeks 1 and 2 of a 6 weeks RA-driven differentiation schedule impaired, whereas treatment during weeks 5 and 6 did not impair, neuronal differentiation of these cells. Modulation of GJ coupling between NTera2/D1 cells by TAM and RAL seems therefore to perturb early neuronal differentiation, whereas differentiated neurons in the mature brain seem to be not affected. These effects could be of importance for actions of TAM and RAL on early embryonic steps of nervous system formation. PMID:20437090

  5. Oocyte-derived BMP15 but not GDF9 down-regulates connexin43 expression and decreases gap junction intercellular communication activity in immortalized human granulosa cells.

    PubMed

    Chang, Hsun-Ming; Cheng, Jung-Chien; Taylor, Elizabeth; Leung, Peter C K

    2014-05-01

    In the ovary, connexin-coupled gap junctions in granulosa cells play crucial roles in follicular and oocyte development as well as in corpus luteum formation. Our previous work has shown that theca cell-derived bone morphogenetic protein (BMP)4 and BMP7 decrease gap junction intercellular communication (GJIC) activity via the down-regulation of connexin43 (Cx43) expression in immortalized human granulosa cells. However, the effects of oocyte-derived growth factors on Cx43 expression remain to be elucidated. The present study was designed to investigate the effects of oocyte-derived growth differentiation factor (GDF)9 and BMP15 on the expression of Cx43 in a human granulosa cell line, SVOG. We also examined the effect relative to GJIC activity and investigated the potential mechanisms of action. In SVOG cells, treatment with BMP15 but not GDF9 significantly decreased Cx43 mRNA and protein levels and GJIC activity. These suppressive effects, along with the induction of Smad1/5/8 phosphorylation, were attenuated by co-treatment with a BMP type I receptor inhibitor, dorsomorphin. Furthermore, knockdown of the central component of the transforming growth factor-β superfamily signaling pathway, Smad4, using small interfering RNA reversed the suppressive effects of BMP15 on Cx43 expression and GJIC activity. The suppressive effects of BMP15 on Cx43 expression were further confirmed in primary human granulosa-lutein cells obtained from infertile patients undergoing an in vitro fertilization procedure. These findings suggest that oocyte-derived BMP15 decreases GJIC activity between human granulosa cells by down-regulating Cx43 expression, most likely via a Smad-dependent signaling pathway.

  6. High Glucose Alters Cx43 Expression and Gap Junction Intercellular Communication in Retinal Müller Cells: Promotes Müller Cell and Pericyte Apoptosis

    PubMed Central

    Muto, Tetsuya; Tien, Thomas; Kim, Dongjoon; Sarthy, Vijay P.; Roy, Sayon

    2014-01-01

    Purpose. To investigate whether high glucose (HG) alters connexin 43 (Cx43) expression and gap junction intercellular communication (GJIC) activity in retinal Müller cells, and promotes Müller cell and pericyte loss. Methods. Retinal Müller cells (rMC-1) and cocultures of rMC-1 and retinal pericytes were grown in normal (N) or HG (30 mM glucose) medium. Additionally, rMC-1 transfected with Cx43 small interfering RNA (siRNA) were grown as cocultures with pericytes, and rMC-1 transfected with Cx43 plasmid were grown in HG. Expression of Cx43 was determined by Western blotting and immunostaining and GJIC was assessed by scrape-loading dye transfer (SLDT) technique. Apoptosis was analyzed by TUNEL or differential staining assay, and Akt activation by assessing Akt phosphorylation. Results. In monocultures of rMC-1 and cocultures of rMC-1 and pericytes, Cx43 protein level, number of Cx43 plaques, GJIC, and Akt phosphorylation were significantly reduced in HG medium. Number of TUNEL-positive cells was also significantly increased in rMC-1 monocultures and in rMC-1 and pericyte cocultures grown in HG medium. Importantly, when rMC-1 transfected with Cx43 siRNA were grown as cocultures with pericytes, a significant decrease in GJIC, and increase in TUNEL-positive cells was observed, concomitant with decreased Akt phosphorylation. Upregulation of Cx43 rescued rMC-1 from HG-induced apoptosis. Conclusions. Gap junction communication between Müller cells and pericytes is essential for their survival. Downregulation of Cx43 that is HG induced and impairment of GJIC activity in Müller cells contributes to loss of glial and vascular cells associated with the pathogenesis of diabetic retinopathy. PMID:24938518

  7. Nuclear p120 catenin unlocks mitotic block of contact-inhibited human corneal endothelial monolayers without disrupting adherent junctions

    PubMed Central

    Zhu, Ying-Ting; Chen, Hung-Chi; Chen, Szu-Yu; Tseng, Scheffer C. G.

    2012-01-01

    Summary Contact inhibition ubiquitously exists in non-transformed cells that are in contact with neighboring cells. This phenomenon explains the poor regenerative capacity of in vivo human corneal endothelial cells during aging, injury and surgery. This study demonstrated that the conventional approach of expanding human corneal endothelial cells by disrupting contact inhibition with EDTA followed by bFGF activated canonical Wnt signaling and lost the normal phenotype to endothelial–mesenchymal transition, especially if TGFβ1 was added. By contrast, siRNA against p120 catenin (CTNND1) also uniquely promoted proliferation of the endothelial cells by activating trafficking of p120 catenin to the nucleus, thus relieving repression by nuclear Kaiso. This nuclear p120-catenin–Kaiso signaling is associated with activation of RhoA–ROCK signaling, destabilization of microtubules and inhibition of Hippo signaling, but not with activation of Wnt–β-catenin signaling. Consequently, proliferating human corneal endothelial cells maintained a hexagonal shape, with junctional expression of N-cadherin, ZO-1 and Na+/K+-ATPase. Further expansion of human corneal endothelial monolayers with a normal phenotype and a higher density was possible by prolonging treatment with p120 catenin siRNA followed by its withdrawal. This new strategy of perturbing contact inhibition by selective activation of p120-catenin–Kaiso signaling without disrupting adherent junction could be used to engineer surgical grafts containing normal human corneal endothelial cells to meet a global corneal shortage and for endothelial keratoplasties. PMID:22505615

  8. Nuclear p120 catenin unlocks mitotic block of contact-inhibited human corneal endothelial monolayers without disrupting adherent junctions.

    PubMed

    Zhu, Ying-Ting; Chen, Hung-Chi; Chen, Szu-Yu; Tseng, Scheffer C G

    2012-08-01

    Contact inhibition ubiquitously exists in non-transformed cells that are in contact with neighboring cells. This phenomenon explains the poor regenerative capacity of in vivo human corneal endothelial cells during aging, injury and surgery. This study demonstrated that the conventional approach of expanding human corneal endothelial cells by disrupting contact inhibition with EDTA followed by bFGF activated canonical Wnt signaling and lost the normal phenotype to endothelial-mesenchymal transition, especially if TGFβ1 was added. By contrast, siRNA against p120 catenin (CTNND1) also uniquely promoted proliferation of the endothelial cells by activating trafficking of p120 catenin to the nucleus, thus relieving repression by nuclear Kaiso. This nuclear p120-catenin-Kaiso signaling is associated with activation of RhoA-ROCK signaling, destabilization of microtubules and inhibition of Hippo signaling, but not with activation of Wnt-β-catenin signaling. Consequently, proliferating human corneal endothelial cells maintained a hexagonal shape, with junctional expression of N-cadherin, ZO-1 and Na(+)/K(+)-ATPase. Further expansion of human corneal endothelial monolayers with a normal phenotype and a higher density was possible by prolonging treatment with p120 catenin siRNA followed by its withdrawal. This new strategy of perturbing contact inhibition by selective activation of p120-catenin-Kaiso signaling without disrupting adherent junction could be used to engineer surgical grafts containing normal human corneal endothelial cells to meet a global corneal shortage and for endothelial keratoplasties. PMID:22505615

  9. Improved Solar-Cell Tunnel Junction

    NASA Technical Reports Server (NTRS)

    Daud, T.; Kachare, A.

    1986-01-01

    Efficiency of multiple-junction silicon solar cells increased by inclusion of p+/n+ tunnel junctions of highly doped GaP between component cells. Relatively low recombination velocity at GaP junction principal reason for recommending this material. Relatively wide band gap also helps increase efficiency by reducing optical losses.

  10. Improved structural detail in freeze-fracture replicas: high-angle shadowing of gap junctions cooled below -170 degrees C and protected by liquid nitrogen-cooled shrouds.

    PubMed

    Rash, J E; Yasumura, T

    1992-01-15

    In conventional freeze-fracture replicas, precise complementarity of membrane faces is seldom achieved. In a model system frequently used to evaluate replica quality, vertebrate gap junctions are usually visualized as patches of 8-10 nm P-face intramembrane particles separated by 1-2 nm spaces, while E-face images are represented by 4-6 nm conical pits separated by 5-7 nm wide membrane ridges. However, that disparity in sizes of particles versus pits, as well as the disparity in the widths of the spaces separating particles versus pits, suggests that a significant reduction in complementarity of membrane faces has occurred. In this investigation, a JEOL JFD-9000 freeze-etch machine was modified so that fracturing and replication could be performed at temperatures much colder than commonly employed. With the addition of cryopumps to improve overall vacuum and the installation of optically tight LN2-cooled shrouds surrounding the specimen and the knife, water vapor contamination arising from all sources within the vacuum chamber was reduced substantially, allowing replicas to be made at temperatures down to -185 degrees C. With the specimen at these much colder temperatures, water vapor released by the heat of cleaving was also reduced significantly, providing additional improvement in replica quality. In addition, with higher shadowing angles (greater than 60 degrees) and with the specimen at a much lower temperature, the grain size of the platinum film was noticeably reduced, thereby improving resolution at the molecular level. Under these improved conditions, replicas of rat liver gap junctions revealed that many of the P-face IMPs were tubes 6-7 nm in diameter, but that other IMPs had been stretched and distorted by the fracturing process. More important, however, these high resolution replicas revealed that the replicas of the E-face pits represented three-dimensional molecular casts of the transmembrane proteins comprising the connexon hexamer. This means that

  11. Expression and role of gap junction protein connexin43 in immune challenge-induced extracellular ATP release in Japanese flounder (Paralichthys olivaceus).

    PubMed

    Li, Shuo; Peng, Weijiao; Chen, Xiaoli; Geng, Xuyun; Zhan, Wenbin; Sun, Jinsheng

    2016-08-01

    Connexin43 (Cx43) is the best characterized gap junction protein that allows the direct exchange of signaling molecules during cell-to-cell communications. The immunological functions and ATP permeable properties of Cx43 have been insensitively examined in mammals. The similar biological significance of Cx43 in lower vertebrates, however, is not yet understood. In the present study we identified and characterized a Cx43 ortholog (termed PoCx43) from Japanese flounder (Paralichthys olivaceus) and investigated its role in immune challenge-induced extracellular ATP release. PoCx43 mRNA transcripts are widely distributed in all tested normal tissues and cells with predominant expression in the brain, and are significantly up-regulated by LPS, poly(I:C) and zymosan challenges and Edwardsiella tarda infections as well, suggesting that PoCx43 expression was modulated by the inflammatory stresses. In addition, cyclic AMP (cAMP), an essential second messenger, also plays an important role in regulating PoCx43 gene expression, by which the PoCx43-mediated gap junctional communication may be regulated. Furthermore, overexpression of PoCx43 in Japanese flounder FG-9307 cells significantly potentiates the LPS- and poly(I:C)-induced extracellular ATP release and this enhanced ATP release was attenuated by pre-incubation with Cx43 inhibitor carbenoxolone. In a complementary experiment, down-regulation of PoCx43 endogenous expression in FG-9307 cells with small interfering RNA also significantly reduced the PAMP-induced extracellular ATP release, suggesting that PoCx43 is an important ATP release conduit under the immune challenge conditions. Finally, we showed that extracellular ATP stimulation led to an increased PoCx43 expression which probably provides a feedback mechanism in regulating PoCx43 expression at the transcriptional level. These findings suggest that PoCx43 is an inducible immune response gene and an important conduit for immune challenge-induced extracellular ATP

  12. Phosphatidylcholine Specific PLC-Induced Dysregulation of Gap Junctions, a Robust Cellular Response to Environmental Toxicants, and Prevention by Resveratrol in a Rat Liver Cell Model

    PubMed Central

    Sovadinova, Iva; Babica, Pavel; Böke, Hatice; Kumar, Esha; Wilke, Andrew; Park, Joon-Suk; Trosko, James E.; Upham, Brad L.

