Selvakumaran, M; Liebermann, D; Hoffman-Liebermann, B
1993-05-01
Conditional mutants of the myeloblastic leukemic M1 cell line, expressing the chimeric mycer transgene, have been established. It is shown that M1 mycer cells, like M1, undergo terminal differentiation coupled to growth arrest and programmed cell death (apoptosis) after treatment with the physiologic differentiation inducer interleukin-6. However, when beta-estradiol is included in the culture medium, M1 mycer cells respond to differentiation inducers like M1 myc cell lines, where the differentiation program is blocked at an intermediate stage. By manipulating the function of the mycer transgene product, it is shown that there is a 10-hour window during myeloid differentiation, from 30 to 40 hours after the addition of the differentiation inducer, when the terminal differentiation program switches from being dependent on c-myc suppression to becoming c-myc suppression independent, where activation of c-myc has no apparent effect on mature macrophages. M1 mycer cell lines provide a powerful tool to increase our understanding of the role of c-myc in normal myelopoiesis and in leukemogenesis, also providing a strategy to clone c-myc target genes.
Zanet, Jennifer; Freije, Ana; Ruiz, María; Coulon, Vincent; Sanz, J Ramón; Chiesa, Jean; Gandarillas, Alberto
2010-12-20
How human self-renewal tissues co-ordinate proliferation with differentiation is unclear. Human epidermis undergoes continuous cell growth and differentiation and is permanently exposed to mutagenic hazard. Keratinocytes are thought to arrest cell growth and cell cycle prior to terminal differentiation. However, a growing body of evidence does not satisfy this model. For instance, it does not explain how skin maintains tissue structure in hyperproliferative benign lesions. We have developed and applied novel cell cycle techniques to human skin in situ and determined the dynamics of key cell cycle regulators of DNA replication or mitosis, such as cyclins E, A and B, or members of the anaphase promoting complex pathway: cdc14A, Ndc80/Hec1 and Aurora kinase B. The results show that actively cycling keratinocytes initiate terminal differentiation, arrest in mitosis, continue DNA replication in a special G2/M state, and become polyploid by mitotic slippage. They unambiguously demonstrate that cell cycle progression coexists with terminal differentiation, thus explaining how differentiating cells increase in size. Epidermal differentiating cells arrest in mitosis and a genotoxic-induced mitosis block rapidly pushes epidermal basal cells into differentiation and polyploidy. These observations unravel a novel mitosis-differentiation link that provides new insight into skin homeostasis and cancer. It might constitute a self-defence mechanism against oncogenic alterations such as Myc deregulation.
Zanet, Jennifer; Freije, Ana; Ruiz, María; Coulon, Vincent; Sanz, J. Ramón; Chiesa, Jean; Gandarillas, Alberto
2010-01-01
How human self-renewal tissues co-ordinate proliferation with differentiation is unclear. Human epidermis undergoes continuous cell growth and differentiation and is permanently exposed to mutagenic hazard. Keratinocytes are thought to arrest cell growth and cell cycle prior to terminal differentiation. However, a growing body of evidence does not satisfy this model. For instance, it does not explain how skin maintains tissue structure in hyperproliferative benign lesions. We have developed and applied novel cell cycle techniques to human skin in situ and determined the dynamics of key cell cycle regulators of DNA replication or mitosis, such as cyclins E, A and B, or members of the anaphase promoting complex pathway: cdc14A, Ndc80/Hec1 and Aurora kinase B. The results show that actively cycling keratinocytes initiate terminal differentiation, arrest in mitosis, continue DNA replication in a special G2/M state, and become polyploid by mitotic slippage. They unambiguously demonstrate that cell cycle progression coexists with terminal differentiation, thus explaining how differentiating cells increase in size. Epidermal differentiating cells arrest in mitosis and a genotoxic-induced mitosis block rapidly pushes epidermal basal cells into differentiation and polyploidy. These observations unravel a novel mitosis-differentiation link that provides new insight into skin homeostasis and cancer. It might constitute a self-defence mechanism against oncogenic alterations such as Myc deregulation. PMID:21187932
Kiraly, Alex J; Soliman, Eman; Jenkins, Audrey; Van Dross, Rukiyah T
2016-01-01
Non-melanoma skin cancer (NMSC) is the most prevalent cancer in the United States. NMSC overexpresses cyclooxygenase-2 (COX-2). COX-2 synthesizes prostaglandins such as PGE2 which promote proliferation and tumorigenesis by engaging G-protein-coupled prostaglandin E receptors (EP). Apigenin is a bioflavonoid that blocks mouse skin tumorigenesis induced by the chemical carcinogens, 7,12-dimethylbenz[a]anthracene (DMBA) and 12-O-tetradecanoylphorbol-13-acetate (TPA). However, the effect of apigenin on the COX-2 pathway has not been examined in the DMBA/TPA skin tumor model. In the present study, apigenin decreased tumor multiplicity and incidence in DMBA/TPA-treated SKH-1 mice. Analysis of the non-tumor epidermis revealed that apigenin reduced COX-2, PGE2, EP1, and EP2 synthesis and also increased terminal differentiation. In contrast, apigenin did not inhibit the COX-2 pathway or promote terminal differentiation in the tumors. Since fewer tumors developed in apigenin-treated animals which contained reduced epidermal COX-2 levels, our data suggest that apigenin may avert skin tumor development by blocking COX-2. Copyright © 2015 Elsevier Ltd. All rights reserved.
Quasi-Block Copolymers Based on a General Polymeric Chain Stopper.
Sanguramath, Rajashekharayya A; Nealey, Paul F; Shenhar, Roy
2016-07-11
Quasi-block copolymers (q-BCPs) are block copolymers consisting of conventional and supramolecular blocks, in which the conventional block is end-terminated by a functionality that interacts with the supramolecular monomer (a "chain stopper" functionality). A new design of q-BCPs based on a general polymeric chain stopper, which consists of polystyrene end-terminated with a sulfonate group (PS-SO3 Li), is described. Through viscosity measurements and a detailed diffusion-ordered NMR spectroscopy study, it is shown that PS-SO3 Li can effectively cap two types of model supramolecular monomers to form q-BCPs in solution. Furthermore, differential scanning calorimetry data and structural characterization of thin films by scanning force microscopy suggests the existence of the q-BCP architecture in the melt. The new design considerably simplifies the synthesis of polymeric chain stoppers; thus promoting the utilization of q-BCPs as smart, nanostructured materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hellingman, Catharine A; Koevoet, Wendy; van Osch, Gerjo J V M
2012-11-01
Chondrogenically differentiating bone marrow-derived mesenchymal stem cells (BMSCs) display signs of chondrocyte hypertrophy, such as production of collagen type X, MMP13 and alkaline phosphatase (ALPL). For cartilage reconstructions this is undesirable, as terminally differentiated cartilage produced by BMSCs mineralizes when implanted in vivo. Terminal differentiation is not restricted to BMSCs but is also encountered in chondrogenic differentiation of adipose-derived mesenchymal stem cells (MSCs) as well as embryonic stem cells, which by definition should be able to generate all types of tissues, including stable cartilage. Therefore, we propose that the currently used culture conditions may drive the cells towards terminal differentiation. In this manuscript we aim to review the literature, supplemented by our own data to answer the question, is it possible to generate stable hyaline cartilage from adult MSCs? We demonstrate that recently published methods for inhibiting terminal differentiation (through PTHrP, MMP13 or blocking phosphorylation of Smad1/5/8) result in cartilage formation with reduction of hypertrophic markers, although this does not reach the low level of stable chondrocytes. A set of hypertrophy markers should be included in future studies to characterize the phenotype more precisely. Finally, we used what is currently known in developmental biology about the differential development of hyaline and terminally differentiated cartilage to provide thought and insights to change current culture models for creating hyaline cartilage. Inhibiting terminal differentiation may not result in stable hyaline cartilage if the right balance of signals has not been created from the start of culture onwards. Copyright © 2011 John Wiley & Sons, Ltd.
Cross-talk between PRMT1-mediated methylation and ubiquitylation on RBM15 controls RNA splicing.
Zhang, Li; Tran, Ngoc-Tung; Su, Hairui; Wang, Rui; Lu, Yuheng; Tang, Haiping; Aoyagi, Sayura; Guo, Ailan; Khodadadi-Jamayran, Alireza; Zhou, Dewang; Qian, Kun; Hricik, Todd; Côté, Jocelyn; Han, Xiaosi; Zhou, Wenping; Laha, Suparna; Abdel-Wahab, Omar; Levine, Ross L; Raffel, Glen; Liu, Yanyan; Chen, Dongquan; Li, Haitao; Townes, Tim; Wang, Hengbin; Deng, Haiteng; Zheng, Y George; Leslie, Christina; Luo, Minkui; Zhao, Xinyang
2015-11-17
RBM15, an RNA binding protein, determines cell-fate specification of many tissues including blood. We demonstrate that RBM15 is methylated by protein arginine methyltransferase 1 (PRMT1) at residue R578, leading to its degradation via ubiquitylation by an E3 ligase (CNOT4). Overexpression of PRMT1 in acute megakaryocytic leukemia cell lines blocks megakaryocyte terminal differentiation by downregulation of RBM15 protein level. Restoring RBM15 protein level rescues megakaryocyte terminal differentiation blocked by PRMT1 overexpression. At the molecular level, RBM15 binds to pre-messenger RNA intronic regions of genes important for megakaryopoiesis such as GATA1, RUNX1, TAL1 and c-MPL. Furthermore, preferential binding of RBM15 to specific intronic regions recruits the splicing factor SF3B1 to the same sites for alternative splicing. Therefore, PRMT1 regulates alternative RNA splicing via reducing RBM15 protein concentration. Targeting PRMT1 may be a curative therapy to restore megakaryocyte differentiation for acute megakaryocytic leukemia.
Avirneni-Vadlamudi, Usha; Galindo, Kathleen A; Endicott, Tiana R; Paulson, Vera; Cameron, Scott; Galindo, Rene L
2012-01-01
Rhabdomyosarcoma (RMS) is a malignancy of muscle myoblasts, which fail to exit the cell cycle, resist terminal differentiation, and are blocked from fusing into syncytial skeletal muscle. In some patients, RMS is caused by a translocation that generates the fusion oncoprotein PAX-FOXO1, but the underlying RMS pathogenetic mechanisms that impede differentiation and promote neoplastic transformation remain unclear. Using a Drosophila model of PAX-FOXO1-mediated transformation, we show here that mutation in the myoblast fusion gene rolling pebbles (rols) dominantly suppresses PAX-FOXO1 lethality. Further analysis indicated that PAX-FOXO1 expression caused upregulation of rols, which suggests that Rols acts downstream of PAX-FOXO1. In mammalian myoblasts, gene silencing of Tanc1, an ortholog of rols, revealed that it is essential for myoblast fusion, but is dispensable for terminal differentiation. Misexpression of PAX-FOXO1 in myoblasts upregulated Tanc1 and blocked differentiation, whereas subsequent reduction of Tanc1 expression to native levels by RNAi restored both fusion and differentiation. Furthermore, decreasing human TANC1 gene expression caused RMS cancer cells to lose their neoplastic state, undergo fusion, and form differentiated syncytial muscle. Taken together, these findings identify misregulated myoblast fusion caused by ectopic TANC1 expression as a RMS neoplasia mechanism and suggest fusion molecules as candidates for targeted RMS therapy.
Shenasa, Mohammad; Josephson, Mark E; Wit, Andrew L
2017-11-01
Paroxysmal atrioventricular (A-V) block is relatively rare, and due to its transient nature, it is often under recognized. It is often triggered by atrial, junctional, or ventricular premature beats, and occurs in the presence of a diseased His-Purkinje system (HPS). Here, we present a 45-year-old white male who was admitted for observation due to recurrent syncope and near-syncope, who had paroxysmal A-V block. The likely cellular electrophysiological mechanisms(s) of paroxysmal A-V block and its differential diagnosis and management are discussed. Continuous electrocardiographic monitoring was done while the patient was in the cardiac unit. Multiple episodes of paroxysmal A-V block were documented in this case. All episodes were initiated and terminated with atrial/junctional premature beats. The patient underwent permanent pacemaker implantation and has remained asymptomatic since then. Paroxysmal A-V block is rare and often causes syncope or near-syncope. Permanent pacemaker implantation is indicated according to the current guidelines. Paroxysmal A-V block occurs in the setting of diseased HPS and is bradycardia-dependent. The detailed electrophysiological mechanisms, which involve phase 4 diastolic depolarization, and differential diagnosis are discussed. © 2017 Wiley Periodicals, Inc.
Keratinocyte differentiation is regulated by the Rho and ROCK signaling pathway.
McMullan, Rachel; Lax, Siân; Robertson, Vicki H; Radford, David J; Broad, Simon; Watt, Fiona M; Rowles, Alison; Croft, Daniel R; Olson, Michael F; Hotchin, Neil A
2003-12-16
The epidermis comprises multiple layers of specialized epithelial cells called keratinocytes. As cells are lost from the outermost epidermal layers, they are replaced through terminal differentiation, in which keratinocytes of the basal layer cease proliferating, migrate upwards, and eventually reach the outermost cornified layers. Normal homeostasis of the epidermis requires that the balance between proliferation and differentiation be tightly regulated. The GTP binding protein RhoA plays a fundamental role in the regulation of the actin cytoskeleton and in the adhesion events that are critically important to normal tissue homeostasis. Two central mediators of the signals from RhoA are the ROCK serine/threonine kinases ROCK-I and ROCK-II. We have analyzed ROCK's role in the regulation of epidermal keratinocyte function by using a pharmacological inhibitor and expressing conditionally active or inactive forms of ROCK-II in primary human keratinocytes. We report that blocking ROCK function results in inhibition of keratinocyte terminal differentiation and an increase in cell proliferation. In contrast, activation of ROCK-II in keratinocytes results in cell cycle arrest and an increase in the expression of a number of genes associated with terminal differentiation. Thus, these results indicate that ROCK plays a critical role in regulating the balance between proliferation and differentiation in human keratinocytes.
Distinct Effects of Rac1 on Differentiation of Primary Avian Myoblasts
Gallo, Rita; Serafini, Marco; Castellani, Loriana; Falcone, Germana; Alemà, Stefano
1999-01-01
Rho family GTPases have been implicated in the regulation of the actin cytoskeleton in response to extracellular cues and in the transduction of signals from the membrane to the nucleus. Their role in development and cell differentiation, however, is little understood. Here we show that the transient expression of constitutively active Rac1 and Cdc42 in unestablished avian myoblasts is sufficient to cause inhibition of myogenin expression and block of the transition to the myocyte compartment, whereas activated RhoA affects myogenic differentiation only marginally. Activation of c-Jun N-terminal kinase (JNK) appears not to be essential for block of differentiation because, although Rac1 and Cdc42 GTPases modestly activate JNK in quail myoblasts, a Rac1 mutant defective for JNK activation can still inhibit myogenic differentiation. Stable expression of active Rac1, attained by infection with a recombinant retrovirus, is permissive for terminal differentiation, but the resulting myotubes accumulate severely reduced levels of muscle-specific proteins. This inhibition is the consequence of posttranscriptional events and suggests the presence of a novel level of regulation of myogenesis. We also show that myotubes expressing constitutively active Rac1 fail to assemble ordered sarcomeres. Conversely, a dominant-negative Rac1 variant accelerates sarcomere maturation and inhibits v-Src–induced selective disassembly of I-Z-I complexes. Collectively, our findings provide a role for Rac1 during skeletal muscle differentiation and strongly suggest that Rac1 is required downstream of v-Src in the signaling pathways responsible for the dismantling of tissue-specific supramolecular structures. PMID:10512856
Mxi1 is a repressor of the c-Myc promoter and reverses activation by USF.
Lee, T C; Ziff, E B
1999-01-08
The basic region/helix-loop-helix/leucine zipper (B-HLH-LZ) oncoprotein c-Myc is abundant in proliferating cells and forms heterodimers with Max protein that bind to E-box sites in DNA and stimulate genes required for proliferation. A second B-HLH-LZ protein, Mxi1, is induced during terminal differentiation, and forms heterodimers with Max that also bind E-boxes but tether the mSin3 transcriptional repressor protein along with histone deacetylase thereby antagonizing Myc-dependent activation. We show that Mxi1 also antagonizes Myc by a second pathway, repression of transcription from the major c-myc promoter, P2. Repression was independent of Mxi1 binding to mSin3 but dependent on the Mxi1 LZ and COOH-terminal sequences, including putative casein kinase II phosphorylation sites. Repression targeted elements of the myc P2 promoter core (-35/+10), where it reversed transactivation by the constitutive transcription factor, USF. We show that Zn2+ induction of a stably transfected, metallothionein promoter-regulated mxi1 gene blocked the ability of serum to induce transcription of the endogenous c-myc gene and cell entry into S phase. Thus, induction of Mxi1 in terminally differentiating cells may block Myc function by repressing the c-myc gene P2 promoter, as well as by antagonizing Myc-dependent transactivation through E-boxes.
Nuclear Condensation during Mouse Erythropoiesis Requires Caspase-3-Mediated Nuclear Opening.
Zhao, Baobing; Mei, Yang; Schipma, Matthew J; Roth, Eric Wayne; Bleher, Reiner; Rappoport, Joshua Z; Wickrema, Amittha; Yang, Jing; Ji, Peng
2016-03-07
Mammalian erythropoiesis involves chromatin condensation that is initiated in the early stage of terminal differentiation. The mechanisms of chromatin condensation during erythropoiesis are unclear. Here, we show that the mouse erythroblast forms large, transient, and recurrent nuclear openings that coincide with the condensation process. The opening lacks nuclear lamina, nuclear pore complexes, and nuclear membrane, but it is distinct from nuclear envelope changes that occur during apoptosis and mitosis. A fraction of the major histones are released from the nuclear opening and degraded in the cytoplasm. We demonstrate that caspase-3 is required for the nuclear opening formation throughout terminal erythropoiesis. Loss of caspase-3 or ectopic expression of a caspase-3 non-cleavable lamin B mutant blocks nuclear opening formation, histone release, chromatin condensation, and terminal erythroid differentiation. We conclude that caspase-3-mediated nuclear opening formation accompanied by histone release from the opening is a critical step toward chromatin condensation during erythropoiesis in mice. Copyright © 2016 Elsevier Inc. All rights reserved.
Nuclear condensation during mouse erythropoiesis requires caspase-3-mediated nuclear opening
Zhao, Baobing; Mei, Yang; Schipma, Matthew J; Roth, Eric Wayne; Bleher, Reiner; Rappoport, Joshua Z.; Wickrema, Amittha; Yang, Jing; Ji, Peng
2016-01-01
SUMMARY Mammalian erythropoiesis involves chromatin condensation that is initiated in the early stage of terminal differentiation. The mechanisms of chromatin condensation during erythropoiesis are unclear. Here, we show that the mouse erythroblast forms large, transient, and recurrent nuclear openings that coincide with the condensation process. The opening lacks nuclear lamina, nuclear pore complexes, and nuclear membrane, but it is distinct from nuclear envelope changes that occur during apoptosis and mitosis. A fraction of the major histones are released from the nuclear opening and degraded in the cytoplasm. We demonstrate that caspase-3 is required for the nuclear opening formation throughout terminal erythropoiesis. Loss of caspase-3 or ectopic expression of a caspase-3 non-cleavable lamin B mutant blocks nuclear opening formation, histone release, chromatin condensation, and terminal erythroid differentiation. We conclude that caspase-3-mediated nuclear opening formation accompanied by histone release from the opening is a critical step towards chromatin condensation during erythropoiesis in mice. PMID:26954545
Synthetic strategy for preparing chiral double-semicrystalline polyether block copolymers
McGrath, Alaina J.; Shi, Weichao; Rodriguez, Christina G.; ...
2014-12-11
Here, we report an effective strategy for the synthesis of semi-crystalline block copolyethers with well-defined architecture and stereochemistry. As an exemplary system, triblock copolymers containing either atactic (racemic) or isotactic ( R or S) poly(propylene oxide) end blocks with a central poly(ethylene oxide) mid-block were prepared by anionic ring-opening procedures. Stereochemical control was achieved by an initial hydrolytic kinetic resolution of racemic terminal epoxides followed by anionic ring-opening polymerization of the enantiopure monomer feedstock. The resultant triblock copolymers were highly isotactic (meso triads [ mm]% ~ 90%) with optical microscopy, differential scanning calorimetry, wide angle x-ray scattering and small anglemore » x-ray scattering being used to probe the impact of the isotacticity on the resultant polymer and hydrogel properties.« less
Gay, Maresha S; Dasgupta, Chiranjib; Li, Yong; Kanna, Angela; Zhang, Lubo
2016-08-01
Dexamethasone treatment of newborn rats inhibited cardiomyocyte proliferation and stimulated premature terminal differentiation of cardiomyocytes in the developing heart. Yet mechanisms remain undetermined. The present study tested the hypothesis that the direct effect of glucocorticoid receptor-mediated epigenetic repression of cyclin D2 gene in the cardiomyocyte plays a key role in the dexamethasone-mediated effects in the developing heart. Cardiomyocytes were isolated from 2-day-old rats. Cells were stained with a cardiomyocyte marker α-actinin and a proliferation marker Ki67. Cyclin D2 expression was evaluated by Western blot and quantitative real-time polymerase chain reaction. Promoter methylation of CcnD2 was determined by methylated DNA immunoprecipitation (MeDIP). Overexpression of Cyclin D2 was conducted by transfection of FlexiCcnD2 (+CcnD2) construct. Treatment of cardiomyocytes isolated from newborn rats with dexamethasone for 48 hours significantly inhibited cardiomyocyte proliferation with increased binucleation and decreased cyclin D2 protein abundance. These effects were blocked with Ru486 (mifepristone). In addition, the dexamethasone treatment significantly increased cyclin D2 gene promoter methylation in newborn rat cardiomyocytes. 5-Aza-2'-deoxycytidine inhibited dexamethasone-mediated promoter methylation, recovered dexamethasone-induced cyclin D2 gene repression, and blocked the dexamethasone-elicited effects on cardiomyocyte proliferation and binucleation. In addition, the overexpression of cyclin D2 restored the dexamethasone-mediated inhibition of proliferation and increase in binucleation in newborn rat cardiomyocytes. The results demonstrate that dexamethasone acting on glucocorticoid receptors has a direct effect and inhibits proliferation and stimulates premature terminal differentiation of cardiomyocytes in the developing heart via epigenetic repression of cyclin D2 gene. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.
Gay, Maresha S.; Dasgupta, Chiranjib; Li, Yong; Kanna, Angela
2016-01-01
Dexamethasone treatment of newborn rats inhibited cardiomyocyte proliferation and stimulated premature terminal differentiation of cardiomyocytes in the developing heart. Yet mechanisms remain undetermined. The present study tested the hypothesis that the direct effect of glucocorticoid receptor-mediated epigenetic repression of cyclin D2 gene in the cardiomyocyte plays a key role in the dexamethasone-mediated effects in the developing heart. Cardiomyocytes were isolated from 2-day-old rats. Cells were stained with a cardiomyocyte marker α-actinin and a proliferation marker Ki67. Cyclin D2 expression was evaluated by Western blot and quantitative real-time polymerase chain reaction. Promoter methylation of CcnD2 was determined by methylated DNA immunoprecipitation (MeDIP). Overexpression of Cyclin D2 was conducted by transfection of FlexiCcnD2 (+CcnD2) construct. Treatment of cardiomyocytes isolated from newborn rats with dexamethasone for 48 hours significantly inhibited cardiomyocyte proliferation with increased binucleation and decreased cyclin D2 protein abundance. These effects were blocked with Ru486 (mifepristone). In addition, the dexamethasone treatment significantly increased cyclin D2 gene promoter methylation in newborn rat cardiomyocytes. 5-Aza-2'-deoxycytidine inhibited dexamethasone-mediated promoter methylation, recovered dexamethasone-induced cyclin D2 gene repression, and blocked the dexamethasone-elicited effects on cardiomyocyte proliferation and binucleation. In addition, the overexpression of cyclin D2 restored the dexamethasone-mediated inhibition of proliferation and increase in binucleation in newborn rat cardiomyocytes. The results demonstrate that dexamethasone acting on glucocorticoid receptors has a direct effect and inhibits proliferation and stimulates premature terminal differentiation of cardiomyocytes in the developing heart via epigenetic repression of cyclin D2 gene. PMID:27302109
Ski can negatively regulates macrophage differentiation through its interaction with PU.1
Ueki, N; Zhang, L; Haymann, MJ
2010-01-01
In the hematopoietic cell system, the oncoprotein Ski dramatically affects growth and differentiation programs, in some cases leading to malignant leukemia. However, little is known about the interaction partners or signaling pathways involved in the Ski-mediated block of differentiation in hematopoietic cells. Here we show that Ski interacts with PU.1, a lineage-specific transcription factor essential for terminal myeloid differentiation, and thereby represses PU.1-dependent transcriptional activation. Consistent with this, Ski inhibits the biological function of PU.1 to promote myeloid cells to differentiate into macrophage colony-stimulating factor receptor (M-CSFR)-positive macrophages. Using a Ski mutant deficient in PU.1 binding, we demonstrate that Ski–PU.1 interaction is critical for Ski's ability to repress PU.1-dependent transcription and block macrophage differentiation. Furthermore, we provide evidence that Ski-mediated repression of PU.1 is due to Ski's ability to recruit histone deacetylase 3 to PU.1 bound to DNA. Since inactivation of PU.1 is closely related to the development of myeloid leukemia and Ski strongly inhibits PU.1 function, we propose that aberrant Ski expression in certain types of myeloid cell lineages might contribute to leukemogenesis. PMID:17621263
Chromatin condensation during terminal erythropoiesis.
Zhao, Baobing; Yang, Jing; Ji, Peng
2016-09-02
Mammalian terminal erythropoiesis involves gradual but dramatic chromatin condensation steps that are essential for cell differentiation. Chromatin and nuclear condensation is followed by a unique enucleation process, which is believed to liberate more spaces for hemoglobin enrichment and enable the generation of a physically flexible mature red blood cell. Although these processes have been known for decades, the mechanisms are still unclear. Our recent study reveals an unexpected nuclear opening formation during mouse terminal erythropoiesis that requires caspase-3 activity. Major histones, except H2AZ, are partially released from the opening, which is important for chromatin condensation. Block of the nuclear opening through caspase inhibitor or knockdown of caspase-3 inhibits chromatin condensation and enucleation. We also demonstrate that nuclear opening and histone release are cell cycle regulated. These studies reveal a novel mechanism for chromatin condensation in mammalia terminal erythropoiesis.
Duggin, Iain G; Matthews, Jacqueline M; Dixon, Nicholas E; Wake, R Gerry; Mackay, Joel P
2005-04-01
Two dimers of the replication terminator protein (RTP) of Bacillus subtilis bind to a chromosomal DNA terminator site to effect polar replication fork arrest. Cooperative binding of the dimers to overlapping half-sites within the terminator is essential for arrest. It was suggested previously that polarity of fork arrest is the result of the RTP dimer at the blocking (proximal) side within the complex binding very tightly and the permissive-side RTP dimer binding relatively weakly. In order to investigate this "differential binding affinity" model, we have constructed a series of mutant terminators that contain half-sites of widely different RTP binding affinities in various combinations. Although there appeared to be a correlation between binding affinity at the proximal half-site and fork arrest efficiency in vivo for some terminators, several deviated significantly from this correlation. Some terminators exhibited greatly reduced binding cooperativity (and therefore have reduced affinity at each half-site) but were highly efficient in fork arrest, whereas one terminator had normal affinity over the proximal half-site, yet had low fork arrest efficiency. The results show clearly that there is no direct correlation between the RTP binding affinity (either within the full complex or at the proximal half-site within the full complex) and the efficiency of replication fork arrest in vivo. Thus, the differential binding affinity over the proximal and distal half-sites cannot be solely responsible for functional polarity of fork arrest. Furthermore, efficient fork arrest relies on features in addition to the tight binding of RTP to terminator DNA.
Gong, Chenguang; Li, Zhizhong; Ramanujan, Krishnan; Clay, Ieuan; Zhang, Yunyu; Lemire-Brachat, Sophie; Glass, David J
2015-07-27
Increasing evidence suggests that long non-coding RNAs (LncRNAs) represent a new class of regulators of stem cells. However, the roles of LncRNAs in stem cell maintenance and myogenesis remain largely unexamined. For this study, hundreds of intergenic LncRNAs were identified that are expressed in myoblasts and regulated during differentiation. One of these LncRNAs, termed LncMyoD, is encoded next to the Myod gene and is directly activated by MyoD during myoblast differentiation. Knockdown of LncMyoD strongly inhibits terminal muscle differentiation, largely due to a failure to exit the cell cycle. LncMyoD directly binds to IGF2-mRNA-binding protein 2 (IMP2) and negatively regulates IMP2-mediated translation of proliferation genes such as N-Ras and c-Myc. While the RNA sequence of LncMyoD is not well conserved between human and mouse, its locus, gene structure, and function are preserved. The MyoD-LncMyoD-IMP2 pathway elucidates a mechanism as to how MyoD blocks proliferation to create a permissive state for differentiation. Copyright © 2015 Elsevier Inc. All rights reserved.
45 CFR 96.92 - Termination of funding.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION BLOCK GRANTS Community Services Block Grants § 96.92 Termination of funding. Where a State determines pursuant to section 675(c)(11) of the Community Services Block Grant Act that it will terminate present or future funding of any...
Ooya, Tooru; Ito, Akihiro; Yui, Nobuhiko
2005-05-23
A beta-CD-based biodegradable polyrotaxane was prepared by capping both terminals of polypseudorotaxane consisting of hydrazide-terminated PEG-block-PPG-block-PEG (Pluronic P-105) and beta-CD-succinates with mono-aldehyde alpha-CDs. By decreasing pH, the fluorescent intensity of TNS was increased with time, indicating cleavage of the terminal hydrazone bonds followed by beta-CD-succinate release. The terminal alpha-CD moieties of the polyrotaxane are useful for self-assembled formation with some guest molecules. [Diagram: see text
Hasegawa, Daisuke; Calvo, Veronica; Avivar-Valderas, Alvaro; Lade, Abigale; Chou, Hsin-I; Lee, Youngmin A.; Farias, Eduardo F.; Aguirre-Ghiso, Julio A.
2015-01-01
Xbp1, a key mediator of the unfolded protein response (UPR), is activated by IRE1α-mediated splicing, which results in a frameshift to encode a protein with transcriptional activity. However, the direct function of Xbp1 in epithelial cells during mammary gland development is unknown. Here we report that the loss of Xbp1 in the mammary epithelium through targeted deletion leads to poor branching morphogenesis, impaired terminal end bud formation, and spontaneous stromal fibrosis during the adult virgin period. Additionally, epithelial Xbp1 deletion induces endoplasmic reticulum (ER) stress in the epithelium and dramatically inhibits epithelial proliferation and differentiation during lactation. The synthesis of milk and its major components, α/β-casein and whey acidic protein (WAP), is significantly reduced due to decreased prolactin receptor (Prlr) and ErbB4 expression in Xbp1-deficient mammary epithelium. Reduction of Prlr and ErbB4 expression and their diminished availability at the cell surface lead to reduced phosphorylated Stat5, an essential regulator of cell proliferation and differentiation during lactation. As a result, lactating mammary glands in these mice produce less milk protein, leading to poor pup growth and postnatal death. These findings suggest that the loss of Xbp1 induces a terminal UPR which blocks proliferation and differentiation during mammary gland development. PMID:25713103
31 CFR 510.403 - Termination and acquisition of an interest in blocked property.
Code of Federal Regulations, 2014 CFR
2014-07-01
... interest in blocked property. 510.403 Section 510.403 Money and Finance: Treasury Regulations Relating to... SANCTIONS REGULATIONS Interpretations § 510.403 Termination and acquisition of an interest in blocked... deemed to be property blocked pursuant to § 510.201, unless there exists in the property another interest...
31 CFR 510.403 - Termination and acquisition of an interest in blocked property.
Code of Federal Regulations, 2011 CFR
2011-07-01
... interest in blocked property. 510.403 Section 510.403 Money and Finance: Treasury Regulations Relating to... SANCTIONS REGULATIONS Interpretations § 510.403 Termination and acquisition of an interest in blocked... deemed to be property blocked pursuant to § 510.201, unless there exists in the property another interest...
31 CFR 510.403 - Termination and acquisition of an interest in blocked property.
Code of Federal Regulations, 2013 CFR
2013-07-01
... interest in blocked property. 510.403 Section 510.403 Money and Finance: Treasury Regulations Relating to... SANCTIONS REGULATIONS Interpretations § 510.403 Termination and acquisition of an interest in blocked... deemed to be property blocked pursuant to § 510.201, unless there exists in the property another interest...
Ichim, CV; Atkins, HL; Iscove, NN; Wells, RA
2016-01-01
Identification of genes that regulate clonogenicity of acute myelogenous leukemia (AML) cells is hindered by the difficulty of isolating pure populations of cells with defined proliferative abilities. By analyzing the growth of clonal siblings in low passage cultures of the cell line OCI/AML4 we resolved this heterogeneous population into strata of distinct clonogenic potential, permitting analysis of the transcriptional signature of single cells with defined proliferative abilities. By microarray analysis we showed that the expression of the orphan nuclear receptor EAR-2 (NR2F6) is greater in leukemia cells with extensive proliferative capacity than in those that have lost proliferative ability. EAR-2 is expressed highly in long-term hematopoietic stem cells, relative to short-term hematopoietic stem and progenitor cells, and is downregulated in AML cells after induction of differentiation. Exogenous expression of EAR-2 increased the growth of U937 cells and prevented the proliferative arrest associated with terminal differentiation, and blocked differentiation of U937 and 32Dcl3 cells. Conversely, silencing of EAR-2 by short-hairpin RNA initiated terminal differentiation of these cell lines. These data identify EAR-2 as an important factor in the regulation of clonogenicity and differentiation, and establish that analysis of clonal siblings allows the elucidation of differences in gene expression within the AML hierarchy. PMID:21637284
Ho, Hoang-Yen; Moffat, Ryan C; Patel, Rupal V; Awah, Franklin N; Baloue, Kaitrin; Crowe, David L
2010-09-01
Embryonic stem (ES) cells are derived from early stage mammalian embryos and have broad developmental potential. These cells can be manipulated experimentally to generate cells of multiple tissue types which could be important in treating human diseases. The ability to produce relevant amounts of these differentiated cell populations creates the basis for clinical interventions in tissue regeneration and repair. Understanding how embryonic stem cells differentiate also can reveal important insights into cell biology. A previously reported mouse embryonic stem cell model demonstrated that differentiated epithelial cells migrated out of embryoid bodies attached to reconstituted basement membrane. We used genomic technology to profile ES cell populations in order to understand the molecular mechanisms leading to epithelial differentiation. Cells with characteristics of cultured epithelium migrated from embryoid bodies attached to reconstituted basement membrane. However, cells that comprised embryoid bodies also rapidly lost ES cell-specific gene expression and expressed proteins characteristic of stratified epithelia within hours of attachment to basement membrane. Gene expression profiling of sorted cell populations revealed upregulation of the BMP/TGFbeta signaling pathway, which was not sufficient for epithelial differentiation in the absence of basement membrane attachment. Activation of c-jun N-terminal kinase 1 (JNK1) and increased expression of Jun family transcription factors was observed during epithelial differentiation of ES cells. Inhibition of JNK signaling completely blocked epithelial differentiation in this model, revealing a key mechanism by which ES cells adopt epithelial characteristics via basement membrane attachment. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Protti, D A; Uchitel, O D
1997-08-01
The identity of the voltage-dependent calcium channels (VDCC), which trigger the Ca2+-gated K+ currents (IK(Ca)) in mammalian motor nerve terminals, was investigated by means of perineurial recordings. The effects of Ca2+ chelators with different binding kinetics on the activation of IK(Ca) were also examined. The calcium channel blockers of the P/Q family, omega-agatoxin IVA (omega-Aga-IVA) and funnel-web spider toxin (FTX), have been shown to exert a strong blocking effect on IK(Ca). In contrast, nitrendipine and omega-conotoxin GVIA (omega-CgTx) did not affect the Ca2+-activated K+ currents. The intracellular action of the fast Ca2+ buffers BAPTA and DM-BAPTA prevented the activation of the IK(Ca), while the slow Ca2+ buffer EGTA was ineffective at blocking it. These data indicate that P/Q-type VDCC mediate the Ca2+ influx which activates IK(Ca). The spatial association between Ca2+ and Ca2+-gated K+ channels is discussed, on the basis of the differential effects of the fast and slow Ca2+ chelators.
Zheng, Y-S; Zhang, H; Zhang, X-J; Feng, D-D; Luo, X-Q; Zeng, C-W; Lin, K-Y; Zhou, H; Qu, L-H; Zhang, P; Chen, Y-Q
2012-01-01
Acute myeloblastic leukemia (AML) is characterized by the accumulation of abnormal myeloblasts (mainly granulocyte or monocyte precursors) in the bone marrow and blood. Though great progress has been made for improvement in clinical treatment during the past decades, only minority with AML achieve long-term survival. Therefore, further understanding mechanisms of leukemogenesis and exploring novel therapeutic strategies are still crucial for improving disease outcome. MicroRNA-100 (miR-100), a small non-coding RNA molecule, has been reported as a frequent event aberrantly expressed in patients with AML; however, the molecular basis for this phenotype and the statuses of its downstream targets have not yet been elucidated. In the present study, we found that the expression level of miR-100 in vivo was related to the stage of the maturation block underlying the subtypes of myeloid leukemia. In vitro experiments further demonstrated that miR-100 was required to promote the cell proliferation of promyelocytic blasts and arrest them differentiated to granulocyte/monocyte lineages. Significantly, we identified RBSP3, a phosphatase-like tumor suppressor, as a bona fide target of miR-100 and validated that RBSP3 was involved in cell differentiation and survival in AML. Moreover, we revealed a new pathway that miR-100 regulates G1/S transition and S-phase entry and blocks the terminal differentiation by targeting RBSP3, which partly in turn modulates the cell cycle effectors pRB/E2F1 in AML. These events promoted cell proliferation and blocked granulocyte/monocyte differentiation. Our data highlight an important role of miR-100 in the molecular etiology of AML, and implicate the potential application of miR-100 in cancer therapy. PMID:21643017
Pucci, Bruna; Adams, Christopher S; Fertala, Jolanta; Snyder, Bradley C; Mansfield, Kyle D; Tafani, Marco; Freeman, Theresa; Shapiro, Irving M
2007-03-01
The maturation of epiphyseal chondrocytes is accompanied by dramatic changes in energy metabolism and shifts in proteins concerned with the induction of apoptosis. We evaluated the role of mitochondria in this process by evaluating the membrane potential (Delta psi m) of chondrocytes of embryonic tibia and the epiphyseal growth plate. We observed that there was a maturation-dependent change in fluorescence, indicating a fall in the Delta psi m. The level of mitochondrial Bcl-2 was decreased during maturation, while in the same time period there was an obvious increase in Bax levels in the mitochondrial fraction of the terminally differentiated chondrocytes. Bcl(xL), another anti-apoptotic protein, was also robustly expressed in the mitochondrial fraction, but its expression was not dependent on the maturation status of the chondrocytes. We found that caspase-3 was present throughout the growth plate and in hypertrophic cells in culture. We blocked caspase-3 activity and found that alkaline phosphatase staining and mineral formation was decreased, and the cells had lost their characteristic shape. Moreover, we noted that the undifferentiated cells were insensitive to elevated concentrations of inorganic phosphate (Pi). It is concluded that during hypertrophy, the change in membrane potential, the increased binding of a pro-apoptotic protein to mitochondria, and the activation of caspase-3 serve to prime cells for apoptosis. Only when the terminally differentiated chondrocytes are challenged with low levels of apoptogens there is activation of apoptosis. Copyright 2006 Wiley-Liss, Inc.
Zhang, Guolin; Ma, Jianbiao; Li, Yanhong; Wang, Yinong
2003-01-01
Di-block co-polymers of poly(L-alanine) with poly(ethylene glycol) monomethyl ether (MPEG) were synthesized as amphiphilic biodegradable co-polymers. The ring-opening polymerization of N-carboxy-L-alanine anhydride (NCA) in dichloromethane was initiated by amino-terminated poly(ethylene glycol) monomethyl ether (MPEG-NH2, M(n) = 2000) to afford poly(L-alanine)-block-MPEG. The weight ratio of two blocks in the co-polymers could be altered by adjusting the feeding ratio of NCA to MPEG-NH2. Their chemical structures were characterized on the basis of infrared spectrometry and nuclear magnetic resonance. According to circular dichroism measurement, the poly(L-alanine) chain on the co-polymers in an aqueous medium had a alpha-helix conformation. Two melting points from MPEG block and poly(L-alanine), respectively, could be observed in differential scanning calorimetry curves of the co-polymers, suggesting that a micro-domain phase separation appeared in their bulky states. The co-polymers could take up some water and the capacity was dependent on the ratio of poly(L-alanine) block to MPEG. Such co-polymers might be useful in drug-delivery systems and other biomedical applications.
Snowdon, Richard L; Balasubramaniam, Richard; Teh, Andrew W; Haqqani, Haris M; Medi, Caroline; Rosso, Raphael; Vohra, Jitendra K; Kistler, Peter M; Morton, Joseph B; Sparks, Paul B; Kalman, Jonathan M
2010-05-01
Ablation for atypical atrial flutter (AFL) is often performed during tachycardia, with termination or noninducibility of AFL as the endpoint. Termination alone is, however, an inadequate endpoint for typical AFL ablation, where incomplete isthmus block leads to high recurrence rates. We assessed conduction block across a low lateral right atrial (RA) ablation line (LRA) from free wall scar to the inferior vena cava (IVC) or tricuspid annulus in 11 consecutive patients with atypical RA free wall flutter. LRA block was assessed following termination of AFL, by pacing from the ablation catheter in the low lateral RA posterior to the ablation line and recording the sequence and timing of activation anterior to the line with a duodecapole catheter, and vice versa for bidirectional block. LRA block resulted in a high to low activation pattern on the halo and a mean conduction time of 201 +/- 48 ms to distal halo. LRA conduction block was present in only 2 out of 6 patients after termination of AFL by ablation. Ablation was performed during sinus rhythm (SR) in 9 patients to achieve LRA conduction block. No recurrence of AFL was observed at long-term follow-up (22 +/- 12 months); 3 patients developed AF. Termination of right free wall flutter is often associated with persistent LRA conduction and additional radiofrequency ablation (RFA) in SR is usually required. Low RA pacing may be used to assess LRA conduction block and offers a robust endpoint for atypical RA free wall flutter ablation, which results in a high long-term cure rate.
Phelps, Michael P.; Bailey, Jenna N.; Vleeshouwer-Neumann, Terra
2016-01-01
Dysregulated gene expression resulting from abnormal epigenetic alterations including histone acetylation and deacetylation has been demonstrated to play an important role in driving tumor growth and progression. However, the mechanisms by which specific histone deacetylases (HDACs) regulate differentiation in solid tumors remains unclear. Using pediatric rhabdomyosarcoma (RMS) as a paradigm to elucidate the mechanism blocking differentiation in solid tumors, we identified HDAC3 as a major suppressor of myogenic differentiation from a high-efficiency Clustered regularly interspaced short palindromic repeats (CRISPR)-based phenotypic screen of class I and II HDAC genes. Detailed characterization of the HDAC3-knockout phenotype in vitro and in vivo using a tamoxifen-inducible CRISPR targeting strategy demonstrated that HDAC3 deacetylase activity and the formation of a functional complex with nuclear receptor corepressors (NCORs) were critical in restricting differentiation in RMS. The NCOR/HDAC3 complex specifically functions by blocking myoblast determination protein 1 (MYOD1)-mediated activation of myogenic differentiation. Interestingly, there was also a transient up-regulation of growth-promoting genes upon initial HDAC3 targeting, revealing a unique cancer-specific response to the forced transition from a neoplastic state to terminal differentiation. Our study applied modifications of CRISPR/CRISPR-associated endonuclease 9 (Cas9) technology to interrogate the function of essential cancer genes and pathways and has provided insights into cancer cell adaptation in response to altered differentiation status. Because current pan-HDAC inhibitors have shown disappointing results in clinical trials of solid tumors, therapeutic targets specific to HDAC3 function represent a promising option for differentiation therapy in malignant tumors with dysregulated HDAC3 activity. PMID:27956629
Phelps, Michael P; Bailey, Jenna N; Vleeshouwer-Neumann, Terra; Chen, Eleanor Y
2016-12-27
Dysregulated gene expression resulting from abnormal epigenetic alterations including histone acetylation and deacetylation has been demonstrated to play an important role in driving tumor growth and progression. However, the mechanisms by which specific histone deacetylases (HDACs) regulate differentiation in solid tumors remains unclear. Using pediatric rhabdomyosarcoma (RMS) as a paradigm to elucidate the mechanism blocking differentiation in solid tumors, we identified HDAC3 as a major suppressor of myogenic differentiation from a high-efficiency Clustered regularly interspaced short palindromic repeats (CRISPR)-based phenotypic screen of class I and II HDAC genes. Detailed characterization of the HDAC3-knockout phenotype in vitro and in vivo using a tamoxifen-inducible CRISPR targeting strategy demonstrated that HDAC3 deacetylase activity and the formation of a functional complex with nuclear receptor corepressors (NCORs) were critical in restricting differentiation in RMS. The NCOR/HDAC3 complex specifically functions by blocking myoblast determination protein 1 (MYOD1)-mediated activation of myogenic differentiation. Interestingly, there was also a transient up-regulation of growth-promoting genes upon initial HDAC3 targeting, revealing a unique cancer-specific response to the forced transition from a neoplastic state to terminal differentiation. Our study applied modifications of CRISPR/CRISPR-associated endonuclease 9 (Cas9) technology to interrogate the function of essential cancer genes and pathways and has provided insights into cancer cell adaptation in response to altered differentiation status. Because current pan-HDAC inhibitors have shown disappointing results in clinical trials of solid tumors, therapeutic targets specific to HDAC3 function represent a promising option for differentiation therapy in malignant tumors with dysregulated HDAC3 activity.
31 CFR 598.403 - Termination and acquisition of an interest in blocked property.
Code of Federal Regulations, 2013 CFR
2013-07-01
... interest in blocked property. 598.403 Section 598.403 Money and Finance: Treasury Regulations Relating to... NARCOTICS KINGPIN SANCTIONS REGULATIONS Interpretations § 598.403 Termination and acquisition of an interest... blocked pursuant to § 598.202. (b) Unless otherwise specifically provided in a license issued pursuant to...
31 CFR 598.403 - Termination and acquisition of an interest in blocked property.
Code of Federal Regulations, 2014 CFR
2014-07-01
... interest in blocked property. 598.403 Section 598.403 Money and Finance: Treasury Regulations Relating to... NARCOTICS KINGPIN SANCTIONS REGULATIONS Interpretations § 598.403 Termination and acquisition of an interest... blocked pursuant to § 598.202. (b) Unless otherwise specifically provided in a license issued pursuant to...
31 CFR 598.403 - Termination and acquisition of an interest in blocked property.
Code of Federal Regulations, 2012 CFR
2012-07-01
... interest in blocked property. 598.403 Section 598.403 Money and Finance: Treasury Regulations Relating to... NARCOTICS KINGPIN SANCTIONS REGULATIONS Interpretations § 598.403 Termination and acquisition of an interest... blocked pursuant to § 598.202. (b) Unless otherwise specifically provided in a license issued pursuant to...
31 CFR 598.403 - Termination and acquisition of an interest in blocked property.
Code of Federal Regulations, 2010 CFR
2010-07-01
... interest in blocked property. 598.403 Section 598.403 Money and Finance: Treasury Regulations Relating to... NARCOTICS KINGPIN SANCTIONS REGULATIONS Interpretations § 598.403 Termination and acquisition of an interest... blocked pursuant to § 598.202. (b) Unless otherwise specifically provided in a license issued pursuant to...
31 CFR 598.403 - Termination and acquisition of an interest in blocked property.
Code of Federal Regulations, 2011 CFR
2011-07-01
... interest in blocked property. 598.403 Section 598.403 Money and Finance: Treasury Regulations Relating to... NARCOTICS KINGPIN SANCTIONS REGULATIONS Interpretations § 598.403 Termination and acquisition of an interest... blocked pursuant to § 598.202. (b) Unless otherwise specifically provided in a license issued pursuant to...
Polythiophene-block-poly(γ-benzyl L-glutamate): Synthesis and study of a new rod-rod block copolymer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Zong-Quan; Ono, Robert J.; Chen, Zheng
2011-01-01
Coupling of ethynyl terminated poly(3-hexylthiophene) with azide terminated poly(γ-benzyl L-glutamate) afforded the respective block copolymer in good yield and high purity; this material was found to self assemble into hierarchal structures in solution and in the solid state.
78 FR 56601 - Airworthiness Directives; Fokker Services B.V. Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-13
... torque values of nuts on circuit breakers, contactors, and terminal blocks of the EPC and battery relay... blocks of the EPC and battery relay panel, as applicable; and do all applicable adjustments of the torque... contacts and nuts on circuit breakers, contactors, and terminal blocks of the EPC and battery relay panel...
Kruppel-like factor 5 is Required for Formation and Differentiation of the Bladder Urothelium
Bell, Sheila. M.; Zhang, Liqian; Mendell, Angela; Xu, Yan; Haitchi, Hans Michael; Lessard, James L.; Whitsett, Jeffrey A.
2011-01-01
SUMMARY Kruppel-like transcription factor 5 (Klf5) was detected in the developing and mature murine bladder urothelium. Herein we report a critical role of KLF5 in the formation and terminal differentiation of the urothelium. The ShhGfpCre transgene was used to delete the Klf5floxed alleles from bladder epithelial cells causing prenatal hydronephrosis, hydroureter, and vesicoureteric reflux. The bladder urothelium failed to stratify and did not express terminal differentiation markers characteristic of basal, intermediate, and umbrella cells including keratins 20, 14, and 5, and the uroplakins. The effects of Klf5 deletion were unique to the developing bladder epithelium since maturation of the epithelium comprising the bladder neck and urethra were unaffected by the lack of KLF5. mRNA analysis identified reductions in Pparγ, Grhl3, Elf3, and Ovol1expression in Klf5 deficient fetal bladders supporting their participation in a transcriptional network regulating bladder urothelial differentiation. KLF5 regulated expression of the mGrhl3 promoter in transient transfection assays. The absence of urothelial Klf5 altered epithelial-mesenchymal signaling leading to the formation of an ectopic alpha smooth muscle actin positive layer of cells subjacent to the epithelium and a thinner detrusor muscle that was not attributable to disruption of SHH signaling, a known mediator of detrusor morphogenesis. Deletion of Klf5 from the developing bladder urothelium blocked epithelial cell differentiation, impaired bladder morphogenesis and function causing hydroureter and hydronephrosis at birth. PMID:21803035
Imide/arylene ether copolymers
NASA Technical Reports Server (NTRS)
Jensen, Brian J. (Inventor); Hergenrother, Paul M. (Inventor); Bass, Robert G. (Inventor)
1992-01-01
Imide/arylene ether block copolymers are prepared by reacting anhydride terminated poly(amic acids) with amine terminated poly(arylene ethers) in polar aprotic solvents and by chemically or thermally cyclodehydrating the resulting intermediate poly(amic acids). The resulting block copolymers have one glass transition temperature or two, depending upon the particular structure and/or the compatibility of the block units. Most of these block copolymers form tough, solvent resistant films with high tensile properties.
Revisiting the differentiation paradigm in acute promyelocytic leukemia.
Ablain, Julien; de The, Hugues
2011-06-02
As the result of intense clinical and basic research, acute promyelocytic leukemia (APL) has progressively evolved from a deadly to a curable disease. Historically, efforts aimed at understanding the molecular bases for therapy response have repeatedly illuminated APL pathogenesis. The classic model attributes this therapeutic success to the transcriptional reactivation elicited by retinoic acid and the resulting overcoming of the differentiation block characteristic of APL blasts. However, in clinical practice, retinoic acid by itself only rarely yields prolonged remissions, even though it induces massive differentiation. In contrast, as a single agent, arsenic trioxide neither directly activates transcription nor triggers terminal differentiation ex vivo, but cures many patients. Here we review the evidence from recent ex vivo and in vivo studies that allow a reassessment of the role of differentiation in APL cure. We discuss alternative models in which PML-RARA degradation and the subsequent loss of APL cell self-renewal play central roles. Rather than therapy aimed at inducing differentiation, targeting cancer cell self-renewal may represent a more effective goal, achievable by a broader range of therapeutic agents.
Akamizu, T; Kohn, L D; Hiratani, H; Saijo, M; Tahara, K; Nakao, K
2000-06-01
Blocking-type TSH-binding inhibitor Igs (TBIIs) are known to cause hypothyroidism and an atrophic thyroid gland in patients with primary myxedema. They can block the activity of thyroid-stimulating antibodies (TSAbs) in Graves' patients as well as the activity of TSH. The majority of the epitopes for these blocking-type TBIIs have been, and are shown herein, to be present on the C-terminal region of the extracellular domain of the human TSH receptor (TSHR), whereas those for Graves' TSAbs are on the N-terminus. We report on a patient with Hashimoto's thyroiditis who suffered from mild hypothyroidism and a moderately sized goiter. Her serum had a potent blocking-type TBII and a weak TSAb in human and porcine TSHR systems. Using human TSHR/lutropin-CG receptor chimeras, we determined that the functional epitope of her blocking-type TBII was uniquely present on the N-terminal, rather than the C-terminal, region of the extracellular domain of the TSHR, unlike the case for blocking-type TBIIs in primary myxedema patients. The epitope of her TSAb was also unusual. Although the functional epitopes of most TSAbs are known to involve the N-terminal region of the receptor, her TSAb epitope did not seem to be present solely on the N- or C-terminus of the extracellular domain of the receptor. Blocking-type TBIIs from patients with primary myxedema blocked her TSAb activity as well as stimulation by TSH; her blocking-type TBII was able to only partially block her TSAb. In contrast, her blocking-type TBII almost completely blocked TSAbs from Graves' patients. Thus, we suggest that the unique epitopes of this patient's heterogeneous population of TSH receptor antibodies, at least in part, contribute to regulation of her thyroid function.
Hosogane, Naobumi; Huang, Zhiping; Rawlins, Bernard A.; Liu, Xia; Boachie-Adjei, Oheneba; Boskey, Adele L.; Zhu, Wei
2010-01-01
Stromal derived factor-1 (SDF-1) is a chemokine signaling molecule that binds to its transmembrane receptor CXC chemokine receptor-4 (CXCR4). While we previously detected that SDF-1 was co-required with bone morphogenetic protein 2 (BMP2) for differentiating mesenchymal C2C12 cells into osteoblastic cells, it is unknown whether SDF-1 is similarly involved in the osteogenic differentiation of mesenchymal stem cells (MSCs). Therefore, here we examined the role of SDF-1 signaling during BMP2-induced osteogenic differentiation of primary MSCs that were derived from human and mouse bone marrow. Our data showed that blocking of the SDF-1/CXCR4 signal axis or adding SDF-1 protein to MSCs significantly affected BMP2-induced alkaline phosphatase (ALP) activity and osteocalcin (OCN) synthesis, markers of preosteoblasts and mature osteoblasts, respectively. Moreover, disrupting the SDF-1 signaling impaired bone nodule mineralization during terminal differentiation of MSCs. Furthermore, we detected that blocking of the SDF-1 signaling inhibited the BMP2-induced early expression of Runt-related factor-2 (Runx2) and osterix (Osx), two “master” regulators of osteogenesis, and the SDF-1 effect was mediated via intracellular Smad and Erk activation. In conclusion, our results demonstrated a regulatory role of SDF-1 in BMP2-induced osteogenic differentiation of MSCs, as perturbing the SDF-1 signaling affected the differentiation of MSCs towards osteoblastic cells in response to BMP2 stimulation. These data provide novel insights into molecular mechanisms underlying MSC osteogenesis, and will contribute to the development of MSC therapies for enhancing bone formation and regeneration in broad orthopaedic situations. PMID:20362069
Electrocardiographic characteristics of atrioventricular block induced by tilt testing.
Zyśko, Dorota; Gajek, Jacek; Koźluk, Edward; Mazurek, Walentyna
2009-02-01
The electrocardiographic (ECG) characteristics of atrioventricular (AV) block during reflex syncope may be unique due to the presence of hypervagotonia. The aim of the present study was to define the ECG characteristics of the AV block induced by neurocardiogenic reflex provoked by tilt testing (TT). A series of 31 patients with presumed vasovagal syncope and AV block provoked by TT was studied. The duration of PP and PR interval, AV block grade and type, concomitant arrhythmias, and timing of the AV block occurrence were assessed. The AV block occurred at TT termination in 26 patients, in the recovery in 4 patients, and in both periods in 1 patient. Atrioventricular block was preceded by sinus slowing, and sinus rhythm during AV block was slow and instable. Mobitz I, 2:1 second-degree AV block, and advanced second-degree AV block were recognized in 35.5, 48.4, and 67.8% of patients, respectively. Third-degree AV block was diagnosed in 41.9% of patients. Twenty-one patients had at least two AV block forms. The most prevalent concomitant arrhythmia was junctional escape rhythm (61.3%). (i) The occurrence of the AV block during neurocardiogenic reaction induced by TT is always preceded by sinus rhythm slowing and usually by PR interval prolongation. (ii) The AV block provoked by TT usually occurs at TT termination, but may occur even in the recovery period in a supine position. Sometimes the AV block may be present both at TT termination and during the recovery period.
Crystalline imide/arylene ether copolymers
NASA Technical Reports Server (NTRS)
Jensen, Brian J. (Inventor); Hergenrother, Paul M. (Inventor); Bass, Robert G. (Inventor)
1995-01-01
Crystalline imide/arylene ether block copolymers are prepared by reacting anhydride terminated poly(amic acids) with amine terminated poly)arylene ethers) in polar aprotic solvents and chemically or thermally cyclodehydrating the resulting intermediate poly(amic acids). The block copolymers of the invention have one glass transition temperature or two, depending on the particular structure and/or the compatibility of the block units. Most of these crystalline block copolymers for tough, solvent resistant films with high tensile properties. While all of the copolymers produced by the present invention are crystalline, testing reveals that copolymers with longer imide blocks or higher imide content have increased crystallinity.
Method of making high breakdown voltage semiconductor device
Arthur, Stephen D.; Temple, Victor A. K.
1990-01-01
A semiconductor device having at least one P-N junction and a multiple-zone junction termination extension (JTE) region which uniformly merges with the reverse blocking junction is disclosed. The blocking junction is graded into multiple zones of lower concentration dopant adjacent termination to facilitate merging of the JTE to the blocking junction and placing of the JTE at or near the high field point of the blocking junction. Preferably, the JTE region substantially overlaps the graded blocking junction region. A novel device fabrication method is also provided which eliminates the prior art step of separately diffusing the JTE region.
Welliver, Mark; McDonough, John; Kalynych, Nicholas; Redfern, Robert
2008-01-01
Neuromuscular blockade, induced by neuromuscular blocking agents, has allowed prescribed immobility, improved surgical exposure, optimal airway management conditions, and facilitated mechanical ventilation. However, termination of the effects of neuromuscular blocking agents has, until now, remained limited. A novel cyclodextrin encapsulation process offers improved termination of the paralytic effects of aminosteroidal non-depolarizing neuromuscular blocking agents. Sugammadex sodium is the first in a new class of drug called selective relaxant binding agents. Currently, in clinical trials, sugammadex, a modified gamma cyclodextrin, has shown consistent and rapid termination of neuromuscular blockade with few side effects. The pharmacology of cyclodextrins in general and sugammadex in particular, together with the results of current clinical research are reviewed. The ability of sugammadex to terminate the action of neuromuscular blocking agents by direct encapsulation is compared to the indirect competitive antagonism of their effects by cholinesterase inhibitors. Also discussed are the clinical implications that extend beyond fast, effective reversal, including numerous potential perioperative benefits. PMID:19920893
Enzymatic Continuous Flow Synthesis of Thiol-Terminated Poly(δ-Valerolactone) and Block Copolymers.
Zhu, Ning; Huang, Weijun; Hu, Xin; Liu, Yihuan; Fang, Zheng; Guo, Kai
2018-04-01
Thiol-terminated poly(δ-valerolactone) is directly synthesized via enzymatic 6-mercapto-1-hexanol initiated ring-opening polymerization in both batch and microreactor. By using Candida antartica Lipase B immobilized tubular reactor, narrowly dispersed poly(δ-valerolactone) with higher thiol fidelity is more efficiently prepared in contrast to the batch reactor. Moreover, the integrated enzyme packed tubular reactor system is established to perform the chain extension experiments. Thiol-terminated poly(δ-valerolactone)-block-poly(ε-caprolactone) and poly(ε-caprolactone)-block-poly(δ-valerolactone) are easily prepared by modulating the monomer introduction sequence. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Differences in Cell Division Rates Drive the Evolution of Terminal Differentiation in Microbes
Matias Rodrigues, João F.; Rankin, Daniel J.; Rossetti, Valentina; Wagner, Andreas; Bagheri, Homayoun C.
2012-01-01
Multicellular differentiated organisms are composed of cells that begin by developing from a single pluripotent germ cell. In many organisms, a proportion of cells differentiate into specialized somatic cells. Whether these cells lose their pluripotency or are able to reverse their differentiated state has important consequences. Reversibly differentiated cells can potentially regenerate parts of an organism and allow reproduction through fragmentation. In many organisms, however, somatic differentiation is terminal, thereby restricting the developmental paths to reproduction. The reason why terminal differentiation is a common developmental strategy remains unexplored. To understand the conditions that affect the evolution of terminal versus reversible differentiation, we developed a computational model inspired by differentiating cyanobacteria. We simulated the evolution of a population of two cell types –nitrogen fixing or photosynthetic– that exchange resources. The traits that control differentiation rates between cell types are allowed to evolve in the model. Although the topology of cell interactions and differentiation costs play a role in the evolution of terminal and reversible differentiation, the most important factor is the difference in division rates between cell types. Faster dividing cells always evolve to become the germ line. Our results explain why most multicellular differentiated cyanobacteria have terminally differentiated cells, while some have reversibly differentiated cells. We further observed that symbioses involving two cooperating lineages can evolve under conditions where aggregate size, connectivity, and differentiation costs are high. This may explain why plants engage in symbiotic interactions with diazotrophic bacteria. PMID:22511858
Island, Marie-Laure; Mesplede, Thibault; Darracq, Nicole; Bandu, Marie-Thérèse; Christeff, Nicolas; Djian, Philippe; Drouin, Jacques; Navarro, Sébastien
2002-01-01
Interferon A (IFN-A) genes are differentially expressed after virus induction. The differential expression of individual IFN-A genes is modulated by the specific transcription activators IFN regulatory factor 3 (IRF3) and IRF-7 and the homeoprotein transcription repressor Pitx1. We now show that repression by Pitx1 does not appear to be due to the recruitment of histone deacetylases. On the other hand, Pitx1 inhibits the IRF3 and IRF7 transcriptional activity of the IFN-A11 and IFN-A5 promoters and interacts physically with IRF3 and IRF7. Pitx1 trans-repression activity maps to specific C-terminal domains, and the Pitx1 homeodomain is involved in physical interaction with IRF3 or IRF7. IRF3 is able to bind to the antisilencer region of the IFN-A4 promoter, which overrides the repressive activity of Pitx1. These results indicate that interaction between the Pitx1 homeodomain and IRF3 or IRF7 and the ability of the Pitx1 C-terminal repressor domains to block IFN-A11 and IFN-A5 but not IFN-A4 promoter activities may contribute to our understanding of the complex differential transcriptional activation, repression, and antirepression of the IFN-A genes. PMID:12242290
77 FR 16486 - Airworthiness Directives; Fokker Services B.V. Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-21
... values of nuts on circuit breakers, contactors and terminal blocks of the EPC and battery relay panel... battery relay panel]. The required actions include doing a general visual inspection to determine if... and circuit breakers, contactors, and terminal blocks of the EPC and battery relay panel, as...
Targeted Disruption of the Basic Krüppel-Like Factor Gene (Klf3) Reveals a Role in Adipogenesis ▿ †
Sue, Nancy; Jack, Briony H. A.; Eaton, Sally A.; Pearson, Richard C. M.; Funnell, Alister P. W.; Turner, Jeremy; Czolij, Robert; Denyer, Gareth; Bao, Shisan; Molero-Navajas, Juan Carlos; Perkins, Andrew; Fujiwara, Yuko; Orkin, Stuart H.; Bell-Anderson, Kim; Crossley, Merlin
2008-01-01
Krüppel-like factors (KLFs) recognize CACCC and GC-rich sequences in gene regulatory elements. Here, we describe the disruption of the murine basic Krüppel-like factor gene (Bklf or Klf3). Klf3 knockout mice have less white adipose tissue, and their fat pads contain smaller and fewer cells. Adipocyte differentiation is altered in murine embryonic fibroblasts from Klf3 knockouts. Klf3 expression was studied in the 3T3-L1 cellular system. Adipocyte differentiation is accompanied by a decline in Klf3 expression, and forced overexpression of Klf3 blocks 3T3-L1 differentiation. Klf3 represses transcription by recruiting C-terminal binding protein (CtBP) corepressors. CtBPs bind NADH and may function as metabolic sensors. A Klf3 mutant that does not bind CtBP cannot block adipogenesis. Other KLFs, Klf2, Klf5, and Klf15, also regulate adipogenesis, and functional CACCC elements occur in key adipogenic genes, including in the C/ebpα promoter. We find that C/ebpα is derepressed in Klf3 and Ctbp knockout fibroblasts and adipocytes from Klf3 knockout mice. Chromatin immunoprecipitations confirm that Klf3 binds the C/ebpα promoter in vivo. These results implicate Klf3 and CtBP in controlling adipogenesis. PMID:18391014
31 CFR 595.403 - Termination and acquisition of an interest in blocked property.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Termination and acquisition of an interest in blocked property. 595.403 Section 595.403 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY TERRORISM...
31 CFR 594.404 - Termination and acquisition of an interest in blocked property.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false Termination and acquisition of an interest in blocked property. 594.404 Section 594.404 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY GLOBAL...
31 CFR 594.404 - Termination and acquisition of an interest in blocked property.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Termination and acquisition of an interest in blocked property. 594.404 Section 594.404 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY GLOBAL...
31 CFR 546.403 - Termination and acquisition of an interest in blocked property.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Termination and acquisition of an interest in blocked property. 546.403 Section 546.403 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY DARFUR...
31 CFR 537.403 - Termination and acquisition of an interest in blocked property.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Termination and acquisition of an interest in blocked property. 537.403 Section 537.403 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY BURMESE...
31 CFR 551.403 - Termination and acquisition of an interest in blocked property.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Termination and acquisition of an interest in blocked property. 551.403 Section 551.403 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY SOMALIA...
31 CFR 510.403 - Termination and acquisition of an interest in blocked property.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false Termination and acquisition of an interest in blocked property. 510.403 Section 510.403 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY NORTH KOREA...
Chen, B; Han, B H; Sun, X H; Lim, R W
1997-01-15
We have examined the role of an Id-like protein, Id3 (also known as HLH462), in the regulation of muscle-specific gene expression. Id proteins are believed to block expression of muscle-specific genes by preventing the dimerization between ubiquitous bHLH proteins (E proteins) and myogenic bHLH proteins such as MyoD. Consistent with its putative role as an inhibitor of differentiation, Id3 mRNA was detected in proliferating skeletal muscle cells, was further induced by basic fibroblast growth factor (bFGF) and was down-regulated in differentiated muscle cultures. Overexpression of Id3 efficiently inhibited the MyoD-mediated activation of the muscle-specific creatine kinase (MCK) reporter gene. Deletion analysis indicated that the C-terminal 15 amino acids of Id3 are critical for the full inhibitory activity while deleting up to 42 residues from the C-terminus of the related protein, Id2, did not affect its ability to inhibit the MCK reporter gene. Chimeric protein containing the N-terminal region of Id3 and the C-terminus of Id2 was also non-functional in transfected cells. In contrast, wild-type Id3, the C-terminal mutants, and the Id3/Id2 chimera could all interact with the E-protein E47in vitro. Additional studies indicated that truncation of the Id3 C-terminus might have adversely affected the expression level of the mutant proteins but the Id3/Id2 chimera was stably expressed. Taken together, our results revealed a more complex requirement for the expression and proper function of the Id family proteins than was hitherto expected.
Chen, B; Han, B H; Sun, X H; Lim, R W
1997-01-01
We have examined the role of an Id-like protein, Id3 (also known as HLH462), in the regulation of muscle-specific gene expression. Id proteins are believed to block expression of muscle-specific genes by preventing the dimerization between ubiquitous bHLH proteins (E proteins) and myogenic bHLH proteins such as MyoD. Consistent with its putative role as an inhibitor of differentiation, Id3 mRNA was detected in proliferating skeletal muscle cells, was further induced by basic fibroblast growth factor (bFGF) and was down-regulated in differentiated muscle cultures. Overexpression of Id3 efficiently inhibited the MyoD-mediated activation of the muscle-specific creatine kinase (MCK) reporter gene. Deletion analysis indicated that the C-terminal 15 amino acids of Id3 are critical for the full inhibitory activity while deleting up to 42 residues from the C-terminus of the related protein, Id2, did not affect its ability to inhibit the MCK reporter gene. Chimeric protein containing the N-terminal region of Id3 and the C-terminus of Id2 was also non-functional in transfected cells. In contrast, wild-type Id3, the C-terminal mutants, and the Id3/Id2 chimera could all interact with the E-protein E47in vitro. Additional studies indicated that truncation of the Id3 C-terminus might have adversely affected the expression level of the mutant proteins but the Id3/Id2 chimera was stably expressed. Taken together, our results revealed a more complex requirement for the expression and proper function of the Id family proteins than was hitherto expected. PMID:9016574
Lee, So-Youn; Auh, Q-Schick; Kang, Soo-Kyung; Kim, Hyung-Joon; Lee, Jung-Woo; Noh, Kwantae; Jang, Jun-Hyeog; Kim, Eun-Cheol
2014-07-01
The aim of this study is to determine the effects of the combination of recombinant human BMP-2 (rh-BMP-2) and dentin sialoprotein (rh-DSP) on growth and differentiation in human cementoblasts and determine the underlying signal transduction mechanism. Compared to treatment of cementoblasts with either rh-BMP-2 or rh-DSP alone, the combination of rh-BMP-2 and rh-DSP synergistically increased cell growth, ALP activity, nodule formation and expression of differentiation markers. The differentiation-promoting effect was also observed in periodontal ligament cells and an osteoblastic cell line. Likewise, combination of rh-DSP and rh-BMP-2 increased BMP-2 mRNA expression and Smad1/5/8 phosphorylation, which was blocked by the BMP antagonist noggin. The expression levels of α2β1 integrin and RhoA, as well as the phosphorylation status of FAK and Akt, were increased by the combination of rh-BMP-2 and rh-DSP in a time-dependent manner. In addition, rh-BMP-2 and rh-DSP enhanced expression of Wnt ligands, β-catenin activation and GSK-3β phosphorylation, all of which were inhibited by the Wnt receptor antagonist DKK1. Furthermore, treatment with rh-DSP plus rh-BMP-2 resulted in phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 and also induced the nuclear translocation of the NF-κB p65 subunit, which was blocked by noggin. This study demonstrates for the first time that rh-DSP and rh-BMP-2 act synergistically, enhancing each other's ability to stimulate cementoblastic cell growth and differentiation in vitro via autocrine BMP, integrin, Wnt/β-catenin, MAP kinase and NF-κB pathways. These results support the therapeutic potential of a combination strategy for aiding periodontal regeneration.
Dissipation, Voltage Profile and Levy Dragon in a Special Ladder Network
ERIC Educational Resources Information Center
Ucak, C.
2009-01-01
A ladder network constructed by an elementary two-terminal network consisting of a parallel resistor-inductor block in series with a parallel resistor-capacitor block sometimes is said to have a non-dispersive dissipative response. This special ladder network is created iteratively by replacing the elementary two-terminal network in place of the…
Chain, Benjamin M; Noursadeghi, Mahdad; Gardener, Michelle; Tsang, Jhen; Wright, Edward
2008-10-23
The chemokine receptor CCR5 is required for cellular entry by many strains of HIV, and provides a potential target for molecules, including antibodies, designed to block HIV transmission. This study investigates a novel approach to stimulate antibodies to CCR5. Rabbits were immunised with chimaeric peptides which encode a short fragment of the N-terminal sequence of CCR5, as well as an unrelated T cell epitope from Tetanus toxoid. Immunisation with these chimaeric peptides generates a strong antibody response which is highly focused on the N-terminal CCR5 sequence. The antibody to the chimaeric peptide containing an N-terminal methionine also recognises the full length CCR5 receptor on the cell surface, albeit at higher concentrations. Further comparison of binding to intact CCR5 with binding to CCR5 peptide suggest that the receptor specific antibody generated represents a very small fragment of the total anti-peptide antibody. These findings are consistent with the hypothesis that the N-terminal peptide in the context of the intact receptor has a different structure to that of the synthetic peptide. Finally, the antibody was able to block HIV infection of macrophages in vitro. Thus results of this study suggest that N-terminal fragments of CCR5 may provide potential immunogens with which to generate blocking antibodies to this receptor, while avoiding the dangers of including T cell auto-epitopes.
