Sample records for blood cell development

  1. Advances of blood cell-based drug delivery systems.

    PubMed

    Sun, Yanan; Su, Jing; Liu, Geyi; Chen, Jianjun; Zhang, Xiumei; Zhang, Ran; Jiang, Minhan; Qiu, Mingfeng

    2017-01-01

    Blood cells, including erythrocytes, leukocytes and platelets are used as drug carriers in a wide range of applications. They have many unique advantages such as long life-span in circulation (especially erythrocytes), target release capacities (especially platelets), and natural adhesive properties (leukocytes and platelets). These properties make blood cell based delivery systems, as well as their membrane-derived carriers, far superior to other drug delivery systems. Despite the advantages, the further development of blood cell-based delivery systems was hindered by limitations in the source, storage, and mass production. To overcome these problems, synthetic biomaterials that mimic blood cell and nanocrystallization of blood cells have been developed and may represent the future direction for blood cell membrane-based delivery systems. In this paper, we review recent progress of the rising blood cell-based drug delivery systems, and also discuss their challenges and future tendency of development. Copyright © 2016. Published by Elsevier B.V.

  2. Decoding the Regulatory Network for Blood Development from Single-Cell Gene Expression Measurements

    PubMed Central

    Haghverdi, Laleh; Lilly, Andrew J.; Tanaka, Yosuke; Wilkinson, Adam C.; Buettner, Florian; Macaulay, Iain C.; Jawaid, Wajid; Diamanti, Evangelia; Nishikawa, Shin-Ichi; Piterman, Nir; Kouskoff, Valerie; Theis, Fabian J.; Fisher, Jasmin; Göttgens, Berthold

    2015-01-01

    Here we report the use of diffusion maps and network synthesis from state transition graphs to better understand developmental pathways from single cell gene expression profiling. We map the progression of mesoderm towards blood in the mouse by single-cell expression analysis of 3,934 cells, capturing cells with blood-forming potential at four sequential developmental stages. By adapting the diffusion plot methodology for dimensionality reduction to single-cell data, we reconstruct the developmental journey to blood at single-cell resolution. Using transitions between individual cellular states as input, we develop a single-cell network synthesis toolkit to generate a computationally executable transcriptional regulatory network model that recapitulates blood development. Model predictions were validated by showing that Sox7 inhibits primitive erythropoiesis, and that Sox and Hox factors control early expression of Erg. We therefore demonstrate that single-cell analysis of a developing organ coupled with computational approaches can reveal the transcriptional programs that control organogenesis. PMID:25664528

  3. A Comprehensive Fluid Dynamic-Diffusion Model of Blood Microcirculation with Focus on Sickle Cell Disease

    NASA Astrophysics Data System (ADS)

    Le Floch, Francois; Harris, Wesley L.

    2009-11-01

    A novel methodology has been developed to address sickle cell disease, based on highly descriptive mathematical models for blood flow in the capillaries. Our investigations focus on the coupling between oxygen delivery and red blood cell dynamics, which is crucial to understanding sickle cell crises and is unique to this blood disease. The main part of our work is an extensive study of blood dynamics through simulations of red cells deforming within the capillary vessels, and relies on the use of a large mathematical system of equations describing oxygen transfer, blood plasma dynamics and red cell membrane mechanics. This model is expected to lead to the development of new research strategies for sickle cell disease. Our simulation model could be used not only to assess current researched remedies, but also to spur innovative research initiatives, based on our study of the physical properties coupled in sickle cell disease.

  4. A photonic crystal hydrogel suspension array for the capture of blood cells from whole blood

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Cai, Yunlang; Shang, Luoran; Wang, Huan; Cheng, Yao; Rong, Fei; Gu, Zhongze; Zhao, Yuanjin

    2016-02-01

    Diagnosing hematological disorders based on the separation and detection of cells in the patient's blood is a significant challenge. We have developed a novel barcode particle-based suspension array that can simultaneously capture and detect multiple types of blood cells. The barcode particles are polyacrylamide (PAAm) hydrogel inverse opal microcarriers with characteristic reflection peak codes that remain stable during cell capture on their surfaces. The hydrophilic PAAm hydrogel scaffolds of the barcode particles can entrap various plasma proteins to capture different cells in the blood, with little damage to captured cells.Diagnosing hematological disorders based on the separation and detection of cells in the patient's blood is a significant challenge. We have developed a novel barcode particle-based suspension array that can simultaneously capture and detect multiple types of blood cells. The barcode particles are polyacrylamide (PAAm) hydrogel inverse opal microcarriers with characteristic reflection peak codes that remain stable during cell capture on their surfaces. The hydrophilic PAAm hydrogel scaffolds of the barcode particles can entrap various plasma proteins to capture different cells in the blood, with little damage to captured cells. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06368j

  5. Human cord blood applications in cell therapy: looking back and look ahead.

    PubMed

    Zhou, Hongyan; Chang, Stephen; Rao, Mahendra

    2012-08-01

    Human umbilical cord blood (UCB) has been used as a reliable source of stem cells for blood-borne diseases and disorders. Recent advances in cell reprogramming technology to produce induced pluripotent stem (iPS) cells, which can be differentiated to multiple adult cell types, has further expanded the potential of cord blood cell therapy for treatment of non-blood-borne diseases. However, in order to harness this breakthrough technology and to provide clinical-grade cells for the patient, standardization of iPS production and differentiation, and good manufacturing practice (GMP) need to be employed. UCB is an ethical source of stem cells and has been used to treat diseases including leukemia, cancer and blood disorders. The development of iPS cell technology could potentially greatly increase the application of cord blood cells as a treatment for a broader range of diseases, UCB-iPS banks could, therefore, be a valuable complementary source of clinical-grade cells for cell therapy. The current applicability of GMP to UCB and UCB-iPS cell-based cell therapy will be discussed. Although cord blood stem cell therapies have been practiced for decades, UCB-iPS cell therapies are a new innovation currently in development. Successful clinical applications of such novel cell therapies will depend on the production of GMP-compliant cells and the establishment of cell banks.

  6. New Developments in Red Blood Cell Preservation Using Liquid and Freezing Procedures.

    DTIC Science & Technology

    1982-04-02

    restore or improve the red cell 2,3 DPG and ATP levels . Biochemically modified red blood cells may be cryopreserved for indefinite storage, or they may...salvage outdated red blood cells. However,,-ndated red blood cells are also being biochemically modified to increase’the 2,3 DPG levels to 2 to 3...restore or improve the edcell 2,3 DPG and ATP levels . Biochemically modified red blood cells iay-be cryopreserved for indefinite storage. or-thy my be

  7. The wall traction induced by flowing red blood cells in model microvessels and its potential mechanotransduction

    NASA Astrophysics Data System (ADS)

    Freund, Jonathan; Vermot, Julien

    2013-11-01

    There is evidence in early embryonic development, even well before advective oxygen transport is important, that the presence of red bloods cells per se trigger essential steps of normal vascular development. For example, showed that sequestration of blood cells early in the development of a mouse, such that the hematocrit is reduced, suppresses normal vascular network development. Vascular development also provides a model for remodeling and angiogenesis. We consider the transient stresses associated with blood cells flowing in model microvessels of comparable diameter to those at early stages of development (6 μm to 12 μm). A detailed simulation tool is used to show that passing blood cells present a significant fluctuating traction signature on the vessel wall, well above the mean stresses. This is particularly pronounced for slow flows (<= 50 μm/s) or small diameters (<= 7 μm), for which root-mean-square wall traction fluctuations can exceed their mean. These events potentially present mechanotranduction triggers that direct development or remodeling. Attenuation of such fluctuating tractions by a viscoelastic endothelial glycocalyx layer is also considered. NSF supported.

  8. SBR-Blood: systems biology repository for hematopoietic cells.

    PubMed

    Lichtenberg, Jens; Heuston, Elisabeth F; Mishra, Tejaswini; Keller, Cheryl A; Hardison, Ross C; Bodine, David M

    2016-01-04

    Extensive research into hematopoiesis (the development of blood cells) over several decades has generated large sets of expression and epigenetic profiles in multiple human and mouse blood cell types. However, there is no single location to analyze how gene regulatory processes lead to different mature blood cells. We have developed a new database framework called hematopoietic Systems Biology Repository (SBR-Blood), available online at http://sbrblood.nhgri.nih.gov, which allows user-initiated analyses for cell type correlations or gene-specific behavior during differentiation using publicly available datasets for array- and sequencing-based platforms from mouse hematopoietic cells. SBR-Blood organizes information by both cell identity and by hematopoietic lineage. The validity and usability of SBR-Blood has been established through the reproduction of workflows relevant to expression data, DNA methylation, histone modifications and transcription factor occupancy profiles. Published by Oxford University Press on behalf of Nucleic Acids Research 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  9. Novel Automated Blood Separations Validate Whole Cell Biomarkers

    PubMed Central

    Burger, Douglas E.; Wang, Limei; Ban, Liqin; Okubo, Yoshiaki; Kühtreiber, Willem M.; Leichliter, Ashley K.; Faustman, Denise L.

    2011-01-01

    Background Progress in clinical trials in infectious disease, autoimmunity, and cancer is stymied by a dearth of successful whole cell biomarkers for peripheral blood lymphocytes (PBLs). Successful biomarkers could help to track drug effects at early time points in clinical trials to prevent costly trial failures late in development. One major obstacle is the inaccuracy of Ficoll density centrifugation, the decades-old method of separating PBLs from the abundant red blood cells (RBCs) of fresh blood samples. Methods and Findings To replace the Ficoll method, we developed and studied a novel blood-based magnetic separation method. The magnetic method strikingly surpassed Ficoll in viability, purity and yield of PBLs. To reduce labor, we developed an automated platform and compared two magnet configurations for cell separations. These more accurate and labor-saving magnet configurations allowed the lymphocytes to be tested in bioassays for rare antigen-specific T cells. The automated method succeeded at identifying 79% of patients with the rare PBLs of interest as compared with Ficoll's uniform failure. We validated improved upfront blood processing and show accurate detection of rare antigen-specific lymphocytes. Conclusions Improving, automating and standardizing lymphocyte detections from whole blood may facilitate development of new cell-based biomarkers for human diseases. Improved upfront blood processes may lead to broad improvements in monitoring early trial outcome measurements in human clinical trials. PMID:21799852

  10. Molecular Detection of Breast Cancer

    DTIC Science & Technology

    1998-02-01

    treatment-resistant cancer cells. Clearly new approaches are needed to treat these diseases. This project is designed to develop novel approaches to...detect breast cancer cells that contaminate peripheral blood and bone marrow, and to remove such contaminating cells. An RT-PCR assay has been developed ...to detect breast cancer cells, and a novel gene therapy vector has been developed to kill contaminating cancer cells. Blood and bone marrow samples

  11. The Drosophila blood-brain barrier: development and function of a glial endothelium.

    PubMed

    Limmer, Stefanie; Weiler, Astrid; Volkenhoff, Anne; Babatz, Felix; Klämbt, Christian

    2014-01-01

    The efficacy of neuronal function requires a well-balanced extracellular ion homeostasis and a steady supply with nutrients and metabolites. Therefore, all organisms equipped with a complex nervous system developed a so-called blood-brain barrier, protecting it from an uncontrolled entry of solutes, metabolites or pathogens. In higher vertebrates, this diffusion barrier is established by polarized endothelial cells that form extensive tight junctions, whereas in lower vertebrates and invertebrates the blood-brain barrier is exclusively formed by glial cells. Here, we review the development and function of the glial blood-brain barrier of Drosophila melanogaster. In the Drosophila nervous system, at least seven morphologically distinct glial cell classes can be distinguished. Two of these glial classes form the blood-brain barrier. Perineurial glial cells participate in nutrient uptake and establish a first diffusion barrier. The subperineurial glial (SPG) cells form septate junctions, which block paracellular diffusion and thus seal the nervous system from the hemolymph. We summarize the molecular basis of septate junction formation and address the different transport systems expressed by the blood-brain barrier forming glial cells.

  12. The Emergence of Blood and Blood Vessels in the Embryo and Its Relevance to Postnatal Biology and Disease

    NASA Astrophysics Data System (ADS)

    Sills, Tiffany M.; Hirschi, Karen K.

    Blood and blood vessels develop in parallel within mammalian systems, and this temporal and spatial association has led to the confirmation of an endothelial origin of hematopoiesis. The extraembryonic yolk sac and aorto-gonado-mesonephros (AGM) region both contain a specialized population of endothelial cells ("hemogenic endothelium") that function to produce hematopoietic stem and progenitor cells, which then differentiate to provide the full complement of blood cells within the developing embryo and furthermore in the adult system. Therefore, this population has great therapeutic potential in the fields of regenerative medicine and tissue engineering. This chapter reviews the development of the vascular and hematopoietic systems, characterization and function of the hemogenic endothelium within embryonic and embryonic stem cell (ES cell) models, and speculate on the presence of such a population within the adult system. In order to harness this endothelial subtype for clinical application, we must understand both the normal functions of these cells and the potential for misregulation in disease states.

  13. Deterministic Migration-Based Separation of White Blood Cells.

    PubMed

    Kim, Byeongyeon; Choi, Young Joon; Seo, Hyekyung; Shin, Eui-Cheol; Choi, Sungyoung

    2016-10-01

    Functional and phenotypic analyses of peripheral white blood cells provide useful clinical information. However, separation of white blood cells from peripheral blood requires a time-consuming, inconvenient process and thus analyses of separated white blood cells are limited in clinical settings. To overcome this limitation, a microfluidic separation platform is developed to enable deterministic migration of white blood cells, directing the cells into designated positions according to a ridge pattern. The platform uses slant ridge structures on the channel top to induce the deterministic migration, which allows efficient and high-throughput separation of white blood cells from unprocessed whole blood. The extent of the deterministic migration under various rheological conditions is explored, enabling highly efficient migration of white blood cells in whole blood and achieving high-throughput separation of the cells (processing 1 mL of whole blood less than 7 min). In the separated cell population, the composition of lymphocyte subpopulations is well preserved, and T cells secrete cytokines without any functional impairment. On the basis of the results, this microfluidic platform is a promising tool for the rapid enrichment of white blood cells, and it is useful for functional and phenotypic analyses of peripheral white blood cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Cell Surface Changes Associated with Cellular Immune Reactions in Drosophila

    NASA Astrophysics Data System (ADS)

    Nappi, Anthony J.; Silvers, Michael

    1984-09-01

    In Drosophila melanogaster a temperature-induced change in immune competence accompanies cell surface alterations that cause its blood cells to adhere and to encapsulate a parasite. At 29 degrees C the blood cells of the tumorous-lethal (Tuml) mutant show a high degree of immune competence and encapsulate the eggs of the parasitic wasp Leptopilina heterotoma. At 21 degrees C the blood cells are essentially immune incompetent. High percentages of lectin binding cells were found under conditions which potentiated cellular encapsulation responses. Some immune reactive blood cells did not bind lectin. The low percentages of lectin binding cells in susceptible hosts suggest that developing parasites alter the cell surface of the blood cells of immune reactive hosts.

  15. Interaction of Vascular Smooth Muscle Cells Under Low Shear Stress

    NASA Technical Reports Server (NTRS)

    Seidel, Charles L.

    1998-01-01

    The blood vessel wall consists of three cellular layers, an outer adventitial, a middle medial and an inner intimal layer. When the blood vessel forms in the embryo it begins as a tube composed of a single cell type called endothelial cells. Over time, other cells are recruited from the surrounding tissue to form additional layers on the outer surface of the endothelial tube. The cells that are recruited are called mesenchymal cells. Mesenchymal cells are responsible for the production of connective tissue that holds the blood vessel together and for developing into vascular smooth muscle cells that are responsible for regulating the diameter of the vessel (1) and therefore, blood flow. In a fully developed blood vessel, the endothelial cells make- up the majority of cells in the intimal layer while the mesenchymal cells make-up the majority of cells in the medial and adventitial layers. Within the medial layer of a mature vessel, cells are organized into multiple circular layers of alternating bands of connective tissue and cells. The cell layer is composed of a mixture of mesenchymal cells that have not developed into smooth muscle cells and fully developed smooth muscle cells (2). The assembly and organization of complex tissues is directed in part by a signaling system composed of proteins on the cell surface called adhesion molecules. Adhesion molecules enable cells to recognize each other as well as the composition of the connective tissue in which they reside (3). It was hypothesized that the different cell types that compose the vascular wall possess different adhesion molecules that enable them to recognize each other and through this recognition system, form the complex layered organization of the vascular wall. In other words, the layered organization is an intrinsic property of the cells. If this hypothesis is correct then the different cells that make up the vessel wall, when mixed together, should organize themselves into a layered structure resembling an intact blood vessel. Experiments described below were designed to test this hypothesis.

  16. On-Orbit, Immuno-Based, Label-Free White Blood Cell Counting System with Microelectromechanical Sensor Technology (OILWBCS-MEMS)

    NASA Technical Reports Server (NTRS)

    Edmonds, Jessica

    2015-01-01

    Aurora Flight Sciences, in partnership with Draper Laboratory, has developed a miniaturized system to count white blood cells in microgravity environments. The system uses MEMS technology to simultaneously count total white blood cells, the five white blood cell differential subgroups, and various lymphocyte subtypes. The OILWBCS-MEMS detection technology works by immobilizing an array of white blood cell-specific antibodies on small, gold-coated membranes. When blood flows across the membranes, specific cells' surface protein antigens bind to their corresponding antibodies. This binding can be measured and correlated to cell counts. In Phase I, the partners demonstrated surface chemistry sensitivity and specificity for total white blood cells and two lymphocyte subtypes. In Phase II, a functional prototype demonstrated end-to-end operation. This rugged, miniaturized device requires minimal blood sample preparation and will be useful for both space flight and terrestrial applications.

  17. Cost-effective and Rapid Blood Analysis on a Cell-phone

    PubMed Central

    Zhu, Hongying; Sencan, Ikbal; Wong, Justin; Dimitrov, Stoyan; Tseng, Derek; Nagashima, Keita; Ozcan, Aydogan

    2013-01-01

    We demonstrate a compact and cost-effective imaging cytometry platform installed on a cell-phone for the measurement of the density of red and white blood cells as well as hemoglobin concentration in human blood samples. Fluorescent and bright-field images of blood samples are captured using separate optical attachments to the cell-phone and are rapidly processed through a custom-developed smart application running on the phone for counting of blood cells and determining hemoglobin density. We evaluated the performance of this cell-phone based blood analysis platform using anonymous human blood samples and achieved comparable results to a standard bench-top hematology analyser. Test results can either be stored on the cell-phone memory or be transmitted to a central server, providing remote diagnosis opportunities even in field settings. PMID:23392286

  18. Cost-effective and rapid blood analysis on a cell-phone.

    PubMed

    Zhu, Hongying; Sencan, Ikbal; Wong, Justin; Dimitrov, Stoyan; Tseng, Derek; Nagashima, Keita; Ozcan, Aydogan

    2013-04-07

    We demonstrate a compact and cost-effective imaging cytometry platform installed on a cell-phone for the measurement of the density of red and white blood cells as well as hemoglobin concentration in human blood samples. Fluorescent and bright-field images of blood samples are captured using separate optical attachments to the cell-phone and are rapidly processed through a custom-developed smart application running on the phone for counting of blood cells and determining hemoglobin density. We evaluated the performance of this cell-phone based blood analysis platform using anonymous human blood samples and achieved comparable results to a standard bench-top hematology analyser. Test results can either be stored on the cell-phone memory or be transmitted to a central server, providing remote diagnosis opportunities even in field settings.

  19. A new strategy for umbilical cord blood collection developed at the first Colombian public cord blood bank increases total nucleated cell content.

    PubMed

    Vanegas, Diana; Triviño, Lady; Galindo, Cristian; Franco, Leidy; Salguero, Gustavo; Camacho, Bernardo; Perdomo-Arciniegas, Ana-María

    2017-09-01

    The total nucleated cell dosage of umbilical cord blood (UCB) is an important factor in determining successful allogeneic hematopoietic stem cell transplantation after a minimum human leukocyte antigen donor-recipient match. The northern South American population is in need of a new-generation cord blood bank that cryopreserves only units with high total nucleated cell content, thereby increasing the likelihood of use. Colombia set up a public cord blood bank in 2014; and, as a result of its research for improving high total nucleated cell content, a new strategy for UCB collection was developed. Data from 2933 collected and 759 cryopreserved cord blood units between 2014 and 2015 were analyzed. The correlation of donor and collection variables with cellularity was evaluated. Moreover, blood volume, cell content, CD34+ count, clonogenic capacity, and microbial contamination were assessed comparing the new method, which combines in utero and ex utero techniques, with the conventional strategies. Multivariate analysis confirmed a correlation between neonatal birth weight and cell content. The new collection method increased total nucleated cell content in approximately 26% and did not alter pre-cryopreservation and post-thaw cell recovery, viability, or clonogenic ability. Furthermore, it showed a remarkably low microbial contamination rate (1.2%). The strategy for UCB collection developed at the first Colombian public cord blood bank increases total nucleated cell content and does not affect unit quality. The existence of this bank is a remarkable breakthrough for Latin-American patients in need of this kind of transplantation. © 2017 The Authors Transfusion published by Wiley Periodicals, Inc. on behalf of AABB.

  20. A Two-Dimensional Numerical Investigation of Transport of Malaria-Infected Red Blood Cells in Stenotic Microchannels

    PubMed Central

    Tao, Yong; Rongin, Uwitije; Xing, Zhongwen

    2016-01-01

    The malaria-infected red blood cells experience a significant decrease in cell deformability and increase in cell membrane adhesion. Blood hemodynamics in microvessels is significantly affected by the alteration of the mechanical property as well as the aggregation of parasitized red blood cells. In this study, we aim to numerically study the connection between cell-level mechanobiological properties of human red blood cells and related malaria disease state by investigating the transport of multiple red blood cell aggregates passing through microchannels with symmetric stenosis. Effects of stenosis magnitude, aggregation strength, and cell deformability on cell rheology and flow characteristics were studied by a two-dimensional model using the fictitious domain-immersed boundary method. The results indicated that the motion and dissociation of red blood cell aggregates were influenced by these factors and the flow resistance increases with the increase of aggregating strength and cell stiffness. Further, the roughness of the velocity profile was enhanced by cell aggregation, which considerably affected the blood flow characteristics. The study may assist us in understanding cellular-level mechanisms in disease development. PMID:28105411

  1. Examining the Origins of Myeloid Leukemia | Center for Cancer Research

    Cancer.gov

    Acute myeloid leukemia or AML, a cancer of the white blood cells, is the most common type of rapidly-growing leukemia in adults. The over-production of white blood cells in the bone marrow inhibits the development of other necessary blood components including red blood cells, which carry oxygen throughout the body, and platelets, which are required for clot formation. The

  2. Stem cell transplantation (cord blood transplants).

    PubMed

    Chao, Nelson J; Emerson, Stephen G; Weinberg, Kenneth I

    2004-01-01

    Allogeneic stem cell transplantation is an accepted treatment modality for selected malignant and non-malignant diseases. However, the ability to identify suitably matched related or unrelated donors can be difficult in some patients. Alternative sources of stem cells such as cord blood provide a readily available graft for such patients. Data accumulated over the past several years have demonstrated that the use of cord blood is an accepted source of stem cells for pediatric patients. Since the cell numbers of hematopoietic progenitors in cord blood is limited and the collection can occur only in a single occasion, its use in adult patients can be more problematic. Here, new developments in the use of cord blood for adults and studies aimed at expansion of cord blood cells and immune reconstitution are described. In Section I, Dr. Nelson Chao describes the early data in cord blood transplantation in adult patients. The patient outcomes are reviewed and analyzed for various factors such as cell dose, HLA typing, and patient selection that could have contributed to the final outcome of these adult patients. Myeloablative as well as nonmyeloablative approaches are presented. Discussion of the various benefits and risks are presented. More recent data from multiple single institutions as well as larger registry data comparisons are also provided. Analyses of these studies suggest methods to improve on the outcome. These newer data should lead to a logical progression in the use of cord blood cells in adult patients. In Section II, Dr. Stephen Emerson describes the historical efforts associated with expansion of hematopoietic stem cells, specifically with cord blood cells. These efforts to expand cord blood cells continue with novel methods. Moreover, a better understanding of stem cell biology and signaling is critical if we are to be able to effectively expand these cells for clinical use. An alternative, more direct, approach to expanding stem cells could be achieved by specific genetic pathways known or believed to support primitive HSC proliferation such as Notch-1 receptor activation, Wnt/LEF-1 pathway induction, telomerase or the Homeobox (Hox) gene products. The clinical experience with the use of expanded cord blood cells is also discussed. In Section III, Dr. Kenneth Weinberg describes immune reconstitution or lack thereof following cord blood transplantation. One of the hallmarks of successful hematopoietic stem cell transplantation is the ability to fully reconstitute the immune system of the recipient. Thus, the relationship between stem cell source and the development of T lymphocyte functions required for protection of the recipient from infection will be described, and cord blood recipients will be compared with those receiving other sources of stem cells. T cell development is described in detail, tracking from prethymic to postthymic lymphocytes with specific attention to umbilical cord blood as the source of stem cells. Moreover, a discussion of the placenta as a special microenvironment for umbilical cord blood is presented. Strategies to overcome the immunological defects are presented to improve the outcome of these recipients.

  3. Progenitor cell dose determines the pace and completeness of engraftment in a xenograft model for cord blood transplantation

    PubMed Central

    Liu, Congxiao; Chen, Benny J.; DeOliveira, Divinomar; Sempowski, Gregory D.; Chao, Nelson J.

    2010-01-01

    Two critical concerns in clinical cord blood transplantation are the initial time to engraftment and the subsequent restoration of immune function. These studies measured the impact of progenitor cell dose on both the pace and strength of hematopoietic reconstitution by transplanting nonobese diabetic/severe combined immunodeficiency/interleukin-2 receptor-gamma–null (NSγ) mice with lineage-depleted aldehyde dehydrogenase-bright CD34+ human cord blood progenitors. The progress of each transplant was monitored over an extended time course by repeatedly analyzing the peripheral blood for human hematopoietic cells. In vivo human hematopoietic development was complete. After long-term transplantation assays (≥ 19 weeks), human T-cell development was documented within multiple tissues in 16 of 32 NSγ mice. Human T-cell differentiation was active within NSγ thymuses, as documented by the presence of CD4+ CD8+ T-cell progenitors as well as T-cell receptor excision circles. It is important to note that although myeloid and B-cell engraftment was detected as early as 4 weeks after transplantation, human T-cell development was exclusively late onset. High progenitor cell doses were associated with a robust human hematopoietic chimerism that accelerated both initial time to engraftment and subsequent T-cell development. At lower progenitor cell doses, the chimerism was weak and the human hematopoietic lineage development was frequently incomplete. PMID:20833978

  4. Drosophila hematopoiesis under normal conditions and in response to immune stress.

    PubMed

    Letourneau, Manon; Lapraz, Francois; Sharma, Anurag; Vanzo, Nathalie; Waltzer, Lucas; Crozatier, Michèle

    2016-11-01

    The emergence of hematopoietic progenitors and their differentiation into various highly specialized blood cell types constitute a finely tuned process. Unveiling the genetic cascades that control blood cell progenitor fate and understanding how they are modulated in response to environmental changes are two major challenges in the field of hematopoiesis. In the last 20 years, many studies have established important functional analogies between blood cell development in vertebrates and in the fruit fly, Drosophila melanogaster. Thereby, Drosophila has emerged as a powerful genetic model for studying mechanisms that control hematopoiesis during normal development or in pathological situations. Moreover, recent advances in Drosophila have highlighted how intricate cell communication networks and microenvironmental cues regulate blood cell homeostasis. They have also revealed the striking plasticity of Drosophila mature blood cells and the presence of different sites of hematopoiesis in the larva. This review provides an overview of Drosophila hematopoiesis during development and summarizes our current knowledge on the molecular processes controlling larval hematopoiesis, both under normal conditions and in response to an immune challenge, such as wasp parasitism. © 2016 Federation of European Biochemical Societies.

  5. Bio-inspired Cryo-ink Preserves Red Blood Cell Phenotype and Function during Nanoliter Vitrification

    PubMed Central

    Assal, Rami El; Guven, Sinan; Gurkan, Umut Atakan; Gozen, Irep; Shafiee, Hadi; Dalbeyber, Sedef; Abdalla, Noor; Thomas, Gawain; Fuld, Wendy; Illigens, Ben M.W.; Estanislau, Jessica; Khoory, Joseph; Kaufman, Richard; Zylberberg, Claudia; Lindeman, Neal; Wen, Qi; Ghiran, Ionita; Demirci, Utkan

    2014-01-01

    Current red blood cell cryopreservation methods utilize bulk volumes, causing cryo-injury of cells, which results in irreversible disruption of cell morphology, mechanics, and function. An innovative approach to preserve human red blood cell morphology, mechanics, and function following vitrification in nanoliter volumes is developed using a novel cryo-ink integrated with a bio-printing approach. PMID:25047246

  6. Modeling malaria infected cells in microcirculation

    NASA Astrophysics Data System (ADS)

    Raffiee, Amir Hossein; Dabiri, Sadegh; Motavalizadeh Ardekani, Arezoo

    2016-11-01

    Plasmodim (P.) falciparum is one of the deadliest types of malaria species that invades healthy red blood cells (RBC) in human blood flow. This parasite develops through 48-hour intra-RBC process leading to significant morphological and mechanical (e.g., stiffening) changes in RBC membrane. These changes have remarkable effects on blood circulation such as increase in flow resistance and obstruction in microcirculation. In this work a computational framework is developed to model RBC suspension in blood flow using front-tracking technique. The present study focuses on blood flow behavior under normal and infected circumstances and predicts changes in blood rheology for different levels of parasitemia and hematocrit. This model allows better understanding of blood flow circulation up to a single cell level and provides us with realistic and deep insight into hematologic diseases such as malaria.

  7. Myeloid leukemia factor is a conserved regulator of RUNX transcription factor activity involved in hematopoiesis.

    PubMed

    Bras, Stéphanie; Martin-Lannerée, Séverine; Gobert, Vanessa; Augé, Benoît; Breig, Osman; Sanial, Matthieu; Yamaguchi, Masamitsu; Haenlin, Marc; Plessis, Anne; Waltzer, Lucas

    2012-03-27

    Defining the function of the genes that, like RUNX1, are deregulated in blood cell malignancies represents an important challenge. Myeloid leukemia factors (MLFs) constitute a poorly characterized family of conserved proteins whose founding member, MLF1, has been associated with acute myeloid leukemia in humans. To gain insight into the functions of this family, we investigated the role of the Drosophila MLF homolog during blood cell development. Here we report that mlf controls the homeostasis of the Drosophila hematopoietic system. Notably, mlf participates in a positive feedback loop to fine tune the activity of the RUNX transcription factor Lozenge (LZ) during development of the crystal cells, one of the two main blood cell lineages in Drosophila. At the molecular level, our data in cell cultures and in vivo strongly suggest that MLF controls the number of crystal cells by protecting LZ from degradation. Remarkably, it appears that the human MLF1 protein can substitute for MLF in the crystal cell lineage. In addition, MLF stabilizes the human oncogenic fusion protein RUNX1-ETO and is required for RUNX1-ETO-induced blood cell disorders in a Drosophila model of leukemia. Finally, using the human leukemic blood cell line Kasumi-1, we show that MLF1 depletion impairs RUNX1-ETO accumulation and reduces RUNX1-ETO-dependent proliferation. Thus, we propose that the regulation of RUNX protein levels is a conserved feature of MLF family members that could be critical for normal and pathological blood cell development.

  8. [Ischemic Changes in the Electrocardiogram and Circulatory Collapse Accompanied by Severe Anemia Owing to the Delay of Red Blood Cell Concentrate Transfusion in Two Patients with Intraoperative Massive Bleeding].

    PubMed

    Horiuchi, Toshinori; Noguchi, Teruo; Kurita, Naoko; Yamaguchi, Ayako; Takeda, Masafumi; Sha, Keiichi; Nagahata, Toshihiro

    2016-01-01

    We present two patients developing intraoperative massive bleeding and showed ischemic changes in the electrocardiogram and circulatory collapse accompanied by severe anemia owing to the delay of red blood cell concentrate transfusion. One patient underwent hepatectomy and the other pancreaticoduodenectomy. Their lowest hemoglobin concentration was around 2 g x dl(-1), and they showed ischemic changes in the electrocardiogram and severe decreases in blood pressure. The former received compatible red blood cell concentrate and the latter received uncrossmatched same blood group red blood cell concentrate immediately, and their electrocardiogram and blood pressure quickly improved. To avoid life-threatening anemia, emergency red blood cell concentrate transfusion including compatible different blood group transfusion should be applied for intraoperative massive bleeding.

  9. Control of RUNX-induced repression of Notch signaling by MLF and its partner DnaJ-1 during Drosophila hematopoiesis

    PubMed Central

    Gobert, Vanessa; Augé, Benoit; Burlet-Schiltz, Odile; Haenlin, Marc

    2017-01-01

    A tight regulation of transcription factor activity is critical for proper development. For instance, modifications of RUNX transcription factors dosage are associated with several diseases, including hematopoietic malignancies. In Drosophila, Myeloid Leukemia Factor (MLF) has been shown to control blood cell development by stabilizing the RUNX transcription factor Lozenge (Lz). However, the mechanism of action of this conserved family of proteins involved in leukemia remains largely unknown. Here we further characterized MLF’s mode of action in Drosophila blood cells using proteomic, transcriptomic and genetic approaches. Our results show that MLF and the Hsp40 co-chaperone family member DnaJ-1 interact through conserved domains and we demonstrate that both proteins bind and stabilize Lz in cell culture, suggesting that MLF and DnaJ-1 form a chaperone complex that directly regulates Lz activity. Importantly, dnaj-1 loss causes an increase in Lz+ blood cell number and size similarly as in mlf mutant larvae. Moreover we find that dnaj-1 genetically interacts with mlf to control Lz level and Lz+ blood cell development in vivo. In addition, we show that mlf and dnaj-1 loss alters Lz+ cell differentiation and that the increase in Lz+ blood cell number and size observed in these mutants is caused by an overactivation of the Notch signaling pathway. Finally, using different conditions to manipulate Lz activity, we show that high levels of Lz are required to repress Notch transcription and signaling. All together, our data indicate that the MLF/DnaJ-1-dependent increase in Lz level allows the repression of Notch expression and signaling to prevent aberrant blood cell development. Thus our findings establish a functional link between MLF and the co-chaperone DnaJ-1 to control RUNX transcription factor activity and Notch signaling during blood cell development in vivo. PMID:28742844

  10. Isolation of Rare Tumor Cells from Blood Cells with Buoyant Immuno-Microbubbles

    PubMed Central

    Shi, Guixin; Cui, Wenjin; Benchimol, Michael; Liu, Yu-Tsueng; Mattrey, Robert F.; Mukthavaram, Rajesh; Kesari, Santosh; Esener, Sadik C.; Simberg, Dmitri

    2013-01-01

    Circulating tumor cells (CTCs) are exfoliated at various stages of cancer, and could provide invaluable information for the diagnosis and prognosis of cancers. There is an urgent need for the development of cost-efficient and scalable technologies for rare CTC enrichment from blood. Here we report a novel method for isolation of rare tumor cells from excess of blood cells using gas-filled buoyant immuno-microbubbles (MBs). MBs were prepared by emulsification of perfluorocarbon gas in phospholipids and decorated with anti-epithelial cell adhesion molecule (EpCAM) antibody. EpCAM-targeted MBs efficiently (85%) and rapidly (within 15 minutes) bound to various epithelial tumor cells suspended in cell medium. EpCAM-targeted MBs efficiently (88%) isolated frequent tumor cells that were spiked at 100,000 cells/ml into plasma-depleted blood. Anti-EpCAM MBs efficiently (>77%) isolated rare mouse breast 4T1, human prostate PC-3 and pancreatic cancer BxPC-3 cells spiked into 1, 3 and 7 ml (respectively) of plasma-depleted blood. Using EpCAM targeted MBs CTCs from metastatic cancer patients were isolated, suggesting that this technique could be developed into a valuable clinical tool for isolation, enumeration and analysis of rare cells. PMID:23516425

  11. Selective differentiation and proliferation of hematopoietic cells induced by recombinant human interleukins.

    PubMed Central

    Saito, H; Hatake, K; Dvorak, A M; Leiferman, K M; Donnenberg, A D; Arai, N; Ishizaka, K; Ishizaka, T

    1988-01-01

    Effects of recombinant human interleukins on hematopoiesis were explored by using suspension cultures of mononuclear cells of human umbilical-cord blood and bone marrow. The results showed that interleukin 5 induced the selective differentiation and proliferation of eosinophils. After 3 weeks in culture with interleukin 5, essentially all nonadherent cells in both bone marrow and cord blood cell cultures became eosinophilic myelocytes. Culture of the same cells with interleukin 4 resulted in the selective growth of OKT3+ lymphocytes. However, OKT3+ cells did not develop if the bone marrow cells were depleted of OKT3+/OKT11+ cells prior to the culture, indicating that interleukin 4 induced the proliferation of a subpopulation of resting T cells present in cord blood and bone marrow cell preparations. In suspension cultures of bone marrow cells and cord blood cells grown in the presence of interleukin 3, basophilic, eosinophilic, and neutrophilic myelocytes and macrophages developed within 2 weeks. By 3 weeks, however, the majority of nonadherent cells became eosinophilic myelocytes. In contrast to mouse bone marrow cell cultures, neither interleukin 3 nor a combination of interleukins 3 and 4 induced the differentiation of mast cells in human bone marrow or cord blood cell cultures. Images PMID:3258425

  12. Blood cell interactions and segregation in flow.

    PubMed

    Munn, Lance L; Dupin, Michael M

    2008-04-01

    For more than a century, pioneering researchers have been using novel experimental and computational approaches to probe the mysteries of blood flow. Thanks to their efforts, we know that blood cells generally prefer to migrate to the axis of flow, that red and white cells segregate in flow, and that cell deformability and their tendency to reversibly aggregate contribute to the non-Newtonian nature of this unique fluid. All of these properties have beneficial physiological consequences, allowing blood to perform a variety of critical functions. Our current understanding of these unusual flow properties of blood have been made possible by the ingenuity and diligence of a number of researchers, including Harry Goldsmith, who developed novel technologies to visualize and quantify the flow of blood at the level of individual cells. Here we summarize efforts in our lab to continue this tradition and to further our understanding of how blood cells interact with each other and with the blood vessel wall.

  13. Immune Cells in Blood Recognize Tumors

    Cancer.gov

    NCI scientists have developed a novel strategy for identifying immune cells circulating in the blood that recognize specific proteins on tumor cells, a finding they believe may have potential implications for immune-based therapies.

  14. Genetics Home Reference: paroxysmal nocturnal hemoglobinuria

    MedlinePlus

    ... at increased risk of developing cancer in blood-forming cells (leukemia). In some cases, people who have ... mutations of the PIGA gene occur in blood-forming cells called hematopoietic stem cells, which are found ...

  15. Multiple mutant clones in blood rarely coexist

    NASA Astrophysics Data System (ADS)

    Dingli, David; Pacheco, Jorge M.; Traulsen, Arne

    2008-02-01

    Leukemias arise due to mutations in the genome of hematopoietic (blood) cells. Hematopoiesis has a multicompartment architecture, with cells exhibiting different rates of replication and differentiation. At the root of this process, one finds a small number of stem cells, and hence the description of the mutation-selection dynamics of blood cells calls for a stochastic approach. We use stochastic dynamics to investigate to which extent acquired hematopoietic disorders are associated with mutations of single or multiple genes within developing blood cells. Our analysis considers the appearance of mutations both in the stem cell compartment as well as in more committed compartments. We conclude that in the absence of genomic instability, acquired hematopoietic disorders due to mutations in multiple genes are most likely very rare events, as multiple mutations typically require much longer development times compared to those associated with a single mutation.

  16. Long-range ordered vorticity patterns in living tissue induced by cell division

    NASA Astrophysics Data System (ADS)

    Rossen, Ninna S.; Tarp, Jens M.; Mathiesen, Joachim; Jensen, Mogens H.; Oddershede, Lene B.

    2014-12-01

    In healthy blood vessels with a laminar blood flow, the endothelial cell division rate is low, only sufficient to replace apoptotic cells. The division rate significantly increases during embryonic development and under halted or turbulent flow. Cells in barrier tissue are connected and their motility is highly correlated. Here we investigate the long-range dynamics induced by cell division in an endothelial monolayer under non-flow conditions, mimicking the conditions during vessel formation or around blood clots. Cell divisions induce long-range, well-ordered vortex patterns extending several cell diameters away from the division site, in spite of the system’s low Reynolds number. Our experimental results are reproduced by a hydrodynamic continuum model simulating division as a local pressure increase corresponding to a local tension decrease. Such long-range physical communication may be crucial for embryonic development and for healing tissue, for instance around blood clots.

  17. Understanding the regulation of vertebrate hematopoiesis and blood disorders: big lessons from a small fish

    PubMed Central

    Robertson, Anne L.; Avagyan, Serine; Gansner, John M.; Zon, Leonard I.

    2017-01-01

    Hematopoietic stem cells (HSCs) give rise to all differentiated blood cells. Understanding the mechanisms that regulate self-renewal and lineage specification of HSCs is key for developing treatments for many human diseases. Zebrafish have emerged as an excellent model for studying vertebrate hematopoiesis. This review will highlight the unique strengths of zebrafish and important findings that have emerged from studies of blood development and disorders using this system. We discuss recent advances in our understanding of hematopoiesis, including the origin of HSCs, molecular control of their development, and key signaling pathways involved in their regulation. We highlight significant findings from zebrafish models of blood disorders, and discuss their application for investigating stem cell dysfunction in disease and for developing new therapeutics. PMID:27616157

  18. A microfluidic biochip for complete blood cell counts at the point-of-care

    PubMed Central

    Hassan, U.; Reddy, B.; Damhorst, G.; Sonoiki, O.; Ghonge, T.; Yang, C.; Bashir, R.

    2016-01-01

    Complete blood cell counts (CBCs) are one of the most commonly ordered and informative blood tests in hospitals. The results from a CBC, which typically include white blood cell (WBC) counts with differentials, red blood cell (RBC) counts, platelet counts and hemoglobin measurements, can have implications for the diagnosis and screening of hundreds of diseases and treatments. Bulky and expensive hematology analyzers are currently used as a gold standard for acquiring CBCs. For nearly all CBCs performed today, the patient must travel to either a hospital with a large laboratory or to a centralized lab testing facility. There is a tremendous need for an automated, portable point-of-care blood cell counter that could yield results in a matter of minutes from a drop of blood without any trained professionals to operate the instrument. We have developed microfluidic biochips capable of a partial CBC using only a drop of whole blood. Total leukocyte and their 3-part differential count are obtained from 10 μL of blood after on-chip lysing of the RBCs and counting of the leukocytes electrically using microfabricated platinum electrodes. For RBCs and platelets, 1 μL of whole blood is diluted with PBS on-chip and the cells are counted electrically. The total time for measurement is under 20 minutes. We demonstrate a high correlation of blood cell counts compared to results acquired with a commercial hematology analyzer. This technology could potentially have tremendous applications in hospitals at the bedside, private clinics, retail clinics and the developing world. PMID:26909365

  19. A microfluidic biochip for complete blood cell counts at the point-of-care.

    PubMed

    Hassan, U; Reddy, B; Damhorst, G; Sonoiki, O; Ghonge, T; Yang, C; Bashir, R

    2015-12-01

    Complete blood cell counts (CBCs) are one of the most commonly ordered and informative blood tests in hospitals. The results from a CBC, which typically include white blood cell (WBC) counts with differentials, red blood cell (RBC) counts, platelet counts and hemoglobin measurements, can have implications for the diagnosis and screening of hundreds of diseases and treatments. Bulky and expensive hematology analyzers are currently used as a gold standard for acquiring CBCs. For nearly all CBCs performed today, the patient must travel to either a hospital with a large laboratory or to a centralized lab testing facility. There is a tremendous need for an automated, portable point-of-care blood cell counter that could yield results in a matter of minutes from a drop of blood without any trained professionals to operate the instrument. We have developed microfluidic biochips capable of a partial CBC using only a drop of whole blood. Total leukocyte and their 3-part differential count are obtained from 10 μL of blood after on-chip lysing of the RBCs and counting of the leukocytes electrically using microfabricated platinum electrodes. For RBCs and platelets, 1 μL of whole blood is diluted with PBS on-chip and the cells are counted electrically. The total time for measurement is under 20 minutes. We demonstrate a high correlation of blood cell counts compared to results acquired with a commercial hematology analyzer. This technology could potentially have tremendous applications in hospitals at the bedside, private clinics, retail clinics and the developing world.

  20. Bio-inspired cryo-ink preserves red blood cell phenotype and function during nanoliter vitrification.

    PubMed

    El Assal, Rami; Guven, Sinan; Gurkan, Umut Atakan; Gozen, Irep; Shafiee, Hadi; Dalbeyler, Sedef; Abdalla, Noor; Thomas, Gawain; Fuld, Wendy; Illigens, Ben M W; Estanislau, Jessica; Khoory, Joseph; Kaufman, Richard; Zylberberg, Claudia; Lindeman, Neal; Wen, Qi; Ghiran, Ionita; Demirci, Utkan

    2014-09-03

    Current red-blood-cell cryopreservation methods utilize bulk volumes, causing cryo-injury of cells, which results in irreversible disruption of cell morphology, mechanics, and function. An innovative approach to preserve human red-blood-cell morphology, mechanics, and function following vitrification in nanoliter volumes is developed using a novel cryo-ink integrated with a bioprinting approach. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Separation of cancer cells from white blood cells by pinched flow fractionation.

    PubMed

    Pødenphant, Marie; Ashley, Neil; Koprowska, Kamila; Mir, Kalim U; Zalkovskij, Maksim; Bilenberg, Brian; Bodmer, Walter; Kristensen, Anders; Marie, Rodolphe

    2015-12-21

    In this paper, the microfluidic size-separation technique pinched flow fractionation (PFF) is used to separate cancer cells from white blood cells (WBCs). The cells are separated at efficiencies above 90% for both cell types. Circulating tumor cells (CTCs) are found in the blood of cancer patients and can form new tumors. CTCs are rare cells in blood, but they are important for the understanding of metastasis. There is therefore a high interest in developing a method for the enrichment of CTCs from blood samples, which also enables further analysis of the separated cells. The separation is challenged by the size overlap between cancer cells and the 10(6) times more abundant WBCs. The size overlap prevents high efficiency separation, however we demonstrate that cell deformability can be exploited in PFF devices to gain higher efficiencies than expected from the size distribution of the cells.

  2. Myeloid leukemia factor is a conserved regulator of RUNX transcription factor activity involved in hematopoiesis

    PubMed Central

    Bras, Stéphanie; Martin-Lannerée, Séverine; Gobert, Vanessa; Augé, Benoît; Breig, Osman; Sanial, Matthieu; Yamaguchi, Masamitsu; Haenlin, Marc; Plessis, Anne; Waltzer, Lucas

    2012-01-01

    Defining the function of the genes that, like RUNX1, are deregulated in blood cell malignancies represents an important challenge. Myeloid leukemia factors (MLFs) constitute a poorly characterized family of conserved proteins whose founding member, MLF1, has been associated with acute myeloid leukemia in humans. To gain insight into the functions of this family, we investigated the role of the Drosophila MLF homolog during blood cell development. Here we report that mlf controls the homeostasis of the Drosophila hematopoietic system. Notably, mlf participates in a positive feedback loop to fine tune the activity of the RUNX transcription factor Lozenge (LZ) during development of the crystal cells, one of the two main blood cell lineages in Drosophila. At the molecular level, our data in cell cultures and in vivo strongly suggest that MLF controls the number of crystal cells by protecting LZ from degradation. Remarkably, it appears that the human MLF1 protein can substitute for MLF in the crystal cell lineage. In addition, MLF stabilizes the human oncogenic fusion protein RUNX1-ETO and is required for RUNX1-ETO–induced blood cell disorders in a Drosophila model of leukemia. Finally, using the human leukemic blood cell line Kasumi-1, we show that MLF1 depletion impairs RUNX1-ETO accumulation and reduces RUNX1-ETO–dependent proliferation. Thus, we propose that the regulation of RUNX protein levels is a conserved feature of MLF family members that could be critical for normal and pathological blood cell development. PMID:22411814

  3. Microdevice for the isolation and enumeration of cancer cells from blood.

    PubMed

    Tan, Swee Jin; Yobas, Levent; Lee, Gabriel Yew Hoe; Ong, Choon Nam; Lim, Chwee Teck

    2009-08-01

    Cancer metastasis is the main attribute to cancer-related deaths. Furthermore, clinical reports have shown a strong correlation between the disease development and number of circulating tumor cells (CTCs) in the peripheral blood of cancer patients. Here, we present a label-free microdevice capable of isolating cancer cells from whole blood via their distinctively different physical properties such as deformability and size. The isolation efficiency is at least 80% for tests performed on breast and colon cancer cells. Viable isolated cells are also obtained which may give further insights to the understanding of the metastatic process. Contrasting with conventional biochemical techniques, the uniqueness of this microdevice lies in the mechanistic and efficient means of isolating viable cancer cells in blood. The microdevice has the potential to be used for routine monitoring of cancer development and cancer therapy in a clinical setting.

  4. The Asymmetric Cell Division Regulators Par3, Scribble and Pins/Gpsm2 Are Not Essential for Erythroid Development or Enucleation

    PubMed Central

    Wölwer, Christina B.; Gödde, Nathan; Pase, Luke B.; Elsum, Imogen A.; Lim, Krystle Y. B.; Sacirbegovic, Faruk; Walkley, Carl R.; Ellis, Sarah; Ohno, Shigeo; Matsuzaki, Fumio; Russell, Sarah M.; Humbert, Patrick O.

    2017-01-01

    Erythroid enucleation is the process by which the future red blood cell disposes of its nucleus prior to entering the blood stream. This key event during red blood cell development has been likened to an asymmetric cell division (ACD), by which the enucleating erythroblast divides into two very different daughter cells of alternate molecular composition, a nucleated cell that will be removed by associated macrophages, and the reticulocyte that will mature to the definitive erythrocyte. Here we investigated gene expression of members of the Par, Scribble and Pins/Gpsm2 asymmetric cell division complexes in erythroid cells, and functionally tested their role in erythroid enucleation in vivo and ex vivo. Despite their roles in regulating ACD in other contexts, we found that these polarity regulators are not essential for erythroid enucleation, nor for erythroid development in vivo. Together our results put into question a role for cell polarity and asymmetric cell division in erythroid enucleation. PMID:28095473

  5. A functional requirement for astroglia in promoting blood vessel development in the early postnatal brain.

    PubMed

    Ma, Shang; Kwon, Hyo Jun; Huang, Zhen

    2012-01-01

    Astroglia are a major cell type in the brain and play a key role in many aspects of brain development and function. In the adult brain, astrocytes are known to intimately ensheath blood vessels and actively coordinate local neural activity and blood flow. During development of the neural retina, blood vessel growth follows a meshwork of astrocytic processes. Several genes have also been implicated in retinal astrocytes for regulating vessel development. This suggests a role of astrocytes in promoting angiogenesis throughout the central nervous system. To determine the roles that astrocytes may play during brain angiogenesis, we employ genetic approaches to inhibit astrogliogenesis during perinatal corticogenesis and examine its effects on brain vessel development. We find that conditional deletion from glial progenitors of orc3, a gene required for DNA replication, dramatically reduces glial progenitor cell number in the subventricular zone and astrocytes in the early postnatal cerebral cortex. This, in turn, results in severe reductions in both the density and branching frequency of cortical blood vessels. Consistent with a delayed growth but not regression of vessels, we find neither significant net decreases in vessel density between different stages after normalizing for cortical expansion nor obvious apoptosis of endothelial cells in these mutants. Furthermore, concomitant with loss of astroglial interactions, we find increased endothelial cell proliferation, enlarged vessel luminal size as well as enhanced cytoskeletal gene expression in pericytes, which suggests compensatory changes in vascular cells. Lastly, we find that blood vessel morphology in mutant cortices recovers substantially at later stages, following astrogliosis. These results thus implicate a functional requirement for astroglia in promoting blood vessel growth during brain development.

  6. Development of a high-sensitivity and portable cell using Helmholtz resonance for noninvasive blood glucose-level measurement based on photoacoustic spectroscopy.

    PubMed

    Tachibana, K; Okada, K; Kobayashi, R; Ishihara, Y

    2016-08-01

    We describe the possibility of high-sensitivity noninvasive blood glucose measurement based on photoacoustic spectroscopy (PAS). The demand for noninvasive blood glucose-level measurement has increased due to the explosive increase in diabetic patients. We have developed a noninvasive blood glucose-level measurement based on PAS. The conventional method uses a straight-type resonant cell. However, the cell volume is large, which results in a low detection sensitivity and difficult portability. In this paper, a small-sized Helmholtz-type resonant cell is proposed to improve detection sensitivity and portability by reducing the cell dead volume. First, the acoustic property of the small-sized Helmholtz-type resonant cell was evaluated by performing an experiment using a silicone rubber. As a result, the detection sensitivity of the small-sized Helmholtz-type resonant cell was approximately two times larger than that of the conventional straight-type resonant cell. In addition, the inside volume was approximately 30 times smaller. Second, the detection limits of glucose concentration were estimated by performing an experiment using glucose solutions. The experimental results showed that a glucose concentration of approximately 1% was detected by the small-sized Helmholtz-type resonant cell. Although these results on the sensitivity of blood glucose-level measurement are currently insufficient, they suggest that miniaturization of a resonance cell is effective in the application of noninvasive blood glucose-level measurement.

  7. Sample to answer visualization pipeline for low-cost point-of-care blood cell counting

    NASA Astrophysics Data System (ADS)

    Smith, Suzanne; Naidoo, Thegaran; Davies, Emlyn; Fourie, Louis; Nxumalo, Zandile; Swart, Hein; Marais, Philip; Land, Kevin; Roux, Pieter

    2015-03-01

    We present a visualization pipeline from sample to answer for point-of-care blood cell counting applications. Effective and low-cost point-of-care medical diagnostic tests provide developing countries and rural communities with accessible healthcare solutions [1], and can be particularly beneficial for blood cell count tests, which are often the starting point in the process of diagnosing a patient [2]. The initial focus of this work is on total white and red blood cell counts, using a microfluidic cartridge [3] for sample processing. Analysis of the processed samples has been implemented by means of two main optical visualization systems developed in-house: 1) a fluidic operation analysis system using high speed video data to determine volumes, mixing efficiency and flow rates, and 2) a microscopy analysis system to investigate homogeneity and concentration of blood cells. Fluidic parameters were derived from the optical flow [4] as well as color-based segmentation of the different fluids using a hue-saturation-value (HSV) color space. Cell count estimates were obtained using automated microscopy analysis and were compared to a widely accepted manual method for cell counting using a hemocytometer [5]. The results using the first iteration microfluidic device [3] showed that the most simple - and thus low-cost - approach for microfluidic component implementation was not adequate as compared to techniques based on manual cell counting principles. An improved microfluidic design has been developed to incorporate enhanced mixing and metering components, which together with this work provides the foundation on which to successfully implement automated, rapid and low-cost blood cell counting tests.

  8. Smart blood cell and microvesicle-based Trojan horse drug delivery: Merging expertise in blood transfusion and biomedical engineering in the field of nanomedicine.

    PubMed

    Wu, Yu-Wen; Goubran, Hadi; Seghatchian, Jerard; Burnouf, Thierry

    2016-04-01

    Therapeutic and diagnostic applications of nanomedicine are playing increasingly important roles in human health. Various types of synthetic nanoparticles, including liposomes, micelles, and other nanotherapeutic platforms and conjugates, are being engineered to encapsulate or carry drugs for treating diseases such as cancer, cardiovascular disorders, neurodegeneration, and inflammations. Nanocarriers are designed to increase the half-life of drugs, decrease their toxicity and, ideally, target pathological sites. Developing smart carriers with the capacity to deliver drugs specifically to the microenvironment of diseased cells with minimum systemic toxicity is the goal. Blood cells, and potentially also the liposome-like micro- and nano-vesicles they generate, may be regarded as ideally suited to perform such specific targeting with minimum immunogenic risks. Blood cell membranes are "decorated" with complex physiological receptors capable of targeting and communicating with other cells and tissues and delivering their content to the surrounding pathological microenvironment. Blood cells, such as erythrocytes, have been developed as permeable carriers to release drugs to diseased tissues or act as biofactory allowing enzymatic degradation of a pathological substrate. Interestingly, attempts are also being made to improve the targeting capacity of synthetic nanoparticles by "decorating" their surface with blood cell membrane receptor-like biochemical structures. Research is needed to further explore the benefits that blood cell-derived microvesicles, as a Trojan horse delivery systems, can bring to the arsenal of therapeutic micro- and nanotechnologies. This short review focuses on the therapeutic roles that red blood cells and platelets can play as smart drug-delivery systems, and highlights the benefits that blood transfusion expertise can bring to this exciting and novel biomedical engineering field. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Mutation of the NPM1 gene contributes to the development of donor cell-derived acute myeloid leukemia after unrelated cord blood transplantation for acute lymphoblastic leukemia.

    PubMed

    Rodríguez-Macías, Gabriela; Martínez-Laperche, Carolina; Gayoso, Jorge; Noriega, Víctor; Serrano, David; Balsalobre, Pascual; Muñoz-Martínez, Cristina; Díez-Martín, José L; Buño, Ismael

    2013-08-01

    Donor cell leukemia (DCL) is a rare but severe complication after allogeneic stem cell transplantation. Its true incidence is unknown because of a lack of correct recognition and reporting, although improvements in molecular analysis of donor-host chimerism are contributing to a better diagnosis of this complication. The mechanisms of leukemogenesis are unclear, and multiple factors can contribute to the development of DCL. In recent years, cord blood has emerged as an alternative source of hematopoietic progenitor cells, and at least 12 cases of DCL have been reported after unrelated cord blood transplantation. We report a new case of DCL after unrelated cord blood transplantation in a 44-year-old woman diagnosed as having acute lymphoblastic leukemia with t(1;19) that developed acute myeloid leukemia with normal karyotype and nucleophosmin (NPM1) mutation in donor cells. To our knowledge, this is the first report of NPM1 mutation contributing to DCL development. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Concise review: stem cell-derived erythrocytes as upcoming players in blood transfusion.

    PubMed

    Zeuner, Ann; Martelli, Fabrizio; Vaglio, Stefania; Federici, Giulia; Whitsett, Carolyn; Migliaccio, Anna Rita

    2012-08-01

    Blood transfusions have become indispensable to treat the anemia associated with a variety of medical conditions ranging from genetic disorders and cancer to extensive surgical procedures. In developed countries, the blood supply is generally adequate. However, the projected decline in blood donor availability due to population ageing and the difficulty in finding rare blood types for alloimmunized patients indicate a need for alternative red blood cell (RBC) transfusion products. Increasing knowledge of processes that govern erythropoiesis has been translated into efficient procedures to produce RBC ex vivo using primary hematopoietic stem cells, embryonic stem cells, or induced pluripotent stem cells. Although in vitro-generated RBCs have recently entered clinical evaluation, several issues related to ex vivo RBC production are still under intense scrutiny: among those are the identification of stem cell sources more suitable for ex vivo RBC generation, the translation of RBC culture methods into clinical grade production processes, and the development of protocols to achieve maximal RBC quality, quantity, and maturation. Data on size, hemoglobin, and blood group antigen expression and phosphoproteomic profiling obtained on erythroid cells expanded ex vivo from a limited number of donors are presented as examples of the type of measurements that should be performed as part of the quality control to assess the suitability of these cells for transfusion. New technologies for ex vivo erythroid cell generation will hopefully provide alternative transfusion products to meet present and future clinical requirements. Copyright © 2012 AlphaMed Press.

  11. Blood Cell Interactions and Segregation in Flow

    PubMed Central

    Munn, Lance L.; Dupin, Michael M.

    2009-01-01

    For more than a century, pioneering researchers have been using novel experimental and computational approaches to probe the mysteries of blood flow. Thanks to their efforts, we know that blood cells generally prefer to migrate to the axis of flow, that red and white cells segregate in flow, and that cell deformability and their tendency to reversibly aggregate contribute to the non-Newtonian nature of this unique fluid. All of these properties have beneficial physiological consequences, allowing blood to perform a variety of critical functions. Our current understanding of these unusual flow properties of blood have been made possible by the ingenuity and diligence of a number of researchers, including Harry Goldsmith, who developed novel technologies to visualize and quantify the flow of blood at the level of individual cells. Here we summarize efforts in our lab to continue this tradition and to further our understanding of how blood cells interact with each other and with the blood vessel wall. PMID:18188702

  12. Systems biology of stored blood cells: can it help to extend the expiration date?

    PubMed

    Paglia, Giuseppe; Palsson, Bernhard Ø; Sigurjonsson, Olafur E

    2012-12-05

    With increasingly stringent regulations regarding deferral and elimination of blood donors it will become increasingly important to extend the expiration date of blood components beyond the current allowed storage periods. One reason for the storage time limit for blood components is that platelets and red blood cells develop a condition called storage lesions during their storage in plastic blood containers. Systems biology provides comprehensive bio-chemical descriptions of organisms through quantitative measurements and data integration in mathematical models. The biological knowledge for a target organism can be translated in a mathematical format and used to compute physiological properties. The use of systems biology represents a concrete solution in the study of blood cell storage lesions, and it may open up new avenues towards developing better storage methods and better storage media, thereby extending the storage period of blood components. This article is part of a Special Issue entitled: Integrated omics. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Accurate label-free 3-part leukocyte recognition with single cell lens-free imaging flow cytometry.

    PubMed

    Li, Yuqian; Cornelis, Bruno; Dusa, Alexandra; Vanmeerbeeck, Geert; Vercruysse, Dries; Sohn, Erik; Blaszkiewicz, Kamil; Prodanov, Dimiter; Schelkens, Peter; Lagae, Liesbet

    2018-05-01

    Three-part white blood cell differentials which are key to routine blood workups are typically performed in centralized laboratories on conventional hematology analyzers operated by highly trained staff. With the trend of developing miniaturized blood analysis tool for point-of-need in order to accelerate turnaround times and move routine blood testing away from centralized facilities on the rise, our group has developed a highly miniaturized holographic imaging system for generating lens-free images of white blood cells in suspension. Analysis and classification of its output data, constitutes the final crucial step ensuring appropriate accuracy of the system. In this work, we implement reference holographic images of single white blood cells in suspension, in order to establish an accurate ground truth to increase classification accuracy. We also automate the entire workflow for analyzing the output and demonstrate clear improvement in the accuracy of the 3-part classification. High-dimensional optical and morphological features are extracted from reconstructed digital holograms of single cells using the ground-truth images and advanced machine learning algorithms are investigated and implemented to obtain 99% classification accuracy. Representative features of the three white blood cell subtypes are selected and give comparable results, with a focus on rapid cell recognition and decreased computational cost. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Effect of Packed Red Blood Cell Cryopreservation on Development of the Storage Lesion and Inflammation

    DTIC Science & Technology

    2015-09-01

    Scientific International Inc., Hampton, NH) at 22°C. Lactic acid (LA) and cell free potassium (K+) were measured using point of care clinical blood...equilibrium maintained by adenosine triphosphate (ATP) dependent potassium pumps [17]. Lactic acid accumulation was more pronounced in the first 21 days...Hct hematocrit Hgb hemoglobin K+ cell free potassium LA lactic acid pRBC packed red blood cell PS phosphatidylserine

  15. Postoperative acute kidney injury following intraoperative blood product transfusions during cardiac surgery.

    PubMed

    Kindzelski, Bogdan A; Corcoran, Philip; Siegenthaler, Michael P; Horvath, Keith A

    2018-01-01

    This study explored the nature of the association between intraoperative usage of red blood cell, fresh frozen plasma, cryoprecipitate or platelet transfusions and acute kidney injury. A total of 1175 patients who underwent cardiac surgery between 2008 and 2013 were retrospectively analyzed. We assessed the association between: (1) preoperative patient characteristics and acute kidney injury, (2) intraoperative blood product usage and acute kidney injury, (3) acute kidney injury and 30-day mortality or re-hospitalization. In our cohort of 1175 patients, 288 patients (24.5%) developed acute kidney injury. This included 162 (13.8%), 69 (5.9%) and 57 (4.9%) developing stage 1, stage 2 or stage 3 acute kidney injury, respectively. Increased red blood cell, fresh frozen plasma or platelet transfusions increased the odds of developing acute kidney injury. Specifically, every unit of red blood cells, fresh frozen plasma or platelets transfused was associated with an increase in the covariate-adjusted odds ratio of developing ⩾ stage 2 kidney injury of 1.18, 1.19 and 1.04, respectively. Intraoperative blood product transfusions were independently associated with an increased odds of developing acute kidney injury following cardiac surgery. Further randomized studies are needed to better define intraoperative transfusion criteria.

  16. Development, history, and future of automated cell counters.

    PubMed

    Green, Ralph; Wachsmann-Hogiu, Sebastian

    2015-03-01

    Modern automated hematology instruments use either optical methods (light scatter), impedance-based methods based on the Coulter principle (changes in electrical current induced by blood cells flowing through an electrically charged opening), or a combination of both optical and impedance-based methods. Progressive improvement in these instruments has allowed the enumeration and evaluation of blood cells with great accuracy, precision, and speed at very low cost. Future directions of hematology instrumentation include the addition of new parameters and the development of point-of-care instrumentation. In the future, in-vivo analysis of blood cells may allow noninvasive and near-continuous measurements. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Cell junction dynamics in the testis: Sertoli-germ cell interactions and male contraceptive development.

    PubMed

    Cheng, C Yan; Mruk, Dolores D

    2002-10-01

    Spermatogenesis is an intriguing but complicated biological process. However, many studies since the 1960s have focused either on the hormonal events of the hypothalamus-pituitary-testicular axis or morphological events that take place in the seminiferous epithelium. Recent advances in biochemistry, cell biology, and molecular biology have shifted attention to understanding some of the key events that regulate spermatogenesis, such as germ cell apoptosis, cell cycle regulation, Sertoli-germ cell communication, and junction dynamics. In this review, we discuss the physiology and biology of junction dynamics in the testis, in particular how these events affect interactions of Sertoli and germ cells in the seminiferous epithelium behind the blood-testis barrier. We also discuss how these events regulate the opening and closing of the blood-testis barrier to permit the timely passage of preleptotene and leptotene spermatocytes across the blood-testis barrier. This is physiologically important since developing germ cells must translocate across the blood-testis barrier as well as traverse the seminiferous epithelium during their development. We also discuss several available in vitro and in vivo models that can be used to study Sertoli-germ cell anchoring junctions and Sertoli-Sertoli tight junctions. An in-depth survey in this subject has also identified several potential targets to be tackled to perturb spermatogenesis, which will likely lead to the development of novel male contraceptives.

  18. Pinched flow coupled shear-modulated inertial microfluidics for high-throughput rare blood cell separation.

    PubMed

    Bhagat, Ali Asgar S; Hou, Han Wei; Li, Leon D; Lim, Chwee Teck; Han, Jongyoon

    2011-06-07

    Blood is a highly complex bio-fluid with cellular components making up >40% of the total volume, thus making its analysis challenging and time-consuming. In this work, we introduce a high-throughput size-based separation method for processing diluted blood using inertial microfluidics. The technique takes advantage of the preferential cell focusing in high aspect-ratio microchannels coupled with pinched flow dynamics for isolating low abundance cells from blood. As an application of the developed technique, we demonstrate the isolation of cancer cells (circulating tumor cells (CTCs)) spiked in blood by exploiting the difference in size between CTCs and hematologic cells. The microchannel dimensions and processing parameters were optimized to enable high throughput and high resolution separation, comparable to existing CTC isolation technologies. Results from experiments conducted with MCF-7 cells spiked into whole blood indicate >80% cell recovery with an impressive 3.25 × 10(5) fold enrichment over red blood cells (RBCs) and 1.2 × 10(4) fold enrichment over peripheral blood leukocytes (PBL). In spite of a 20× sample dilution, the fast operating flow rate allows the processing of ∼10(8) cells min(-1) through a single microfluidic device. The device design can be easily customized for isolating other rare cells from blood including peripheral blood leukocytes and fetal nucleated red blood cells by simply varying the 'pinching' width. The advantage of simple label-free separation, combined with the ability to retrieve viable cells post enrichment and minimal sample pre-processing presents numerous applications for use in clinical diagnosis and conducting fundamental studies.

  19. Concise review: stem cell-based approaches to red blood cell production for transfusion.

    PubMed

    Shah, Siddharth; Huang, Xiaosong; Cheng, Linzhao

    2014-03-01

    Blood transfusion is a common procedure in modern medicine, and it is practiced throughout the world; however, many countries report a less than sufficient blood supply. Even in developed countries where the supply is currently adequate, projected demographics predict an insufficient supply as early as 2050. The blood supply is also strained during occasional widespread disasters and crises. Transfusion of blood components such as red blood cells (RBCs), platelets, or neutrophils is increasingly used from the same blood unit for multiple purposes and to reduce alloimmune responses. Even for RBCs and platelets lacking nuclei and many antigenic cell-surface molecules, alloimmunity could occur, especially in patients with chronic transfusion requirements. Once alloimmunization occurs, such patients require RBCs from donors with a different blood group antigen combination, making it a challenge to find donors after every successive episode of alloimmunization. Alternative blood substitutes such as synthetic oxygen carriers have so far proven unsuccessful. In this review, we focus on current research and technologies that permit RBC production ex vivo from hematopoietic stem cells, pluripotent stem cells, and immortalized erythroid precursors.

  20. Traveling waves in a coupled reaction-diffusion and difference model of hematopoiesis

    NASA Astrophysics Data System (ADS)

    Adimy, M.; Chekroun, A.; Kazmierczak, B.

    2017-04-01

    The formation and development of blood cells is a very complex process, called hematopoiesis. This process involves a small population of cells called hematopoietic stem cells (HSCs). The HSCs are undifferentiated cells, located in the bone marrow before they become mature blood cells and enter the blood stream. They have a unique ability to produce either similar cells (self-renewal), or cells engaged in one of different lineages of blood cells: red blood cells, white cells and platelets (differentiation). The HSCs can be either in a proliferating or in a quiescent phase. In this paper, we distinguish between dividing cells that enter directly to the quiescent phase and dividing cells that return to the proliferating phase to divide again. We propose a mathematical model describing the dynamics of HSC population, taking into account their spatial distribution. The resulting model is a coupled reaction-diffusion equation and difference equation with delay. We study the existence of monotone traveling wave fronts and the asymptotic speed of spread.

  1. Nanomolar concentration of blood-soluble drag-reducing polymer inhibits experimental metastasis of human breast cancer cells

    PubMed Central

    Ding, Zhijie; Joy, Marion; Kameneva, Marina V; Roy, Partha

    2017-01-01

    Metastasis is the leading cause of cancer mortality. Extravasation of cancer cells is a critical step of metastasis. We report a novel proof-of-concept study that investigated whether non-toxic blood-soluble chemical agents capable of rheological modification of the near-vessel-wall blood flow can reduce extravasation of tumor cells and subsequent development of metastasis. Using an experimental metastasis model, we demonstrated that systemic administration of nanomolar concentrations of so-called drag-reducing polymer dramatically impeded extravasation and development of pulmonary metastasis of breast cancer cells in mice. This is the first proof-of-principle study to directly demonstrate physical/rheological, as opposed to chemical, way to prevent cancer cells from extravasation and developing metastasis and, thus, it opens the possibility of a new direction of adjuvant interventional approach in cancer. PMID:28280386

  2. The counting of native blood cells by digital microscopy

    NASA Astrophysics Data System (ADS)

    Torbin, S. O.; Doubrovski, V. A.; Zabenkov, I. V.; Tsareva, O. E.

    2017-03-01

    An algorithm for photographic images processing of blood samples in its native state was developed to determine the concentration of erythrocytes, leukocytes and platelets without individual separate preparation of cells' samples. Special "photo templates" were suggested to use in order to identify red blood cells. The effect of "highlighting" of leukocytes, which was found by authors, was used to increase the accuracy of this type of cells counting. Finally to raise the resolution of platelets from leukocytes the areas of their photo images were used, but not their sizes. It is shown that the accuracy of cells counting for native blood samples may be comparable with the accuracy of similar studies for smears. At the same time the proposed native blood analysis simplifies greatly the procedure of sample preparation in comparison to smear, permits to move from the detection of blood cells ratio to the determination of their concentrations in the sample.

  3. T cell subsets in cord blood are influenced by maternal allergy and associated with atopic dermatitis.

    PubMed

    Fu, Yujing; Lou, Hongfei; Wang, Chengshuo; Lou, Wei; Wang, Yang; Zheng, Tao; Zhang, Luo

    2013-03-01

    This study aimed to investigate the influence of maternal allergy on cord blood regulatory and effector T cells and to evaluate their role as a predictor of atopic dermatitis (AD) during the first 2 yr of life. Seventy mother-infant pairs were recruited in this prospective birth cohort study (21 allergic and 49 non-allergic mothers). Cord blood samples were collected and assayed for the percentage of regulatory T cells (Treg), interferon-γ (IFN-γ), and interleukin-4 (IL-4) producing T cells (Th1 and Th2, respectively) using flow cytometry. Experiments were undertaken to assess the function of cord blood CD4(+) CD25(+) CD127(-) Treg cells by cell proliferation and cytokine responses. Their offspring at the age of 2 yr old were evaluated by dermatologists to determine whether they had AD. During the first 2 yr of life, 15.7% of the children developed a physician-diagnosed AD. A significantly increased percentage of Th2 cell was observed in cord blood of newborns with maternal allergy. Treg/Th2 ratio significantly decreased among the offspring of allergic mothers. Treg cell-associated suppression of Th2 response was attenuated in Der p1-stimulated CD4(+) CD25(-) T cells from the offspring of allergic mothers. Children with reduced Th1/Th2 (p = 0.001, OR = 0.37) and Treg/Th2 (p = 0.001, OR = 0.47) ratio in cord blood had a higher risk of developing AD. Maternal allergic status is associated with increased percentage of IL-4(+) CD4(+) T cells and a reduced Treg/Th2 ratio in cord blood at their children's birth, which may predispose to an increased risk for developing AD. © 2013 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  4. DIRECTIONAL FLUID TRANSPORT ACROSS ORGAN-BLOOD BARRIERS: PHYSIOLOGY AND CELL BIOLOGY

    PubMed Central

    Caceres, Paulo S.; Benedicto, Ignacio; Lehmann, Guillermo L.; Rodriguez-Boulan, Enrique J.

    2018-01-01

    Directional fluid flow is an essential process for embryo development as well as for organ and organism homeostasis. Here, we review the diverse structure of various organ-blood barriers, the driving forces, transporters and polarity mechanisms that regulate fluid transport across them, focusing on kidney-, eye- and brain-blood barriers. We end by discussing how cross-talk between barrier epithelial and endothelial cells, perivascular cells and basement membrane signaling contribute to generate and maintain organ-blood barriers. PMID:28003183

  5. DEVELOPMENT OF THE U.S. EPA HEALTH EFFECTS RESEARCH LABORATORY FROZEN BLOOD CELL REPOSITORY PROGRAM

    EPA Science Inventory

    In previous efforts, we suggested that proper blood cell freezing and storage is necessary in longitudinal studies with reduced between tests error, for specimen sharing between laboratories and for convenient scheduling of assays. e continue to develop and upgrade programs for o...

  6. Toward Rare Blood Cell Preservation for RNA Sequencing.

    PubMed

    Vickovic, Sanja; Ahmadian, Afshin; Lewensohn, Rolf; Lundeberg, Joakim

    2015-07-01

    Cancer is driven by various events leading to cell differentiation and disease progression. Molecular tools are powerful approaches for describing how and why these events occur. With the growing field of next-generation DNA sequencing, there is an increasing need for high-quality nucleic acids derived from human cells and tissues-a prerequisite for successful cell profiling. Although advances in RNA preservation have been made, some of the largest biobanks still do not employ RNA blood preservation as standard because of limitations in low blood-input volume and RNA stability over the whole gene body. Therefore, we have developed a robust protocol for blood preservation and long-term storage while maintaining RNA integrity. Furthermore, we explored the possibility of using the protocol for preserving rare cell samples, such as circulating tumor cells. The results of our study confirmed that gene expression was not impacted by the preservation procedure (r(2) > 0.88) or by long-term storage (r(2) = 0.95), with RNA integrity number values averaging over 8. Similarly, cell surface antigens were still available for antibody selection (r(2) = 0.95). Lastly, data mining for fusion events showed that it was possible to detect rare tumor cells among a background of other cells present in blood irrespective of fixation. Thus, the developed protocol would be suitable for rare blood cell preservation followed by RNA sequencing analysis. Copyright © 2015 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  7. Induced Pluripotent Stem Cell-Derived Red Blood Cells and Platelet Concentrates: From Bench to Bedside.

    PubMed

    Focosi, Daniele; Amabile, Giovanni

    2017-12-27

    Red blood cells and platelets are anucleate blood components indispensable for oxygen delivery and hemostasis, respectively. Derivation of these blood elements from induced pluripotent stem (iPS) cells has the potential to develop blood donor-independent and genetic manipulation-prone products to complement or replace current transfusion banking, also minimizing the risk of alloimmunization. While the production of erythrocytes from iPS cells has challenges to overcome, such as differentiation into adult-type phenotype that functions properly after transfusion, platelet products are qualitatively and quantitatively approaching a clinically-applicable level owing to advances in expandable megakaryocyte (MK) lines, platelet-producing bioreactors, and novel reagents. Guidelines that assure the quality of iPS cells-derived blood products for clinical application represent a novel challenge for regulatory agencies. Considering the minimal risk of tumorigenicity and the expected significant demand of such products, ex vivo production of iPS-derived blood components can pave the way for iPS translation into the clinic.

  8. Image classification of unlabeled malaria parasites in red blood cells.

    PubMed

    Zheng Zhang; Ong, L L Sharon; Kong Fang; Matthew, Athul; Dauwels, Justin; Ming Dao; Asada, Harry

    2016-08-01

    This paper presents a method to detect unlabeled malaria parasites in red blood cells. The current "gold standard" for malaria diagnosis is microscopic examination of thick blood smear, a time consuming process requiring extensive training. Our goal is to develop an automate process to identify malaria infected red blood cells. Major issues in automated analysis of microscopy images of unstained blood smears include overlapping cells and oddly shaped cells. Our approach creates robust templates to detect infected and uninfected red cells. Histogram of Oriented Gradients (HOGs) features are extracted from templates and used to train a classifier offline. Next, the ViolaJones object detection framework is applied to detect infected and uninfected red cells and the image background. Results show our approach out-performs classification approaches with PCA features by 50% and cell detection algorithms applying Hough transforms by 24%. Majority of related work are designed to automatically detect stained parasites in blood smears where the cells are fixed. Although it is more challenging to design algorithms for unstained parasites, our methods will allow analysis of parasite progression in live cells under different drug treatments.

  9. Blood bank issues associated with red cell exchanges in sickle cell disease.

    PubMed

    Sarode, Ravindra; Altuntas, Fevzi

    2006-12-01

    Sickle cell disease (SCD) patients are prone to develop complications that include stroke, acute chest syndrome, and other crises. Some of these complications require chronic transfusion therapy or red cell exchange (RCE), either for therapeutic or prophylactic reasons. Due to a discrepancy of red cell antigens between African Americans and Caucasians (majority blood donors), the incidence of alloantibody formation is very high, which makes it difficult to find compatible red cell units, especially for urgent RCE. Some of the above conditions require immediate oxygen delivery to the tissues. Thus, SCD patients undergoing RCE should receive red blood cells with special attributes that include matching for Rh and Kell blood group antigens; RBCs should be fresh in order to provide (1) immediate oxygen delivery and (2) longer surviving cells to reduce the interval between RCE. Also, these units should be pre-storage leukoreduced to prevent febrile non-hemolytic reactions and screened for sickle cell traits to avoid transfusing red cells containing HbS. This requires a concerted effort between the apheresis unit, the local blood bank, and the central blood supplier.

