Science.gov

Sample records for blood flow corrected

  1. Visually evoked blood flow responses and interaction with dynamic cerebral autoregulation: correction for blood pressure variation.

    PubMed

    Gommer, Erik D; Bogaarts, Guy; Martens, Esther G H J; Mess, Werner H; Reulen, Jos P H

    2014-05-01

    Visually evoked flow responses recorded using transcranial Doppler ultrasonography are often quantified using a dynamic model of neurovascular coupling. The evoked flow response is seen as the model's response to a visual step input stimulus. However, the continuously active process of dynamic cerebral autoregulation (dCA) compensating cerebral blood flow for blood pressure fluctuations may induce changes of cerebral blood flow velocity (CBFV) as well. The effect of blood pressure variability on the flow response is evaluated by separately modeling the dCA-induced effects of beat-to-beat measured blood pressure related CBFV changes. Parameters of 71 subjects are estimated using an existing, well-known second order dynamic neurovascular coupling model proposed by Rosengarten et al., and a new model extending the existing model with a CBFV contributing component as the output of a dCA model driven by blood pressure as input. Both models were evaluated for mean and systolic CBFV responses. The model-to-data fit errors of mean and systolic blood pressure for the new model were significantly lower compared to the existing model: mean: 0.8%±0.6 vs. 2.4%±2.8, p<0.001; systolic: 1.5%±1.2 vs. 2.2%±2.6, p<0.001. The confidence bounds of all estimated neurovascular coupling model parameters were significantly (p<0.005) narrowed for the new model. In conclusion, blood pressure correction of visual evoked flow responses by including cerebral autoregulation in model fitting of averaged responses results in significantly lower fit errors and by that in more reliable model parameter estimation. Blood pressure correction is more effective when mean instead of systolic CBFV responses are used. Measurement and quantification of neurovascular coupling should include beat-to-beat blood pressure measurement.

  2. Correlation of carotid blood flow and corrected carotid flow time with invasive cardiac output measurements.

    PubMed

    Ma, Irene W Y; Caplin, Joshua D; Azad, Aftab; Wilson, Christina; Fifer, Michael A; Bagchi, Aranya; Liteplo, Andrew S; Noble, Vicki E

    2017-12-01

    Non-invasive measures that can accurately estimate cardiac output may help identify volume-responsive patients. This study seeks to compare two non-invasive measures (corrected carotid flow time and carotid blood flow) and their correlations with invasive reference measurements of cardiac output. Consenting adult patients (n = 51) at Massachusetts General Hospital cardiac catheterization laboratory undergoing right heart catheterization between February and April 2016 were included. Carotid ultrasound images were obtained concurrently with cardiac output measurements, obtained by the thermodilution method in the absence of severe tricuspid regurgitation and by the Fick oxygen method otherwise. Corrected carotid flow time was calculated as systole time/√cycle time. Carotid blood flow was calculated as π × (carotid diameter)(2)/4 × velocity time integral × heart rate. Measurements were obtained using a single carotid waveform and an average of three carotid waveforms for both measures. Single waveform measurements of corrected flow time did not correlate with cardiac output (ρ = 0.25, 95% CI -0.03 to 0.49, p = 0.08), but an average of three waveforms correlated significantly, although weakly (ρ = 0.29, 95% CI 0.02-0.53, p = 0.046). Carotid blood flow measurements correlated moderately with cardiac output regardless of if single waveform or an average of three waveforms were used: ρ = 0.44, 95% CI 0.18-0.63, p = 0.004, and ρ = 0.41, 95% CI 0.16-0.62, p = 0.004, respectively. Carotid blood flow may be a better marker of cardiac output and less subject to measurements issues than corrected carotid flow time.

  3. Skeletal blood flow, iliac histomorphometry, and strontium kinetics in osteoporosis: a relationship between blood flow and corrected apposition rate

    SciTech Connect

    Reeve, J.; Arlot, M.; Wootton, R.; Edouard, C.; Tellez, M.; Hesp, R.; Green, J.R.; Meunier, P.J.