Chain, Benjamin M.; Noursadeghi, Mahdad; Gardener, Michelle; Tsang, Jhen; Wright, Edward
2008-01-01
The chemokine receptor CCR5 is required for cellular entry by many strains of HIV, and provides a potential target for molecules, including antibodies, designed to block HIV transmission. This study investigates a novel approach to stimulate antibodies to CCR5. Rabbits were immunised with chimaeric peptides which encode a short fragment of the N-terminal sequence of CCR5, as well as an unrelated T cell epitope from Tetanus toxoid. Immunisation with these chimaeric peptides generates a strong antibody response which is highly focused on the N-terminal CCR5 sequence. The antibody to the chimaeric peptide containing an N-terminal methionine also recognises the full length CCR5 receptor on the cell surface, albeit at higher concentrations. Further comparison of binding to intact CCR5 with binding to CCR5 peptide suggest that the receptor specific antibody generated represents a very small fragment of the total anti-peptide antibody. These findings are consistent with the hypothesis that the N-terminal peptide in the context of the intact receptor has a different structure to that of the synthetic peptide. Finally, the antibody was able to block HIV infection of macrophages in vitro. Thus results of this study suggest that N-terminal fragments of CCR5 may provide potential immunogens with which to generate blocking antibodies to this receptor, while avoiding the dangers of including T cell auto-epitopes. PMID:18765264
Randau, Thomas M; Schildberg, Frank A; Alini, Mauro; Wimmer, Matthias D; Haddouti, El-Mustapha; Gravius, Sascha; Ito, Keita; Stoddart, Martin J
2013-01-01
The newly evolved field of regenerative medicine is offering solutions in the treatment of bone or cartilage loss and deficiency. Mesenchymal stem cells, as well as articular chondrocytes, are potential cells for the generation of bone or cartilage. The natural mechanism of bone formation is that of endochondral ossification, regulated, among other factors, through the hormones dexamethasone and triiodothyronine. We investigated the effects of these hormones on articular chondrocytes and chondrogenically differentiated mesenchymal stem cells, hypothesizing that these hormones would induce terminal differentiation, with chondrocytes and differentiated stem cells being similar in their response. Using a 3D-alginate cell culture model, bovine chondrocytes and chondrogenically differentiated stem cells were cultured in presence of triiodothyronine or dexamethasone, and cell proliferation and extracellular matrix production were investigated. Collagen mRNA expression was measured by real-time PCR. Col X mRNA and alkaline phosphatase were monitored as markers of terminal differentiation, a prerequisite of endochondral ossification. The alginate culture system worked well, both for the culture of chondrocytes and for the chondrogenic differentiation of mesenchymal stem cells. Dexamethasone led to an increase in glycosaminoglycan production. Triiodothyronine increased the total collagen production only in chondrocytes, where it also induced signs of terminal differentiation, increasing both collagen X mRNA and alkaline phosphatase activity. Dexamethasone induced terminal differentiation in the differentiated stem cells. The immature articular chondrocytes used in this study seem to be able to undergo terminal differentiation, pointing to their possible role in the onset of degenerative osteoarthritis, as well as their potential for a cell source in bone tissue engineering. When chondrocyte-like cells, after their differentiation, can indeed be moved on towards terminal differentiation, they can be used to generate a model of endochondral ossification, but this limitation must be kept in mind when using them in cartilage tissue engineering application.
Localized cyclic AMP-dependent protein kinase activity is required for myogenic cell fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukai, Atsushi; Hashimoto, Naohiro
2008-01-15
Multinucleated myotubes are formed by fusion of mononucleated myogenic progenitor cells (myoblasts) during terminal skeletal muscle differentiation. In addition, myoblasts fuse with myotubes, but terminally differentiated myotubes have not been shown to fuse with each other. We show here that an adenylate cyclase activator, forskolin, and other reagents that elevate intracellular cyclic AMP (cAMP) levels induced cell fusion between small bipolar myotubes in vitro. Then an extra-large myotube, designated a 'myosheet,' was produced by both primary and established mouse myogenic cells. Myotube-to-myotube fusion always occurred between the leading edge of lamellipodia at the polar end of one myotube and themore » lateral plasma membrane of the other. Forskolin enhanced the formation of lamellipodia where cAMP-dependent protein kinase (PKA) was accumulated. Blocking enzymatic activity or anchoring of PKA suppressed forskolin-enhanced lamellipodium formation and prevented fusion of multinucleated myotubes. Localized PKA activity was also required for fusion of mononucleated myoblasts. The present results suggest that localized PKA plays a pivotal role in the early steps of myogenic cell fusion, such as cell-to-cell contact/recognition through lamellipodium formation. Furthermore, the localized cAMP-PKA pathway might be involved in the specification of the fusion-competent areas of the plasma membrane in lamellipodia of myogenic cells.« less
45 CFR 96.92 - Termination of funding.
Code of Federal Regulations, 2014 CFR
2014-10-01
... the Community Services Block Grant Act that it will terminate present or future funding of any... the record prior to terminating funding. If a review by the Secretary of the State's final decision to... of notification by the State of its final decision to terminate funding. The Department will confirm...
45 CFR 96.92 - Termination of funding.
Code of Federal Regulations, 2012 CFR
2012-10-01
... the Community Services Block Grant Act that it will terminate present or future funding of any... the record prior to terminating funding. If a review by the Secretary of the State's final decision to... of notification by the State of its final decision to terminate funding. The Department will confirm...
45 CFR 96.92 - Termination of funding.
Code of Federal Regulations, 2011 CFR
2011-10-01
... the Community Services Block Grant Act that it will terminate present or future funding of any... the record prior to terminating funding. If a review by the Secretary of the State's final decision to... of notification by the State of its final decision to terminate funding. The Department will confirm...
45 CFR 96.92 - Termination of funding.
Code of Federal Regulations, 2013 CFR
2013-10-01
... the Community Services Block Grant Act that it will terminate present or future funding of any... the record prior to terminating funding. If a review by the Secretary of the State's final decision to... of notification by the State of its final decision to terminate funding. The Department will confirm...
MARINE BOTTOM COMMUNITIES OF BLOCK ISLAND WATERS
The sea has long been an integral part of Block Island's natural history, beginning when the rising sea surrounded the high spot on a Pleistocene terminal moraine that became Block Island. The southern New England continental shelf, which lies around Block Island, and the Great S...
Estefanía, Monturus Ma; Ganier, Olivier; Hernández, Pablo; Schvartzman, Jorge B; Mechali, Marcel; Krimer, Dora B
2012-01-01
Terminal differentiation is the process by which cycling cells stop proliferating to start new specific functions. It involves dramatic changes in chromatin organization as well as gene expression. In the present report we used cell flow cytometry and genome wide DNA combing to investigate DNA replication during murine erythroleukemia-induced terminal cell differentiation. The results obtained indicated that the rate of replication fork movement slows down and the inter-origin distance becomes shorter during the precommitment and commitment periods before cells stop proliferating and accumulate in G1. We propose this is a general feature caused by the progressive heterochromatinization that characterizes terminal cell differentiation.
Cellular mechanisms of desynchronizing effects of hypothermia in an in vitro epilepsy model.
Motamedi, Gholam K; Gonzalez-Sulser, Alfredo; Dzakpasu, Rhonda; Vicini, Stefano
2012-01-01
Hypothermia can terminate epileptiform discharges in vitro and in vivo epilepsy models. Hypothermia is becoming a standard treatment for brain injury in infants with perinatal hypoxic ischemic encephalopathy, and it is gaining ground as a potential treatment in patients with drug resistant epilepsy. However, the exact mechanism of action of cooling the brain tissue is unclear. We have studied the 4-aminopyridine model of epilepsy in mice using single- and dual-patch clamp and perforated multi-electrode array recordings from the hippocampus and cortex. Cooling consistently terminated 4-aminopyridine induced epileptiform-like discharges in hippocampal neurons and increased input resistance that was not mimicked by transient receptor potential channel antagonists. Dual-patch clamp recordings showed significant synchrony between distant CA1 and CA3 pyramidal neurons, but less so between the pyramidal neurons and interneurons. In CA1 and CA3 neurons, hypothermia blocked rhythmic action potential discharges and disrupted their synchrony; however, in interneurons, hypothermia blocked rhythmic discharges without abolishing action potentials. In parallel, multi-electrode array recordings showed that synchronized discharges were disrupted by hypothermia, whereas multi-unit activity was unaffected. The differential effect of cooling on transmitting or secreting γ-aminobutyric acid interneurons might disrupt normal network synchrony, aborting the epileptiform discharges. Moreover, the persistence of action potential firing in interneurons would have additional antiepileptic effects through tonic γ-aminobutyric acid release.
Localized Optogenetic Targeting of Rotors in Atrial Cardiomyocyte Monolayers.
Feola, Iolanda; Volkers, Linda; Majumder, Rupamanjari; Teplenin, Alexander; Schalij, Martin J; Panfilov, Alexander V; de Vries, Antoine A F; Pijnappels, Daniël A
2017-11-01
Recently, a new ablation strategy for atrial fibrillation has emerged, which involves the identification of rotors (ie, local drivers) followed by the localized targeting of their core region by ablation. However, this concept has been subject to debate because the mode of arrhythmia termination remains poorly understood, as dedicated models and research tools are lacking. We took a unique optogenetic approach to induce and locally target a rotor in atrial monolayers. Neonatal rat atrial cardiomyocyte monolayers expressing a depolarizing light-gated ion channel (Ca 2+ -translocating channelrhodopsin) were subjected to patterned illumination to induce single, stable, and centralized rotors by optical S1-S2 cross-field stimulation. Next, the core region of these rotors was specifically and precisely targeted by light to induce local conduction blocks of circular or linear shapes. Conduction blocks crossing the core region, but not reaching any unexcitable boundary, did not lead to termination. Instead, electric waves started to propagate along the circumference of block, thereby maintaining reentrant activity, although of lower frequency. If, however, core-spanning lines of block reached at least 1 unexcitable boundary, reentrant activity was consistently terminated by wave collision. Lines of block away from the core region resulted merely in rotor destabilization (ie, drifting). Localized optogenetic targeting of rotors in atrial monolayers could lead to both stabilization and destabilization of reentrant activity. For termination, however, a line of block is required reaching from the core region to at least 1 unexcitable boundary. These findings may improve our understanding of the mechanisms involved in rotor-guided ablation. © 2017 American Heart Association, Inc.
Kapusuz, Ozlem; Argun, Guldeniz; Arikan, Murat; Toğral, Guray; Basarir, Aysun; Kadiogullari, Nihal
2014-01-01
Aim. Comparing the effectivity of prilocaine and prilocaine alkalinized with 8.4% NaHCO3 in terms of sensory and motor block onset and termination durations in RIVA technique considering patients' satisfaction and tolerance with application of tourniquet undergoing hand-wrist surgery. Materials and Methods. 64 patients were randomised into two groups. First group (Group P) was administered prilocaine and second group (Group PN) was administered prilocaine + %8.4 NaHCO3. Sensory and motor block onset and termination times and onset of tourniquet pain were recorded. Results. No significant difference was found between the two groups in terms of onset and termination of sensory block and the onset of motor block. The duration of the motor block was longer in Group PN than in Group P (P < 0.05). Tourniquet pain was more intense in Group P (P = 0.036). In Group PN, the use of additional drugs was recorded at a lower rate and patients' satisfaction was higher than Group P. Conclusion. In the present study, it was established that alkalinization of prilocaine had no effect on the duration of sensory block and it prolonged the duration of motor block, increased patients' satisfaction, and decreased tourniquet pain. It is our suggestion that future studies should be carried out on the issue by using different volumes. PMID:25133177
Rose, K; Kocher, H P; Blumberg, B M; Kolakofsky, D
1984-01-01
A modification to a previously described procedure [Gray & del Valle (1970) Biochemistry 9, 2134-2137; Rose, Simona & Offord (1983) Biochem. J. 215, 261-272] for mass-spectral identification of the N-terminal regions of proteins is shown to be useful in cases where the N-terminus is blocked. Three proteins were studied: vesicular-stomatitis-virus N protein, Sendai-virus NP protein, and a rabbit immunoglobulin lambda-light chain. These proteins, found to be blocked at the N-terminus with either the acetyl group or a pyroglutamic acid residue, had all failed to yield to attempted Edman degradation, in one case even after attempted enzymic removal of the pyroglutamic acid residue. The N-terminal regions of all three proteins were sequenced by using the new procedure. PMID:6421284
A hanging drop culture method to study terminal erythroid differentiation.
Gutiérrez, Laura; Lindeboom, Fokke; Ferreira, Rita; Drissen, Roy; Grosveld, Frank; Whyatt, David; Philipsen, Sjaak
2005-10-01
To design a culture method allowing the quantitative and qualitative analysis of terminal erythroid differentiation. Primary erythroid progenitors derived either from mouse tissues or from human umbilical cord blood were differentiated using hanging drop cultures and compared to methylcellulose cultures. Cultured cells were analyzed by FACS to assess differentiation. We describe a practical culture method by adapting the previously described hanging drop culture system to conditions allowing terminal differentiation of primary erythroid progenitors. Using minimal volumes of media and small numbers of cells, we obtained quantitative terminal erythroid differentiation within two days of culture in the case of murine cells and 4 days in the case of human cells. The established methods for ex vivo culture of primary erythroid progenitors, such as methylcellulose-based burst-forming unit-erythroid (BFU-E) and colony-forming unit-erythroid (CFU-E) assays, allow the detection of committed erythroid progenitors but are of limited value to study terminal erythroid differentiation. We show that the application of hanging drop cultures is a practical alternative that, in combination with clonogenic assays, enables a comprehensive assessment of the behavior of primary erythroid cells ex vivo in the context of genetic and drug-induced perturbations.
Waki, Michinori; Ohno, Motonori; Kuwano, Michihiko; Sakata, Toshiie
1993-01-01
Platelet factor 4 (PF‐4) blocks the binding of basic fibroblast growth factor (bFGF) to its receptor. In the present study, we constructed carboxyl‐terminal fragments, which represent the heparin‐binding region of the PF‐4 molecule, and examined whether these synthetic peptides retain the blocking effects on the receptor binding of bFGF. Synthetic peptides inhibited the receptor binding of bFGF. Furthermore, they inhibited the migration and tube formation of bovine capillary endothelial cells in culture (these phenomena are dependent on endogenous bFGF). PMID:8320164
Reducing leakage current in semiconductor devices
Lu, Bin; Matioli, Elison de Nazareth; Palacios, Tomas Apostol
2018-03-06
A semiconductor device includes a first region having a first semiconductor material and a second region having a second semiconductor material. The second region is formed over the first region. The semiconductor device also includes a current blocking structure formed in the first region between first and second terminals of the semiconductor device. The current blocking structure is configured to reduce current flow in the first region between the first and second terminals.
Perinatal outcome in fetuses with heterotaxy syndrome and atrioventricular block or bradycardia.
Escobar-Diaz, Maria C; Tworetzky, Wayne; Friedman, Kevin; Lafranchi, Terra; Fynn-Thompson, Francis; Alexander, Mark E; Mah, Douglas Y
2014-08-01
Congenital atrioventricular (AV) block is commonly associated with heterotaxy syndrome; together they have reportedly low survival rates (10-25%). However, information about perinatal outcome and predictors of non-survival after prenatal diagnosis of this association is scarce. Therefore, we studied fetuses with heterotaxy syndrome and bradycardia or AV-block diagnosed between 1995 and 2011, and analyzed pre and post-natal variables. The primary outcome was death and the secondary outcome was pacemaker placement. Of the 154 fetuses with heterotaxy syndrome, 91 had polysplenia syndrome, 22/91(24%) with bradycardia or AV-block. Thirteen (59%) patients had sinus bradycardia at diagnosis, 8 (36%) complete AV block, and 1 (5%) second-degree AV-block. Three patients elected for termination of pregnancy (3/22, 14%), 4 had spontaneous fetal demise (4/22, 18%), and 15 (15/22, 68%) were live-born. Of the fetuses with bradycardia/AV-block, 30% presented with hydrops, 20% had ventricular rates <55 beats/min, and 10% had cardiac dysfunction. Excluding termination of pregnancy, 15/19 fetuses (79%) survived to birth. Among the 15 live-born patients, 4 had bradycardia and 11 had AV-block. A further 3 patients died in infancy, all with AV-block who required pacemakers in the neonatal period. Thus, the 1-year survival rate, excluding termination of pregnancy, was 63% (12/19). Of the remaining 12 patients, 9 required pacemaker. Predictors of perinatal death included hydrops (p < 0.0001), ventricular dysfunction (p = 0.002), prematurity (p = 0.04), and low ventricular rates (p = 0.04). In conclusion, we found a higher survival rate (63%) than previously published in patients with heterotaxy syndrome and AV block or bradycardia diagnosed prenatally. Hydrops, cardiac dysfunction, prematurity and low ventricular rates were predictors of death.
Perinatal Outcome in Fetuses with Heterotaxy Syndrome and Atrioventricular Block or Bradycardia
Tworetzky, Wayne; Friedman, Kevin; Lafranchi, Terra; Fynn-Thompson, Francis; Alexander, Mark E.; Mah, Douglas Y.
2015-01-01
Congenital atrioventricular (AV) block is commonly associated with heterotaxy syndrome; together they have reportedly low survival rates (10–25 %). However, information about perinatal outcome and predictors of nonsurvival after prenatal diagnosis of this association is scarce. Therefore, we studied fetuses with heterotaxy syndrome and bradycardia or AV-block diagnosed between 1995 and 2011, and analyzed pre and post-natal variables. The primary outcome was death and the secondary outcome was pacemaker placement. Of the 154 fetuses with heterotaxy syndrome, 91 had polysplenia syndrome, 22/91(24 %) with bradycardia or AV-block. Thirteen (59 %) patients had sinus bradycardia at diagnosis, 8 (36 %) complete AV block, and 1 (5 %) second-degree AV-block. Three patients elected for termination of pregnancy (3/22, 14 %), 4 had spontaneous fetal demise (4/22, 18 %), and 15 (15/22, 68 %) were live-born. Of the fetuses with bradycardia/AV-block, 30 % presented with hydrops, 20 % had ventricular rates <55 beats/min, and 10 % had cardiac dysfunction. Excluding termination of pregnancy, 15/19 fetuses (79 %) survived to birth. Among the 15 live-born patients, 4 had bradycardia and 11 had AV-block. A further 3 patients died in infancy, all with AV-block who required pacemakers in the neonatal period. Thus, the 1-year survival rate, excluding termination of pregnancy, was 63 % (12/19). Of the remaining 12 patients, 9 required pacemaker. Predictors of perinatal death included hydrops (p < 0.0001), ventricular dysfunction (p = 0.002), prematurity (p = 0.04), and low ventricular rates (p = 0.04). In conclusion, we found a higher survival rate (63 %) than previously published in patients with heterotaxy syndrome and AV block or bradycardia diagnosed prenatally. Hydrops, cardiac dysfunction, prematurity and low ventricular rates were predictors of death. PMID:24509635
Micheli, Laura; Ceccarelli, Manuela; Gioia, Roberta; D’Andrea, Giorgio; Farioli-Vecchioli, Stefano; Costanzi, Marco; Saraulli, Daniele; Cestari, Vincenzo; Tirone, Felice
2017-01-01
Cell proliferation and differentiation are interdependent processes. Here, we have asked to what extent the two processes of neural progenitor cell amplification and differentiation are functionally separated. Thus, we analyzed whether it is possible to rescue a defect of terminal differentiation in progenitor cells of the dentate gyrus, where new neurons are generated throughout life, by inducing their proliferation and/or their differentiation with different stimuli appropriately timed. As a model we used the Tis21 knockout mouse, whose dentate gyrus neurons, as demonstrated by us and others, have an intrinsic defect of terminal differentiation. We first tested the effect of two proliferative as well as differentiative neurogenic stimuli, one pharmacological (fluoxetine), the other cognitive (the Morris water maze (MWM) training). Both effectively enhanced the number of new dentate gyrus neurons produced, and fluoxetine also reduced the S-phase length of Tis21 knockout dentate gyrus progenitor cells and increased the rate of differentiation of control cells, but neither factor enhanced the defective rate of differentiation. In contrast, the defect of terminal differentiation was fully rescued by in vivo infection of proliferating dentate gyrus progenitor cells with retroviruses either silencing Id3, an inhibitor of neural differentiation, or expressing NeuroD2, a proneural gene expressed in terminally differentiated dentate gyrus neurons. This is the first demonstration that NeuroD2 or the silencing of Id3 can activate the differentiation of dentate gyrus neurons, complementing a defect of differentiation. It also highlights how the rate of differentiation of dentate gyrus neurons is regulated genetically at several levels and that a neurogenic stimulus for amplification of neural stem/progenitor cells may not be sufficient in itself to modify this rate. PMID:28740463
Galvin, Jason; Eyermann, Christopher; Colognato, Holly
2010-11-15
The adhesion receptor dystroglycan positively regulates terminal differentiation of oligodendrocytes, but the mechanism by which this occurs remains unclear. Using primary oligodendrocyte cultures, we identified and examined a connection between dystroglycan and the ability of insulin-like growth factor-1 (IGF-1) to promote oligodendrocyte differentiation. Consistent with previous reports, treatment with exogenous IGF-1 caused an increase in MBP protein that was preceded by activation of PI3K (AKT) and MAPK (ERK) signaling pathways. The extracellular matrix protein laminin was further shown to potentiate the effect of IGF-1 on oligodendrocyte differentiation. Depletion of the laminin receptor dystroglycan using siRNA, however, blocked the ability of IGF-1 to promote oligodendrocyte differentiation of cells grown on laminin, suggesting a role for dystroglycan in IGF-1-mediated differentiation. Indeed, loss of dystroglycan led to a reduction in the ability of IGF-1 to activate MAPK, but not PI3K, signaling pathways. Pharmacological inhibition of MAPK signaling also prevented IGF-1-induced increases in myelin basic protein (MBP), indicating that MAPK signaling was necessary to drive IGF-1-mediated enhancement of oligodendrocyte differentiation. Using immunoprecipitation, we found that dystroglycan, the adaptor protein Grb2, and insulin receptor substrate-1 (IRS-1), were associated in a protein complex. Taken together, our results suggest that the positive regulatory effect of laminin on oligodendrocyte differentiation may be attributed, at least in part, to dystroglycan's ability to promote IGF-1-induced differentiation.
Gerber, AN; Wilson, CW; Li, Y-J; Chuang, P-T
2012-01-01
The mechanism by which activation of the Hedgehog (Hh) pathway modulates differentiation and promotes oncogenesis in specific tissues is poorly understood. We therefore, analysed rhabdomyosarcomas from mice that were haploinsufficient for the Hh-binding protein, Hip1, or for the Hh receptor, Patched 1 (Ptch1). Transfection of the Hh-regulated transcription factor Gli1, which is expressed in a subset of mouse and human rhabdomyosarcomas, suppressed differentiation of myogenic rhabdomyosarcoma lines generated from Hip1+/− and Ptch1+/− mice. The closely related factor, Gli2, had similar effects. Gli1 and Gli2 inhibited myogenesis by repressing the capacity of MyoD to activate transcription. Deletion analysis of Gli1 indicated that multiple domains of Gli1 are required for efficient inhibition of MyoD. Gli1 reduced the ability of MyoD to heterodimerize with E12 and bind DNA, providing one mechanism whereby the Gli proteins modulate the activity of MyoD. This novel activity of Gli proteins provides new insights into how Hh signaling modulates terminal differentiation through inhibition of tissue-specific factors such as MyoD. This mechanism may contribute to the broad role of Hh signaling and the Gli proteins in differentiation decisions and cancer formation. PMID:16964293
Haverkate, Liz; Smit, Gerwin; Plettenburg, Dick H
2016-02-01
The functional performance of currently available body-powered prostheses is unknown. The goal of this study was to objectively assess and compare the functional performance of three commonly used body-powered upper limb terminal devices. Experimental trial. A total of 21 able-bodied subjects (n = 21, age = 22 ± 2) tested three different terminal devices: TRS voluntary closing Hook Grip 2S, Otto Bock voluntary opening hand and Hosmer Model 5XA hook, using a prosthesis simulator. All subjects used each terminal device nine times in two functional tests: the Nine-Hole Peg Test and the Box and Blocks Test. Significant differences were found between the different terminal devices and their scores on the Nine-Hole Peg Test and the Box and Blocks Test. The Hosmer hook scored best in both tests. The TRS Hook Grip 2S scored second best. The Otto Bock hand showed the lowest scores. This study is a first step in the comparison of functional performances of body-powered prostheses. The data can be used as a reference value, to assess the performance of a terminal device or an amputee. The measured scores enable the comparison of the performance of a prosthesis user and his or her terminal device relative to standard scores. © The International Society for Prosthetics and Orthotics 2014.
Staiano-Coico, L; Steinberg, M; Higgins, P J
1990-10-15
Recent data indicate that malignant human epidermal cells may be appropriate targets for sodium butyrate (NaB)-mediated differentiation therapy. The response of pre- and post-crisis populations of SV40-transformed human keratinocytes (SVKs) to this differentiation-inducing agent was assessed, therefore, within the framework of NaB-directed normal human keratinocyte (NHK) maturation. NaB augmented cornified envelope (CE) production in NHK and pre-crisis SVK cultures; the time-course and efficiency of induced maturation were similar in the 2 cell systems. In NHKs, the percentage of amplifying ("B" substate) cells decreased with time in NaB correlating with increases in both "C" stage keratinocytes and CEs. The latter formed over one or 2 layers of nucleated basal-like cells. Inductions were accompanied by immediate cell cycle blocks (in both the G1 and G2/M phases), reorganization within the actin cytoskeleton, and transient early increases in cellular actin content. Increased NHK and pre-crisis SVK cytoskeletal-associated actin reached a maximum approximately 48 hr after NaB addition and preceded development of CEs. The CE precursors, thus, probably reside in the "B" substate. Post-crisis SVKs, in contrast, were refractive to NaB-induced terminal maturation or cell-cycle perturbation, failed to initiate actin filament rearrangements, and retained a basal cell-like phenotype. Stable transformation of human SVKs in post-crisis phase, therefore, appears to be associated with loss of maturation "competence" within the "B" keratinocyte subpopulation.
The Host Range of Gammaretroviruses and Gammaretroviral Vectors Includes Post-Mitotic Neural Cells
Liu, Xiu-Huai; Xu, Wenqin; Russ, Jill; Eiden, Lee E.; Eiden, Maribeth V.
2011-01-01
Background Gammaretroviruses and gammaretroviral vectors, in contrast to lentiviruses and lentiviral vectors, are reported to be restricted in their ability to infect growth-arrested cells. The block to this restriction has never been clearly defined. The original assessment of the inability of gammaretroviruses and gammaretroviral vectors to infect growth-arrested cells was carried out using established cell lines that had been growth-arrested by chemical means, and has been generalized to neurons, which are post-mitotic. We re-examined the capability of gammaretroviruses and their derived vectors to efficiently infect terminally differentiated neuroendocrine cells and primary cortical neurons, a target of both experimental and therapeutic interest. Methodology/Principal Findings Using GFP expression as a marker for infection, we determined that both growth-arrested (NGF-differentiated) rat pheochromocytoma cells (PC12 cells) and primary rat cortical neurons could be efficiently transduced, and maintained long-term protein expression, after exposure to murine leukemia virus (MLV) and MLV-based retroviral vectors. Terminally differentiated PC12 cells transduced with a gammaretroviral vector encoding the anti-apoptotic protein Bcl-xL were protected from cell death induced by withdrawal of nerve growth factor (NGF), demonstrating gammaretroviral vector-mediated delivery and expression of genes at levels sufficient for therapeutic effect in non-dividing cells. Post-mitotic rat cortical neurons were also shown to be susceptible to transduction by murine replication-competent gammaretroviruses and gammaretroviral vectors. Conclusions/Significance These findings suggest that the host range of gammaretroviruses includes post-mitotic and other growth-arrested cells in mammals, and have implications for re-direction of gammaretroviral gene therapy to neurological disease. PMID:21464894
Base drive circuit for a four-terminal power Darlington
Lee, Fred C.; Carter, Roy A.
1983-01-01
A high power switching circuit which utilizes a four-terminal Darlington transistor block to improve switching speed, particularly in rapid turn-off. Two independent reverse drive currents are utilized during turn off in order to expel the minority carriers of the Darlington pair at their own charge sweep-out rate. The reverse drive current may be provided by a current transformer, the secondary of which is tapped to the base terminal of the power stage of the Darlington block. In one application, the switching circuit is used in each power switching element in a chopper-inverter drive of an electric vehicle propulsion system.
A simple, efficient resistance soldering apparatus
NASA Technical Reports Server (NTRS)
Vermillion, C. M.
1972-01-01
Multiple resistance soldering device for attaching electric leads to multiple terminal block connectors uses power source with one terminal connected to working probe, and other terminal attached to connector carrying common pins for lead insertion. Mating of male and female connectors solders each lead to individual cup pin.
Ogunrinde, Adenike; Pereira, Robyn D; Beaton, Natalie; Lam, D Hung; Whetstone, Christiane; Hill, Ceredwyn E
The channel-kinase TRPM7 is important for the survival, proliferation, and differentiation, of many cell types. Both plasma membrane channel activity and kinase function are implicated in these roles. Channel activity is greater in less differentiated hepatoma cells compared with non-dividing, terminally differentiated adult hepatocytes, suggesting differences in protein expression and/or localization. We used electrophysiological and immunofluorescence approaches to establish whether hepatocellular differentiation is associated with altered TRPM7 expression. Mean outward current decreased by 44% in WIF-B hepatoma cells incubated with the established hepatic differentiating factors oncostatin M/dexamethasone for 1-8 days. Pre-incubation with pyridone 6, a pan-JAK inhibitor, blocked the current reduction. An antibody targeted to the C-terminus of TRPM7 labelled the cytoplasm in WIF-B cells and intact rat liver. Significant label also localized to the nuclear envelope (NE), with relatively more detected in adult hepatocytes compared with WIF-B cells. Hepatoma cells also exhibited nucleoplasmic labelling with intense signal in the nucleolus. The endogenous labelling pattern closely resembles that of HEK293T cells heterologously expressing a TRPM7 kinase construct containing a putative nucleolar localization sequence. These results suggest that TRPM7 form and distribution between the plasma membrane and nucleus, rather than expression, is altered in parallel with differentiation status in rat hepatic cells. Copyright © 2017 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.
Radiation-hardened transistor and integrated circuit
Ma, Kwok K.
2007-11-20
A composite transistor is disclosed for use in radiation hardening a CMOS IC formed on an SOI or bulk semiconductor substrate. The composite transistor has a circuit transistor and a blocking transistor connected in series with a common gate connection. A body terminal of the blocking transistor is connected only to a source terminal thereof, and to no other connection point. The blocking transistor acts to prevent a single-event transient (SET) occurring in the circuit transistor from being coupled outside the composite transistor. Similarly, when a SET occurs in the blocking transistor, the circuit transistor prevents the SET from being coupled outside the composite transistor. N-type and P-type composite transistors can be used for each and every transistor in the CMOS IC to radiation harden the IC, and can be used to form inverters and transmission gates which are the building blocks of CMOS ICs.
Epigenetic Control of Skeletal Development by the Histone Methyltransferase Ezh2*
Dudakovic, Amel; Camilleri, Emily T.; Xu, Fuhua; Riester, Scott M.; McGee-Lawrence, Meghan E.; Bradley, Elizabeth W.; Paradise, Christopher R.; Lewallen, Eric A.; Thaler, Roman; Deyle, David R.; Larson, A. Noelle; Lewallen, David G.; Dietz, Allan B.; Stein, Gary S.; Montecino, Martin A.; Westendorf, Jennifer J.; van Wijnen, Andre J.
2015-01-01
Epigenetic control of gene expression is critical for normal fetal development. However, chromatin-related mechanisms that activate bone-specific programs during osteogenesis have remained underexplored. Therefore, we investigated the expression profiles of a large cohort of epigenetic regulators (>300) during osteogenic differentiation of human mesenchymal cells derived from the stromal vascular fraction of adipose tissue (AMSCs). Molecular analyses establish that the polycomb group protein EZH2 (enhancer of zeste homolog 2) is down-regulated during osteoblastic differentiation of AMSCs. Chemical inhibitor and siRNA knockdown studies show that EZH2, a histone methyltransferase that catalyzes trimethylation of histone 3 lysine 27 (H3K27me3), suppresses osteogenic differentiation. Blocking EZH2 activity promotes osteoblast differentiation and suppresses adipogenic differentiation of AMSCs. High throughput RNA sequence (mRNASeq) analysis reveals that EZH2 inhibition stimulates cell cycle inhibitory proteins and enhances the production of extracellular matrix proteins. Conditional genetic loss of Ezh2 in uncommitted mesenchymal cells (Prrx1-Cre) results in multiple defects in skeletal patterning and bone formation, including shortened forelimbs, craniosynostosis, and clinodactyly. Histological analysis and mRNASeq profiling suggest that these effects are attributable to growth plate abnormalities and premature cranial suture closure because of precocious maturation of osteoblasts. We conclude that the epigenetic activity of EZH2 is required for skeletal patterning and development, but EZH2 expression declines during terminal osteoblast differentiation and matrix production. PMID:26424790
The AP-1 transcription factor Fra1 inhibits follicular B cell differentiation into plasma cells
Grötsch, Bettina; Brachs, Sebastian; Lang, Christiane; Luther, Julia; Derer, Anja; Schlötzer-Schrehardt, Ursula; Bozec, Aline; Fillatreau, Simon; Berberich, Ingolf; Hobeika, Elias; Reth, Michael; Wagner, Erwin F.; Schett, Georg
2014-01-01
The cornerstone of humoral immunity is the differentiation of B cells into antibody-secreting plasma cells. This process is tightly controlled by a regulatory gene network centered on the transcriptional repressor B lymphocyte–induced maturation protein 1 (Blimp1). Proliferation of activated B cells is required to foster Blimp1 expression but needs to be terminated to avoid overshooting immune reactions. Activator protein 1 (AP-1) transcription factors become quickly up-regulated upon B cell activation. We demonstrate that Fra1, a Fos member of AP-1, enhances activation-induced cell death upon induction in activated B cells. Moreover, mice with B cell–specific deletion of Fra1 show enhanced plasma cell differentiation and exacerbated antibody responses. In contrast, transgenic overexpression of Fra1 blocks plasma cell differentiation and immunoglobulin production, which cannot be rescued by Bcl2. On the molecular level, Fra1 represses Blimp1 expression and interferes with binding of the activating AP-1 member c-Fos to the Blimp1 promoter. Conversely, overexpression of c-Fos in Fra1 transgenic B cells releases Blimp1 repression. As Fra1 lacks transcriptional transactivation domains, we propose that Fra1 inhibits Blimp1 expression and negatively controls plasma cell differentiation through binding to the Blimp1 promoter. In summary, we demonstrate that Fra1 negatively controls plasma cell differentiation by repressing Blimp1 expression. PMID:25288397
Matsutani, Sachiko
2004-08-09
In eukaryotes, RNA polymerase III (RNAP III) transcribes the genes for small RNAs like tRNAs, 5S rRNA, and several viral RNAs, and short interspersed repetitive elements (SINEs). The genes for these RNAs and SINEs have internal promoters that consist of two regions. These two regions are called the A and B blocks. The multisubunit transcription factor TFIIIC is required for transcription initiation of RNAP III; in transcription of tRNAs, the B-block binding subunit of TFIIIC recognizes a promoter. Although internal promoter sequences are conserved in eukaryotes, no evidence of homology between the B-block binding subunits of vertebrates and yeasts has been reported previously. Here, I reported the results of PSI-BLAST searches using the B-block binding subunits of human and Shizosacchromyces pombe as queries, showing that the same Arabidopsis proteins were hit with low E-values in both searches. Comparison of the convergent iterative alignments obtained by these PSI-BLAST searches revealed that the vertebrate, yeast, and Arabidopsis proteins have similarities in their N-terminal one-third regions. In these regions, there were three domains with conserved sequence similarities, one located in the N-terminal end region. The N-terminal end region of the B-block binding subunit of Saccharomyces cerevisiae is tentatively identified as a HMG box, which is the DNA binding motif. Although I compared the alignment of the N-terminal end regions of the B-block binding subunits, and their homologs, with that of the HMG boxes, it is not clear whether they are related. Molecular phylogenetic analyses using the small subunit rRNA and ubiquitous proteins like actin and alpha-tubulin, show that fungi are more closely related to animals than either is to plants. Interestingly, the results obtained in this study show that, with respect to the B-block binding subunits of TFIIICs, animals appear to be evolutionarily closer to plants than to fungi.
Morphology and conductivity of PEO-based polymers having various end functional groups
NASA Astrophysics Data System (ADS)
Jung, Ha Young; Mandal, Prithwiraj; Park, Moon Jeong
Poly(ethylene oxide) (PEO)-based polymers have been considered most promising candidates of polymer electrolytes for lithium batteries owing to the high ionic conductivity of PEO/lithium salt complexes. This positive aspect prompted researchers to investigate PEO-containing block copolymers prepared by linking mechanically robust block to PEO covalently. Given that the microphase separation of block copolymers can affect both mechanical properties and ion transport properties, various strategies have been reported to tune the morphology of PEO-containing block copolymers. In the present study, we describe a simple means for modulating the morphologies of PEO-based block copolymers with an aim to improve ion transport properties. By varying terminal groups of PEO in block copolymers, the disordered morphology can be readily transformed into ordered lamellae or gyroid phases, depending on the type and number density of end group. In particular, the existence of terminal groups resulted in a large reduction in crystallinity of PEO chains and thereby increasing room temperature ionic conductivity.
Personal-Computer Video-Terminal Emulator
NASA Technical Reports Server (NTRS)
Buckley, R. H.; Koromilas, A.; Smith, R. M.; Lee, G. E.; Giering, E. W.
1985-01-01
OWL-1200 video terminal emulator has been written for IBM Personal Computer. The OWL-1200 is a simple user terminal with some intelligent capabilities. These capabilities include screen formatting and block transmission of data. Emulator is written in PASCAL and Assembler for the IBM Personal Computer operating under DOS 1.1.
Highly stable biocompatible inorganic nanoparticles by self-assembly of triblock-copolymer ligands.
Pöselt, Elmar; Fischer, Steffen; Foerster, Stephan; Weller, Horst
2009-12-15
A novel type of ligand for biofunctionalization of nanoparticles is presented that comprises tailor-made triblock-copolymers consisting of a polyethylene imine binding block, a hydrophobic polycaprolactone and a terminal functionalized polyethelene oxide block. Phase transfer to water occurs simply by ligand and water addition and removal of the organic solvents. It is shown that the intermediate polycaprolacton block favors the attachment to the particle surface and shields the binding groups effectively from the solution. As a consequence, the particles exhibit an outstanding stability in various aqueous media for biological studies and give easy access to specific coupling reactions at the terminal end groups of the polyethylene oxide block. Controlling the ligand exchange parameters leads to self-assembly to either individual encapsulated nanoparticles or to multifunctional nanobeads.
Synapsin- and Actin-Dependent Frequency Enhancement in Mouse Hippocampal Mossy Fiber Synapses
Owe, Simen G.; Jensen, Vidar; Evergren, Emma; Ruiz, Arnaud; Shupliakov, Oleg; Kullmann, Dimitri M.; Storm-Mathisen, Jon; Walaas, S. Ivar; Hvalby, Øivind
2009-01-01
The synapsin proteins have different roles in excitatory and inhibitory synaptic terminals. We demonstrate a differential role between types of excitatory terminals. Structural and functional aspects of the hippocampal mossy fiber (MF) synapses were studied in wild-type (WT) mice and in synapsin double-knockout mice (DKO). A severe reduction in the number of synaptic vesicles situated more than 100 nm away from the presynaptic membrane active zone was found in the synapsin DKO animals. The ultrastructural level gave concomitant reduction in F-actin immunoreactivity observed at the periactive endocytic zone of the MF terminals. Frequency facilitation was normal in synapsin DKO mice at low firing rates (∼0.1 Hz) but was impaired at firing rates within the physiological range (∼2 Hz). Synapses made by associational/commissural fibers showed comparatively small frequency facilitation at the same frequencies. Synapsin-dependent facilitation in MF synapses of WT mice was attenuated by blocking F-actin polymerization with cytochalasin B in hippocampal slices. Synapsin III, selectively seen in MF synapses, is enriched specifically in the area adjacent to the synaptic cleft. This may underlie the ability of synapsin III to promote synaptic depression, contributing to the reduced frequency facilitation observed in the absence of synapsins I and II. PMID:18550596
Kawakami, Toru; Yoshikawa, Ryo; Fujiyoshi, Yuki; Mishima, Yuichi; Hojo, Hironobu; Tajima, Shoji; Suetake, Isao
2015-11-01
The post-translational modification of histones plays an important role in gene expression. We report herein on a method for synthesizing such modified histones by ligating chemically prepared N-terminal peptides and C-terminal recombinant peptide building blocks. Based on their chemical synthesis, core histones can be categorized as two types; histones H2A, H2B and H4 which contain no Cys residues, and histone H3 which contains a Cys residue(s) in the C-terminal region. A combination of native chemical ligation and desulphurization can be simply used to prepare histones without Cys residues. For the synthesis of histone H3, the endogenous Cys residue(s) must be selectively protected, while keeping the N-terminal Cys residue of the C-terminal building block that is introduced for purposes of chemical ligation unprotected. To this end, a phenacyl group was successfully utilized to protect endogenous Cys residue(s), and the recombinant peptide was ligated with a peptide containing a Cys-Pro ester (CPE) sequence as a thioester precursor. Using this approach it was possible to prepare all of the core histones H2A, H2B, H3 and H4 with any modifications. The resulting proteins could then be used to prepare a core histone library of proteins that have been post-translationally modified. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.
Li, Yuwei; Ahrens, Molly J; Wu, Amy; Liu, Jennifer; Dudley, Andrew T
2011-01-01
For tissues that develop throughout embryogenesis and into postnatal life, the generation of differentiated cells to promote tissue growth is at odds with the requirement to maintain the stem cell/progenitor cell population to preserve future growth potential. In the growth plate cartilage, this balance is achieved in part by establishing a proliferative phase that amplifies the number of progenitor cells prior to terminal differentiation into hypertrophic chondrocytes. Here, we show that endogenous calcium/calmodulin-dependent protein kinase II (CamkII, also known as Camk2) activity is upregulated prior to hypertrophy and that loss of CamkII function substantially blocks the transition from proliferation to hypertrophy. Wnt signaling and Pthrp-induced phosphatase activity negatively regulate CamkII activity. Release of this repression results in activation of multiple effector pathways, including Runx2- and β-catenin-dependent pathways. We present an integrated model for the regulation of proliferation potential by CamkII activity that has important implications for studies of growth control and adult progenitor/stem cell populations.
Lin28 sustains early renal progenitors and induces Wilms tumor
Urbach, Achia; Yermalovich, Alena; Zhang, Jin; Spina, Catherine S.; Zhu, Hao; Perez-Atayde, Antonio R.; Shukrun, Rachel; Charlton, Jocelyn; Sebire, Neil; Mifsud, William; Dekel, Benjamin; Pritchard-Jones, Kathy; Daley, George Q.
2014-01-01
Wilms Tumor, the most common pediatric kidney cancer, evolves from the failure of terminal differentiation of the embryonic kidney. Here we show that overexpression of the heterochronic regulator Lin28 during kidney development in mice markedly expands nephrogenic progenitors by blocking their final wave of differentiation, ultimately resulting in a pathology highly reminiscent of Wilms tumor. Using lineage-specific promoters to target Lin28 to specific cell types, we observed Wilms tumor only when Lin28 is aberrantly expressed in multiple derivatives of the intermediate mesoderm, implicating the cell of origin as a multipotential renal progenitor. We show that withdrawal of Lin28 expression reverts tumorigenesis and markedly expands the numbers of glomerulus-like structures and that tumor formation is suppressed by enforced expression of Let-7 microRNA. Finally, we demonstrate overexpression of the LIN28B paralog in a significant percentage of human Wilms tumor. Our data thus implicate the Lin28/Let-7 pathway in kidney development and tumorigenesis. PMID:24732380
Selective Chemical Modulation of Gene Transcription Favors Oligodendrocyte Lineage Progression
Plotnikov, Alexander N.; Zhang, Guangtao; Zeng, Lei; Kaur, Jasbir; Moy, Gregory; Rusinova, Elena; Rodriguez, Yoel; Matikainen, Bridget; Vincek, Adam; Joshua, Jennifer; Casaccia, Patrizia; Zhou, Ming-Ming
2014-01-01
SUMMARY Lysine acetylation regulates gene expression through modulating protein-protein interactions in chromatin. Chemical inhibition of acetyl-lysine binding bromodomains of the major chromatin regulators BET (bromodomain and extra-terminal domain) proteins, has been shown to effectively block cell proliferation in cancer and inflammation. However, whether selective inhibition of individual BET bromodomains has distinctive functional consequences, remains only partially understood. In this study, we show that selective chemical inhibition of the first bromodomain of BET proteins using our newly designed small molecule inhibitor, Olinone, accelerated the progression of mouse primary oligodendrocyte progenitors towards differentiation, while inhibition of both bromodomains of BET proteins hindered differentiation. This effect was target-specific, as it was not detected in cells treated with inactive analogues and independent of any effect on proliferation. Therefore, selective chemical modulation of individual bromodomains, rather than use of broad-based inhibitors may enhance regenerative strategies in disorders characterized by myelin loss such as aging and neurodegeneration. PMID:24954007
Charge splitters and charge transport junctions based on guanine quadruplexes
NASA Astrophysics Data System (ADS)
Sha, Ruojie; Xiang, Limin; Liu, Chaoren; Balaeff, Alexander; Zhang, Yuqi; Zhang, Peng; Li, Yueqi; Beratan, David N.; Tao, Nongjian; Seeman, Nadrian C.
2018-04-01
Self-assembling circuit elements, such as current splitters or combiners at the molecular scale, require the design of building blocks with three or more terminals. A promising material for such building blocks is DNA, wherein multiple strands can self-assemble into multi-ended junctions, and nucleobase stacks can transport charge over long distances. However, nucleobase stacking is often disrupted at junction points, hindering electric charge transport between the two terminals of the junction. Here, we show that a guanine-quadruplex (G4) motif can be used as a connector element for a multi-ended DNA junction. By attaching specific terminal groups to the motif, we demonstrate that charges can enter the structure from one terminal at one end of a three-way G4 motif, and can exit from one of two terminals at the other end with minimal carrier transport attenuation. Moreover, we study four-way G4 junction structures by performing theoretical calculations to assist in the design and optimization of these connectors.
Insulation of the Chicken β-Globin Chromosomal Domain from a Chromatin-Condensing Protein, MENT
Istomina, Natalia E.; Shushanov, Sain S.; Springhetti, Evelyn M.; Karpov, Vadim L.; A. Krasheninnikov, Igor; Stevens, Kimberly; Zaret, Kenneth S.; Singh, Prim B.; Grigoryev, Sergei A.
2003-01-01
Active genes are insulated from developmentally regulated chromatin condensation in terminally differentiated cells. We mapped the topography of a terminal stage-specific chromatin-condensing protein, MENT, across the active chicken β-globin domain. We observed two sharp transitions of MENT concentration coinciding with the β-globin boundary elements. The MENT distribution profile was opposite to that of acetylated core histones but correlated with that of histone H3 dimethylated at lysine 9 (H3me2K9). Ectopic MENT expression in NIH 3T3 cells caused a large-scale and specific remodeling of chromatin marked by H3me2K9. MENT colocalized with H3me2K9 both in chicken erythrocytes and NIH 3T3 cells. Mutational analysis of MENT and experiments with deacetylase inhibitors revealed the essential role of the reaction center loop domain and an inhibitory affect of histone hyperacetylation on the MENT-induced chromatin remodeling in vivo. In vitro, the elimination of the histone H3 N-terminal peptide containing lysine 9 by trypsin blocked chromatin self-association by MENT, while reconstitution with dimethylated but not acetylated N-terminal domain of histone H3 specifically restored chromatin self-association by MENT. We suggest that histone H3 modification at lysine 9 directly regulates chromatin condensation by recruiting MENT to chromatin in a fashion that is spatially constrained from active genes by gene boundary elements and histone hyperacetylation. PMID:12944473
NASA Astrophysics Data System (ADS)
Dveksler, Gabriela S.; Pensiero, Michael N.; Dieffenbach, Carl W.; Cardellichio, Christine B.; Basile, Alexis A.; Elia, Patrick E.; Holmes, Kathryn V.
1993-03-01
Mouse hepatitis virus (MHV) strain A59 uses as cellular receptors members of the carcinoembryonic antigen family in the immunoglobulin superfamily. Recombinant receptor proteins with deletions of whole or partial immunoglobulin domains were used to identify the regions of receptor glycoprotein recognized by virus and by antireceptor monoclonal antibody CC1, which blocks infection of murine cells. Monoclonal antibody CC1 and MHV-A59 virions bound only to recombinant proteins containing the entire first domain of MHV receptor. To determine which of the proteins could serve as functional virus receptors, receptor-negative hamster cells were transfected with recombinant deletion clones and then challenged with MHV-A59 virions. Receptor activity required the entire N-terminal domain with either the second or the fourth domain and the transmembrane and cytoplasmic domains. Recombinant proteins lacking the first domain or its C-terminal portion did not serve as viral receptors. Thus, like other virus receptors in the immunoglobulin superfamily, including CD4, poliovirus receptor, and intercellular adhesion molecule 1, the N-terminal domain of MHV receptor is recognized by the virus and the blocking monoclonal antibody.
Zhang, Feifan; Bhattacharya, Abhishek; Nelson, Jessica C; Abe, Namiko; Gordon, Patricia; Lloret-Fernandez, Carla; Maicas, Miren; Flames, Nuria; Mann, Richard S; Colón-Ramos, Daniel A; Hobert, Oliver
2014-01-01
Transcription factors that drive neuron type-specific terminal differentiation programs in the developing nervous system are often expressed in several distinct neuronal cell types, but to what extent they have similar or distinct activities in individual neuronal cell types is generally not well explored. We investigate this problem using, as a starting point, the C. elegans LIM homeodomain transcription factor ttx-3, which acts as a terminal selector to drive the terminal differentiation program of the cholinergic AIY interneuron class. Using a panel of different terminal differentiation markers, including neurotransmitter synthesizing enzymes, neurotransmitter receptors and neuropeptides, we show that ttx-3 also controls the terminal differentiation program of two additional, distinct neuron types, namely the cholinergic AIA interneurons and the serotonergic NSM neurons. We show that the type of differentiation program that is controlled by ttx-3 in different neuron types is specified by a distinct set of collaborating transcription factors. One of the collaborating transcription factors is the POU homeobox gene unc-86, which collaborates with ttx-3 to determine the identity of the serotonergic NSM neurons. unc-86 in turn operates independently of ttx-3 in the anterior ganglion where it collaborates with the ARID-type transcription factor cfi-1 to determine the cholinergic identity of the IL2 sensory and URA motor neurons. In conclusion, transcription factors operate as terminal selectors in distinct combinations in different neuron types, defining neuron type-specific identity features.
Kleifeld, Oded; Doucet, Alain; Prudova, Anna; auf dem Keller, Ulrich; Gioia, Magda; Kizhakkedathu, Jayachandran N; Overall, Christopher M
2011-09-22
Analysis of the sequence and nature of protein N termini has many applications. Defining the termini of proteins for proteome annotation in the Human Proteome Project is of increasing importance. Terminomics analysis of protease cleavage sites in degradomics for substrate discovery is a key new application. Here we describe the step-by-step procedures for performing terminal amine isotopic labeling of substrates (TAILS), a 2- to 3-d (depending on method of labeling) high-throughput method to identify and distinguish protease-generated neo-N termini from mature protein N termini with all natural modifications with high confidence. TAILS uses negative selection to enrich for all N-terminal peptides and uses primary amine labeling-based quantification as the discriminating factor. Labeling is versatile and suited to many applications, including biochemical and cell culture analyses in vitro; in vivo analyses using tissue samples from animal and human sources can also be readily performed. At the protein level, N-terminal and lysine amines are blocked by dimethylation (formaldehyde/sodium cyanoborohydride) and isotopically labeled by incorporating heavy and light dimethylation reagents or stable isotope labeling with amino acids in cell culture labels. Alternatively, easy multiplex sample analysis can be achieved using amine blocking and labeling with isobaric tags for relative and absolute quantification, also known as iTRAQ. After tryptic digestion, N-terminal peptide separation is achieved using a high-molecular-weight dendritic polyglycerol aldehyde polymer that binds internal tryptic and C-terminal peptides that now have N-terminal alpha amines. The unbound naturally blocked (acetylation, cyclization, methylation and so on) or labeled mature N-terminal and neo-N-terminal peptides are recovered by ultrafiltration and analyzed by tandem mass spectrometry (MS/MS). Hierarchical substrate winnowing discriminates substrates from the background proteolysis products and non-cleaved proteins by peptide isotope quantification and bioinformatics search criteria.
Romania, Paolo; Bertaina, Alice; Bracaglia, Giorgia; Locatelli, Franco; Fruci, Doriana; Rota, Rossella
2012-01-01
Gene expression control mediated by microRNAs and epigenetic remodeling of chromatin are interconnected processes often involved in feedback regulatory loops, which strictly guide proper tissue differentiation during embryonal development. Altered expression of microRNAs is one of the mechanisms leading to pathologic conditions, such as cancer. Several lines of evidence pointed to epigenetic alterations as responsible for aberrant microRNA expression in human cancers. Rhabdomyosarcoma and neuroblastoma are pediatric cancers derived from cells presenting features of skeletal muscle and neuronal precursors, respectively, blocked at different stages of differentiation. Consistently, tumor cells express tissue markers of origin but are unable to terminally differentiate. Several microRNAs playing a key role during tissue differentiation are often epigenetically downregulated in rhabdomyosarcoma and neuroblastoma and behave as tumor suppressors when re-expressed. Recently, inhibition of epigenetic modulators in adult tumors has provided encouraging results causing re-expression of anti-tumor master gene pathways. Thus, a similar approach could be used to correct the aberrant epigenetic regulation of microRNAs in rhabdomyosarcoma and neuroblastoma. The present review highlights the current insights on epigenetically deregulated microRNAs in rhabdomyosarcoma and neuroblastoma and their role in tumorigenesis and developmental pathways. The translational clinical implications and challenges regarding modulation of epigenetic chromatin remodeling/microRNAs interconnections are also discussed. PMID:23443118
Azmi, Nur Sabrina Ahmad; Singkaravanit-Ogawa, Suthitar; Ikeda, Kyoko; Kitakura, Saeko; Inoue, Yoshihiro; Narusaka, Yoshihiro; Shirasu, Ken; Kaido, Masanori; Mise, Kazuyuki; Takano, Yoshitaka
2018-01-01
The hemibiotrophic pathogen Colletotrichum orbiculare preferentially expresses a necrosis and ethylene-inducing peptide 1 (Nep1)-like protein named NLP1 during the switch to necrotrophy. Here, we report that the constitutive expression of NLP1 in C. orbiculare blocks pathogen infection in multiple Cucurbitaceae cultivars via their enhanced defense responses. NLP1 has a cytotoxic activity that induces cell death in Nicotiana benthamiana. However, C. orbiculare transgenic lines constitutively expressing a mutant NLP1 lacking the cytotoxic activity still failed to infect cucumber, indicating no clear relationship between cytotoxic activity and the NLP1-dependent enhanced defense. NLP1 also possesses the microbe-associated molecular pattern (MAMP) sequence called nlp24, recognized by Arabidopsis thaliana at its central region, similar to NLPs of other pathogens. Surprisingly, inappropriate expression of a mutant NLP1 lacking the MAMP signature is also effective for blocking pathogen infection, uncoupling the infection block from the corresponding MAMP. Notably, the deletion analyses of NLP1 suggested that the C-terminal region of NLP1 is critical to enhance defense in cucumber. The expression of mCherry fused with the C-terminal 32 amino acids of NLP1 was enough to trigger the defense of cucurbits, revealing that the C-terminal region of the NLP1 protein is recognized by cucurbits and, then, terminates C. orbiculare infection.
Maity, Sudhangshu; Jana, Tushar
2014-05-14
A series of meta-polybenzimidazole-block-para-polybenzimidazole (m-PBI-b-p-PBI), segmented block copolymers of PBI, were synthesized with various structural motifs and block lengths by condensing the diamine terminated meta-PBI (m-PBI-Am) and acid terminated para-PBI (p-PBI-Ac) oligomers. NMR studies and existence of two distinct glass transition temperatures (Tg), obtained from dynamical mechanical analysis (DMA) results, unequivocally confirmed the formation of block copolymer structure through the current polymerization methodology. Appropriate and careful selection of oligomers chain length enabled us to tailor the block length of block copolymers and also to make varieties of structural motifs. Increasingly distinct Tg peaks with higher block length of segmented block structure attributed the decrease in phase mixing between the meta-PBI and para-PBI blocks, which in turn resulted into nanophase segregated domains. The proton conductivities of proton exchange membrane (PEM) developed from phosphoric acid (PA) doped block copolymer membranes were found to be increasing substantially with increasing block length of copolymers even though PA loading of these membranes did not alter appreciably with varying block length. For example when molecular weight (Mn) of blocks were increased from 1000 to 5500 then the proton conductivities at 160 °C of resulting copolymers increased from 0.05 to 0.11 S/cm. Higher block length induced nanophase separation between the blocks by creating less morphological barrier within the block which facilitated the movement of the proton in the block and hence resulting higher proton conductivity of the PEM. The structural varieties also influenced the phase separation and proton conductivity. In comparison to meta-para random copolymers reported earlier, the current meta-para segmented block copolymers were found to be more suitable for PBI-based PEM.
Katewa, Arna; Wang, Yugang; Hackney, Jason A; Huang, Tao; Suto, Eric; Ramamoorthi, Nandhini; Austin, Cary D; Bremer, Meire; Chen, Jacob Zhi; Crawford, James J; Currie, Kevin S; Blomgren, Peter; DeVoss, Jason; DiPaolo, Julie A; Hau, Jonathan; Johnson, Adam; Lesch, Justin; DeForge, Laura E; Lin, Zhonghua; Liimatta, Marya; Lubach, Joseph W; McVay, Sami; Modrusan, Zora; Nguyen, Allen; Poon, Chungkee; Wang, Jianyong; Liu, Lichuan; Lee, Wyne P; Wong, Harvey; Young, Wendy B; Townsend, Michael J; Reif, Karin
2017-04-06
Systemic lupus erythematosus (SLE) is often associated with exaggerated B cell activation promoting plasma cell generation, immune-complex deposition in the kidney, renal infiltration of myeloid cells, and glomerular nephritis. Type-I IFNs amplify these autoimmune processes and promote severe disease. Bruton's tyrosine kinase (Btk) inhibitors are considered novel therapies for SLE. We describe the characterization of a highly selective reversible Btk inhibitor, G-744. G-744 is efficacious, and superior to blocking BAFF and Syk, in ameliorating severe lupus nephritis in both spontaneous and IFNα-accelerated lupus in NZB/W_F1 mice in therapeutic regimens. Selective Btk inhibition ablated plasmablast generation, reduced autoantibodies, and - similar to cyclophosphamide - improved renal pathology in IFNα-accelerated lupus. Employing global transcriptional profiling of spleen and kidney coupled with cross-species human modular repertoire analyses, we identify similarities in the inflammatory process between mice and humans, and we demonstrate that G-744 reduced gene expression signatures essential for splenic B cell terminal differentiation, particularly the secretory pathway, as well as renal transcriptional profiles coupled with myeloid cell-mediated pathology and glomerular plus tubulointerstitial disease in human glomerulonephritis patients. These findings reveal the mechanism through which a selective Btk inhibitor blocks murine autoimmune kidney disease, highlighting pathway activity that may translate to human SLE.
NASA Technical Reports Server (NTRS)
Hajimiri, Seyed-Ali (Inventor); Kee, Scott D. (Inventor); Aoki, Ichiro (Inventor)
2010-01-01
A cross-differential amplifier is provided. The cross-differential amplifier includes an inductor connected to a direct current power source at a first terminal. A first and second switch, such as transistors, are connected to the inductor at a second terminal. A first and second amplifier are connected at their supply terminals to the first and second switch. The first and second switches are operated to commutate the inductor between the amplifiers so as to provide an amplified signal while limiting the ripple voltage on the inductor and thus limiting the maximum voltage imposed across the amplifiers and switches.
NASA Technical Reports Server (NTRS)
Hajimiri, Seyed-Ali (Inventor); Kee, Scott D. (Inventor); Aoki, Ichiro (Inventor)
2011-01-01
A cross-differential amplifier is provided. The cross-differential amplifier includes an inductor connected to a direct current power source at a first terminal. A first and second switch, such as transistors, are connected to the inductor at a second terminal. A first and second amplifier are connected at their supply terminals to the first and second switch. The first and second switches are operated to commutate the inductor between the amplifiers so as to provide an amplified signal while limiting the ripple voltage on the inductor and thus limiting the maximum voltage imposed across the amplifiers and switches.
NASA Technical Reports Server (NTRS)
Aoki, Ichiro (Inventor); Hajimiri, Seyed-Ali (Inventor); Kee, Scott D. (Inventor)
2013-01-01
A cross-differential amplifier is provided. The cross-differential amplifier includes an inductor connected to a direct current power source at a first terminal. A first and second switch, such as transistors, are connected to the inductor at a second terminal. A first and second amplifier are connected at their supply terminals to the first and second switch. The first and second switches are operated to commutate the inductor between the amplifiers so as to provide an amplified signal while limiting the ripple voltage on the inductor and thus limiting the maximum voltage imposed across the amplifiers and switches.
NASA Technical Reports Server (NTRS)
Hajimiri, Seyed-Ali (Inventor); Kee, Scott D. (Inventor); Aoki, Ichiro (Inventor)
2008-01-01
A cross-differential amplifier is provided. The cross-differential amplifier includes an inductor connected to a direct current power source at a first terminal. A first and second switch, such as transistors, are connected to the inductor at a second terminal. A first and second amplifier are connected at their supply terminals to the first and second switch. The first and second switches are operated to commutate the inductor between the amplifiers so as to provide an amplified signal while limiting the ripple voltage on the inductor and thus limiting the maximum voltage imposed across the amplifiers and switches.
5. EAST ELEVATION (OFFICE BLOCK), DETAIL SHOWING DECORATIVE PILASTERS AND ...
5. EAST ELEVATION (OFFICE BLOCK), DETAIL SHOWING DECORATIVE PILASTERS AND STYLIZED EGG-AND-DART DECORATION AROUND WINDOWS OF UPPER FLOORS - Delaware, Lackawanna & Western Railroad & Ferry Terminal, Hudson Place, Hoboken, Hudson County, NJ
McCully, Mark; Conde, João; V Baptista, Pedro; Mullin, Margaret; Dalby, Matthew J; Berry, Catherine C
2018-01-01
Mesenchymal stem cells are multipotent adult stem cells capable of generating bone, cartilage and fat, and are thus currently being exploited for regenerative medicine. When considering osteogenesis, developments have been made with regards to chemical induction (e.g. differentiation media) and physical induction (e.g. material stiffness, nanotopography), targeting established early transcription factors or regulators such as runx2 or bone morphogenic proteins and promoting increased numbers of cells committing to osteo-specific differentiation. Recent research highlighted the involvement of microRNAs in lineage commitment and terminal differentiation. Herein, gold nanoparticles that confer stability to short single stranded RNAs were used to deliver MiR-31 antagomiRs to both pre-osteoblastic cells and primary human MSCs in vitro. Results showed that blocking miR-31 led to an increase in osterix protein in both cell types at day 7, with an increase in osteocalcin at day 21, suggesting MSC osteogenesis. In addition, it was noted that antagomiR sequence direction was important, with the 5 prime reading direction proving more effective than the 3 prime. This study highlights the potential that miRNA antagomiR-tagged nanoparticles offer as novel therapeutics in regenerative medicine.
Analysis of Full-Test tools and their limitations as applied to terminal junction blocks
NASA Technical Reports Server (NTRS)
Smith, J. L.
1983-01-01
Discovery of unlocked contacts in Deutsch Block terminal junctions in Solid Rocket Booster flight hardware prompted an investigation into pull test techniques to help insure against possible failures. Internal frictional forces between socket and pin and between wire and grommet were examined. Pull test force must be greater than internal friction yet less than the crimp strength of the pin or socket. For this reason, a 100 percent accurate test is impossible. Test tools were evaluated. Available tools are adequate for pull testing.
Borysov, Sergiy I.; Nepon-Sixt, Brook S.
2015-01-01
The N-terminal domain of the retinoblastoma (Rb) tumor suppressor protein (RbN) harbors in-frame exon deletions in partially penetrant hereditary retinoblastomas and is known to impair cell growth and tumorigenesis. However, how such RbN deletions contribute to Rb tumor- and growth-suppressive functions is unknown. Here we establish that RbN directly inhibits DNA replication initiation and elongation using a bipartite mechanism involving N-terminal exons lost in cancer. Specifically, Rb exon 7 is necessary and sufficient to target and inhibit the replicative CMG helicase, resulting in the accumulation of inactive CMGs on chromatin. An independent N-terminal loop domain, which forms a projection, specifically blocks DNA polymerase α (Pol-α) and Ctf4 recruitment without affecting DNA polymerases ε and δ or the CMG helicase. Individual disruption of exon 7 or the projection in RbN or Rb, as occurs in inherited cancers, partially impairs the ability of Rb/RbN to inhibit DNA replication and block G1-to-S cell cycle transit. However, their combined loss abolishes these functions of Rb. Thus, Rb growth-suppressive functions include its ability to block replicative complexes via bipartite, independent, and additive N-terminal domains. The partial loss of replication, CMG, or Pol-α control provides a potential molecular explanation for how N-terminal Rb loss-of-function deletions contribute to the etiology of partially penetrant retinoblastomas. PMID:26711265
De Luca, Luciana; Trino, Stefania; Laurenzana, Ilaria; Tagliaferri, Daniela; Falco, Geppino; Grieco, Vitina; Bianchino, Gabriella; Nozza, Filomena; Campia, Valentina; D'Alessio, Francesca; La Rocca, Francesco; Caivano, Antonella; Villani, Oreste; Cilloni, Daniela; Musto, Pellegrino; Del Vecchio, Luigi
2017-01-01
Lin28A is a highly conserved RNA-binding protein that concurs to control the balance between stemness and differentiation in several tissue lineages. Here, we report the role of miR-128a/Lin28A axis in blocking cell differentiation in acute myeloid leukemia (AML), a genetically heterogeneous disease characterized by abnormally controlled proliferation of myeloid progenitor cells accompanied by partial or total inability to undergo terminal differentiation. First, we found Lin28A underexpressed in blast cells from AML patients and AML cell lines as compared with CD34+ normal precursors. In vitro transfection of Lin28A in NPM1-mutated OCI-AML3 cell line significantly triggered cell-cycle arrest and myeloid differentiation, with increased expression of macrophage associate genes (EGR2, ZFP36 and ANXA1). Furthermore, miR-128a, a negative regulator of Lin28A, was found overexpressed in AML cells compared with normal precursors, especially in acute promyelocytic leukemia (APL) and in ‘AML with maturation’ (according to 2016 WHO classification of myeloid neoplasms and acute leukemia). Its forced overexpression by lentiviral infection in OCI-AML3 downregulated Lin28A with ensuing repression of macrophage-oriented differentiation. Finally, knockdown of miR-128a in OCI-AML3 and in APL/AML leukemic cells (by transfection and lentiviral infection, respectively) induced myeloid cell differentiation and increased expression of Lin28A, EGR2, ZFP36 and ANXA1, reverting myeloid differentiation blockage. In conclusion, our findings revealed a new mechanism for AML differentiation blockage, suggesting new strategies for AML therapy based upon miR-128a inhibition. PMID:28569789
Angiopoietin-Like 4 Regulates Epidermal Differentiation
Huang, Royston-Luke; Goh, Yan Yih; Wang, Xiao Ling; Tang, Mark Boon Yang; Tan, Nguan Soon
2011-01-01
The nuclear hormone receptor PPARβ/δ is integral to efficient wound re-epithelialization and implicated in epidermal maturation. However, the mechanism underlying the latter process of epidermal differentiation remains unclear. We showed that ligand-activated PPARβ/δ indirectly stimulated keratinocyte differentiation, requiring de novo gene transcription and protein translation. Using organotypic skin cultures constructed from PPARβ/δ- and angiopoietin-like 4 (ANGPTL4)-knockdown human keratinocytes, we showed that the expression of ANGPTL4, a PPARβ/δ target gene, is essential for the receptor mediated epidermal differentiation. The pro-differentiation effect of PPARβ/δ agonist GW501516 was also abolished when keratinocytes were co-treated with PPARβ/δ antagonist GSK0660 and similarly in organotypic skin culture incubated with blocking ANGPTL4 monoclonal antibody targeted against the C-terminal fibrinogen-like domain. Our focused real-time PCR gene expression analysis comparing the skin biopsies from wildtype and ANGPTL4-knockout mice confirmed a consistent down-regulation of numerous genes involved in epidermal differentiation and proliferation in the ANGPTL4-knockout skin. We further showed that the deficiency of ANGPTL4 in human keratinocytes and mice skin have diminished expression of various protein kinase C isotypes and phosphorylated transcriptional factor activator protein-1, which are well-established for their roles in keratinocyte differentiation. Chromatin immunoprecipitation confirmed that ANGPTL4 stimulated the activation and binding of JUNB and c-JUN to the promoter region of human involucrin and transglutaminase type 1 genes, respectively. Taken together, we showed that PPARβ/δ regulates epidermal maturation via ANGPTL4-mediated signalling pathway. PMID:21966511
Antineoplastic Effects of PPARγ Agonists, with a Special Focus on Thyroid Cancer.
Ferrari, Silvia Martina; Materazzi, Gabriele; Baldini, Enke; Ulisse, Salvatore; Miccoli, Paolo; Antonelli, Alessandro; Fallahi, Poupak
2016-01-01
Peroxisome Proliferator-Activated Receptor-γ (PPARγ) is a ligand-activated nuclear hormone receptor that functions as transcription factor and plays an important role in lipid metabolism and insulin sensitization. Recent studies have shown that PPARγ is overexpressed in many tumor types, including cancers of breast, lung, pancreas, colon, glioblastoma, prostate and thyroid differentiated/anaplastic cancers. These data suggest a role of PPARγ in tumor development and/or progression. PPARγ is emerging as a growth-limiting and differentiation-promoting factor, and it exerts a tumor suppressor role. Moreover, naturally-occurring and synthetic PPARγ agonists promote growth inhibition and apoptosis. Thiazolidinediones (TZDs) are synthetic agonists of PPARγ that were developed to treat type II diabetes. These compounds also display anticancer effects which appear mainly to be independent of their PPARγ agonist activity. Various preclinical and clinical studies strongly suggest a role for TZDs both alone and in combination with existing chemotherapeutic agents, for the treatment of cancer. Differentiation therapy involves the use of agents with the ability to induce differentiation in cells that have lost this ability, i.e. cancer cells, targeting pathways capable of re-activating blocked terminal differentiation programs. PPARγ agonists have been shown to induce differentiation in solid tumors such as thyroid differentiated/ anaplastic cancers and sarcomas. However, emerging data suggest that chronic use of TZDs is associated with increased risk of adverse cardiovascular events. The exploration of newer PPARγ agonists can help in unveiling the underlying mechanisms of these drugs, providing new molecules that are able to treat cancer, without increasing the cardiovascular risk of neoplastic patients.
Polydispersity effects in poly(isoprene-b-styrene-b-ethylene oxide) triblock terpolymers
NASA Astrophysics Data System (ADS)
Meuler, Adam J.; Ellison, Christopher J.; Qin, Jian; Evans, Christopher M.; Hillmyer, Marc A.; Bates, Frank S.
2009-06-01
Four hydroxyl-terminated poly(isoprene-b-styrene) diblock copolymers with comparable molecular weights and compositions (equivalent volume fractions of polyisoprene and polystyrene) but different polystyrene block polydispersity indices (Mw/Mn=1.06,1.16,1.31,1.44) were synthesized by anionic polymerization using either sec-butyllithium or the functional organolithium 3-triisopropylsilyloxy-1-propyllithium. Poly(ethylene oxide) (PEO) blocks were grown from the end of each of these parent diblocks to yield four series of poly(isoprene-b-styrene-b-ethylene oxide) (ISO) triblock terpolymers that were used to interrogate the effects of varying the polydispersity of the middle bridged polystyrene block. In addition to the neat triblock samples, 13 multicomponent blends were prepared at four different compositions from the ISO materials containing a polystyrene segment with Mw/Mn=1.06; these blends were used to probe the effects of increasing the polydispersity of the terminal PEO block. The melt-phase behavior of all samples was characterized using small-angle X-ray scattering and dynamic mechanical spectroscopy. Numerous polydispersity-driven morphological transitions are reported, including transitions from lamellae to core-shell gyroid, from core-shell gyroid to hexagonally packed cylinders, and from network morphologies [either O70 (the orthorhombic Fddd network) or core-shell gyroid] to lamellae. Domain periodicities and order-disorder transition temperatures also vary with block polydispersities. Self-consistent field theory calculations were performed to supplement the experimental investigations and help elucidate the molecular factors underlying the polydispersity effects. The consequences of varying the polydispersity of the terminal PEO block are comparable to the polydispersity effects previously reported in AB diblock copolymers. Namely, domain periodicities increase with increasing polydispersity and domain interfaces tend to curve toward polydisperse blocks. The changes in phase behavior that are associated with variations in the polydispersity of the middle bridged polystyrene block, however, are not analogous to those reported in AB diblock copolymers, as increases in this middle block polydispersity are not always accompanied by (i) increased domain periodicities and (ii) a tendency for domain interfaces to curve toward the polydisperse domain. These results highlight the utility of polydispersity as a tool to tune the phase behavior of ABC block terpolymers.
ZNF750 is a p63 Target Gene that Induces KLF4 to Drive Terminal Epidermal Differentiation
Sen, George L.; Boxer, Lisa D.; Webster, Dan E.; Bussat, Rose T.; Qu, Kun; Zarnegar, Brian J.; Johnston, Danielle; Siprashvili, Zurab; Khavari, Paul A.