    2015-01-01

    Dysregulation of gap junctional intercellular communication (GJIC) has been associated with different pathologies, including cancer; however, molecular mechanisms regulating GJIC are not fully understood. Mitogen Activated Protein Kinase (MAPK)-dependent mechanisms of GJIC-dysregulation have been well-established, however recent discoveries have implicated phosphatidylcholine-specific phospholipase C (PC-PLC) in the regulation of GJIC. What is not known is how prevalent these two signaling mechanisms are in toxicant/toxin-induced dysregulation of GJIC, and do toxicants/toxins work through either signaling mechanisms or both, or through alternative signaling mechanisms. Different chemical toxicants were used to assess whether they dysregulate GJIC via MEK or PC-PLC, or both Mek and PC-PLC, or through other signaling pathways, using a pluripotent rat liver epithelial oval-cell line, WB-F344. Epidermal growth factor, 12-O-tetradecanoylphorbol-13-acetate, thrombin receptor activating peptide-6 and lindane regulated GJIC through a MEK1/2-dependent mechanism that was independent of PC-PLC; whereas PAHs, DDT, PCB 153, dicumylperoxide and perfluorodecanoic acid inhibited GJIC through PC-PLC independent of Mek. Dysregulation of GJIC by perfluorooctanoic acid and R59022 required both MEK1/2 and PC-PLC; while benzoylperoxide, arachidonic acid, 18β-glycyrrhetinic acid, perfluorooctane sulfonic acid, 1-monolaurin, pentachlorophenol and alachlor required neither MEK1/2 nor PC-PLC. Resveratrol prevented dysregulation of GJIC by toxicants that acted either through MEK1/2 or PC-PLC. Except for alachlor, resveratrol did not prevent dysregulation of GJIC by toxicants that worked through PC-PLC-independent and MEK1/2-independent pathways, which indicated at least two other, yet unidentified, pathways that are involved in the regulation of GJIC. In conclusion: the dysregulation of GJIC is a contributing factor to the cancer process; however the underlying mechanisms by which gap

  13. Expression and role of gap junction protein connexin43 in immune challenge-induced extracellular ATP release in Japanese flounder (Paralichthys olivaceus).

    PubMed

    Li, Shuo; Peng, Weijiao; Chen, Xiaoli; Geng, Xuyun; Zhan, Wenbin; Sun, Jinsheng

    2016-08-01

    Connexin43 (Cx43) is the best characterized gap junction protein that allows the direct exchange of signaling molecules during cell-to-cell communications. The immunological functions and ATP permeable properties of Cx43 have been insensitively examined in mammals. The similar biological significance of Cx43 in lower vertebrates, however, is not yet understood. In the present study we identified and characterized a Cx43 ortholog (termed PoCx43) from Japanese flounder (Paralichthys olivaceus) and investigated its role in immune challenge-induced extracellular ATP release. PoCx43 mRNA transcripts are widely distributed in all tested normal tissues and cells with predominant expression in the brain, and are significantly up-regulated by LPS, poly(I:C) and zymosan challenges and Edwardsiella tarda infections as well, suggesting that PoCx43 expression was modulated by the inflammatory stresses. In addition, cyclic AMP (cAMP), an essential second messenger, also plays an important role in regulating PoCx43 gene expression, by which the PoCx43-mediated gap junctional communication may be regulated. Furthermore, overexpression of PoCx43 in Japanese flounder FG-9307 cells significantly potentiates the LPS- and poly(I:C)-induced extracellular ATP release and this enhanced ATP release was attenuated by pre-incubation with Cx43 inhibitor carbenoxolone. In a complementary experiment, down-regulation of PoCx43 endogenous expression in FG-9307 cells with small interfering RNA also significantly reduced the PAMP-induced extracellular ATP release, suggesting that PoCx43 is an important ATP release conduit under the immune challenge conditions. Finally, we showed that extracellular ATP stimulation led to an increased PoCx43 expression which probably provides a feedback mechanism in regulating PoCx43 expression at the transcriptional level. These findings suggest that PoCx43 is an inducible immune response gene and an important conduit for immune challenge-induced extracellular ATP

  14. Dilute Group III-V nitride intermediate band solar cells with contact blocking layers

    DOEpatents

    Walukiewicz, Wladyslaw; Yu, Kin Man

    2012-07-31

    An intermediate band solar cell (IBSC) is provided including a p-n junction based on dilute III-V nitride materials and a pair of contact blocking layers positioned on opposite surfaces of the p-n junction for electrically isolating the intermediate band of the p-n junction by blocking the charge transport in the intermediate band without affecting the electron and hole collection efficiency of the p-n junction, thereby increasing open circuit voltage (V.sub.OC) of the IBSC and increasing the photocurrent by utilizing the intermediate band to absorb photons with energy below the band gap of the absorber layers of the IBSC. Hence, the overall power conversion efficiency of a IBSC will be much higher than an conventional single junction solar cell. The p-n junction absorber layers of the IBSC may further have compositionally graded nitrogen concentrations to provide an electric field for more efficient charge collection.

  15. Dilute group III-V nitride intermediate band solar cells with contact blocking layers

    DOEpatents

    Walukiewicz, Wladyslaw; Yu, Kin Man

    2015-02-24

    An intermediate band solar cell (IBSC) is provided including a p-n junction based on dilute III-V nitride materials and a pair of contact blocking layers positioned on opposite surfaces of the p-n junction for electrically isolating the intermediate band of the p-n junction by blocking the charge transport in the intermediate band without affecting the electron and hole collection efficiency of the p-n junction, thereby increasing open circuit voltage (V.sub.OC) of the IBSC and increasing the photocurrent by utilizing the intermediate band to absorb photons with energy below the band gap of the absorber layers of the IBSC. Hence, the overall power conversion efficiency of a IBSC will be much higher than an conventional single junction solar cell. The p-n junction absorber layers of the IBSC may further have compositionally graded nitrogen concentrations to provide an electric field for more efficient charge collection.

  16. Complementary effects of HDAC inhibitor 4-PB on gap junction communication and cellular export mechanisms support restoration of chemosensitivity of PDAC cells

    PubMed Central

    Ammerpohl, O; Trauzold, A; Schniewind, B; Griep, U; Pilarsky, C; Grutzmann, R; Saeger, H-D; Janssen, O; Sipos, B; Kloppel, G; Kalthoff, H

    2006-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is a fatal disease and one of the cancer entities with the lowest life expectancy. Beside surgical therapy, no effective therapeutic options are available yet. Here, we show that 4-phenylbutyrate (4-PB), a known and well-tolerable inhibitor of histone deacetylases (HDAC), induces up to 70% apoptosis in all cell lines tested (Panc 1, T4M-4, COLO 357, BxPc3). In contrast, it leads to cell cycle arrest in only half of the cell lines tested. This drug increases gap junction communication between adjacent T3M-4 cells in a concentration-dependent manner and efficiently inhibits cellular export mechanisms in Panc 1, T4M-4, COLO 357 and BxPc3 cells. Consequently, in combination with gemcitabine 4-PB shows an overadditive effect on induction of apoptosis in BxPc3 and T3M-4 cells (up to 4.5-fold compared to single drug treatment) with accompanied activation of Caspase 8, BH3 interacting domain death agonist (Bid) and poly (ADP-ribose) polymerase family, member 1 (PARP) cleavage. Although the inhibition of the mitogen-activated protein kinase-pathway has no influence on fulminant induction of apoptosis, the inhibition of the JNK-pathway by SP600125 completely abolishes the overadditive effect induced by the combined application of both drugs, firstly reported by this study. PMID:17164759

  17. Red paprika (Capsicum annuum L.) and its main carotenoids, capsanthin and β-carotene, prevent hydrogen peroxide-induced inhibition of gap-junction intercellular communication.

    PubMed

    Kim, Ji-Sun; Lee, Woo-Moon; Rhee, Han Cheol; Kim, Suna

    2016-07-25

    This study was conducted to investigate the protective effect of red paprika extract (RPE) and its main carotenoids, namely, capsanthin (CST) and β-carotene (BCT), on the H2O2-induced inhibition of gap-junction intercellular communication (GJIC) in WB-F344 rat liver epithelial cells (WB cells). We found that pre-treatment with RPE, CST and BCT protected WB cells from H2O2-induced inhibition of GJIC. RPE, CST and BCT not only recovered connexin 43 (Cx43) mRNA expression but also prevented phosphorylation of Cx43 protein by H2O2 treatment. RPE attenuated the phosphorylation of ERK, p38 and JNK, whereas pre-treatment with CST and BCT only attenuated the phosphorylation of ERK and p38 and did not affect JNK in H2O2-treated WB cells. RPE, CST and BCT significantly suppressed the formation of reactive oxygen species (ROS) in H2O2-treated cells compared to untreated WB cells. These results suggest that dietary intake of red paprika might be helpful for lowering the risk of diseases caused by oxidative stress. PMID:27154496

  18. Connexin 32 and its derived homotypic gap junctional intercellular communication inhibit the migration and invasion of transfected HeLa cells via enhancement of intercellular adhesion.

    PubMed

    Yang, Jie; Liu, Bing; Wang, Qin; Yuan, Dongdong; Hong, Xiaoting; Yang, Yan; Tao, Liang

    2011-01-01

    The effects of connexin (Cx) and its derived homotypic gap junctional intercellular communication (GJIC) between tumor cells on the invasion of metastatic cancers and the underlying mechanisms remain unclear. In this study, we investigated the influence of Cx32 and the homotypic GJIC mediated by this Cx on the migration, invasion and intercellular adhesion of transfected HeLa cells. The expression of Cx32 significantly increased cell adhesion and inhibited migration and invasion. The inhibition of GJIC by oleamide, a widely used GJIC inhibitor, reduced the enhanced adhesion and partly reversed the decreased migration and invasion that had been induced by Cx32 expression. Blockage of the p38 and extracellular signal-regulated kinase 1 and 2 mitogen-activated protein kinase (ERK1/2 MAPKs) pathways using their specific inhibitors attenuated the effects of Cx32, but not those of GJIC, on cell adhesion, migration and invasion. These results indicate that the homotypic GJIC mediated by Cx32, as well as the Cx itself, inhibit cell migration and invasion, most likely through the elevation of intercellular adhesion. The suppressive effect of Cx32 on the migration and invasion of cancer cells, but not that of its derived homotypic GJIC, partly depends on the activation of the p38 and the ERK1/2 MAPKs pathways.

  19. Different gap junction-propagated effects on cisplatin transfer result in opposite responses to cisplatin in normal cells versus tumor cells

    PubMed Central

    Zhang, Yuan; Tao, Liang; Fan, Lixia; Peng, Yuexia; Yang, Kefan; Zhao, Yifan; Song, Qi; Wang, Qin

    2015-01-01

    Previous work has shown that gap junction intercellular communication (GJIC) enhances cisplatin (Pt) toxicity in testicular tumor cells but decreases it in non-tumor testicular cells. In this study, these different GJIC-propagated effects were demonstrated in tumor versus non-tumor cells from other organ tissues (liver and lung). The downregulation of GJIC by several different manipulations (no cell contact, pharmacological inhibition, and siRNA suppression) decreased Pt toxicity in tumor cells but enhanced it in non-tumor cells. The in vivo results using xenograft tumor models were consistent with those from the above-mentioned cells. To better understand the mechanism(s) involved, we studied the effects of GJIC on Pt accumulation in tumor and non-tumor cells from the liver and lung. The intracellular Pt and DNA-Pt adduct contents clearly increased in non-tumor cells but decreased in tumor cells when GJIC was downregulated. Further analysis indicated that the opposite effects of GJIC on Pt accumulation in normal versus tumor cells from the liver were due to its different effects on copper transporter1 and multidrug resistance-associated protein2, membrane transporters attributed to intracellular Pt transfer. Thus, GJIC protects normal organs from cisplatin toxicity while enhancing it in tumor cells via its different effects on intracellular Pt transfer. PMID:26215139

  20. Amphiregulin co-operates with bone morphogenetic protein 15 to increase bovine oocyte developmental competence: effects on gap junction-mediated metabolite supply.