    1988-06-01

    In 20 untreated patients with idiopathic or postmenopausal osteoporosis, kinetic studies of skeletal blood flow (using /sup 18/F) and bone turnover (using /sup 85/Sr) were combined with dynamic histomorphometry performed on transiliac biopsies taken within 6 weeks of each other. In 8 patients the combined studies were repeated after treatment. A further 5 patients were studied only while receiving treatment. As expected, skeletal blood flow measured by /sup 18/F correlated with an index of /sup 85/Sr uptake into the exchangeable pools of bone. Additionally and independently, skeletal blood flow correlated with an index of the work rate of the osteoblasts in each multicellular unit of bone (the corrected apposition rate of Parfitt). These correlations were statistically significant in both the untreated patients (P less than 0.05) and the whole group (P less than 0.001). Further indices related to bone turnover at the level of the skeleton as a whole were significantly associated with skeletal blood flow only in the combined group.

  4. A programmable and portable NMES device for drop foot correction and blood flow assist applications.

    PubMed

    Breen, Paul P; Corley, Gavin J; O'Keeffe, Derek T; Conway, Richard; Olaighin, Gearóid

    2009-04-01

    The Duo-STIM, a new, programmable and portable neuromuscular stimulation system for drop foot correction and blood flow assist applications is presented. The system consists of a programmer unit and a portable, programmable stimulator unit. The portable stimulator features fully programmable, sensor-controlled, constant-voltage, dual-channel stimulation and accommodates a range of customized stimulation profiles. Trapezoidal and free-form adaptive stimulation intensity envelope algorithms are provided for drop foot correction applications, while time dependent and activity dependent algorithms are provided for blood flow assist applications. A variety of sensor types can be used with the portable unit, including force sensitive resistor-based foot switches and MEMS-based accelerometer and gyroscope devices. The paper provides a detailed description of the hardware and block-level system design for both units. The programming and operating procedures for the system are also presented. Finally, functional bench test results for the system are presented.

  5. Is there a necessity for individual blood water corrections when conductivity-based access blood flow measurements are made?

    PubMed

    Huang, Shih-Han S; Heidenheim, Paul A; Gallo, Kerri; Jayakumar, Saumya; Lindsay, Robert M

    2011-01-01

    Access blood water flow rate (Qaw) can be measured during hemodialysis using an online effective ionic dialysance (EID) methodology. Fresenius employ this methodology in their 2008K dialysis machine. The machine computer converts Qaw to an access blood flow rate (Fresenius Qa) using a generic blood water constant (BWC). We wished to validate this BWC. 18 patients had Fresenius Qa measurements using the EID and these were compared with a 'gold standard' ultrasound dilution methodology (Transonic Qa). Qa values were also obtained by removing the BWC from Fresenius Qa values to obtain the Qaw and recorrecting it with individualized patient factors using hematocrit and total protein values (HctTp Qa). The measurements were repeated after 1 h. There were no significant differences between Fresenius and Transonic, nor between HctTp and Transonic Qa values (p > 0.17). There were strong correlations between both sets of values (r > 0.856; p < 0.001). There was a significant correlation between the pairs of Transonic Qa values (r = 0.823; p < 0.007), but not for Fresenius Qa pairs (r = 0.573; p > 0.07). It was surmised that the BWC was not valid post-dialysis. The generic BWC is comparable to individualized blood water correction factors when Qa measures are made early in dialysis and prior to ultrafiltration treatment. Copyright © 2011 S. Karger AG, Basel.

  6. Blood flow

    MedlinePlus

    ... the same time, the veins carry oxygen-poor blood (shown in blue) from the tissues back toward the heart. From there, it passes to the lungs to receive more oxygen. This cycle repeats itself when oxygen-rich blood returns to the heart from the lungs, which ...