  10. High-speed video capillaroscopy method for imaging and evaluation of moving red blood cells

    NASA Astrophysics Data System (ADS)

    Gurov, Igor; Volkov, Mikhail; Margaryants, Nikita; Pimenov, Aleksei; Potemkin, Andrey

    2018-05-01

    The video capillaroscopy system with high image recording rate to resolve moving red blood cells with velocity up to 5 mm/s into a capillary is considered. Proposed procedures of the recorded video sequence processing allow evaluating spatial capillary area, capillary diameter and central line with high accuracy and reliability independently on properties of individual capillary. Two-dimensional inter frame procedure is applied to find lateral shift of neighbor images in the blood flow area with moving red blood cells and to measure directly the blood flow velocity along a capillary central line. The developed method opens new opportunities for biomedical diagnostics, particularly, due to long-time continuous monitoring of red blood cells velocity into capillary. Spatio-temporal representation of capillary blood flow is considered. Experimental results of direct measurement of blood flow velocity into separate capillary as well as capillary net are presented and discussed.

  11. Design of a sedimentation hole in a microfluidic channel to remove blood cells from diluted whole blood

    NASA Astrophysics Data System (ADS)

    Kuroda, Chiaki; Ohki, Yoshimichi; Ashiba, Hiroki; Fujimaki, Makoto; Awazu, Koichi; Makishima, Makoto

    2017-03-01

    With the aim of developing a sensor for rapidly detecting viruses in a drop of blood, in this study, we analyze the shape of a hole in a microfluidic channel in relation to the efficiency of sedimentation of blood cells. The efficiency of sedimentation is examined on the basis of our calculation and experimental results for two types of sedimentation hole, cylindrical and truncated conical holes, focusing on the Boycott effect, which can promote the sedimentation of blood cells from a downward-facing wall. As a result, we demonstrated that blood cells can be eliminated with an efficiency of 99% or higher by retaining a diluted blood sample of about 30 µL in the conical hole for only 2 min. Moreover, we succeeded in detecting the anti-hepatitis B surface antigen antibody in blood using a waveguide-mode sensor equipped with a microfluidic channel having the conical sedimentation hole.

  12. Paper diagnostic for instantaneous blood typing.

    PubMed

    Khan, Mohidus Samad; Thouas, George; Shen, Wei; Whyte, Gordon; Garnier, Gil

    2010-05-15

    Agglutinated blood transports differently onto paper than stable blood with well dispersed red cells. This difference was investigated to develop instantaneous blood typing tests using specific antibody-antigen interactions to trigger blood agglutination. Two series of experiments were performed. The first related the level of agglutination and the fluidic properties of blood on its transport in paper. Blood samples were mixed at different ratios with specific and nonspecific antibodies; a droplet of each mixture was deposited onto a filter paper strip, and the kinetics of wicking and red cell separation were measured. Agglutinated blood phase separated, with the red blood cells (RBC) forming a distinct spot upon contact with paper while the plasma wicked; in contrast, stable blood suspensions wicked uniformly. The second study analyzed the wicking and the chromatographic separation of droplets of blood deposited onto paper strips pretreated with specific and nonspecific antibodies. Drastic differences in transport occurred. Blood agglutinated by interaction with one of its specific antibodies phase separated, causing a chromatographic separation. The red cells wicked very little while the plasma wicked at a faster rate than the original blood sample. Blood agglutination and wicking in paper followed the concepts of colloids chemistry. The immunoglobin M antibodies agglutinated the red blood cells by polymer bridging, upon selective adsorption on the specific antigen at their surface. The transport kinetics was viscosity controlled, with the viscosity of red cells drastically increasing upon blood agglutination. Three arm prototypes were investigated for single-step blood typing.

  13. Red blood cell alloimmunization among sickle cell Kuwaiti Arab patients who received red blood cell transfusion.

    PubMed

    Ameen, Reem; Al Shemmari, Salem; Al-Bashir, Abdulaziz

    2009-08-01

    Sickle cell disease (SCD) is common in the Arabian Gulf region. Most cases require a red blood cell (RBC) transfusion, increasing the potential for RBC alloantibody development. The incidence of RBC alloimmunization among Kuwaiti Arab SCD patients is not yet known. This study retrospectively assessed the effect of using two different matching protocols on the incidence of alloimmunization among multiply transfused Kuwaiti Arab SCD patients. A total of 233 Kuwaiti Arab SCD patients were divided into two groups: Group 1 (n = 110) received RBC transfusion through standard ABO- and D-matched nonleukoreduced blood; Group 2 (n = 123) received RBCs matched for ABO, Rh, and K1 poststorage-leukoreduced blood. Multivariate analysis was performed on the factors associated with RBC alloimmunization and antibody specificity. Sixty-five percent of patients in Group 1 developed clinically significant RBC alloantibody with an increased prevalence in females; in patients in Group 2, 23.6% developed RBC alloantibodies (p = 0.01). In Group 1, 72 patients (65.5%) had alloantibodies directed against Rh and Kell systems (p = 0.01). Multivariate analysis further confirmed the results, showing that blood transfusion type and sex have significant effects on the rate of alloimmunizations. This study confirms the importance of selecting RBCs matched for Rh and Kell to reduce the risk of alloimmunizations among Kuwaiti Arab SCD patients.

  14. Novel methods of treating ovarian infertility in older and POF women, testicular infertility, and other human functional diseases.

    PubMed

    Bukovsky, Antonin

    2015-02-25

    In vitro maturation (IVM) and in vitro fertilization (IVF) technologies are facing with growing demands of older women to conceive. Although ovarian stem cells (OSCs) of older women are capable of producing in vitro fresh oocyte-like cells (OLCs), such cells cannot respond to IVM and IVF due to the lack of granulosa cells required for their maturation. Follicular renewal is also dependent on support of circulating blood mononuclear cells. They induce intermediary stages of meiosis (metaphase I chromosomal duplication and crossover, anaphase, telophase, and cytokinesis) in newly emerging ovarian germ cells, as for the first time demonstrated here, induce formation of granulosa cells, and stimulate follicular growth and development. A pretreatment of OSC culture with mononuclear cells collected from blood of a young healthy fertile woman may cause differentiation of bipotential OSCs into both developing germ and granulosa cells. A small blood volume replacement may enable treatment of ovarian infertility in vivo. The transferred mononuclear cells may temporarily rejuvenate virtually all tissues, including improvement of the function of endocrine tissues. Formation of new follicles and their development may be sufficient for IVM and IVF. The novel proposed in vitro approaches may be used as a second possibility. Infertility of human males affects almost a half of the infertility cases worldwide. Small blood volume replacement from young healthy fertile men may also be easy approach for the improvement of sperm quality in older or other affected men. In addition, body rejuvenation by small blood volume replacement from young healthy individuals of the same sex could represent a decline of in vitro methodology in favor of in vivo treatment for human functional diseases. Here we propose for the first time that blood mononuclear cells are essential for rejuvenation of those tissues, where immune system components participate in an appropriate division and differentiation of tissue stem cells. If needed, small blood volume replacement from distinct young healthy individuals could be utilized in six month intervals for repair of young altered or aged reproductive and other tissue functions. Systemic and local use of honey bee propolis tincture is an alternative option for functional rejuvenation of some tissues.

  15. Acoustofluidic, label-free separation and simultaneous concentration of rare tumor cells from white blood cells.

    PubMed

    Antfolk, Maria; Magnusson, Cecilia; Augustsson, Per; Lilja, Hans; Laurell, Thomas

    2015-09-15

    Enrichment of rare cells from peripheral blood has emerged as a means to enable noninvasive diagnostics and development of personalized drugs, commonly associated with a prerequisite to concentrate the enriched rare cell population prior to molecular analysis or culture. However, common concentration by centrifugation has important limitations when processing low cell numbers. Here, we report on an integrated acoustophoresis-based rare cell enrichment system combined with integrated concentration. Polystyrene 7 μm microparticles could be separated from 5 μm particles with a recovery of 99.3 ± 0.3% at a contamination of 0.1 ± 0.03%, with an overall 25.7 ± 1.7-fold concentration of the recovered 7 μm particles. At a flow rate of 100 μL/min, breast cancer cells (MCF7) spiked into red blood cell-lysed human blood were separated with an efficiency of 91.8 ± 1.0% with a contamination of 0.6 ± 0.1% from white blood cells with a 23.8 ± 1.3-fold concentration of cancer cells. The recovery of prostate cancer cells (DU145) spiked into whole blood was 84.1 ± 2.1% with 0.2 ± 0.04% contamination of white blood cells with a 9.6 ± 0.4-fold concentration of cancer cells. This simultaneous on-chip separation and concentration shows feasibility of future acoustofluidic systems for rapid label-free enrichment and molecular characterization of circulating tumor cells using peripheral venous blood in clinical practice.

  16. Fresh Whole Blood Use for Hemorrhagic Shock: Preserving Benefit While Avoiding Complications

    DTIC Science & Technology

    2012-10-01

    coagulation factor deficiency), and improved blood bank economics.1–3 However, component usage in austere settings (developing world and combat) is often...limited by storage requirements for blood products (refrig- eration for red blood cells [RBCs], room temperature with agitation for platelets [PLTs...red blood cell (RBC) or plasma product inven- tory” (Ref. 1 in Table 1). Most civilian institutions define it as fresh if it is stored for 48 hours

  17. Hematopoietic Colony Formation from Human Growth Factor-Dependent TF1 Cells and Human Cord Blood Myeloid Progenitor Cells Depends on SHP2 Phosphatase Function

    PubMed Central

    Etienne-Julan, Maryse; Gotoh, Akihiko; Braun, Stephen E.; Lu, Li; Cooper, Scott; Feng, Gen-Sheng; Li, Xing Jun

    2013-01-01

    The protein tyrosine phosphatase, SHP2, is widely expressed; however, previous studies demonstrated that hematopoietic cell development more stringently requires Shp2 expression compared to other tissues. Furthermore, somatic gain-of-function SHP2 mutants are commonly found in human myeloid leukemias. Given that pharmacologic inhibitors to SHP2 phosphatase activity are currently in development as putative antileukemic agents, we conducted a series of experiments examining the necessity of SHP2 phosphatase activity for human hematopoiesis. Anti-sense oligonucleotides to human SHP2 coding sequences reduced human cord blood- and human cell line, TF1-derived colony formation. Expression of truncated SHP2 bearing its Src homology 2 (SH2) domains, but lacking the phosphatase domain similarly reduced human cord blood- and TF1-derived colony formation. Mechanistically, expression of truncated SHP2 reduced the interaction between endogenous, full-length SHP2 with the adapter protein, Grb2. To verify the role of SHP2 phosphatase function in human hematopoietic cell development, human cord blood CD34+ cells were transduced with a leukemia-associated phosphatase gain-of-function SHP2 mutant or with a phosphatase dead SHP2 mutant, which indicated that increased phosphatase function enhanced, while decreased SHP2 phosphatase function reduced, human cord blood-derived colonies. Collectively, these findings indicate that SHP2 phosphatase function regulates human hematopoietic cell development and imply that the phosphatase component of SHP2 may serve as a pharmacologic target in human leukemias bearing increased SHP2 phosphatase activity. PMID:23082805

  18. Hematopoietic colony formation from human growth factor-dependent TF1 cells and human cord blood myeloid progenitor cells depends on SHP2 phosphatase function.

    PubMed

    Broxmeyer, Hal E; Etienne-Julan, Maryse; Gotoh, Akihiko; Braun, Stephen E; Lu, Li; Cooper, Scott; Feng, Gen-Sheng; Li, Xing Jun; Chan, Rebecca J

    2013-03-15

    The protein tyrosine phosphatase, SHP2, is widely expressed; however, previous studies demonstrated that hematopoietic cell development more stringently requires Shp2 expression compared to other tissues. Furthermore, somatic gain-of-function SHP2 mutants are commonly found in human myeloid leukemias. Given that pharmacologic inhibitors to SHP2 phosphatase activity are currently in development as putative antileukemic agents, we conducted a series of experiments examining the necessity of SHP2 phosphatase activity for human hematopoiesis. Anti-sense oligonucleotides to human SHP2 coding sequences reduced human cord blood- and human cell line, TF1-derived colony formation. Expression of truncated SHP2 bearing its Src homology 2 (SH2) domains, but lacking the phosphatase domain similarly reduced human cord blood- and TF1-derived colony formation. Mechanistically, expression of truncated SHP2 reduced the interaction between endogenous, full-length SHP2 with the adapter protein, Grb2. To verify the role of SHP2 phosphatase function in human hematopoietic cell development, human cord blood CD34+ cells were transduced with a leukemia-associated phosphatase gain-of-function SHP2 mutant or with a phosphatase dead SHP2 mutant, which indicated that increased phosphatase function enhanced, while decreased SHP2 phosphatase function reduced, human cord blood-derived colonies. Collectively, these findings indicate that SHP2 phosphatase function regulates human hematopoietic cell development and imply that the phosphatase component of SHP2 may serve as a pharmacologic target in human leukemias bearing increased SHP2 phosphatase activity.

  19. Effect of Induced Pluripotent Stem Cell Technology in Blood Banking

    PubMed Central

    Focosi, Daniele

    2016-01-01

    Summary Population aging has imposed cost-effective alternatives to blood donations. Artificial blood is still at the preliminary stages of development, and the need for viable cells seems unsurmountable. Because large numbers of viable cells must be promptly available for clinical use, stem cell technologies, expansion, and banking represent ideal tools to ensure a regular supply. Provided key donors can be identified, induced pluripotent stem cell (iPSC) technology could pave the way to a new era in transfusion medicine, just as it is already doing in many other fields of medicine. The present review summarizes the current state of research on iPSC technology in the field of blood banking, highlighting hurdles, and promises. Significance The aging population in Western countries is causing a progressive reduction of blood donors and a constant increase of blood recipients. Because blood is the main therapeutic option to treat acute hemorrhage, cost-effective alternatives to blood donations are being actively investigated. The enormous replication capability of induced pluripotent stem cells and their promising results in many other fields of medicine could be an apt solution to produce the large numbers of viable cells required in transfusion and usher in a new era in transfusion medicine. The present report describes the potentiality, technological hurdles, and promises of induced pluripotent stem cells to generate red blood cells by redifferentiation. PMID:26819256

  20. Murine and math models for the level of stable mixed chimerism to cure beta-thalassemia by nonmyeloablative bone marrow transplantation.

    PubMed

    Roberts, Carla; Kean, Leslie; Archer, David; Balkan, Can; Hsu, Lewis L

    2005-01-01

    Stable mixed chimeric stem cell transplantation in hemoglobinopathies exploits shorter erythroid survival in hemolytic anemias, providing normal donor red blood cells with a competitive survival advantage. This study examined the level of stable mixed chimerism necessary for complete hematological cure of the thalassemic phenotype, using a nonmyeloablative busulfan chemotherapeutic preparation. Thalassemic mice transplanted from congenic wild-type donors developed partial mixed chimerism. Hematologic cure required >80% donor red blood cells and only >13% donor white blood cells. Murine and human transplant results were compared with a math model for survival advantage of donor peripheral blood cells produced by steady-state chimeric marrow.

  1. Cultured blood versus donated blood: long-run perspectives of the economy of blood.

    PubMed

    Mercier Ythier, Jean

    2015-01-01

    Recent advances of fundamental research on the in vitro generation of red blood cells (RBCs) from hematopoietic stem cells in the laboratory open new possibilities of the utilization of cultured RBCs in transfusion medicine. We study the economic challenge of the setup and development of the mass industrial production of RBCs in mature transfusion organizations. We argue that: (i) RBC manufacturing could be set up and developed in the short-medium run for the treatment of the small proportion of transfused patients who have a rare blood type or are alloimmunized against blood antigens; (ii) manufactured RBCs could substitute for donated RBCs in the long run if the physical productivity of RBC engineering technology approaches that of bone marrow.

  2. Development of a human adaptive immune system in cord blood cell-transplanted mice.

    PubMed

    Traggiai, Elisabetta; Chicha, Laurie; Mazzucchelli, Luca; Bronz, Lucio; Piffaretti, Jean-Claude; Lanzavecchia, Antonio; Manz, Markus G

    2004-04-02

    Because ethical restrictions limit in vivo studies of the human hemato-lymphoid system, substitute human to small animal xenotransplantation models have been employed. Existing models, however, sustain only limited development and maintenance of human lymphoid cells and rarely produce immune responses. Here we show that intrahepatic injection of CD34+ human cord blood cells into conditioned newborn Rag2-/-gammac-/- mice leads to de novo development of B, T, and dendritic cells; formation of structured primary and secondary lymphoid organs; and production of functional immune responses. This provides a valuable model to study development and function of the human adaptive immune system in vivo.

  3. Development of a photon-cell interactive monte carlo simulation for non-invasive measurement of blood glucose level by Raman spectroscopy.

    PubMed

    Sakota, Daisuke; Kosaka, Ryo; Nishida, Masahiro; Maruyama, Osamu

    2015-01-01

    Turbidity variation is one of the major limitations in Raman spectroscopy for quantifying blood components, such as glucose, non-invasively. To overcome this limitation, we have developed a Raman scattering simulation using a photon-cell interactive Monte Carlo (pciMC) model that tracks photon migration in both the extra- and intracellular spaces without relying on the macroscopic scattering phase function and anisotropy factor. The interaction of photons at the plasma-cell boundary of randomly oriented three-dimensionally biconcave red blood cells (RBCs) is modeled using geometric optics. The validity of the developed pciMCRaman was investigated by comparing simulation and experimental results of Raman spectroscopy of glucose level in a bovine blood sample. The scattering of the excitation laser at a wavelength of 785 nm was simulated considering the changes in the refractive index of the extracellular solution. Based on the excitation laser photon distribution within the blood, the Raman photon derived from the hemoglobin and glucose molecule at the Raman shift of 1140 cm(-1) = 862 nm was generated, and the photons reaching the detection area were counted. The simulation and experimental results showed good correlation. It is speculated that pciMCRaman can provide information about the ability and limitations of the measurement of blood glucose level.

  4. Gene expression profiles of brain endothelial cells during embryonic development at bulk and single-cell levels.

    PubMed

    Hupe, Mike; Li, Minerva Xueting; Kneitz, Susanne; Davydova, Daria; Yokota, Chika; Kele-Olovsson, Julianna; Hot, Belma; Stenman, Jan M; Gessler, Manfred

    2017-07-11

    The blood-brain barrier is a dynamic interface that separates the brain from the circulatory system, and it is formed by highly specialized endothelial cells. To explore the molecular mechanisms defining the unique nature of vascular development and differentiation in the brain, we generated high-resolution gene expression profiles of mouse embryonic brain endothelial cells using translating ribosome affinity purification and single-cell RNA sequencing. We compared the brain vascular translatome with the vascular translatomes of other organs and analyzed the vascular translatomes of the brain at different time points during embryonic development. Because canonical Wnt signaling is implicated in the formation of the blood-brain barrier, we also compared the brain endothelial translatome of wild-type mice with that of mice lacking the transcriptional cofactor β-catenin ( Ctnnb1 ). Our analysis revealed extensive molecular changes during the embryonic development of the brain endothelium. We identified genes encoding brain endothelium-specific transcription factors ( Foxf2 , Foxl2 , Foxq1 , Lef1 , Ppard , Zfp551 , and Zic3 ) that are associated with maturation of the blood-brain barrier and act downstream of the Wnt-β-catenin signaling pathway. Profiling of individual brain endothelial cells revealed substantial heterogeneity in the population. Nevertheless, the high abundance of Foxf2 , Foxq1 , Ppard , or Zic3 transcripts correlated with the increased expression of genes encoding markers of brain endothelial cell differentiation. Expression of Foxf2 and Zic3 in human umbilical vein endothelial cells induced the production of blood-brain barrier differentiation markers. This comprehensive data set may help to improve the engineering of in vitro blood-brain barrier models. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  5. Ex-vivo expansion of red blood cells: How real for transfusion in humans?

    PubMed Central

    Migliaccio, Anna Rita; Masselli, Elena; Varricchio, Lilian; Whitsett, Carolyn

    2013-01-01

    Blood transfusion is indispensable for modern medicine. In developed countries, the blood supply is adequate and safe but blood for alloimmunized patients is often unavailable. Concerns are increasing that donations may become inadequate in the future as the population ages prompting a search for alternative transfusion products. Improvements in culture conditions and proof-of-principle studies in animal models have suggested that ex-vivo expanded red cells may represent such a product. Compared to other cell therapies transfusion poses the unique challenge of requiring great cell doses (2.5 × 1012 cells vs 107 cells). Although production of such cell numbers is theoretically possible, current technologies generate red cells in numbers sufficient only for safety studies. It is conceived that by the time these studies will be completed, technical barriers to mass cell production will have been eliminated making transfusion with ex-vivo generated red cells a reality. PMID:22177597

  6. Numerical Simulation of Sickle Cell Blood Flow in the Microcirculation

    NASA Astrophysics Data System (ADS)

    Berger, Stanley A.; Carlson, Brian E.

    2001-11-01

    A numerical simulation of normal and sickle cell blood flow through the transverse arteriole-capillary microcirculation is carried out to model the dominant mechanisms involved in the onset of vascular stasis in sickle cell disease. The transverse arteriole-capillary network is described by Strahler's network branching method, and the oxygen and blood transport in the capillaries is modeled by a Krogh cylinder analysis utilizing Lighthill's lubrication theory, as developed by Berger and King. Poiseuille's law is used to represent blood flow in the arterioles. Applying this flow and transport model and utilizing volumetric flow continuity at each network bifurcation, a nonlinear system of equations is obtained, which is solved iteratively using a steepest descent algorithm coupled with a Newton solver. Ten different networks are generated and flow results are calculated for normal blood and sickle cell blood without and with precapillary oxygen loss. We find that total volumetric blood flow through the network is greater in the two sickle cell blood simulations than for normal blood owing to the anemia associated with sickle cell disease. The percentage of capillary blockage in the network increases dramatically with decreasing pressure drop across the network in the sickle cell cases while there is no blockage when normal blood flows through simulated networks. It is concluded that, in sickle cell disease, without any vasomotor dilation response to decreasing oxygen concentrations in the blood, capillary blockage will occur in the microvasculature even at average pressure drops across the transverse arteriole-capillary networks.

  7. Recombinant human (rh) stem cell factor and rhIL-4 stimulate differentiation and proliferation of CD3+ cells from umbilical cord blood and CD3+ cells enhance FcepsilonR1 expression on fetal liver-derived mast cells in the presence of rhIL-4.

    PubMed

    Lee, Eunkyung; Min, Hae-Ki; Oskeritzian, Carole A; Kambe, Naotomo; Schwartz, Lawrence B; Wook Chang, Hyeun

    2003-11-01

    We previously reported that rhIL-4 induced apoptosis and rhIL-6 mediated protection of human mast cells derived from cord blood mononuclear cells. Based on the result, we attempted to obtain the phenotypes and differentiation of CD3+ cells from cord blood by investigating their cell surface markers in the presence of rhSCF plus rhIL-4. The effect of co-cultured CD3+ cells on fetal liver mast cells (FLMCs) was also determined. Phenotypes from cord blood-derived cells were analyzed by flow cytometry and cell numbers were determined. Fetal liver mast cells were cultured with cord blood-derived cells (mainly CD3+) in the presence of rhSCF and/or rhIL-4 and were analyzed to determine cell number and expression of Kit+ and FcepsilonR1. The percentage of CD3+ cells from cord blood-derived cells on day 0 was about 41 +/- 13.5%, following monocytes and granulocytes. CD3+ cells increased in number (1.5-fold) and purity (90%), whereas other cell types did not survive. More than 60% of CD3+ cells from cord blood at day 0 were CD4(-)CD8-. These double-negative cells dramatically decreased by 1 week of culture, while CD4+CD8+ cells increased in number and purity through 3 weeks of culture, and then decreased as greater numbers of single-positive T cells emerged. We also found that FcepsilonR expression on FLMC increased in the presence of rhIL-4, but was not affected by the T cells that developed from cord blood mononuclear cells. The results indicate that IL-4, a Th2 type cytokine, together with rhSCF, can induce T cell proliferations, differentiation, and maturation from cord blood progenitor cells.

  8. Multiscale modeling of sickle anemia blood blow by Dissipative Partice Dynamics

    NASA Astrophysics Data System (ADS)

    Lei, Huan; Caswell, Bruce; Karniadakis, George

    2011-11-01

    A multi-scale model for sickle red blood cell is developed based on Dissipative Particle Dynamics (DPD). Different cell morphologies (sickle, granular, elongated shapes) typically observed in in vitro and in vivo are constructed and the deviations from the biconcave shape is quantified by the Asphericity and Elliptical shape factors. The rheology of sickle blood is studied in both shear and pipe flow systems. The flow resistance obtained from both systems exhibits a larger value than the healthy blood flow due to the abnormal cell properties. However, the vaso-occulusion phenomenon, reported in a recent microfluid experiment, is not observed in the pipe flow system unless the adhesive interactions between sickle blood cells and endothelium properly introduced into the model.

  9. Previous cryopreservation alters the natural history of the red blood cell storage lesion

    PubMed Central

    Chang, Alex L.; Hoehn, Richard S.; Jernigan, Peter; Cox, Daniel; Schreiber, Martin; Pritts, Timothy A.

    2016-01-01

    Background During storage, packed red blood cells (pRBCs) undergo a number of biochemical, metabolic and morphologic changes, collectively known as the “storage lesion”. We aimed to determine the effect of cryopreservation on the red blood cell storage lesion compared to traditional 4°C storage. Methods Previously cryopreserved human packed red blood cells were compared to age matched never frozen packed red blood cells obtained from the local blood bank. The development of the red cell storage lesion was evaluated after 7, 14, 21, 28, and 42 days of storage at 4°C in AS-3 storage medium. We measured physiological parameters including cell counts, lactic acid and potassium concentrations as well as signs of eryptosis including loss of phosphatidylserine (PS) asymmetry, microparticle production and osmotic fragility in hypotonic saline. Results Compared to controls, previously cryopreserved pRBC at 7 days of storage in AS-3 showed lower red cell counts (3.7 vs 5.3 ×10^6 cells/uL, p(<0.01), hemoglobin (12.0 vs 16.5 g/dL, p<0.01), hematocrit (33.0 vs 46.5%, p<0.01), and pH (6.27 vs 6.72, p<0.01). Over 28 days of storage, storage cryopreserved pRBC developed increased cell free hemoglobin (0.7 vs 0.3 g/dL, p<0.01), greater PS exposure (10.1 vs 3.3%, p<0.01), and microparticle production (30,836 vs 1,802 MP/uL, p<0.01). Previously cryopreserved cells were also less resistant to osmotic stress. Conclusion The red blood cell storage lesion is accelerated in previously cryopreserved pRBC after thawing. Biochemical deterioration of thawed and deglycerolized red cells suggests that storage time prior to transfusion should be limited in order to achieve similar risk profiles as never frozen standard liquid storage pRBC units. PMID:27380532

  10. Clinical trial for patients with relapsed/refractory B-cell malignancies now recruiting | Center for Cancer Research

    Cancer.gov

    B-cell lymphomas are blood cancers that affect B-cells, white blood cells that develop and mature in bone marrow in the core of most bones. Mark Roschewski, M.D., of the Lymphoid Malignancies Branch is leading a study of a new treatment for B-cell lymphomas that have not responded to radiation and chemotherapy. Read more...

  11. Detection and capture of single circulating melanoma cells using photoacoustic flowmetry

    NASA Astrophysics Data System (ADS)

    O'Brien, Christine; Mosley, Jeffrey; Goldschmidt, Benjamin S.; Viator, John A.

    2010-02-01

    Photoacoustic flowmetry has been used to detect single circulating melanoma cells in vitro. Circulating melanoma cells are those cells that travel in the blood and lymph systems to create secondary tumors and are the hallmark of metastasis. This technique involves taking blood samples from patients, separating the white blood and melanoma cells from whole blood and irradiating them with a pulsed laser in a flowmetry set up. Rapid, visible wavelength laser pulses on the order of 5 ns can induce photoacoustic waves in melanoma cells due to their melanin content, while surrounding white blood cells remain acoustically passive. We have developed a system that identifies rare melanoma cells and captures them in 50 microliter volumes using suction applied near the photoacoustic detection chamber. The 50 microliter sample is then diluted and the experiment is repeated using the new sample until only a melanoma cell remains. We have tested this system on dyed microspheres ranging in size from 300 to 500 microns. Capture of circulating melanoma cells may provide the opportunity to study metastatic cells for basic understanding of the spread of cancer and to optimize patient specific therapies.

  12. Platelets regulate lymphatic vascular development through CLEC-2-SLP-76 signaling.

    PubMed

    Bertozzi, Cara C; Schmaier, Alec A; Mericko, Patricia; Hess, Paul R; Zou, Zhiying; Chen, Mei; Chen, Chiu-Yu; Xu, Bin; Lu, Min-min; Zhou, Diane; Sebzda, Eric; Santore, Matthew T; Merianos, Demetri J; Stadtfeld, Matthias; Flake, Alan W; Graf, Thomas; Skoda, Radek; Maltzman, Jonathan S; Koretzky, Gary A; Kahn, Mark L

    2010-07-29

    Although platelets appear by embryonic day 10.5 in the developing mouse, an embryonic role for these cells has not been identified. The SYK-SLP-76 signaling pathway is required in blood cells to regulate embryonic blood-lymphatic vascular separation, but the cell type and molecular mechanism underlying this regulatory pathway are not known. In the present study we demonstrate that platelets regulate lymphatic vascular development by directly interacting with lymphatic endothelial cells through C-type lectin-like receptor 2 (CLEC-2) receptors. PODOPLANIN (PDPN), a transmembrane protein expressed on the surface of lymphatic endothelial cells, is required in nonhematopoietic cells for blood-lymphatic separation. Genetic loss of the PDPN receptor CLEC-2 ablates PDPN binding by platelets and confers embryonic lymphatic vascular defects like those seen in animals lacking PDPN or SLP-76. Platelet factor 4-Cre-mediated deletion of Slp-76 is sufficient to confer lymphatic vascular defects, identifying platelets as the cell type in which SLP-76 signaling is required to regulate lymphatic vascular development. Consistent with these genetic findings, we observe SLP-76-dependent platelet aggregate formation on the surface of lymphatic endothelial cells in vivo and ex vivo. These studies identify a nonhemostatic pathway in which platelet CLEC-2 receptors bind lymphatic endothelial PDPN and activate SLP-76 signaling to regulate embryonic vascular development.

  13. Development of hematopoietic stem and progenitor cells from human pluripotent stem cells.

    PubMed

    Chen, Tong; Wang, Fen; Wu, Mengyao; Wang, Zack Z

    2015-07-01

    Human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), provide a new cell source for regenerative medicine, disease modeling, drug discovery, and preclinical toxicity screening. Understanding of the onset and the sequential process of hematopoietic cells from differentiated hPSCs will enable the achievement of personalized medicine and provide an in vitro platform for studying of human hematopoietic development and disease. During embryogenesis, hemogenic endothelial cells, a specified subset of endothelial cells in embryonic endothelium, are the primary source of multipotent hematopoietic stem cells. In this review, we discuss current status in the generation of multipotent hematopoietic stem and progenitor cells from hPSCs via hemogenic endothelial cells. We also review the achievements in direct reprogramming from non-hematopoietic cells to hematopoietic stem and progenitor cells. Further characterization of hematopoietic differentiation in hPSCs will improve our understanding of blood development and expedite the development of hPSC-derived blood products for therapeutic purpose. © 2015 Wiley Periodicals, Inc.

  14. Alloimmunization and autoimmunization in transfusion dependent thalassemia major patients: Study on 319 patients.

    PubMed

    Dhawan, Hari Krishan; Kumawat, Vijay; Marwaha, Neelam; Sharma, Ratti Ram; Sachdev, Suchet; Bansal, Deepak; Marwaha, Ram Kumar; Arora, Satyam

    2014-07-01

    The development of anti-red blood cell antibodies (both allo-and autoantibodies) remains a major problem in thalassemia major patients. We studied the frequency of red blood cell (RBC) alloimmunization and autoimmunization among thalassemia patients who received regular transfusions at our center and analyzed the factors, which may be responsible for development of these antibodies. The study was carried out on 319 multiply transfused patients with β-thalassemia major registered with thalassemia clinic at our institute. Clinical and transfusion records of all the patients were examined for age of patients, age at initiation of transfusion therapy, total number of blood units transfused, transfusion interval, status of splenectomy or other interventions. Alloantibody screening and identification was done using three cell and 11 cell panel (Diapanel, Bio-rad, Switzerland) respectively. To detect autoantibodies, autocontrol was carried out using polyspecific coombs (IgG + C3d) gel cards. Eighteen patients out of total 319 patients (5.64%) developed alloantibodies and 90 (28.2%) developed autoantibodies. Nine out of 18 patients with alloantibodies also had autoantibodies. Age at first transfusion was significantly higher in alloimmunized than non-immunized patients (P = 0.042). Out of 23 alloantibodies, 52.17% belonged to Rh blood group system (Anti-E = 17%, Anti D = 13%, Anti-C = 13%, Anti-C(w) = 9%), 35% belonged to Kell blood group system, 9% of Kidd and 4% of Xg blood group system. Alloimmunization was detected in 5.64% of multitransfused thalassemia patients. Rh and Kell blood group system antibodies accounted for more than 80% of alloantibodies. This study re-emphasizes the need for RBC antigen typing before first transfusion and issue of antigen matched blood (at least for Rh and Kell antigen). Early institution of transfusion therapy after diagnosis is another means of decreasing alloimmunization.

  15. Development of a Novel CD4+ TCR Transgenic Line That Reveals a Dominant Role for CD8+ Dendritic Cells and CD40 Signaling in the Generation of Helper and CTL Responses to Blood-Stage Malaria.

    PubMed

    Fernandez-Ruiz, Daniel; Lau, Lei Shong; Ghazanfari, Nazanin; Jones, Claerwen M; Ng, Wei Yi; Davey, Gayle M; Berthold, Dorothee; Holz, Lauren; Kato, Yu; Enders, Matthias H; Bayarsaikhan, Ganchimeg; Hendriks, Sanne H; Lansink, Lianne I M; Engel, Jessica A; Soon, Megan S F; James, Kylie R; Cozijnsen, Anton; Mollard, Vanessa; Uboldi, Alessandro D; Tonkin, Christopher J; de Koning-Ward, Tania F; Gilson, Paul R; Kaisho, Tsuneyasu; Haque, Ashraful; Crabb, Brendan S; Carbone, Francis R; McFadden, Geoffrey I; Heath, William R

    2017-12-15

    We describe an MHC class II (I-A b )-restricted TCR transgenic mouse line that produces CD4 + T cells specific for Plasmodium species. This line, termed PbT-II, was derived from a CD4 + T cell hybridoma generated to blood-stage Plasmodium berghei ANKA (PbA). PbT-II cells responded to all Plasmodium species and stages tested so far, including rodent (PbA, P. berghei NK65, Plasmodium chabaudi AS, and Plasmodium yoelii 17XNL) and human ( Plasmodium falciparum ) blood-stage parasites as well as irradiated PbA sporozoites. PbT-II cells can provide help for generation of Ab to P. chabaudi infection and can control this otherwise lethal infection in CD40L-deficient mice. PbT-II cells can also provide help for development of CD8 + T cell-mediated experimental cerebral malaria (ECM) during PbA infection. Using PbT-II CD4 + T cells and the previously described PbT-I CD8 + T cells, we determined the dendritic cell (DC) subsets responsible for immunity to PbA blood-stage infection. CD8 + DC (a subset of XCR1 + DC) were the major APC responsible for activation of both T cell subsets, although other DC also contributed to CD4 + T cell responses. Depletion of CD8 + DC at the beginning of infection prevented ECM development and impaired both Th1 and follicular Th cell responses; in contrast, late depletion did not affect ECM. This study describes a novel and versatile tool for examining CD4 + T cell immunity during malaria and provides evidence that CD4 + T cell help, acting via CD40L signaling, can promote immunity or pathology to blood-stage malaria largely through Ag presentation by CD8 + DC. Copyright © 2017 by The American Association of Immunologists, Inc.

  16. Multimarker Quantitative Real-Time PCR Detection of Circulating Melanoma Cells in Peripheral Blood: Relation to Disease Stage in Melanoma Patients

    PubMed Central

    Koyanagi, Kazuo; Kuo, Christine; Nakagawa, Taku; Mori, Takuji; Ueno, Hideaki; Lorico, Arnulfo R.; Wang, He-Jing; Hseuh, Eddie; O’Day, Steven J.; Hoon, Dave S.B.

    2010-01-01

    Background Detection of melanoma cells in circulation may be important in assessing tumor progression. The objective of this study was to develop a specific, reliable, multimarker quantitative real-time reverse transcription-PCR (qRT) assay for detecting melanoma cells in patients’ blood. Methods We developed qRT assays for the mRNA of four melanoma-associated markers: MART-1, GalNAc-T, PAX-3, and MAGE-A3. In optimization studies, we tested 17 melanoma cell lines and 49 peripheral blood leukocyte (PBL) samples from volunteers. We performed RNA and melanoma cell dilution studies to assess the detection limits and imprecision of the assays. We measured the mRNAs in blood specimens from 94 melanoma patients [American Joint Committee on Cancer (AJCC) stage I, n = 20; II, n = 20; III, n = 32; IV, n = 22]. Results All markers were frequently detected in melanoma cell lines, whereas none of the markers was detected in PBLs from volunteers. The qRT assay could detect 1 melanoma cell in 107 PBLs in the melanoma cell-dilution studies. Markers were detected in 15%, 30%, 75%, and 86% of melanoma patients with AJCC stage I, II, III, and IV disease, respectively. The number of positive markers and AJCC stage were significantly correlated (Spearman correlation coefficient = 0.58; P <0.0001). Conclusions Multimarker qRT can detect circulating melanoma cells in blood. Measurement of the studied molecular markers in blood may be useful in detection of metastasis and monitoring treatment response of melanoma patients. PMID:15817820

  17. Processing of Cells' Trajectories Data for Blood Flow Simulation Model*

    NASA Astrophysics Data System (ADS)

    Slavík, Martin; Kovalčíková, Kristína; Bachratý, Hynek; Bachratá, Katarína; Smiešková, Monika

    2018-06-01

    Simulations of the red blood cells (RBCs) flow as a movement of elastic objects in a fluid, are developed to optimize microfluidic devices used for a blood sample analysis for diagnostic purposes in the medicine. Tracking cell behaviour during simulation helps to improve the model and adjust its parameters. For the optimization of the microfluidic devices, it is also necessary to analyse cell trajectories as well as likelihood and frequency of their occurrence in a particular device area, especially in the parts, where they can affect circulating tumour cells capture. In this article, we propose and verify several ways of processing and analysing the typology and trajectory stability in simulations with single or with a large number of red blood cells (RBCs) in devices with different topologies containing cylindrical obstacles.

  18. Spontaneous circulation of myeloid-lymphoid-initiating cells and SCID-repopulating cells in sickle cell crisis.

    PubMed

    Lamming, Christopher E D; Augustin, Lance; Blackstad, Mark; Lund, Troy C; Hebbel, Robert P; Verfaillie, Catherine M

    2003-03-01

    The only curative therapy for sickle cell disease (SCD) is allogeneic hematopoietic stem cell (HSC) transplantation. Gene therapy approaches for autologous HSC transplantation are being developed. Although earlier engraftment is seen when cells from GCSF-mobilized blood are transplanted than when bone marrow is transplanted, administration of GCSF to patients with SCD can cause significant morbidity. We tested whether primitive hematopoietic progenitors are spontaneously mobilized in the blood of patients with SCD during acute crisis (AC-SCD patients). The frequency of myeloid-lymphoid-initiating cells (ML-ICs) and SCID-repopulating cells (SRCs) was significantly higher in blood from AC-SCD patients than in blood from patients with steady-state SCD or from normal donors. The presence of SRCs in peripheral blood was not associated with detection of long-term culture-initiating cells, consistent with the notion that SRCs are more primitive than long-term culture-initiating cells. As ML-ICs and SRCs were both detected in blood of AC-SCD patients only, these assays may both measure primitive progenitors. The frequency of ML-ICs also correlated with increases in stem cell factor, GCSF, and IL-8 levels in AC-SCD compared with steady-state SCD and normal-donor sera. Because significant numbers of ML-ICs and SRCs are mobilized in the blood without exogenous cytokine treatment during acute crisis of SCD, collection of peripheral blood progenitors during crisis may yield a source of autologous HSCs suitable for ex-vivo correction by gene therapy approaches and subsequent transplantation.

  19. From Blood Islands to Blood Vessels: Morphologic Observations and Expression of Key Molecules during Hyaloid Vascular System Development

    PubMed Central

    McLeod, D. Scott; Hasegawa, Takuya; Baba, Takayuki; Grebe, Rhonda; Galtier d'Auriac, Ines; Merges, Carol; Edwards, Malia; Lutty, Gerard A.

    2012-01-01

    Purpose. The mode of development of the human hyaloid vascular system (HVS) remains unclear. Early studies suggested that these blood vessels formed by vasculogenesis, while the current concept seems to favor angiogenesis as the mode of development. We examined embryonic and fetal human HVS using a variety of techniques to gain new insights into formation of this vasculature. Methods. Embryonic and fetal human eyes from 5.5 to 12 weeks gestation (WG) were prepared for immunohistochemical analysis or for light and electron microscopy. Immunolabeling of sections with a panel of antibodies directed at growth factors, transcription factors, and hematopoietic stem cell markers was employed. Results. Light microscopic examination revealed free blood islands (BI) in the embryonic vitreous cavity (5.5–7 WG). Giemsa stain revealed that BI were aggregates of mesenchymal cells and primitive nucleated erythroblasts. Free cells were also observed. Immunolabeling demonstrated that BI were composed of mesenchymal cells that expressed hemangioblast markers (CD31, CD34, C-kit, CXCR4, Runx1, and VEGFR2), erythroblasts that expressed embryonic hemoglobin (Hb-ε), and cells that expressed both. Few cells were proliferating as determined by lack of Ki67 antigen. As development progressed (12 WG), blood vessels became more mature structurally with pericyte investment and basement membrane formation. Concomitantly, Hb-ε and CXCR4 expression was down-regulated and von Willebrand factor expression was increased with the formation of Weibel-Palade bodies. Conclusions. Our results support the view that the human HVS, like the choriocapillaris, develops by hemo-vasculogenesis, the process by which vasculogenesis, erythropoiesis, and hematopoiesis occur simultaneously from common precursors, hemangioblasts. PMID:23092923

  20. Erythroid cells in vitro: from developmental biology to blood transfusion products.

    PubMed

    Migliaccio, Anna Rita; Whitsett, Carolyn; Migliaccio, Giovanni

    2009-07-01

    Red blood cells (RBCs) transfusion plays a critical role in numerous therapies. Disruption of blood collection by political unrest, natural disasters and emerging infections and implementation of restrictions on the use of erythropoiesis-stimulating agents in cancer may impact blood availability in the near future. These considerations highlight the importance of developing alternative blood products. Knowledge about the processes that control RBC production has been applied to the establishment of culture conditions allowing ex-vivo generation of RBCs in numbers close to those (2.5 x 10 cells/ml) present in a transfusion, from cord blood, donated blood units or embryonic stem cells. In addition, experimental studies demonstrate that such cells protect mice from lethal bleeding. Therefore, erythroid cells generated ex vivo may be suitable for transfusion provided they can be produced safely in adequate numbers. However, much remains to be done to translate a theoretical production of approximately 2.5 x 10 RBCs in the laboratory into a 'clinical grade production process'. This review summarizes the state-of-the-art in establishing ex-vivo culture conditions for erythroid cells and discusses the most compelling issues to be addressed to translate this progress into a clinical grade transfusion product.

  1. Two problems in multiphase biological flows: Blood flow and particulate transport in microvascular network, and pseudopod-driven motility of amoeboid cells

    NASA Astrophysics Data System (ADS)

    Bagchi, Prosenjit

    2016-11-01

    In this talk, two problems in multiphase biological flows will be discussed. The first is the direct numerical simulation of whole blood and drug particulates in microvascular networks. Blood in microcirculation behaves as a dense suspension of heterogeneous cells. The erythrocytes are extremely deformable, while inactivated platelets and leukocytes are nearly rigid. A significant progress has been made in recent years in modeling blood as a dense cellular suspension. However, many of these studies considered the blood flow in simple geometry, e.g., straight tubes of uniform cross-section. In contrast, the architecture of a microvascular network is very complex with bifurcating, merging and winding vessels, posing a further challenge to numerical modeling. We have developed an immersed-boundary-based method that can consider blood cell flow in physiologically realistic and complex microvascular network. In addition to addressing many physiological issues related to network hemodynamics, this tool can be used to optimize the transport properties of drug particulates for effective organ-specific delivery. Our second problem is pseudopod-driven motility as often observed in metastatic cancer cells and other amoeboid cells. We have developed a multiscale hydrodynamic model to simulate such motility. We study the effect of cell stiffness on motility as the former has been considered as a biomarker for metastatic potential. Funded by the National Science Foundation.

  2. Quality of red blood cells isolated from umbilical cord blood stored at room temperature.

    PubMed

    Zhurova, Mariia; Akabutu, John; Acker, Jason

    2012-01-01

    Red blood cells (RBCs) from cord blood contain fetal hemoglobin that is predominant in newborns and, therefore, may be more appropriate for neonatal transfusions than currently transfused adult RBCs. Post-collection, cord blood can be stored at room temperature for several days before it is processed for stem cells isolation, with little known about how these conditions affect currently discarded RBCs. The present study examined the effect of the duration cord blood spent at room temperature and other cord blood characteristics on cord RBC quality. RBCs were tested immediately after their isolation from cord blood using a broad panel of quality assays. No significant decrease in cord RBC quality was observed during the first 65 hours of storage at room temperature. The ratio of cord blood to anticoagulant was associated with RBC quality and needs to be optimized in future. This knowledge will assist in future development of cord RBC transfusion product.

  3. Converging roads: evidence for an adult hemangioblast.

    PubMed

    Bailey, Alexis S; Fleming, William H

    2003-11-01

    Classical studies of the developing embryo first suggested the existence of the hemangioblast, a precursor cell with the potential to differentiate into both blood and blood vessels. Several lines of investigation demonstrated that many of the genes activated during early hematopoietic development are also expressed in the vascular endothelium. Gene-targeting studies using embryonic stem cells have identified Flk-1, SCL, and Runx-1 as important regulatory molecules that specify both hematopoietic and vascular outcomes. Although it was anticipated that the hemangioblast would be present only during the earliest stages of vascular development in the yolk sac, accumulating evidence now indicates that hematopoietic cells with hemangioblast activity persist into adulthood. In the adult, bone marrow-derived, circulating endothelial progenitors contribute to postnatal neovascularization and enhance vascular repair following ischemic injury. Highly purified populations of hematopoietic stem cells from humans and mice can differentiate into both blood cells and vascular tissue at the single cell level. These recent findings suggest that bone marrow-derived hematopoietic stem cells or their progeny may contribute to the maintenance and repair of both the hematopoietic and the vascular systems during adult life.

  4. A Novel Automated Slide-Based Technology for Visualization, Counting, and Characterization of the Formed Elements of Blood: A Proof of Concept Study.

    PubMed

    Winkelman, James W; Tanasijevic, Milenko J; Zahniser, David J

    2017-08-01

    - A novel automated slide-based approach to the complete blood count and white blood cell differential count is introduced. - To present proof of concept for an image-based approach to complete blood count, based on a new slide preparation technique. A preliminary data comparison with the current flow-based technology is shown. - A prototype instrument uses a proprietary method and technology to deposit a precise volume of undiluted peripheral whole blood in a monolayer onto a glass microscope slide so that every cell can be distinguished, counted, and imaged. The slide is stained, and then multispectral image analysis is used to measure the complete blood count parameters. Images from a 600-cell white blood cell differential count, as well as 5000 red blood cells and a variable number of platelets, that are present in 600 high-power fields are made available for a technologist to view on a computer screen. An initial comparison of the basic complete blood count parameters was performed, comparing 1857 specimens on both the new instrument and a flow-based hematology analyzer. - Excellent correlations were obtained between the prototype instrument and a flow-based system. The primary parameters of white blood cell, red blood cell, and platelet counts resulted in correlation coefficients (r) of 0.99, 0.99, and 0.98, respectively. Other indices included hemoglobin (r = 0.99), hematocrit (r = 0.99), mean cellular volume (r = 0.90), mean corpuscular hemoglobin (r = 0.97), and mean platelet volume (r = 0.87). For the automated white blood cell differential counts, r values were calculated for neutrophils (r = 0.98), lymphocytes (r = 0.97), monocytes (r = 0.76), eosinophils (r = 0.96), and basophils (r = 0.63). - Quantitative results for components of the complete blood count and automated white blood cell differential count can be developed by image analysis of a monolayer preparation of a known volume of peripheral blood.

  5. Fever after peripheral blood stem cell infusion in haploidentical transplantation with post-transplant cyclophosphamide.

    PubMed

    Arango, Marcos; Combariza, Juan F

    2017-06-01

    Noninfection-related fever can occur after peripheral blood stem cell infusion in haploidentical hematopoietic stem cell transplantation with post-transplant cyclophosphamide. The objective of this study was to analyze the incidence of fever and characterize some clinical features of affected patients. A retrospective case-series study with 40 patients who received haploidentical hematopoietic stem cell transplantation was carried out. Thirty-three patients (82.5%) developed fever; no baseline characteristic was associated with its development. Median time to fever onset was 25.5h (range, 9.5-100h) and median peak temperature was 39.0°C (range, 38.1-40.5°C). Not a single patient developed hemodynamic or respiratory compromise that required admission to the intensive care unit. Fever was not explained by infection in any case. Ninety-one percent of the febrile episodes resolved within 96h of cyclophosphamide administration. No significant difference in overall survival, event-free survival, or graft versus host disease-free/relapse-free survival was found in the group of febrile individuals after peripheral blood stem cell infusion. Fever after peripheral blood stem cell infusion in this clinical setting was common; it usually subsides with cyclophosphamide administration. The development of fever was not associated with an adverse prognosis. Copyright © 2017 King Faisal Specialist Hospital & Research Centre. Published by Elsevier B.V. All rights reserved.

  6. Blood-brain barrier and foetal-onset hydrocephalus, with a view on potential novel treatments beyond managing CSF flow.

    PubMed

    Guerra, M; Blázquez, J L; Rodríguez, E M

    2017-07-13

    Despite decades of research, no compelling non-surgical therapies have been developed for foetal hydrocephalus. So far, most efforts have pointed to repairing disturbances in the cerebrospinal fluid (CSF) flow and to avoid further brain damage. There are no reports trying to prevent or diminish abnormalities in brain development which are inseparably associated with hydrocephalus. A key problem in the treatment of hydrocephalus is the blood-brain barrier that restricts the access to the brain for therapeutic compounds or systemically grafted cells. Recent investigations have started to open an avenue for the development of a cell therapy for foetal-onset hydrocephalus. Potential cells to be used for brain grafting include: (1) pluripotential neural stem cells; (2) mesenchymal stem cells; (3) genetically-engineered stem cells; (4) choroid plexus cells and (5) subcommissural organ cells. Expected outcomes are a proper microenvironment for the embryonic neurogenic niche and, consequent normal brain development.

  7. Acoustic impedance matched buffers enable separation of bacteria from blood cells at high cell concentrations.

    PubMed

    Ohlsson, Pelle; Petersson, Klara; Augustsson, Per; Laurell, Thomas

    2018-06-14

    Sepsis is a common and often deadly systemic response to an infection, usually caused by bacteria. The gold standard for finding the causing pathogen in a blood sample is blood culture, which may take hours to days. Shortening the time to diagnosis would significantly reduce mortality. To replace the time-consuming blood culture we are developing a method to directly separate bacteria from red and white blood cells to enable faster bacteria identification. The blood cells are moved from the sample flow into a parallel stream using acoustophoresis. Due to their smaller size, the bacteria are not affected by the acoustic field and therefore remain in the blood plasma flow and can be directed to a separate outlet. When optimizing for sample throughput, 1 ml of undiluted whole blood equivalent can be processed within 12.5 min, while maintaining the bacteria recovery at 90% and the blood cell removal above 99%. That makes this the fastest label-free microfluidic continuous flow method per channel to separate bacteria from blood with high bacteria recovery (>80%). The high throughput was achieved by matching the acoustic impedance of the parallel stream to that of the blood sample, to avoid that acoustic forces relocate the fluid streams.

  8. Quantitative analysis of optical properties of flowing blood using a photon-cell interactive Monte Carlo code: effects of red blood cells' orientation on light scattering.

    PubMed

    Sakota, Daisuke; Takatani, Setsuo

    2012-05-01

    Optical properties of flowing blood were analyzed using a photon-cell interactive Monte Carlo (pciMC) model with the physical properties of the flowing red blood cells (RBCs) such as cell size, shape, refractive index, distribution, and orientation as the parameters. The scattering of light by flowing blood at the He-Ne laser wavelength of 632.8 nm was significantly affected by the shear rate. The light was scattered more in the direction of flow as the flow rate increased. Therefore, the light intensity transmitted forward in the direction perpendicular to flow axis decreased. The pciMC model can duplicate the changes in the photon propagation due to moving RBCs with various orientations. The resulting RBC's orientation that best simulated the experimental results was with their long axis perpendicular to the direction of blood flow. Moreover, the scattering probability was dependent on the orientation of the RBCs. Finally, the pciMC code was used to predict the hematocrit of flowing blood with accuracy of approximately 1.0 HCT%. The photon-cell interactive Monte Carlo (pciMC) model can provide optical properties of flowing blood and will facilitate the development of the non-invasive monitoring of blood in extra corporeal circulatory systems.

  9. [The specific features of the blood gas transport system in patients with postinfarction cardiosclerosis].

    PubMed

    Mikashinovich, Z I; Suroedova, R A; Olempieva, E V

    2009-10-01

    The specific features of blood gas transport system functioning were analyzed in patients with cardiovascular diseases. In patients with postinfarction cardiosclerosis (PICS), the quantitative mechanism for hypoxia adaptation tended to decrease, which may be considered to be a compensatory-adaptive reaction aimed at eliminating the sludge phenomenon and improving the rheological characteristics of blood. Acute myocardial reinfarction developed in patents with PICS is characterized by the lower functional activity of red blood cells, and developing hypoxia is an important link of activation of apoptotic cell death. The degree of hypoxia may be believed to correlate with the sizes of a myocardial necrosis focus.

  10. Generation of erythroid cells from polyploid giant cancer cells: re-thinking about tumor blood supply.

    PubMed

    Yang, Zhigang; Yao, Hong; Fei, Fei; Li, Yuwei; Qu, Jie; Li, Chunyuan; Zhang, Shiwu

    2018-04-01

    During development and tumor progression, cells need a sufficient blood supply to maintain development and rapid growth. It is reported that there are three patterns of blood supply for tumor growth: endothelium-dependent vessels, mosaic vessels, and vasculogenic mimicry (VM). VM was first reported in highly aggressive uveal melanomas, with tumor cells mimicking the presence and function of endothelial cells forming the walls of VM vessels. The walls of mosaic vessels are randomly lined with both endothelial cells and tumor cells. We previously proposed a three-stage process, beginning with VM, progressing to mosaic vessels, and eventually leading to endothelium-dependent vessels. However, many phenomena unique to VM channel formation remain to be elucidated, such as the origin of erythrocytes before VM vessels connect with endothelium-dependent vessels. In adults, erythroid cells are generally believed to be generated from hematopoietic stem cells in the bone marrow. In contrast, embryonic tissue obtains oxygen through formation of blood islands, which are largely composed of embryonic hemoglobin with a higher affinity with oxygen, in the absence of mature erythrocytes. Recent data from our laboratory suggest that embryonic blood-forming mechanisms also exist in cancer tissue, particularly when these tissues are under environmental stress such as hypoxia. We review the evidence from induced pluripotent stem cells in vitro and in vivo to support this previously underappreciated cell functionality in normal and cancer cells, including the ability to generate erythroid cells. We will also summarize the current understanding of tumor angiogenesis, VM, and our recent work on polyploid giant cancer cells, with emphasis on their ability to generate erythroid cells and their association with tumor growth under hypoxia. An alternative embryonic pathway to obtain oxygen in cancer cells exists, particularly when they are under hypoxic conditions.

  11. Generating Human Hematopoietic Stem Cells In Vitro: Exploring Endothelial To Hematopoietic Transition As A Portal For Stemness Acquisition

    PubMed Central

    Slukvin, Igor I.

    2016-01-01

    Advances in cellular reprogramming technologies have created alternative platforms for the production of blood cells, either through inducing pluripotency in somatic cells or by way of direct conversion of non-hematopoietic cells into blood cells. However, de novo generation of hematopoietic stem cells (HSCs) with robust and sustained multilineage engraftment potential remains a significant challenge. Hemogenic endothelium (HE) has been recognized as a unique transitional stage of blood development from mesoderm at which HSCs arise in certain embryonic locations. The major aim of this review is to summarize historical perspectives and recent advances in the investigation of endothelial-hematopoietic transition (EHT) and HSC formation in the context of aiding in vitro approaches to instruct HSC fate from human pluripotent stem cells. In addition, direct conversion of somatic cells to blood and HSCs and progression of this conversion through HE stage are discussed. A thorough understanding of the intrinsic and microenvironmental regulators of EHT that lead to the acquisition of self-renewal potential by emerging blood cells, is essential to advance the technologies for HSC production and expansion. PMID:27391301

  12. Identifying viable regulatory and innovation pathways for regenerative medicine: a case study of cultured red blood cells.

    PubMed

    Mittra, J; Tait, J; Mastroeni, M; Turner, M L; Mountford, J C; Bruce, K

    2015-01-25

    The creation of red blood cells for the blood transfusion markets represents a highly innovative application of regenerative medicine with a medium term (5-10 year) prospect for first clinical studies. This article describes a case study analysis of a project to derive red blood cells from human embryonic stem cells, including the systemic challenges arising from (i) the selection of appropriate and viable regulatory protocols and (ii) technological constraints related to stem cell manufacture and scale up to clinical Good Manufacturing Practice (GMP) standard. The method used for case study analysis (Analysis of Life Science Innovation Systems (ALSIS)) is also innovative, demonstrating a new approach to social and natural science collaboration to foresight product development pathways. Issues arising along the development pathway include cell manufacture and scale-up challenges, affected by regulatory demands emerging from the innovation ecosystem (preclinical testing and clinical trials). Our discussion reflects on the efforts being made by regulators to adapt the current pharmaceuticals-based regulatory model to an allogeneic regenerative medicine product and the broader lessons from this case study for successful innovation and translation of regenerative medicine therapies, including the role of methodological and regulatory innovation in future development in the field. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Development of the blood-brain barrier: a historical point of view.

    PubMed

    Ribatti, Domenico; Nico, Beatrice; Crivellato, Enrico; Artico, Marco

    2006-01-01

    Although there has been considerable controversy since the observation by Ehrlich more than 100 years ago that the brain did not take up dyes from the vascular system, the concept of an endothelial blood-brain barrier (BBB) was confirmed by the unequivocal demonstration that the passage of molecules from blood to brain and vice versa was prevented by endothelial tight junctions (TJs). There are three major functions implicated in the term "BBB": protection of the brain from the blood milieu, selective transport, and metabolism or modification of blood- or brain-borne substances. The BBB phenotype develops under the influence of associated brain cells, especially astrocytic glia, and consists of complex TJs and a number of specific transport and enzyme systems that regulate molecular traffic across the endothelial cells. The development of the BBB is a complex process that leads to endothelial cells with unique permeability characteristics due to high electrical resistance and the expression of specific transporters and metabolic pathways. This review article summarizes the historical background underlying our current knowledge of the cellular and molecular mechanisms involved in the development and maintenance of the BBB. (c) 2006 Wiley-Liss, Inc.

  14. Relationship between Packed Red Blood Cell Transfusion and Severe Form of Necrotizing Enterocolitis: A Case Control Study.

    PubMed

    Garg, Parvesh M; Ravisankar, Srikanth; Bian, Hui; Macgilvray, Scott; Shekhawat, Prem S

    2015-12-01

    To determine if packed red blood cell transfusion is associated with onset of necrotizing enterocolitis, and whether withholding feed has any association with it. Case records of 100 preterm neonates, (<34 weeks gestation) who developed necrotizing enterocolitis and 99 random age-and gestation-matched controls were evaluated for any blood transfusion 48 h before onset of necrotizing enterocolitis. During the study period 26% infants received packed red blood cell transfusion within 48-hours prior to onset of disease and 84% of these infants were not fed around the time of transfusion. Infants who developed necrotizing enterocolitis after transfusion were older, of lower gestational age, birth weight and more likely to develop stage 3 disease. They had a lower hematocrit at birth and before onset of disease and withholding feeds around transfusion did not prevent necrotizing enterocolitis. Odds of mortality in these infants was 2.83 (95% CI 0.97-8.9) and survivors had no significant difference in incidence of periventricular leukomalacia and length of hospital stay. Blood Transfusion associated necrotizing enterocolitis is a severe, mainly surgical form of disease.

  15. Gene expression profiling of immunomagnetically separated cells directly from stabilized whole blood for multicenter clinical trials

    PubMed Central

    2014-01-01

    Background Clinically useful biomarkers for patient stratification and monitoring of disease progression and drug response are in big demand in drug development and for addressing potential safety concerns. Many diseases influence the frequency and phenotype of cells found in the peripheral blood and the transcriptome of blood cells. Changes in cell type composition influence whole blood gene expression analysis results and thus the discovery of true transcript level changes remains a challenge. We propose a robust and reproducible procedure, which includes whole transcriptome gene expression profiling of major subsets of immune cell cells directly sorted from whole blood. Methods Target cells were enriched using magnetic microbeads and an autoMACS® Pro Separator (Miltenyi Biotec). Flow cytometric analysis for purity was performed before and after magnetic cell sorting. Total RNA was hybridized on HGU133 Plus 2.0 expression microarrays (Affymetrix, USA). CEL files signal intensity values were condensed using RMA and a custom CDF file (EntrezGene-based). Results Positive selection by use of MACS® Technology coupled to transcriptomics was assessed for eight different peripheral blood cell types, CD14+ monocytes, CD3+, CD4+, or CD8+ T cells, CD15+ granulocytes, CD19+ B cells, CD56+ NK cells, and CD45+ pan leukocytes. RNA quality from enriched cells was above a RIN of eight. GeneChip analysis confirmed cell type specific transcriptome profiles. Storing whole blood collected in an EDTA Vacutainer® tube at 4°C followed by MACS does not activate sorted cells. Gene expression analysis supports cell enrichment measurements by MACS. Conclusions The proposed workflow generates reproducible cell-type specific transcriptome data which can be translated to clinical settings and used to identify clinically relevant gene expression biomarkers from whole blood samples. This procedure enables the integration of transcriptomics of relevant immune cell subsets sorted directly from whole blood in clinical trial protocols. PMID:25984272

  16. Raman spectroscopy of stored red blood cells: evaluating clinically-relevant biochemical markers in donated blood

    NASA Astrophysics Data System (ADS)

    Atkins, Chad G.; Buckley, Kevin; Chen, Deborah; Schulze, H. G.; Devine, Dana V.; Blades, Michael W.; Turner, Robin F. B.

    2015-07-01

    Modern transfusion medicine relies on the safe, secure, and cost-effective delivery of donated red blood cells (RBCs). Once isolated, RBCs are suspended in a defined additive solution and stored in plastic blood bags in which, over time, they undergo chemical, physiological, and morphological changes that may have a deleterious impact on some patients. Regulations limit the storage period to 42 days and the cells do not routinely undergo analytical testing before use. In this study, we use Raman spectroscopy to interrogate stored RBCs and we identify metabolic and cell-breakdown products, such as haemoglobin and membrane fragments, that build-up in the blood bags as the cells age. Our work points the way to the development of an instrument which could quickly and easily assess the biochemical nature of stored RBC units before they are transfused.

  17. Spaceflight Effects on the Hematopoietic Tissue of Ribbed Newts

    NASA Astrophysics Data System (ADS)

    Domaratskaya, E. I.; Almeida, E. A. C.; Butorina, N. N.; Nikonova, T. M.; Grigoryan, E. N.; Poplinskaya, V. A.

    2008-06-01

    The newts Pleurodeles waltl flown on Foton-M2 for 12 days were used for studying the effects of spaceflight on hematopoiesis in lower vertebrates. Prior to the flight, all the animals underwent to removal their lenses and tail tips for regeneration studies. No significant differences in blood cell contents were detected between flight and control animals. Morphological examination of hematopoietic areas of the liver in both groups also showed no significant differences. Experiments with BrdU incorporation revealed labeled cells in the hemopoietic area of the liver as well as in blood. The blood cell composition of newts flown on Foton-M3 was similar to that in intact (nonoperated) newts used in Bion-11 and Foton-M2 experiments. The lack of blood changes in newts during the current experiments distinguishes them from mammals flown in space (rats and mice), which developed significant changes in both blood cell counts, stem and committed cells in the blood-forming tissues.

  18. Detection of circulating tumor cells from cryopreserved human sarcoma peripheral blood mononuclear cells.

    PubMed

    Li, Heming; Meng, Qing H; Noh, Hyangsoon; Batth, Izhar Singh; Somaiah, Neeta; Torres, Keila E; Xia, Xueqing; Wang, Ruoyu; Li, Shulin

    2017-09-10

    Circulating tumor cells (CTCs) enter the vasculature or lymphatic system after shedding from the primary tumor. CTCs may serve as "seed" cells for tumor metastasis. The utility of CTCs in clinical applications for sarcoma is not fully investigated, partly owing to the necessity for fresh blood samples and the lack of a CTC-specific antibody. To overcome these drawbacks, we developed a technique for sarcoma CTCs capture and detection using cryopreserved peripheral blood mononuclear cells (PBMCs) and our proprietary cell-surface vimentin (CSV) antibody 84-1, which is specific to tumor cells. This technique was validated by sarcoma cell spiking assay, matched CTCs comparison between fresh and cryopreserved PBMCs, and independent tumor markers in multiple types of sarcoma patient blood samples. The reproducibility was maximized when cryopreserved PBMCs were prepared from fresh blood samples within 2 h of the blood draw. In summary, as far as we are aware, ours is the first report to capture and detect CTCs from cryopreserved PBMCs. Further validation in other types of tumor may help boost the feasibility and utility of CTC-based diagnosis in a centralized laboratory. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Truncated Hormone Inhibits Breast Tumor Blood Vessel Formation, Not Tumor Growth | Center for Cancer Research

    Cancer.gov

    The hormone prolactin (PRL) plays a critical role in normal breast development by stimulating the proliferation of mammary cells, the production of milk proteins, and the formation of new mammary blood vessels. Unfortunately, the same cell and vessel growth pathways controlled by PRL in normal cells also operate in breast cancer cells, and elevated plasma PRL is a risk factor

  20. Lin- CD34hi CD117int/hi FcεRI+ cells in human blood constitute a rare population of mast cell progenitors.

    PubMed

    Dahlin, Joakim S; Malinovschi, Andrei; Öhrvik, Helena; Sandelin, Martin; Janson, Christer; Alving, Kjell; Hallgren, Jenny

    2016-01-28

    Mast cells are rare tissue-resident immune cells that are involved in allergic reactions, and their numbers are increased in the lungs of asthmatics. Murine lung mast cells arise from committed bone marrow-derived progenitors that enter the blood circulation, migrate through the pulmonary endothelium, and mature in the tissue. In humans, mast cells can be cultured from multipotent CD34(+) progenitor cells. However, a population of distinct precursor cells that give rise to mast cells has remained undiscovered. To our knowledge, this is the first report of human lineage-negative (Lin(-)) CD34(hi) CD117(int/hi) FcεRI(+) progenitor cells, which represented only 0.0053% of the isolated blood cells in healthy individuals. These cells expressed integrin β7 and developed a mast cell-like phenotype, although with a slow cell division capacity in vitro. Isolated Lin(-) CD34(hi) CD117(int/hi) FcεRI(+) blood cells had an immature mast cell-like appearance and expressed high levels of many mast cell-related genes as compared with human blood basophils in whole-transcriptome microarray analyses. Furthermore, serglycin, tryptase, and carboxypeptidase A messenger RNA transcripts were detected by quantitative reverse transcription-polymerase chain reaction. Altogether, we propose that the Lin(-) CD34(hi) CD117(int/hi) FcεRI(+) blood cells are closely related to human tissue mast cells and likely constitute an immediate precursor population, which can give rise to predominantly mast cells. Furthermore, asthmatics with reduced lung function had a higher frequency of Lin(-) CD34(hi) CD117(int/hi) FcεRI(+) blood mast cell progenitors than asthmatics with normal lung function. © 2016 by The American Society of Hematology.

  1. Genetics Home Reference: osteoglophonic dysplasia

    MedlinePlus

    ... as cell division, regulation of cell growth and maturation, formation of blood vessels, wound healing, and embryonic development. In particular, they play a major role in skeletal development. The FGFR1 protein spans the cell membrane, ...

  2. Ex-vivo expansion of red blood cells: how real for transfusion in humans?

    PubMed

    Migliaccio, Anna Rita; Masselli, Elena; Varricchio, Lilian; Whitsett, Carolyn

    2012-03-01

    Blood transfusion is indispensable for modern medicine. In developed countries, the blood supply is adequate and safe but blood for alloimmunized patients is often unavailable. Concerns are increasing that donations may become inadequate in the future as the population ages prompting a search for alternative transfusion products. Improvements in culture conditions and proof-of-principle studies in animal models have suggested that ex-vivo expanded red cells may represent such a product. Compared to other cell therapies transfusion poses the unique challenge of requiring great cell doses (2.5×10(12) cells vs 10(7) cells). Although production of such cell numbers is theoretically possible, current technologies generate red cells in numbers sufficient only for safety studies. It is conceived that by the time these studies will be completed, technical barriers to mass cell production will have been eliminated making transfusion with ex-vivo generated red cells a reality. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Increased Skin Inflammation and Blood Vessel Density in Human and Experimental Diabetes

    PubMed Central

    Tellechea, Ana; Kafanas, Antonios; Leal, Ermelindo C; Tecilazich, Francesco; Kuchibhotla, Sarada; Auster, Michael E; Kontoes, Iraklis; Paolino, Jacqueline; Carvalho, Eugenia; Nabzdyk, Leena Pradhan; Veves, Aristidis

    2013-01-01

    Systemic inflammation is associated with impaired wound healing in diabetic patients. Using immunohistochemistry techniques, the authors investigated changes in skin inflammation and skin blood vessels in human and experimental diabetes. Comparing to the non-DM human subjects, the total number of inflammatory cells per biopsy and the number of inflammatory cells around blood vessels, a strong indication of inflammation, were higher in DM subjects irrespective of their risk for developing diabetic foot ulcer. Inflammatory cell infiltration was robustly increased in all diabetic animal models compared to their non-diabetic controls. The number and density of blood vessels and CD31 positive proliferating endothelial cells around pre-existing skin vessels was also higher in the DM patients. However, there were no differences in the skin blood flow between the non-DM and DM subjects. The number of skin blood vessels was also increased in the DM animals; however, these differences were less obvious than the ones observed for inflammatory cells. We conclude that skin inflammation and skin blood vessel density is increased in diabetic human subjects and in rodent and rabbit models of diabetes. PMID:23446362

  4. Blood Cell-Derived Induced Pluripotent Stem Cells Free of Reprogramming Factors Generated by Sendai Viral Vectors

    PubMed Central

    Muench, Marcus O.; Fusaki, Noemi; Beyer, Ashley I.; Wang, Jiaming; Qi, Zhongxia; Yu, Jingwei

    2013-01-01

    The discovery of induced pluripotent stem cells (iPSCs) holds great promise for regenerative medicine since it is possible to produce patient-specific pluripotent stem cells from affected individuals for potential autologous treatment. Using nonintegrating cytoplasmic Sendai viral vectors, we generated iPSCs efficiently from adult mobilized CD34+ and peripheral blood mononuclear cells. After 5–8 passages, the Sendai viral genome could not be detected by real-time quantitative reverse transcription-polymerase chain reaction. Using the spin embryoid body method, we showed that these blood cell-derived iPSCs could efficiently be differentiated into hematopoietic stem and progenitor cells without the need of coculture with either mouse or human stromal cells. We obtained up to 40% CD34+ of which ∼25% were CD34+/CD43+ hematopoietic precursors that could readily be differentiated into mature blood cells. Our study demonstrated a reproducible protocol for reprogramming blood cells into transgene-free iPSCs by the Sendai viral vector method. Maintenance of the genomic integrity of iPSCs without integration of exogenous DNA should allow the development of therapeutic-grade stem cells for regenerative medicine. PMID:23847002

  5. Size-dependent cell separation and enrichment using double spiral microchannels

    NASA Astrophysics Data System (ADS)

    Hu, Guoqing; Liu, Chao; Sun, Jiashu; Jiang, Xingyu

    2012-11-01

    Much attention has been directed toward microfluidic technologies that can help improve circulating tumor cells (CTCs) separation from the blood sample. In the present work, we develop a double spiral microfluidic platform with one inlet and three outlets that allows for passive, label-free tumor cell enrichment with high throughput and efficiency, inspired by the single spiral cell sorter. The curved channel induces a Dean drag force acting on cells to compete with the inertial lift, resulting in large tumor cells to be focused and deflected into the middle outlet while small hematologic cells are removed from the inner outlet. We continuously isolated and enriched the rare tumor cells (MCF-7 and Hela cells) from diluted whole blood using the same geometry. At a spike ratio of 100 tumor cells per million hematologic cells, 92.28% of blood cells and 96.77% of tumor cells were collected at the inner and middle outlet, respectively, at the throughput of 33.3 million cells per minute. A numerical model is developed to simulate the Dean flows inside the curved geometry and to track the particle/cell trajectories, which is validated against the experimental observations and serves as a theoretical foundation in optimizing the operating conditions.

  6. [Observation in situ of differentiation from PGC to hematopoietic system cells in chicken embryo].

    PubMed

    Zhou, Dong-Yu; Liu, Rong-Xiu; Pei, Yue-Hu

    2009-02-01

    To study the relationship between hematopoiesis and primordial germ cells, chick embryos at different developing stages were flatbed and located. After fixed by glutaral, the embryos were PAS and HE stained respectively, dehydrated serially, transparent, mounted, and were observed in situ or in cut sheet condition. The results showed: (1) the cellule amorphous and the disposition in chick embryo of PGCs were coincident no matter stained by PAS or HE staining, and HE staining could disclose the morphologic characteristics more clearly, exactly and completely; (2) genesis of blood island could be observed at the boundary of light and dark region of the extraembryonic blastoderm at about 26 hours; (3) both the blood vessel endothelium cells and free cells of the blood island were differentiated from PGCs. The generating of genuine yolk sac was at about 44 - 48 hours. It is concluded that the initial anatomic site of blood island genesis may be is mesoblast of extraembryonic blastoderm rather than the yolk sac; the blood vessel endothelium cells and the blood cells are generated parallel; the PGCs are the common ancestry of angioblast and HSC.

  7. Effect of red blood cells on the growth of Porphyromonas endodontalis and microbial community development.

    PubMed

    Zerr, M A; Cox, C D; Johnson, W T; Drake, D R

    1998-04-01

    Establishment of a microbial community in the root canal system depends on numerous factors, of which nutrient availability may be one of the most important. We hypothesized that the presence of red blood cells or hemoglobin in this environment could cause shifts in microbial composition of communities, resulting in organisms such as Porphyromonas endodontalis becoming more dominant. An in vitro model system using mixed, batch cultures was performed with the bacteria P. endodontalis, Fusobacterium nucleatum, Peptostreptococcus micros and Campylobacter rectus. Bacteria were cultured in media with or without the addition of washed red blood cells, hemoglobin, or serum. Cyclic growth studies revealed that P. endodontalis was lost from the community of organisms after three cycles. However, inclusion of red blood cells resulted in establishment of this organism. Moreover, red blood cells added to pure cultures of P. endodontalis substantially enhanced growth and protected the organisms from oxygen. We conclude that the presence of red blood cells could result in shifts of microbial communities of organisms within the root canal system.

  8. Direct measurement of IgM-Antigen interaction energy on individual red blood cells.

    PubMed

    Yeow, Natasha; Tabor, Rico F; Garnier, Gil

    2017-07-01

    Most blood grouping tests rely on the principle of red blood cells (RBCs) agglutination. Agglutination is triggered by the binding of specific blood grouping antibodies to the corresponding RBC surface antigen on multiple cells. The interaction energies between blood grouping antibodies and antigens have been poorly defined in immunohaematology. Here for the first time, we functionalized atomic force microscope (AFM) cantilevers with the IgM form of blood grouping antibodies to probe populations of individual RBCs of different groups under physiological conditions. The force-mapping mode of AFM allowed us to measure specific antibody - antigen interactions, and simultaneously localize and quantify antigen sites on the scanned cell surface. This study provides a new insight of the interactions between IgM antibodies and its corresponding antigen. The technique and information can be translated to develop better blood typing diagnostics and optimize target-specific drug delivery for medical applications. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  9. Spontaneous circulation of myeloid-lymphoid–initiating cells and SCID-repopulating cells in sickle cell crisis

    PubMed Central

    Lamming, Christopher E.D.; Augustin, Lance; Blackstad, Mark; Lund, Troy C.; Hebbel, Robert P.; Verfaillie, Catherine M.

    2003-01-01

    The only curative therapy for sickle cell disease (SCD) is allogeneic hematopoietic stem cell (HSC) transplantation. Gene therapy approaches for autologous HSC transplantation are being developed. Although earlier engraftment is seen when cells from GCSF-mobilized blood are transplanted than when bone marrow is transplanted, administration of GCSF to patients with SCD can cause significant morbidity. We tested whether primitive hematopoietic progenitors are spontaneously mobilized in the blood of patients with SCD during acute crisis (AC-SCD patients). The frequency of myeloid-lymphoid–initiating cells (ML-ICs) and SCID-repopulating cells (SRCs) was significantly higher in blood from AC-SCD patients than in blood from patients with steady-state SCD or from normal donors. The presence of SRCs in peripheral blood was not associated with detection of long-term culture–initiating cells, consistent with the notion that SRCs are more primitive than long-term culture–initiating cells. As ML-ICs and SRCs were both detected in blood of AC-SCD patients only, these assays may both measure primitive progenitors. The frequency of ML-ICs also correlated with increases in stem cell factor, GCSF, and IL-8 levels in AC-SCD compared with steady-state SCD and normal-donor sera. Because significant numbers of ML-ICs and SRCs are mobilized in the blood without exogenous cytokine treatment during acute crisis of SCD, collection of peripheral blood progenitors during crisis may yield a source of autologous HSCs suitable for ex-vivo correction by gene therapy approaches and subsequent transplantation. PMID:12639987

  10. Non-invasive method to detect the changes of glucose concentration in whole blood using photometric technique.

    PubMed

    Rajan, Shiny Amala Priya; Towe, Bruce C

    2014-01-01

    A non-invasive method is developed to monitor rapid changes in blood glucose levels in diabetic patients. The system depends on an optical cell built with a LED that emits light of wavelength 535nm, which is a peak absorbance of hemoglobin. As the glucose concentration in blood decreases, its osmolarity also decreases and the Red Blood Cells (RBCs) swell and decrease the path length absorption coefficient. Decreasing absorption coefficient increases the transmission of light through the whole blood. The system was tested with a constructed optical cell that held whole blood in a capillary tube. As expected the light transmitted to the photodiode increases with decreasing glucose concentration. The average response time of the system was between 30-40 seconds.

  11. Increased memory T cell populations in Pb-exposed children from an e-waste-recycling area.

    PubMed

    Cao, Junjun; Xu, Xijin; Zhang, Yu; Zeng, Zhijun; Hylkema, Machteld N; Huo, Xia

    2018-03-01

    Chronic exposure to heavy metals could affect cell-mediated immunity. The aim of this study was to explore the status of memory T cell development in preschool children from an e-waste recycling area. Blood lead (Pb) levels, peripheral T cell subpopulations, and serum levels of cytokines (IL-2/IL-7/IL-15), relevant to generation and homeostasis of memory T cells were evaluated in preschool children from Guiyu (e-waste-exposed group) and Haojiang (reference group). The correlations between blood Pb levels and percentages of memory T cell subpopulations were also evaluated. Guiyu children had higher blood Pb levels and increased percentages of CD4 + central memory T cells and CD8 + central memory T cells than in the Haojiang group. Moreover, blood Pb levels were positively associated with the percentages of CD4 + central memory T cells. In contrast, Pb exposure contributed marginally in the change of percentages of CD8 + central memory T cells in children. There was no significant difference in the serum cytokine levels between the e-waste-exposed and reference children. Taken together, preschool children from an e-waste recycling area suffer from relatively higher levels of Pb exposure, which might facilitate the development of CD4 + central memory T cells in these children. Copyright © 2017. Published by Elsevier B.V.

  12. Detection and Characterization of Carcinoma Cells in the Blood

    NASA Astrophysics Data System (ADS)

    Racila, Emilian; Euhus, David; Weiss, Arthur J.; Rao, Chandra; McConnell, John; Terstappen, Leon W. M. M.; Uhr, Jonathan W.