    PubMed

    Sugimura, Satoshi; Ritter, Lesley J; Sutton-McDowall, Melanie L; Mottershead, David G; Thompson, Jeremy G; Gilchrist, Robert B

    2014-06-01

    This study assessed the participation of amphiregulin (AREG) and bone morphogenetic protein 15 (BMP15) during maturation of bovine cumulus-oocyte complexes (COCs) on cumulus cell function and their impact on subsequent embryo development. AREG treatment of COCs enhanced blastocyst formation and quality only when in the presence of BMP15. Expression of hyaluronan synthase 2 was enhanced by follicle-stimulating hormone (FSH) but not by AREG, which was reflected in the level of cumulus expansion. Although both FSH and AREG stimulated glycolysis, AREG-treated COCs had higher glucose consumption, lactate production and ratio of lactate production to glucose uptake. Autofluorescence levels in oocytes, indicative of NAD(P)H and FAD(++), were increased with combined AREG and BMP15 treatment of COCs. In contrast, these treatments did not alter autofluorescence levels when cumulus cells were removed from oocytes, even in the presence of other COCs, suggesting that oocyte-cumulus gap-junctional communication (GJC) is required. FSH contributed to maintaining GJC for an extended period of time. Remarkably, BMP15 was equally effective at maintaining GJC even in the presence of AREG. Hence, AREG stimulation of COC glycolysis and BMP15 preservation of GJC may facilitate efficient transfer of metabolites from cumulus cells to the oocyte thereby enhancing oocyte developmental competence. These results have implications for improving in vitro oocyte maturation systems.

  1. Facilitation of Hippocampal Kindling and Exacerbation of Kindled Seizures by Intra-CA1 Injection of Quinine: A Possible Role of Cx36 Gap Junctions

    PubMed Central

    Etemadi, Fatemeh; Sayyah, Mohammad; Pourbadie, Hamid Gholami; Babapour, Vahab

    2016-01-01

    Background: GABAergic interneurons in the hippocampal CA1 area are mutually communicated by gap junctions (GJs) composed of connexin36 (Cx36). We examined the role of Cx36 in CA1 in manifestation of kindled seizures and hippocampal kindling in rats. Methods: Quinine, as the specific blocker of Cx36, was injected into CA1, and kindled seizures severity was examined 10 min afterward. Moreover, quinine was injected into CA1 once daily, and the rate of CA1 kindling was recorded. Results: Quinine 0.5 and 1 mM caused 2- and 3.5-fold increase in the duration of total seizure behavior and generalized the seizures. Primary and secondary afterdischarges (AD) were also significantly increased. Quinine 0.1 mM augmented the rate of kindling and the growth of secondary AD. Conclusion: Cx36 GJs in CA1 are the main components of hippocampal inhibitory circuit. Any interruption in this path by pathologic or physical damages can trigger hippocampal hyperexcitability and facilitate epileptogenesis. xx PMID:27108691

  2. Red paprika (Capsicum annuum L.) and its main carotenoids, capsanthin and β-carotene, prevent hydrogen peroxide-induced inhibition of gap-junction intercellular communication.

    PubMed

    Kim, Ji-Sun; Lee, Woo-Moon; Rhee, Han Cheol; Kim, Suna

    2016-07-25

    This study was conducted to investigate the protective effect of red paprika extract (RPE) and its main carotenoids, namely, capsanthin (CST) and β-carotene (BCT), on the H2O2-induced inhibition of gap-junction intercellular communication (GJIC) in WB-F344 rat liver epithelial cells (WB cells). We found that pre-treatment with RPE, CST and BCT protected WB cells from H2O2-induced inhibition of GJIC. RPE, CST and BCT not only recovered connexin 43 (Cx43) mRNA expression but also prevented phosphorylation of Cx43 protein by H2O2 treatment. RPE attenuated the phosphorylation of ERK, p38 and JNK, whereas pre-treatment with CST and BCT only attenuated the phosphorylation of ERK and p38 and did not affect JNK in H2O2-treated WB cells. RPE, CST and BCT significantly suppressed the formation of reactive oxygen species (ROS) in H2O2-treated cells compared to untreated WB cells. These results suggest that dietary intake of red paprika might be helpful for lowering the risk of diseases caused by oxidative stress.

  3. Antiproliferative Action of Conjugated Linoleic Acid on Human MCF-7 Breast Cancer Cells Mediated by Enhancement of Gap Junctional Intercellular Communication through Inactivation of NF-κB

    PubMed Central

    Rakib, Md. Abdur; Lee, Won Sup; Kim, Gon Sup; Han, Jae Hee; Kim, Jeong Ok

    2013-01-01

    The major conjugated linoleic acid (CLA) isomers, c9,t11-CLA and t10,c12-CLA, have anticancer effects; however, the exact mechanisms underlying these effects are unknown. Evidence suggests that reversal of reduced gap junctional intercellular communication (GJIC) in cancer cells inhibits cell growth and induces cell death. Hence, we determined that CLA isomers enhance GJIC in human MCF-7 breast cancer cells and investigated the underlying molecular mechanisms. The CLA isomers significantly enhanced GJIC of MCF-7 cells at 40 μM concentration, whereas CLA inhibited cell growth and induced caspase-dependent apoptosis. CLA increased connexin43 (Cx43) expression both at the transcriptional and translational levels. CLA inhibited nuclear factor-κB (NF-κB) activity and enhanced reactive oxygen species (ROS) generation. No significant difference was observed in the efficacy of c9,t11-CLA and t10,c12-CLA. These results suggest that the anticancer effect of CLA is associated with upregulation of GJIC mediated by enhanced Cx43 expression through inactivation of NF-κB and generation of ROS in MCF-7 cells. PMID:24371460

  4. Soyasaponins prevent H₂O₂-induced inhibition of gap junctional intercellular communication by scavenging reactive oxygen species in rat liver cells.

    PubMed

    Chen, Jiading; Sun, Suxia; Zha, Dingsheng; Wu, Jiguo; Mao, Limei; Deng, Hong; Chu, Xinwei; Luo, Haiji; Zha, Longying

    2014-01-01

    It appears to be more practical and effective to prevent carcinogenesis by targeting the tumor promotion stage. Gap junctional intercellular communication (GJIC) is strongly involved in carcinogenesis, especially the tumor promotion stage. Considerable interest has been focused on the chemoprevention activities of soyasaponin (SS), which are major phytochemicals found in soybeans and soy products. However, less is known about the preventive effects of SS (especially SS with different chemical structures) against tumor promoter-induced inhibition of GJIC. We investigated the protective effects of SS-A1, SS-A2, and SS-I against hydrogen peroxide (H2O2)-induced GJIC inhibition and reactive oxygen species (ROS) production in Buffalo rat liver (BRL) cells. The present results clearly show for the first time that SS-A1, SS-A2, and SS-I prevent the H2O2-induced GJIC inhibition by scavenging ROS in BRL cells in a dose-dependent manner at the concentration range of from 25 to 100 μg/mL. Soyasaponins attenuated the H2O2-induced ROS through potentiating the activities of superoxide dismutase and glutathione peroxidase. This may be an important mechanism by which SS protects against tumor promotion. In addition, various chemical structures of SS appear to exhibit different protective abilities against GJIC inhibition. This may partly attribute to their differences in ROS-scavenging activities. PMID:25268883

  5. MicroRNA-19b Downregulates Gap Junction Protein Alpha1 and Synergizes with MicroRNA-1 in Viral Myocarditis

    PubMed Central

    Lin, Junyi; Xue, Aimin; Li, Liliang; Li, Beixu; Li, Yuhua; Shen, Yiwen; Sun, Ning; Chen, Ruizhen; Xu, Hongfei; Zhao, Ziqin

    2016-01-01

    Viral myocarditis (VMC) is a life-threatening disease that leads to heart failure or cardiac arrhythmia. A large number of researches have revealed that mircroRNAs (miRNAs) participate in the pathological processes of VMC. We previously reported that miR-1 repressed the expression of gap junction protein α1 (GJA1) in VMC. In this study, miR-19b was found to be significantly upregulated using the microarray analysis in a mouse model of VMC, and overexpression of miR-19b led to irregular beating pattern in human cardiomyocytes derived from the induced pluripotent stem cells (hiPSCs-CMs). The upregulation of miR-19b was associated with decreased GJA1 in vivo. Furthermore, a miR-19b inhibitor increased, while its mimics suppressed the expression of GJA1 in HL-1 cells. When GJA1 was overexpressed, the miR-19b mimics-mediated irregular beating was reversed in hiPSCs-CMs. In addition, the effect of miR-19b on GJA1 was enhanced by miR-1 in a dose-dependent manner. These data suggest miR-19b contributes to irregular beating through regulation of GJA1 by cooperating with miR-1. Based on the present and our previous studies, it could be indicated that miR-19b and miR-1 might be critically involved in cardiac arrhythmia associated with VMC. PMID:27213338

  6. Bystander effects of PC12 cells treated with Pb²⁺ depend on ROS-mitochondria-dependent apoptotic signaling via gap-junctional intercellular communication.

    PubMed

    Guo, Shu; Zhou, Jin; Chen, Xuemei; Yu, Yunjiang; Ren, Mingzhong; Hu, Guocheng; Liu, Yun; Zou, Fei

    2014-08-17

    The demonstration of bystander effect, which means injured cells propagate damage to neighboring cells, in whole organisms has clear implication of the potential relevance of the non-targeted response to human health. Here we show that 10 μM lead acetate, the optimum concentration for inducing apoptosis confirmed by the expression levels of Bax and Bcl-2, can also induce rat pheochromocytoma (PC12) cells to exert bystander effects to neighboring cells. In a novel co-culture system, GFP-PC12 (Pb(2+)) cells, which were stable transfected with EF1A-eGFP and pre-exposed with lead acetate, were co-cultured with unexposed PC12 cells at a 1:5 ratio. Parachute assays demonstrated the functional gap-junctional intercellular communication (GJIC) formed between Pb(2+)-exposed and unexposed cells. The Pb(2+)-exposed cells induced very similar effects on neighboring unexposed cells to apoptosis coincide with intracellular ROS generation and the collapse of mitochondrial membrane potential (Δψm). Furthermore, carbenoxolone (CBX), a blocker of GJIC, inhibited the bystander effects. The results indicate that the Pb(2+)-induced insults propagate through GJIC between PC12 cells, while inducing the bystander cells to apoptosis via ROS-mitochondria-dependent apoptotic signaling. PMID:24960054

  7. Neuropeptide Y, substance P, and human bone morphogenetic protein 2 stimulate human osteoblast osteogenic activity by enhancing gap junction intercellular communication

    PubMed Central

    Ma, W.H.; Liu, Y.J.; Wang, W.; Zhang, Y.Z.

    2015-01-01

    Bone homeostasis seems to be controlled by delicate and subtle “cross talk” between the nervous system and “osteo-neuromediators” that control bone remodeling. The purpose of this study was to evaluate the effect of interactions between neuropeptides and human bone morphogenetic protein 2 (hBMP2) on human osteoblasts. We also investigated the effects of neuropeptides and hBMP2 on gap junction intercellular communication (GJIC). Osteoblasts were treated with neuropeptide Y (NPY), substance P (SP), or hBMP2 at three concentrations. At various intervals after treatment, cell viability was measured by the MTT assay. In addition, cellular alkaline phosphatase (ALP) activity and osteocalcin were determined by colorimetric assay and radioimmunoassay, respectively. The effects of NPY, SP and hBMP on GJIC were determined by laser scanning confocal microscopy. The viability of cells treated with neuropeptides and hBMP2 increased significantly in a time-dependent manner, but was inversely associated with the concentration of the treatments. ALP activity and osteocalcin were both reduced in osteoblasts exposed to the combination of neuropeptides and hBMP2. The GJIC of osteoblasts was significantly increased by the neuropeptides and hBMP2. These results suggest that osteoblast activity is increased by neuropeptides and hBMP2 through increased GJIC. Identification of the GJIC-mediated signal transduction capable of modulating the cellular activities of bone cells represents a novel approach to studying the biology of skeletal innervation. PMID:25714881

  8. Cell-to-cell communication in the anterior pituitary: evidence for gap junction-mediated exchanges between endocrine cells and folliculostellate cells.