  7. Simultaneous recording of fingertip skin blood flow changes by multiprobe laser Doppler flowmetry and frequency-corrected thermal clearance.

    PubMed

    Raamat, Rein; Jagomägi, Kersti; Kingisepp, Peet

    2002-09-01

    We compared the results of skin blood flow (SBF) measurements, obtained simultaneously in adjacent fingertips by laser Doppler flowmetry (LDF) and thermal clearance (TC) probes, having approximately the same spatial and temporal characteristics. Experiments were performed in nine healthy volunteers during rest at room temperature (26-28 degrees C). A time resolution equal to about a second was achieved by speeding up the response of the thermal measurement circuit by applying the computer simulation software of the MATLAB package. The comparison revealed that the frequency-corrected TC signal correlated well with the multiprobe LDF signal (median correlation coefficient = 0.90, range = 0.84 to 0.96). At the same time the individual slope values of the regression equation ranged from 0.58 to 1.61, revealing the difficulties encountered in obtaining the invariant scaling factor between the TC and LDF measurements. The relationship between the frequency-corrected TC signal and the multiprobe LDF signal was found to be linear in the range of SBF changes of about three- to fourfold. In the case of larger fluctuations in SBF, excessive acceleration at high SBF rates was noted.

  8. Laser speckle contrast imaging of blood flow from anesthetized mice: correcting drifts in measurements due to breathing movements

    NASA Astrophysics Data System (ADS)

    Nogueira, Gesse E. C.; Ribeiro, Márcio A. C.; Campos, Juliane C.; Ferreira, Julio C. B.

    2015-06-01

    Background: Laser speckle contrast imaging allows non-invasive assessment of cutaneous blood flow. Although the technique is attractive to measure a quantity related to the skin blood flow (SBF) in anesthetized animal models, movements from breathing can mask the SBF signal. As a consequence, the measurement is overestimated because a variable amount of a DC component due to the breathing movements is added to the SBF signal. Objective: To evaluate a method for estimating the background level of the SBF signal, rejecting artefacts from breathing. Methods: A baseline correction method used for accurate DNA sequencing was evaluated, based on estimating the background level of a signal in small temporal sliding-windows. The method was applied to evaluate a mouse model of hindlimb ischemia. SBF signals from hindlimbs of anesthetized C57BL/6 mice (n=13) were registered. The mean SBF (Fi and Fc from ischemic and control hindlimbs) were computed from the registers and from the corresponding estimated background levels (Fib and Fcb from ischemic and control hindlimbs). Results: The mean values of the percentages (a measure of ischemia) MI = (Fi/Fc).100 and MIb = (Fib/Fcb).100 were computed to be 30+/-4% and 23+/-3% respectively (mean +/- SE). Evidences of statistical differences between both, ischemic and control hindlimbs, were obtained (p<0.05, paired student-t). The mean error [(MI-MIb)/MIb].100 obtained was 45+/-14% (mean+/-SE). Conclusion: The recovery of a corrupted SBF signal by breathing artefacts is feasible, allowing more accurate measurements.

  9. Voltage correction power flow

    SciTech Connect

    Rajicic, D.; Ackovski, R.; Taleski, R. . Dept. of Electrical Engineering)

    1994-04-01

    A method for power flow solution of weakly meshed distribution and transmission networks is presented. It is based on oriented ordering of network elements. That allows an efficient construction of the loop impedance matrix and rational organization of the processes such as: power summation (backward sweep), current summation (backward sweep) and node voltage calculation (forward sweep). The first step of the algorithm is calculation of node voltages on the radial part of the network. The second step is calculation of the breakpoint currents. Then, the procedure continues with the first step, which is preceded by voltage correction. It is illustrated that using voltage correction approach, the iterative process of weakly meshed network voltage calculation is faster and more reliable.

  10. Computing Blood Flows

    NASA Technical Reports Server (NTRS)

    Kwak, D.; Chang, J. L. C.; Rogers, S. E.; Rosenfeld, M.