2012-01-01
SUMMARY Disrupted epidermal differentiation characterizes numerous diseases that impact >25% of the population. In a search for dominant mediators of differentiation, we defined a requirement for ZNF750 in terminal epidermal differentiation. ZNF750 controlled genes mutated in numerous human skin diseases, including FLG, LOR, LCE3B, ALOXE3, and SPINK5. ZNF750 induced progenitor differentiation via an evolutionarily conserved C2H2 zinc finger motif. The epidermal master regulator, p63, bound the ZNF750 promoter and was necessary for its induction. ZNF750 restored differentiation to p63-deficient tissue, suggesting it acts downstream of p63. A search for functionally important ZNF750 targets via analysis of ZNF750-regulated genes identified KLF4, a transcription factor that activates late epidermal differentiation. ZNF750 binds to KLF4 at multiple sites flanking the transcriptional start site and controls its expression. ZNF750 thus directly links a tissue-specifying factor, p63, to an effector of terminal differentiation, KLF4, and represents a potential future target for disorders of this process. PMID:22364861
Urata, Mariko; Kokabu, Shoichiro; Matsubara, Takuma; Sugiyama, Goro; Nakatomi, Chihiro; Takeuchi, Hiroshi; Hirata-Tsuchiya, Shizu; Aoki, Kazuhiro; Tamura, Yukihiko; Moriyama, Yasuko; Ayukawa, Yasunori; Matsuda, Miho; Zhang, Min; Koyano, Kiyoshi; Kitamura, Chiaki; Jimi, Eijiro
2018-09-01
Bone morphogenetic protein (BMP) potentiates bone formation through the Smad signaling pathway in vitro and in vivo. The transcription factor nuclear factor κB (NF-κB) suppresses BMP-induced osteoblast differentiation. Recently, we identified that the transactivation (TA) 2 domain of p65, a main subunit of NF-κB, interacts with the mad homology (MH) 1 domain of Smad4 to inhibit BMP signaling. Therefore, we further attempted to identify the interacting regions of these two molecules at the amino acid level. We identified a region that we term the Smad4-binding domain (SBD), an amino-terminal region of TA2 that associates with the MH1 domain of Smad4. Cell-permeable SBD peptide blocked the association of p65 with Smad4 and enhanced BMP2-induced osteoblast differentiation and mineralization without affecting the phosphorylation of Smad1/5 or the activation of NF-κB signaling. SBD peptide enhanced the binding of the BMP2-inudced phosphorylated Smad1/5 on the promoter region of inhibitor of DNA binding 1 (Id-1) compared with control peptide. Although SBD peptide did not affect BMP2-induced chondrogenesis during ectopic bone formation, the peptide enhanced BMP2-induced ectopic bone formation in subcortical bone. Thus, the SBD peptide is useful for enabling BMP2-induced bone regeneration without inhibiting NF-κB activity. © 2018 Wiley Periodicals, Inc.
Kaizer, Hannah; Connelly, Carla J.; Bettridge, Kelsey; Viggiani, Christopher; Greider, Carol W.
2015-01-01
The regulation of telomere length equilibrium is essential for cell growth and survival since critically short telomeres signal DNA damage and cell cycle arrest. While the broad principles of length regulation are well established, the molecular mechanism of how these steps occur is not fully understood. We mutagenized the RIF2 gene in Saccharomyces cerevisiae to understand how this protein blocks excess telomere elongation. We identified an N-terminal domain in Rif2 that is essential for length regulation, which we have termed BAT domain for Blocks Addition of Telomeres. Tethering this BAT domain to Rap1 blocked telomere elongation not only in rif2Δ mutants but also in rif1Δ and rap1C-terminal deletion mutants. Mutation of a single amino acid in the BAT domain, phenylalanine at position 8 to alanine, recapitulated the rif2Δ mutant phenotype. Substitution of F8 with tryptophan mimicked the wild-type phenylalanine, suggesting the aromatic amino acid represents a protein interaction site that is essential for telomere length regulation. PMID:26294668
The terminal differentiation of B lymphocytes into antibody-secreting plasma cells upon antigen stimulation is a crucial step in the humoral immune response. The mutually-repressive interactions among three key regulatory transcription factors underlying B to plasma cell differe...
Hasan, S M Mahmudul; Sheen, Ashley D; Power, Angela M; Langevin, Lisa Marie; Xiong, Jieying; Furlong, Michael; Day, Kristine; Schuurmans, Carol; Opferman, Joseph T; Vanderluit, Jacqueline L
2013-08-01
Cortical development requires the precise timing of neural precursor cell (NPC) terminal mitosis. Although cell cycle proteins regulate terminal mitosis, the factors that influence the cell cycle machinery are incompletely understood. Here we show in mice that myeloid cell leukemia 1 (Mcl1), an anti-apoptotic Bcl-2 protein required for the survival of NPCs, also regulates their terminal differentiation through the cell cycle regulator p27(Kip1). A BrdU-Ki67 cell profiling assay revealed that in utero electroporation of Mcl1 into NPCs in the embryonic neocortex increased NPC cell cycle exit (the leaving fraction). This was further supported by a decrease in proliferating NPCs (Pax6(+) radial glial cells and Tbr2(+) neural progenitors) and an increase in differentiating cells (Dcx(+) neuroblasts and Tbr1(+) neurons). Similarly, BrdU birth dating demonstrated that Mcl1 promotes premature NPC terminal mitosis giving rise to neurons of the deeper cortical layers, confirming their earlier birthdate. Changes in Mcl1 expression within NPCs caused concomitant changes in the levels of p27(Kip1) protein, a key regulator of NPC differentiation. Furthermore, in the absence of p27(Kip1), Mcl1 failed to induce NPC cell cycle exit, demonstrating that p27(Kip1) is required for Mcl1-mediated NPC terminal mitosis. In summary, we have identified a novel physiological role for anti-apoptotic Mcl1 in regulating NPC terminal differentiation.
Dalmay, Tamas
2018-01-01
RNA interference (RNAi) is a complex and highly conserved regulatory mechanism mediated via small RNAs (sRNAs). Recent technical advances in high throughput sequencing have enabled an increasingly detailed analysis of sRNA abundances and profiles in specific body parts and tissues. This enables investigations of the localized roles of microRNAs (miRNAs) and small interfering RNAs (siRNAs). However, variation in the proportions of non-coding RNAs in the samples being compared can hinder these analyses. Specific tissues may vary significantly in the proportions of fragments of longer non-coding RNAs (such as ribosomal RNA or transfer RNA) present, potentially reflecting tissue-specific differences in biological functions. For example, in Drosophila, some tissues contain a highly abundant 30nt rRNA fragment (the 2S rRNA) as well as abundant 5’ and 3’ terminal rRNA fragments. These can pose difficulties for the construction of sRNA libraries as they can swamp the sequencing space and obscure sRNA abundances. Here we addressed this problem and present a modified “rRNA blocking” protocol for the construction of high-definition (HD) adapter sRNA libraries, in D. melanogaster reproductive tissues. The results showed that 2S rRNAs targeted by blocking oligos were reduced from >80% to < 0.01% total reads. In addition, the use of multiple rRNA blocking oligos to bind the most abundant rRNA fragments allowed us to reveal the underlying sRNA populations at increased resolution. Side-by-side comparisons of sequencing libraries of blocked and non-blocked samples revealed that rRNA blocking did not change the miRNA populations present, but instead enhanced their abundances. We suggest that this rRNA blocking procedure offers the potential to improve the in-depth analysis of differentially expressed sRNAs within and across different tissues. PMID:29474379
48 CFR 49.603-5 - Cost-reimbursement contracts-partial termination.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Cost-reimbursement....603-5 Cost-reimbursement contracts—partial termination. [Insert the following in Block 14 of SF 30, Amendment of Solicitation/Modification of Contract, for settlement agreements for cost-reimbursement...
Wurm, Stefanie; Zhang, Jisheng; Guinea-Viniegra, Juan; García, Fernando; Muñoz, Javier; Bakiri, Latifa; Ezhkova, Elena
2015-01-01
Altered epidermal differentiation characterizes numerous skin diseases affecting >25% of the human population. Here we identified Fra-2/AP-1 as a key regulator of terminal epidermal differentiation. Epithelial-restricted, ectopic expression of Fra-2 induced expression of epidermal differentiation genes located within the epidermal differentiation complex (EDC). Moreover, in a papilloma-prone background, a reduced tumor burden was observed due to precocious keratinocyte differentiation by Fra-2 expression. Importantly, loss of Fra-2 in suprabasal keratinocytes is sufficient to cause skin barrier defects due to reduced expression of differentiation genes. Mechanistically, Fra-2 binds and transcriptionally regulates EDC gene promoters, which are co-occupied by the transcriptional repressor Ezh2. Fra-2 remains transcriptionally inactive in nondifferentiated keratinocytes, where it was found monomethylated and dimethylated on Lys104 and interacted with Ezh2. Upon keratinocyte differentiation, Fra-2 is C-terminally phosphorylated on Ser320 and Thr322 by ERK1/2, leading to transcriptional activation. Thus, the induction of epidermal differentiation by Fra-2 is controlled by a dual mechanism involving Ezh2-dependent methylation and activation by ERK1/2-dependent phosphorylation. PMID:25547114
Watanabe, Masaya; Feola, Iolanda; Majumder, Rupamanjari; Jangsangthong, Wanchana; Teplenin, Alexander S; Ypey, Dirk L; Schalij, Martin J; Zeppenfeld, Katja; de Vries, Antoine A F; Pijnappels, Daniël A
2017-03-01
Anatomical re-entry is an important mechanism of ventricular tachycardia, characterized by circular electrical propagation in a fixed pathway. It's current investigative and therapeutic approaches are non-biological, rather unspecific (drugs), traumatizing (electrical shocks), or irreversible (ablation). Optogenetics is a new biological technique that allows reversible modulation of electrical function with unmatched spatiotemporal precision using light-gated ion channels. We therefore investigated optogenetic manipulation of anatomical re-entry in ventricular cardiac tissue. Transverse, 150-μm-thick ventricular slices, obtained from neonatal rat hearts, were genetically modified with lentiviral vectors encoding Ca2+-translocating channelrhodopsin (CatCh), a light-gated depolarizing ion channel, or enhanced yellow fluorescent protein (eYFP) as control. Stable anatomical re-entry was induced in both experimental groups. Activation of CatCh was precisely controlled by 470-nm patterned illumination, while the effects on anatomical re-entry were studied by optical voltage mapping. Regional illumination in the pathway of anatomical re-entry resulted in termination of arrhythmic activity only in CatCh-expressing slices by establishing a local and reversible, depolarization-induced conduction block in the illuminated area. Systematic adjustment of the size of the light-exposed area in the re-entrant pathway revealed that re-entry could be terminated by either wave collision or extinction, depending on the depth (transmurality) of illumination. In silico studies implicated source-sink mismatches at the site of subtransmural conduction block as an important factor in re-entry termination. Anatomical re-entry in ventricular tissue can be manipulated by optogenetic induction of a local and reversible conduction block in the re-entrant pathway, allowing effective re-entry termination. These results provide distinctively new mechanistic insight into re-entry termination and a novel perspective for cardiac arrhythmia management. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.
van den Bogaard, Ellen; Podolsky, Michael; Smits, Jos; Cui, Xiao; John, Christian; Gowda, Krishne; Desai, Dhimant; Amin, Shantu; Schalkwijk, Joost; Perdew, Gary H.
2015-01-01
Stimulation of the aryl hydrocarbon receptor (AHR) by xenobiotics is known to affect epidermal differentiation and skin barrier formation. The physiological role of endogenous AHR signaling in keratinocyte differentiation is not known. We used murine and human skin models to address the hypothesis that AHR activation is required for normal keratinocyte differentiation. Using transcriptome analysis of Ahr-/- and Ahr+/+ murine keratinocytes, we found significant enrichment of differentially expressed genes linked to epidermal differentiation. Primary Ahr-/- keratinocytes showed a significant reduction in terminal differentiation gene and protein expression, similar to Ahr+/+ keratinocytes treated with AHR antagonists GNF351 and CH223191, or the selective AHR modulator (SAhRM), SGA360. In vitro keratinocyte differentiation led to increased AHR levels and subsequent nuclear translocation, followed by induced CYP1A1 gene expression. Monolayer cultured primary human keratinocytes treated with AHR antagonists also showed an impaired terminal differentiation program. Inactivation of AHR activity during human skin equivalent development severely impaired epidermal stratification, terminal differentiation protein expression and stratum corneum formation. As disturbed epidermal differentiation is a main feature of many skin diseases, pharmacological agents targeting AHR signaling or future identification of endogenous keratinocyte-derived AHR ligands should be considered as potential new drugs in dermatology. PMID:25602157
Molecular basis of differentiation therapy for soft tissue sarcomas
Luther, Gaurav; Rames, Richard; Wagner, Eric R.; Zhu, Gaohui; Luo, Qing; Bi, Yang; Kim, Stephanie H.; Gao, Jian-Li; Huang, Enyi; Yang, Ke; Wang, Linyuan; Liu, Xing; Li, Mi; Hu, Ning; Su, Yuxi; Luo, Xiaoji; Chen, Liang; Luo, Jinyong; Haydon, Rex C.; Luu, Hue H.; Zhou, Lan; He, Tong-Chuan
2015-01-01
Stem cells are undifferentiated precursor cells with the capacity for proliferation or terminal differentiation. Progression down the differentiation cascade results in a loss of proliferative potential in exchange for the differentiated phenotype. This balance is tightly regulated in the physiologic state. Recent studies, however, have demonstrated that during tumorigenesis, disruptions preventing terminal differentiation allow cancer cells to maintain a proliferative, precursor cell phenotype. Current therapies (i.e., chemotherapy and radiation therapy) target the actively proliferating cells in tumor masses, which in many cases inevitably induce therapy-resistant cancer cells. It is conceivable that promising therapy regimens can be developed by treating human cancers by inducing terminal differentiation, thereby restoring the interrupted pathway and shifting the balance from proliferation to differentiation. For example, osteosarcoma (OS) is a primary bone cancer caused by differentiation defects in mesenchymal stem cells (MSCs) for which several differentiation therapies have shown great promise. In this review, we discuss the various differentiation therapies in the treatment of human sarcomas with a focus on OS. Such therapies hold great promise as they not only inhibit tumorigenesis, but also avoid the adverse effects associated with conventional chemotherapy regimens. Furthermore, it is conceivable that a combination of conventional therapies with differentiation therapy should significantly improve anticancer efficacy and reduce drug-resistance in the clinical management of human cancers, including sarcomas. PMID:26912947
Effects of recombinant dentin sialoprotein in dental pulp cells.
Lee, S-Y; Kim, S-Y; Park, S-H; Kim, J-J; Jang, J-H; Kim, E-C
2012-04-01
Dentin sialophosphoprotein (DSPP) is critical for dentin mineralization. However, the function of dentin sialoprotein (DSP), the cleaved product of DSPP, remains unclear. This study aimed to investigate the signal transduction pathways and effects of recombinant human DSP (rh-DSP) on proliferation, migration, and odontoblastic differentiation in human dental pulp cells (HDPCs). The exogenous addition of rh-DSP enhanced the proliferation and migration of HDPCs in dose- and time-dependent manners. rh-DSP markedly increased ALP activity, calcium nodule formation, and levels of odontoblastic marker mRNA. rh-DSP increased BMP-2 expression and Smad1/5/8 phosphorylation, which was blocked by the BMP antagonist, noggin. Furthermore, rh-DSP phosphorylated extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), Akt, and IκB-α, and induced the nuclear translocation of the NF-κB p65 subunit. Analysis of these data demonstrates a novel signaling function of rh-DSP for the promotion of growth, migration, and differentiation in HDPCS via the BMP/Smad, JNK, ERK, MAPK, and NF-κB signaling pathways, suggesting that rh-DSP may have therapeutic utility in dentin regeneration or dental pulp tissue engineering.
Stathis, Anastasios; Zucca, Emanuele; Bekradda, Mohamed; Gomez-Roca, Carlos; Delord, Jean-Pierre; de La Motte Rouge, Thibault; Uro-Coste, Emmanuelle; de Braud, Filippo; Pelosi, Giuseppe; French, Christopher A.
2016-01-01
The anti-neoplastic, pro-differentiative effects of bromodomain and extra-terminal (BET) bromodomain (BRD) inhibitors were initially discovered in NUT midline carcinoma (NMC), an aggressive subtype of squamous cancer driven by the BRD4-NUT fusion oncoprotein. BRD4-NUT blocks differentiation and maintains tumor growth through a potent chromatin modifying mechanism. OTX015/MK-8628, a novel oral BET inhibitor, targets BRD2/3/4/T with preclinical activity in NMC and several other tumor types, and is currently in clinical development. Antitumor activity was evaluated in four advanced stage NMC patients with confirmed BRD4-NUT fusions who were treated with 80 mg OTX015/MK-8628 once daily in a compassionate-use context. Two patients responded rapidly with tumor regression and symptomatic relief, and a third had meaningful disease stabilization with a minor metabolic response. The main side effects were mild to moderate gastrointestinal toxicity and fatigue, and reversible grade 3 thrombocytopenia. This is the first proof-of-concept evidence of clinical activity of a bromodomain inhibitor in targeting BRD4-NUT. PMID:26976114
Katewa, Arna; Wang, Yugang; Hackney, Jason A.; Huang, Tao; Suto, Eric; Ramamoorthi, Nandhini; Bremer, Meire; Chen, Jacob Zhi; Crawford, James J.; Currie, Kevin S.; Blomgren, Peter; DeVoss, Jason; DiPaolo, Julie A.; Hau, Jonathan; Lesch, Justin; DeForge, Laura E.; Lin, Zhonghua; Liimatta, Marya; Lubach, Joseph W.; McVay, Sami; Modrusan, Zora; Nguyen, Allen; Poon, Chungkee; Wang, Jianyong; Liu, Lichuan; Lee, Wyne P.; Wong, Harvey; Young, Wendy B.; Townsend, Michael J.
2017-01-01
Systemic lupus erythematosus (SLE) is often associated with exaggerated B cell activation promoting plasma cell generation, immune-complex deposition in the kidney, renal infiltration of myeloid cells, and glomerular nephritis. Type-I IFNs amplify these autoimmune processes and promote severe disease. Bruton’s tyrosine kinase (Btk) inhibitors are considered novel therapies for SLE. We describe the characterization of a highly selective reversible Btk inhibitor, G-744. G-744 is efficacious, and superior to blocking BAFF and Syk, in ameliorating severe lupus nephritis in both spontaneous and IFNα-accelerated lupus in NZB/W_F1 mice in therapeutic regimens. Selective Btk inhibition ablated plasmablast generation, reduced autoantibodies, and — similar to cyclophosphamide — improved renal pathology in IFNα-accelerated lupus. Employing global transcriptional profiling of spleen and kidney coupled with cross-species human modular repertoire analyses, we identify similarities in the inflammatory process between mice and humans, and we demonstrate that G-744 reduced gene expression signatures essential for splenic B cell terminal differentiation, particularly the secretory pathway, as well as renal transcriptional profiles coupled with myeloid cell–mediated pathology and glomerular plus tubulointerstitial disease in human glomerulonephritis patients. These findings reveal the mechanism through which a selective Btk inhibitor blocks murine autoimmune kidney disease, highlighting pathway activity that may translate to human SLE. PMID:28405610
The terminal differentiation of B cells in lymphoid organs into antibody-secreting plasma cells upon antigen stimulation is a crucial step in the humoral immune response. The architecture of the B-cell transcriptional regulatory network consists of coupled mutually-repressive fee...
Vascular Mural Cells Promote Noradrenergic Differentiation of Embryonic Sympathetic Neurons.
Fortuna, Vitor; Pardanaud, Luc; Brunet, Isabelle; Ola, Roxana; Ristori, Emma; Santoro, Massimo M; Nicoli, Stefania; Eichmann, Anne
2015-06-23
The sympathetic nervous system controls smooth muscle tone and heart rate in the cardiovascular system. Postganglionic sympathetic neurons (SNs) develop in close proximity to the dorsal aorta (DA) and innervate visceral smooth muscle targets. Here, we use the zebrafish embryo to ask whether the DA is required for SN development. We show that noradrenergic (NA) differentiation of SN precursors temporally coincides with vascular mural cell (VMC) recruitment to the DA and vascular maturation. Blocking vascular maturation inhibits VMC recruitment and blocks NA differentiation of SN precursors. Inhibition of platelet-derived growth factor receptor (PDGFR) signaling prevents VMC differentiation and also blocks NA differentiation of SN precursors. NA differentiation is normal in cloche mutants that are devoid of endothelial cells but have VMCs. Thus, PDGFR-mediated mural cell recruitment mediates neurovascular interactions between the aorta and sympathetic precursors and promotes their noradrenergic differentiation. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
TMEM14C is required for erythroid mitochondrial heme metabolism
Yien, Yvette Y.; Robledo, Raymond F.; Schultz, Iman J.; Takahashi-Makise, Naoko; Gwynn, Babette; Bauer, Daniel E.; Dass, Abhishek; Yi, Gloria; Li, Liangtao; Hildick-Smith, Gordon J.; Cooney, Jeffrey D.; Pierce, Eric L.; Mohler, Kyla; Dailey, Tamara A.; Miyata, Non; Kingsley, Paul D.; Garone, Caterina; Hattangadi, Shilpa M.; Huang, Hui; Chen, Wen; Keenan, Ellen M.; Shah, Dhvanit I.; Schlaeger, Thorsten M.; DiMauro, Salvatore; Orkin, Stuart H.; Cantor, Alan B.; Palis, James; Koehler, Carla M.; Lodish, Harvey F.; Kaplan, Jerry; Ward, Diane M.; Dailey, Harry A.; Phillips, John D.; Peters, Luanne L.; Paw, Barry H.
2014-01-01
The transport and intracellular trafficking of heme biosynthesis intermediates are crucial for hemoglobin production, which is a critical process in developing red cells. Here, we profiled gene expression in terminally differentiating murine fetal liver-derived erythroid cells to identify regulators of heme metabolism. We determined that TMEM14C, an inner mitochondrial membrane protein that is enriched in vertebrate hematopoietic tissues, is essential for erythropoiesis and heme synthesis in vivo and in cultured erythroid cells. In mice, TMEM14C deficiency resulted in porphyrin accumulation in the fetal liver, erythroid maturation arrest, and embryonic lethality due to profound anemia. Protoporphyrin IX synthesis in TMEM14C-deficient erythroid cells was blocked, leading to an accumulation of porphyrin precursors. The heme synthesis defect in TMEM14C-deficient cells was ameliorated with a protoporphyrin IX analog, indicating that TMEM14C primarily functions in the terminal steps of the heme synthesis pathway. Together, our data demonstrate that TMEM14C facilitates the import of protoporphyrinogen IX into the mitochondrial matrix for heme synthesis and subsequent hemoglobin production. Furthermore, the identification of TMEM14C as a protoporphyrinogen IX importer provides a genetic tool for further exploring erythropoiesis and congenital anemias. PMID:25157825
Awerkiew, Sabine; Schmidt, Annette; Hombach, Andreas A.; Pfister, Herbert; Abken, Hinrich
2012-01-01
Adoptive therapy of malignant diseases with tumor-specific cytotoxic T cells showed remarkable efficacy in recent trials. Repetitive T cell receptor (TCR) engagement of target antigen, however, inevitably ends up in hypo-responsive cells with terminally differentiated KLRG-1+ CD57+ CD7− phenotype limiting their therapeutic efficacy. We here revealed that hypo-responsiveness of CMV-specific late-stage CD8+ T cells is due to reduced TCR synapse formation compared to younger cells. Membrane anchoring of TCR components contributes to T cell hypo-responsiveness since dislocation of galectin-3 from the synapse by swainsonine restored both TCR synapse formation and T cell response. Transgenic expression of a CD3-zeta signaling chimeric antigen receptor (CAR) recovered hypo-responsive T cells to full effector functions indicating that the defect is restricted to TCR membrane components while synapse formation of the transgenic CAR was not blocked. CAR engineered late-stage T cells released cytokines and mediated redirected cytotoxicity as efficiently as younger effector T cells. Our data provide a rationale for TCR independent, CAR mediated activation in the adoptive cell therapy to avoid hypo-responsiveness of late-stage T cells upon repetitive antigen encounter. PMID:22292024
NASA Astrophysics Data System (ADS)
Ke, Rihuan; Ng, Michael K.; Sun, Hai-Wei
2015-12-01
In this paper, we study the block lower triangular Toeplitz-like with tri-diagonal blocks system which arises from the time-fractional partial differential equation. Existing fast numerical solver (e.g., fast approximate inversion method) cannot handle such linear system as the main diagonal blocks are different. The main contribution of this paper is to propose a fast direct method for solving this linear system, and to illustrate that the proposed method is much faster than the classical block forward substitution method for solving this linear system. Our idea is based on the divide-and-conquer strategy and together with the fast Fourier transforms for calculating Toeplitz matrix-vector multiplication. The complexity needs O (MNlog2 M) arithmetic operations, where M is the number of blocks (the number of time steps) in the system and N is the size (number of spatial grid points) of each block. Numerical examples from the finite difference discretization of time-fractional partial differential equations are also given to demonstrate the efficiency of the proposed method.
A Spectrum Access Based on Quality of Service (QoS) in Cognitive Radio Networks.
Zhai, Linbo; Wang, Hua; Gao, Chuangen
2016-01-01
The quality of service (QoS) is important issue for cognitive radio networks. In the cognitive radio system, the licensed users, also called primary users (PUs), are authorized to utilize the wireless spectrum, while unlicensed users, also called secondary users (SUs), are not authorized to use the wireless spectrum. SUs access the wireless spectrum opportunistically when the spectrum is idle. While SUs use an idle channel, the instance that PUs come back makes SUs terminate their communications and leave the current channel. Therefore, quality of service (QoS) is difficult to be ensured for SUs. In this paper, we first propose an analysis model to obtain QoS for cognitive radio networks such as blocking probability, completed traffic and termination probability of SUs. When the primary users use the channels frequently, QoS of SUs is difficult to be ensured, especially the termination probability. Then, we propose a channel reservation scheme to improve QoS of SUs. The scheme makes the terminated SUs move to the reserved channels and keep on communications. Simulation results show that our scheme can improve QoS of SUs especially the termination probability with a little cost of blocking probability in dynamic environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, S.J.
1988-11-01
The author infected different human leukemic cell lines with an amphotropic retrovirus vector (designated PA317/N2) which confers G418 resistance and contains the Moloney murine leukemia virus long terminal repeat. In retrovirus-infected G418-resistant HL-60 cells, induction of granulocyte differentiation by retinoic acid was invariably accompanied by a marked increase (5- to 10-fold) in the transcriptional activity of the integrated retroviral long terminal repeat.
Ecology of Great Salt Pond, Block Island
Great Salt Pond is an island of estuarine water on Block Island, which sits in the middle of the Northwest Atlantic Continental Shelf. When the last continental glaciers retreated, they left a high spot on a terminal moraine. The rising sea from melting glaciers formed two island...
Sugar epitopes as potential universal disease transmission blocking targets.
Dinglasan, Rhoel R; Valenzuela, Jesús G; Azad, Abdu F
2005-01-01
One promising method to prevent vector-borne diseases is through the use of transmission blocking vaccines (TBVs). However, developing several anti-pathogen TBVs may be impractical. In this study, we have identified a conserved candidate carbohydrate target in the midguts of several Arthropod vectors. A screen of the novel GlycoChip glycan array found that the anti-carbohydrate malaria transmission blocking monoclonal antibody (MG96) preferentially recognized D-mannose (alpha) and the type II lactosamine disaccharide. The specificity for D-mannose was confirmed by competition ELISA using alpha-methyl mannoside as inhibitor. Con A, which identifies terminal mannose residues, did not inhibit MG96 reactivity with mosquito midgut lysates, suggesting that Con A has differential recognition of this monosaccharide. However, the jack bean lectin, Jacalin, which recognizes D-mannose (alpha), d-galactose (alpha/beta) and the T antigen, not only displays a similar banding profile to that recognized by MG96 on immunoblot but was also shown to effectively inhibit MG96. Wheat-germ agglutinin, which recognizes N-acetyllactosamine units, only partially inhibited MG96 reactivity. This highlights the contribution of both glycan moieties to the MG96 epitope or glycotope. Enzyme deglycosylation results suggest that MG96 recognizes a mannose alpha1-6 substitution on an O-linked oligosaccharide. Taken together, the data suggest that MG96 recognizes a discontinuous glycotope composed of Manalpha1-6 proximal to Galbeta1-4GlcNAc-alpha-O-R glycans on arthropod vector midguts. As such, these glycotopes may represent potential transmission blocking vaccine targets for a wide range of vector-borne pathogens.
A Proliferative Burst During Preadolescence Establishes the Final Cardiomyocyte Number
Naqvi, Nawazish; Li, Ming; Calvert, John W.; Tejada, Thor; Lambert, Jonathan P.; Wu, Jianxin; Kesteven, Scott H.; Holman, Sara R.; Matsuda, Torahiro; Lovelock, Joshua D.; Howard, Wesley W.; Iismaa, Siiri E.; Chan, Andrea Y.; Crawford, Brian H.; Wagner, Mary B.; Martin, David I. K.; Lefer, David J.; Graham, Robert M.; Husain, Ahsan
2014-01-01
SUMMARY It is widely believed that perinatal cardiomyocyte terminal differentiation blocks cytokinesis, thereby causing binucleation and limiting regenerative repair after injury. This suggests that heart growth should occur entirely by cardiomyocyte hypertrophy during preadolescence when, in mice, cardiac mass increases many-fold over a few weeks. Here we show thata thyroid hormone surge activates the IGF-1/IGF1-R/Akt pathway on postnatal day-15andinitiates a brief but intense proliferative burst of predominantly binuclear cardiomyocytes. This proliferation increases cardiomyocyte numbers by ~40%, causing a major disparity between heart and cardiomyocyte growth. Also, the response to cardiac injury at postnatal day15 is intermediate between that observed at postnatal day-2 and -21, further suggesting persistence of cardiomyocyte proliferative capacity beyond the perinatal period. If replicated in humans, this may allow novel regenerative therapies for heart diseases. PMID:24813607
Kasi, V S; Kuppuswamy, D
1999-10-01
Src family kinases are implicated in cellular proliferation and transformation. Terminally differentiated myocytes have lost the ability to proliferate, indicating the existence of a down-regulatory mechanism(s) for these mitogenic kinases. Here we show that feline cardiomyocyte lysate contains thermostable components that inhibit c-Src kinase in vitro. This inhibitory activity, present predominantly in heart tissue, involves two components acting combinatorially. After purification by sequential chromatography, one component was identified by mass and nuclear magnetic resonance spectroscopies as 5'-AMP, while the other was identified by peptide sequencing as a small heat shock protein (sHSP). 5'-AMP and to a lesser extent 5'-ADP inhibit c-Src when combined with either HSP-27 or HSP-32. Other HSPs, including alphaB-crystallin, HSP-70, and HSP-90, did not exhibit this effect. The inhibition, observed preferentially on Src family kinases and independent of the Src tyrosine phosphorylation state, occurs via a direct interaction of the c-Src catalytic domain with the inhibitory components. Our study indicates that sHSPs increase the affinity of 5'-AMP for the c-Src ATP binding site, thereby facilitating the inhibition. In vivo, elevation of ATP levels in the cardiomyocytes results in the tyrosine phosphorylation of cellular proteins including c-Src at the activatory site, and this effect is blocked when the 5'-AMP concentration is raised. Thus, this study reveals a novel role for sHSPs and 5'-AMP in the regulation of Src family kinases, presumably for the maintenance of the terminally differentiated state.
Embryonic mouse pre-metatarsal development in organ culture
NASA Technical Reports Server (NTRS)
Klement, B. J.; Spooner, B. S.
1993-01-01
Embryonic mouse pre-metatarsals were removed from embryos at 13 days of gestation and cultured in a defined, serum-free medium for up to 15 days. By histological analysis, we observe that the cultured pre-metatarsal tissue undergoes a similar developmental profile as pre-metatarsals growing normally in vivo. The initial mesenchyme condensation regions undergo differentiation and morphogenesis to form distinct rods made up of cartilage tissue. A marker of this differentiation step is the synthesis of type II collagen. Metabolic labelling, pepsin digestion, SDS-PAGE, and autoradiography were used to demonstrate this protein when cartilage tissue is present in the cultures. After additional culture time, terminal chondrocyte differentiation and morphogenesis take place in specific regions of the cartilage rods to form bands of hypertrophied chondrocytes. One marker of this differentiation step is the synthesis of the enzyme alkaline phosphatase. We have measured the activity of this enzyme throughout the culture period and see a substantial increase at the time of terminal chondrocyte differentiation. Another feature of hypertrophied chondrocytes is that the matrix around the cells becomes calcified. Calcified matrix in our cultured pre-metatarsals was visualized by staining with alizarin red. By supplementing the defined culture medium with ITS, we observed that terminal chondrocyte differentiation took place in a shorter culture time. Supplementation of the medium with serum results in a similar acceleration of terminal differentiation, and, with additional culture time, an osteoid-like matrix forms around the central region of the rods.
Outchkourov, Nikolay; Vermunt, Adriaan; Jansen, Josephine; Kaan, Anita; Roeffen, Will; Teelen, Karina; Lasonder, Edwin; Braks, Anneke; van de Vegte-Bolmer, Marga; Qiu, Li Yan; Sauerwein, Robert; Stunnenberg, Hendrik G
2007-06-08
Pfs48/45, a member of a Plasmodium-specific protein family, displays conformation-dependent epitopes and is an important target for malaria transmission-blocking (TB) immunity. To design a recombinant Pfs48/45-based TB vaccine, we analyzed the conformational TB epitopes of Pfs48/45. The Pfs48/45 protein was found to consist of a C-terminal six-cysteine module recognized by anti-epitope I antibodies, a middle four-cysteine module recognized by anti-epitopes IIb and III, and an N-terminal module recognized by anti-epitope V antibodies. Refolding assays identified that a fragment of 10 cysteines (10C), comprising the middle four-cysteine and the C-terminal six-cysteine modules, possesses superior refolding capacity. The refolded and partially purified 10C conformer elicited antibodies in mice that targeted at least two of the TB epitopes (I and III). The induced antibodies could block the fertilization of Plasmodium falciparum gametes in vivo in a concentration-dependent manner. Our results provide important insight into the structural organization of the Pfs48/45 protein and experimental support for a Pfs48/45-based subunit vaccine.
Atmospheric-Fade-Tolerant Tracking and Pointing in Wireless Optical Communication
NASA Technical Reports Server (NTRS)
Ortiz, Gerardo; Lee, Shinhak
2003-01-01
An acquisition, tracking, and pointing (ATP) system, under development at the time of reporting the information for this article, is intended to enable a terminal in a free-space optical communication system to continue to aim its transmitting laser beam toward a receiver at a remote terminal when the laser beacon signal from the remote terminal temporarily fades or drops out of sight altogether. Such fades and dropouts can be caused by adverse atmospheric conditions (e.g., rain or clouds). They can also occur when intervening objects block the line of sight between terminals as a result of motions of those objects or of either or both terminals
Wycliffe, Paul; Sitbon, Folke; Wernersson, Jonny; Ezcurra, Inés; Ellerström, Mats; Rask, Lars
2005-10-01
Brassica napus complementary deoxyribonucleic acid (cDNA) clones encoding a DNA-binding protein, BnPEND, were isolated by Southwestern screening. A distinctive feature of the protein was a bZIP-like sequence in the amino-terminal portion, which, after expression in Escherichia coli, bound DNA. BnPEND transcripts were present in B. napus roots and flower buds, and to a lesser extent in stems, flowers and young leaves. Treatment in the dark for 72 h markedly increased the amount of BnPEND transcript in leaves of all ages. Sequence comparison showed that BnPEND was similar to a presumed transcription factor from B. napus, GSBF1, a protein deduced from an Arabidopsis thaliana cDNA (BX825084) and the PEND protein from Pisum sativum, believed to anchor the plastid DNA to the envelope early during plastid development. Homology to expressed sequence tag (EST) sequences from additional species suggested that BnPEND homologues are widespread among the angiosperms. Transient expression of BnPEND fused with green fluorescent protein (GFP) in Nicotiana benthamiana epidermal cells showed that BnPEND is a plastid protein, and that the 15 amino acids at the amino-terminal contain information about plastid targeting. Expression of BnPEND in Nicotiana tabacum from the Cauliflower Mosaic Virus 35S promoter gave stable transformants with different extents of white to light-green areas in the leaves, and even albino plants. In the white areas, but not in adjacent green tissue, the development of palisade cells and chloroplasts was disrupted. Our data demonstrate that the BnPEND protein, when over-expressed at an inappropriate stage, functionally blocks the development of plastids and leads to altered leaf anatomy, possibly by preventing the release of plastid DNA from the envelope.
NASA Astrophysics Data System (ADS)
Magenau, Andrew Jackson David
The primary objectives of this research were twofold: (1) development of synthetic procedures for combining quasiliving carbocationic polymerization (QLCCP) of isobutylene (IB) and reversible addition fragmentation chain transfer (RAFT) polymerization for block copolymer synthesis; (2) utilization of efficient, robust, and modular chemistries for facile functionalization of polyisobutylene (PIB). In the first study block copolymers consisting of PIB, and either PMMA or PS block segments, were synthesized by a site transformation approach combining living cationic and reversible addition-fragmentation chain transfer (RAFT) polymerizations. The initial PIB block was synthesized via quasiliving cationic polymerization using the TMPCl/TiCl4 initiation system and was subsequently converted into a hydroxylterminated PIB. Site transformation of the hydroxyl-terminated PIB into a macro chain transfer agent (PIB-CTA) was accomplished by N,N'-dicyclohexylcarbodiimide/dimethylaminopyridine-catalyzed esterification with 4-cyano-4-(dodecylsulfanylthiocarbonylsulfanyl)pentanoic acid. In the second study another site transformation approach was developed to synthesize a novel block copolymer, composed of PIB and PNIPAM segments. The PIB block was prepared via quasiliving cationic polymerization and end functionalized by in-situ quenching to yield telechelic halogen-terminated PIB. Azido functionality was obtained by displacement of the terminal halogen through nucleophilic substitution, which was confirmed by both 1H and 13C NMR. Coupling of an alkyne-functional chain transfer agent (CTA) to azido PIB was successfully accomplished through a copper catalyzed click reaction. Structure of the resulting PIB-based macro-CTA was verified with 1H NMR, FTIR, and GPC; whereas coupling reaction kinetics were monitored by real time variable temperature (VT) 1H NMR. In a third study, a click chemistry functionalization procedure was developed based upon the azide-alkyne 1,3-dipolar cycloaddition reaction. 1-(o-Azidoalkyl)pyrrolyl-terminated PIB was successfully synthesized both by substitution of the terminal halide of 1-(o-haloalkyl)pyrrolyl-terminated PIB with sodium azide and by in situ quenching of quasiliving PIB with a 1-(o-azidoalkyl)pyrrole. GPC indicated the absence of coupled PIB under optimized conditions, confirming exclusive mono-substitution on each pyrrole ring. In a fourth study, radical thiol-ene hydrothiolation "Click" chemistry was explored and adapted to easily and rapidly modify exo -olefin PIB with an array of thiol compounds bearing useful functionalities, including primary halogen, primary amine, primary hydroxyl, and carboxylic acid. The thiol-ene "click" procedure was shown to be applicable to both mono and difunctional exo-olefin polyisobutylene. Telechelic mono- and difunctional exo-olefin PIBs were synthesized via quasiliving cationic polymerization followed by quenching with the hindered amine, 1,2,2,6,6-pentamethylpiperidine. Lower reaction temperatures were found to increase exo-olefin conversion to near quantitative amounts. In the fifth study, thiol-terminated polyisobutylene (PIB-SH) was synthesized by reaction of thiourea with alpha,o-bromine-terminated PIB in a three step one-pot procedure. First the alkylisothiouronium salt was produced using a 1:1 (v:v) DMF:heptane cosolvent mixture at 90°C. Hydrolysis of the salt by aqueous base produced thiolate chain ends, which were then acidified to form the desired thiol functional group. An extension of this reaction was performed by a sequential thiol-ene/thiol-yne procedure to produce tetra-hydroxy functionalized PIB. 1H NMR was used to confirm formation of both alkyne and tetrahydroxyl functional species. Further utility of PIB-SH was demonstrated by base catalyzed thiol-isocyanate reactions. A model reaction was conducted with phenyl isocyanate in THF using triethylamine as the catalyst. Last, conversion of PIB-SH directly into a RAFT macro-CTA was accomplished, as shown by 1H NMR, by treatment of PIB-SH with triethylamine in carbon disulfide and subsequent alkylation with 2-bromopropionic acid. (Abstract shortened by UMI.)
Multiple rolling/crimping effects on termination of two summer cover crops in a conservation system
USDA-ARS?s Scientific Manuscript database
A field experiment was initiated in the 2015 growing season at the USDA-NSDL to determine the effectiveness of a prototype two-stage roller/crimper in mechanical termination of two summer cover crops intended for organic systems. The experiment was a randomized complete block design with four replic...
Weight distributions for turbo codes using random and nonrandom permutations
NASA Technical Reports Server (NTRS)
Dolinar, S.; Divsalar, D.
1995-01-01
This article takes a preliminary look at the weight distributions achievable for turbo codes using random, nonrandom, and semirandom permutations. Due to the recursiveness of the encoders, it is important to distinguish between self-terminating and non-self-terminating input sequences. The non-self-terminating sequences have little effect on decoder performance, because they accumulate high encoded weight until they are artificially terminated at the end of the block. From probabilistic arguments based on selecting the permutations randomly, it is concluded that the self-terminating weight-2 data sequences are the most important consideration in the design of constituent codes; higher-weight self-terminating sequences have successively decreasing importance. Also, increasing the number of codes and, correspondingly, the number of permutations makes it more and more likely that the bad input sequences will be broken up by one or more of the permuters. It is possible to design nonrandom permutations that ensure that the minimum distance due to weight-2 input sequences grows roughly as the square root of (2N), where N is the block length. However, these nonrandom permutations amplify the bad effects of higher-weight inputs, and as a result they are inferior in performance to randomly selected permutations. But there are 'semirandom' permutations that perform nearly as well as the designed nonrandom permutations with respect to weight-2 input sequences and are not as susceptible to being foiled by higher-weight inputs.
Konig, Stéphane; Béguet, Anne; Bader, Charles R; Bernheim, Laurent
2006-08-01
In human myoblasts triggered to differentiate, a hyperpolarization, resulting from K+ channel (Kir2.1) activation, allows the generation of an intracellular Ca2+ signal. This signal induces an increase in expression/activity of two key transcription factors of the differentiation process, myogenin and MEF2. Blocking hyperpolarization inhibits myoblast differentiation. The link between hyperpolarization-induced Ca2+ signals and the four main regulatory pathways involved in myoblast differentiation was the object of this study. Of the calcineurin, p38-MAPK, PI3K and CaMK pathways, only the calcineurin pathway was inhibited when Kir2.1-linked hyperpolarization was blocked. The CaMK pathway, although Ca2+ dependent, is unaffected by changes in membrane potential or block of Kir2.1 channels. Concerning the p38-MAPK and PI3K pathways, their activity is present already in proliferating myoblasts and they are unaffected by hyperpolarization or Kir2.1 channel block. We conclude that the Kir2.1-induced hyperpolarization triggers human myoblast differentiation via the activation of the calcineurin pathway, which, in turn, induces expression/activity of myogenin and MEF2.
Schönhofen, Patrícia; de Medeiros, Liana M; Bristot, Ivi Juliana; Lopes, Fernanda M; De Bastiani, Marco A; Kapczinski, Flávio; Crippa, José Alexandre S; Castro, Mauro Antônio A; Parsons, Richard B; Klamt, Fábio
2015-08-01
Cannabidiol (CBD), one of the most abundant Cannabis sativa-derived compounds, has been implicated with neuroprotective effect in several human pathologies. Until now, no undesired side effects have been associated with CBD. In this study, we evaluated CBD's neuroprotective effect in terminal differentiation (mature) and during neuronal differentiation (neuronal developmental toxicity model) of the human neuroblastoma SH-SY5Y cell line. A dose-response curve was performed to establish a sublethal dose of CBD with antioxidant activity (2.5 μM). In terminally differentiated SH-SY5Y cells, incubation with 2.5 μM CBD was unable to protect cells against the neurotoxic effect of glycolaldehyde, methylglyoxal, 6-hydroxydopamine, and hydrogen peroxide (H2O2). Moreover, no difference in antioxidant potential and neurite density was observed. When SH-SY5Y cells undergoing neuronal differentiation were exposed to CBD, no differences in antioxidant potential and neurite density were observed. However, CBD potentiated the neurotoxicity induced by all redox-active drugs tested. Our data indicate that 2.5 μM of CBD, the higher dose tolerated by differentiated SH-SY5Y neuronal cells, does not provide neuroprotection for terminally differentiated cells and shows, for the first time, that exposure of CBD during neuronal differentiation could sensitize immature cells to future challenges with neurotoxins.
Nobuhara, Chloe K; DeVos, Sarah L; Commins, Caitlin; Wegmann, Susanne; Moore, Benjamin D; Roe, Allyson D; Costantino, Isabel; Frosch, Matthew P; Pitstick, Rose; Carlson, George A; Hock, Christoph; Nitsch, Roger M; Montrasio, Fabio; Grimm, Jan; Cheung, Anne E; Dunah, Anthone W; Wittmann, Marion; Bussiere, Thierry; Weinreb, Paul H; Hyman, Bradley T; Takeda, Shuko
2017-06-01
The clinical progression of Alzheimer disease (AD) is associated with the accumulation of tau neurofibrillary tangles, which may spread throughout the cortex by interneuronal tau transfer. If so, targeting extracellular tau species may slow the spreading of tau pathology and possibly cognitive decline. To identify suitable target epitopes, we tested the effects of a panel of tau antibodies on neuronal uptake and aggregation in vitro. Immunodepletion was performed on brain extract from tau-transgenic mice and postmortem AD brain and added to a sensitive fluorescence resonance energy transfer-based tau uptake assay to assess blocking efficacy. The antibodies reduced tau uptake in an epitope-dependent manner: N-terminal (Tau13) and middomain (6C5 and HT7) antibodies successfully prevented uptake of tau species, whereas the distal C-terminal-specific antibody (Tau46) had little effect. Phosphorylation-dependent (40E8 and p396) and C-terminal half (4E4) tau antibodies also reduced tau uptake despite removing less total tau by immunodepletion, suggesting specific interactions with species involved in uptake. Among the seven antibodies evaluated, 6C5 most efficiently blocked uptake and subsequent aggregation. More important, 6C5 also blocked neuron-to-neuron spreading of tau in a unique three-chamber microfluidic device. Furthermore, 6C5 slowed down the progression of tau aggregation even after uptake had begun. Our results imply that not all antibodies/epitopes are equally robust in terms of blocking tau uptake of human AD-derived tau species. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
31 CFR 570.403 - Termination and acquisition of an interest in blocked property.
Code of Federal Regulations, 2012 CFR
2012-07-01
... transfer of property (including any property interest) away from the Government of Libya or a person, such... transferred or attempted to be transferred to the Government of Libya or any other person whose property and... which the Government of Libya or that person has an interest and therefore blocked. ...
31 CFR 570.403 - Termination and acquisition of an interest in blocked property.
Code of Federal Regulations, 2011 CFR
2011-07-01
... transfer of property (including any property interest) away from the Government of Libya or a person, such... transferred or attempted to be transferred to the Government of Libya or any other person whose property and... which the Government of Libya or that person has an interest and therefore blocked. ...
31 CFR 570.403 - Termination and acquisition of an interest in blocked property.
Code of Federal Regulations, 2014 CFR
2014-07-01
... transfer of property (including any property interest) away from the Government of Libya or a person, such... transferred or attempted to be transferred to the Government of Libya or any other person whose property and... which the Government of Libya or that person has an interest and therefore blocked. ...
31 CFR 570.403 - Termination and acquisition of an interest in blocked property.
Code of Federal Regulations, 2013 CFR
2013-07-01
... transfer of property (including any property interest) away from the Government of Libya or a person, such... transferred or attempted to be transferred to the Government of Libya or any other person whose property and... which the Government of Libya or that person has an interest and therefore blocked. ...
Huggins, L G; Lennarz, W J
2001-08-01
In the sea urchin embryo, inhibition of collagen processing and deposition affects both gastrulation and embryonic skeleton (spicule) formation. It has been found that cell-free extracts of gastrula-stage embryos of Strongylocentrotus purpuratus contain a procollagen C-terminal proteinase (PCP) activity. A rationally designed non-peptidic organic hydroxamate, which is a potent and specific inhibitor of human recombinant PCP (FG-HL1), inhibited both the sea urchin PCP as well as purified chick embryo tendon PCP. In the sea urchin embryo, FG-HL1 inhibited gastrulation and blocked spicule elongation, but not spicule nucleation. A related compound with a terminal carboxylate rather than a hydroxamate (FG-HL2) did not inhibit either chick PCP or sea urchin PCP activity in a procollagen-cleavage assay. However, FG-HL2 did block spicule elongation without affecting spicule nucleation or gastrulation. Neither compound was toxic, because their effects were reversible on removal. It was shown that the inhibition of gastrulation and spicule elongation were independent of tissue specification events, because both the endoderm specific marker Endo1 and the primary mesenchyme cell specific marker SM50 were expressed in embryos treated with FG-HL1 and FG-HL2. These results suggest that disruption of the fibrillar collagen deposition in the blastocoele blocks the cell movements of gastrulation and may disrupt the positional information contained within the extracellular matrix, which is necessary for spicule formation.
Tang, Yi; Liu, Lin; Wang, Pei; Chen, Donglei; Wu, Ziqiang; Tang, Chunbo
2017-12-01
Mesenchymal stem cell (MSC)-mediated periodontal tissue regeneration is considered to be a promising method for periodontitis treatment. The molecular mechanism of functional regulation by MSCs remains unclear, thus limiting their application. Our previous study discovered that Periostin (POSTN) promoted the migration and osteogenic differentiation of periodontal ligament mesenchymal stem cells (PDLSCs), but it is still unclear whether POSTN is able to restore the regenerative potential of PDLSCs under inflammatory conditions. In this study, we investigated the effect of POSTN on PDLSCs under inflammatory conditions and its mechanism. PDLSCs were isolated from periodontal ligament tissue. TNF-α was used at 10 ng/mL to mimic inflammatory conditions. Lentivirus POSTN shRNA was used to knock down POSTN. Recombinant human POSTN (rhPOSTN) was used to stimulate PDLSCs. A scratch assay was used to analyse cell migration. Alkaline phosphatase (ALP) activity, Alizarin Red staining and expression of osteogenesis-related genes were used to investigate the osteogenic differentiation potential. Western blot analysis was used to detect the mitogen-activated protein kinases (MAPK) and AKT signalling pathways. After a 10 ng/mL TNF-α treatment, knockdown of POSTN impeded scratch closure, inhibited ALP activity and mineralization in vitro, and decreased expression of RUNX2, OSX, OPN and OCN in PDLSCs, while 75 ng/mL rhPOSTN significantly accelerated scratch closure, enhanced ALP activity and mineralization in vitro, and increased expression of RUNX2, OSX, OPN and OCN. In addition, knockdown of POSTN inhibited expression of phosphorylated c-Jun N-terminal kinase (p-JNK), while 75 ng/mL rhPOSTN increased expression of p-JNK in PDLSCs with TNF-α treatment. Furthermore, inhibition of JNK by its inhibitor SP600125 dramatically blocked POSTN-enhanced scratch closure, ALP activity and mineralization in PDLSCs. Our results revealed that POSTN might promote the migration and osteogenic differentiation potential of PDLSCs via the JNK pathway, providing insight into the mechanism underlying MSC biology under inflammatory conditions and identifying a potential target for improving periodontal tissue regeneration. © 2017 John Wiley & Sons Ltd.
Trosko, James E.; Kang, Kyung-Sun
2012-01-01
The evolutionary transition from single cells to the metazoan forced the appearance of adult stem cells and a hypoxic niche, when oxygenation of the environment forced the appearance of oxidative phosphorylation from that of glycolysis. The prevailing paradigm in the cancer field is that cancers start from the “immortalization” or “re-programming” of a normal, differentiated cell with many mitochondria, that metabolize via oxidative phosphorylation. This paradigm has been challenged with one that assumes that the target cell for carcinogenesis is the normal, immortal adult stem cell, with few mitochondria. This adult organ-specific stem cell is blocked from “mortalizing” or from “programming” to be terminally differentiated. Two hypotheses have been offered to explain cancers, namely, the “stem cell theory” and the “de-differentiation” or “re-programming” theory. This Commentary postulates that the paleochemistry of the oceans, which, initially, provided conditions for life’ s energy to arise via glycolysis, changed to oxidative phosphorylation for life’ s processes. In doing so, stem cells evolved, within hypoxic niches, to protect the species germinal and somatic genomes. This Commentary provides support for the “stem cell theory”, in that cancer cells, which, unlike differentiated cells, have few mitochondria and metabolize via glycolysis. The major argument against the “de-differentiation theory” is that, if re-programming of a differentiated cell to an “induced pluri-potent stem cell” happened in an adult, teratomas, rather than carcinomas, should be the result. PMID:24298354
Energy storage cell impedance measuring apparatus, methods and related systems
Morrison, John L.; Morrison, William H.; Christophersen, Jon P.
2017-12-26
Energy storage cell impedance testing devices, circuits, and related methods are disclosed. An energy storage cell impedance measuring device includes a sum of sinusoids (SOS) current excitation circuit including differential current sources configured to isolate a ground terminal of the differential current sources from a positive terminal and a negative terminal of an energy storage cell. A method includes applying an SOS signal comprising a sum of sinusoidal current signals to the energy storage cell with the SOS current excitation circuit, each of the sinusoidal current signals oscillating at a different one of a plurality of different frequencies. The method also includes measuring an electrical signal at a positive terminal and a negative terminal of the energy storage cell, and computing an impedance of the energy storage cell at each of the plurality of different frequencies using the measured electrical signal.
Anti-adipogenic effects of KD025 (SLx-2119), a ROCK2-specific inhibitor, in 3T3-L1 cells.
Diep, Duy Trong Vien; Hong, Kyungki; Khun, Triyeng; Zheng, Mei; Ul-Haq, Asad; Jun, Hee-Sook; Kim, Young-Bum; Chun, Kwang-Hoon
2018-02-06
Adipose tissue is a specialized organ that synthesizes and stores fat. During adipogenesis, Rho and Rho-associated kinase (ROCK) 2 are inactivated, which enhances the expression of pro-adipogenic genes and induces the loss of actin stress fibers. Furthermore, pan ROCK inhibitors enhance adipogenesis in 3T3-L1 cells. Here, we show that KD025 (formerly known as SLx-2119), a ROCK2-specific inhibitor, suppresses adipogenesis in 3T3-L1 cells partially through a ROCK2-independent mechanism. KD025 downregulated the expression of key adipogenic transcription factors PPARγ and C/EBPα during adipogenesis in addition to lipogenic factors FABP4 and Glut4. Interestingly, adipogenesis was blocked by KD025 during days 1~3 of differentiation; after differentiation terminated, lipid accumulation was unaffected. Clonal expansion occurred normally in KD025-treated cells. These results suggest that KD025 could function during the intermediate stage after clonal expansion. Data from depletion of ROCKs showed that KD025 suppressed cell differentiation partially independent of ROCK's activity. Furthermore, no further loss of actin stress fibers emerged in KD025-treated cells during and after differentiation compared to control cells. These results indicate that in contrast to the pro-adipogenic effect of pan-inhibitors, KD025 suppresses adipogenesis in 3T3-L1 cells by regulating key pro-adipogenic factors. This outcome further implies that KD025 could be a potential anti-adipogenic/obesity agent.
ERIC Educational Resources Information Center
Karsina, Allen; Thompson, Rachel H.; Rodriguez, Nicole M.; Vanselow, Nicholas R.
2012-01-01
We evaluated the effects of differential reinforcement and accurate verbal rules with feedback on the preference for choice and the verbal reports of 6 adults. Participants earned points on a probabilistic schedule by completing the terminal links of a concurrent-chains arrangement in a computer-based game of chance. In free-choice terminal links,…
Kobayashi, Ryuji; Patenia, Rebecca; Ashizawa, Satoshi; Vykoukal, Jody
2009-07-21
Alternative translation initiation is a mechanism whereby functionally altered proteins are produced from a single mRNA. Internal initiation of translation generates N-terminally truncated protein isoforms, but such isoforms observed in immunoblot analysis are often overlooked or dismissed as degradation products. We identified an N-terminally truncated isoform of human Dok-1 with N-terminal acetylation as seen in the wild-type. This Dok-1 isoform exhibited distinct perinuclear localization whereas the wild-type protein was distributed throughout the cytoplasm. Targeted analysis of blocked N-terminal peptides provides rapid identification of protein isoforms and could be widely applied for the general evaluation of perplexing immunoblot bands.
Gabet, A-S; Coulon, S; Fricot, A; Vandekerckhove, J; Chang, Y; Ribeil, J-A; Lordier, L; Zermati, Y; Asnafi, V; Belaid, Z; Debili, N; Vainchenker, W; Varet, B; Hermine, O; Courtois, G
2011-01-01
Stem cell factor (SCF) and erythropoietin are strictly required for preventing apoptosis and stimulating proliferation, allowing the differentiation of erythroid precursors from colony-forming unit-E to the polychromatophilic stage. In contrast, terminal maturation to generate reticulocytes occurs independently of cytokine signaling by a mechanism not fully understood. Terminal differentiation is characterized by a sequence of morphological changes including a progressive decrease in cell size, chromatin condensation in the nucleus and disappearance of organelles, which requires transient caspase activation. These events are followed by nucleus extrusion as a consequence of plasma membrane and cytoskeleton reorganization. Here, we show that in early step, SCF stimulates the Rho/ROCK pathway until the basophilic stage. Thereafter, ROCK-1 is activated independently of Rho signaling by caspase-3-mediated cleavage, allowing terminal maturation at least in part through phosphorylation of the light chain of myosin II. Therefore, in this differentiation system, final maturation occurs independently of SCF signaling through caspase-induced ROCK-1 kinase activation. PMID:21072057
Fimia, Gian Maria; Gottifredi, Vanesa; Bellei, Barbara; Ricciardi, Maria Rosaria; Tafuri, Agostino; Amati, Paolo; Maione, Rossella
1998-01-01
It is commonly accepted that pathways that regulate proliferation/differentiation processes, if altered in their normal interplay, can lead to the induction of programmed cell death. In a previous work we reported that Polyoma virus Large Tumor antigen (PyLT) interferes with in vitro terminal differentiation of skeletal myoblasts by binding and inactivating the retinoblastoma antioncogene product. This inhibition occurs after the activation of some early steps of the myogenic program. In the present work we report that myoblasts expressing wild-type PyLT, when subjected to differentiation stimuli, undergo cell death and that this cell death can be defined as apoptosis. Apoptosis in PyLT-expressing myoblasts starts after growth factors removal, is promoted by cell confluence, and is temporally correlated with the expression of early markers of myogenic differentiation. The block of the initial events of myogenesis by transforming growth factor β or basic fibroblast growth factor prevents PyLT-induced apoptosis, while the acceleration of this process by the overexpression of the muscle-regulatory factor MyoD further increases cell death in this system. MyoD can induce PyLT-expressing myoblasts to accumulate RB, p21, and muscle- specific genes but is unable to induce G00 arrest. Several markers of different phases of the cell cycle, such as cyclin A, cdk-2, and cdc-2, fail to be down-regulated, indicating the occurrence of cell cycle progression. It has been frequently suggested that apoptosis can result from an unbalanced cell cycle progression in the presence of a contrasting signal, such as growth factor deprivation. Our data involve differentiation pathways, as a further contrasting signal, in the generation of this conflict during myoblast cell apoptosis. PMID:9614186
Xu, Miranda L; Bi, Cathy W C; Liu, Etta Y L; Dong, Tina T X; Tsim, Karl W K
2017-07-28
Acetylcholinesterase (AChE) hydrolyzes acetylcholine to terminate cholinergic transmission in neurons. Apart from this AChE activity, emerging evidence suggests that AChE could also function in other, non-neuronal cells. For instance, in bone, AChE exists as a proline-rich membrane anchor (PRiMA)-linked globular form in osteoblasts, in which it is proposed to play a noncholinergic role in differentiation. However, this hypothesis is untested. Here, we found that in cultured rat osteoblasts, AChE expression was increased in parallel with osteoblastic differentiation. Because several lines of evidence indicate that AChE activity in osteoblast could be triggered by Wnt/β-catenin signaling, we added recombinant human Wnt3a to cultured osteoblasts and found that this addition induced expression of the ACHE gene and protein product. This Wnt3a-induced AChE expression was blocked by the Wnt-signaling inhibitor Dickkopf protein-1 (DKK-1). We hypothesized that the Runt-related transcription factor 2 (Runx2), a downstream transcription factor in Wnt/β-catenin signaling, is involved in AChE regulation in osteoblasts, confirmed by the identification of a Runx2-binding site in the ACHE gene promoter, further corroborated by ChIP. Of note, Runx2 overexpression in osteoblasts induced AChE expression and activity of the ACHE promoter tagged with the luciferase gene. Moreover, deletion of the Runx2-binding site in the ACHE promoter reduced its activity during osteoblastic differentiation, and addition of 5-azacytidine and trichostatin A to differentiating osteoblasts affected AChE expression, suggesting epigenetic regulation of the ACHE gene. We conclude that AChE plays a role in osteoblastic differentiation and is regulated by both Wnt3a and Runx2. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
House, John S.; Zhu, Songyun; Ranjan, Rakesh; Linder, Keith; Smart, Robert C.
2010-01-01
C/EBPα and C/EBPβ are bZIP transcription factors that are highly expressed in the interfollicular epidermis and sebaceous glands of skin and yet germ line deletion of either family member alone has only mild or no effect on keratinocyte biology and their role in sebocyte biology has never been examined. To address possible functional redundancies and reveal functional roles of C/EBPα and C/EBPβ in postnatal skin, mouse models were developed in which either family member could be acutely ablated alone or together in the epidermis and sebaceous glands of adult mice. Acute removal of either C/EBPα or C/EBPβ alone in adult mouse skin revealed modest to no discernable changes in epidermis or sebaceous glands. In contrast, co-ablation of C/EBPα and C/EBPβ in postnatal epidermis resulted in disruption of stratified squamous differentiation characterized by hyperproliferation of basal and suprabasal keratinocytes and a defective basal to spinous keratinocyte transition involving an expanded basal compartment and a diminished and delayed spinous compartment. Acute co-ablation of C/EBPα and C/EBPβ in sebaceous glands resulted in severe morphological defects, and sebocyte differentiation was blocked as determined by lack of sebum production and reduced expression of stearoyl-CoA desaturase (SCD3) and melanocortin 5 receptor (MC5R), two markers of terminal sebocyte differentiation. Specialized sebocytes of Meibomian glands and preputial glands were also affected. Our results indicate that in adult mouse skin, C/EBPα and C/EBPβ are critically involved in regulating sebocyte differentiation and epidermal homeostasis involving the basal to spinous keratinocyte transition and basal cell cycle withdrawal. PMID:20352127
House, John S; Zhu, Songyun; Ranjan, Rakesh; Linder, Keith; Smart, Robert C
2010-03-23
C/EBPalpha and C/EBPbeta are bZIP transcription factors that are highly expressed in the interfollicular epidermis and sebaceous glands of skin and yet germ line deletion of either family member alone has only mild or no effect on keratinocyte biology and their role in sebocyte biology has never been examined. To address possible functional redundancies and reveal functional roles of C/EBPalpha and C/EBPbeta in postnatal skin, mouse models were developed in which either family member could be acutely ablated alone or together in the epidermis and sebaceous glands of adult mice. Acute removal of either C/EBPalpha or C/EBPbeta alone in adult mouse skin revealed modest to no discernable changes in epidermis or sebaceous glands. In contrast, co-ablation of C/EBPalpha and C/EBPbeta in postnatal epidermis resulted in disruption of stratified squamous differentiation characterized by hyperproliferation of basal and suprabasal keratinocytes and a defective basal to spinous keratinocyte transition involving an expanded basal compartment and a diminished and delayed spinous compartment. Acute co-ablation of C/EBPalpha and C/EBPbeta in sebaceous glands resulted in severe morphological defects, and sebocyte differentiation was blocked as determined by lack of sebum production and reduced expression of stearoyl-CoA desaturase (SCD3) and melanocortin 5 receptor (MC5R), two markers of terminal sebocyte differentiation. Specialized sebocytes of Meibomian glands and preputial glands were also affected. Our results indicate that in adult mouse skin, C/EBPalpha and C/EBPbeta are critically involved in regulating sebocyte differentiation and epidermal homeostasis involving the basal to spinous keratinocyte transition and basal cell cycle withdrawal.
48 CFR 49.603-4 - Cost-reimbursement contracts-complete termination, with settlement limited to fee.
Code of Federal Regulations, 2010 CFR
2010-10-01
... settlement limited to fee. [Insert the following in Block 14 of SF 30 for settlement of cost-reimbursement... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Cost-reimbursement contracts-complete termination, with settlement limited to fee. 49.603-4 Section 49.603-4 Federal...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-13
... of the electrical terminal at the left and right flightdeck window 1, and corrective actions if necessary. This AD also allows for replacing the flightdeck window 1 with a new improved flightdeck window... flightdeck window 1. This AD results from several reports of electrical arcs at the terminal blocks of the...
Numerical solution of second order ODE directly by two point block backward differentiation formula
NASA Astrophysics Data System (ADS)
Zainuddin, Nooraini; Ibrahim, Zarina Bibi; Othman, Khairil Iskandar; Suleiman, Mohamed; Jamaludin, Noraini
2015-12-01
Direct Two Point Block Backward Differentiation Formula, (BBDF2) for solving second order ordinary differential equations (ODEs) will be presented throughout this paper. The method is derived by differentiating the interpolating polynomial using three back values. In BBDF2, two approximate solutions are produced simultaneously at each step of integration. The method derived is implemented by using fixed step size and the numerical results that follow demonstrate the advantage of the direct method as compared to the reduction method.
Portella, G; Vitagliano, D; Li, Z; Sferratore, F; Santoro, M; Vecchio, G; Fusco, A
1998-01-01
The PC Cl 3 cell line is a well-characterized epithelial cell line of rat thyroid origin. This cell line retains in vitro the typical markers of thyroid differentiation: thyroglobulin (TG) synthesis and secretion, iodide uptake, thyroperoxidase (TPO) expression, and dependency on TSH for growth. Although the differentiated phenotype of thyroid cells has been relatively well described, the molecular mechanisms that regulate both differentiation and neoplastic transformation of thyroid cells still need to be investigated in detail. Protein kinase C (PKC), the target of tetradecanoylphorbol acetate (TPA), regulates growth and differentiation of several cell types. Here we show that treatment of PC Cl 3 cells with TPA induces an acute block of thyroid differentiation. TPA-treated PC Cl 3 cells are unable to trap iodide and the expression levels of thyroglobulin, TSH receptor, and TPO genes are drastically reduced by TPA treatment. This differentiation block is not caused by a reduced expression of one of the master genes of thyroid differentiation, the thyroid transcription factor 1 (TTF-1). TPA-treated PC Cl 3 cells display an increased growth rate indicating that, in addition to the differentiation block, TPA also significantly affects the growth regulation of thyroid cells. Finally, TPA treatment dramatically increases the number of transformation foci induced in PC Cl 3 cells by retroviruses carrying v-Ki-ras, v-Ha-ras, and v-mos oncogenes. These findings support the notion that the PKC pathway can influence proliferation, differentiation, and neoplastic transformation of thyroid cells in culture.
Wang, Suyue; Veldman, Geertruida M; Stahl, Mark; Xing, Yuzhe; Tobin, James F; Erbe, David V
2002-09-02
Antagonists of the B7 family of co-stimulatory molecules have the potential for altering immune responses therapeutically. To better define the requirements for such inhibitors, we have mapped the binding of an entire panel of blocking antibodies specific for human B7.1. By mutagenesis, each of the residues critical for blocking antibody binding appeared to fall entirely within the N-terminal V-set domain of B7.1. Thus, although antibody-antigen interacting surfaces can be quite large, these results indicate that a relatively small portion of the GFCC'C" face of this domain is crucial for further antagonist development.
Method of making hermetic seals for hermetic terminal assemblies
Hsu, John S.; Marlino, Laura D.; Ayers, Curtis W.
2010-04-13
This invention teaches methods of making a hermetic terminal assembly comprising the steps of: inserting temporary stops, shims and jigs on the bottom face of a terminal assembly thereby blocking assembly core open passageways; mounting the terminal assembly inside a vacuum chamber using a temporary assembly perimeter seal and flange or threaded assembly interfaces; mixing a seal admixture and hardener in a mixer conveyor to form a polymer seal material; conveying the polymer seal material into a polymer reservoir; feeding the polymer seal material from the reservoir through a polymer outlet valve and at least one polymer outlet tube into the terminal assembly core thereby filling interstitial spaces in the core adjacent to service conduits, temporary stop, and the terminal assembly casing; drying the polymer seal material at room temperature thereby hermetically sealing the core of the terminal assembly; removing the terminal assembly from the vacuum chamber, and; removing the temporary stops, shims.
Cohen-Krausz, Sara; Cabahug, Pamela C; Trachtenberg, Shlomo
2011-07-08
Spiroplasmas belong to the class Mollicutes, representing the minimal, free-living, and self-replicating forms of life. Spiroplasmas are helical wall-less bacteria and the only ones known to swim by means of a linear motor (rather than the near-universal rotary bacterial motor). The linear motor follows the shortest path along the cell's helical membranal tube. The motor is composed of a flat monolayered ribbon of seven parallel fibrils and is believed to function in controlling cell helicity and motility through dynamic, coordinated, differential length changes in the fibrils. The latter cause local perturbations of helical symmetry, which are essential for net directional displacement in environments with a low Reynolds number. The underlying fibrils' core building block is a circular tetramer of the 59-kDa protein Fib. The fibrils' differential length changes are believed to be driven by molecular switching of Fib, leading consequently to axial ratio and length changes in tetrameric rings. Using cryo electron microscopy, diffractometry, single-particle analysis of isolated ribbons, and sequence analyses of Fib, we determined the overall molecular organization of the Fib monomer, tetramer, fibril, and linear motor of Spiroplasma melliferum BC3 that underlies cell geometry and motility. Fib appears to be a bidomained molecule, of which the N-terminal half is apparently a globular phosphorylase. By a combination of reversible rotation and diagonal shift of Fib monomers, the tetramer adopts either a cross-like nonhanded conformation or a ring-like handed conformation. The sense of Fib rotation may determine the handedness of the linear motor and, eventually, of the cell. A further change in the axial ratio of the ring-like tetramers controls fibril lengths and the consequent helical geometry. Analysis of tetramer quadrants from adjacent fibrils clearly demonstrates local differential fibril lengths. Copyright © 2011 Elsevier Ltd. All rights reserved.
Braiterman, Lelita T.; Gupta, Arnab; Chaerkady, Raghothama; Cole, Robert N.; Hubbard, Ann L.
2015-01-01
The Wilson disease protein ATP7B exhibits copper-dependent trafficking. In high copper, ATP7B exits the trans-Golgi network and moves to the apical domain of hepatocytes where it facilitates elimination of excess copper through the bile. Copper levels also affect ATP7B phosphorylation. ATP7B is basally phosphorylated in low copper and becomes more phosphorylated (“hyperphosphorylated”) in elevated copper. The functional significance of hyperphosphorylation remains unclear. We showed that hyperphosphorylation occurs even when ATP7B is restricted to the trans-Golgi network. We performed comprehensive phosphoproteomics of ATP7B in low versus high copper, which revealed that 24 Ser/Thr residues in ATP7B could be phosphorylated, and only four of these were copper-responsive. Most of the phosphorylated sites were found in the N- and C-terminal cytoplasmic domains. Using truncation and mutagenesis, we showed that inactivation or elimination of all six N-terminal metal binding domains did not block copper-dependent, reversible, apical trafficking but did block hyperphosphorylation in hepatic cells. We showed that nine of 15 Ser/Thr residues in the C-terminal domain were phosphorylated. Inactivation of 13 C-terminal phosphorylation sites reduced basal phosphorylation and eliminated hyperphosphorylation, suggesting that copper binding at the N terminus propagates to the ATP7B C-terminal region. C-terminal mutants with either inactivating or phosphomimetic substitutions showed little effect upon copper-stimulated trafficking, indicating that trafficking does not depend on phosphorylation at these sites. Thus, our studies revealed that copper-dependent conformational changes in the N-terminal region lead to hyperphosphorylation at C-terminal sites, which seem not to affect trafficking and may instead fine-tune copper sequestration. PMID:25666620
Osteogenic cell differentiation on H-terminated and O-terminated nanocrystalline diamond films
Liskova, Jana; Babchenko, Oleg; Varga, Marian; Kromka, Alexander; Hadraba, Daniel; Svindrych, Zdenek; Burdikova, Zuzana; Bacakova, Lucie
2015-01-01
Nanocrystalline diamond (NCD) films are promising materials for bone implant coatings because of their biocompatibility, chemical resistance, and mechanical hardness. Moreover, NCD wettability can be tailored by grafting specific atoms. The NCD films used in this study were grown on silicon substrates by microwave plasma-enhanced chemical vapor deposition and grafted by hydrogen atoms (H-termination) or oxygen atoms (O-termination). Human osteoblast-like Saos-2 cells were used for biological studies on H-terminated and O-terminated NCD films. The adhesion, growth, and subsequent differentiation of the osteoblasts on NCD films were examined, and the extracellular matrix production and composition were quantified. The osteoblasts that had been cultivated on the O-terminated NCD films exhibited a higher growth rate than those grown on the H-terminated NCD films. The mature collagen fibers were detected in Saos-2 cells on both the H-terminated and O-terminated NCD films; however, the quantity of total collagen in the extracellular matrix was higher on the O-terminated NCD films, as were the amounts of calcium deposition and alkaline phosphatase activity. Nevertheless, the expression of genes for osteogenic markers – type I collagen, alkaline phosphatase, and osteocalcin – was either comparable on the H-terminated and O-terminated films or even lower on the O-terminated films. In conclusion, the higher wettability of the O-terminated NCD films is promising for adhesion and growth of osteoblasts. In addition, the O-terminated surface also seems to support the deposition of extracellular matrix proteins and extracellular matrix mineralization, and this is promising for better osteoconductivity of potential bone implant coatings. PMID:25670900
Tetteh, Kevin K A; Conway, David J
2011-10-13
Merozoite surface protein 1 (MSP1) of Plasmodium falciparum has been implicated as an important target of acquired immunity, and candidate components for a vaccine include polymorphic epitopes in the N-terminal polymorphic block 2 region. We designed a polyvalent hybrid recombinant protein incorporating sequences of the three major allelic types of block 2 together with a composite repeat sequence of one of the types and N-terminal flanking T cell epitopes, and compared this with a series of recombinant proteins containing modular sub-components and similarly expressed in Escherichia coli. Immunogenicity of the full polyvalent hybrid protein was tested in both mice and rabbits, and comparative immunogenicity studies of the sub-component modules were performed in mice. The full hybrid protein induced high titre antibodies against each of the major block 2 allelic types expressed as separate recombinant proteins and against a wide range of allelic types naturally expressed by a panel of diverse P. falciparum isolates, while the sub-component modules had partial antigenic coverage as expected. This encourages further development and evaluation of the full MSP1 block 2 polyvalent hybrid protein as a candidate blood-stage component of a malaria vaccine. Copyright © 2011 Elsevier Ltd. All rights reserved.