    PubMed

    Morand, I; Fonlupt, P; Guerrier, A; Trouillas, J; Calle, A; Remy, C; Rousset, B; Munari-Silem, Y

    1996-08-01

    The ability of rat anterior pituitary cells to communicate through gap junctions (GJ) was studied using a fluorescent molecule, Lucifer Yellow (LY), which freely passes through GJ channels. The probe was introduced into the cell cytoplasm by using either the cut-end loading method on intact tissue, or cell microinjection on cultured cells. The identification of communicating cells was performed by immunofluorescence labeling of specific hormones in endocrine cells and of S100 protein in folliculostellate (FS) cells. Rat anterior pituitary cells in their physiological organization, i.e. in the intact tissue, exhibited a high level of coupling through GJ. LY-labeled cells were found up to 300-microns apart from its site of introduction. The communicating cells were primarily PRL cells, GH cells, and FS cells. Only a few LH, TSH, and ACTH cells were labeled with LY. Anterior pituitary cells, isolated from the rat tissue by mild protease treatment and cultured for 3 days, reestablished functional GJ as demonstrated by microinjection of LY into individual cells. By immunolabeling of specific hormones and/or S100 protein, we found a GJ coupling between FS cells, and between FS cells and endocrine cells, including PRL cells. The communication between FS cells was by far the most frequent. In conclusion, we demonstrate the presence of functional GJ between anterior pituitary cells of the same type and between anterior pituitary cells having distinct differentiated functions. PMID:8754762

  9. Gap Junction Communication and the Propagation of Bystander Effects Induced by Microbeam Irradiation in Human Fibroblast Cultures: The Impact of Radiation Quality

    PubMed Central

    Autsavapromporn, Narongchai; Suzuki, Masao; Funayama, Tomoo; Usami, Noriko; Plante, Ianik; Yokota, Yuichiro; Mutou, Yasuko; Ikeda, Hiroko; Kobayashi, Katsumi; Kobayashi, Yasuhiko; Uchihori, Yukio; Hei, Tom K.; Azzam, Edouard I.; Murakami, Takeshi

    2014-01-01

    Understanding the mechanisms underlying the bystander effects of low doses/low fluences of low- or high-linear energy transfer (LET) radiation is relevant to radiotherapy and radiation protection. Here, we investigated the role of gap-junction intercellular communication (GJIC) in the propagation of stressful effects in confluent normal human fibroblast cultures wherein only 0.036–0.144% of cells in the population were traversed by primary radiation tracks. Confluent cells were exposed to graded doses from monochromatic 5.35 keV X ray (LET ~6 keV/μm), 18.3 MeV/u carbon ion (LET ~103 keV/μm), 13 MeV/u neon ion (LET ~380 keV/μm) or 11.5 MeV/u argon ion (LET ~1,260 keV/μm) microbeams in the presence or absence of 18-α-glycyrrhetinic acid (AGA), an inhibitor of GJIC. After 4 h incubation at 37°C, the cells were subcultured and assayed for micronucleus (MN) formation. Micronuclei were induced in a greater fraction of cells than expected based on the fraction of cells targeted by primary radiation, and the effect occurred in a dose-dependent manner with any of the radiation sources. Interestingly, MN formation for the heavy-ion microbeam irradiation in the absence of AGA was higher than in its presence at high mean absorbed doses. In contrast, there were no significant differences in cell cultures exposed to X-ray microbeam irradiation in presence or absence of AGA. This showed that the inhibition of GJIC depressed the enhancement of MN formation in bystander cells from cultures exposed to high-LET radiation but not low-LET radiation. Bystander cells recipient of growth medium harvested from 5.35 keV X-irradiated cultures experienced stress manifested in the form of excess micronucleus formation. Together, the results support the involvement of both junctional communication and secreted factor(s) in the propagation of radiation-induced stress to bystander cells. They highlight the important role of radiation quality and dose in the observed effects. PMID:23987132

  10. Back-junction back-contact n-type silicon solar cell with diffused boron emitter locally blocked by implanted phosphorus

    SciTech Connect

    Müller, Ralph Schrof, Julian; Reichel, Christian; Benick, Jan; Hermle, Martin

    2014-09-08

    The highest energy conversion efficiencies in the field of silicon-based photovoltaics have been achieved with back-junction back-contact (BJBC) silicon solar cells by several companies and research groups. One of the most complex parts of this cell structure is the fabrication of the locally doped p- and n-type regions, both on the back side of the solar cell. In this work, we introduce a process sequence based on a synergistic use of ion implantation and furnace diffusion. This sequence enables the formation of all doped regions for a BJBC silicon solar cell in only three processing steps. We observed that implanted phosphorus can block the diffusion of boron atoms into the silicon substrate by nearly three orders of magnitude. Thus, locally implanted phosphorus can be used as an in-situ mask for a subsequent boron diffusion which simultaneously anneals the implanted phosphorus and forms the boron emitter. BJBC silicon solar cells produced with such an easy-to-fabricate process achieved conversion efficiencies of up to 21.7%. An open-circuit voltage of 674 mV and a fill factor of 80.6% prove that there is no significant recombination at the sharp transition between the highly doped emitter and the highly doped back surface field at the device level.

  11. Back-junction back-contact n-type silicon solar cell with diffused boron emitter locally blocked by implanted phosphorus

    NASA Astrophysics Data System (ADS)

    Müller, Ralph; Schrof, Julian; Reichel, Christian; Benick, Jan; Hermle, Martin

    2014-09-01

    The highest energy conversion efficiencies in the field of silicon-based photovoltaics have been achieved with back-junction back-contact (BJBC) silicon solar cells by several companies and research groups. One of the most complex parts of this cell structure is the fabrication of the locally doped p- and n-type regions, both on the back side of the solar cell. In this work, we introduce a process sequence based on a synergistic use of ion implantation and furnace diffusion. This sequence enables the formation of all doped regions for a BJBC silicon solar cell in only three processing steps. We observed that implanted phosphorus can block the diffusion of boron atoms into the silicon substrate by nearly three orders of magnitude. Thus, locally implanted phosphorus can be used as an in-situ mask for a subsequent boron diffusion which simultaneously anneals the implanted phosphorus and forms the boron emitter. BJBC silicon solar cells produced with such an easy-to-fabricate process achieved conversion efficiencies of up to 21.7%. An open-circuit voltage of 674 mV and a fill factor of 80.6% prove that there is no significant recombination at the sharp transition between the highly doped emitter and the highly doped back surface field at the device level.

  12. Expression of zonula occludens-1 (ZO-1) and the transcription factor ZO-1-associated nucleic acid-binding protein (ZONAB)-MsY3 in glial cells and colocalization at oligodendrocyte and astrocyte gap junctions in mouse brain.

    PubMed

    Penes, Mihai C; Li, Xinbo; Nagy, James I

    2005-07-01

    The PDZ domain-containing protein zonula occludens-1 (ZO-1) interacts with several members of the connexin (Cx) family of gap junction-forming proteins and has been localized to gap junctions, including those containing Cx47 in oligodendrocytes. We now provide evidence for ZO-1 expression in astrocytes in vivo and association with astrocytic connexins by confocal immunofluorescence demonstration of ZO-1 colocalization with astrocytic Cx30 and Cx43, and by ZO-1 coimmunoprecipitation with Cx30 and Cx43. Evidence for direct interaction of Cx30 with ZO-1 was obtained by pull-down assays that indicated binding of Cx30 to the second of the three PDZ domains in ZO-1. Further, we investigated mouse Y-box transcription factor MsY3, the canine ortholog of which has been termed ZO-1-associated nucleic acid-binding protein (ZONAB) and previously reported to interact with ZO-1. By immunofluorescence using specific antimouse ZONAB antibody, ZONAB was found to be associated with oligodendrocytes throughout mouse brain and spinal cord, and to be colocalized with oligodendrocytic Cx47 and Cx32 as well as with astrocytic Cx43. Our results extend the CNS cell types that express the multifunctional protein ZO-1, demonstrate an additional connexin (Cx30) that directly interacts with ZO-1, and show for the first time the association of a transcription factor (ZONAB) with ZO-1 localized to oligodendrocyte and astrocyte gap junctions. Given previous observations that ZONAB and ZO-1 in combination regulate gene expression, our results suggest roles of glial gap junction-mediated anchoring of signalling molecules in a wide variety of glial homeostatic processes. PMID:16045494

  13. Changes in homologous and heterologous gap junction contacts during maturation-inducing hormone-dependent meiotic resumption in ovarian follicles of Atlantic croaker

    USGS Publications Warehouse

    Bolamba, D.; Patino, R.; Yoshizaki, G.; Thomas, P.

    2003-01-01

    Homologous (granulosa cell-granulosa cell) gap junction (GJ) contacts increase in ovarian follicles of Atlantic croaker (Micropogonias undulatus) during the early (first) stage of maturation, but their profile during the second stage [i.e., during maturation-inducing hormone (MIH)-mediated meiotic resumption] is unknown. The profile of homologous GJ contacts during the second stage of maturation in croaker follicles was examined in this study and compared to that of heterologous (granulosa cell-oocyte) GJ, for which changes have been previously documented. Follicles were incubated with human chorionic gonadotropin to induce maturational competence (first stage), and then with MIH to induce meiotic resumption. The follicles were collected for examination immediately before and after different durations of MIH exposure until the oocyte had reached the stage of germinal vesicle breakdown (GVBD; index of meiotic resumption). Ultrathin sections were observed by transmission electron microscopy, and homologous and heterologous GJ contacts were quantified along a 100-??m segment of granulosa cell-zona radiata complex per follicle (three follicles/time/fish, n=3 fish). Relatively high numbers of both types of GJ were observed before and after the first few hours of MIH exposure (up to the stage of oil droplet coalescence). GJ numbers declined during partial yolk globule coalescence (at or near GVBD) and were just under 50% of starting values after the completion of GVBD (P<0.05). These results confirm earlier observations that GVBD temporally correlates with declining heterologous GJ contacts, and for the first time in teleosts show that there is a parallel decline in homologous GJ. The significance of the changes in homologous and heterologous GJ is uncertain and deserves further study. ?? 2003 Elsevier Science (USA). All rights reserved.

  14. Conserved glycine at position 45 of major cochlear connexins constitutes a vital component of the Ca²⁺ sensor for gating of gap junction hemichannels.

    PubMed

    Zhang, Yanping; Hao, Hongxia

    2013-07-01

    Mutations in gap junction (GJ) family of proteins, especially in the connexin (Cx) 26, are responsible for causing severe congenital hearing loss in a significant portion of patients (30-50% in various ethnic groups). Substitution of glycine at the position 45 of Cx26 to glutamic acid (p.G45E mutation) causes the Keratitis-ichthyosis-deafness (KID) syndrome. Previous studies have suggested that this point mutation caused a gain-of-function defect. However, the molecular mechanism of KID syndrome remains unclear. Since glycine at this position is conserved in many Cxs expressed in the cochlea, we tested the hypothesis that glycine at position 45 is an important component of the sensor regulating the Ca(2+) gating of GJ hemichannels. Using reconstituted Cx30, 32 and 43 expressed in the HEK 293 cells, we compared the functions of wild type and p.G45E mutant Cxs. We found that G45E in Cx30 resulted in similar deleterious cellular effects as Cx26 did. Cell death occurred within 24h of transfection, which was rescued by increasing extracellular Ca(2+) concentration ([Ca(2+)]o). Dye loading assay showed that Cx30 G45E, similar to Cx26 G45E, had leaky hemichannels at physiological [Ca(2+)]o (1.2 mM). Higher [Ca(2+)]o reduced the dye loading in a dose-dependent manner. Whole cell membrane current recordings also indicated that G45E caused increased hemichannel activities. p.G45E mutations of Cx32 and 43 also resulted in leaky hemichannels compared to their respective wild types in lower [Ca(2+)]o. Our data in this study provided further support for the hypothesis that glycine at position 45 is a conserved Ca(2+) sensor for the gating of GJ hemichannels among multiple Cx subtypes expressed in the cochlea.

  15. Phosphorylation of connexin 32, a hepatocyte gap-junction protein, by cAMP-dependent protein kinase, protein kinase C and Ca2+/calmodulin-dependent protein kinase II.