    1990-01-01

    Methods developed for aerospace applied to mechanics of biofluids. Report argues use of advanced computational fluid dynamics to analyze flows of biofluids - especially blood. Ability to simulate numerically and visualize complicated, time-varying three-dimensional flows contributes to understanding of phenomena in heart and blood vessels, offering potential for development of treatments for abnormal flow conditions.

  11. Computing Blood Flows

    NASA Technical Reports Server (NTRS)

    Kwak, D.; Chang, J. L. C.; Rogers, S. E.; Rosenfeld, M.

    1990-01-01

    Methods developed for aerospace applied to mechanics of biofluids. Report argues use of advanced computational fluid dynamics to analyze flows of biofluids - especially blood. Ability to simulate numerically and visualize complicated, time-varying three-dimensional flows contributes to understanding of phenomena in heart and blood vessels, offering potential for development of treatments for abnormal flow conditions.

  12. Blood Flow in Arteries

    NASA Astrophysics Data System (ADS)

    Ku, David N.

    Blood flow in arteries is dominated by unsteady flow phenomena. The cardiovascular system is an internal flow loop with multiple branches in which a complex liquid circulates. A nondimensional frequency parameter, the Womersley number, governs the relationship between the unsteady and viscous forces. Normal arterial flow is laminar with secondary flows generated at curves and branches. The arteries are living organs that can adapt to and change with the varying hemodynamic conditions. In certain circumstances, unusual hemodynamic conditions create an abnormal biological response. Velocity profile skewing can create pockets in which the direction of the wall shear stress oscillates. Atherosclerotic disease tends to be localized in these sites and results in a narrowing of the artery lumena stenosis. The stenosis can cause turbulence and reduce flow by means of viscous head losses and flow choking. Very high shear stresses near the throat of the stenosis can activate platelets and thereby induce thrombosis, which can totally block blood flow to the heart or brain. Detection and quantification of stenosis serve as the basis for surgical intervention. In the future, the study of arterial blood flow will lead to the prediction of individual hemodynamic flows in any patient, the development of diagnostic tools to quantify disease, and the design of devices that mimic or alter blood flow. This field is rich with challenging problems in fluid mechanics involving three-dimensional, pulsatile flows at the edge of turbulence.

  13. Blood flow and microgravity

    NASA Astrophysics Data System (ADS)

    Bureau, Lionel; Coupier, Gwennou; Dubois, Frank; Duperray, Alain; Farutin, Alexander; Minetti, Christophe; Misbah, Chaouqi; Podgorski, Thomas; Tsvirkun, Daria; Vysokikh, Mikhail

    2017-01-01

    The absence of gravity during space flight can alter cardio-vascular functions partially due to reduced physical activity. This affects the overall hemodynamics, and in particular the level of shear stresses to which blood vessels are submitted. Long-term exposure to space environment is thus susceptible to induce vascular remodeling through a mechanotransduction cascade that couples vessel shape and function with the mechanical cues exerted by the circulating cells on the vessel walls. Central to such processes, the glycocalyx - i.e. the micron-thick layer of biomacromolecules that lines the lumen of blood vessels and is directly exposed to blood flow - is a major actor in the regulation of biochemical and mechanical interactions. We discuss in this article several experiments performed under microgravity, such as the determination of lift force and collective motion in blood flow, and some preliminary results obtained in artificial microfluidic circuits functionalized with endothelium that offer interesting perspectives for the study of the interactions between blood and endothelium in healthy condition as well as by mimicking the degradation of glycocalyx caused by long space missions. A direct comparison between experiments and simulations is discussed. xml:lang="fr"

  14. Four-dimensional visualization of thoracic blood flow by magnetic resonance imaging in a patient following correction of transposition of the great arteries (d-TGA) and uncorrected aortic coarctation.