Church, Victoria A; Pressman, Sigal; Isaji, Mamiko; Truscott, Mary; Cizmecioglu, Nihal Terzi; Buratowski, Stephen; Frolov, Maxim V; Carthew, Richard W
2017-09-26
The cellular abundance of mature microRNAs (miRNAs) is dictated by the efficiency of nuclear processing of primary miRNA transcripts (pri-miRNAs) into pre-miRNA intermediates. The Microprocessor complex of Drosha and DGCR8 carries this out, but it has been unclear what controls Microprocessor's differential processing of various pri-miRNAs. Here, we show that Drosophila DGCR8 (Pasha) directly associates with the C-terminal domain of the RNA polymerase II elongation complex when it is phosphorylated by the Cdk9 kinase (pTEFb). When association is blocked by loss of Cdk9 activity, a global change in pri-miRNA processing is detected. Processing of pri-miRNAs with a UGU sequence motif in their apical junction domain increases, while processing of pri-miRNAs lacking this motif decreases. Therefore, phosphorylation of RNA polymerase II recruits Microprocessor for co-transcriptional processing of non-UGU pri-miRNAs that would otherwise be poorly processed. In contrast, UGU-positive pri-miRNAs are robustly processed by Microprocessor independent of RNA polymerase association. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Akagi, Junji; Baba, Hideo; Sekine, Teruaki; Ogawa, Kenji
2018-01-01
Treatment with activated autologous lymphocytes (AALs) has demonstrated mixed results for cancer treatment. Preliminary results revealed that the proportion of cluster of differentiation (CD)8+CD57+ T cells is significantly increased in AALs, indicating that they are able to determine treatment outcome. Therefore, the role of CD8+CD57+ T cells in AAL efficacy was investigated. T lymphocytes were isolated from 35 patients with stage IV gastric carcinomas (17 men and 18 women; aged 41–84 years) receiving immunotherapy using AALs (IAAL). Using fluorescence activated cell sorting, CD8, CD27, CD57, and forkhead box protein 3 (FOXP3) expression was investigated on CD8+ T cell populations in CD8+ T cell differentiation prior to and following in vitro culture. The association between these populations and progression-free survival (PFS) was analyzed using Cox univariate, and multivariate analyses and Kaplan-Meier survival analysis. CD57 expression was negative in early-differentiated CD8+ T cells (CD27+CD8+CD57−), and positive in intermediate- (CD27+CD8+CD57+) and terminal- (CD27−CD8+CD57+) differentiated CD8+ T cells. Univariate analysis revealed a significant association between terminal-CD8+ T cells and longer PFS times (P=0.035), whereas CD57−FOXP3+CD8+ T cells were associated with shorter PFS times. Multivariate analysis revealed that CD57−FOXP3+CD8+ T cells was an independent poor prognostic factor, whereas CD57+FOXP3+CD8+ T cells were not associated with PFS. Although IAAL increased the proportion of terminal-CD8+ T cells relative to the pre-culture proportions, patients with a high CD57−FOXP3+CD8+ T cell percentage exhibited repressed terminal-CD8+ T cell induction, leading to poor patient prognosis. Terminally differentiated CD27−CD8+CD57+ T cells were responsible for the effectiveness of AALs; however, CD57−FOXP3+CD8+ T cells abrogated their efficacy, possibly by inhibiting their induction.
Raju, Dinesh V; Shah, Deep J; Wright, Terrence M; Hall, Randy A; Smith, Yoland
2006-11-10
The striatum is divided into two compartments named the patch (or striosome) and the matrix. Although these two compartments can be differentiated by their neurochemical content or afferent and efferent projections, the synaptology of inputs to these striatal regions remains poorly characterized. By using the vesicular glutamate transporters vGluT1 and vGluT2, as markers of corticostriatal and thalamostriatal projections, respectively, we demonstrate a differential pattern of synaptic connections of these two pathways between the patch and the matrix compartments. We also demonstrate that the majority of vGluT2-immunolabeled axon terminals form axospinous synapses, suggesting that thalamic afferents, like corticostriatal inputs, terminate preferentially onto spines in the striatum. Within both compartments, more than 90% of vGluT1-containing terminals formed axospinous synapses, whereas 87% of vGluT2-positive terminals within the patch innervated dendritic spines, but only 55% did so in the matrix. To characterize further the source of thalamic inputs that could account for the increase in axodendritic synapses in the matrix, we undertook an electron microscopic analysis of the synaptology of thalamostriatal afferents to the matrix compartments from specific intralaminar, midline, relay, and associative thalamic nuclei in rats. Approximately 95% of PHA-L-labeled terminals from the central lateral, midline, mediodorsal, lateral dorsal, anteroventral, and ventral anterior/ventral lateral nuclei formed axospinous synapses, a pattern reminiscent of corticostriatal afferents but strikingly different from thalamostriatal projections arising from the parafascicular nucleus (PF), which terminated onto dendritic shafts. These findings provide the first evidence for a differential pattern of synaptic organization of thalamostriatal glutamatergic inputs to the patch and matrix compartments. Furthermore, they demonstrate that the PF is the sole source of significant axodendritic thalamic inputs to striatal projection neurons. These observations pave the way for understanding differential regulatory mechanisms of striatal outflow from the patch and matrix compartments by thalamostriatal afferents. 2006 Wiley-Liss, Inc.
Steffen, Björn; Knop, Markus; Bergholz, Ulla; Vakhrusheva, Olesya; Rode, Miriam; Köhler, Gabriele; Henrichs, Marcel-Philipp; Bulk, Etmar; Hehn, Sina; Stehling, Martin; Dugas, Martin; Bäumer, Nicole; Tschanter, Petra; Brandts, Christian; Koschmieder, Steffen; Berdel, Wolfgang E; Serve, Hubert; Stocking, Carol; Müller-Tidow, Carsten
2011-04-21
The most frequent translocation t(8;21) in acute myeloid leukemia (AML) generates the chimeric AML1/ETO protein, which blocks differentiation and induces self-renewal in hematopoietic progenitor cells. The underlying mechanisms mediating AML1/ETO-induced self-renewal are largely unknown. Using expression microarray analysis, we identified the Groucho-related amino-terminal enhancer of split (AES) as a consistently up-regulated AML1/ETO target. Elevated levels of AES mRNA and protein were confirmed in AML1/ETO-expressing leukemia cells, as well as in other AML specimens. High expression of AES mRNA or protein was associated with improved survival of AML patients, even in the absence of t(8;21). On a functional level, knockdown of AES by RNAi in AML1/ETO-expressing cell lines inhibited colony formation. Similarly, self-renewal induced by AML1/ETO in primary murine progenitors was inhibited when AES was decreased or absent. High levels of AES expression enhanced formation of immature colonies, serial replating capacity of primary cells, and colony formation in colony-forming unit-spleen assays. These findings establish AES as a novel AML1/ETO-induced target gene that plays an important role in the self-renewal phenotype of t(8;21)-positive AML.
McDermott, Suzanne M.; Carnes, Jason
2015-01-01
KREPB5 is an essential component of ∼20S editosomes in Trypanosoma brucei which contains a degenerate, noncatalytic RNase III domain. To explore the function of this protein, we used a novel approach to make and screen numerous conditional null T. brucei bloodstream form cell lines that express randomly mutagenized KREPB5 alleles. We identified nine single amino acid substitutions that could not complement the conditional loss of wild-type KREPB5. Seven of these were within the RNase III domain, and two were in the C-terminal region that has no homology to known motifs. Exclusive expression of these mutated KREPB5 alleles in the absence of wild-type allele expression resulted in growth inhibition, the loss of ∼20S editosomes, and inhibition of RNA editing in BF cells. Eight of these mutations were lethal in bloodstream form parasites but not in procyclic-form parasites, showing that multiple domains function in a life cycle-dependent manner. Amino acid changes at a substantial number of positions, including up to 7 per allele, allowed complementation and thus did not block KREPB5 function. Hence, the degenerate RNase III domain and a newly identified domain are critical for KREPB5 function and have differential effects between the life cycle stages of T. brucei that differentially edit mRNAs. PMID:26370513
49 CFR 232.205 - Class I brake test-initial terminal inspection.
Code of Federal Regulations, 2010 CFR
2010-10-01
... § 232.205 Class I brake test-initial terminal inspection. (a) Each train and each car in the train shall... tested solid block of cars to the train; (iii) Changing motive power; (iv) Removing or changing the... conduct a brake test pursuant to § 232.209 on those cars added to the train. (B) [Reserved] (b) Except as...
Effect of doublecortin on self-renewal and differentiation in brain tumor stem cells
Santra, Manoranjan; Santra, Sutapa; Buller, Ben; Santra, Kastuv; Nallani, Ankita; Chopp, Michael
2011-01-01
Analysis of Affymetrix Probe data from glioma patient samples in conjuction with patient Kaplan-Meier Survival Plot indicate that expression of a glioma suppressor gene doublecortin (DCX) favors glioma patient survival. From neurosphere formation in culture, Time-Lapse Microscopy video recording and tumor xenograft, we show that DCX synthesis significantly reduces self-renewal of brain tumor stem cells (BTSCs) in human primary glioma (YU-PG, HF66) cells from surgically-removed human glioma specimens and U87 cells in vitro and in vivo. Time-Lapse Microscopic video recording revealed that double transfection of YU-PG, HF66 and U87 cells with DCX and neurabin II caused incomplete cell cycle with failure of cytokinesis, i.e. endomitosis by dividing into three daughter cells from one mother BTSC. Activation of c-jun NH2-terminal kinase 1 (JNK1) after simvastatin (10nM) treatment of DCX+neurabin II+ BTSCs from YU-PG, HF66 and U87 cells induced terminal differentiation into neuron-like cells. TUNEL staining data demonstrated that JNK1 activation also induced apoptosis only in double transfected BTSCs with DCX and neurabin II, but not in single transfected BTSCs from YU-PG, HF66 and U87 cells. Western blot analysis showed that procaspase-3 was induced after DCX transfection and activated after simvastatin treatment in YU-PG, HF66 and U87 BTSCs. Sequential immunoprecipitation and Western blot data revealed that DCX synthesis blocked protein phosphatase-1 (PP1)/caspase-3 protein-protein interaction and increased PP1-DCX interaction. These data demonstrate that DCX synthesis induces apoptosis in BTSCs via a novel JNK1/neurabin II/DCX/PP1/caspase-3 pathway. PMID:21477071
Effect of doublecortin on self-renewal and differentiation in brain tumor stem cells.
Santra, Manoranjan; Santra, Sutapa; Buller, Ben; Santra, Kastuv; Nallani, Ankita; Chopp, Michael
2011-07-01
Analysis of microarray probe data from glioma patient samples, in conjunction with patient Kaplan-Meier survival plots, indicates that expression of a glioma suppressor gene doublecortin (DCX) favors glioma patient survival. From neurosphere formation in culture, time-lapse microscopic video recording, and tumor xenograft, we show that DCX synthesis significantly reduces self-renewal of brain tumor stem cells (BTSC) in human primary glioma (YU-PG, HF66) cells from surgically removed human glioma specimens and U87 cells in vitro and in vivo. Time-lapse microscopic video recording revealed that double transfection of YU-PG, HF66, and U87 cells with DCX and neurabin II caused incomplete cell cycle with failure of cytokinesis, that is, endomitosis by dividing into three daughter cells from one mother BTSC. Activation of c-jun NH2-terminal kinase 1 (JNK1) after simvastatin (10 nM) treatment of DCX(+) neurabin II(+) BTSC from YU-PG, HF66, and U87 cells induced terminal differentiation into neuron-like cells. dUTP nick end labeling data indicated that JNK1 activation also induced apoptosis only in double transfected BTSC with DCX and neurabin II, but not in single transfected BTSC from YU-PG, HF66, and U87 cells. Western blot analysis showed that procaspase-3 was induced after DCX transfection and activated after simvastatin treatment in YU-PG, HF66, and U87 BTSC. Sequential immunoprecipitation and Western blot data revealed that DCX synthesis blocked protein phosphatase-1 (PP1)/caspase-3 protein-protein interaction and increased PP1-DCX interaction. These data show that DCX synthesis induces apoptosis in BTSC through a novel JNK1/neurabin II/DCX/PP1/caspase-3 pathway. © 2011 Japanese Cancer Association.
Kasi, Vijaykumar S.; Kuppuswamy, Dhandapani
1999-01-01
Src family kinases are implicated in cellular proliferation and transformation. Terminally differentiated myocytes have lost the ability to proliferate, indicating the existence of a down-regulatory mechanism(s) for these mitogenic kinases. Here we show that feline cardiomyocyte lysate contains thermostable components that inhibit c-Src kinase in vitro. This inhibitory activity, present predominantly in heart tissue, involves two components acting combinatorially. After purification by sequential chromatography, one component was identified by mass and nuclear magnetic resonance spectroscopies as 5′-AMP, while the other was identified by peptide sequencing as a small heat shock protein (sHSP). 5′-AMP and to a lesser extent 5′-ADP inhibit c-Src when combined with either HSP-27 or HSP-32. Other HSPs, including αB-crystallin, HSP-70, and HSP-90, did not exhibit this effect. The inhibition, observed preferentially on Src family kinases and independent of the Src tyrosine phosphorylation state, occurs via a direct interaction of the c-Src catalytic domain with the inhibitory components. Our study indicates that sHSPs increase the affinity of 5′-AMP for the c-Src ATP binding site, thereby facilitating the inhibition. In vivo, elevation of ATP levels in the cardiomyocytes results in the tyrosine phosphorylation of cellular proteins including c-Src at the activatory site, and this effect is blocked when the 5′-AMP concentration is raised. Thus, this study reveals a novel role for sHSPs and 5′-AMP in the regulation of Src family kinases, presumably for the maintenance of the terminally differentiated state. PMID:10490624
Terminations of DNA synthesis on 'proflavine and light'-treated phi X174 single-stranded DNA.
Piette, J; Calberg-Bacq, C M; Lopez, M; van de Vorst, A
1984-04-05
Bacteriophage phi X174 single-stranded DNA molecules were primed with five different restriction fragments and irradiated with visible light in the presence of proflavine. This photodamaged DNA was used as template for the in vitro complementary chain synthesis by E. coli DNA polymerase I (Klenow fragment). Chain terminations were observed by polyacrylamide gel electrophoresis of the synthesized products and localized by comparison with standard sequencing performed simultaneously on the untreated template. 90% of the chain terminations occurred one nucleotide before a guanine residue in the template strand. More than 80% of the sequenced guanine residues were blocking lesions demonstrating the absence of 'hot-spots' for the photodamaging effect of proflavine. At a defined position, the chain termination frequency increased linearly with the irradiation time and was directly influenced by the proflavine concentration present. An important part of lesions resulted from the action of singlet oxygen produced by excited proflavine as shown by the effect that both NaN3 and 2H2O exerted on the reaction. The induced blocking lesions must be important in vivo since no complete replicative forms could be extracted from cell infected with bacteriophages inactivated by 'proflavine and light' treatment.
Weinhäupl, Katharina; Brennich, Martha; Kazmaier, Uli; Lelievre, Joel; Ballell, Lluis; Goldberg, Alfred; Schanda, Paul; Fraga, Hugo
2018-06-01
Mycobacterium tuberculosis can remain dormant in the host, an ability that explains the failure of many current tuberculosis treatments. Recently, the natural products cyclomarin, ecumicin, and lassomycin have been shown to efficiently kill Mycobacterium tuberculosis persisters. Their target is the N-terminal domain of the hexameric AAA+ ATPase ClpC1, which recognizes, unfolds, and translocates protein substrates, such as proteins containing phosphorylated arginine residues, to the ClpP1P2 protease for degradation. Surprisingly, these antibiotics do not inhibit ClpC1 ATPase activity, and how they cause cell death is still unclear. Here, using NMR and small-angle X-ray scattering, we demonstrate that arginine-phosphate binding to the ClpC1 N-terminal domain induces millisecond dynamics. We show that these dynamics are caused by conformational changes and do not result from unfolding or oligomerization of this domain. Cyclomarin binding to this domain specifically blocked these N-terminal dynamics. On the basis of these results, we propose a mechanism of action involving cyclomarin-induced restriction of ClpC1 dynamics, which modulates the chaperone enzymatic activity leading eventually to cell death. © 2018 Weinhäupl et al.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cawley, D.B.; Simpson, D.L.; Herschman, H.R.
1981-06-01
We have constructed a toxic hybrid protein that is recognized by asialoglycoprotein (ASGP) receptors of cultured rat hepatocytes. The conjugate consists of fragment A of diphtheria toxin (DTA) linked by a disulfide bond to asialofetuin (ASF). This conjugate is highly toxic, inhibiting protein synthesis in primary rat hepatocytes at concentrations as low as 10 pM. The ASF-DTA conjugate was 600 and 1800 times as toxic as diphtheria toxin and DTA, respectively, on primary rat hepatocytes. The ASGP receptor recognizes galactose-terminated proteins. We tested a series of glycoproteins for their ability to block the action of the ASF-DTA conjugate. Fetuin andmore » orosomucoid, two glycoproteins with terminal sialic acid on their oligosaccharide chains, did not block the action of the conjugate. Their galactose-terminated asialo derivatives, ASF and asialoorosomucoid, as expected, did block the action of the conjugate. The N-acetylglucosaminyl-terminated derivative (asialoagalactoorosomucoid) had no appreciable effect on the activity of the conjugate. We tested the ASF-DTA conjugate on six cell types; except for primary rat hepatocytes, none of them were affected by a high concentration (10 nM) of ASF-DTA conjugate. A fetuin-DTA conjugate was less toxic by a factor of 300 than the ASF-DTA conjugate and exerted its effects primarily through non-receptor-mediated mechanisms. The highly toxic ASF-DTA conjugate is cell-type specific, and its action is mediated by a well-characterized receptor, whose mechanism of receptor-ligand internalization has been extensively investigated.« less
Cawley, D B; Simpson, D L; Herschman, H R
1981-01-01
We have constructed a toxic hybrid protein that is recognized by asialoglycoprotein (ASGP) receptors of cultured rat hepatocytes. The conjugate consists of fragment A of diphtheria toxin (DTA) linked by a disulfide bond to asialofetuin (ASF). This conjugate is highly toxic, inhibiting protein synthesis in primary rat hepatocytes at concentrations as low as 10 pM. The ASF-DTA conjugate was 600 and 1800 times as toxic as diphtheria toxin and DTA, respectively, on primary rat hepatocytes. The ASGP receptor recognizes galactose-terminated proteins. We tested a series of glycoproteins for their ability to block the action of the ASF-DTA conjugate. Fetuin and orosomucoid, two glycoproteins with terminal sialic acid on their oligosaccharide chains, did not block the action of the conjugate. Their galactose-terminated asialo derivatives, ASF and asialoorosomucoid, as expected, did block the action of the conjugate. The N-acetylglucosaminyl-terminated derivative (asialogalactoorsomucoid) had no appreciable effect on the activity of the conjugate. We tested the ASF-DTA conjugate on six cell types; except for primary rat hepatocytes, none of them were affected by a high concentration (10 nM) of ASF-DTA conjugate. A fetuin-DTA conjugate was less toxic by a factor of 300 than the ASF-DTA conjugate and exerted its effects primarily through non-receptor-mediated mechanisms. The highly toxic ASF-DTA conjugate is cell-type specific, and its action is mediated by a well-characterized receptor, whose mechanism of receptor-ligand internalization has been extensively investigated. Images PMID:6167984
Ozawa, Shota; Ueda, Shuko; Imamura, Hiromi; Mori, Kiyoshi; Asanuma, Katsuhiko; Yanagita, Motoko; Nakagawa, Takahiko
2015-12-18
Differentiated podocytes, a type of renal glomerular cells, require substantial levels of energy to maintain glomerular physiology. Mitochondria and glycolysis are two major producers of ATP, but the precise roles of each in podocytes remain unknown. This study evaluated the roles of mitochondria and glycolysis in differentiated and differentiating podocytes. Mitochondria in differentiated podocytes are located in the central part of cell body while blocking mitochondria had minor effects on cell shape and migratory ability. In contrast, blocking glycolysis significantly reduced the formation of lamellipodia, a cortical area of these cells, decreased the cell migratory ability and induced the apoptosis. Consistently, the local ATP production in lamellipodia was predominantly regulated by glycolysis. In turn, synaptopodin expression was ameliorated by blocking either mitochondrial respiration or glycolysis. Similar to differentiated podocytes, the differentiating podocytes utilized the glycolysis for regulating apoptosis and lamellipodia formation while synaptopodin expression was likely involved in both mitochondrial OXPHOS and glycolysis. Finally, adult mouse podocytes have most of mitochondria predominantly in the center of the cytosol whereas phosphofructokinase, a rate limiting enzyme for glycolysis, was expressed in foot processes. These data suggest that mitochondria and glycolysis play parallel but distinct roles in differentiated and differentiating podocytes.
Ozawa, Shota; Ueda, Shuko; Imamura, Hiromi; Mori, Kiyoshi; Asanuma, Katsuhiko; Yanagita, Motoko; Nakagawa, Takahiko
2015-01-01
Differentiated podocytes, a type of renal glomerular cells, require substantial levels of energy to maintain glomerular physiology. Mitochondria and glycolysis are two major producers of ATP, but the precise roles of each in podocytes remain unknown. This study evaluated the roles of mitochondria and glycolysis in differentiated and differentiating podocytes. Mitochondria in differentiated podocytes are located in the central part of cell body while blocking mitochondria had minor effects on cell shape and migratory ability. In contrast, blocking glycolysis significantly reduced the formation of lamellipodia, a cortical area of these cells, decreased the cell migratory ability and induced the apoptosis. Consistently, the local ATP production in lamellipodia was predominantly regulated by glycolysis. In turn, synaptopodin expression was ameliorated by blocking either mitochondrial respiration or glycolysis. Similar to differentiated podocytes, the differentiating podocytes utilized the glycolysis for regulating apoptosis and lamellipodia formation while synaptopodin expression was likely involved in both mitochondrial OXPHOS and glycolysis. Finally, adult mouse podocytes have most of mitochondria predominantly in the center of the cytosol whereas phosphofructokinase, a rate limiting enzyme for glycolysis, was expressed in foot processes. These data suggest that mitochondria and glycolysis play parallel but distinct roles in differentiated and differentiating podocytes. PMID:26677804
Wang, Lili; Yang, Jingang; Li, Changling; Xing, Sining; Yu, Ying; Liu, Shuo; Zhao, Song; Ma, Dongchu
2016-10-01
Objective To investigate regulatory role of ribosomal protein S6 kinase 1 (S6K1) in the polyploidization of different megakaryocytic leukemia cell lines at the different differentiation stages. Methods Megakaryocytic leukemia cell lines (Dami, Meg-01 and HEL cells) were induced towards polyploidization by SP600125, a c-Jun N-terminal kinase (JNK) inhibitor. The SP600125-inducing process was blocked by H-89, a cAMP-dependent protein kinase (PKA) inhibitor. The phenotype (CD41a, CD42a and CD42b) and DNA ploidy were detected by flow cytometry. The expression and phosphorylation of S6K1 and related proteins were detected by Western blotting. Results SP600125 induced polyploidization and increased the phosphorylation of eukaryotic initiation factor 4E binding protein 1 (4E-BP1) in Dami, Meg-01 and HEL cells. However, the effect of SP600125 on polyploidization of the three cell lines was different, with the strongest effect on Dami cells and the weakest on Meg-01 cells. Moreover, SP600125 increased the phosphorylation of S6K1 Thr421/Ser424 and decreased the phosphorylation of Thr389 in Dami cells. However, it only increased the phosphorylation of Thr389 in HEL cells and had no effect on the phosphorylation of S6K1 in Meg-01 cells. Interestingly, H-89 only partially blocked the polyploidization of Dami cells, although it decreased the phosphorylation of 4E-BP1 in all SP600125-induced three cell lines. Noticeably, H-89 decreased the phosphorylation of S6K1 Thr421/Ser424 and increased the phosphorylation of Thr389 in Dami cells. However, H-89 had no effect on the phosphorylation of Thr421/Ser424, although it increased the phosphorylation of Thr389 in Meg-01 and HEL cells. Phenotypic analysis showed that the three cell lines were at different levels of differentiation in megakaryocytic lineage, with the highest differentiation in Dami and the lowest in Meg-01 cells. Conclusion SP600125-induced polyploidization of megakaryocytic leukemia cell lines is dependent on the effect of SP600125 on phosphorylation of S6K1 in cell lines at the different differentiation stages.
1,25-dihydroxyvitamin D3 induces CCR10 expression in terminally differentiating human B cells.
Shirakawa, Aiko-Konno; Nagakubo, Daisuke; Hieshima, Kunio; Nakayama, Takashi; Jin, Zhe; Yoshie, Osamu
2008-03-01
In the B cell lineage, CCR10 is known to be selectively expressed by plasma cells, especially those secreting IgA. In this study, we examined the regulation of CCR10 expression in terminally differentiating human B cells. As reported previously, IL-21 efficiently induced the differentiation of activated human CD19+ B cells into IgD-CD38+ plasma cells in vitro. A minor proportion of the resulting CD19+IgD-CD38+ cells expressed CCR10 at low levels. 1,25-Dihydroxyvitamin D3 (1,25-(OH)2D3), the active metabolite of vitamine D3, dramatically increased the proportion of CD19+IgD-CD38+ cells expressing high levels of CCR10. The 1,25-(OH)2D3 also increased the number of CCR10+ cells expressing surface IgA, although the majority of CCR10+ cells remained negative for surface IgA. Thus, 1,25-(OH)2D3 alone may not be sufficient for the induction of IgA expression in terminally differentiating human B cells. To further determine whether 1,25-(OH)2D3 directly induces CCR10 expression in terminally differentiating B cells, we next performed the analysis on the human CCR10 promoter. We identified a proximal Ets-1 site and an upstream potential vitamin D response element to be critical for the inducible expression of CCR10 by 1,25-(OH)2D3. We confirmed the specific binding of Ets-1 and 1,25-(OH)2D3-activated vitamin D receptor to the respective sites. In conclusion, 1,25-(OH)2D3 efficiently induces CCR10 expression in terminally differentiating human B cells in vitro. Furthermore, the human CCR10 promoter is cooperatively activated by Ets-1 and vitamin D receptor in the presence of 1,25-(OH)2D3.
A three-sided rearrangeable switching network for a binary fat tree
NASA Astrophysics Data System (ADS)
Yen, Mao-Hsu; Yu, Chu; Shin, Haw-Yun; Chen, Sao-Jie
2011-06-01
A binary fat tree needs an internal node to interconnect the left-children, right-children and parent terminals to each other. In this article, we first propose a three-stage, 3-sided rearrangeable switching network for the implementation of a binary fat tree. The main component of this 3-sided switching network (3SSN) consists of a polygonal switch block (PSB) interconnected by crossbars. With the same size and the same number of switches as our 3SSN, a three-stage, 3-sided clique-based switching network is shown to be not rearrangeable. Also, the effects of the rearrangeable structure and the number of terminals on the network switch-efficiency are explored and a proper set of parameters has been determined to minimise the number of switches. We derive that a rearrangeable 3-sided switching network with switches proportional to N 3/2 is most suitable to interconnect N terminals. Moreover, we propose a new Polygonal Field Programmable Gate Array (PFPGA) that consists of logic blocks interconnected by our 3SSN, such that the logic blocks in this PFPGA can be grouped into clusters to implement different logic functions. Since the programmable switches usually have high resistance and capacitance and occupy a large area, we have to consider the effect of the 3SSN structure and the granularity of its cluster logic blocks on the switch efficiency of PFPGA. Experiments on benchmark circuits show that the switch and speed performances are significantly improved. Based on the experimental results, we can determine the parameters of PFPGA for the VLSI implementation.
Three-terminal graphene negative differential resistance devices.
Wu, Yanqing; Farmer, Damon B; Zhu, Wenjuan; Han, Shu-Jen; Dimitrakopoulos, Christos D; Bol, Ageeth A; Avouris, Phaedon; Lin, Yu-Ming
2012-03-27
A new mechanism for negative differential resistance (NDR) is discovered in three-terminal graphene devices based on a field-effect transistor configuration. This NDR effect is a universal phenomenon for graphene and is demonstrated in devices fabricated with different types of graphene materials and gate dielectrics. Operation of conventional NDR devices is usually based on quantum tunneling or intervalley carrier transfer, whereas the NDR behavior observed here is unique to the ambipolar behavior of zero-bandgap graphene and is associated with the competition between electron and hole conduction as the drain bias increases. These three terminal graphene NDR devices offer more operation flexibility than conventional two-terminal devices based on tunnel diodes, Gunn diodes, or molecular devices, and open up new opportunities for graphene in microwave to terahertz applications. © 2012 American Chemical Society
[Focal lymphoid hyperplasia (pseudolymphoma) of the terminal ileum in adults].
Molas, G; Potet, F; Nogig, P
1985-01-01
We report two cases of focal lymphoid hyperplasia (FLH) of terminal ileum in adult patients. Both cases showed identical morphological findings. The first was discovered during cholecystectomy in a 75-year-old woman who complained mild non-specific abdominal discomfort. The second was manifested by right lower quadrant abdominal pain in a 32-year-old man. The surgical specimens revealed a thickened wall, a narrowed lumen and multiple ulcerations. The histologic features were small cell, well differentiated lymphocyte infiltration, with several follicles showing large germinal centers; regional lymph nodes revealed a conspicuous reactive size enlargement. Further clinical investigations revealed no other abnormalities. Clinical course showed benign evolution after 6 and 3 years of respective follow-up. FLH should be differentiated from terminal ileum inflammatory and infectious diseases. It can be differentiated from Crohn's disease by the absence of characteristic histological features; from Yersinia infection by the absence of significant rates of specific serum antibodies. Moreover, FLH can be differentiated from malignant lymphoma by the presence of follicles and enlarged germinal centers and by the long-term benign evolution. The nature of FLH in terminal ileum, as well as those of the stomach and colo-rectum is still to be determined. Several hypothesis are proposed: reactive, benign neoplastic, or prelymphomatous lesion?
A new topological structure for the Langevin-type ultrasonic transducer.
Lu, Xiaolong; Hu, Junhui; Peng, Hanmin; Wang, Yuan
2017-03-01
In this paper, a new topological structure for the Langevin-type ultrasonic transducer is proposed and investigated. The two cylindrical terminal blocks are conically shaped with four supporting plates each, and two cooling fins are disposed at the bottom of terminal blocks, adjacent to the piezoelectric rings. Experimental results show that it has larger vibration velocity, lower temperature rise and higher electroacoustic energy efficiency than the conventional Langevin transducer. The reasons for the phenomena can be well explained by the change of mass, heat dissipation surface and force factor of the transducer. The proposed design may effectively improve the performance of ultrasonic transducers, in terms of the working effect, energy consumption and working life. Copyright © 2016 Elsevier B.V. All rights reserved.
(1-Adamantyl)methyl glycidyl ether: a versatile building block for living polymerization.
Moers, Christian; Wrazidlo, Robert; Natalello, Adrian; Netz, Isabelle; Mondeshki, Mihail; Frey, Holger
2014-06-01
(1-Adamantyl)methyl glycidyl ether (AdaGE) is introduced as a versatile monomer for oxyanionic polymerization, enabling controlled incorporation of adamantyl moieties in aliphatic polyethers. Via copolymerization with ethoxyethyl glycidyl ether (EEGE) and subsequent cleavage of the acetal protection groups of EEGE, hydrophilic linear polyglycerols with an adjustable amount of pendant adamantyl moieties are obtained. The adamantyl unit permits control over thermal properties and solubility profile of these polymers (LCST). Additionally, AdaGE is utilized as a termination agent in carbanionic polymerization, affording adamantyl-terminated polymers. Using these structures as macroinitiators for the polymerization of ethylene oxide affords amphiphilic, in-chain adamantyl-functionalized block copolymers. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Two-dimensional infrared spectroscopy reveals the complex behaviour of an amyloid fibril inhibitor
NASA Astrophysics Data System (ADS)
Middleton, Chris T.; Marek, Peter; Cao, Ping; Chiu, Chi-Cheng; Singh, Sadanand; Woys, Ann Marie; de Pablo, Juan J.; Raleigh, Daniel P.; Zanni, Martin T.
2012-05-01
Amyloid formation has been implicated in the pathology of over 20 human diseases, but the rational design of amyloid inhibitors is hampered by a lack of structural information about amyloid-inhibitor complexes. We use isotope labelling and two-dimensional infrared spectroscopy to obtain a residue-specific structure for the complex of human amylin (the peptide responsible for islet amyloid formation in type 2 diabetes) with a known inhibitor (rat amylin). Based on its sequence, rat amylin should block formation of the C-terminal β-sheet, but at 8 h after mixing, rat amylin blocks the N-terminal β-sheet instead. At 24 h after mixing, rat amylin blocks neither β-sheet and forms its own β-sheet, most probably on the outside of the human fibrils. This is striking, because rat amylin is natively disordered and not previously known to form amyloid β-sheets. The results show that even seemingly intuitive inhibitors may function by unforeseen and complex structural processes.
Bolnick, Alan D; Bolnick, Jay M; Kohan-Ghadr, Hamid-Reza; Kilburn, Brian A; Pasalodos, Omar J; Singhal, Pankaj K; Dai, Jing; Diamond, Michael P; Armant, D Randall; Drewlo, Sascha
2017-06-01
Does low molecular weight heparin (LMWH) require heparin-binding epidermal growth factor (EGF)-like growth factor (HBEGF) signaling to induce extravillous trophoblast differentiation and decrease apoptosis during oxidative stress? LMWH increased HBEGF expression and secretion, and HBEGF signaling was required to stimulate trophoblast extravillous differentiation, increase invasion in vitro and reduce trophoblast apoptosis during oxidative stress. Abnormal trophoblast differentiation and survival contribute to placental insufficiency syndromes, including preeclampsia and intrauterine growth restriction. Preeclampsia often manifests as a pro-thrombotic state, with unsuccessful transformation of the spiral arteries that reduces oxygen supply and can produce placental infarction. LMWH improves placental function by increasing blood flow. Recent data suggest that the actions of LMWH transcend its anti-coagulative properties, but the molecular mechanism is unknown. There is evidence that LMWH alters the expression of human HBEGF in trophoblast cells, which regulates human trophoblast pathophysiology. HBEGF, itself, is capable of increasing trophoblast survival and invasiveness. First-trimester placental explants and the HTR-8/SVneo cell line, established using extravillous trophoblast outgrowths from first-trimester villous explants, were treated in vitro with LMWH to examine the effects on HBEGF signaling and trophoblast function under normal physiological and pathological conditions. A highly specific antagonist of HBEGF and other inhibitors of HBEGF downstream signaling were used to determine the relationship between LMWH treatment and HBEGF. Placental tissues (n = 5) were obtained with IRB approval and patient consent from first-trimester terminations. Placental explants and HTR-8/SVneo cells were cultured on plastic or Matrigel™ and treated with a therapeutic dose of LMWH (Enoxaparin; 10 IU/ml), with or without CRM197, pan Erb-B2 Receptor Tyrosine Kinase (ERBB) inhibitor, anti-ERBB1 or ERBB4 blocking antibodies, or pretreatment of cells with heparitinase I. Extravillous differentiation was assessed by immunocytochemistry to determine the relative levels of integrins α6β4 and α1β1. Trophoblast invasiveness was assessed in villous explants by measuring outgrowth from villous tips cultured on Matrigel, and by invasion assays with HTR-8/SVneo cells cultured on Matrigel-coated transwell insert. Placental explants and HTR-8/SVneo cells were exposed to oxidative stress in a hypoxia-reoxygenation (H-R) model, measuring cell death by TUNEL assay, caspase 3 cleavage, and BCL-2α expression. LMWH induced extravillous differentiation, according to trophoblast invasion assays and integrin (α6β4-α1β1) switching. Treatment with LMWH rescued cytotrophoblasts and HTR-8/SVneo cells from apoptosis during exposure to reoxygenation injury, based on TUNEL, caspase 3 cleavage and BCL-2α expression. Experiments using CRM197, ERBB1 and ERBB4 blocking antibodies, pan-ERBB inhibitor and removal of cell surface heparin demonstrated that the effects of LMWH on trophoblast invasion and survival were dependent upon HBEGF signaling. N/A. The primary limitation of this study was the use of only in vitro experiments. Patient demographics from elective terminations were not available. These data provide new insights into the non-coagulation-related aspects of perinatal LMWH treatment in the management of placental insufficiency disorders. This research was supported by grants from the National Institutes of Health (HD071408 and HL128628), the March of Dimes, and the W. K. Kellogg Foundation. There were no conflicts or competing interests. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Code of Federal Regulations, 2014 CFR
2014-07-01
... beams or other house fall block supports shall be marked with the safe working load, which shall not be... depends upon components other than commonly used stock items such as shackles, ropes, or chains, and that... (c)(6) of this section). Single sheave blocks shall be marked with safe working loads and proof test...
Code of Federal Regulations, 2011 CFR
2011-07-01
... beams or other house fall block supports shall be marked with the safe working load, which shall not be... depends upon components other than commonly used stock items such as shackles, ropes, or chains, and that... (c)(6) of this section). Single sheave blocks shall be marked with safe working loads and proof test...
Code of Federal Regulations, 2010 CFR
2010-07-01
... beams or other house fall block supports shall be marked with the safe working load, which shall not be... depends upon components other than commonly used stock items such as shackles, ropes, or chains, and that... (c)(6) of this section). Single sheave blocks shall be marked with safe working loads and proof test...
Code of Federal Regulations, 2013 CFR
2013-07-01
... beams or other house fall block supports shall be marked with the safe working load, which shall not be... depends upon components other than commonly used stock items such as shackles, ropes, or chains, and that... (c)(6) of this section). Single sheave blocks shall be marked with safe working loads and proof test...
Code of Federal Regulations, 2012 CFR
2012-07-01
... beams or other house fall block supports shall be marked with the safe working load, which shall not be... depends upon components other than commonly used stock items such as shackles, ropes, or chains, and that... (c)(6) of this section). Single sheave blocks shall be marked with safe working loads and proof test...
Wülbeck, Corinna; Grieshaber, Eva; Helfrich-Förster, Charlotte
2009-10-01
The neuropeptide pigment-dispersing factor (PDF) plays an essential role in the circadian clock of the fruit fly Drosophila melanogaster, but many details of PDF signaling in the clock network are still unknown. We tried to interfere with PDF signaling by blocking the GTPase Shibire in PDF neurons. Shibire is an ortholog of the mammalian Dynamins and is essential for endocytosis of clathrin-coated vesicles at the plasma membrane. Such endocytosis is used for neurotransmitter reuptake by presynaptic neurons, which is a prerequisite of synaptic vesicle recycling, and receptor-mediated endocytosis in the postsynaptic neuron, which leads to signal termination. By blocking Shibire function via overexpression of a dominant negative mutant form of Shibire in PDF neurons, we slowed down the behavioral rhythm by 3 h. This effect was absent in PDF receptor null mutants, indicating that we interfered with PDF receptor-mediated endocytosis. Because we obtained similar behavioral phenotypes by increasing the PDF level in regions close to PDF neurons, we conclude that blocking Shibire did prolong PDF signaling in the neurons that respond to PDF. Obviously, terminating the PDF signaling via receptor-mediated endocytosis is a crucial step in determining the period of behavioral rhythms.
Carén, Helena; Stricker, Stefan H.; Bulstrode, Harry; Gagrica, Sladjana; Johnstone, Ewan; Bartlett, Thomas E.; Feber, Andrew; Wilson, Gareth; Teschendorff, Andrew E.; Bertone, Paul; Beck, Stephan; Pollard, Steven M.
2015-01-01
Summary Glioblastoma (GBM) is an aggressive brain tumor whose growth is driven by stem cell-like cells. BMP signaling triggers cell-cycle exit and differentiation of GBM stem cells (GSCs) and, therefore, might have therapeutic value. However, the epigenetic mechanisms that accompany differentiation remain poorly defined. It is also unclear whether cell-cycle arrest is terminal. Here we find only a subset of GSC cultures exhibit astrocyte differentiation in response to BMP. Although overtly differentiated non-cycling astrocytes are generated, they remain vulnerable to cell-cycle re-entry and fail to appropriately reconfigure DNA methylation patterns. Chromatin accessibility mapping identified loci that failed to alter in response to BMP and these were enriched in SOX transcription factor-binding motifs. SOX transcription factors, therefore, may limit differentiation commitment. A similar propensity for cell-cycle re-entry and de-differentiation was observed in GSC-derived oligodendrocyte-like cells. These findings highlight significant obstacles to BMP-induced differentiation as therapy for GBM. PMID:26607953
Ruijtenberg, Suzan; van den Heuvel, Sander
2016-01-01
ABSTRACT Cell proliferation and differentiation show a remarkable inverse relationship. Precursor cells continue division before acquiring a fully differentiated state, while terminal differentiation usually coincides with proliferation arrest and permanent exit from the division cycle. Mechanistic insight in the temporal coordination between cell cycle exit and differentiation has come from studies of cells in culture and genetic animal models. As initially described for skeletal muscle differentiation, temporal coordination involves mutual antagonism between cyclin-dependent kinases that promote cell cycle entry and transcription factors that induce tissue-specific gene expression. Recent insights highlight the contribution of chromatin-regulating complexes that act in conjunction with the transcription factors and determine their activity. In particular SWI/SNF chromatin remodelers contribute to dual regulation of cell cycle and tissue-specific gene expression during terminal differentiation. We review the concerted regulation of the cell cycle and cell type-specific transcription, and discuss common mutations in human cancer that emphasize the clinical importance of proliferation versus differentiation control. PMID:26825227
Communications Support for National Flight Data Center Information System.
1980-11-01
funtions : 0 Establishment and termination, * Message transfer, 0 Retransmission of blocks, Establishment and Termination: the establishment procedure...relate to hardware components, transmission facilities and cost relationships . The costs are grouped into one-time and recurring costs. L.2 HARDWARE...the NADIN switching center in Atlanta. The purchase and installation costs are estimated to be $1000. L.4 COST RELATIONSHIPS In order to accurately
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Ming; Wang, Yongchun; Yang, Min
Data from human and rodent studies have demonstrated that microgravity induces observed bone loss in real spaceflight or simulated experiments. The decrease of bone formation and block of maturation may play important roles in bone loss induced by microgravity. The aim of this study was to investigate the changes of proliferation and differentiation in bone marrow mesenchymal stem cells (BMSCs) induced by simulated microgravity and the mechanisms underlying it. We report here that clinorotation, a simulated model of microgravity, decreased proliferation and differentiation in BMSCs after exposure to 48 h simulated microgravity. The inhibited proliferation are related with blocking the cellmore » cycle in G2/M and enhancing the apoptosis. While alterations of the osteoblast differentiation due to the decreased SATB2 expression induced by simulated microgravity in BMSCs. - Highlights: • Simulated microgravity inhibited proliferation and differentiation in BMSCs. • The decreased proliferation due to blocked cell cycle and enhanced the apoptosis. • The inhibited differentiation accounts for alteration of SATB2, Hoxa2 and Cbfa1.« less
MicroRNA-196b promotes cell proliferation and suppress cell differentiation in vitro
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Donglin, E-mail: caodlgz@sina.com; Hu, Liangshan; Lei, Da
Highlights: • miRNA-196b increases proliferation and blocks differentiation of progenitor cell. • miRNA-196b inhibits apoptosis and increases viability of cells lines. • Forced expression of miR-196b blocks the differentiation of THP1 induced by PMA. - Abstract: MicroRNA-196b (miR-196b) is frequently amplified and aberrantly overexpressed in acute leukemias. To investigate the role of miR-196b in acute leukemias, it has been observed that forced expression of this miRNA increases proliferation and inhibits apoptosis in human cell lines. More importantly, we show that this miRNA can significantly increase the colony-forming capacity of mouse normal bone marrow progenitor cells alone, as well as partiallymore » blocking the cells from differentiation. Taken together, our studies suggest that miRNA-196b may play an essential role in the development of MLL-associated leukemias through inhibiting cell differentiation and apoptosis, while promoting cell proliferation.« less
Kurisaki, Keiko; Kurisaki, Akira; Valcourt, Ulrich; Terentiev, Alexei A.; Pardali, Katerina; ten Dijke, Peter; Heldin, Carl-Henrik; Ericsson, Johan; Moustakas, Aristidis
2003-01-01
Smad proteins transduce transforming growth factor β (TGF-β) and bone morphogenetic protein (BMP) signals that regulate cell growth and differentiation. We have identified YY1, a transcription factor that positively or negatively regulates transcription of many genes, as a novel Smad-interacting protein. YY1 represses the induction of immediate-early genes to TGF-β and BMP, such as the plasminogen activator inhibitor 1 gene (PAI-1) and the inhibitor of differentiation/inhibitor of DNA binding 1 gene (Id-1). YY1 inhibits binding of Smads to their cognate DNA elements in vitro and blocks Smad recruitment to the Smad-binding element-rich region of the PAI-1 promoter in vivo. YY1 interacts with the conserved N-terminal Mad homology 1 domain of Smad4 and to a lesser extent with Smad1, Smad2, and Smad3. The YY1 zinc finger domain mediates the association with Smads and is necessary for the repressive effect of YY1 on Smad transcriptional activity. Moreover, downregulation of endogenous YY1 by antisense and small interfering RNA strategies results in enhanced transcriptional responses to TGF-β or BMP. Ectopic expression of YY1 inhibits, while knockdown of endogenous YY1 enhances, TGF-β- and BMP-induced cell differentiation. In contrast, overexpression or knockdown of YY1 does not affect growth inhibition induced by TGF-β or BMP. Accordingly, YY1 does not interfere with the regulation of immediate-early genes involved in the TGF-β growth-inhibitory response, the cell cycle inhibitors p15 and p21, and the proto-oncogene c-myc. In conclusion, YY1 represses Smad transcriptional activities in a gene-specific manner and thus regulates cell differentiation induced by TGF-β superfamily pathways. PMID:12808092
Ortiz-López, Leonardo; Vega-Rivera, Nelly Maritza; Babu, Harish; Ramírez-Rodríguez, Gerardo Bernabé
2017-01-01
The generation of new neurons during adulthood involves local precursor cell migration and terminal differentiation in the dentate gyrus. These events are influenced by the hippocampal microenvironment. Brain-derived neurotrophic factor (BDNF) is relevant for hippocampal neuronal development and behavior. Interestingly, studies that have been performed in controlled in vitro systems that involve isolated precursor cells that were derived from the dentate gyrus (AHPCs) have shown that BDNF induces the activation of the TrkB receptor and, consequentially, might activate signaling pathways that favor survival and neuronal differentiation. Based on the fact that the cellular events of AHPCs that are induced by single factors can be studied in this controlled in vitro system, we investigated the ability of BDNF and the involvement of protein kinase C (PKC), as one of the TrkB-downstream activated signaling proteins, in the regulation of migration, here reflected by motility, of AHPCs. Precursor cells were cultured following a concentration-response curve (1-640 ng/ml) for 24 or 96 h. We found that BDNF favored cell survival without altering the viability under culture proliferative conditions of the AHPCs. Concomitantly, glial- and neuronal-differentiated precursor cells increased as a consequence of survival promoted by BDNF. Additionally, pharmacological approaches showed that BDNF (40 ng/ml)-induced migration of AHPCs was blocked with the compounds K252a and GF109203x, which prevent the activation of TrkB and PKC, respectively. The results indicate that in the in vitro migration of differentiated AHPCs it is involved the BDNF and TrkB cascade. Our results provide additional information about the mechanism by which BDNF impacts adult neurogenesis in the hippocampus.
The GATA transcription factor gene gtaG is required for terminal differentiation in Dictyostelium.
Katoh-Kurasawa, Mariko; Santhanam, Balaji; Shaulsky, Gad
2016-03-09
The GATA transcription factor GtaG is conserved in Dictyostelids and essential for terminal differentiation in Dictyostelium discoideum, but its function is not well understood. Here we show that gtaG is expressed in prestalk cells at the anterior region of fingers and in the extending stalk during culmination. The gtaG - phenotype is cell-autonomous in prestalk cells and non-cell-autonomous in prespore cells. Transcriptome analyses reveal that GtaG regulates prestalk gene expression during cell differentiation before culmination and is required for progression into culmination. GtaG-dependent genes include genetic suppressors of the Dd-STATa-defective phenotype as well as Dd-STATa target-genes, including extra cellular matrix genes. We show that GtaG may be involved in the production of two culmination-signaling molecules, cyclic di-GMP and the spore differentiation factor SDF-1 and that addition of c-di-GMP rescues the gtaG - culmination and spore formation deficiencies. We propose that GtaG is a regulator of terminal differentiation that functions in concert with Dd-STATa and controls culmination through regulating c-di-GMP and SDF-1 production in prestalk cells. © 2016. Published by The Company of Biologists Ltd.
Garderet, Laurent; Kobari, Ladan; Mazurier, Christelle; De Witte, Caroline; Giarratana, Marie-Catherine; Pérot, Christine; Gorin, Norbert Claude; Lapillonne, Hélène; Douay, Luc
2010-01-01
Background Anemia is a characteristic of myelodysplastic syndromes, such as the rare 5q- syndrome, but its mechanism remains unclear. In particular, data are lacking on the terminal phase of differentiation of erythroid cells (enucleation) in myelodysplastic syndromes. Design and Methods We used a previously published culture model to generate mature red blood cells in vitro from human hematopoietic progenitor cells in order to study the pathophysiology of the 5q- syndrome. Our model enables analysis of cell proliferation and differentiation at a single cell level and determination of the enucleation capacity of erythroid precursors. Results The erythroid commitment of 5q(del) clones was not altered and their terminal differentiation capacity was preserved since they achieved final erythroid maturation (enucleation stage). The drop in red blood cell production was secondary to the decrease in the erythroid progenitor cell pool and to impaired proliferative capacity. RPS14 gene haploinsufficiency was related to defective erythroid proliferation but not to differentiation capacity. Conclusions The 5q- syndrome should be considered a quantitative rather than qualitative bone marrow defect. This observation might open the way to new therapeutic concepts. PMID:19815832
Disruption of canonical TGFβ-signaling in murine coronary progenitor cells by low level arsenic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allison, Patrick; Huang, Tianfang; Broka, Derrick
2013-10-01
Exposure to arsenic results in several types of cancers as well as heart disease. A major contributor to ischemic heart pathologies is coronary artery disease, however the influences by environmental arsenic in this disease process are not known. Similarly, the impact of toxicants on blood vessel formation and function during development has not been studied. During embryogenesis, the epicardium undergoes proliferation, migration, and differentiation into several cardiac cell types including smooth muscle cells which contribute to the coronary vessels. The TGFβ family of ligands and receptors is essential for developmental cardiac epithelial to mesenchymal transition (EMT) and differentiation into coronarymore » smooth muscle cells. In this in vitro study, 18 hour exposure to 1.34 μM arsenite disrupted developmental EMT programming in murine epicardial cells causing a deficit in cardiac mesenchyme. The expression of EMT genes including TGFβ2, TGFβ receptor-3, Snail, and Has-2 are decreased in a dose-dependent manner following exposure to arsenite. TGFβ2 cell signaling is abrogated as detected by decreases in phosphorylated Smad2/3 when cells are exposed to 1.34 μM arsenite. There is also loss of nuclear accumulation pSmad due to arsenite exposure. These observations coincide with a decrease in vimentin positive mesenchymal cells invading three-dimensional collagen gels. However, arsenite does not block TGFβ2 mediated smooth muscle cell differentiation by epicardial cells. Overall these results show that arsenic exposure blocks developmental EMT gene programming in murine coronary progenitor cells by disrupting TGFβ2 signals and Smad activation, and that smooth muscle cell differentiation is refractory to this arsenic toxicity. - Highlights: • Arsenic blocks TGFβ2 induced expression of EMT genes. • Arsenic blocks TGFβ2 triggered Smad2/3 phosphorylation and nuclear translocation. • Arsenic blocks epicardial cell differentiation into cardiac mesenchyme. • Arsenic does not block TGFβ2 induced smooth muscle cell differentiation.« less
Downregulation of Ras C-terminal processing by JNK inhibition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mouri, Wataru; Department of Neurosurgery, Yamagata University School of Medicine, Yamagata 990-9585; Biology Division, National Cancer Center Research Institute, Tokyo 104-0045
2008-06-27
After translation, Ras proteins undergo a series of modifications at their C-termini. This post-translational C-terminal processing is essential for Ras to become functional, but it remains unknown whether and how Ras C-terminal processing is regulated. Here we show that the C-terminal processing and subsequent plasma membrane localization of H-Ras as well as the activation of the downstream signaling pathways by H-Ras are prevented by JNK inhibition. Conversely, JNK activation by ultraviolet irradiation resulted in promotion of C-terminal processing of H-Ras. Furthermore, increased cell density promoted C-terminal processing of H-Ras most likely through an autocrine/paracrine mechanism, which was also blocked undermore » JNK-inhibited condition. Ras C-terminal processing was sensitive to JNK inhibition in the case of H- and N-Ras but not K-Ras, and in a variety of cell types. Thus, our results suggest for the first time that Ras C-terminal processing is a regulated mechanism in which JNK is involved.« less
Involvement of microtubules in rhizoid differentiation of Spirogyra species.
Yoshida, K; Inoue, N; Sonobe, S; Shimmen, T
2003-06-01
Some species of Spirogyra form rosette-shaped or rod-shaped rhizoids in the terminal cell of the filaments. In the present study, we analyzed an involvement of microtubules (MTs) in rhizoid differentiation. Before rhizoid differentiation, cortical MTs were arranged transversely to the long axis of cylindrical cells, reflecting the diffuse growth. At the beginning of rhizoid differentiation, MTs were absent from the extreme tip of the terminal cell. In the other area of the cell, however, MTs were arranged transversely to the long axis of the cell. In the fully differentiated rosette-shaped rhizoid, MTs were randomly organized. However, at a younger stage of rosette-shaped rhizoids, MTs were sometimes arranged almost transversely in the lobes of the rosette. In the rod-shaped rhizoid, MTs were arranged almost transversely. MT-destabilizing drugs (oryzalin and propyzamide) induced swelling of rhizoids, and neither rosette-shaped nor rod-shaped rhizoids were formed. The role of MTs in rhizoid differentiation was discussed.
Sakane, Rie; Kimura, Kimito; Hirota, Yoshihisa; Ishizawa, Michiyasu; Takagi, Yuta; Wada, Akimori; Kuwahara, Shigefumi; Makishima, Makoto; Suhara, Yoshitomo
2017-11-01
Vitamin K is an essential cofactor of γ-glutamylcarboxylase as related to blood coagulation and bone formation. Menaquinone-4, one of the vitamin K homologues, is biosynthesized in the body and has various biological activities such as being a ligand for steroid and xenobiotic receptors, protection of neuronal cells from oxidative stress, and so on. From this background, we focused on the role of menaquinone in the differentiation activity of progenitor cells into neuronal cells and we synthesized novel vitamin K derivatives with modification of the ω-terminal side chain. We report here new vitamin K analogues, which introduced an alkylated phenyl group at the ω-terminal side chain. These compounds exhibited potent differentiation activity as compared to control. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Wang, Y; Li, J; Song, W; Yu, J
2014-06-01
The aim of this study was to investigate effects of mineral trioxide aggregate (MTA) on odonto/osteogenic differentiation of bone marrow stromal cells (BMSCs) from craniofacial bones. Craniofacial BMSCs were isolated from rat mandible and effects of MTA on their proliferation, differentiation and MAPK pathway involvement were subsequently investigated, in vitro. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2,5-tetrazoliumbromide) assay was performed to evaluate proliferation of the MTA-treated cells. Alkaline phosphatase (ALP) activity, alizarin red staining, real-time reverse transcription polymerase chain reaction and western blot assays were used to assess differentiation capacity as well as MAPK pathway involvement. 0.02 mg/ml MTA-treated BMSCs had significantly higher ALP activity and formed more mineralized nodules than the untreated group. Odonto/osteoblastic marker genes/proteins (Alp, Runx2/RUNX2, Osx/OSX, Ocn/OCN and Dspp/DSP respectively) in MTA-treated cells were remarkably upregulated compared to untreated ones. Mechanistically, phosphorylated Jun N-terminal kinase (P-JNK) and phosphorylated extracellular regulated protein kinases (P-ERK) in MTA-treated BMSCs increased significantly in a time-dependent manner, while inhibition of JNK and ERK MAPK pathways dramatically blocked MTA-induced odonto/osteoblastic differentiation, as indicated by reduced ALP levels, weakened mineralization capacity and downregulated levels of odonto/osteoblastic marker genes (Alp, Runx2, Osx, Ocn and Dspp). Mineral trioxide aggregate promoted odonto/osteogenic capacity of craniofacial BMSCs via JNK and ERK MAPK signalling pathways. © 2014 John Wiley & Sons Ltd.
Rahman, Faisal; Manchanda, Rohit; Brain, Keith L
2009-06-15
Heptanol and 18 beta-glycyrrhetinic acid (18 beta GA) block gap junctions, but have other actions on transmitter release that have not been characterised. This study investigates the prejunctional and postjunctional effects of these compounds in guinea pig and mouse vas deferens using intracellular electrophysiological recording and confocal Ca(2+) imaging of sympathetic nerve terminals. In mice, heptanol (2 mM) reversibly decreased the amplitude of purinergic excitatory junction potentials (EJPs; 52+/-5%, P<0.05) while having little effect on spontaneous excitatory junction potentials (sEJPs). Heptanol (2 mM) reversibly abolished the nerve terminal Ca(2+) transient in 52% of terminals. 18 beta GA (10 microM) decreased the mean EJP amplitude, and increased input resistance in both mouse (137+/-17%, P<0.05) and guinea pig (354+/-50%, P<0.001) vas deferens indicating gap junction blockade. Further, 18 beta GA increased the sEJP frequency significantly in guinea pigs (by 71+/-25%, P<0.05) and in 5 out of 6 tissues in mice (19+/-3%, P<0.05). Moreover, 18 beta GA depolarised cells from both mice (11+/-1%, P<0.01) and guinea pigs (8+/-1%, P<0.005). Therefore, we conclude that heptanol (2 mM) decreases neurotransmitter release (given the decrease in EJP amplitude) by abolishing the nerve terminal action potential in a proportion of nerve terminals. 18 betaGA (10 microM) effectively blocks the gap junctions, but the increase in sEJP frequency suggests an additional prejunctional effect, which might involve the induction of spontaneous nerve terminal action potentials.
Yang, Shan; Guo, Lijia; Su, Yingying; Wen, Jing; Du, Juan; Li, Xiaoyan; Liu, Yitong; Feng, Jie; Xie, Yongmei; Bai, Yuxing; Wang, Hao; Liu, Yi
2018-05-02
Critical tissues that undergo regeneration in periodontal tissue are of mesenchymal origin; thus, investigating the regulatory mechanisms underlying the fate of periodontal ligament stem cells could be beneficial for application in periodontal tissue regeneration. Nitric oxide (NO) regulates many biological processes in developing embryos and adult stem cells. The present study was designed to investigate the effects of NO on the function of human periodontal ligament stem cells (PDLSCs) as well as to elucidate the underlying molecular mechanisms. Immunofluorescent staining and flow cytometry were used for stem cell identification. Western blot, reverse transcription polymerase chain reaction (RT-PCR), immunofluorescent staining, and flow cytometry were used to examine the expression of NO-synthesizing enzymes. The proliferative capacity of PDLSCs was determined by EdU assays. The osteogenic potential of PDLSCs was tested using alkaline phosphatase (ALP) staining, Alizarin Red staining, and calcium concentration detection. Oil Red O staining was used to analyze the adipogenic ability. Western blot, RT-PCR, and staining were used to examine the signaling pathway. Human PDLSCs expressed both inducible NO synthase (iNOS) and endothelial NO synthase (eNOS) and produced NO. Blocking the generation of NO with the NOS inhibitor L-N G -monomethyl arginine (L-NMMA) had no influence on PDLSC proliferation and apoptosis but significantly attenuated the osteogenic differentiation capacity and stimulated the adipogenic differentiation capacity of PDLSCs. Increasing the physiological level of NO with NO donor sodium nitroprusside (SNP) significantly promoted the osteogenic differentiation capacity but reduced the adipogenic differentiation capacity of PDLSCs. NO balances the osteoblast and adipocyte lineage differentiation in periodontal ligament stem cells via the c-Jun N-terminal kinase (JNK)/mitogen-activated protein kinase (MAPK) signaling pathway. NO is essential for maintaining the balance between osteoblasts and adipocytes in PDLSCs via the JNK/MAPK signaling pathway. NO balances osteoblast and adipocyte lineage differentiation via JNK/MAPK signaling pathway.
Synthetic Method for Oligonucleotide Block by Using Alkyl-Chain-Soluble Support.
Matsuno, Yuki; Shoji, Takao; Kim, Shokaku; Chiba, Kazuhiro
2016-02-19
A straightforward method for the synthesis of oligonucleotide blocks using a Cbz-type alkyl-chain-soluble support (Z-ACSS) attached to the 3'-OH group of 3'-terminal nucleosides was developed. The Z-ACSS allowed for the preparation of fully protected deoxyribo- and ribo-oligonucleotides without chromatographic purification and released dimer- to tetramer-size oligonucleotide blocks via hydrogenation using a Pd/C catalyst without significant loss or migration of protective groups such as 5'-end 4,4'-dimethoxtrityl, 2-cyanoethyl on internucleotide bonds, or 2'-TBS.
Targeted Lymphoma Cell Death by Novel Signal Transduction Modifications
2007-07-01
monoclonal antibodies (mAbs) that bind the two NH2-terminal immunoglobulin domains of CD22 and specifically block the interaction of CD22 with its...ligand blocking mAbs that effectively crosslink CD22 have distinct functional properties and facilitate assembly of an effector protein complex. These...immune mechanisms such as antibody and complement dependent cellular cytotoxicity. We hypothesize that enhancing the intrinsic pro-apoptotic
Garcia, Angelo L; Han, Shan-Kuo; Janssen, William G; Khaing, Zin Z; Ito, Timothy; Glucksman, Marc J; Benson, Deanna L; Salton, Stephen R J
2005-12-16
Distinct intracellular pathways are involved in regulated and constitutive protein secretion from neuronal and endocrine cells, yet the peptide signals and molecular mechanisms responsible for targeting and retention of soluble proteins in secretory granules are incompletely understood. By using confocal microscopy and subcellular fractionation, we examined trafficking of the neuronal and endocrine peptide precursor VGF that is stored in large dense core vesicles and undergoes regulated secretion. VGF cofractionated with secretory vesicle membranes but was not detected in detergent-resistant lipid rafts. Deletional analysis using epitope-tagged VGF suggested that the C-terminal 73-amino acid fragment of VGF, containing two predicted alpha-helical loops and four potential prohormone convertase (PC) cleavage sites, was necessary and sufficient with an N-terminal signal peptide-containing domain, for large dense core vesicle sorting and regulated secretion from PC12 and INS-1 cells. Further transfection analysis identified the sorting sequence as a compact C-terminal alpha-helix and embedded 564RRR566 PC cleavage site; mutation of the 564RRR566 PC site in VGF-(1-65): GFP:VGF-(545-617) blocked regulated secretion, whereas disruption of the alpha-helix had no effect. Mutation of the adjacent 567HFHH570 motif, a charged region that might enhance PC cleavage in acidic environments, also blocked regulated release. Finally, inhibition of PC cleavage in PC12 cells using the membrane-permeable synthetic peptide chloromethyl ketone (decanoyl-RVKR-CMK) blocked regulated secretion of VGF. Our studies define a critical RRR-containing C-terminal domain that targets VGF into the regulated pathway in neuronal PC12 and endocrine INS-1 cells, providing additional support for the proposed role that PCs and their cleavage sites play in regulated peptide secretion.
Clearance of PML/RARA-bound promoters suffice to initiate APL differentiation.
Vitaliano-Prunier, Adeline; Halftermeyer, Juliane; Ablain, Julien; de Reynies, Aurélien; Peres, Laurent; Le Bras, Morgane; Metzger, Daniel; de Thé, Hugues
2014-12-11
PML/RARA, a potent transcriptional inhibitor of nuclear receptor signaling, represses myeloid differentiation genes and drives acute promyelocytic leukemia (APL). Association of the retinoid X receptor-α (RXRA) coreceptor to PML/RARA is required for transformation, with RXRA promoting its efficient DNA binding. APL is exquisitely sensitive to retinoic acid (RA) and arsenic trioxide (arsenic), which both trigger cell differentiation in vivo. Whereas RA elicits transcriptional activation of PML/RARA targets, how arsenic triggers differentiation remains unclear. Here we demonstrate that extinction of PML/RARA triggers terminal differentiation in vivo. Similarly, ablation of retinoid X receptors loosens PML/RARA DNA binding, inducing terminal differentiation of APL cells ex vivo or in vivo. RXRA sumoylation directly contributes to PML/RARA-dependent transformation ex vivo, presumably by enhancing transcriptional repression. Thus, APL differentiation is a default program triggered by clearance of PML/RARA-bound promoters, rather than obligatory active transcriptional activation, explaining how arsenic elicits APL maturation through PML/RARA degradation. © 2014 by The American Society of Hematology.
Qualitative differential games with two targets
NASA Technical Reports Server (NTRS)
Getz, W. M.; Leitmann, G.
1977-01-01
So-called differential games of kind (qualitative games) were considered involving two or more players each of whom possesses a target toward which he wished to steer the response of a dynamical system that was under the control of all players. Sufficient conditions were derived, which assure termination on a particular player's target. In general, these conditions were constructive in that they permited construction of a winning (terminating) strategy for a player. The theory is illustrated by a pursuit-evasion problem.
Fuel control for gas turbine engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stearns, C.F.; Tutherly, H.W.
1983-12-27
The basic gas turbine engine hydromechanical fuel control is adaptable to different engine configurations such as turbofan, turboprop and turboshaft engines by incorporating in the main housing those elements having a commonality to all engine configurations and providing a removable block for each configuration having the necessary control elements and flow passages required for that particular configuration. That is to say, a block with the elements peculiar to a turbofan engine could be replaced by a mating block that includes those elements peculiar to a turboshaft engine in adapting the control for a turboshaft configuration. Similarly another block with thosemore » elements peculiar to a turboprop engine could replace any of the other blocks in adapting the control to a turboprop configuration. Obviously the basic control has the necessary flow passages terminating at the interface with the block and these flow passages mate with corresponding passages in the block.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Guoliang; Nealey, Paul F.
Herein we have investigated the domain width distributions of block copolymers and their ternary blends after directed assembly on chemically patterned surfaces with and without density multiplication. On chemical patterns with density multiplication, the width of the interpolated block copolymer domains was bimodal. Once blended with the corresponding homopolymers, the block copolymers exhibited unimodal distributions of domain width due to the redistribution of homopolymers in the block copolymer domains. When the block copolymers were blended with hydroxyl-terminated homopolymers, the homopolymers with functional end-groups healed the chemical patterns and facilitated the formation of nanostructures with further improved domain width distributions. Lastly,more » it is demonstrated that the block copolymers achieved the most improved domain width distributions when directed to assemble without density multiplication on one-to-one chemical patterns generated by molecular transfer printing.« less
Differential BPFs with Multiple Transmission Zeros Based on Terminated Coupled Lines
NASA Astrophysics Data System (ADS)
Niu, Yiming; Yang, Guo; Wu, Wen
2018-04-01
Differential bandpass filters (BPFs) named Filter A and Filter B based on Terminated Coupled Lines (TCLs) are proposed in this letter. The TCLs contributes to not only three poles in differential-mode (DM) for wideband filtering response but also multiple zeros in both DM and common-mode (CM) offering wide DM out-of-band rejection and good CM suppression. Fabricated filters centred at 3.5 GHz with wide DM passband and wideband CM suppression have been designed and measured. The filters improved the noise suppression capability of the communication and radiometer systems. The simulated and measured results are in good agreement.
Lyons, Shawn M; Cunningham, Clark H; Welch, Joshua D; Groh, Beezly; Guo, Andrew Y; Wei, Bruce; Whitfield, Michael L; Xiong, Yue; Marzluff, William F
2016-11-02
Histone proteins are synthesized in large amounts during S-phase to package the newly replicated DNA, and are among the most stable proteins in the cell. The replication-dependent (RD)-histone mRNAs expressed during S-phase end in a conserved stem-loop rather than a polyA tail. In addition, there are replication-independent (RI)-histone genes that encode histone variants as polyadenylated mRNAs. Most variants have specific functions in chromatin, but H3.3 also serves as a replacement histone for damaged histones in long-lived terminally differentiated cells. There are no reported replacement histone genes for histones H2A, H2B or H4. We report that a subset of RD-histone genes are expressed in terminally differentiated tissues as polyadenylated mRNAs, likely serving as replacement histone genes in long-lived non-dividing cells. Expression of two genes, HIST2H2AA3 and HIST1H2BC, is conserved in mammals. They are expressed as polyadenylated mRNAs in fibroblasts differentiated in vitro, but not in serum starved fibroblasts, suggesting that their expression is part of the terminal differentiation program. There are two histone H4 genes and an H3 gene that encode mRNAs that are polyadenylated and expressed at 5- to 10-fold lower levels than the mRNAs from H2A and H2B genes, which may be replacement genes for the H3.1 and H4 proteins. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
48 CFR 47.301-1 - Responsibilities of contracting officers.
Code of Federal Regulations, 2010 CFR
2010-10-01
... termination, including the movement of property by the Government to and from contractors' plants. (b... the use of special equipment, excess blocking and bracing material, or circuitous routing. ...
Qu, Zhilin; Weiss, James N
2005-10-01
Na(+) and K(+) channel-blocking drugs have anti- and proarrhythmic effects. Their effects during fibrillation, however, remain poorly understood. We used computer simulation of a two-dimensional (2-D) structurally normal tissue model with phase I of the Luo-Rudy action potential model to study the effects of Na(+) and K(+) channel blockade on vulnerability to and termination of reentry in simulated multiple-wavelet and mother rotor fibrillation. Our main findings are as follows: 1) Na(+) channel blockade decreased, whereas K(+) channel blockade increased, the vulnerable window of reentry in heterogeneous 2-D tissue because of opposing effects on dynamical wave instability. 2) Na(+) channel blockade increased the cycle length of reentry more than it increased refractoriness. In multiple-wavelet fibrillation, Na(+) channel blockade first increased and then decreased the average duration or transient time (
Pfeifer, A M; Lechner, J F; Masui, T; Reddel, R R; Mark, G E; Harris, C C
1989-01-01
The majority of human lung cancers arise from bronchial epithelial cells. The normal pseudostratified bronchial epithelium is composed of basal, mucous, and ciliated cells. This multi-differentiated epithelium usually responds to xenobiotics and physical injury by undergoing basal cell hyperplasia, mucous cell hyperplasia, and squamous metaplasia. One step of the multistage process of carcinogenesis is thought to involve aberrations in control of the squamous metaplastic processes. Decreased responsiveness to regulators of terminal squamous differentiation may confer a selective clonal expansion advantage to an initiated cell. We studied the effects of endogenous [e.g., transforming growth factor beta 1 (TGF-beta 1) and serum] and exogenous [e.g., 12-O-tetradecanoyl-13-phorbol-acetate (TPA), tobacco smoke condensate, and aldehydes] modifiers of normal human bronchial epithelial (NHBE) cell in a serum-free culture system. NHBE cells are growth inhibited by all of these compounds and induced to undergo squamous differentiation by TGF-beta 1 or TPA. In contrast, lung carcinoma cell lines are relatively resistant to inducers of terminal squamous differentiation which may provide them with a selective growth advantage. Chemical agents and activated protooncogenes (ras,raf,myc) altered the response to endogenous and exogenous inducers of squamous differentiation and caused extended cellular lifespan, aneuploidy, and/or tumorigenicity. The data suggest a close relationship between dysregulation of terminal differentiation pathways and neoplastic transformation of human bronchial epithelial cells. PMID:2538323
Rodriguez, Ramon M; Suarez-Alvarez, Beatriz; Lavín, José L; Mosén-Ansorena, David; Baragaño Raneros, Aroa; Márquez-Kisinousky, Leonardo; Aransay, Ana M; Lopez-Larrea, Carlos
2017-01-15
Epigenetic mechanisms play a critical role during differentiation of T cells by contributing to the formation of stable and heritable transcriptional patterns. To better understand the mechanisms of memory maintenance in CD8 + T cells, we performed genome-wide analysis of DNA methylation, histone marking (acetylated lysine 9 in histone H3 and trimethylated lysine 9 in histone), and gene-expression profiles in naive, effector memory (EM), and terminally differentiated EM (TEMRA) cells. Our results indicate that DNA demethylation and histone acetylation are coordinated to generate the transcriptional program associated with memory cells. Conversely, EM and TEMRA cells share a very similar epigenetic landscape. Nonetheless, the TEMRA transcriptional program predicts an innate immunity phenotype associated with genes never reported in these cells, including several mediators of NK cell activation (VAV3 and LYN) and a large array of NK receptors (e.g., KIR2DL3, KIR2DL4, KIR2DL1, KIR3DL1, KIR2DS5). In addition, we identified up to 161 genes that encode transcriptional regulators, some of unknown function in CD8 + T cells, and that were differentially expressed in the course of differentiation. Overall, these results provide new insights into the regulatory networks involved in memory CD8 + T cell maintenance and T cell terminal differentiation. Copyright © 2017 by The American Association of Immunologists, Inc.
Fermion-scalar conformal blocks
Iliesiu, Luca; Kos, Filip; Poland, David; ...
2016-04-13
In this study, we compute the conformal blocks associated with scalar-scalar-fermionfermion 4-point functions in 3D CFTs. Together with the known scalar conformal blocks, our result completes the task of determining the so-called ‘seed blocks’ in three dimensions. In addition, conformal blocks associated with 4-point functions of operators with arbitrary spins can now be determined from these seed blocks by using known differential operators.