    1998-04-01

    A highly sensitive assay combining immunomagnetic enrichment with multiparameter flow cytometric and immunocytochemical analysis has been developed to detect, enumerate, and characterize carcinoma cells in the blood. The assay can detect one epithelial cell or less in 1 ml of blood. Peripheral blood (10-20 ml) from 30 patients with carcinoma of the breast, from 3 patients with prostate cancer, and from 13 controls was examined by flow cytometry for the presence of circulating epithelial cells defined as nucleic acid+, CD45-, and cytokeratin+. Highly significant differences in the number of circulating epithelial cells were found between normal controls and patients with cancer including 17 with organ-confined disease. To determine whether the circulating epithelial cells in the cancer patients were neoplastic cells, cytospin preparations were made after immunomagnetic enrichment and were analyzed. Epithelial cells from patients with breast cancer generally stained with mAbs against cytokeratin and 3 of 5 for mucin-1. In contrast, no cells that stained for these antigens were observed in the blood from normal controls. The morphology of the stained cells was consistent with that of neoplastic cells. Of 8 patients with breast cancer followed for 1-10 months, there was a good correlation between changes in the level of tumor cells in the blood with both treatment with chemotherapy and clinical status. The present assay may be helpful in early detection, in monitoring disease, and in prognostication.

  13. The distribution of HIV DNA and RNA in cell subsets differs in gut and blood of HIV-positive patients on ART: implications for viral persistence.

    PubMed

    Yukl, Steven A; Shergill, Amandeep K; Ho, Terence; Killian, Maudi; Girling, Valerie; Epling, Lorrie; Li, Peilin; Wong, Lisa K; Crouch, Pierre; Deeks, Steven G; Havlir, Diane V; McQuaid, Kenneth; Sinclair, Elizabeth; Wong, Joseph K

    2013-10-15

    Even with optimal antiretroviral therapy, human immunodeficiency virus (HIV) persists in plasma, blood cells, and tissues. To develop new therapies, it is essential to know what cell types harbor residual HIV. We measured levels of HIV DNA, RNA, and RNA/DNA ratios in sorted subsets of CD4+ T cells (CCR7+, transitional memory, and effector memory) and non-CD4+ T leukocytes from blood, ileum, and rectum of 8 ART-suppressed HIV-positive subjects. Levels of HIV DNA/million cells in CCR7+ and effector memory cells were higher in the ileum than blood. When normalized by cell frequencies, most HIV DNA and RNA in the blood were found in CCR7+ cells, whereas in both gut sites, most HIV DNA and RNA were found in effector memory cells. HIV DNA and RNA were observed in non-CD4+ T leukocytes at low levels, particularly in gut tissues. Compared to the blood, the ileum had higher levels of HIV DNA and RNA in both CD4+ T cells and non-CD4+ T leukocytes, whereas the rectum had higher HIV DNA levels in both cell types but lower RNA levels in CD4+ T cells. Future studies should determine whether different mechanisms allow HIV to persist in these distinct reservoirs, and the degree to which different therapies can affect each reservoir.

  14. Development of an automated size-based filtration system for isolation of circulating tumor cells in lung cancer patients.

    PubMed

    Yagi, Satomi; Koh, Yasuhiro; Akamatsu, Hiroaki; Kanai, Kuninobu; Hayata, Atsushi; Tokudome, Nahomi; Akamatsu, Keiichiro; Endo, Katsuya; Nakamura, Seita; Higuchi, Masayuki; Kanbara, Hisashige; Nakanishi, Masanori; Ueda, Hiroki; Yamamoto, Nobuyuki

    2017-01-01

    Circulating tumor cells (CTCs), defined as tumor cells circulating in the peripheral blood of patients with solid tumors, are relatively rare. Diagnosis using CTCs is expected to help in the decision-making for precision cancer medicine. We have developed an automated microcavity array (MCA) system to detect CTCs based on the differences in size and deformability between tumor cells and normal blood cells. Herein, we evaluated the system using blood samples from non-small-cell lung cancer (NSCLC) and small-cell lung cancer (SCLC) patients. To evaluate the recovery of CTCs, preclinical experiments were performed by spiking NSCLC cell lines (NCI-H820, A549, NCI-H23 and NCI-H441) into peripheral whole blood samples from healthy volunteers. The recovery rates were 70% or more in all cell lines. For clinical evaluation, 6 mL of peripheral blood was collected from 50 patients with advanced lung cancer and from 10 healthy donors. Cells recovered on the filter were stained. We defined CTCs as DAPI-positive, cytokeratin-positive, and CD45-negative cells under the fluorescence microscope. The 50 lung cancer patients had a median age of 72 years (range, 48-85 years); 76% had NSCLC and 20% had SCLC, and 14% were at stage III disease whereas 86% were at stage IV. One or more CTCs were detected in 80% of the lung cancer patients (median 2.5). A comparison of the CellSearch system with our MCA system, using the samples from NSCLC patients, confirmed the superiority of our system (median CTC count, 0 versus 11 for CellSearch versus MCA; p = 0.0001, n = 17). The study results suggest that our MCA system has good clinical potential for diagnosing CTCs in lung cancer.

  15. Comparative survival study of glial cells and cells composing walls of blood vessels in crustacean ventral nerve cord after photodynamic treatment

    NASA Astrophysics Data System (ADS)

    Kolosov, Mikhail S.; Shubina, Elena

    2015-03-01

    Photodynamic therapy is a prospective treatment modality of brain cancers. It is of importance to have information about relative survival rate of different cell types in nerve tissue during photodynamic treatment. Particularly, for development of sparing strategy of the photodynamic therapy of brain tumors, which pursuits both total elimination of malignant cells, which are usually of glial origin, and, at the same time, preservation of normal blood circulation as well as normal glial cells in the brain. The aim of this work was to carry out comparative survival study of glial cells and cells composing walls of blood vessels after photodynamic treatment, using simple model object - ventral nerve cord of crustacean.

  16. Divergent response profile in activated cord blood T cells from first-born child implies birth-order-associated in utero immune programming.

    PubMed

    Kragh, M; Larsen, J M; Thysen, A H; Rasmussen, M A; Wolsk, H M; Bisgaard, H; Brix, S

    2016-03-01

    First-born children are at higher risk of developing a range of immune-mediated diseases. The underlying mechanism of 'birth-order effects' on disease risk is largely unknown, but in utero programming of the child's immune system may play a role. We studied the association between birth order and the functional response of stimulated cord blood T cells. Purified cord blood T cells were polyclonally activated with anti-CD3-/anti-CD28-coated beads in a subgroup of 28 children enrolled in the COPSAC2010 birth cohort. Expression levels of seven activation markers on helper and cytotoxic T cells as well as the percentage of CD4(+) CD25(+) T cells were assessed by flow cytometry. Production of IFN-γ, TNF-α, IL-17, IL-4, IL-5, IL-13, and IL-10 was measured in the supernatants. IL-10 secretion (P = 0.007) and CD25 expression on CD4(+) helper T cells (P = 0.0003) in the activated cord blood T cells were selectively reduced in first-born children, while the percentage of circulating CD4(+) CD25(+) cord blood T cells was independent of birth order. First-born infants display a reduced anti-inflammatory profile in T cells at birth. This possible in utero 'birth-order' T-cell programming may contribute to later development of immune-mediated diseases by increasing overall immune reactivity in first-born children as compared to younger siblings. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Cellular Basis of Pineal Gland Development: Emerging Role of Microglia as Phenotype Regulator.

    PubMed

    Ibañez Rodriguez, María P; Noctor, Stephen C; Muñoz, Estela M

    2016-01-01

    The adult pineal gland is composed of pinealocytes, astrocytes, microglia, and other interstitial cells that have been described in detail. However, factors that contribute to pineal development have not been fully elucidated, nor have pineal cell lineages been well characterized. We applied systematic double, triple and quadruple labeling of cell-specific markers on prenatal, postnatal and mature rat pineal gland tissue combined with confocal microscopy to provide a comprehensive view of the cellular dynamics and cell lineages that contribute to pineal gland development. The pineal gland begins as an evagination of neuroepithelium in the roof of the third ventricle. The pineal primordium initially consists of radially aligned Pax6+ precursor cells that express vimentin and divide at the ventricular lumen. After the tubular neuroepithelium fuses, the distribution of Pax6+ cells transitions to include rosette-like structures and later, dispersed cells. In the developing gland all dividing cells express Pax6, indicating that Pax6+ precursor cells generate pinealocytes and some interstitial cells. The density of Pax6+ cells decreases across pineal development as a result of cellular differentiation and microglial phagocytosis, but Pax6+ cells remain in the adult gland as a distinct population. Microglial colonization begins after pineal recess formation. Microglial phagocytosis of Pax6+ cells is not common at early stages but increases as microglia colonize the gland. In the postnatal gland microglia affiliate with Tuj1+ nerve fibers, IB4+ blood vessels, and Pax6+ cells. We demonstrate that microglia engulf Pax6+ cells, nerve fibers, and blood vessel-related elements, but not pinealocytes. We conclude that microglia play a role in pineal gland formation and homeostasis by regulating the precursor cell population, remodeling blood vessels and pruning sympathetic nerve fibers.

  18. Cellular Basis of Pineal Gland Development: Emerging Role of Microglia as Phenotype Regulator

    PubMed Central

    Ibañez Rodriguez, María P.

    2016-01-01

    The adult pineal gland is composed of pinealocytes, astrocytes, microglia, and other interstitial cells that have been described in detail. However, factors that contribute to pineal development have not been fully elucidated, nor have pineal cell lineages been well characterized. We applied systematic double, triple and quadruple labeling of cell-specific markers on prenatal, postnatal and mature rat pineal gland tissue combined with confocal microscopy to provide a comprehensive view of the cellular dynamics and cell lineages that contribute to pineal gland development. The pineal gland begins as an evagination of neuroepithelium in the roof of the third ventricle. The pineal primordium initially consists of radially aligned Pax6+ precursor cells that express vimentin and divide at the ventricular lumen. After the tubular neuroepithelium fuses, the distribution of Pax6+ cells transitions to include rosette-like structures and later, dispersed cells. In the developing gland all dividing cells express Pax6, indicating that Pax6+ precursor cells generate pinealocytes and some interstitial cells. The density of Pax6+ cells decreases across pineal development as a result of cellular differentiation and microglial phagocytosis, but Pax6+ cells remain in the adult gland as a distinct population. Microglial colonization begins after pineal recess formation. Microglial phagocytosis of Pax6+ cells is not common at early stages but increases as microglia colonize the gland. In the postnatal gland microglia affiliate with Tuj1+ nerve fibers, IB4+ blood vessels, and Pax6+ cells. We demonstrate that microglia engulf Pax6+ cells, nerve fibers, and blood vessel-related elements, but not pinealocytes. We conclude that microglia play a role in pineal gland formation and homeostasis by regulating the precursor cell population, remodeling blood vessels and pruning sympathetic nerve fibers. PMID:27861587

  19. Continuous separation of breast cancer cells from blood samples using multi-orifice flow fractionation (MOFF) and dielectrophoresis (DEP).

    PubMed

    Moon, Hui-Sung; Kwon, Kiho; Kim, Seung-Il; Han, Hyunju; Sohn, Joohyuk; Lee, Soohyeon; Jung, Hyo-Il

    2011-03-21

    Circulating tumor cells (CTCs) are highly correlated with the invasive behavior of cancer, so their isolations and quantifications are important for biomedical applications such as cancer prognosis and measuring the responses to drug treatments. In this paper, we present the development of a microfluidic device for the separation of CTCs from blood cells based on the physical properties of cells. For use as a CTC model, we successfully separated human breast cancer cells (MCF-7) from a spiked blood cell sample by combining multi-orifice flow fractionation (MOFF) and dielectrophoretic (DEP) cell separation technique. Hydrodynamic separation takes advantage of the massive and high-throughput filtration of blood cells as it can accommodate a very high flow rate. DEP separation plays a role in precise post-processing to enhance the efficiency of the separation. The serial combination of these two different sorting techniques enabled high-speed continuous flow-through separation without labeling. We observed up to a 162-fold increase in MCF-7 cells at a 126 µL min(-1) flow rate. Red and white blood cells were efficiently removed with separation efficiencies of 99.24% and 94.23% respectively. Therefore, we suggest that our system could be used for separation and detection of CTCs from blood cells for biomedical applications. This journal is © The Royal Society of Chemistry 2011

  20. Hematopoiesis and hematopoietic organs in arthropods.

    PubMed

    Grigorian, Melina; Hartenstein, Volker

    2013-03-01

    Hemocytes (blood cells) are motile cells that move throughout the extracellular space and that exist in all clades of the animal kingdom. Hemocytes play an important role in shaping the extracellular environment and in the immune response. Developmentally, hemocytes are closely related to the epithelial cells lining the vascular system (endothelia) and the body cavity (mesothelia). In vertebrates and insects, common progenitors, called hemangioblasts, give rise to the endothelia and blood cells. In the adult animal, many differentiated hemocytes seem to retain the ability to proliferate; however, in most cases investigated closely, the bulk of hemocyte proliferation takes place in specialized hematopoietic organs. Hematopoietic organs provide an environment where undifferentiated blood stem cells are able to self-renew, and at the same time generate offspring that differentiate into different blood cell types. Hematopoiesis in vertebrates, taking place in the bone marrow, has been subject to intensive research by immunologists and stem cell biologists. Much less is known about blood cell formation in invertebrate animals. In this review, we will survey structural and functional properties of invertebrate hematopoietic organs, with a main focus on insects and other arthropod taxa. We will then discuss similarities, at the molecular and structural level, that are apparent when comparing the development of blood cells in hematopoietic organs of vertebrates and arthropods. Our comparative review is intended to elucidate aspects of the biology of blood stem cells that are more easily missed when focusing on one or a few model species.

  1. Differential white cell count by centrifugal microfluidics.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sommer, Gregory Jon; Tentori, Augusto M.; Schaff, Ulrich Y.

    We present a method for counting white blood cells that is uniquely compatible with centrifugation based microfluidics. Blood is deposited on top of one or more layers of density media within a microfluidic disk. Spinning the disk causes the cell populations within whole blood to settle through the media, reaching an equilibrium based on the density of each cell type. Separation and fluorescence measurement of cell types stained with a DNA dye is demonstrated using this technique. The integrated signal from bands of fluorescent microspheres is shown to be proportional to their initial concentration in suspension. Among the current generationmore » of medical diagnostics are devices based on the principle of centrifuging a CD sized disk functionalized with microfluidics. These portable 'lab on a disk' devices are capable of conducting multiple assays directly from a blood sample, embodied by platforms developed by Gyros, Samsung, and Abaxis. [1,2] However, no centrifugal platform to date includes a differential white blood cell count, which is an important metric complimentary to diagnostic assays. Measuring the differential white blood cell count (the relative fraction of granulocytes, lymphocytes, and monocytes) is a standard medical diagnostic technique useful for identifying sepsis, leukemia, AIDS, radiation exposure, and a host of other conditions that affect the immune system. Several methods exist for measuring the relative white blood cell count including flow cytometry, electrical impedance, and visual identification from a stained drop of blood under a microscope. However, none of these methods is easily incorporated into a centrifugal microfluidic diagnostic platform.« less

  2. Acoustic Microfluidics for Bioanalytical Application

    NASA Astrophysics Data System (ADS)

    Lopez, Gabriel

    2013-03-01

    This talk will present new methods the use of ultrasonic standing waves in microfluidic systems to manipulate microparticles for the purpose of bioassays and bioseparations. We have recently developed multi-node acoustic focusing flow cells that can position particles into many parallel flow streams and have demonstrated the potential of such flow cells in the development of high throughput, parallel flow cytometers. These experiments show the potential for the creation of high throughput flow cytometers in applications requiring high flow rates and rapid detection of rare cells. This talk will also present the development of elastomeric capture microparticles and their use in acoustophoretic separations. We have developed simple methods to form elastomeric particles that are surface functionalized with biomolecular recognition reagents. These compressible particles exhibit negative acoustic contrast in ultrasound when suspended in aqueous media, blood serum or diluted blood. These particles can be continuously separated from cells by flowing them through a microfluidic device that uses an ultrasonic standing wave to align the blood cells, which exhibit positive acoustic contrast, at a node in the acoustic pressure distribution while aligning the negative acoustic contrast elastomeric particles at the antinodes. Laminar flow of the separated particles to downstream collection ports allows for collection of the separated negative contrast particles and cells. Separated elastomeric particles were analyzed via flow cytometry to demonstrate nanomolar detection for prostate specific antigen in aqueous buffer and picomolar detection for IgG in plasma and diluted blood samples. This approach has potential applications in the development of rapid assays that detect the presence of low concentrations of biomarkers (including biomolecules and cells) in a number of biological sample types. We acknowledge support through the NSF Research Triangle MRSEC.

  3. In vivo vascular flow profiling combined with optical tweezers based blood routing

    NASA Astrophysics Data System (ADS)

    Meissner, Robert; Sugden, Wade W.; Siekmann, Arndt F.; Denz, Cornelia

    2017-07-01

    In vivo wall shear rate is quantified during zebrafish development using particle image velocimetry for biomedical diagnosis and modeling of artificial vessels. By using brightfield microscopy based high speed video tracking we can resolve single heart-beat cycles of blood flow in both space and time. Maximum blood flow velocities and wall shear rates are presented for zebrafish at two and three days post fertilization. By applying biocompatible optical tweezers as an Optical rail we present rerouting of red blood cells in vivo. With purely light-driven means we are able to compensate the lack of proper red blood cell blood flow in so far unperfused capillaries.

  4. [Stimulation of cell cultures recovery after cryopreservation by the cattle cord blood FRACTION (below 5 kDa) or Actovegin].

    PubMed

    Gulevskiĭ, A K; Trifonova, A V; Lavrik, A A

    2013-01-01

    The capacities of the cattle cord blood low-molecular fraction (below 5 kDa) and Actovegin (the vealer blood fraction (below 5 kDa)) for recovering functions of cell cultures after cryopreservation compared. Their influence proliferation of the flozen-thawed cell cultures, certain stages of their growth, cell attachment, rate of cell spreading, and mitotic regiment has been studied. Both the cord blood low-molecular fraction and Actovegin were shown to stimulate growth of the cell cultures after cryopreservation more efficiently at the concentration of 224 μg/ml. However, despite the stimulating effect discovered, their application did not bring proliferative indices on the 1st passage after cryopreservation to the values of the native culture. The effects of the cord blood low-molecular fraction and Actovegin on the human fibroblast culture were identical by the following parameters: cell attachment, rates of cell spreading and proliferation. In culture BHK-21 clone 13/04 the efficiency of Actovegin was low, while the cord blood low-molecular fraction has a conspicuous stimulating effect on its adhesion and proliferation. The investigations carried out can serve as a basis for the development of regenerative media containing the cattle cord blood low-molecular fraction (below 5 kDa) or Actovegin as active components at the concentration of 224 μg/ml with the purpose of fast recovery of culture prolifetative properties after cryopreservation.

  5. Vascular lumen formation.

    PubMed

    Lammert, Eckhard; Axnick, Jennifer

    2012-04-01

    The vascular system developed early in evolution. It is required in large multicellular organisms for the transport of nutrients, oxygen, and waste products to and from tissues. The vascular system is composed of hollow tubes, which have a high level of complexity in vertebrates. Vasculogenesis describes the de novo formation of blood vessels, e.g., aorta formation in vertebrate embryogenesis. In contrast, angiogenesis is the formation of blood vessels from preexisting ones, e.g., sprouting of intersomitic blood vessels from the aorta. Importantly, the lumen of all blood vessels in vertebrates is lined and formed by endothelial cells. In both vasculogenesis and angiogenesis, lumen formation takes place in a cord of endothelial cells. It involves a complex molecular mechanism composed of endothelial cell repulsion at the cell-cell contacts within the endothelial cell cords, junctional rearrangement, and endothelial cell shape change. As the vascular system also participates in the course of many diseases, such as cancer, stroke, and myocardial infarction, it is important to understand and make use of the molecular mechanisms of blood vessel formation to better understand and manipulate the pathomechanisms involved.

  6. Tissue Engineering at the Blood-Contacting Surface: A Review of Challenges and Strategies in Vascular Graft Development.

    PubMed

    Radke, Daniel; Jia, Wenkai; Sharma, Dhavan; Fena, Kemin; Wang, Guifang; Goldman, Jeremy; Zhao, Feng

    2018-05-07

    Tissue engineered vascular grafts (TEVGs) are beginning to achieve clinical success and hold promise as a source of grafting material when donor grafts are unsuitable or unavailable. Significant technological advances have generated small-diameter TEVGs that are mechanically stable and promote functional remodeling by regenerating host cells. However, developing a biocompatible blood-contacting surface remains a major challenge. The TEVG luminal surface must avoid negative inflammatory responses and thrombogenesis immediately upon implantation and promote endothelialization. The surface has therefore become a primary focus for research and development efforts. The current state of TEVGs is herein reviewed with an emphasis on the blood-contacting surface. General vascular physiology and developmental challenges and strategies are briefly described, followed by an overview of the materials currently employed in TEVGs. The use of biodegradable materials and stem cells requires careful control of graft composition, degradation behavior, and cell recruitment ability to ensure that a physiologically relevant vessel structure is ultimately achieved. The establishment of a stable monolayer of endothelial cells and the quiescence of smooth muscle cells are critical to the maintenance of patency. Several strategies to modify blood-contacting surfaces to resist thrombosis and control cellular recruitment are reviewed, including coatings of biomimetic peptides and heparin. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A mild transient decrease of peripheral red blood cell counts induced by a suprapharmacological dose of pegylated human megakaryocyte growth and development factor in rats.

    PubMed

    Harada, K; Ide, Y; Tazunoki, Y; Imai, A; Yanagida, M; Kikuchi, Y; Imai, A; Ishii, H; Kawahara, J; Izumi, H; Kusaka, M; Tokiwa, T

    1999-07-01

    Previous studies have shown that pegylated recombinant human megakaryocyte growth and development factor (PEG-rHuMGDF) at suprapharmacological dose induces a mild transient decrease of red blood cell counts according to thrombopoiesis in normal mice. To unravel the mechanism underlying this mild transient decrease of red blood cells, we have studied the effect of PEG-rHuMGDF on the circulating plasma and blood volume, and the serum biochemical parameters of anaemia and splenectomy. Also, we have performed histological studies of the bone marrow and the spleen of PEG-rHuMGDF-treated rats. PEG-rHuMGDF (300 microg kg(-1)]) or vehicle was subcutaneously administered to rats once a day for up to five days. From day 6 after the start of PEG-rHuMGDF administration, the platelet counts and plateletcrit levels were significantly increased, reaching peak values on day 10, and recovering to normal by day 20. The red blood cell counts and the haematocrit levels were significantly decreased on day 6 to 13. The decreases in red blood cell levels and haematocrit produced by PEG-rHuMGDF treatment were mild and had recovered by day 15. The plasma and blood volumes were significantly increased on day 10 in PEG-rHuMGDF-treated rats. No alteration of the serum biochemical parameters for anaemia, iron or total bilirubin, were observed on day 10. The histological examination on day 10 revealed a marked increase in megakaryocytes and a slight decrease in erythropoiesis in the bone marrow of rats that received PEG-rHuMGDF (300 microg kg(-1)). There was also a slight increase in splenic megakaryocytes and erythropoiesis. The decrease of red blood cells by PEG-rHuMGDF was not affected by splenectomy. These results suggest that the mild transient decrease of red blood cells induced by PEG-rHuMGDF treatment for up to five days is based mainly on the increases in the plasma and blood volume. These events are secondary changes due to the regulation of the excess production of megakaryocytes in the marrow and the peripheral platelets.

  8. Applications of human umbilical cord blood cells in central nervous system regeneration.

    PubMed

    Herranz, Antonio S; Gonzalo-Gobernado, Rafael; Reimers, Diana; Asensio, Maria J; Rodríguez-Serrano, Macarena; Bazán, Eulalia

    2010-03-01

    In recent decades, there has been considerable amount of information about embryonic stem cells (ES). The dilemma facing scientists interested in the development and use of human stem cells in replacement therapies is the source of these cells, i.e. the human embryo. There are many ethical and moral problems related to the use of these cells. Hematopoietic stem cells from umbilical cord blood have been proposed as an alternative source of embryonic stem cells. After exposure to different agents, these cells are able to express antigens of diverse cellular lineages, including the neural type. The In vitro manipulation of human umbilical cord blood (hUCB) cells has shown their stem capacity and plasticity. These cells are easily accessible, In vitro amplifiable, well tolerated by the host, and with more primitive molecular characteristics that give them great flexibility. Overall, these properties open a promising future for the use of hUCB in regenerative therapies for the Central Nervous System (CNS). This review will focus on the available literature concerning umbilical cord blood cells as a therapeutic tool for the treatment of neurodegenerative diseases.

  9. Photothermal technique in cell microscopy studies

    NASA Astrophysics Data System (ADS)

    Lapotko, Dmitry; Chebot'ko, Igor; Kutchinsky, Georgy; Cherenkevitch, Sergey

    1995-01-01

    Photothermal (PT) method is applied for a cell imaging and quantitative studies. The techniques for cell monitoring, imaging and cell viability test are developed. The method and experimental set up for optical and PT-image acquisition and analysis is described. Dual- pulsed laser set up combined with phase contrast illumination of a sample provides visualization of temperature field or absorption structure of a sample with spatial resolution 0.5 micrometers . The experimental optics, hardware and software are designed using the modular principle, so the whole set up can be adjusted for various experiments: PT-response monitoring or photothermal spectroscopy studies. Sensitivity of PT-method provides the imaging of the structural elements of live (non-stained) white blood cells. The results of experiments with normal and subnormal blood cells (red blood cells, lymphocytes, neutrophyles and lymphoblasts) are reported. Obtained PT-images are different from optical analogs and deliver additional information about cell structure. The quantitative analysis of images was used for cell population comparative diagnostic. The viability test for red blood cell differentiation is described. During the study of neutrophyles in norma and sarcoidosis disease the differences in PT-images of cells were found.

  10. Identification of malaria infected red blood samples by digital holographic quantitative phase microscope

    NASA Astrophysics Data System (ADS)

    Patel, Nimit R.; Chhaniwal, Vani K.; Javidi, Bahram; Anand, Arun

    2015-07-01

    Development of devices for automatic identification of diseases is desired especially in developing countries. In the case of malaria, even today the gold standard is the inspection of chemically treated blood smears through a microscope. This requires a trained technician/microscopist to identify the cells in the field of view, with which the labeling chemicals gets attached. Bright field microscopes provide only low contrast 2D images of red blood cells and cell thickness distribution cannot be obtained. Quantitative phase contrast microscopes can provide both intensity and phase profiles of the cells under study. The phase information can be used to determine thickness profile of the cell. Since cell morphology is available, many parameters pertaining to the 3D shape of the cell can be computed. These parameters in turn could be used to decide about the state of health of the cell leading to disease diagnosis. Here the investigations done on digital holographic microscope, which provides quantitative phase images, for comparison of parameters obtained from the 3D shape profile of objects leading to identification of diseased samples is described.

  11. Alloimmunization and autoimmunization in transfusion dependent thalassemia major patients: Study on 319 patients

    PubMed Central

    Dhawan, Hari Krishan; Kumawat, Vijay; Marwaha, Neelam; Sharma, Ratti Ram; Sachdev, Suchet; Bansal, Deepak; Marwaha, Ram Kumar; Arora, Satyam

    2014-01-01

    Background: The development of anti-red blood cell antibodies (both allo-and autoantibodies) remains a major problem in thalassemia major patients. We studied the frequency of red blood cell (RBC) alloimmunization and autoimmunization among thalassemia patients who received regular transfusions at our center and analyzed the factors, which may be responsible for development of these antibodies. Materials and Methods: The study was carried out on 319 multiply transfused patients with β-thalassemia major registered with thalassemia clinic at our institute. Clinical and transfusion records of all the patients were examined for age of patients, age at initiation of transfusion therapy, total number of blood units transfused, transfusion interval, status of splenectomy or other interventions. Alloantibody screening and identification was done using three cell and 11 cell panel (Diapanel, Bio-rad, Switzerland) respectively. To detect autoantibodies, autocontrol was carried out using polyspecific coombs (IgG + C3d) gel cards. Results: Eighteen patients out of total 319 patients (5.64%) developed alloantibodies and 90 (28.2%) developed autoantibodies. Nine out of 18 patients with alloantibodies also had autoantibodies. Age at first transfusion was significantly higher in alloimmunized than non-immunized patients (P = 0.042). Out of 23 alloantibodies, 52.17% belonged to Rh blood group system (Anti-E = 17%, Anti D = 13%, Anti-C = 13%, Anti-Cw = 9%), 35% belonged to Kell blood group system, 9% of Kidd and 4% of Xg blood group system. Conclusion: Alloimmunization was detected in 5.64% of multitransfused thalassemia patients. Rh and Kell blood group system antibodies accounted for more than 80% of alloantibodies. This study re-emphasizes the need for RBC antigen typing before first transfusion and issue of antigen matched blood (at least for Rh and Kell antigen). Early institution of transfusion therapy after diagnosis is another means of decreasing alloimmunization. PMID:25161344

  12. Truncated Hormone Inhibits Breast Tumor Blood Vessel Formation, Not Tumor Growth | Center for Cancer Research

    Cancer.gov

    The hormone prolactin (PRL) plays a critical role in normal breast development by stimulating the proliferation of mammary cells, the production of milk proteins, and the formation of new mammary blood vessels. Unfortunately, the same cell and vessel growth pathways controlled by PRL in normal cells also operate in breast cancer cells, and elevated plasma PRL is a risk factor for breast cancer, especially in post-menopausal women.

  13. Laser ektacytometry and evaluation of statistical characteristics of inhomogeneous ensembles of red blood cells

    NASA Astrophysics Data System (ADS)

    Nikitin, S. Yu.; Priezzhev, A. V.; Lugovtsov, A. E.; Ustinov, V. D.; Razgulin, A. V.

    2014-10-01

    The paper is devoted to development of the laser ektacytometry technique for evaluation of the statistical characteristics of inhomogeneous ensembles of red blood cells (RBCs). We have analyzed theoretically laser beam scattering by the inhomogeneous ensembles of elliptical discs, modeling red blood cells in the ektacytometer. The analysis shows that the laser ektacytometry technique allows for quantitative evaluation of such population characteristics of RBCs as the cells mean shape, the cells deformability variance and asymmetry of the cells distribution in the deformability. Moreover, we show that the deformability distribution itself can be retrieved by solving a specific Fredholm integral equation of the first kind. At this stage we do not take into account the scatter in the RBC sizes.

  14. Identification of CD3+ T lymphocytes in the green turtle Chelonia mydas

    USGS Publications Warehouse

    Munoz, F.A.; Estrada-Parra, S.; Romero-Rojas, A.; Work, Thierry M.; Gonzalez-Ballesteros, E.; Estrada-Garcia, I.

    2009-01-01

    To understand the role of the immune system with respect to disease in reptiles, there is the need to develop tools to assess the host's immune response. An important tool is the development of molecular markers to identify immune cells, and these are limited for reptiles. We developed a technique for the cryopreservation of peripheral blood mononuclear cells and showed that a commercially available anti-CD3 epsilon chain antibody detects a subpopulation of CD3 positive peripheral blood lymphocytes in the marine turtle Chelonia mydas. In the thymus and in skin inoculated with phytohemagglutinin, the same antibody showed the classical staining pattern observed in mammals and birds. For Western blot, the anti-CD3 antibodies identified a 17.6 kDa band in membrane proteins of peripheral blood mononuclear cell compatible in weight to previously described CD3 molecules. This is the first demostration of CD3+ cells in reptiles using specific antibodies.

  15. Identification and characterization of a resident vascular stem/progenitor cell population in preexisting blood vessels

    PubMed Central

    Naito, Hisamichi; Kidoya, Hiroyasu; Sakimoto, Susumu; Wakabayashi, Taku; Takakura, Nobuyuki

    2012-01-01

    Vasculogenesis, the in-situ assembly of angioblast or endothelial progenitor cells (EPCs), may persist into adult life, contributing to new blood vessel formation. However, EPCs are scattered throughout newly developed blood vessels and cannot be solely responsible for vascularization. Here, we identify an endothelial progenitor/stem-like population located at the inner surface of preexisting blood vessels using the Hoechst method in which stem cell populations are identified as side populations. This population is dormant in the steady state but possesses colony-forming ability, produces large numbers of endothelial cells (ECs) and when transplanted into ischaemic lesions, restores blood flow completely and reconstitutes de-novo long-term surviving blood vessels. Moreover, although surface markers of this population are very similar to conventional ECs, and they reside in the capillary endothelium sub-population, the gene expression profile is completely different. Our results suggest that this heterogeneity of stem-like ECs will lead to the identification of new targets for vascular regeneration therapy. PMID:22179698

  16. Blood vessel crosstalk during organogenesis – Focus on Pancreas

    PubMed Central

    Azizoglu, D. Berfin; Cleaver, Ondine

    2016-01-01

    Blood vessels form a highly branched, interconnected and largely stereotyped network of tubes that sustains every organ and tissue in vertebrates. How vessels come to take on their particular architecture, or how they are ‘patterned’, and in turn, how they influence surrounding tissues are fundamental questions of organogenesis. Decades of work have begun to elucidate how endothelial progenitors arise and home to precise locations within tissues, integrating attractive and repulsive cues to build vessels where they are needed. Conversely, more recent findings have revealed an exciting facet of blood vessel interaction with tissues, where vascular cells provide signals to developing organs and progenitors therein. Here, we discuss the exchange of reciprocal signals between endothelial cells (ECs) and neighboring tissues during embryogenesis, with a special focus on the developing pancreas. Understanding the mechanisms driving both sides of these interactions will be crucial to the development of therapies, from improving organ regeneration to efficient production of cell based therapies. Specifically, elucidating the interface of the vasculature with pancreatic lineages, including endocrine cells, will instruct approaches such as generation of replacement beta cells for Type I diabetes. PMID:27328421

  17. ZnO-Based Microfluidic pH Sensor: A Versatile Approach for Quick Recognition of Circulating Tumor Cells in Blood.

    PubMed

    Mani, Ganesh Kumar; Morohoshi, Madoka; Yasoda, Yutaka; Yokoyama, Sho; Kimura, Hiroshi; Tsuchiya, Kazuyoshi

    2017-02-15

    The present study is concerned about the development of highly sensitive and stable microfluidic pH sensor for possible identification of circulating tumor cells (CTCs) in blood. The precise pH measurements between silver-silver chloride (Ag/AgCl) reference electrode and zinc oxide (ZnO) working electrode have been investigated in the microfluidic device. Since there is a direct link between pH and cancer cells, the developed device is one of the valuable tools to examine circulating tumor cells (CTCs) in blood. The ZnO-based working electrode was deposited by radio frequency (rf) sputtering technique. The potential voltage difference between the working and reference electrodes (Ag/AgCl) is evaluated on the microfluidic device. The ideal Nernstian response of -43.71165 mV/pH was achieved along with high stability and quick response time. Finally, to evaluate the real time capability of the developed microfluidic device, in vitro testing was done with A549, A7r5, and MDCK cells.

  18. CD13-positive bone marrow-derived myeloid cells promote angiogenesis, tumor growth, and metastasis.

    PubMed

    Dondossola, Eleonora; Rangel, Roberto; Guzman-Rojas, Liliana; Barbu, Elena M; Hosoya, Hitomi; St John, Lisa S; Molldrem, Jeffrey J; Corti, Angelo; Sidman, Richard L; Arap, Wadih; Pasqualini, Renata

    2013-12-17

    Angiogenesis is fundamental to tumorigenesis and an attractive target for therapeutic intervention against cancer. We have recently demonstrated that CD13 (aminopeptidase N) expressed by nonmalignant host cells of unspecified types regulate tumor blood vessel development. Here, we compare CD13 wild-type and null bone marrow-transplanted tumor-bearing mice to show that host CD13(+) bone marrow-derived cells promote cancer progression via their effect on angiogenesis. Furthermore, we have identified CD11b(+)CD13(+) myeloid cells as the immune subpopulation directly regulating tumor blood vessel development. Finally, we show that these cells are specifically localized within the tumor microenvironment and produce proangiogenic soluble factors. Thus, CD11b(+)CD13(+) myeloid cells constitute a population of bone marrow-derived cells that promote tumor progression and metastasis and are potential candidates for the development of targeted antiangiogenic drugs.

  19. Development of full-field optical spatial coherence tomography system for automated identification of malaria using the multilevel ensemble classifier.

    PubMed

    Singla, Neeru; Srivastava, Vishal; Mehta, Dalip Singh

    2018-05-01

    Malaria is a life-threatening infectious blood disease affecting humans and other animals caused by parasitic protozoans belonging to the Plasmodium type especially in developing countries. The gold standard method for the detection of malaria is through the microscopic method of chemically treated blood smears. We developed an automated optical spatial coherence tomographic system using a machine learning approach for a fast identification of malaria cells. In this study, 28 samples (15 healthy, 13 malaria infected stages of red blood cells) were imaged by the developed system and 13 features were extracted. We designed a multilevel ensemble-based classifier for the quantitative prediction of different stages of the malaria cells. The proposed classifier was used by repeating k-fold cross validation dataset and achieve a high-average accuracy of 97.9% for identifying malaria infected late trophozoite stage of cells. Overall, our proposed system and multilevel ensemble model has a substantial quantifiable potential to detect the different stages of malaria infection without staining or expert. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Targeting Therapy Resistant Tumor Vessels

    DTIC Science & Technology

    2007-05-01

    Porkka K, Laakko- nen P, Ruoslahti E. Nucleolin expressed at the cell surface is a marker of endothelial cells in angiogenic blood vessels. J Cell...anti-angiogenic therapy. Markers of such vessels will be useful in developing strategies for complete destruction of breast cancer vasculature, and in...express specific markers , and that these lymphatic markers are tumor type specific and distinct from blood vessel markers in the same tumors. The

  1. New decision support tool for acute lymphoblastic leukemia classification

    NASA Astrophysics Data System (ADS)

    Madhukar, Monica; Agaian, Sos; Chronopoulos, Anthony T.

    2012-03-01

    In this paper, we build up a new decision support tool to improve treatment intensity choice in childhood ALL. The developed system includes different methods to accurately measure furthermore cell properties in microscope blood film images. The blood images are exposed to series of pre-processing steps which include color correlation, and contrast enhancement. By performing K-means clustering on the resultant images, the nuclei of the cells under consideration are obtained. Shape features and texture features are then extracted for classification. The system is further tested on the classification of spectra measured from the cell nuclei in blood samples in order to distinguish normal cells from those affected by Acute Lymphoblastic Leukemia. The results show that the proposed system robustly segments and classifies acute lymphoblastic leukemia based on complete microscopic blood images.

  2. Drosophila: a model for studying genetic and molecular aspects of haematopoiesis and associated leukaemias

    PubMed Central

    Crozatier, Michèle; Vincent, Alain

    2011-01-01

    Vertebrate haematopoietic stem cells (HSCs) give rise to a hierarchically organised set of progenitors for erythroid, myeloid, lymphoid and megakaryocyte lineages, and are responsible for lifelong maintenance of the blood system. Dysregulation of the haematopoietic differentiation programme is at the origin of numerous pathologies, including leukaemias. With the discoveries that many transcriptional regulators and signalling pathways controlling blood cell development are conserved between humans and Drosophila melanogaster, the fruit fly has become a good model for investigating the mechanisms underlying the generation of blood cell lineages and blood cell homeostasis. In this review article, we discuss how genetic and molecular studies of Drosophila haematopoiesis can contribute to our understanding of the haematopoietic niche, as well as of the origin and/or progression of haematopoietic malignancies in humans. PMID:21669932

  3. Development of the automated circulating tumor cell recovery system with microcavity array.

    PubMed

    Negishi, Ryo; Hosokawa, Masahito; Nakamura, Seita; Kanbara, Hisashige; Kanetomo, Masafumi; Kikuhara, Yoshihito; Tanaka, Tsuyoshi; Matsunaga, Tadashi; Yoshino, Tomoko

    2015-05-15

    Circulating tumor cells (CTCs) are well recognized as useful biomarker for cancer diagnosis and potential target of drug discovery for metastatic cancer. Efficient and precise recovery of extremely low concentrations of CTCs from blood has been required to increase the detection sensitivity. Here, an automated system equipped with a microcavity array (MCA) was demonstrated for highly efficient and reproducible CTC recovery. The use of MCA allows selective recovery of cancer cells from whole blood on the basis of differences in size between tumor and blood cells. Intra- and inter-assays revealed that the automated system achieved high efficiency and reproducibility equal to the assay manually performed by well-trained operator. Under optimized assay workflow, the automated system allows efficient and precise cell recovery for non-small cell lung cancer cells spiked in whole blood. The automated CTC recovery system will contribute to high-throughput analysis in the further clinical studies on large cohort of cancer patients. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Point-of-care rare cell cancer diagnostics.

    PubMed

    Issadore, David

    2015-01-01

    The sparse cells that are shed from tumors into peripheral circulation are an increasingly promising resource for noninvasive monitoring of cancer progression, early diagnosis of disease, and serve as a tool for improving our understanding of cancer metastasis. However, the extremely sparse concentration of circulating tumor cells (CTCs) in blood (~1-100 CTC in 7.5 mL of blood) as well as their heterogeneous biomarker expression has limited their detection using conventional laboratory techniques. To overcome these challenges, we have developed a microfluidic chip-based micro-Hall detector (μHD), which can directly measure single, immunomagnetically tagged cells in whole blood. The μHD can detect individual cells even in the presence of vast numbers of blood cells and unbound reactants, and does not require any washing or purification steps. Furthermore, this cost-effective, single-cell analytical technique is well suited for miniaturization into a mobile platform for low-cost point-of-care use. In this chapter, we describe the methodology used to design, fabricate, and apply these chips to cancer diagnostics.

  5. Running Head: Feasibility of Blood Management. Feasibility Study of a Blood Management Program in the Mike O’Callaghan Federal Hospital

    DTIC Science & Technology

    2009-06-02

    transition to bloodless surgery (Northeast Baptist Hospital, 2008). The newsletter also included a transcript from a local news story on their...and Procedures Several locally developed instructions address procedures that have the potential to facilitate blood management efforts. Appendix B... local Blood Management 19 instruction developed by the Operating Room Services personnel, details the guidelines for using the Cell Saver

  6. Molecular parallels between neural and vascular development.

    PubMed

    Eichmann, Anne; Thomas, Jean-Léon

    2013-01-01

    The human central nervous system (CNS) features a network of ~400 miles of blood vessels that receives >20% of the body's cardiac output and uses most of its blood glucose. Many human diseases, including stroke, retinopathy, and cancer, are associated with the biology of CNS blood vessels. These vessels originate from extrinsic cell populations, including endothelial cells and pericytes that colonize the CNS and interact with glia and neurons to establish the blood-brain barrier and control cerebrovascular exchanges. Neurovascular interactions also play important roles in adult neurogenic niches, which harbor a unique population of neural stem cells that are intimately associated with blood vessels. We here review the cellular and molecular mechanisms required to establish the CNS vascular network, with a special focus on neurovascular interactions and the functions of vascular endothelial growth factors.

  7. In vivo multispectral photoacoustic and photothermal flow cytometry with multicolor dyes: a potential for real-time assessment of circulation, dye-cell interaction, and blood volume

    PubMed Central

    Proskurnin, Mikhail A.; Zhidkova, Tatyana V.; Volkov, Dmitry S.; Sarimollaoglu, Mustafa; Galanzha, Ekaterina I.; Mock, Donald; Zharov, Vladimir P.

    2011-01-01

    Recently, photoacoustic (PA) flow cytometry (PAFC) has been developed for in vivo detection of circulating tumor cells and bacteria targeted by nanoparticles. Here, we propose multispectral PAFC with multiple dyes having distinctive absorption spectra as multicolor PA contrast agents. As a first step of our proof-of-concept, we characterized high-speed PAFC capability to monitor the clearance of three dyes (ICG, MB, and TB) in an animal model in vivo and in real time. We observed strong dynamic PA signal fluctuations, which can be associated with interactions of dyes with circulating blood cells and plasma proteins. PAFC demonstrated enumeration of circulating red and white blood cells labeled with ICG and MB, respectively, and detection of rare dead cells uptaking TB directly in bloodstream. The possibility for accurate measurements of various dye concentrations including CV and BG were verified in vitro using complementary to PAFC photothermal (PT) technique and spectrophotometry under batch and flow conditions. We further analyze the potential of integrated PAFC/PT spectroscopy with multiple dyes for rapid and accurate measurements of circulating blood volume without a priori information on hemoglobin content, which is impossible with existing optical techniques. This is important in many medical conditions including surgery and trauma with extensive blood loss, rapid fluid administration, transfusion of red blood cells. The potential for developing a robust clinical PAFC prototype that is, safe for human, and its applications for studying the liver function are further highlighted. PMID:21905207

  8. Pilot study on novel blood containers with alternative plasticizers for red cell concentrate storage

    PubMed Central

    Fukui, Chie; Kawakami, Tsuyoshi; Ikeda, Toshiyuki; Mukai, Tomokazu; Yuba, Toshiyasu; Inamura, Ken-ichi; Yamaoka, Hisatoki; Miyazaki, Ken-ichi; Okazaki, Hitoshi

    2017-01-01

    Di (2-ethylhexyl) phthalate (DEHP), a typical plasticizer used for polyvinyl chloride (PVC) blood containers, is eluted from the blood containers and exerts protective effects on red blood cells. However, a concern for detrimental effects of DEHP on human health has led to the development of potential DEHP substitutes. Here, we compared the red blood cell preservation ability of two types of non-DEHP blood containers with safe alternative plasticizers to that of DEHP blood containers. Red cell concentrates in mannitol-adenine-phosphate solution (MAP/RCC) were stored for 6 weeks in PVC blood bags containing DEHP, di-isononyl-cyclohexane-1,2-dicarboxylate (DINCH) and di (2-ethylhexyl) 4-cyclohexene-1,2-dicarboxylate (DOTH), or 4-cyclohexene-1,2-dicarboxylic acid dinonyl ester (DL9TH) and DOTH. There was no significant difference in the total amount of plasticizer eluted into MAP/RCC (till 3 weeks from the beginning of the experiment), hemolysis of MAP/RCC, and osmotic fragility of MAP/RCC between the non-DEHP blood containers and DEHP blood containers. Hematological and blood chemical indices of MAP/RCC in all containers were nearly the same. Thus, DOTH/DINCH and DOTH/DL9TH blood containers demonstrate the same quality of MAP/RCC storing as the DEHP blood containers. Since DOTH, DINCH, and DL9TH were reported to be safe, DOTH/DINCH and DOTH/DL9TH blood containers are promising candidate substitutes for DEHP blood containers. PMID:28957448

  9. Pilot study on novel blood containers with alternative plasticizers for red cell concentrate storage.

    PubMed

    Morishita, Yuki; Nomura, Yusuke; Fukui, Chie; Kawakami, Tsuyoshi; Ikeda, Toshiyuki; Mukai, Tomokazu; Yuba, Toshiyasu; Inamura, Ken-Ichi; Yamaoka, Hisatoki; Miyazaki, Ken-Ichi; Okazaki, Hitoshi; Haishima, Yuji

    2017-01-01

    Di (2-ethylhexyl) phthalate (DEHP), a typical plasticizer used for polyvinyl chloride (PVC) blood containers, is eluted from the blood containers and exerts protective effects on red blood cells. However, a concern for detrimental effects of DEHP on human health has led to the development of potential DEHP substitutes. Here, we compared the red blood cell preservation ability of two types of non-DEHP blood containers with safe alternative plasticizers to that of DEHP blood containers. Red cell concentrates in mannitol-adenine-phosphate solution (MAP/RCC) were stored for 6 weeks in PVC blood bags containing DEHP, di-isononyl-cyclohexane-1,2-dicarboxylate (DINCH) and di (2-ethylhexyl) 4-cyclohexene-1,2-dicarboxylate (DOTH), or 4-cyclohexene-1,2-dicarboxylic acid dinonyl ester (DL9TH) and DOTH. There was no significant difference in the total amount of plasticizer eluted into MAP/RCC (till 3 weeks from the beginning of the experiment), hemolysis of MAP/RCC, and osmotic fragility of MAP/RCC between the non-DEHP blood containers and DEHP blood containers. Hematological and blood chemical indices of MAP/RCC in all containers were nearly the same. Thus, DOTH/DINCH and DOTH/DL9TH blood containers demonstrate the same quality of MAP/RCC storing as the DEHP blood containers. Since DOTH, DINCH, and DL9TH were reported to be safe, DOTH/DINCH and DOTH/DL9TH blood containers are promising candidate substitutes for DEHP blood containers.

  10. An integrated microfluidic chip system for single-cell secretion profiling of rare circulating tumor cells.

    PubMed

    Deng, Yuliang; Zhang, Yu; Sun, Shuai; Wang, Zhihua; Wang, Minjiao; Yu, Beiqin; Czajkowsky, Daniel M; Liu, Bingya; Li, Yan; Wei, Wei; Shi, Qihui

    2014-12-16

    Genetic and transcriptional profiling, as well as surface marker identification of single circulating tumor cells (CTCs) have been demonstrated. However, quantitatively profiling of functional proteins at single CTC resolution has not yet been achieved, owing to the limited purity of the isolated CTC populations and a lack of single-cell proteomic approaches to handle and analyze rare CTCs. Here, we develop an integrated microfluidic system specifically designed for streamlining isolation, purification and single-cell secretomic profiling of CTCs from whole blood. Key to this platform is the use of photocleavable ssDNA-encoded antibody conjugates to enable a highly purified CTC population with <75 'contaminated' blood cells. An enhanced poly-L-lysine barcode pattern is created on the single-cell barcode chip for efficient capture rare CTC cells in microchambers for subsequent secreted protein profiling. This system was extensively evaluated and optimized with EpCAM-positive HCT116 cells seeded into whole blood. Patient blood samples were employed to assess the utility of the system for isolation, purification and single-cell secretion profiling of CTCs. The CTCs present in patient blood samples exhibit highly heterogeneous secretion profile of IL-8 and VEGF. The numbers of secreting CTCs are found not in accordance with CTC enumeration based on immunostaining in the parallel experiments.

  11. An Integrated Microfluidic Chip System for Single-Cell Secretion Profiling of Rare Circulating Tumor Cells

    PubMed Central

    Deng, Yuliang; Zhang, Yu; Sun, Shuai; Wang, Zhihua; Wang, Minjiao; Yu, Beiqin; Czajkowsky, Daniel M.; Liu, Bingya; Li, Yan; Wei, Wei; Shi, Qihui

    2014-01-01

    Genetic and transcriptional profiling, as well as surface marker identification of single circulating tumor cells (CTCs) have been demonstrated. However, quantitatively profiling of functional proteins at single CTC resolution has not yet been achieved, owing to the limited purity of the isolated CTC populations and a lack of single-cell proteomic approaches to handle and analyze rare CTCs. Here, we develop an integrated microfluidic system specifically designed for streamlining isolation, purification and single-cell secretomic profiling of CTCs from whole blood. Key to this platform is the use of photocleavable ssDNA-encoded antibody conjugates to enable a highly purified CTC population with <75 ‘contaminated' blood cells. An enhanced poly-L-lysine barcode pattern is created on the single-cell barcode chip for efficient capture rare CTC cells in microchambers for subsequent secreted protein profiling. This system was extensively evaluated and optimized with EpCAM-positive HCT116 cells seeded into whole blood. Patient blood samples were employed to assess the utility of the system for isolation, purification and single-cell secretion profiling of CTCs. The CTCs present in patient blood samples exhibit highly heterogeneous secretion profile of IL-8 and VEGF. The numbers of secreting CTCs are found not in accordance with CTC enumeration based on immunostaining in the parallel experiments. PMID:25511131

  12. Static micro-array isolation, dynamic time series classification, capture and enumeration of spiked breast cancer cells in blood: the nanotube-CTC chip

    NASA Astrophysics Data System (ADS)

    Khosravi, Farhad; Trainor, Patrick J.; Lambert, Christopher; Kloecker, Goetz; Wickstrom, Eric; Rai, Shesh N.; Panchapakesan, Balaji

    2016-11-01

    We demonstrate the rapid and label-free capture of breast cancer cells spiked in blood using nanotube-antibody micro-arrays. 76-element single wall carbon nanotube arrays were manufactured using photo-lithography, metal deposition, and etching techniques. Anti-epithelial cell adhesion molecule (anti-EpCAM), Anti-human epithelial growth factor receptor 2 (anti-Her2) and non-specific IgG antibodies were functionalized to the surface of the nanotube devices using 1-pyrene-butanoic acid succinimidyl ester. Following device functionalization, blood spiked with SKBR3, MCF7 and MCF10A cells (100/1000 cells per 5 μl per device, 170 elements totaling 0.85 ml of whole blood) were adsorbed on to the nanotube device arrays. Electrical signatures were recorded from each device to screen the samples for differences in interaction (specific or non-specific) between samples and devices. A zone classification scheme enabled the classification of all 170 elements in a single map. A kernel-based statistical classifier for the ‘liquid biopsy’ was developed to create a predictive model based on dynamic time warping series to classify device electrical signals that corresponded to plain blood (control) or SKBR3 spiked blood (case) on anti-Her2 functionalized devices with ˜90% sensitivity, and 90% specificity in capture of 1000 SKBR3 breast cancer cells in blood using anti-Her2 functionalized devices. Screened devices that gave positive electrical signatures were confirmed using optical/confocal microscopy to hold spiked cancer cells. Confocal microscopic analysis of devices that were classified to hold spiked blood based on their electrical signatures confirmed the presence of cancer cells through staining for DAPI (nuclei), cytokeratin (cancer cells) and CD45 (hematologic cells) with single cell sensitivity. We report 55%-100% cancer cell capture yield depending on the active device area for blood adsorption with mean of 62% (˜12 500 captured off 20 000 spiked cells in 0.1 ml blood) in this first nanotube-CTC chip study.

  13. High Endothelial Venules and Other Blood Vessels: Critical Regulators of Lymphoid Organ Development and Function

    PubMed Central

    Ager, Ann

    2017-01-01

    The blood vasculature regulates both the development and function of secondary lymphoid organs by providing a portal for entry of hemopoietic cells. During the development of lymphoid organs in the embryo, blood vessels deliver lymphoid tissue inducer cells that initiate and sustain the development of lymphoid tissues. In adults, the blood vessels are structurally distinct from those in other organs due to the requirement for high levels of lymphocyte recruitment under non-inflammatory conditions. In lymph nodes (LNs) and Peyer’s patches, high endothelial venules (HEVs) especially adapted for lymphocyte trafficking form a spatially organized network of blood vessels, which controls both the type of lymphocyte and the site of entry into lymphoid tissues. Uniquely, HEVs express vascular addressins that regulate lymphocyte entry into lymphoid organs and are, therefore, critical to the function of lymphoid organs. Recent studies have demonstrated important roles for CD11c+ dendritic cells in the induction, as well as the maintenance, of vascular addressin expression and, therefore, the function of HEVs. Tertiary lymphoid organs (TLOs) are HEV containing LN-like structures that develop inside organized tissues undergoing chronic immune-mediated inflammation. In autoimmune lesions, the development of TLOs is thought to exacerbate disease. In cancerous tissues, the development of HEVs and TLOs is associated with improved patient outcomes in several cancers. Therefore, it is important to understand what drives the development of HEVs and TLOs and how these structures contribute to pathology. In several human diseases and experimental animal models of chronic inflammation, there are some similarities between the development and function of HEVs within LN and TLOs. This review will summarize current knowledge of how hemopoietic cells with lymphoid tissue-inducing, HEV-inducing, and HEV-maintaining properties are recruited from the bloodstream to induce the development and control the function of lymphoid organs. PMID:28217126

  14. In vitro models of the blood–brain barrier: An overview of commonly used brain endothelial cell culture models and guidelines for their use

    PubMed Central

    Helms, Hans C; Abbott, N Joan; Burek, Malgorzata; Cecchelli, Romeo; Couraud, Pierre-Olivier; Deli, Maria A; Förster, Carola; Galla, Hans J; Romero, Ignacio A; Shusta, Eric V; Stebbins, Matthew J; Vandenhaute, Elodie; Weksler, Babette

    2016-01-01

    The endothelial cells lining the brain capillaries separate the blood from the brain parenchyma. The endothelial monolayer of the brain capillaries serves both as a crucial interface for exchange of nutrients, gases, and metabolites between blood and brain, and as a barrier for neurotoxic components of plasma and xenobiotics. This “blood-brain barrier” function is a major hindrance for drug uptake into the brain parenchyma. Cell culture models, based on either primary cells or immortalized brain endothelial cell lines, have been developed, in order to facilitate in vitro studies of drug transport to the brain and studies of endothelial cell biology and pathophysiology. In this review, we aim to give an overview of established in vitro blood–brain barrier models with a focus on their validation regarding a set of well-established blood–brain barrier characteristics. As an ideal cell culture model of the blood–brain barrier is yet to be developed, we also aim to give an overview of the advantages and drawbacks of the different models described. PMID:26868179

  15. Biomechanical force in blood development: extrinsic physical cues drive pro-hematopoietic signaling

    PubMed Central

    Lee, Hyun Jung; Li, Nan; Evans, Siobahn M.; Diaz, Miguel F.; Wenzel, Pamela L.

    2013-01-01

    The hematopoietic system is dynamic during development and in adulthood, undergoing countless spatial and temporal transitions during the course of one’s life. Microenvironmental cues in the many unique hematopoietic niches differ, characterized by distinct soluble molecules, membrane-bound factors, and biophysical features that meet the changing needs of the blood system. Research from the last decade has revealed the importance of substrate elasticity and biomechanical force in determination of stem cell fate. Our understanding of the role of these factors in hematopoiesis is still relatively poor; however, the developmental origin of blood cells from the endothelium promts a model for comparison. Many endothelial mechanical sensors and second messenger systems may also determine hematopoietic stem cell fate, self renewal, and homing behaviors. Further, the intimate contact of hematopoietic cells with mechanosensitive cell types, including osteoblasts, endothelial cells, mesenchymal stem cells, and pericytes, places them in close proximity to paracrine signaling downstream of mechanical signals. The objective of this review is to present an overview of the sensors and intracellular signaling pathways activated by mechanical cues and highlight the role of mechanotransductive pathways in hematopoiesis. PMID:23850217

  16. THE EFFECTS OF EXPERIMENTAL PLETHORA ON BLOOD PRODUCTION.

    PubMed

    Robertson, O H

    1917-08-01

    With the purpose of determining whether a diminished activity of the bone marrow could be brought about experimentally, plethora was produced in rabbits by means of repeated small transfusions of blood. Counts of the number of reticulated red cells in the circulating blood were made during the course of the experiments as an index to changes in the activity of the bone marrow. With the development of plethora, the number of reticulated cells in the blood decreased. In the majority of the plethoric animals, this diminution was extreme, and in some instances, reticulated cells practically disappeared from the blood. A comparison of the red bone marrow of these animals with that of normal controls revealed a marked reduction in the content of reticulated cells. After a number of transfusions, there occurred in some of the plethoric rabbits a sudden and marked drop in hemoglobin. The hemoglobin continued to fall until a severe grade of anemia was reached. This was followed by an extremely rapid regeneration accompanied by a striking rise in color index. During regeneration, the reticulated cells were enormously increased in number. Taken together, these facts show that the bone marrow is markedly influenced by plethora. The diminished number of reticulated cells observed, both in the circulating blood and in the marrow, would make it appear that a decided decrease in blood production occurs. The reduction in the number of these cells cannot be due to changes in the constitution of the red cells put out by the bone marrow, as a result of an increased quantity of hemoglobin in the body, because during regeneration from the above mentioned anemia, when the color index was very high, reticulated cells were still present in large numbers. That the activity of the bone marrow does actually diminish during plethora is further evidenced by the occurrence of the anemia. The most reasonable explanation of this phenomenon is that the recipient develops an immunity against the blood of the donors, which results in the destruction of the strange cells that are in circulation. In keeping with this conception is the appearance of isoagglutinins for the donors' red cells in the blood of the recipient, at about the time of the beginning fall in hemoglobin. The occurrence of anemia as a result of the destruction of the alien blood only would seem to be due to the circumstance that, during the period of plethora, blood production is greatly diminished; as a consequence, the blood cells proper to the recipient are gradually reduced in number and replaced by alien cells until the latter come to constitute the bulk of the animal's blood. In those rabbits developing anemia, the initial drop of hemoglobin from the plethoric level to the normal was constantly accompanied by a marked rise in the number of reticulated cells. This brought up a subsidiary problem for study. With the idea that the stimulation of the bone marrow might be due to the presence of an increased quantity of broken down blood, rabbits, were injected intravenously with large amounts of laked blood cells. The procedure had no evident effect on the blood picture. It was then found that simple blood removal from a plethoric animal which brought back the hemoglobin to the normal level, or even to a point somewhat above, sufficed to cause a marked increase in the number of reticulated cells. Although these findings are not conclusive, they suggest an explanation for the increased bone marrow activity accompanying the initial drop of hemoglobin in the plethoric rabbits; namely, that the organism had in some way adapted itself during the period of plethora to the presence of a greater amount of blood and that the result of blood loss in such an organism was a relative but not absolute anemia. The finding that the activity of the bone marrow can be depressed by the introduction of a large quantity of blood into the circulation accounts for the diminished bone marrow activity which sometimes occurs after transfusion in pernicious anemia. In such cases there is a marked drop in the number of reticulated cells and other evidence of bone marrow depression; the patient shows no benefit from transfusion or may grow rapidly worse. The cause of this depression is best explained on the basis that in severe instances of the disease where exhaustion of the bone marrow is imminent, the stimulus of the anemia is only just sufficient to keep the marrow functioning. A sudden lowering of this stimulus is brought about by the introduction of a large quantity of blood into the circulation, and the result is a fall in the activity of the bone marrow. It follows from this that in pernicious anemia with a feebly reacting bone marrow as indicated by the number of reticulated red cells, small transfusions are preferable to large ones.

  17. Pressure Infusion Cuff and Blood Warmer during Massive Transfusion: An Experimental Study About Hemolysis and Hypothermia.

    PubMed

    Poder, Thomas G; Pruneau, Denise; Dorval, Josée; Thibault, Louis; Fisette, Jean-François; Bédard, Suzanne K; Jacques, Annie; Beauregard, Patrice

    2016-01-01

    Blood warmers were developed to reduce the risk of hypothermia associated with the infusion of cold blood products. During massive transfusion, these devices are used with compression sleeve, which induce a major stress to red blood cells. In this setting, the combination of blood warmer and compression sleeve could generate hemolysis and harm the patient. We conducted this study to compare the impact of different pressure rates on the hemolysis of packed red blood cells and on the outlet temperature when a blood warmer set at 41.5°C is used. Pressure rates tested were 150 and 300 mmHg. Ten packed red blood cells units were provided by Héma-Québec and each unit was sequentially tested. We found no increase in hemolysis either at 150 or 300 mmHg. By cons, we found that the blood warmer was not effective at warming the red blood cells at the specified temperature. At 150 mmHg, the outlet temperature reached 37.1°C and at 300 mmHg, the temperature was 33.7°C. To use a blood warmer set at 41.5°C in conjunction with a compression sleeve at 150 or 300 mmHg does not generate hemolysis. At 300 mmHg a blood warmer set at 41.5°C does not totally avoid a risk of hypothermia.

  18. Multi-omics Evidence for Inheritance of Energy Pathways in Red Blood Cells.

    PubMed

    Weisenhorn, Erin M M; van T Erve, Thomas J; Riley, Nicholas M; Hess, John R; Raife, Thomas J; Coon, Joshua J

    2016-12-01

    Each year over 90 million units of blood are transfused worldwide. Our dependence on this blood supply mandates optimized blood management and storage. During storage, red blood cells undergo degenerative processes resulting in altered metabolic characteristics which may make blood less viable for transfusion. However, not all stored blood spoils at the same rate, a difference that has been attributed to variable rates of energy usage and metabolism in red blood cells. Specific metabolite abundances are heritable traits; however, the link between heritability of energy metabolism and red blood cell storage profiles is unclear. Herein we performed a comprehensive metabolomics and proteomics study of red blood cells from 18 mono- and di-zygotic twin pairs to measure heritability and identify correlations with ATP and other molecular indices of energy metabolism. Without using affinity-based hemoglobin depletion, our work afforded the deepest multi-omic characterization of red blood cell membranes to date (1280 membrane proteins and 330 metabolites), with 119 membrane protein and 148 metabolite concentrations found to be over 30% heritable. We demonstrate a high degree of heritability in the concentration of energy metabolism metabolites, especially glycolytic metabolites. In addition to being heritable, proteins and metabolites involved in glycolysis and redox metabolism are highly correlated, suggesting that crucial energy metabolism pathways are inherited en bloc at distinct levels. We conclude that individuals can inherit a phenotype composed of higher or lower concentrations of these proteins together. This can result in vastly different red blood cells storage profiles which may need to be considered to develop precise and individualized storage options. Beyond guiding proper blood storage, this intimate link in heritability between energy and redox metabolism pathways may someday prove useful in determining the predisposition of an individual toward metabolic diseases. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Endothelial cells respond to the direction of mechanical stimuli through SMAD signaling to regulate coronary artery size.

    PubMed

    Poduri, Aruna; Chang, Andrew H; Raftrey, Brian; Rhee, Siyeon; Van, Mike; Red-Horse, Kristy

    2017-09-15

    How mechanotransduction intersects with chemical and transcriptional factors to shape organogenesis is an important question in developmental biology. This is particularly relevant to the cardiovascular system, which uses mechanical signals from flowing blood to stimulate cytoskeletal and transcriptional responses that form a highly efficient vascular network. Using this system, artery size and structure are tightly regulated, but the underlying mechanisms are poorly understood. Here, we demonstrate that deletion of Smad4 increased the diameter of coronary arteries during mouse embryonic development, a phenotype that followed the initiation of blood flow. At the same time, the BMP signal transducers SMAD1/5/8 were activated in developing coronary arteries. In a culture model of blood flow-induced shear stress, human coronary artery endothelial cells failed to align when either BMPs were inhibited or SMAD4 was depleted. In contrast to control cells, SMAD4- deficient cells did not migrate against the direction of shear stress and increased proliferation rates specifically under flow. Similar alterations were seen in coronary arteries in vivo Thus, endothelial cells perceive the direction of blood flow and respond through SMAD signaling to regulate artery size. © 2017. Published by The Company of Biologists Ltd.

  20. Efficient production of erythroid, megakaryocytic and myeloid cells, using single cell-derived iPSC colony differentiation.

    PubMed

    Hansen, Marten; Varga, Eszter; Aarts, Cathelijn; Wust, Tatjana; Kuijpers, Taco; von Lindern, Marieke; van den Akker, Emile

    2018-04-28

    Hematopoietic differentiation of human induced pluripotent stem cells (iPSCs) provide opportunities not only for fundamental research and disease modelling/drug testing but also for large-scale production of blood effector cells for future clinical application. Although there are multiple ways to differentiate human iPSCs towards hematopoietic lineages, there is a need to develop reproducible and robust protocols. Here we introduce an efficient way to produce three major blood cell types using a standardized differentiation protocol that starts with a single hematopoietic initiation step. This system is feeder-free, avoids EB-formation, starts with a hematopoietic initiation step based on a novel single cell-derived iPSC colony differentiation and produces multi-potential progenitors within 8-10 days. Followed by lineage-specific growth factor supplementation these cells can be matured into well characterized erythroid, megakaryocytic and myeloid cells with high-purity, without transcription factor overexpression or any kind of pre-purification step. This standardized differentiation system provides a simple platform to produce specific blood cells in a reproducible manner for hematopoietic development studies, disease modelling, drug testing and the potential for future therapeutic applications. Copyright © 2018. Published by Elsevier B.V.

  1. A high-throughput assay of NK cell activity in whole blood and its clinical application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Saet-byul; Cha, Junhoe; Kim, Im-kyung

    2014-03-14

    Graphical abstract: - Highlights: • We demonstrated a simple assay of NK cell activity from whole blood. • The measurement of secreted IFN-γ from NK cell enables high-throughput screening. • The NKA assay was validated by clinical results of colorectal cancer patients. - Abstract: Natural killer (NK) cells are lymphocytes of the innate immune system and have the ability to kill tumor cells and virus-infected cells without prior sensitization. Malignant tumors and viruses have developed, however, strategies to suppress NK cells to escape from their responses. Thus, the evaluation of NK cell activity (NKA) could be invaluable to estimate themore » status and the outcome of cancers, viral infections, and immune-mediated diseases. Established methods that measure NKA, such as {sup 51}Cr release assay and CD107a degranulation assay, may be used to determine NK cell function, but they are complicated and time-consuming because they require isolation of peripheral blood mononuclear cells (PBMC) or NK cells. In some cases these assays require hazardous material such as radioactive isotopes. To overcome these difficulties, we developed a simple assay that uses whole blood instead of PBMC or isolated NK cells. This novel assay is suitable for high-throughput screening and the monitoring of diseases, because it employs serum of ex vivo stimulated whole blood to detect interferon (IFN)-γ secreted from NK cells as an indicator of NKA. After the stimulation of NK cells, the determination of IFNγ concentration in serum samples by enzyme-linked immunosorbent assay (ELISA) provided a swift, uncomplicated, and high-throughput assay of NKA ex vivo. The NKA results microsatellite stable (MSS) colorectal cancer patients was showed significantly lower NKA, 263.6 ± 54.5 pg/mL compared with healthy subjects, 867.5 ± 50.2 pg/mL (p value <0.0001). Therefore, the NKA could be utilized as a supportive diagnostic marker for microsatellite stable (MSS) colorectal cancer.« less

  2. Paul Ehrlich and the Early History of Granulocytes.

    PubMed

    Kay, A Barry

    2016-08-01

    Paul Ehrlich's techniques, published between 1879 and 1880, for staining blood films using coal tar dyes, and his method of differential blood cell counting, ended years of speculation regarding the classification of white cells. Acidic and basic dyes had allowed him to recognize eosinophil and basophil granules, respectively, work that was a direct continuation of his discovery of the tissue mast cell described in his doctoral thesis. Ehrlich went on to develop neutral dyes that identified epsilon granules in neutrophils ("cells with polymorphous nuclei"). He also speculated, for the most part correctly, on the formation, function, and fate of blood neutrophils and eosinophils. Before Ehrlich, a number of important observations had been made on white cells and their role in health and disease. Among the most notable were William Hewson's studies of blood and lymph; the early descriptions of leukemia by Alfred Donné, John Hughes Bennett, Rudolf Virchow, and others; as well as seminal observations on inflammation by William Addison, Friedrich von Recklinghausen, and Julius Cohnheim. Eosinophils were almost certainly recognized previously by others. In 1846, Thomas Wharton Jones (1808-1891) described "granule blood-cells" in several species including humans. The term "granule cell" had also been used by Julius Vogel (1814-1880), who had previously observed similar cells in inflammatory exudates. Vogel, in turn, was aware of the work of Gottlieb Gluge (1812-1898), who had observed "compound inflammatory globules" in pus and serum that resembled eosinophils. Almost 20 years before Ehrlich developed his staining methods, Max Johann Schultze (1825-1874) performed functional experiments on fine and coarse granular cells using a warm stage microscopic technique and showed they had amoeboid movement and phagocytic abilities. Despite these earlier observations, it was Ehrlich's use of stains that heralded the modern era of studies of leukocyte biology and pathology.

  3. The development and application of a molecular community profiling strategy to identify polymicrobial bacterial DNA in the whole blood of septic patients.

    PubMed

    Faria, M M P; Conly, J M; Surette, M G

    2015-10-16

    The application of molecular based diagnostics in sepsis has had limited success to date. Molecular community profiling methods have indicated that polymicrobial infections are more common than suggested by standard clinical culture. A molecular profiling approach was developed to investigate the propensity for polymicrobial infections in patients predicted to have bacterial sepsis. Disruption of blood cells with saponin and hypotonic shock enabled the recovery of microbial cells with no significant changes in microbial growth when compared to CFU/ml values immediately prior to the addition of saponin. DNA extraction included a cell-wall digestion step with both lysozyme and mutanolysin, which increased the recovery of terminal restriction fragments by 2.4 fold from diverse organisms. Efficiencies of recovery and limits of detection using Illumina sequencing of the 16S rRNA V3 region were determined for both viable cells and DNA using mock bacterial communities inoculated into whole blood. Bacteria from pre-defined communities could be recovered following lysis and removal of host cells with >97% recovery of total DNA present. Applying the molecular profiling methodology to three septic patients in the intensive care unit revealed microbial DNA from blood had consistent alignment with cultured organisms from the primary infection site providing evidence for a bloodstream infection in the absence of a clinical lab positive blood culture result in two of the three cases. In addition, the molecular profiling indicated greater diversity was present in the primary infection sample when compared to clinical diagnostic culture. A method for analyzing bacterial DNA from whole blood was developed in order to characterize the bacterial DNA profile of sepsis infections. Preliminary results indicated that sepsis infections were polymicrobial in nature with the bacterial DNA recovered suggesting a more complex etiology when compared to blood culture data.

  4. Contour Detection of Leukocyte Cell Nucleus Using Morphological Image

    NASA Astrophysics Data System (ADS)

    Supriyanti, R.; Satrio, G. P.; Ramadhani, Y.; Siswandari, W.

    2017-04-01

    Leukocytes are blood cells that do not contain color pigments. Leukocyte function to the tool body’s defenses. Abnormal forms of leukocytes can be a sign of serious diseases such example is leukemia. Most laboratories still use cell morphology examination to assist the diagnosis of illness associated with white blood cells such example is leukemia because of limited resources, both infrastructure, and human resources as happens in developing nations, such as Indonesia. This examination is less expensive and quicker process. However, morphological review requires the expertise of a specialist clinical pathology were limited. This process is sometimes less valid cause in some cases trying to differentiate morphology blast cells into the type of myoblasts, lymphoblast, monoblast, or erythroblast thus potentially misdiagnosis. The goal of this research is to develop a detection device types of blood cells automatically as lower-priced, easy to use and accurate so that the tool can be distributed across all units in existing health services throughout Indonesia and in particular for remote areas. However, because the variables used in the identification of abnormal leukocytes are very complex, in this paper, we emphasize on the contour detection of leukocyte cell nucleus using the morphological image. The results show that this method is promising for further development.

  5. Phosphatidylserine exposure on stored red blood cells as a parameter for donor-dependent variation in product quality.

    PubMed

    Dinkla, Sip; Peppelman, Malou; Van Der Raadt, Jori; Atsma, Femke; Novotný, Vera M J; Van Kraaij, Marian G J; Joosten, Irma; Bosman, Giel J C G M

    2014-04-01

    Exposure of phosphatidylserine on the outside of red blood cells contributes to recognition and removal of old and damaged cells. The fraction of phosphatidylserine-exposing red blood cells varies between donors, and increases in red blood cell concentrates during storage. The susceptibility of red blood cells to stress-induced phosphatidylserine exposure increases with storage. Phosphatidylserine exposure may, therefore, constitute a link between donor variation and the quality of red blood cell concentrates. In order to examine the relationship between storage parameters and donor characteristics, the percentage of phosphatidylserine-exposing red blood cells was measured in red blood cell concentrates during storage and in fresh red blood cells from blood bank donors. The percentage of phosphatidylserine-exposing red blood cells was compared with red blood cell susceptibility to osmotic stress-induced phosphatidylserine exposure in vitro, with the regular red blood cell concentrate quality parameters, and with the donor characteristics age, body mass index, haemoglobin level, gender and blood group. Phosphatidylserine exposure varies between donors, both on red blood cells freshly isolated from the blood, and on red blood cells in red blood cell concentrates. Phosphatidylserine exposure increases with storage time, and is correlated with stress-induced phosphatidylserine exposure. Increased phosphatidylserine exposure during storage was found to be associated with haemolysis and vesicle concentration in red blood cell concentrates. The percentage of phosphatidylserine-exposing red blood cells showed a positive correlation with the plasma haemoglobin concentration of the donor. The fraction of phosphatidylserine-exposing red blood cells is a parameter of red blood cell integrity in red blood cell concentrates and may be an indicator of red blood cell survival after transfusion. Measurement of phosphatidylserine exposure may be useful in the selection of donors and red blood cell concentrates for specific groups of patients.

  6. Patient Blood Management in Europe: surveys on top indications for red blood cell use and Patient Blood Management organization and activities in seven European university hospitals.

    PubMed

    Bruun, M T; Pendry, K; Georgsen, J; Manzini, P; Lorenzi, M; Wikman, A; Borg-Aquilina, D; van Pampus, E; van Kraaij, M; Fischer, D; Meybohm, P; Zacharowski, K; Geisen, C; Seifried, E; Liumbruno, G M; Folléa, G; Grant-Casey, J; Babra, P; Murphy, M F

    2016-11-01

    Patient Blood Management (PBM) in Europe is a working group of the European Blood Alliance with the initial objective to identify the starting position of the participating hospitals regarding PBM for benchmarking purposes, and to derive good practices in PBM from the experience and expertise in the participating teams with the further aim of implementing and strengthening these practices in the participating hospitals. We conducted two surveys in seven university hospitals in Europe: Survey on top indications for red blood cell use regarding usage of red blood cells during 1 week and Survey on PBM organization and activities. A total of 3320 units of red blood cells were transfused in 1 week at the seven hospitals. Overall, 61% of red cell units were transfused to medical patients and 36% to surgical patients, although there was much variation between hospitals. The organization and activities of PBM in the seven hospitals were variable, but there was a common focus on optimizing the treatment of bleeding patients, monitoring the use of blood components and treatment of preoperative anaemia. Although the seven hospitals provide a similar range of clinical services, there was variation in transfusion rates between them. Further, there was variable implementation of PBM activities and monitoring of transfusion practice. These findings provide a baseline to develop joint action plans to further implement and strengthen PBM across a number of hospitals in Europe. © 2016 International Society of Blood Transfusion.

  7. Advances towards reliable identification and concentration determination of rare cells in peripheral blood

    NASA Astrophysics Data System (ADS)

    Alemany Server, R.; Martens, D.; Jans, K.; Bienstman, P.; Hill, D.

    2016-03-01

    Through further development, integration and validation of micro-nano-bio and biophotonics systems FP7 CanDo is developing an instrument that will permit highly reproducible and reliable identification and concentration determination of rare cells in peripheral blood for two key societal challenges, early and low cost anti-cancer drug efficacy determination and cancer diagnosis/monitoring. A cellular link between the primary malignant tumour and the peripheral metastases, responsible for 90% of cancerrelated deaths, has been established in the form of circulating tumour cells (CTCs) in peripheral blood. Furthermore, the relatively short survival time of CTCs in peripheral blood means that their detection is indicative of tumour progression thereby providing in addition to a prognostic value an evaluation of therapeutic efficacy and early recognition of tumour progression in theranostics. In cancer patients however blood concentrations are very low (=1 CTC/1E9 cells) and current detection strategies are too insensitive, limiting use to prognosis of only those with advanced metastatic cancer. Similarly, problems occur in therapeutics with anti-cancer drug development leading to lengthy and costly trials often preventing access to market. The novel cell separation/Raman analysis technologies plus nucleic acid based molecular characterization of the CanDo platform will provide an accurate CTC count with high throughput and high yield meeting both key societal challenges. Being beyond the state of art it will lead to substantial share gains not just in the high end markets of drug discovery and cancer diagnostics but due to modular technologies also in others. Here we present preliminary DNA hybridization sensing results.

  8. Micropallet arrays for the capture, isolation and culture of circulating tumor cells from whole blood of mice engrafted with primary human pancreatic adenocarcinoma.