    PubMed

    Ley-Zaporozhan, J; Unterhinninghofen, R; Rengier, F; Markl, M; Eichhorn, J; von Tengg-Kobligk, H; Ley, S

    2009-10-01

    Recent advances in flow-sensitive magnetic resonance imaging (MRI) and data analysis allow for comprehensive noninvasive three-dimensional (3D) visualization of complex blood flow. Electrocardiogram (ECG)-gated three-directional (3dir) flow measurements were employed to assess and visualize time-resolved 3D blood flow in the pulmonary arteries (PA) and thoracic aorta. We present findings in a juvenile patient with surgically corrected transposition of the great arteries (d-TGA) and aortic coarctation. For the first time, the complex flow patterns in the PA following d-TGA were visualized. Morphologically, a slight asymmetry of the PA was found, with considerable impact on vascular hemodynamics, resulting in diastolic retrograde flow in the larger vessel and diastolic filling of the smaller PA. Additionally, increased flow to the supraaortic vessels was found due to aortic coarctation.

  15. Modelling pulmonary blood flow.

    PubMed

    Tawhai, Merryn H; Burrowes, Kelly S

    2008-11-30

    Computational model analysis has been used widely to understand and interpret complexity of interactions in the pulmonary system. Pulmonary blood transport is a multi-scale phenomenon that involves scale-dependent structure and function, therefore requiring different model assumptions for the microcirculation and the arterial or venous flows. The blood transport systems interact with the surrounding lung tissue, and are dependent on hydrostatic pressure gradients, control of vasoconstriction, and the topology and material composition of the vascular trees. This review focuses on computational models that have been developed to study the different mechanisms contributing to regional perfusion of the lung. Different models for the microcirculation and the pulmonary arteries are considered, including fractal approaches and anatomically-based methods. The studies that are reviewed illustrate the different complementary approaches that can be used to address the same physiological question of flow heterogeneity.

  16. Resting cerebral blood flow

    PubMed Central

    Ances, B M.; Sisti, D; Vaida, F; Liang, C L.; Leontiev, O; Perthen, J E.; Buxton, R B.; Benson, D; Smith, D M.; Little, S J.; Richman, D D.; Moore, D J.; Ellis, R J.

    2009-01-01

    Objective: HIV enters the brain soon after infection causing neuronal damage and microglial/astrocyte dysfunction leading to neuropsychological impairment. We examined the impact of HIV on resting cerebral blood flow (rCBF) within the lenticular nuclei (LN) and visual cortex (VC). Methods: This cross-sectional study used arterial spin labeling MRI (ASL-MRI) to measure rCBF within 33 HIV+ and 26 HIV− subjects. Nonparametric Wilcoxon rank sum test assessed rCBF differences due to HIV serostatus. Classification and regression tree (CART) analysis determined optimal rCBF cutoffs for differentiating HIV serostatus. The effects of neuropsychological impairment and infection duration on rCBF were evaluated. Results: rCBF within the LN and VC were significantly reduced for HIV+ compared to HIV− subjects. A 2-tiered CART approach using either LN rCBF ≤50.09 mL/100 mL/min or LN rCBF >50.09 mL/100 mL/min but VC rCBF ≤37.05 mL/100 mL/min yielded an 88% (29/33) sensitivity and an 88% (23/26) specificity for differentiating by HIV serostatus. HIV+ subjects, including neuropsychologically unimpaired, had reduced rCBF within the LN (p = 0.02) and VC (p = 0.001) compared to HIV− controls. A temporal progression of brain involvement occurred with LN rCBF significantly reduced for both acute/early (<1 year of seroconversion) and chronic HIV-infected subjects, whereas rCBF in the VC was diminished for only chronic HIV-infected subjects. Conclusion: Resting cerebral blood flow (rCBF) using arterial spin labeling MRI has the potential to be a noninvasive neuroimaging biomarker for assessing HIV in the brain. rCBF reductions that occur soon after seroconversion possibly reflect neuronal or vascular injury among HIV+ individuals not yet expressing neuropsychological impairment. GLOSSARY AEH = acute/early HIV infection; ANOVA = analysis of variance; ASL-MRI = arterial spin labeling MRI; CART = classification and regression tree; CBF = cerebral blood flow; CH = chronic HIV

  17. Local Control of Blood Flow

    ERIC Educational Resources Information Center

    Clifford, Philip S.