The GATA transcription factor gene gtaG is required for terminal differentiation in Dictyostelium
2016-01-01
ABSTRACT The GATA transcription factor GtaG is conserved in Dictyostelids and is essential for terminal differentiation in Dictyostelium discoideum, but its function is not well understood. Here, we show that gtaG is expressed in prestalk cells at the anterior region of fingers and in the extending stalk during culmination. The gtaG− phenotype is cell-autonomous in prestalk cells and non-cell-autonomous in prespore cells. Transcriptome analyses reveal that GtaG regulates prestalk gene expression during cell differentiation before culmination and is required for progression into culmination. GtaG-dependent genes include genetic suppressors of the Dd-STATa-defective phenotype (Dd-STATa is also known as DstA) as well as Dd-STATa target-genes, including extracellular matrix genes. We show that GtaG might be involved in the production of two culmination-signaling molecules, cyclic di-GMP (c-di-GMP) and the spore differentiation factor SDF-1, and that addition of c-di-GMP rescues the gtaG− culmination and spore formation deficiencies. We propose that GtaG is a regulator of terminal differentiation that functions in concert with Dd-STATa and controls culmination through regulating c-di-GMP and SDF-1 production in prestalk cells. PMID:26962009
McDermott, Suzanne M; Carnes, Jason; Stuart, Kenneth
2015-12-01
KREPB5 is an essential component of ∼ 20S editosomes in Trypanosoma brucei which contains a degenerate, noncatalytic RNase III domain. To explore the function of this protein, we used a novel approach to make and screen numerous conditional null T. brucei bloodstream form cell lines that express randomly mutagenized KREPB5 alleles. We identified nine single amino acid substitutions that could not complement the conditional loss of wild-type KREPB5. Seven of these were within the RNase III domain, and two were in the C-terminal region that has no homology to known motifs. Exclusive expression of these mutated KREPB5 alleles in the absence of wild-type allele expression resulted in growth inhibition, the loss of ∼ 20S editosomes, and inhibition of RNA editing in BF cells. Eight of these mutations were lethal in bloodstream form parasites but not in procyclic-form parasites, showing that multiple domains function in a life cycle-dependent manner. Amino acid changes at a substantial number of positions, including up to 7 per allele, allowed complementation and thus did not block KREPB5 function. Hence, the degenerate RNase III domain and a newly identified domain are critical for KREPB5 function and have differential effects between the life cycle stages of T. brucei that differentially edit mRNAs. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
NASA Astrophysics Data System (ADS)
Maytin, Edward; Anand, Sanjay; Sato, Nobuyuki; Mack, Judith; Ortel, Bernhard
2005-04-01
During ALA-based photodynamic therapy (PDT), a pro-drug (aminolevulinic acid; ALA) is taken up by tumor cells and metabolically converted to a photosensitizing intermediate (protoporphyrin IX; PpIX). ALA-based PDT, while an emerging treatment modality, remains suboptimal for most cancers (e.g. squamous cell carcinoma of the skin). Many treatment failures may be largely due to insufficient conversion of ALA to PpIX within cells. We discovered a novel way to increase the conversion of ALA to PpIX, by administering agents that can drive terminal differentiation (i.e., accelerate cellular maturation). Terminally-differentiated epithelial cells show higher levels of intracellular PpIX, apparently via increased levels of a rate-limiting enzyme, coproporphyrinogen oxidase (CPO). To study these mechanisms in a three-dimensional tissue, we developed an organotypic model that mimics true epidermal physiology in a majority of respects. A line of rat epidermal keratinocytes (REKs), when grown in raft cultures, displays all the features of a fully-differentiated epidermis. Addition of ALA to the culture medium results in ALA uptake and PpIX synthesis, with subsequent death of keratinocytes upon exposure to blue light. Using this model, we can manipulate cellular differentiation via three different approaches. (1) Vitamin D, a hormone that enhances keratinocyte differentiation; (2) Hoxb13, a nuclear transcription factor that affects the genetically-controlled differentiation program of stratifying cells (3) Hyaluronan, an abundant extracellular matrix molecule that regulates epidermal differentiation. Because the raft cultures contain only a single cell type (no blood, fibroblasts, etc.) the effects of terminal differentiation upon CPO, PpIX, and keratinocyte cell death can be specifically defined.
Effects of ubiquitin C-terminal hydrolase L1 deficiency on mouse ova.
Koyanagi, Sayaka; Hamasaki, Hiroko; Sekiguchi, Satoshi; Hara, Kenshiro; Ishii, Yoshiyuki; Kyuwa, Shigeru; Yoshikawa, Yasuhiro
2012-03-01
Maternal proteins are rapidly degraded by the ubiquitin-proteasome system during oocyte maturation in mice. Ubiquitin C-terminal hydrolase L1 (UCHL1) is highly and specifically expressed in mouse ova and is involved in the polyspermy block. However, the role of UCHL1 in the underlying mechanism of polyspermy block is poorly understood. To address this issue, we performed a comprehensive proteomic analysis to identify maternal proteins that were relevant to the role of UCHL1 in mouse ova using UCHL1-deficient gad. Furthermore, we assessed morphological features in gad mouse ova using transmission electron microscopy. NACHT, LRR, and PYD domain-containing (NALP) family proteins and endoplasmic reticulum (ER) chaperones were identified by proteomic analysis. We also found that the 'maternal antigen that embryos require' (NLRP5 (MATER)) protein level increased significantly in gad mouse ova compared with that in wild-type mice. In an ultrastructural study, gad mouse ova contained less ER in the cortex than in wild-type mice. These results provide new insights into the role of UCHL1 in the mechanism of polyspermy block in mouse ova.
Mechanics of distributed fault and block rotation
NASA Technical Reports Server (NTRS)
Nur, A.; Scotti, O.; Ron, H.
1989-01-01
Paleomagnetic data, structural geology, and rock mechanics are used to explore the validity and significance of the block rotation concept. The analysis is based on data from Northern Israel, where fault slip and spacing are used to predict block rotation; the Mojave Desert, with well documented strike-slip sets; the Lake Mead, Nevada fault system with well-defined sets of strike-slip faults; and the San Gabriel Mountains domain with a multiple set of strike-slip faults. The results of the analysis indicate that block rotations can have a profound influence on the interpretation of geodetic measurments and the inversion of geodetic data. Furthermore, the block rotations and domain boundaries may be involved in creating the heterogeneities along active fault systems which may be responsible for the initiation and termination of earthquake rupture.
Turner, Tiffany; Shao, Qiujia; Wang, Weiran; Wang, Yudi; Wang, Chenliang; Kinlock, Ballington; Liu, Bindong
2016-08-28
Apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3G (A3G) is a host restriction factor that impedes HIV-1 replication. Viral integrity is salvaged by HIV-1 virion infectivity factor (Vif), which mediates A3G polyubiquitination and subsequent cellular depletion. Previous studies have implied that A3G polyubiquitination is essential for Vif-induced degradation. However, the contribution of polyubiquitination to the rate of A3G degradation remains unclear. Here, we show that A3G polyubiquitination is essential for degradation. Inhibition of ubiquitin-activating enzyme E1 by PYR-41 or blocking the formation of ubiquitin chains by over-expressing the lysine to arginine mutation of ubiquitin K48 (K48R) inhibited A3G degradation. Our A3G mutagenesis study showed that lysine residues 297, 301, 303, and 334 were not sufficient to render lysine-free A3G sensitive to Vif-mediated degradation. Our data also confirm that Vif could induce ubiquitin chain formation on lysine residues interspersed throughout A3G. Notably, A3G degradation relied on the lysine residues involved in polyubiquitination. Although A3G and the A3G C-terminal mutant interacted with Vif and were modified by ubiquitin chains, the latter remained more resistant to Vif-induced degradation. Furthermore, the A3G C-terminal mutant, but not the N-terminal mutant, maintained potent antiviral activity in the presence of Vif. Taken together, our results suggest that the location of A3G ubiquitin modification is a determinant for Vif-mediated degradation, implying that in addition to polyubiquitination, other factors may play a key role in the rate of A3G degradation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Block algebra in two-component BKP and D type Drinfeld-Sokolov hierarchies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Chuanzhong, E-mail: lichuanzhong@nbu.edu.cn; He, Jingsong, E-mail: hejingsong@nbu.edu.cn
We construct generalized additional symmetries of a two-component BKP hierarchy defined by two pseudo-differential Lax operators. These additional symmetry flows form a Block type algebra with some modified (or additional) terms because of a B type reduction condition of this integrable hierarchy. Further we show that the D type Drinfeld-Sokolov hierarchy, which is a reduction of the two-component BKP hierarchy, possess a complete Block type additional symmetry algebra. That D type Drinfeld-Sokolov hierarchy has a similar algebraic structure as the bigraded Toda hierarchy which is a differential-discrete integrable system.
de Laurentiis, A; Hiscott, J; Alcalay, M
2015-12-03
The t(12;21) translocation is the most common genetic rearrangement in childhood acute lymphoblastic leukemia (ALL) and gives rise to the TEL-AML1 fusion gene. Many studies on TEL-AML1 describe specific properties of the fusion protein, but a thorough understanding of its function is lacking. We exploited a pluripotent hematopoietic stem/progenitor cell line, EML1, and generated a cell line (EML-TA) stably expressing the TEL-AML1 fusion protein. EML1 cells differentiate to mature B-cells following treatment with IL7; whereas EML-TA display an impaired differentiation capacity and remain blocked at an early stage of maturation. Global gene expression profiling of EML1 cells at different stages of B-lymphoid differentiation, compared with EML-TA, identified the interferon (IFN)α/β pathway as a primary target of repression by TEL-AML1. In particular, expression and phosphorylation of interferon-regulatory factor 3 (IRF3) was decreased in EML-TA cells; strikingly, stable expression of IRF3 restored the capacity of EML-TA cells to differentiate into mature B-cells. Similarly, IRF3 silencing in EML1 cells by siRNA was sufficient to block B-lymphoid differentiation. The ability of TEL-AML1 to block B-cell differentiation and downregulate the IRF3-IFNα/β pathway was confirmed in mouse and human primary hematopoietic precursor cells (Lin- and CD34+ cells, respectively), and in a patient-derived cell line expressing TEL-AML1 (REH). Furthermore, treatment of TEL-AML1 expressing cells with IFNα/β was sufficient to overcome the maturation block. Our data provide new insight on TEL-AML1 function and may offer a new therapeutic opportunity for B-ALL.
Lobanova, Anastasia; She, Robert; Pieraut, Simon; Clapp, Charlie; Maximov, Anton; Denchi, Eros Lazzerini
2017-04-01
Telomeres have been studied extensively in peripheral tissues, but their relevance in the nervous system remains poorly understood. Here, we examine the roles of telomeres at distinct stages of murine brain development by using lineage-specific genetic ablation of TRF2, an essential component of the shelterin complex that protects chromosome ends from the DNA damage response machinery. We found that functional telomeres are required for embryonic and adult neurogenesis, but their uncapping has surprisingly no detectable consequences on terminally differentiated neurons. Conditional knockout of TRF2 in post-mitotic immature neurons had virtually no detectable effect on circuit assembly, neuronal gene expression, and the behavior of adult animals despite triggering massive end-to-end chromosome fusions across the brain. These results suggest that telomeres are dispensable in terminally differentiated neurons and provide mechanistic insight into cognitive abnormalities associated with aberrant telomere length in humans. © 2017 Lobanova et al.; Published by Cold Spring Harbor Laboratory Press.
A novel DLX3-PKC integrated signaling network drives keratinocyte differentiation.
Palazzo, Elisabetta; Kellett, Meghan D; Cataisson, Christophe; Bible, Paul W; Bhattacharya, Shreya; Sun, Hong-Wei; Gormley, Anna C; Yuspa, Stuart H; Morasso, Maria I
2017-04-01
Epidermal homeostasis relies on a well-defined transcriptional control of keratinocyte proliferation and differentiation, which is critical to prevent skin diseases such as atopic dermatitis, psoriasis or cancer. We have recently shown that the homeobox transcription factor DLX3 and the tumor suppressor p53 co-regulate cell cycle-related signaling and that this mechanism is functionally involved in cutaneous squamous cell carcinoma development. Here we show that DLX3 expression and its downstream signaling depend on protein kinase C α (PKCα) activity in skin. We found that following 12-O-tetradecanoyl-phorbol-13-acetate (TPA) topical treatment, DLX3 expression is significantly upregulated in the epidermis and keratinocytes from mice overexpressing PKCα by transgenic targeting (K5-PKCα), resulting in cell cycle block and terminal differentiation. Epidermis lacking DLX3 (DLX3cKO), which is linked to the development of a DLX3-dependent epidermal hyperplasia with hyperkeratosis and dermal leukocyte recruitment, displays enhanced PKCα activation, suggesting a feedback regulation of DLX3 and PKCα. Of particular significance, transcriptional activation of epidermal barrier, antimicrobial peptide and cytokine genes is significantly increased in DLX3cKO skin and further increased by TPA-dependent PKC activation. Furthermore, when inhibiting PKC activity, we show that epidermal thickness, keratinocyte proliferation and inflammatory cell infiltration are reduced and the PKC-DLX3-dependent gene expression signature is normalized. Independently of PKC, DLX3 expression specifically modulates regulatory networks such as Wnt signaling, phosphatase activity and cell adhesion. Chromatin immunoprecipitation sequencing analysis of primary suprabasal keratinocytes showed binding of DLX3 to the proximal promoter regions of genes associated with cell cycle regulation, and of structural proteins and transcription factors involved in epidermal differentiation. These results indicate that Dlx3 potentially regulates a set of crucial genes necessary during the epidermal differentiation process. Altogether, we demonstrate the existence of a robust DLX3-PKCα signaling pathway in keratinocytes that is crucial to epidermal differentiation control and cutaneous homeostasis.
A novel DLX3–PKC integrated signaling network drives keratinocyte differentiation
Palazzo, Elisabetta; Kellett, Meghan D; Cataisson, Christophe; Bible, Paul W; Bhattacharya, Shreya; Sun, Hong-wei; Gormley, Anna C; Yuspa, Stuart H; Morasso, Maria I
2017-01-01
Epidermal homeostasis relies on a well-defined transcriptional control of keratinocyte proliferation and differentiation, which is critical to prevent skin diseases such as atopic dermatitis, psoriasis or cancer. We have recently shown that the homeobox transcription factor DLX3 and the tumor suppressor p53 co-regulate cell cycle-related signaling and that this mechanism is functionally involved in cutaneous squamous cell carcinoma development. Here we show that DLX3 expression and its downstream signaling depend on protein kinase C α (PKCα) activity in skin. We found that following 12-O-tetradecanoyl-phorbol-13-acetate (TPA) topical treatment, DLX3 expression is significantly upregulated in the epidermis and keratinocytes from mice overexpressing PKCα by transgenic targeting (K5-PKCα), resulting in cell cycle block and terminal differentiation. Epidermis lacking DLX3 (DLX3cKO), which is linked to the development of a DLX3-dependent epidermal hyperplasia with hyperkeratosis and dermal leukocyte recruitment, displays enhanced PKCα activation, suggesting a feedback regulation of DLX3 and PKCα. Of particular significance, transcriptional activation of epidermal barrier, antimicrobial peptide and cytokine genes is significantly increased in DLX3cKO skin and further increased by TPA-dependent PKC activation. Furthermore, when inhibiting PKC activity, we show that epidermal thickness, keratinocyte proliferation and inflammatory cell infiltration are reduced and the PKC-DLX3-dependent gene expression signature is normalized. Independently of PKC, DLX3 expression specifically modulates regulatory networks such as Wnt signaling, phosphatase activity and cell adhesion. Chromatin immunoprecipitation sequencing analysis of primary suprabasal keratinocytes showed binding of DLX3 to the proximal promoter regions of genes associated with cell cycle regulation, and of structural proteins and transcription factors involved in epidermal differentiation. These results indicate that Dlx3 potentially regulates a set of crucial genes necessary during the epidermal differentiation process. Altogether, we demonstrate the existence of a robust DLX3–PKCα signaling pathway in keratinocytes that is crucial to epidermal differentiation control and cutaneous homeostasis. PMID:28186503
A novel role for the integrin-binding III-10 module in fibronectin matrix assembly.
Hocking, D C; Smith, R K; McKeown-Longo, P J
1996-04-01
Fibronectin matrix assembly is a cell-dependent process which is upregulated in tissues at various times during development and wound repair to support the functions of cell adhesion, migration, and differentiation. Previous studies have demonstrated that the alpha 5 beta 1 integrin and fibronectin's amino terminus and III-1 module are important in fibronectin polymerization. We have recently shown that fibronectin's III-1 module contains a conformationally sensitive binding site for fibronectin's amino terminus (Hocking, D.C., J. Sottile, and P.J. McKeown-Longo. 1994. J. Biol. Chem. 269: 19183-19191). The present study was undertaken to define the relationship between the alpha 5 beta 1 integrin and fibronectin polymerization. Solid phase binding assays using recombinant III-10 and III-1 modules of human plasma fibronectin indicated that the III-10 module contains a conformation-dependent binding site for the III-1 module of fibronectin. Unfolded III-10 could support the formation of a ternary complex containing both III-1 and the amino-terminal 70-kD fragment, suggesting that the III-1 module can support the simultaneous binding of III-10 and 70 kD. Both unfolded III-10 and unfolded III-1 could support fibronectin binding, but only III-10 could promote the formation of disulfide-bonded multimers of fibronectin in the absence of cells. III-10-dependent multimer formation was inhibited by both the anti-III-1 monoclonal antibody, 9D2, and amino-terminal fragments of fibronectin. A fragment of III-10, termed III-10/A, was able to block matrix assembly in fibroblast monolayers. Similar results were obtained using the III-10A/RGE fragment, in which the RGD site had been mutated to RGE, indicating that III-I0/A was blocking matrix assembly by a mechanism distinct from disruption of integrin binding. Texas red-conjugated recombinant III-1,2 localized to beta 1-containing sites of focal adhesions on cells plated on fibronectin or the III-9,10 modules of fibronectin. Monoclonal antibodies against the III-1 or the III-9,10 modules of fibronectin blocked binding of III-1,2 to cells without disrupting focal adhesions. These data suggest that a role of the alpha 5 beta 1 integrin in matrix assembly is to regulate a series of sequential self-interactions which result in the polymerization of fibronectin.
Proteolysis controls endogenous substance P levels.
Mitchell, Andrew J; Lone, Anna Mari; Tinoco, Arthur D; Saghatelian, Alan
2013-01-01
Substance P (SP) is a prototypical neuropeptide with roles in pain and inflammation. Numerous mechanisms regulate endogenous SP levels, including the differential expression of SP mRNA and the controlled secretion of SP from neurons. Proteolysis has long been suspected to regulate extracellular SP concentrations but data in support of this hypothesis is scarce. Here, we provide evidence that proteolysis controls SP levels in the spinal cord. Using peptidomics to detect and quantify endogenous SP fragments, we identify the primary SP cleavage site as the C-terminal side of the ninth residue of SP. If blocking this pathway increases SP levels, then proteolysis controls SP concentration. We performed a targeted chemical screen using spinal cord lysates as a proxy for the endogenous metabolic environment and identified GM6001 (galardin, ilomastat) as a potent inhibitor of the SP(1-9)-producing activity present in the tissue. Administration of GM6001 to mice results in a greater-than-three-fold increase in the spinal cord levels of SP, which validates the hypothesis that proteolysis controls physiological SP levels.
Evidence for a terminal differentiation process in the rat liver.
Sigal, S H; Gupta, S; Gebhard, D F; Holst, P; Neufeld, D; Reid, L M
1995-07-01
In rapidly renewing epithelia, such as skin and gut, as well as hemopoietic cells and stromal fibroblasts, the process of progenitor cell maturation, terminal differentiation and senescence from cells of a fetal phenotype is strikingly similar. To examine hepatocellular maturation, we studied embryonic, suckling and young adult rat liver cells with multiparametric fluorescence activated cell sorting (FACS), after exclusion of hemopoietic, endothelial, Kupffer, and nonviable cells. With maturation, cell granularity and autofluorescence exponentially increased from fetal liver to suckling and adult liver as the proportion of S phase cells progressively declined from 33.8% +/- 1.3% to 4.9% +/- 2.8% and 1.1% +/- 0.6% (P < 0.05), respectively. In liver from fetal and suckling rats, all hepatocytes were mononuclear and contained diploid DNA whereas 21.2% +/- 5.9% hepatocytes in adult liver were binucleated. Analysis of nuclear DNA content in adult hepatocytes demonstrated that 53.3% +/- 3.9% of the nuclei were diploid, 43.6% +/- 3.5% tetraploid and 0.5 +/- 0.6% octaploid. However, in the adult liver, small, mononuclear cells were also present with granularity and autofluorescence comparable to fetal hepatoblasts, as well as glucose-6-phosphatase activity, diploid DNA in 89.0% +/- 2.1% of the nuclei, and with increased granularity in culture. Since general features of terminal cellularity differentiation and senescence include cessation of mitotic activity, polyploidy and accumulation of autofluorescent secondary lysosomes, our data suggest that liver cells too undergo a process of terminal differentiation.
Blocking-state influence on shot noise and conductance in quantum dots
NASA Astrophysics Data System (ADS)
Harabula, M.-C.; Ranjan, V.; Haller, R.; Fülöp, G.; Schönenberger, C.
2018-03-01
Quantum dots (QDs) investigated through electron transport measurements often exhibit varying, state-dependent tunnel couplings to the leads. Under specific conditions, weakly coupled states can result in a strong suppression of the electrical current, and they are correspondingly called blocking states. Using the combination of conductance and shot noise measurements, we investigate blocking states in carbon nanotube (CNT) QDs. We report negative differential conductance and super-Poissonian noise. The enhanced noise is the signature of electron bunching, which originates from random switches between the strongly and weakly conducting states of the QD. Negative differential conductance appears here when the blocking state is an excited state. In this case, at the threshold voltage where the blocking state becomes populated, the current is reduced. Using a master equation approach, we provide numerical simulations reproducing both the conductance and the shot noise pattern observed in our measurements.
NFIB regulates embryonic development of submandibular glands.
Mellas, R E; Kim, H; Osinski, J; Sadibasic, S; Gronostajski, R M; Cho, M; Baker, O J
2015-02-01
NFIB (nuclear factor I B) is a NFI transcription factor family member, which is essential for the development of a variety of organ systems. Salivary gland development occurs through several stages, including prebud, bud, pseudoglandular, canalicular, and terminal. Although many studies have been done to understand mouse submandibular gland (SMG) branching morphogenesis, little is known about SMG cell differentiation during the terminal stages. The goal of this study was to determine the role of NFIB during SMG development. We analyzed SMGs from wild-type and Nfib-deficient mice (Nfib (-/-)). At embryonic (E) day 18.5, SMGs from wild-type mice showed duct branching morphogenesis and differentiation of tubule ductal cells into tubule secretory cells. In contrast, SMGs from Nfib (-/-) mice at E18.5 failed to differentiate into tubule secretory cells while branching morphogenesis was unaffected. SMGs from wild-type mice at E16.5 displayed well-organized cuboidal inner terminal tubule cells. However, SMGs from Nfib (-/-) at E16.5 displayed disorganized inner terminal tubule cells. SMGs from wild-type mice at E18.5 became fully differentiated, as indicated by a high degree of apicobasal polarization (i.e., presence of apical ZO-1 and basolateral E-cadherin) and columnar shape. Furthermore, SMGs from wild-type mice at E18.5 expressed the protein SMGC, a marker for tubule secretory cells. However, SMGs from Nfib (-/-) mice at E18.5 showed apicobasal polarity, but they were disorganized and lost the ability to secrete SMGC. These findings indicate that the transcription factor NFIB is not required for branching morphogenesis but plays a key role in tubule cell differentiation during mouse SMG development. © International & American Associations for Dental Research 2014.
Heng, M C; Fallon-Friedlander, S; Bennett, R
1992-06-01
Lectins bind tightly to carbohydrate moieties on cell surfaces. Alterations in lectin binding have been reported to accompany epidermal cell differentiation, marking alterations in membrane sugars during this process. The presence of UEA I (Ulex europaeus agglutinin I) L-fucose-specific lectin-binding sites has been used as a marker for terminally differentiated (committed) keratinocytes. In this article, we report the presence of UEA-I-binding sites on squamous keratinocytes of well-differentiated squamous cell carcinomas, with patchy loss of UEA I positivity on poorly differentiated cells of squamous cell carcinomas, suggesting a possible use for this technique in the rapid assessment of less differentiated areas within the squamous cell tumor. The absence of UEA-I-binding sites on basal cell carcinomas may be related to an inability of cells comprising this tumor to convert the L-D-pyranosyl moiety on basal cells to the L-fucose moiety, resulting in an inability of basal cell carcinoma cell to undergo terminal differentiation into a committed keratinocyte.
Msx homeobox genes inhibit differentiation through upregulation of cyclin D1.
Hu, G; Lee, H; Price, S M; Shen, M M; Abate-Shen, C
2001-06-01
During development, patterning and morphogenesis of tissues are intimately coordinated through control of cellular proliferation and differentiation. We describe a mechanism by which vertebrate Msx homeobox genes inhibit cellular differentiation by regulation of the cell cycle. We show that misexpression of Msx1 via retroviral gene transfer inhibits differentiation of multiple mesenchymal and epithelial progenitor cell types in culture. This activity of Msx1 is associated with its ability to upregulate cyclin D1 expression and Cdk4 activity, while Msx1 has minimal effects on cellular proliferation. Transgenic mice that express Msx1 under the control of the mouse mammary tumor virus long terminal repeat (MMTV LTR) display impaired differentiation of the mammary epithelium during pregnancy, which is accompanied by elevated levels of cyclin D1 expression. We propose that Msx1 gene expression maintains cyclin D1 expression and prevents exit from the cell cycle, thereby inhibiting terminal differentiation of progenitor cells. Our model provides a framework for reconciling the mutant phenotypes of Msx and other homeobox genes with their functions as regulators of cellular proliferation and differentiation during embryogenesis.
Binding of transcription termination protein nun to nascent RNA and template DNA.
Watnick, R S; Gottesman, M E
1999-12-17
The amino-terminal arginine-rich motif of coliphage HK022 Nun binds phage lambda nascent transcript, whereas the carboxyl-terminal domain interacts with RNA polymerase (RNAP) and blocks transcription elongation. RNA binding is inhibited by zinc (Zn2+) and stimulated by Escherichia coli NusA. To study these interactions, the Nun carboxyl terminus was extended by a cysteine residue conjugated to a photochemical cross-linker. The carboxyl terminus contacted NusA and made Zn2+-dependent intramolecular contacts. When Nun was added to a paused transcription elongation complex, it cross-linked to the DNA template. Nun may arrest transcription by anchoring RNAP to DNA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Puczkarski, Paweł; Gehring, Pascal, E-mail: pascal.gehring@materials.ox.ac.uk; Lau, Chit S.
2015-09-28
We report room-temperature Coulomb blockade in a single layer graphene three-terminal single-electron transistor fabricated using feedback-controlled electroburning. The small separation between the side gate electrode and the graphene quantum dot results in a gate coupling up to 3 times larger compared to the value found for the back gate electrode. This allows for an effective tuning between the conductive and Coulomb blocked state using a small side gate voltage of about 1 V. The technique can potentially be used in the future to fabricate all-graphene based room temperature single-electron transistors or three terminal single molecule transistors with enhanced gate coupling.
Tury, Anna; Mairet-Coello, Georges; DiCicco-Bloom, Emanuel
2011-08-01
Mounting evidence indicates cyclin-dependent kinase (CDK) inhibitors (CKIs) of the Cip/Kip family, including p57(Kip2) and p27(Kip1), control not only cell cycle exit but also corticogenesis. Nevertheless, distinct activities of p57(Kip2) remain poorly defined. Using in vivo and culture approaches, we show p57(Kip2) overexpression at E14.5-15.5 elicits precursor cell cycle exit, promotes transition from proliferation to neuronal differentiation, and enhances process outgrowth, while opposite effects occur in p57(Kip2)-deficient precursors. Studies at later ages indicate p57(Kip2) overexpression also induces precocious glial differentiation, suggesting stage-dependent effects. In embryonic cortex, p57(Kip2) overexpression advances cell radial migration and alters postnatal laminar positioning. While both CKIs induce differentiation, p57(Kip2) was twice as effective as p27(Kip1) in inducing neuronal differentiation and was not permissive to astrogliogenic effects of ciliary neurotrophic factor, suggesting that the CKIs differentially modulate cell fate decisions. At molecular levels, although highly conserved N-terminal regions of both CKIs elicit cycle withdrawal and differentiation, the C-terminal region of p57(Kip2) alone inhibits in vivo migration. Furthermore, p57(Kip2) effects on neurogenesis and gliogenesis require the N-terminal cyclin/CDK binding/inhibitory domains, while previous p27(Kip1) studies report cell cycle-independent functions. These observations suggest p57(Kip2) coordinates multiple stages of corticogenesis and exhibits distinct and common activities compared with related family member p27(Kip1).
Design of low SWaP optical terminals for free space optical communications
NASA Astrophysics Data System (ADS)
Shubert, P.; Cline, A.; McNally, J.; Pierson, R.
2017-02-01
Along with advantages in higher data rates, spectrum contention, and security, free space optical communications can provide size, weight, and power (SWaP) advantages over radio frequency (RF) systems. SWaP is always an issue in space systems and can be critical in applying free space optical communications to small satellite platforms. The system design of small space-based free space optical terminals with Gbps data rates is addressed. System architectures and requirements are defined to ensure the terminals are capable of acquisition, establishment and maintenance of a free space optical communications link. Design trades, identification of blocking technologies, and performance analyses are used to evaluate the practical limitations to terminal SWaP. Small terminal design concepts are developed to establish their practicality and feasibility. Techniques, such as modulation formats and capacity approaching encoding, are considered to mitigate the disadvantages brought by SWaP limitations, and performance as a function of SWaP is evaluated.
NMR assignments of the N-terminal domain of Nephila clavipes spidroin 1
Parnham, Stuart; Gaines, William A.; Duggan, Brendan M.; Marcotte, William R.
2011-01-01
The building blocks of spider dragline silk are two fibrous proteins secreted from the major ampullate gland named spidroins 1 and 2 (MaSp1, MaSp2). These proteins consist of a large central domain composed of approximately 100 tandem copies of a 35–40 amino acid repeat sequence. Non-repetitive N and C-terminal domains, of which the C-terminal domain has been implicated to transition from soluble and insoluble states during spinning, flank the repetitive core. The N-terminal domain until recently has been largely unknown due to difficulties in cloning and expression. Here, we report nearly complete assignment for all 1H, 13C, and 15N resonances in the 14 kDa N-terminal domain of major ampullate spidroin 1 (MaSp1-N) of the golden orb-web spider Nephila clavipes. PMID:21152998
Coppolino, Giusy T.; Marangon, Davide; Negri, Camilla; Menichetti, Gianluca; Fumagalli, Marta; Gelosa, Paolo; Dimou, Leda; Furlan, Roberto; Lecca, Davide
2018-01-01
Abstract Promoting remyelination is recognized as a novel strategy to foster repair in neurodegenerative demyelinating diseases, such as multiple sclerosis. In this respect, the receptor GPR17, recently emerged as a new target for remyelination, is expressed by early oligodendrocyte precursors (OPCs) and after a certain differentiation stage it has to be downregulated to allow progression to mature myelinating oligodendrocytes. Here, we took advantage of the first inducible GPR17 reporter mouse line (GPR17‐iCreERT2xCAG‐eGFP mice) allowing to follow the final fate of GPR17+ cells by tamoxifen‐induced GFP‐labeling to unveil the destiny of these cells in two demyelination models: experimental autoimmune encephalomyelitis (EAE), characterized by marked immune cell activation and inflammation, and cuprizone induced demyelination, where myelin dysfunction is achieved by a toxic insult. In both models, demyelination induced a strong increase of fluorescent GFP+ cells at damaged areas. However, only in the cuprizone model reacting GFP+ cells terminally differentiated to mature oligodendrocytes, thus contributing to remyelination. In EAE, GFP+ cells were blocked at immature stages and never became myelinating oligodendrocytes. We suggest these strikingly distinct fates be due to different permissiveness of the local CNS environment. Based on previously reported GPR17 activation by emergency signals (e.g., Stromal Derived Factor‐1), we propose that a marked inflammatory milieu, such as that reproduced in EAE, induces GPR17 overactivation resulting in impaired downregulation, untimely and prolonged permanence in OPCs, leading, in turn, to differentiation blockade. Combined treatments with remyelinating agents and anti‐inflammatory drugs may represent new potential adequate strategies to halt neurodegeneration and foster recovery. PMID:29424466
Coppolino, Giusy T; Marangon, Davide; Negri, Camilla; Menichetti, Gianluca; Fumagalli, Marta; Gelosa, Paolo; Dimou, Leda; Furlan, Roberto; Lecca, Davide; Abbracchio, Maria P
2018-05-01
Promoting remyelination is recognized as a novel strategy to foster repair in neurodegenerative demyelinating diseases, such as multiple sclerosis. In this respect, the receptor GPR17, recently emerged as a new target for remyelination, is expressed by early oligodendrocyte precursors (OPCs) and after a certain differentiation stage it has to be downregulated to allow progression to mature myelinating oligodendrocytes. Here, we took advantage of the first inducible GPR17 reporter mouse line (GPR17-iCreER T2 xCAG-eGFP mice) allowing to follow the final fate of GPR17 + cells by tamoxifen-induced GFP-labeling to unveil the destiny of these cells in two demyelination models: experimental autoimmune encephalomyelitis (EAE), characterized by marked immune cell activation and inflammation, and cuprizone induced demyelination, where myelin dysfunction is achieved by a toxic insult. In both models, demyelination induced a strong increase of fluorescent GFP + cells at damaged areas. However, only in the cuprizone model reacting GFP + cells terminally differentiated to mature oligodendrocytes, thus contributing to remyelination. In EAE, GFP + cells were blocked at immature stages and never became myelinating oligodendrocytes. We suggest these strikingly distinct fates be due to different permissiveness of the local CNS environment. Based on previously reported GPR17 activation by emergency signals (e.g., Stromal Derived Factor-1), we propose that a marked inflammatory milieu, such as that reproduced in EAE, induces GPR17 overactivation resulting in impaired downregulation, untimely and prolonged permanence in OPCs, leading, in turn, to differentiation blockade. Combined treatments with remyelinating agents and anti-inflammatory drugs may represent new potential adequate strategies to halt neurodegeneration and foster recovery. © 2018 The Authors GLIA Published by Wiley Periodicals, Inc.
Alonso-Lecue, Pilar; de Pedro, Isabel; Coulon, Vincent; Molinuevo, Rut; Lorz, Corina; Segrelles, Carmen; Ceballos, Laura; López-Aventín, Daniel; García-Valtuille, Ana; Bernal, José M; Mazorra, Francisco; Pujol, Ramón M; Paramio, Jesús; Ramón Sanz, J; Freije, Ana; Toll, Agustí; Gandarillas, Alberto
2017-01-01
Squamous cell carcinoma (SCC) or epidermoid cancer is a frequent and aggressive malignancy. However in apparent paradox it retains the squamous differentiation phenotype except for very dysplastic lesions. We have shown that cell cycle stress in normal epidermal keratinocytes triggers a squamous differentiation response involving irreversible mitosis block and polyploidisation. Here we show that cutaneous SCC cells conserve a partial squamous DNA damage-induced differentiation response that allows them to overcome the cell division block. The capacity to divide in spite of drug-induced mitotic stress and DNA damage made well-differentiated SCC cells more genomically instable and more malignant in vivo. Consistently, in a series of human biopsies, non-metastatic SCCs displayed a higher degree of chromosomal alterations and higher expression of the S phase regulator Cyclin E and the DNA damage signal γH2AX than the less aggressive, non-squamous, basal cell carcinomas. However, metastatic SCCs lost the γH2AX signal and Cyclin E, or accumulated cytoplasmic Cyclin E. Conversely, inhibition of endogenous Cyclin E in well-differentiated SCC cells interfered with the squamous phenotype. The results suggest a dual role of cell cycle stress-induced differentiation in squamous cancer: the resulting mitotic blocks would impose, when irreversible, a proliferative barrier, when reversible, a source of genomic instability, thus contributing to malignancy. PMID:28661481
Identification of Carboxypeptidase Substrates by C-Terminal COFRADIC.
Tanco, Sebastian; Aviles, Francesc Xavier; Gevaert, Kris; Lorenzo, Julia; Van Damme, Petra
2017-01-01
We here present a detailed procedure for studying protein C-termini and their posttranslational modifications by C-terminal COFRADIC. In fact, this procedure can enrich for both C-terminal and N-terminal peptides through a combination of a strong cation exchange fractionation step at low pH, which removes the majority of nonterminal peptides in whole-proteome digests, while the actual COFRADIC step segregates C-terminal peptides from N-terminal peptides. When used in a differential mode, C-terminal COFRADIC allows for the identification of neo-C-termini generated by the action of proteases, which in turn leads to the identification of protease substrates. More specifically, this technology can be applied to determine the natural substrate repertoire of carboxypeptidases on a proteome-wide scale.
Farnum, C E; Turgai, J; Wilsman, N J
1990-09-01
The functional unit within the growth plate consists of a column of chondrocytes that passes through a sequence of phases including proliferation, hypertrophy, and death. It is important to our understanding of the biology of the growth plate to determine if distal hypertrophic cells are viable, highly differentiated cells with the potential of actively controlling terminal events of endochondral ossification prior to their death at the chondro-osseous junction. This study for the first time reports on the visualization of living hypertrophic chondrocytes in situ, including the terminal hypertrophic chondrocyte. Chondrocytes in growth plate explants are visualized using rectified differential interference contrast microscopy. We record and measure, using time-lapse cinematography, the rate of movement of subcellular organelles at the limit of resolution of this light microscopy system. Control experiments to assess viability of hypertrophic chondrocytes include coincubating organ cultures with the intravital dye fluorescein diacetate to assess the integrity of the plasma membrane and cytoplasmic esterases. In this system, all hypertrophic chondrocytes, including the very terminal chondrocyte, exist as rounded, fully hydrated cells. By the criteria of intravital dye staining and organelle movement, distal hypertrophic chondrocytes are identical to chondrocytes in the proliferative and early hypertrophic cell zones.
Kim, Dongkyeong; Choi, Jin-Ok; Fan, Chuandong; Shearer, Randall S; Sharif, Mohamed; Busch, Patrick; Park, Yungki
2017-05-19
Myrf is a key transcription factor for oligodendrocyte differentiation and central nervous system myelination. We and others have previously shown that Myrf is generated as a membrane protein in the endoplasmic reticulum (ER), and that it undergoes auto-processing to release its N-terminal fragment from the ER, which enters the nucleus to work as a transcription factor. These previous studies allow a glimpse into the unusual complexity behind the biogenesis and function of the transcription factor domain of Myrf. Here, we report that Myrf N-terminal fragments assemble into stable homo-trimers before ER release. Consequently, Myrf N-terminal fragments are released from the ER only as homo-trimers. Our re-analysis of a previous genetic screening result in Caenorhabditis elegans shows that homo-trimerization is essential for the biological functions of Myrf N-terminal fragment, and that the region adjacent to the DNA-binding domain is pivotal to its homo-trimerization. Further, our computational analysis uncovered a novel homo-trimeric DNA motif that mediates the homo-trimeric DNA binding of Myrf N-terminal fragments. Importantly, we found that homo-trimerization defines the DNA binding specificity of Myrf N-terminal fragments. In sum, our study elucidates the molecular mechanism governing the biogenesis and function of Myrf N-terminal fragments and its physiological significance. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Burton, Peter; Adams, David R; Abraham, Achamma; Allcock, Robert W; Jiang, Zhong; McCahill, Angela; Gilmour, Jane; McAbney, John; Kaupisch, Alexandra; Kane, Nicole M; Baillie, George S; Baker, Andrew H; Milligan, Graeme; Houslay, Miles D; Mountford, Joanne C
2010-12-15
hESCs (human embryonic stem cells) have enormous potential for use in pharmaceutical development and therapeutics; however, to realize this potential, there is a requirement for simple and reproducible cell culture methods that provide adequate numbers of cells of suitable quality. We have discovered a novel way of blocking the spontaneous differentiation of hESCs in the absence of exogenous cytokines by supplementing feeder-free conditions with EHNA [erythro-9-(2-hydroxy-3-nonyl)adenine], an established inhibitor of ADA (adenosine deaminase) and cyclic nucleotide PDE2 (phosphodiesterase 2). hESCs maintained in feeder-free conditions with EHNA for more than ten passages showed no reduction in hESC-associated markers including NANOG, POU5F1 (POU domain class 5 transcription factor 1, also known as Oct-4) and SSEA4 (stage-specific embryonic antigen 4) compared with cells maintained in feeder-free conditions containing bFGF (basic fibroblast growth factor). Spontaneous differentiation was reversibly suppressed by the addition of EHNA, but, upon removing EHNA, hESC populations underwent efficient spontaneous, multi-lineage and directed differentiation. EHNA also acts as a strong blocker of directed neuronal differentiation. Chemically distinct inhibitors of ADA and PDE2 lacked the capacity of EHNA to suppress hESC differentiation, suggesting that the effect is not driven by inhibition of either ADA or PDE2. Preliminary structure-activity relationship analysis found the differentiation-blocking properties of EHNA to reside in a pharmacophore comprising a close adenine mimetic with an extended hydrophobic substituent in the 8- or 9-position. We conclude that EHNA and simple 9-alkyladenines can block directed neuronal and spontaneous differentiation in the absence of exogenous cytokine addition, and may provide a useful replacement for bFGF in large-scale or cGMP-compliant processes.
Maximum principle for a stochastic delayed system involving terminal state constraints.
Wen, Jiaqiang; Shi, Yufeng
2017-01-01
We investigate a stochastic optimal control problem where the controlled system is depicted as a stochastic differential delayed equation; however, at the terminal time, the state is constrained in a convex set. We firstly introduce an equivalent backward delayed system depicted as a time-delayed backward stochastic differential equation. Then a stochastic maximum principle is obtained by virtue of Ekeland's variational principle. Finally, applications to a state constrained stochastic delayed linear-quadratic control model and a production-consumption choice problem are studied to illustrate the main obtained result.
Parkinson, Eric Kenneth
2013-01-01
The long-chain omega-3 polyunsaturated fatty acids (n-3 PUFAs)—eicosapentaenoic acid (EPA) and its metabolite docosahexaenoic acid (DHA)—inhibit cancer formation in vivo, but their mechanism of action is unclear. Extracellular signal-regulated kinase 1/2 (ERK1/2) activation and inhibition have both been associated with the induction of tumour cell apoptosis by n-3 PUFAs. We show here that low doses of EPA, in particular, inhibited the growth of premalignant and malignant keratinocytes more than the growth of normal counterparts by a combination of cell cycle arrest and apoptosis. The growth inhibition of the oral squamous cell carcinoma (SCC) lines, but not normal keratinocytes, by both n-3 PUFAs was associated with epidermal growth factor receptor (EGFR) autophosphorylation, a sustained phosphorylation of ERK1/2 and its downstream target p90RSK but not with phosphorylation of the PI3 kinase target Akt. Inhibition of EGFR with either the EGFR kinase inhibitor AG1478 or an EGFR-blocking antibody inhibited ERK1/2 phosphorylation, and the blocking antibody partially antagonized growth inhibition by EPA but not by DHA. DHA generated more reactive oxygen species and activated more c-jun N-terminal kinase than EPA, potentially explaining its increased toxicity to normal keratinocytes. Our results show that, in part, EPA specifically inhibits SCC growth and development by creating a sustained signalling imbalance to amplify the EGFR/ERK/p90RSK pathway in neoplastic keratinocytes to a supraoptimal level, supporting the chemopreventive potential of EPA, whose toxicity to normal cells might be reduced further by blocking its metabolism to DHA. Furthermore, ERK1/2 phosphorylation may have potential as a biomarker of n-3 PUFA function in vivo. PMID:23892603
The Naga Hills and Andaman ophiolite belt, their setting, nature and collisional emplacement history
NASA Astrophysics Data System (ADS)
Acharyya, S. K.; Ray, K. K.; Sengupta, Subhasis
The Indo-Burmese Range and the Andaman-Nicobar Island Arc, form a continuous arcuate trend along which several ophiolite occurrences have been reported. In Naga Hills (NHO) and Andaman (ANO), these ophiolites are represented by dismembered mafic and ultramafic rocks with closely associated oceanic pelagic sediments. They occur as folded thrust slices occupying the highest tectonic levels and are brought to lie over distal shelf sediments of Eocene to Oligocene age. Ophiolites are unconformably overlain by ophiolite-derived clastics of Middle to Late Eocene age. The ophiolites preserved along this belt are remnants of a continuous, narrow, one or several intra-continental ocean basin(s) of broadly comparable age, created during the Late Mesozoic rifting of the Greater India Gondwana continent. Rifting and creation of oceanic crust date between Cretaceous and Early Eocene. In the initial stages, the ocean floor had been deeper than Carbonate Compensation Depth (CCD). Subsequently it had become uneven, when oceanic crust was being added through several seamounts or seamount chains and on top of which calcareous pelagic sediments were deposited. Both tholeiitic and alkaline volcanic rocks are present in these ophiolites. In NHO, the two groups of lavas have generated from different sources in different tectonic settings. The alkalic and some tholeiitic lavas in NHO are similar to off-axis seamount basalts. Tholeiitic lavas from ANO and some NHO resemble MORB or backarc basin basalts and on the basis of certain chemical characters these are suggested to have generated in marginal basin setting. Significant volume of acid differentiates are associated in ANO which also support the marginal basin character of the basalts. The suite of rocks in ANO indicates fractionation in a shallow level magma chamber. Closure of the small ocean basin(s) and emplacement of ophiolites took place in two stages. In the initial stage, the seamount chain brought to the subduction zone collided with the Burmese block prior to Middle Eocene. Part of the ophiolites represent clipped seamounts which got accreted to the leading edge of the eastern continental block. With continued closure, this eastern block with accreted ophiolite slices was brought in juxtaposition with distal shelf sediments of the western block marking the terminal continent-continent collision. The thrust front of ophiolitic rocks apparently advanced further westward in Andaman to the south compared to the northern sector, and thus an imbricated zone and melange involving the Eocene floor sediments (Lipa Fm) has been created, whereas in the Naga Hills the floor sediments (Disang Fm) remained virtually passive. The time of terminal continental collision is represented as the regional Late Oligocene unconformity. The entire thrust stack got deformed and folded into upright geometry after being blocked. The present subduction of oceanic crust beneath the Andaman island arc appears to be a westward jump of subduction zone due to sustained post-collisional NE drive of the Indian plate.
The Stigma of Dying: Attitudes Toward the Terminally Ill
ERIC Educational Resources Information Center
Epley, Rita J.; McCaghy, Charles H.
1978-01-01
Using a range of semantic differential adjectives, 233 college students indicated attitudes toward young and old people who were healthy, ill, or terminally ill. Attitudes toward each state of health category separate into three factors: attitudes toward healthy, ill, and dying persons. (Author)
Opioid receptors mediate direct predictive fear learning: evidence from one-trial blocking.
Cole, Sindy; McNally, Gavan P
2007-04-01
Pavlovian fear learning depends on predictive error, so that fear learning occurs when the actual outcome of a conditioning trial exceeds the expected outcome. Previous research has shown that opioid receptors, including mu-opioid receptors in the ventrolateral quadrant of the midbrain periaqueductal gray (vlPAG), mediate such predictive fear learning. Four experiments reported here used a within-subject one-trial blocking design to study whether opioid receptors mediate a direct or indirect action of predictive error on Pavlovian association formation. In Stage I, rats were trained to fear conditioned stimulus (CS) A by pairing it with shock. In Stage II, CSA and CSB were co-presented once and co-terminated with shock. Two novel stimuli, CSC and CSD, were also co-presented once and co-terminated with shock in Stage II. The results showed one-trial blocking of fear learning (Experiment 1) as well as one-trial unblocking of fear learning when Stage II training employed a higher intensity footshock than was used in Stage I (Experiment 2). Systemic administrations of the opioid receptor antagonist naloxone (Experiment 3) or intra-vlPAG administrations of the selective mu-opioid receptor antagonist CTAP (Experiment 4) prior to Stage II training prevented one-trial blocking. These results show that opioid receptors mediate the direct actions of predictive error on Pavlovian association formation.
Viputtigul, Kwanjai; Tungpukdee, Noppadon; Ruangareerate, Toon; Luplertlop, Natthanej; Wilairatana, Polrat; Gaywee, Jariyanart; Krudsood, Srivicha
2013-01-01
This study was undertaken to ascertain the extent of polymorphism in the C-terminal region of Plasmodium falciparum merozoite surface protein (MSP-1) from 119 malaria patients in Tak Province on the western border of Thailand, who were admitted to the Bangkok Hospital for Tropical Diseases, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand. P. falciparum infection was confirmed by microscopic examination of peripheral blood smears. Clinical manifestations were categorized into 2 groups: uncomplicated (94 cases) and complicated/severe (25 cases). A 1,040 basepair fragment of P. falciparum MSP-1 gene was compared with MSP-1 of reference strains retrieved from GenBank. The consensus sequences of MSP-1 block 16 showed it belonged to MAD20 genotype, which is the major allele of falciparum malaria from the western border of Thailand. MSP-1 block 16 amino acid fragment could be separated into 2 groups: similar and dissimilar to reference sequence. Four variations in MSP-1 block 16 were -1494K, D1510G, D1556N, and K1696I. MSP-1 block 16 diversity is not significantly associated with clinical manifestation although MAD 20 genotype is the predominant genotype in this area. The genetic data of MSP1 gene of faciparum malaria isolated from western Thai border contribute to the existing genetic database of Thai P. falciparum strain.
Strack, Martin; Bedini, Andrea; Yip, King T; Lombardi, Sara; Siegmund, Daniel; Stoll, Raphael; Spampinato, Santi M; Metzler-Nolte, Nils
2016-10-04
Herein, the selective enforcement of one particular receptor-ligand interaction between specific domains of the μ-selective opioid peptide dermorphin and the μ opioid receptor is presented. For this, a blocking group scan is described which exploits the steric demand of a bis(quinolinylmethyl)amine rhenium(I) tricarbonyl complex conjugated to a number of different, strategically chosen positions of dermorphin. The prepared peptide conjugates lead to the discovery of two different binding modes: An expected N-terminal binding mode corresponds to the established view of opioid peptide binding, whereas an unexpected C-terminal binding mode is newly discovered. Surprisingly, both binding modes provide high affinity and agonistic activity at the μ opioid receptor in vitro. Furthermore, the unprecedented C-terminal binding mode shows potent dose-dependent antinociception in vivo. Finally, in silico docking studies support receptor activation by both dermorphin binding modes and suggest a biological relevance for dermorphin itself. Relevant ligand-protein interactions are similar for both binding modes, which is in line with previous protein mutation studies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A Novel Malaria Vaccine Candidate Antigen Expressed in Tetrahymena thermophila
Eleni-Muus, Janna; Aldag, Ingo; Samuel, Kay; Creasey, Alison M.; Hartmann, Marcus W. W.; Cavanagh, David R.
2014-01-01
Development of effective malaria vaccines is hampered by the problem of producing correctly folded Plasmodium proteins for use as vaccine components. We have investigated the use of a novel ciliate expression system, Tetrahymena thermophila, as a P. falciparum vaccine antigen platform. A synthetic vaccine antigen composed of N-terminal and C-terminal regions of merozoite surface protein-1 (MSP-1) was expressed in Tetrahymena thermophila. The recombinant antigen was secreted into the culture medium and purified by monoclonal antibody (mAb) affinity chromatography. The vaccine was immunogenic in MF1 mice, eliciting high antibody titers against both N- and C-terminal components. Sera from immunized animals reacted strongly with P. falciparum parasites from three antigenically different strains by immunofluorescence assays, confirming that the antibodies produced are able to recognize parasite antigens in their native form. Epitope mapping of serum reactivity with a peptide library derived from all three MSP-1 Block 2 serotypes confirmed that the MSP-1 Block 2 hybrid component of the vaccine had effectively targeted all three serotypes of this polymorphic region of MSP-1. This study has successfully demonstrated the use of Tetrahymena thermophila as a recombinant protein expression platform for the production of malaria vaccine antigens. PMID:24489871
Yoakim, M; Hou, W; Liu, Y; Carpenter, C L; Kapeller, R; Schaffhausen, B S
1992-01-01
The binding of phosphatidylinositol-3-kinase to the polyomavirus middle T antigen is facilitated by tyrosine phosphorylation of middle T on residue 315. The pp85 subunit of phosphatidylinositol-3-kinase contains two SH2 domains, one in the middle of the molecule and one at the C terminus. When assayed by blotting with phosphorylated middle T, the more N-terminal SH2 domain is responsible for binding to middle T. When assayed in solution with glutathione S transferase fusions, both SH2s are capable of binding phosphorylated middle T. While both SH2 fusions can compete with intact pp85 for binding to middle T, the C-terminal SH2 is the more efficient of the two. Interaction between pp85 or its SH2 domains and middle T can be blocked by a synthetic peptide comprising the tyrosine phosphorylation sequence around middle T residue 315. Despite the fact that middle T can interact with both SH2s, these domains are not equivalent. Only the C-terminal SH2-middle T interaction was blocked by anti-SH2 antibody; the two SH2 fusions also interact with different cellular proteins. Images PMID:1380095
2006-08-23
With Saturn terminator as a backdrop, this view of the unlit face of the rings makes it easy to distinguish between areas that are actual gaps, where light passes through essentially unimpeded, and areas where the rings block or scatter light
33 CFR 164.74 - Towline and terminal gear for towing astern.
Code of Federal Regulations, 2013 CFR
2013-07-01
... by the towline; (C) History of loading of the towline; (D) Surface condition, including corrosion and... lead of the towline is appropriate to prevent sharp bends in the towline from fairlead blocks, chocks...
78 FR 77024 - Telemarketing Sales Rule; Notice of Termination of Caller ID Rulemaking
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-20
..., data mining and anomaly detection, and call-blocking technology). \\19\\ AT&T Servs., Inc., No. 00040, at... technically feasible, by looking at the signaling data . . . to distinguish between a CPN [calling party...
Crushable barrier blocks installed : research notes.
DOT National Transportation Integrated Search
1997-09-01
The Oregon Department of Transportation : is testing another low cost life : saving device. On September 9, 1997, : an ADIEM II concrete barrier end : terminal was installed on I-5 south of : Salem, at the Delaney Road : overcrossing construction pro...
Code of Federal Regulations, 2010 CFR
2010-01-01
... on electrical devices, including those on relays, interrupters, switches, contactors, terminal blocks and circuit breakers, and other circuit protection devices. (4) Connectors, including feed-through... connections. (7) Electrical splices. (8) Materials used to provide additional protection for wires, including...
Code of Federal Regulations, 2011 CFR
2011-01-01
... on electrical devices, including those on relays, interrupters, switches, contactors, terminal blocks and circuit breakers, and other circuit protection devices. (4) Connectors, including feed-through... connections. (7) Electrical splices. (8) Materials used to provide additional protection for wires, including...
Cuddy, Leah K; Seah, Claudia; Pasternak, Stephen H; Rylett, R Jane
2017-01-01
Alzheimer's disease (AD) is a common age-related neurodegenerative disorder that is characterized by progressive cognitive decline. The deficits in cognition and attentional processing that are observed clinically in AD are linked to impaired function of cholinergic neurons that release the neurotransmitter acetylcholine (ACh). The high-affinity choline transporter (CHT) is present at the presynaptic cholinergic nerve terminal and is responsible for the reuptake of choline produced by hydrolysis of ACh following its release. Disruption of CHT function leads to decreased choline uptake and ACh synthesis, leading to impaired cholinergic neurotransmission. We report here that cell-derived β-amyloid peptides (Aβ) decrease choline uptake activity and cell surface CHT protein levels in SH-SY5Y neural cells. Moreover, we make the novel observation that the amount of CHT protein localizing to early endosomes and lysosomes is decreased significantly in cells that have been treated with cell culture medium that contains Aβ peptides released from neural cells. The Aβ-mediated loss of CHT proteins from lysosomes is prevented by blocking lysosomal degradation of CHT with the lysosome inhibitor bafilomycin A1 (BafA 1 ). BafA 1 also attenuated the Aβ-mediated decrease in CHT cell surface expression. Interestingly, however, lysosome inhibition did not block the effect of Aβ on CHT activity. Importantly, neutralizing Aβ using an anti-Aβ antibody directed at the N-terminal amino acids 1-16 of Aβ, but not by an antibody directed at the mid-region amino acids 22-35 of Aβ, attenuates the effect of Aβ on CHT activity and trafficking. This indicates that a specific N-terminal Aβ epitope, or specific conformation of soluble Aβ, may impair CHT activity. Therefore, Aβ immunotherapy may be a more effective therapeutic strategy for slowing the progression of cognitive decline in AD than therapies designed to promote CHT cell surface levels.
End-functionalized ROMP polymers for Biomedical Applications
Madkour, Ahmad E.; Koch, Amelie H. R.; Lienkamp, Karen; Tew, Gregory N.
2010-01-01
We present two novel allyl-based terminating agents that can be used to end-functionalize living polymer chains obtained by ring-opening metathesis polymerization (ROMP) using Grubbs’ third generation catalyst. Both terminating agents can be easily synthesized and yield ROMP polymers with stable, storable activated ester groups at the chain-end. These end-functionalized ROMP polymers are attractive building blocks for advanced polymeric materials, especially in the biomedical field. Dye-labeling and surface-coupling of antimicrobially active polymers using these end-groups were demonstrated. PMID:21499549
Azidated Ether-Butadiene-Ether Block Copolymers as Binders for Solid Propellants
NASA Astrophysics Data System (ADS)
Cappello, Miriam; Lamia, Pietro; Mura, Claudio; Polacco, Giovanni; Filippi, Sara
2016-07-01
Polymeric binders for solid propellants are usually based on hydroxyl-terminated polybutadiene (HTPB), which does not contribute to the overall energy output. Azidic polyethers represent an interesting alternative but may have poorer mechanical properties. Polybutadiene-polyether copolymers may combine the advantages of both. Four different ether-butadiene-ether triblock copolymers were prepared and azidated starting from halogenated and/or tosylated monomers using HTPB as initiator. The presence of the butadiene block complicates the azidation step and reduces the storage stability of the azidic polymer. Nevertheless, the procedure allows modifying the binder properties by varying the type and lengths of the energetic blocks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keller, Vivian; Deiwick, Andrea; Pflaum, Michael
The correlation between extracellular matrix (ECM) components, cell shape, and stem cell guidance can shed light in understanding and mimicking the functionality of stem cell niches for various applications. This interplay on osteogenic guidance of human adipose-derived stem cells (hASCs) was focus of this study. Proliferation and osteogenic markers like alkaline phosphatase activity and calcium mineralization were slightly increased by the ECM components laminin (LA), collagen I (COL), and fibronectin (FIB); with control medium no differentiation occurred. ECM guided differentiation was rather dependent on osterix than on Runx2 pathway. FIB significantly enhanced cell elongation even in presence of actin polymerizationmore » blockers cytochalasin D (CytoD) and ROCK inhibitor Y-27632, which generally caused more rounded cells. Except for the COL surface, both inhibitors increased the extent of osterix, while the Runx2 pathway was more sensitive to the culture condition. Both inhibitors did not affect hASC proliferation. CytoD enabled osteogenic differentiation independently from the ECM, while it was rather blocked via Y-27632 treatment; on FIB the general highest extent of differentiation occurred. Taken together, the ECM effect on hASCs occurs indirectly and selectively via a dominant role of FIB: it sustains osteogenic differentiation in case of a tension-dependent control of actin polymerization. - Highlights: • Interplay of ECM and cell shape guides osteogenic differentiation of hASCs. • ECM components only present a promotive but not stimulative effect. • No direct correlation between ECM-enhanced cell elongation and differentiation. • Suppression of differentiation depends on a specific actin polymerization blocking. • Fibronectin sustains cell elongation and differentiation in case of blocking actin.« less
Kobari, Ladan; Yates, Frank; Oudrhiri, Noufissa; Francina, Alain; Kiger, Laurent; Mazurier, Christelle; Rouzbeh, Shaghayegh; El-Nemer, Wassim; Hebert, Nicolas; Giarratana, Marie-Catherine; François, Sabine; Chapel, Alain; Lapillonne, Hélène; Luton, Dominique; Bennaceur-Griscelli, Annelise; Douay, Luc
2012-01-01
Background Human induced pluripotent stem cells offer perspectives for cell therapy and research models for diseases. We applied this approach to the normal and pathological erythroid differentiation model by establishing induced pluripotent stem cells from normal and homozygous sickle cell disease donors. Design and Methods We addressed the question as to whether these cells can reach complete erythroid terminal maturation notably with a complete switch from fetal to adult hemoglobin. Sickle cell disease induced pluripotent stem cells were differentiated in vitro into red blood cells and characterized for their terminal maturation in terms of hemoglobin content, oxygen transport capacity, deformability, sickling and adherence. Nucleated erythroblast populations generated from normal and pathological induced pluripotent stem cells were then injected into non-obese diabetic severe combined immunodeficiency mice to follow the in vivo hemoglobin maturation. Results We observed that in vitro erythroid differentiation results in predominance of fetal hemoglobin which rescues the functionality of red blood cells in the pathological model of sickle cell disease. We observed, in vivo, the switch from fetal to adult hemoglobin after infusion of nucleated erythroid precursors derived from either normal or pathological induced pluripotent stem cells into mice. Conclusions These results demonstrate that human induced pluripotent stem cells: i) can achieve complete terminal erythroid maturation, in vitro in terms of nucleus expulsion and in vivo in terms of hemoglobin maturation; and ii) open the way to generation of functionally corrected red blood cells from sickle cell disease induced pluripotent stem cells, without any genetic modification or drug treatment. PMID:22733021
NASA Astrophysics Data System (ADS)
Bai, Zhiyuan; Du, Jiangfeng; Xin, Qi; Li, Ruonan; Yu, Qi
2017-11-01
In this paper, a novel high-K/low-K compound passivation AlGaN/GaN Schottky Barrier Diode (CPG-SBD) is proposed to improve the off-state characteristics of AlGaN/GaN schottky barrier diode with gated edge termination (GET-SBD) by adding low-K blocks in to the high-K passivation layer. The reverse leakage current of CPG-SBD can be reduced to 1.6 nA/mm by reducing the thickness of high-K dielectric under GET region to 5 nm, while the forward voltage and on-state resistance keep 1 V and 3.8 Ω mm, respectively. Breakdown voltage of CPG-SBDs can be improved by inducing discontinuity of the electric field at the high-K/low-K interface. The breakdown voltage of the optimized CPG-SBD with 4 blocks of low-K can reach 1084 V with anode to cathode distance of 5 μm yielding a high FOM of 5.9 GW/cm2. From the C-V simulation results, CPG-SBDs induce no parasitic capacitance by comparison of the GET-SBDs.
Sadvakassova, Gulzhakhan; Dobocan, Monica C; Difalco, Marcos R; Congote, Luis F
2009-09-01
The matrix protein thrombospondin-4 has an acidic amphipathic C-terminal peptide (C21) which stimulates erythroid cell proliferation. Here we show that C21 stimulates red cell formation in anemic mice in vivo. In vitro experiments indicated that the peptide-mediated increase of erythroid colony formation in cultures of human CD34+ hematopoietic progenitor cells was possible only under continuous presence of erythropoietin. In the absence of this cytokine, C21 stimulated exclusively myeloid colony formation. Therefore, the peptide is not a specific erythroid differentiation factor. In fact, it is mitogenic in non-erythroid cells, such as skin fibroblasts and kidney epithelial cells. In erythroleukemic TF-1 cells, it actually decreased the production of the erythroid differentiation marker glycophorin A. C21-affinity chromatography revealed regulator of differentiation 1 (ROD1) as a major C21-binding protein. ROD1 is the hematopoietic cell paralog of polypyrimidine tract binding proteins (PTBs), RNA splice regulators which regulate differentiation by repressing tissue-specific exons. ROD1 binding to C21 was strongly inhibited by synthetic RNAs in the order poly A > poly U > poly G = poly C and was weakly inhibited by a synthetic phosphorylated peptide mimicking the C-terminal domain of RNA polymerase II. Cellular overexpression or knockdown experiments of ROD1 suggest a role for this protein in the mitogenic activity of C21. Since the nuclear proteins ROD1 and PTBs regulate differentiation at a posttranscriptional level and there is a fast nuclear uptake of C21, we put forward the idea that the peptide is internalized, goes to the nucleus and maintains cells in a proliferative state by supporting ROD1-mediated inhibition of differentiation.
Brammer, Ingo; Herskind, Carsten; Haase, Oliver; Rodemann, H Peter; Dikomey, Ekkehard
2004-02-03
It was studied for human skin fibroblasts, whether the induction or repair of DNA double-strand breaks (dsb) depend on the differentiation status. These studies were performed (a) with a fibroblast strain (HSF1) kept in progenitor state (mitotic fibroblasts, MF) or triggered to premature terminal differentiation (postmitotic fibrocytes, PMF) by exposure to mitomycin C or (b) with 20 fibroblast strains differing intrinsically in their differentiation status. The differentiation status was quantified by determining the fraction of postmitotic fibrocytes by light microscopy. DNA dsb were measured by constant-field gel electrophoresis, and the fraction of apoptotic cells by comet assay. MF and PMF cultures of HSF1 cells were irradiated with X-ray doses up to 160 Gy, and dsb were measured either immediately after irradiation or after a repair incubation of 4 or 24 h. There were a difference neither in the number of initial nor residual dsb. PMF cultures, however, showed a slightly higher number of dsb already present in non-irradiated cells, which was measured to result from a small fraction of 5% apoptotic cells. The 20 analysed fibroblast strains showed a substantial variation in the fraction of postmitotic fibrocytes (9-51%) as well as in the number of dsb remaining at 24 h after irradiation (1.9-4.9%), but there was no correlation between these two parameters. These data demonstrate that for fibroblasts the terminal differentiation has an effect neither on the induction nor the repair of radiation-induced dsb. This result indicates that the variation in dsb-repair capacity previously observed for fibroblast strains and which was considered to be the main cause for the variation in the cellular radiosensitivity, cannot be ascribed to differences in the differentiation status.
Zonal variations in K+ currents in vestibular crista calyx terminals
Meredith, Frances L.
2014-01-01
We developed a rodent crista slice to investigate regional variations in electrophysiological properties of vestibular afferent terminals. Thin transverse slices of the gerbil crista ampullaris were made and electrical properties of calyx terminals in central zones (CZ) and peripheral zones (PZ) compared with whole cell patch clamp. Spontaneous action potential firing was observed in 25% of current-clamp recordings and was either regular or irregular in both zones. Firing was abolished when extracellular choline replaced Na+ but persisted when hair cell mechanotransduction channels or calyx AMPA receptors were blocked. This suggests that ion channels intrinsic to the calyx can generate spontaneous firing. In response to depolarizing voltage steps, outward K+ currents were observed at potentials above −60 mV. K+ currents in PZ calyces showed significantly more inactivation than currents in CZ calyces. Underlying K+ channel populations contributing to these differences were investigated. The KCNQ channel blocker XE991 dihydrochloride blocked a slowly activating, sustained outward current in both PZ and CZ calyces, indicating the presence of KCNQ channels. Mean reduction was greatest in PZ calyces. XE991 also reduced action potential firing frequency in CZ and PZ calyces and broadened mean action potential width. The K+ channel blocker 4-aminopyridine (10–50 μM) blocked rapidly activating, moderately inactivating currents that were more prevalent in PZ calyces. α-Dendrotoxin, a selective blocker of KV1 channels, reduced outward currents in CZ calyces but not in PZ calyces. Regional variations in K+ conductances may contribute to different firing responses in calyx afferents. PMID:25343781
Zonal variations in K+ currents in vestibular crista calyx terminals.
Meredith, Frances L; Rennie, Katherine J
2015-01-01
We developed a rodent crista slice to investigate regional variations in electrophysiological properties of vestibular afferent terminals. Thin transverse slices of the gerbil crista ampullaris were made and electrical properties of calyx terminals in central zones (CZ) and peripheral zones (PZ) compared with whole cell patch clamp. Spontaneous action potential firing was observed in 25% of current-clamp recordings and was either regular or irregular in both zones. Firing was abolished when extracellular choline replaced Na(+) but persisted when hair cell mechanotransduction channels or calyx AMPA receptors were blocked. This suggests that ion channels intrinsic to the calyx can generate spontaneous firing. In response to depolarizing voltage steps, outward K(+) currents were observed at potentials above -60 mV. K(+) currents in PZ calyces showed significantly more inactivation than currents in CZ calyces. Underlying K(+) channel populations contributing to these differences were investigated. The KCNQ channel blocker XE991 dihydrochloride blocked a slowly activating, sustained outward current in both PZ and CZ calyces, indicating the presence of KCNQ channels. Mean reduction was greatest in PZ calyces. XE991 also reduced action potential firing frequency in CZ and PZ calyces and broadened mean action potential width. The K(+) channel blocker 4-aminopyridine (10-50 μM) blocked rapidly activating, moderately inactivating currents that were more prevalent in PZ calyces. α-Dendrotoxin, a selective blocker of KV1 channels, reduced outward currents in CZ calyces but not in PZ calyces. Regional variations in K(+) conductances may contribute to different firing responses in calyx afferents. Copyright © 2015 the American Physiological Society.
Bozdagi, Ozlem; Rich, Erin; Tronel, Sophie; Sadahiro, Masato; Patterson, Kamara; Shapiro, Matthew L; Alberini, Cristina M; Huntley, George W; Salton, Stephen R J
2008-09-24
VGF is a neurotrophin-inducible, activity-regulated gene product that is expressed in CNS and PNS neurons, in which it is processed into peptides and secreted. VGF synthesis is stimulated by BDNF, a critical regulator of hippocampal development and function, and two VGF C-terminal peptides increase synaptic activity in cultured hippocampal neurons. To assess VGF function in the hippocampus, we tested heterozygous and homozygous VGF knock-out mice in two different learning tasks, assessed long-term potentiation (LTP) and depression (LTD) in hippocampal slices from VGF mutant mice, and investigated how VGF C-terminal peptides modulate synaptic plasticity. Treatment of rat hippocampal slices with the VGF-derived peptide TLQP62 resulted in transient potentiation through a mechanism that was selectively blocked by the BDNF scavenger TrkB-Fc, the Trk tyrosine kinase inhibitor K252a (100 nm), and tPA STOP, an inhibitor of tissue plasminogen activator (tPA), an enzyme involved in pro-BDNF cleavage to BDNF, but was not blocked by the NMDA receptor antagonist APV, anti-p75(NTR) function-blocking antiserum, or previous tetanic stimulation. Although LTP was normal in slices from VGF knock-out mice, LTD could not be induced, and VGF mutant mice were impaired in hippocampal-dependent spatial learning and contextual fear conditioning tasks. Our studies indicate that the VGF C-terminal peptide TLQP62 modulates hippocampal synaptic transmission through a BDNF-dependent mechanism and that VGF deficiency in mice impacts synaptic plasticity and memory in addition to depressive behavior.
Bozdagi, Ozlem; Rich, Erin; Tronel, Sophie; Sadahiro, Masato; Patterson, Kamara; Shapiro, Matthew L.; Alberini, Cristina M.; Huntley, George W.; Salton, Stephen R. J.
2009-01-01
VGF is a neurotrophin-inducible, activity-regulated gene product that is expressed in CNS and PNS neurons, where it is processed into peptides and secreted. VGF synthesis is stimulated by BDNF, a critical regulator of hippocampal development and function, and two VGF C-terminal peptides increase synaptic activity in cultured hippocampal neurons. To assess VGF function in the hippocampus, we tested heterozygous and homozygous VGF knockout mice in two different learning tasks, assessed long-term potentiation (LTP) and depression (LTD) in hippocampal slices from VGF mutant mice, and investigated how VGF C-terminal peptides modulate synaptic plasticity. Treatment of rat hippocampal slices with the VGF-derived peptide TLQP62 resulted in transient potentiation through a mechanism that was selectively blocked by the BDNF scavenger TrkB-Fc, the Trk tyrosine kinase inhibitor K252a (100 nM), and by tPASTOP, an inhibitor of tissue plasminogen activator (tPA), an enzyme involved in pro-BDNF cleavage to BDNF, but was not blocked by the NMDA receptor antagonist APV, anti-p75NTR function-blocking antiserum, nor by prior tetanic stimulation. Although LTP was normal in slices from VGF knockout mice, LTD could not be induced, and VGF mutant mice were impaired in hippocampal-dependent spatial learning and contextual fear conditioning tasks. Our studies indicate that the VGF C-terminal peptide TLQP62 modulates hippocampal synaptic transmission through a BDNF-dependent mechanism, and that VGF deficiency in mice impacts synaptic plasticity and memory in addition to depressive behavior. PMID:18815270
Matoba, Nobuyuki; Griffin, Tagan A; Mittman, Michele; Doran, Jeffrey D; Alfsen, Annette; Montefiori, David C; Hanson, Carl V; Bomsel, Morgane; Mor, Tsafrir S
2008-05-01
CTB-MPR(649-684), a translational fusion protein consisting of cholera toxin B subunit (CTB) and residues 649 684 of gp41 membrane proximal region (MPR), is a candidate vaccine aimed at blocking early steps of HIV-1 mucosal transmission. Bacterially produced CTB MPR(649-684) was purified to homogeneity by two affinity chromatography steps. Similar to gp41 and derivatives thereof, the MPR domain can specifically and reversibly self-associate. The affinities of the broadly-neutralizing monoclonal Abs 4E10 and 2F5 to CTB MPR(649-684) were equivalent to their nanomolar affinities toward an MPR peptide. The fusion protein's affinity to GM1 ganglioside was comparable to that of native CTB. Rabbits immunized with CTB-MPR(649-684) raised only a modest level of anti-MPR(649-684) Abs. However, a prime-boost immunization with CTB-MPR(649-684) and a second MPR(649-684)-based immunogen elicited a more productive anti-MPR(649-684) antibody response. These Abs strongly blocked the epithelial transcytosis of a primary subtype B HIV-1 isolate in a human tight epithelial model, expanding our previously reported results using a clade D virus. The Abs recognized epitopes at the N-terminal portion of the MPR peptide, away from the 2F5 and 4E10 epitopes and were not effective in neutralizing infection of CD4+ cells. These results indicate distinct vulnerabilities of two separate interactions of HIV-1 with human cells - Abs against the C-terminal portion of the MPR can neutralize CD4+-dependent infection, while Abs targeting the MPR's N-terminal portion can effectively block galactosyl ceramide dependent transcytosis. We propose that Abs induced by MPR(649-684)-based immunogens may provide broad protective value independent of infection neutralization.