    PubMed

    Sáez, J C; Nairn, A C; Czernik, A J; Spray, D C; Hertzberg, E L; Greengard, P; Bennett, M V

    1990-09-11

    Phosphorylation of connexin 32, the major liver gap-junction protein, was studied in purified liver gap junctions and in hepatocytes. In isolated gap junctions, connexin 32 was phosphorylated by cAMP-dependent protein kinase (cAMP-PK), by protein kinase C (PKC) and by Ca2+/calmodulin-dependent protein kinase II (Ca2+/CaM-PK II). Connexin 26 was not phosphorylated by these three protein kinases. Phosphopeptide mapping of connexin 32 demonstrated that cAMP-PK and PKC primarily phosphorylated a seryl residue in a peptide termed peptide 1. PKC also phosphorylated seryl residues in additional peptides. CA2+/CaM-PK II phosphorylated serine and to a lesser extent, threonine, at sites different from those phosphorylated by the other two protein kinases. A synthetic peptide PSRKGSGFGHRL-amine (residues 228-239 based on the deduced amino acid sequence of rat connexin 32) was phosphorylated by cAMP-PK and by PKC, with kinetic properties being similar to those for other physiological substrates phosphorylated by these enzymes. Ca2+/CaM-PK II did not phosphorylate the peptide. Phosphopeptide mapping and amino acid sequencing of the phosphorylated synthetic peptide indicated that Ser233 of connexin 32 was present in peptide 1 and was phosphorylated by cAMP-PK or by PKC. In hepatocytes labeled with [32P]orthophosphoric acid, treatment with forskolin or 20-deoxy-20-oxophorbol 12,13-dibutyrate (PDBt) resulted in increased 32P-incorporation into connexin 32. Phosphopeptide mapping and phosphoamino acid analysis showed that a seryl residue in peptide 1 was most prominently phosphorylated under basal conditions. Treatment with forskolin or PDBt stimulated the phosphorylation of peptide 1. PDBt treatment also increased the phosphorylation of seryl residues in several other peptides. PDBt did not affect the cAMP-PK activity in hepatocytes. It has previously been shown that phorbol ester reduces dye coupling in several cell types, however in rat hepatocytes, dye coupling was not reduced

  16. Systemic inflammation disrupts oligodendrocyte gap junctions and induces ER stress in a model of CNS manifestations of X-linked Charcot-Marie-Tooth disease.

    PubMed

    Olympiou, Margarita; Sargiannidou, Irene; Markoullis, Kyriaki; Karaiskos, Christos; Kagiava, Alexia; Kyriakoudi, Styliana; Abrams, Charles K; Kleopa, Kleopas A

    2016-01-01

    X-linked Charcot-Marie-Tooth disease (CMT1X) is a common form of inherited neuropathy resulting from different mutations affecting the gap junction (GJ) protein connexin32 (Cx32). A subset of CMT1X patients may additionally present with acute fulminant CNS dysfunction, typically triggered by conditions of systemic inflammation and metabolic stress. To clarify the underlying mechanisms of CNS phenotypes in CMT1X we studied a mouse model of systemic inflammation induced by lipopolysaccharide (LPS) injection to compare wild type (WT), connexin32 (Cx32) knockout (KO), and KO T55I mice expressing the T55I Cx32 mutation associated with CNS phenotypes. Following a single intraperitoneal LPS or saline (controls) injection at the age of 40-60 days systemic inflammatory response was documented by elevated TNF-α and IL-6 levels in peripheral blood and mice were evaluated 1 week after injection. Behavioral analysis showed graded impairment of motor performance in LPS treated mice, worse in KO T55I than in Cx32 KO and in Cx32 KO worse than WT. Iba1 immunostaining revealed widespread inflammation in LPS treated mice with diffusely activated microglia throughout the CNS. Immunostaining for the remaining major oligodendrocyte connexin Cx47 and for its astrocytic partner Cx43 revealed widely reduced expression of Cx43 and loss of Cx47 GJs in oligodendrocytes. Real-time PCR and immunoblot analysis indicated primarily a down regulation of Cx43 expression with secondary loss of Cx47 membrane localization. Inflammatory changes and connexin alterations were most severe in the KO T55I group. To examine why the presence of the T55I mutant exacerbates pathology even more than in Cx32 KO mice, we analyzed the expression of ER-stress markers BiP, Fas and CHOP by immunostaining, immunoblot and Real-time PCR. All markers were increased in LPS treated KO T55I mice more than in other genotypes. In conclusion, LPS induced neuroinflammation causes disruption of the main astrocyte

  17. Hexavalent chromium at low concentration alters Sertoli cell barrier and connexin 43 gap junction but not claudin-11 and N-cadherin in the rat seminiferous tubule culture model

    SciTech Connect

    Carette, Diane; Perrard, Marie-Hélène; Prisant, Nadia; Gilleron, Jérome; Pointis, Georges; Segretain, Dominique; Durand, Philippe

    2013-04-01

    Exposure to toxic metals, specifically those belonging to the nonessential group leads to human health defects and among them reprotoxic effects. The mechanisms by which these metals produce their negative effects on spermatogenesis have not been fully elucidated. By using the Durand's validated seminiferous tubule culture model, which mimics the in vivo situation, we recently reported that concentrations of hexavalent chromium, reported in the literature to be closed to that found in the blood circulation of men, increase the number of germ cell cytogenetic abnormalities. Since this metal is also known to affect cellular junctions, we investigated, in the present study, its potential influence on the Sertoli cell barrier and on junctional proteins present at this level such as connexin 43, claudin-11 and N-cadherin. Cultured seminiferous tubules in bicameral chambers expressed the three junctional proteins and ZO-1 for at least 12 days. Exposure to low concentrations of chromium (10 μg/l) increased the trans-epithelial resistance without major changes of claudin-11 and N-cadherin expressions but strongly delocalized the gap junction protein connexin 43 from the membrane to the cytoplasm of Sertoli cells. The possibility that the hexavalent chromium-induced alteration of connexin 43 indirectly mediates the effect of the toxic metal on the blood–testis barrier dynamic is postulated. - Highlights: ► Influence of Cr(VI) on the Sertoli cell barrier and on junctional proteins ► Use of cultured seminiferous tubules in bicameral chambers ► Low concentrations of Cr(VI) (10 μg/l) altered the trans-epithelial resistance. ► Cr(VI) did not alter claudin-11 and N-cadherin. ► Cr(VI) delocalized connexin 43 from the membrane to the cytoplasm of Sertoli cells.

  18. Intrathecal administration of a gap junction decoupler, an inhibitor of Na(+)-K(+)-2Cl(-) cotransporter 1, or a GABA(A) receptor agonist attenuates mechanical pain hypersensitivity induced by REM sleep deprivation in the rat.

    PubMed

    Wei, Hong; Hao, Bin; Huang, Jin-Lu; Ma, Ai-Niu; Li, Xin-Yan; Wang, Yong-Xiang; Pertovaara, Antti

    2010-12-01

    We studied the hypothesis that some of the spinal mechanisms that are involved in neuropathic hypersensitivity play a role in hypersensitivity induced by REM sleep deprivation (REMSD). Rats with a chronic intrathecal (i.t.) catheter had REMSD of 48h duration that induced hypersensitivity to mechanical stimulation. After REMSD, the animals were treated i.t. with carbenoxolone (a gap junction decoupler), bumetanide (a blocker of Na(+)-K(+)-2Cl(-) cotransporter 1 or NKCC1), muscimol (a GABA(A) receptor agonist), or pretreated intraperitoneally with minocycline (an inhibitor of microglia activation). Previously, all these treatments attenuated neuropathic hypersensitivity. Following REMSD, carbenoxolone, bumetanide and muscimol had a strong antihypersensitivity effect, whereas pretreatment with minocycline failed to prevent development of hypersensitivity. The results suggest that among spinal pain facilitatory mechanisms that are common to REMSD and neuropathy are NKCC1 blocker- and gap junction decoupler-reversible mechanisms. Moreover, there is a net pain inhibitory effect by spinal administration of an exogenous GABA(A) receptor agonist following REMSD as shown earlier in neuropathy. In contrast, activation of spinal microglia may not be as important for the development of hypersensitivity induced by REMSD as following nerve injury.

  19. A window on West Antarctic crustal boundaries: the junction between the Antarctic Peninsula, the Filchner Block, and Weddell Sea oceanic lithosphere

    NASA Astrophysics Data System (ADS)

    Ferris, Julie K.; Vaughan, Alan P. M.; King, Edward C.

    2002-03-01

    A new airborne magnetic survey of the southeastern Antarctic Peninsula and adjacent Weddell Sea embayment (WSE) region suggests a continuity of geological structure between the eastern Antarctic Peninsula and the attenuated continental crust of the Filchner Block. This has implications for the reconstructed position of the Ellsworth-Whitmore Mountains block in Gondwana, which is currently uncertain. Palaeomagnetic data indicate that it has migrated from a Palaeozoic position between South Africa and Coats Land to its current position as a microplate embedded in central West Antarctica. The most obvious route for migration is between the Antarctic Peninsula and the Weddell Sea embayment. Evidence that geological structures are continuous across the boundary places constraints on the timing and pathway of migration. Magnetic textures suggest the presence of shallow features extending from the Beaumont Glacier Zone (BGZ) in the west for at least 200 km into the Weddell Sea embayment. These data suggest that the Eastern Domain of the Antarctic Peninsula and the stretched continental crust of the Filchner Block share a common recent, probably post-Early Jurassic, history. However, examination of deep anomalies indicates differences in the magnetic characteristics of the two blocks. The boundary may mark either the edge of extended continental crust, or a discontinuity between two, once separated, blocks. This discontinuity, or pre-Late Jurassic Antarctic Peninsula terrane boundaries to the west, may have allowed the passage of the Ellsworth-Whitmore Mountains block to its present location.

  20. Epidermal growth factor stimulates the disruption of gap junctional communication and connexin43 phosphorylation independent of 12-0-tetradecanoylphorbol 13-acetate-sensitive protein kinase C: the possible involvement of mitogen-activated protein kinase.

    PubMed

    Kanemitsu, M Y; Lau, A F

    1993-08-01

    We previously reported that epidermal growth factor (EGF) induced the disruption of gap junctional communication (gjc) and serine phosphorylation of connexin43 (Cx43) in T51B rat liver epithelial cells. However, the cascade of events linking EGF receptor activation to these particular responses have not been fully characterized. Furthermore, the serine kinase(s) acting directly on Cx43 remain unidentified. In the current study, we demonstrate that downmodulation of 12-0-tetradecanoylphorbol 13-acetate (TPA)-sensitive protein kinase C (PKC) activity does not affect EGF's ability to reduce junctional permeability or phosphorylate Cx43 in T51B cells. EGF in the presence or absence of chronic TPA treatment stimulated marked increases in Cx43 phosphorylation on numerous sites as determined by two-dimensional tryptic phosphopeptide mapping. Computer-assisted sequence analysis of Cx43 identified several protein kinase phosphorylation consensus sites including two sites for mitogen-activated protein (MAP) kinase. EGF stimulated activation of MAP kinase in a time- and dose-dependent manner where the kinetics of kinase activity corroborated its possible involvement in mediating EGF's effects. Moreover, purified MAP kinase directly phosphorylated Cx43 on serine residues in vitro. Two-dimensional tryptic and chymotryptic phosphopeptide mapping demonstrated that the in vitro phosphopeptides represented a specific subset of the in vivo phosphopeptides produced in response to EGF after chronic TPA treatment. Therefore, EGF-induced disruption of gjc and phosphorylation of Cx43 may be mediated in part by MAP kinase in vivo.

  1. Tunnel junction multiple wavelength light-emitting diodes

    DOEpatents

    Olson, J.M.; Kurtz, S.R.

    1992-11-24

    A multiple wavelength LED having a monolithic cascade cell structure comprising at least two p-n junctions, wherein each of said at least two p-n junctions have substantially different band gaps, and electrical connector means by which said at least two p-n junctions may be collectively energized; and wherein said diode comprises a tunnel junction or interconnect. 5 figs.

  2. Tunnel junction multiple wavelength light-emitting diodes

    DOEpatents

    Olson, Jerry M.; Kurtz, Sarah R.

    1992-01-01

    A multiple wavelength LED having a monolithic cascade cell structure comprising at least two p-n junctions, wherein each of said at least two p-n junctions have substantially different band gaps, and electrical connector means by which said at least two p-n junctions may be collectively energized; and wherein said diode comprises a tunnel junction or interconnect.

  3. Nanotube junctions

    DOEpatents

    Crespi, Vincent Henry; Cohen, Marvin Lou; Louie, Steven Gwon; Zettl, Alexander Karlwalte

    2004-12-28

    The present invention comprises a new nanoscale metal-semiconductor, semiconductor-semiconductor, or metal-metal junction, designed by introducing topological or chemical defects in the atomic structure of the nanotube. Nanotubes comprising adjacent sections having differing electrical properties are described. These nanotubes can be constructed from combinations of carbon, boron, nitrogen and other elements. The nanotube can be designed having different indices on either side of a junction point in a continuous tube so that the electrical properties on either side of the junction vary in a useful fashion. For example, the inventive nanotube may be electrically conducting on one side of a junction and semiconducting on the other side. An example of a semiconductor-metal junction is a Schottky barrier. Alternatively, the nanotube may exhibit different semiconductor properties on either side of the junction. Nanotubes containing heterojunctions, Schottky barriers, and metal-metal junctions are useful for microcircuitry.