    2011-01-01

    Organ blood flow is determined by perfusion pressure and vasomotor tone in the resistance vessels of the organ. Local factors that regulate vasomotor tone include myogenic and metabolic autoregulation, flow-mediated and conducted responses, and vasoactive substances released from red blood cells. The relative importance of each of these factors…

  18. Local Control of Blood Flow

    ERIC Educational Resources Information Center

    Clifford, Philip S.

    2011-01-01

    Organ blood flow is determined by perfusion pressure and vasomotor tone in the resistance vessels of the organ. Local factors that regulate vasomotor tone include myogenic and metabolic autoregulation, flow-mediated and conducted responses, and vasoactive substances released from red blood cells. The relative importance of each of these factors…

  19. Erythrocyte mechanics and blood flow

    SciTech Connect

    Cokelet, G.R.; Meiselman, H.J.; Brooks, D.E.

    1980-01-01

    This monograph includes the proceedings of a conference on erythrocyte mechanics and blood flow. The topics discussed include: the bilayer and shell model of the erythrocyte membrane; protein-protein interactions in red cell membranes; mechano-chemical study of red cell membrane structure in situ; viscoelastic solid behavior of red cell membrane; measures of blood rheology and erythrocyte mechanics; mechanisms of erythrocyte aggregation; dynamics of red blood cell deformation and aggregation, and in vivo flow; physical and mathematical models of blood flow - theoretical analysis; physical and mathematical models of blood flow - experimental studies; behavior or abnormal erythrocytes in capillaries; reduced erythrocyte deformability and vascular pathology; and microvascular transit of normal, immature, and altered red blood cells in spleen versus skeletal muscle. Summary remarks on in vitro erythrocyte characteristics and in vivo erythrocyte behavior are also indcluded. (RJC)

  20. Blood Flow in the Microcirculation

    NASA Astrophysics Data System (ADS)

    Secomb, Timothy W.

    2017-01-01

    The microcirculation is an extensive network of microvessels that distributes blood flow throughout living tissues. Reynolds numbers are much less than 1, and the equations of Stokes flow apply. Blood is a suspension of cells with dimensions comparable to microvessel diameters. Highly deformable red blood cells, which transport oxygen, have a volume concentration (hematocrit) of 40–45% in humans. In the narrowest capillaries, these cells move in single file with a surrounding lubricating layer of plasma. In larger vessels, the red blood cells migrate toward the centerline, reducing the resistance to blood flow. Vessel walls are coated with a layer of macromolecules that restricts flow. At diverging bifurcations, hematocrit is not evenly distributed in the downstream vessels. Other particles are driven toward the walls by interactions with red blood cells. These physiologically important phenomena are discussed here from a fluid mechanical perspective.

  1. Endovascular blood flow measurement system

    NASA Astrophysics Data System (ADS)

    Khe, A. K.; Cherevko, A. A.; Chupakhin, A. P.; Krivoshapkin, A. L.; Orlov, K. Yu

    2016-06-01

    In this paper an endovascular measurement system used for intraoperative cerebral blood flow monitoring is described. The system is based on a Volcano ComboMap Pressure and Flow System extended with analogue-to-digital converter and PC laptop. A series of measurements performed in patients with cerebrovascular pathologies allows us to introduce “velocity-pressure” and “flow rate-energy flow rate” diagrams as important characteristics of the blood flow. The measurement system presented here can be used as an additional instrument in neurosurgery for assessment and monitoring of the operation procedure. Clinical data obtained with the system are used for construction of mathematical models and patient-specific simulations. The monitoring of the blood flow parameters during endovascular interventions was approved by the Ethics Committee at the Meshalkin Novosibirsk Research Institute of Circulation Pathology and included in certain surgical protocols for pre-, intra- and postoperative examinations.