Gorska-Flipot, I; Huang, M; Cantin, M; Rassart, E; Massé, G; Jolicoeur, P
1992-01-01
BL/VL3 radiation leukemia virus (RadLV) is a thymotropic, highly leukemogenic murine leukemia virus (MuLV) which is unable to replicate in vitro in mouse fibroblasts. We have previously reported that the U3 long terminal repeat region of its genome is responsible for this block (E. Rassart, Y. Paquette, and P. Jolicoeur, J. Virol. 62:3840-3848, 1988). By using hybrids of permissive and resistant cells infected with BL/VL3 RadLV or fibrotropic MuLV, we found that the resistant phenotype was dominant. Investigation to determine at which step of the virus cycle the block operates revealed that integration, transcription, and translation of the BL/VL3 viral genome occurred at normal levels in nonpermissive cells. The BL/VL3 RadLV Pr65gag proteins made in nonpermissive cells were also myristylated and located at the membrane, and the levels of their cleaved products were similar to those of fibrotropic MuLV. However, processing of BL/VL3 RadLV Pr85env was impaired in nonpermissive cells. Virions were not released into the culture medium of nonpermissive cells, as measured by reverse transcriptase activity and by content in p30 or gp70 protein and as documented by lower levels of budding particles seen by electron microscopy. These results indicate that BL/VL3 RadLV replication is blocked at a late stage of the virus cycle, i.e., at virion assembly. Interestingly, these BL/VL3 RadLV-infected nonpermissive fibroblasts were resistant to superinfection by fibrotropic Moloney MuLV, and this resistance also occurred at a late step of the Moloney virus cycle. Since this block is dominant, it appears that the U3 long terminal repeat region of the BL/VL3 viral genome has the ability to induce a cellular suppressor factor(s), thus bringing intracellular immunity against itself and against other ecotropic MuLVs. Images PMID:1433513
PTHrP and Indian hedgehog control differentiation of growth plate chondrocytes at multiple steps.
Kobayashi, Tatsuya; Chung, Ung-Il; Schipani, Ernestina; Starbuck, Michael; Karsenty, Gerard; Katagiri, Takenobu; Goad, Dale L; Lanske, Beate; Kronenberg, Henry M
2002-06-01
In developing murine growth plates, chondrocytes near the articular surface (periarticular chondrocytes) proliferate, differentiate into flat column-forming proliferating cells (columnar chondrocytes), stop dividing and finally differentiate into hypertrophic cells. Indian hedgehog (Ihh), which is predominantly expressed in prehypertrophic cells, stimulates expression of parathyroid hormone (PTH)-related peptide (PTHrP) which negatively regulates terminal chondrocyte differentiation through the PTH/PTHrP receptor (PPR). However, the roles of PTHrP and Ihh in regulating earlier steps in chondrocyte differentiation are unclear. We present novel mouse models with PPR abnormalities that help clarify these roles. In mice with chondrocyte-specific PPR ablation and mice with reduced PPR expression, chondrocyte differentiation was accelerated not only at the terminal step but also at an earlier step: periarticular to columnar differentiation. In these models, upregulation of Ihh action in the periarticular region was also observed. In the third model in which the PPR was disrupted in about 30% of columnar chondrocytes, Ihh action in the periarticular chondrocytes was upregulated because of ectopically differentiated hypertrophic chondrocytes that had lost PPR. Acceleration of periarticular to columnar differentiation was also noted in this mouse, while most of periarticular chondrocytes retained PPR signaling. These data suggest that Ihh positively controls differentiation of periarticular chondrocytes independently of PTHrP. Thus, chondrocyte differentiation is controlled at multiple steps by PTHrP and Ihh through the mutual regulation of their activities.
NASA Technical Reports Server (NTRS)
Morehouse, Dennis V.
2006-01-01
In order to perform public risk analyses for vehicles containing Flight Termination Systems (FTS), it is necessary for the analyst to know the reliability of each of the components of the FTS. These systems are typically divided into two segments; a transmitter system and associated equipment, typically in a ground station or on a support aircraft, and a receiver system and associated equipment on the target vehicle. This analysis attempts to analyze the reliability of the NASA DFRC flight termination system ground transmitter segment for use in the larger risk analysis and to compare the results against two established Department of Defense availability standards for such equipment.
Making connections : intermodal links in the public transportation system
DOT National Transportation Integrated Search
2007-09-01
Since at least 1991, federal transportation policy has sought to encourage intermodal connections the links that allow passengers to switch from one mode of public transportation to another. The intermodal terminal is a key building block for dev...
Use of medical and dental X-ray equipment for nondestructive testing
NASA Technical Reports Server (NTRS)
1969-01-01
Industrial X ray equipment is used for nondestructive testing to detect defects in metal joints, electrical terminal blocks, sealed assemblies, and other hardware. Medical and dental X ray equipment is also used for hardware troubleshooting.
Sommermann, Erica M; Strohmaier, Keith R; Maduro, Morris F; Rothman, Joel H
2010-11-01
The transition from specification of cell identity to the differentiation of cells into an appropriate and enduring state is critical to the development of embryos. Transcriptional profiling in Caenorhabditis elegans has revealed a large number of genes that are expressed in the fully differentiated intestine; however, no regulatory factor has been found to be essential to initiate their expression once the endoderm has been specified. These gut-expressed genes possess a preponderance of GATA factor binding sites and one GATA factor, ELT-2, fulfills the expected characteristics of a key regulator of these genes based on its persistent expression exclusively in the developing and differentiated intestine and its ability to bind these regulatory sites. However, a striking characteristic of elt-2(0) knockout mutants is that while they die shortly after hatching owing to an obstructed gut passage, they nevertheless contain a gut that has undergone complete morphological differentiation. We have discovered a second gut-specific GATA factor, ELT-7, that profoundly synergizes with ELT-2 to create a transcriptional switch essential for gut cell differentiation. ELT-7 is first expressed in the early endoderm lineage and, when expressed ectopically, is sufficient to activate gut differentiation in nonendodermal progenitors. elt-7 is transcriptionally activated by the redundant endoderm-specifying factors END-1 and -3, and its product in turn activates both its own expression and that of elt-2, constituting an apparent positive feedback system. While elt-7 loss-of-function mutants lack a discernible phenotype, simultaneous loss of both elt-7 and elt-2 results in a striking all-or-none block to morphological differentiation of groups of gut cells with a region-specific bias, as well as reduced or abolished gut-specific expression of a number of terminal differentiation genes. ELT-2 and -7 synergize not only in activation of gene expression but also in repression of a gene that is normally expressed in the valve cells, which immediately flank the termini of the gut tube. Our results point to a developmental strategy whereby positive feedback and cross-regulatory interactions between two synergistically acting regulatory factors promote a decisive and persistent transition of specified endoderm progenitors into the program of intestinal differentiation. Copyright © 2010 Elsevier Inc. All rights reserved.
2005-01-01
Research Center Detachment, Lima, Peru Abstract. An epitope-blocking enzyme-linked immunosorbent assay was developed for the rapid differentiation of...subtype and variety of antibodies to VEEV in equines, humans, or rodent reservoir hosts can be critical for determining the potential of a naturally...of human sera from Mexico and Peru using a blocking enzyme-linked immunosorbent assay and plaque reduction neutralization tests* Serum number Country
Fraas, A.P.; Tudor, J.J.
1963-08-01
An improved moderator structure for nuclear reactors consists of moderator blocks arranged in horizontal layers to form a multiplicity of vertically stacked columns of blocks. The blocks in each vertical column are keyed together, and a ceramic grid is disposed between each horizontal layer of blocks. Pressure plates cover- the lateral surface of the moderator structure in abutting relationship with the peripheral terminal lengths of the ceramic grids. Tubular springs are disposed between the pressure plates and a rigid external support. The tubular springs have their axes vertically disposed to facilitate passage of coolant gas through the springs and are spaced apart a selected distance such that at sonae preselected point of spring deflection, the sides of the springs will contact adjacent springs thereby causing a large increase in resistance to further spring deflection. (AEC)
ERIC Educational Resources Information Center
Card, Noel A.
2007-01-01
Antipathetic relationships have received little empirical attention. This study examines these relationships by eliciting college students' descriptions of the formation, patterns of interpersonal behaviors, and termination of antipathetic relationships during high school. Factors that differentiate inimical from other antipathetic relationships…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niwa, Masazo; Hayashi, Takehiro; Higashi, Nobuyuki
1990-01-01
Amphiphilic block polymers (2,3) composed of poly(acrylic acid) (PAA) or poly(oxyethylene) (POE) and chain length controlled poly(styrene) (PSt) have been prepared by using a catalytic system of tribromomethyl-terminated oligomer and manganese carbonyl. All the amphiphilic materials formed well-behaved surface monolayers, and the II-A curves for them expanded systematically with an increase of the PSt chain length.
Pundhir, Sachin; Bratt Lauridsen, Felicia Kathrine; Schuster, Mikkel Bruhn; Jakobsen, Janus Schou; Ge, Ying; Schoof, Erwin Marten; Rapin, Nicolas; Waage, Johannes; Hasemann, Marie Sigurd; Porse, Bo Torben
2018-05-29
Transcription factors PU.1 and CEBPA are required for the proper coordination of enhancer activity during granulocytic-monocytic (GM) lineage differentiation to form myeloid cells. However, precisely how these factors control the chronology of enhancer establishment during differentiation is not known. Through integrated analyses of enhancer dynamics, transcription factor binding, and proximal gene expression during successive stages of murine GM-lineage differentiation, we unravel the distinct kinetics by which PU.1 and CEBPA coordinate GM enhancer activity. We find no evidence of a pioneering function of PU.1 during late GM-lineage differentiation. Instead, we delineate a set of enhancers that gain accessibility in a CEBPA-dependent manner, suggesting a pioneering function of CEBPA. Analyses of Cebpa null bone marrow demonstrate that CEBPA controls PU.1 levels and, unexpectedly, that the loss of CEBPA results in an early differentiation block. Taken together, our data provide insights into how PU.1 and CEBPA functionally interact to drive GM-lineage differentiation. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Jerng, Henry H; Dougherty, Kevin; Covarrubias, Manuel; Pfaffinger, Paul J
2009-11-01
The somatodendritic subthreshold A-type K(+) current in neurons (I(SA)) depends on its kinetic and voltage-dependent properties to regulate membrane excitability, action potential repetitive firing, and signal integration. Key functional properties of the K(V)4 channel complex underlying I(SA) are determined by dipeptidyl peptidase-like proteins known as dipeptidyl peptidase 6 (DPP6) and dipeptidyl peptidase 10 (DPP10). Among the multiple known DPP10 isoforms with alternative N-terminal sequences, DPP10a confers exceptionally fast inactivation to K(V)4.2 channels. To elucidate the molecular basis of this fast inactivation, we investigated the structure-function relationship of the DPP10a N-terminal region and its interaction with the K(V)4.2 channel. Here, we show that DPP10a shares a conserved N-terminal sequence (MNQTA) with DPP6a (aka DPP6-E), which also induces fast inactivation. Deletion of the NQTA sequence in DPP10a eliminates this dramatic fast inactivation, and perfusion of MNQTA peptide to the cytoplasmic face of inside-out patches inhibits the K(V)4.2 current. DPP10a-induced fast inactivation exhibits competitive interactions with internally applied tetraethylammonium (TEA), and elevating the external K(+) concentration accelerates recovery from DPP10a-mediated fast inactivation. These results suggest that fast inactivation induced by DPP10a or DPP6a is mediated by a common N-terminal inactivation motif via a pore-blocking mechanism. This mechanism may offer an attractive target for novel pharmacological interventions directed at impairing I(SA) inactivation and reducing neuronal excitability.
Developmental changes in Ca2+ channel subtypes regulating endocytosis at the calyx of Held
Midorikawa, Mitsuharu; Okamoto, Yuji; Sakaba, Takeshi
2014-01-01
At the mammalian central synapse, Ca2+ influx through Ca2+ channels triggers neurotransmitter release by exocytosis of synaptic vesicles, which fuse with the presynaptic membrane and are subsequently retrieved by endocytosis. At the calyx of Held terminal, P/Q-type Ca2+ channels mainly mediate exocytosis, while N- and R-type channels have a minor role in young terminals (postnatal days 8–11). The role of each Ca2+ channel subtype in endocytosis remains to be elucidated; therefore, we examined the role of each type of Ca2+ channel in endocytosis, by using whole-cell patch-clamp recordings in conjunction with capacitance measurement techniques. We found that at the young calyx terminal, when R-type Ca2+ channels were blocked, the slow mode of endocytosis was further slowed, while blocking of either P/Q- or N-type Ca2+ channels had no major effect. In more mature terminals (postnatal days 14–17), the slow mode of endocytosis was mainly triggered by P/Q-type Ca2+ channels, suggesting developmental changes in the regulation of the slow mode of endocytosis by different Ca2+ channel subtypes. In contrast, a fast mode of endocytosis was observed after strong stimulation in young terminals that was mediated mainly by P/Q-type, but not R- or N-type Ca2+ channels. These results suggest that different types of Ca2+ channels regulate the two different modes of endocytosis. The results may also suggest that exo- and endocytosis are regulated independently at different sites in young animals but are more tightly coupled in older animals, allowing more efficient synaptic vesicle cycling adapted for fast signalling. PMID:24907302
Evaluation of Methods to Increase Light Under Ferry Terminals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanton, Susan L.; Thom, Ronald M.; Borde, Amy B.
2002-01-02
To address concerns of resource agencies about the potential impacts of ferry terminal expansion on valuable habitat functions and resource use of nearshore areas, the Pacific Northwest National Laboratory (PNNL), in partnership with the Washington State Department of Transportation (WSDOT), conducted field trials with off-the-shelf products that promote light passage through dock structures. These products included a SunTunnel, deck prisms, and a metal halide greenhouse light. Light measurements (photosynthetically active radiation, PAR) were also recorded beneath glass blocks and a metal grating installed at Clinton Ferry Terminal on Whidbey Island, WA. A review of other studies measuring the effects ofmore » dock shading and alternate dock materials was conducted. PAR measurements from this study were related to minimum requirements for eelgrass Zostera marina photosynthesis and to the known maximum photosynthetic ?saturation? rate for Z. marina. We also related PAR measurements to what we know about light effects on juvenile salmonid feeding and passage under overwater structures. Of the light technologies tested, the metal halide light, SunTunnel, glass blocks, and grating potentially provide enough light for eelgrass growth underneath a ferry terminal with similar construction to the Clinton Ferry Terminal. All of these technologies would potentially provide adequate light under conditions where eelgrass is located at its upper depth limit and a dock is close to the water surface. Light levels needed to allow fish to feed and to form schools are low (~ 1-2 mmol/m2/s), and much less than those required for photosynthesis. Our research indicates that installing any of the tested light products would likely maintain light levels under the dock above those required for active feeding by juvenile salmonids.« less
Gabriela, Chirino Mónica; Papeschi, Alba Graciela; Bressa, María José
2013-01-01
Abstract Male meiosis behaviour and heterochromatin characterization of three big water bug species were studied. Belostoma dentatum (Mayr, 1863), Belostoma elongatum Montandon, 1908 and Belostoma gestroi Montandon, 1903 possess 2n = 26 + X1X2Y (male). In these species, male meiosis is similar to that previously observed in Belostoma Latreille, 1807. In general, autosomal bivalents show a single chiasma terminally located and divide reductionally at anaphase I. On the other hand, sex chromosomes are achiasmatic, behave as univalents and segregate their chromatids equationally at anaphase I. The analysis of heterochromatin distribution and composition revealed a C-positive block at the terminal region of all autosomes in Belostoma dentatum, a C-positive block at the terminal region and C-positive interstitial dots on all autosomes in Belostoma elongatum, and a little C-positive band at the terminal region of autosomes in Belostoma gestroi. A C-positive band on one bivalent was DAPI negative/CMA3 positive in the three species. The CMA3-bright band, enriched in GC base pairs, was coincident with a NOR detected by FISH. The results obtained support the hypothesis that all species of Belostoma with multiple sex chromosome systems preserve NORs in autosomal bivalents. The karyotype analyses allow the cytogenetic characterization and identification of these species belonging to a difficult taxonomic group. Besides, the cytogenetic characterization will be useful in discussions about evolutionary trends of the genome organization and karyotype evolution in this genus. PMID:24260694
Cell Aggregation-induced FGF8 Elevation Is Essential for P19 Cell Neural Differentiation
Wang, Chen; Xia, Caihong; Bian, Wei; Liu, Li; Lin, Wei; Chen, Ye-Guang; Ang, Siew-Lan
2006-01-01
FGF8, a member of the fibroblast growth factor (FGF) family, has been shown to play important roles in different developing systems. Mouse embryonic carcinoma P19 cells could be induced by retinoic acid (RA) to differentiate into neuroectodermal cell lineages, and this process is cell aggregation dependent. In this report, we show that FGF8 expression is transiently up-regulated upon P19 cell aggregation, and the aggregation-dependent FGF8 elevation is pluripotent stem cell related. Overexpressing FGF8 promotes RA-induced monolayer P19 cell neural differentiation. Inhibition of FGF8 expression by RNA interference or blocking FGF signaling by the FGF receptor inhibitor, SU5402, attenuates neural differentiation of the P19 cell. Blocking the bone morphogenetic protein (BMP) pathway by overexpressing Smad6 in P19 cells, we also show that FGF signaling plays a BMP inhibition–independent role in P19 cell neural differentiation. PMID:16641368
MicroRNA-29b mediates altered innate immune development in acute leukemia
Mundy-Bosse, Bethany L.; Scoville, Steven D.; Chen, Li; McConnell, Kathleen; Mao, Hsiaoyin C.; Ahmed, Elshafa H.; Zorko, Nicholas; Harvey, Sophia; Cole, Jordan; Zhang, Xiaoli; Costinean, Stefan; Croce, Carlo M.; Larkin, Karilyn; Byrd, John C.; Vasu, Sumithira; Blum, William; Yu, Jianhua; Freud, Aharon G.; Caligiuri, Michael A.
2016-01-01
Natural killer (NK) cells can have potent antileukemic activity following haplo-mismatched, T cell–depleted stem cell transplantations for the treatment of acute myeloid leukemia (AML), but they are not successful in eradicating de novo AML. Here, we have used a mouse model of de novo AML to elucidate the mechanisms by which AML evades NK cell surveillance. NK cells in leukemic mice displayed a marked reduction in the cytolytic granules perforin and granzyme B. Further, as AML progressed, we noted the selective loss of an immature subset of NK cells in leukemic mice and in AML patients. This absence was not due to elimination by cell death or selective reduction in proliferation, but rather to the result of a block in NK cell differentiation. Indeed, NK cells from leukemic mice and humans with AML showed lower levels of TBET and EOMES, transcription factors that are critical for terminal NK cell differentiation. Further, the microRNA miR-29b, a regulator of T-bet and EOMES, was elevated in leukemic NK cells. Finally, deletion of miR-29b in NK cells reversed the depletion of this NK cell subset in leukemic mice. These results indicate that leukemic evasion of NK cell surveillance occurs through miR-mediated dysregulation of lymphocyte development, representing an additional mechanism of immune escape in cancer. PMID:27775550
Control of functional differential equations with function space boundary conditions
NASA Technical Reports Server (NTRS)
Banks, H. T.
1972-01-01
Problems involving functional differential equations with terminal conditions in function space are considered. Their application to mechanical and electrical systems is discussed. Investigations of controllability, existence of optimal controls, and necessary and sufficient conditions for optimality are reported.
Mechanism of paroxysmal supraventricular tachycardia with ventriculoatrial conduction block.
Issa, Ziad F
2009-09-01
Supraventricular tachycardia (SVT) with ventriculoatrial (VA) block. We report the case of a 25-year-old patient with paroxysmal SVT and intermittent VA block. Atrioventricular nodal re-entrant tachycardia with upper common pathway block and orthodromic nodoventricular or nodofascicular re-entrant tachycardia was considered in the differential diagnosis. Diagnostic characteristics were most compatible with non-re-entrant junctional tachycardia. The arrhythmia was cured by ablation at the right atrial posterior septum.
Blocking an N-terminal acetylation–dependent protein interaction inhibits an E3 ligase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott, Daniel C.; Hammill, Jared T.; Min, Jaeki
N-terminal acetylation is an abundant modification influencing protein functions. Because ~80% of mammalian cytosolic proteins are N-terminally acetylated, this modification is potentially an untapped target for chemical control of their functions. Structural studies have revealed that, like lysine acetylation, N-terminal acetylation converts a positively charged amine into a hydrophobic handle that mediates protein interactions; hence, this modification may be a druggable target. We report the development of chemical probes targeting the N-terminal acetylation–dependent interaction between an E2 conjugating enzyme (UBE2M or UBC12) and DCN1 (DCUN1D1), a subunit of a multiprotein E3 ligase for the ubiquitin-like protein NEDD8. The inhibitors aremore » highly selective with respect to other protein acetyl-amide–binding sites, inhibit NEDD8 ligation in vitro and in cells, and suppress anchorage-independent growth of a cell line with DCN1 amplification. Overall, our data demonstrate that N-terminal acetyl-dependent protein interactions are druggable targets and provide insights into targeting multiprotein E2–E3 ligases.« less
Closed-form solutions for a class of optimal quadratic regulator problems with terminal constraints
NASA Technical Reports Server (NTRS)
Juang, J.-N.; Turner, J. D.; Chun, H. M.
1984-01-01
Closed-form solutions are derived for coupled Riccati-like matrix differential equations describing the solution of a class of optimal finite time quadratic regulator problems with terminal constraints. Analytical solutions are obtained for the feedback gains and the closed-loop response trajectory. A computational procedure is presented which introduces new variables for efficient computation of the terminal control law. Two examples are given to illustrate the validity and usefulness of the theory.
Iwama, A; Wang, M H; Yamaguchi, N; Ohno, N; Okano, K; Sudo, T; Takeya, M; Gervais, F; Morissette, C; Leonard, E J; Suda, T
1995-11-01
STK, a new member of the hepatocyte growth factor receptor family, is the receptor for macrophage-stimulating protein (MSP), which acts on murine resident peritoneal macrophages. We established polyclonal and monoclonal antibodies against STK and characterized the structure of STK protein and STK expression on cells of the mononuclear phagocyte system. Western blotting showed that the STK transcript is translated into a single-chain precursor and then cleaved into a 165-kD disulfide-linked heterodimer composed of a 35-kD alpha-chain and a 144-kD beta-chain. Western blotting detected STK protein on resident peritoneal macrophages, a target of MSP, and showed that it was autophosphorylated in cells stimulated by MSP. By flow cytometric analysis using a monoclonal anti-STK antibody, we showed that STK protein is expressed on restricted macrophage populations such as resident peritoneal macrophages, but not on exudate peritoneal macrophages or mononuclear phagocytes of the bone marrow, peripheral blood, spleen, or alveoli. Resident peritoneal macrophages were classified into two fractions according to their reactivity with an anti-STK antibody and a marker antibody for macrophages: STKhigh-F4/80high cells and STKnegative-F4/80low cells. Acute exudative macrophages were all STKnegative-F4/80low, but they gradually became predominantly STKhigh-F4/80high several days after entrance into the peritoneal cavity. These results showed that after monocytes migrate into the peritoneal cavity, they undergo terminal differentiation in the peritoneal microenvironment. This is the first evidence of tissue-specific terminal differentiation of peritoneal macrophages, and this terminal differentiation can be characterized by the expression of STK receptor tyrosine kinase.
Kim, Jinsung; Moon, Sang Hui; Shin, Young-Cheul; Jeon, Ju-Hong; Park, Kyu Joo; Lee, Kyu Pil; So, Insuk
2016-04-01
Transient receptor potential canonical (TRPC) 4 channels are calcium-permeable, nonselective cation channels and are widely expressed in mammalian tissue, especially in the GI tract and brain. TRPC4 channels are known to be involved in neurogenic contraction of ileal smooth muscle cells via generating cationic current after muscarinic stimulation (muscarinic cationic current (mIcat)). Polyamines exist in numerous tissues and are believed to be involved in cell proliferation, differentiation, scar formation, wound healing, and carcinogenesis. Besides, physiological polyamines are essential to maintain inward rectification of cardiac potassium channels (Kir2.1). At membrane potentials more positive than equilibrium potential, intracellular polyamines plug the cytosolic surface of the Kir2.1 so that potassium ions cannot pass through the pore. Recently, it was reported that polyamines inhibit not only cardiac potassium channels but also nonselective cation channels that mediate the generation of mIcat. Here, we report that TRPC4, a definite mIcat mediator, is inhibited by intracellular spermine with great extent. The inhibition was specific to TRPC4 and TRPC5 channels but was not effective to TRPC1/4, TRPC1/5, and TRPC3 channels. For this inhibition to occur, we found that glutamates at 728th and 729th position of TRPC4 channels are essential whereby we conclude that spermine blocks the TRPC4 channel with electrostatic interaction between negative amino acids at the C-terminus of the channel.
Sebe, Joy Y; Cho, Soyoun; Sheets, Lavinia; Rutherford, Mark A; von Gersdorff, Henrique; Raible, David W
2017-06-21
We report functional and structural evidence for GluA2-lacking Ca 2+ -permeable AMPARs (CP-AMPARs) at the mature hair cell ribbon synapse. By using the methodological advantages of three species (of either sex), we demonstrate that CP-AMPARs are present at the hair cell synapse in an evolutionarily conserved manner. Via a combination of in vivo electrophysiological and Ca 2+ imaging approaches in the larval zebrafish, we show that hair cell stimulation leads to robust Ca 2+ influx into afferent terminals. Prolonged application of AMPA caused loss of afferent terminal responsiveness, whereas blocking CP-AMPARs protects terminals from excitotoxic swelling. Immunohistochemical analysis of AMPAR subunits in mature rat cochlea show regions within synapses lacking the GluA2 subunit. Paired recordings from adult bullfrog auditory synapses demonstrate that CP-AMPARs mediate a major component of glutamatergic transmission. Together, our results support the importance of CP-AMPARs in mediating transmission at the hair cell ribbon synapse. Further, excess Ca 2+ entry via CP-AMPARs may underlie afferent terminal damage following excitotoxic challenge, suggesting that limiting Ca 2+ levels in the afferent terminal may protect against cochlear synaptopathy associated with hearing loss. SIGNIFICANCE STATEMENT A single incidence of noise overexposure causes damage at the hair cell synapse that later leads to neurodegeneration and exacerbates age-related hearing loss. A first step toward understanding cochlear neurodegeneration is to identify the cause of initial excitotoxic damage to the postsynaptic neuron. Using a combination of immunohistochemical, electrophysiological, and Ca 2+ imaging approaches in evolutionarily divergent species, we demonstrate that Ca 2+ -permeable AMPARs (CP-AMPARs) mediate glutamatergic transmission at the adult auditory hair cell synapse. Overexcitation of the terminal causes Ca 2+ accumulation and swelling that can be prevented by blocking CP-AMPARs. We demonstrate that CP-AMPARs mediate transmission at this first-order sensory synapse and that limiting Ca 2+ accumulation in the terminal may protect against hearing loss. Copyright © 2017 the authors 0270-6474/17/376162-14$15.00/0.
Yue, Hai-Yuan; Bieberich, Erhard; Xu, Jianhua
2017-08-01
At rat calyx of Held terminals, ATP was required not only for slow endocytosis, but also for rapid phase of compensatory endocytosis. An ATP-independent form of endocytosis was recruited to accelerate membrane retrieval at increased activity and temperature. ATP-independent endocytosis primarily involved retrieval of pre-existing membrane, which depended on Ca 2+ and the activity of neutral sphingomyelinase but not clathrin-coated pit maturation. ATP-independent endocytosis represents a non-canonical mechanism that can efficiently retrieve membrane at physiological conditions without competing for the limited ATP at elevated neuronal activity. Neurotransmission relies on membrane endocytosis to maintain vesicle supply and membrane stability. Endocytosis has been generally recognized as a major ATP-dependent function, which efficiently retrieves more membrane at elevated neuronal activity when ATP consumption within nerve terminals increases drastically. This paradox raises the interesting question of whether increased activity recruits ATP-independent mechanism(s) to accelerate endocytosis at the same time as preserving ATP availability for other tasks. To address this issue, we studied ATP requirement in three typical forms of endocytosis at rat calyx of Held terminals by whole-cell membrane capacitance measurements. At room temperature, blocking ATP hydrolysis effectively abolished slow endocytosis and rapid endocytosis but only partially inhibited excess endocytosis following intense stimulation. The ATP-independent endocytosis occurred at calyces from postnatal days 8-15, suggesting its existence before and after hearing onset. This endocytosis was not affected by a reduction of exocytosis using the light chain of botulinum toxin C, nor by block of clathrin-coat maturation. It was abolished by EGTA, which preferentially blocked endocytosis of retrievable membrane pre-existing at the surface, and was impaired by oxidation of cholesterol and inhibition of neutral sphingomyelinase. ATP-independent endocytosis became more significant at 34-35°C, and recovered membrane by an amount that, on average, was close to exocytosis. The results of the present study suggest that activity and temperature recruit ATP-independent endocytosis of pre-existing membrane (in addition to ATP-dependent endocytosis) to efficiently retrieve membrane at nerve terminals. This less understood endocytosis represents a non-canonical mechanism regulated by lipids such as cholesterol and sphingomyelinase. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
Gupta, Aparna; Wodziak, Dariusz; Tun, May; Bouley, Donna M.; Lowe, Anson W.
2013-01-01
Recent studies of epithelial tissues have revealed the presence of tissue-specific stem cells that are able to establish multiple cell lineages within an organ. The stem cells give rise to progenitors that replicate before differentiating into specific cell lineages. The mechanism by which homeostasis is established between proliferating stem or progenitor cells and terminally differentiated cells is unclear. This study demonstrates that Agr2 expression by mucous neck cells in the stomach promotes the differentiation of multiple cell lineages while also inhibiting the proliferation of stem or progenitor cells. When Agr2 expression is absent, gastric mucous neck cells increased in number as does the number of proliferating cells. Agr2 expression loss also resulted in the decline of terminally differentiated cells, which was supplanted by cells that exhibited nuclear SOX9 labeling. Sox9 expression has been associated with progenitor and stem cells. Similar effects of the Agr2 null on cell proliferation in the intestine were also observed. Agr2 consequently serves to maintain the balance between proliferating and differentiated epithelial cells. PMID:23209296
NASA Astrophysics Data System (ADS)
Sun, Jingliang; Liu, Chunsheng
2018-01-01
In this paper, the problem of intercepting a manoeuvring target within a fixed final time is posed in a non-linear constrained zero-sum differential game framework. The Nash equilibrium solution is found by solving the finite-horizon constrained differential game problem via adaptive dynamic programming technique. Besides, a suitable non-quadratic functional is utilised to encode the control constraints into a differential game problem. The single critic network with constant weights and time-varying activation functions is constructed to approximate the solution of associated time-varying Hamilton-Jacobi-Isaacs equation online. To properly satisfy the terminal constraint, an additional error term is incorporated in a novel weight-updating law such that the terminal constraint error is also minimised over time. By utilising Lyapunov's direct method, the closed-loop differential game system and the estimation weight error of the critic network are proved to be uniformly ultimately bounded. Finally, the effectiveness of the proposed method is demonstrated by using a simple non-linear system and a non-linear missile-target interception system, assuming first-order dynamics for the interceptor and target.
Modeling to Optimize Terminal Stem Cell Differentiation
Gallicano, G. Ian
2013-01-01
Embryonic stem cell (ESC), iPCs, and adult stem cells (ASCs) all are among the most promising potential treatments for heart failure, spinal cord injury, neurodegenerative diseases, and diabetes. However, considerable uncertainty in the production of ESC-derived terminally differentiated cell types has limited the efficiency of their development. To address this uncertainty, we and other investigators have begun to employ a comprehensive statistical model of ESC differentiation for determining the role of intracellular pathways (e.g., STAT3) in ESC differentiation and determination of germ layer fate. The approach discussed here applies the Baysian statistical model to cell/developmental biology combining traditional flow cytometry methodology and specific morphological observations with advanced statistical and probabilistic modeling and experimental design. The final result of this study is a unique tool and model that enhances the understanding of how and when specific cell fates are determined during differentiation. This model provides a guideline for increasing the production efficiency of therapeutically viable ESCs/iPSCs/ASC derived neurons or any other cell type and will eventually lead to advances in stem cell therapy. PMID:24278782
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warner-Bartnicki, A.L.; Murao, S.; Collart, F.R.
1992-02-14
The calcium-binding proteins MRP8 and MRP14 are induced during monomyelocytic cell maturation and may mediate the growth arrest in differentiating HL-60 cells. We determined the levels of a protein complex (PC) containing MRP8 and MRP14 and investigated the mechanism by which the genes encoding these proteins are regulated in HL-60 cells treated with the differentiation-inducing agent mycophenolic acid. Elevated levels of the PC were found to directly parallel gains in the steady-state levels of MRP8 and MRP14 mRNA. Transcription studies with the use of nuclear run-on experiments revealed increased transcription initiation at the MRP8 and MRP14 promoters after MPA treatment.more » 1{alpha},25-Dihydroxyvitamin D{sub 3}, which induces HL-60 cell differentiation by another mechanism, was also found to increase transcription initiation at the MRP8 and MRP14 promoters, suggesting that this initiation is the major control of MRP8 and MRP14 gene expression during terminal differentiation of human promyelocytic cells.« less
Joshi, Nikhil S; Cui, Weiguo; Dominguez, Claudia X; Chen, Jonathan H; Hand, Timothy W; Kaech, Susan M
2011-10-15
Memory CD8 T cells acquire effector memory cell properties after reinfection and may reach terminally differentiated, senescent states ("Hayflick limit") after multiple infections. The signals controlling this process are not well understood, but we found that the degree of secondary effector and memory CD8 T cell differentiation was intimately linked to the amount of T-bet expressed upon reactivation and preexisting memory CD8 T cell number (i.e., primary memory CD8 T cell precursor frequency) present during secondary infection. Compared with naive cells, memory CD8 T cells were predisposed toward terminal effector (TE) cell differentiation because they could immediately respond to IL-12 and induce T-bet, even in the absence of Ag. TE cell formation after secondary (2°) or tertiary infections was dependent on increased T-bet expression because T-bet(+/-) cells were resistant to these phenotypic changes. Larger numbers of preexisting memory CD8 T cells limited the duration of 2° infection and the amount of IL-12 produced, and consequently, this reduced T-bet expression and the proportion of 2° TE CD8 T cells that formed. Together, these data show that over repeated infections, memory CD8 T cell quality and proliferative fitness is not strictly determined by the number of serial encounters with Ag or cell divisions, but is a function of the CD8 T cell differentiation state, which is genetically controlled in a T-bet-dependent manner. This differentiation state can be modulated by preexisting memory CD8 T cell number and the intensity of inflammation during reinfection. These results have important implications for vaccinations involving prime-boost strategies.
Establishment of human induced pluripotent stem cell lines from normal fibroblast TIG-1.
Kumazaki, Tsutomu; Kurata, Sayaka; Matsuo, Taira; Mitsui, Youji; Takahashi, Tomoko
2011-06-01
Normal human cells have a replicative life span and therefore senesce. Usually, normal human cell strains are differentiated cells and reach a terminally differentiated state after a number of cell divisions. At present, definitive differences are not known between replicative senescence and terminal differentiation. TIG-1 is a human fibroblast strain established from fetal lung and has been used extensively in studies of cellular senescence, and numerous data were accumulated at the molecular level. Recently, a method for generating induced pluripotent stem cells (iPSCs) was developed. Using the method, we introduced four reprogramming genes to TIG-1 fibroblasts and succeeded in isolating colonies that had embryonic stem cell (ESC)-like morphologies. They showed alkaline phosphatase activity and expressed ESC markers, as shown by immunostaining of OCT4, SOX2, SSEA4, and TRA-1-81 as well as reverse-transcription polymerase chain reaction (RT-PCR) for OCT4 and NANOG transcripts. Thus, we succeeded in establishing iPSC clones from TIG-1. The iPSC clones could differentiate to cells originated from all three germ-cell layers, as shown by RT-PCR, for messenger RNA (mRNA) expression of α-fetoprotein (endoderm), MSX1 (mesoderm) and microtubule-associated protein 2 (ectoderm), and by immunostaining for α-fetoprotein (endoderm), α-smooth muscle actin (mesoderm), and β-III-tubulin (ectoderm). The iPSCs formed teratoma containing the structures developed from all three germ-cell layers in severe combined immune-deficiency mice. Thus, by comparing the aging process of parental TIG-1 cells and the differentiation process of iPSC-derived fibrocytes to fibroblasts, we can reveal the exact differences in processes between senescence and terminal differentiation.
An fMRI Study of the Impact of Block Building and Board Games on Spatial Ability
Newman, Sharlene D.; Hansen, Mitchell T.; Gutierrez, Arianna
2016-01-01
Previous studies have found that block play, board games, and puzzles result in better spatial ability. This study focused on examining the differential impact of structured block play and board games on spatial processing. Two groups of 8-year-old children were studied. One group participated in a five session block play training paradigm and the second group had a similar training protocol but played a word/spelling board game. A mental rotation task was assessed before and after training. The mental rotation task was performed during fMRI to observe the neural changes associated with the two play protocols. Only the block play group showed effects of training for both behavioral measures and fMRI measured brain activation. Behaviorally, the block play group showed improvements in both reaction time and accuracy. Additionally, the block play group showed increased involvement of regions that have been linked to spatial working memory and spatial processing after training. The board game group showed non-significant improvements in mental rotation performance, likely related to practice effects, and no training related brain activation differences. While the current study is preliminary, it does suggest that different “spatial” play activities have differential impacts on spatial processing with structured block play but not board games showing a significant impact on mental rotation performance. PMID:27621714
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arges, Christopher G.; Kambe, Yu; Dolejsi, Moshe
Block copolymer electrolytes (BCEs) represent an attractive choice as solid-state ionic conductors for electrochemical technologies used in energy storage and conversion, water treatment, sensors, and data storage and processing. Unlocking the maximum ionic conductivity of BCEs requires an intimate understanding as to how the microphase separated structure influences transport properties. However, elucidating such knowledge remains elusive due to the challenging task of precisely engineering BCEs with a defined structure in bulk materials. In this work, we examined BCEs in a thin film format because it was amenable to attaining BCEs with a desired nanostructure. Specifically, we systematically investigated anion-conducting BCEsmore » with different degrees of connectivity of the ionic domains. For the first time, we demonstrate that increasing terminal defects in the ionic domain from 1 terminal defect per mu m(2) to 20 terminal defects per mu m(2) ( a relatively small amount of defects) decreased ionic conductivity by 67% compared to the maximum value attained. Conversely, maximizing ionic domain connectivity increased the ionic conductivity by two-fold over a non-ordered BCE film. These experiments highlight that microphase separation alone was insufficient for ameliorating ionic conductivity in BCEs. Rather, microphase separation coupled with complete ionic domain connectivity realized BCEs with significantly enhanced ionic conductivity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avramova, Maria; Toptan, Aysenur; Porter, Nathan
This document describes how to make a CTF input deck. A CTF input deck is organized into Card Groups and Cards. A Card Group is a collection of Cards. A Card is de ned as a line of input. Each Card may contain multiple data. A Card is terminated by making a new line. This document has been organized so that each Card Group is discussed in its own dedicated chapter. Each card is discused in its own dedicated section. Each data in the card is discussed in its own block. The block gives information about the data, including themore » number of the input, the title, a description of the meaning of the data, units, data type, and so on. An example block is shown below to discuss the meaning of each entry in the block.« less
A map of terminal regulators of neuronal identity in Caenorhabditis elegans
2016-01-01
Our present day understanding of nervous system development is an amalgam of insights gained from studying different aspects and stages of nervous system development in a variety of invertebrate and vertebrate model systems, with each model system making its own distinctive set of contributions. One aspect of nervous system development that has been among the most extensively studied in the nematode Caenorhabditis elegans is the nature of the gene regulatory programs that specify hardwired, terminal cellular identities. I first summarize a number of maps (anatomical, functional, and molecular) that describe the terminal identity of individual neurons in the C. elegans nervous system. I then provide a comprehensive summary of regulatory factors that specify terminal identities in the nervous system, synthesizing these past studies into a regulatory map of cellular identities in the C. elegans nervous system. This map shows that for three quarters of all neurons in the C. elegans nervous system, regulatory factors that control terminal identity features are known. In‐depth studies of specific neuron types have revealed that regulatory factors rarely act alone, but rather act cooperatively in neuron‐type specific combinations. In most cases examined so far, distinct, biochemically unlinked terminal identity features are coregulated via cooperatively acting transcription factors, termed terminal selectors, but there are also cases in which distinct identity features are controlled in a piecemeal fashion by independent regulatory inputs. The regulatory map also illustrates that identity‐defining transcription factors are reemployed in distinct combinations in different neuron types. However, the same transcription factor can drive terminal differentiation in neurons that are unrelated by lineage, unrelated by function, connectivity and neurotransmitter deployment. Lastly, the regulatory map illustrates the preponderance of homeodomain transcription factors in the control of terminal identities, suggesting that these factors have ancient, phylogenetically conserved roles in controlling terminal neuronal differentiation in the nervous system. WIREs Dev Biol 2016, 5:474–498. doi: 10.1002/wdev.233 For further resources related to this article, please visit the WIREs website. PMID:27136279
DIDO as a Switchboard that Regulates Self-Renewal and Differentiation in Embryonic Stem Cells.
Fütterer, Agnes; de Celis, Jésus; Navajas, Rosana; Almonacid, Luis; Gutiérrez, Julio; Talavera-Gutiérrez, Amaia; Pacios-Bras, Cristina; Bernascone, Ilenia; Martin-Belmonte, Fernando; Martinéz-A, Carlos
2017-04-11
Transition from symmetric to asymmetric cell division requires precise coordination of differential gene expression. We show that embryonic stem cells (ESCs) mainly express DIDO3 and that their differentiation after leukemia inhibitory factor withdrawal requires DIDO1 expression. C-terminal truncation of DIDO3 (Dido3ΔCT) impedes ESC differentiation while retaining self-renewal; small hairpin RNA-Dido1 ESCs have the same phenotype. Dido3ΔCT ESC differentiation is rescued by ectopic expression of DIDO3, which binds the Dido locus via H3K4me3 and RNA POL II and induces DIDO1 expression. DIDO1, which is exported to cytoplasm, associates with, and is N-terminally phosphorylated by PKCiota. It binds the E3 ubiquitin ligase WWP2, which contributes to cell fate by OCT4 degradation, to allow expression of primitive endoderm (PE) markers. PE formation also depends on phosphorylated DIDO3 localization to centrosomes, which ensures their correct positioning for PE cell polarization. We propose that DIDO isoforms act as a switchboard that regulates genetic programs for ESC transition from pluripotency maintenance to promotion of differentiation. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Lin, Pei-Hsuan; Lin, Hsien-Yi; Kuo, Cheng-Chin; Yang, Liang-Tung
2015-06-24
The epidermis forms a critical barrier that is maintained by orchestrated programs of proliferation, differentiation, and cell death. Gene mutations that disturb this turnover process may cause skin diseases. Human GASDERMIN A (GSDMA) is frequently silenced in gastric cancer cell lines and its overexpression has been reported to induce apoptosis. GSDMA has also been linked with airway hyperresponsiveness in genetic association studies. The function of GSDMA in the skin was deduced by dominant mutations in mouse gasdermin A3 (Gsdma3), which caused skin inflammation and hair loss. However, the mechanism for the autosomal dominance of Gsdma3 mutations and the mode of Gsdma3's action remain unanswered. We demonstrated a novel function of Gsdma3 in modulating mitochondrial oxidative stress. We showed that Gsdma3 is regulated by intramolecular fold-back inhibition, which is disrupted by dominant mutations in the C-terminal domain. The unmasked N-terminal domain of Gsdma3 associates with Hsp90 and is delivered to mitochondrial via mitochondrial importer receptor Tom70, where it interacts with the mitochondrial chaperone Trap1 and causes increased production of mitochondrial reactive oxygen species (ROS), dissipation of mitochondrial membrane potential, and mitochondrial permeability transition (MPT). Overexpression of the C-terminal domain of Gsdma3 as well as pharmacological interventions of mitochondrial translocation, ROS production, and MPT pore opening alleviate the cell death induced by Gsdma3 mutants. Our results indicate that the genetic mutations in the C-terminal domain of Gsdma3 are gain-of-function mutations which unmask the N-terminal functional domain of Gsdma3. Gsdma3 regulates mitochondrial oxidative stress through mitochondrial targeting. Since mitochondrial ROS has been shown to promote epidermal differentiation, we hypothesize that Gsdma3 regulates context-dependent response of keratinocytes to differentiation and cell death signals by impinging on mitochondria.
Gao, Hongjuan; Wu, Xiaorong; Fossett, Nancy
2013-01-01
A fundamental question in stem cell biology concerns the regulatory strategies that control the choice between multipotency and differentiation. Drosophila blood progenitors or prohemocytes exhibit key stem cell characteristics, including multipotency, quiescence, and niche dependence. As a result, studies of Drosophila hematopoiesis have provided important insights into the molecular mechanisms that control these processes. Here, we show that E-cadherin is an important regulator of prohemocyte fate choice, maintaining prohemocyte multipotency and blocking differentiation. These functions are reminiscent of the role of E-cadherin in mammalian embryonic stem cells. We also show that mis-expression of E-cadherin in differentiating hemocytes disrupts the boundary between these cells and undifferentiated prohemocytes. Additionally, upregulation of E-cadherin in differentiating hemocytes increases the number of intermediate cell types expressing the prohemocyte marker, Patched. Furthermore, our studies indicate that the Drosophila GATA transcriptional co-factor, U-shaped, is required for E-cadherin expression. Consequently, E-cadherin is a downstream target of U-shaped in the maintenance of prohemocyte multipotency. In contrast, we showed that forced expression of the U-shaped GATA-binding partner, Serpent, repressed E-cadherin expression and promoted lamellocyte differentiation. Thus, U-shaped may maintain E-cadherin expression by blocking the inhibitory activity of Serpent. Collectively, these observations suggest that GATA:FOG complex formation regulates E-cadherin levels and, thereby, the choice between multipotency and differentiation. The work presented in this report further defines the molecular basis of prohemocyte cell fate choice, which will provide important insights into the mechanisms that govern stem cell biology. PMID:24040319
Activated α2-macroglobulin binding to human prostate cancer cells triggers insulin-like responses.
Misra, Uma Kant; Pizzo, Salvatore Vincent
2015-04-10
Ligation of cell surface GRP78 by activated α2-macroglobulin (α2M*) promotes cell proliferation and suppresses apoptosis. α2M*-treated human prostate cancer cells exhibit a 2-3-fold increase in glucose uptake and lactate secretion, an effect similar to insulin treatment. In both α2M* and insulin-treated cells, the mRNA levels of SREBP1-c, SREBP2, fatty-acid synthase, acetyl-CoA carboxylase, ATP citrate lyase, and Glut-1 were significantly increased together with their protein levels, except for SREBP2. Pretreatment of cells with α2M* antagonist antibody directed against the carboxyl-terminal domain of GRP78 blocks these α2M*-mediated effects, and silencing GRP78 expression by RNAi inhibits up-regulation of ATP citrate lyase and fatty-acid synthase. α2M* induces a 2-3-fold increase in lipogenesis as determined by 6-[(14)C]glucose or 1-[(14)C]acetate incorporation into free cholesterol, cholesterol esters, triglycerides, free fatty acids, and phosphatidylcholine, which is blocked by inhibitors of fatty-acid synthase, PI 3-kinase, mTORC, or an antibody against the carboxyl-terminal domain of GRP78. We also assessed the incorporation of [(14)CH3]choline into phosphatidylcholine and observed similar effects. Lipogenesis is significantly affected by pretreatment of prostate cancer cells with fatostatin A, which blocks sterol regulatory element-binding protein proteolytic cleavage and activation. This study demonstrates that α2M* functions as a growth factor, leading to proliferation of prostate cancer cells by promoting insulin-like responses. An antibody against the carboxyl-terminal domain of GRP78 may have important applications in prostate cancer therapy. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Activated α2-Macroglobulin Binding to Human Prostate Cancer Cells Triggers Insulin-like Responses
Misra, Uma Kant; Pizzo, Salvatore Vincent
2015-01-01
Ligation of cell surface GRP78 by activated α2-macroglobulin (α2M*) promotes cell proliferation and suppresses apoptosis. α2M*-treated human prostate cancer cells exhibit a 2–3-fold increase in glucose uptake and lactate secretion, an effect similar to insulin treatment. In both α2M* and insulin-treated cells, the mRNA levels of SREBP1-c, SREBP2, fatty-acid synthase, acetyl-CoA carboxylase, ATP citrate lyase, and Glut-1 were significantly increased together with their protein levels, except for SREBP2. Pretreatment of cells with α2M* antagonist antibody directed against the carboxyl-terminal domain of GRP78 blocks these α2M*-mediated effects, and silencing GRP78 expression by RNAi inhibits up-regulation of ATP citrate lyase and fatty-acid synthase. α2M* induces a 2–3-fold increase in lipogenesis as determined by 6-[14C]glucose or 1-[14C]acetate incorporation into free cholesterol, cholesterol esters, triglycerides, free fatty acids, and phosphatidylcholine, which is blocked by inhibitors of fatty-acid synthase, PI 3-kinase, mTORC, or an antibody against the carboxyl-terminal domain of GRP78. We also assessed the incorporation of [14CH3]choline into phosphatidylcholine and observed similar effects. Lipogenesis is significantly affected by pretreatment of prostate cancer cells with fatostatin A, which blocks sterol regulatory element-binding protein proteolytic cleavage and activation. This study demonstrates that α2M* functions as a growth factor, leading to proliferation of prostate cancer cells by promoting insulin-like responses. An antibody against the carboxyl-terminal domain of GRP78 may have important applications in prostate cancer therapy. PMID:25720493
Musa, Hassan; Fenn, Edward; Crye, Mark; Gemel, Joanna; Beyer, Eric C; Veenstra, Richard D
2004-06-15
Connexin40 (Cx40) contains a specific binding site for spermine (affinity approximately 100 microm) whereas connexin43 (Cx43) is unaffected by identical concentrations of intracellular spermine. Replacement of two unique glutamate residues, E9 and E13, from the cytoplasmic amino terminal domain of Cx40 with the corresponding lysine residues from Cx43 eliminated the block by 2 mm spermine, reduced the transjunctional voltage (V(j)) gating sensitivity, and reduced the unitary conductance of this Cx40E9,13K gap junction channel protein. The single point mutations, Cx40E9K and Cx40E13K, predominantly affected the residual conductance state (G(min)) and V(j) gating properties, respectively. Heterotypic pairing of Cx40E9,13K with wild-type Cx40 in murine neuro2A (N2A) cells produced a strongly rectifying gap junction reminiscent of the inward rectification properties of the Kir (e.g. Kir2.x) family of potassium channels. The reciprocal Cx43K9,13E mutant protein exhibited reduced V(j) sensitivity, but displayed much less rectification in heterotypic pairings with wtCx43, negligible changes in the unitary channel conductance, and remained insensitive to spermine block. These data indicate that the connexin40 amino terminus may form a critical cytoplasmic pore-forming domain that serves as the receptor for V(j)-dependent closure and block by intracellular polyamines. Functional reciprocity between Cx40 and Cx43 gap junctions involves other amino acid residues in addition to the E or K 9 and 13 loci located on the amino terminal domain of these two connexins.
Shin, Yong-Sup; Kim, Hyung Won; Kim, Chang Deok; Kim, Hyun-Woo; Park, Jin Woon; Jung, Sunggyun; Lee, Jeung-Hoon; Ko, Young-Kwon
2015-01-01
Background Protease-activated receptor 2 (PAR-2) participates in various biological activities, including the regulation of epidermal barrier homeostasis, inflammation, pain perception, and melanosome transfer in the skin. Objective To evaluate the basic physiological role of PAR-2 in skin. Methods We investigated PAR-2 expression in human epidermis, skin tumors, and cultured epidermal cells using western blot and immunohistochemical analysis. Additionally, we examined the effect of the PAR-2 agonist, SLIGRL-NH2, on cultured keratinocytes. Results Strong PAR-2 immunoreactivity was observed in the granular layer of normal human skin and the acrosyringium of the eccrine sweat glands. In contrast, weak PAR-2 immunoreactivity was seen in the granular layer of callused skin and in the duct and gland cells of the eccrine sweat glands. Interestingly, PAR-2 immunoreactivity was very weak or absent in the tumor cells of squamous cell carcinoma (SCC) and syringoma. PAR-2 was detected in primary keratinocytes and SV-40T-transformed human epidermal keratinocytes (SV-HEKs), an immortalized keratinocyte cell line, but not in SCC12 cells. SV-HEKs that were fully differentiated following calcium treatment displayed higher PAR-2 expression than undifferentiated SV-HEKs. Treatment of cultured SV-HEKs with PAR-2 agonist increased loricrin and filaggrin expression, a terminal differentiation marker. Conclusion Our data suggest that PAR-2 is associated with terminal differentiation of epidermis and eccrine sweat glands. PMID:26273149
Shin, Yong-Sup; Kim, Hyung Won; Kim, Chang Deok; Kim, Hyun-Woo; Park, Jin Woon; Jung, Sunggyun; Lee, Jeung-Hoon; Ko, Young-Kwon; Lee, Young Ho
2015-08-01
Protease-activated receptor 2 (PAR-2) participates in various biological activities, including the regulation of epidermal barrier homeostasis, inflammation, pain perception, and melanosome transfer in the skin. To evaluate the basic physiological role of PAR-2 in skin. We investigated PAR-2 expression in human epidermis, skin tumors, and cultured epidermal cells using western blot and immunohistochemical analysis. Additionally, we examined the effect of the PAR-2 agonist, SLIGRL-NH2, on cultured keratinocytes. Strong PAR-2 immunoreactivity was observed in the granular layer of normal human skin and the acrosyringium of the eccrine sweat glands. In contrast, weak PAR-2 immunoreactivity was seen in the granular layer of callused skin and in the duct and gland cells of the eccrine sweat glands. Interestingly, PAR-2 immunoreactivity was very weak or absent in the tumor cells of squamous cell carcinoma (SCC) and syringoma. PAR-2 was detected in primary keratinocytes and SV-40T-transformed human epidermal keratinocytes (SV-HEKs), an immortalized keratinocyte cell line, but not in SCC12 cells. SV-HEKs that were fully differentiated following calcium treatment displayed higher PAR-2 expression than undifferentiated SV-HEKs. Treatment of cultured SV-HEKs with PAR-2 agonist increased loricrin and filaggrin expression, a terminal differentiation marker. Our data suggest that PAR-2 is associated with terminal differentiation of epidermis and eccrine sweat glands.
Epigenetic modifications in 3D: Nuclear organization of the differentiating mammary epithelial cell
USDA-ARS?s Scientific Manuscript database
During the development of tissues, complex programs take place to reach terminally differentiated states with specific gene expression profiles. Epigenetic regulations such as, histone modifications and chromatin condensation have been implicated in the short and long-term control of transcription. ...
Pre-metatarsal skeletal development in tissue culture at unit- and microgravity
NASA Technical Reports Server (NTRS)
Klement, B. J.; Spooner, B. S.
1994-01-01
Explant organ culture was used to demonstrate that isolated embryonic mouse pre-metatarsal mesenchyme is capable of undergoing a series of differentiative and morphogenetic developmental events. Mesenchyme differentiation into chondrocytes, and concurrent morphogenetic patterning of the cartilage tissue, and terminal chondrocyte differentiation with subsequent matrix mineralization show that cultured tissue closely parallels in vivo development. Whole mount alizarin red staining of the cultured tissue demonstrates that the extracellular matrix around the hypertrophied chondrocytes is competent to support mineralization. Intensely stained mineralized bands are similar to those formed in pre-metatarsals developing in vivo. We have adapted the culture strategy for experimentation in a reduced gravity environment on the Space Shuttle. Spaceflight culture of pre-metatarsals, which have already initiated chondrogenesis and morphogenetic patterning, results in an increase in cartilage rod size and maintenance of rod shape, compared to controls. Older pre-metatarsal tissue, already terminally differentiated to hypertrophied cartilage, maintained rod structure and cartilage phenotype during spaceflight culture.
Noël, Jean-François; Larose, Stéphanie; Abou Elela, Sherif; Wellinger, Raymund J.
2012-01-01
The RNA component of budding yeast telomerase (Tlc1) occurs in two forms, a non-polyadenylated form found in functional telomerase and a rare polyadenylated version with unknown function. Previous work suggested that the functional Tlc1 polyA− RNA is processed from the polyA+ form, but the mechanisms regulating its transcription termination and 3′-end formation remained unclear. Here we examined transcription termination of Tlc1 RNA in the sequences 3′ of the TLC1 gene and relate it to telomere maintenance. Strikingly, disruption of all probable or cryptic polyadenylation signals near the 3′-end blocked the accumulation of the previously reported polyA+ RNA without affecting the level, function or specific 3′ nucleotide of the mature polyA− form. A genetic approach analysing TLC1 3′-end sequences revealed that transcription terminates upstream of the polyadenylation sites. Furthermore, the results also demonstrate that the function of this Tlc1 terminator depends on the Nrd1/Nab3 transcription termination pathway. The data thus show that transcription termination of the budding yeast telomerase RNA occurs as that of snRNAs and Tlc1 functions in telomere maintenance are not strictly dependent on a polyadenylated precursor, even if the polyA+ form can serve as intermediate in a redundant termination/maturation pathway. PMID:22379137
Gardner, Andrew F; Wang, Jinchun; Wu, Weidong; Karouby, Jennifer; Li, Hong; Stupi, Brian P; Jack, William E; Hersh, Megan N; Metzker, Michael L
2012-08-01
Recent developments of unique nucleotide probes have expanded our understanding of DNA polymerase function, providing many benefits to techniques involving next-generation sequencing (NGS) technologies. The cyclic reversible termination (CRT) method depends on efficient base-selective incorporation of reversible terminators by DNA polymerases. Most terminators are designed with 3'-O-blocking groups but are incorporated with low efficiency and fidelity. We have developed a novel class of 3'-OH unblocked nucleotides, called Lightning Terminators™, which have a terminating 2-nitrobenzyl moiety attached to hydroxymethylated nucleobases. A key structural feature of this photocleavable group displays a 'molecular tuning' effect with respect to single-base termination and improved nucleotide fidelity. Using Therminator DNA polymerase, we demonstrate that these 3'-OH unblocked terminators exhibit superior enzymatic performance compared to two other reversible terminators, 3'-O-amino-TTP and 3'-O-azidomethyl-TTP. Lightning Terminators show maximum incorporation rates (k(pol)) that range from 35 to 45 nt/s, comparable to the fastest NGS chemistries, yet with catalytic efficiencies (k(pol)/K(D)) comparable to natural nucleotides. Pre-steady-state kinetic studies of thymidine analogs revealed that the major determinant for improved nucleotide selectivity is a significant reduction in k(pol) by >1000-fold over TTP misincorporation. These studies highlight the importance of structure-function relationships of modified nucleotides in dictating polymerase performance.
Genetic absence of PD-1 promotes accumulation of terminally differentiated exhausted CD8+ T cells
Odorizzi, Pamela M.; Pauken, Kristen E.; Paley, Michael A.; Sharpe, Arlene
2015-01-01
Programmed Death-1 (PD-1) has received considerable attention as a key regulator of CD8+ T cell exhaustion during chronic infection and cancer because blockade of this pathway partially reverses T cell dysfunction. Although the PD-1 pathway is critical in regulating established “exhausted” CD8+ T cells (TEX cells), it is unclear whether PD-1 directly causes T cell exhaustion. We show that PD-1 is not required for the induction of exhaustion in mice with chronic lymphocytic choriomeningitis virus (LCMV) infection. In fact, some aspects of exhaustion are more severe with genetic deletion of PD-1 from the onset of infection. Increased proliferation between days 8 and 14 postinfection is associated with subsequent decreased CD8+ T cell survival and disruption of a critical proliferative hierarchy necessary to maintain exhausted populations long term. Ultimately, the absence of PD-1 leads to the accumulation of more cytotoxic, but terminally differentiated, CD8+ TEX cells. These results demonstrate that CD8+ T cell exhaustion can occur in the absence of PD-1. They also highlight a novel role for PD-1 in preserving TEX cell populations from overstimulation, excessive proliferation, and terminal differentiation. PMID:26034050
Inorganic phosphate blocks binding of pre-miRNA to Dicer-2 via its PAZ domain
Fukunaga, Ryuya; Colpan, Cansu; Han, Bo W; Zamore, Phillip D
2014-01-01
In Drosophila, Dicer-1 produces microRNAs (miRNAs) from pre-miRNAs, whereas Dicer-2 generates small interfering RNAs from long double-stranded RNA (dsRNA), a process that requires ATP hydrolysis. We previously showed that inorganic phosphate inhibits Dicer-2 cleavage of pre-miRNAs, but not long dsRNAs. Here, we report that phosphate-dependent substrate discrimination by Dicer-2 reflects dsRNA substrate length. Efficient processing by Dicer-2 of short dsRNA requires a 5′ terminal phosphate and a two-nucleotide, 3′ overhang, but does not require ATP. Phosphate inhibits cleavage of such short substrates. In contrast, cleavage of longer dsRNA requires ATP but no specific end structure: phosphate does not inhibit cleavage of these substrates. Mutation of a pair of conserved arginine residues in the Dicer-2 PAZ domain blocked cleavage of short, but not long, dsRNA. We propose that inorganic phosphate occupies a PAZ domain pocket required to bind the 5′ terminal phosphate of short substrates, blocking their use and restricting pre-miRNA processing in flies to Dicer-1. Our study helps explain how a small molecule can alter the substrate specificity of a nucleic acid processing enzyme. PMID:24488111
Wu, Celeste Yin-Chieh; Chen, Po-Yi; Chen, Mei-Fang; Kuo, Jon-Son; Lee, Tony Jer-Fu
2012-01-01
Memantine, an NMDA receptor antagonist used for treatment of Alzheimer’s disease (AD), is known to block the nicotinic acetylcholine receptors (nAChRs) in the central nervous system (CNS). In the present study, we examined by wire myography if memantine inhibited α3β2-nAChRs located on cerebral perivascular sympathetic nerve terminals originating in the superior cervical ganglion (SCG), thus, leading to inhibition of nicotine-induced nitrergic neurogenic dilation of isolated porcine basilar arteries. Memantine concentration-dependently blocked nicotine-induced neurogenic dilation of endothelium-denuded basilar arteries without affecting that induced by transmural nerve stimulation, sodium nitroprusside, or isoproterenol. Furthermore, memantine significantly inhibited nicotine-elicited inward currents in Xenopous oocytes expressing α3β2-, α7- or α4β2-nAChR, and nicotine-induced calcium influx in cultured rat SCG neurons. These results suggest that memantine is a non-specific antagonist for nAChR. By directly inhibiting α3β2-nAChRs located on the sympathetic nerve terminals, memantine blocks nicotine-induced neurogenic vasodilation of the porcine basilar arteries. This effect of memantine is expected to reduce the blood supply to the brain stem and possibly other brain regions, thus, decreasing its clinical efficacy in the treatment of Alzheimer’s disease. PMID:22792283
Ma, Huixian; Yu, Hui; Li, Ting; Zhao, Yan; Hou, Ming; Chen, Zheyu; Wang, Yue; Sun, Tao
2017-04-15
Radial migration is essential for the precise lamination and the coordinated function of the cerebral cortex. However, the molecular mechanisms for neuronal radial migration are not clear. Here, we report that c-Jun NH2-terminal kinase (JNK)-interacting protein-3 (JIP3) is highly expressed in the brain of embryonic mice and essential for radial migration. Knocking down JIP3 by in utero electroporation specifically perturbs the radial migration of cortical neurons but has no effect on neurogenesis and neuronal differentiation. Furthermore, we illustrate that JIP3 knockdown delays but does not block the migration of cortical neurons by investigating the distribution of neurons with JIP3 knocked down in the embryo and postnatal mouse. Finally, we find that JIP3 regulates cortical neuronal migration by mediating TrkB axonal anterograde transport during brain development. These findings deepen our understanding of the regulation of neuronal development by JIP3 and provide us a novel view on the regulating mechanisms of neuronal radial migration. Copyright © 2017 Elsevier Inc. All rights reserved.
Kazuki, Yasuhiro; Yakura, Yuwna; Abe, Satoshi; Osaki, Mitsuhiko; Kajitani, Naoyo; Kazuki, Kanako; Takehara, Shoko; Honma, Kazuhisa; Suemori, Hirofumi; Yamazaki, Satoshi; Sakuma, Tetsushi; Toki, Tsutomu; Shimizu, Ritsuko; Nakauchi, Hiromitsu; Yamamoto, Takashi; Oshimura, Mitsuo
2014-08-27
Infants with Down syndrome (DS) are at a high risk of developing transient abnormal myelopoiesis (TAM). A GATA1 mutation leading to the production of N-terminally truncated GATA1 (GATA1s) in early megakaryocyte/erythroid progenitors is linked to the onset of TAM and cooperated with the effect of trisomy 21 (Ts21). To gain insights into the underlying mechanisms of the progression to TAM in DS patients, we generated human pluripotent stem cells harbouring Ts21 and/or GATA1s by combining microcell-mediated chromosome transfer and genome editing technologies. In vitro haematopoietic differentiation assays showed that the GATA1s mutation blocked erythropoiesis irrespective of an extra chromosome 21, while Ts21 and the GATA1s mutation independently perturbed megakaryopoiesis and the combination of Ts21 and the GATA1s mutation synergistically contributed to an aberrant accumulation of skewed megakaryocytes. Thus, the DS model cells generated by these two technologies are useful in assessing how GATA1s mutation is involved in the onset of TAM in patients with DS.
Proteolysis Controls Endogenous Substance P Levels
Mitchell, Andrew J.; Lone, Anna Mari; Tinoco, Arthur D.; Saghatelian, Alan
2013-01-01
Substance P (SP) is a prototypical neuropeptide with roles in pain and inflammation. Numerous mechanisms regulate endogenous SP levels, including the differential expression of SP mRNA and the controlled secretion of SP from neurons. Proteolysis has long been suspected to regulate extracellular SP concentrations but data in support of this hypothesis is scarce. Here, we provide evidence that proteolysis controls SP levels in the spinal cord. Using peptidomics to detect and quantify endogenous SP fragments, we identify the primary SP cleavage site as the C-terminal side of the ninth residue of SP. If blocking this pathway increases SP levels, then proteolysis controls SP concentration. We performed a targeted chemical screen using spinal cord lysates as a proxy for the endogenous metabolic environment and identified GM6001 (galardin, ilomastat) as a potent inhibitor of the SP 1–9-producing activity present in the tissue. Administration of GM6001 to mice results in a greater-than-three-fold increase in the spinal cord levels of SP, which validates the hypothesis that proteolysis controls physiological SP levels. PMID:23894327
NASA Astrophysics Data System (ADS)
Paul, Ganesh C.; Saha, Arijit; Das, Sourin
2018-05-01
We theoretically investigate the transport properties of a quasi-one-dimensional ferromagnet-superconductor junction where the superconductor consists of mixed singlet and triplet pairings. We show that the relative orientation of the Stoner field (h ˜) in the ferromagnetic lead and the d vector of the superconductor acts like a on-off switch for the zero bias conductance of the device. In the regime, where triplet pairing amplitude dominates over the singlet counterpart (topological phase), a pair of Majorana zero modes appear at each end of the superconducting part of the nanowire. When h ˜ is parallel or antiparallel to the d vector, transport gets completely blocked due to blockage in pairing while, when h ˜ and d are perpendicular to each other, the zero energy two terminal differential conductance spectra exhibits sharp transition from 4 e2/h to 2 e2/h as the magnetization strength in the lead becomes larger than the chemical potential indicating the spin-selective coupling of a pair of Majorana zero modes to the lead.
Zener diode controls switching of large direct currents
NASA Technical Reports Server (NTRS)
1965-01-01
High-current zener diode is connected in series with the positive input terminal of a dc supply to block the flow of direct current until a high-frequency control signal is applied across the zener diode. This circuit controls the switching of large dc signals.
Zhang, Guangzhao; Chen, Yunhua; Deng, Yonghong; Wang, Chaoyang
2017-10-18
We report here an intriguing hybrid conductive hydrogel as electrode for high-performance flexible supercapacitor. The key is using a rationally designed water-soluble ABA triblock copolymer (termed as IAOAI) containing a central poly(ethylene oxide) block (A) and terminal poly(acrylamide) (PAAm) block with aniline moieties randomly incorporated (B), which was synthesized by reversible additional fragment transfer polymerization. The subsequent copolymerization of aniline monomers with the terminated aniline moieties on the IAOAI polymer generates a three-dimensional cross-linking hybrid network. The hybrid hydrogel electrode demonstrates robust mechanical flexibility, remarkable electrochemical capacitance (919 F/g), and cyclic stability (90% capacitance retention after 1000 cycles). Moreover, the flexible supercapacitor based on this hybrid hydrogel electrode presents a large specific capacitance (187 F/g), superior to most reported conductive hydrogel-based supercapacitors. With the demonstrated additional favorable cyclic stability and excellent capacitive and rate performance, this hybrid hydrogel-based supercapacitor holds great promise for flexible energy-storage device.
NASA Astrophysics Data System (ADS)
Bai, Zhiyuan; Du, Jiangfeng; Xin, Qi; Li, Ruonan; Yu, Qi
2018-02-01
We conducted a numerical analysis on high-K dielectric passivated AlGaN/GaN Schottky barrier diodes (HPG-SBDs) with a gated edge termination (GET). The reverse blocking characteristics were significantly enhanced without the stimulation of any parasitic effect by varying the dielectric thickness dge under the GET, thickness TP, and dielectric constant εr of the high-K passivation layer. The leakage current was reduced by increasing εr and decreasing dge. The breakdown voltage of the device was enhanced by increasing εr and TP. The highest breakdown voltage of 970 V and the lowest leakage current of 0.5 nA/mm were achieved under the conditions of εr = 80, TP = 800 nm, and dge = 10 nm. C-V simulation revealed that the HPG-SBDs induced no parasitic capacitance by comparing the integrated charges of the devices with different high-K dielectrics and different dge.
Suarez, Guadalupe V; Angerami, Matías T; Vecchione, María B; Laufer, Natalia; Turk, Gabriela; Ruiz, Maria J; Mesch, Viviana; Fabre, Bibiana; Maidana, Patricia; Ameri, Diego; Cahn, Pedro; Sued, Omar; Salomón, Horacio; Bottasso, Oscar A; Quiroga, María F
2015-09-01
Tuberculosis (TB) is the leading cause of death among HIV-positive patients. The decreasing frequencies of terminal effector (TTE ) CD8(+) T cells may increase reactivation risk in persons latently infected with Mycobacterium tuberculosis (Mtb). We have previously shown that dehydroepiandrosterone (DHEA) increases the protective antitubercular immune responses in HIV-TB patients. Here, we aimed to study Mtb-specific cytotoxicity, IFN-γ secretion, memory status of CD8(+) T cells, and their modulation by DHEA during HIV-TB coinfection. CD8(+) T cells from HIV-TB patients showed a more differentiated phenotype with diminished naïve and higher effector memory and TTE T-cell frequencies compared to healthy donors both in total and Mtb-specific CD8(+) T cells. Notably, CD8(+) T cells from HIV-TB patients displayed higher Terminal Effector (TTE ) CD45RA(dim) proportions with lower CD45RA expression levels, suggesting a not fully differentiated phenotype. Also, PD-1 expression levels on CD8(+) T cells from HIV-TB patients increased although restricted to the CD27(+) population. Interestingly, DHEA plasma levels positively correlated with TTE in CD8(+) T cells and in vitro DHEA treatment enhanced Mtb-specific cytotoxic responses and terminal differentiation in CD8(+) T cells from HIV-TB patients. Our data suggest that HIV-TB coinfection promotes a deficient CD8(+) T-cell differentiation, whereas DHEA may contribute to improving antitubercular immunity by enhancing CD8(+) T-cell functions during HIV-TB coinfection. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A novel directional asymmetric sampling search algorithm for fast block-matching motion estimation
NASA Astrophysics Data System (ADS)
Li, Yue-e.; Wang, Qiang
2011-11-01
This paper proposes a novel directional asymmetric sampling search (DASS) algorithm for video compression. Making full use of the error information (block distortions) of the search patterns, eight different direction search patterns are designed for various situations. The strategy of local sampling search is employed for the search of big-motion vector. In order to further speed up the search, early termination strategy is adopted in procedure of DASS. Compared to conventional fast algorithms, the proposed method has the most satisfactory PSNR values for all test sequences.
Barrière, Quentin; Guefrachi, Ibtissem; Gully, Djamel; Lamouche, Florian; Pierre, Olivier; Fardoux, Joël; Chaintreuil, Clémence; Alunni, Benoît; Timchenko, Tatiana; Giraud, Eric; Mergaert, Peter
2017-08-22
Legumes harbor in their symbiotic nodule organs nitrogen fixing rhizobium bacteria called bacteroids. Some legumes produce Nodule-specific Cysteine-Rich (NCR) peptides in the nodule cells to control the intracellular bacterial population. NCR peptides have antimicrobial activity and drive bacteroids toward terminal differentiation. Other legumes do not produce NCR peptides and their bacteroids are not differentiated. Bradyrhizobia, infecting NCR-producing Aeschynomene plants, require the peptide uptake transporter BclA to cope with the NCR peptides as well as a specific peptidoglycan-modifying DD-carboxypeptidase, DD-CPase1. We show that Bradyrhizobium diazoefficiens strain USDA110 forms undifferentiated bacteroids in NCR-lacking soybean nodules. Unexpectedly, in Aeschynomene afraspera nodules the nitrogen fixing USDA110 bacteroids are hardly differentiated despite the fact that this host produces NCR peptides, suggesting that USDA110 is insensitive to the host peptide effectors and that nitrogen fixation can be uncoupled from differentiation. In agreement with the absence of bacteroid differentiation, USDA110 does not require its bclA gene for nitrogen fixing symbiosis with these two host plants. Furthermore, we show that the BclA and DD-CPase1 act independently in the NCR-induced morphological differentiation of bacteroids. Our results suggest that BclA is required to protect the rhizobia against the NCR stress but not to induce the terminal differentiation pathway.