  4. Nanotube junctions

    DOEpatents

    Crespi, Vincent Henry; Cohen, Marvin Lou; Louie, Steven Gwon Sheng; Zettl, Alexander Karlwalter

    2003-01-01

    The present invention comprises a new nanoscale metal-semiconductor, semiconductor-semiconductor, or metal-metal junction, designed by introducing topological or chemical defects in the atomic structure of the nanotube. Nanotubes comprising adjacent sections having differing electrical properties are described. These nanotubes can be constructed from combinations of carbon, boron, nitrogen and other elements. The nanotube can be designed having different indices on either side of a junction point in a continuous tube so that the electrical properties on either side of the junction vary in a useful fashion. For example, the inventive nanotube may be electrically conducting on one side of a junction and semiconducting on the other side. An example of a semiconductor-metal junction is a Schottky barrier. Alternatively, the nanotube may exhibit different semiconductor properties on either side of the junction. Nanotubes containing heterojunctions, Schottky barriers, and metal-metal junctions are useful for microcircuitry.

  5. Josephson junction

    DOEpatents

    Wendt, Joel R.; Plut, Thomas A.; Martens, Jon S.

    1995-01-01

    A novel method for fabricating nanometer geometry electronic devices is described. Such Josephson junctions can be accurately and reproducibly manufactured employing photolithographic and direct write electron beam lithography techniques in combination with aqueous etchants. In particular, a method is described for manufacturing planar Josephson junctions from high temperature superconducting material.

  6. Josephson junction

    DOEpatents

    Wendt, J.R.; Plut, T.A.; Martens, J.S.

    1995-05-02

    A novel method for fabricating nanometer geometry electronic devices is described. Such Josephson junctions can be accurately and reproducibly manufactured employing photolithographic and direct write electron beam lithography techniques in combination with aqueous etchants. In particular, a method is described for manufacturing planar Josephson junctions from high temperature superconducting material. 10 figs.

  7. Tunneling conductance of SIN junctions with different gap symmetries and non-magnetic impurities by direct solution of real-axis Eliashberg equations

    NASA Astrophysics Data System (ADS)

    Ummarino, G. A.; Gonnelli, R. S.; Daghero, D.

    2002-09-01

    We theoretically investigate the effect of various symmetries of the superconducting order parameter Δ( ω) on the normalized tunneling conductance of SIN junctions (with no spatial variation of the order parameter in the S electrode) by directly solving the real-axis Eliashberg equations (EEs) for a half-filled infinite band, with the simplifying assumption μ*=0. We analyze six different symmetries of the order parameter: s, d, s+id, s+d, extended s and anisotropic s, by assuming that the spectral function α 2F(Ω) contains an isotropic part α 2F(Ω) is and an anisotropic one, α 2F(Ω) an, such that α 2F(Ω) an=gα 2F(Ω) is, where g is a constant. We compare the resulting conductance curves at T=2 K to those obtained by analytical continuation of the imaginary-axis solution of the EEs, and we show that the agreement is not equally good for all symmetries. Then, we discuss the effect of non-magnetic impurities on the theoretical tunneling conductance curves at T=4 K for all the symmetries considered. Finally, as an example, we apply our calculations to the case of optimally-doped high- Tc superconductors. Surprisingly, although the possibility of explaining the very complex phenomenology of HTSC is probably beyond the limits of the Eliashberg theory, the comparison of the theoretical curves calculated at T=4 K with the experimental ones obtained in various optimally-doped copper-oxides gives fairly good results.

  8. Pregnancy-induced remodelling and enhanced endothelium-derived hyperpolarization-type vasodilator activity in rat uterine radial artery: transient receptor potential vanilloid type 4 channels, caveolae and myoendothelial gap junctions

    PubMed Central

    Senadheera, Sevvandi; Bertrand, Paul P; Grayson, T Hilton; Leader, Leo; Murphy, Timothy V; Sandow, Shaun L

    2013-01-01

    In pregnancy, the vasculature of the uterus undergoes rapid remodelling to increase blood flow and maintain perfusion to the fetus. The present study determines the distribution and density of caveolae, transient receptor potential vanilloid type 4 channels (TRPV4) and myoendothelial gap junctions, and the relative contribution of related endothelium-dependent vasodilator components in uterine radial arteries of control virgin non-pregnant and 20-day late-pregnant rats. The hypothesis examined is that specific components of endothelium-dependent vasodilator mechanisms are altered in pregnancy-related uterine radial artery remodelling. Conventional and serial section electron microscopy were used to determine the morphological characteristics of uterine radial arteries from control and pregnant rats. TRPV4 distribution and expression was examined using conventional confocal immunohistochemistry, and the contribution of endothelial TRPV4, nitric oxide (NO) and endothelium-derived hyperpolarization (EDH)-type activity determined using pressure myography with pharmacological intervention. Data show outward hypertrophic remodelling occurs in uterine radial arteries in pregnancy. Further, caveolae density in radial artery endothelium and smooth muscle from pregnant rats was significantly increased by ∼94% and ∼31%, respectively, compared with control, whereas caveolae density did not differ in endothelium compared with smooth muscle from control. Caveolae density was significantly higher by ∼59% on the abluminal compared with the luminal surface of the endothelium in uterine radial artery of pregnant rats but did not differ at those surfaces in control. TRPV4 was present in endothelium and smooth muscle, but not associated with internal elastic lamina hole sites in radial arteries. TRPV4 fluorescence intensity was significantly increased in the endothelium and smooth muscle of radial artery of pregnant compared with control rats by ∼2.6- and 5.5-fold

  9. Conducting polyaniline nanowire electrode junction

    NASA Astrophysics Data System (ADS)

    Gaikwad, Sumedh; Bodkhe, Gajanan; Deshmukh, Megha; Patil, Harshada; Rushi, Arti; Shirsat, Mahendra D.; Koinkar, Pankaj; Kim, Yun-Hae; Mulchandani, Ashok

    2015-03-01

    In this paper, a synthesis of conducting polyaniline nanowires electrode junction (CPNEJ) has been reported. Conducting polyaniline nanowires electrode junction on Si/SiO2 substrate (having 3 μm gap between two gold microelectrodes) is prepared. Polyaniline nanowires with diameter (ca. 140 nm to 160 nm) were synthesized by one step electrochemical polymerization using galvanostatic (constant current) technique to bridge this gap. The surface morphology of CPNEJ was studied by scanning electron microscope (SEM). The synthesized CPNEJ is an excellent platform for biosensor applications.

  10. Site-isolated luminescent europium complexes with polyester macroligands: metal-centered heteroarm stars and nanoscale assemblies with labile block junctions.

    PubMed

    Bender, Jessica L; Corbin, Perry S; Fraser, Cassandra L; Metcalf, David H; Richardson, Frederick S; Thomas, Edwin L; Urbas, Augustine M

    2002-07-24

    The synthesis of a series of polymeric Eu(III) complexes with polyester ligands, along with supporting emission spectra, luminescence lifetimes, and, for a Eu block copolymer film, atomic force microscopy (AFM) data, is presented. Dibenzoylmethane was derivatized with a hydroxyl initiator site (dbmOH, 1) for tin octoate catalyzed ring opening polymerization of dl-lactide. The resulting poly(lactic acid) macroligand, dbmPLA (2), was combined with EuCl3 to generate Eu(dbmPLA)3 (3). Chelation of both dbmPLA and a polycaprolactone-functionalized bipyridine ligand (bpyPCL2) led to the Eu(III)-centered heteroarm star Eu(dbmPLA)3(bpyPCL2) (4). Unpolarized emission spectra and luminescence lifetimes were recorded for the Eu polymers in CH2Cl2 and for Eu(dbmPLA)3, as a film. Solution data for Eu(dbm)3 and Eu(dbm)3(bpy) were collected for comparison. For Eu tris(dbm) complexes, data were fit to a double exponential decay, indicating the presence of multiple species. Relative amounts of the longer lifetime component increase in the series Eu(dbm)3 solutions to Eu(dbmPLA)3 solutions to Eu(dbmPLA)3 films, perhaps suggesting benefits of the "polymer shell effect" and the diminishment of aquo adducts known to shorten lifetimes. As with the nonpolymeric analogue, data for Eu(dbmPLA)3(bpyPCL2) fit to a single-exponential decay. The sharpness of the feature at 579.7 nm, attributable to the 5D0 --> 7F0 transition in the emission spectrum of 4, lends further support for a homogeneous sample. AFM studies of "as cast" thin films of 4 reveal a lamellar structure with a 17.5 nm repeat. These microstructures, inferred to contain Eu luminophores at the glassy PLA-crystalline PCL domain interfaces, are modified by thermal treatment.

  11. Site-isolated luminescent europium complexes with polyester macroligands: metal-centered heteroarm stars and nanoscale assemblies with labile block junctions.

    PubMed

    Bender, Jessica L; Corbin, Perry S; Fraser, Cassandra L; Metcalf, David H; Richardson, Frederick S; Thomas, Edwin L; Urbas, Augustine M

    2002-07-24

    The synthesis of a series of polymeric Eu(III) complexes with polyester ligands, along with supporting emission spectra, luminescence lifetimes, and, for a Eu block copolymer film, atomic force microscopy (AFM) data, is presented. Dibenzoylmethane was derivatized with a hydroxyl initiator site (dbmOH, 1) for tin octoate catalyzed ring opening polymerization of dl-lactide. The resulting poly(lactic acid) macroligand, dbmPLA (2), was combined with EuCl3 to generate Eu(dbmPLA)3 (3). Chelation of both dbmPLA and a polycaprolactone-functionalized bipyridine ligand (bpyPCL2) led to the Eu(III)-centered heteroarm star Eu(dbmPLA)3(bpyPCL2) (4). Unpolarized emission spectra and luminescence lifetimes were recorded for the Eu polymers in CH2Cl2 and for Eu(dbmPLA)3, as a film. Solution data for Eu(dbm)3 and Eu(dbm)3(bpy) were collected for comparison. For Eu tris(dbm) complexes, data were fit to a double exponential decay, indicating the presence of multiple species. Relative amounts of the longer lifetime component increase in the series Eu(dbm)3 solutions to Eu(dbmPLA)3 solutions to Eu(dbmPLA)3 films, perhaps suggesting benefits of the "polymer shell effect" and the diminishment of aquo adducts known to shorten lifetimes. As with the nonpolymeric analogue, data for Eu(dbmPLA)3(bpyPCL2) fit to a single-exponential decay. The sharpness of the feature at 579.7 nm, attributable to the 5D0 --> 7F0 transition in the emission spectrum of 4, lends further support for a homogeneous sample. AFM studies of "as cast" thin films of 4 reveal a lamellar structure with a 17.5 nm repeat. These microstructures, inferred to contain Eu luminophores at the glassy PLA-crystalline PCL domain interfaces, are modified by thermal treatment. PMID:12121083

  12. Physics and Applications of NIS Junctions

    SciTech Connect

    Ullom, J N

    2001-08-24

    This paper reviews the physics and applications of Normal-Insulator-Superconductor (NIS) tunnel junctions. The current-voltage properties of NIS junctions are diode-like with a strong temperature dependence. Hence, these structures can be used as sensitive thermometers at temperatures well below the energy gap, {Delta}, of the superconducting electrode. For junction voltages comparable to {Delta}/q, current flow removes energy from the normal electrode. This property has been exploited to build refrigerators capable of cooling thin-film circuits from 0.3 K to 0.1 K. Calorimeters and bolometers for the detection of X-rays and millimeter-wave radiation, respectively, have successfully been built from NIS junctions. NIS junctions have also been used to probe the superconducting state. Finally, recent ideas for the use of NIS junctions as simple circuit elements are described.

  13. Fractional order junctions

    NASA Astrophysics Data System (ADS)

    Machado, J. Tenreiro

    2015-01-01

    Gottfried Leibniz generalized the derivation and integration, extending the operators from integer up to real, or even complex, orders. It is presently recognized that the resulting models capture long term memory effects difficult to describe by classical tools. Leon Chua generalized the set of lumped electrical elements that provide the building blocks in mathematical models. His proposal of the memristor and of higher order elements broadened the scope of variables and relationships embedded in the development of models. This paper follows the two directions and proposes a new logical step, by generalizing the concept of junction. Classical junctions interconnect system elements using simple algebraic restrictions. Nevertheless, this simplistic approach may be misleading in the presence of unexpected dynamical phenomena and requires including additional "parasitic" elements. The novel γ -junction includes, as special cases, the standard series and parallel connections and allows a new degree of freedom when building models. The proposal motivates the search for experimental and real world manifestations of the abstract conjectures.