    PubMed

    Gach, Philip C; Attayek, Peter J; Whittlesey, Rebecca L; Yeh, Jen Jen; Allbritton, Nancy L

    2014-04-15

    Circulating tumor cells (CTCs) are important biomarkers of cancer progression and metastatic potential. The rarity of CTCs in peripheral blood has driven the development of technologies to isolate these tumor cells with high specificity; however, there are limited techniques available for isolating target CTCs following enumeration. A strategy is described to capture and isolate viable tumor cells from whole blood using an array of releasable microstructures termed micropallets. Specific capture of nucleated cells or cells expressing epithelial cell adhesion molecules (EpCAM) was achieved by functionalizing micropallet surfaces with either fibronectin, Matrigel or anti-EpCAM antibody. Surface grafting of poly(acrylic acid) followed by covalent binding of protein A/G enabled efficient capture of EpCAM antibody on the micropallet surface. MCF-7 cells, a human breast adenocarcinoma, were retained on the array surface with 90±8% efficiency when using an anti-EpCAM-coated array. To demonstrate the efficiency of tumor cell retention on micropallet arrays in the presence of blood, MCF-7 cells were mixed into whole blood and added to small arrays (71 mm(2)) coated with fibronectin, Matrigel or anti-EpCAM. These approaches achieved MCF-7 cell capture from ≤10 µL of whole blood with efficiencies greater than 85%. Furthermore, MCF-7 cells intermixed with 1 mL blood and loaded onto large arrays (7171 mm(2)) were captured with high efficiencies (≥97%), could be isolated from the array by a laser-based approach and were demonstrated to yield a high rate of colony formation (≥85%) after removal from the array. Clinical utility of this technology was shown through the capture, isolation and successful culture of CTCs from the blood of mice engrafted with primary human pancreatic tumors. Direct capture and isolation of living tumor cells from blood followed by analysis or culture will be a valuable tool for cancer cell characterization. © 2013 Elsevier B.V. All rights reserved.

  9. Structural features of blood lymphocytes according to data of atomic force microscopy in alloxan induced diabetic rats

    NASA Astrophysics Data System (ADS)

    Stolbovskaya, Olga V.; Khayrullin, Radik M.; Kostishko, Boris B.; Bakhtiyarov, Rinat I.

    2018-04-01

    Structural changes in blood lymphocytes during the development of alloxan induced diabetes in rats were revealed. The changes were characterized by decreased volume, surface area, flatness coefficient of cells in comparison with normal lymphocytes. A consistent increase in the Young's modulus of rat lymphocytes during the development of diabetes in comparison with the Young's modulus of normal lymphocytes has been established, which indicates a decrease of the elastic-viscous properties of the cell membrane, changes in the molecular structure of its and in the organization of the lymphocyte cytoskeleton. It was found that during the development of induced diabetes the roughness and adhesiveness of the cytoplasmic membrane of blood lymphocytes decrease.

  10. [Present status of critical hemorrhage and its management in the operating room].

    PubMed

    Irita, Kazuo

    2014-12-01

    Hemorrhage is a major cause of cardiac arrest in the operating room. Many human factors, including surgical procedures, transfusion practices, blood supply, and anesthetic management, are involved in the process that leads to hemorrhage developing into a critical situation. It is desirable for hospital transfusion committees to prepare hospital-based regulations on 'actions to be taken to manage critical hemorrhage', and practice the implementation of these regulations with simulated drills. If intraoperative hemorrhage may become critical, a state of emergency should immediately be declared to the operating room staff, the blood transfusion service staff, and blood bank staff in order to organize a systematic approach to the ongoing problem and keep all responsible staff working outside the operating room informed of events developing in the room. To rapidly deal with critical hemorrhage, not only cooperation between anesthesiologists and surgeons but also linkage of operating rooms with blood transfusion services and a blood bank are important. When time is short, cross-matching tests are omitted, and ABO-identical red blood cells are used. When supplies of ABO-identical red blood cells are not available, ABO-compatible, non-identical red blood cells are used. Because a systematic, not individual, approach is required to prevent and manage critical hemorrhage, whether or not a hospital can establish a procedure to deal with it depends on the overall capability of critical and crisis management of the hospital. (Review).

  11. Red blood cell transport mechanisms in polyester thread-based blood typing devices.

    PubMed

    Nilghaz, Azadeh; Ballerini, David R; Guan, Liyun; Li, Lizi; Shen, Wei

    2016-02-01

    A recently developed blood typing diagnostic based on a polyester thread substrate has shown great promise for use in medical emergencies and in impoverished regions. The device is easy to use and transport, while also being inexpensive, accurate, and rapid. This study used a fluorescent confocal microscope to delve deeper into how red blood cells were behaving within the polyester thread-based diagnostic at the cellular level, and how plasma separation could be made to visibly occur on the thread, making it possible to identify blood type in a single step. Red blood cells were stained and the plasma phase dyed with fluorescent compounds to enable them to be visualised under the confocal microscope at high magnification. The mechanisms uncovered were in surprising contrast with those found for a similar, paper-based method. Red blood cell aggregates did not flow over each other within the thread substrate as expected, but suffered from a restriction to their flow which resulted in the chromatographic separation of the RBCs from the liquid phase of the blood. It is hoped that these results will lead to the optimisation of the method to enable more accurate and sensitive detection, increasing the range of blood systems that can be detected.

  12. Enumeration of major peripheral blood leukocyte populations for multicenter clinical trials using a whole blood phenotyping assay.

    PubMed

    Hensley, Tiffany R; Easter, Austin B; Gerdts, Sarah E; De Rosa, Stephen C; Heit, Antje; McElrath, M Juliana; Andersen-Nissen, Erica

    2012-09-16

    Cryopreservation of peripheral blood leukocytes is widely used to preserve cells for immune response evaluations in clinical trials and offers many advantages for ease and standardization of immunological assessments, but detrimental effects of this process have been observed on some cell subsets, such as granulocytes, B cells, and dendritic cells. Assaying fresh leukocytes gives a more accurate picture of the in vivo state of the cells, but is often difficult to perform in the context of large clinical trials. Fresh cell assays are dependent upon volunteer commitments and timeframes and, if time-consuming, their application can be impractical due to the working hours required of laboratory personnel. In addition, when trials are conducted at multiple centers, laboratories with the resources and training necessary to perform the assays may not be located in sufficient proximity to clinical sites. To address these issues, we have developed an 11-color antibody staining panel that can be used with Trucount tubes (Becton Dickinson; San Jose, CA) to phenotype and enumerate the major leukocyte populations within the peripheral blood, yielding more robust cell-type specific information than assays such as a complete blood count (CBC) or assays with commercially-available panels designed for Trucount tubes that stain for only a few cell types. The staining procedure is simple, requires only 100 μl of fresh whole blood, and takes approximately 45 minutes, making it feasible for standard blood-processing labs to perform. It is adapted from the BD Trucount tube technical data sheet (version 8/2010). The staining antibody cocktail can be prepared in advance in bulk at a central assay laboratory and shipped to the site processing labs. Stained tubes can be fixed and frozen for shipment to the central assay laboratory for multicolor flow cytometry analysis. The data generated from this staining panel can be used to track changes in leukocyte concentrations over time in relation to intervention and could easily be further developed to assess activation states of specific cell types of interest. In this report, we demonstrate the procedure used by blood-processing lab technicians to perform staining on fresh whole blood and the steps to analyze these stained samples at a central assay laboratory supporting a multicenter clinical trial. The video details the procedure as it is performed in the context of a clinical trial blood draw in the HIV Vaccine Trials Network (HVTN).

  13. microRNA-Based Immunotherapy for Control of Early Stage Lung Cancer

    DTIC Science & Technology

    2016-09-01

    in NSG hosts via subcutaneously injection. A549-Luc developed tumors successfully in NSG hosts and mice bearing A549-Luc tumors were the subject...activation of NK cells from whole blood. Next we evaluated NK cells and host interaction by transferring NK cells into A549-tumor bearing NSG host via...that did not receive NK cells. 4 At day 28, we harvested tumors, blood and tissues from tumor- bearing mice to analyze for NK presence in the

  14. Thrombotic thrombocytopenic purpura and sickle cell crisis.

    PubMed

    Shelat, Suresh G

    2010-04-01

    Described is a case of acute chest syndrome in a sickle-cell patient (hemoglobin SS) who also developed signs and symptoms of thrombotic thrombocytopenic purpura, including thrombocytopenia and hemolysis (anemia, elevated lactate dehydrogenase, presence of schistocytes, dark-colored plasma, and elevations in nucleated red blood cells). The ADAMTS13 activity level was normal. Discussed are the diagnosis and therapeutic management issues and the challenges of differentiating the vasoocclusive and hemolytic complications of sickling red blood cells from the thrombotic microangiopathy of thrombotic thrombocytopenic purpura.

  15. Red Blood Cell Agglutination for Blood Typing Within Passive Microfluidic Biochips.

    PubMed

    Huet, Maxime; Cubizolles, Myriam; Buhot, Arnaud

    2018-04-19

    Pre-transfusion bedside compatibility test is mandatory to check that the donor and the recipient present compatible groups before any transfusion is performed. Although blood typing devices are present on the market, they still suffer from various drawbacks, like results that are based on naked-eye observation or difficulties in blood handling and process automation. In this study, we addressed the development of a red blood cells (RBC) agglutination assay for point-of-care blood typing. An injection molded microfluidic chip that is designed to enhance capillary flow contained anti-A or anti-B dried reagents inside its microchannel. The only blood handling step in the assay protocol consisted in the deposit of a blood drop at the tip of the biochip, and imaging was then achieved. The embedded reagents were able to trigger RBC agglutination in situ, allowing for us to monitor in real time the whole process. An image processing algorithm was developed on diluted bloods to compute real-time agglutination indicator and was further validated on undiluted blood. Through this proof of concept, we achieved efficient, automated, real time, and quantitative measurement of agglutination inside a passive biochip for blood typing which could be further generalized to blood biomarker detection and quantification.

  16. Challenges in the management of the blood supply.

    PubMed

    Williamson, Lorna M; Devine, Dana V

    2013-05-25

    Although blood suppliers are seeing short-term reductions in blood demand as a result of initiatives in patient blood management, modelling suggests that during the next 5-10 years, blood availability in developed countries will need to increase again to meet the demands of ageing populations. Increasing of the blood supply raises many challenges; new approaches to recruitment and retainment of future generations of blood donors will be needed, and care will be necessary to avoid taking too much blood from these donors. Integrated approaches in blood stock management between transfusion services and hospitals will be important to minimise wastage--eg, by use of supply chain solutions from industry. Cross-disciplinary systems for patient blood management need to be developed to lessen the need for transfusion--eg, by early identification and reversal of anaemia with haematinics or by reversal of the underlying cause. Personalised medicine could be applied to match donors to patients, not only with extended blood typing, but also by using genetically determined storage characteristics of blood components. Growing of red cells or platelets in large quantities from stem cells is a possibility in the future, but challenges of cost, scaling up, and reproducibility remain to be solved. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. A New Cell Block Method for Multiple Immunohistochemical Analysis of Circulating Tumor Cells in Patients with Liver Cancer.

    PubMed

    Nam, Soo Jeong; Yeo, Hyun Yang; Chang, Hee Jin; Kim, Bo Hyun; Hong, Eun Kyung; Park, Joong-Won

    2016-10-01

    We developed a new method of detecting circulating tumor cells (CTCs) in liver cancer patients by constructing cell blocks from peripheral blood cells, including CTCs, followed by multiple immunohistochemical analysis. Cell blockswere constructed from the nucleated cell pellets of peripheral blood afterremoval of red blood cells. The blood cell blocks were obtained from 29 patients with liver cancer, and from healthy donor blood spikedwith seven cell lines. The cell blocks and corresponding tumor tissues were immunostained with antibodies to seven markers: cytokeratin (CK), epithelial cell adhesion molecule (EpCAM), epithelial membrane antigen (EMA), CK18, α-fetoprotein (AFP), Glypican 3, and HepPar1. The average recovery rate of spiked SW620 cells from blood cell blocks was 91%. CTCs were detected in 14 out of 29 patients (48.3%); 11/23 hepatocellular carcinomas (HCC), 1/2 cholangiocarcinomas (CC), 1/1 combined HCC-CC, and 1/3 metastatic cancers. CTCs from 14 patients were positive for EpCAM (57.1%), EMA (42.9%), AFP (21.4%), CK18 (14.3%), Gypican3 and CK (7.1%, each), and HepPar1 (0%). Patients with HCC expressed EpCAM, EMA, CK18, and AFP in tissue and/or CTCs, whereas CK, HepPar1, and Glypican3 were expressed only in tissue. Only EMA was significantly associated with the expressions in CTC and tissue. CTC detection was associated with higher T stage and portal vein invasion in HCC patients. This cell block method allows cytologic detection and multiple immunohistochemical analysis of CTCs. Our results show that tissue biomarkers of HCC may not be useful for the detection of CTC. EpCAM could be a candidate marker for CTCs in patients with HCC.

  18. Patient-specific cardiovascular progenitor cells derived from integration-free induced pluripotent stem cells for vascular tissue regeneration.

    PubMed

    Hu, Jiang; Wang, Yongyu; Jiao, Jiao; Liu, Zhongning; Zhao, Chao; Zhou, Zhou; Zhang, Zhanpeng; Forde, Kaitlynn; Wang, Lunchang; Wang, Jiangang; Baylink, David J; Zhang, Xiao-Bing; Gao, Shaorong; Yang, Bo; Chen, Y Eugene; Ma, Peter X

    2015-12-01

    Tissue-engineered blood vessels (TEBVs) are promising in regenerating a live vascular replacement. However, the vascular cell source is limited, and it is crucial to develop a scaffold that accommodates new type of vascular progenitor cells and facilitates in vivo lineage specification of the cells into functional vascular smooth muscle cells (VSMCs) to regenerate vascular tissue. In the present study, integration-free human induced pluripotent stem cells (hiPSCs) were established from patient peripheral blood mononuclear cells through episomal vector nucleofection of reprogramming factors. The established hiPSCs were then induced into mesoderm-originated cardiovascular progenitor cells (CVPCs) with a highly efficient directed lineage specification method. The derived CVPCs were demonstrated to be able to differentiate into functional VSMCs. Subcutaneous implantation of CVPCs seeded on macroporous nanofibrous poly(l-lactide) scaffolds led to in vivo VSMC lineage specification and matrix deposition inside the scaffolds. In summary, we established integration-free patient-specific hiPSCs from peripheral blood mononuclear cells, derived CVPCs through directed lineage specification, and developed an advanced scaffold for these progenitor cells to further differentiate in vivo into VSMCs and regenerate vascular tissue in a subcutaneous implantation model. This study has established an efficient patient-specific approach towards in vivo regeneration of vascular tissue. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Comparison of hindlimb unloading and partial weight suspension models for spaceflight-type condition induced effects on white blood cells

    NASA Astrophysics Data System (ADS)

    Wilson, Jolaine M.; Krigsfeld, Gabriel S.; Sanzari, Jenine K.; Wagner, Erika B.; Mick, Rosemarie; Kennedy, Ann R.

    2012-01-01

    Animal models are frequently used to assist in the determination of the long- and short-term effects of space flight. The space environment, including microgravity, can impact many physiological and immunological system parameters. It has been found that ground based models of microgravity produce changes in white blood cell counts, which negatively affects immunologic function. As part of the Center of Acute Radiation Research (CARR), we compared the acute effects on white blood cell parameters induced by the more traditionally used animal model of hindlimb unloading (HU) with a recently developed reduced weightbearing analog known as partial weight suspension (PWS). Female ICR mice were either hindlimb unloaded or placed in the PWS system at 16% quadrupedal weightbearing for 4 h, 1, 2, 7 or 10 days, at which point complete blood counts were obtained. Control animals (jacketed and non-jacketed) were exposed to identical conditions without reduced weightbearing. Results indicate that significant changes in total white blood cell (WBC), neutrophil, lymphocyte, monocyte and eosinophil counts were observed within the first 2 days of exposure to each system. These differences in blood cell counts normalized by day 7 in both systems. The results of these studies indicate that there are some statistically significant changes observed in the blood cell counts for animals exposed to both the PWS and HU simulated microgravity systems.

  20. Separation of cancer cells from a red blood cell suspension using inertial force.

    PubMed

    Tanaka, Tatsuya; Ishikawa, Takuji; Numayama-Tsuruta, Keiko; Imai, Yohsuke; Ueno, Hironori; Matsuki, Noriaki; Yamaguchi, Takami

    2012-11-07

    The circulating tumor cell (CTC) test has recently become popular for evaluating prognosis and treatment efficacy in cancer patients. The accuracy of the test is strongly dependent on the precision of the cancer cell separation. In this study, we developed a multistage microfluidic device to separate cancer cells from a red blood cell (RBC) suspension using inertial migration forces. The device was able to effectively remove RBCs up to the 1% hematocrit (Hct) condition with a throughput of 565 μL min(-1). The collection efficiency of cancer cells from a RBC suspension was about 85%, and the enrichment of cancer cells was about 120-fold. Further improvements can be easily achieved by parallelizing the device. These results illustrate that the separation of cancer cells from RBCs is possible using only inertial migration forces, thus paving the way for the development of a novel microfluidic device for future CTC tests.

  1. Examining the Origins of Myeloid Leukemia | Center for Cancer Research

    Cancer.gov

    Acute myeloid leukemia or AML, a cancer of the white blood cells, is the most common type of rapidly-growing leukemia in adults. The over-production of white blood cells in the bone marrow inhibits the development of other necessary blood components including red blood cells, which carry oxygen throughout the body, and platelets, which are required for clot formation. The cellular changes that lead to AML disease initiation and progression, however, are not clear. Because of the aging of the U.S. population and AML’s increasing incidence with age, cases of this disease are likely to rise significantly in the near future. Thus, understanding what causes AML should lead to the identification of novel targets and the enhanced treatment of patients.

  2. Preclinical development of a bridging therapy for radiation casualties: appropriate for high risk personnel.

    PubMed

    Singh, Vijay K; Wise, Stephen Y; Fatanmi, Oluseyi O; Beattie, Lindsay A; Seed, Thomas M

    2014-06-01

    The authors demonstrate the efficacy of a bridging therapy in a preclinical animal model that allows the lymphohematopoietic system of severely immunocompromised individuals exposed to acute, high-dose ionizing irradiation to recover and to survive. CD2F1 mice were irradiated acutely with high doses causing severe, potentially fatal hematopoietic or gastrointestinal injuries and then transfused intravenously with progenitor-enriched, whole blood, or peripheral blood mononuclear cells from mice injected with tocopherol succinate- and AMD3100- (a chemokine receptor anatogonist used to improve the yield of mobilized progenitors). Survival of these mice over a 30-d period was used as the primary measured endpoint of therapeutic effectiveness. The authors demonstrate that tocopherol succinate and AMD3100 mobilize progenitors into peripheral circulation and that the infusion of mobilized progenitor enriched blood or mononuclear cells acts as a bridging therapy for lymphohematopoietic system recovery in mice exposed to whole-body ionizing irradiation. The results demonstrate that infusion of whole blood or blood mononuclear cells from tocopherol succinate (TS)- and AMD3100-injected mice improved the survival of mice receiving high radiation doses significantly. The efficacy of TS-injected donor mice blood or mononuclear cells was comparable to that of blood or cells obtained from mice injected with granulocyte colony-stimulating factor. Donor origin-mobilized progenitors were found to localize in various tissues. The authors suggest that tocopherol succinate is an optimal agent for mobilizing progenitors with significant therapeutic potential. The extent of progenitor mobilization that tocopherol succinate elicits in experimental mice is comparable quantitatively to clinically used drugs such as granulocyte-colony stimulating factor and AMD3100. Therefore, it is proposed that tocopherol succinate be considered for further translational development and ultimately for use in humans.

  3. Coupling molecular dynamics with lattice Boltzmann method based on the immersed boundary method

    NASA Astrophysics Data System (ADS)

    Tan, Jifu; Sinno, Talid; Diamond, Scott

    2017-11-01

    The study of viscous fluid flow coupled with rigid or deformable solids has many applications in biological and engineering problems, e.g., blood cell transport, drug delivery, and particulate flow. We developed a partitioned approach to solve this coupled Multiphysics problem. The fluid motion was solved by Palabos (Parallel Lattice Boltzmann Solver), while the solid displacement and deformation was simulated by LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator). The coupling was achieved through the immersed boundary method (IBM). The code modeled both rigid and deformable solids exposed to flow. The code was validated with the classic problem of rigid ellipsoid particle orbit in shear flow, blood cell stretching test and effective blood viscosity, and demonstrated essentially linear scaling over 16 cores. An example of the fluid-solid coupling was given for flexible filaments (drug carriers) transport in a flowing blood cell suspensions, highlighting the advantages and capabilities of the developed code. NIH 1U01HL131053-01A1.

  4. The Blood Stocks Management Scheme, a partnership venture between the National Blood Service of England and North Wales and participating hospitals for maximizing blood supply chain management.

    PubMed

    Chapman, J F; Cook, R

    2002-10-01

    The Blood Stocks Management Scheme (BSMS) has been established as a joint venture between the National Blood Service (NBS) in England and North Wales and participating hospitals to monitor the blood supply chain. Stock and wastage data are submitted to a web-based data-management system, facilitating continuous and complete red cell data collection and 'real time' data extraction. The data-management system enables peer review of performance in respect of stock holding levels and red cell wastage. The BSMS has developed an innovative web-based data-management system that enables data collection and benchmarking of practice, which should drive changes in stock management practice, therefore optimizing the use of donated blood.

  5. Niceritrol prevents the decrease in red blood cell 2,3-diphosphoglycerate and neuropathy in streptozotocin-induced diabetic rats.

    PubMed

    Hotta, N; Nakamura, J; Kakuta, H; Fukasawa, H; Koh, N; Sakakibara, F; Mori, K; Sakamoto, N

    1995-01-01

    Nerve ischemia/hypoxia has been linked to the pathogenesis of diabetic complications. Red blood cell 2,3-diphosphoglycerate is an important regulator of peripheral tissue oxygenation; however, the relationship between 2,3-diphosphoglycerate concentration and diabetic complications has not been studied in detail. This investigation focused on the relationship between red blood cell 2,3-diphosphoglycerate and diabetic neuropathy, by measuring motor nerve conduction velocity and sciatic nerve blood flow in streptozotocin-induced diabetic rats. The effect of treatment with niceritrol, a nicotinic acid derivative that acts as a vasodilator and reduces serum lipid concentrations, on 2,3-diphosphoglycerate concentration and diabetic neuropathy was also examined. Untreated diabetic rats had significantly lower concentrations of red blood cell 2,3-diphosphoglycerate, higher concentrations of serum total cholesterol and triglyceride, as well as reduced motor nerve conduction velocity and sciatic nerve blood flow, compared to untreated normal rats. Niceritrol prevented these abnormalities without correcting hyperglycemia in diabetic rats, but had no effect on these parameters in normal rats. Red blood cell 2,3-diphosphoglycerate concentration and motor nerve conduction velocity showed a positive correlation with sciatic nerve blood flow and 2,3-diphosphoglycerate, respectively. These observations suggest that ischemia/hypoxia plays an important role in the development of diabetic neuropathy, and that niceritrol has a therapeutic effect on this condition by improving endoneurial ischemia/hypoxia.

  6. In vivo multispectral photoacoustic and photothermal flow cytometry with multicolor dyes: a potential for real-time assessment of circulation, dye-cell interaction, and blood volume.

    PubMed

    Proskurnin, Mikhail A; Zhidkova, Tatyana V; Volkov, Dmitry S; Sarimollaoglu, Mustafa; Galanzha, Ekaterina I; Mock, Donald; Nedosekin, Dmitry A; Zharov, Vladimir P

    2011-10-01

    Recently, photoacoustic (PA) flow cytometry (PAFC) has been developed for in vivo detection of circulating tumor cells and bacteria targeted by nanoparticles. Here, we propose multispectral PAFC with multiple dyes having distinctive absorption spectra as multicolor PA contrast agents. As a first step of our proof-of-concept, we characterized high-speed PAFC capability to monitor the clearance of three dyes (Indocyanine Green [ICG], Methylene Blue [MB], and Trypan Blue [TB]) in an animal model in vivo and in real time. We observed strong dynamic PA signal fluctuations, which can be associated with interactions of dyes with circulating blood cells and plasma proteins. PAFC demonstrated enumeration of circulating red and white blood cells labeled with ICG and MB, respectively, and detection of rare dead cells uptaking TB directly in bloodstream. The possibility for accurate measurements of various dye concentrations including Crystal Violet and Brilliant Green were verified in vitro using complementary to PAFC photothermal (PT) technique and spectrophotometry under batch and flow conditions. We further analyze the potential of integrated PAFC/PT spectroscopy with multiple dyes for rapid and accurate measurements of circulating blood volume without a priori information on hemoglobin content, which is impossible with existing optical techniques. This is important in many medical conditions including surgery and trauma with extensive blood loss, rapid fluid administration, and transfusion of red blood cells. The potential for developing a robust clinical PAFC prototype that is safe for human, and its applications for studying the liver function are further highlighted. Copyright © 2011 International Society for Advancement of Cytometry.

  7. Isolation and preservation of peripheral blood mononuclear cells for analysis of islet antigen-reactive T cell responses: position statement of the T-Cell Workshop Committee of the Immunology of Diabetes Society.

    PubMed

    Mallone, R; Mannering, S I; Brooks-Worrell, B M; Durinovic-Belló, I; Cilio, C M; Wong, F S; Schloot, N C

    2011-01-01

    Autoimmune T cell responses directed against insulin-producing β cells are central to the pathogenesis of type 1 diabetes (T1D). Detection of such responses is therefore critical to provide novel biomarkers for T1D 'immune staging' and to understand the mechanisms underlying the disease. While different T cell assays are being developed for these purposes, it is important to optimize and standardize methods for processing human blood samples for these assays. To this end, we review data relevant to critical parameters in peripheral blood mononuclear cell (PBMC) isolation, (cryo)preservation, distribution and usage for detecting antigen-specific T cell responses. Based on these data, we propose recommendations on processing blood samples for T cell assays and identify gaps in knowledge that need to be addressed. These recommendations may be relevant not only for the analysis of T cell responses in autoimmune disease, but also in cancer and infectious disease, particularly in the context of clinical trials. © 2010 The Authors. Clinical and Experimental Immunology © 2010 British Society for Immunology.

  8. Single-cell measurement of red blood cell oxygen affinity.

    PubMed

    Di Caprio, Giuseppe; Stokes, Chris; Higgins, John M; Schonbrun, Ethan

    2015-08-11

    Oxygen is transported throughout the body by hemoglobin (Hb) in red blood cells (RBCs). Although the oxygen affinity of blood is well-understood and routinely assessed in patients by pulse oximetry, variability at the single-cell level has not been previously measured. In contrast, single-cell measurements of RBC volume and Hb concentration are taken millions of times per day by clinical hematology analyzers, and they are important factors in determining the health of the hematologic system. To better understand the variability and determinants of oxygen affinity on a cellular level, we have developed a system that quantifies the oxygen saturation, cell volume, and Hb concentration for individual RBCs in high throughput. We find that the variability in single-cell saturation peaks at an oxygen partial pressure of 2.9%, which corresponds to the maximum slope of the oxygen-Hb dissociation curve. In addition, single-cell oxygen affinity is positively correlated with Hb concentration but independent of osmolarity, which suggests variation in the Hb to 2,3-diphosphoglycerate (2-3 DPG) ratio on a cellular level. By quantifying the functional behavior of a cellular population, our system adds a dimension to blood cell analysis and other measurements of single-cell variability.

  9. Single-cell measurement of red blood cell oxygen affinity

    PubMed Central

    Di Caprio, Giuseppe; Stokes, Chris; Higgins, John M.; Schonbrun, Ethan

    2015-01-01

    Oxygen is transported throughout the body by hemoglobin (Hb) in red blood cells (RBCs). Although the oxygen affinity of blood is well-understood and routinely assessed in patients by pulse oximetry, variability at the single-cell level has not been previously measured. In contrast, single-cell measurements of RBC volume and Hb concentration are taken millions of times per day by clinical hematology analyzers, and they are important factors in determining the health of the hematologic system. To better understand the variability and determinants of oxygen affinity on a cellular level, we have developed a system that quantifies the oxygen saturation, cell volume, and Hb concentration for individual RBCs in high throughput. We find that the variability in single-cell saturation peaks at an oxygen partial pressure of 2.9%, which corresponds to the maximum slope of the oxygen–Hb dissociation curve. In addition, single-cell oxygen affinity is positively correlated with Hb concentration but independent of osmolarity, which suggests variation in the Hb to 2,3-diphosphoglycerate (2–3 DPG) ratio on a cellular level. By quantifying the functional behavior of a cellular population, our system adds a dimension to blood cell analysis and other measurements of single-cell variability. PMID:26216973

  10. Impairment of T-regulatory cells in cord blood of atopic mothers.

    PubMed

    Schaub, Bianca; Liu, Jing; Höppler, Sabine; Haug, Severine; Sattler, Christine; Lluis, Anna; Illi, Sabina; von Mutius, Erika

    2008-06-01

    Maternal atopy is a strong predictor for the development of childhood allergic diseases. The underlying mechanisms are ill defined, yet regulatory T (Treg) and T(H)17 cells may play a key role potentially shaping the early immune system toward a proallergic or antiallergic immune regulation. We examined T(H)1/T(H)2, Treg, and T(H)17 cell responses to innate (lipid A/peptidoglycan) and mitogen/adaptive (phytohemagglutinin/Dermatophagoides pteronyssinus 1) immune stimulation in cord blood from offspring of atopic/nonatopic mothers. Cord blood mononuclear cells from 161 healthy neonates (59% nonatopic, 41% atopic mothers) were investigated regarding Treg and T(H)17 cells (mRNA/surface markers), suppressive function, and proliferation/cytokine secretion. Cord blood from offspring of atopic mothers showed fewer innate-induced Treg cells (CD4(+)CD25(+)high), lower mRNA expression of associated markers (glucocorticoid-induced tumor necrosis factor receptor-related protein/lymphocyte activation gene 3; P < .05), and a trend toward lower Forkhead box transcription factor 3 (Foxp3) expression. Treg cell function was impaired in mitogen-induced suppression of T effector cells in cord blood of offspring from atopic mothers (P = .03). Furthermore, IL-10 and IFN-gamma secretion were decreased in innate-stimulated cord blood of offspring from atopic mothers (P = .04/.05). Innate-induced IL-17 was independent of maternal atopy and highly correlated with IL-13 secretion. In offspring of atopic mothers, Treg cell numbers, expression, and function were impaired at birth. T(H)17 cells were correlated with T(H)2 cells, independently of maternal atopy.

  11. A Synopsis of Factors Regulating Beta Cell Development and Beta Cell Mass

    PubMed Central

    Prasadan, Krishna; Shiota, Chiyo; Xiangwei, Xiao; Ricks, David; Fusco, Joseph; Gittes, George

    2016-01-01

    The insulin-secreting beta cells in the endocrine pancreas regulate blood glucose levels, and loss of functional beta cells leads to insulin deficiency, hyperglycemia (high blood glucose) and diabetes mellitus. Current treatment strategies for type-1 (autoimmune) diabetes are islet transplantation, which has significant risks and limitations, or normalization of blood glucose with insulin injections, which is clearly not ideal. The type-1 patients can lack insulin counter-regulatory mechanism; therefore, hypoglycemia is a potential risk. Hence, a cell-based therapy offers a better alternative for the treatment of diabetes. Past research was focused on attempting to generate replacement beta cells from stem cells, however, recently there has been an increasing interest in identifying mechanisms that will lead to the conversion of pre-existing differentiated endocrine cells into beta cells. The goal of this review is to provide an overview of several of the key factors that regulate new beta cell formation (neogenesis) and beta cell proliferation. PMID:27105622

  12. Development of autologous blood cell therapies

    PubMed Central

    Kim, Ah Ram; Sankaran, Vijay G.

    2016-01-01

    Allogeneic hematopoietic stem cell transplantation and blood cell transfusions are commonly performed in patients with a variety of blood disorders. Unfortunately, these donor-derived cell therapies are constrained due to limited supplies, infectious risk factors, a lack of appropriately matched donors, and the risk of immunologic complications from such products. The use of autologous cell therapies has been proposed to overcome these shortcomings. One can derive such therapies directly from hematopoietic stem and progenitor cells of individuals, which can then be manipulated ex vivo to produce desired modifications or differentiated to produce a particular target population. Alternatively, pluripotent stem cells, which have a theoretically unlimited self-renewal capacity and an ability to differentiate into any desired cell type, can be used as an autologous starting source for such manipulation and differentiation approaches. In addition, such cell products can also be used as a delivery vehicle for therapeutics. In this review, we highlight recent advances and discuss ongoing challenges for the in vitro generation of autologous hematopoietic cells that can be used for cell therapy. PMID:27345108

  13. Pentacle gold-copper alloy nanocrystals: a new system for entering male germ cells in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Lin, Yu; He, Rong; Sun, Liping; Yang, Yushan; Li, Wenqing; Sun, Fei

    2016-12-01

    Gold-based nanocrystals have attracted considerable attention for drug delivery and biological applications due to their distinct shapes. However, overcoming biological barriers is a hard and inevitable problem, which restricts medical applications of nanomaterials in vivo. Seeking for an efficient transportation to penetrate biological barriers is a common need. There are three barriers: blood-testis barrier, blood-placenta barrier, and blood-brain barrier. Here, we pay close attention to the blood-testis barrier. We found that the pentacle gold-copper alloy nanocrystals not only could enter GC-2 cells in vitro in a short time, but also could overcome the blood-testis barrier and enter male germ cells in vivo. Furthermore, we demonstrated that the entrance efficiency would become much higher in the development stages. The results also suggested that the pentacle gold-copper alloy nanocrystals could easier enter to germ cells in the pathological condition. This system could be a new method for theranostics in the reproductive system.

  14. Pressure Infusion Cuff and Blood Warmer during Massive Transfusion: An Experimental Study About Hemolysis and Hypothermia

    PubMed Central

    Pruneau, Denise; Dorval, Josée; Thibault, Louis; Fisette, Jean-François; Bédard, Suzanne K.; Jacques, Annie; Beauregard, Patrice

    2016-01-01

    Background Blood warmers were developed to reduce the risk of hypothermia associated with the infusion of cold blood products. During massive transfusion, these devices are used with compression sleeve, which induce a major stress to red blood cells. In this setting, the combination of blood warmer and compression sleeve could generate hemolysis and harm the patient. We conducted this study to compare the impact of different pressure rates on the hemolysis of packed red blood cells and on the outlet temperature when a blood warmer set at 41.5°C is used. Methods Pressure rates tested were 150 and 300 mmHg. Ten packed red blood cells units were provided by Héma-Québec and each unit was sequentially tested. Results We found no increase in hemolysis either at 150 or 300 mmHg. By cons, we found that the blood warmer was not effective at warming the red blood cells at the specified temperature. At 150 mmHg, the outlet temperature reached 37.1°C and at 300 mmHg, the temperature was 33.7°C. Conclusion To use a blood warmer set at 41.5°C in conjunction with a compression sleeve at 150 or 300 mmHg does not generate hemolysis. At 300 mmHg a blood warmer set at 41.5°C does not totally avoid a risk of hypothermia. PMID:27711116

  15. High-throughput rare cell separation from blood samples using steric hindrance and inertial microfluidics.

    PubMed

    Shen, Shaofei; Ma, Chao; Zhao, Lei; Wang, Yaolei; Wang, Jian-Chun; Xu, Juan; Li, Tianbao; Pang, Long; Wang, Jinyi

    2014-07-21

    The presence and quantity of rare cells in the bloodstream of cancer patients provide a potentially accessible source for the early detection of invasive cancer and for monitoring the treatment of advanced diseases. The separation of rare cells from peripheral blood, as a "virtual and real-time liquid biopsy", is expected to replace conventional tissue biopsies of metastatic tumors for therapy guidance. However, technical obstacles, similar to looking for a needle in a haystack, have hindered the broad clinical utility of this method. In this study, we developed a multistage microfluidic device for continuous label-free separation and enrichment of rare cells from blood samples based on cell size and deformability. We successfully separated tumor cells (MCF-7 and HeLa cells) and leukemic (K562) cells spiked in diluted whole blood using a unique complementary combination of inertial microfluidics and steric hindrance in a microfluidic system. The processing parameters of the inertial focusing and steric hindrance regions were optimized to achieve high-throughput and high-efficiency separation, significant advantages compared with existing rare cell isolation technologies. The results from experiments with rare cells spiked in 1% hematocrit blood indicated >90% cell recovery at a throughput of 2.24 × 10(7) cells min(-1). The enrichment of rare cells was >2.02 × 10(5)-fold. Thus, this microfluidic system driven by purely hydrodynamic forces has practical potential to be applied either alone or as a sample preparation platform for fundamental studies and clinical applications.

  16. Dynamics of blood flow in a microfluidic ladder network

    NASA Astrophysics Data System (ADS)

    Maddala, Jeevan; Zilberman-Rudenko, Jevgenia; McCarty, Owen

    The dynamics of a complex mixture of cells and proteins, such as blood, in perturbed shear flow remains ill-defined. Microfluidics is a promising technology for improving the understanding of blood flow under complex conditions of shear; as found in stent implants and in tortuous blood vessels. We model the fluid dynamics of blood flow in a microfluidic ladder network with dimensions mimicking venules. Interaction of blood cells was modeled using multiagent framework, where cells of different diameters were treated as spheres. This model served as the basis for predicting transition regions, collision pathways, re-circulation zones and residence times of cells dependent on their diameters and device architecture. Based on these insights from the model, we were able to predict the clot formation configurations at various locations in the device. These predictions were supported by the experiments using whole blood. To facilitate platelet aggregation, the devices were coated with fibrillar collagen and tissue factor. Blood was perfused through the microfluidic device for 9 min at a physiologically relevant venous shear rate of 600 s-1. Using fluorescent microscopy, we observed flow transitions near the channel intersections and at the areas of blood flow obstruction, which promoted larger thrombus formation. This study of integrating model predictions with experimental design, aids in defining the dynamics of blood flow in microvasculature and in development of novel biomedical devices.

  17. Multiscale modelling of Flow-Induced Blood Cell Damage

    NASA Astrophysics Data System (ADS)

    Liu, Yaling; Sohrabi, Salman

    2017-11-01

    We study red blood cell (RBC) damage and hemolysis at cellular level. Under high shear rates, pores form on RBC membranes through which hemoglobin (Hb) leaks out and increases free Hb content of plasma leading to hemolysis. By coupling lattice Boltzmann and spring connected network models through immersed boundary method, we estimate hemolysis of a single RBC under various shear rates. The developed cellular damage model can be used as a predictive tool for hydrodynamic and hematologic design optimization of blood-wetting medical devices.

  18. Variety of RNAs in Peripheral Blood Cells, Plasma, and Plasma Fractions

    PubMed Central

    Kuligina, Elena V.; Bariakin, Dmitry N.; Kozlov, Vadim V.; Richter, Vladimir A.; Semenov, Dmitry V.

    2017-01-01

    Human peripheral blood contains RNA in cells and in extracellular membrane vesicles, microvesicles and exosomes, as well as in cell-free ribonucleoproteins. Circulating mRNAs and noncoding RNAs, being internalized, possess the ability to modulate vital processes in recipient cells. In this study, with SOLiD sequencing technology, we performed identification, classification, and quantification of RNAs from blood fractions: cells, plasma, plasma vesicles pelleted at 16,000g and 160,000g, and vesicle-depleted plasma supernatant of healthy donors and non-small cell lung cancer (NSCLC) patients. It was determined that 16,000g blood plasma vesicles were enriched with cell-free mitochondria and with a set of mitochondrial RNAs. The variable RNA set of blood plasma 160,000g pellets reflected the prominent contribution of U1, U5, and U6 small nuclear RNAs' fragments and at the same time was characterized by a remarkable depletion of small nucleolar RNAs. Besides microRNAs, the variety of fragments of mRNAs and snoRNAs dominated in the set of circulating RNAs differentially expressed in blood fractions of NSCLC patients. Taken together, our data emphasize that not only extracellular microRNAs but also circulating fragments of messenger and small nuclear/nucleolar RNAs represent prominent classes of circulating regulatory ncRNAs as well as promising circulating biomarkers for the development of disease diagnostic approaches. PMID:28127559

  19. Modelling the Transport of Nanoparticles under Blood Flow using an Agent-based Approach.

    PubMed

    Fullstone, Gavin; Wood, Jonathan; Holcombe, Mike; Battaglia, Giuseppe

    2015-06-10

    Blood-mediated nanoparticle delivery is a new and growing field in the development of therapeutics and diagnostics. Nanoparticle properties such as size, shape and surface chemistry can be controlled to improve their performance in biological systems. This enables modulation of immune system interactions, blood clearance profile and interaction with target cells, thereby aiding effective delivery of cargo within cells or tissues. Their ability to target and enter tissues from the blood is highly dependent on their behaviour under blood flow. Here we have produced an agent-based model of nanoparticle behaviour under blood flow in capillaries. We demonstrate that red blood cells are highly important for effective nanoparticle distribution within capillaries. Furthermore, we use this model to demonstrate how nanoparticle size can selectively target tumour tissue over normal tissue. We demonstrate that the polydispersity of nanoparticle populations is an important consideration in achieving optimal specificity and to avoid off-target effects. In future this model could be used for informing new nanoparticle design and to predict general and specific uptake properties under blood flow.

  20. Isolation of circulating tumor cells by immunomagnetic enrichment and fluorescence-activated cell sorting (IE/FACS) for molecular profiling.

    PubMed

    Magbanua, Mark Jesus M; Park, John W

    2013-12-01

    Circulating tumor cells (CTCs) are cells shed by the primary tumor into the blood stream capable of initiating distant metastasis. In the past decade, numerous assays have been developed to reliably detect these extremely rare cells. However, methods for purification of CTCs with little or no contamination of normal blood cells for molecular profiling are limited. We have developed a novel protocol to isolate CTCs by combining immunomagnetic enrichment and fluorescence-activated cell sorting (IE/FACS). The two-part assay includes (1) immunomagnetic capture using magnetic beads conjugated to monoclonal antibody against an epithelial cell adhesion marker (EpCAM) to enrich for tumor cells; and (2) FACS analysis using EpCAM to purify tumor cells away from mononuclear cells of hematopoietic lineage. Downstream molecular analyses of single and pooled cells confirmed the isolation of highly pure CTCs with characteristics typical that of malignant cells. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. [Study on relationship between blood supply from pulmonary artery and pathological characteristics of patients with primary bronchogenic carcinoma].

    PubMed

    Zhang, Yongkui; Le, Hanbo; Chen, Zhijun; Wang, Chaoye; Zhang, Binjie

    2006-01-01

    At present, it has been known that the bronchogenic artery participates in the blood supply of primary bronchogenic carcinoma, but there is controversy about the blood supply from pulmonary artery in primary bronchogenic carcinoma. The aim of this study is to assess the relationship between the blood supply from pulmonary artery and pathological characteristis of patients with primary bronchogenic carcinoma. The pulmonary arteries in 43 surgical samples of bronchogenic carcinoma were marked, then the iopromide was used to selective pulmonary arteriography in digital subtraction angiography (DSA). The relationship between tumor with blood supply from pulmonary artery and the pathologic characteristics was observed. There were 34 samples with blood supply from pulmonary artery ( 79.07%) , and 9 samples without blood supply from pulmonary artery (20.93%). The development rate of peripheral lung cancer (100.00%) was significantly higher than that of central lung cancer (64.00%) (P < 0.01) . The development rate of squamous cell carcinoma (91.30%) was remarkably higher than that of adenocarcinoma (61.11%) (P < 0.05). The development rate of poorly differentiated lung cancer (95.00%) was remarkably higher than that of well and moderately differentiated lung cancer (65.22%) (P < 0.05). There was a positive relationship between the tumor size and the development rate (P < 0.05). In primary bronchogenic carcinoma, the pulmonary artery blood supply exists in most of tumors. There is relationship between the blood supply from pulmonary artery and general type, histopathology, cell differentiation and tumor size of lung cancer. The blood supply from pulmonary artery doesn't relate to tumor stage.

  2. Profiling MHC II immunopeptidome of blood-stage malaria reveals that cDC1 control the functionality of parasite-specific CD4 T cells.

    PubMed

    Draheim, Marion; Wlodarczyk, Myriam F; Crozat, Karine; Saliou, Jean-Michel; Alayi, Tchilabalo Dilezitoko; Tomavo, Stanislas; Hassan, Ali; Salvioni, Anna; Demarta-Gatsi, Claudia; Sidney, John; Sette, Alessandro; Dalod, Marc; Berry, Antoine; Silvie, Olivier; Blanchard, Nicolas

    2017-11-01

    In malaria, CD4 Th1 and T follicular helper (T FH ) cells are important for controlling parasite growth, but Th1 cells also contribute to immunopathology. Moreover, various regulatory CD4 T-cell subsets are critical to hamper pathology. Yet the antigen-presenting cells controlling Th functionality, as well as the antigens recognized by CD4 T cells, are largely unknown. Here, we characterize the MHC II immunopeptidome presented by DC during blood-stage malaria in mice. We establish the immunodominance hierarchy of 14 MHC II ligands derived from conserved parasite proteins. Immunodominance is shaped differently whether blood stage is preceded or not by liver stage, but the same ETRAMP-specific dominant response develops in both contexts. In naïve mice and at the onset of cerebral malaria, CD8α + dendritic cells (cDC1) are superior to other DC subsets for MHC II presentation of the ETRAMP epitope. Using in vivo depletion of cDC1, we show that cDC1 promote parasite-specific Th1 cells and inhibit the development of IL-10 + CD4 T cells. This work profiles the P. berghei blood-stage MHC II immunopeptidome, highlights the potency of cDC1 to present malaria antigens on MHC II, and reveals a major role for cDC1 in regulating malaria-specific CD4 T-cell responses. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  3. Effect of Age on Blood Rheology in Sickle Cell Anaemia and Sickle Cell Haemoglobin C Disease: A Cross-Sectional Study.

    PubMed

    Renoux, Céline; Romana, Marc; Joly, Philippe; Ferdinand, Séverine; Faes, Camille; Lemonne, Nathalie; Skinner, Sarah; Garnier, Nathalie; Etienne-Julan, Maryse; Bertrand, Yves; Petras, Marie; Cannas, Giovanna; Divialle-Doumdo, Lydia; Nader, Elie; Cuzzubbo, Daniela; Lamarre, Yann; Gauthier, Alexandra; Waltz, Xavier; Kebaili, Kamila; Martin, Cyril; Hot, Arnaud; Hardy-Dessources, Marie-Dominique; Pialoux, Vincent; Connes, Philippe

    2016-01-01

    Blood rheology plays a key role in the pathophysiology of sickle cell anaemia (SS) and sickle cell haemoglobin C disease (SC), but its evolution over the lifespan is unknown. Blood viscosity, red blood cell (RBC) deformability and aggregation, foetal haemoglobin (HbF) and haematocrit were measured in 114 healthy individuals (AA), 267 SS (161 children + 106 adults) and 138 SC (74 children + 64 adults) patients. Our results showed that 1) RBC deformability is at its maximal value during the early years of life in SS and SC populations, mainly because HbF level is also at its peak, 2) during childhood and adulthood, hydroxycarbamide treatment, HbF level and gender modulated RBC deformability in SS patients, independently of age, 3) blood viscosity is higher in older SS and SC patients compared to younger ones and 4) haematocrit decreases as SS patients age. The hemorheological changes detected in older patients could play a role in the progressive development of several chronic disorders in sickle cell disease, whose prevalence increases with age. Retarding these age-related haemorheological impairments, by using suitable drugs, may minimize the risks of vaso-occlusive events and chronic disorders.

  4. OXYGEN TRANSPORT IN THE MICROCIRCULATION AND ITS REGULATION

    PubMed Central

    Pittman, Roland N.

    2012-01-01

    Cells require energy to carry out their functions and they typically use oxidative phosphorylation to generate the needed ATP. Thus, cells have a continuous need for oxygen which they receive by diffusion from the blood through the interstitial fluid. The circulatory system pumps oxygen-rich blood through a network of increasingly minute vessels, the microcirculation. The structure of the microcirculation is such that all cells have at least one nearby capillary for diffusive exchange of oxygen and red blood cells release the oxygen bound to hemoglobin as they traverse capillaries. This review focuses first on the historical development of techniques to measure oxygen at various sites in the microcirculation, including the blood, interstitium and cells. Next, approaches are described as to how these techniques have been employed to make discoveries about different aspects of oxygen transport. Finally, ways in which oxygen might participate in the regulation of blood flow toward matching oxygen supply to oxygen demand is discussed. Overall, the transport of oxygen to the cells of the body is one of the most critical functions of the cardiovascular system and it is in the microcirculation where the final local determinants of oxygen supply, oxygen demand and their regulation are decided. PMID:23025284

  5. Multiscale simulation of red blood cell aggregation

    NASA Astrophysics Data System (ADS)

    Bagchi, P.; Popel, A. S.

    2004-11-01

    In humans and other mammals, aggregation of red blood cells (RBC) is a major determinant to blood viscosity in microcirculation under physiological and pathological conditions. Elevated levels of aggregation are often related to cardiovascular diseases, bacterial infection, diabetes, and obesity. Aggregation is a multiscale phenomenon that is governed by the molecular bond formation between adjacent cells, morphological and rheological properties of the cells, and the motion of the extra-cellular fluid in which the cells circulate. We have developed a simulation technique using front tracking methods for multiple fluids that includes the multiscale characteristics of aggregation. We will report the first-ever direct computer simulation of aggregation of deformable cells in shear flows. We will present results on the effect of shear rate, strength of the cross-bridging bonds, and the cell rheological properties on the rolling motion, deformation and subsequent breakage of an aggregate.

  6. Blood vessel crosstalk during organogenesis-focus on pancreas and endothelial cells.

    PubMed

    Azizoglu, D Berfin; Cleaver, Ondine

    2016-09-01

    Blood vessels form a highly branched, interconnected, and largely stereotyped network of tubes that sustains every organ and tissue in vertebrates. How vessels come to take on their particular architecture, or how they are 'patterned,' and in turn, how they influence surrounding tissues are fundamental questions of organogenesis. Decades of work have begun to elucidate how endothelial progenitors arise and home to precise locations within tissues, integrating attractive and repulsive cues to build vessels where they are needed. Conversely, more recent findings have revealed an exciting facet of blood vessel interaction with tissues, where vascular cells provide signals to developing organs and progenitors therein. Here, we discuss the exchange of reciprocal signals between endothelial cells and neighboring tissues during embryogenesis, with a special focus on the developing pancreas. Understanding the mechanisms driving both sides of these interactions will be crucial to the development of therapies, from improving organ regeneration to efficient production of cell based therapies. Specifically, elucidating the interface of the vasculature with pancreatic lineages, including endocrine cells, will instruct approaches such as generation of replacement beta cells for Type I diabetes. WIREs Dev Biol 2016, 5:598-617. doi: 10.1002/wdev.240 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.

  7. Peripheral B cells latently infected with Epstein–Barr virus display molecular hallmarks of classical antigen-selected memory B cells

    PubMed Central

    Souza, Tatyana A.; Stollar, B. David; Sullivan, John L.; Luzuriaga, Katherine; Thorley-Lawson, David A.

    2005-01-01

    Epstein–Barr virus (EBV) establishes a lifelong persistent infection within peripheral blood B cells with the surface phenotype of memory cells. To date there is no proof that these cells have the genotype of true germinal-center-derived memory B cells. It is critical to understand the relative contribution of viral mimicry versus antigen signaling to the production of these cells because EBV encodes proteins that can affect the surface phenotype of infected cells and provide both T cell help and B cell receptor signals in the absence of cognate antigen. To address these questions we have developed a technique to identify single EBV-infected cells in the peripheral blood and examine their expressed Ig genes. The genes were all isotype-switched and somatically mutated. Furthermore, the mutations do not cause stop codons and display the pattern expected for antigen-selected memory cells based on their frequency, type, and location within the Ig gene. We conclude that latently infected peripheral blood B cells display the molecular hallmarks of classical antigen-selected memory B cells. Therefore, EBV does not disrupt the normal processing of latently infected cells into memory, and deviations from normal B cell biology are not tolerated in the infected cells. This article provides definitive evidence that EBV in the peripheral blood persists in true memory B cells. PMID:16330748

  8. Previous Cryopreservation Alters the Natural History of the Red Blood Cell Storage Lesion.

    PubMed

    Chang, Alex L; Hoehn, Richard S; Jernigan, Peter; Cox, Daniel; Schreiber, Martin; Pritts, Timothy A

    2016-09-01

    During storage, packed red blood cells (pRBCs) undergo a number of biochemical, metabolic, and morphologic changes, collectively known as the "storage lesion." We aimed to determine the effect of cryopreservation on the red blood cell storage lesion compared with traditional 4°C storage. Previously cryopreserved human pRBCs were compared with age-matched never-frozen pRBCs obtained from the local blood bank. The development of the red cell storage lesion was evaluated after 7, 14, 21, 28, and 42 days of storage at 4°C in AS-3 storage medium. We measured physiological parameters including cell counts, lactic acid, and potassium concentrations as well as signs of eryptosis including loss of phosphatidylserine (PS) asymmetry, microparticle production, and osmotic fragility in hypotonic saline. Compared with controls, previously cryopreserved pRBC at 7 days of storage in AS-3 showed lower red cell counts (3.7 vs. 5.3 × 10 cells/μL, P < 0.01), hemoglobin (Hgb) (12.0 vs. 16.5 g/dL, P < 0.01), hematocrit (33.0% vs. 46.5%, P < 0.01), and pH (6.27 vs. 6.72, P < 0.01). Over 28 days of storage, storage cryopreserved pRBC developed increased cell-free Hgb (0.7 vs. 0.3 g/dL, P < 0.01), greater PS exposure (10.1% vs. 3.3%, P < 0.01), and microparticle production (30,836 vs. 1,802 MP/μL, P < 0.01). Previously cryopreserved cells were also less resistant to osmotic stress. The red blood cell storage lesion is accelerated in previously cryopreserved pRBC after thawing. Biochemical deterioration of thawed and deglycerolized red cells suggests that storage time before transfusion should be limited to achieve similar risk profiles as never-frozen standard liquid storage pRBC units.

  9. Endothelial cell O-glycan deficiency causes blood/lymphatic misconnections and consequent fatty liver disease in mice

    PubMed Central

    Fu, Jianxin; Gerhardt, Holger; McDaniel, J. Michael; Xia, Baoyun; Liu, Xiaowei; Ivanciu, Lacramioara; Ny, Annelii; Hermans, Karlien; Silasi-Mansat, Robert; McGee, Samuel; Nye, Emma; Ju, Tongzhong; Ramirez, Maria I.; Carmeliet, Peter; Cummings, Richard D.; Lupu, Florea; Xia, Lijun

    2008-01-01

    Mucin-type O-glycans (O-glycans) are highly expressed in vascular ECs. However, it is not known whether they are important for vascular development. To investigate the roles of EC O-glycans, we generated mice lacking T-synthase, a glycosyltransferase encoded by the gene C1galt1 that is critical for the biosynthesis of core 1–derived O-glycans, in ECs and hematopoietic cells (termed here EHC T-syn–/– mice). EHC T-syn–/– mice exhibited embryonic and neonatal lethality associated with disorganized and blood-filled lymphatic vessels. Bone marrow transplantation and EC C1galt1 transgene rescue demonstrated that lymphangiogenesis specifically requires EC O-glycans, and intestinal lymphatic microvessels in EHC T-syn–/– mice expressed a mosaic of blood and lymphatic EC markers. The level of O-glycoprotein podoplanin was significantly reduced in EHC T-syn–/– lymphatics, and podoplanin-deficient mice developed blood-filled lymphatics resembling EHC T-syn–/– defects. In addition, postnatal inactivation of C1galt1 caused blood/lymphatic vessel misconnections that were similar to the vascular defects in the EHC T-syn–/– mice. One consequence of eliminating T-synthase in ECs and hematopoietic cells was that the EHC T-syn–/– pups developed fatty liver disease, because of direct chylomicron deposition via misconnected portal vein and intestinal lymphatic systems. Our studies therefore demonstrate that EC O-glycans control the separation of blood and lymphatic vessels during embryonic and postnatal development, in part by regulating podoplanin expression. PMID:18924607

  10. Cancer cells remodel themselves and vasculature to overcome the endothelial barrier.

    PubMed

    Shenoy, Anitha K; Lu, Jianrong

    2016-10-01

    Metastasis refers to the spread of cancer cells from a primary tumor to distant organs mostly via the bloodstream. During the metastatic process, cancer cells invade blood vessels to enter circulation, and later exit the vasculature at a distant site. Endothelial cells that line blood vessels normally serve as a barrier to the movement of cells into or out of the blood. It is thus critical to understand how metastatic cancer cells overcome the endothelial barrier. Epithelial cancer cells acquire increased motility and invasiveness through epithelial-to-mesenchymal transition (EMT), which enables them to move toward vasculature. Cancer cells also express a variety of adhesion molecules that allow them to attach to vascular endothelium. Finally, cancer cells secrete or induce growth factors and cytokines to actively prompt vascular hyperpermeability that compromises endothelial barrier function and facilitates transmigration of cancer cells through the vascular wall. Elucidation of the mechanisms underlying metastatic dissemination may help develop new anti-metastasis therapeutics. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Development of an in silico stochastic 4D model of tumor growth with angiogenesis.

    PubMed

    Forster, Jake C; Douglass, Michael J J; Harriss-Phillips, Wendy M; Bezak, Eva

    2017-04-01

    A stochastic computer model of tumour growth with spatial and temporal components that includes tumour angiogenesis was developed. In the current work it was used to simulate head and neck tumour growth. The model also provides the foundation for a 4D cellular radiotherapy simulation tool. The model, developed in Matlab, contains cell positions randomised in 3D space without overlap. Blood vessels are represented by strings of blood vessel units which branch outwards to achieve the desired tumour relative vascular volume. Hypoxic cells have an increased cell cycle time and become quiescent at oxygen tensions less than 1 mmHg. Necrotic cells are resorbed. A hierarchy of stem cells, transit cells and differentiated cells is considered along with differentiated cell loss. Model parameters include the relative vascular volume (2-10%), blood oxygenation (20-100 mmHg), distance from vessels to the onset of necrosis (80-300 μm) and probability for stem cells to undergo symmetric division (2%). Simulations were performed to observe the effects of hypoxia on tumour growth rate for head and neck cancers. Simulations were run on a supercomputer with eligible parts running in parallel on 12 cores. Using biologically plausible model parameters for head and neck cancers, the tumour volume doubling time varied from 45 ± 5 days (n = 3) for well oxygenated tumours to 87 ± 5 days (n = 3) for severely hypoxic tumours. The main achievements of the current model were randomised cell positions and the connected vasculature structure between the cells. These developments will also be beneficial when irradiating the simulated tumours using Monte Carlo track structure methods. © 2017 American Association of Physicists in Medicine.

  12. Hydrodynamic lift of vesicles and red blood cells in flow--from Fåhræus & Lindqvist to microfluidic cell sorting.

    PubMed

    Geislinger, Thomas M; Franke, Thomas

    2014-06-01

    Hydrodynamic lift forces acting on cells and particles in fluid flow receive ongoing attention from medicine, mathematics, physics and engineering. The early findings of Fåhræus & Lindqvist on the viscosity change of blood with the diameter of capillaries motivated extensive studies both experimentally and theoretically to illuminate the underlying physics. We review this historical development that led to the discovery of the inertial and non-inertial lift forces and elucidate the origins of these forces that are still not entirely clear. Exploiting microfluidic techniques induced a tremendous amount of new insights especially into the more complex interactions between the flow field and deformable objects like vesicles or red blood cells. We trace the way from the investigation of single cell dynamics to the recent developments of microfluidic techniques for particle and cell sorting using hydrodynamic forces. Such continuous and label-free on-chip cell sorting devices promise to revolutionize medical analyses for personalized point-of-care diagnosis. We present the state-of-the-art of different hydrodynamic lift-based techniques and discuss their advantages and limitations. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Computational modeling of the neurovascular unit to predict microglia mediated effects on blood-brain barrier formation (WC10)

    EPA Science Inventory

    Development of the neurovascular unit (NVU) involves interactions between endothelial cells, pericytes, neuroprogenitor cells, and microglia. We constructed an in silico model of the developing neuroepithelium in CompuCell3D which recapitulated a suite of critical signaling pathw...

  14. Biomaterials trigger endothelial cell activation when co-incubated with human whole blood.

    PubMed

    Herklotz, Manuela; Hanke, Jasmin; Hänsel, Stefanie; Drichel, Juliane; Marx, Monique; Maitz, Manfred F; Werner, Carsten

    2016-10-01

    Endothelial cell activation resulting from biomaterial contact or biomaterial-induced blood activation may in turn also affect hemostasis and inflammatory processes in the blood. Current in vitro hemocompatibility assays typically ignore these modulating effects of the endothelium. This study describes a co-incubation system of human whole blood, biomaterial and endothelial cells (ECs) that was developed to overcome this limitation. First, human endothelial cells were characterized in terms of their expression of coagulation- and inflammation-relevant markers in response to various activators. Subsequently, their capacity to regulate hemostasis as well as complement and granulocyte activation was monitored in a hemocompatibility assay. After blood contact, quiescent ECs exhibited anticoagulant and anti-inflammatory properties. When they were co-incubated with surfaces exhibiting pro-coagulant or pro-inflammatory characteristics, the ECs down-regulated coagulation but not complement or leukocyte activation. Analysis of intracellular levels of the endothelial activation markers E-selectin and tissue factor showed that co-incubation with model surfaces and blood significantly increased the activation state of ECs. Finally, the coagulation- and inflammation-modulating properties of the ECs were tested after blood/biomaterial exposure. Pre-activation of ECs by biomaterials in the blood induced a pro-coagulant and pro-inflammatory state of the ECs, wherein the pro-coagulant response was higher for biomaterial/blood pre-activated ECs than for TNF-α-pre-activated cells. This work provides evidence that biomaterials, even without directly contacting the endothelium, affect the endothelial activation state with and have consequences for plasmatic and cellular reactions in the blood. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Microenvironment Influences Interaction of Signaling Molecules | Center for Cancer Research

    Cancer.gov

    Tumor progression depends not only on events that occur within cancer cells but also on the interaction of cancer cells with their environment, which can regulate tumor growth and metastasis and modulate the formation of new blood vessels to nourish the tumor. All cells communicate with other cells around them, including endothelial cells (the cells that make up blood vessels). They also interact with the extracellular matrix (ECM), a network of sugars and proteins that supports cells. Communication between neighboring cells and molecules often occurs through interaction among and between molecules on the cell surface and molecules of the ECM. Defining these interactions should facilitate the development of novel approaches to limit tumor progression.

  16. In vitro studies of the blood-brain barrier using isolated brain capillaries and cultured endothelial cells.

    PubMed

    Goldstein, G W; Betz, A L; Bowman, P D; Dorovini-Zis, K

    1986-01-01

    The endothelial cells in brain capillaries are the anatomic site of the blood-brain barrier. To learn more about the biology of these specialized cells, we developed methods to prepare suspensions of purified brain microvessels as well as primary cultures of endothelial cells in monolayer. These two preparations allow for direct investigation of the metabolism, transport properties, and receptor content of the brain capillary. We used isolated brain microvessels to study distribution of membrane carriers between the luminal and the abluminal plasma membrane of endothelial cells. We found that Na+K+-ATPase and the A-system amino-acid transport system are located predominantly on the abluminal surface of brain capillary endothelial cells. This distribution of transport carriers is consistent with the low permeability of potassium and small neutral amino acids in the blood-to-brain direction. It suggests, however, that both solutes can be actively transported across brain capillaries from the brain interstitial fluid to the blood. In tissue culture, the endothelial cells form continuous tight junctions with their neighbors. This results in a cellular layer impermeable to protein tracers. When exposed to hyperosmolar solutions, in an attempt to mimic the conditions that open the blood-brain barrier in vivo, we found a reversible separation of the tight junctions between contiguous endothelial cells. No indication of activation of pinocytosis was observed. In vitro systems provide a novel approach for studying the function of the blood-brain barrier and allow for observations not possible with intact animals.

  17. The role of molecular typing and perfect match transfusion in sickle cell disease and thalassaemia: An innovative transfusion strategy.

    PubMed

    Putzulu, Rossana; Piccirillo, Nicola; Orlando, Nicoletta; Massini, Giuseppina; Maresca, Maddalena; Scavone, Fernando; Ricerca, Bianca Maria; Zini, Gina

    2017-04-01

    Chronic red blood cell transfusions remain an essential part of supportive treatment in patients with thalassaemia and sickle cell disease (SCD). Red blood cell (RBC) transfusions expose patients to the risk of developing antibodies: RBC alloimmunization occurs when the immune system meets foreign antigens. We created a register of extensively genotyped donors to achieve a better matched transfusion in order to reduce transfusion alloimmunization. Extended RBC antigen typing was determined and confirmed by molecular biology techniques using Human Erythrocyte Antigen (HEA) BeadChip (BioArray Solutions Ltd., Warren, NJ) in periodic blood donors and in patients with thalassaemia and SCD. During 3 years, we typed extensively 1220 periodic blood donors, 898 male and 322 female. We also studied 10 hematologic patients affected by thalassaemia and sickle cell disease referred to our institution as candidate to periodic transfusions. Our patients (8 females and 2 males with a median age of 48 years, range 24-76 years), extensively typed using molecular techniques and screened for RBC alloantibodies, were transfused with a median of 33.5 RBC units. After three years of molecular typing, the "perfect match" transfusion strategy avoided new alloantibodies development in all studied patients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Lysosomal storage diseases and the blood-brain barrier.

    PubMed

    Begley, David J; Pontikis, Charles C; Scarpa, Maurizio

    2008-01-01

    The blood-brain barrier becomes a crucial issue in neuronopathic lysosomal storage diseases for three reasons. Firstly, the function of the blood-brain barrier may be compromised in many of the lysosomal storage diseases and this barrier dysfunction may contribute to the neuropathology seen in the diseases and accelerate cell death. Secondly, the substrate reduction therapies, which successfully reduce peripheral lysosomal storage, because of the blood-brain barrier may not have as free an access to brain cells as they do to peripheral cells. And thirdly, enzyme replacement therapy appears to have little access to the central nervous system as the mannose and mannose-6-phosphate receptors involved in their cellular uptake and transport to the lysosome do not appear to be expressed at the adult blood-brain barrier. This review will discuss in detail these issues and their context in the development of new therapeutic strategies.

  19. Reverse-engineering of gene networks for regulating early blood development from single-cell measurements.

    PubMed

    Wei, Jiangyong; Hu, Xiaohua; Zou, Xiufen; Tian, Tianhai

    2017-12-28

    Recent advances in omics technologies have raised great opportunities to study large-scale regulatory networks inside the cell. In addition, single-cell experiments have measured the gene and protein activities in a large number of cells under the same experimental conditions. However, a significant challenge in computational biology and bioinformatics is how to derive quantitative information from the single-cell observations and how to develop sophisticated mathematical models to describe the dynamic properties of regulatory networks using the derived quantitative information. This work designs an integrated approach to reverse-engineer gene networks for regulating early blood development based on singel-cell experimental observations. The wanderlust algorithm is initially used to develop the pseudo-trajectory for the activities of a number of genes. Since the gene expression data in the developed pseudo-trajectory show large fluctuations, we then use Gaussian process regression methods to smooth the gene express data in order to obtain pseudo-trajectories with much less fluctuations. The proposed integrated framework consists of both bioinformatics algorithms to reconstruct the regulatory network and mathematical models using differential equations to describe the dynamics of gene expression. The developed approach is applied to study the network regulating early blood cell development. A graphic model is constructed for a regulatory network with forty genes and a dynamic model using differential equations is developed for a network of nine genes. Numerical results suggests that the proposed model is able to match experimental data very well. We also examine the networks with more regulatory relations and numerical results show that more regulations may exist. We test the possibility of auto-regulation but numerical simulations do not support the positive auto-regulation. In addition, robustness is used as an importantly additional criterion to select candidate networks. The research results in this work shows that the developed approach is an efficient and effective method to reverse-engineer gene networks using single-cell experimental observations.

  20. Apheresis product identification in the transplant center: development of point-of-care protocols for extended blood typing of stem cell apheresis products.

    PubMed

    Cummerow, C; Schwind, P; Spicher, M; Spohn, G; Geisen, C; Seifried, E; Bönig, H

    2012-06-01

    Transfusion of the 'wrong' stem cell product would almost inevitably be lethal, yet assays to confirm the contents of the product bag, except by checking labels and paperwork, are lacking. To increase the likelihood that a product mix-up would be detected in the transplant center, we developed a simple protocol for extended blood typing and hence, for confirmation of donor/product identity, on a tube segment. Apheresis samples were applied, directly or after erythrocyte enrichment, to commercially available blood typing assays, including lateral flow cards and gel agglutination cards. Without sample modification, low hematocrit and high leukocyte count obviated definitive blood typing. Using the most simple erythrocyte enrichment protocol, that is, centrifugation, reliable blood group analysis became possible with either assay. Other, more cumbersome pre-analytical protocols were also successful but provided no advantage. The preferred method was validated on 100 samples; ABD was correctly identified in 100% of cases. Of the other Rh Ags, all except two 'small e', in both cases in heterozygous individuals, were detected; there were no false positives. A simple, inexpensive point-of-care assay for extended blood typing of apheresis products is available, which can reduce the fatal risk of administering the wrong stem cell product.

  1. Impact of C-rel inhibition of cord blood-derived B-, T-, and NK cells.

    PubMed

    Fallahi, Shirin; Mohammadi, Seyede Momeneh; Tayefi Nasrabadi, Hamid; Alihemmati, Alireza; Samadi, Naser; Gholami, Sanaz; Shanehbandi, Dariush; Nozad Charoudeh, Hojjatollah

    2017-12-01

    The c-Rel transcription factor is a unique member of the nuclear factor (NF)-κB family that has a role in curtailing the proliferation, differentiation, cytokine production, and overall activity of B- and T-cells. In addition, c-Rel is a key regulator of apoptosis in that it influences the expression of anti-apoptotic genes such as Bcl-2 and Bcl-xL; conversely, inhibition of c-Rel increases cell apoptosis. To better understand the relationship between c-Rel expression and effects on B- and T-cell expansion, the current study evaluated c-Rel expression in cord blood mononuclear cells. This particular source was selected as cord blood is an important source of cells used for transplantation and immunotherapy, primarily in treating leukemias. As stem cell factor (SCF) and FLT3 are important agents for hematopoietic stem cell expansion, and cytokines like interleukin (IL)-2, -7, and -15 are essential for T- and B- (and also NK) cell development and proliferation, the current study evaluated c-Rel expression in cord blood mononuclear cells and CD34 +  cells, as well as effects on B-, T-, and NK cells associated with alterations in c-Rel expression, using flow cytometry and PCR. The results showed c-Rel expression increased among cells cultured in the presence of SCF and FLT3 but was reduced when IL-2, IL-7, and IL-15 were used all together. Further, inhibition of c-Rel expression by siRNA reduced cord blood-derived B-, T-, and NK cell differentiation and expansion. These results indicated that with cells isolated from cord blood, c-Rel has an important role in B-, T-, and NK cell differentiation and, further, that agents (select cytokines/growth factors) that could impact on its expression might not only affect immune cell profiles in a host but could potentially also limit apoptotic activities in (non-)immune cells in that host. In the context of cancer (immuno)therapy, in particular, when cord blood is used an important source in stem cell transplantation in leukemia patients, such down-regulating changes in c-Rel levels could be counter-productive.

  2. Atypical Red Blood Cells Are Prevalent in California Sea Lion Pups Born during Anomalous Sea Surface Temperature Events.

    PubMed

    Flores-Morán, Adriana; Banuet-Martínez, Marina; Elorriaga-Verplancken, Fernando R; García-Ortuño, Luis Enrique; Sandoval-Sierra, Julieta; Acevedo-Whitehouse, Karina

    To date, there is limited knowledge of the effects that abnormal sea surface temperature (SST) can have on the physiology of neonate pinnipeds. However, maternal nutritional deficiencies driven by alimentary restrictions would expectedly impact pinniped development and fitness, as an adequate supply of nutrients is essential for growth and proper functioning of all body systems, including red blood cell synthesis and clearance. Here, we investigated red blood cell morphology of California sea lion (CSL) pups from the San Benito Archipelago born during the 2014 and 2015 anomalously high SST events recorded in the northeastern Pacific Ocean. We examined whether atypical erythrocyte morphologies were more common in 2015, when the high SST event was more pronounced, and whether the stable isotope signature of pup fur, as an indicator of maternal feeding strategies, accounted for the number of atypical cells. Various atypical erythrocyte morphologies were more prevalent and more abundant than reference values. Evidence of iron deficiency was found in both years, and only pups born in 2014 showed evidence of active erythropoiesis. Microcytes and reticulocytes were more common in pups with higher isotopic δ 13 C and lower δ 15 N values, suggesting a probable relationship between maternal feeding strategies and the effect of climatic anomalies on red blood cell physiology of their pups. As developing pinnipeds require increased oxygen storage capacity for diving and foraging, the presence of atypical erythrocytes could be relevant to CSL pup fitness if the underlying cause is not reverted. This study is a first step to explore the effects that climatic alterations in the marine environment can have on the blood physiology of developing individuals.

  3. 2-D Model for Normal and Sickle Cell Blood Microcirculation

    NASA Astrophysics Data System (ADS)

    Tekleab, Yonatan; Harris, Wesley

    2011-11-01

    Sickle cell disease (SCD) is a genetic disorder that alters the red blood cell (RBC) structure and function such that hemoglobin (Hb) cannot effectively bind and release oxygen. Previous computational models have been designed to study the microcirculation for insight into blood disorders such as SCD. Our novel 2-D computational model represents a fast, time efficient method developed to analyze flow dynamics, O2 diffusion, and cell deformation in the microcirculation. The model uses a finite difference, Crank-Nicholson scheme to compute the flow and O2 concentration, and the level set computational method to advect the RBC membrane on a staggered grid. Several sets of initial and boundary conditions were tested. Simulation data indicate a few parameters to be significant in the perturbation of the blood flow and O2 concentration profiles. Specifically, the Hill coefficient, arterial O2 partial pressure, O2 partial pressure at 50% Hb saturation, and cell membrane stiffness are significant factors. Results were found to be consistent with those of Le Floch [2010] and Secomb [2006].

  4. A Lattice Boltzmann Fictitious Domain Method for Modeling Red Blood Cell Deformation and Multiple-Cell Hydrodynamic Interactions in Flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Xing; Lin, Guang; Zou, Jianfeng

    To model red blood cell (RBC) deformation in flow, the recently developed LBM-DLM/FD method ([Shi and Lim, 2007)29], derived from the lattice Boltzmann method and the distributed Lagrange multiplier/fictitious domain methodthe fictitious domain method, is extended to employ the mesoscopic network model for simulations of red blood cell deformation. The flow is simulated by the lattice Boltzmann method with an external force, while the network model is used for modeling red blood cell deformation and the fluid-RBC interaction is enforced by the Lagrange multiplier. To validate parameters of the RBC network model, sThe stretching numerical tests on both coarse andmore » fine meshes are performed and compared with the corresponding experimental data to validate the parameters of the RBC network model. In addition, RBC deformation in pipe flow and in shear flow is simulated, revealing the capacity of the current method for modeling RBC deformation in various flows.« less

  5. Developing Educational Resources to Advance Umbilical Cord Blood Banking and Research: A Canadian Perspective.

    PubMed

    Beak, Carla Pereira; Chargé, Sophie B; Isasi, Rosario; Knoppers, Bartha M

    2015-05-01

    In 2013 Canadian Blood Services (CBS) launched the National Public Cord Blood Bank (NPCBB), a program to collect, process, test, and store cord blood units donated for use in transplantation. A key component of the creation of the NPCBB is the establishment of a program that enables cord blood not suitable for banking or transplantation to be used for biomedical research purposes. Along with the development of processes and policies to manage the NPCBB and the cord blood research program, CBS-in collaboration with researchers from the Stem Cell Network-have also developed educational tools to provide relevant information for target audiences to aid implementation and operation. We describe here one of these tools, the REB Primer on Research and Cord Blood Donation (the Primer), which highlights key ethical and legal considerations and identifies Canadian documents that are relevant to the use of cord blood in biomedical research. The Primer also introduces the NPCBB and describes the systems CBS is implementing to address ethical issues. The Primer is intended to assist research ethics boards in evaluating the ethical acceptability of research protocols, to facilitate harmonized decision-making by providing a common reference, and to highlight the role of research ethics boards in governance frameworks. With the Primer we hope to illustrate how the development of such educational tools can facilitate the ethical implementation and governance of programs related to stem cell research in Canada and abroad.

  6. Genetics Home Reference: Diamond-Blackfan anemia

    MedlinePlus

    ... developing certain cancers, including a cancer of blood-forming tissue known as acute myeloid leukemia (AML) and ... proteins may increase the self-destruction of blood-forming cells in the bone marrow, resulting in anemia. ...

  7. The Clinical Utilization of Circulating Cell Free DNA (CCFDNA) in Blood of Cancer Patients

    PubMed Central

    Elshimali, Yahya I.; Khaddour, Husseina; Sarkissyan, Marianna; Wu, Yanyuan; Vadgama, Jaydutt V.

    2013-01-01

    Qualitative and quantitative testing of circulating cell free DNA (CCFDNA) can be applied for the management of malignant and benign neoplasms. Detecting circulating DNA in cancer patients may help develop a DNA profile for early stage diagnosis in malignancies. The technical issues of obtaining, using, and analyzing CCFDNA from blood will be discussed. PMID:24065096

  8. Automatic tracking of red blood cells in micro channels using OpenCV

    NASA Astrophysics Data System (ADS)

    Rodrigues, Vânia; Rodrigues, Pedro J.; Pereira, Ana I.; Lima, Rui

    2013-10-01

    The present study aims to developan automatic method able to track red blood cells (RBCs) trajectories flowing through a microchannel using the Open Source Computer Vision (OpenCV). The developed method is based on optical flux calculation assisted by the maximization of the template-matching product. The experimental results show a good functional performance of this method.

  9. Microfluidics to Mimic Blood Flow in Health and Disease

    NASA Astrophysics Data System (ADS)

    Sebastian, Bernhard; Dittrich, Petra S.

    2018-01-01

    Throughout history, capillary systems have aided the establishment of the fundamental laws of blood flow and its non-Newtonian properties. The advent of microfluidics technology in the 1990s propelled the development of highly integrated lab-on-a-chip platforms that allow highly accurate replication of vascular systems' dimensions, mechanical properties, and biological complexity. Applications include the detection of pathological changes to red blood cells, white blood cells, and platelets at unparalleled sensitivity and the efficacy assessment of drug treatment. Recent efforts have aimed at the development of microfluidics-based tests usable in a clinial environment or the replication of more complex diseases such as thrombosis. These microfluidic disease models enable the study of onset and progression of disease as well as the identification of key players and risk factors, which have led to a spectrum of clinically relevant findings.

  10. Investigation of diseases through red blood cells' shape using photoacoustic response technique

    NASA Astrophysics Data System (ADS)

    Biswas, Deblina; Gorey, Abhijeet; Chen, Goerge C. K.; Sharma, Norman; Vasudevan, Srivathsan

    2015-03-01

    Photoacoustic (PA) imaging is a non-invasive real-time technique, widely applied to many biomedical imaging studies in the recent years. While most of these studies have been focussed on obtaining an image after reconstruction, various features of time domain signal (e.g. amplitude, width, rise and relaxation time) would provide very high sensitivity in detecting morphological changes in cells during a biological study. Different haematological disorders (e.g., sickle cell anaemia, thalassemia) exhibit significant morphological cellular changes. In this context, this study explores the possibility of utilizing the developed photoacoustic response technique to apply onto blood samples. Results of our preliminary study demonstrate that there is a significant change in signal amplitude due to change in concentration of the blood. Thus it shows the sensitivity of the developed photoacoustic technique towards red blood cell count (related to haematological disease like anaemia). Subsequently, morphological changes in RBC (i.e. swollen and shrunk compared to normal RBC) induced by hypotonic and hypertonic solutions respectively were also experimented. The result shows a distinct change in PA signal amplitude. This would serve as a diagnostic signature for many future studies on cellular morphological disorders.

  11. From blood to bubbles: Time resolved micro-particle detection and characterization by scattered ultrasound

    NASA Astrophysics Data System (ADS)

    Roy, Ronald A.

    2004-05-01

    Robert Apfel believed in the creative application of acoustics technology to difficult problems in biomedical sensing. Much of his work in this area focused on material characterization, with the intention of effecting diagnosis. His early work in blood cell characterization employed acoustic levitation to measure the bulk mechanical properties of human red blood cells. This subsequently paved the way to the use of high-frequency acoustic scattering to yield the compressibility and density of individual blood cells. Technology developed in this later effort was then adapted to the very difficult problem of transient micro-cavitation detection, and the active cavitation detector (ACD) was born. This paper traces this line of work from its origins and, in the process, serves to celebrate Bob Apfel's peerless ingenuity and irrepressible creativity.