Enhanced stiffness of silk-like fibers by loop formation in the corona leads to stronger gels.
Rombouts, Wolf H; Domeradzka, Natalia E; Werten, Marc W T; Leermakers, Frans A M; de Vries, Renko J; de Wolf, Frits A; van der Gucht, Jasper
2016-11-01
We study the self-assembly of protein polymers consisting of a silk-like block flanked by two hydrophilic blocks, with a cysteine residue attached to the C-terminal end. The silk blocks self-assemble to form fibers while the hydrophilic blocks form a stabilizing corona. Entanglement of the fibers leads to the formation of hydrogels. Under oxidizing conditions the cysteine residues form disulfide bridges, effectively connecting two corona chains at their ends to form a loop. We find that this leads to a significant increase in the elastic modulus of the gels. Using atomic force microscopy, we show that this stiffening is due to an increase of the persistence length of the fibers. Self-consistent-field calculations indicate a slight decrease of the lateral pressure in the corona upon loop formation. We argue that this small decrease in the repulsive interactions affects the stacking of the silk-like blocks in the core, resulting in a more rigid fiber. © 2016 Wiley Periodicals, Inc.
Kinematics and mechanics of tectonic block rotations
NASA Technical Reports Server (NTRS)
Nur, Amos; Scotti, Oona; Ron, Hagai
1989-01-01
Paleomagnetic, structural geology, and rock mechanics data are combined to explore the validity of the block rotation concept and its significance. The analysis is based on data from (1) Northern Israel, where fault slip and spacing are used to predict block rotation; (2) the Mojave Desert, with well-documented strike-slip fault sets, organized in at least three major domains; (3) the Lake Mead, Nevada, fault system with well-defined sets of strike-slip faults, which, in contrast to the Mojave region, are surrounded with domains of normal faults; and (4) the San Gabriel Mountains domain with a multiple set of strike-slip faults. It is found that block rotations can have a profound influence on the interpretation of geodetic measurements and the inversion of geodetic data, especially the type collected in GPS surveys. Furthermore, block rotations and domain boundaries may be involved in creating the heterogeneities along active fault systems which are responsible for the initiation and termination of earthquake rupture.
Multi-purpose wind tunnel reaction control model block
NASA Technical Reports Server (NTRS)
Dresser, H. S.; Daileda, J. J. (Inventor)
1978-01-01
A reaction control system nozzle block is provided for testing the response characteristics of space vehicles to a variety of reaction control thruster configurations. A pressurized air system is connected with the supply lines which lead to the individual jet nozzles. Each supply line terminates in a compact cylindrical plenum volume, axially perpendicular and adjacent to the throat of the jet nozzle. The volume of the cylindrical plenum is sized to provide uniform thrust characteristics from each jet nozzle irrespective of the angle of approach of the supply line to the plenum. Each supply line may be plugged or capped to stop the air supply to selected jet nozzles, thereby enabling a variety of nozzle configurations to be obtained from a single model nozzle block.
Escalante, Yolanda; Saavedra, Jose M.; Tella, Victor; Mansilla, Mirella; García-Hermoso, Antonio; Dominguez, Ana M.
2012-01-01
The aims of this study were (i) to compare women’s water polo game-related statistics by match outcome (winning and losing teams) and phase (preliminary, classificatory, and semi-final/bronze medal/gold medal), and (ii) identify characteristics that discriminate performances for each phase. The game-related statistics of the 124 women’s matches played in five International Championships (World and European Championships) were analyzed. Differences between winning and losing teams in each phase were determined using the chi-squared. A discriminant analysis was then performed according to context in each of the three phases. It was found that the game-related statistics differentiate the winning from the losing teams in each phase of an international championship. The differentiating variables were both offensive (centre goals, power-play goals, counterattack goal, assists, offensive fouls, steals, blocked shots, and won sprints) and defensive (goalkeeper-blocked shots, goalkeeper-blocked inferiority shots, and goalkeeper-blocked 5-m shots). The discriminant analysis showed the game-related statistics to discriminate performance in all phases: preliminary, classificatory, and final phases (92%, 90%, and 83%, respectively). Two variables were discriminatory by match outcome (winning or losing teams) in all three phases: goals and goalkeeper-blocked shots. Key pointsThe preliminary phase that more than one variable was involved in this differentiation, including both offensive and defensive aspects of the game.The game-related statistics were found to have a high discriminatory power in predicting the result of matches with shots and goalkeeper-blocked shots being discriminatory variables in all three phases.Knowledge of the characteristics of women’s water polo game-related statistics of the winning teams and their power to predict match outcomes will allow coaches to take these characteristics into account when planning training and match preparation. PMID:24149356
Jirkovská, Marie; Kučera, Tomáš; Dvořáková, Veronika; Jadrníček, Martin; Moravcová, Milena; Žižka, Zdeněk; Krejčí, Vratislav
2016-04-01
Maternal diabetes mellitus changes morphology and impairs function of placental capillaries. Here, quantitative parameters characterizing cell proliferation using detection of Ki67, differentiation reflected by nestin expression and apoptosis in placental capillary bed with active caspase 3 as a marker were compared in normal term placentas and placentas from pregnancies complicated by Type 1 maternal diabetes mellitus. Specimens of sixteen diabetic placentas and eight control placentas were collected by systematic uniform random sampling. Immunohistochemical detections of Ki67, nestin, and active caspase 3 were performed in histological sections of five haphazardly chosen blocks per placenta. Twenty fields of view per section, i.e. one hundred fields of view per placenta, were used for analysis of proliferation as well as of apoptosis, and in approximately 70 capillary cross-sections per placenta the nestin-positive segments of their circumference were measured. The percentage of Ki67-positive cells counted in the capillary wall was significantly lower in diabetic group. The counts of Ki67-labelled nuclei per villous area unit were significantly lower in cytotrophoblast and capillary wall of terminal villi in diabetic placenta. The proportion of nestin-labeled segments of capillary circumference was significantly higher in placentas of diabetic group. No differences in the numbers of apoptotic cells were found between studied groups. The results show that the term placenta in Type 1 diabetes has lower potential to enlarge the surface area of structures involved in maternofetal transport, and that the villous capillary bed displays delayed differentiation. Those factors may participate in decreased ability of diabetic placenta to comply with fetal requirements in the final stage of pregnancy. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lee, Jong-Hyuk; Kang, Byung-Hee; Jang, Hyonchol; Kim, Tae Wan; Choi, Jinmi; Kwak, Sojung; Han, Jungwon; Cho, Eun-Jung; Youn, Hong-Duk
2015-05-19
Post-translational modifications of core histones affect various cellular processes, primarily through transcription. However, their relationship with the termination of transcription has remained largely unknown. In this study, we show that DNA damage-activated AKT phosphorylates threonine 45 of core histone H3 (H3-T45). By genome-wide chromatin immunoprecipitation sequencing (ChIP-seq) analysis, H3-T45 phosphorylation was distributed throughout DNA damage-responsive gene loci, particularly immediately after the transcription termination site. H3-T45 phosphorylation pattern showed close-resemblance to that of RNA polymerase II C-terminal domain (CTD) serine 2 phosphorylation, which establishes the transcription termination signal. AKT1 was more effective than AKT2 in phosphorylating H3-T45. Blocking H3-T45 phosphorylation by inhibiting AKT or through amino acid substitution limited RNA decay downstream of mRNA cleavage sites and decreased RNA polymerase II release from chromatin. Our findings suggest that AKT-mediated phosphorylation of H3-T45 regulates the processing of the 3' end of DNA damage-activated genes to facilitate transcriptional termination. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Tabujew, Ilja; Freidel, Christoph; Krieg, Bettina; Helm, Mark; Koynov, Kaloian; Müllen, Klaus; Peneva, Kalina
2014-07-01
Here, the preparation of a novel block copolymer consisting of a statistical copolymer N-(2-hydroxypropyl) methacrylamide-s-N-(3-aminopropyl) methacrylamide and a short terminal 3-guanidinopropyl methacrylamide block is reported. This polymer structure forms neutral but water-soluble nanosized complexes with siRNA. The siRNA block copolymer complexes are first analyzed using agarose gel electrophoresis and their size is determined with fluorescence correlation spectroscopy. The protective properties of the polymer against RNA degradation are investigated by treating the siRNA block copolymer complexes with RNase V1. Heparin competition assays confirm the efficient release of the cargo in vitro. In addition, the utilization of microscale thermophoresis is demonstrated for the determination of the binding strength between a fluorescently labeled polyanion and a polymer molecule. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Margulis, Katherine; Zhang, Xiangyi; Joubert, Lydia -Marie
Template–free fabrication of non–spherical polymeric nanoparticles is desirable for various applications, but has had limited success owing to thermodynamic favorability of sphere formation. Herein we present a simple way to prepare cubic nanoparticles of block copolymers by self–assembly from aqueous solutions at room temperature. Nanocubes with edges of 40–200 nm are formed spontaneously on different surfaces upon water evaporation from micellar solutions of triblock copolymers containing a central poly(ethylene oxide) block and terminal trimethylene carbonate/dithiolane blocks. These polymers self–assemble into 28±5 nm micelles in water. Upon drying, micelle aggregation and a kinetically controlled crystallization of central blocks evidently induce solidmore » cubic particle formation. An approach for preserving the structures of these cubes in water by thiol– or photo–induced crosslinking was developed. In conclusion, the ability to solubilize a model hydrophobic drug, curcumin, was also explored.« less
Margulis, Katherine; Zhang, Xiangyi; Joubert, Lydia -Marie; ...
2017-10-27
Template–free fabrication of non–spherical polymeric nanoparticles is desirable for various applications, but has had limited success owing to thermodynamic favorability of sphere formation. Herein we present a simple way to prepare cubic nanoparticles of block copolymers by self–assembly from aqueous solutions at room temperature. Nanocubes with edges of 40–200 nm are formed spontaneously on different surfaces upon water evaporation from micellar solutions of triblock copolymers containing a central poly(ethylene oxide) block and terminal trimethylene carbonate/dithiolane blocks. These polymers self–assemble into 28±5 nm micelles in water. Upon drying, micelle aggregation and a kinetically controlled crystallization of central blocks evidently induce solidmore » cubic particle formation. An approach for preserving the structures of these cubes in water by thiol– or photo–induced crosslinking was developed. In conclusion, the ability to solubilize a model hydrophobic drug, curcumin, was also explored.« less
Cell biology has revealed that the adult heart is not a terminally differentiated organ but is capable of generating new cardiomyocytes (CMs) from cardiac stem cells (CSC) and/or progenitor cells (CPC) throughout life. The impact that environmental chemical exposures have on adul...
The proteolytic processing site of the precursor of lysyl oxidase.
Cronshaw, A D; Fothergill-Gilmore, L A; Hulmes, D J
1995-01-01
The precise cleavage site of the N-terminal propeptide region of the precursor of lysyl oxidase has not yet been established, due to N-terminal blocking of the mature protein. Using a combination of peptide fragmentation, amino acid sequencing, time-of-flight m.s. and partial chemical unblocking procedures, it is shown that the mature form of lysyl oxidase begins at residue Asp-169 of the precursor protein (numbered according to the human sequence). The cleavage site is 28 residues to the C-terminal side of the site previously suggested on the basis of apparant molecular mass by SDS/PAGE, with the consequence that the two putative, N-linked glycosylation sites and the position of the Arg/Gln sequence polymorphism are now all in the precursor region. PMID:7864821
Developmental Regulation of Nucleolus Size during Drosophila Eye Differentiation
Baker, Nicholas E.
2013-01-01
When cell cycle withdrawal accompanies terminal differentiation, biosynthesis and cellular growth are likely to change also. In this study, nucleolus size was monitored during cell fate specification in the Drosophila eye imaginal disc using fibrillarin antibody labeling. Nucleolus size is an indicator of ribosome biogenesis and can correlate with cellular growth rate. Nucleolar size was reduced significantly during cell fate specification and differentiation, predominantly as eye disc cells entered a cell cycle arrest that preceded cell fate specification. This reduction in nucleolus size required Dpp and Hh signaling. A transient enlargement of the nucleolus accompanied cell division in the Second Mitotic Wave. Nucleoli continued to diminish in postmitotic cells following fate specification. These results suggest that cellular growth is regulated early in the transition from proliferating progenitor cells to terminal cell fate specification, contemporary with regulation of the cell cycle, and requiring the same extracellular signals. PMID:23472166
Differential Regulation of Elastic Fiber Formation by Fibulin-4 and -5*
Choudhury, Rawshan; McGovern, Amanda; Ridley, Caroline; Cain, Stuart A.; Baldwin, Andrew; Wang, Ming-Chuan; Guo, Chun; Mironov, Aleksandr; Drymoussi, Zoe; Trump, Dorothy; Shuttleworth, Adrian; Baldock, Clair; Kielty, Cay M.
2009-01-01
Fibulin-4 and -5 are extracellular glycoproteins with essential non-compensatory roles in elastic fiber assembly. We have determined how they interact with tropoelastin, lysyl oxidase, and fibrillin-1, thereby revealing how they differentially regulate assembly. Strong binding between fibulin-4 and lysyl oxidase enhanced the interaction of fibulin-4 with tropoelastin, forming ternary complexes that may direct elastin cross-linking. In contrast, fibulin-5 did not bind lysyl oxidase strongly but bound tropoelastin in terminal and central regions and could concurrently bind fibulin-4. Both fibulins differentially bound N-terminal fibrillin-1, which strongly inhibited their binding to lysyl oxidase and tropoelastin. Knockdown experiments revealed that fibulin-5 controlled elastin deposition on microfibrils, although fibulin-4 can also bind fibrillin-1. These experiments provide a molecular account of the distinct roles of fibulin-4 and -5 in elastic fiber assembly and how they act in concert to chaperone cross-linked elastin onto microfibrils. PMID:19570982
Bijlenga, Philippe; Liu, Jian-Hui; Espinos, Estelle; Haenggeli, Charles-Antoine; Fischer-Lougheed, Jacqueline; Bader, Charles R.; Bernheim, Laurent
2000-01-01
Mechanisms underlying Ca2+ signaling during human myoblast terminal differentiation were studied using cell cultures. We found that T-type Ca2+ channels (T-channels) are expressed in myoblasts just before fusion. Their inhibition by amiloride or Ni2+ suppresses fusion and prevents an intracellular Ca2+ concentration increase normally observed at the onset of fusion. The use of antisense oligonucleotides indicates that the functional T-channels are formed by α1H subunits. At hyperpolarized potentials, these channels allow a window current sufficient to increase [Ca2+]i. As hyperpolarization is a prerequisite to myoblast fusion, we conclude that the Ca2+ signal required for fusion is produced when the resting potential enters the T-channel window. A similar mechanism could operate in other cell types of which differentiation implicates membrane hyperpolarization. PMID:10861024
Developmental regulation of nucleolus size during Drosophila eye differentiation.
Baker, Nicholas E
2013-01-01
When cell cycle withdrawal accompanies terminal differentiation, biosynthesis and cellular growth are likely to change also. In this study, nucleolus size was monitored during cell fate specification in the Drosophila eye imaginal disc using fibrillarin antibody labeling. Nucleolus size is an indicator of ribosome biogenesis and can correlate with cellular growth rate. Nucleolar size was reduced significantly during cell fate specification and differentiation, predominantly as eye disc cells entered a cell cycle arrest that preceded cell fate specification. This reduction in nucleolus size required Dpp and Hh signaling. A transient enlargement of the nucleolus accompanied cell division in the Second Mitotic Wave. Nucleoli continued to diminish in postmitotic cells following fate specification. These results suggest that cellular growth is regulated early in the transition from proliferating progenitor cells to terminal cell fate specification, contemporary with regulation of the cell cycle, and requiring the same extracellular signals.
Gaussian curvature analysis allows for automatic block placement in multi-block hexahedral meshing.
Ramme, Austin J; Shivanna, Kiran H; Magnotta, Vincent A; Grosland, Nicole M
2011-10-01
Musculoskeletal finite element analysis (FEA) has been essential to research in orthopaedic biomechanics. The generation of a volumetric mesh is often the most challenging step in a FEA. Hexahedral meshing tools that are based on a multi-block approach rely on the manual placement of building blocks for their mesh generation scheme. We hypothesise that Gaussian curvature analysis could be used to automatically develop a building block structure for multi-block hexahedral mesh generation. The Automated Building Block Algorithm incorporates principles from differential geometry, combinatorics, statistical analysis and computer science to automatically generate a building block structure to represent a given surface without prior information. We have applied this algorithm to 29 bones of varying geometries and successfully generated a usable mesh in all cases. This work represents a significant advancement in automating the definition of building blocks.
Zhang, Lei; Liu, Yudan; Chen, Xihua
2005-01-01
Enhanced activity of the central dopamine system has been implicated in many psychiatric disorders including schizophrenia and addiction. Besides terminal mechanisms that boost dopamine levels at the synapse, the cell body of dopamine cells enhances terminal dopamine concentration through encoding action potentials in bursts. This paper presents evidence that burst firing of dopamine cells in the ventral tegmental area was under cholinergic control using nystatin-perforated patch clamp recording from slice preparations. The non-selective cholinergic agonist carbachol excited the majority of recorded neurones, an action that was not affected by blocking glutamate and GABA ionotropic receptors. Twenty per cent of dopamine cells responded to carbachol with robust bursting, an effect mediated by both muscarinic and nicotinic cholinoceptors postsynaptically. Burst firing induced as such was completely dependent on calcium entry as it could be blocked by cadmium and more specifically the L-type blocker nifedipine. In the presence of the sodium channel blocker tetrodotoxin, carbachol induced membrane potential oscillation that had similar kinetics and frequency as burst firing cycles and could also be blocked by cadmium and nifedipine. Direct activation of the L-type channel with Bay K8644 induced strong bursting which could be blocked by nifedipine but not by depleting internal calcium stores. These results indicate that carbachol increases calcium entry into the postsynaptic cell through L-type channels to generate calcium-dependent membrane potential oscillation and burst firing. This could establish the L-type channel as a target for modulating the function of the central dopamine system in disease conditions. PMID:16081481
USDA-ARS?s Scientific Manuscript database
The endogenous cellulase gene (CfEG3a) of Coptotermes formosanus, an economically important pest termite, was cloned and overexpressed in both native form (nCfEG) and C-terminal His-tagged form (tCfEG) in E.coli. Both forms of recombinant cellulases showed hydrolytic activity on cellulosic substrate...
Hass, R; Brach, M; Gunji, H; Kharbanda, S; Kufe, D
1992-10-20
The treatment of human myeloid leukemia cells (HL-60, U-937, THP-1) with 12-O-tetradecanoylphorbol-13-acetate (TPA) is associated with growth arrest and appearance of a differentiated monocytic phenotype. While previous studies have reported that the glucocorticoid dexamethasone blocks phenotypic characteristics of monocytic differentiation, we demonstrated in the present work that dexamethasone delays the effects of TPA on the loss of U-937 cell proliferation. We also demonstrated that this glucocorticoid inhibits TPA-induced increases in expression of the EGR-1 early response gene. The results of nuclear run-on assays and half-life experiments indicated that this effect of dexamethasone is regulated at the post-transcriptional level. Similar studies were performed for the NF-kappa B gene. While TPA treatment was associated with transient increases in NF-kappa B mRNA levels, this induction was blocked by dexamethasone. In contrast, dexamethasone had no significant effect on the activation of pre-existing NF-kappa B protein as determined in DNA-binding assays. Taken together, these findings suggest that the activated glucocorticoid receptor inhibits signaling pathways which include expression of the EGR-1 and NF-kappa B genes and that such effects may contribute to a block in TPA-induced monocytic differentiation.
Platelet-Released Growth Factors Induce Differentiation of Primary Keratinocytes
Tohidnezhad, Mersedeh; Lammel, Justus; Lippross, Sebastian; Behrendt, Peter; Klüter, Tim; Pufe, Thomas; Jahr, Holger; Cremer, Jochen; Rademacher, Franziska; Gläser, Regine; Harder, Jürgen
2017-01-01
Autologous thrombocyte concentrate lysates, for example, platelet-released growth factors, (PRGFs) or their clinically related formulations (e.g., Vivostat PRF®) came recently into the physicians' focus as they revealed promising effects in regenerative and reparative medicine such as the support of healing of chronic wounds. To elucidate the underlying mechanisms, we analyzed the influence of PRGF and Vivostat PRF on human keratinocyte differentiation in vitro and on epidermal differentiation status of skin wounds in vivo. Therefore, we investigated the expression of early (keratin 1 and keratin 10) and late (transglutaminase-1 and involucrin) differentiation markers. PRGF treatment of primary human keratinocytes decreased keratin 1 and keratin 10 gene expression but induced involucrin and transglutaminase-1 gene expression in an epidermal growth factor receptor- (EGFR-) dependent manner. In concordance with these results, microscopic analyses revealed that PRGF-treated human keratinocytes displayed morphological features typical of keratinocytes undergoing terminal differentiation. In vivo treatment of artificial human wounds with Vivostat PRF revealed a significant induction of involucrin and transglutaminase-1 gene expression. Together, our results indicate that PRGF and Vivostat PRF induce terminal differentiation of primary human keratinocytes. This potential mechanism may contribute to the observed beneficial effects in the treatment of hard-to-heal wounds with autologous thrombocyte concentrate lysates in vivo. PMID:28808357
Mohanty, S; Jermyn, K A; Early, A; Kawata, T; Aubry, L; Ceccarelli, A; Schaap, P; Williams, J G; Firtel, R A
1999-08-01
Dd-STATa is a structural and functional homologue of the metazoan STAT (Signal Transducer and Activator of Transcription) proteins. We show that Dd-STATa null cells exhibit several distinct developmental phenotypes. The aggregation of Dd-STATa null cells is delayed and they chemotax slowly to a cyclic AMP source, suggesting a role for Dd-STATa in these early processes. In Dd-STATa null strains, slug-like structures are formed but they have an aberrant pattern of gene expression. In such slugs, ecmB/lacZ, a marker that is normally specific for cells on the stalk cell differentiation pathway, is expressed throughout the prestalk region. Stalk cell differentiation in Dictyostelium has been proposed to be under negative control, mediated by repressor elements present in the promoters of stalk cell-specific genes. Dd-STATa binds these repressor elements in vitro and the ectopic expression of ecmB/lacZ in the null strain provides in vivo evidence that Dd-STATa is the repressor protein that regulates commitment to stalk cell differentiation. Dd-STATa null cells display aberrant behavior in a monolayer assay wherein stalk cell differentiation is induced using the stalk cell morphogen DIF. The ecmB gene, a general marker for stalk cell differentiation, is greatly overinduced by DIF in Dd-STATa null cells. Also, Dd-STATa null cells are hypersensitive to DIF for expression of ST/lacZ, a marker for the earliest stages in the differentiation of one of the stalk cell sub-types. We suggest that both these manifestations of DIF hypersensitivity in the null strain result from the balance between activation and repression of the promoter elements being tipped in favor of activation when the repressor is absent. Paradoxically, although Dd-STATa null cells are hypersensitive to the inducing effects of DIF and readily form stalk cells in monolayer assay, the Dd-STATa null cells show little or no terminal stalk cell differentiation within the slug. Dd-STATa null slugs remain developmentally arrested for several days before forming very small spore masses supported by a column of apparently undifferentiated cells. Thus, complete stalk cell differentiation appears to require at least two events: a commitment step, whereby the repression exerted by Dd-STATa is lifted, and a second step that is blocked in a Dd-STATa null organism. This latter step may involve extracellular cAMP, a known repressor of stalk cell differentiation, because Dd-STATa null cells are abnormally sensitive to the inhibitory effects of extracellular cyclic AMP.
78 FR 8058 - Airworthiness Directives; Fokker Services B.V. Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-05
... torque values of nuts on circuit breakers, contactors, and terminal blocks of the electrical power center... loose nuts, which could result in arcing and potentially an onboard fire, possibly resulting in damage... were issued, several operators reported finding loose nuts on contactors in the EPC of Fokker 50/60...
Frequency of Use and Cost of Selected Anesthetic Induction and Neuromuscular Blocking Agents
1997-10-02
with a known egg allergy caused by the use of egg lecithin to prepare the emulsion (Geniton, 1992). Pain may be experienced upon injection of propofol...spontaneous recovery (Bevan, 1994). It is completely and rapidly hydrolyzed by plasma cholinesterase (pseudocholinesterase) which terminates its action
Automatic Detection of Sand Ripple Features in Sidescan Sonar Imagery
2014-07-09
Among the features used in forensic scientific fingerprint analysis are terminations or bifurcations of print ridges. Sidescan sonar imagery of ripple...always be pathological cases. The size of the blocks of pixels used in determining the ripple wavelength is evident in the output images on the right in
28 CFR 33.80 - Suspension of funding.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 28 Judicial Administration 1 2013-07-01 2013-07-01 false Suspension of funding. 33.80 Section 33... Justice Block Grants Suspension of Funding § 33.80 Suspension of funding. The Bureau of Justice Assistance shall, after reasonable notice and opportunity for a hearing on the record, terminate or suspend funding...
Coriat, P; Harari, A; Tarot, J P; Ducardonnet, A; Viars, P
1981-01-01
In order to assess the risk of advanced heart block during anesthesia in patients with right bundle branch block and left anterior hemiblock, 35 consecutive patients were monitored throughout the pre-, intra- and postoperative period. As conventional ECG monitoring may only detect advanced atrioventricular block, patients were monitored according to the Holter method which can easily detect even minor changes of atrioventricular conduction namely slight increased PR interval or dropped P wave. All patients were asymptomatic, in normal sinus rhythm without second degree AV block. Surgical procedures were performed under general anesthesia (n = 15) and epidural anesthesia using lidocaine (n = 20). No episode of second or third degree atrioventricular block occurred. The only modifications observed were rare and transient increase of PR, occurring during surgical procedures in 5 patients, always associated with a sinus bradycardia. They immediately regressed at the termination of the sinus bradycardia either spontaneously or following atropine injection, strongly suggesting the responsability of increased vagal tone. Thus general or epidural anesthesia did not compromise infranodal conduction in any of the observed patients. These data indicate that anesthesia can be safely used without prophylactic preoperative insertion of pacemakers in patients with asymptomatic chronic right bundle branch block and left anterior hemi-block.
Troy, Tammy-Claire; Turksen, Kursad
2007-06-01
Skin is one of the largest organs of the body, and is formed during development through a highly orchestrated process involving mesenchymal-epithelial interactions, cell commitment, and terminal differentiation. It protects against microorganism invasion and UV irradiation, inhibits water loss, regulates body temperature, and is an important part of the immune system. Using transgenic mouse technology, we have demonstrated that Claudin (Cldn)-containing tight junctions (TJs) are intricately involved in cell signaling during epidermal differentiation and that an epidermal suprabasal overexpression of Cldn6 results in a perturbed epidermal terminal differentiation program with distinct phenotypic abnormalities. To delineate the role of the Cldn cytoplasmic tail domain in epidermal differentiation, we engineered transgenic mice targeting the overexpression of a Cldn6 cytoplasmic tail-truncation mutant in the epidermis. Transgenic mice were characterized by a lethal barrier dysfunction in addition to the existence of hyperproliferative squamous invaginations/cysts replacing hair follicles. Immunohistochemical analysis revealed an epidermal cytoplasmic accumulation of Cldn6, Cldn11, Cldn12, and Cldn18, downregulation of Cldn1 and aberrant expression of various classical markers of epidermal differentiation; namely the basal keratins as well as K1, involucrin, loricrin, and filaggrin. Collectively these studies suggest an important role for Cldns in epidermal/hair follicle differentiation programs likely involving cross talk to signaling pathways (e.g., Notch) directing cell fate selection and differentiation.
Fibronectin is a survival factor for differentiated osteoblasts
NASA Technical Reports Server (NTRS)
Globus, R. K.; Doty, S. B.; Lull, J. C.; Holmuhamedov, E.; Humphries, M. J.; Damsky, C. H.
1998-01-01
The skeletal extracellular matrix produced by osteoblasts contains the glycoprotein fibronectin, which regulates the adhesion, differentiation and function of various adherent cells. Interactions with fibronectin are required for osteoblast differentiation in vitro, since fibronectin antagonists added to cultures of immature fetal calvarial osteoblasts inhibit their progressive differentiation. To determine if fibronectin plays a unique role in fully differentiated osteoblasts, cultures that had already formed mineralized nodules in vitro were treated with fibronectin antagonists. Fibronectin antibodies caused >95% of the cells in the mature cultures to display characteristic features of apoptosis (nuclear condensation, apoptotic body formation, DNA laddering) within 24 hours. Cells appeared to acquire sensitivity to fibronectin antibody-induced apoptosis as a consequence of differentiation, since antibodies failed to kill immature cells and the first cells killed were those associated with mature nodules. Intact plasma fibronectin, as well as fragments corresponding to the amino-terminal, cell-binding, and carboxy-terminal domains of fibronectin, independently induced apoptosis of mature (day-13), but not immature (day-4), osteoblasts. Finally, transforming growth factor-beta1 partially protected cells from the apoptotic effects of fibronectin antagonists. Thus, in the course of maturation cultured osteoblasts switch from depending on fibronectin for differentiation to depending on fibronectin for survival. These data suggest that fibronectin, together with transforming growth factor-beta1, may affect bone formation, in part by regulating the survival of osteoblasts.
Advanced communications payload for mobile applications
NASA Technical Reports Server (NTRS)
Ames, S. A.; Kwan, R. K.
1990-01-01
An advanced satellite payload is proposed for single hop linking of mobile terminals of all classes as well as Very Small Aperture Terminal's (VSAT's). It relies on an intensive use of communications on-board processing and beam hopping for efficient link design to maximize capacity and a large satellite antenna aperture and high satellite transmitter power to minimize the cost of the ground terminals. Intersatellite links are used to improve the link quality and for high capacity relay. Power budgets are presented for links between the satellite and mobile, VSAT, and hub terminals. Defeating the effects of shadowing and fading requires the use of differentially coherent demodulation, concatenated forward error correction coding, and interleaving, all on a single link basis.
Cell cycle arrest in plants: what distinguishes quiescence, dormancy and differentiated G1?
Velappan, Yazhini; Signorelli, Santiago; Considine, Michael J
2017-10-17
Quiescence is a fundamental feature of plant life, which enables plasticity, renewal and fidelity of the somatic cell line. Cellular quiescence is defined by arrest in a particular phase of the cell cycle, typically G1 or G2; however, the regulation of quiescence and proliferation can also be considered across wider scales in space and time. As such, quiescence is a defining feature of plant development and phenology, from meristematic stem cell progenitors to terminally differentiated cells, as well as dormant or suppressed seeds and buds. While the physiology of each of these states differs considerably, each is referred to as 'cell cycle arrest' or 'G1 arrest'. Here the physiology and molecular regulation of (1) meristematic quiescence, (2) dormancy and (3) terminal differentiation (cell cycle exit) are considered in order to determine whether and how the molecular decisions guiding these nuclear states are distinct. A brief overview of the canonical cell cycle regulators is provided, and the genetic and genomic, as well as physiological, evidence is considered regarding two primary questions: (1) Are the canonical cell cycle regulators superior or subordinate in the regulation of quiescence? (2) Are these three modes of quiescence governed by distinct molecular controls? Meristematic quiescence, dormancy and terminal differentiation are each predominantly characterized by G1 arrest but regulated distinctly, at a level largely superior to the canonical cell cycle. Meristematic quiescence is intrinsically linked to non-cell-autonomous regulation of meristem cell identity, and particularly through the influence of ubiquitin-dependent proteolysis, in partnership with reactive oxygen species, abscisic acid and auxin. The regulation of terminal differentiation shares analogous features with meristematic quiescence, albeit with specific activators and a greater role for cytokinin signalling. Dormancy meanwhile appears to be regulated at the level of chromatin accessibility, by Polycomb group-type histone modifications of particular dormancy genes. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Differential-Game Examination of Optimal Time-Sequential Fire-Support Strategies
1976-09-01
77 004033 NPS-55Tw76091 NAVAL POSTGRADUATE SCHOOL 4Monterey, California i ’ DIFFERENTIAL- GAME EXAMINATION OF OPTIMAL TIME-SEQUENTIAL FIRE...CATALOG NUMBER NPS-55Tw76091 4. TITLE (and Subtitle) S. TYPE OF REPDRT & PERIOD COVERED Differential- Game Examination of Optimal Tir Technical Report...NOTES 19. KEY WORDS (Continue on reverse side If necessary and identify by block number) Differential Games Lanchester Theory of Combat Military Tactics
Simplifying Differential Equations for Multiscale Feynman Integrals beyond Multiple Polylogarithms.
Adams, Luise; Chaubey, Ekta; Weinzierl, Stefan
2017-04-07
In this Letter we exploit factorization properties of Picard-Fuchs operators to decouple differential equations for multiscale Feynman integrals. The algorithm reduces the differential equations to blocks of the size of the order of the irreducible factors of the Picard-Fuchs operator. As a side product, our method can be used to easily convert the differential equations for Feynman integrals which evaluate to multiple polylogarithms to an ϵ form.
Meredith, Frances L; Benke, Tim A; Rennie, Katherine J
2012-12-01
Calyx afferent terminals engulf the basolateral region of type I vestibular hair cells, and synaptic transmission across the vestibular type I hair cell/calyx is not well understood. Calyces express several ionic conductances, which may shape postsynaptic potentials. These include previously described tetrodotoxin-sensitive inward Na(+) currents, voltage-dependent outward K(+) currents and a K(Ca) current. Here, we characterize an inwardly rectifying conductance in gerbil semicircular canal calyx terminals (postnatal days 3-45), sensitive to voltage and to cyclic nucleotides. Using whole-cell patch clamp, we recorded from isolated calyx terminals still attached to their type I hair cells. A slowly activating, noninactivating current (I(h)) was seen with hyperpolarizing voltage steps negative to the resting potential. External Cs(+) (1-5 mM) and ZD7288 (100 μM) blocked the inward current by 97 and 83 %, respectively, confirming that I(h) was carried by hyperpolarization-activated, cyclic nucleotide gated channels. Mean half-activation voltage of I(h) was -123 mV, which shifted to -114 mV in the presence of cAMP. Activation of I(h) was well described with a third order exponential fit to the current (mean time constant of activation, τ, was 190 ms at -139 mV). Activation speeded up significantly (τ=136 and 127 ms, respectively) when intracellular cAMP and cGMP were present, suggesting that in vivo I(h) could be subject to efferent modulation via cyclic nucleotide-dependent mechanisms. In current clamp, hyperpolarizing current steps produced a time-dependent depolarizing sag followed by either a rebound afterdepolarization or an action potential. Spontaneous excitatory postsynaptic potentials (EPSPs) became larger and wider when I(h) was blocked with ZD7288. In a three-dimensional mathematical model of the calyx terminal based on Hodgkin-Huxley type ionic conductances, removal of I(h) similarly increased the EPSP, whereas cAMP slightly decreased simulated EPSP size and width.
Ulianov, Sergey V; Galitsyna, Aleksandra A; Flyamer, Ilya M; Golov, Arkadiy K; Khrameeva, Ekaterina E; Imakaev, Maxim V; Abdennur, Nezar A; Gelfand, Mikhail S; Gavrilov, Alexey A; Razin, Sergey V
2017-07-11
In homeotherms, the alpha-globin gene clusters are located within permanently open genome regions enriched in housekeeping genes. Terminal erythroid differentiation results in dramatic upregulation of alpha-globin genes making their expression comparable to the rRNA transcriptional output. Little is known about the influence of the erythroid-specific alpha-globin gene transcription outburst on adjacent, widely expressed genes and large-scale chromatin organization. Here, we have analyzed the total transcription output, the overall chromatin contact profile, and CTCF binding within the 2.7 Mb segment of chicken chromosome 14 harboring the alpha-globin gene cluster in cultured lymphoid cells and cultured erythroid cells before and after induction of terminal erythroid differentiation. We found that, similarly to mammalian genome, the chicken genomes is organized in TADs and compartments. Full activation of the alpha-globin gene transcription in differentiated erythroid cells is correlated with upregulation of several adjacent housekeeping genes and the emergence of abundant intergenic transcription. An extended chromosome region encompassing the alpha-globin cluster becomes significantly decompacted in differentiated erythroid cells, and depleted in CTCF binding and CTCF-anchored chromatin loops, while the sub-TAD harboring alpha-globin gene cluster and the upstream major regulatory element (MRE) becomes highly enriched with chromatin interactions as compared to lymphoid and proliferating erythroid cells. The alpha-globin gene domain and the neighboring loci reside within the A-like chromatin compartment in both lymphoid and erythroid cells and become further segregated from the upstream gene desert upon terminal erythroid differentiation. Our findings demonstrate that the effects of tissue-specific transcription activation are not restricted to the host genomic locus but affect the overall chromatin structure and transcriptional output of the encompassing topologically associating domain.
Zhang, Nancy R; Planer, William; Siuda, Edward R; Zhao, Hu-Chen; Stickler, Lucy; Chang, Steven D; Baird, Madison A; Cao, Yu-Qing; Bruchas, Michael R
2012-12-07
We determined the role of carboxyl-terminal regulation of NOPR (nociceptin, orphanin FQ receptor) signaling and function. We mutated C-terminal serine and threonine residues and examined their role in NOPR trafficking, homologous desensitization, and arrestin-dependent MAPK signaling. The NOPR agonist, nociceptin, caused robust NOPR-YFP receptor internalization, peaking at 30 min. Mutation of serine 337, 346, and 351, had no effect on NOPR internalization. However, mutation of C-terminal threonine 362, serine 363, and threonine 365 blocked nociceptin-induced internalization of NOPR. Furthermore, point mutation of only Ser-363 was sufficient to block NOPR internalization. Homologous desensitization of NOPR-mediated calcium channel blockade and inhibition of cAMP were also shown to require Ser-363. Additionally, NOPR internalization was absent when GRK3, and Arrestin3 were knocked down using siRNA, but not when GRK2 and Arrestin2 were knocked down. We also found that nociceptin-induced NOPR-mediated JNK but not ERK signaling requires Ser-363, GRK3, and Arrestin3. Dominant-positive Arrestin3 but not Arrestin2 was sufficient to rescue NOPR-S363A internalization and JNK signaling. These findings suggest that NOPR function may be regulated by GRK3 phosphorylation of Ser-363 and Arrestin3 and further demonstrates the complex nature of G-protein-dependent and -independent signaling in opioid receptors.
Zhang, Nancy R.; Planer, William; Siuda, Edward R.; Zhao, Hu-Chen; Stickler, Lucy; Chang, Steven D.; Baird, Madison A.; Cao, Yu-Qing; Bruchas, Michael R.
2012-01-01
We determined the role of carboxyl-terminal regulation of NOPR (nociceptin, orphanin FQ receptor) signaling and function. We mutated C-terminal serine and threonine residues and examined their role in NOPR trafficking, homologous desensitization, and arrestin-dependent MAPK signaling. The NOPR agonist, nociceptin, caused robust NOPR-YFP receptor internalization, peaking at 30 min. Mutation of serine 337, 346, and 351, had no effect on NOPR internalization. However, mutation of C-terminal threonine 362, serine 363, and threonine 365 blocked nociceptin-induced internalization of NOPR. Furthermore, point mutation of only Ser-363 was sufficient to block NOPR internalization. Homologous desensitization of NOPR-mediated calcium channel blockade and inhibition of cAMP were also shown to require Ser-363. Additionally, NOPR internalization was absent when GRK3, and Arrestin3 were knocked down using siRNA, but not when GRK2 and Arrestin2 were knocked down. We also found that nociceptin-induced NOPR-mediated JNK but not ERK signaling requires Ser-363, GRK3, and Arrestin3. Dominant-positive Arrestin3 but not Arrestin2 was sufficient to rescue NOPR-S363A internalization and JNK signaling. These findings suggest that NOPR function may be regulated by GRK3 phosphorylation of Ser-363 and Arrestin3 and further demonstrates the complex nature of G-protein-dependent and -independent signaling in opioid receptors. PMID:23086955
Proposal for massively parallel data storage system
NASA Technical Reports Server (NTRS)
Mansuripur, M.
1992-01-01
An architecture for integrating large numbers of data storage units (drives) to form a distributed mass storage system is proposed. The network of interconnected units consists of nodes and links. At each node there resides a controller board, a data storage unit and, possibly, a local/remote user-terminal. The links (twisted-pair wires, coax cables, or fiber-optic channels) provide the communications backbone of the network. There is no central controller for the system as a whole; all decisions regarding allocation of resources, routing of messages and data-blocks, creation and distribution of redundant data-blocks throughout the system (for protection against possible failures), frequency of backup operations, etc., are made locally at individual nodes. The system can handle as many user-terminals as there are nodes in the network. Various users compete for resources by sending their requests to the local controller-board and receiving allocations of time and storage space. In principle, each user can have access to the entire system, and all drives can be running in parallel to service the requests for one or more users. The system is expandable up to a maximum number of nodes, determined by the number of routing-buffers built into the controller boards. Additional drives, controller-boards, user-terminals, and links can be simply plugged into an existing system in order to expand its capacity.
Ekin, Abdullah; Webster, Dean C
2007-01-01
Libraries of siloxane-polyurethane coatings were designed, formulated, and screened using high-throughput experimentation. Four independent variables that were analyzed were the molecular weight of poly(dimethylsiloxane) (PDMS), presence or absence of poly(epsilon-caprolactone) (PCL) blocks attached to the PDMS backbone, the length of the PCL blocks, and the siloxane polymer level in the coating formulations. In addition to the siloxane libraries (3-aminopropyl-terminated PDMS and poly(epsilon-caprolactone)-poly(dimethylsiloxane)-poly(epsilon-caprolactone) (PCL-PDMS-PCL) triblock copolymers), the coating formulation included a trifunctional isocyanate crosslinker, trifunctional poly(epsilon-caprolactone) polyol, 2,4-pentanedione (pot-life extender), dibutyltin diacetate (catalyst), and a blend of solvents. The resulting coatings were analyzed for their surface energy and pseudobarnacle adhesion both before and after aging the coatings for 30 days in water. The water and methylene iodide contact angle averages increase with increasing molecular weight of PDMS. Coatings prepared from PCL-PDMS-PCL triblock copolymers have lower surface energies than coatings prepared from 3-aminopropyl-terminated PDMS; however, lower pseudobarnacle adhesion results were obtained for the coatings prepared from 3-aminopropyl-terminated PDMS than coatings prepared from PCL-PDMS-PCL triblock copolymers. The siloxane polymer level in the coating formulations does not have a significant effect on the surface energy of the coatings, but it resulted in higher pseudobarnacle adhesion.
Zheng, Baisong; Yang, Wen; Wang, Yuguo; Lou, Zhiyong; Feng, Yan
2011-10-01
It is well known that protein cocrystallization is affected by several parameters such as the ratio of the protein to the ligand, the reservoir solution, the pH and the temperature. Previously, spatial blocking by the N-terminus was observed in the active site in the crystal structure of the native protein of a thermostable endoglucanase from the thermophilic bacterium Fervidobacterium nodosum Rt17-B1 (FnCel5A). It was speculated that the N-terminal α-helix might form interactions with the substrate-binding residues and it was believed that this spatial block is special to some extent. In order to confirm the effect on cocrystallization, two N-terminally truncated variants of FnCel5A were constructed, purified and cocrystallized at 291 K. A crystal of FnCel5AND_12-343 in complex with cellobiose was obtained using PEG 8000 as a precipitant. A 2.2 Å resolution data set was collected. This crystal form (space group P4(1)2(1)2, unit-cell parameters a = b = 47.3, c = 271.4 Å) differed from that of the native protein. One molecule is assumed to be present per asymmetric unit, which gives a Matthews coefficient of 2.05 Å(3) Da(-1). © 2011 International Union of Crystallography. All rights reserved.
Zheng, Baisong; Yang, Wen; Wang, Yuguo; Lou, Zhiyong; Feng, Yan
2011-01-01
It is well known that protein cocrystallization is affected by several parameters such as the ratio of the protein to the ligand, the reservoir solution, the pH and the temperature. Previously, spatial blocking by the N-terminus was observed in the active site in the crystal structure of the native protein of a thermostable endoglucanase from the thermophilic bacterium Fervidobacterium nodosum Rt17-B1 (FnCel5A). It was speculated that the N-terminal α-helix might form interactions with the substrate-binding residues and it was believed that this spatial block is special to some extent. In order to confirm the effect on cocrystallization, two N-terminally truncated variants of FnCel5A were constructed, purified and cocrystallized at 291 K. A crystal of FnCel5AND_12–343 in complex with cellobiose was obtained using PEG 8000 as a precipitant. A 2.2 Å resolution data set was collected. This crystal form (space group P41212, unit-cell parameters a = b = 47.3, c = 271.4 Å) differed from that of the native protein. One molecule is assumed to be present per asymmetric unit, which gives a Matthews coefficient of 2.05 Å3 Da−1. PMID:22102031
Tornow, J; Polvino-Bodnar, M; Santangelo, G; Cole, C N
1985-01-01
The carboxyl-terminal portion of simian virus 40 large T antigen is essential for productive infection of CV-1 and CV-1p green monkey kidney cells. Mutant dlA2459, lacking 14 base pairs at 0.193 map units, was positive for viral DNA replication, but unable to form plaques in CV-1p cells (J. Tornow and C.N. Cole, J. Virol. 47:487-494, 1983). In this report, the defect of dlA2459 is further defined. Simian virus 40 late mRNAs were transcribed, polyadenylated, spliced, and transported in dlA2459-infected cells, but the level of capsid proteins produced in infected CV-1 green monkey kidney cells was extremely low. dlA2459 large T antigen lacks those residues known to be required for adenovirus helper function, and the block to productive infection by dlA2459 occurs at the same stage of infection as the block to productive adenovirus infection of CV-1 cells. These results suggest that the adenovirus helper function is required for productive infection by simian virus 40. Mutant dlA2459 was able to grow on the Vero and BSC-1 lines of African green monkey kidney cells. Additional mutants affecting the carboxyl-terminal portion of large T were prepared. Mutant inv2408 contains an inversion of the DNA between the BamHI and BclI sites (0.144 to 0.189 map units). This inversion causes transposition of the carboxyl-terminal 26 amino acids of large T antigen and the carboxyl-terminal 18 amino acids of VP1. This mutant was viable, even though the essential information absent from dlA2459 large T antigen has been transferred to the carboxyl terminus of VP1 of inv2408. The VP1 polypeptide carrying this carboxyl-terminal portion of large T could overcome the defect of dlA2459. This indicates that the carboxyl terminus of large T antigen is a separate and separable functional domain. Images PMID:2982029
Zhu, Jun; Koken, Marcel H. M.; Quignon, Frédérique; Chelbi-Alix, Mounira K.; Degos, Laurent; Wang, Zhen Yi; Chen, Zhu; de Thé, Hugues
1997-01-01
Acute promyelocytic leukemia (APL) is associated with the t(15;17) translocation, which generates a PML/RARα fusion protein between PML, a growth suppressor localized on nuclear matrix-associated bodies, and RARα, a nuclear receptor for retinoic acid (RA). PML/RARα was proposed to block myeloid differentiation through inhibition of nuclear receptor response, as does a dominant negative RARα mutant. In addition, in APL cells, PML/RARα displaces PML and other nuclear body (NB) antigens onto nuclear microspeckles, likely resulting in the loss of PML and/or NB functions. RA leads to clinical remissions through induction of terminal differentiation, for which the respective contributions of RARα (or PML/RARα) activation, PML/RARα degradation, and restoration of NB antigens localization are poorly determined. Arsenic trioxide also leads to remissions in APL patients, presumably through induction of apoptosis. We demonstrate that in non-APL cells, arsenic recruits the nucleoplasmic form of several NB antigens onto NB, but induces the degradation of PML only, identifying a powerful tool to approach NB function. In APL cells, arsenic targets PML and PML/RARα onto NB and induces their degradation. Thus, RA and arsenic target RARα and PML, respectively, but both induce the degradation of the PML/RARα fusion protein, which should contribute to their therapeutic effects. The difference in the cellular events triggered by these two agents likely stems from RA-induced transcriptional activation and arsenic effects on NB proteins. PMID:9108090
Giannoni, Patrizia; Medhurst, Andrew D.; Passani, Maria Beatrice; Giovannini, Maria Grazia; Ballini, Chiara; Corte, Laura Della
2010-01-01
After oral administration, the nonimidazole histamine H3 receptor antagonist, 6-[(3-cyclobutyl-2,3,4,5-tetrahydro-1H-3-benzazepin-7-yl)oxy]-N-methyl-3-pyridinecarboxamide hydrochloride (GSK189254), increased histamine release from the tuberomammillary nucleus, where all histaminergic somata are localized, and from where their axons project to the entire brain. To further understand functional histaminergic circuitry in the brain, dual-probe microdialysis was used to pharmacologically block H3 receptors in the tuberomammillary nucleus, and monitor histamine release in projection areas. Perfusion of the tuberomammillary nucleus with GSK189254 increased histamine release from the tuberomammillary nucleus, nucleus basalis magnocellularis, and cortex, but not from the striatum or nucleus accumbens. Cortical acetylcholine (ACh) release was also increased, but striatal dopamine release was not affected. When administered locally, GSK189254 increased histamine release from the nucleus basalis magnocellularis, but not from the striatum. Thus, defined by their sensitivity to GSK189254, histaminergic neurons establish distinct pathways according to their terminal projections, and can differentially modulate neurotransmitter release in a brain region-specific manner. Consistent with its effects on cortical ACh release, systemic administration of GSK189254 antagonized the amnesic effects of scopolamine in the rat object recognition test, a cognition paradigm with important cortical components. PMID:19815811
Development of materials from copolyacrylates via atom transfer radical polymerization
NASA Astrophysics Data System (ADS)
Jones, Melody Mersadez
Homopolymerization of 2-(trimethylsilyl)ethyl acrylate, 3,3-dimethylbutyl acrylate, methyl acrylate, and methyl methacrylate using atom transfer radical polymerization (ATRP) is reported. In addition, polymethyl acrylate and polymethyl methacrylate were used as macroinitiators for diblock copolymerizations (via ATRP) with various monomers to yield pMA-b-TMSEA, pMMA-b-TMSEA, and pMMA-b-GMA copolymers; these results are also reported. Controlled polymerizations were performed using the CuBr/hexamethyltriethylenetetramine catalyst system in combination with methyl bromopropionate as the initiator. The protected acid block copolymers pMA-b-TMSEA and pMMA-b-TMSEA were deprotected to afford acrylic and meth acrylic acid block copolymers pMA-b-AA and pMMA-b-AA. Methylene chloride was used to micellize the amphiphilic copolymers in order to obtain the critical micelle concentration of the polymers (CMCpMA-b-AA = 10 mg/mL, CMCpMMA-b-AA = 0.4 mg/mL). The majority of polymerization were done in bulk; however, since poly(trimethylsilyl)ethyl acrylate displayed polydispersity (Mn = 11459, PDI = 1.437) on the high end of the acceptable range, various solvents were utilized to decrease the polymerization rate and afford low polydispersity materials. This differs from the ATRP of polymethyl acrylate or polymethyl methacrylate using this catalytic system, which do not require the addition of a solvent to obtain well-defined polymers. Also, for this polymerization system three different temperatures (60°C, 90°C, and 120°C) were used, in order to reduce the concentration of radicals and the contribution of termination. The homopolymers and protected acid block copolymers were characterized by gel permeation chromatography to determine the relative molecular weights. Differential scanning calorimetry was used to obtain the glass transition temperature of all polymers. Characterization using NMR (1H and 13C) and FTIR confirmed homopolymerization of 3,3-dimethylbutyl acrylate, 2-(trimethylsilyl)ethyl acrylate and complete cleavage of the (trimethylsilyl)ethyl group from the protected acid copolymers.
Physiological and pharmacologic aspects of peripheral nerve blocks
Vadhanan, Prasanna; Tripaty, Debendra Kumar; Adinarayanan, S.
2015-01-01
A successful peripheral nerve block not only involves a proper technique, but also a thorough knowledge and understanding of the physiology of nerve conduction and pharmacology of local anesthetics (LAs). This article focuses on what happens after the block. Pharmacodynamics of LAs, underlying mechanisms of clinically observable phenomena such as differential blockade, tachyphylaxis, C fiber resistance, tonic and phasic blockade and effect of volume and concentration of LAs. Judicious use of additives along with LAs in peripheral nerve blocks can prolong analgesia. An entirely new group of drugs-neurotoxins has shown potential as local anesthetics. Various methods are available now to prolong the duration of peripheral nerve blocks. PMID:26330722
Jacobsen, Matthew M; Tokareva, Olena S; Ebrahimi, Davoud; Huang, Wenwen; Ling, Shengjie; Dinjaski, Nina; Li, David; Simon, Marc; Staii, Cristian; Buehler, Markus J; Kaplan, David L; Wong, Joyce Y
2017-09-01
Accurate prediction and validation of the assembly of bioinspired peptide sequences into fibers with defined mechanical characteristics would aid significantly in designing and creating materials with desired properties. This process may also be utilized to provide insight into how the molecular architecture of many natural protein fibers is assembled. In this work, computational modeling and experimentation are used in tandem to determine how peptide terminal modification affects a fiber-forming core domain. Modeling shows that increased terminal molecular weight and hydrophilicity improve peptide chain alignment under shearing conditions and promote consolidation of semicrystalline domains. Mechanical analysis shows acute improvements to strength and elasticity, but significantly reduced extensibility and overall toughness. These results highlight an important entropic function that terminal domains of fiber-forming peptides exhibit as chain alignment promoters, which ultimately has notable consequences on the mechanical behavior of the final fiber products. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Traffic sharing algorithms for hybrid mobile networks
NASA Technical Reports Server (NTRS)
Arcand, S.; Murthy, K. M. S.; Hafez, R.
1995-01-01
In a hybrid (terrestrial + satellite) mobile personal communications networks environment, a large size satellite footprint (supercell) overlays on a large number of smaller size, contiguous terrestrial cells. We assume that the users have either a terrestrial only single mode terminal (SMT) or a terrestrial/satellite dual mode terminal (DMT) and the ratio of DMT to the total terminals is defined gamma. It is assumed that the call assignments to and handovers between terrestrial cells and satellite supercells take place in a dynamic fashion when necessary. The objectives of this paper are twofold, (1) to propose and define a class of traffic sharing algorithms to manage terrestrial and satellite network resources efficiently by handling call handovers dynamically, and (2) to analyze and evaluate the algorithms by maximizing the traffic load handling capability (defined in erl/cell) over a wide range of terminal ratios (gamma) given an acceptable range of blocking probabilities. Two of the algorithms (G & S) in the proposed class perform extremely well for a wide range of gamma.
An RNA motif advances transcription by preventing Rho-dependent termination
Sevostyanova, Anastasia; Groisman, Eduardo A.
2015-01-01
The transcription termination factor Rho associates with most nascent bacterial RNAs as they emerge from RNA polymerase. However, pharmacological inhibition of Rho derepresses only a small fraction of these transcripts. What, then, determines the specificity of Rho-dependent transcription termination? We now report the identification of a Rho-antagonizing RNA element (RARE) that hinders Rho-dependent transcription termination. We establish that RARE traps Rho in an inactive complex but does not prevent Rho binding to its recruitment sites. Although translating ribosomes normally block Rho access to an mRNA, inefficient translation of an open reading frame in the leader region of the Salmonella mgtCBR operon actually enables transcription of its associated coding region by favoring an RNA conformation that sequesters RARE. The discovery of an RNA element that inactivates Rho signifies that the specificity of nucleic-acid binding proteins is defined not only by the sequences that recruit these proteins but also by sequences that antagonize their activity. PMID:26630006
Marchetti, Marta; Catrice, Olivier; Batut, Jacques; Masson-Boivin, Catherine
2011-03-01
The beta-rhizobium Cupriavidus taiwanensis forms indeterminate nodules on Mimosa pudica. C. taiwanensis bacteroids resemble free-living bacteria in terms of genomic DNA content, cell size, membrane permeability, and viability, in contrast to bacteroids in indeterminate nodules of the galegoid clade. Bacteroid differentiation is thus unrelated to nodule ontogeny.
Cell lines for the production of monoclonal antibodies to human glycophorin A
Bigbee, William L.; Fong, Stella S. N.; Jensen, Ronald H.; Vanderlaan, Martin; Langlois, Richard G.
1988-01-01
Cloned mouse hybridoma cell lines have been established which continuously produce antibodies that differentiate between the M and N forms of human glycophorin A. These antibodies have potential application as human blood group reagents, as markers for terminally differentiated erythroid cells and as immunofluorescent labels of somatically variant human erythrocytes.
mTORC1 Maintains the Tumorigenicity of SSEA-4+ High-Grade Osteosarcoma
Zhang, Wu; Ding, Meng-Lei; Zhang, Jia-Nian; Qiu, Jian-Ru; Shen, Yu-Hui; Ding, Xiao-Yi; Deng, Lian-Fu; Zhang, Wei-Bin; Zhu, Jiang
2015-01-01
Inactivation of p53 and/or Rb pathways restrains osteoblasts from cell-cycle exit and terminal differentiation, which underpins osteosarcoma formation coupled with dedifferentiation. Recently, the level of p-S6K was shown to independently predict the prognosis for osteosarcomas, while the reason behind this is not understood. Here we show that in certain high-grade osteosarcomas, immature SSEA-4+ tumor cells represent a subset of tumor-initiating cells (TICs) whose pool size is maintained by mTORC1 activity. mTORC1 supports not only SSEA-4+ cell self-renewal through S6K but also the regeneration of SSEA-4+ TICs by SSEA-4− osteosarcoma cell dedifferentiation. Mechanistically, active mTORC1 is required to prevent a likely upregulation of the cell-cycle inhibitor p27 independently of p53 or Rb activation, which otherwise effectively drives the terminal differentiation of SSEA-4− osteosarcoma cells at the expense of dedifferentiation. Thus, mTORC1 is shown to critically regulate the retention of tumorigenicity versus differentiation in discrete differentiation phases in SSEA-4+ TICs and their progeny. PMID:25853231
O'Connor, Brian P.; Gleeson, Michael W.; Noelle, Randolph J.; Erickson, Loren D.
2010-01-01
Summary Long-lived humoral immune responses are a hallmark of thymus-dependent immunity. The cellular basis for enduring antibody-mediated immunity is long-lived memory B cells and plasma cells (PCs). Both of these cell populations acquire longevity as a result of antigen-specific, CD40–dependent, cognate interactions with helper T cells within germinal centers (GCs). At the molecular level, defined functional domains of CD40 control the post-GC fate of B cells. PC precursors that emerge from these GC reactions are highly proliferative and terminally differentiate to end-stage cells within the bone marrow (BM). The striking phenotypic similarities between the PC precursors and the putative malignant cell in multiple myeloma (MM) suggests that MM may result from the transformation of PC precursors. Within the domain of autoimmune disease, recent studies have shown that dysregulated migration of PCs to the BM may impact immune homeostasis and the development of lupus. Understanding the processes of normal PC differentiation will provide strategic insights into identifying therapeutic targets for the treatment of differentiated B-cell disorders. PMID:12846808
Winteringham, Louise Natalie; Kobelke, Simon; Williams, James Howard; Ingley, Evan; Klinken, Svend Peter
2004-06-24
Myeloid leukemia factor 1 (MLF1) is a novel oncoprotein involved in translocations associated with acute myeloid leukemia (AML), especially erythroleukemias. In this study, we demonstrate that ectopic expression of Mlf1 prevented J2E erythroleukemic cells from undergoing biological and morphological maturation in response to erythropoietin (Epo). We show that Mlf1 inhibited Epo-induced cell cycle exit and suppressed a rise in the cell cycle inhibitor p27(Kip1). Unlike differentiating J2E cells, Mlf1-expressing cells did not downregulate Cul1 and Skp2, components of the ubiquitin E3 ligase complex SCF(Skp2) involved in the proteasomal degradation of p27(Kip1). In contrast, Mlf1 did not interfere with increases in p27(Kip1) and terminal differentiation initiated by thyroid hormone withdrawal from erythroid cells, or cytokine-stimulated maturation of myeloid cells. These data demonstrate that Mlf1 interferes with an Epo-responsive pathway involving p27(Kip1) accumulation, which inhibits cell cycle arrest essential for erythroid terminal differentiation.
Efficient Multiplexer FPGA Block Structures Based on G4FETs
NASA Technical Reports Server (NTRS)
Vatan, Farrokh; Fijany, Amir
2009-01-01
Generic structures have been conceived for multiplexer blocks to be implemented in field-programmable gate arrays (FPGAs) based on four-gate field-effect transistors (G(sup 4)FETs). This concept is a contribution to the continuing development of digital logic circuits based on G4FETs and serves as a further demonstration that logic circuits based on G(sup 4)FETs could be more efficient (in the sense that they could contain fewer transistors), relative to functionally equivalent logic circuits based on conventional transistors. Results in this line of development at earlier stages were summarized in two previous NASA Tech Briefs articles: "G(sup 4)FETs as Universal and Programmable Logic Gates" (NPO-41698), Vol. 31, No. 7 (July 2007), page 44, and "Efficient G4FET-Based Logic Circuits" (NPO-44407), Vol. 32, No. 1 ( January 2008), page 38 . As described in the first-mentioned previous article, a G4FET can be made to function as a three-input NOT-majority gate, which has been shown to be a universal and programmable logic gate. The universality and programmability could be exploited to design logic circuits containing fewer components than are required for conventional transistor-based circuits performing the same logic functions. The second-mentioned previous article reported results of a comparative study of NOT-majority-gate (G(sup 4)FET)-based logic-circuit designs and equivalent NOR- and NAND-gate-based designs utilizing conventional transistors. [NOT gates (inverters) were also included, as needed, in both the G(sup 4)FET- and the NOR- and NAND-based designs.] In most of the cases studied, fewer logic gates (and, hence, fewer transistors), were required in the G(sup 4)FET-based designs. There are two popular categories of FPGA block structures or architectures: one based on multiplexers, the other based on lookup tables. In standard multiplexer- based architectures, the basic building block is a tree-like configuration of multiplexers, with possibly a few additional logic gates such as ANDs or ORs. Interconnections are realized by means of programmable switches that may connect the input terminals of a block to output terminals of other blocks, may bridge together some of the inputs, or may connect some of the input terminals to signal sources representing constant logical levels 0 or 1. The left part of the figure depicts a four-to-one G(sup 4)FET-based multiplexer tree; the right part of the figure depicts a functionally equivalent four-to-one multiplexer based on conventional transistors. The G(sup 4)FET version would contains 54 transistors; the conventional version contains 70 transistors.
In vivo architectonic stability of fully de novo designed protein-only nanoparticles.
Céspedes, María Virtudes; Unzueta, Ugutz; Tatkiewicz, Witold; Sánchez-Chardi, Alejandro; Conchillo-Solé, Oscar; Álamo, Patricia; Xu, Zhikun; Casanova, Isolda; Corchero, José Luis; Pesarrodona, Mireia; Cedano, Juan; Daura, Xavier; Ratera, Imma; Veciana, Jaume; Ferrer-Miralles, Neus; Vazquez, Esther; Villaverde, Antonio; Mangues, Ramón
2014-05-27
The fully de novo design of protein building blocks for self-assembling as functional nanoparticles is a challenging task in emerging nanomedicines, which urgently demand novel, versatile, and biologically safe vehicles for imaging, drug delivery, and gene therapy. While the use of viruses and virus-like particles is limited by severe constraints, the generation of protein-only nanocarriers is progressively reachable by the engineering of protein-protein interactions, resulting in self-assembling functional building blocks. In particular, end-terminal cationic peptides drive the organization of structurally diverse protein species as regular nanosized oligomers, offering promise in the rational engineering of protein self-assembling. However, the in vivo stability of these constructs, being a critical issue for their medical applicability, needs to be assessed. We have explored here if the cross-molecular contacts between protein monomers, generated by end-terminal cationic peptides and oligohistidine tags, are stable enough for the resulting nanoparticles to overcome biological barriers in assembled form. The analyses of renal clearance and biodistribution of several tagged modular proteins reveal long-term architectonic stability, allowing systemic circulation and tissue targeting in form of nanoparticulate material. This observation fully supports the value of the engineered of protein building blocks addressed to the biofabrication of smart, robust, and multifunctional nanoparticles with medical applicability that mimic structure and functional capabilities of viral capsids.
Ryden, T A; de Mars, M; Beemon, K
1993-01-01
Several C/EBP binding sites within the Rous sarcoma virus (RSV) long terminal repeat (LTR) and gag enhancers were mutated, and the effect of these mutations on viral gene expression was assessed. Minimal site-specific mutations in each of three adjacent C/EBP binding sites in the LTR reduced steady-state viral RNA levels. Double mutation of the two 5' proximal LTR binding sites resulted in production of 30% of wild-type levels of virus. DNase I footprinting analysis of mutant DNAs indicated that the mutations blocked C/EBP binding at the affected sites. Additional C/EBP binding sites were identified upstream of the 3' LTR and within the 5' end of the LTRs. Point mutations in the RSV gag intragenic enhancer region, which blocked binding of C/EBP at two of three adjacent C/EBP sites, also reduced virus production significantly. Nuclear extracts prepared from both chicken embryo fibroblasts (CEFs) and chicken muscle contained proteins binding to the same RSV DNA sites as did C/EBP, and mutations that prevented C/EBP binding also blocked binding of these chicken proteins. It appears that CEFs and chicken muscle contain distinct proteins binding to these RSV DNA sites; the CEF binding protein was heat stable, as is C/EBP, while the chicken muscle protein was heat sensitive. Images PMID:8386280
Selective effects of an octopus toxin on action potentials
Dulhunty, Angela; Gage, Peter W.
1971-01-01
1. A lethal, water soluble toxin (Maculotoxin, MTX) with a molecular weight less than 540, can be extracted from the salivary glands of an octopus (Hapalochlaena maculosa). 2. MTX blocks action potentials in sartorius muscle fibres of toads without affecting the membrane potential. Delayed rectification is not inhibited by the toxin. 3. At low concentrations (10-6-10-5 g/ml.) MTX blocks action potentials only after a certain number have been elicited. The number of action potentials, which can be defined accurately, depends on the concentration of MTX and the concentration of sodium ions in the extracellular solution. 4. The toxin has no post-synaptic effect at the neuromuscular junction and it is concluded that it blocks neuromuscular transmission by inhibiting action potentials in motor nerve terminals. PMID:4330930
BI-2 destabilizes HIV-1 cores during infection and Prevents Binding of CPSF6 to the HIV-1 Capsid.
Fricke, Thomas; Buffone, Cindy; Opp, Silvana; Valle-Casuso, Jose; Diaz-Griffero, Felipe
2014-12-11
The recently discovered small-molecule BI-2 potently blocks HIV-1 infection. BI-2 binds to the N-terminal domain of HIV-1 capsid. BI-2 utilizes the same capsid pocket used by the small molecule PF74. Although both drugs bind to the same pocket, it has been proposed that BI-2 uses a different mechanism to block HIV-1 infection when compared to PF74. This work demonstrates that BI-2 destabilizes the HIV-1 core during infection, and prevents the binding of the cellular factor CPSF6 to the HIV-1 core. Overall this short-form paper suggests that BI-2 is using a similar mechanism to the one used by PF74 to block HIV-1 infection.
Gaillard, Coline; Tokuyasu, Taku A.; Rosen, Galit; Sotzen, Jason; Vitaliano-Prunier, Adeline; Roy, Ritu; Passegué, Emmanuelle; de Thé, Hugues; Figueroa, Maria E.; Kogan, Scott C.
2015-01-01
Acute promyelocytic leukemia is an aggressive malignancy characterized by the accumulation of promyelocytes in the bone marrow. PML/RARA is the primary abnormality implicated in this pathology, but the mechanisms by which this chimeric fusion protein initiates disease are incompletely understood. Identifying PML/RARA targets in vivo is critical for comprehending the road to pathogenesis. Utilizing a novel sorting strategy, we isolated highly purified promyelocyte populations from normal and young preleukemic animals, carried out microarray and methylation profiling analyses, and compared the results from the two groups of animals. Surprisingly, in the absence of secondary lesions, PML/RARA had an overall limited impact on both the transcriptome and methylome. Of interest, we did identify down-regulation of secondary and tertiary granule genes as the first step engaging the myeloid maturation block. Although initially not sufficient to arrest terminal granulopoiesis in vivo, such alterations set the stage for the later, complete differentiation block seen in leukemia. Further, gene set enrichment analysis revealed that PML/RARA promyelocytes exhibit a subtle increase in expression of cell cycle genes, and we show that this leads to both increased proliferation of these cells and expansion of the promyelocyte compartment. Importantly, this proliferation signature was absent from the poorly leukemogenic p50/RARA fusion model, implying a critical role for PML in the altered cell-cycle kinetics and ability to initiate leukemia. Thus, our findings challenge the predominant model in the field and we propose that PML/RARA initiates leukemia by subtly shifting cell fate decisions within the promyelocyte compartment. PMID:26088929
Differentiation in the angiotensin II receptor 1 blocker class on autonomic function.
Krum, H
2001-09-01
Autonomic function is disordered in cardiovascular disease states such as chronic heart failure (CHF) and hypertension. Interactions between the renin-angiotensin-aldosterone system (RAAS) and the sympathetic nervous system (SNS) may potentially occur at a number of sites. These include central sites (eg, rostral ventrolateral medulla), at the level of baroreflex control, and at the sympathetic prejunctional angiotensin II receptor 1 (AT(1)) receptor, which is facilitatory for norepinephrine release from the sympathetic nerve terminal. Therefore, drugs that block the RAAS may be expected to improve autonomic dysfunction in cardiovascular disease states. In order to test the hypothesis that RAAS inhibition directly reduces SNS activity, a pithed rat model of sympathetic stimulation has been established. In this model, an increase in frequency of stimulation results in a pressor response that is sympathetically mediated and highly reproducible. This pressor response is enhanced in the presence of angiotensin II and is reduced in the presence of nonselective AIIRAs that block both AT(1) and AT(2) receptor subtypes (eg, saralasin). AT(1)-selective antagonists have also been studied in this model, at pharmacologically relevant doses. In one such study, only the AT(1) blocker eprosartan reduced sympathetically stimulated increases in blood pressure, whereas comparable doses of losartan, valsartan, and irbesartan did not. The reason(s) for the differences between eprosartan and other agents of this class on sympathetic modulation are not clear, but may relate to the chemical structure of the drug (a non- biphenyl tetrazole structure that is chemically distinct from the structure of other AIIRAs), receptor binding characteristics (competitive), or unique effects on presynaptic AT(1) receptors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vogel, S.S.
1989-01-01
The author has characterized pertussis toxin-sensitive G proteins in the nervous systems of the gastropod mollusc Aplysia and the cephalopod Loligo using ({sup 32}P)ADP-ribosylation and immunoblotting with G protein specific antisera. As in vertebrates, this class of G protein is associated with membranes and enriched in nervous tissue in Aplysia. Analysis of dissected Aplysia ganglia reveal that it is enriched in neuropil, a region containing most of the central nervous system synapses. Because both Aplysia and Loligo synaptosomes are enriched in pertussis toxin-sensitive G proteins, it is likely that they are found in synaptic terminals. Fractionation of Aplysia synaptosomes intomore » membrane and vesicle fractions reveals that, although the majority of G protein is recovered in the plasma membrane fraction, a small proportion is recovered in the vesicle fraction. He shows that G proteins are on intracellular membranes by ADP-ribosylating extruded axoplasm with pertussis toxin. A plausible explanation for vesicular localization of G protein in axoplasm is that G proteins are transported to terminals on vesicles. He has shown, using ligature experiments with Aplysia connectives and temperature block experiments in the giant axon of Loligo, that G proteins move by anterograde fast axonal transport. Injection of pertussis toxin into the identified Aplysia neuron L10 blocks histamine-induced presynaptic inhibition of transmitter release. This suggests that pertussis toxin sensitive G proteins play a role in modulating transmitter release at synaptic terminals. In the giant synapse of Loligo, he presents preliminary data that demonstrates that the activation of G proteins in the presynaptic terminal results in decreased transmitter release.« less
Hall, E D; Von Voigtlander, P F
1987-11-01
The possible in vivo facilitatory effects of the pyrrolidine acetamide no-otropic agent piracetam on neuromuscular transmission, were studied based upon reports of enhancement of central cholinergic function. Piracetam was shown to antagonize the lethal effects of the neuromuscular blocking agent hemicholinium-3 (HC-3), in female CF-1 mice when administered in a dose of 100 mg/kg (i.p.) simultaneously with HC-3. A 30 mg/kg (i.p.) dose of piracetam was ineffective by itself, although it potentiated the protective effects of choline (25 mg/kg i.p.). The analogs of piracetam, aniracetam, oxiracetam, pramiracetam and dupracetam also significantly antagonized the lethality of HC-3 at doses over a 30-300 mg/kg range. The acute facilitatory properties of piracetam on neuromuscular transmission were examined in more detail in vivo in the soleus nerve muscle preparation of the cat. A 100 mg/kg (i.v.) dose of piracetam, while having no effect on its own, significantly enhanced the ability of a 200 micrograms/kg (i.v.) dose of edrophonium to produce a potentiation of muscle contraction dependent on repetitive discharges in the soleus motor nerve terminals. In preparations in which the motor nerve terminals of the soleus were in a partially degenerated state as a result of section of the motor axons 48 hr earlier, piracetam acted to restore their sensitivity to edrophonium. Furthermore, in both normal and partially degenerated preparations, piracetam significantly decreased the neuromuscular blocking effects of a 150 micrograms/kg (i.v.) dose of d-tubocurarine. The mechanism of the neuromuscular facilitatory effects of piracetam on neuromuscular transmission is discussed in terms of an enhanced excitability of motor nerve terminals together with an action to increase the synthesis and/or release of acetylcholine.
Joshi, Nikhil S.; Cui, Weiguo; Dominguez, Claudia; Chen, Jonathan H.; Hand, Timothy W.; Kaech, Susan M.