  14. Altered patterns of cardiac intercellular junction distribution in hypertrophic cardiomyopathy.

    PubMed Central

    Sepp, R.; Severs, N. J.; Gourdie, R. G.

    1996-01-01

    OBJECTIVE: To examine the distribution pattern of intercellular junctions (the mechanically coupling desmosomes and the electrically coupling gap junctions) in hypertrophic cardiomyopathy (HCM) hearts showing myofibre disarray. DESIGN: Samples from six necropsied hearts were studied, representing the interventricular septum and the free walls of the left and right ventricles. Immunohistochemical labelling of desmoplakin was used as a marker for desmosomes, and of connexin43 as a marker for gap junctions, in single and double stainings. The slides were examined by confocal laser scanning microscopy. RESULTS: Marked disorganisation of intercalated discs was observed in areas featuring myofibre disarray. Besides overall derangement, localised abnormalities in desmosome organisation were evident, which included: (1) the formation of abnormally enlarged megadiscs; (2) the presence of intersecting disc structures; and (3) aberrant side to side desmosomal connections. Gap junctional abnormalities included: (1) random distribution of gap junctions over the surface of myocytes, rather than localisation to intercalated discs; (2) abundant side to side gap junction connections between adjacent myocytes; and (3) formation of abnormally shaped gap junctions. Circles of myocytes continuously interconnected by gap junctions were also observed. Regions of the diseased hearts lacking myofibre disarray, and control hearts of normal patients and patients with other cardiac diseases, did not show these alterations. CONCLUSIONS: The disorganisation of the intercellular junctions associated with myofibre disarray in HCM may play an important role in the pathophysiological manifestations of the disease. The remodelling of gap junction distribution may underlie the formation of an arrhythmogenic substrate, thereby contributing to the generation and maintenance of cardiac arrhythmias associated with HCM. Images PMID:8944586

  15. High Magnetoresistance in Fully Epitaxial Magnetic Tunnel Junctions with a Semiconducting GaOx Tunnel Barrier

    NASA Astrophysics Data System (ADS)

    Matsuo, Norihiro; Doko, Naoki; Takada, Tetsuro; Saito, Hidekazu; Yuasa, Shinji

    2016-09-01

    We fabricate magnetic tunnel junctions with fully epitaxial Fe (001 )/GaOx(001 )/Fe (001 ) structure, where the GaOx is a wide band-gap semiconductor with a cubic spinel-type crystal structure. Tunneling magnetoresistance ratios up to 92% (125%) are observed at room temperature (20 K), which evidently indicates the existence of a spin-polarized coherent tunneling. The observed MR ratio is the highest among the reported magnetic tunnel junctions with a semiconducting tunnel barrier and ferromagnetic metal electrodes. Such a single-crystalline semiconductor tunnel barrier that shows a high MR ratio is an essential building block for a vertical-type spin field-effect transistor.

  16. Reciprocal influence of connexins and apical junction proteins on their expressions and functions

    PubMed Central

    Derangeon, Mickaël; Spray, David C.; Bourmeyster, Nicolas; Sarrouilhe, Denis; Hervé, Jean-Claude

    2009-01-01

    Membranes of adjacent cells form intercellular junctional complexes to mechanically anchor neighbour cells (anchoring junctions), to seal the paracellular space and to prevent diffusion of integral proteins within the plasma membrane (tight junctions) and to allow cell-to-cell diffusion of small ions and molecules (gap junctions). These different types of specialised plasma membrane microdomains, sharing common adaptor molecules, particularly zonula occludens proteins, frequently present intermingled relationships where the different proteins co-assemble into macromolecular complexes and their expressions are co-ordinately regulated. Proteins forming gap junction channels (connexins, particularly) and proteins fulfilling cell attachment or forming tight junction strands mutually influence expression and functions of one another. PMID:19046940

  17. Graded junction termination extensions for electronic devices

    NASA Technical Reports Server (NTRS)

    Merrett, J. Neil (Inventor); Isaacs-Smith, Tamara (Inventor); Sheridan, David C. (Inventor); Williams, John R. (Inventor)

    2006-01-01

    A graded junction termination extension in a silicon carbide (SiC) semiconductor device and method of its fabrication using ion implementation techniques is provided for high power devices. The properties of silicon carbide (SiC) make this wide band gap semiconductor a promising material for high power devices. This potential is demonstrated in various devices such as p-n diodes, Schottky diodes, bipolar junction transistors, thyristors, etc. These devices require adequate and affordable termination techniques to reduce leakage current and increase breakdown voltage in order to maximize power handling capabilities. The graded junction termination extension disclosed is effective, self-aligned, and simplifies the implementation process.

  18. Graded junction termination extensions for electronic devices

    NASA Technical Reports Server (NTRS)

    Merrett, J. Neil (Inventor); Isaacs-Smith, Tamara (Inventor); Sheridan, David C. (Inventor); Williams, John R. (Inventor)

    2007-01-01

    A graded junction termination extension in a silicon carbide (SiC) semiconductor device and method of its fabrication using ion implementation techniques is provided for high power devices. The properties of silicon carbide (SiC) make this wide band gap semiconductor a promising material for high power devices. This potential is demonstrated in various devices such as p-n diodes, Schottky diodes, bipolar junction transistors, thyristors, etc. These devices require adequate and affordable termination techniques to reduce leakage current and increase breakdown voltage in order to maximize power handling capabilities. The graded junction termination extension disclosed is effective, self-aligned, and simplifies the implementation process.

  19. Heart Block

    MedlinePlus

    ... Block Explore Heart Block What Is... Electrical System & EKG Results Types Causes Who Is at Risk Signs & ... heart block. Doctors use a test called an EKG (electrocardiogram) to help diagnose heart block. This test ...

  20. Mapping of four mouse genes encoding eye lens-specific structural, gap junction, and integral membrane proteins: Cryba1 (crystallin{beta}A3/A1), Crybb2 (crystallin{beta}B2), Gja8 (MP70), and Lim2 (MP19)

    SciTech Connect

    Kerscher, S.; Boyd, Y.; Lyon, M.F.

    1995-09-20

    Four genes encoding eye lens-specific proteins, potential candidate genes for congenital cataract (CC) mutations, were mapped in the mouse genome using a panel of somatic cell hybrids and DNAs from the EUCIB (European Collaborative Interspecific Backcross). Two of them are lens fiber cell structural proteins: the Cryba1 locus encoding crystallin{beta}A3/A1 maps to chromosome 11, 2.5 {+-} 2.5 cM distal to D11Mit31, and the Crybb2 locus encoding crystallin{beta}B2 maps to chromosome 5, 9.1 {+-} 4.3 cM distal to D5Mit88. The other two genes encode lens-specific gap junction and integral membrane proteins, respectively: the Gja8 locus encoding gap junction membrane channel protein {alpha}8, also called connexin50 or MP70, maps to chromosome 3, 11.9 {+-} 5.0 cM distal to D3Mit22, and the Lim2 locus encoding lens intrinsic membrane protein 2, also call MP19, maps to chromosome 7, 2.5 {+-} 2.5 cM proximal to Ngfg. All four map positions, when compared with the corresponding positions in human, lie within known regions of conserved synteny between mouse and human chromosomes. 43 refs., 2 figs., 1 tab.

  1. Random telegraph signals in molecular junctions.

    PubMed

    Brunner, Jan; González, Maria Teresa; Schönenberger, Christian; Calame, Michel

    2014-11-26

    We investigate conductance fluctuations in molecular junctions using a mechanically controllable break junction setup in a liquid environment. In contrast to conventional break junction measurements, time-dependent conductance signals were recorded while reducing the gap size between the two contact electrodes. Only small amplitude fluctuations of the conductance are observed when measuring in pure solvent. Conductance traces recorded in solutions containing alkanedithiols show significantly larger fluctuations which can take the form of random telegraph signals. Such signals emerge in a limited conductance range, which corresponds well to the known molecular conductance of the compounds investigated. These large-amplitude fluctuations are attributed to the formation and thermally driven breaking of bonds between a molecule and a metal electrode and provide a still poorly explored source of information on the dynamics of molecular junctions formation. The lifetimes of the high and low conductance states are found to vary between 0.1 ms and 0.1 s. PMID:25352489

  2. Exohedral M–C{sub 60} and M{sub 2}–C{sub 60} (M = Pt, Pd) systems as tunable-gap building blocks for nanoarchitecture and nanocatalysis

    SciTech Connect

    Özdamar, Burak; Boero, Mauro Massobrio, Carlo; Felder-Flesch, Delphine; Le Roux, Sébastien

    2015-09-21

    Transition metal–fullerenes complexes with metal atoms bound on the external surface of C{sub 60} are promising building blocks for next-generation fuel cells and catalysts. Yet, at variance with endohedral M@C{sub 60}, they have received a limited attention. By resorting to first principles simulations, we elucidate structural and electronic properties for the Pd–C{sub 60}, Pt–C{sub 60}, PtPd–C{sub 60}, Pd{sub 2}–C{sub 60}, and Pt{sub 2}–C{sub 60} complexes. The most stable structures feature the metal atom located above a high electron density site, namely, the π bond between two adjacent hexagons (π-66 bond). When two metal atoms are added, the most stable configuration is those in which metal atoms still stand on π-66 bonds but tends to clusterize. The electronic structure, rationalized in terms of localized Wannier functions, provides a clear picture of the underlying interactions responsible for the stability or instability of the complexes, showing a strict relationship between structure and electronic gap.

  3. Electrostatic control of thermoelectricity in molecular junctions.

    PubMed

    Kim, Youngsang; Jeong, Wonho; Kim, Kyeongtae; Lee, Woochul; Reddy, Pramod

    2014-11-01

    Molecular junctions hold significant promise for efficient and high-power-output thermoelectric energy conversion. Recent experiments have probed the thermoelectric properties of molecular junctions. However, electrostatic control of thermoelectric properties via a gate electrode has not been possible due to technical challenges in creating temperature differentials in three-terminal devices. Here, we show that extremely large temperature gradients (exceeding 1 × 10(9) K m(-1)) can be established in nanoscale gaps bridged by molecules, while simultaneously controlling their electronic structure via a gate electrode. Using this platform, we study prototypical Au-biphenyl-4,4'-dithiol-Au and Au-fullerene-Au junctions to demonstrate that the Seebeck coefficient and the electrical conductance of molecular junctions can be simultaneously increased by electrostatic control. Moreover, from our studies of fullerene junctions, we show that thermoelectric properties can be significantly enhanced when the dominant transport orbital is located close to the chemical potential (Fermi level) of the electrodes. These results illustrate the intimate relationship between the thermoelectric properties and charge transmission characteristics of molecular junctions and should enable systematic exploration of the recent computational predictions that promise extremely efficient thermoelectric energy conversion in molecular junctions. PMID:25282046

  4. Sinoatrial block complicating legionnaire's disease.

    PubMed

    Medarov, B; Tongia, S; Rossoff, L

    2003-11-01

    A 59 year old woman presented with acute onset of fever, chills, diaphoresis, vague chest discomfort, and was found to be hypotensive and tachypnoeic. An electrocardiogram demonstrated sinoatrial block with a junctional rhythm between 50 and 80 beats/min. All cultures were negative and imaging studies unrevealing. Her urine tested positive for Legionella pneumophila antigen serotype 1 and she improved with antibiotic therapy.

  5. Seebeck effect in molecular junctions

    NASA Astrophysics Data System (ADS)

    Zimbovskaya, Natalya A.

    2016-05-01

    Advances in the fabrication and characterization of nanoscale systems presently allow for a better understanding of their thermoelectric properties. As is known, the building blocks of thermoelectricity are the Peltier and Seebeck effects. In the present work we review results of theoretical studies of the Seebeck effect in single-molecule junctions and similar systems. The behavior of thermovoltage and thermopower in these systems is controlled by several factors including the geometry of molecular bridges, the characteristics of contacts between the bridge and the electrodes, the strength of the Coulomb interactions between electrons on the bridge, and of electron–phonon interactions. We describe the impact of these factors on the thermopower. Also, we discuss a nonlinear Seebeck effect in molecular junctions.