  12. Anti-E Detected in a 7-Month-Old Infant with Acute Lymphoblastic Leukemia after Transfusion.

    PubMed

    Kumeta, Mai; Tanaka, Kazuto; Kaneko, Natsuki; Osanai, Takayuki; Ajima, Hikaru; Tamai, Yoshiko; Kayaba, Hiroyuki; Ito, Etsuro; Saito, Norihiro

    2018-06-01

    Only a few cases of infantile anti-red blood cell alloantibody production have been reported. A 7-month-old girl with acute lymphoid leukemia developed anti-E alloantibody 13 days after transfusion of E-positive red blood cells. Antibody screening was performed before and at 2, 6, 13, 18, 27, 34, and 49 days after red blood cell transfusion. Identification test, direct immunoglobulin test, acid elution, and dithiothreitol test were also performed. Anti-E alloantibody was detected in the blood 13 days after the first transfusion. The detected antibody was IgM and it decreased below detectable levels within 49 days after the first transfusion. Follow-up testing for the presence of post-transfusion alloantibody at appropriate times is important, even in infants.

  13. System Design and Development of a Robotic Device for Automated Venipuncture and Diagnostic Blood Cell Analysis.

    PubMed

    Balter, Max L; Chen, Alvin I; Fromholtz, Alex; Gorshkov, Alex; Maguire, Tim J; Yarmush, Martin L

    2016-10-01

    Diagnostic blood testing is the most prevalent medical procedure performed in the world and forms the cornerstone of modern health care delivery. Yet blood tests are still predominantly carried out in centralized labs using large-volume samples acquired by manual venipuncture, and no end-to-end solution from blood draw to sample analysis exists today. Our group is developing a platform device that merges robotic phlebotomy with automated diagnostics to rapidly deliver patient information at the site of the blood draw. The system couples an image-guided venipuncture robot, designed to address the challenges of routine venous access, with a centrifuge-based blood analyzer to obtain quantitative measurements of hematology. In this paper, we first present the system design and architecture of the integrated device. We then perform a series of in vitro experiments to evaluate the cannulation accuracy of the system on blood vessel phantoms. Next, we assess the effects of vessel diameter, needle gauge, flow rate, and viscosity on the rate of sample collection. Finally, we demonstrate proof-of-concept of a white cell assay on the blood analyzer using in vitro human samples spiked with fluorescently labeled microbeads.

  14. Combinatorial Screening Of Inorganic And Organometallic Materials

    DOEpatents

    Li, Yi , Li, Jing , Britton, Ted W.

    2002-06-25

    A method for differentiating and enumerating nucleated red blood cells in a blood sample is described. The method includes the steps of lysing red blood cells of a blood sample with a lytic reagent, measuring nucleated blood cells by DC impedance measurement in a non-focused flow aperture, differentiating nucleated red blood cells from other cell types, and reporting nucleated red blood cells in the blood sample. The method further includes subtracting nucleated red blood cells and other interference materials from the count of remaining blood cells, and reporting a corrected white blood cell count of the blood sample. Additionally, the method further includes measuring spectrophotometric absorbance of the sample mixture at a predetermined wavelength of a hemoglobin chromogen formed upon lysing the blood sample, and reporting hemoglobin concentration of the blood sample.

  15. Peripheral Blood CD38 Bright CD8+ Effector Memory T Cells Predict Acute Graft-versus-Host Disease.

    PubMed

    Khandelwal, Pooja; Lane, Adam; Chaturvedi, Vijaya; Owsley, Erika; Davies, Stella M; Marmer, Daniel; Filipovich, Alexandra H; Jordan, Michael B; Marsh, Rebecca A

    2015-07-01

    Acute graft-versus-host disease (aGVHD) is mediated by allogeneic T cell responses. We hypothesized that increases of peripheral blood-activated CD8+ effector memory T (TEM) cells would be observed after hematopoietic stem cell transplantation (HSCT) before onset of aGVHD symptoms. Blood was collected twice weekly after HSCT for 7 weeks in 49 consecutive pediatric and adult HSCT recipients. Samples were incubated with fluorochrome-conjugated antibodies against CD45, CD3, CD8, CD38, CD45RA, and CCR7 and analyzed using flow cytometry. TEM cells were defined as CD3+ CD8+ CCR7- CD45RA(-) lymphocytes. CD38 expression was used as a marker of T cell activation. Patients were followed for 100 days for development of aGVHD. Twenty-three patients developed grade 1 to 4 aGVHD at a median of 37 days (range, 15 to 79 days) after HCST. Absolute CD38 bright CD8+ TEM of > 35 cells/μL predicted aGVHD at a median of 8 days (range, 1 to 34) before aGVHD onset with a sensitivity of 82.6% and specificity of 91.6%. The cumulative incidence of aGVHD was 90% in patients with absolute CD38 bright CD8+ TEM >35 cells/μL and 15% in patients without (P < .0001). Quantification of CD38 bright CD8+ TEM cells may predict aGVHD in children and young adult HSCT recipients. Copyright © 2015 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  16. Polyploidization of glia in neural development links tissue growth to blood-brain barrier integrity.

    PubMed

    Unhavaithaya, Yingdee; Orr-Weaver, Terry L

    2012-01-01

    Proper development requires coordination in growth of the cell types composing an organ. Many plant and animal cells are polyploid, but how these polyploid tissues contribute to organ growth is not well understood. We found the Drosophila melanogaster subperineurial glia (SPG) to be polyploid, and ploidy is coordinated with brain mass. Inhibition of SPG polyploidy caused rupture of the septate junctions necessary for the blood-brain barrier. Thus, the increased SPG cell size resulting from polyploidization is required to maintain the SPG envelope surrounding the growing brain. Polyploidization likely is a conserved strategy to coordinate tissue growth during organogenesis, with potential vertebrate examples.

  17. Malaria Hidden in a Patient with Diffuse Large-B-Cell Lymphoma and Sickle-Cell Trait▿

    PubMed Central

    Linares, María; Albizua, Enriqueta; Méndez, Darío; Rubio, José M.; Martínez-Serna, Alejandra; Martínez, Miguel A.; Salto, Efren; Puyet, Antonio; Diez, Amalia; Martinez-López, Joaquin; Bautista, José M.

    2011-01-01

    We report a case of an African patient with sickle cell trait who was diagnosed in Spain with B-cell lymphoma. Blood smears were negative for malaria, and no plasmodium antigens were detected in the blood. To treat his lymphoma, the patient underwent chemotherapy and autologous stem cell transplantation. Following a splenectomy due to a worsening condition, he developed clinical malaria with detectable parasitemia. This case suggests that the humoral response and parasite removal by the spleen may afford protection from overt disease and may even help maintain subclinical human reservoirs of the disease. PMID:21976762

  18. Malaria hidden in a patient with diffuse large-B-cell lymphoma and sickle-cell trait.

    PubMed

    Linares, María; Albizua, Enriqueta; Méndez, Darío; Rubio, José M; Martínez-Serna, Alejandra; Martínez, Miguel A; Salto, Efren; Puyet, Antonio; Diez, Amalia; Martinez-López, Joaquin; Bautista, José M

    2011-12-01

    We report a case of an African patient with sickle cell trait who was diagnosed in Spain with B-cell lymphoma. Blood smears were negative for malaria, and no plasmodium antigens were detected in the blood. To treat his lymphoma, the patient underwent chemotherapy and autologous stem cell transplantation. Following a splenectomy due to a worsening condition, he developed clinical malaria with detectable parasitemia. This case suggests that the humoral response and parasite removal by the spleen may afford protection from overt disease and may even help maintain subclinical human reservoirs of the disease.

  19. Portable vibration-assisted filtration device for on-site isolation of blood cells or pathogenic bacteria from whole human blood.

    PubMed

    Kim, Yong Tae; Park, Kyun Joo; Kim, Seyl; Kim, Soon Ae; Lee, Seok Jae; Kim, Do Hyun; Lee, Tae Jae; Lee, Kyoung G

    2018-03-01

    Isolation of specific cells from whole blood is important to monitor disease prognosis and diagnosis. In this study, a vibration-assisted filtration (VF) device has been developed for isolation and recovery of specific cells such as leukocytes and pathogenic bacteria from human whole blood. The VF device is composed of three layers which was fabricated using injection molding with cyclic olefin copolymer (COC) pellets consisting of: a top layer with coin-type vibration motor (Ф = 10mm), a middle plate with a 1μm or 3μm-pore filter membrane to separate of Staphylococcus aureus (S. aureus) cells or leukocytes (i.e. white blood cells) respectively, and a bottom chamber with conical-shaped microstructure. One milliliter of human whole blood was injected into a sample loading chamber using a 3μm-pore filter equipped in the VF device and the coin-type vibration motor applied external vibration force by generating a rotational fluid which enhances the filtration velocity due to the prevention of the cell clogging on the filter membrane. The effluent blood such as erythrocytes, platelet, and plasma was collected at the bottom chamber while the leukocytes were sieved by the filter membrane. The vibration-assisted leukocyte separation was able to finish within 200s while leukocyte separation took 1200s without vibration. Moreover, we successfully separated S. aureus from human whole blood using a 1μm-pore filter equipped VF device and it was further confirmed by genetic analysis. The proposed VF device provides an advanced cell separation platform in terms of simplicity, fast separation, and portability in the fields of point-of-care diagnostics. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Towards cavitation-enhanced permeability in blood vessel on a chip

    NASA Astrophysics Data System (ADS)

    De Luca, R.; Silvani, G.; Scognamiglio, C.; Sinibaldi, G.; Peruzzi, G.; Chinappi, M.; Kiani, M. F.; Casciola, C. M.

    2017-08-01

    The development of targeted delivery systems releasing pharmaceutical agents directly at the desired site of action may improve their therapeutic efficiency while minimizing damage to healthy tissues, toxicity to the patient and drug waste. In this context, we have developed a bio-inspired microdevice mimicking the tumour microvasculature which represents a valuable tool for assessing the enhancement of blood vessel permeability due to cavitation. This novel system allows us to investigate the effects of ultrasound-driven microbubbles that temporarily open the endothelial intercellular junctions allowing drug to extravasate blood vessels into tumour tissues. The blood vessel on a chip consists of a tissue chamber and two independent vascular channels (width 200 µm, height 100 µm, length 2762 µm) cultured with endothelial cells placed side-by-side and separated by a series of 3 µm pores. Its geometry and dimensions mimic the three-dimensional morphology, size and flow characteristics of microvessels in vivo. The early stage of this project had a twofold objective: 1. To define the protocol for culturing of Human Umbilical Vein Endothelial Cells (HUVECs) within the vascular channel; 2. To develop a fluorescence based microscopy technique for measuring permeability. We have developed a reliable and reproducible protocol to culture endothelial cells within the artificial vessels in a realistic manner: HUVECs show the typical elongated shape in the direction of flow, exhibit tight junction formation and form a continuous layer with a central lumen that completely covers the channels wall. As expected, the permeability of cell-free device is higher than the one cultured with HUVECs in the vascular channels. The proposed blood vessel on a chip and the permeability measurement protocol have a significant potential to allow for the study of cavitation-enhanced permeability of the endothelium and improve efficiency in screening drug delivery systems.

  1. Multifunctional biocompatible graphene oxide quantum dots decorated magnetic nanoplatform for efficient capture and two-photon imaging of rare tumor cells.

    PubMed

    Shi, Yongliang; Pramanik, Avijit; Tchounwou, Christine; Pedraza, Francisco; Crouch, Rebecca A; Chavva, Suhash Reddy; Vangara, Aruna; Sinha, Sudarson Sekhar; Jones, Stacy; Sardar, Dhiraj; Hawker, Craig; Ray, Paresh Chandra

    2015-05-27

    Circulating tumor cells (CTCs) are extremely rare cells in blood containing billions of other cells. The selective capture and identification of rare cells with sufficient sensitivity is a real challenge. Driven by this need, this manuscript reports the development of a multifunctional biocompatible graphene oxide quantum dots (GOQDs) coated, high-luminescence magnetic nanoplatform for the selective separation and diagnosis of Glypican-3 (GPC3)-expressed Hep G2 liver cancer tumor CTCs from infected blood. Experimental data show that an anti-GPC3-antibody-attached multifunctional nanoplatform can be used for selective Hep G2 hepatocellular carcinoma tumor cell separation from infected blood containing 10 tumor cells/mL of blood in a 15 mL sample. Reported data indicate that, because of an extremely high two-photon absorption cross section (40530 GM), an anti-GPC3-antibody-attached GOQDs-coated magnetic nanoplatform can be used as a two-photon luminescence platform for selective and very bright imaging of a Hep G2 tumor cell in a biological transparency window using 960 nm light. Experimental results with nontargeted GPC3(-) and SK-BR-3 breast cancer cells show that multifunctional-nanoplatform-based cell separation, followed by two-photon imaging, is highly selective for Hep G2 hepatocellular carcinoma tumor cells.

  2. IL-2 Enhances Gut Homing Potential of Human Naive Regulatory T Cells Early in Life.

    PubMed

    Hsu, Peter S; Lai, Catherine L; Hu, Mingjing; Santner-Nanan, Brigitte; Dahlstrom, Jane E; Lee, Cheng Hiang; Ajmal, Ayesha; Bullman, Amanda; Arbuckle, Susan; Al Saedi, Ahmed; Gacis, Lou; Nambiar, Reta; Williams, Andrew; Wong, Melanie; Campbell, Dianne E; Nanan, Ralph

    2018-06-15

    Recent evidence suggests early environmental factors are important for gut immune tolerance. Although the role of regulatory T (Treg) cells for gut immune homeostasis is well established, the development and tissue homing characteristics of Treg cells in children have not been studied in detail. In this article, we studied the development and homing characteristics of human peripheral blood Treg cell subsets and potential mechanisms inducing homing molecule expression in healthy children. We found contrasting patterns of circulating Treg cell gut and skin tropism, with abundant β7 integrin + Treg cells at birth and increasing cutaneous lymphocyte Ag (CLA + ) Treg cells later in life. β7 integrin + Treg cells were predominantly naive, suggesting acquisition of Treg cell gut tropism early in development. In vitro, IL-7 enhanced gut homing but reduced skin homing molecule expression in conventional T cells, whereas IL-2 induced a similar effect only in Treg cells. This effect was more pronounced in cord compared with adult blood. Our results suggest that early in life, naive Treg cells may be driven for gut tropism by their increased sensitivity to IL-2-induced β7 integrin upregulation, implicating a potential role of IL-2 in gut immune tolerance during this critical period of development. Copyright © 2018 by The American Association of Immunologists, Inc.

  3. Biomimetics in thin film design: Niche-like wrinkles designed for i-cell progenitor cell differentiation.

    PubMed

    Major, Roman; Lackner, Juergen M; Sanak, Marek; Major, Boguslaw

    2017-11-01

    The future and development of science are in interdisciplinary areas, such as biomedical engineering. Self-assembled structures, similar to stem cell niches, inhibit rapid cellular division processes and enable the capture of stem cells from blood flow. By modifying the surface topography and stiffness properties, progenitor cells were differentiated towards the formation of endothelial cell monolayers to effectively inhibit the coagulation cascade. Wrinkled material layers in the form of thin polymeric coatings were prepared. An optimized surface topography led to proper cell differentiation and influenced the appropriate formation of endothelial cell monolayers. Blood activation was decelerated by the formed endothelium. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. A dynamic in vivo-like organotypic blood-brain barrier model to probe metastatic brain tumors

    NASA Astrophysics Data System (ADS)

    Xu, Hui; Li, Zhongyu; Yu, Yue; Sizdahkhani, Saman; Ho, Winson S.; Yin, Fangchao; Wang, Li; Zhu, Guoli; Zhang, Min; Jiang, Lei; Zhuang, Zhengping; Qin, Jianhua

    2016-11-01

    The blood-brain barrier (BBB) restricts the uptake of many neuro-therapeutic molecules, presenting a formidable hurdle to drug development in brain diseases. We proposed a new and dynamic in vivo-like three-dimensional microfluidic system that replicates the key structural, functional and mechanical properties of the blood-brain barrier in vivo. Multiple factors in this system work synergistically to accentuate BBB-specific attributes-permitting the analysis of complex organ-level responses in both normal and pathological microenvironments in brain tumors. The complex BBB microenvironment is reproduced in this system via physical cell-cell interaction, vascular mechanical cues and cell migration. This model possesses the unique capability to examine brain metastasis of human lung, breast and melanoma cells and their therapeutic responses to chemotherapy. The results suggest that the interactions between cancer cells and astrocytes in BBB microenvironment might affect the ability of malignant brain tumors to traverse between brain and vascular compartments. Furthermore, quantification of spatially resolved barrier functions exists within a single assay, providing a versatile and valuable platform for pharmaceutical development, drug testing and neuroscientific research.

  5. Mass Spectrometry Method to Measure Membrane Proteins in Dried Blood Spots for the Detection of Blood Doping Practices in Sport.

    PubMed

    Cox, Holly D; Eichner, Daniel

    2017-09-19

    The dried blood spot (DBS) matrix has significant utility for applications in the field where venous blood collection and timely shipment of labile blood samples is difficult. Unfortunately, protein measurement in DBS is hindered by high abundance proteins and matrix interference that increases with hematocrit. We developed a DBS method to enrich for membrane proteins and remove soluble proteins and matrix interference. Following a wash in a series of buffers, the membrane proteins are digested with trypsin and quantitated by parallel reaction monitoring mass spectrometry methods. The DBS method was applied to the quantification of four cell-specific cluster of differentiation (CD) proteins used to count cells by flow cytometry, band 3 (CD233), CD71, CD45, and CD41. We demonstrate that the DBS method counts low abundance cell types such as immature reticulocytes as well as high abundance cell types such as red blood cells, white blood cells, and platelets. When tested in 82 individuals, counts obtained by the DBS method demonstrated good agreement with flow cytometry and automated hematology analyzers. Importantly, the method allows longitudinal monitoring of CD protein concentration and calculation of interindividual variation which is difficult by other methods. Interindividual variation of band 3 and CD45 was low, 6 and 8%, respectively, while variation of CD41 and CD71 was higher, 18 and 78%, respectively. Longitudinal measurement of CD71 concentration in DBS over an 8-week period demonstrated intraindividual variation 17.1-38.7%. Thus, the method may allow stable longitudinal measurement of blood parameters currently monitored to detect blood doping practices.

  6. Chemically Attenuated Blood-Stage Plasmodium yoelii Parasites Induce Long-Lived and Strain-Transcending Protection

    PubMed Central

    Raja, Amber I.; Cai, Yeping; Reiman, Jennifer M.; Groves, Penny; Chakravarty, Sumana; McPhun, Virginia; Doolan, Denise L.; Cockburn, Ian; Hoffman, Stephen L.; Stanisic, Danielle I.

    2016-01-01

    The development of a vaccine is essential for the elimination of malaria. However, despite many years of effort, a successful vaccine has not been achieved. Most subunit vaccine candidates tested in clinical trials have provided limited efficacy, and thus attenuated whole-parasite vaccines are now receiving close scrutiny. Here, we test chemically attenuated Plasmodium yoelii 17X and demonstrate significant protection following homologous and heterologous blood-stage challenge. Protection against blood-stage infection persisted for at least 9 months. Activation of both CD4+ and CD8+ T cells was shown after vaccination; however, in vivo studies demonstrated a pivotal role for both CD4+ T cells and B cells since the absence of either cell type led to loss of vaccine-induced protection. In spite of significant activation of circulating CD8+ T cells, liver-stage immunity was not evident. Neither did vaccine-induced CD8+ T cells contribute to blood-stage protection; rather, these cells contributed to pathogenesis, since all vaccinated mice depleted of both CD4+ and CD8+ T cells survived a challenge infection. This study provides critical insight into whole-parasite vaccine-induced immunity and strong support for testing whole-parasite vaccines in humans. PMID:27245410

  7. Development of a New Rapid Isolation Device for Circulating Tumor Cells (CTCs) Using 3D Palladium Filter and Its Application for Genetic Analysis

    PubMed Central

    Yusa, Akiko; Toneri, Makoto; Masuda, Taisuke; Ito, Seiji; Yamamoto, Shuhei; Okochi, Mina; Kondo, Naoto; Iwata, Hiroji; Yatabe, Yasushi; Ichinosawa, Yoshiyuki; Kinuta, Seichin; Kondo, Eisaku; Honda, Hiroyuki; Arai, Fumihito; Nakanishi, Hayao

    2014-01-01

    Circulating tumor cells (CTCs) in the blood of patients with epithelial malignancies provide a promising and minimally invasive source for early detection of metastasis, monitoring of therapeutic effects and basic research addressing the mechanism of metastasis. In this study, we developed a new filtration-based, sensitive CTC isolation device. This device consists of a 3-dimensional (3D) palladium (Pd) filter with an 8 µm-sized pore in the lower layer and a 30 µm-sized pocket in the upper layer to trap CTCs on a filter micro-fabricated by precise lithography plus electroforming process. This is a simple pump-less device driven by gravity flow and can enrich CTCs from whole blood within 20 min. After on-device staining of CTCs for 30 min, the filter cassette was removed from the device, fixed in a cassette holder and set up on the upright fluorescence microscope. Enumeration and isolation of CTCs for subsequent genetic analysis from the beginning were completed within 1.5 hr and 2 hr, respectively. Cell spike experiments demonstrated that the recovery rate of tumor cells from blood by this Pd filter device was more than 85%. Single living tumor cells were efficiently isolated from these spiked tumor cells by a micromanipulator, and KRAS mutation, HER2 gene amplification and overexpression, for example, were successfully detected from such isolated single tumor cells. Sequential analysis of blood from mice bearing metastasis revealed that CTC increased with progression of metastasis. Furthermore, a significant increase in the number of CTCs from the blood of patients with metastatic breast cancer was observed compared with patients without metastasis and healthy volunteers. These results suggest that this new 3D Pd filter-based device would be a useful tool for the rapid, cost effective and sensitive detection, enumeration, isolation and genetic analysis of CTCs from peripheral blood in both preclinical and clinical settings. PMID:24523941

  8. Frozen blood products: clinically effective and potentially ideal for remote Australia.

    PubMed

    Holley, A; Marks, D C; Johnson, L; Reade, M C; Badloe, J F; Noorman, F

    2013-01-01

    The development of effective cryopreservation techniques for both red blood cells and platelets, which maintain ex vivo biological activity, in combination with frozen plasma, provides for a unique blood banking strategy. This technology greatly enhances the storage life of these products. The rationale and potential advantages of using cryopreservation techniques for the provision of blood products to remote and military environments have been effectively demonstrated in several conflicts over the last decade. Current haemostatic resuscitation doctrine for the exsanguinating patient supports the use of red blood cells, platelets and frozen plasma early in the resuscitation. We believe an integrated fresh-frozen blood bank inventory could facilitate provision of blood products, not only in the military setting but also in regional Australia, by overcoming many logistic and geographical challenges. The processes involved in production and point of care thawing are sufficiently well developed and achievable to make this technology a viable option. The potential limitations of cryopreservation and subsequent product thawing need to be considered if such a strategy is to be developed. A substantial body of international experience using cryopreserved products in remote settings has already been accrued. This experience provides a template for the possible creation of an Australian integrated fresh-frozen blood bank inventory that could conceivably enhance the care of patients in both regional Australia and in the military setting.

  9. Microfluidic differential immunocapture biochip for specific leukocyte counting

    PubMed Central

    Hassan, Umer; Watkins, Nicholas N; Reddy, Bobby; Damhorst, Gregory; Bashir, Rashid

    2016-01-01

    Enumerating specific cell types from whole blood can be very useful for research and diagnostic purposes—e.g., for counting of cD4 and cD8 t cells in HIV/aIDs diagnostics. We have developed a biosensor based on a differential immunocapture technology to enumerate specific cells in 30 min using 10 µl of blood. this paper provides a comprehensive stepwise protocol to replicate our biosensor for cD4 and cD8 cell counts. the biochip can also be adapted to enumerate other specific cell types such as somatic cells or cells from tissue or liquid biopsies. capture of other specific cells requires immobilization of their corresponding antibodies within the capture chamber. therefore, this protocol is useful for research into areas surrounding immunocapture-based biosensor development. the biosensor production requires 24 h, a one-time cell capture optimization takes 6–9 h, and the final cell counting experiment in a laboratory environment requires 30 min to complete. PMID:26963632

  10. 21 CFR 640.10 - Red Blood Cells.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Red Blood Cells § 640.10 Red Blood Cells. The proper name of this product shall be Red Blood Cells. The product is defined as red blood cells remaining... 21 Food and Drugs 7 2014-04-01 2014-04-01 false Red Blood Cells. 640.10 Section 640.10 Food and...

  11. 21 CFR 640.10 - Red Blood Cells.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Red Blood Cells § 640.10 Red Blood Cells. The proper name of this product shall be Red Blood Cells. The product is defined as red blood cells remaining... 21 Food and Drugs 7 2013-04-01 2013-04-01 false Red Blood Cells. 640.10 Section 640.10 Food and...

  12. 21 CFR 640.10 - Red Blood Cells.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Red Blood Cells § 640.10 Red Blood Cells. The proper name of this product shall be Red Blood Cells. The product is defined as red blood cells remaining... 21 Food and Drugs 7 2011-04-01 2010-04-01 true Red Blood Cells. 640.10 Section 640.10 Food and...

  13. 21 CFR 640.10 - Red Blood Cells.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Red Blood Cells § 640.10 Red Blood Cells. The proper name of this product shall be Red Blood Cells. The product is defined as red blood cells remaining... 21 Food and Drugs 7 2012-04-01 2012-04-01 false Red Blood Cells. 640.10 Section 640.10 Food and...

  14. 21 CFR 640.10 - Red Blood Cells.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Red Blood Cells. 640.10 Section 640.10 Food and... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Red Blood Cells § 640.10 Red Blood Cells. The proper name of this product shall be Red Blood Cells. The product is defined as red blood cells remaining...

  15. Stochastic simulation of human pulmonary blood flow and transit time frequency distribution based on anatomic and elasticity data.

    PubMed

    Huang, Wei; Shi, Jun; Yen, R T

    2012-12-01

    The objective of our study was to develop a computing program for computing the transit time frequency distributions of red blood cell in human pulmonary circulation, based on our anatomic and elasticity data of blood vessels in human lung. A stochastic simulation model was introduced to simulate blood flow in human pulmonary circulation. In the stochastic simulation model, the connectivity data of pulmonary blood vessels in human lung was converted into a probability matrix. Based on this model, the transit time of red blood cell in human pulmonary circulation and the output blood pressure were studied. Additionally, the stochastic simulation model can be used to predict the changes of blood flow in human pulmonary circulation with the advantage of the lower computing cost and the higher flexibility. In conclusion, a stochastic simulation approach was introduced to simulate the blood flow in the hierarchical structure of a pulmonary circulation system, and to calculate the transit time distributions and the blood pressure outputs.

  16. Activation of blood coagulation in cancer: implications for tumour progression

    PubMed Central

    Lima, Luize G.; Monteiro, Robson Q.

    2013-01-01

    Several studies have suggested a role for blood coagulation proteins in tumour progression. Herein, we discuss (1) the activation of the blood clotting cascade in the tumour microenvironment and its impact on primary tumour growth; (2) the intravascular activation of blood coagulation and its impact on tumour metastasis and cancer-associated thrombosis; and (3) antitumour therapies that target blood-coagulation-associated proteins. Expression levels of the clotting initiator protein TF (tissue factor) have been correlated with tumour cell aggressiveness. Simultaneous TF expression and PS (phosphatidylserine) exposure by tumour cells promote the extravascular activation of blood coagulation. The generation of blood coagulation enzymes in the tumour microenvironment may trigger the activation of PARs (protease-activated receptors). In particular, PAR1 and PAR2 have been associated with many aspects of tumour biology. The procoagulant activity of circulating tumour cells favours metastasis, whereas the release of TF-bearing MVs (microvesicles) into the circulation has been correlated with cancer-associated thrombosis. Given the role of coagulation proteins in tumour progression, it has been proposed that they could be targets for the development of new antitumour therapies. PMID:23889169

  17. Disruption of SMIM1 causes the Vel− blood type

    PubMed Central

    Ballif, Bryan A; Helias, Virginie; Peyrard, Thierry; Menanteau, Cécile; Saison, Carole; Lucien, Nicole; Bourgouin, Sébastien; Le Gall, Maude; Cartron, Jean-Pierre; Arnaud, Lionel

    2013-01-01

    Here, we report the biochemical and genetic basis of the Vel blood group antigen, which has been a vexing mystery for decades, especially as anti-Vel regularly causes severe haemolytic transfusion reactions. The protein carrying the Vel blood group antigen was biochemically purified from red blood cell membranes. Mass spectrometry-based de novo peptide sequencing identified this protein to be small integral membrane protein 1 (SMIM1), a previously uncharacterized single-pass membrane protein. Expression of SMIM1 cDNA in Vel− cultured cells generated anti-Vel cell surface reactivity, confirming that SMIM1 encoded the Vel blood group antigen. A cohort of 70 Vel− individuals was found to be uniformly homozygous for a 17 nucleotide deletion in the coding sequence of SMIM1. The genetic homogeneity of the Vel− blood type, likely having a common origin, facilitated the development of two highly specific DNA-based tests for rapid Vel genotyping, which can be easily integrated into blood group genotyping platforms. These results answer a 60-year-old riddle and provide tools of immediate assistance to all clinicians involved in the care of Vel− patients. PMID:23505126

  18. Red blood cell aggregation, aggregate strength and oxygen transport potential of blood are abnormal in both homozygous sickle cell anemia and sickle-hemoglobin C disease.

    PubMed

    Tripette, Julien; Alexy, Tamas; Hardy-Dessources, Marie-Dominique; Mougenel, Daniele; Beltan, Eric; Chalabi, Tawfik; Chout, Roger; Etienne-Julan, Maryse; Hue, Olivier; Meiselman, Herbert J; Connes, Philippe

    2009-08-01

    Recent evidence suggests that red blood cell aggregation and the ratio of hematocrit to blood viscosity (HVR), an index of the oxygen transport potential of blood, might considerably modulate blood flow dynamics in the microcirculation. It thus seems likely that these factors could play a role in sickle cell disease. We compared red blood cell aggregation characteristics, blood viscosity and HVR at different shear rates between sickle cell anemia and sickle cell hemoglobin C disease (SCC) patients, sickle cell trait carriers (AS) and control individuals (AA). Blood viscosity determined at high shear rate was lower in sickle cell anemia (n=21) than in AA (n=52), AS (n=33) or SCC (n=21), and was markedly increased in both SCC and AS. Despite differences in blood viscosity, both sickle cell anemia and SCC had similar low HVR values compared to both AA and AS. Sickle cell anemia (n=21) and SCC (n=19) subjects had a lower red blood cell aggregation index and longer time for red blood cell aggregates formation than AA (n=16) and AS (n=15), and a 2 to 3 fold greater shear rate required to disperse red blood cell aggregates. The low HVR levels found in sickle cell anemia and SCC indicates a comparable low oxygen transport potential of blood in both genotypes. Red blood cell aggregation properties are likely to be involved in the pathophysiology of sickle cell disease: the increased shear forces needed to disperse red blood cell aggregates may disturb blood flow, especially at the microcirculatory level, since red blood cell are only able to pass through narrow capillaries as single cells rather than as aggregates.

  19. Cellular therapies supplement: strategies for improving transplant efficiency in the context of cellular therapeutics.

    PubMed

    Jimenez, Antonio; Fung, Henry C; Christopherson, Kent W

    2011-11-01

    The field of hematopoietic stem cell transplantation (HSCT) has overcome many obstacles that have led to our current clinical ability to utilize cells collected from marrow, mobilized peripheral blood, or umbilical cord blood for the treatment of malignant and nonmalignant hematologic diseases. It is in this context that it becomes evident that future progress will lie in our development of an understanding of the biology by which the process of HSCT is regulated. By understanding the cellular components and the mechanisms by which HSCT is either enhanced or suppressed it will then be possible to design therapeutic strategies to improve rates of engraftment that will have a positive impact on immune reconstitution post-HSCT. In this review we focus primarily on allogeneic hematopoietic stem cell transplantation (allo-HSCT), the current challenges associated with allo-HSCT, and some developing strategies to improve engraftment in this setting. © 2011 American Association of Blood Banks.

  20. Norrin/Frizzled4 signaling in retinal vascular development and blood brain barrier plasticity.

    PubMed

    Wang, Yanshu; Rattner, Amir; Zhou, Yulian; Williams, John; Smallwood, Philip M; Nathans, Jeremy

    2012-12-07

    Norrin/Frizzled4 (Fz4) signaling activates the canonical Wnt pathway to control retinal vascular development. Using genetically engineered mice, we show that precocious Norrin production leads to premature retinal vascular invasion and delayed Norrin production leads to characteristic defects in intraretinal vascular architecture. In genetic mosaics, wild-type endothelial cells (ECs) instruct neighboring Fz4(-/-) ECs to produce an architecturally normal mosaic vasculature, a cell nonautonomous effect. However, over the ensuing weeks, Fz4(-/-) ECs are selectively eliminated from the mosaic vasculature, implying the existence of a quality control program that targets defective ECs. In the adult retina and cerebellum, gain or loss of Norrin/Fz4 signaling results in a cell-autonomous gain or loss, respectively, of blood retina barrier and blood brain barrier function, indicating an ongoing requirement for Frizzled signaling in barrier maintenance and substantial plasticity in mature CNS vascular structure. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Fibroblast growth factor signaling affects vascular outgrowth and is required for the maintenance of blood vessel integrity.

    PubMed

    De Smet, Frederik; Tembuyser, Bieke; Lenard, Anna; Claes, Filip; Zhang, Jie; Michielsen, Christof; Van Schepdael, Ann; Herbert, Jean-Marc; Bono, Françoise; Affolter, Markus; Dewerchin, Mieke; Carmeliet, Peter

    2014-10-23

    Angiogenesis contributes to the development of numerous disorders. Even though fibroblast growth factors (FGFs) were discovered as mediators of angiogenesis more than 30 years ago, their role in developmental angiogenesis still remains elusive. We use a recently described chemical probe, SSR128129E (SSR), that selectively inhibits the action of multiple FGF receptors (FGFRs), in combination with the zebrafish model to examine the role of FGF signaling in vascular development. We observe that while FGFR signaling is less important for vessel guidance, it affects vascular outgrowth and is especially required for the maintenance of blood vessel integrity by ensuring proper cell-cell junctions between endothelial cells. In conclusion, our work illustrates the power of a small molecule probe to reveal insights into blood vessel formation and stabilization and thus of broad interest to the vascular biology community.

  2. Flow interactions with cells and tissues: cardiovascular flows and fluid-structure interactions. Sixth International Bio-Fluid Mechanics Symposium and Workshop, March 28-30, 2008, Pasadena, California.

    PubMed

    Friedman, Morton H; Krams, Rob; Chandran, Krishnan B

    2010-03-01

    Interactions between flow and biological cells and tissues are intrinsic to the circulatory, respiratory, digestive and genitourinary systems. In the circulatory system, an understanding of the complex interaction between the arterial wall (a living multi-component organ with anisotropic, nonlinear material properties) and blood (a shear-thinning fluid with 45% by volume consisting of red blood cells, platelets, and white blood cells) is vital to our understanding of the physiology of the human circulation and the etiology and development of arterial diseases, and to the design and development of prosthetic implants and tissue-engineered substitutes. Similarly, an understanding of the complex dynamics of flow past native human heart valves and the effect of that flow on the valvular tissue is necessary to elucidate the etiology of valvular diseases and in the design and development of valve replacements. In this paper we address the influence of biomechanical factors on the arterial circulation. The first part presents our current understanding of the impact of blood flow on the arterial wall at the cellular level and the relationship between flow-induced stresses and the etiology of atherosclerosis. The second part describes recent advances in the application of fluid-structure interaction analysis to arterial flows and the dynamics of heart valves.

  3. Measuring sickle cell morphology in flow using spectrally encoded flow cytometry (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kviatkovsky, Inna; Zeidan, Adel; Yeheskely-Hayon, Daniella; Dann, Eldad J.; Yelin, Dvir

    2017-02-01

    During a sickle cell crisis in sickle cell anemia patients, deoxygenated red blood cells may change their mechanical properties and block small blood vessels, causing pain, local tissue damage and even organ failure. Measuring these cellular structural and morphological changes is important for understanding the factors contributing to vessel blockage and developing an effective treatment. In this work, we use spectrally encoded flow cytometry for confocal, high-resolution imaging of flowing blood cells from sickle cell anemia patients. A wide variety of cell morphologies were observed by analyzing the interference patterns resulting from reflections from the front and back faces of the cells' membrane. Using numerical simulation for calculating the two-dimensional reflection pattern from the cells, we propose an analytical expression for the three-dimensional shape of a characteristic sickle cell and compare it to a previous from the literature. In vitro spectrally encoded flow cytometry offers new means for analyzing the morphology of sickle cells in stress-free environment, and could provide an effective tool for studying the unique physiological properties of these cells.

  4. Low usage rate of banked sibling cord blood units in hematopoietic stem cell transplantation for children with hematological malignancies: implications for directed cord blood banking policies.

    PubMed

    Goussetis, Evgenios; Peristeri, Ioulia; Kitra, Vasiliki; Papassavas, Andreas C; Theodosaki, Maria; Petrakou, Eftichia; Spiropoulos, Antonia; Paisiou, Anna; Soldatou, Alexandra; Stavropoulos-Giokas, Catherine; Graphakos, Stelios

    2011-02-15

    Directed sibling cord blood banking is indicated in women delivering healthy babies who already have a sibling with a disease that is potentially treatable with an allogeneic cord blood transplant. We evaluated the effectiveness of a national directed cord blood banking program in sibling HLA-identical stem cell transplantation for hematological malignancies and the factors influencing the usage rate of the stored cord blood units. Fifty families were enrolled from which, 48 cord blood units were successfully collected and 2 collections failed due to damaged cord/placenta at delivery. Among enrolled families 4 children needed transplantation; however, only one was successfully transplanted using the collected cord blood unit containing 2×10(7) nucleated cells/kg in conjunction with a small volume of bone marrow from the same HLA-identical donor. Two children received grafts from matched unrelated donors because their sibling cord blood was HLA-haploidentical, while the fourth one received bone marrow from his HLA-identical brother, since cord blood could not be collected due to damaged cord/placenta at delivery. With a median follow-up of 6 years (range, 2-12) for the 9 remaining HLA-matched cord blood units, none from the prospective recipients needed transplantation. The low utilization rate of sibling cord blood in the setting of hematopoietic stem cell transplantation for pediatric hematological malignant diseases necessitates the development of directed cord blood banking programs that limit long-term storage for banked cord blood units with low probability of usage such as non-HLA-identical or identical to patients who are in long-term complete remission. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. Elastomeric negative acoustic contrast particles for affinity capture assays.

    PubMed

    Cushing, Kevin W; Piyasena, Menake E; Carroll, Nick J; Maestas, Gian C; López, Beth Ann; Edwards, Bruce S; Graves, Steven W; López, Gabriel P

    2013-02-19

    This report describes the development of elastomeric capture microparticles (ECμPs) and their use with acoustophoretic separation to perform microparticle assays via flow cytometry.We have developed simple methods to form ECμPs by cross-linking droplets of common commercially available silicone precursors in suspension followed by surface functionalization with biomolecular recognition reagents. The ECμPs are compressible particles that exhibit negative acoustic contrast in ultrasound when suspended in aqueous media, blood serum, or diluted blood. In this study, these particles have been functionalized with antibodies to bind prostate specific antigen and immunoglobulin (IgG). Specific separation of the ECμPs from blood cells is achieved by flowing them through a microfluidic acoustophoretic device that uses an ultrasonic standing wave to align the blood cells, which exhibit positive acoustic contrast, at a node in the acoustic pressure distribution while aligning the negative acoustic contrast ECμPs at the antinodes. Laminar flow of the separated particles to downstream collection ports allows for collection of the separated negative contrast (ECμPs) and positive contrast particles (cells). Separated ECμPs were analyzed via flow cytometry to demonstrate nanomolar detection for prostate specific antigen in aqueous buffer and picomolar detection for IgG in plasma and diluted blood samples. This approach has potential applications in the development of rapid assays that detect the presence of low concentrations of biomarkers in a number of biological sample types.

  6. Elastomeric Negative Acoustic Contrast Particles for Affinity Capture Assays

    PubMed Central

    Cushing, Kevin W.; Piyasena, Menake E.; Carroll, Nick J.; Maestas, Gian C.; López, Beth Ann; Edwards, Bruce S.; Graves, Steven W.; López, Gabriel P.

    2013-01-01

    This report describes the development of elastomeric capture microparticles (ECμPs) and their use with acoustophoretic separation to perform microparticle assays via flow cytometry. We have developed simple methods to form ECμPsby crosslinking droplets of common commercially available silicone precursors in suspension followed by surface functionalization with biomolecular recognition reagents. The ECμPs are compressible particles that exhibit negative acoustic contrast in ultrasound when suspended in aqueous media, blood serum or diluted blood. In this study, these particles have been functionalized with antibodies to bind prostate specific antigen and immunoglobulin (IgG). Specific separation of the ECμPs from blood cells is achieved by flowing them through a microfluidic acoustophoretic device that uses an ultrasonic standing wave to align the blood cells, which exhibit positive acoustic contrast, at a node in the acoustic pressure distribution while aligning the negative acoustic contrast ECμPs at the antinodes. Laminar flow of the separated particles to downstream collection ports allows for collection of the separated negative contrast (ECμPs) and positive contrast particles (cells). Separated ECμPs were analyzed via flow cytometry to demonstrate nanomolar detection for prostate specific antigen in aqueous buffer and picomolar detection for IgG in plasma and diluted blood samples. This approach has potential applications in the development of rapid assays that detect the presence of low concentrations of biomarkers in a number of biological sample types. PMID:23331264

  7. Blood cell counting and classification by nonflowing laser light scattering method

    NASA Astrophysics Data System (ADS)

    Yang, Ye; Zhang, Zhenxi; Yang, Xinhui; Jiang, Dazong; Yeo, Joon Hock

    1999-11-01

    A new non-flowing laser light scattering method for counting and classifying blood cells is presented. A linear charge- coupled device with 1024 elements is used to detect the scattered light intensity distribution of the blood cells. A pinhole plate is combined with the CCD to compete the focusing of the measurement system. An isotropic sphere is used to simulate the blood cell. Mie theory is used to describe the scattering of blood cells. In order to inverse the size distribution of blood cells from their scattered light intensity distribution, Powell method combined with precision punishment method is used as a dependent model method for measurement red blood cells and blood plates. Non-negative constraint least square method combined with Powell method and precision punishment method is used as an independent model for measuring white blood cells. The size distributions of white blood cells and red blood cells, and the mean diameter of red blood cells are measured by this method. White blood cells can be divided into three classes: lymphocytes, middle-sized cells and neutrocytes according to their sizes. And the number of blood cells in unit volume can also be measured by the linear dependence of blood cells concentration on scattered light intensity.

  8. Identification of a B cell-dependent subpopulation of multiple sclerosis by measurements of brain-reactive B cells in the blood.

    PubMed

    Kuerten, Stefanie; Pommerschein, Giovanna; Barth, Stefanie K; Hohmann, Christopher; Milles, Bianca; Sammer, Fabian W; Duffy, Cathrina E; Wunsch, Marie; Rovituso, Damiano M; Schroeter, Michael; Addicks, Klaus; Kaiser, Claudia C; Lehmann, Paul V

    2014-01-01

    B cells are increasingly coming into play in the pathogenesis of multiple sclerosis (MS). Here, we screened peripheral blood mononuclear cells (PBMC) from patients with clinically isolated syndrome (CIS), MS, other non-inflammatory neurological, inflammatory neurological or autoimmune diseases, and healthy donors for their B cell reactivity to CNS antigen using the enzyme-linked immunospot technique (ELISPOT) after 96 h of polyclonal stimulation. Our data show that nine of 15 patients with CIS (60.0%) and 53 of 67 patients with definite MS (79.1%) displayed CNS-reactive B cells, compared to none of the control donors. The presence of CNS-reactive B cells in the blood of the majority of patients with MS or at risk to develop MS along with their absence in control subjects suggests that they might be indicative of a B cell-dependent subpopulation of the disease. Copyright © 2014. Published by Elsevier Inc.

  9. Patient-specific modeling and analysis of dynamic behavior of individual sickle red blood cells under hypoxic conditions

    NASA Astrophysics Data System (ADS)

    Li, Xuejin; Du, E.; Li, Zhen; Tang, Yu-Hang; Lu, Lu; Dao, Ming; Karniadakis, George

    2015-11-01

    Sickle cell anemia is an inherited blood disorder exhibiting heterogeneous morphology and abnormal dynamics under hypoxic conditions. We developed a time-dependent cell model that is able to simulate the dynamic processes of repeated sickling and unsickling of red blood cells (RBCs) under physiological conditions. By using the kinetic cell model with parameters derived from patient-specific data, we present a mesoscopic computational study of the dynamic behavior of individual sickle RBCs flowing in a microfluidic channel with multiple microgates. We investigate how individual sickle RBCs behave differently from healthy ones in channel flow, and analyze the alteration of cellular behavior and response to single-cell capillary obstruction induced by cell rheologic rigidification and morphological change due to cell sickling under hypoxic conditions. We also simulate the flow dynamics of sickle RBCs treated with hydroxyurea (HU) and quantify the relative enhancement of hemodynamic performance of HU. This work was supported by the National Institutes of Health (NIH) Grant U01HL114476.

  10. “You Shall Not Pass”—tight junctions of the blood brain barrier

    PubMed Central

    Bauer, Hans-Christian; Krizbai, István A.; Bauer, Hannelore; Traweger, Andreas

    2014-01-01

    The structure and function of the barrier layers restricting the free diffusion of substances between the central nervous system (brain and spinal cord) and the systemic circulation is of great medical interest as various pathological conditions often lead to their impairment. Excessive leakage of blood-borne molecules into the parenchyma and the concomitant fluctuations in the microenvironment following a transient breakdown of the blood-brain barrier (BBB) during ischemic/hypoxic conditions or because of an autoimmune disease are detrimental to the physiological functioning of nervous tissue. On the other hand, the treatment of neurological disorders is often hampered as only minimal amounts of therapeutic agents are able to penetrate a fully functional BBB or blood cerebrospinal fluid barrier. An in-depth understanding of the molecular machinery governing the establishment and maintenance of these barriers is necessary to develop rational strategies allowing a controlled delivery of appropriate drugs to the CNS. At the basis of such tissue barriers are intimate cell-cell contacts (zonulae occludentes, tight junctions) which are present in all polarized epithelia and endothelia. By creating a paracellular diffusion constraint TJs enable the vectorial transport across cell monolayers. More recent findings indicate that functional barriers are already established during development, protecting the fetal brain. As an understanding of the biogenesis of TJs might reveal the underlying mechanisms of barrier formation during ontogenic development numerous in vitro systems have been developed to study the assembly and disassembly of TJs. In addition, monitoring the stage-specific expression of TJ-associated proteins during development has brought much insight into the “developmental tightening” of tissue barriers. Over the last two decades a detailed molecular map of transmembrane and cytoplasmic TJ-proteins has been identified. These proteins not only form a cell-cell adhesion structure, but integrate various signaling pathways, thereby directly or indirectly impacting upon processes such as cell-cell adhesion, cytoskeletal rearrangement, and transcriptional control. This review will provide a brief overview on the establishment of the BBB during embryonic development in mammals and a detailed description of the ultrastructure, biogenesis, and molecular composition of epithelial and endothelial TJs will be given. PMID:25520612

  11. Development of Cell Phone Application for Blood Glucose Self-Monitoring Based on ISO/IEEE 11073 and HL7 CCD.

    PubMed

    Park, Hyun Sang; Cho, Hune; Kim, Hwa Sun

    2015-04-01

    The objectives of this research were to develop and evaluate a cell phone application based on the standard protocol for personal health devices and the standard information model for personal health records to support effective blood glucose management and standardized service for patients with diabetes. An application was developed for Android 4.0.3. In addition, an IEEE 11073 Manager, Medical Device Encoding Rule, and Bluetooth Health Device Profile Connector were developed for standardized health communication with a glucometer, and a Continuity of Care Document (CCD) Composer and CCD Parser were developed for CCD document exchange. The developed application was evaluated by five healthcare professionals and 87 users through a questionnaire comprising the following variables: usage intention, effort expectancy, social influence, facilitating condition, perceived risk, and voluntariness. As a result of the evaluation of usability, it was confirmed that the developed application is useful for blood glucose self-monitoring by diabetic patients. In particular, the healthcare professionals stated their own views that the application is useful to observe the trends in blood glucose change through the automatic function which records a blood glucose level measured using Bluetooth function, and the function which checks accumulated records of blood glucose levels. Also, a result of the evaluation of usage intention was 3.52 ± 0.42 out of 5 points. The application developed by our research team was confirmed by the verification of healthcare professionals that accurate feedback can be provided to healthcare professionals during the management of diabetic patients or education for glucose management.

  12. Development of Cell Phone Application for Blood Glucose Self-Monitoring Based on ISO/IEEE 11073 and HL7 CCD

    PubMed Central

    Park, Hyun Sang; Cho, Hune

    2015-01-01

    Objectives The objectives of this research were to develop and evaluate a cell phone application based on the standard protocol for personal health devices and the standard information model for personal health records to support effective blood glucose management and standardized service for patients with diabetes. Methods An application was developed for Android 4.0.3. In addition, an IEEE 11073 Manager, Medical Device Encoding Rule, and Bluetooth Health Device Profile Connector were developed for standardized health communication with a glucometer, and a Continuity of Care Document (CCD) Composer and CCD Parser were developed for CCD document exchange. The developed application was evaluated by five healthcare professionals and 87 users through a questionnaire comprising the following variables: usage intention, effort expectancy, social influence, facilitating condition, perceived risk, and voluntariness. Results As a result of the evaluation of usability, it was confirmed that the developed application is useful for blood glucose self-monitoring by diabetic patients. In particular, the healthcare professionals stated their own views that the application is useful to observe the trends in blood glucose change through the automatic function which records a blood glucose level measured using Bluetooth function, and the function which checks accumulated records of blood glucose levels. Also, a result of the evaluation of usage intention was 3.52 ± 0.42 out of 5 points. Conclusions The application developed by our research team was confirmed by the verification of healthcare professionals that accurate feedback can be provided to healthcare professionals during the management of diabetic patients or education for glucose management. PMID:25995960

  13. CD8+ T Cells Provide an Immunologic Signature of Tuberculosis in Young Children

    PubMed Central

    Nyendak, Melissa; Kiguli, Sarah; Zalwango, Sarah; Mori, Tomi; Mayanja-Kizza, Harriet; Balyejusa, Stephen; Null, Megan; Baseke, Joy; Mulindwa, Deo; Byrd, Laura; Swarbrick, Gwendolyn; Scott, Christine; Johnson, Denise F.; Malone, LaShaunda; Mudido-Musoke, Philipa; Boom, W. Henry; Lewinsohn, David M.; Lewinsohn, Deborah A.

    2012-01-01

    Rationale: The immunologic events surrounding primary Mycobacterium tuberculosis infection and development of tuberculosis remain controversial. Young children who develop tuberculosis do so quickly after first exposure, thus permitting study of immune response to primary infection and disease. We hypothesized that M. tuberculosis–specific CD8+ T cells are generated in response to high bacillary loads occurring during tuberculosis. Objectives: To determine if M. tuberculosis–specific T cells are generated among healthy children exposed to M. tuberculosis and children with tuberculosis. Methods: Enzyme-linked immunosorbent spot assays were used to measure IFN-γ production in response to M. tuberculosis–specific proteins ESAT-6/CFP-10 by peripheral blood mononuclear cells and CD8+ T cells isolated from Ugandan children hospitalized with tuberculosis (n = 96) or healthy tuberculosis contacts (n = 62). Measurements and Main Results: The proportion of positive CD8+ T-cell assays and magnitude of CD8+ T-cell responses were significantly greater among young (<5 yr) tuberculosis cases compared with young contacts (P = 0.02, Fisher exact test, P = 0.01, Wilcoxon rank-sum, respectively). M. tuberculosis–specific T-cell responses measured in peripheral blood mononuclear cells were equivalent between groups. Conclusions: Among young children, M. tuberculosis–specific CD8+ T cells develop in response to high bacillary loads, as occurs during tuberculosis, and are unlikely to be found after M. tuberculosis exposure. T-cell responses measured in peripheral blood mononuclear cells are generated after M. tuberculosis exposure alone, and thus cannot distinguish exposure from disease. In young children, IFN-γ–producing M. tuberculosis–specific CD8+ T cells provide an immunologic signature of primary M. tuberculosis infection resulting in disease. PMID:22071329

  14. Microfluidic-Based Bacteria Isolation from Whole Blood for Diagnostics of Blood Stream Infection.

    PubMed

    Zelenin, Sergey; Ramachandraiah, Harisha; Faridi, Asim; Russom, Aman

    2017-01-01

    Bacterial blood stream infection (BSI) potentially leads to life-threatening clinical conditions and medical emergencies such as severe sepsis, septic shock, and multi organ failure syndrome. Blood culturing is currently the gold standard for the identification of microorganisms and, although it has been automated over the decade, the process still requires 24-72 h to complete. This long turnaround time, especially for the identification of antimicrobial resistance, is driving the development of rapid molecular diagnostic methods. Rapid detection of microbial pathogens in blood related to bloodstream infections will allow the clinician to decide on or adjust the antimicrobial therapy potentially reducing the morbidity, mortality, and economic burden associated with BSI. For molecular-based methods, there is a lot to gain from an improved and straightforward method for isolation of bacteria from whole blood for downstream processing.We describe a microfluidic-based sample-preparation approach that rapidly and selectively lyses all blood cells while it extracts intact bacteria for downstream analysis. Whole blood is exposed to a mild detergent, which lyses most blood cells, and then to osmotic shock using deionized water, which eliminates the remaining white blood cells. The recovered bacteria are 100 % viable, which opens up possibilities for performing drug susceptibility tests and for nucleic-acid-based molecular identification.

  15. 21 CFR 864.6160 - Manual blood cell counting device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... blood cell counting device. (a) Identification. A manual blood cell counting device is a device used to count red blood cells, white blood cells, or blood platelets. (b) Classification. Class I (general... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Manual blood cell counting device. 864.6160...

  16. 21 CFR 864.6160 - Manual blood cell counting device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... blood cell counting device. (a) Identification. A manual blood cell counting device is a device used to count red blood cells, white blood cells, or blood platelets. (b) Classification. Class I (general... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Manual blood cell counting device. 864.6160...

  17. 21 CFR 864.6160 - Manual blood cell counting device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... blood cell counting device. (a) Identification. A manual blood cell counting device is a device used to count red blood cells, white blood cells, or blood platelets. (b) Classification. Class I (general... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Manual blood cell counting device. 864.6160...

  18. 21 CFR 864.6160 - Manual blood cell counting device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... blood cell counting device. (a) Identification. A manual blood cell counting device is a device used to count red blood cells, white blood cells, or blood platelets. (b) Classification. Class I (general... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Manual blood cell counting device. 864.6160...

  19. 21 CFR 864.6160 - Manual blood cell counting device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Manual blood cell counting device. 864.6160... blood cell counting device. (a) Identification. A manual blood cell counting device is a device used to count red blood cells, white blood cells, or blood platelets. (b) Classification. Class I (general...

  20. IL-10+ regulatory B cells are enriched in cord blood and may protect against cGVHD after cord blood transplantation.

    PubMed

    Sarvaria, Anushruti; Basar, Rafet; Mehta, Rohtesh S; Shaim, Hila; Muftuoglu, Muharrem; Khoder, Ahmad; Sekine, Takuye; Gokdemir, Elif; Kondo, Kayo; Marin, David; Daher, May; Alousi, Amin M; Alsuliman, Abdullah; Liu, Enli; Oran, Betul; Olson, Amanda; Jones, Roy B; Popat, Uday; Hosing, Chitra; Champlin, Richard; Shpall, Elizabeth J; Rezvani, Katayoun

    2016-09-08

    Cord blood (CB) offers a number of advantages over other sources of hematopoietic stem cells, including a lower rate of chronic graft-versus-host disease (cGVHD) in the presence of increased HLA disparity. Recent research in experimental models of autoimmunity and in patients with autoimmune or alloimmune disorders has identified a functional group of interleukin-10 (IL-10)-producing regulatory B cells (Bregs) that negatively regulate T-cell immune responses. At present, however, there is no consensus on the phenotypic signature of Bregs, and their prevalence and functional characteristics in CB remain unclear. Here, we demonstrate that CB contains an abundance of B cells with immunoregulatory function. Bregs were identified in both the naive and transitional B-cell compartments and suppressed T-cell proliferation and effector function through IL-10 production as well as cell-to-cell contact involving CTLA-4. We further show that the suppressive capacity of CB-derived Bregs can be potentiated through CD40L signaling, suggesting that inflammatory environments may induce their function. Finally, there was robust recovery of IL-10-producing Bregs in patients after CB transplantation, to higher frequencies and absolute numbers than seen in the peripheral blood of healthy donors or in patients before transplant. The reconstituting Bregs showed strong in vitro suppressive activity against allogeneic CD4(+) T cells, but were deficient in patients with cGVHD. Together, these findings identify a rich source of Bregs and suggest a protective role for CB-derived Bregs against cGVHD development in CB recipients. This advance could propel the development of Breg-based strategies to prevent or ameliorate this posttransplant complication. © 2016 by The American Society of Hematology.

  1. Treatment of whole blood with riboflavin plus ultraviolet light, an alternative to gamma irradiation in the prevention of transfusion-associated graft-versus-host disease?

    PubMed

    Fast, Loren D; Nevola, Martha; Tavares, Jennifer; Reddy, Heather L; Goodrich, Ray P; Marschner, Susanne

    2013-02-01

    Exposure of blood products to gamma irradiation is currently the standard of care in the prevention of transfusion-associated graft-versus-host disease (TA-GVHD). Regulatory, technical, and clinical challenges associated with the use of gamma irradiators are driving efforts to develop alternatives. Pathogen reduction methods were initially developed to reduce the risk of microbial transmission by blood components. Through modifications of nucleic acids, these technologies interfere with the replication of both pathogens and white blood cells (WBCs). To date, systems for pathogen and WBC inactivation of products containing red blood cells are less well established than those for platelets and plasma. In this study, the in vitro and in vivo function of WBCs present in whole blood after exposure to riboflavin plus ultraviolet light (Rb-UV) was examined and compared to responses of WBCs obtained from untreated or gamma-irradiated blood by measuring proliferation, cytokine production, activation, and antigen presentation and xenogeneic (X-)GVHD responses in an in vivo mouse model. In vitro studies demonstrated that treatment of whole blood with Rb-UV was as effective as gamma irradiation in preventing WBC proliferation, but was more effective in preventing antigen presentation, cytokine production, and T-cell activation. Consistent with in vitro findings, treatment with Rb-UV was as effective as gamma irradiation in preventing X-GVHD, a mouse model for TA-GVHD. The ability to effectively inactivate WBCs in fresh whole blood using Rb-UV, prior to separation into components, provides the transfusion medicine community with a potential alternative to gamma irradiation. © 2012 American Association of Blood Banks.

  2. Continuous inertial microparticle and blood cell separation in straight channels with local microstructures.

    PubMed

    Wu, Zhenlong; Chen, Yu; Wang, Moran; Chung, Aram J

    2016-02-07

    Fluid inertia which has conventionally been neglected in microfluidics has been gaining much attention for particle and cell manipulation because inertia-based methods inherently provide simple, passive, precise and high-throughput characteristics. Particularly, the inertial approach has been applied to blood separation for various biomedical research studies mainly using spiral microchannels. For higher throughput, parallelization is essential; however, it is difficult to realize using spiral channels because of their large two dimensional layouts. In this work, we present a novel inertial platform for continuous sheathless particle and blood cell separation in straight microchannels containing microstructures. Microstructures within straight channels exert secondary flows to manipulate particle positions similar to Dean flow in curved channels but with higher controllability. Through a balance between inertial lift force and microstructure-induced secondary flow, we deterministically position microspheres and cells based on their sizes to be separated downstream. Using our inertial platform, we successfully sorted microparticles and fractionized blood cells with high separation efficiencies, high purities and high throughputs. The inertial separation platform developed here can be operated to process diluted blood with a throughput of 10.8 mL min(-1)via radially arrayed single channels with one inlet and two rings of outlets.

  3. Blood Flow: Multi-scale Modeling and Visualization (July 2011)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2011-01-01

    Multi-scale modeling of arterial blood flow can shed light on the interaction between events happening at micro- and meso-scales (i.e., adhesion of red blood cells to the arterial wall, clot formation) and at macro-scales (i.e., change in flow patterns due to the clot). Coupled numerical simulations of such multi-scale flow require state-of-the-art computers and algorithms, along with techniques for multi-scale visualizations. This animation presents early results of two studies used in the development of a multi-scale visualization methodology. The fisrt illustrates a flow of healthy (red) and diseased (blue) blood cells with a Dissipative Particle Dynamics (DPD) method. Each bloodmore » cell is represented by a mesh, small spheres show a sub-set of particles representing the blood plasma, while instantaneous streamlines and slices represent the ensemble average velocity. In the second we investigate the process of thrombus (blood clot) formation, which may be responsible for the rupture of aneurysms, by concentrating on the platelet blood cells, observing as they aggregate on the wall of an aneruysm. Simulation was performed on Kraken at the National Institute for Computational Sciences. Visualization was produced using resources of the Argonne Leadership Computing Facility at Argonne National Laboratory.« less

  4. Stem cell collection in unmanipulated HLA-haploidentical/mismatched related transplantation with combined granulocyte-colony stimulating factor-mobilised blood and bone marrow for patients with haematologic malignancies: the impact of donor characteristics and procedural settings.

    PubMed

    Zhang, C; Chen, X-H; Zhang, X; Gao, L; Gao, L; Kong, P-Y; Peng, X-G; Sun, A-H; Gong, Y; Zeng, D-F; Wang, Q-Y

    2010-06-01

    Unmanipulated haploidentical/mismatched related transplantation with combined granulocyte-colony stimulating factor-mobilised peripheral blood stem cells (G-PBSCs) and granulocyte-colony stimulating factor-mobilised bone marrow (G-BM) has been developed as an alternative transplantation strategy for patients with haematologic malignancies. However, little information is available about the factors predicting the outcome of peripheral blood stem cell (PBSC) collection and bone marrow (BM) harvest in this transplantation. The effects of donor characteristics and procedure factors on CD34(+) cell yield were investigated. A total of 104 related healthy donors received granulocyte-colony stimulating factor (G-CSF) followed by PBSC collection and BM harvest. Male donors had significantly higher yields compared with female donors. In multiple regression analysis for peripheral blood collection, age and flow rate were negatively correlated with cell yield, whereas body mass index, pre-aphaeresis white blood cell (WBC) and circulating immature cell (CIC) counts were positively correlated with cell yields. For BM harvest, age was negatively correlated with cell yields, whereas pre-BM collection CIC counts were positively correlated with cell yield. All donors achieved the final product of >or=6 x10(6) kg(-1) recipient body weight. This transplantation strategy has been shown to be a feasible approach with acceptable outcomes in stem cell collection for patients who received HLA-haploidentical/mismatched transplantation with combined G-PBSCs and G-BM. In donors with multiple high-risk characteristics for poor aphaeresis CD34(+) cell yield, BM was an alternative source.

  5. Epidemiological determinants of successful vaccine development.

    PubMed

    Nishiura, Hiroshi; Mizumoto, Kenji

    2013-01-01

    Epidemiological determinants of successful vaccine development were explored using measurable biological variables including antigenic stability and requirement of T-cell immunity. Employing a logistic regression model, we demonstrate that a high affinity with blood and immune cells and pathogen interactions (e.g. interference) would be the risk factors of failure for vaccine development.

  6. Superior survival of ex vivo cultured human reticulocytes following transfusion into mice.

    PubMed

    Kupzig, Sabine; Parsons, Stephen F; Curnow, Elinor; Anstee, David J; Blair, Allison

    2017-03-01

    The generation of cultured red blood cells from stem cell sources may fill an unmet clinical need for transfusion-dependent patients, particularly in countries that lack a sufficient and safe blood supply. Cultured red blood cells were generated from human CD34 + cells from adult peripheral blood or cord blood by ex vivo expansion, and a comprehensive in vivo survival comparison with standard red cell concentrates was undertaken. Significant amplification (>10 5 -fold) was achieved using CD34 + cells from both cord blood and peripheral blood, generating high yields of enucleated cultured red blood cells. Following transfusion, higher levels of cultured red cells could be detected in the murine circulation compared to standard adult red cells. The proportions of cultured blood cells from cord or peripheral blood sources remained high 24 hours post-transfusion (82±5% and 78±9%, respectively), while standard adult blood cells declined rapidly to only 49±9% by this time. In addition, the survival time of cultured blood cells in mice was longer than that of standard adult red cells. A paired comparison of cultured blood cells and standard adult red blood cells from the same donor confirmed the enhanced in vivo survival capacity of the cultured cells. The study herein represents the first demonstration that ex vivo generated cultured red blood cells survive longer than donor red cells using an in vivo model that more closely mimics clinical transfusion. Cultured red blood cells may offer advantages for transfusion-dependent patients by reducing the number of transfusions required. Copyright© Ferrata Storti Foundation.

  7. Pathogen reduction of blood components.

    PubMed

    Solheim, Bjarte G

    2008-08-01

    Thanks to many blood safety interventions introduced in developed countries the risk of transfusion transmitted infections has become exceedingly small in these countries. However, emerging pathogens still represent a serious challenge, as demonstrated by West Nile virus in the US and more recently by Chikungunya virus in the Indian Ocean. In addition bacterial contamination, particularly in platelets, and protozoa transmitted by blood components still represent sizeable risks in developed countries. In developing countries the risk of all transfusion transmitted infections is still high due to insufficient funding and organisation of the health service. Pathogen reduction of pooled plasma products has virtually eliminated the risk of transfusion transmitted infections, without compromising the quality of the products significantly. Pathogen reduction of blood components has been much more challenging. Solvent detergent treatment which has been so successfully applied for plasma products dissolves cell membranes, and can, therefore, only be applied for plasma and not for cellular blood components. Targeting of nucleic acids has been another method for pathogen inactivation of plasma and the only approach possible for cellular blood products. As documented in more than 15 year's track record, solvent detergent treatment of pooled plasma can yield high quality plasma. The increased risk for contamination by unknown viruses due to pooling is out weighed by elimination of TRALI, significant reduction in allergic reactions and standardisation of the product. Recently, a promising method for solvent detergent treatment of single donor plasma units has been published. Methylene blue light treatment of single donor plasma units has a similar long track record as pooled solvent detergent treated plasma; but the method is less well documented and affects coagulation factor activity more. Psoralen light treated plasma has only recently been introduced (CE marked in Europe, but not licensed by the FDA), while the method of Riboflavin light treatment of plasma still is under development. In addition to pathogen reduction the methods, however, result in some reduction of coagulation factor activity. For platelets only Psoralen and Riboflavin light treatment have been implemented. Both are CE marked products in Europe but only approved for clinical trials in the USA. The methods affect platelet activity, but result in clinically acceptable platelets with only slightly reduced CCI and increased demand for platelet transfusions. Pathogen reduction of red blood cells with FRALE (S-303) or INACTINE (PEN110) has so far resulted in the formation of antibodies against neo-epitopes on red blood cells. A promising method for Riboflavin treatment of red blood cells is under development. This manuscript reviews the current experience and discusses future trends.

  8. Antibody-linked drug destroys tumor cells and tumor blood vessels in many types of cancer | Center for Cancer Research

    Cancer.gov

    A team led by Brad St. Croix, Ph.D., Senior Associate Scientist, Mouse Cancer Genetics Program, has developed an antibody-drug conjugate (ADC) that destroys both tumor cells and the blood vessels that nourish them. The drug significantly shrank breast tumors, colon tumors and several other types of cancer and prolonged survival. Learn more...  

  9. What Is Blood?

    MedlinePlus

    ... Blood / What is Blood? WHERE CAN I DONATE? Blood is the red fluid that circulates in our blood vessels, i. ... cells, white blood cells, and platelets. The remainder is a fluid called plasma. Blood cells are produced in bone marrow. Red cells, white cells and platelets are made in ...

  10. Differentiation of human embryonic stem cells to HOXA+ hemogenic vasculature that resembles the aorta-gonad-mesonephros.

    PubMed

    Ng, Elizabeth S; Azzola, Lisa; Bruveris, Freya F; Calvanese, Vincenzo; Phipson, Belinda; Vlahos, Katerina; Hirst, Claire; Jokubaitis, Vanta J; Yu, Qing C; Maksimovic, Jovana; Liebscher, Simone; Januar, Vania; Zhang, Zhen; Williams, Brenda; Conscience, Aude; Durnall, Jennifer; Jackson, Steven; Costa, Magdaline; Elliott, David; Haylock, David N; Nilsson, Susan K; Saffery, Richard; Schenke-Layland, Katja; Oshlack, Alicia; Mikkola, Hanna K A; Stanley, Edouard G; Elefanty, Andrew G

    2016-11-01

    The ability to generate hematopoietic stem cells from human pluripotent cells would enable many biomedical applications. We find that hematopoietic CD34 + cells in spin embryoid bodies derived from human embryonic stem cells (hESCs) lack HOXA expression compared with repopulation-competent human cord blood CD34 + cells, indicating incorrect mesoderm patterning. Using reporter hESC lines to track the endothelial (SOX17) to hematopoietic (RUNX1C) transition that occurs in development, we show that simultaneous modulation of WNT and ACTIVIN signaling yields CD34 + hematopoietic cells with HOXA expression that more closely resembles that of cord blood. The cultures generate a network of aorta-like SOX17 + vessels from which RUNX1C + blood cells emerge, similar to hematopoiesis in the aorta-gonad-mesonephros (AGM). Nascent CD34 + hematopoietic cells and corresponding cells sorted from human AGM show similar expression of cell surface receptors, signaling molecules and transcription factors. Our findings provide an approach to mimic in vitro a key early stage in human hematopoiesis for the generation of AGM-derived hematopoietic lineages from hESCs.

  11. Development of autologous blood cell therapies.

    PubMed

    Kim, Ah Ram; Sankaran, Vijay G

    2016-10-01

    Allogeneic hematopoietic stem cell transplantation and blood cell transfusions are performed commonly in patients with a variety of blood disorders. Unfortunately, these donor-derived cell therapies are constrained due to limited supplies, infectious risk factors, a lack of appropriately matched donors, and the risk of immunologic complications from such products. The use of autologous cell therapies has been proposed to overcome these shortcomings. One can derive such therapies directly from hematopoietic stem and progenitor cells of individuals, which can then be manipulated ex vivo to produce the desired modifications or differentiated to produce a particular target population. Alternatively, pluripotent stem cells, which have a theoretically unlimited self-renewal capacity and an ability to differentiate into any desired cell type, can be used as an autologous starting source for such manipulation and differentiation approaches. Such cell products can also be used as a delivery vehicle for therapeutics. In this review, we highlight recent advances and discuss ongoing challenges for the in vitro generation of autologous hematopoietic cells that can be used for cell therapy. Copyright © 2016 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.

  12. Nanoscale Photoacoustic Tomography (nPAT) for label-free super-resolution 3D imaging of red blood cells

    NASA Astrophysics Data System (ADS)

    Samant, Pratik; Hernandez, Armando; Conklin, Shelby; Xiang, Liangzhong

    2017-08-01

    We present our results in developing nanoscale photoacoustic tomography (nPAT) for label-free super-resolution imaging in 3D. We have made progress in the development of nPAT, and have acquired our first signal. We have also performed simulations that demonstrate that nPAT is a viable imaging modality for the visualization of malaria infected red blood cells (RBCs). Our results demonstrate that nPAT is both feasible and powerful for the high resolution labelfree imaging of RBCs.

  13. The meningeal lymphatic system: a route for HIV brain migration?

    PubMed

    Lamers, Susanna L; Rose, Rebecca; Ndhlovu, Lishomwa C; Nolan, David J; Salemi, Marco; Maidji, Ekaterina; Stoddart, Cheryl A; McGrath, Michael S

    2016-06-01

    Two innovative studies recently identified functional lymphatic structures in the meninges that may influence the development of HIV-associated neurological disorders (HAND). Until now, blood vessels were assumed to be the sole transport system by which HIV-infected monocytes entered the brain by bypassing a potentially hostile blood-brain barrier through inflammatory-mediated semi-permeability. A cascade of specific chemokine signals promote monocyte migration from blood vessels to surrounding brain tissues via a well-supported endothelium, where the cells differentiate into tissue macrophages capable of productive HIV infection. Lymphatic vessels on the other hand are more loosely organized than blood vessels. They absorb interstitial fluid from bodily tissues where HIV may persist and exchange a variety of immune cells (CD4(+) T cells, monocytes, macrophages, and dendritic cells) with surrounding tissues through discontinuous endothelial junctions. We propose that the newly discovered meningeal lymphatics are key to HIV migration among viral reservoirs and brain tissue during periods of undetectable plasma viral loads due to suppressive combinational antiretroviral therapy, thus redefining the migration process in terms of a blood-lymphatic transport system.

  14. Nanobiotechnology for the Therapeutic Targeting of Cancer Cells in Blood.

    PubMed

    Li, Jiahe; Sharkey, Charles C; Huang, Dantong; King, Michael R

    During metastasis, circulating tumor cells migrate away from a primary tumor via the blood circulation to form secondary tumors in distant organs. Mounting evidence from clinical observations indicates that the number of circulating tumor cells (CTCs) in the blood correlates with the progression of solid tumors before and during chemotherapy. Beyond the well-established role of CTCs as a fluid biopsy, however, the field of targeting CTCs for the prevention or reduction of metastases has just emerged. Conventional cancer therapeutics have a relatively short circulation time in the blood which may render the killing of CTCs inefficient due to reduced exposure of CTCs to drugs. Nevertheless, over the past few decades, the development of nanoparticles and nanoformulations to improve the half-life and release profile of drugs in circulation has rejuvenated certain traditional medicines in the emerging field of CTC neutralization. This review focuses on how the principles of nanomedicine may be applied to target CTCs. Moreover, inspired by the interactions between CTCs and host cells in the blood circulation, novel biomimetic approaches for targeted drug delivery are presented.

  15. Time-resolved fluorescence monitoring of cholesterol in peripheral blood mononuclear cells

    NASA Astrophysics Data System (ADS)

    Martinakova, Z.; Horilova, J.; Lajdova, I.; Marcek Chorvatova, A.

    2014-12-01

    Precise evaluation of intracellular cholesterol distribution is crucial for improving diagnostics of diseased states associated with cholesterol alteration. Time-resolved fluorescence techniques are tested for non-invasive investigation of cholesterol in living cells. Fluorescent probe NBD attached to cholesterol was employed to evaluate cholesterol distribution in peripheral blood mononuclear cells (PBMC) isolated from the human blood. Fluorescence Lifetime Imaging Microscopy (FLIM) was successfully applied to simultaneously monitor the spatial distribution and the timeresolved characteristics of the NBD-cholesterol fluorescence in PBMC. Gathered data are the first step in the development of a new perspective non-invasive diagnostic method for evaluation of cholesterol modifications in diseases associated with disorders of lipid metabolism.

  16. Technical Insights into Highly Sensitive Isolation and Molecular Characterization of Fixed and Live Circulating Tumor Cells for Early Detection of Tumor Invasion.

    PubMed

    Laget, Sophie; Broncy, Lucile; Hormigos, Katia; Dhingra, Dalia M; BenMohamed, Fatima; Capiod, Thierry; Osteras, Magne; Farinelli, Laurent; Jackson, Stephen; Paterlini-Bréchot, Patrizia

    2017-01-01

    Circulating Tumor Cells (CTC) and Circulating Tumor Microemboli (CTM) are Circulating Rare Cells (CRC) which herald tumor invasion and are expected to provide an opportunity to improve the management of cancer patients. An unsolved technical issue in the CTC field is how to obtain highly sensitive and unbiased collection of these fragile and heterogeneous cells, in both live and fixed form, for their molecular study when they are extremely rare, particularly at the beginning of the invasion process. We report on a new protocol to enrich from blood live CTC using ISET® (Isolation by SizE of Tumor/Trophoblastic Cells), an open system originally developed for marker-independent isolation of fixed tumor cells. We have assessed the impact of our new enrichment method on live tumor cells antigen expression, cytoskeleton structure, cell viability and ability to expand in culture. We have also explored the ISET® in vitro performance to collect intact fixed and live cancer cells by using spiking analyses with extremely low number of fluorescent cultured cells. We describe results consistently showing the feasibility of isolating fixed and live tumor cells with a Lower Limit of Detection (LLOD) of one cancer cell per 10 mL of blood and a sensitivity at LLOD ranging from 83 to 100%. This very high sensitivity threshold can be maintained when plasma is collected before tumor cells isolation. Finally, we have performed a comparative next generation sequencing (NGS) analysis of tumor cells before and after isolation from blood and culture. We established the feasibility of NGS analysis of single live and fixed tumor cells enriched from blood by our system. This study provides new protocols for detection and characterization of CTC collected from blood at the very early steps of tumor invasion.

  17. Methods of ex vivo expansion of human cord blood cells: challenges, successes and clinical implications.

    PubMed

    Baron, Frédéric; Ruggeri, Annalisa; Nagler, Arnon

    2016-03-01

    More than 40,000 unrelated cord blood transplantations (UCBT) have been performed worldwide as treatment for patients with malignant or non-malignant life threatening hematologic disorders. However, low absolute numbers of hematopoietic stem and progenitor cells (HSPCs) within a single cord blood unit has remained a limiting factor for this transplantation modality, particularly in adult recipients. Further, because UCB contains low numbers of mostly naïve T cells, immune recovery after UCBT is slow, predisposing patients to severe infections. Other causes of UCBT failure has included graft-versus-host disease (GVHD) and relapse of the underlying disease. In this article, we first review the current landscape of cord blood engineering aimed at improving engraftment. This includes approaches of UCB-HSPCs expansion and methods aimed at improving UCB-HSCPs homing. We then discuss recent approaches of cord blood engineering developed to prevent infection [generation of multivirus-specific cytotoxic T cells (VSTs) from UCB], relapse [transduction of UCB-T cells with tumor-specific chimeric receptor antigens (CARs)] and GVHD (expansion of regulatory T cells from UCB). Although many of these techniques of UCB engineering remain currently technically challenging and expensive, they are likely to revolutionize the field of UCBT in the next decades.

  18. Human umbilical cord blood-derived f-macrophages retain pluripotentiality after thrombopoietin expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao Yong; Mazzone, Theodore

    2005-11-01

    We have previously characterized a new type of stem cell from human peripheral blood, termed fibroblast-like macrophage (f-M{phi}). Here, using umbilical cord blood as a source, we identified cells with similar characteristics including expression of surface markers (CD14, CD34, CD45, CD117, and CD163), phagocytosis, and proliferative capacity. Further, thrombopoietin (TPO) significantly stimulated the proliferation of cord blood-derived f-M{phi} (CB f-M{phi}) at low dosage without inducing a megakaryocytic phenotype. Additional experiments demonstrated that TPO-expanded cord blood-derived f-M{phi} (TCB f-M{phi}) retained their surface markers and differentiation ability. Treatment with vascular endothelial cell growth factor (VEGF) gave rise to endothelial-like cells, expressing Flt-1,more » Flk-1, von Willebrand Factor (vWF), CD31, acetylated low density lipoprotein internalization, and the ability to form endothelial-like cell chains. In the presence of lipopolyssacharide (LPS) and 25 mM glucose, the TCB f-M{phi} differentiated to express insulin mRNA, C-peptide, and insulin. In vitro functional analysis demonstrated that these insulin-positive cells could release insulin in response to glucose and other secretagogues. These findings demonstrate a potential use of CB f-M{phi} and may lead to develop new therapeutic strategy for treating dominant disease.« less

  19. Low doses of killed parasite in CpG elicit vigorous CD4+ T cell responses against blood-stage malaria in mice

    PubMed Central

    Pinzon-Charry, Alberto; McPhun, Virginia; Kienzle, Vivian; Hirunpetcharat, Chakrit; Engwerda, Christian; McCarthy, James; Good, Michael F.