  2. Brain Function and Blood Flow

    ERIC Educational Resources Information Center

    Lassen, Niels A.; And Others

    1978-01-01

    Discusses the use of radioactive isotopes to graphically represent changes in the amount of blood flowing in areas of the human cerebral cortex, reflecting changes in the activity of those areas. Numerous illustrations are included. (Author/MA)

  3. Brain Function and Blood Flow

    ERIC Educational Resources Information Center

    Lassen, Niels A.; And Others

    1978-01-01

    Discusses the use of radioactive isotopes to graphically represent changes in the amount of blood flowing in areas of the human cerebral cortex, reflecting changes in the activity of those areas. Numerous illustrations are included. (Author/MA)

  4. Hyperhomocysteinemia decreases bone blood flow.

    PubMed

    Tyagi, Neetu; Vacek, Thomas P; Fleming, John T; Vacek, Jonathan C; Tyagi, Suresh C

    2011-01-25

    Elevated plasma levels of homocysteine (Hcy), known as hyperhomocysteinemia (HHcy), are associated with osteoporosis. A decrease in bone blood flow is a potential cause of compromised bone mechanical properties. Therefore, we hypothesized that HHcy decreases bone blood flow and biomechanical properties. To test this hypothesis, male Sprague-Dawley rats were treated with Hcy (0.67 g/L) in drinking water for 8 weeks. Age-matched rats served as controls. At the end of the treatment period, the rats were anesthetized. Blood samples were collected from experimental or control rats. Biochemical turnover markers (body weight, Hcy, vitamin B(12), and folate) were measured. Systolic blood pressure was measured from the right carotid artery. Tibia blood flow was measured by laser Doppler flow probe. The results indicated that Hcy levels were significantly higher in the Hcy-treated group than in control rats, whereas vitamin B(12) levels were lower in the Hcy-treated group compared with control rats. There was no significant difference in folate concentration and blood pressure in Hcy-treated versus control rats. The tibial blood flow index of the control group was significantly higher (0.78 ± 0.09 flow unit) compared with the Hcy-treated group (0.51 ± 0.09). The tibial mass was 1.1 ± 0.1 g in the control group and 0.9 ± 0.1 in the Hcy-treated group. The tibia bone density was unchanged in Hcy-treated rats. These results suggest that Hcy causes a reduction in bone blood flow, which contributes to compromised bone biomechanical properties.

  5. Regulation of intestinal blood flow.

    PubMed

    Matheson, P J; Wilson, M A; Garrison, R N

    2000-09-01

    The gastrointestinal system anatomically is positioned to perform two distinct functions: to digest and absorb ingested nutrients and to sustain barrier function to prevent transepithelial migration of bacteria and antigens. Alterations in these basic functions contribute to a variety of clinical scenarios. These primary functions intrinsically require splanchnic blood flow at both the macrovascular and microvascular levels of perfusion. Therefore, a greater understanding of the mechanisms that regulate intestinal vascular perfusion in the normal state and during pathophysiological conditions would be beneficial. The purpose of this review is to summarize the current understanding regarding the regulatory mechanisms of intestinal blood flow in fasted and fed conditions and during pathological stress.

  6. Regulation of pulpal blood flow

    SciTech Connect

    Kim, S.