2011-01-01
Memory CD8 T cells acquire TEM properties following reinfection, and may reach terminally differentiated, senescent states (“Hayflick limit”) after multiple infections. The signals controlling this process are not well understood, but we found that the degree of 2o effector and memory CD8 T cell differentiation was intimately linked to the amount of T-bet expressed upon reactivation and pre-existing memory CD8 T cell number (i.e., 1o memory CD8 T cell precursor frequency) present during secondary infection. Compared to naïve cells, memory CD8 T cells were predisposed towards terminal effector (TE) cell differentiation because they could immediately respond to IL-12 and induce T-bet, even in the absence of antigen. TE cell formation following 2o or 3o infections was dependent on increased T-bet expression because T-bet+/− cells were resistant to these phenotypic changes. Larger numbers of pre-existing memory CD8 T cells limited the duration of 2o infection and the amount of IL-12 produced, and consequently, this reduced T-bet expression and the proportion of 2o TE CD8 T cells that formed. Together, these data show that, over repeated infections, memory CD8 T cell quality and proliferative fitness is not strictly determined by the number of serial encounters with antigen or cell divisions, but is a function of the CD8 T cell differentiation state, which is genetically controlled in a T-bet-dependent manner. This differentiation state can be modulated by pre-existing memory CD8 T cell number and the intensity of inflammation during reinfection. These results have important implications for vaccinations involving prime-boost strategies. PMID:21930973
Frattini, M G; Lim, H B; Laimins, L A
1996-01-01
Human papillomavirus (HPV) types 16, 18, 31, and 51 are the etiologic agents of many anogenital cancers including those of the cervix. These "high risk" HPVs specifically target genital squamous epithelia, and their lytic life cycle is closely linked to epithelial differentiation. We have developed a genetic assay for HPV functions during pathogenesis using recircularized cloned HPV 31 genomes that were transfected together with a drug resistance marker into monolayer cultures of normal human foreskin keratinocytes, the natural host cell. After drug selection, cell lines were isolated that stably maintained HPV 31 DNA as episomes and underwent terminal differentiation when grown in organotypic raft cultures. In differentiated rafts, the expression of late viral genes, amplification of viral DNA, and production of viral particles were detected in suprabasal cells. This demonstrated the ability to synthesize HPV 31 virions from transfected DNA templates and allowed an examination of HPV functions during the vegetative viral life cycle. We then used this system to investigate whether an episomal genome was required for the induction of late viral gene expression. When an HPV 31 genome (31E1*) containing a missense mutation in the E1 open reading frame was transfected into normal human keratinocytes, the mutant viral sequences were found to integrate into the host cell chromosomal DNA with both early and late regions intact. While high levels of early viral gene transcription were observed, no late gene expression was detected in rafts of cell lines containing the mutant viral genome despite evidence of terminal differentiation. Therefore, the induction of late viral gene expression required that the viral genomes be maintained as extrachromosomal elements, and terminal differentiation alone was not sufficient. These studies provide the basis for a detailed examination of HPV functions during viral pathogenesis. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:8610168
Ohno-Shosaku, T; Maejima, T; Kano, M
2001-03-01
Endogenous cannabinoids are considered to function as diffusible and short-lived modulators that may transmit signals retrogradely from postsynaptic to presynaptic neurons. To evaluate this possibility, we have made a paired whole-cell recording from cultured hippocampal neurons with inhibitory synaptic connections. In about 60% of pairs, a cannabinoid agonist greatly reduced the release of the inhibitory neurotransmitter GABA from presynaptic terminals. In most of such pairs but not in those insensitive to the agonist, depolarization of postsynaptic neurons and the resultant elevation of intracellular Ca2+ concentration caused transient suppression of inhibitory synaptic currents, which is mainly due to reduction of GABA release. This depolarization-induced suppression was completely blocked by selective cannabinoid antagonists. Our results reveal that endogenous cannabinoids mediate retrograde signals from depolarized postsynaptic neurons to presynaptic terminals to cause the reduction of transmitter release.
Over-expression of phage HK022 Nun protein is toxic for Escherichia coli
Uc-Mass, Augusto; Khodursky, Arkady; Brown, Lewis; Gottesman, Max E.
2008-01-01
The Nun protein of coliphage HK022 excludes superinfecting λ phage. Nun recognizes and binds to the N utilization (nut) sites on phage λ nascent RNA and induces transcription termination. Over-expression of Nun from a high-copy plasmid is toxic for E.coli, despite the fact that nut sites are not encoded in the E.coli genome. Cells expressing Nun cannot exit stationary phase. Toxicity is related to transcription termination, since host and nun mutations that block termination also suppress cell killing. Nun inhibits expression of wild-type lacZ, but not lacZ expressed from the Crp/cAMP–independent lacUV5 promoter. Microarray and proteomics analyses show Nun down-regulates crp and tnaA. Crp over-expression and high indole concentrations partially reverse Nun-mediated toxicity and restore lacZ expression. PMID:18571198
Cell cycle, differentiation and tissue-independent expression of ribosomal protein L37.
Su, S; Bird, R C
1995-09-15
A unique human cDNA (hG1.16) that encodes a mRNA of 450 nucleotides was isolated from a subtractive library derived from HeLa cells. The relative expression level of hG1.16 during different cell-cycle phases was determined by Northern-blot analysis of cells synchronized by double-thymidine block and serum deprivation/refeeding. hG1.16 was constitutively expressed during all phases of the cell cycle, including the quiescent phase when even most constitutively expressed genes experience some suppression of expression. The expression level of hG1.16 did not change during terminal differentiation of myoblasts to myotubes, during which cells become permanently post-mitotic. Examination of other tissues revealed that the relative expression level of hG1.16 was constitutive in all embryonic mouse tissues examined, including brain, eye, heart, kidney, liver, lung and skeletal muscle. This was unusual in that expression was not down-modulated during differentiation and did not vary appreciably between tissue types. Analysis by inter-species Northern-blot analysis revealed that hG1.16 was highly conserved among all vertebrates studied (from fish to humans but not in insects). DNA sequence analysis of hG1.16 revealed a high level of similarity to rat ribosomal protein L37, identifying hG1.16 as a new member of this multigene family. The deduced amino acid sequence of hG1.16 was identical to rat ribosomal protein L37 that contained 97 amino acids, many of which are highly positively charged (15 arginine and 14 lysine residues with a predicted M(r) of 11,065). hG1.16 protein has a single C2-C2 zinc-finger-like motif which is also present in rat ribosomal protein L37. Using primers designed from the sequence of hG1.16, unique bovine and rat cDNAs were also isolated by 5'-rapid-amplification of cDNA ends. DNA sequences of bovine and rat G1.16, clones were 92.8% and 92.2% similar to human G1.16 while the deduced amino acid sequences derived from bovine and rat cDNAs each differed by a single amino acid from the sequence of hG1.16 and the published rat L37 sequence. Southern-blot analysis revealed that hG1.16 exists in multiple copies in human, rat and mouse genomes. These G1.16 clones encode unique human, rat and bovine members of the ribosomal protein L37 gene family, which are constitutively expressed even during transitions from quiescence to active cell proliferation or terminal differentiation, in all tissues and all vertebrates investigated.
Zhao, Xiangshan; Malhotra, Gautam K.; Band, Hamid; Band, Vimla
2011-01-01
Introduction: Emerging evidence suggests a direct role of cancer stem cells (CSCs) in the development of breast cancer. In vitro cellular models that recapitulate properties of CSCs are therefore highly desirable. We have previously shown that normal human mammary epithelial cells (hMECs) immortalized with human telomerase reverse transcriptase (hTERT) possess properties of mammary stem / progenitor cells. Materials and Methods: In the present study, we used this cell system to test the idea that other known hMEC-immortalizing oncogenes (RhoA, HPVE6, HPVE7, p53 mutant, and treatment with γ-radiation), share with hTERT, the ability to maintain mammary stem / progenitor cells. Results: The results presented here demonstrate that similar to hMECs immortalized with hTERT, all hMEC cell lines immortalized using various oncogenic strategies express stem / progenitor cell markers. Furthermore, analyses using 2D and 3D culture assays demonstrate that all the immortal cell lines retain their ability to self-renew and to differentiate along the luminal lineage. Remarkably, the stem / progenitor cell lines generated using various oncogenic strategies exhibit a block in differentiation along the myoepithelial lineage, a trait that is retained on hTERT-immortalized stem / progenitors. The inability to differentiate along the myoepithelial lineage could be induced by ectopic mutant p53 expression in hTERT-immortalized hMEC. Conclusions: Our studies demonstrate that stem / progenitor cell characteristics of hMECs are maintained upon immortalization by using various cancer-relevant oncogenic strategies. Oncogene-immortalized hMECs show a block in their ability to differentiate along the myoepithelial lineage. Abrogation of the myoepithelial differentiation potential by a number of distinct oncogenic insults suggests a potential explanation for the predominance of luminal and rarity of myoepithelial breast cancers. PMID:22279424
Zhao, Xiangshan; Malhotra, Gautam K; Band, Hamid; Band, Vimla
2011-01-01
Emerging evidence suggests a direct role of cancer stem cells (CSCs) in the development of breast cancer. In vitro cellular models that recapitulate properties of CSCs are therefore highly desirable. We have previously shown that normal human mammary epithelial cells (hMECs) immortalized with human telomerase reverse transcriptase (hTERT) possess properties of mammary stem / progenitor cells. In the present study, we used this cell system to test the idea that other known hMEC-immortalizing oncogenes (RhoA, HPVE6, HPVE7, p53 mutant, and treatment with γ-radiation), share with hTERT, the ability to maintain mammary stem / progenitor cells. The results presented here demonstrate that similar to hMECs immortalized with hTERT, all hMEC cell lines immortalized using various oncogenic strategies express stem / progenitor cell markers. Furthermore, analyses using 2D and 3D culture assays demonstrate that all the immortal cell lines retain their ability to self-renew and to differentiate along the luminal lineage. Remarkably, the stem / progenitor cell lines generated using various oncogenic strategies exhibit a block in differentiation along the myoepithelial lineage, a trait that is retained on hTERT-immortalized stem / progenitors. The inability to differentiate along the myoepithelial lineage could be induced by ectopic mutant p53 expression in hTERT-immortalized hMEC. Our studies demonstrate that stem / progenitor cell characteristics of hMECs are maintained upon immortalization by using various cancer-relevant oncogenic strategies. Oncogene-immortalized hMECs show a block in their ability to differentiate along the myoepithelial lineage. Abrogation of the myoepithelial differentiation potential by a number of distinct oncogenic insults suggests a potential explanation for the predominance of luminal and rarity of myoepithelial breast cancers.
Perry, John M.; He, Xi C.; Sugimura, Ryohichi; Grindley, Justin C.; Haug, Jeffrey S.; Ding, Sheng; Li, Linheng
2011-01-01
Although self-renewal is the central property of stem cells, the underlying mechanism remains inadequately defined. Using a hematopoietic stem and progenitor cell (HSPC)-specific conditional induction line, we generated a compound genetic model bearing both Pten deletion and β-catenin activation. These double mutant mice exhibit a novel phenotype, including expansion of phenotypic long-term hematopoietic stem cells (LT-HSCs) without extensive differentiation. Unexpectedly, constitutive activation of β-catenin alone results in apoptosis of HSCs. However, together, the Wnt/β-catenin and PTEN/PI3k/Akt pathways interact to drive phenotypic LT-HSC expansion by inducing proliferation while simultaneously inhibiting apoptosis and blocking differentiation, demonstrating the necessity of complementary cooperation between the two pathways in promoting self-renewal. Mechanistically, β-catenin activation reduces multiple differentiation-inducing transcription factors, blocking differentiation partially through up-regulation of Inhibitor of differentiation 2 (Id2). In double mutants, loss of Pten enhances the HSC anti-apoptotic factor Mcl-1. All of these contribute in a complementary way to HSC self-renewal and expansion. While permanent, genetic alteration of both pathways in double mutant mice leads to expansion of phenotypic HSCs, these HSCs cannot function due to blocked differentiation. We developed a pharmacological approach to expand normal, functional HSCs in culture using factors that reversibly activate both Wnt/β-catenin and PI3K/Akt signaling simultaneously. We show for the first time that activation of either single pathway is insufficient to expand primitive HSCs, but in combination, both pathways drive self-renewal and expansion of HSCs with long-term functional capacity. PMID:21890648
Kuo, Rei-Lin; Zhao, Chen; Malur, Meghana; Krug, Robert M
2010-12-20
We demonstrate that influenza A virus strains that circulate in humans differ markedly in the ability of their NS1 proteins to block the activation of IRF3 and interferon-β transcription. Strong activation occurs in cells infected with viruses expressing NS1 proteins of seasonal H3N2 and H2N2 viruses, whereas activation is blocked in cells infected with viruses expressing NS1 proteins of some, but not all seasonal H1N1 viruses. The NS1 proteins of the 2009 H1N1 and H5N1 viruses also block these activations. The difference in this NS1 function is mediated largely by the C-terminal region of the effector domain, which contains the only amino acid (K or E at position 196) that covaries with the functional difference. Further, we show that TRIM25 binds the NS1 protein whether or not IRF3 activation is blocked, demonstrating that binding of TRIM25 by the NS1 protein does not necessarily lead to the blocking of IRF3 activation. Copyright © 2010 Elsevier Inc. All rights reserved.
Ghiazza, Clément; Tlili, Anis; Billard, Thierry
2017-01-01
Herein the nucleophilic addition of Se -(trifluoromethyl) 4-methylbenzenesulfonoselenoate, a stable and easy-to-handle reagent, to alkynes is described. This reaction provides trifluoromethylselenylated vinyl sulfones with good results and the method was extended also to higher fluorinated homologs. The obtained compounds are valuable building blocks for further syntheses of fluoroalkylselenolated molecules.
31 CFR 560.422 - Termination and acquisition of an interest in blocked property.
Code of Federal Regulations, 2013 CFR
2013-07-01
... the transfer of property (including any property interest) away from the Government of Iran, an... property interest) is transferred or attempted to be transferred to the Government of Iran, an Iranian... § 560.211, such property shall be deemed to be property in which the Government of Iran, an Iranian...
31 CFR 560.422 - Termination and acquisition of an interest in blocked property.
Code of Federal Regulations, 2014 CFR
2014-07-01
... the transfer of property (including any property interest) away from the Government of Iran, an... property interest) is transferred or attempted to be transferred to the Government of Iran, an Iranian... § 560.211, such property shall be deemed to be property in which the Government of Iran, an Iranian...
2012-03-01
advanced antenna systems AMC adaptive modulation and coding AWGN additive white Gaussian noise BPSK binary phase shift keying BS base station BTC ...QAM-16, and QAM-64, and coding types include convolutional coding (CC), convolutional turbo coding (CTC), block turbo coding ( BTC ), zero-terminating
AGOR 28: SIO Shipyard Representative Bi-Weekly Progress Report
2016-06-18
failed due to shorted temperature sensor at the Tunnel Thruster motor. A small rectifier was found to have failed in the terminal block found in the...Active Front End (AFE). The 1n4007 Rectifier is readily available for 16-cents. Will order additional diodes for spares. Siemens to make repairs
Effect of coumarins on HL-60 cell differentiation.
Kawaii, S; Tomono, Y; Katase, E; Ogawa, K; Yano, M
2000-01-01
Twenty-eight coumarins, including 7 furocoumarins, were examined for their activity of induction of terminal differentiation of human promyelocytic leukemia cells (HL-60) by nitro blue tetrazolium (NBT) reducing, nonspecific esterase, specific esterase and phagocytic activities. Esculetin, nordalbergin, 6,7-dihydroxy-4-methylcoumarin and imperatorin had strong activity among the coumarins examined. HL-60 cells treated with these coumarins differentiated into mature monocyte/macrophage. The structure-activity relationship established from the results revealed that 6,7-dihydroxy moiety had an important role in the induction of differentiation of HL-60.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raychaudhury, S.; Farelli, J; Montminy, T
2009-01-01
During infection, Legionella pneumophila creates a replication vacuole within eukaryotic cells and this requires a Type IVb secretion system (T4bSS). IcmQ plays a critical role in the translocase and associates with IcmR. In this paper, we show that the N-terminal domain of IcmQ (Qn) mediates self-dimerization, whereas the C-terminal domain with a basic linker promotes membrane association. In addition, the binding of IcmR to IcmQ prevents self-dimerization and also blocks membrane permeabilization. However, IcmR does not completely block membrane binding by IcmQ. We then determined crystal structures of Qn with the interacting region of IcmR. In this complex, each proteinmore » forms an ?-helical hairpin within a parallel four-helix bundle. The amphipathic nature of helices in Qn suggests two possible models for membrane permeabilization by IcmQ. The Rm-Qn structure also suggests how IcmR-like proteins in other L. pneumophila species may interact with their IcmQ partners.« less
Singh, Susheel K; Roeffen, Will; Andersen, Gorm; Bousema, Teun; Christiansen, Michael; Sauerwein, Robert; Theisen, Michael
2015-04-15
The sexual stage Pfs48/45 antigen is a well-established lead candidate for a transmission blocking (TB) vaccine because of its critical role in parasite fertilization. We have recently produced the carboxy-terminal 10C-fragment of Pfs48/45 containing three known epitopes for TB antibodies as a chimera with the N-terminal region of GLURP (R0). The resulting fusion protein elicited high titer TB antibodies in rodents. To increase the relatively low yield of correctly folded Pfs48/45 we have generated a series of novel chimera truncating the 10C-fragments to 6 cysteine residues containing sub-units (6C). All constructs harbor the major epitope I for TB antibodies. One of these sub-units (R0.6Cc), produced high yields of correctly folded conformers, which could be purified by a simple 2-step procedure. Purified R0.6Cc was stable and elicits high titer TB antibodies in rats. The yield, purity and stability of R0.6Cc allows for further clinical development. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Taft, William C.; Delorenzo, Robert J.
1984-05-01
Benzodiazepines in micromolar concentrations significantly inhibit depolarization-sensitive Ca2+ uptake in intact nerve-terminal preparations. Benzodiazepine inhibition of Ca2+ uptake is concentration dependent and stereospecific. Micromolar-affinity benzodiazepine receptors have been identified and characterized in brain membrane and shown to be distinct from nanomolar-affinity benzodiazepine receptors. Evidence is presented that micromolar, and not nanomolar, benzodiazepine binding sites mediate benzodiazepine inhibition of Ca2+ uptake. Irreversible binding to micromolar benzodiazepine binding sites also irreversibly blocked depolarization-dependent Ca2+ uptake in synaptosomes, indicating that these compounds may represent a useful marker for identifying the molecular components of Ca2+ channels in brain. Characterization of benzodiazepine inhibition of Ca2+ uptake demonstrates that these drugs function as Ca2+ channel antagonists, because benzodiazepines effectively blocked voltage-sensitive Ca2+ uptake inhibited by Mn2+, Co2+, verapamil, nitrendipine, and nimodipine. These results indicate that micromolar benzodiazepine binding sites regulate voltage-sensitive Ca2+ channels in brain membrane and suggest that some of the neuronal stabilizing effects of micromolar benzodiazepine receptors may be mediated by the regulation of Ca2+ conductance.
Lin, Tzu Yu; Lu, Cheng Wei; Huang, Shu-Kuei
2013-01-01
Abstract This study investigated the effects and possible mechanism of ferulic acid, a naturally occurring phenolic compound, on endogenous glutamate release in the nerve terminals of the cerebral cortex in rats. Results show that ferulic acid inhibited the release of glutamate evoked by the K+ channel blocker 4-aminopyridine (4-AP). The effect of ferulic acid on the evoked glutamate release was prevented by chelating the extracellular Ca2+ ions, but was insensitive to the glutamate transporter inhibitor DL-threo-beta-benzyl-oxyaspartate. Ferulic acid suppressed the depolarization-induced increase in a cytosolic-free Ca2+ concentration, but did not alter 4-AP–mediated depolarization. Furthermore, the effect of ferulic acid on evoked glutamate release was abolished by blocking the Cav2.2 (N-type) and Cav2.1 (P/Q-type) channels, but not by blocking ryanodine receptors or mitochondrial Na+/Ca2+ exchange. These results show that ferulic acid inhibits glutamate release from cortical synaptosomes in rats through the suppression of presynaptic voltage-dependent Ca2+ entry. PMID:23342970
Schwartz, M; Waltenbaugh, C; Dorf, M; Cesla, R; Sela, M; Benacerraf, B
1976-01-01
The ability of mice bearing the H-2S haplotype to develop helper responses to the random copolymer of Glu,Ala while they developed suppressor responses to the terpolymer of Glu,Ala,Tyr suggested the crucial role of tyrosine in these peptides. On the basis of various considerations, it was postulated that many of the tyrosine residues in Glu,Ala,Tyr would be localized at the NH2-terminal end of the molecule. To verify this hypothesis, a block terpolymer composed of a short sequence of homopolymer tyrosine covalently bound to the random copolymer of Glu,Ala was synthesized. The present studies, using this block terpolymer, demonstrated that the chemical determinants stimulating helper and suppressor responses are distinct and can be present simultaneously in the same molecule. Thus, addition of COOH-terminal tyrosine residues to the Glu,Ala polypeptide converted this immunogenic molecule to an immunosuppressive molecule in mice bearing the H-2S haplotype. The mechanism by which these short sequences of tyrosine influence H-2-linked immune responses remains to be determined. PMID:60762
Taft, W C; DeLorenzo, R J
1984-01-01
Benzodiazepines in micromolar concentrations significantly inhibit depolarization-sensitive Ca2+ uptake in intact nerve-terminal preparations. Benzodiazepine inhibition of Ca2+ uptake is concentration dependent and stereospecific. Micromolar-affinity benzodiazepine receptors have been identified and characterized in brain membrane and shown to be distinct from nanomolar-affinity benzodiazepine receptors. Evidence is presented that micromolar, and not nanomolar, benzodiazepine binding sites mediate benzodiazepine inhibition of Ca2+ uptake. Irreversible binding to micromolar benzodiazepine binding sites also irreversibly blocked depolarization-dependent Ca2+ uptake in synaptosomes, indicating that these compounds may represent a useful marker for identifying the molecular components of Ca2+ channels in brain. Characterization of benzodiazepine inhibition of Ca2+ uptake demonstrates that these drugs function as Ca2+ channel antagonists, because benzodiazepines effectively blocked voltage-sensitive Ca2+ uptake inhibited by Mn2+, Co2+, verapamil, nitrendipine, and nimodipine. These results indicate that micromolar benzodiazepine binding sites regulate voltage-sensitive Ca2+ channels in brain membrane and suggest that some of the neuronal stabilizing effects of micromolar benzodiazepine receptors may be mediated by the regulation of Ca2+ conductance. PMID:6328498
Nguyen, Huy Bang; Sui, Yang; Thai, Truc Quynh; Ikenaka, Kazuhiro; Oda, Toshiyuki; Ohno, Nobuhiko
2018-05-23
Impaired nerve conduction, axonal degeneration, and synaptic alterations contribute to neurological disabilities in inflammatory demyelinating diseases. Cerebellar dysfunction is associated with demyelinating disorders, but the alterations of axon terminals in cerebellar gray matter during chronic demyelination are still unclear. We analyzed the morphological and ultrastructural changes of climbing fiber terminals in a mouse model of hereditary chronic demyelination. Three-dimensional ultrastructural analyses using serial block-face scanning electron microscopy and immunostaining for synaptic markers were performed in a demyelination mouse model caused by extra copies of myelin gene (PLP4e). At 1 month old, many myelinated axons were observed in PLP4e and wild-type mice, but demyelinated axons and axons with abnormally thin myelin were prominent in PLP4e mice at 5 months old. The density of climbing fiber terminals was significantly reduced in PLP4e mice at 5 months old. Reconstruction of climbing fiber terminals revealed that PLP4e climbing fibers had increased varicosity volume and enlarged mitochondria in the varicosities at 5-month-old mice. These results suggest that chronic demyelination is associated with alterations and loss of climbing fiber terminals in the cerebellar cortex, and that synaptic changes may contribute to cerebellar phenotypes observed in hereditary demyelinating disorders.
Flight-test evaluation of civil helicopter terminal approach operations using differential GPS
NASA Technical Reports Server (NTRS)
Edwards, F. G.; Hegarty, D. M.
1989-01-01
A civil code differential Global Positioning System (DGPS) has been developed and flight-tested by the NASA Ames Research Center. The system was used to evaluate the performance of the DGPS for support of helicopter terminal approach operations. The airborne component of the DGPS was installed in a NASA helicopter. The ground-reference component was installed in a mobile van and equipped with a real-time VHF telemetry data link to transmit correction information to the aircraft system. An extensive series of tests was conducted to evaluate the performance of the system for several different configurations of the airborne navigation filter. This paper will describe the systems, the results of the flight tests, and the results of the posttest analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caignard, Gregory; Guerbois, Mathilde; Labernardiere, Jean-Louis
2007-11-25
Viruses have evolved various strategies to escape the antiviral activity of type I interferons (IFN-{alpha}/{beta}). For measles virus, this function is carried by the polycistronic gene P that encodes, by an unusual editing strategy, for the phosphoprotein P and the virulence factor V (MV-V). MV-V prevents STAT1 nuclear translocation by either sequestration or phosphorylation inhibition, thereby blocking IFN-{alpha}/{beta} pathway. We show that both the N- and C-terminal domains of MV-V (PNT and VCT) contribute to the inhibition of IFN-{alpha}/{beta} signaling. Using the two-hybrid system and co-affinity purification experiments, we identified STAT1 and Jak1 as interactors of MV-V and demonstrate thatmore » MV-V can block the direct phosphorylation of STAT1 by Jak1. A deleterious mutation within the PNT domain of MV-V (Y110H) impaired its ability to interact and block STAT1 phosphorylation. Thus, MV-V interacts with at least two components of IFN-{alpha}/{beta} receptor complex to block downstream signaling.« less
Alpha1-adrenergic blockers: current usage considerations.
Sica, Domenic A
2005-12-01
Alpha1-adrenergic-blocking drugs are effective in reducing blood pressure and do so in a fashion comparable to most other antihypertensive drug classes. These compounds are most effective in patients in the upright position, reducing systolic and diastolic pressures by 8%-10%. Alpha1-adrenergic-blocking drugs incrementally reduce blood pressure when combined with most drug classes and are the only antihypertensive drug class to improve plasma lipid profiles. Alpha1-adrenergic-blocking drugs are also accepted as important elements of the treatment plan for symptomatic benign prostatic hypertrophy. Dose escalation of an alpha1-adrenergic-blocking drug can trigger renal Na+ retention, and the ensuing volume expansion can attenuate its blood pressure-lowering effect. Orthostatic hypotension can occur with these compounds, particularly when a patient is volume-contracted. Dizziness, headache, and drowsiness are common side effects with alpha1-adrenergic blockers. A modest decline in the use of doxazosin and other alpha1-adrenergic-blocking drugs has occurred coincident to the early termination of the doxazosin treatment arm in the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial.
Sullivan, Daniel J; Zeff, Patricia; Zweig, Richard A
2018-02-06
The aims of this study were to survey clinicians' opinions regarding psychotherapy practices in mutual termination with a specified population (depressed older adult outpatients) and to examine the patient and therapist characteristics that may influence such practices. We surveyed psychologists' (N = 96) psychotherapy termination practices, using a hypothetical depressed older adult as a referent, to assess consensus on the appropriateness of various guidelines to termination and to examine whether these differ as a function of patient and therapist characteristics. Several practices were generally agreed to be "extremely appropriate" when terminating psychotherapy with older adults, including collaborating to determine the end date of treatment and discussing patient growth. Data also indicate that patient factors, such as personality pathology, and therapist factors, such as having an Integrative theoretical orientation were associated with differential endorsement of termination practices. Identification as a geropsychologist or working regularly with older adults were associated with a more cautious approach to termination. There is substantial consensus regarding many approaches to termination, but modifications might be appropriate depending on patient characteristics. Clinicians agree on a set of fundamental termination practices when working with older adults, but modify these based on orientation and diagnosis.
Right bundle branch block pattern during right ventricular permanent pacing: Is it safe or not?
Erdogan, Okan; Aksu, Feyza
2007-01-01
The present case report describes a patient with dual chamber pacemaker whose surface ECG demonstrated paced right bundle branch block pattern suggesting a malpositioned ventricular lead in the left ventricle. However, diagnostic work-up revealed that the lead was appropriately located in the right ventricular apex. Diagnostic maneuvers and clues for differentiating safe right bundle branch block pattern during permanent pacing are thoroughly revisited and discussed within the article. PMID:17684578
Molecular Regulation of DNA Damage-Induced Apoptosis in Neurons of Cerebral Cortex
Liu, Zhiping; Pipino, Jacqueline; Chestnut, Barry; Landek, Melissa A.
2009-01-01
Cerebral cortical neuron degeneration occurs in brain disorders manifesting throughout life, but the mechanisms are understood poorly. We used cultured embryonic mouse cortical neurons and an in vivo mouse model to study mechanisms of DNA damaged-induced apoptosis in immature and differentiated neurons. p53 drives apoptosis of immature and differentiated cortical neurons through its rapid and prominent activation stimulated by DNA strand breaks induced by topoisomerase-I and -II inhibition. Blocking p53-DNA transactivation with α-pifithrin protects immature neurons; blocking p53-mitochondrial functions with μ-pifithrin protects differentiated neurons. Mitochondrial death proteins are upregulated in apoptotic immature and differentiated neurons and have nonredundant proapoptotic functions; Bak is more dominant than Bax in differentiated neurons. p53 phosphorylation is mediated by ataxia telangiectasia mutated (ATM) kinase. ATM inactivation is antiapoptotic, particularly in differentiated neurons, whereas inhibition of c-Abl protects immature neurons but not differentiated neurons. Cell death protein expression patterns in mouse forebrain are mostly similar to cultured neurons. DNA damage induces prominent p53 activation and apoptosis in cerebral cortex in vivo. Thus, DNA strand breaks in cortical neurons induce rapid p53-mediated apoptosis through actions of upstream ATM and c-Abl kinases and downstream mitochondrial death proteins. This molecular network operates through variations depending on neuron maturity. PMID:18820287
A new dry hypothesis for the formation of Martian linear gullies
Diniega, Serina; Hansen, Candice J.; McElwaine, Jim N.; Hugenholtz, C.H.; Dundas, Colin M.; McEwen, Alfred S.; Bourke, Mary C.
2013-01-01
Long, narrow grooves found on the slopes of martian sand dunes have been cited as evidence of liquid water via the hypothesis that melt-water initiated debris flows eroded channels and deposited lateral levées. However, this theory has several short-comings for explaining the observed morphology and activity of these linear gullies. We present an alternative hypothesis that is consistent with the observed morphology, location, and current activity: that blocks of CO2 ice break from over-steepened cornices as sublimation processes destabilize the surface in the spring, and these blocks move downslope, carving out levéed grooves of relatively uniform width and forming terminal pits. To test this hypothesis, we describe experiments involving water and CO2 blocks on terrestrial dunes and then compare results with the martian features. Furthermore, we present a theoretical model of the initiation of block motion due to sublimation and use this to quantitatively compare the expected behavior of blocks on the Earth and Mars. The model demonstrates that CO2 blocks can be expected to move via our proposed mechanism on the Earth and Mars, and the experiments show that the motion of these blocks will naturally create the main morphological features of linear gullies seen on Mars.
Minamoto, Takehiro; Osaka, Mariko; Yaoi, Ken; Osaka, Naoyuki
2014-01-01
Different people make different responses when they face a frustrating situation: some punish others (extrapunitive), while others punish themselves (intropunitive). Few studies have investigated the neural structures that differentiate extrapunitive and intropunitive individuals. The present fMRI study explored these neural structures using two different frustrating situations: an ego-blocking situation which blocks a desire or goal, and a superego-blocking situation which blocks self-esteem. In the ego-blocking condition, the extrapunitive group (n = 9) showed greater activation in the bilateral ventrolateral prefrontal cortex, indicating that these individuals prefer emotional processing. On the other hand, the intropunitive group (n = 9) showed greater activation in the left dorsolateral prefrontal cortex, possibly reflecting an effortful control for anger reduction. Such patterns were not observed in the superego-blocking condition. These results indicate that the prefrontal cortex is the source of individual differences in aggression direction in the ego-blocking situation.
Marchetti, Marta; Catrice, Olivier; Batut, Jacques; Masson-Boivin, Catherine
2011-01-01
The beta-rhizobium Cupriavidus taiwanensis forms indeterminate nodules on Mimosa pudica. C. taiwanensis bacteroids resemble free-living bacteria in terms of genomic DNA content, cell size, membrane permeability, and viability, in contrast to bacteroids in indeterminate nodules of the galegoid clade. Bacteroid differentiation is thus unrelated to nodule ontogeny. PMID:21257807
ERIC Educational Resources Information Center
Landry, Evelyn; And Others
1986-01-01
Three groups of teenagers (child bearers, terminators, and contraceptors) were interviewed to identify factors that may best differentiate the groups. The findings suggest that, among the teens who became pregnant, motivation to use contraceptives may be the key factor. Education about the availability and mode of contraceptive use is essential.…
Variable Swing Optimal Parallel Links - Minimal Power, Maximal Density for Parallel Links
2009-01-01
implemented; it allows controlling the transmitter current by a simple design of a differential pair with a 100 ohms termination resistor. Figure 3.4...optimization. Zuber, P., et al. 2005. 0-7695-2288-2. 21. A 36Gb/s ACCI Multi-Channel Bus using a Fully Differential Pulse Receiver. Wilson, Lei Luo
Method and cell lines for the production of monoclonal antibodies to human glycophorin A
Bigbee, W.L.; Fong, S.S.N.; Jensen, R.H.; Vanderlaan, M.
Cloned mouse hybridoma cell lines have been established which continuously produce antibodies that differentiate between the M and N forms of human glycophorin A. These antibodies have potential application as human blood group reagents, as markers for terminally differentiated erythroid cells and as immunofluorescent labels of somatically variant human erythrocytes.
Control of functional differential equations to target sets in function space
NASA Technical Reports Server (NTRS)
Banks, H. T.; Kent, G. A.
1971-01-01
Optimal control of systems governed by functional differential equations of retarded and neutral type is considered. Problems with function space initial and terminal manifolds are investigated. Existence of optimal controls, regularity, and bang-bang properties are discussed. Necessary and sufficient conditions are derived, and several solved examples which illustrate the theory are presented.
Differential programming of p53-deficient embryonic cells during rotenone block
Mitochondrial dysfunction has been implicated in chemical toxicities. The present study used an in vitro model to investigate the differential expression of metabolic pathways during cellular stress in p53- efficient embryonic fibroblasts compared to p53-deficient cells. These c...
NASA Technical Reports Server (NTRS)
Drake, M. D.; Klingler, D. E.
1973-01-01
The use of PLZT ceramics with the 7/65/35 composition in block data composer (BDC) input devices for holographic memory systems has previously been described for operation in the strain biased, scattering, and edge effect modes. A new and promising mode of BDC operation is the differential phase mode in which each element of a matrix array BDC acts as a phase modulator. The phase modulation results from a phase difference in the optical path length between the electrically poled and depoled states of the PLZT. It is shown that a PLZT BDC can be used as a matrix-type phase modulator to record and process digital data by the differential phase mode in a holographic recording/processing system with readout contrast ratios of between 10:1 and 15:1. The differential phase mode has the advantages that strain bias is not required and that the thickness and strain variations in the PLZT are cancelled out.
Hasiów-Jaroszewska, Beata; Komorowska, Beata
2013-10-01
Diagnostic methods distinguished different Pepino mosaic virus (PepMV) genotypes but the methods do not detect sequence variation in particular gene segments. The necrotic and non-necrotic isolates (pathotypes) of PepMV share a 99% sequence similarity. These isolates differ from each other at one nucleotide site in the triple gene block 3. In this study, a combination of real-time reverse transcription polymerase chain reaction and high resolution melting curve analysis of triple gene block 3 was developed for simultaneous detection and differentiation of PepMV pathotypes. The triple gene block 3 region carrying a transition A → G was amplified using two primer pairs from twelve virus isolates, and was subjected to high resolution melting curve analysis. The results showed two distinct melting curve profiles related to each pathotype. The results also indicated that the high resolution melting method could readily differentiate between necrotic and non-necrotic PepMV pathotypes. Copyright © 2013 Elsevier B.V. All rights reserved.
Selective Oxidative Esterification from Two Different Alcohols via Photoredox Catalysis.
Yi, Hong; Hu, Xia; Bian, Changliang; Lei, Aiwen
2017-01-10
Esters functionalities are important building blocks that are extensively used in the chemical industry and academic laboratories. Direct oxidative esterification from easy-available alcohols to esters would be a much more appealing approach, especially using O 2 as terminal oxidant. Inputting external energy by photocatalysis for dioxygen activation, a mild and simple method for ester synthesis from two different alcohols has been achieved in this work. This reaction is performed under neutral conditions using O 2 as the terminal oxidant. A variety of primary alcohols, especially long chain alcohols and secondary alcohols are tolerated in this system. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Wu, H.; Chen, X. W.; Fang, Q.; Kong, X. Z.; He, L. L.
2015-08-01
During the high-speed penetration of projectiles into concrete targets (the impact velocity ranges from 1.0 to 1.5 km/s), important factors such as the incident oblique and attacking angles, as well as the asymmetric abrasions of the projectile nose induced by the target-projectile interactions, may lead to obvious deviation of the terminal ballistic trajectory and reduction of the penetration efficiency. Based on the engineering model for the mass loss and nose-blunting of ogive-nosed projectiles established, by using the Differential Area Force Law (DAFL) method and semi-empirical resistance function, a finite differential approach was programmed (PENTRA2D) for predicting the terminal ballistic trajectory of mass abrasive high-speed projectiles penetrating into concrete targets. It accounts for the free-surface effects on the drag force acting on the projectile, which are attributed to the oblique and attacking angles, as well as the asymmetric nose abrasion of the projectile. Its validation on the prediction of curvilinear trajectories of non-normal high-speed penetrators into concrete targets is verified by comparison with available test data. Relevant parametric influential analyses show that the most influential factor for the stability of terminal ballistic trajectories is the attacking angle, followed by the oblique angle, the discrepancy of asymmetric nose abrasion, and the location of mass center of projectile. The terminal ballistic trajectory deviations are aggravated as the above four parameters increase.
Ozer, Alkan; Yuan, Guohua; Yang, Guobin; Wang, Feng; Li, Wentong; Yang, Yuan; Guo, Feng; Gao, Qingping; Shoff, Lisa; Chen, Zhi; Gay, Isabel C; Donly, Kevin J; MacDougall, Mary; Chen, Shuo
2013-01-01
Classic embryological studies have documented the inductive role of root dentin on adjacent periodontal ligament differentiation. The biochemical composition of root dentin includes collagens and cleavage products of dentin sialophosphoprotein (DSPP), such as dentin sialoprotein (DSP). The high abundance of DSP in root dentin prompted us to ask the question whether DSP or peptides derived thereof would serve as potent biological matrix components to induce periodontal progenitors to further differentiate into periodontal ligament cells. Here, we test the hypothesis that domain of DSP influences cell fate. In situ hybridization and immunohistochemical analyses showed that the COOH-terminal DSP domain is expressed in mouse periodontium at various stages of root development. The recombinant COOH-terminal DSP fragment (rC-DSP) enhanced attachment and migration of human periodontal ligament stem cells (PDLSC), human primary PDL cells without cell toxicity. rC-DSP induced PDLSC cell proliferation as well as differentiation and mineralization of PDLSC and PDL cells by formation of mineralized tissue and ALPase activity. Effect of rC-DSP on cell proliferation and differentiation was to promote gene expression of tooth/bone-relate markers, transcription factors and growth factors. The results for the first time showed that rC-DSP may be one of the components of cell niche for stimulating stem/progenitor cell proliferation and differentiation and a natural scaffold for periodontal regeneration application.
Yang, Guobin; Wang, Feng; Li, Wentong; Yang, Yuan; Guo, Feng; Gao, Qingping; Shoff, Lisa; Chen, Zhi; Gay, Isabel C.; Donly, Kevin J.; MacDougall, Mary; Chen, Shuo
2013-01-01
Classic embryological studies have documented the inductive role of root dentin on adjacent periodontal ligament differentiation. The biochemical composition of root dentin includes collagens and cleavage products of dentin sialophosphoprotein (DSPP), such as dentin sialoprotein (DSP). The high abundance of DSP in root dentin prompted us to ask the question whether DSP or peptides derived thereof would serve as potent biological matrix components to induce periodontal progenitors to further differentiate into periodontal ligament cells. Here, we test the hypothesis that domain of DSP influences cell fate. In situ hybridization and immunohistochemical analyses showed that the COOH-terminal DSP domain is expressed in mouse periodontium at various stages of root development. The recombinant COOH-terminal DSP fragment (rC-DSP) enhanced attachment and migration of human periodontal ligament stem cells (PDLSC), human primary PDL cells without cell toxicity. rC-DSP induced PDLSC cell proliferation as well as differentiation and mineralization of PDLSC and PDL cells by formation of mineralized tissue and ALPase activity. Effect of rC-DSP on cell proliferation and differentiation was to promote gene expression of tooth/bone-relate markers, transcription factors and growth factors. The results for the first time showed that rC-DSP may be one of the components of cell niche for stimulating stem/progenitor cell proliferation and differentiation and a natural scaffold for periodontal regeneration application. PMID:24400037
Tokumoto, Yasuhito; Ogawa, Shinichiro; Nagamune, Teruyuki; Miyake, Jun
2010-06-01
Oligodendrocytes are the myelinating cells of the central nervous system (CNS), and defects in these cells can result in the loss of CNS functions. Although oligodendrocyte progenitor cells transplantation therapy is an effective cure for such symptoms, there is no readily available source of these cells. Recent studies have described the generation of induced pluripotent stem cells (iPS cells) from somatic cells, leading to anticipation of this technique as a novel therapeutic tool in regenerative medicine. In this study, we evaluated the ability of iPS cells derived from mouse embryonic fibroblasts to differentiate into oligodendrocytes and compared this with the differential ability of mouse embryonic stem cells (ES cells). Experiments using an in vitro oligodendrocyte differentiation protocol that was optimized to ES cells demonstrated that 2.3% of iPS cells differentiated into O4(+) oligodendrocytes compared with 24.0% of ES cells. However, the rate of induction of A2B5(+) oligodendrocyte precursor cell (OPC) was similar for both iPS-derived cells and ES-derived cells (14.1% and 12.6%, respectively). These findings suggest that some intracellular factors in iPS cells inhibit the terminal differentiation of oligodendrocytes from the OPC stage. (c) 2009 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Precision absolute-value amplifier for a precision voltmeter
Hearn, W.E.; Rondeau, D.J.
1982-10-19
Bipolar inputs are afforded by the plus inputs of first and second differential input amplifiers. A first gain determining resistor is connected between the minus inputs of the differential amplifiers. First and second diodes are connected between the respective minus inputs and the respective outputs of the differential amplifiers. First and second FETs have their gates connected to the outputs of the amplifiers, while their respective source and drain circuits are connected between the respective minus inputs and an output lead extending to a load resistor. The output current through the load resistor is proportional to the absolute value of the input voltage difference between the bipolar input terminals. A third differential amplifier has its plus input terminal connected to the load resistor. A second gain determining resistor is connected between the minus input of the third differential amplifier and a voltage source. A third FET has its gate connected to the output of the third amplifier. The source and drain circuit of the third transistor is connected between the minus input of the third amplifier and a voltage-frequency converter, constituting an output device. A polarity detector is also provided, comprising a pair of transistors having their inputs connected to the outputs of the first and second differential amplifiers. The outputs of the polarity detector are connected to gates which switch the output of the voltage-frequency converter between up and down counting outputs.
Precision absolute value amplifier for a precision voltmeter
Hearn, William E.; Rondeau, Donald J.
1985-01-01
Bipolar inputs are afforded by the plus inputs of first and second differential input amplifiers. A first gain determining resister is connected between the minus inputs of the differential amplifiers. First and second diodes are connected between the respective minus inputs and the respective outputs of the differential amplifiers. First and second FETs have their gates connected to the outputs of the amplifiers, while their respective source and drain circuits are connected between the respective minus inputs and an output lead extending to a load resister. The output current through the load resister is proportional to the absolute value of the input voltage difference between the bipolar input terminals. A third differential amplifier has its plus input terminal connected to the load resister. A second gain determining resister is connected between the minus input of the third differential amplifier and a voltage source. A third FET has its gate connected to the output of the third amplifier. The source and drain circuit of the third transistor is connected between the minus input of the third amplifier and a voltage-frequency converter, constituting an output device. A polarity detector is also provided, comprising a pair of transistors having their inputs connected to the outputs of the first and second differential amplifiers. The outputs of the polarity detector are connected to gates which switch the output of the voltage-frequency converter between up and down counting outputs.
Prudova, Anna; auf dem Keller, Ulrich; Butler, Georgina S; Overall, Christopher M
2010-05-01
Proteolysis is a major protein posttranslational modification that, by altering protein structure, affects protein function and, by truncating the protein sequence, alters peptide signatures of proteins analyzed by proteomics. To identify such modified and shortened protease-generated neo-N-termini on a proteome-wide basis, we developed a whole protein isobaric tag for relative and absolute quantitation (iTRAQ) labeling method that simultaneously labels and blocks all primary amines including protein N- termini and lysine side chains. Blocking lysines limits trypsin cleavage to arginine, which effectively elongates the proteolytically truncated peptides for improved MS/MS analysis and peptide identification. Incorporating iTRAQ whole protein labeling with terminal amine isotopic labeling of substrates (iTRAQ-TAILS) to enrich the N-terminome by negative selection of the blocked mature original N-termini and neo-N-termini has many advantages. It enables simultaneous characterization of the natural N-termini of proteins, their N-terminal modifications, and proteolysis product and cleavage site identification. Furthermore, iTRAQ-TAILS also enables multiplex N-terminomics analysis of up to eight samples and allows for quantification in MS2 mode, thus preventing an increase in spectral complexity and extending proteome coverage by signal amplification of low abundance proteins. We compared the substrate degradomes of two closely related matrix metalloproteinases, MMP-2 (gelatinase A) and MMP-9 (gelatinase B), in fibroblast secreted proteins. Among 3,152 unique N-terminal peptides identified corresponding to 1,054 proteins, we detected 201 cleavage products for MMP-2 and unexpectedly only 19 for the homologous MMP-9 under identical conditions. Novel substrates identified and biochemically validated include insulin-like growth factor binding protein-4, complement C1r component A, galectin-1, dickkopf-related protein-3, and thrombospondin-2. Hence, N-terminomics analyses using iTRAQ-TAILS links gelatinases with new mechanisms of action in angiogenesis and reveals unpredicted restrictions in substrate repertoires for these two very similar proteases.
Garcia, N; Santafe, M M; Tomàs, M; Lanuza, M A; Besalduch, N; Tomàs, J
2010-05-15
We use immunohistochemistry to describe the localization of brain-derived neurotrophic factor (BDNF) and its receptors trkB and p75(NTR) in the neuromuscular synapses of postnatal rats (P6-P7) during the synapse elimination period. The receptor protein p75(NTR) is present in the nerve terminal, muscle cell and glial Schwann cell whereas BDNF and trkB proteins can be detected mainly in the pre- and postsynaptic elements. Exogenously applied BDNF (10 nM for 3 hr or 50 nM for 1 hr) increases ACh release from singly and dually innervated synapses. This effect may be specific for BDNF because the neurotrophin NT-4 (2-8 nM) does not modulate release at P6-P7. Blocking the receptors trkB and p75(NTR) (with K-252a and anti-p75-192-IgG, respectively) completely abolishes the potentiating effect of exogenous BDNF. In addition, exogenous BDNF transiently recruits functionally depressed silent terminals, and this effect seems to be mediated by trkB. Calcium ions, the L-type voltage-dependent calcium channels and protein kinase C are involved in BDNF-mediated nerve ending recruitment. Blocking experiments suggest that endogenous BDNF could operate through p75(NTR) receptors coupled to potentiate ACh release in all nerve terminals because the anti-p75-192-IgG reduces release. However, blocking the trkB receptor (K-252a) or neutralizing endogenous BDNF with the trkB-IgG fusion protein reveals a trkB-mediated release inhibition on almost mature strong endings in dual junctions. Taken together these results suggest that a BDNF-induced p75(NTR)-mediated ACh release potentiating mechanism and a BDNF-induced trkB-mediated release inhibitory mechanism may contribute to developmental synapse disconnection. (c) 2009 Wiley-Liss, Inc.
Prudova, Anna; auf dem Keller, Ulrich; Butler, Georgina S.; Overall, Christopher M.
2010-01-01
Proteolysis is a major protein posttranslational modification that, by altering protein structure, affects protein function and, by truncating the protein sequence, alters peptide signatures of proteins analyzed by proteomics. To identify such modified and shortened protease-generated neo-N-termini on a proteome-wide basis, we developed a whole protein isobaric tag for relative and absolute quantitation (iTRAQ) labeling method that simultaneously labels and blocks all primary amines including protein N- termini and lysine side chains. Blocking lysines limits trypsin cleavage to arginine, which effectively elongates the proteolytically truncated peptides for improved MS/MS analysis and peptide identification. Incorporating iTRAQ whole protein labeling with terminal amine isotopic labeling of substrates (iTRAQ-TAILS) to enrich the N-terminome by negative selection of the blocked mature original N-termini and neo-N-termini has many advantages. It enables simultaneous characterization of the natural N-termini of proteins, their N-terminal modifications, and proteolysis product and cleavage site identification. Furthermore, iTRAQ-TAILS also enables multiplex N-terminomics analysis of up to eight samples and allows for quantification in MS2 mode, thus preventing an increase in spectral complexity and extending proteome coverage by signal amplification of low abundance proteins. We compared the substrate degradomes of two closely related matrix metalloproteinases, MMP-2 (gelatinase A) and MMP-9 (gelatinase B), in fibroblast secreted proteins. Among 3,152 unique N-terminal peptides identified corresponding to 1,054 proteins, we detected 201 cleavage products for MMP-2 and unexpectedly only 19 for the homologous MMP-9 under identical conditions. Novel substrates identified and biochemically validated include insulin-like growth factor binding protein-4, complement C1r component A, galectin-1, dickkopf-related protein-3, and thrombospondin-2. Hence, N-terminomics analyses using iTRAQ-TAILS links gelatinases with new mechanisms of action in angiogenesis and reveals unpredicted restrictions in substrate repertoires for these two very similar proteases. PMID:20305284
Sterle, Igor; Zupančič, Daša; Romih, Rok
2014-01-01
Terminal differentiation of urothelium is a prerequisite for blood-urine barrier formation and enables normal sensory function of the urinary bladder. In this study, urothelial differentiation of normal human urothelium and of low and high grade papillary urothelial carcinomas was correlated with the expression and localization of purinergic receptors (P2X3, and P2X5) and transient receptor potential vanilloid channels (TRPV1, and TRPV4). Western blotting and immunofluorescence of uroplakins together with scanning electron microscopy of urothelial apical surface demonstrated terminal differentiation of normal urothelium, partial differentiation of low grade carcinoma, and poor differentiation of high grade carcinoma. P2X3 was expressed in normal urothelium as well as in low grade carcinoma and in both cases immunolabeling was stronger in the superficial cells. P2X3 expression decreased in high grade carcinoma. P2X5 expression was detected in normal urothelium and in high grade carcinoma, while in low grade carcinoma its expression was diminished. The expression of TRPV1 decreased in low grade and even more in high grade carcinoma when compared with normal urothelium, while TRPV4 expression was unchanged in all samples. Our results suggest that sensory proteins P2X3 and TRPV1 are in correlation with urothelial differentiation, while P2X5 and TRPV4 have unique expression patterns. PMID:24868547
Sterle, Igor; Zupančič, Daša; Romih, Rok
2014-01-01
Terminal differentiation of urothelium is a prerequisite for blood-urine barrier formation and enables normal sensory function of the urinary bladder. In this study, urothelial differentiation of normal human urothelium and of low and high grade papillary urothelial carcinomas was correlated with the expression and localization of purinergic receptors (P2X3, and P2X5) and transient receptor potential vanilloid channels (TRPV1, and TRPV4). Western blotting and immunofluorescence of uroplakins together with scanning electron microscopy of urothelial apical surface demonstrated terminal differentiation of normal urothelium, partial differentiation of low grade carcinoma, and poor differentiation of high grade carcinoma. P2X3 was expressed in normal urothelium as well as in low grade carcinoma and in both cases immunolabeling was stronger in the superficial cells. P2X3 expression decreased in high grade carcinoma. P2X5 expression was detected in normal urothelium and in high grade carcinoma, while in low grade carcinoma its expression was diminished. The expression of TRPV1 decreased in low grade and even more in high grade carcinoma when compared with normal urothelium, while TRPV4 expression was unchanged in all samples. Our results suggest that sensory proteins P2X3 and TRPV1 are in correlation with urothelial differentiation, while P2X5 and TRPV4 have unique expression patterns.
Clustering of GPS velocities in the Mojave Block, southeastern California
Savage, James C.; Simpson, Robert W.
2013-01-01
We find subdivisions within the Mojave Block using cluster analysis to identify groupings in the velocities observed at GPS stations there. The clusters are represented on a fault map by symbols located at the positions of the GPS stations, each symbol representing the cluster to which the velocity of that GPS station belongs. Fault systems that separate the clusters are readily identified on such a map. The most significant representation as judged by the gap test involves 4 clusters within the Mojave Block. The fault systems bounding the clusters from east to west are 1) the faults defining the eastern boundary of the Northeast Mojave Domain extended southward to connect to the Hector Mine rupture, 2) the Calico-Paradise fault system, 3) the Landers-Blackwater fault system, and 4) the Helendale-Lockhart fault system. This division of the Mojave Block is very similar to that proposed by Meade and Hager. However, no cluster boundary coincides with the Garlock Fault, the northern boundary of the Mojave Block. Rather, the clusters appear to continue without interruption from the Mojave Block north into the southern Walker Lane Belt, similar to the continuity across the Garlock Fault of the shear zone along the Blackwater-Little Lake fault system observed by Peltzer et al. Mapped traces of individual faults in the Mojave Block terminate within the block and do not continue across the Garlock Fault [Dokka and Travis, ].
Maciejewska, Izabela; Cowan, Cameron; Svoboda, Kathy; Butler, William T; D'Souza, Rena; Qin, Chunlin
2009-02-01
Multiple studies have shown that dentin matrix protein 1 (DMP1) is essential for bone and dentin mineralization. After post-translational proteolytic cleavage, DMP1 exists within the extracellular matrix of bone and dentin as an NH2-terminal fragment, a COOH-terminal fragment, and the proteoglycan form of the NH2-terminal fragment (DMP1-PG). To begin to assess the biological function of each fragment, we evaluated the distribution of both fragments in the rat tooth and bone using antibodies specific to the NH2-terminal and COOH-terminal regions of DMP1 and confocal microscopy. In rat first molar organs, the NH2-terminal fragment localized to predentin, whereas the COOH-terminal fragment was mainly restricted to mineralized dentin. In the growth plate of bone, the NH2-terminal fragment appeared in the proliferation and hypertrophic zones, whereas the COOH-terminal fragment occupied the ossification zone. Forster resonance energy transfer analysis showed colocalization of both fragments of DMP1 in odontoblasts and predentin, as well as hypertrophic chondrocytes within the growth plates of bone. The biochemical analysis of bovine teeth showed that predentin is rich in DMP1-PG, whereas mineralized dentin primarily contains the COOH-terminal fragment. We conclude that the differential patterns of expression of NH2-terminal and COOH-terminal fragments of DMP1 reflect their potentially distinct roles in the biomineralization of dentin and bone matrices.
Analyzing semi-competing risks data with missing cause of informative terminal event.
Zhou, Renke; Zhu, Hong; Bondy, Melissa; Ning, Jing
2017-02-28
Cancer studies frequently yield multiple event times that correspond to landmarks in disease progression, including non-terminal events (i.e., cancer recurrence) and an informative terminal event (i.e., cancer-related death). Hence, we often observe semi-competing risks data. Work on such data has focused on scenarios in which the cause of the terminal event is known. However, in some circumstances, the information on cause for patients who experience the terminal event is missing; consequently, we are not able to differentiate an informative terminal event from a non-informative terminal event. In this article, we propose a method to handle missing data regarding the cause of an informative terminal event when analyzing the semi-competing risks data. We first consider the nonparametric estimation of the survival function for the terminal event time given missing cause-of-failure data via the expectation-maximization algorithm. We then develop an estimation method for semi-competing risks data with missing cause of the terminal event, under a pre-specified semiparametric copula model. We conduct simulation studies to investigate the performance of the proposed method. We illustrate our methodology using data from a study of early-stage breast cancer. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Matsumoto, Mayuko; Terashima, Takaya; Matsumoto, Kazuma; Takenaka, Mikihito; Sawamoto, Mitsuo
2017-05-31
Orthogonal self-assembly and intramolecular cross-linking of amphiphilic random block copolymers in water afforded an approach to tailor-make well-defined compartments and domains in single polymer chains and nanoaggregates. For a double compartment single-chain polymer, an amphiphilic random block copolymer bearing hydrophilic poly(ethylene glycol) (PEG) and hydrophobic dodecyl, benzyl, and olefin pendants was synthesized by living radical polymerization (LRP) and postfunctionalization; the dodecyl and benzyl units were incorporated into the different block segments, whereas PEG pendants were statistically attached along a chain. The copolymer self-folded via the orthogonal self-assembly of hydrophobic dodecyl and benzyl pendants in water, followed by intramolecular cross-linking, to form a single-chain polymer carrying double yet distinct hydrophobic nanocompartments. A single-chain cross-linked polymer with a chlorine terminal served as a globular macroinitiator for LRP to provide an amphiphilic tadpole macromolecule comprising a hydrophilic nanoparticle and a hydrophobic polymer tail; the tadpole thus self-assembled into multicompartment aggregates in water.
Nicolas, Pierre; Repoila, Francis; Bardowski, Jacek; Aymerich, Stéphane
2017-01-01
In eukaryotes, RNA species originating from pervasive transcription are regulators of various cellular processes, from the expression of individual genes to the control of cellular development and oncogenesis. In prokaryotes, the function of pervasive transcription and its output on cell physiology is still unknown. Most bacteria possess termination factor Rho, which represses pervasive, mostly antisense, transcription. Here, we investigate the biological significance of Rho-controlled transcription in the Gram-positive model bacterium Bacillus subtilis. Rho inactivation strongly affected gene expression in B. subtilis, as assessed by transcriptome and proteome analysis of a rho–null mutant during exponential growth in rich medium. Subsequent physiological analyses demonstrated that a considerable part of Rho-controlled transcription is connected to balanced regulation of three mutually exclusive differentiation programs: cell motility, biofilm formation, and sporulation. In the absence of Rho, several up-regulated sense and antisense transcripts affect key structural and regulatory elements of these differentiation programs, thereby suppressing motility and biofilm formation and stimulating sporulation. We dissected how Rho is involved in the activity of the cell fate decision-making network, centered on the master regulator Spo0A. We also revealed a novel regulatory mechanism of Spo0A activation through Rho-dependent intragenic transcription termination of the protein kinase kinB gene. Altogether, our findings indicate that distinct Rho-controlled transcripts are functional and constitute a previously unknown built-in module for the control of cell differentiation in B. subtilis. In a broader context, our results highlight the recruitment of the termination factor Rho, for which the conserved biological role is probably to repress pervasive transcription, in highly integrated, bacterium-specific, regulatory networks. PMID:28723971
Bergeron, Adam L; Schrader, Angela; Yang, Dan; Osman, Abdullah A; Simmons, Dwayne D
2005-12-01
To gain further insights into the cholinergic differentiation of presynaptic efferent terminals in the inner ear, we investigated the expression of the high-affinity choline transporter (ChT1) in comparison to other presynaptic and cholinergic markers. In the adult mammalian cochlea, cholinergic axons from medial olivocochlear (OC) neurons form axosomatic synapses with outer hair cells (OHCs), whereas axons from lateral OC neurons form axodendritic synapses on afferent fibers below inner hair cells (IHCs). Mouse brain and cochlea homogenates reveal at least two ChT1 isoforms: a nonglycosylated approximately 73 kDa protein and a glycosylated approximately 45 kDa protein. In mouse brain, ChT1 is preferentially expressed by neurons in periolivary regions of the superior olive consistent with the location of medial OC neurons. In the adult mouse cochlea, ChT1-positive terminals are located almost exclusively below OHCs consistent with a medial OC innervation. Between postnatal day 2 (P2) and P4, ChT1-positive terminals are below IHCs and occur after the expression of growth-associated protein 43, synapsin, and the vesicular acetylcholine transporter. By P15, ChT1-positive terminals are mostly on OHCs. Accounting for differences in gestational age, the developmental expression of ChT1 in the rat cochlea is similar to the mouse. However, in older rats ChT1-positive terminals are below IHCs and OHCs. In both rat and mouse, our observations indicate that the onset of ChT1 expression occurs after efferent terminals are below IHCs and express other presynaptic and cholinergic markers. In the mouse, but not in the rat, ChT1 may preferentially identify medial OC neurons.
Multiple Hypnotizabilities: Differentiating the Building Blocks of Hypnotic Response
ERIC Educational Resources Information Center
Woody, Erik Z.; Barnier, Amanda J.; McConkey, Kevin M.
2005-01-01
Although hypnotizability can be conceptualized as involving component subskills, standard measures do not differentiate them from a more general unitary trait, partly because the measures include limited sets of dichotomous items. To overcome this, the authors applied full-information factor analysis, a sophisticated analytic approach for…
Weight shifting operators and conformal blocks
NASA Astrophysics Data System (ADS)
Karateev, Denis; Kravchuk, Petr; Simmons-Duffin, David
2018-02-01
We introduce a large class of conformally-covariant differential operators and a crossing equation that they obey. Together, these tools dramatically simplify calculations involving operators with spin in conformal field theories. As an application, we derive a formula for a general conformal block (with arbitrary internal and external representations) in terms of derivatives of blocks for external scalars. In particular, our formula gives new expressions for "seed conformal blocks" in 3d and 4d CFTs. We also find simple derivations of identities between external-scalar blocks with different dimensions and internal spins. We comment on additional applications, including deriving recursion relations for general conformal blocks, reducing inversion formulae for spinning operators to inversion formulae for scalars, and deriving identities between general 6 j symbols (Racah-Wigner coefficients/"crossing kernels") of the conformal group.
Yang, Sunggu; Govindaiah, Gubbi; Lee, Sang-Hun; Yang, Sungchil; Cox, Charles L
2017-01-01
Thalamocortical neurons in the dorsal lateral geniculate nucleus (dLGN) transfer visual information from retina to primary visual cortex. This information is modulated by inhibitory input arising from local interneurons and thalamic reticular nucleus (TRN) neurons, leading to alterations of receptive field properties of thalamocortical neurons. Local GABAergic interneurons provide two distinct synaptic outputs: axonal (F1 terminals) and dendritic (F2 terminals) onto dLGN thalamocortical neurons. By contrast, TRN neurons provide only axonal output (F1 terminals) onto dLGN thalamocortical neurons. It is unclear if GABAA receptor-mediated currents originating from F1 and F2 terminals have different characteristics. In the present study, we examined multiple characteristics (rise time, slope, halfwidth and decay τ) of GABAA receptor-mediated miniature inhibitory postsynaptic synaptic currents (mIPSCs) originating from F1 and F2 terminals. The mIPSCs arising from F2 terminals showed slower kinetics relative to those from F1 terminals. Such differential kinetics of GABAAR-mediated responses could be an important role in temporal coding of visual signals.
Trellises and Trellis-Based Decoding Algorithms for Linear Block Codes
NASA Technical Reports Server (NTRS)
Lin, Shu
1998-01-01
A code trellis is a graphical representation of a code, block or convolutional, in which every path represents a codeword (or a code sequence for a convolutional code). This representation makes it possible to implement Maximum Likelihood Decoding (MLD) of a code with reduced decoding complexity. The most well known trellis-based MLD algorithm is the Viterbi algorithm. The trellis representation was first introduced and used for convolutional codes [23]. This representation, together with the Viterbi decoding algorithm, has resulted in a wide range of applications of convolutional codes for error control in digital communications over the last two decades. There are two major reasons for this inactive period of research in this area. First, most coding theorists at that time believed that block codes did not have simple trellis structure like convolutional codes and maximum likelihood decoding of linear block codes using the Viterbi algorithm was practically impossible, except for very short block codes. Second, since almost all of the linear block codes are constructed algebraically or based on finite geometries, it was the belief of many coding theorists that algebraic decoding was the only way to decode these codes. These two reasons seriously hindered the development of efficient soft-decision decoding methods for linear block codes and their applications to error control in digital communications. This led to a general belief that block codes are inferior to convolutional codes and hence, that they were not useful. Chapter 2 gives a brief review of linear block codes. The goal is to provide the essential background material for the development of trellis structure and trellis-based decoding algorithms for linear block codes in the later chapters. Chapters 3 through 6 present the fundamental concepts, finite-state machine model, state space formulation, basic structural properties, state labeling, construction procedures, complexity, minimality, and sectionalization of trellises. Chapter 7 discusses trellis decomposition and subtrellises for low-weight codewords. Chapter 8 first presents well known methods for constructing long powerful codes from short component codes or component codes of smaller dimensions, and then provides methods for constructing their trellises which include Shannon and Cartesian product techniques. Chapter 9 deals with convolutional codes, puncturing, zero-tail termination and tail-biting.Chapters 10 through 13 present various trellis-based decoding algorithms, old and new. Chapter 10 first discusses the application of the well known Viterbi decoding algorithm to linear block codes, optimum sectionalization of a code trellis to minimize computation complexity, and design issues for IC (integrated circuit) implementation of a Viterbi decoder. Then it presents a new decoding algorithm for convolutional codes, named Differential Trellis Decoding (DTD) algorithm. Chapter 12 presents a suboptimum reliability-based iterative decoding algorithm with a low-weight trellis search for the most likely codeword. This decoding algorithm provides a good trade-off between error performance and decoding complexity. All the decoding algorithms presented in Chapters 10 through 12 are devised to minimize word error probability. Chapter 13 presents decoding algorithms that minimize bit error probability and provide the corresponding soft (reliability) information at the output of the decoder. Decoding algorithms presented are the MAP (maximum a posteriori probability) decoding algorithm and the Soft-Output Viterbi Algorithm (SOVA) algorithm. Finally, the minimization of bit error probability in trellis-based MLD is discussed.
[Fetal bradycardia: a retrospective study in 9 Spanish centers].
Perin, F; Rodríguez Vázquez del Rey, M M; Deiros Bronte, L; Ferrer Menduiña, Q; Rueda Nuñez, F; Zabala Arguelles, J I; García de la Calzada, D; Teodoro Marin, S; Centeno Malfaz, F; Galindo Izquierdo, A
2014-11-01
The aim of this study is to review the current management and outcomes of fetal bradycardia in 9 Spanish centers. Retrospective multicenter study: analysis of all fetuses with bradycardia diagnosed between January 2008 and September 2010. Underlying mechanisms of fetal bradyarrhythmias were studied with echocardiography. A total of 37 cases were registered: 3 sinus bradycardia, 15 blocked atrial bigeminy, and 19 high grade atrioventricular blocks. Sinus bradycardia: 3 cases (100%) were associated with serious diseases. Blocked atrial bigeminy had an excellent outcome, except for one case with post-natal tachyarrhythmia. Of the atrioventricular blocks, 16% were related to congenital heart defects with isomerism, 63% related to the presence of maternal SSA/Ro antibodies, and 21% had unclear etiology. Overall mortality was 20% (37%, if terminations of pregnancy are taken into account). Risk factors for mortality were congenital heart disease, hydrops and/or ventricular dysfunction. Management strategies differed among centers. Steroids were administrated in 73% of immune-mediated atrioventricular blocks, including the only immune-mediated IInd grade block. More than half (58%) of atrioventricular blocks had a pacemaker implanted in a follow-up of 18 months. Sustained fetal bradycardia requires a comprehensive study in all cases, including those with sinus bradycardia. Blocked atrial bigeminy has a good prognosis, but tachyarrhythmias may develop. Heart block has significant mortality and morbidity rates, and its management is still highly controversial. Copyright © 2013 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.
2012-01-01
Four compounds that contained the N-benzyl 2-amino-3-methoxypropionamide unit were evaluated for their ability to modulate Na+ currents in catecholamine A differentiated CAD neuronal cells. The compounds differed by the absence or presence of either a terminal N-acetyl group or a (3-fluoro)benzyloxy moiety positioned at the 4′-benzylamide site. Analysis of whole-cell patch-clamp electrophysiology data showed that the incorporation of the (3-fluoro)benzyloxy unit, to give the (3-fluoro)benzyloxyphenyl pharmacophore, dramatically enhanced the magnitude of Na+ channel slow inactivation. In addition, N-acetylation markedly increased the stereoselectivity for Na+ channel slow inactivation. Furthermore, we observed that Na+ channel frequency (use)-dependent block was maintained upon inclusion of this pharmacophore. Confirmation of the importance of the (3-fluoro)benzyloxyphenyl pharmacophore was shown by examining compounds where the N-benzyl 2-amino-3-methoxypropionamide unit was replaced by a N-benzyl 2-amino-3-methylpropionamide moiety, as well as examining a series of compounds that did not contain an amino acid group but retained the pharmacophore unit. Collectively, the data indicated that the (3-fluoro)benzyloxyphenyl unit is a novel pharmacophore for the modulation of Na+ currents. PMID:23259039
PRINT: A Protein Bioconjugation Method with Exquisite N-terminal Specificity
Sur, Surojit; Qiao, Yuan; Fries, Anja; O’Meally, Robert N.; Cole, Robert N.; Kinzler, Kenneth W.; Vogelstein, Bert; Zhou, Shibin
2015-01-01
Chemical conjugation is commonly used to enhance the pharmacokinetics, biodistribution, and potency of protein therapeutics, but often leads to non-specific modification or loss of bioactivity. Here, we present a simple, versatile and widely applicable method that allows exquisite N-terminal specific modification of proteins. Combining reversible side-chain blocking and protease mediated cleavage of a commonly used HIS tag appended to a protein, we generate with high yield and purity exquisitely site specific and selective bio-conjugates of TNF-α by using amine reactive NHS ester chemistry. We confirm the N terminal selectivity and specificity using mass spectral analyses and show near complete retention of the biological activity of our model protein both in vitro and in vivo murine models. We believe that this methodology would be applicable to a variety of potentially therapeutic proteins and the specificity afforded by this technique would allow for rapid generation of novel biologics. PMID:26678960
NASA Technical Reports Server (NTRS)
Liu, N. S.; Shamroth, S. J.; Mcdonald, H.
1983-01-01
The multidimensional ensemble averaged compressible time dependent Navier Stokes equations in conjunction with mixing length turbulence model and shock capturing technique were used to study the terminal shock type of flows in various flight regimes occurring in a diffuser/inlet model. The numerical scheme for solving the governing equations is based on a linearized block implicit approach and the following high Reynolds number calculations were carried out: (1) 2 D, steady, subsonic; (2) 2 D, steady, transonic with normal shock; (3) 2 D, steady, supersonic with terminal shock; (4) 2 D, transient process of shock development and (5) 3 D, steady, transonic with normal shock. The numerical results obtained for the 2 D and 3 D transonic shocked flows were compared with corresponding experimental data; the calculated wall static pressure distributions agree well with the measured data.
Living olefin polymerization processes
Schrock, Richard R.; Baumann, Robert
1999-01-01
Processes for the living polymerization of olefin monomers with terminal carbon-carbon double bonds are disclosed. The processes employ initiators that include a metal atom and a ligand having two group 15 atoms and a group 16 atom or three group 15 atoms. The ligand is bonded to the metal atom through two anionic or covalent bonds and a dative bond. The initiators are particularly stable under reaction conditions in the absence of olefin monomer. The processes provide polymers having low polydispersities, especially block copolymers having low polydispersities. It is an additional advantage of these processes that, during block copolymer synthesis, a relatively small amount of homopolymer is formed.
Living olefin polymerization processes
Schrock, R.R.; Baumann, R.
1999-03-30
Processes for the living polymerization of olefin monomers with terminal carbon-carbon double bonds are disclosed. The processes employ initiators that include a metal atom and a ligand having two group 15 atoms and a group 16 atom or three group 15 atoms. The ligand is bonded to the metal atom through two anionic or covalent bonds and a dative bond. The initiators are particularly stable under reaction conditions in the absence of olefin monomer. The processes provide polymers having low polydispersities, especially block copolymers having low polydispersities. It is an additional advantage of these processes that, during block copolymer synthesis, a relatively small amount of homopolymer is formed.
Living olefin polymerization processes
Schrock, Richard R.; Baumann, Robert
2003-08-26
Processes for the living polymerization of olefin monomers with terminal carbon-carbon double bonds are disclosed. The processes employ initiators that include a metal atom and a ligand having two group 15 atoms and a group 16 atom or three group 15 atoms. The ligand is bonded to the metal atom through two anionic or covalent bonds and a dative bond. The initiators are particularly stable under reaction conditions in the absence of olefin monomer. The processes provide polymers having low polydispersities, especially block copolymers having low polydispersities. It is an additional advantage of these processes that, during block copolymer synthesis, a relatively small amount of homopolymer is formed.
Living olefin polymerization processes
Schrock, Richard R.; Bauman, Robert
2006-11-14
Processes for the living polymerization of olefin monomers with terminal carbon-carbon double bonds are disclosed. The processes employ initiators that include a metal atom and a ligand having two group 15 atoms and a group 16 atom or three group 15 atoms. The ligand is bonded to the metal atom through two anionic or covalent bonds and a dative bond. The initiators are particularly stable under reaction conditions in the absence of olefin monomer. The processes provide polymers having low polydispersities, especially block copolymers having low polydispersities. It is an additional advantage of these processes that, during block copolymer synthesis, a relatively small amount of homopolymer is formed.
The complete mitochondrial genome of Lota lota (Gadiformes: Gadidae) from the Burqin River in China.
Lu, Zhichuang; Zhang, Nan; Song, Na; Gao, Tianxiang
2016-05-01
In this study, the complete mitochondrial genome (mitogenome) sequence of Lota lota has been determined by long polymerase chain reaction and primer walking methods. The mitogenome is a circular molecule of 16,519 bp in length and contains 37 mitochondrial genes including 13 protein-coding genes, 2 ribosomal RNA (rRNA), 22 transfer RNA (tRNA) and a control region as other bony fishes. Within the control region, we identified the termination-associated sequence domain (TAS), the central conserved sequence block domains (CSB-F and CSB-D), and the conserved sequence block domains (CSB-1, CSB-2 and CSB-3).
31 CFR 540.403 - Termination and acquisition of an interest in blocked property.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Government of the Russian Federation, such property shall no longer be deemed to be property in which the Government of the Russian Federation has or has had an interest unless there exists in the property another interest of the Government of the Russian Federation, the transfer of which has not been effected pursuant...