    2010-01-01

    Development of a vaccine that targets blood-stage malaria parasites is imperative if we are to sustainably reduce the morbidity and mortality caused by this infection. Such a vaccine should elicit long-lasting immune responses against conserved determinants in the parasite population. Most blood-stage vaccines, however, induce protective antibodies against surface antigens, which tend to be polymorphic. Cell-mediated responses, on the other hand, offer the theoretical advantage of targeting internal antigens that are more likely to be conserved. Nonetheless, few of the current blood-stage vaccine candidates are able to harness vigorous T cell immunity. Here, we present what we believe to be a novel blood-stage whole-organism vaccine that, by combining low doses of killed parasite with CpG-oligodeoxynucleotide (CpG-ODN) adjuvant, was able to elicit strong and cross-reactive T cell responses in mice. Our data demonstrate that immunization of mice with 1,000 killed parasites in CpG-ODN engendered durable and cross-strain protection by inducing a vigorous response that was dependent on CD4+ T cells, IFN-γ, and nitric oxide. If applicable to humans, this approach should facilitate the generation of robust, cross-reactive T cell responses against malaria as well as antigen availability for vaccine manufacture. PMID:20628205

  20. Involvement of blood mononuclear cells in the infertility, age-associated diseases and cancer treatment

    PubMed Central

    Bukovsky, Antonin

    2016-01-01

    Blood mononuclear cells consist of T cells and monocyte derived cells. Beside immunity, the blood mononuclear cells belong to the complex tissue control system (TCS), where they exhibit morphostatic function by stimulating proliferation of tissue stem cells followed by cellular differentiation, that is stopped after attaining the proper functional stage, which differs among various tissue types. Therefore, the term immune and morphostatic system (IMS) should be implied. The TCS-mediated morphostasis also consists of vascular pericytes controlled by autonomic innervation, which is regulating the quantity of distinct tissues in vivo. Lack of proper differentiation of tissue cells by TCS causes either tissue underdevelopment, e.g., muscular dystrophy, or degenerative functional failures, e.g., type 1 diabetes and age-associated diseases. With the gradual IMS regression after 35 years of age the gonadal infertility develops, followed by a growing incidence of age-associated diseases and cancers. Without restoring an altered TCS function in a degenerative disease, the implantation of tissue-specific stem cells alone by regenerative medicine can not be successful. Transfused young blood could temporarily restore fertility to enable parenthood. The young blood could also temporarily alleviate aging diseases, and this can be extended by substances inducing IMS regeneration, like the honey bee propolis. The local and/or systemic use of honey bee propolis stopped hair and teeth loss, regressed varicose veins, improved altered hearing, and lowered high blood pressure and sugar levels. Complete regression of stage IV ovarian cancer with liver metastases after a simple elaborated immunotherapy is also reported. PMID:28074124

  1. Blood group genotyping: from patient to high-throughput donor screening.

    PubMed

    Veldhuisen, B; van der Schoot, C E; de Haas, M

    2009-10-01

    Blood group antigens, present on the cell membrane of red blood cells and platelets, can be defined either serologically or predicted based on the genotypes of genes encoding for blood group antigens. At present, the molecular basis of many antigens of the 30 blood group systems and 17 human platelet antigens is known. In many laboratories, blood group genotyping assays are routinely used for diagnostics in cases where patient red cells cannot be used for serological typing due to the presence of auto-antibodies or after recent transfusions. In addition, DNA genotyping is used to support (un)-expected serological findings. Fetal genotyping is routinely performed when there is a risk of alloimmune-mediated red cell or platelet destruction. In case of patient blood group antigen typing, it is important that a genotyping result is quickly available to support the selection of donor blood, and high-throughput of the genotyping method is not a prerequisite. In addition, genotyping of blood donors will be extremely useful to obtain donor blood with rare phenotypes, for example lacking a high-frequency antigen, and to obtain a fully typed donor database to be used for a better matching between recipient and donor to prevent adverse transfusion reactions. Serological typing of large cohorts of donors is a labour-intensive and expensive exercise and hampered by the lack of sufficient amounts of approved typing reagents for all blood group systems of interest. Currently, high-throughput genotyping based on DNA micro-arrays is a very feasible method to obtain a large pool of well-typed blood donors. Several systems for high-throughput blood group genotyping are developed and will be discussed in this review.

  2. Quality Assessment of Established and Emerging Blood Components for Transfusion

    PubMed Central

    Marks, Denese C.

    2016-01-01

    Blood is donated either as whole blood, with subsequent component processing, or through the use of apheresis devices that extract one or more components and return the rest of the donation to the donor. Blood component therapy supplanted whole blood transfusion in industrialized countries in the middle of the twentieth century and remains the standard of care for the majority of patients receiving a transfusion. Traditionally, blood has been processed into three main blood products: red blood cell concentrates; platelet concentrates; and transfusable plasma. Ensuring that these products are of high quality and that they deliver their intended benefits to patients throughout their shelf-life is a complex task. Further complexity has been added with the development of products stored under nonstandard conditions or subjected to additional manufacturing steps (e.g., cryopreserved platelets, irradiated red cells, and lyophilized plasma). Here we review established and emerging methodologies for assessing blood product quality and address controversies and uncertainties in this thriving and active field of investigation. PMID:28070448

  3. Early life allergen and air pollutant exposures alter longitudinal blood immune profiles in infant rhesus monkeys.

    PubMed

    Crowley, Candace M; Fontaine, Justin H; Gerriets, Joan E; Schelegle, Edward S; Hyde, Dallas M; Miller, Lisa A

    2017-08-01

    Early life is a critical period for the progressive establishment of immunity in response to environmental stimuli; the impact of airborne challenges on this process is not well defined. In a longitudinal fashion, we determined the effect of episodic house dust mite (HDM) aerosol and ozone inhalation, both separately and combined, on peripheral blood immune cell phenotypes and cytokine expression from 4 to 25weeks of age in an infant rhesus monkey model of childhood development. Immune profiles in peripheral blood were compared with lung lavage at 25weeks of age. Independent of exposure, peripheral blood cell counts fluctuated with chronologic age of animals, while IFNγ and IL-4 mRNA levels increased over time in a linear fashion. At 12weeks of age, total WBC, lymphocyte numbers, FoxP3 mRNA and IL-12 mRNA were dramatically reduced relative to earlier time points, but increased to a steady state with age. Exposure effects were observed for monocyte numbers, as well as CCR3, FoxP3, and IL-12 mRNA levels in peripheral blood. Significant differences in cell surface marker and cytokine expression were detected following in vitro HDM or PMA/ionomycin stimulation of PBMC isolated from animals exposed to either HDM or ozone. Lavage revealed a mixed immune phenotype of FoxP3, IFNγ and eosinophilia in association with combined HDM plus ozone exposure, which was not observed in blood. Collectively, our findings show that airborne challenges during postnatal development elicit measureable cell and cytokine changes in peripheral blood over time, but exposure-induced immune profiles are not mirrored in the lung. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Molecular Parallels between Neural and Vascular Development

    PubMed Central

    Eichmann, Anne; Thomas, Jean-Léon

    2013-01-01

    The human central nervous system (CNS) features a network of ∼400 miles of blood vessels that receives >20% of the body’s cardiac output and uses most of its blood glucose. Many human diseases, including stroke, retinopathy, and cancer, are associated with the biology of CNS blood vessels. These vessels originate from extrinsic cell populations, including endothelial cells and pericytes that colonize the CNS and interact with glia and neurons to establish the blood–brain barrier and control cerebrovascular exchanges. Neurovascular interactions also play important roles in adult neurogenic niches, which harbor a unique population of neural stem cells that are intimately associated with blood vessels. We here review the cellular and molecular mechanisms required to establish the CNS vascular network, with a special focus on neurovascular interactions and the functions of vascular endothelial growth factors. PMID:23024177

  5. Label-Free Isolation and mRNA Detection of Circulating Tumor Cells from Patients with Metastatic Lung Cancer for Disease Diagnosis and Monitoring Therapeutic Efficacy.

    PubMed

    Wang, Jidong; Lu, Wenjing; Tang, Chuanhao; Liu, Yi; Sun, Jiashu; Mu, Xuan; Zhang, Lin; Dai, Bo; Li, Xiaoyan; Zhuo, Hailong; Jiang, Xingyu

    2015-12-01

    We develop an inertial-based microfluidic cell sorter combined with an integrated membrane filter, allowing for size-based, label-free, and high-efficiency separation and enrichment of circulating tumor cells (CTCs) in whole blood. The cell sorter is composed of a double spiral microchannel that hydrodynamically focuses and separates large CTCs from small blood cells. The focused CTCs with the equilibrium position around the midline of microchannel are further captured and enriched by a membrane filter (pore size of 8 μm) attached at the middle outlet. This integrated microfluidic device can process 1 mL of whole blood containing spiked tumor cells (A549, human lung adenocarcinoma epithelial cell line) within 15 min, with the capture efficiency of 74.4% at the concentration as low as tens of A549 cells per mL of whole blood. This microfluidic cell sorter is further adopted for isolation of CTCs from peripheral blood samples of patients with metastatic lung cancer. The immunostaining and CK-19 mRNA detection are applied for identification of captured CTCs, showing that our method can detect 90% of metastatic lung cancer patients before therapy, whereas the commercially used system can only detect 40% of the same patients. We also use the expression of CK-19 mRNA from captured CTCs as an indicator for monitoring the therapeutic efficiency, which correlates well with X-ray computed tomography (CT) assessment of the disease.

  6. Glycolysis-mediated control of blood-brain barrier development and function.

    PubMed

    Salmina, Alla B; Kuvacheva, Natalia V; Morgun, Andrey V; Komleva, Yulia K; Pozhilenkova, Elena A; Lopatina, Olga L; Gorina, Yana V; Taranushenko, Tatyana E; Petrova, Lyudmila L

    2015-07-01

    The blood-brain barrier (BBB) consists of differentiated cells integrating in one ensemble to control transport processes between the central nervous system (CNS) and peripheral blood. Molecular organization of BBB affects the extracellular content and cell metabolism in the CNS. Developmental aspects of BBB attract much attention in recent years, and barriergenesis is currently recognized as a very important and complex mechanism of CNS development and maturation. Metabolic control of angiogenesis/barriergenesis may be provided by glucose utilization within the neurovascular unit (NVU). The role of glycolysis in the brain has been reconsidered recently, and it is recognized now not only as a process active in hypoxic conditions, but also as a mechanism affecting signal transduction, synaptic activity, and brain development. There is growing evidence that glycolysis-derived metabolites, particularly, lactate, affect barriergenesis and functioning of BBB. In the brain, lactate produced in astrocytes or endothelial cells can be transported to the extracellular space via monocarboxylate transporters (MCTs), and may act on the adjoining cells via specific lactate receptors. Astrocytes are one of the major sources of lactate production in the brain and significantly contribute to the regulation of BBB development and functioning. Active glycolysis in astrocytes is required for effective support of neuronal activity and angiogenesis, while endothelial cells regulate bioavailability of lactate for brain cells adjusting its bidirectional transport through the BBB. In this article, we review the current knowledge with regard to energy production in endothelial and astroglial cells within the NVU. In addition, we describe lactate-driven mechanisms and action of alternative products of glucose metabolism affecting BBB structural and functional integrity in developing and mature brain. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Growth and Remodeling in Blood Vessels Studied In Vivo With Fractal Analysis

    NASA Technical Reports Server (NTRS)

    Parsons-Wingerter, Patricia A.

    2003-01-01

    Every cell in the human body must reside in close proximity to a blood vessel (within approximately 200 mm) because blood vessels provide the oxygen, metabolite, and fluid exchanges required for cellular existence. The growth and remodeling of blood vessels are required to support the normal physiology of embryonic development, reproductive biology, wound healing and adaptive remodeling to exercise, as well as abnormal tissue change in diseases such as cancer, diabetes, and coronary heart disease. Cardiovascular and hemodynamic (blood flow dynamics) alterations experienced by astronauts during long-term spaceflight, including orthostatic intolerance, fluid shifts in the body, and reduced numbers of red (erythrocyte) and white (immune) blood cells, are identified as risk factors of very high priority in the NASA task force report on risk reduction for human spaceflight, the "Critical Path Roadmap."

  8. Detection of sepsis in patient blood samples using CD64 expression in a microfluidic cell separation device.

    PubMed

    Zhang, Ye; Li, Wenjie; Zhou, Yun; Johnson, Amanda; Venable, Amanda; Hassan, Ahmed; Griswold, John; Pappas, Dimitri

    2017-12-18

    A microfluidic affinity separation device was developed for the detection of sepsis in critical care patients. An affinity capture method was developed to capture cells based on changes in CD64 expression in a single, simple microfluidic chip for sepsis detection. Both sepsis patient samples and a laboratory CD64+ expression model were used to validate the microfluidic assay. Flow cytometry analysis showed that the chip cell capture had a linear relationship with CD64 expression in laboratory models. The Sepsis Chip detected an increase in upregulated neutrophil-like cells when the upregulated cell population is as low as 10% of total cells spiked into commercially available aseptic blood samples. In a proof of concept study, blood samples obtained from sepsis patients within 24 hours of diagnosis were tested on the chip to further validate its performance. On-chip CD64+ cell capture from 10 patient samples (619 ± 340 cells per chip) was significantly different from control samples (32 ± 11 cells per chip) and healthy volunteer samples (228 ± 95 cells per chip). In addition, the on-chip cell capture has a linear relationship with CD64 expression indicating our approach can be used to measure CD64 expression based on total cell capture on Sepsis Chip. Our method has proven to be sensitive, accurate, rapid, and cost-effective. Therefore, this device is a promising detection platform for neutrophil activation and sepsis diagnosis.

  9. Stage-dependency of apoptosis and the blood-testis barrier in the dogfish shark (Squalus acanthias): cadmium-induced changes as assessed by vital fluorescence techniques.

    PubMed

    McClusky, Leon M

    2006-09-01

    Naturally occurring heavy metals and synthetic compounds are potentially harmful for testicular function but evidence linking heavy metal exposure to reduced semen parameters is inconclusive. Elucidation of the exact stage at which the toxicant interferes with spermatogenesis is difficult because the various germ cell stages may have different sensitivities to any given toxicant, germ cell development is influenced by supporting testicular somatic cells and the presence of inter-Sertoli cell tight junctions create a blood-testis barrier, sequestering meiotic and postmeiotic germ cells in a special microenvironment. Sharks such as Squalus acanthias provide a suitable model for studying aspects of vertebrate spermatogenosis because of their unique features: spermatogenesis takes place within spermatocysts and relies mainly on Sertoli cells for somatic cell support; spermatocysts are linearly arranged in a maturational order across the diameter of the elongated testis; spermatocysts containing germ cells at different stages of development are topographically separated, resulting in visible zonation in testicular cross sections. We have used the vital dye acridine orange and a novel fluorescence staining technique to study this model to determine (1) the efficacy of these methods in assays of apoptosis and blood-testis barrier function, (2) the sensitivity of the various spermatogonial generations in Squalus to cadmium (as an illustrative spermatotoxicant) and (3) the way that cadmium might affect more mature spermatogenic stages and other physiological processes in the testis. Our results show that cadmium targets early spermatogenic stages, where it specifically activates a cell death program in susceptible (mature) spermatogonial clones, and negatively affects blood-testis barrier function. Since other parameters are relatively unaffected by cadmium, the effects of this toxicant on apoptosis are presumably process-specific and not attributable to general toxicity.

  10. Tumor necrosis factor-alpha expression in peripheral blood mononuclear cells correlates with early childhood social interaction in autism spectrum disorder.

    PubMed

    Makinodan, Manabu; Iwata, Keiko; Ikawa, Daisuke; Yamashita, Yasunori; Yamamuro, Kazuhiko; Toritsuka, Michihiro; Kimoto, Sohei; Okumura, Kazuki; Yamauchi, Takahira; Yoshino, Hiroki; Tsujii, Masatsugu; Sugiyama, Toshiro; Tsuchiya, Kenji; Mori, Norio; Matsuzaki, Hideo; Kishimoto, Toshifumi

    2017-03-01

    Autism spectrum disorder is a neurodevelopmental disorder characterized by impaired social interaction, poor communication skills, and repetitive/restrictive behaviors. Elevated blood levels of pro-inflammatory cytokines have been reported in subjects with autism spectrum disorder. On the other hand, early childhood adverse experience also increases blood levels of these cytokines. Since social experience of children with autism spectrum disorder is generally unlike to typically developing children, we hypothesized that social interaction during childhood contribute to pro-inflammatory cytokine expression in subjects with autism spectrum disorder. We compared revised Autism Diagnostic Interview scores and expression levels of pro-inflammatory cytokines in peripheral blood mononuclear cells of subjects with autism spectrum disorder (n = 30). The score of domain A on the revised Autism Diagnostic Interview, indicating social interaction impairment in early childhood, was negatively correlated with tumor necrosis factor-α mRNA expression level in peripheral blood mononuclear cells but not interleukin-1β or -6. Consistently, tumor necrosis factor-α mRNA expression was markedly low in subjects with autism spectrum disorder compared to typically developing children who presumably experienced the regular levels of social interaction. These findings suggest that the low blood levels of tumor necrosis factor-α mRNA in subjects with autism spectrum disorder might be due to impaired social interaction in early childhood. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Plasma surface reflectance spectroscopy for non-invasive and continuous monitoring of extracellular component of blood

    NASA Astrophysics Data System (ADS)

    Sakota, Daisuke; Takatani, Setsuo

    2012-04-01

    To achieve the quantitative optical non-invasive diagnosis of blood during extracorporeal circulation therapies, the instrumental technique to extract extracellular spectra from whole blood was developed. In the circuit, the continuous blood flow was generated by a centrifugal blood pump. The oxygen saturation was maintained 100% by an oxygenator. The developed glass optical flow cell was attached to the outlet tubing of the oxygenator. The halogen lamp including the light from 400 to 900 nm wavelength was used for the light source. The light was guided into an optical fiber. The light emitted by the fiber was collimated and emitted to the flow cell flat surface at the incident angle of 45 degrees. The light just reflected on the boundary between inner surface of the flow cell and plasma at 45 degrees was detected by the detection fiber. The detected light was analyzed by a spectral photometer. The obtained spectrum from 400 to 600nm wavelength was not changed with respect to the hematocrit. In contrast, the signal in the spectral range was changed when the plasma free hemoglobin increased. By using two spectral range, 505+/-5 nm and 542.5+/-2.5 nm, the differential spectrum was correlated with the free hemoglobin at R2=0.99. On the other hand, as for the hematocrit, the differential spectrum was not correlated at R2=0.01. Finally, the plasma free hemoglobin was quantified with the accuracy of 22+/-19mg/dL. The result shows that the developed plasma surface reflectance spectroscopy (PSRS) can extract the plasma spectrum from flowing whole blood.

  12. Separation of breast cancer cells from peripherally circulating blood using antibodies fixed in microchannels

    NASA Astrophysics Data System (ADS)

    Feng, Juan; Soper, Steven A.; McCarley, Robin L.; Murphy, Michael C.

    2004-07-01

    Bio-Micro Electro Mechanical System (Bio-MEMS) technology was applied to the problem of early breast cancer detection and diagnosis. A micro-device is being developed to identify and specifically collect tumor cells of low abundance (1 tumor cell among 107 normal blood cells) from circulating whole blood. By immobilizing anti-EpCAM (Epithelial Cell Adhesion Molecule) antibodies on polymer micro-channel walls by chemically modifying the surface of the PMMA, breast cancer cells from the MCF-7 cell line, which over-express EpCAM, were selected from a sample volume by the strong binding affinity between the antibody and antigen. To validate the capture of the breast cancer cells, three fluorochrome markers, each identified by a separate color, were used to reliably identify the cancer cells. The cancer cells were defined by DAPI+ (blue), CD45- and the FITC-cell membrane linker+ (green). White blood cells, which may interfere in the detection of the cancer cells, were identified by DAPI+ (blue), CD45+ (red), and the FITC-cell membrane linker+ (green). EpCAM/anti-EpCAM binding models from the literature were used to estimate an optimal velocity, 2mm/sec, for maximizing the number of cells binding and the critical binding force. At higher velocities, shear forces (> 0.48 dyne) will break existing bonds and prevent the formation of new ones. This detection micro-device can be assembled with other lab-on-a-chip components for follow-up gene and protein analysis.

  13. Stem Cell Therapy for Autism

    PubMed Central

    Ichim, Thomas E; Solano, Fabio; Glenn, Eduardo; Morales, Frank; Smith, Leonard; Zabrecky, George; Riordan, Neil H

    2007-01-01

    Autism spectrum disorders (ASD) are a group of neurodevelopmental conditions whose incidence is reaching epidemic proportions, afflicting approximately 1 in 166 children. Autistic disorder, or autism is the most common form of ASD. Although several neurophysiological alterations have been associated with autism, immune abnormalities and neural hypoperfusion appear to be broadly consistent. These appear to be causative since correlation of altered inflammatory responses, and hypoperfusion with symptology is reported. Mesenchymal stem cells (MSC) are in late phases of clinical development for treatment of graft versus host disease and Crohn's Disease, two conditions of immune dysregulation. Cord blood CD34+ cells are known to be potent angiogenic stimulators, having demonstrated positive effects in not only peripheral ischemia, but also in models of cerebral ischemia. Additionally, anecdotal clinical cases have reported responses in autistic children receiving cord blood CD34+ cells. We propose the combined use of MSC and cord blood CD34+cells may be useful in the treatment of autism. PMID:17597540

  14. Multifunctional Biocompatible Graphene Oxide Quantum Dots Decorated Magnetic Nanoplatform for Efficient Capture and Two-Photon Imaging of Rare Tumor Cells

    PubMed Central

    2016-01-01

    Circulating tumor cells (CTCs) are extremely rare cells in blood containing billions of other cells. The selective capture and identification of rare cells with sufficient sensitivity is a real challenge. Driven by this need, this manuscript reports the development of a multifunctional biocompatible graphene oxide quantum dots (GOQDs) coated, high-luminescence magnetic nanoplatform for the selective separation and diagnosis of Glypican-3 (GPC3)-expressed Hep G2 liver cancer tumor CTCs from infected blood. Experimental data show that an anti-GPC3-antibody-attached multifunctional nanoplatform can be used for selective Hep G2 hepatocellular carcinoma tumor cell separation from infected blood containing 10 tumor cells/mL of blood in a 15 mL sample. Reported data indicate that, because of an extremely high two-photon absorption cross section (40530 GM), an anti-GPC3-antibody-attached GOQDs-coated magnetic nanoplatform can be used as a two-photon luminescence platform for selective and very bright imaging of a Hep G2 tumor cell in a biological transparency window using 960 nm light. Experimental results with nontargeted GPC3(−) and SK-BR-3 breast cancer cells show that multifunctional-nanoplatform-based cell separation, followed by two-photon imaging, is highly selective for Hep G2 hepatocellular carcinoma tumor cells. PMID:25939643

  15. Chemokines and skin diseases.

    PubMed

    Sugaya, Makoto

    2015-04-01

    Chemokines are small molecules that induce chemotaxis and activation of certain subsets of leukocytes. The expression patterns of chemokines and chemokine receptors are specific to certain organs and cells. Therefore, chemokines are important to elucidate the mechanism of organ-specific human diseases. CCL17 expressed by Langerhans cells, blood endothelial cells, and fibroblasts plays a key role in attracting Th2 cells and tumor cells of adult T-cell leukemia/lymphoma and mycosis fungoides/Sézary syndrome into the skin, developing various Th2-type inflammatory skin diseases as well as cutaneous lymphoma. CCL11 and CCL26 expressed by skin-resident cells, such as fibroblasts, blood endothelial cells, and keratinocytes, induce infiltration of CCR3-expressing cells such as Th2 cells and eosinophils. CCL11 may also serve as an autocrine as well as a paracrine in anaplastic large cell lymphoma. CX3CL1 expressed on blood endothelial cells leads to infiltration of CX3CR1(+) immune cells, such as mast cells, neutrophils, and macrophages, playing important roles in wound healing, tumor immunity, and vasculitis. Biologics targeting chemokines and their receptors are promising strategies for various skin diseases that are resistant to the current therapy.

  16. Development and testing of a new disposable sterile device for labelling white blood cells.

    PubMed

    Signore, A; Glaudemans, A W J M; Malviya, G; Lazzeri, E; Prandini, N; Viglietti, A L; De Vries, E F J; Dierckx, R A J O

    2012-08-01

    White blood cell (WBC) labelling requires isolation of cells from patient's blood under sterile conditions using sterile materials, buffers and disposables under good manufacturing practice (GMP) conditions. Till now, this limited the use of white blood cell scintigraphy (WBC-S) only to well equipped laboratories with trained personnel. We invented, developed and tested a disposable, sterile, closed device for blood manipulation, WBC purification and radionuclide labelling without exposing patient's blood and the operator to contamination risks. This device prototype and a final industrialized device (Leukokit®) were tested for WBC labelling and compared to standard procedure. Leukokit® was also tested in an international multi-centre study for easiness of WBC purification and labelling. On the device prototype we tested in parallel, with blood samples from 7 volunteers, the labelling procedure compared to the standard procedure of the International Society of Radiolabeled Blood Elements (ISORBE) consensus protocol with respect to cell recovery, labelling efficiency (LE), cell viability (Trypan Blue test) and sterility (haemoculture). On the final Leukokit® we tested the biocompatibility of all components, and again the LE, erythro-sedimentation rate, cell viability, sterility and apyrogenicity. ACD-A, HES and PBS provided by Leukokit® were also compared to Heparin, Dextran and autologous plasma, respectively. In 4 samples, we tested the chemotactic activity of purified WBC against 1 mg/ml of lipopolysaccharide (LPS) and chemotaxis of 99mTc-HMPAO-labelled WBC (925 MBq) was compared to that of unlabelled cells. For the multi-centre study, 70 labellings were performed with the Leukokit® by 9 expert operators and 3 beginners from five centers using blood from both patients and volunteers. Finally, Media-Fill tests were performed by 3 operators on two different days (11 procedures) by replacing blood and kit reagents with bacterial culture media (Tryptic Soy Broth) and testing sterility of aliquots of the medium at the end of procedure. Tests performed with the prototype showed no significant differences with the standard procedure but a faster and safer approach. Tests performed with the final Leukokit® confirmed full biocompatibility, sterility and apyrogenicity of all reagents and plastic ware. Average WBC recovery with Leukokit® was comparable to that of the ISORBE protocol (117x106±24x106 vs. 132x106±29x106 cells, P=not significant). No differences in red blood cells and platelet content were observed. LE was 82% ± 3% for Leukokit® and 65±5% for control (P=0.0003) being PBS vs autologous plasma the main reason of such difference. Cell viability was always >99.9% in both conditions. Chemotactic tests showed no differences between all Leukokit® samples and controls. Haemocultures and Media-Fill tests were always sterile. The procedure was well accepted by expert operators and beginners, with a very fast learning curve (confidence after 2±2 labellings). The invented device offers high level of protection to operators and patients. The derived Leukokit® is safe and easy to use, and gives a high LE of WBC without affecting cell viability and function. Being a registered closed, sterile medical device, it may allow easier and faster WBC labelling that is not limited to only well equipped laboratories. Also simultaneously labelling of multiple patients is possible.

  17. Label-free ferrohydrodynamic cell separation of circulating tumor cells.

    PubMed

    Zhao, Wujun; Cheng, Rui; Jenkins, Brittany D; Zhu, Taotao; Okonkwo, Nneoma E; Jones, Courtney E; Davis, Melissa B; Kavuri, Sravan K; Hao, Zhonglin; Schroeder, Carsten; Mao, Leidong

    2017-09-12

    Circulating tumor cells (CTCs) have significant implications in both basic cancer research and clinical applications. To address the limited availability of viable CTCs for fundamental and clinical investigations, effective separation of extremely rare CTCs from blood is critical. Ferrohydrodynamic cell separation (FCS), a label-free method that conducted cell sorting based on cell size difference in biocompatible ferrofluids, has thus far not been able to enrich low-concentration CTCs from cancer patients' blood because of technical challenges associated with processing clinical samples. In this study, we demonstrated the development of a laminar-flow microfluidic FCS device that was capable of enriching rare CTCs from patients' blood in a biocompatible manner with a high throughput (6 mL h -1 ) and a high rate of recovery (92.9%). Systematic optimization of the FCS devices through a validated analytical model was performed to determine optimal magnetic field and its gradient, ferrofluid properties, and cell throughput that could process clinically relevant amount of blood. We first validated the capability of the FCS devices by successfully separating low-concentration (∼100 cells per mL) cancer cells using six cultured cell lines from undiluted white blood cells (WBCs), with an average 92.9% cancer cell recovery rate and an average 11.7% purity of separated cancer cells, at a throughput of 6 mL per hour. Specifically, at ∼100 cancer cells per mL spike ratio, the recovery rates of cancer cells were 92.3 ± 3.6% (H1299 lung cancer), 88.3 ± 5.5% (A549 lung cancer), 93.7 ± 5.5% (H3122 lung cancer), 95.3 ± 6.0% (PC-3 prostate cancer), 94.7 ± 4.0% (MCF-7 breast cancer), and 93.0 ± 5.3% (HCC1806 breast cancer), and the corresponding purities of separated cancer cells were 11.1 ± 1.2% (H1299 lung cancer), 10.1 ± 1.7% (A549 lung cancer), 12.1 ± 2.1% (H3122 lung cancer), 12.8 ± 1.6% (PC-3 prostate cancer), 11.9 ± 1.8% (MCF-7 breast cancer), and 12.2 ± 1.6% (HCC1806 breast cancer). Biocompatibility study on H1299 cell line and HCC1806 cell line showed that separated cancer cells had excellent short-term viability, normal proliferation and unaffected key biomarker expressions. We then demonstrated the enrichment of CTCs in blood samples obtained from two patients with newly diagnosed advanced non-small cell lung cancer (NSCLC). While still at its early stage of development, FCS could become a complementary tool for CTC separation for its high recovery rate and excellent biocompatibility, as well as its potential for further optimization and integration with other separation methods.

  18. Quantification of absolute blood velocity using LDA

    NASA Astrophysics Data System (ADS)

    Borozdova, M. A.; Fedosov, I. V.; Tuchin, V. V.

    2018-04-01

    We developed novel schematics of a Laser Doppler anemometer where measuring volume is comparable with the red blood cell (RBC) size and a small period of interference fringes improves device resolution. The technique was used to estimate Doppler frequency shift at flow velocity measurements. It has been shown that technique is applicable for measurements in whole blood.

  19. Isthmin 1 (ism1) is required for normal hematopoiesis in developing zebrafish.

    PubMed

    Berrun, Arturo; Harris, Elena; Stachura, David L

    2018-01-01

    Hematopoiesis is an essential and highly regulated biological process that begins with hematopoietic stem cells (HSCs). In healthy organisms, HSCs are responsible for generating a multitude of mature blood cells every day, yet the molecular pathways that instruct HSCs to self-renew and differentiate into post-mitotic blood cells are not fully known. To understand these molecular pathways, we investigated novel genes expressed in hematopoietic-supportive cell lines from the zebrafish (Danio rerio), a model system increasingly utilized to uncover molecular pathways important in the development of other vertebrate species. We performed RNA sequencing of the transcriptome of three stromal cell lines derived from different stages of embryonic and adult zebrafish and identified hundreds of highly expressed transcripts. For our studies, we focused on isthmin 1 (ism1) due to its shared synteny with its human gene ortholog and because it is a secreted protein. To characterize ism1, we performed loss-of-function experiments to identify if mature blood cell production was disrupted. Myeloid and erythroid lineages were visualized and scored with transgenic zebrafish expressing lineage-specific markers. ism1 knockdown led to reduced numbers of neutrophils, macrophages, and erythrocytes. Analysis of clonal methylcellulose assays from ism1 morphants also showed a reduction in total hematopoietic stem and progenitor cells (HSPCs). Overall, we demonstrate that ism1 is required for normal generation of HSPCs and their downstream progeny during zebrafish hematopoiesis. Further investigation into ism1 and its importance in hematopoiesis may elucidate evolutionarily conserved processes in blood formation that can be further investigated for potential clinical utility.

  20. Isthmin 1 (ism1) is required for normal hematopoiesis in developing zebrafish

    PubMed Central

    Berrun, Arturo; Harris, Elena

    2018-01-01

    Hematopoiesis is an essential and highly regulated biological process that begins with hematopoietic stem cells (HSCs). In healthy organisms, HSCs are responsible for generating a multitude of mature blood cells every day, yet the molecular pathways that instruct HSCs to self-renew and differentiate into post-mitotic blood cells are not fully known. To understand these molecular pathways, we investigated novel genes expressed in hematopoietic-supportive cell lines from the zebrafish (Danio rerio), a model system increasingly utilized to uncover molecular pathways important in the development of other vertebrate species. We performed RNA sequencing of the transcriptome of three stromal cell lines derived from different stages of embryonic and adult zebrafish and identified hundreds of highly expressed transcripts. For our studies, we focused on isthmin 1 (ism1) due to its shared synteny with its human gene ortholog and because it is a secreted protein. To characterize ism1, we performed loss-of-function experiments to identify if mature blood cell production was disrupted. Myeloid and erythroid lineages were visualized and scored with transgenic zebrafish expressing lineage-specific markers. ism1 knockdown led to reduced numbers of neutrophils, macrophages, and erythrocytes. Analysis of clonal methylcellulose assays from ism1 morphants also showed a reduction in total hematopoietic stem and progenitor cells (HSPCs). Overall, we demonstrate that ism1 is required for normal generation of HSPCs and their downstream progeny during zebrafish hematopoiesis. Further investigation into ism1 and its importance in hematopoiesis may elucidate evolutionarily conserved processes in blood formation that can be further investigated for potential clinical utility. PMID:29758043

  1. Simplified spectraphotometric method for the detection of red blood cell agglutination.

    PubMed

    Ramasubramanian, Melur; Anthony, Steven; Lambert, Jeremy

    2008-08-01

    Human error is the most significant factor attributed to incompatible blood transfusions. A spectrophotometric approach to blood typing has been developed by examining the spectral slopes of dilute red blood cell (RBC) suspensions in saline, in the presence and absence of various antibodies, offering a technique for the quantitative determination of agglutination intensity [Transfusion39, 1051, 1999TRANAT0041-113210.1046/j.1537-2995.1999.39101051.x]. We offer direct theoretical prediction of the observed change in slope in the 660-1000 nm range through the use of the T-matrix approach and Lorenz-Mie theory for light scattering by dilute RBC suspensions. Following a numerical simulation using the T-matrix code, we present a simplified sensing method for detecting agglutination. The sensor design has been prototyped, fully characterized, and evaluated through a complete set of tests with over 60 RBC samples and compared with the full spectrophotometric method. The LED and photodiode pairs are found to successfully reproduce the spectroscopic determination of red blood cell agglutination.

  2. Cross-species malaria immunity induced by chemically attenuated parasites

    PubMed Central

    Good, Michael F.; Reiman, Jennifer M.; Rodriguez, I. Bibiana; Ito, Koichi; Yanow, Stephanie K.; El-Deeb, Ibrahim M.; Batzloff, Michael R.; Stanisic, Danielle I.; Engwerda, Christian; Spithill, Terry; Hoffman, Stephen L.; Lee, Moses; McPhun, Virginia

    2013-01-01

    Vaccine development for the blood stages of malaria has focused on the induction of antibodies to parasite surface antigens, most of which are highly polymorphic. An alternate strategy has evolved from observations that low-density infections can induce antibody-independent immunity to different strains. To test this strategy, we treated parasitized red blood cells from the rodent parasite Plasmodium chabaudi with seco-cyclopropyl pyrrolo indole analogs. These drugs irreversibly alkylate parasite DNA, blocking their ability to replicate. After administration in mice, DNA from the vaccine could be detected in the blood for over 110 days and a single vaccination induced profound immunity to different malaria parasite species. Immunity was mediated by CD4+ T cells and was dependent on the red blood cell membrane remaining intact. The human parasite, Plasmodium falciparum, could also be attenuated by treatment with seco-cyclopropyl pyrrolo indole analogs. These data demonstrate that vaccination with chemically attenuated parasites induces protective immunity and provide a compelling rationale for testing a blood-stage parasite-based vaccine targeting human Plasmodium species. PMID:23863622

  3. Pregnant women's knowledge and attitudes about stem cells and cord blood banking.

    PubMed

    Dinç, H; Sahin, N H

    2009-06-01

    This study was to determine pregnant women's knowledge and attitudes towards stem cells and cord blood banking in Istanbul, Turkey. Stem cell research is one of the most important and, at the same time, the most controversial topics of science and technology today. Nurses need to understand stem cell research so they can enter the debate on this issue. They can become important sources of information in order to help parents understand the issues. This exploratory descriptive study was conducted in two antenatal outpatient clinics in Istanbul. The sample consisted of 334 pregnant women during routine prenatal visits. Data were collected in interviews by using an interview form developed by the researchers according to the literature. The form included demographic characteristics of participants and 20 questions about stem cells, storing cord blood and banking and 10 independent attitude statements. The majority of the participants had a lack of knowledge about stem cells and cord blood banking and wanted more information. Before pregnancy, they received some information through the media (newspaper, Internet, television, etc.), but unintentionally. It was determined that they wanted information before becoming pregnant, more from their obstetrician but also from nurses and midwives. The majority also wanted to store their infants' cord blood and stated that they would be more likely to choose a public cord blood bank. Those giving ante- and perinatal care need to offer accurate and scientific counselling services on this subject to parents who need to be informed.

  4. Hepatozoon ellisgreineri n. sp. (Hepatozoidae): description of the first avian apicomplexan blood parasite inhabiting granulocytes.

    PubMed

    Valkiūnas, Gediminas; Mobley, Kristin; Iezhova, Tatjana A

    2016-02-01

    Blood parasites of the genus Hepatozoon (Apicomplexa, Hepatozoidae) infect all groups of terrestrial vertebrates, and particularly high prevalence and species diversity have been reported in reptiles and mammals. A few morphologically similar species, in which gamonts inhabit mononuclear leukocytes and red blood cells, have been described in birds. Here, we report a new Hepatozoon species, which was found in wild-caught secretary birds Sagittarius serpentarius, from Tanzania. Hepatozoon ellisgreineri n. sp. can be readily distinguished from all described species of avian Hepatozoon because its gamonts develop only in granulocytes, predominantly in heterophils, a unique characteristic among bird parasites of this genus. Additionally, this is the first reported avian apicomplexan blood parasite, which inhabits and matures in granulocytes. We describe H. ellisgreineri based on morphological characteristics of blood stages and their host cells. This finding broadens knowledge about host cells of avian Hepatozoon spp. and other avian apicomplexan blood parasites, contributing to the better understanding of the diversity of haematozoa. This is the first report of hepatozoonosis in endangered African birds of the Sagittariidae.

  5. By Different Cellular Mechanisms, Lymphatic Vessels Sprout by Endothelial Cell Recruitment Whereas Blood Vessels Grow by Vascular Expansion

    NASA Technical Reports Server (NTRS)

    Parsons-Wingerter, Patricia; McKay, Terri L.; Leontiev, Dmitry; Condrich, Terence K.; DiCorleto, Paul E.

    2005-01-01

    The development of effective vascular therapies requires the understanding of all modes of vessel formation contributing to vasculogenesis, angiogenesis (here termed hemangiogenesis) and lymphangiogenesis. We show that lymphangiogenesis proceeds by blind-ended vessel sprouting via recruitment of isolated endothelial progenitor cells to the tips of growing vessels, whereas hemangiogenesis occurs by non-sprouting vessel expansion from the capillary network, during middevelopment in the quail chorioallantoic membrane (CAM). Blood vessels expanded out of capillaries that displayed transient expression of alpha smooth muscle actin (alphaSMA), accompanied by mural recruitment of migratory progenitor cells expressing SMA. Lymphatics and blood vessels were identified by confocal/fluorescence microscopy of vascular endothelial growth factor (VEGF) receptors VEGFR-1 and VEGFR-2, alphaSMA (expressed on CAM blood vessels but not on lymphatics), homeobox transcription factor Prox-1 (specific to CAM lymphatic endothelium), and the quail hematopoetic/vascular marker, QH-1. Expression of VEGFR-1 was highly restricted to blood vessels (primarily capillaries). VEGFR-2 was expressed intensely in isolated hematopoietic cells, lymphatic vessels and moderately in blood vessels. Prox-1 was absent from endothelial progenitor cells prior to lymphatic recruitment. Although vascular endothelial growth factor-165 (VEGF(sub 165)) is a key regulator of numerous cellular processes in hemangiogenesis and vasculogenesis, the role of VEGF(sub 165) in lymphangiogenesis is less clear. Exogenous VEGF(sub 165) increased blood vessel density without changing endogenous modes of vascular/lymphatic vessel formation or marker expression patterns. However, VEGF(sub 165) did increase the frequency of blood vascular anastomoses and strongly induced the antimaturational dissociation of lymphatics from blood vessels, with frequent formation of homogeneous lymphatic networks.

  6. Efficiency and cost analysis of cell saver auto transfusion system in total knee arthroplasty.

    PubMed

    Bilgili, Mustafa Gökhan; Erçin, Ersin; Peker, Gökhan; Kural, Cemal; Başaran, Serdar Hakan; Duramaz, Altuğ; Avkan, Cevdet

    2014-06-01

    Blood loss and replacement is still a controversial issue in major orthopaedic surgery. Allogenic blood transfusion may cause legal problems and concerns regarding the transmission of transfusion-related diseases. Cellsaver Systems (CSS) were developed as an alternative to allogenic transfusion but CSS transfusion may cause coagulation, infection and haemodynamic instability. Our aim was to analyse the efficiency and cost analysis of a cell saver auto-transfusion system in the total knee arthroplasty procedure. Retrospective comparative study. Those patients who were operated on by unilateral, cemented total knee arthroplasty (TKA) were retrospectively evaluated. Group 1 included 37 patients who were treated using the cell saver system, and Group 2 involved 39 patients who were treated by allogenic blood transfusion. The groups were compared in terms of preoperative haemoglobin and haematocrit levels, blood loss and transfusion amount, whether allogenic transfusion was made, degree of deformity, body mass index and cost. No significant results could be obtained in the statistical comparisons made in terms of the demographic properties, deformity properties, preoperative laboratory values, transfusion amount and length of hospital stay of the groups. Average blood loss was calculated to be less in Group 1 (p<0.05) and cost was higher in Group 1 (p<0.05). Cell saver systems do not decrease the amount of allogenic blood transfusion and costs more. Therefore, the routine usage of the auto-transfusion systems is a controversial issue. Cell saver system usage does not affect allogenic blood transfusion incidence or allogenic blood transfusion volume. It was found that preoperative haemoglobin and body mass index rates may affect allogenic blood transfusion. Therefore, it is foreseen that auto-transfusion systems could be useful in patients with low haemoglobin level and body mass index.

  7. Invertebrate hematopoiesis: an anterior proliferation center as a link between the hematopoietic tissue and the brain.

    PubMed

    Noonin, Chadanat; Lin, Xionghui; Jiravanichpaisal, Pikul; Söderhäll, Kenneth; Söderhäll, Irene

    2012-11-20

    During evolution, the innate and adaptive immune systems were developed to protect organisms from non-self substances. The innate immune system is phylogenetically more ancient and is present in most multicellular organisms, whereas adaptive responses are restricted to vertebrates. Arthropods lack the blood cells of the lymphoid lineage and oxygen-carrying erythrocytes, making them suitable model animals for studying the regulation of the blood cells of the innate immune system. Many crustaceans have a long life span and need to continuously synthesize blood cells, in contrast to many insects. The hematopoietic tissue (HPT) of Pacifastacus leniusculus provides a simple model for studying hematopoiesis, because the tissue can be isolated, and the proliferation of stem cells and their differentiation can be studied both in vivo and in vitro. Here, we demonstrate new findings of a physical link between the HPT and the brain. Actively proliferating cells were localized to an anterior proliferation center (APC) in the anterior part of the tissue near the area linking the HPT to the brain, whereas more differentiated cells were detected in the posterior part. The central areas of HPT expand in response to lipopolysaccharide-induced blood loss. Cells isolated from the APC divide rapidly and form cell clusters in vitro; conversely, the cells from the remaining HPT form monolayers, and they can be induced to differentiate in vitro. Our findings offer an opportunity to learn more about invertebrate hematopoiesis and its connection to the central nervous system, thereby obtaining new information about the evolution of different blood and nerve cell lineages.

  8. odd skipped related1 reveals a novel role for endoderm in regulating kidney vs. vascular cell fate

    PubMed Central

    Mudumana, Sudha P.; Hentschel, Dirk; Liu, Yan; Vasilyev, Aleksandr; Drummond, Iain A.

    2009-01-01

    Summary The kidney and vasculature are intimately linked functionally and during development, where nephric and blood/vascular progenitor cells occupy adjacent bands of mesoderm in zebrafish and frog embryos. Developmental mechanisms underlying the differentiation of kidney vs. blood/vascular lineages remain unknown. The odd skipped related1 (osr1) gene encodes a zinc finger transcription factor that is expressed in the germ ring mesendoderm and subsequently in the endoderm and intermediate mesoderm, prior to the expression of definitive kidney or blood/vascular markers. Knockdown of osr1 in zebrafish embryos resulted in a complete, segment-specific loss of anterior kidney progenitors and a compensatory increase in the number of angioblast cells in the same trunk region. Histology revealed a subsequent absence of kidney tubules, enlarged cardinal vein, and expansion of the posterior venous plexus. Altered kidney vs. vascular development correlated with expanded endoderm development in osr1 knockdowns. Combined osr1 loss of function and blockade of endoderm development by knockdown of sox32/casanova rescued anterior kidney development. The results indicate that osr1 activity is required to limit endoderm differentiation from mesendoderm and, in the absence of osr1, excess endoderm alters mesoderm differentiation, shifting the balance from kidney toward vascular development. PMID:18787069

  9. Two-phase model for prediction of cell-free layer width in blood flow

    PubMed Central

    Namgung, Bumseok; Ju, Meongkeun; Cabrales, Pedro; Kim, Sangho

    2014-01-01

    This study aimed to develop a numerical model capable of predicting changes in the cell-free layer (CFL) width in narrow tubes with consideration of red blood cell aggregation effects. The model development integrates to empirical relations for relative viscosity (ratio of apparent viscosity to medium viscosity) and core viscosity measured on independent blood samples to create a continuum model that includes these two regions. The constitutive relations were derived from in vitro experiments performed with three different glass-capillary tubes (inner diameter = 30, 50 and 100 μm) over a wide range of pseudoshear rates (5-300 s−1). The aggregation tendency of the blood samples was also varied by adding Dextran 500 kDa. Our model predicted that the CFL width was strongly modulated by the relative viscosity function. Aggregation increased the width of CFL, and this effect became more pronounced at low shear rates. The CFL widths predicted in the present study at high shear conditions were in agreement with those reported in previous studies. However, unlike previous multi-particle models, our model did not require a high computing cost, and it was capable of reproducing results for a thicker CFL width at low shear conditions, depending on aggregating tendency of the blood. PMID:23116701

  10. Radiation biodosimetry: Applications for spaceflight

    NASA Astrophysics Data System (ADS)

    Blakely, W. F.; Miller, A. C.; Grace, M. B.; McLeland, C. B.; Luo, L.; Muderhwa, J. M.; Miner, V. L.; Prasanna, P. G. S.

    The multiparametric dosimetry system that we are developing for medical radiological defense applications could be adapted for spaceflight environments. The system complements the internationally accepted personnel dosimeters and cytogenetic analysis of chromosome aberrations, considered the best means of documenting radiation doses for health records. Our system consists of a portable hematology analyzer, molecular biodosimetry using nucleic acid and antigen-based diagnostic equipment, and a dose assessment management software application. A dry-capillary tube reagent-based centrifuge blood cell counter (QBC Autoread Plus, Beckon Dickinson Bioscience) measures peripheral blood lymphocytes and monocytes, which could determine radiation dose based on the kinetics of blood cell depletion. Molecular biomarkers for ionizing radiation exposure (gene expression changes, blood proteins) can be measured in real time using such diagnostic detection technologies as miniaturized nucleic acid sequences and antigen-based biosensors, but they require validation of dose-dependent targets and development of optimized protocols and analysis systems. The Biodosimetry Assessment Tool, a software application, calculates radiation dose based on a patient's physical signs and symptoms and blood cell count analysis. It also annotates location of personnel dosimeters, displays a summary of a patient's dosimetric information to healthcare professionals, and archives the data for further use. These radiation assessment diagnostic technologies can have dual-use applications supporting general medical-related care.

  11. Platelets, lymphocytes and erythrocytes from Alzheimer's disease patients: the quest for blood cell-based biomarkers.

    PubMed

    Pluta, Ryszard; Ułamek-Kozioł, Marzena; Januszewski, Sławomir; Czuczwar, Stanisław J

    2018-01-01

    In elderly population, Alzheimer's disease is a common neurodegenerative disorder and accounts for about 70% of all cases of dementia. The neurodegenerative processes of this disease start presumably 20 years ahead of the clinical beginning of the disorder. The postmortem histopathological examination, brains from Alzheimer's disease patients with characteristic features like amyloid plaques and neurofibrillary tangles, neuronal and synaptic disintegration confirm the final diagnosis of Alzheimer's disease. Senile plaques are composed of -amyloid peptide, deriving from the amyloid protein precursor, which is present not only in the brain tissue, but also in other non-neuronal tissues. Some investigations reported that platelets possess amyloid protein precursor and all the enzymatic activities required for the metabolism of this protein throughout the same pathways present in the brain. Thus, platelets may be a good peripheral blood cell-based biomarker to study the onset of Alzheimer's disease. Another line of research indicated molecular and cellular aberrations in blood lymphocytes and erythrocytes from Alzheimer's disease patients and emphasizes the systemic nature of the disease. In this review, we will summarize the recent knowledge on the involvement and/or response of platelets, lymphocytes and red blood cells in the circulation during Alzheimer's disease development. The facts will be reviewed with the special possibility for applying the above blood cells as Alzheimer's disease preclinical and antemortem blood cell-based biomarkers.

  12. Pigmented-MDCK (P-MDCK) Cell Line with Tunable Melanin Expression: An In Vitro Model for the Outer Blood-Retinal-Barrier

    PubMed Central

    Kadam, Rajendra S.; Scheinman, Robert. I.; Kompella, Uday B.

    2013-01-01

    Purpose Retinal pigment epithelium, which forms the outer blood-retinal-barrier, is a critical barrier for transport of drugs to the retina. The purpose of this study was to develop a pigmented MDCK (P-MDCK) cell line as a rapidly established in vitro model for the outer blood-retinal-barrier to assess the influence of melanin pigment on solute permeability. Methods A melanin synthesizing P-MDCK cell line was developed by lentiviral transduction of human tyrosinase and p-protein genes in MDCK (NBL-2) cells. Melanin content, tyrosinase activity (conversion of L-dopa to dopachrome), and transepithelial electrical resistance (TEER) were measured. Expression of tyrosinase protein and p-protein in P-MDCK cells was confirmed by confocal microscopy. Effect of L-tyrosine (0 to 2 mM) in culture medium on melanin synthesis in P-MDCK cells was evaluated. Cell uptake and transepithelial transport of pigment-binding chloroquine (Log D = 1.59) and a negative control salicylic acid (Log D = −1.14) were investigated. Results P-MDCK cells expressed tyrosinase and p-protein. Tyrosinase activity was 4.5 fold higher in P-MDCK cells as compared to wild-type MDCK cells. The transepithelial electrical resistance stabilized by day 4 in both cell types, with the TEER being 871 ± 30 and 876 ± 53 Ω.cm2 for P-MDCK and wild-type cells, respectively. Melanin content in P-MDCK cells depended on the concentration of L-tyrosine in culture medium, and increased from 3 to 54 µg/mg protein with an increase in L-tyrosine content from 0 to 2 mM. When the cells were grown in 2 mM L-tyrosine, uptake of chloroquine was 2.3 fold higher and the transepithelial transport was 2.2 fold lower in P-MDCK cells when compared to wild-type MDCK cells. No significant difference was observed for both cell uptake and transport of salicylic acid. Conclusions We developed a P-MDCK cell line with tunable melanin synthesis as a rapidly developing surrogate for retinal pigment epithelium. PMID:23003570

  13. Enumeration of Circulating Tumor Cells and Disseminated Tumor Cells in Blood and Bone Marrow by Immunomagnetic Enrichment and Flow Cytometry (IE/FC).

    PubMed

    Magbanua, Mark Jesus M; Solanki, Tulasi I; Ordonez, Andrea D; Hsiao, Feng; Park, John W

    2017-01-01

    Enumerating circulating tumor cells (CTCs) in blood and disseminated tumor cells (DTCs) in bone marrow has shown to be clinically useful, as elevated numbers of these cells predict poor clinical outcomes. Accurate detection and quantification is, however, difficult and technically challenging because CTCs and DTCs are extremely rare. We have developed a novel quantitative detection method for enumeration of CTCs and DTCs. Our approach consists of two steps: (1) EPCAM-based immunomagnetic enrichment followed by (2) flow cytometry (IE/FC). The assay takes approximately 2 h to complete. In addition to tumor cell enumeration, IE/FC offers opportunities for direct isolation of highly pure tumor cells for downstream molecular characterization.

  14. Novel, high-yield red blood cell production methods from CD34-positive cells derived from human embryonic stem, yolk sac, fetal liver, cord blood, and peripheral blood.

    PubMed

    Olivier, Emmanuel; Qiu, Caihong; Bouhassira, Eric E

    2012-08-01

    The current supply of red blood cells expressing rare blood groups is not sufficient to cover all the existing transfusion needs for chronically transfused patients, such as sickle cell disease homozygous carriers, because of alloimmunization. In vitro production of cultured red blood cells is slowly emerging as a possible complement to the existing collection-based red blood cell procurement system. The yield of cultured red blood cells can theoretically be maximized by amplifying the stem, progenitor, or precursor compartment. Here, we combined methods designed to expand these three compartments to optimize the yield of cultured red blood cells and found that exposing CD34(+) cells to a short pulse of cytokines favorable for erythroid differentiation prior to stem cell expansion followed by progenitor expansion produced the highest yield of erythroid cells. This novel serum-free red blood cell production protocol was efficient on CD34(+) cells derived from human embryonic stem cells, 6-8-week yolk sacs, 16-18-week fetal livers, cord blood, and peripheral blood. The yields of cells obtained with these new protocols were larger by an order of magnitude than the yields observed previously. Globin expression analysis by high-performance liquid chromatography revealed that these expansion protocols generally yielded red blood cells that expressed a globin profile similar to that expected for the developmental age of the CD34(+) cells.

  15. Umbilical cord blood banking in the worldwide hematopoietic stem cell transplantation system: perspectives for Ukraine.

    PubMed

    Kalynychenko, T O

    2017-09-01

    Significant progress in the promotion of procedural technologies associated with the transplantation of hematopoietic stem cells caused a rapid increase in activity. The exchange of hematopoietic stem cells for unrelated donor transplantations is now much easier due to the relevant international professional structures and organizations established to support cooperation and standard setting, as well as rules for the functioning of both national donor registries and cord blood banks. These processes are increasing every year and are contributing to the outpacing rates of development in this area. Products within their country should be regulated by the competent government authorities. This study analyzes the work of international and national levels of support for transplantation activity in the field of unrelated hematopoietic stem cell transplantation, the standardization order of technologies, as well as data that justify the need to create a network of donated umbilical cord blood banks in Ukraine as a factor in the development of allogeneic transplantation. This will promote the accessibility of international standards for the treatment of serious diseases for Ukrainian citizens.

  16. Effect of medicinal mushrooms on blood cells under conditions of diabetes mellitus

    PubMed Central

    Vitak, Taras; Yurkiv, Borys; Wasser, Solomon; Nevo, Eviatar; Sybirna, Natalia

    2017-01-01

    Diabetes mellitus (DM) is the third most common non-infectious disease leading to early disability and high mortality. Moreover, the number of patients is growing every year. The main symptom of DM is hyperglycemia. Increased levels of blood glucose activate polyol, hexosamine, and protein kinase metabolic pathways cause the intensification of non-enzymatic glycosylation and nitration of macromolecules. This, in turn, leads to the development of oxidative and nitrative stresses and secondary complications, such as different kinds of micro- and macroangiopathies. Metabolic disorders caused by insulin deficiency in diabetes significantly impede the functioning of a homeostasis system, which change the physical, biochemical, morphological, and functional properties of blood cells. As a result, the oxygen-transport function of red blood cells (RBCs), rheological properties of the blood, and functions of immunocompetent cells as well as the process of apoptosis are primarily affected. Modern pharmacotherapy focuses on the search for new preparations that aim to decrease blood glucose levels. Undesirable side effects and adverse reactions caused by synthetic medicines led to the search and investigation of new preparations of natural origin. Medicinal mushrooms play an important role among such new preparations. They are a source of a large number of high- and low-molecular compounds with pronounced biological effects. Our investigations show pronounced hypoglycemic and anti-anemic action of submerged cultivated mycelium powder of medicinal mushrooms Agaricus brasiliensis (A. brasiliensis) and Ganoderma lucidum (G. lucidum) on streptozotocin-induced DM in rats. Also, we showed that mycelium powders have membrane protective properties as evidenced by the redistribution of RBC populations towards the growth of full functional cell numbers. Normalization of parameters of leukocyte formula and suppression of apoptosis of white blood cells in diabetic rats treated with A. brasiliensis and G. lucidum mycelia indicates pronounced positive effects of these strains of mushrooms. Thus, the use of medicinal mushrooms for treatment of DM and in prevention development of its secondary complications might be a new effective approach of this disease’s cure. This article is aimed at summarizing and analyzing the literature data and basic achievements concerning DM type 1 treatment using medicinal mushrooms and showing the results obtained in our research. PMID:28572880

  17. Effect of medicinal mushrooms on blood cells under conditions of diabetes mellitus.

    PubMed

    Vitak, Taras; Yurkiv, Borys; Wasser, Solomon; Nevo, Eviatar; Sybirna, Natalia

    2017-05-15

    Diabetes mellitus (DM) is the third most common non-infectious disease leading to early disability and high mortality. Moreover, the number of patients is growing every year. The main symptom of DM is hyperglycemia. Increased levels of blood glucose activate polyol, hexosamine, and protein kinase metabolic pathways cause the intensification of non-enzymatic glycosylation and nitration of macromolecules. This, in turn, leads to the development of oxidative and nitrative stresses and secondary complications, such as different kinds of micro- and macroangiopathies. Metabolic disorders caused by insulin deficiency in diabetes significantly impede the functioning of a homeostasis system, which change the physical, biochemical, morphological, and functional properties of blood cells. As a result, the oxygen-transport function of red blood cells (RBCs), rheological properties of the blood, and functions of immunocompetent cells as well as the process of apoptosis are primarily affected. Modern pharmacotherapy focuses on the search for new preparations that aim to decrease blood glucose levels. Undesirable side effects and adverse reactions caused by synthetic medicines led to the search and investigation of new preparations of natural origin. Medicinal mushrooms play an important role among such new preparations. They are a source of a large number of high- and low-molecular compounds with pronounced biological effects. Our investigations show pronounced hypoglycemic and anti-anemic action of submerged cultivated mycelium powder of medicinal mushrooms Agaricus brasiliensis ( A. brasiliensis ) and Ganoderma lucidum ( G. lucidum ) on streptozotocin-induced DM in rats. Also, we showed that mycelium powders have membrane protective properties as evidenced by the redistribution of RBC populations towards the growth of full functional cell numbers. Normalization of parameters of leukocyte formula and suppression of apoptosis of white blood cells in diabetic rats treated with A. brasiliensis and G. lucidum mycelia indicates pronounced positive effects of these strains of mushrooms. Thus, the use of medicinal mushrooms for treatment of DM and in prevention development of its secondary complications might be a new effective approach of this disease's cure. This article is aimed at summarizing and analyzing the literature data and basic achievements concerning DM type 1 treatment using medicinal mushrooms and showing the results obtained in our research.

  18. Photoacoustic detection of induced melanoma in vitro using a mouse model

    NASA Astrophysics Data System (ADS)

    Gupta, Sagar; Bhattacharya, Kiran; Newton, Jessica R.; Quinn, Thomas P.; Viator, John A.

    2012-03-01

    Metastasis is a life threatening complex physiological phenomenon that involves the movement of cancer cells from one organ to another by means of blood and lymph. An understanding about metastasis is extremely important to device diagnostic systems to detect and monitor its spread within the body. For the first time we report rapid photoacoustic detection of the induced metastatic melanoma in mice in vitro using photoacoustic flowmetry. A new photoacoustic flow system is developed, that employs photoacoustic excitation coupled with an ultrasound transducer capable of determining the presence of individual, induced mouse melanoma cells (B16/F10) within the circulating system in vitro. Tumor was induced in mice by injecting mouse melanoma cells through tail vein into the C57BL/6 mice. A luciferase based in vivo bioluminescence imaging is performed to confirm the tumor load and multiple metastases in the tumor-induced mice. 1ml of blood obtained through cardiac puncture of the induced metastasized mice was treated to lyse the red blood cells (RBC) and enriched, leaving the induced melanoma in the peripheral blood mononuclear suspension (PBMC). A photoacoustic flowsystem coupled with an ultrasound transducer is used to detect the individual circulating metastatic melanoma cells from the enriched cell suspension.

  19. Cytotoxicity and genotoxicity of bacterial magnetosomes against human retinal pigment epithelium cells

    NASA Astrophysics Data System (ADS)

    Qi, Lei; Lv, Xiujuan; Zhang, Tongwei; Jia, Peina; Yan, Ruiying; Li, Shuli; Zou, Ruitao; Xue, Yuhua; Dai, Liming

    2016-06-01

    A variety of nanomaterials have been developed for ocular diseases. The ability of these nanomaterials to pass through the blood-ocular barrier and their biocompatibility are essential characteristics that must be considered. Bacterial magnetosomes (BMs) are a type of biogenic magnetic nanomaterials synthesized by magnetotactic bacteria. Due to their unique biomolecular membrane shell and narrow size distribution of approximately 30 nm, BMs can pass through the blood-brain barrier. The similarity of the blood-ocular barrier to the blood-brain barrier suggests that BMs have great potential as treatments for ocular diseases. In this work, BMs were isolated from magnetotactic bacteria and evaluated in various cytotoxicity and genotoxicity studies in human retinal pigment epithelium (ARPE-19) cells. The BMs entered ARPE-19 cells by endocytosis after a 6-h incubation and displayed much lower cytotoxicity than chemically synthesized magnetic nanoparticles (MNPs). MNPs exhibited significantly higher genotoxicity than BMs and promoted the expression of Bax (the programmed cell death acceleration protein) and the induction of greater cell necrosis. In BM-treated cells, apoptosis tended to be suppressed via increased expression of the Bcl-2 protein. In conclusion, BMs display excellent biocompatibility and potential for use in the treatment of ocular diseases.

  20. Engineering an in vitro air-blood barrier by 3D bioprinting

    PubMed Central

    Horváth, Lenke; Umehara, Yuki; Jud, Corinne; Blank, Fabian; Petri-Fink, Alke; Rothen-Rutishauser, Barbara

    2015-01-01

    Intensive efforts in recent years to develop and commercialize in vitro alternatives in the field of risk assessment have yielded new promising two- and three dimensional (3D) cell culture models. Nevertheless, a realistic 3D in vitro alveolar model is not available yet. Here we report on the biofabrication of the human air-blood tissue barrier analogue composed of an endothelial cell, basement membrane and epithelial cell layer by using a bioprinting technology. In contrary to the manual method, we demonstrate that this technique enables automatized and reproducible creation of thinner and more homogeneous cell layers, which is required for an optimal air-blood tissue barrier. This bioprinting platform will offer an excellent tool to engineer an advanced 3D lung model for high-throughput screening for safety assessment and drug efficacy testing. PMID:25609567

  1. Induction of vascular endothelial phenotype and cellular proliferation from human cord blood stem cells cultured in simulated microgravity

    NASA Astrophysics Data System (ADS)

    Chiu, Brian; Z-M Wan, Jim; Abley, Doris; Akabutu, John

    2005-05-01

    Recent studies have demonstrated that stem cells derived from adult hematopoietic tissues are capable of trans-differentiation into non-hematopoietic cells, and that the culture in microgravity ( μg) may modulate the proliferation and differentiation. We investigated the application of μg to human umbilical cord blood stem cells (CBSC) in the induction of vascular endothelial phenotype expression and cellular proliferation. CD34+ mononuclear cells were isolated from waste human umbilical cord blood samples and cultured in simulated μg for 14 days. The cells were seeded in rotary wall vessels (RWV) with or without microcarrier beads (MCB) and vascular endothelial growth factor was added during culture. Controls consisted of culture in 1 G. The cell cultures in RWV were examined by inverted microscopy. Cell counts, endothelial cell and leukocyte markers performed by flow-cytometry and FACS scan were assayed at days 1, 4, 7 and at the termination of the experiments. Culture in RWV revealed significantly increased cellular proliferation with three-dimensional (3D) tissue-like aggregates. At day 4, CD34+ cells cultured in RWV bioreactor without MCB developed vascular tubular assemblies and exhibited endothelial phenotypic markers. These data suggest that CD34+ human umbilical cord blood progenitors are capable of trans-differentiation into vascular endothelial cell phenotype and assemble into 3D tissue structures. Culture of CBSC in simulated μg may be potentially beneficial in the fields of stem cell biology and somatic cell therapy.

  2. Morphological changes in vascular and circulating blood cells following exposure to detergent sclerosants.

    PubMed

    Cooley-Andrade, O; Connor, D E; Ma, D D F; Weisel, J W; Parsi, K

    2016-04-01

    To investigate morphological changes in vascular and circulating blood cells following exposure to detergent sclerosants sodium tetradecyl sulfate and polidocanol. Samples of whole blood, isolated leukocytes, platelets, endothelial cells, and fibroblasts were incubated with varying concentrations of sclerosants. Whole blood smears were stained with Giemsa and examined by light and bright field microscopy. Phalloidin and Hoechst stains were used to analyze cytoplasmic and nuclear morphology by fluorescence microscopy. Endothelial cell and fibroblasts were analyzed by live cell imaging. Higher concentrations of sclerosants induced cell lysis. Morphological changes in intact cells were observed at sublytic concentrations of detergents. Low concentration sodium tetradecyl sulfate induced erythrocyte acanthocytosis and macrocytosis, while polidocanol induced Rouleaux formation and increased the population of target cells and stomatocytes. Leukocytes showed swelling, blebbing, vacuolation, and nuclear degradation following exposure to sodium tetradecyl sulfate, while polidocanol induced pseudopodia formation, chromatin condensation, and fragmentation. Platelets exhibited pseudopodia with sodium tetradecyl sulfate and a "fried egg" appearance with polidocanol. Exposure to sodium tetradecyl sulfate resulted in size shrinkage in both endothelial cell and fibroblasts, while endothelial cell developed distinct spindle morphology. Polidocanol induced cytoplasmic microfilament bundles in both endothelial cell and fibroblasts. Patchy chromatin condensation was observed following exposure of fibroblasts to either agent. Detergent sclerosants are biologically active at sublytic concentrations. The observed morphological changes are consistent with cell activation, apoptosis, and oncosis. The cellular response is concentration dependent, cell-specific, and sclerosant specific. © The Author(s) 2015.

  3. Acoustic separation of circulating tumor cells

    PubMed Central

    Li, Peng; Mao, Zhangming; Peng, Zhangli; Zhou, Lanlan; Chen, Yuchao; Huang, Po-Hsun; Truica, Cristina I.; Drabick, Joseph J.; El-Deiry, Wafik S.; Dao, Ming; Suresh, Subra; Huang, Tony Jun

    2015-01-01

    Circulating tumor cells (CTCs) are important targets for cancer biology studies. To further elucidate the role of CTCs in cancer metastasis and prognosis, effective methods for isolating extremely rare tumor cells from peripheral blood must be developed. Acoustic-based methods, which are known to preserve the integrity, functionality, and viability of biological cells using label-free and contact-free sorting, have thus far not been successfully developed to isolate rare CTCs using clinical samples from cancer patients owing to technical constraints, insufficient throughput, and lack of long-term device stability. In this work, we demonstrate the development of an acoustic-based microfluidic device that is capable of high-throughput separation of CTCs from peripheral blood samples obtained from cancer patients. Our method uses tilted-angle standing surface acoustic waves. Parametric numerical simulations were performed to design optimum device geometry, tilt angle, and cell throughput that is more than 20 times higher than previously possible for such devices. We first validated the capability of this device by successfully separating low concentrations (∼100 cells/mL) of a variety of cancer cells from cell culture lines from WBCs with a recovery rate better than 83%. We then demonstrated the isolation of CTCs in blood samples obtained from patients with breast cancer. Our acoustic-based separation method thus offers the potential to serve as an invaluable supplemental tool in cancer research, diagnostics, drug efficacy assessment, and therapeutics owing to its excellent biocompatibility, simple design, and label-free automated operation while offering the capability to isolate rare CTCs in a viable state. PMID:25848039

  4. Acoustic separation of circulating tumor cells.

    PubMed

    Li, Peng; Mao, Zhangming; Peng, Zhangli; Zhou, Lanlan; Chen, Yuchao; Huang, Po-Hsun; Truica, Cristina I; Drabick, Joseph J; El-Deiry, Wafik S; Dao, Ming; Suresh, Subra; Huang, Tony Jun

    2015-04-21

    Circulating tumor cells (CTCs) are important targets for cancer biology studies. To further elucidate the role of CTCs in cancer metastasis and prognosis, effective methods for isolating extremely rare tumor cells from peripheral blood must be developed. Acoustic-based methods, which are known to preserve the integrity, functionality, and viability of biological cells using label-free and contact-free sorting, have thus far not been successfully developed to isolate rare CTCs using clinical samples from cancer patients owing to technical constraints, insufficient throughput, and lack of long-term device stability. In this work, we demonstrate the development of an acoustic-based microfluidic device that is capable of high-throughput separation of CTCs from peripheral blood samples obtained from cancer patients. Our method uses tilted-angle standing surface acoustic waves. Parametric numerical simulations were performed to design optimum device geometry, tilt angle, and cell throughput that is more than 20 times higher than previously possible for such devices. We first validated the capability of this device by successfully separating low concentrations (∼100 cells/mL) of a variety of cancer cells from cell culture lines from WBCs with a recovery rate better than 83%. We then demonstrated the isolation of CTCs in blood samples obtained from patients with breast cancer. Our acoustic-based separation method thus offers the potential to serve as an invaluable supplemental tool in cancer research, diagnostics, drug efficacy assessment, and therapeutics owing to its excellent biocompatibility, simple design, and label-free automated operation while offering the capability to isolate rare CTCs in a viable state.

  5. Multinode acoustic focusing for parallel flow cytometry

    PubMed Central

    Piyasena, Menake E.; Suthanthiraraj, Pearlson P. Austin; Applegate, Robert W.; Goumas, Andrew M.; Woods, Travis A.; López, Gabriel P.; Graves, Steven W.

    2012-01-01

    Flow cytometry can simultaneously measure and analyze multiple properties of single cells or particles with high sensitivity and precision. Yet, conventional flow cytometers have fundamental limitations with regards to analyzing particles larger than about 70 microns, analyzing at flow rates greater than a few hundred microliters per minute, and providing analysis rates greater than 50,000 per second. To overcome these limits, we have developed multi-node acoustic focusing flow cells that can position particles (as small as a red blood cell and as large as 107 microns in diameter) into as many as 37 parallel flow streams. We demonstrate the potential of such flow cells for the development of high throughput, parallel flow cytometers by precision focusing of flow cytometry alignment microspheres, red blood cells, and the analysis of CD4+ cellular immunophenotyping assay. This approach will have significant impact towards the creation of high throughput flow cytometers for rare cell detection applications (e.g. circulating tumor cells), applications requiring large particle analysis, and high volume flow cytometry. PMID:22239072

  6. Polycythemia vera.

    PubMed

    Stuart, Brian J; Viera, Anthony J

    2004-05-01

    Polycythemia vera is a chronic myeloproliferative disorder characterized by increased red blood cell mass. The resultant hyperviscosity of the blood predisposes such patients to thrombosis. Polycythemia vera should be suspected in patients with elevated hemoglobin or hematocrit levels, splenomegaly, or portal venous thrombosis. Secondary causes of increased red blood cell mass (e.g., heavy smoking, chronic pulmonary disease, renal disease) are more common than polycythemia vera and must be excluded. Diagnosis is made using criteria developed by the Polycythemia Vera Study Group; major criteria include elevated red blood cell mass, normal oxygen saturation, and palpable splenomegaly. Untreated patients may survive for six to 18 months, whereas adequate treatment may extend life expectancy to more than 10 years. Treatment includes phlebotomy with the possible addition of myelosuppressive agents based on a risk-stratified approach. Agents under investigation include interferon alfa-2b, anagrelide, and aspirin. Consultation with a hematologist is recommended.

  7. Myelofibrosis

    MedlinePlus

    ... into all of your blood cells. Your blood is made of: Red blood cells (which carry oxygen to your tissues) White blood cells (which fight infection) Platelets (which help your blood clot) When the bone marrow is scarred, it cannot make enough blood cells. Anemia , ...

  8. Assay of 6-thioinosinic acid and 6-thioguanine nucleotides, active metabolites of 6-mercaptopurine, in human red blood cells.

    PubMed

    Lennard, L

    1987-12-25

    A highly sensitive reversed-phase high-performance liquid chromatographic assay, with ultraviolet detection, for 6-thioinosinic acid and the 6-thioguanine nucleotides (6TGNs) was developed. The 6TGNs are major red blood cell metabolites of the immunosuppressive agent azathioprine and the cytotoxic drugs 6-thioguanine and 6-mercaptopurine. The assay is based on the specific extraction, via phenyl mercury adduct formation, of the thiopurine released on acid hydrolysis of the thionucleotide metabolite. Red blood cell 6TGN concentrations in eighteen leukaemic children receiving chronic 6-mercaptopurine chemotherapy were measured and compared to a previously published spectrophotofluorometric assay. Linear regression analysis gave r = 0.991; P less than 0.001; y = 40 + 0.94x.

  9. Cell-penetrating peptides meditated encapsulation of protein therapeutics into intact red blood cells and its application

    PubMed Central

    Wang, Yinsong; Liu, Quan; Chung, Hee Sun; Kwon, Young Min; Shin, Meong Cheol; Lee, Kyuri; Yang, Victor C

    2014-01-01

    Red blood cells (RBCs) based drug carrier appears to be the most appealing for protein drugs due to their unmatched biocompatability, biodegradability, and long lifespan in the circulation. Numerous methods for encapsulating protein drugs into RBCs were developed, however, most of them induce partial disruption of the cell membrane, resulting in irreversible alterations in both physical and chemical properties of RBCs. Herein, we introduce a novel method for encapsulating proteins into intact RBCs, which was meditated by a cell penetrating peptide (CPP) developed in our lab—low molecular weight protamine (LMWP). L-asparaginase, one of the primary drugs used in treatment of acute lymphoblastic leukemia (ALL), was chosen as a model protein to illustrate the encapsulation into erythrocytes mediated by CPPs. In addition current treatment of ALL using different L-asparaginase delivery and encapsulation methods as well as their associated problems were also reviewed. PMID:24374002

  10. The basics of CAR T design and challenges in immunotherapy of solid tumors - Ovarian cancer as a model.

    PubMed

    Xu, Xuequn; Qiu, Jin; Sun, Yi

    2017-07-03

    Chimeric antigen receptor T cells are T cells genetically engineered with CAR constructs which mainly contain scFV and TCR zeta chain. With promising development in blood cancers, CAR T trials are also applied in solid cancers. However, the treatment effect in solid cancers is lower than expected. This review summarizes difference of CAR T applications in solid and blood cancers. Future challenges of CAR T cell treatment in solid cancer are also discussed using ovarian cancer as an example.

  11. Red Blood Cell Antigen Genotyping for Sickle Cell Disease, Thalassemia, and Other Transfusion Complications.

    PubMed

    Fasano, Ross M; Chou, Stella T

    2016-10-01

    Since the discovery of the ABO blood group in the early 20th century, more than 300 blood group antigens have been categorized among 35 blood group systems. The molecular basis for most blood group antigens has been determined and demonstrates tremendous genetic diversity, particularly in the ABO and Rh systems. Several blood group genotyping assays have been developed, and 1 platform has been approved by the Food and Drug Administration as a "test of record," such that no phenotype confirmation with antisera is required. DNA-based red blood cell (RBC) phenotyping can overcome certain limitations of hemagglutination assays and is beneficial in many transfusion settings. Genotyping can be used to determine RBC antigen phenotypes in patients recently transfused or with interfering allo- or autoantibodies, to resolve discrepant serologic typing, and/or when typing antisera are not readily available. Molecular RBC antigen typing can facilitate complex antibody evaluations and guide RBC selection for patients with sickle cell disease (SCD), thalassemia, and autoimmune hemolytic anemia. High-resolution RH genotyping can identify variant RHD and RHCE in patients with SCD, which have been associated with alloimmunization. In the future, broader access to cost-efficient, high-resolution RBC genotyping technology for both patient and donor populations may be transformative for the field of transfusion medicine. Copyright © 2016. Published by Elsevier Inc.

  12. Blood and interstitial flow in the hierarchical pore space architecture of bone tissue.

    PubMed

    Cowin, Stephen C; Cardoso, Luis

    2015-03-18

    There are two main types of fluid in bone tissue, blood and interstitial fluid. The chemical composition of these fluids varies with time and location in bone. Blood arrives through the arterial system containing oxygen and other nutrients and the blood components depart via the venous system containing less oxygen and reduced nutrition. Within the bone, as within other tissues, substances pass from the blood through the arterial walls into the interstitial fluid. The movement of the interstitial fluid carries these substances to the cells within the bone and, at the same time, carries off the waste materials from the cells. Bone tissue would not live without these fluid movements. The development of a model for poroelastic materials with hierarchical pore space architecture for the description of blood flow and interstitial fluid flow in living bone tissue is reviewed. The model is applied to the problem of determining the exchange of pore fluid between the vascular porosity and the lacunar-canalicular porosity in bone tissue due to cyclic mechanical loading and blood pressure. These results are basic to the understanding of interstitial flow in bone tissue that, in turn, is basic to understanding of nutrient transport from the vasculature to the bone cells buried in the bone tissue and to the process of mechanotransduction by these cells. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Blood and Interstitial flow in the hierarchical pore space architecture of bone tissue

    PubMed Central

    Cowin, Stephen C.; Cardoso, Luis

    2015-01-01

    There are two main types of fluid in bone tissue, blood and interstitial fluid. The chemical composition of these fluids varies with time and location in bone. Blood arrives through the arterial system containing oxygen and other nutrients and the blood components depart via the venous system containing less oxygen and reduced nutrition. Within the bone, as within other tissues, substances pass from the blood through the arterial walls into the interstitial fluid. The movement of the interstitial fluid carries these substances to the cells within the bone and, at the same time, carries off the waste materials from the cells. Bone tissue would not live without these fluid movements. The development of a model for poroelastic materials with hierarchical pore space architecture for the description of blood flow and interstitial fluid flow in living bone tissue is reviewed. The model is applied to the problem of determining the exchange of pore fluid between the vascular porosity and the lacunar-canalicular porosity in bone tissue due to cyclic mechanical loading and blood pressure. These results are basic to the understanding of interstitial flow in bone tissue that, in turn, is basic to understanding of nutrient transport from the vasculature to the bone cells buried in the bone tissue and to the process of mechanotransduction by these cells. PMID:25666410

  14. Glycosylated hemoglobin concentrations in the blood of healthy dogs and dogs with naturally developing diabetes mellitus, pancreatic beta-cell neoplasia, hyperadrenocorticism, and anemia.

    PubMed

    Elliott, D A; Nelson, R W; Feldman, E C; Neal, L A

    1997-09-15

    To characterize glycosylated hemoglobin (GHb) concentrations in the blood of dogs with disorders that may affect serum glucose or blood GHb concentrations, and to determine whether changes in GHb concentration correlate with changes in control of diabetes in dogs. Prospective study. 63 healthy dogs, 9 dogs with anemia, 24 dogs with untreated hyperadrenocorticism, 12 dogs with pancreatic beta-cell neoplasia, 23 dogs with newly diagnosed diabetes mellitus, and 77 diabetic dogs treated with insulin. Control of diabetes in dogs treated with insulin was classified as good or poor on the basis of history, physical examination findings, changes in body weight, and measurement of serum glucose concentrations Sequential evaluations of control were performed and GHb concentration in blood was measured, by means of affinity chromatography, for 5 untreated diabetic dogs before and after initiating insulin treatment, for 10 poorly controlled diabetic dogs before and after increasing insulin dosage, and for 5 diabetic dogs before and after pancreatic islet cell transplantation. Mean (+/-SD) GHb concentration was 3.3 +/- 0.8% in the blood of healthy dogs. Compared with results from healthy dogs, mean GHb concentration was significantly lower in the blood of dogs with anemia and pancreatic beta-cell neoplasia and significantly higher in the blood of untreated diabetic dogs. Mean GHb concentration was significantly higher in the blood of 46 poorly controlled diabetic dogs, compared with 31 well-controlled diabetic dogs (7.3 +/- 1.8 vs 5.7 +/- 1.7%, respectively). Mean GHb concentration in blood decreased significantly in 5 untreated diabetic dogs after treatment (8.7 +/- 1.9 vs 5.3 +/- 1.9%). Mean GHb concentration in blood also decreased significantly in 10 poorly controlled diabetic dogs after control was improved and in 5 diabetic dogs after they had received a pancreatic islet cell transplant. Measurement of GHb concentration in blood may assist in monitoring control of diabetes in dogs.