  6. Seebeck effect in molecular junctions.

    PubMed

    Zimbovskaya, Natalya A

    2016-05-11

    Advances in the fabrication and characterization of nanoscale systems presently allow for a better understanding of their thermoelectric properties. As is known, the building blocks of thermoelectricity are the Peltier and Seebeck effects. In the present work we review results of theoretical studies of the Seebeck effect in single-molecule junctions and similar systems. The behavior of thermovoltage and thermopower in these systems is controlled by several factors including the geometry of molecular bridges, the characteristics of contacts between the bridge and the electrodes, the strength of the Coulomb interactions between electrons on the bridge, and of electron-phonon interactions. We describe the impact of these factors on the thermopower. Also, we discuss a nonlinear Seebeck effect in molecular junctions. PMID:27073108

  7. The 'depletion layer' of amorphous p-n junctions

    NASA Technical Reports Server (NTRS)

    Von Roos, O.

    1981-01-01

    It is shown that within reasonable approximations for the density of state distribution within the mobility gap of a:Si, a one-to-one correspondence exists between the electric field distribution in the transition region of an amorphous p-n junction and that in the depletion layer of a crystalline p-n junction. Thus it is inferred that the depletion layer approximation which leads to a parabolic potential distribution within the depletion layer of crystalline junctions also constitutes a fair approximation in the case of amorphous junctions. This fact greatly simplifies an analysis of solid-state electronic devices based on amorphous material (i.e., solar cells).

  8. Specialized membrane junctions between neurons in the vertebrate cerebellar cortex.

    PubMed

    Sotelo, C; Llinás, R

    1972-05-01

    "Gap" junctions, the morphological correlate for low-resistance junctions, are demonstrated between some mossy fiber terminals and granule cell dendrites in some lower vertebrate cerebella (gymnotid and frog). Most of the gap junctions (GJs) seen in the gymnotid-fish cerebellum exhibit an asymmetrical configuration, the electron-opaque cytoplasmic material underlying the junction being more extensive in the dendritic than in the axonal side. In the frog cerebellum, the GJs have a symmetrical distribution of such electron-opaque material. In both species the GJs are encountered at the same synaptic interface as the conventional synaptic zone (CSZ), constituting "mixed synapses" in a morphological sense. The axonal surface covered by CSZs is larger than that covered by GJs. In mammalian cerebellum, GJs are observed only in the molecular layer, between perikarya, dendrites, or perikarya and dendrites of the inhibitory interneurons. These GJs are intermixed with attachment plates and intermediary junctions interpreted as simply adhesive. In the mammalian cerebellum, a new type of junction which resembles the septate junctions (SJs) of invertebrate epithelia is observed between axonal branches forming the tip of the brush of basket fibers around the initial segment of the Purkinje cell axon. It is suggested that such junctions may be modified forms of septate junctions. The physiological implications of the possible existence of high-resistance cross-bridges between basket cell terminals, which may compartmentalize the extracellular space and thus regulate extracellular current flow, must be considered.

  9. Efficient tandem and triple-junction polymer solar cells.

    PubMed

    Li, Weiwei; Furlan, Alice; Hendriks, Koen H; Wienk, Martijn M; Janssen, René A J

    2013-04-17

    We demonstrate tandem and triple-junction polymer solar cells with power conversion efficiencies of 8.9% and 9.6% that use a newly designed, high molecular weight, small band gap semiconducting polymer and a matching wide band gap polymer.

  10. Efficient tandem and triple-junction polymer solar cells.

    PubMed

    Li, Weiwei; Furlan, Alice; Hendriks, Koen H; Wienk, Martijn M; Janssen, René A J

    2013-04-17

    We demonstrate tandem and triple-junction polymer solar cells with power conversion efficiencies of 8.9% and 9.6% that use a newly designed, high molecular weight, small band gap semiconducting polymer and a matching wide band gap polymer. PMID:23544881

  11. Electron optics with p-n junctions in ballistic graphene

    NASA Astrophysics Data System (ADS)

    Chen, Shaowen; Han, Zheng; Elahi, Mirza M.; Habib, K. M. Masum; Wang, Lei; Wen, Bo; Gao, Yuanda; Taniguchi, Takashi; Watanabe, Kenji; Hone, James; Ghosh, Avik W.; Dean, Cory R.

    2016-09-01

    Electrons transmitted across a ballistic semiconductor junction are expected to undergo refraction, analogous to light rays across an optical boundary. In graphene, the linear dispersion and zero-gap band structure admit highly transparent p-n junctions by simple electrostatic gating. Here, we employ transverse magnetic focusing to probe the propagation of carriers across an electrostatically defined graphene junction. We find agreement with the predicted Snell’s law for electrons, including the observation of both positive and negative refraction. Resonant transmission across the p-n junction provides a direct measurement of the angle-dependent transmission coefficient. Comparing experimental data with simulations reveals the crucial role played by the effective junction width, providing guidance for future device design. Our results pave the way for realizing electron optics based on graphene p-n junctions.

  12. The junctions that don't fit the scheme: special symmetrical cell-cell junctions of their own kind.

    PubMed

    Franke, Werner W; Rickelt, Steffen; Barth, Mareike; Pieperhoff, Sebastian

    2009-10-01

    Immunocytochemical, electron-, and immunoelectron-microscopical studies have revealed that, in addition to the four major "textbook categories" of cell-cell junctions (gap junctions, tight junctions, adherens junctions, and desmosomes), a broad range of other junctions exists, such as the tiny puncta adhaerentia minima, the taproot junctions (manubria adhaerentia), the plakophilin-2-containing adherens junctions of mesenchymal or mesenchymally derived cell types including malignantly transformed cells, the composite junctions (areae compositae) of the mature mammalian myocardium, the cortex adhaerens of the eye lens, the interdesmosomal "sandwich" or "stud" junctions in the subapical layers of stratified epithelia and the tumors derived therefrom, and the complexus adhaerentes of the endothelial and virgultar cells of the lymph node sinus. On the basis of their sizes and shapes, other morphological criteria, and their specific molecular ensembles, these junctions and the genes that encode them cannot be subsumed under one of the major categories mentioned above but represent special structures in their own right, appear to serve special functions, and can give rise to specific pathological disorders. PMID:19680692

  13. Population Blocks.

    ERIC Educational Resources Information Center

    Smith, Martin H.

    1992-01-01

    Describes an educational game called "Population Blocks" that is designed to illustrate the concept of exponential growth of the human population and some potential effects of overpopulation. The game material consists of wooden blocks; 18 blocks are painted green (representing land), 7 are painted blue (representing water); and the remaining…

  14. Effects of aminoglycoside antibiotics on the neuromuscular junction: Part I.

    PubMed

    Yamada, S; Kuno, Y; Iwanaga, H

    1986-03-01

    The effects of aminoglycoside antibiotics (AGA) including streptomycin (SM), kanamycin (KM), gentamicin (GM), dibekacin (DKB), amikacin (AMK) and sisomycin (SISO), on the neuromuscular junction were studied by in vivo and in vitro experiments. In in vitro experiments, no effect of AGA on rat phrenic nerve diaphragm preparations was observed, but the use of the antibiotics at a high concentration exerted a slight blocking effect on the neuromuscular junction. The blocking effect of SISO and DKB on the neuromuscular junction was marked. These antibiotics were definitely found to compete with eserine in terms of the blocking effect on the neuromuscular junction, but did not compete with calcium chloride. In in vitro experiments with frog sciatic nerve and musculus sartorius preparations, DKB and SISO exerted a blocking effect on the NMJ, inducing the disappearance of action potentials and the appearance of endplate potentials (EPPs). In in vitro experiments with the preparations from Rana catesbiana frogs, SM, GM, DKB and SISO exhibited an inhibiting effect on the release of acetylcholine (ACh), a chemical neurotransmitter in neuromuscular junction, resulting in a decrease in the frequency of miniature endplate potentials (mEPPS). In in vivo experiments with rabbit sciatic tibialis anterior muscle preparations, SM, GM, DKB and SISO exerted a blocking effect on the neuromuscular junction. From the facts that the effect was augmented by the use of magnesium chloride combined with these antibiotics and that the antibiotics competed with calcium chloride and potassium chloride in terms of the blocking effect on the neuromuscular junction, the effects seemed to be due to the inhibition of ACh release.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3699939

  15. Nonintrusive Measurement Of Temperature Of LED Junction

    NASA Technical Reports Server (NTRS)

    Leidecker, Henning; Powers, Charles

    1991-01-01

    Temperature inferred from spectrum of emitted light. Method of determining temperature of junction based on two relevant characteristics of LED. Gap between valence and conduction electron-energy bands in LED material decreases with increasing temperature, causing wavelength of emitted photon to increase with temperature. Other, as temperature increases, non-radiative processes dissipate more of input electrical energy as heat and less as photons in band-gap wavelenth region; optical and quantum efficiencies decrease with increasing temperature. In principal, either characteristic alone used to determine temperature. However, desirable to use both to obtain indication of uncertainty.

  16. Definitive Evidence for the existence of tight junctions in invertebrates

    PubMed Central

    Lane, NJ; Chandler, HJ

    1980-01-01

    Extensive and unequivocal tight junctions are here reported between the lateral borders of the cellular layer that circumscribes the arachnid (spider) central nervous system. This account details the features of these structures, which form a beltlike reticulum that is more complex than the simple linear tight junctions hitherto found in invertebrate tissues and which bear many of the characteristics of vertebrate zonulae occludentes. We also provide evidence that these junctions form the basis of a permeability barrier to exogenous compounds. In thin sections, the tight junctions are identifiable as punctate points of membrane apposition; they are seen to exclude the stain and appear as election- lucent moniliform strands along the lines of membrane fusion in en face views of uranyl-calcium-treated tissues. In freeze-fracture replicas, the regions of close membrane apposition exhibit P-face (PF) ridges and complementary E-face (EF) furrows that are coincident across face transitions, although slightly offset with respect to one another. The free inward diffusion of both ionic and colloidal lanthanum is inhibited by these punctate tight junctions so that they appear to form the basis of a circumferential blood-brain barrier. These results support the contention that tight junctions exist in the tissues of the invertebrata in spite of earlier suggestions that (a) they are unique to vertebrates and (b) septate junctions are the equivalent invertebrate occluding structure. The component tight junctional 8- to 10-nm-particulate PF ridges are intimately intercalated with, but clearly distinct from, inverted gap junctions possessing the 13-nm EF particles typical of arthropods. Hence, no confusion can occur as to which particles belong to each of the two junctional types, as commonly happens with vertebrate tissues, especially in the analysis of developing junctions. Indeed, their coexistance in this way supports the idea, over which there has been some controversy, that

  17. The atrioventricular junctions in Ebstein malformation

    PubMed Central

    Ho, S; Goltz, D; McCarthy, K; Cook, A; Connell, M; Smith, A; Anderson, R

    2000-01-01

    OBJECTIVE—To review the anatomical structure of the right atrioventricular junction, including the specialised atrioventricular conduction system, in hearts with Ebstein's malformation, to identify potential substrates for the abnormalities in conduction.
METHODS—Five heart specimens representing the morphological spectrum of Ebstein malformation were examined grossly and histologically.
RESULTS—On the endocardial surface, the atrioventricular junction was marked by a faint line in two hearts, and by a small ridge in the other three. Analysis of the right parietal junction in four hearts revealed only two accessory muscular atrioventricular connections. A plane of fibrofatty tissue separated atrial from ventricular myocardium in the right parietal junction in all hearts. The compact atrioventricular node was closer to the coronary sinus than usual. Accessory nodoventricular connections were present in four hearts, while accessory fasciculo-ventricular connections were found in one. The right bundle branch was hypoplastic or absent in four hearts.
CONCLUSIONS—In this small series, the parietal atrioventricular junction was better developed than previously thought. Structural abnormalities of the atrioventricular conduction system, however, were present. These may account for some of the conduction abnormalities frequently observed with the Ebstein malformation.


Keywords: Ebstein's anomaly; atrioventricular node; bundle branch block; Wolff-Parkinson-White syndrome PMID:10722549

  18. Junctional communication is induced in migrating capillary endothelial cells

    PubMed Central

    1989-01-01

    Using an in vitro model in which a confluent monolayer of capillary endothelial cells is mechanically wounded, gap junction-mediated intercellular communication has been studied by loading the cells with the fluorescent dye, Lucifer Yellow. Approximately 40-50% of the cells in a nonwounded confluent monolayer were coupled in groups of four to