  15. The potential of a dielectrophoresis activated cell sorter (DACS) as a next generation cell sorter

    NASA Astrophysics Data System (ADS)

    Lee, Dongkyu; Hwang, Bohyun; Kim, Byungkyu

    2016-12-01

    Originally introduced by H. A. Pohl in 1951, dielectrophoretic (DEP) force has been used as a striking tool for biological particle manipulation (or separation) for the last few decades. In particular, dielectrophoresis activated cell sorters (DACSes) have been developed for applications in various biomedical fields. These applications include cell replacement therapy, drug screening and medical diagnostics. Since a DACS does not require a specific bio-marker, it is able to function as a biological particle sorting tool with numerous configurations for various cells [e.g. red blood cells (RBCs), white blood cells (WBCs), circulating tumor cells, leukemia cells, breast cancer cells, bacterial cells, yeast cells and sperm cells]. This article explores current DACS capabilities worldwide, and it also looks at recent developments intended to overcome particular limitations. First, the basic theories are reviewed. Then, representative DACSes based on DEP trapping, traveling wave DEP systems, DEP field-flow fractionation and DEP barriers are introduced, and the strong and weak points of each DACS are discussed. Finally, for the purposes of commercialization, prerequisites regarding throughput, efficiency and recovery rates are discussed in detail through comparisons with commercial cell sorters (e.g. fluorescent activated and magnetic activated cell sorters).

  16. 21 CFR 864.8200 - Blood cell diluent.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Blood cell diluent. 864.8200 Section 864.8200 Food... DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8200 Blood cell diluent. (a) Identification. A blood cell diluent is a device used to dilute blood for further testing, such as blood cell...

  17. 21 CFR 864.8200 - Blood cell diluent.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Blood cell diluent. 864.8200 Section 864.8200 Food... DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8200 Blood cell diluent. (a) Identification. A blood cell diluent is a device used to dilute blood for further testing, such as blood cell...

  18. 21 CFR 864.8200 - Blood cell diluent.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Blood cell diluent. 864.8200 Section 864.8200 Food... DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8200 Blood cell diluent. (a) Identification. A blood cell diluent is a device used to dilute blood for further testing, such as blood cell...

  19. 21 CFR 864.8200 - Blood cell diluent.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Blood cell diluent. 864.8200 Section 864.8200 Food... DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8200 Blood cell diluent. (a) Identification. A blood cell diluent is a device used to dilute blood for further testing, such as blood cell...

  20. 21 CFR 864.8200 - Blood cell diluent.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Blood cell diluent. 864.8200 Section 864.8200 Food... DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8200 Blood cell diluent. (a) Identification. A blood cell diluent is a device used to dilute blood for further testing, such as blood cell...

  1. Nanobiotechnology for the capture and manipulation of circulating tumor cells.

    PubMed

    Hughes, Andrew D; King, Michael R

    2012-01-01

    A necessary step in metastasis is the dissemination of malignant cells into the bloodstream, where cancer cells travel throughout the body as circulating tumor cells (CTC) in search of an opportunity to seed a secondary tumor. CTC represent a valuable diagnostic tool: evidence indicates that the quantity of CTC in the blood has been shown to relate to the severity of the illness, and samples are readily obtained through routine blood draws. As such, there has been a push toward developing technologies to reliably detect CTC using a variety of molecular and immunocytochemical techniques. In addition to their use in diagnostics, CTC detection systems that isolate CTC in such a way that the cells remain viable will allow for the performance of live-cell assays to facilitate the development of personalized cancer therapies. Moreover, techniques for the direct manipulation of CTC in circulation have been developed, intending to block metastasis in situ. We review a number of current and emerging micro- and nanobiotechnology approaches for the detection, capture, and manipulation of rare CTC aimed at advancing cancer treatment. Copyright © 2011 Wiley Periodicals, Inc.

  2. The expression dynamics of mechanosensitive genes in extra-embryonic vasculature after heart starts to beat in chick embryo.

    PubMed

    Rajendran, Saranya; Sundaresan, Lakshmikirupa; Rajendran, Krithika; Selvaraj, Monica; Gupta, Ravi; Chatterjee, Suvro

    2016-02-11

    Fluid flow plays an important role in vascular development. However, the detailed mechanisms, particularly the link between flow and modulation of gene expression during vascular development, remain unexplored. In chick embryo, the key events of vascular development from initiation of heart beat to establishment of effective blood flow occur between the stages HH10 and HH13. Therefore, we propose a novel in vivo model to study the flow experienced by developing endothelium. Using this model, we aimed to capture the transcriptome dynamics of the pre- and post-flow conditions. RNA was isolated from extra embryonic area vasculosa (EE-AV) pooled from three chick embryos between HH10-HH13 and RNA sequencing was performed. The whole transcriptome sequencing of chick identified up-regulation of some of the previously well-known mechanosensitive genes including NFR2, HAND1, CTGF and KDR. GO analyses of the up-regulated genes revealed enrichment of several biological processes including heart development, extracellular matrix organization, cell-matrix adhesion, cell migration, blood vessel development, patterning of blood vessels, collagen fibril organization. Genes encoding for gap junctions proteins which are involved in vascular remodeling and arterial-venous differentiation, and genes involved in cell-cell adhesion, and ECM interactions were significantly up-regulated. Validation of selected genes through semi quantitative PCR was performed. The study indicates that shear stress plays a major role in development. Through appropriate validation, this platform can serve as an in vivo model to study conditions of disturbed flow in pathology as well as normal flow during development.

  3. Human red blood cells have an enhancing effect on the relative expansion of CD8+ T lymphocytes in vitro.

    PubMed

    Porto, B; Fonseca, A M; Godinho, I; Arosa, F A; Porto, G

    2001-12-01

    The present study was designed to analyse the effect of red blood cells on T-cell proliferation and expansion. A comparative study was done in peripheral blood cell cultures stimulated with phytohemagglutinin, with or without red blood cells. The presence of red blood cells had a consistent enhancing effect on T lymphocyte proliferation, as determined by an increase in both the mitotic index and thymidine uptake. Phenotypic characterization of T cell blasts by flow cytometry revealed that, in the presence of red blood cells, expanding cells were preferentially CD8+ cells. Accordingly, proliferation of CD8+ lymphocytes from two patients with CD8+ hyperlymphocytosis was dependent on the presence of red blood cells. In contrast, proliferation of CD4+ lymphocytes from two patients with CD4+ hyperlymphocytosis was strongly inhibited by the presence of red blood cells. This is the first reported evidence that human red blood cells have an enhancing effect on the expansion of CD8+ lymphocytes in vitro.

  4. Enhanced H-filter based on Fåhræus-Lindqvist effect for efficient and robust dialysis without membrane

    PubMed Central

    Zheng, Wei-Chao; Xie, Rui; He, Li-Qun; Xi, Yue-Heng; Liu, Ying-Mei; Meng, Zhi-Jun; Wang, Wei; Ju, Xiao-Jie; Chen, Gang; Chu, Liang-Yin

    2015-01-01

    A novel microfluidic device for highly efficient and robust dialysis without membrane is highly desired for the development of portable or wearable microdialyzer. Here we report an enhanced H-filter with pillar array based on Fåhræus-Lindqvist effect (F-L effect) for highly efficient and robust membraneless dialysis of simplified blood for the first time. The H-filter employs two fluids laminarly flowing in the microchannel for continuously membraneless dialysis. With pillar array in the microchannel, the two laminar flows, with one containing blood cells and small molecules and another containing dialyzate solution, can form a cell-free layer at the interface as selective zones for separation. This provides enhanced mixing yet extremely low shear for extraction of small molecules from the blood-cell-containing flow into the dialyzate flow, resulting in robust separation with reduced cell loss and improved efficiency. We demonstrate this by first using Chlorella pyrenoidosa as model cells to quantitatively study the separation performances, and then using simplified human blood for dialysis. The advanced H-filter, with highly efficient and robust performance for membraneless dialysis, shows great potential as promising candidate for rapid blood analysis/separation, and as fundamental structure for portable dialyzer. PMID:26339313

  5. Mapping the distribution of specific antibody interaction forces on individual red blood cells

    NASA Astrophysics Data System (ADS)

    Yeow, Natasha; Tabor, Rico F.; Garnier, Gil

    2017-02-01

    Current blood typing methods rely on the agglutination of red blood cells (RBCs) to macroscopically indicate a positive result. An indirect agglutination mechanism is required when blood typing with IgG forms of antibodies. To date, the interaction forces between anti-IgG and IgG antibodies have been poorly quantified, and blood group related antigens have never been quantified with the atomic force microscope (AFM). Instead, the total intensity resulting from fluorescent-tagged antibodies adsorbed on RBC has been measured to calculate an average antigen density on a series of RBCs. In this study we mapped specific antibody interaction forces on the RBC surface. AFM cantilever tips functionalized with anti-IgG were used to probe RBCs incubated with specific IgG antibodies. This work provides unique insight into antibody-antigen interactions in their native cell-bound location, and crucially, on a per-cell basis rather than an ensemble average set of properties. Force profiles obtained from the AFM directly provide not only the anti-IgG - IgG antibody interaction force, but also the spatial distribution and density of antigens over a single cell. This new understanding might be translated into the development of very selective and quantitative interactions that underpin the action of drugs in the treatment of frontier illnesses.

  6. The case for and against initiating either hydroxyurea therapy, blood transfusion therapy or hematopoietic stem cell transplant in asymptomatic children with sickle cell disease.

    PubMed

    Kassim, Adetola A; DeBaun, Michael R

    2014-02-01

    The perception of an asymptomatic sickle cell disease (SCD) state is a misnomer. Children without overt symptoms, likely have subclinical disease beginning in infancy with progression into adulthood. Predictive models of SCD severity are unable to predict a subgroup of asymptomatic children likely to develop severe SCD. The introduction of penicillin prophylaxis, conjugated pneumococcal and Haemophilus influenzae type B vaccines have dramatically decreased the rate of life-threatening infections, while use of hydroxyurea in children has decreased pain and acute chest syndrome events. Use of transcranial Doppler coupled with regular blood transfusion therapy has decreased the rate of overt strokes and premature death associated with strokes. Currently, therapy for asymptomatic children includes hydroxyurea, regular blood transfusion or allogeneic hematopoietic stem cell transplant (allo-HSCT). The pros and cons of initiating hydroxyurea, regular blood transfusion or allo-HSCT in asymptomatic children with SCD. Emerging evidence from observational studies indicates that hydroxyurea prolongs survival in children and adults with sickle cell anemia. Regular blood transfusions reduce incidence of strokes, acute chest and pain episodes, but is associated with the burden of monthly visits and excessive iron stores. Although curative, the perceived risk:benefit ratio associated with allo-HSCT limits its use in asymptomatic children.

  7. Intravenous immunoglobulins reverse acute vaso-occlusive crises in sickle cell mice through rapid inhibition of neutrophil adhesion

    PubMed Central

    Chang, Jungshan; Shi, Patricia A.; Chiang, Elaine Y.

    2008-01-01

    Previous studies using intravital microscopy in a sickle cell disease (SCD) mouse model suggest that adherent white blood cells (WBCs) play a key role in vaso-occlusion by capturing circulating red blood cells (RBCs) in venules. Commercial intravenous immunoglobulin (IVIG) given before the inflammatory stimuli increased microcirculatory blood flow and survival. To mimic the clinical situation in which SCD patients seek medical attention after the onset of symptoms, we developed an in vivo model in which the therapeutic intervention (eg, IVIG) was administered after in the inflammatory challenge. In this setting, IVIG rapidly (< 10 minutes) reduced adherent leukocyte numbers and dramatically inhibited interactions between RBCs and WBCs, resulting in improved microcirculatory blood flow and survival of sickle cell “Berkeley” mice. Longer survival correlated positively with blood flow (P = .001) and negatively with the number of adherent leukocytes (P = .001) and RBC-WBC interactions (P = .002). Using multichannel digital fluorescence videomicroscopy, we found that IVIG affected specifically the recruitment of neutrophils. Moreover, further analyses of leukocyte behavior revealed that IVIG significantly increased rolling velocities, indicating that it alters adhesion pathways involved in slow rolling. These data suggest that the potential therapeutic benefits of IVIG in SCD crises should be evaluated in a clinical trial. PMID:17932253

  8. Whole blood staining in suspension for nonspecific esterase and alkaline phosphatase analyzed with a Technicon H-1.

    PubMed

    Ross, D W; Bishop, C; Henderson, A; Kaplow, L

    1990-01-01

    We adapted previously published methods for nonspecific esterase and alkaline phosphatase staining of white blood cells in suspension for use on a Technicon H-1 hematology analyzer. The objective was to develop a semiautomated method using whole blood that could be employed on a large scale for hematology laboratory applications, including toxicology studies, measurement of neutrophil left shift, and cytochemical classification of myeloid leukemias. The nonspecific esterase method uses the pararosaniline stain, generating the unstable substrate from two stable precursors. Whole blood is added to the substrate plus dye mix. Next, acid lysis and fixation steps destroy red cells and stabilize the monocyte staining. The alkaline phosphatase stain employs a stable naphthyl phosphate substrate and fast blue B coupling dye. The red cells are lysed with a pH 10.3 propanediol buffer, and the white blood cells are then stabilized with formalin fixation. For both methods the staining is performed off-line, and the sample is then diluted with propanediol to match the refractive index of the sheath on the H-1 analyzer, before aspiration into the direct cytometry port. A cytogram of scattered versus absorbed light is obtained. The number of cells staining and the intensity of the stain can be quantified from the cytogram.

  9. Enhanced H-filter based on Fåhræus-Lindqvist effect for efficient and robust dialysis without membrane.

    PubMed

    Zheng, Wei-Chao; Xie, Rui; He, Li-Qun; Xi, Yue-Heng; Liu, Ying-Mei; Meng, Zhi-Jun; Wang, Wei; Ju, Xiao-Jie; Chen, Gang; Chu, Liang-Yin

    2015-07-01

    A novel microfluidic device for highly efficient and robust dialysis without membrane is highly desired for the development of portable or wearable microdialyzer. Here we report an enhanced H-filter with pillar array based on Fåhræus-Lindqvist effect (F-L effect) for highly efficient and robust membraneless dialysis of simplified blood for the first time. The H-filter employs two fluids laminarly flowing in the microchannel for continuously membraneless dialysis. With pillar array in the microchannel, the two laminar flows, with one containing blood cells and small molecules and another containing dialyzate solution, can form a cell-free layer at the interface as selective zones for separation. This provides enhanced mixing yet extremely low shear for extraction of small molecules from the blood-cell-containing flow into the dialyzate flow, resulting in robust separation with reduced cell loss and improved efficiency. We demonstrate this by first using Chlorella pyrenoidosa as model cells to quantitatively study the separation performances, and then using simplified human blood for dialysis. The advanced H-filter, with highly efficient and robust performance for membraneless dialysis, shows great potential as promising candidate for rapid blood analysis/separation, and as fundamental structure for portable dialyzer.

  10. Assessment of relationship of ABO blood groups among tobacco induced oral cancer patients of Kanpur Population, Uttar Pradesh.

    PubMed

    Ramesh, Gayathri; Katiyar, Anuradha; Raj, Amrita; Kumar, Amit; Nagarajappa, Ramesh; Pandey, Amit

    2017-11-01

    The possibility of association between ABO blood groups and malignancy was first discussed by Anderson DE & Haas C. The association between blood group and oral cancer is least explored and hence this study was undertaken to evaluate relationship of ABO blood groups with an increased risk for oral cancer. The present study was conducted at various cancer hospitals in Kanpur. The study samples comprised 100 oral cancer patients and 50 controls with tobacco chewing habit. The information regarding the socio demographic profile, history on tobacco habits, type of oral cancer and ABO blood group profile was obtained from the case sheets of the patients. The frequency of squamous cell carcinoma was significantly higher in men (78%) than women (22%) and mostly found in the age range of 45-65 years and also consuming chewing type of tobacco. It was found that out of 100 patients, 53 were of blood group B+ve, 28 of O +ve, 16 of A+ve and 3 had the blood group AB+ve. The high potential risk of developing OSCC was more in B+ve blood group (1.96 times), and relative frequency (%) in blood group O+ve (1.64 times) than in the control group Among locations of oral cancers, squamous cell carcinoma of tongue (25%) and buccal mucosa (15%) was more common in B+ve and Carcinoma of floor of mouth (11%) was more common in O+ve blood group cases. It was found that people with blood group B+ve, followed by O+ve had increased risk of developing OSCC with most prevalent being Well Differentiated OSCC as compared to people of other blood groups. The present study reveals that there is an inherited element in the susceptibility against different types of oral cancers. The people with blood group B+ve and O+ve having tobacco chewing habits can be appraised that they are more at risk to develop oral cancer than people with other blood groups.

  11. Directed evolution of an angiopoietin-2 ligand trap by somatic hypermutation and cell surface display.

    PubMed

    Brindle, Nicholas P J; Sale, Julian E; Arakawa, Hiroshi; Buerstedde, Jean-Marie; Nuamchit, Teonchit; Sharma, Shikha; Steele, Kathryn H

    2013-11-15

    Tie2 is a receptor tyrosine kinase that is essential for the development and maintenance of blood vessels through binding the soluble ligands angiopoietin 1 (Ang1) and 2 (Ang2). Ang1 is constitutively produced by perivascular cells and is protective of the adult vasculature. Ang2 plays an important role in blood vessel formation and is normally expressed during development. However, its re-expression in disease states, including cancer and sepsis, results in destabilization of blood vessels contributing to the pathology of these conditions. Ang2 is thus an attractive therapeutic target. Here we report the directed evolution of a ligand trap for Ang2 by harnessing the B cell somatic hypermutation machinery and coupling this to selectable cell surface display of a Tie2 ectodomain. Directed evolution produced an unexpected combination of mutations resulting in loss of Ang1 binding but maintenance of Ang2 binding. A soluble form of the evolved ectodomain binds Ang2 but not Ang1. Furthermore, the soluble evolved ectodomain blocks Ang2 effects on endothelial cells without interfering with Ang1 activity. Our study has created a novel Ang2 ligand trap and provided proof of concept for combining surface display and exogenous gene diversification in B cells for evolution of a non-immunoglobulin target.

  12. T cell activity in successful treatment of chronic urticaria with omalizumab

    PubMed Central

    2011-01-01

    Omalizumab, a humanized monoclonal anti-IgE antibody has the potential to alter allergen processing. Recently, it has been postulated the assessment of PHA-stimulated adenosine triphosphate (ATP) activity as maker of CD4+ T cells activity in peripheral blood cells. We present the case report of a 35-year-old woman with a history of chronic idiopathic urticaria and angioedema of 8 years of development with poor response to treatment. The patient was partially controlled with cyclosporine at doses of 100 mg/12 h. However, she was still developing hives daily. Finally treatment with omalizumab was started at dose of 300 mg every 2 weeks. The patient experienced a decrease in urticarial lesions 2 days after starting therapy. We also evaluated the effects of omalizumab therapy on the activity of peripheral blood CD4+ T cells from the patient, in order to determine the potential modification of anti-IgE therapy on the process of antigen presentation-recognition. Activity of CD4+ cells by ATP release was clearly increased demonstrating an enlarged CD4 activity. Omalizumab may be useful in the treatment of severe chronic urticaria. ATP activity of peripheral blood CD4+ T cells might be a non-subjective method to assess Omalizumab activity. PMID:21791043

  13. Genetics Home Reference: ataxia-telangiectasia

    MedlinePlus

    ... risk of developing cancer, particularly cancer of blood-forming cells ( leukemia ) and cancer of immune system cells ( ... Demuth I, Dutrannoy V, Marques W Jr, Neitzel H, Schindler D, Dimova PS, Chrzanowska KH, Bojinova V, ...

  14. Epstein-Barr Virus-positive T-cell Lymphoproliferative Disease Following Umbilical Cord Blood Transplantation for Acute Myeloid Leukemia.

    PubMed

    Yui, Shunsuke; Yamaguchi, Hiroki; Imadome, Ken-ichi; Arai, Ayako; Takahashi, Mikiko; Ohashi, Ryuji; Tamai, Hayato; Moriya, Keiichi; Nakayama, Kazutaka; Shimizu, Akira; Inokuchi, Koiti

    2016-01-01

    We report a case of the extremely rare condition Epstein-Barr virus (EBV)-positive T-cell lymphoproliferative disease (LPD) which occurred after umbilical cord blood transplantation. A 25-year-old Japanese man underwent cord blood transplantation from a male human leukocyte antigen 4/6-matched donor due to acute myeloid leukemia with trisomy 8. Bone marrow examination on day 30 showed chimerism with at least 90% donor cells and complete hematological response. Chronic symptoms of graft-versus-host disease appeared only on the skin and were successfully treated with cyclosporine alone. Three years later, however, the patient experienced repeated cold-like symptoms and was hospitalized with liver dysfunction. A high fever developed and was followed by significant edema of the right side of the face. The EBV DNA copy number in whole peripheral blood was 2×10(4)/mL. Liver biopsy showed invasion of EBV-infected CD8-positive T cells. Southern blotting analysis of the whole peripheral blood showed that the T-cell receptor Cβ1 rearrangement was positive. On the basis of these results, EBV-positive T-cell LPD was diagnosed and treated with prednisolone, cyclosporine, and etoposide, followed by cyclophosphamide, doxorubicin, vincristine, and prednisone. However, the patient died of cardiac function failure, pneumonia, and pulmonary hemorrhage, all of unidentified cause. Most cases of EBV-related LPD after hematopoietic stem cell transplantation consist of EBV-positive B-cell LPD, and, to our knowledge, de novo EBV-positive T-cell LPD subsequent to transplantation has not been previously reported.

  15. Umbilical cord blood banking: implications for perinatal care providers.

    PubMed

    Armson, B Anthony

    2005-03-01

    To evaluate the risks and benefits of umbilical cord blood banking for future stem cell transplantation and to provide guidelines for Canadian perinatal care providers regarding the counselling, procedural, and ethical implications of this potential therapeutic option. Selective or routine collection and storage of umbilical cord blood for future autologous (self) or allogenic (related or unrelated) transplantation of hematopoietic stem cells to treat malignant and nonmalignant disorders in children and adults. Maternal and perinatal morbidity, indications for umbilical cord blood transplantation, short- and long-term risks and benefits of umbilical cord blood transplantation, burden of umbilical cord blood collection on perinatal care providers, parental satisfaction, and health care costs. MEDLINE and PubMed searches were conducted from January 1970 to October 2003 for English-language articles related to umbilical cord blood collection, banking, and transplantation; the Cochrane library was searched; and committee opinions of the Royal College of Obstetricians and Gynaecologists, the American Academy of Pediatrics, and the American College of Obstetricians and Gynecologists were obtained. The evidence collected was reviewed and evaluated by the Maternal/Fetal Medicine Committee of the Society of Obstetricians and Gynaecologists of Canada (SOGC), and recommendations were made using the evaluation of evidence guidelines developed by the Canadian Task Force on the Periodic Health Exam. Umbilical cord blood is a readily available source of hematopoietic stem cells used with increasing frequency as an alternative to bone marrow or peripheral stem cells for transplantation in the treatment of malignant and nonmalignant conditions in children and adults. Umbilical cord blood transplantation provides a rich source of hematopoietic stem cells with several advantages, including prompt availability, decreased risk of transmissible viral infections and graft-versus-host disease (GVHD) in both human leukocyte antigen(HLA)-matched and HLA-mismatched stem cell transplants, and ease of collection with little risk to the mother or newborn. Potential limitations of umbilical cord blood transplantation include insufficient stem cell dose to reliably treat larger children and adult recipients, slower rate of engraftment, and the potential for transfer of genetically abnormal hematopoietic stem cells. The optimum method of umbilical cord blood transplantation is not yet clear, though available evidence would favour collection before delivery of the placenta. There are many unresolved ethical issues related to umbilical cord blood banking, particularly related to the rapid growth of private, for-profit, cord blood banks offering long-term storage for potential future autologous or related allogenic transplantation. The financial burden to the health care system for public cord blood banking and to families for private cord blood collection and storage is considerable. 1. Perinatal care providers should be informed about the promising clinical potential of hematopoietic stem cells in umbilical cord blood and about current indications for its collection, storage, and use, based on sound scientific evidence (II-3B). 2. Umbilical cord blood collection should be considered for a sibling or parent in need of stem cell transplantation when an HLA-identical bone marrow cell or peripheral stem cell donation from a sibling or parent is unavailable for transplantation (II-2B). 3. Umbilical cord blood should be considered when allogeneic transplantation is the treatment of choice for a child who does not have an HLA-identical sibling or a well-matched, unrelated adult bone marrow donor (II-2B). 4. Umbilical cord blood should be considered for allogeneic transplantation in adolescents and young adults with hematologic malignancies who have no suitable bone marrow donor and who require urgent transplantation (II-3B). 5. Altruistic donation of cord blood for public banking and subsequent allogeneic transplantation should be encouraged when umbilical cord blood banking is being considered by childbearing women, prenatal care providers, and(or) obstetric facilities (II-2B). 6. Collection and long-term storage of umbilical cord blood for autologous donation is not recommended because of the limited indications and lack of scientific evidence to support the practice (III-D). 7. Birth unit staff should receive training in standardized cord blood unit volume and reduce the rejection rate owing to labelling problems, bacterial contamination, and clotting (II-3B). 8. The safe management of obstetric delivery should never be compromised to facilitate cord blood collection. Manoeuvres to optimize cord blood unit volume, such as early clamping of the umbilical cord, may be employed at the discretion of the perinatal care team, provided the safety of the mother and newborn remains the major priority (III-A). 9. Collection of cord blood should be performed after the delivery of the infant but before delivery of the placenta, using a closed collection system and procedures that minimize risk of bacterial and maternal fluid contamination (see Figures 1a-1c) (I-B). 10. Public and private cord blood banks should strictly adhere to standardized policies and procedures for transportation, safety testing, HLA typing, cryopreservation, and long-term storage of umbilical cord blood units to prevent harm to the recipient, to eliminate the risk of transmitting communicable diseases, and thus to maximize the effectiveness of umbilical cord blood stem cell transplantation (II-1A). 11. Canada should establish registration, regulation, and accreditation of cord blood collection centres and banks (III-B). 12. Recruitment of cord blood donors should be fair and noncoercive. Criteria to ensure an equitable recruitment process include the following: (a) adequate supply to meet population transplantation needs; (b) fair distribution of the burdens and benefits of cord blood collection; (c) optimal timing of recruitment; (d) appropriately trained personnel; and (e) accurate recruitment message (III-A). 13. Informed consent for umbilical cord blood collection and banking should be obtained during prenatal care, before the onset of labour, with confirmation of consent after delivery (III-B). 14. Linkage of cord blood units and donors is recommended for public safety. Policies regarding the disclosure of abnormal test results to donor parents should be developed. Donor privacy and confidentiality of test results must be respected (III-C). 15. Commercial cord blood banks should be carefully regulated to ensure that promotion and pricing practices are fair, financial relationships are transparent, banked cord blood is stored and used according to approved standards, and parents and care providers understand the differences between autologous versus allogenic donations and private versus public banks (III-B). 16. Policies and procedures need to be developed by perinatal facilities and national health authorities to respond to prenatal requests for public and private cord blood banking (III-C).

  16. Synergistic use of adult and embryonic stem cells to study human hematopoiesis.

    PubMed

    Martin, Colin H; Kaufman, Dan S

    2005-10-01

    Embryonic stem cells (ESCs) and adult stem cells both provide important resources to define the mechanisms of hematopoietic cell development. To date, studies that utilize hematopoietic stem cells (HSCs) isolated from sites such as bone marrow or umbilical cord blood have been the primary means to identify molecular and phenotypic characteristics of blood cell populations able to mediate long-term hematopoietic engraftment. Although these HSCs are very useful clinically, they are difficult to expand in culture. Now, basic research on human ESCs provides opportunities for novel investigations into the mechanisms of HSC self-renewal. Eventually, the long history of basic and clinical research with adult hematopoietic cell transplantation could translate to establish human ESCs as a suitable alternative starting cell source for clinical hematopoietic reconstitution.

  17. Overexpression of MMP-9 and its inhibitors in blood mononuclear cells after myocardial infarction--is it associated with depressive symptomatology?

    PubMed

    Jönsson, Simon; Lundberg, Anna K; Jonasson, Lena

    2014-01-01

    Matrix metalloproteinase (MMP)-9 may play a central role in the development and progression of atherosclerosis. Emerging evidence also indicates an association between MMP-9 and depressive symptomatology. Here, we investigated whether expression of MMP-9 and its inhibitors in blood mononuclear cells and plasma were related to depressive symptoms in patients with a recent myocardial infarction (MI). Blood sampling was performed between 6 and 18 months after MI in 57 patients. Forty-one clinically healthy subjects were included as controls. Gene expression of MMP-9 and its main tissue inhibitors TIMP-1 and -2 were analyzed in freshly isolated or cultured blood mononuclear cells. Corresponding protein levels were assessed in cell supernatants and plasma. In post-MI patients, mRNA levels of MMP-9 and TIMP-1 and -2 were significantly higher than in controls while protein levels in cell supernatants and plasma did not differ between groups. The Center for Epidemiological Studies - Depression (CES-D) scale was used to assess depressive symptomatology. Repeated assessments during the first 18 months after MI showed significantly higher CES-D scores in patients compared with controls. However, there were no relationships between depressive mood and any of the measurements of MMP-9 or TIMPs. Our findings indicate that overexpression of MMP-9 and TIMPs in blood mononuclear cells and elevated depressive symptoms represent two unrelated phenomena after MI.

  18. Early diagnosis of diabetic vascular complications: impairment of red blood cell deformability

    NASA Astrophysics Data System (ADS)

    Shin, Sehyun; Ku, Yunhee; Park, Cheol-Woo; Suh, Jang-Soo

    2006-02-01

    Reduced deformability of red blood cells (RBCs) may play an important role on the pathogenesis of chronic vascular complications of diabetes mellitus. However, available techniques for measuring RBC deformability often require washing process after each measurement, which is not optimal for day-to-day clinical use at point of care. The objectives of the present study are to develop a device and to delineate the correlation of impaired RBC deformability with diabetic nephropathy. We developed a disposable ektacytometry to measure RBC deformability, which adopted a laser diffraction technique and slit rheometry. The essential features of this design are its simplicity (ease of operation and no moving parts) and a disposable element which is in contact with the blood sample. We studied adult diabetic patients divided into three groups according to diabetic complications. Group I comprised 57 diabetic patients with normal renal function. Group II comprised 26 diabetic patients with chronic renal failure (CRF). Group III consisted of 30 diabetic subjects with end-stage renal disease (ESRD) on hemodialysis. According to the renal function for the diabetic groups, matched non-diabetic groups were served as control. We found substantially impaired red blood cell deformability in those with normal renal function (group I) compared to non-diabetic control (P = 0.0005). As renal function decreases, an increased impairment in RBC deformability was found. Diabetic patients with chronic renal failure (group II) when compared to non-diabetic controls (CRF) had an apparently greater impairment in RBC deformability (P = 0.07). The non-diabetic cohort (CRF), on the other hand, manifested significant impairment in red blood cell deformability compared to healthy control (P = 0.0001). The newly developed slit ektacytometer can measure the RBC deformability with ease and accuracy. In addition, progressive impairment in cell deformability is associated with renal function loss in all patients regardless of the presence or absence of diabetes. In diabetic patients, early impairment in RBC deformability appears in patients with normal renal function.

  19. Canine and feline blood transfusions: controversies and recent advances in administration practices.

    PubMed

    Kisielewicz, Caroline; Self, Ian A

    2014-05-01

    To discuss and review blood transfusion practices in dogs and cats including collection and storage of blood and administration of products. To report new developments, controversial practices, less conventional blood product administration techniques and where applicable, describe the relevance to anaesthetists and anaesthesia. PubMed and Google Scholar using dog, cat, blood transfusion, packed red blood cells and whole blood as keywords. Blood transfusions improve oxygen carrying capacity and the clinical signs of anaemia. However there are numerous potential risks and complications possible with transfusions, which may outweigh their benefits. Storage of blood products has improved considerably over time but whilst extended storage times may improve their availability, a phenomenon known as the storage lesion has been identified which affects erythrocyte viability and survival. Leukoreduction involves removing leukocytes and platelets thereby preventing their release of cytokines and bioactive compounds which also contribute to storage lesions and certain transfusion reactions. Newer transfusion techniques are being explored such as cell salvage in surgical patients and subsequent autologous transfusion. Xenotransfusions, using blood and blood products between different species, provide an alternative to conventional blood products. © 2014 Association of Veterinary Anaesthetists and the American College of Veterinary Anesthesia and Analgesia.

  20. Nanostructured Substrates for Capturing Circulating Tumor Cells in Whole Blood

    NASA Astrophysics Data System (ADS)

    Tseng, Hsian-Rong

    2009-03-01

    Over the past decade, circulating tumor cells (CTCs) has become an emerging ``biomarker'' for detecting early-stage cancer metastasis, predicting patient prognosis, as well as monitoring disease progression and therapeutic outcomes. However, isolation of CTCs has been technically challenging due to the extremely low abundance (a few to hundreds per ml) of CTCs among a high number of hematologic cells (109 per mL) in the blood. Our joint research team at UCLA has developed a new cell capture technology for quantification of CTCs in whole blood samples. Similar to most of the existing approaches, epithelial cell adhesion molecule antibody (anti-EpCAM) was grafted onto the surfaces to distinguish CTCs from the surrounding hematologic cells. The uniqueness of our technology is the use of nanostructured surfaces, which facilitates local topographical interactions between CTCs and substrates at the very first cell/substrate contacting time point. We demonstrated the ability of these nanostructured substrates to capture CTCs in whole blood samples with significantly improved efficiency and selectivity. The successful demonstration of this cell capture technology using brain, breast and prostate cancer cell lines encouraged us to test this approach in clinical setting. We have been able to bond our first validation study with a commercialized technology based on the use of immunomagnetic nanoparticles. A group of clinically well-characterized prostate cancer patients at UCLA hospital have been recruited and tested in parallel by these two technologies.

  1. Investigating the Flow and Biomechanics of the Embryonic Zebrafish Heart

    NASA Astrophysics Data System (ADS)

    Johnson, Brennan; Garrity, Deborah; Dasi, Lakshmi

    2010-11-01

    Understanding flow and kinematic characteristics of the embryonic heart is a prerequisite to devise early intervention or detection methods in the context of congenital heart defects. In this study, the kinematics and fluid dynamics of the embryonic zebrafish heart were analyzed through the early stages of cardiac development (24-48 hours post-fertilization) in vivo using optical microscopy and high-speed video. Endocardial walls and individual blood cells were segmented from raw images and were tracked through the cardiac cycle. Particle tracking velocimetry analysis yielded quantitative blood cell velocity field, chamber volume, and flow rate information. It was seen that the pumping mechanism starts as a combined peristaltic and suction pump while the heart is in the tube configuration and transforms into a positive displacement pump after cardiac looping. Strong two-phase nature of the fluid is evident. This work provides us new understanding of the spatio-temporal characteristics of kinematics and blood cell velocity field inside the developing heart.

  2. Biomarkers are used to predict quantitative metabolite concentration profiles in human red blood cells

    DOE PAGES

    Yurkovich, James T.; Yang, Laurence; Palsson, Bernhard O.; ...

    2017-03-06

    Deep-coverage metabolomic profiling has revealed a well-defined development of metabolic decay in human red blood cells (RBCs) under cold storage conditions. A set of extracellular biomarkers has been recently identified that reliably defines the qualitative state of the metabolic network throughout this metabolic decay process. Here, we extend the utility of these biomarkers by using them to quantitatively predict the concentrations of other metabolites in the red blood cell. We are able to accurately predict the concentration profile of 84 of the 91 (92%) measured metabolites ( p < 0.05) in RBC metabolism using only measurements of these five biomarkers.more » The median of prediction errors (symmetric mean absolute percent error) across all metabolites was 13%. Furthermore, the ability to predict numerous metabolite concentrations from a simple set of biomarkers offers the potential for the development of a powerful workflow that could be used to evaluate the metabolic state of a biological system using a minimal set of measurements.« less

  3. Biomarkers are used to predict quantitative metabolite concentration profiles in human red blood cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yurkovich, James T.; Yang, Laurence; Palsson, Bernhard O.

    Deep-coverage metabolomic profiling has revealed a well-defined development of metabolic decay in human red blood cells (RBCs) under cold storage conditions. A set of extracellular biomarkers has been recently identified that reliably defines the qualitative state of the metabolic network throughout this metabolic decay process. Here, we extend the utility of these biomarkers by using them to quantitatively predict the concentrations of other metabolites in the red blood cell. We are able to accurately predict the concentration profile of 84 of the 91 (92%) measured metabolites ( p < 0.05) in RBC metabolism using only measurements of these five biomarkers.more » The median of prediction errors (symmetric mean absolute percent error) across all metabolites was 13%. Furthermore, the ability to predict numerous metabolite concentrations from a simple set of biomarkers offers the potential for the development of a powerful workflow that could be used to evaluate the metabolic state of a biological system using a minimal set of measurements.« less

  4. Association between delivery methods for red blood cell transfusion and the risk of venous thromboembolism: a longitudinal study.

    PubMed

    Rogers, Mary A M; Blumberg, Neil; Bernstein, Steven J; Flanders, Scott A; Chopra, Vineet

    2016-12-01

    Mechanisms of red blood cell delivery and their contribution to the incidence of venous thromboembolism are not well understood in the clinical setting. We assessed whether red blood cell transfusion through peripherally inserted central catheters (PICCs) affects the risk of venous thromboembolism compared with transfusion through non-PICC devices. We implemented a prospective study between Jan 1, 2013, and Sept 12, 2015, in patients (age ≥18 years) admitted to a general medicine ward or intensive care unit who received a PICC for any reason during clinical care in 47 hospitals in Michigan, USA, with a maximum follow-up of 70 days. The exposure of interest was route of red blood cell transfusion. The primary outcome was symptomatic, radiographically confirmed, deep-vein thrombosis in the arm or leg or pulmonary embolism. We used Cox proportional hazards regression for analyses. Venous thromboembolism developed in 482 (5%) of 10 604 patients with PICCs. Of 788 patients who received a red blood cell transfusion through a multi-lumen PICC, 61 had venous thromboembolism. The adjusted hazard ratio (HR) for venous thromboembolism in all patients whose transfusions were administered through a multi-lumen PICC was 1·96 (95% CI 1·47-2·61; p<0·0001) compared with patients not receiving a transfusion, and was 1·79 (1·09-2·95; p=0·022) compared with patients transfused through a peripheral intravenous line. Compared with delivery through a peripheral intravenous line, venous thromboembolism risk was not elevated if transfusions were delivered through a single-lumen PICC (HR 0·98, 95% CI 0·44-2·14; p=0·95) or central venous catheter (1·50, 0·77-2·91; p=0·23). For every red blood cell unit transfused through a PICC, there was a significantly increased risk of venous thromboembolism (adjusted HR 1·24, 95% CI 1·01-1·52; p=0·037). Patients who received a transfusion through a PICC in the left arm were significantly more likely to develop a deep-vein thrombosis in the ipsilateral arm compared with the contralateral side (HR 23·44, 95% CI 2·96-185·83; p=0·0028). Similarly, patients transfused through a right-sided PICC were more likely to develop deep-vein thrombosis in the ipsilateral arm (HR 3·37, 95% CI 1·02-11·14; p=0·047). Red blood cell delivery through a multi-lumen PICC is associated with a greater risk of thrombosis than transfusion through a peripheral intravenous catheter. Careful monitoring for venous thromboembolism when transfusing red blood cells through multi-lumen PICCs seems necessary. Blue Cross Blue Shield of Michigan and Blue Care Network, as part of the BCBSM Value Partnerships program. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. 21 CFR 640.15 - Segments for testing.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... cells. (c) All segments accompanying a unit of Red Blood Cells shall be filled at the time the blood is... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Red Blood Cells § 640.15 Segments for testing... provided with each unit of Whole Blood or Red Blood Cells when issued or reissued. (b) Before they are...

  6. 21 CFR 640.15 - Segments for testing.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... cells. (c) All segments accompanying a unit of Red Blood Cells shall be filled at the time the blood is... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Red Blood Cells § 640.15 Segments for testing... provided with each unit of Whole Blood or Red Blood Cells when issued or reissued. (b) Before they are...

  7. 21 CFR 640.15 - Segments for testing.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... cells. (c) All segments accompanying a unit of Red Blood Cells shall be filled at the time the blood is... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Red Blood Cells § 640.15 Segments for testing... provided with each unit of Whole Blood or Red Blood Cells when issued or reissued. (b) Before they are...

  8. 21 CFR 640.15 - Segments for testing.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... cells. (c) All segments accompanying a unit of Red Blood Cells shall be filled at the time the blood is... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Red Blood Cells § 640.15 Segments for testing... provided with each unit of Whole Blood or Red Blood Cells when issued or reissued. (b) Before they are...

  9. 21 CFR 640.15 - Segments for testing.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Red Blood Cells § 640.15 Segments for testing... provided with each unit of Whole Blood or Red Blood Cells when issued or reissued. (b) Before they are... cells. (c) All segments accompanying a unit of Red Blood Cells shall be filled at the time the blood is...

  10. Escherichia coli K1 invasion of human brain microvascular endothelial cells.

    PubMed

    Loh, Lip Nam; Ward, Theresa H

    2012-01-01

    The pathogenic Escherichia coli strain E. coli K1 is a primary causative agent of neonatal meningitis. Understanding how these bacteria cross the blood-brain barrier is vital to develop therapeutics. Here, we describe the use of live-cell imaging techniques to study E. coli K1 interactions with cellular markers following infection of human brain microvascular endothelial cells, a model system of the blood-brain barrier. We also discuss optimization of endothelial cell transfection conditions using nonviral transfection technique, bacterial labeling techniques, and in vitro assays to screen for fluorescent bacteria that retain their ability to invade host cells. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Design of microfluidic channels for magnetic separation of malaria-infected red blood cells

    PubMed Central

    Wu, Wei-Tao; Martin, Andrea Blue; Gandini, Alberto; Aubry, Nadine; Massoudi, Mehrdad; Antaki, James F.

    2016-01-01

    This study is motivated by the development of a blood cell filtration device for removal of malaria-infected, parasitized red blood cells (pRBCs). The blood was modeled as a multi-component fluid using the computational fluid dynamics discrete element method (CFD-DEM), wherein plasma was treated as a Newtonian fluid and the red blood cells (RBCs) were modeled as soft-sphere solid particles which move under the influence of drag, collisions with other RBCs, and a magnetic force. The CFD-DEM model was first validated by a comparison with experimental data from Han et al. 2006 (Han and Frazier 2006) involving a microfluidic magnetophoretic separator for paramagnetic deoxygenated blood cells. The computational model was then applied to a parametric study of a parallel-plate separator having hematocrit of 40% with a 10% of the RBCs as pRBCs. Specifically, we investigated the hypothesis of introducing an upstream constriction to the channel to divert the magnetic cells within the near-wall layer where the magnetic force is greatest. Simulations compared the efficacy of various geometries upon the stratification efficiency of the pRBCs. For a channel with nominal height of 100 µm, the addition of an upstream constriction of 80% improved the proportion of pRBCs retained adjacent to the magnetic wall (separation efficiency) by almost 2 fold, from 26% to 49%. Further addition of a downstream diffuser reduced remixing, hence improved separation efficiency to 72%. The constriction introduced a greater pressure drop (from 17 to 495 Pa), which should be considered when scaling-up this design for a clinical-sized system. Overall, the advantages of this design include its ability to accommodate physiological hematocrit and high throughput – which is critical for clinical implementation as a blood-filtration system. PMID:27761107

  12. A novel paper-based assay for the simultaneous determination of Rh typing and forward and reverse ABO blood groups.

    PubMed

    Noiphung, Julaluk; Talalak, Kwanrutai; Hongwarittorrn, Irin; Pupinyo, Naricha; Thirabowonkitphithan, Pannawich; Laiwattanapaisal, Wanida

    2015-05-15

    We propose a new, paper-based analytical device (PAD) for blood typing that allows for the simultaneous determination of ABO and Rh blood groups on the same device. The device was successfully fabricated by using a combination of wax printing and wax dipping methods. A 1:2 blood dilution was used for forward grouping, whereas whole blood could be used for reverse grouping. A 30% cell suspension of A-cells or B-cells was used for haemagglutination on the reverse grouping side. The total assay time was 10 min. The ratio between the distance of red blood cell movement and plasma separation is the criterion for agglutination and indicates the presence of the corresponding antigen or antibody. The proposed PAD has excellent reproducibility in that the same blood groups, namely A, AB, and O, were reported by using different PADs that were fabricated on the same day (n=10). The accuracy for detecting blood group A (n=12), B (n=13), AB (n=9), O (n=14), and Rh (n=48) typing were 92%, 85%, 89%, 93%, and 96%, respectively, in comparison with the conventional slide test method. The haematocrit of the sample affects the accuracy of the results, and appropriate dilution is suggested before typing. In conclusion, this study proposes a novel method that is straightforward, time-saving, and inexpensive for the simultaneous determination of ABO and Rh blood groups, which is promising for use in developing countries. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Simultaneous determination of hemolysis and hematocrit in extracorporeal circulation by plasma surface reflectance spectroscopy.

    PubMed

    Sakota, Daisuke; Kani, Yuki; Kosaka, Ryo; Nishida, Masahiro; Maruyama, Osamu

    2013-01-01

    To achieve quantitative non-invasive optical diagnosis of blood abnormalities during extracorporeal circulation therapies, plasma surface reflectance spectroscopy was developed by implementing oblique-incidence optical fiber reflectometry on the surface of circulating blood. The reflected light in the wavelength range from 450 to 600 nm changed with respect to the plasma free hemoglobin level and could be used to quantify the free hemoglobin at an accuracy of 5.7 ± 3.5 mg/dL. In contrast, the spectrum did not changed by varying the hematocrit. In the wavelength range from 600 to 800 nm, the obtained spectrum was affected by both the hematocrit change and hemolysis. The linear correlation between the hematocrit value and the spectrum was confirmed at R(2) = 0.99. The feasibility of determining of the hematocrit of arbitrary hemolyzed blood was confirmed. The developed system permits the extraction of the optical characteristics of both plasma and red blood cells without centrifugation. The study establishes non-invasive optical diagnostics capable of analyzing the optical properties of both plasma and red blood cells.

  14. Human Finger-Prick Induced Pluripotent Stem Cells Facilitate the Development of Stem Cell Banking

    PubMed Central

    Tan, Hong-Kee; Toh, Cheng-Xu Delon; Ma, Dongrui; Yang, Binxia; Liu, Tong Ming; Lu, Jun; Wong, Chee-Wai; Tan, Tze-Kai; Li, Hu; Syn, Christopher; Tan, Eng-Lee; Lim, Bing; Lim, Yoon-Pin; Cook, Stuart A.

    2014-01-01

    Induced pluripotent stem cells (iPSCs) derived from somatic cells of patients can be a good model for studying human diseases and for future therapeutic regenerative medicine. Current initiatives to establish human iPSC (hiPSC) banking face challenges in recruiting large numbers of donors with diverse diseased, genetic, and phenotypic representations. In this study, we describe the efficient derivation of transgene-free hiPSCs from human finger-prick blood. Finger-prick sample collection can be performed on a “do-it-yourself” basis by donors and sent to the hiPSC facility for reprogramming. We show that single-drop volumes of finger-prick samples are sufficient for performing cellular reprogramming, DNA sequencing, and blood serotyping in parallel. Our novel strategy has the potential to facilitate the development of large-scale hiPSC banking worldwide. PMID:24646489

  15. Tomographic sensing and localization of fluorescently labeled circulating cells in mice in vivo

    NASA Astrophysics Data System (ADS)

    Zettergren, Eric; Swamy, Tushar; Runnels, Judith; Lin, Charles P.; Niedre, Mark

    2012-07-01

    Sensing and enumeration of specific types of circulating cells in small animals is an important problem in many areas of biomedical research. Microscopy-based fluorescence in vivo flow cytometry methods have been developed previously, but these are typically limited to sampling of very small blood volumes, so that very rare circulating cells may escape detection. Recently, we described the development of a ‘diffuse fluorescence flow cytometer’ (DFFC) that allows sampling of much larger blood vessels and therefore circulating blood volumes in the hindlimb, forelimb or tail of a mouse. In this work, we extend this concept by developing and validating a method to tomographically localize circulating fluorescently labeled cells in the cross section of a tissue simulating optical flow phantom and mouse limb. This was achieved using two modulated light sources and an array of six fiber-coupled detectors that allowed rapid, high-sensitivity acquisition of full tomographic data sets at 10 Hz. These were reconstructed into two-dimensional cross-sectional images using Monte Carlo models of light propagation and the randomized algebraic reconstruction technique. We were able to obtain continuous images of moving cells in the sample cross section with 0.5 mm accuracy or better. We first demonstrated this concept in limb-mimicking optical flow photons with up to four flow channels, and then in the tails of mice with fluorescently labeled multiple myeloma cells. This approach increases the overall diagnostic utility of our DFFC instrument.

  16. Blood flow and blood cell interactions and migration in microvessels

    NASA Astrophysics Data System (ADS)

    Fedosov, Dmitry; Fornleitner, Julia; Gompper, Gerhard

    2011-11-01

    Blood flow in microcirculation plays a fundamental role in a wide range of physiological processes and pathologies in the organism. To understand and, if necessary, manipulate the course of these processes it is essential to investigate blood flow under realistic conditions including deformability of blood cells, their interactions, and behavior in the complex microvascular network which is characteristic for the microcirculation. We employ the Dissipative Particle Dynamics method to model blood as a suspension of deformable cells represented by a viscoelastic spring-network which incorporates appropriate mechanical and rheological cell-membrane properties. Blood flow is investigated in idealized geometries. In particular, migration of blood cells and their distribution in blood flow are studied with respect to various conditions such as hematocrit, flow rate, red blood cell aggregation. Physical mechanisms which govern cell migration in microcirculation and, in particular, margination of white blood cells towards the vessel wall, will be discussed. In addition, we characterize blood flow dynamics and quantify hemodynamic resistance. D.F. acknowledges the Humboldt Foundation for financial support.

  17. Pathophysiology of infectious hematopoietic necrosis virus disease in rainbow trout (Salmo gairdneri): early changes in blood and aspects of the immune Response after Injection of IHN Virus

    USGS Publications Warehouse

    Amend, Donald F.; Smith, Lynnwood

    1974-01-01

    Juvenile rainbow trout (Salmo gairdneri) were injected with infectious hematopoietic necrosis (IHN) virus and various hematological and blood chemical changes were monitored over 9 days. The packed cell volume, hemoglobin, red blood cell count, and plasma bicarbonate were significantly depressed by day 4. Plasma chloride, calcium, phosphorus, total protein, and blood cell types did not change during the 9 days. Furthermore, plasma  LDH isozyme was significantly increased by the fourth day, and fish infected with infectious pancreatic necrosis virus, Vibrio anguillarum, Aeromonas salmonicida, and redmouth bacterium did not show specific LDH isozyme alterations. Acid-base alterations occurred at 10 C but not at 18 C. The acid-base imbalance and elevation of the  LDH isozyme were consistently associated with the early development of the disease.The immune response after injection of IHN virus was determined and protection from disease was tested by passive immunization. Actively immunized fish developed IHN-neutralizing antibodies within 54 days after injection of virus, and the antibodies were protective when juvenile fish were passively immunized and experimentally challenged with IHN virus.

  18. Evaluation of Stem Cell-Derived Red Blood Cells as a Transfusion Product Using a Novel Animal Model.

    PubMed

    Shah, Sandeep N; Gelderman, Monique P; Lewis, Emily M A; Farrel, John; Wood, Francine; Strader, Michael Brad; Alayash, Abdu I; Vostal, Jaroslav G

    2016-01-01

    Reliance on volunteer blood donors can lead to transfusion product shortages, and current liquid storage of red blood cells (RBCs) is associated with biochemical changes over time, known as 'the storage lesion'. Thus, there is a need for alternative sources of transfusable RBCs to supplement conventional blood donations. Extracorporeal production of stem cell-derived RBCs (stemRBCs) is a potential and yet untapped source of fresh, transfusable RBCs. A number of groups have attempted RBC differentiation from CD34+ cells. However, it is still unclear whether these stemRBCs could eventually be effective substitutes for traditional RBCs due to potential differences in oxygen carrying capacity, viability, deformability, and other critical parameters. We have generated ex vivo stemRBCs from primary human cord blood CD34+ cells and compared them to donor-derived RBCs based on a number of in vitro parameters. In vivo, we assessed stemRBC circulation kinetics in an animal model of transfusion and oxygen delivery in a mouse model of exercise performance. Our novel, chronically anemic, SCID mouse model can evaluate the potential of stemRBCs to deliver oxygen to tissues (muscle) under resting and exercise-induced hypoxic conditions. Based on our data, stem cell-derived RBCs have a similar biochemical profile compared to donor-derived RBCs. While certain key differences remain between donor-derived RBCs and stemRBCs, the ability of stemRBCs to deliver oxygen in a living organism provides support for further development as a transfusion product.

  19. High-throughput microfluidic device for rare cell isolation

    NASA Astrophysics Data System (ADS)

    Yang, Daniel; Leong, Serena; Lei, Andy; Sohn, Lydia L.

    2015-06-01

    Enumerating and analyzing circulating tumor cells (CTCs)—cells that have been shed from primary solid tumors—can potentially be used to determine patient prognosis and track the progression of disease. There is a great challenge to create an effective platform that can isolate these cells, as they are extremely rare: only 1-10 CTCs are present in a 7.5mL of a cancer patient's peripheral blood. We have developed a novel microfluidic system that can isolate CTC populations label free. Our system consists of a multistage separator that employs inertial migration to sort cells based on size. We demonstrate the feasibility of our device by sorting colloids that are comparable in size to red blood cells (RBCs) and CTCs.

  20. High-Throughput Microfluidic Device for Rare Cell Isolation.

    PubMed

    Yang, Daniel; Leong, Serena; Lei, Andy; Sohn, Lydia L

    2015-05-04

    Enumerating and analyzing circulating tumor cells (CTCs)-cells that have been shed from primary solid tumors-can potentially be used to determine patient prognosis and track the progression of disease. There is a great challenge to create an effective platform that can isolate these cells, as they are extremely rare: only 1-10 CTCs are present in a 7.5mL of a cancer patient's peripheral blood. We have developed a novel microfluidic system that can isolate CTC populations label free. Our system consists of a multistage separator that employs inertial migration to sort cells based on size. We demonstrate the feasibility of our device by sorting colloids that are comparable in size to red blood cells (RBCs) and CTCs.

  1. Point-of-care, portable microfluidic blood analyzer system

    NASA Astrophysics Data System (ADS)

    Maleki, Teimour; Fricke, Todd; Quesenberry, J. T.; Todd, Paul W.; Leary, James F.

    2012-03-01

    Recent advances in MEMS technology have provided an opportunity to develop microfluidic devices with enormous potential for portable, point-of-care, low-cost medical diagnostic tools. Hand-held flow cytometers will soon be used in disease diagnosis and monitoring. Despite much interest in miniaturizing commercially available cytometers, they remain costly, bulky, and require expert operation. In this article, we report progress on the development of a battery-powered handheld blood analyzer that will quickly and automatically process a drop of whole human blood by real-time, on-chip magnetic separation of white blood cells (WBCs), fluorescence analysis of labeled WBC subsets, and counting a reproducible fraction of the red blood cells (RBCs) by light scattering. The whole blood (WB) analyzer is composed of a micro-mixer, a special branching/separation system, an optical detection system, and electronic readout circuitry. A droplet of un-processed blood is mixed with the reagents, i.e. magnetic beads and fluorescent stain in the micro-mixer. Valve-less sorting is achieved by magnetic deflection of magnetic microparticle-labeled WBC. LED excitation in combination with an avalanche photodiode (APD) detection system is used for counting fluorescent WBC subsets using several colors of immune-Qdots, while counting a reproducible fraction of red blood cells (RBC) is performed using a laser light scatting measurement with a photodiode. Optimized branching/channel width is achieved using Comsol Multi-Physics™ simulation. To accommodate full portability, all required power supplies (40v, +/-10V, and +3V) are provided via step-up voltage converters from one battery. A simple onboard lock-in amplifier is used to increase the sensitivity/resolution of the pulse counting circuitry.

  2. Altered Gene Expression and Function of Peripheral Blood Natural Killer Cells in Children with Autism

    PubMed Central

    Enstrom, A M; Lit, L; Onore, C E; Gregg, J P; Hansen, R; Pessah, I N; Hertz-Picciotto, I; Van de Water, J A; Sharp, F R; Ashwood, P

    2009-01-01

    Immune related abnormalities have repeatedly been reported in autism spectrum disorders (ASD), including evidence of immune dysregulation and autoimmune phenomena. NK cells may play an important role in neurodevelopmental disorders such as ASD. Here we performed a gene expression screen and cellular functional analysis on peripheral blood obtained from 52 children with ASD and 27 typically developing control children enrolled in the case-control CHARGE study. RNA expression of NK cell receptors and effector molecules were significantly upregulated in ASD. Flow cytometric analysis of NK cells demonstrated increased production of perforin, granzyme B, and interferon gamma (IFNγ) under resting conditions in children with ASD (p<0.01). Following NK cell stimulation in the presence of K562 target cells, the cytotoxicity of NK cells was significantly reduced in ASD compared with controls (p<0.02). Furthermore, under similar stimulation conditions the presence of perforin, granzyme B, and IFNγ in NK cells from ASD children was significantly lower compared with controls (p<0.001). These findings suggest possible dysfunction of NK cells in children with ASD. Abnormalities in NK cells may represent a susceptibility factor in ASD and may predispose to the development of autoimmunity and/or adverse neuroimmune interactions during critical periods of development. PMID:18762240

  3. High-Density Dielectrophoretic Microwell Array for Detection, Capture, and Single-Cell Analysis of Rare Tumor Cells in Peripheral Blood.

    PubMed

    Morimoto, Atsushi; Mogami, Toshifumi; Watanabe, Masaru; Iijima, Kazuki; Akiyama, Yasuyuki; Katayama, Koji; Futami, Toru; Yamamoto, Nobuyuki; Sawada, Takeshi; Koizumi, Fumiaki; Koh, Yasuhiro

    2015-01-01

    Development of a reliable platform and workflow to detect and capture a small number of mutation-bearing circulating tumor cells (CTCs) from a blood sample is necessary for the development of noninvasive cancer diagnosis. In this preclinical study, we aimed to develop a capture system for molecular characterization of single CTCs based on high-density dielectrophoretic microwell array technology. Spike-in experiments using lung cancer cell lines were conducted. The microwell array was used to capture spiked cancer cells, and captured single cells were subjected to whole genome amplification followed by sequencing. A high detection rate (70.2%-90.0%) and excellent linear performance (R2 = 0.8189-0.9999) were noted between the observed and expected numbers of tumor cells. The detection rate was markedly higher than that obtained using the CellSearch system in a blinded manner, suggesting the superior sensitivity of our system in detecting EpCAM- tumor cells. Isolation of single captured tumor cells, followed by detection of EGFR mutations, was achieved using Sanger sequencing. Using a microwell array, we established an efficient and convenient platform for the capture and characterization of single CTCs. The results of a proof-of-principle preclinical study indicated that this platform has potential for the molecular characterization of captured CTCs from patients.

  4. Supra-plasma expanders: the future of treating blood loss and anemia without red cell transfusions?

    PubMed

    Tsai, Amy G; Vázquez, Beatriz Y Salazar; Hofmann, Axel; Acharya, Seetharama A; Intaglietta, Marcos

    2015-01-01

    Oxygen delivery capacity during profoundly anemic conditions depends on blood's oxygen-carrying capacity and cardiac output. Oxygen-carrying blood substitutes and blood transfusion augment oxygen-carrying capacity, but both have given rise to safety concerns, and their efficacy remains unresolved. Anemia decreases oxygen-carrying capacity and blood viscosity. Present studies show that correcting the decrease of blood viscosity by increasing plasma viscosity with newly developed plasma expanders significantly improves tissue perfusion. These new plasma expanders promote tissue perfusion, increasing oxygen delivery capacity without increasing blood oxygen-carrying capacity, thus treating the effects of anemia while avoiding the transfusion of blood.

  5. Quality of red blood cells washed using a second wash sequence on an automated cell processor.

    PubMed

    Hansen, Adele L; Turner, Tracey R; Kurach, Jayme D R; Acker, Jason P

    2015-10-01

    Washed red blood cells (RBCs) are indicated for immunoglobulin (Ig)A-deficient recipients when RBCs from IgA-deficient donors are not available. Canadian Blood Services recently began using the automated ACP 215 cell processor (Haemonetics Corporation) for RBC washing, and its suitability to produce IgA-deficient RBCs was investigated. RBCs produced from whole blood donations by the buffy coat (BC) and whole blood filtration (WBF) methods were washed using the ACP 215 or the COBE 2991 cell processors and IgA and total protein levels were assessed. A double-wash procedure using the ACP 215 was developed, tested, and validated by assessing hemolysis, hematocrit, recovery, and other in vitro quality variables in RBCs stored after washing, with and without irradiation. A single wash using the ACP 215 did not meet Canadian Standards Association recommendations for washing with more than 2 L of solution and could not consistently reduce IgA to levels suitable for IgA-deficient recipients (24/26 BC RBCs and 0/9 WBF RBCs had IgA levels < 0.05 mg/dL). Using a second wash sequence, all BC and WBF units were washed with more than 2 L and had levels of IgA of less than 0.05 mg/dL. During 7 days' postwash storage, with and without irradiation, double-washed RBCs met quality control criteria, except for the failure of one RBC unit for inadequate (69%) postwash recovery. Using the ACP 215, a double-wash procedure for the production of components for IgA-deficient recipients from either BC or WBF RBCs was developed and validated. © 2015 AABB.

  6. Flow cytometric assay for analysis of cytotoxic effects of potential drugs on human peripheral blood leukocytes

    NASA Astrophysics Data System (ADS)

    Nieschke, Kathleen; Mittag, Anja; Golab, Karolina; Bocsi, Jozsef; Pierzchalski, Arkadiusz; Kamysz, Wojciech; Tarnok, Attila

    2014-03-01

    Toxicity test of new chemicals belongs to the first steps in the drug screening, using different cultured cell lines. However, primary human cells represent the human organism better than cultured tumor derived cell lines. We developed a very gentle toxicity assay for isolation and incubation of human peripheral blood leukocytes (PBL) and tested it using different bioactive oligopeptides (OP). Effects of different PBL isolation methods (red blood cell lysis; Histopaque isolation among others), different incubation tubes (e.g. FACS tubes), anticoagulants and blood sources on PBL viability were tested using propidium iodide-exclusion as viability measure (incubation time: 60 min, 36°C) and flow cytometry. Toxicity concentration and time-depended effects (10-60 min, 36 °C, 0-100 μg /ml of OP) on human PBL were analyzed. Erythrocyte lysis by hypotonic shock (dH2O) was the fastest PBL isolation method with highest viability (>85%) compared to NH4Cl-Lysis (49%). Density gradient centrifugation led to neutrophil granulocyte cell loss. Heparin anticoagulation resulted in higher viability than EDTA. Conical 1.5 mL and 2 mL micro-reaction tubes (both polypropylene (PP)) had the highest viability (99% and 97%) compared to other tubes, i.e. three types of 5.0 mL round-bottom tubes PP (opaque-60%), PP (blue-62%), Polystyrene (PS-64%). Viability of PBL did not differ between venous and capillary blood. A gentle reproducible preparation and analytical toxicity-assay for human PBL was developed and evaluated. Using our assay toxicity, time-course, dose-dependence and aggregate formation by OP could be clearly differentiated and quantified. This novel assay enables for rapid and cost effective multiparametric toxicological screening and pharmacological testing on primary human PBL and can be adapted to high-throughput-screening.°z

  7. Detection and capture of breast cancer cells with photoacoustic flow cytometry

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Kiran; Goldschmidt, Benjamin S.; Viator, John A.

    2016-08-01

    According to the Centers for Disease Control and Prevention, breast cancer is the most common cancer and the second leading cause of cancer related deaths among women. Metastasis-the presence of secondary tumors caused by the spread of cancer cells via the circulatory or lymphatic systems-significantly worsens the prognosis of any breast cancer patient. A technique is developed to detect circulating breast cancer cells in human blood using a photoacoustic flow cytometry method. A Q-switched laser is used to interrogate thousands of blood cells with one pulse as they flow through the beam path. Cells that are optically absorbing, either naturally or artificially, emit an ultrasound wave as a result of the photoacoustic (PA) effect. Breast cancer cells are targeted with chromophores through immunochemistry in order to enhance optical absorption. After which, the PA cytometry device is calibrated to demonstrate the ability to detect single cells. Cultured breast cancer cells are added to whole blood to reach a biologically relevant concentration of about 25 to 45 breast cancer cells per 1 mL of blood. An in vitro PA flow cytometer is used to detect and isolate these cells followed by capture with the use of a micromanipulator. This method can not only be used to determine the disease state of the patient and the response to therapy but also it can be used for genetic testing and in vitro drug trials since the circulating cell can be captured and studied.

  8. Toward Efficient Enzymes for the Generation of Universal Blood through Structure-Guided Directed Evolution.

    PubMed

    Kwan, David H; Constantinescu, Iren; Chapanian, Rafi; Higgins, Melanie A; Kötzler, Miriam P; Samain, Eric; Boraston, Alisdair B; Kizhakkedathu, Jayachandran N; Withers, Stephen G

    2015-05-06

    Blood transfusions are critically important in many medical procedures, but the presence of antigens on red blood cells (RBCs, erythrocytes) means that careful blood-typing must be carried out prior to transfusion to avoid adverse and sometimes fatal reactions following transfusion. Enzymatic removal of the terminal N-acetylgalactosamine or galactose of A- or B-antigens, respectively, yields universal O-type blood, but is inefficient. Starting with the family 98 glycoside hydrolase from Streptococcus pneumoniae SP3-BS71 (Sp3GH98), which cleaves the entire terminal trisaccharide antigenic determinants of both A- and B-antigens from some of the linkages on RBC surface glycans, through several rounds of evolution, we developed variants with vastly improved activity toward some of the linkages that are resistant to cleavage by the wild-type enzyme. The resulting enzyme effects more complete removal of blood group antigens from cell surfaces, demonstrating the potential for engineering enzymes to generate antigen-null blood from donors of various types.

  9. Haematopoietic transplants combining a single unrelated cord blood unit and mobilized haematopoietic stem cells from an adult HLA-mismatched third party donor. Comparable results to transplants from HLA-identical related donors in adults with acute leukaemia and myelodysplastic syndromes.

    PubMed

    Sebrango, Ana; Vicuña, Isabel; de Laiglesia, Almudena; Millán, Isabel; Bautista, Guiomar; Martín-Donaire, Trinidad; Regidor, Carmen; Cabrera, Rafael; Fernandez, Manuel N

    2010-06-01

    We describe results of the strategy, developed by our group, of co-infusion of mobilized haematopoietic stem cells as a support for single-unit unrelated cord blood transplant (dual CB/TPD-MHSC transplants) for treatment of haematological malignancies in adults, and a comparative analysis of results obtained using this strategy and transplants performed with mobilized haematopoietic stem cells from related HLA-identical donors (RTD) for treatment of adults with acute leukaemia and myelodysplastic syndromes. Our data show that the dual CB/TPD-MHSC transplant strategy results in periods of post-transplant neutropenia, final rates of full donor chimerism and transplant-related mortality rates comparable to those of the RTD. Final survival outcomes are comparable in adults transplanted because of acute leukaemia, with different incidences of the complications that most influence these: a higher incidence of infections related to late recovery of protective immunity dependent on T cell functions, and a lower incidence of serious acute graft-versus-host disease and relapses. Recent advances in cord blood transplant techniques allow allogeneic haematopoietic stem cell transplantation (HSCT) to be a viable option for almost every patient who may benefit from this therapeutic approach. Development of innovative strategies to improve the post-transplant recovery of T cells function is currently the main challenge to further improving the possibilities of unrelated cord blood transplantation. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Design and validation of a microfluidic device for blood-brain barrier monitoring and transport studies

    NASA Astrophysics Data System (ADS)

    Ugolini, Giovanni Stefano; Occhetta, Paola; Saccani, Alessandra; Re, Francesca; Krol, Silke; Rasponi, Marco; Redaelli, Alberto

    2018-04-01

    In vitro blood-brain barrier models are highly relevant for drug screening and drug development studies, due to the challenging task of understanding the transport mechanism of drug molecules through the blood-brain barrier towards the brain tissue. In this respect, microfluidics holds potential for providing microsystems that require low amounts of cells and reagent and can be potentially multiplexed for increasing the ease and throughput of the drug screening process. We here describe the design, development and validation of a microfluidic device for endothelial blood-brain barrier cell transport studies. The device comprises of two microstructured layers (top culture chamber and bottom collection chamber) sandwiching a porous membrane for the cell culture. Microstructured layers include two pairs of physical electrodes, embedded into the device layers by geometrically defined guiding channels with computationally optimized positions. These electrodes allow the use of commercial electrical measurement systems for monitoring trans-endothelial electrical resistance (TEER). We employed the designed device for performing preliminary assessment of endothelial barrier formation with murine brain endothelial cells (Br-bEnd5). Results demonstrate that cellular junctional complexes effectively form in the cultures (expression of VE-Cadherin and ZO-1) and that the TEER monitoring systems effectively detects an increase of resistance of the cultured cell layers indicative of tight junction formation. Finally, we validate the use of the described microsystem for drug transport studies demonstrating that Br-bEnd5 cells significantly hinder the transport of molecules (40 kDa and 4 kDa dextran) from the top culture chamber to the bottom collection chamber.

  11. Effect of a transient period of ischemia on myocardial cells. II. Fine structure during the first few minutes of reflow.

    PubMed

    Kloner, R A; Ganote, C E; Whalen, D A; Jennings, R B

    1974-03-01

    Changes produced in the posterior papillary muscle of the dog following 40 minutes of circumflex artery occlusion and 0 to 20 minutes of blood reflow were studied by electron miroscopy. With no reflow of blood, myocardial cells were modestly swollen, contained amorphous matrix densities in the mitochondria, had aggregation and margination of nuclear chromatin and relaxation of myofibrils. With as little as 2 minutes of blood reflow, cells developed contraction bands and were greatly swollen due to a generalized increase in sarcoplasmic space, formation of vacuoles and swelling of mitochondria. Frequently, cell membranes were lifted away from the myofibers, forming large subsarcolemmal blebs which appeared capable of compressing adjacent capillaries. The extracellular space did not appear to be enlarged, and the marked tissue edema found after reflow was due primarily to accumulation of intracellular fluid. In addition to explosive cell swelling, there was, over the 2- to 20-minute period of reflow, a progressive increase in size and number of granular mitochondrial dense bodies of the calcium accumulation type. No significant changes in lysosomes were observed. The speed with which the morphologic changes developed during very early reflow periods suggests that irreversible ischemic injury produces a defect in cell volume regulation during the phase of ischemia and that this defect becomes manifest if arterial flow is restored to the affected cells.

  12. Early diagnosis of severe combined immunodeficiency (SCID) in Turkey: a pilot study.

    PubMed

    Can, Ceren; Hamilçıkan, Şahin; Can, Emrah

    2017-08-29

    Severe combined immunodeficiency (SCID) is a neonatal emergency. As the T-cell receptor excision circles (TREC) test is not cost effective for neonatal screening of SCID in developing countries, this pilot study's objective aimed at identifying preliminary data to enable SCID identification in the general population. This observational study was performed in Bagcılar Training and Research Hospital, Istanbul, Turkey. Cord-blood complete blood count (CBC) was recorded in all neonates included in the study. Absolute lymphopenia was considered in cord-blood samples if the absolute lymphocyte count was less than 2500/mm 3 . A control blood count was performed 1-month later for cases with detected lymphopenia. A total of 2945 term neonates were included in the study. Absolute lymphopenia was found in nine (0.3%) neonates, while 2936 (99.7%) had an absolute lymphocytic count above 2.5 × 10 3 /mm 3 . The mean counts of red blood cells (RBC), hemoglobin (HGB), hematocrit (HCT), platelets (PLT), and monocytes in the lymphopenia group were not found to significantly differ from the non-lymphopenia group. However, there were significantly lower mean white blood cell (WBC), lymphocyte, and neutrophil counts between the groups (p < .05). Absolute lymphopenia detected using CBC analysis is a simple, easier, more non-invasive, and cheaper method than the TREC method for detection of SCID neonates, and this method may prove to be a useful alternative, especially in developing countries.

  13. Fast and selective cell isolation from blood sample by microfiber fabric system with vacuum aspiration

    NASA Astrophysics Data System (ADS)

    Ueki, Takayuki; Yoshihara, Akifumi; Teramura, Yuji; Takai, Madoka

    2016-01-01

    Since circulating tumor cells (CTCs) are tumor cells which are found in the blood of cancer patients, CTCs are potential tumor markers, so a rapid isolation of CTCs is desirable for clinical applications. In this paper, a three-dimensional polystyrene (PS) microfiber fabric with vacuum aspiration system was developed for capturing CTCs within a short time. Various microfiber fabrics with different diameters were prepared by the electrospinning method and optimized for contact frequency with cells. Vacuum aspiration utilizing these microfiber fabrics could filter all cells within seconds without mechanical damage. The microfiber fabric with immobilized anti-EpCAM antibodies was able to specifically capture MCF-7 cells that express EpCAM on their surfaces. The specificity of the system was confirmed by monitoring the ability to isolate MCF-7 cells from a mixture containing CCRF-CEM cells that do not express EpCAM. Furthermore, the selective capture ability of the microfiber was retained even when the microfiber was exposed to the whole blood of pigs spiked with MCF-7 cells. The specific cell capture ratio of the vacuum aspiration system utilizing microfiber fabric could be improved by increasing the thickness of the microfiber fabric through electrospinning time.

  14. Hematologic changes after total body irradiation and autologous transplantation of hematopoietic peripheral blood progenitor cells in dogs with lymphoma.

    PubMed

    Escobar, C; Grindem, C; Neel, J A; Suter, S E

    2012-03-01

    Dogs with and without lymphoma have undergone hematopoietic cell transplantation in a research setting for decades. North Carolina State University is currently treating dogs with B- and T-cell lymphoma in a clinical setting with autologous peripheral blood progenitor cell transplants, using peripheral blood CD34+ progenitor cells harvested using an apheresis machine. Complete blood counts were performed daily for 15 to 19 days posttransplantation to monitor peripheral blood cell nadirs and subsequent CD34+ cell engraftment. This study documents the hematologic toxicities of total body irradiation in 10 dogs and the subsequent recovery of the affected cell lines after peripheral blood progenitor cell transplant, indicating successful CD34+ engraftment. All peripheral blood cell lines, excluding red blood cells, experienced grade 4 toxicities. All dogs had ≥ 500 neutrophils/μl by day 12, while thrombocytopenia persisted for many weeks. All dogs were clinically normal at discharge.

  15. Microfluidic immunomagnetic cell separation from whole blood.

    PubMed

    Bhuvanendran Nair Gourikutty, Sajay; Chang, Chia-Pin; Puiu, Poenar Daniel

    2016-02-01

    Immunomagnetic-based separation has become a viable technique for the separation of cells and biomolecules. Here we report on the design and analysis of a simple and efficient microfluidic device for high throughput and high efficiency capture of cells tagged with magnetic particles. This is made possible by using a microfluidic chip integrated with customized arrays of permanent magnets capable of creating large magnetic field gradients, which determine the effective capturing of the tagged cells. This method is based on manipulating the cells which are under the influence of a combination of magnetic and fluid dynamic forces in a fluid under laminar flow through a microfluidic chip. A finite element analysis (FEA) model is developed to analyze the cell separation process and predict its behavior, which is validated subsequently by the experimental results. The magnetic field gradients created by various arrangements of magnetic arrays have been simulated using FEA and the influence of these field gradients on cell separation has been studied with the design of our microfluidic chip. The proof-of-concept for the proposed technique is demonstrated by capturing white blood cells (WBCs) from whole human blood. CD45-conjugated magnetic particles were added into whole blood samples to label WBCs and the mixture was flown through our microfluidic device to separate the labeled cells. After the separation process, the remaining WBCs in the elute were counted to determine the capture efficiency, and it was found that more than 99.9% WBCs have been successfully separated from whole blood. The proposed design can be used for positive selection as well as for negative enrichment of rare cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. 21 CFR 864.5200 - Automated cell counter.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ....5200 Automated cell counter. (a) Identification. An automated cell counter is a fully-automated or semi-automated device used to count red blood cells, white blood cells, or blood platelets using a sample of the patient's peripheral blood (blood circulating in one of the body's extremities, such as the arm). These...

  17. 21 CFR 864.5200 - Automated cell counter.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ....5200 Automated cell counter. (a) Identification. An automated cell counter is a fully-automated or semi-automated device used to count red blood cells, white blood cells, or blood platelets using a sample of the patient's peripheral blood (blood circulating in one of the body's extremities, such as the arm). These...

  18. 21 CFR 864.5200 - Automated cell counter.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ....5200 Automated cell counter. (a) Identification. An automated cell counter is a fully-automated or semi-automated device used to count red blood cells, white blood cells, or blood platelets using a sample of the patient's peripheral blood (blood circulating in one of the body's extremities, such as the arm). These...

  19. 21 CFR 864.5200 - Automated cell counter.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ....5200 Automated cell counter. (a) Identification. An automated cell counter is a fully-automated or semi-automated device used to count red blood cells, white blood cells, or blood platelets using a sample of the patient's peripheral blood (blood circulating in one of the body's extremities, such as the arm). These...

  20. 76 FR 11491 - Advisory Council on Blood Stem Cell Transplantation; Request for Nominations for Voting Members

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-02

    ... Council on Blood Stem Cell Transplantation; Request for Nominations for Voting Members AGENCY: Health... on Blood Stem Cell Transplantation. The Advisory Council on Blood Stem Cell Transplantation was...: Nominations should be submitted to the Executive Secretary, Advisory Council on Blood Stem Cell...

  1. Blood cell lineage in the sea lamprey, Petromyzon marinus (Pisces: Petromyzontidae)

    USGS Publications Warehouse

    Piavis, George W.; Hiatt, James L.

    1971-01-01

    Blood cell types of the sea lamprey, Petromyzon marinus, are described and identified and the lineage of mature circulating cells in peripheral blood is traced to blast cells in the hematopoietic fat body. The fat body appears to be the phylogenetic precursor of bone marrow in higher forms, since blood cells originate and begin maturation in this tissue. Experimental animals were injected first with a hematopoietic stimulant and then (at an experimentally determined time) with pertussis vaccine to release proliferated blood cells into peripheral blood. Peripheral blood for smears was collected by cardiac exsanguination; hematopoietic tissue was extirpated for imprints; and leucocyte preparations were made by a special technique. Blood cells of the sea lamprey are apparently products of at least four distinct blast cells, each of which has a 'one end' maturation process. Results of this investigation support the polyphyletic theory of blood cell formation.

  2. Macrophage and T cell dynamics during the development and disintegration of mycobacterial granulomas.

    PubMed

    Egen, Jackson G; Rothfuchs, Antonio Gigliotti; Feng, Carl G; Winter, Nathalie; Sher, Alan; Germain, Ronald N

    2008-02-01

    Granulomas play a key role in host protection against mycobacterial pathogens, with their breakdown contributing to exacerbated disease. To better understand the initiation and maintenance of these structures, we employed both high-resolution multiplex static imaging and intravital multiphoton microscopy of Mycobacterium bovis BCG-induced liver granulomas. We found that Kupffer cells directly capture blood-borne bacteria and subsequently nucleate formation of a nascent granuloma by recruiting both uninfected liver-resident macrophages and blood-derived monocytes. Within the mature granuloma, these myeloid cell populations formed a relatively immobile cellular matrix that interacted with a highly dynamic effector T cell population. The efficient recruitment of these T cells was highly dependent on TNF-alpha-derived signals, which also maintained the granuloma structure through preferential effects on uninfected macrophage populations. By characterizing the migration of both innate and adaptive immune cells throughout the process of granuloma development, these studies provide a new perspective on the cellular events involved in mycobacterial containment and escape.

  3. Role of erythropoietin in the brain

    PubMed Central

    Noguchi, Constance Tom; Asavaritikrai, Pundit; Teng, Ruifeng; Jia, Yi

    2007-01-01

    Multi-tissue erythropoietin receptor (EPO-R) expression provides for erythropoietin (EPO) activity beyond its known regulation of red blood cell production. This review highlights the role of EPO and EPO-R in brain development and neuroprotection. EPO-R brain expression includes neural progenitor cells (NPC), neurons, glial cells and endothelial cells. EPO is produced in brain in a hypoxia sensitive manner, stimulates NPC proliferation and differentiation, and neuron survival, and contributes to ischemic preconditioning. Mice lacking EPO or EPO-R exhibit increased neural cell apoptosis during development before embryonic death due to severe anemia. EPO administration provides neural protection in animal models of brain ischemia and trauma, reducing the extent of injury and damage. EPO stimulation of endothelial cells contributes to neuroprotection and is of particular importance since only low levels of EPO appear to cross the blood-brain barrier when administered at high dose intravenously. The therapeutic potential of EPO for brain ischemia/trauma and neurodegenerative diseases has shown promise in early clinical trial and awaits further validation. PMID:17482474

  4. Brain metastases of breast cancer.

    PubMed

    Palmieri, Diane; Smith, Quentin R; Lockman, Paul R; Bronder, Julie; Gril, Brunilde; Chambers, Ann F; Weil, Robert J; Steeg, Patricia S

    Central nervous system or brain metastases traditionally occur in 10-16% of metastatic breast cancer patients and are associated with a dismal prognosis. The development of brain metastases has been associated with young age, and tumors that are estrogen receptor negative, Her-2+ or of the basal phenotype. Treatment typically includes whole brain irradiation, or either stereotactic radiosurgery or surgery with whole brain radiation, resulting in an approximately 20% one year survival. The blood-brain barrier is a formidable obstacle to the delivery of chemotherapeutics to the brain. Mouse experimental metastasis model systems have been developed for brain metastasis using selected sublines of human MDA-MB-231 breast carcinoma cells. Using micron sized iron particles and MRI imaging, the fate of MDA-MB-231BR cells has been mapped: Approximately 2% of injected cells form larger macroscopic metastases, while 5% of cells remain as dormant cells in the brain. New therapies with permeability for the blood-brain barrier are needed to counteract both types of tumor cells.

  5. 21 CFR 864.9245 - Automated blood cell separator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Automated blood cell separator. 864.9245 Section... Blood and Blood Products § 864.9245 Automated blood cell separator. (a) Identification. An automated blood cell separator is a device that uses a centrifugal or filtration separation principle to...

  6. 21 CFR 864.9245 - Automated blood cell separator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Automated blood cell separator. 864.9245 Section... Blood and Blood Products § 864.9245 Automated blood cell separator. (a) Identification. An automated blood cell separator is a device that uses a centrifugal or filtration separation principle to...

  7. 21 CFR 864.9245 - Automated blood cell separator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Automated blood cell separator. 864.9245 Section... Blood and Blood Products § 864.9245 Automated blood cell separator. (a) Identification. An automated blood cell separator is a device that uses a centrifugal or filtration separation principle to...

  8. 21 CFR 864.9245 - Automated blood cell separator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Automated blood cell separator. 864.9245 Section... Blood and Blood Products § 864.9245 Automated blood cell separator. (a) Identification. An automated blood cell separator is a device that uses a centrifugal or filtration separation principle to...

  9. 21 CFR 864.9245 - Automated blood cell separator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Automated blood cell separator. 864.9245 Section... Blood and Blood Products § 864.9245 Automated blood cell separator. (a) Identification. An automated blood cell separator is a device that uses a centrifugal or filtration separation principle to...

  10. Transcriptional profiling of CD31(+) cells isolated from murine embryonic stem cells.

    PubMed

    Mariappan, Devi; Winkler, Johannes; Chen, Shuhua; Schulz, Herbert; Hescheler, Jürgen; Sachinidis, Agapios

    2009-02-01

    Identification of genes involved in endothelial differentiation is of great interest for the understanding of the cellular and molecular mechanisms involved in the development of new blood vessels. Mouse embryonic stem (mES) cells serve as a potential source of endothelial cells for transcriptomic analysis. We isolated endothelial cells from 8-days old embryoid bodies by immuno-magnetic separation using platelet endothelial cell adhesion molecule-1 (also known as CD31) expressed on both early and mature endothelial cells. CD31(+) cells exhibit endothelial-like behavior by being able to incorporate DiI-labeled acetylated low-density lipoprotein as well as form tubular structures on matrigel. Quantitative and semi-quantitative PCR analysis further demonstrated the increased expression of endothelial transcripts. To ascertain the specific transcriptomic identity of the CD31(+) cells, large-scale microarray analysis was carried out. Comparative bioinformatic analysis reveals an enrichment of the gene ontology categories angiogenesis, blood vessel morphogenesis, vasculogenesis and blood coagulation in the CD31(+) cell population. Based on the transcriptomic signatures of the CD31(+) cells, we conclude that this ES cell-derived population contains endothelial-like cells expressing a mesodermal marker BMP2 and possess an angiogenic potential. The transcriptomic characterization of CD31(+) cells enables an in vitro functional genomic model to identify genes required for angiogenesis.

  11. Dynamic change in cerebral microcirculation and focal cerebral metabolism in experimental subarachnoid hemorrhage in rabbits.

    PubMed

    Song, Jin-Ning; Chen, Hu; Zhang, Ming; Zhao, Yong-Lin; Ma, Xu-Dong

    2013-03-01

    Regional cerebral blood flow (rCBF) in the cerebral metabolism and energy metabolism measurements can be used to assess blood flow of brain cells and to detect cell activity. Changes of rCBF in the cerebral microcirculation and energy metabolism were determined in an experimental model of subarachnoid hemorrhage (SAH) model in 56 large-eared Japanese rabbits about 12 to 16-month old. Laser Doppler flowmetry was used to detect the blood supply to brain cells. Internal carotid artery and vein blood samples were used for duplicate blood gas analysis to assess the energy metabolism of brain cells. Cerebral blood flow (CBF) was detected by single photon emission computed tomography (SPECT) perfusion imaging using Tc-99m ethyl cysteinate dimer (Tc-99m ECD) as an imaging reagent. The percentage of injected dose per gram of brain tissue was calculated and analyzed. There were positive correlations between the percentage of radionuclide injected per gram of brain tissue and rCBF supply and cerebral metabolic rate for oxygen (P < 0.05). However, there was a negative correlation between radioactivity counts per unit volume detected on the SPECT rheoencephalogram and lactic acid concentration in the homolateral internal carotid artery and vein. In summary, this study found abnormal CBF in metabolism and utilization of brain cells after SAH, and also found that deterioration of energy metabolism of brain cells played a significant role in the development of SAH. There are matched reductions in CBF and metabolism. Thus, SPECT imaging could be used as a noninvasive method to detect CBF.

  12. Tracking blood products in blood centres using radio frequency identification: a comprehensive assessment.

    PubMed

    Davis, Rodeina; Geiger, Bradley; Gutierrez, Alfonso; Heaser, Julie; Veeramani, Dharmaraj

    2009-07-01

    Radio frequency identification (RFID) can be a key enabler for enhancing productivity and safety of the blood product supply chain. This article describes a systematic approach developed by the RFID Blood Consortium for a comprehensive feasibility and impact assessment of RFID application in blood centre operations. Our comprehensive assessment approach incorporates process-orientated and technological perspectives as well as impact analysis. Assessment of RFID-enabled process redesign is based on generic core processes derived from the three participating blood centres. The technological assessment includes RFID tag readability and performance evaluation, testing of temperature and biological effects of RF energy on blood products, and RFID system architecture design and standards. The scope of this article is limited to blood centre processes (from donation to manufacturing/distribution) for selected mainstream blood products (red blood cells and platelets). Radio frequency identification can help overcome a number of common challenges and process inefficiencies associated with identification and tracking of blood products. High frequency-based RFID technology performs adequately and safely for red blood cell and platelet products. Productivity and quality improvements in RFID-enabled blood centre processes can recoup investment cost in a 4-year payback period. Radio frequency identification application has significant process-orientated and technological implications. It is feasible and economically justifiable to incorporate RFID into blood centre processes.

  13. Quantitative Evaluation of CART-Containing Cells in Urinary Bladder of Rats with Renovascular Hypertension

    PubMed Central

    Janiuk, I.; Kasacka, I.

    2015-01-01

    Recent biological advances make it possible to discover new peptides associated with hypertension. The cocaine- and amphetamine-regulated transcript (CART) is a known factor in appetite and feeding behaviour. Various lines of evidence suggest that this peptide participates not only in control of feeding behaviour but also in the regulation of the cardiovascular and sympathetic systems and blood pressure. The role of CART in blood pressure regulation led us to undertake a study aimed at analysing quantitative changes in CART-containing cells in urinary bladders (UB) of rats with renovascular hypertension. We used the Goldblatt model of arterial hypertension (two-kidney, one clip) to evaluate quantitative changes. This model provides researchers with a commonly used tool to analyse the renin-angiotensin system of blood pressure control and, eventually, to develop drugs for the treatment of chronic hypertension. The study was performed on sections of urinary bladders of rats after 3-, 14-, 28-, 42 and 91 days from hypertension induction. Immunohistochemical identification of CART cells was performed on paraffin for the UBs of all the study animals. CART was detected in the endocrine cells, especially numerous in the submucosa and muscularis layers, with a few found in the transitional epithelium and only occasionally in serosa. Hypertension significantly increased the number of CART-positive cells in the rat UBs. After 3 and 42 days following the procedure, statistically significantly higher numbers of CART-positive cells were identified in comparison with the control animals. The differences between the hypertensive rats and the control animals concerned not only the number density of CART-immunoreactive cells but also their localization. After a 6-week period, each of the rats subjected to the renal artery clipping procedure developed stable hypertension. CART appeared in numerous transitional epithelium cells. As this study provides novel findings, the question appears about the type of connection between hypertension and the functioning and activity of CART in the urinary tract (UT). The study gives rise to the assumption that high blood pressure can be a factor that intensifies CART secretion. In conclusion, the endocrine system of the urinary tract is modified by renovascular hypertension. This may affect the production of hormones and biologically active substances and contribute to the development of possible hypertension complications. In order to fully comprehend the role of the CART peptide in blood pressure regulation, further analyses are necessary. PMID:26150151

  14. Quantitative evaluation of CART-containing cells in urinary bladder of rats with renovascular hypertension.

    PubMed

    Janiuk, I; Kasacka, I

    2015-04-13

    Recent biological advances make it possible to discover new peptides associated with hypertension. The cocaine- and amphetamine-regulated transcript (CART) is a known factor in appetite and feeding behaviour. Various lines of evidence suggest that this peptide participates not only in control of feeding behaviour but also in the regulation of the cardiovascular and sympathetic systems and blood pressure. The role of CART in blood pressure regulation led us to undertake a study aimed at analysing quantitative changes in CART-containing cells in urinary bladders (UB) of rats with renovascular hypertension. We used the Goldblatt model of arterial hypertension (two-kidney, one clip) to evaluate quantitative changes. This model provides researchers with a commonly used tool to analyse the renin-angiotensin system of blood pressure control and, eventually, to develop drugs for the treatment of chronic hypertension. The study was performed on sections of urinary bladders of rats after 3-, 14-, 28-, 42 and 91 days from hypertension induction. Immunohistochemical identification of CART cells was performed on paraffin for the UBs of all the study animals. CART was detected in the endocrine cells, especially numerous in the submucosa and muscularis layers, with a few found in the transitional epithelium and only occasionally in serosa. Hypertension significantly increased the number of CART-positive cells in the rat UBs. After 3 and 42 days following the procedure, statistically significantly higher numbers of CART-positive cells were identified in comparison with the control animals. The differences between the hypertensive rats and the control animals concerned not only the number density of CART-immunoreactive cells but also their localization. After a 6-week period, each of the rats subjected to the renal artery clipping procedure developed stable hypertension. CART appeared in numerous transitional epithelium cells. As this study provides novel findings, the question appears about the type of connection between hypertension and the functioning and activity of CART in the urinary tract (UT). The study gives rise to the assumption that high blood pressure can be a factor that intensifies CART secretion. In conclusion, the endocrine system of the urinary tract is modified by renovascular hypertension. This may affect the production of hormones and biologically active substances and contribute to the development of possible hypertension complications. In order to fully comprehend the role of the CART peptide in blood pressure regulation, further analyses are necessary.

  15. The zebrafish gene cloche acts upstream of a flk-1 homologue to regulate endothelial cell differentiation.

    PubMed

    Liao, W; Bisgrove, B W; Sawyer, H; Hug, B; Bell, B; Peters, K; Grunwald, D J; Stainier, D Y

    1997-01-01

    The zebrafish cloche mutation affects both the endothelial and hematopoietic lineages at a very early stage (Stainier, D. Y. R., Weinstein, B. M., Detrich, H. W., Zon, L. I. and Fishman, M. C. (1995). Development 121, 3141-3150). The most striking vascular phenotype is the absence of endocardial cells from the heart. Microscopic examination of mutant embryos reveals the presence of endothelial-like cells in the lower trunk and tail regions while head vessels appear to be missing, indicating a molecular diversification of the endothelial lineage. Cell transplantation experiments show that cloche acts cell-autonomously within the endothelial lineage. To analyze further the role of cloche in regulating endothelial cell differentiation, we have examined the expression of flk-1 and tie, two receptor tyrosine kinase genes expressed early and sequentially in the endothelial lineage. In wild-type fish, flk-1-positive cells are found throughout the embryo and differentiate to form the nascent vasculature. In cloche mutants, flk-1-positive cells are found only in the lower trunk and tail regions, and this expression is delayed as compared to wild-type. Unlike the flk-1-positive cells in wild-type embryos, those in cloche mutants do not go on to express tie, suggesting that their differentiation is halted at an early stage. We also find that the cloche mutation is not linked to flk-1. These data indicate that cloche affects the differentiation of all endothelial cells and that it acts at a very early stage, either by directly regulating flk-1 expression or by controlling the differentiation of cells that normally develop to express flk-1. cloche mutants also have a blood deficit and their hematopoietic tissues show no expression of the hematopoietic transcription factor genes GATA-1 or GATA-2 at early stages. Because the appearance of distinct levels of flk-1 expression is delayed in cloche mutants, we examined GATA-1 expression at late embryonic stages and found some blood cell differentiation that appears to be limited to the region lined by the flk-1-expressing cells. The spatial restriction of blood in the ventroposterior-most region of cloche mutant embryos may be indicative of a ventral source of signal(s) controlling hematopoietic differentiation. In addition, the restricted colocalization of blood and endothelium in cloche mutants suggests that important interactions occur between these two lineages during normal development.

  16. Many layers of embryonic hematopoiesis: new insights into B-cell ontogeny and the origin of hematopoietic stem cells.

    PubMed

    Hadland, Brandon; Yoshimoto, Momoko

    2018-04-01

    In adult hematopoiesis, the hematopoietic stem cell (HSC) sits at the top of a hierarchy of hematopoietic progenitors responsible for generating the diverse repertoire of blood and immune cells. During embryonic development, however, the initial waves of hematopoiesis provide the first functioning blood cells of the developing embryo, such as primitive erythrocytes arising in the yolk sac, independently of HSCs. In the field of developmental immunology, it has been recognized that some components of the immune system, such as B-1a lymphocytes, are uniquely produced during the embryonic and neonatal period, suggesting a "layered" development of immunity. Several recent studies have shed new light on the developmental origin of the layered immune system, suggesting complex and sometimes multiple contributions to unique populations of innate-like immune cells from both fetal HSCs and earlier HSC-independent progenitors. In this review, we will attempt to synthesize these studies to provide an integrated model of developmental hematopoiesis and layered immunity that may offer new insights into the origin of HSCs. Copyright © 2018 ISEH – Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.

  17. GABP transcription factor is required for development of chronic myelogenous leukemia via its control of PRKD2.

    PubMed

    Yang, Zhong-Fa; Zhang, Haojian; Ma, Leyuan; Peng, Cong; Chen, Yaoyu; Wang, Junling; Green, Michael R; Li, Shaoguang; Rosmarin, Alan G

    2013-02-05

    Hematopoietic stem cells (HSCs) are the source of all blood lineages, and HSCs must balance quiescence, self-renewal, and differentiation to meet lifelong needs for blood cell development. Transformation of HSCs by the breakpoint cluster region-ABL tyrosine kinase (BCR-ABL) oncogene causes chronic myelogenous leukemia (CML). The E-twenty six (ets) transcription factor GA binding protein (GABP) is a tetrameric transcription factor complex that contains GABPα and GABPβ proteins. Deletion in bone marrow of Gabpa, the gene that encodes the DNA-binding component, caused cell cycle arrest in HSCs and profound loss of hematopoietic progenitor cells. Loss of Gabpα prevented development of CML, although mice continued to generate BCR-ABL-expressing Gabpα-null cells for months that were serially transplantable and contributed to all lineages in secondary recipients. A bioinformatic screen identified the serine-threonine kinase protein kinase D2 (PRKD2) as a potential effector of GABP in HSCs. Prkd2 expression was markedly reduced in Gabpα-null HSCs and progenitor cells. Reduced expression of PRKD2 or pharmacologic inhibition decreased cell cycling, and PRKD2 rescued growth of Gabpα-null BCR-ABL-expressing cells. Thus, GABP is required for HSC cell cycle entry and CML development through its control of PRKD2. This offers a potential therapeutic target in leukemia.

  18. Label-free microfluidic enrichment of ring-stage Plasmodium falciparum-infected red blood cells using non-inertial hydrodynamic lift.

    PubMed

    Geislinger, Thomas M; Chan, Sherwin; Moll, Kirsten; Wixforth, Achim; Wahlgren, Mats; Franke, Thomas

    2014-09-20

    Understanding of malaria pathogenesis caused by Plasmodium falciparum has been greatly deepened since the introduction of in vitro culture system, but the lack of a method to enrich ring-stage parasites remains a technical challenge. Here, a novel way to enrich red blood cells containing parasites in the early ring stage is described and demonstrated. A simple, straight polydimethylsiloxane microchannel connected to two syringe pumps for sample injection and two height reservoirs for sample collection is used to enrich red blood cells containing parasites in the early ring stage (8-10 h p.i.). The separation is based on the non-inertial hydrodynamic lift effect, a repulsive cell-wall interaction that enables continuous and label-free separation with deformability as intrinsic marker. The possibility to enrich red blood cells containing P. falciparum parasites at ring stage with a throughput of ~12,000 cells per hour and an average enrichment factor of 4.3 ± 0.5 is demonstrated. The method allows for the enrichment of red blood cells early after the invasion by P. falciparum parasites continuously and without any need to label the cells. The approach promises new possibilities to increase the sensitivity of downstream analyses like genomic- or diagnostic tests. The device can be produced as a cheap, disposable chip with mass production technologies and works without expensive peripheral equipment. This makes the approach interesting for the development of new devices for field use in resource poor settings and environments, e.g. with the aim to increase the sensitivity of microscope malaria diagnosis.

  19. Family cord blood banking for sickle cell disease: a twenty-year experience in two dedicated public cord blood banks

    PubMed Central

    Rafii, Hanadi; Bernaudin, Françoise; Rouard, Helene; Vanneaux, Valérie; Ruggeri, Annalisa; Cavazzana, Marina; Gauthereau, Valerie; Stanislas, Aurélie; Benkerrou, Malika; De Montalembert, Mariane; Ferry, Christele; Girot, Robert; Arnaud, Cecile; Kamdem, Annie; Gour, Joelle; Touboul, Claudine; Cras, Audrey; Kuentz, Mathieu; Rieux, Claire; Volt, Fernanda; Cappelli, Barbara; Maio, Karina T.; Paviglianiti, Annalisa; Kenzey, Chantal; Larghero, Jerome; Gluckman, Eliane

    2017-01-01

    Efforts to implement family cord blood banking have been developed in the past decades for siblings requiring stem cell transplantation for conditions such as sickle cell disease. However, public banks are faced with challenging decisions about the units to be stored, discarded, or used for other endeavors. We report here 20 years of experience in family cord blood banking for sickle cell disease in two dedicated public banks. Participants were pregnant women who had a previous child diagnosed with homozygous sickle cell disease. Participation was voluntary and free of charge. All mothers underwent mandatory serological screening. Cord blood units were collected in different hospitals, but processed and stored in two public banks. A total of 338 units were stored for 302 families. Median recipient age was six years (11 months-15 years). Median collected volume and total nucleated cell count were 91 mL (range 23–230) and 8.6×108 (range 0.7–75×108), respectively. Microbial contamination was observed in 3.5% (n=12), positive hepatitis B serology in 25% (n=84), and homozygous sickle cell disease in 11% (n=37) of the collections. Forty-four units were HLA-identical to the intended recipient, and 28 units were released for transplantation either alone (n=23) or in combination with the bone marrow from the same donor (n=5), reflecting a utilization rate of 8%. Engraftment rate was 96% with 100% survival. Family cord blood banking yields good quality units for sibling transplantation. More comprehensive banking based on close collaboration among banks, clinical and transplant teams is recommended to optimize the use of these units. PMID:28302713

  20. Family cord blood banking for sickle cell disease: a twenty-year experience in two dedicated public cord blood banks.

    PubMed

    Rafii, Hanadi; Bernaudin, Françoise; Rouard, Helene; Vanneaux, Valérie; Ruggeri, Annalisa; Cavazzana, Marina; Gauthereau, Valerie; Stanislas, Aurélie; Benkerrou, Malika; De Montalembert, Mariane; Ferry, Christele; Girot, Robert; Arnaud, Cecile; Kamdem, Annie; Gour, Joelle; Touboul, Claudine; Cras, Audrey; Kuentz, Mathieu; Rieux, Claire; Volt, Fernanda; Cappelli, Barbara; Maio, Karina T; Paviglianiti, Annalisa; Kenzey, Chantal; Larghero, Jerome; Gluckman, Eliane

    2017-06-01

    Efforts to implement family cord blood banking have been developed in the past decades for siblings requiring stem cell transplantation for conditions such as sickle cell disease. However, public banks are faced with challenging decisions about the units to be stored, discarded, or used for other endeavors. We report here 20 years of experience in family cord blood banking for sickle cell disease in two dedicated public banks. Participants were pregnant women who had a previous child diagnosed with homozygous sickle cell disease. Participation was voluntary and free of charge. All mothers underwent mandatory serological screening. Cord blood units were collected in different hospitals, but processed and stored in two public banks. A total of 338 units were stored for 302 families. Median recipient age was six years (11 months-15 years). Median collected volume and total nucleated cell count were 91 mL (range 23-230) and 8.6×10 8 (range 0.7-75×10 8 ), respectively. Microbial contamination was observed in 3.5% (n=12), positive hepatitis B serology in 25% (n=84), and homozygous sickle cell disease in 11% (n=37) of the collections. Forty-four units were HLA-identical to the intended recipient, and 28 units were released for transplantation either alone (n=23) or in combination with the bone marrow from the same donor (n=5), reflecting a utilization rate of 8%. Engraftment rate was 96% with 100% survival. Family cord blood banking yields good quality units for sibling transplantation. More comprehensive banking based on close collaboration among banks, clinical and transplant teams is recommended to optimize the use of these units. Copyright© Ferrata Storti Foundation.

  1. Myeloid cell origins, differentiation, and clinical implications

    PubMed Central

    Weiskopf, Kipp; Schnorr, Peter J.; Pang, Wendy W.; Chao, Mark P.; Chhabra, Akanksha; Seita, Jun; Feng, Mingye; Weissman, Irving L.

    2016-01-01

    The hematopoietic stem cell (HSC) is a multipotent stem cell that resides in the bone marrow and has the ability to form all of the cells of the blood and immune system. Since its first purification in 1988, additional studies have refined the phenotype and functionality of HSCs and characterized all of their downstream progeny. The hematopoietic lineage is divided into two main branches: the myeloid and lymphoid arms. The myeloid arm is characterized by the Common Myeloid Progenitor and all of its resulting cell types. The stages of hematopoiesis have been defined in both mice and humans. During embryological development, the earliest hematopoiesis takes place in yolk sac blood islands then migrates to the fetal liver and hematopoietic organs. Some adult myeloid populations develop directly from yolk sac progenitors without apparent bone marrow intermediates, such as tissue resident macrophages. Hematopoiesis also changes over time, with a bias of the dominating HSCs towards myeloid development as animals age. Defects in myelopoiesis contribute to many hematologic disorders, and some of these can be overcome with therapies that target the aberrant stage of development. Furthermore, insights into myeloid development have informed us of mechanisms of programmed cell removal. The CD47/SIRPα axis, a myeloid-specific immune checkpoint, limits macrophage removal of HSCs but can be exploited by hematologic and solid malignancies. Therapeutics targeting CD47 represent a new strategy for treating cancer. Overall, an understanding of hematopoiesis and myeloid cell development has implications for regenerative medicine, hematopoietic cell transplantation, malignancy, and many other diseases. PMID:27763252

  2. Technical Insights into Highly Sensitive Isolation and Molecular Characterization of Fixed and Live Circulating Tumor Cells for Early Detection of Tumor Invasion

    PubMed Central

    Laget, Sophie; Dhingra, Dalia M.; BenMohamed, Fatima; Capiod, Thierry; Osteras, Magne; Farinelli, Laurent; Jackson, Stephen; Paterlini-Bréchot, Patrizia

    2017-01-01

    Circulating Tumor Cells (CTC) and Circulating Tumor Microemboli (CTM) are Circulating Rare Cells (CRC) which herald tumor invasion and are expected to provide an opportunity to improve the management of cancer patients. An unsolved technical issue in the CTC field is how to obtain highly sensitive and unbiased collection of these fragile and heterogeneous cells, in both live and fixed form, for their molecular study when they are extremely rare, particularly at the beginning of the invasion process. We report on a new protocol to enrich from blood live CTC using ISET® (Isolation by SizE of Tumor/Trophoblastic Cells), an open system originally developed for marker-independent isolation of fixed tumor cells. We have assessed the impact of our new enrichment method on live tumor cells antigen expression, cytoskeleton structure, cell viability and ability to expand in culture. We have also explored the ISET® in vitro performance to collect intact fixed and live cancer cells by using spiking analyses with extremely low number of fluorescent cultured cells. We describe results consistently showing the feasibility of isolating fixed and live tumor cells with a Lower Limit of Detection (LLOD) of one cancer cell per 10 mL of blood and a sensitivity at LLOD ranging from 83 to 100%. This very high sensitivity threshold can be maintained when plasma is collected before tumor cells isolation. Finally, we have performed a comparative next generation sequencing (NGS) analysis of tumor cells before and after isolation from blood and culture. We established the feasibility of NGS analysis of single live and fixed tumor cells enriched from blood by our system. This study provides new protocols for detection and characterization of CTC collected from blood at the very early steps of tumor invasion. PMID:28060956

  3. Membrane Mucin Muc4 Promotes Blood Cell Association with Tumor Cells and Mediates Efficient Metastasis in a Mouse Model of Breast Cancer

    PubMed Central

    Rowson-Hodel, A.R.; Wald, J.H.; Hatakeyama, J.; O’Neal, W.K.; Stonebraker, J.R.; VanderVorst, K.; Saldana, M.J.; Borowsky, A.D.; Sweeney, C.; Carraway, K.L.

    2018-01-01

    Mucin-4 (Muc4) is a large cell surface glycoprotein implicated in the protection and lubrication of epithelial structures. Previous studies suggest that aberrantly expressed Muc4 can influence the adhesiveness, proliferation, viability and invasiveness of cultured tumor cells, as well as the growth rate and metastatic efficiency of xenografted tumors. While it has been suggested that one of the major mechanisms by which Muc4 potentiates tumor progression is via its engagement of the ErbB2/HER2 receptor tyrosine kinase, other mechanisms exist and remain to be delineated. Moreover, the requirement for endogenous Muc4 for tumor growth progression has not been previously explored in the context of gene ablation. To assess the contribution of endogenous Muc4 to mammary tumor growth properties, we first created a genetically-engineered mouse line lacking functional Muc4 (Muc4ko), and then crossed these animals with the NDL model of ErbB2-induced mammary tumorigenesis. We observed that Muc4ko animals are fertile and develop normally, and adult mice exhibit no overt tissue abnormalities. In tumor studies, we observed that although some markers of tumor growth such as vascularity and cyclin D1 expression are suppressed, primary mammary tumors from Muc4ko/NDL female mice exhibit similar latencies and growth rates as Muc4wt/NDL animals. However, the presence of lung metastases is markedly suppressed in Muc4ko/NDL mice. Interestingly, histological analysis of lung lesions from Muc4ko/NDL mice revealed a reduced association of disseminated cells with red and white blood cells. Moreover, isolated cells derived from Muc4ko/NDL tumors interact with fewer blood cells when injected directly into the vasculature or diluted into blood from wild type mice. We further observed that blood cells more efficiently promote the viability of non-adherent Muc4wt/NDL cells than Muc4ko/NDL cells. Together, our observations suggest that Muc4 may facilitate metastasis by promoting the association of circulating tumor cells with blood cells to augment tumor cell survival in circulation. PMID:28892049

  4. Membrane Mucin Muc4 promotes blood cell association with tumor cells and mediates efficient metastasis in a mouse model of breast cancer.

    PubMed

    Rowson-Hodel, A R; Wald, J H; Hatakeyama, J; O'Neal, W K; Stonebraker, J R; VanderVorst, K; Saldana, M J; Borowsky, A D; Sweeney, C; Carraway, K L

    2018-01-11

    Mucin-4 (Muc4) is a large cell surface glycoprotein implicated in the protection and lubrication of epithelial structures. Previous studies suggest that aberrantly expressed Muc4 can influence the adhesiveness, proliferation, viability and invasiveness of cultured tumor cells, as well as the growth rate and metastatic efficiency of xenografted tumors. Although it has been suggested that one of the major mechanisms by which Muc4 potentiates tumor progression is via its engagement of the ErbB2/HER2 receptor tyrosine kinase, other mechanisms exist and remain to be delineated. Moreover, the requirement for endogenous Muc4 for tumor growth progression has not been previously explored in the context of gene ablation. To assess the contribution of endogenous Muc4 to mammary tumor growth properties, we first created a genetically engineered mouse line lacking functional Muc4 (Muc4 ko ), and then crossed these animals with the NDL (Neu DeLetion mutant) model of ErbB2-induced mammary tumorigenesis. We observed that Muc4 ko animals are fertile and develop normally, and adult mice exhibit no overt tissue abnormalities. In tumor studies, we observed that although some markers of tumor growth such as vascularity and cyclin D1 expression are suppressed, primary mammary tumors from Muc4 ko /NDL female mice exhibit similar latencies and growth rates as Muc4 wt /NDL animals. However, the presence of lung metastases is markedly suppressed in Muc4 ko /NDL mice. Interestingly, histological analysis of lung lesions from Muc4 ko /NDL mice revealed a reduced association of disseminated cells with platelets and white blood cells. Moreover, isolated cells derived from Muc4 ko /NDL tumors interact with fewer blood cells when injected directly into the vasculature or diluted into blood from wild type mice. We further observed that blood cells more efficiently promote the viability of non-adherent Muc4 wt /NDL cells than Muc4 ko /NDL cells. Together, our observations suggest that Muc4 may facilitate metastasis by promoting the association of circulating tumor cells with blood cells to augment tumor cell survival in circulation.

  5. Method for Differentiation between Fresh and Frozen-thawed Fish

    NASA Astrophysics Data System (ADS)

    Kitamikado, Manabu; Yoshioka, Keiko

    In Japan fresh fish has a much higher market price than that for frozen-thawed fish. However, a large number of frozen-thawed fish are sold without being differentiated from fresh fish. We discuss here the differentiation methods described in literatures and our works in the search for such a method. We used the opacity of crystalline lens and the destruction of red blood cells as the index for the differentiation, in addition to the activity of neutral β-N-acetylglucosaminidase in blood. Thus, a fluorometric method and a rapid paper test method were developed based on measurement of the activity of this enzyme. This enzyme, found in fish red blood cells, was inactive in intact cells but was activated when cells were disrupted by freezing, and thawing. Both methods were applicable for testing most commom edible fish prior to filleting and required about 20 min using a UV-lamp.

  6. Colony formation by normal and malignant human B-lymphocytes.

    PubMed Central

    Izaguirre, C. A.; Minden, M. D.; Howatson, A. F.; McCulloch, E. A.

    1980-01-01

    A method is described that permits colony formation in culture by B lymphocytes from normal blood and from blood, marrow or lymph nodes of patients with myeloma or lymphoma. The method depends on: (1) exhaustively depleting cell suspensions of T lymphocytes, (2) a medium conditioned by T lymphocytes in the presence of phytohaemagglutinin (PHA-TCM), and (3) irradiated autologous or homologous T lymphocytes. Under these conditions the assay is linear. Cellular development of B lymphocytes can be followed; differentiation to plasma cells is seen in cultures of cells from normal individuals and myeloma patients, but not lymphoma patients. Malignant B lymphocytes in culture produced immunoglobulin of the class identified in the patient's blood, or in freshly obtained cells. We conclude that the assay is suitable for studying the growth, differentiation and regulation of normal and malignant B lymphocytes in culture. Images Fig. 1 Fig. 2 PMID:6968572

  7. Line-Scanning Particle Image Velocimetry: An Optical Approach for Quantifying a Wide Range of Blood Flow Speeds in Live Animals

    PubMed Central

    Kim, Tyson N.; Goodwill, Patrick W.; Chen, Yeni; Conolly, Steven M.; Schaffer, Chris B.; Liepmann, Dorian; Wang, Rong A.

    2012-01-01

    Background The ability to measure blood velocities is critical for studying vascular development, physiology, and pathology. A key challenge is to quantify a wide range of blood velocities in vessels deep within living specimens with concurrent diffraction-limited resolution imaging of vascular cells. Two-photon laser scanning microscopy (TPLSM) has shown tremendous promise in analyzing blood velocities hundreds of micrometers deep in animals with cellular resolution. However, current analysis of TPLSM-based data is limited to the lower range of blood velocities and is not adequate to study faster velocities in many normal or disease conditions. Methodology/Principal Findings We developed line-scanning particle image velocimetry (LS-PIV), which used TPLSM data to quantify peak blood velocities up to 84 mm/s in live mice harboring brain arteriovenous malformation, a disease characterized by high flow. With this method, we were able to accurately detect the elevated blood velocities and exaggerated pulsatility along the abnormal vascular network in these animals. LS-PIV robustly analyzed noisy data from vessels as deep as 850 µm below the brain surface. In addition to analyzing in vivo data, we validated the accuracy of LS-PIV up to 800 mm/s using simulations with known velocity and noise parameters. Conclusions/Significance To our knowledge, these blood velocity measurements are the fastest recorded with TPLSM. Partnered with transgenic mice carrying cell-specific fluorescent reporters, LS-PIV will also enable the direct in vivo correlation of cellular, biochemical, and hemodynamic parameters in high flow vascular development and diseases such as atherogenesis, arteriogenesis, and vascular anomalies. PMID:22761686

  8. Effect of Flow on Gene Regulation in Smooth Muscle Cells and Macromolecular Transport Across Endothelial Cell Monolayers

    NASA Technical Reports Server (NTRS)

    McIntire, Larry V.; Wagner, John E.; Papadaki, Maria; Whitson, Peggy A.; Eskin, Suzanne G.

    1996-01-01

    Endothelial cells line all of the vessels of the circulatory system, providing a non-thrombogenic conduit for blood flow; they regulate many complex functions in the vasculature, such as coagulation, fibrinolysis, platelet aggregation, vessel tone and growth, and leukocyte traffic; and they form the principal barrier to transport of substances between the blood and the surrounding tissue space. The permeability of endothelial cell changes with environmental stimuli; shear stress, in particular, applied either in vivo, or in vitro, induces changes in protein expression and secretion of vasoactive factors by endothelial cells. The ability to study the effects of shear on the macromolecular permeability of the cerebral vasculature is particularly important, since in no other place is the barrier function of the endothelium more important than in the brain. The endothelial cells of this organ have developed special barrier properties that keep the cerebral system from experiencing any drastic change in composition; together with glial cells, they form the blood brain barrier (BBB). We have studied the effect of flow on bovine BBB using flow chambers and tissue culture systems.

  9. Using the developed cross-flow filtration chip for collecting blood plasma under high flow rate condition and applying the immunoglobulin E detection

    NASA Astrophysics Data System (ADS)

    Yeh, Chia-Hsien; Hung, Chia-Wei; Wu, Chun-Han; Lin, Yu-Cheng

    2014-09-01

    This paper presents a cross-flow filtration chip for separating blood cells (white blood cells, red blood cells, and platelets) and obtaining blood plasma from human blood. Our strategy is to flow the sample solution in parallel to the membrane, which can generate a parallel shear stress to remove the clogging microparticles on the membrane, so the pure sample solution is obtained in the reservoir. The cross-flow filtration chip includes a cross-flow layer, a Ni-Pd alloy micro-porous membrane, and a reservoir layer. The three layers are packaged in a polymethylmethacrylate (PMMA) frame to create the cross-flow filtration chip. Various dilutions of the blood sample (original, 2 × , 3 × , 5 × , and 10×), pore sizes with different diameters (1 µm, 2 µm, 4 µm, 7 µm, and 10 µm), and different flow rates (1 mL/min, 3 mL/min, 5 mL/min, 7 mL/min, and 10 mL/min) are tested to determine their effects on filtration percentage. The best filtration percentage is 96.2% when the dilution of the blood sample is 10 × , the diameter of pore size of a Ni-Pd alloy micro-porous membrane is 2 µm, and the flow rate is 10 mL/min. Finally, for the clinical tests of the immunoglobulin E (IgE) concentration, the cross-flow filtration chip is used to filter the blood of the allergy patients to obtain the blood plasma. This filtered blood plasma is compared with that obtained using the conventional centrifugation based on the enzyme-linked immunosorbent assay. The results reveal that these two blood separation methods have similar detection trends. The proposed filtration chip has the advantages of low cost, short filtration time, and easy operation and thus can be applied to the separation of microparticles, cells, bacteria, and blood.

  10. Zinc oxide nanoflowers make new blood vessels

    NASA Astrophysics Data System (ADS)

    Barui, Ayan Kumar; Veeriah, Vimal; Mukherjee, Sudip; Manna, Joydeb; Patel, Ajay Kumar; Patra, Sujata; Pal, Krishnendu; Murali, Shruthi; Rana, Rohit K.; Chatterjee, Suvro; Patra, Chitta Ranjan

    2012-11-01

    It is well established that angiogenesis is the process of formation of new capillaries from pre-existing blood vessels. It is a complex process, involving both pro- and anti-angiogenic factors, and plays a significant role in physiological and pathophysiological processes such as embryonic development, atherosclerosis, post-ischemic vascularization of the myocardium, tumor growth and metastasis, rheumatoid arthritis etc. This is the first report of zinc oxide (ZnO) nanoflowers that show significant pro-angiogenic properties (formation of new capillaries from pre-existing blood vessels), observed by in vitro and in vivo angiogenesis assays. The egg yolk angiogenesis assay using ZnO nanoflowers indicates the presence of matured blood vessels formation. Additionally, it helps to promote endothelial cell (EA.hy926 cells) migration in wound healing assays. Formation of reactive oxygen species (ROS), especially hydrogen peroxide (H2O2)--a redox signaling molecule, might be the plausible mechanism for nanoflower-based angiogenesis. Angiogenesis by nanoflowers may provide the basis for the future development of new alternative therapeutic treatment strategies for cardiovascular and ischemic diseases, where angiogenesis plays a significant role.It is well established that angiogenesis is the process of formation of new capillaries from pre-existing blood vessels. It is a complex process, involving both pro- and anti-angiogenic factors, and plays a significant role in physiological and pathophysiological processes such as embryonic development, atherosclerosis, post-ischemic vascularization of the myocardium, tumor growth and metastasis, rheumatoid arthritis etc. This is the first report of zinc oxide (ZnO) nanoflowers that show significant pro-angiogenic properties (formation of new capillaries from pre-existing blood vessels), observed by in vitro and in vivo angiogenesis assays. The egg yolk angiogenesis assay using ZnO nanoflowers indicates the presence of matured blood vessels formation. Additionally, it helps to promote endothelial cell (EA.hy926 cells) migration in wound healing assays. Formation of reactive oxygen species (ROS), especially hydrogen peroxide (H2O2)--a redox signaling molecule, might be the plausible mechanism for nanoflower-based angiogenesis. Angiogenesis by nanoflowers may provide the basis for the future development of new alternative therapeutic treatment strategies for cardiovascular and ischemic diseases, where angiogenesis plays a significant role. Electronic supplementary information (ESI) available: See DOI: 10.1039/c2nr32369a

  11. Generation of Scaffold-free, Three-dimensional Insulin Expressing Pancreatoids from Mouse Pancreatic Progenitors In Vitro.

    PubMed

    Scavuzzo, Marissa A; Teaw, Jessica; Yang, Diane; Borowiak, Malgorzata

    2018-06-02

    The pancreas is a complex organ composed of many different cell types that work together to regulate blood glucose homeostasis and digestion. These cell types include enzyme-secreting acinar cells, an arborized ductal system responsible for the transportation of enzymes to the gut, and hormone-producing endocrine cells. Endocrine beta-cells are the sole cell type in the body that produce insulin to lower blood glucose levels. Diabetes, a disease characterized by a loss or the dysfunction of beta-cells, is reaching epidemic proportions. Thus, it is essential to establish protocols to investigate beta-cell development that can be used for screening purposes to derive the drug and cell-based therapeutics. While the experimental investigation of mouse development is essential, in vivo studies are laborious and time-consuming. Cultured cells provide a more convenient platform for screening; however, they are unable to maintain the cellular diversity, architectural organization, and cellular interactions found in vivo. Thus, it is essential to develop new tools to investigate pancreatic organogenesis and physiology. Pancreatic epithelial cells develop in the close association with mesenchyme from the onset of organogenesis as cells organize and differentiate into the complex, physiologically competent adult organ. The pancreatic mesenchyme provides important signals for the endocrine development, many of which are not well understood yet, thus difficult to recapitulate during the in vitro culture. Here, we describe a protocol to culture three-dimensional, cellular complex mouse organoids that retain mesenchyme, termed pancreatoids. The e10.5 murine pancreatic bud is dissected, dissociated, and cultured in a scaffold-free environment. These floating cells self-assemble with mesenchyme enveloping the developing pancreatoid and a robust number of endocrine beta-cells developing along with the acinar and the duct cells. This system can be used to study the cell fate determination, structural organization, and morphogenesis, cell-cell interactions during organogenesis, or for the drug, small molecule, or genetic screening.

  12. Smooth muscle cell phenotypic switching in stroke.

    PubMed

    Poittevin, Marine; Lozeron, Pierre; Hilal, Rose; Levy, Bernard I; Merkulova-Rainon, Tatiana; Kubis, Nathalie

    2014-06-01

    Disruption of cerebral blood flow after stroke induces cerebral tissue injury through multiple mechanisms that are not yet fully understood. Smooth muscle cells (SMCs) in blood vessel walls play a key role in cerebral blood flow control. Cerebral ischemia triggers these cells to switch to a phenotype that will be either detrimental or beneficial to brain repair. Moreover, SMC can be primarily affected genetically or by toxic metabolic molecules. After stroke, this pathological phenotype has an impact on the incidence, pattern, severity, and outcome of the cerebral ischemic disease. Although little research has been conducted on the pathological role and molecular mechanisms of SMC in cerebrovascular ischemic diseases, some therapeutic targets have already been identified and could be considered for further pharmacological development. We examine these different aspects in this review.

  13. Relationship of BK polyoma virus (BKV) in the urine with hemorrhagic cystitis and renal function in recipients of T Cell-depleted peripheral blood and cord blood stem cell transplantations.

    PubMed

    Lee, Yeon Joo; Zheng, Junting; Kolitsopoulos, Yovanna; Chung, Dick; Amigues, Isabelle; Son, Tammy; Choo, Kathleen; Hester, Jeff; Giralt, Sergio A; Glezerman, Ilya G; Jakubowski, Ann A; Papanicolaou, Genovefa A

    2014-08-01

    Hematopoietic stem cell transplant (HSCT) recipients are at significant risk for BK virus (BKV) reactivation, hemorrhagic cystitis (HC), and renal dysfunction. We prospectively monitored 98 patients who had received HSCT by serial BKV PCR in the urine through day (D) +100 to analyze the relationship between BK viruria and HC, serum creatinine (Cr), and creatinine clearance (CrCl) through D +180 or death. Patients, median age 52 years (range, 20 to 73), received T cell-depleted (50%) or cord blood allografts (21%). Median pre-HSCT BKV IgG titers were 1:10,240. Incremental increase in BKV IgG titers correlated with developing BK viruria ≥ 10(7) copies/mL. By D +100, 53 (54%) patients had BK viruria. BKV load in the urine increased at engraftment and persisted throughout D +100. HC developed in 10 patients (10%); 7 of 10 with BK viruria. In competing risk analyses, BK viruria ≥ 10(7) copies/mL, older age, cytomegalovirus reactivation, and foscarnet use were risk factors for HC. Cr and CrCl at 2, 3, and 6 months after HSCT were similar between patients with and without BK viruria. Copyright © 2014 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  14. Leukemia

    MedlinePlus

    Leukemia is cancer of the white blood cells. White blood cells help your body fight infection. Your blood cells form in your bone marrow. In leukemia, the bone marrow produces abnormal white blood cells. ...

  15. Cell Phone Information Seeking Explains Blood Pressure in African American Women.

    PubMed

    Jones, Lenette M; Veinot, Tiffany C; Pressler, Susan J

    2018-05-01

    Although cell phone use and Internet access via cell phone is not marked by racial disparities, little is known about how cell phone use relates to blood pressure and health information seeking behaviors. The purposes of this study were to (a) describe Internet activities, cell phone use, and information seeking; (b) determine differences in blood pressure and information seeking between cell phone information seekers and nonseekers; and (c) examine cell phone information seeking as a predictor of blood pressure in African American women. Participants ( N = 147) completed a survey and had their blood pressure measured. Independent-sample t tests showed a significant difference in systolic blood pressure in cell phone information seekers and nonseekers. Linear regression revealed cell phone information seeking as an independent predictor of systolic blood pressure, despite confounders. It is possible that cell phone information seekers were using health information to make decisions about self-management of blood pressure.

  16. Destruction of newly released red blood cells in space flight

    NASA Technical Reports Server (NTRS)

    Alfrey, C. P.; Udden, M. M.; Huntoon, C. L.; Driscoll, T.

    1996-01-01

    Space flight results in a rapid change in total blood volume, plasma volume, and red blood cell mass because the space to contain blood is decreased. The plasma volume and total blood volume decreases during the first hours in space and remain at a decreased level for the remainder of the flight. During the first several hours following return to earth, plasma volume and total blood volume increase to preflight levels. During the first few days in space recently produced red blood cells disappear from the blood resulting in a decrease in red blood cell mass of 10-15%. Red cells 12 d old or older survive normally and production of new cells continues at near preflight levels. After the first few days in space, the red cell mass is stable at the decreased level. Following return to earth the hemoglobin and red blood cell mass concentrations decrease reflecting the increase in plasma volume. The erythropoietin levels increase responding to "postflight anemia"; red cell production increases, and the red cell mass is restored to preflight levels after several weeks.

  17. Modelling the endothelial blood-CNS barriers: a method for the production of robust in vitro models of the rat blood-brain barrier and blood-spinal cord barrier

    PubMed Central

    2013-01-01

    Background Modelling the blood-CNS barriers of the brain and spinal cord in vitro continues to provide a considerable challenge for research studying the passage of large and small molecules in and out of the central nervous system, both within the context of basic biology and for pharmaceutical drug discovery. Although there has been considerable success over the previous two decades in establishing useful in vitro primary endothelial cell cultures from the blood-CNS barriers, no model fully mimics the high electrical resistance, low paracellular permeability and selective influx/efflux characteristics of the in vivo situation. Furthermore, such primary-derived cultures are typically labour-intensive and generate low yields of cells, limiting scope for experimental work. We thus aimed to establish protocols for the high yield isolation and culture of endothelial cells from both rat brain and spinal cord. Our aim was to optimise in vitro conditions for inducing phenotypic characteristics in these cells that were reminiscent of the in vivo situation, such that they developed into tight endothelial barriers suitable for performing investigative biology and permeability studies. Methods Brain and spinal cord tissue was taken from the same rats and used to specifically isolate endothelial cells to reconstitute as in vitro blood-CNS barrier models. Isolated endothelial cells were cultured to expand the cellular yield and then passaged onto cell culture inserts for further investigation. Cell culture conditions were optimised using commercially available reagents and the resulting barrier-forming endothelial monolayers were characterised by functional permeability experiments and in vitro phenotyping by immunocytochemistry and western blotting. Results Using a combination of modified handling techniques and cell culture conditions, we have established and optimised a protocol for the in vitro culture of brain and, for the first time in rat, spinal cord endothelial cells. High yields of both CNS endothelial cell types can be obtained, and these can be passaged onto large numbers of cell culture inserts for in vitro permeability studies. The passaged brain and spinal cord endothelial cells are pure and express endothelial markers, tight junction proteins and intracellular transport machinery. Further, both models exhibit tight, functional barrier characteristics that are discriminating against large and small molecules in permeability assays and show functional expression of the pharmaceutically important P-gp efflux transporter. Conclusions Our techniques allow the provision of high yields of robust sister cultures of endothelial cells that accurately model the blood-CNS barriers in vitro. These models are ideally suited for use in studying the biology of the blood-brain barrier and blood-spinal cord barrier in vitro and for pre-clinical drug discovery. PMID:23773766

  18. Modelling the endothelial blood-CNS barriers: a method for the production of robust in vitro models of the rat blood-brain barrier and blood-spinal cord barrier.

    PubMed

    Watson, P Marc D; Paterson, Judy C; Thom, George; Ginman, Ulrika; Lundquist, Stefan; Webster, Carl I

    2013-06-18

    Modelling the blood-CNS barriers of the brain and spinal cord in vitro continues to provide a considerable challenge for research studying the passage of large and small molecules in and out of the central nervous system, both within the context of basic biology and for pharmaceutical drug discovery. Although there has been considerable success over the previous two decades in establishing useful in vitro primary endothelial cell cultures from the blood-CNS barriers, no model fully mimics the high electrical resistance, low paracellular permeability and selective influx/efflux characteristics of the in vivo situation. Furthermore, such primary-derived cultures are typically labour-intensive and generate low yields of cells, limiting scope for experimental work. We thus aimed to establish protocols for the high yield isolation and culture of endothelial cells from both rat brain and spinal cord. Our aim was to optimise in vitro conditions for inducing phenotypic characteristics in these cells that were reminiscent of the in vivo situation, such that they developed into tight endothelial barriers suitable for performing investigative biology and permeability studies. Brain and spinal cord tissue was taken from the same rats and used to specifically isolate endothelial cells to reconstitute as in vitro blood-CNS barrier models. Isolated endothelial cells were cultured to expand the cellular yield and then passaged onto cell culture inserts for further investigation. Cell culture conditions were optimised using commercially available reagents and the resulting barrier-forming endothelial monolayers were characterised by functional permeability experiments and in vitro phenotyping by immunocytochemistry and western blotting. Using a combination of modified handling techniques and cell culture conditions, we have established and optimised a protocol for the in vitro culture of brain and, for the first time in rat, spinal cord endothelial cells. High yields of both CNS endothelial cell types can be obtained, and these can be passaged onto large numbers of cell culture inserts for in vitro permeability studies. The passaged brain and spinal cord endothelial cells are pure and express endothelial markers, tight junction proteins and intracellular transport machinery. Further, both models exhibit tight, functional barrier characteristics that are discriminating against large and small molecules in permeability assays and show functional expression of the pharmaceutically important P-gp efflux transporter. Our techniques allow the provision of high yields of robust sister cultures of endothelial cells that accurately model the blood-CNS barriers in vitro. These models are ideally suited for use in studying the biology of the blood-brain barrier and blood-spinal cord barrier in vitro and for pre-clinical drug discovery.

  19. Giving blood and enrolling on the stem cell donor registry: ranking of obstacles and motives in Switzerland.

    PubMed

    Bart, Thomas; Volken, Thomas; Fischer, Yvonne; Taleghani, Behrouz Mansouri

    2014-07-01

    To obtain a better understanding of factors affecting blood and blood stem cell donation behavior in Switzerland, a series of studies has been performed. In the recent study of this series, which is described here, motivators and barriers in the field of blood and blood stem cell donation were identified. Web-based survey data from a non-random sample of the Swiss population 2012/2013 (n = 3,153) were used to describe and compare the ranking of motives and obstacles to donate blood and to enroll on the Swiss blood stem cell registry. Wilcoxon rank-sum test and Spearman's rank correlations were used to assess differences and associations between ranks and groups. The prospect of saving lives and solidarity were the top two motives to donate blood or to enroll on the blood stem cell registry. The top two obstacles to enroll on the blood stem cell registry were lack of general information on blood stem cell donation and on its risks, whereas the top two obstacles to donate blood were the lack of information where and when to donate and deferral of or exclusion from blood donation. Classical altruistic motives are top drivers for giving blood as well as registering for blood stem cell donation. Recruitment campaigns should focus on these motivators. Similarities in motivational factors as well as in obstacles regarding blood and blood stem cell donation can be found.

  20. Detection of human disease conditions by single-cell morpho-rheological phenotyping of blood.

    PubMed

    Toepfner, Nicole; Herold, Christoph; Otto, Oliver; Rosendahl, Philipp; Jacobi, Angela; Kräter, Martin; Stächele, Julia; Menschner, Leonhard; Herbig, Maik; Ciuffreda, Laura; Ranford-Cartwright, Lisa; Grzybek, Michal; Coskun, Ünal; Reithuber, Elisabeth; Garriss, Geneviève; Mellroth, Peter; Henriques-Normark, Birgitta; Tregay, Nicola; Suttorp, Meinolf; Bornhäuser, Martin; Chilvers, Edwin R; Berner, Reinhard; Guck, Jochen

    2018-01-13

    Blood is arguably the most important bodily fluid and its analysis provides crucial health status information. A first routine measure to narrow down diagnosis in clinical practice is the differential blood count, determining the frequency of all major blood cells. What is lacking to advance initial blood diagnostics is an unbiased and quick functional assessment of blood that can narrow down the diagnosis and generate specific hypotheses. To address this need, we introduce the continuous, cell-by-cell morpho-rheological (MORE) analysis of diluted whole blood, without labeling, enrichment or separation, at rates of 1000 cells/sec. In a drop of blood we can identify all major blood cells and characterize their pathological changes in several disease conditions in vitro and in patient samples. This approach takes previous results of mechanical studies on specifically isolated blood cells to the level of application directly in blood and adds a functional dimension to conventional blood analysis. © 2018, Toepfner et al.

  1. Detection of human disease conditions by single-cell morpho-rheological phenotyping of blood

    PubMed Central

    Toepfner, Nicole; Herold, Christoph; Otto, Oliver; Rosendahl, Philipp; Jacobi, Angela; Kräter, Martin; Stächele, Julia; Menschner, Leonhard; Herbig, Maik; Ciuffreda, Laura; Ranford-Cartwright, Lisa; Grzybek, Michal; Coskun, Ünal; Reithuber, Elisabeth; Garriss, Geneviève; Mellroth, Peter; Henriques-Normark, Birgitta; Tregay, Nicola; Suttorp, Meinolf; Bornhäuser, Martin; Chilvers, Edwin R; Berner, Reinhard

    2018-01-01

    Blood is arguably the most important bodily fluid and its analysis provides crucial health status information. A first routine measure to narrow down diagnosis in clinical practice is the differential blood count, determining the frequency of all major blood cells. What is lacking to advance initial blood diagnostics is an unbiased and quick functional assessment of blood that can narrow down the diagnosis and generate specific hypotheses. To address this need, we introduce the continuous, cell-by-cell morpho-rheological (MORE) analysis of diluted whole blood, without labeling, enrichment or separation, at rates of 1000 cells/sec. In a drop of blood we can identify all major blood cells and characterize their pathological changes in several disease conditions in vitro and in patient samples. This approach takes previous results of mechanical studies on specifically isolated blood cells to the level of application directly in blood and adds a functional dimension to conventional blood analysis. PMID:29331015

  2. DECREASED LEVEL OF CORD BLOOD CIRCULATING ENDOTHELIAL COLONY-FORMING CELLS IN PREECLAMPSIA

    PubMed Central

    Muñoz-Hernandez, Rocio; Miranda, Maria L.; Stiefel, Pablo; Lin, Ruei-Zeng; Praena-Fernández, Juan M.; Dominguez-Simeon, Maria J.; Villar, Jose; Moreno-Luna, Rafael; Melero-Martin, Juan M.

    2014-01-01

    Preeclampsia is a pregnancy-related disorder associated with increased cardiovascular risk for the offspring. Endothelial colony-forming cells (ECFCs) are a subset of circulating endothelial progenitor cells that participate in the formation of vasculature during development. However, the effect of preeclampsia on fetal levels of ECFCs is largely unknown. In this study, we sought to determine whether cord blood ECFC abundance and function are altered in preeclampsia. We conducted a prospective cohort study that included women with normal (n=35) and preeclamptic (n=15) pregnancies. We measured ECFC levels in the umbilical cord blood of neonates and characterized ECFC phenotype, cloning-forming ability, proliferation and migration towards VEGF-A and FGF-2, in vitro formation of capillary-like structures, and in vivo vasculogenic ability in immunodeficient mice. We found that the level of cord blood ECFCs was statistically lower in preeclampsia than in control pregnancies (P = .04), a reduction that was independent of other obstetric factors. In addition, cord blood ECFCs from preeclamptic pregnancies required more time to emerge in culture than control ECFCs. However, once derived in culture, ECFC function was deemed normal and highly similar between preeclampsia and control, including the ability to form vascular networks in vivo. This study demonstrates that preeclampsia affects ECFC abundance in neonates. A reduced level of ECFCs during preeclamptic pregnancies may contribute to an increased risk of developing future cardiovascular events. PMID:24752434

  3. Preparation and in vitro function of granulocyte concentrates for transfusion to neonates using the IBM 2991 blood processor.

    PubMed

    Goldfinger, D; Medici, M A; Hsi, R; McPherson, J; Connelly, M

    1983-01-01

    Clinical studies have suggested that granulocyte transfusions may be of value in the treatment of septic neonatal patients who present with severe granulocytopenia. We have developed a protocol for the preparation of granulocyte concentrates from freshly collected units of whole blood, using an automated blood cell processor. The red cells were washed with saline. Then, the buffy coats were collected from the washed red cells and studied for their suitability as granulocyte concentrates for neonatal transfusion. The mean number of granulocytes per concentrate was 1.6 X 10(9) in a mean volume of 25 ml. Studies of granulocyte function, including viability, random mobility, chemotaxis, phagocytosis and nitro-blue tetrazolium reduction, demonstrated that the granulocytes were functionally unimpaired following preparation of the concentrates. These studies suggest that concentrates of functional granulocytes, suitable for transfusion to neonatal patients, can be prepared from fresh units of whole blood, using a cell processor. This procedure is more cost-effective than leukapheresis and allows for delivery of granulocytes for transfusion in a more timely fashion.

  4. Development of a microfluidic device for cell concentration and blood cell-plasma separation.

    PubMed

    Maria, M Sneha; Kumar, B S; Chandra, T S; Sen, A K

    2015-12-01

    This work presents design, fabrication and test of a microfluidic device which employs Fahraeus-Lindqvist and Zweifach-Fung effects for cell concentration and blood cell-plasma separation. The device design comprises a straight main channel with a series of branched channels placed symmetrically on both sides of the main channel. The design implements constrictions before each junction (branching point) in order to direct cells that would have migrated closer to the wall (naturally or after liquid extraction at a junction) towards the centre of the main channel. Theoretical and numerical analysis are performed for design of the microchannel network to ensure that a minimum flow rate ratio (of 2.5:1, main channel-to-side channels) is maintained at each junction and predict flow rate at the plasma outlet. The dimensions and location of the constrictions were determined using numerical simulations. The effect of presence of constrictions before the junctions was demonstrated by comparing the performances of the device with and without constrictions. To demonstrate the performance of the device, initial experiments were performed with polystyrene microbeads (10 and 15 μm size) and droplets. Finally, the device was used for concentration of HL60 cells and separation of plasma and cells in diluted blood samples. The cell concentration and blood-plasma purification efficiency was quantified using Haemocytometer and Fluorescence-Activated Cell Sorter (FACS). A seven-fold cell concentration was obtained with HL60 cells and a purification efficiency of 70 % and plasma recovery of 80 % was observed for diluted (1:20) blood sample. FACS was used to identify cell lysis and the cell viability was checked using Trypan Blue test which showed that more than 99 % cells are alive indicating the suitability of the device for practical use. The proposed device has potential to be used as a sample preparation module in lab on chip based diagnostic platforms.

  5. Nicholas Metropolis Award Talk for Outstanding Doctoral Thesis Work in Computational Physics: Computational biophysics and multiscale modeling of blood cells and blood flow in health and disease

    NASA Astrophysics Data System (ADS)

    Fedosov, Dmitry

    2011-03-01

    Computational biophysics is a large and rapidly growing area of computational physics. In this talk, we will focus on a number of biophysical problems related to blood cells and blood flow in health and disease. Blood flow plays a fundamental role in a wide range of physiological processes and pathologies in the organism. To understand and, if necessary, manipulate the course of these processes it is essential to investigate blood flow under realistic conditions including deformability of blood cells, their interactions, and behavior in the complex microvascular network. Using a multiscale cell model we are able to accurately capture red blood cell mechanics, rheology, and dynamics in agreement with a number of single cell experiments. Further, this validated model yields accurate predictions of the blood rheological properties, cell migration, cell-free layer, and hemodynamic resistance in microvessels. In addition, we investigate blood related changes in malaria, which include a considerable stiffening of red blood cells and their cytoadherence to endothelium. For these biophysical problems computational modeling is able to provide new physical insights and capabilities for quantitative predictions of blood flow in health and disease.

  6. The U.S. Navy’s Experience with Resuscitation of Wounded Servicemen in Vietnam Using Frozen Washed Red Blood Cells - 1966-1973; Developments from This Experience

    DTIC Science & Technology

    1982-02-18

    resuscitatioh of wounded servicemen in Vietnam. Results of the U. S. Navy field-testing of :.....’ the first generation frozen blood bank system in...Vietnam between 1966 and 10968 .ir.. have demonstrated the feasibility of a frozen blood bank system to supplement the liquid blood bank system deployed...treatment prior to freeze-preservation.1 he second generation integrated liquid-frozen blood bank system has been field-tested "rely tthebe.Eilet

  7. Ex Vivo Expanded Human Regulatory T Cells Delay Islet Allograft Rejection via Inhibiting Islet-Derived Monocyte Chemoattractant Protein-1 Production in CD34+ Stem Cells-Reconstituted NOD-scid IL2rγnull Mice

    PubMed Central

    Xiao, Fang; Ma, Liang; Zhao, Min; Huang, Guocai; Mirenda, Vincenzo; Dorling, Anthony

    2014-01-01

    Type 1 diabetes mellitus (T1DM) is an autoimmune disease caused by immune-mediated destruction of insulin-secreting β cells of the pancreas. Near complete dependence on exogenous insulin makes T1DM very difficult to control, with the result that patients are exposed to high blood glucose and risk of diabetic complications and/or intermittent low blood glucose that can cause unconsciousness, fits and even death. Allograft transplantation of pancreatic islets restores normoglycemia with a low risk of surgical complications. However, although successful immediately after transplantation, islets are progressively lost, with most of the patients requiring exogenous insulin within 2 years post-transplant. Therefore, there is an urgent requirement for the development of new strategies to prevent islet rejection. In this study, we explored the importance of human regulatory T cells in the control of islets allograft rejection. We developed a pre-clinical model of human islet transplantation by reconstituting NOD-scid IL2rγnull mice with cord blood-derived human CD34+ stem cells and demonstrated that although the engrafted human immune system mediated the rejection of human islets, their survival was significantly prolonged following adoptive transfer of ex vivo expanded human Tregs. Mechanistically, Tregs inhibited the infiltration of innate immune cells and CD4+ T cells into the graft by down-regulating the islet graft-derived monocyte chemoattractant protein-1. Our findings might contribute to the development of clinical strategies for Treg therapy to control human islet rejection. We also show for the first time that CD34+ cells-reconstituted NOD-scid IL2rγnull mouse model could be beneficial for investigating human innate immunity in vivo. PMID:24594640

  8. Quantifying the abnormal hemodynamics of sickle cell anemia

    NASA Astrophysics Data System (ADS)

    Lei, Huan; Karniadakis, George

    2012-02-01

    Sickle red blood cells (SS-RBC) exhibit heterogeneous morphologies and abnormal hemodynamics in deoxygenated states. A multi-scale model for SS-RBC is developed based on the Dissipative Particle Dynamics (DPD) method. Different cell morphologies (sickle, granular, elongated shapes) typically observed in deoxygenated states are constructed and quantified by the Asphericity and Elliptical shape factors. The hemodynamics of SS-RBC suspensions is studied in both shear and pipe flow systems. The flow resistance obtained from both systems exhibits a larger value than the healthy blood flow due to the abnormal cell properties. Moreover, SS-RBCs exhibit abnormal adhesive interactions with both the vessel endothelium cells and the leukocytes. The effect of the abnormal adhesive interactions on the hemodynamics of sickle blood is investigated using the current model. It is found that both the SS-RBC - endothelium and the SS-RBC - leukocytes interactions, can potentially trigger the vicious ``sickling and entrapment'' cycles, resulting in vaso-occlusion phenomena widely observed in micro-circulation experiments.

  9. Drosophila sessile hemocyte clusters are true hematopoietic tissues that regulate larval blood cell differentiation

    PubMed Central

    Leitão, Alexandre B; Sucena, Élio

    2015-01-01

    Virtually all species of coelomate animals contain blood cells that display a division of labor necessary for homeostasis. This functional partition depends upon the balance between proliferation and differentiation mostly accomplished in the hematopoietic organs. In Drosophila melanogaster, the lymph gland produces plasmatocytes and crystal cells that are not released until pupariation. Yet, throughout larval development, both hemocyte types increase in numbers. Mature plasmatocytes can proliferate but it is not known if crystal cell numbers increase by self-renewal or by de novo differentiation. We show that new crystal cells in third instar larvae originate through a Notch-dependent process of plasmatocyte transdifferentiation. This process occurs in the sessile clusters and is contingent upon the integrity of these structures. The existence of this hematopoietic tissue, relying on structure-dependent signaling events to promote blood homeostasis, creates a new paradigm for addressing outstanding questions in Drosophila hematopoiesis and establishing further parallels with vertebrate systems. DOI: http://dx.doi.org/10.7554/eLife.06166.001 PMID:25650737

  10. Integrated Device for Circulating Tumor Cell Capture, Characterization and Lens-Free Microscopy

    DTIC Science & Technology

    2012-08-01

    peripheral blood of breast cancer patients indicates high metastatic potential and increased morbidity. Development of a cost - effective CTC detection and...microfilter platform captures CTC from the cancer patients’ blood cost effectively , where the larger CTC are preferentially retained on the membrane...development of a cost - effective and high-throughput CTC analysis system would revolutionize the field of CTC detection, prognosis, and therapeutic

  11. An optofluidic channel model for in vivo nanosensor networks in human blood

    NASA Astrophysics Data System (ADS)

    Johari, Pedram; Jornet, Josep M.

    2017-05-01

    In vivo Wireless Nanosensor Networks (iWNSNs) consist of nano-sized communicating devices with unprece- dented sensing and actuation capabilities, which are able to operate inside the human body. iWNSNs are a disruptive technology that enables the monitoring and control of biological processes at the cellular and sub- cellular levels. Compared to ex vivo measurements, which are conducted on samples extracted from the human body, iWNSNs can track (sub) cellular processes when and where they occur. Major progress in the field of na- noelectronics, nanophotonics and wireless communication is enabling the interconnection of nanosensors. Among others, plasmonic nanolasers with sub-micrometric footprint, plasmonic nano-antennas able to confine light in nanometric structures, and single-photon detectors with unrivaled sensitivity, enable the communication among implanted nanosensors in the near infrared and optical transmission windows. Motivated by these results, in this paper, an optofluidic channel model is developed to investigate the communication properties and temporal dynamics between a pair of in vivo nanosensors in the human blood. The developed model builds upon the authors' recent work on light propagation modeling through multi-layered single cells and cell assemblies and takes into account the geometric, electromagnetic and microfluidic properties of red blood cells in the human circulatory system. The proposed model guides the development of practical communication strategies among nanosensors, and paves the way through new nano-biosensing strategies able to identify diseases by detecting the slight changes in the channel impulse response, caused by either the change in shape of the blood cells or the presence of pathogens.

  12. Induction of Human Blood Group A Antigen Expression on Mouse Cells, Using Lentiviral Gene Transduction

    PubMed Central

    Fan, Xiaohu; Lang, Haili; Zhou, Xianpei; Zhang, Li; Yin, Rong; Maciejko, Jessica; Giannitsos, Vasiliki; Motyka, Bruce; Medin, Jeffrey A.; Platt, Jeffrey L.

    2010-01-01

    Abstract The ABO histo-blood group system is the most important antigen system in transplantation medicine, yet no small animal model of the ABO system exists. To determine the feasibility of developing a murine model, we previously subcloned the human α-1,2-fucosyltransferase (H-transferase, EC 2.4.1.69) cDNA and the human α-1,3-N-acetylgalactosaminyltransferase (A-transferase, EC 2.4.1.40) cDNA into lentiviral vectors to study their ability to induce human histo-blood group A antigen expression on mouse cells. Herein we investigated the optimal conditions for human A and H antigen expression in murine cells. We determined that transduction of a bicistronic lentiviral vector (LvEF1-AH-trs) resulted in the expression of A antigen in a mouse endothelial cell line. We also studied the in vivo utility of this vector to induce human A antigen expression in mouse liver. After intrahepatic injection of LvEF1-AH-trs, A antigen expression was observed on hepatocytes as detected by immunohistochemistry and real-time RT-PCR. In human group A erythrocyte-sensitized mice, A antigen expression in the liver was associated with tissue damage, and deposition of antibody and complement. These results suggest that this gene transfer strategy can be used to simulate the human ABO blood group system in a murine model. This model will facilitate progress in the development of interventions for ABO-incompatible transplantation and transfusion scenarios, which are difficult to develop in clinical or large animal settings. PMID:20163247

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Yiming; Program in Molecular, Cellular, and Developmental Biology, The Ohio State University, Columbus, OH; Sullenbarger, Brent

    Research highlights: {yields} HoxB4 overexpression in human TF1 cells increased the expression of CD61 and CD41a. {yields} HoxB4 fusion protein enhanced megakaryocytic development of CD34{sup +} cord blood cells. {yields} Ectopic HoxB4 increased Tpo receptor expression and decreased c-Myb expression. {yields} HoxB4 RNA silencing increased c-Myb expression and decreased Fli-1 expression. -- Abstract: In order to produce clinically useful quantities of platelets ex vivo we may need to firstly enhance early self-renewal of hematopoietic stem cells (HSCs) and/or megakaryocyte (Mk) progenitors. The homeodomain transcription factor HoxB4 has been shown to be an important regulator of stem cell renewal and hematopoiesis;more » however, its effect on megakaryopoiesis is unclear. In this study, we investigated the effect of HoxB4 overexpression or RNA silencing on megakaryocytic development in the human TF1 progenitor cell line; we then used recombinant tPTD-HoxB4 fusion protein to study the effect of exogenous HoxB4 on megakaryocytic development of human CD34 positively-selected cord blood cells. We found that ectopic HoxB4 in TF1 cells increased the antigen expression of CD61and CD41a, increased the gene expression of thrombopoietin receptor (TpoR), Scl-1, Cyclin D1, Fog-1 and Fli-1 while it decreased c-Myb expression. HoxB4 RNA silencing in TF1 cells decreased the expression of CD61 and CD41a and decreased Fli-1 expression while it increased the expression of c-Myb. Recombinant tPTD-HoxB4 fusion protein increased the percentages and absolute numbers of CD41a and CD61 positive cells during megakaryocytic differentiation of CD34 positively-selected cord blood cells and increased the numbers of colony-forming unit-megakaryocyte (CFU-Mk). Adding tPTD-HoxB4 fusion protein increased the gene expression of TpoR, Cyclin D1, Fog-1 and Fli-1 while it inhibited c-Myb expression. Our data suggest that increased HoxB4 enhanced early megakaryocytic development in human TF1 cells and CD34 positively-selected cord blood cells primarily by upregulating TpoR and Fli-1 expression and downregulating c-Myb expression. Increasing HoxB4 expression or adding recombinant HoxB4 protein might be a way to expand Mks for the production of platelets for use in transfusion medicine.« less

  14. Chronic Myeloid Leukemia

    MedlinePlus

    Leukemia is cancer of the white blood cells. White blood cells help your body fight infection. Your blood cells form in your bone marrow. In leukemia, the bone marrow produces abnormal white blood cells. ...

  15. Chronic Lymphocytic Leukemia

    MedlinePlus

    Leukemia is cancer of the white blood cells. White blood cells help your body fight infection. Your blood cells form in your bone marrow. In leukemia, the bone marrow produces abnormal white blood cells. ...

  16. Determination of EGFR mutations in single cells microdissected from enriched lung tumor cells in peripheral blood.

    PubMed

    Ran, Ran; Li, Longyun; Wang, Mengzhao; Wang, Shulan; Zheng, Zhi; Lin, Peter Ping

    2013-09-01

    A minimally invasive and repeatable approach for real-time epidermal growth factor receptor (EGFR) mutation surveillance would be highly beneficial for individualized therapy of late stage lung cancer patients whose surgical specimens are often not available. We aim to develop a viable method to detect EGFR mutations in single circulating tumor cells (CTCs). Using a model CTC system of spiked tumor cells in whole blood, we evaluated EGFR mutation determination in single tumor cells enriched from blood. We used magnetic beads labeled with antibody against leukocyte surface antigens to deplete leukocytes and enrich native CTCs independent of epithelial marker expression level. We then used laser cell microdissection (LCM) to isolate individual CTCs, followed by whole-genome amplification of the DNA for exon 19 microdeletion, L858R and T790M mutation detection by PCR sequencing. EGFR mutations were successfully measured in individual spiked tumor cells enriched from 7.5 ml whole blood. Whole-genome amplification provided sufficient DNA for mutation determination at multiple sites. Ninety-five percent of the single CTCs microdissected by LCM (19/20) yielded PCR amplicons for at least one of the three mutation sites. The amplification success rates were 55 % (11/20) for exon 19 deletion, 45 % (9/20) for T790M, and 85 % (17/20) for L858R. Sequencing of the amplicons showed allele dropout in the amplification reactions, but mutations were correctly identified in 80 % of the amplicons. EGFR mutation determination from single captured tumor cells from blood is feasible with the approach described here. However, to overcome allele dropout and to obtain reliable information about the tumor's EGFR status, multiple individual tumor cells should be assayed.

  17. The fluctuation of blood glucose, insulin and glucagon concentrations before and after insulin therapy in type 1 diabetes

    NASA Astrophysics Data System (ADS)

    Arif, Idam; Nasir, Zulfa

    2015-09-01

    A dynamical-systems model of plasma glucose, insulin and glucagon concentrations has been developed to investigate the effects of insulin therapy on blood glucose, insulin and glucagon regulations in type 1 diabetic patients. Simulation results show that the normal regulation of blood glucose concentration depends on insulin and glucagon concentrations. On type 1 diabetic case, the role of insulin on regulating blood glucose is not optimal because of the destruction of β cells in pancreas. These β cells destructions cause hyperglycemic episode affecting the whole body metabolism. To get over this, type 1 diabetic patients need insulin therapy to control the blood glucose level. This research has been done by using rapid acting insulin (lispro), long-acting insulin (glargine) and the combination between them to know the effects of insulin therapy on blood glucose, insulin and glucagon concentrations. Simulation results show that these different types of insulin have different effects on blood glucose concentration. Insulin therapy using lispro shows better blood glucose control after consumption of meals. Glargin gives better blood glucose control between meals and during sleep. Combination between lispro and glargine shows better glycemic control for whole day blood glucose level.

  18. In vivo flow cytometry for blood cell analysis using differential epi-detection of forward scattered light

    NASA Astrophysics Data System (ADS)

    Paudel, Hari P.; Jung, Yookyung; Raphael, Anthony; Alt, Clemens; Wu, Juwell; Runnels, Judith; Lin, Charles P.

    2018-02-01

    The present standard of blood cell analysis is an invasive procedure requiring the extraction of patient's blood, followed by ex-vivo analysis using a flow cytometer or a hemocytometer. We are developing a noninvasive optical technique that alleviates the need for blood extraction. For in-vivo blood analysis we need a high speed, high resolution and high contrast label-free imaging technique. In this proceeding report, we reported a label-free method based on differential epi-detection of forward scattered light, a method inspired by Jerome Mertz's oblique back-illumination microscopy (OBM) (Ford et al, Nat. Meth. 9(12) 2012). The differential epi-detection of forward light gives phase contrast image at diffraction-limited resolution. Unlike reflection confocal microscopy (RCM), which detects only sharp refractive index variation and suffers from speckle noise, this technique is suitable for detection of subtle variation of refractive index in biological tissue and it provides the shape and the size of cells. A custom built high speed electronic detection circuit board produces a real-time differential signal which yields image contrast based on phase gradient in the sample. We recorded blood flow in-vivo at 17.2k lines per second in line scan mode, or 30 frames per second (full frame), or 120 frame per second (quarter frame) in frame scan mode. The image contrast and speed of line scan data recording show the potential of the system for noninvasive blood cell analysis.

  19. Photoacoustic detection of hemozoin in human mononuclear cells as an early indicator of malaria infection

    NASA Astrophysics Data System (ADS)

    Custer, Jonathan R.; Kariuki, Michael; Beerntsen, Brenda T.; Viator, John A.

    2010-02-01

    Malaria is a blood borne infection affecting hundreds of millions of people worldwide2. The parasites reproduce within the blood cells, eventually causing their death and lysis. This process releases the parasites into the blood, continuing the cycle of infection. Usually, malaria is diagnosed only after a patient presents symptoms, including high fever, nausea, and, in advanced cases, coma and death. While invading the bloodstream of a host, malaria parasites convert hemoglobin into an insoluble crystal, known as hemozoin. These crystals, approximately several hundred nanometers in size, are contained within red blood cells and white blood cells that ingest free hemozoin in the blood. Thus, infected red blood cells and white blood cells contain a unique optical absorber that can be detected in blood samples using static photoacoustic detection methods. We separated the white blood cells from malaria infected blood and tested it in a photoacoustic set up using a tunable laser system consisting of an optical parametric oscillator pumped by an Nd:YAG laser with pulse duration of 5 ns. Our threshold of detection was 10 infected white blood cells per microliter, which is more sensitive than current diagnosis methods using microscopic analysis of blood.

  20. Flow of a circulating tumor cell and red blood cells in microvessels

    NASA Astrophysics Data System (ADS)

    Takeishi, Naoki; Imai, Yohsuke; Yamaguchi, Takami; Ishikawa, Takuji

    2015-12-01

    Quantifying the behavior of circulating tumor cells (CTCs) in the blood stream is of fundamental importance for understanding metastasis. Here, we investigate the flow mode and velocity of CTCs interacting with red blood cells (RBCs) in various sized microvessels. The flow of leukocytes in microvessels has been described previously; a leukocyte forms a train with RBCs in small microvessels and exhibits margination in large microvessels. Important differences in the physical properties of leukocytes and CTCs result from size. The dimensions of leukocytes are similar to those of RBCs, but CTCs are significantly larger. We investigate numerically the size effects on the flow mode and the cell velocity, and we identify similarities and differences between leukocytes and CTCs. We find that a transition from train formation to margination occurs when (R -a ) /tR≈1 , where R is the vessel radius, a is the cell radius, and tR is the thickness of RBCs, but that the motion of RBCs differs from the case of leukocytes. Our results also show that the velocities of CTCs and leukocytes are larger than the average blood velocity, but only CTCs move faster than RBCs for microvessels of R /a ≈1.5 -2.0 . These findings are expected to be useful not only for understanding metastasis, but also for developing microfluidic devices.

Top