    1985-04-01

    The regulation of blood flow of the dental pulp was investigated in dogs and rats anesthetized with sodium pentobarbital. Pulpal blood flow was altered by variations of local and systemic hemodynamics. Macrocirculatory blood flow (ml/min/100 g) in the dental pulp was measured with both the /sup 133/Xe washout and the 15-microns radioisotope-labeled microsphere injection methods on the canine teeth of dogs, to provide a comparison of the two methods in the same tooth. Microcirculatory studies were conducted in the rat incisor tooth with microscopic determination of the vascular pattern, RBC velocity, and intravascular volumetric flow distribution. Pulpal resistance vessels have alpha- and beta-adrenergic receptors. Activation of alpha-receptors by intra-arterial injection of norepinephrine (NE) caused both a reduction in macrocirculatory Qp in dogs and decreases in arteriolar and venular diameters and intravascular volumetric flow (Qi) in rats. These responses were blocked by the alpha-antagonist PBZ. Activation of beta-receptors by intra-arterial injection of isoproterenal (ISO) caused a paradoxical reduction of Qp in dogs. In rats, ISO caused a transient increase in arteriolar Qi followed by a flow reduction; arteriolar dilation was accompanied by venular constriction. These macrocirculatory and microcirculatory responses to ISO were blocked by the alpha-antagonist propranolol.

  7. BTPS correction for ceramic flow sensor.

    PubMed

    Hankinson, J L; Viola, J O; Petsonk, E L; Ebeling, T R

    1994-05-01

    Several commercially available spirometers use unheated ceramic elements as flow sensors to determine flow and calculate volume of air. The usual method of correcting the resulting flow and volume values to body temperature pressure saturated (BTPS) is to apply a constant factor approximately equal to 30 percent of the full BTPS correction factor. To evaluate the usual BTPS correction factor technique, we tested several sensors with a mechanical pump using both room air and air heated to 37 degrees C and saturated with water vapor. The volume signals used to test the sensors were volume ramps (constant flow) and the first four American Thoracic Society (ATS) standard waveforms. The percent difference in FEV1 obtained using room vs heated-humidified air (proportional to the magnitude of the BTPS correction factor needed) ranged from 0.3 percent to 6.2 percent and varied with the number of maneuvers previously performed, the time interval between maneuvers, the volume of the current and previous maneuvers, and the starting temperature of the sensor. The temperature of the air leaving the sensor (exit temperature) showed a steady rise with each successive maneuver using heated air. When six subjects performed repeated tests over several days (each test consisting of at least three maneuvers), a maneuver order effect was observed similar to the results using the mechanical pump. These results suggest that a dynamic, rather than static, BTPS correction factor is needed for accurate estimations of forced expiratory volumes and to reduce erroneous variability between successive maneuvers. Use of exit air temperature provides a means of estimating a dynamic BTPS correction factor, and this technique may be sufficient to provide an FEV1 accuracy of less than +/- 3 percent for exit air temperatures from 5 degrees to 28 degrees C.

  8. Finger blood flow in Antarctica

    PubMed Central

    Elkington, E. J.

    1968-01-01

    1. Finger blood flow was estimated, by strain-gauge plethysmography, before and during a 1 hr immersion in ice water, on twenty-five men throughout a year at Wilkes, Antarctica. A total of 121 satisfactory immersions were made. 2. Blood flow before and during immersion decreased significantly in the colder months of the year, and the increase caused by cold-induced vasodilatation (CIVD) became less as the year progressed. The time of onset, blood flow at onset, and frequency of the cycles of CIVD showed no significant relation to the coldness of the weather (as measured by mean monthly wind chill) or the time in months. Comparisons of blood flow before and after five field trips (average duration 42 days), on which cold exposure was more severe than at Wilkes station, gave similar results. 3. The results suggest that vasoconstrictor tone increased. This interpretation agrees with previous work on general acclimatization in Antarctica, but contrasts with work elsewhere on local acclimatization of the hands. PMID:5684034

  9. Regional cerebral blood flow changes associated with ethanol intoxication

    SciTech Connect

    Mathew, R.J.; Wilson, W.H.

    1986-11-01

    Regional cerebral blood flow (CBF) was measured via the 133Xenon inhalation technique in 26 healthy volunteers before and 60 minutes after the oral administration of ethyl alcohol or placebo on a double-blind basis. The cerebral blood flow values, corrected for test-retest differences in carbon dioxide showed a significant bilateral increase after ethanol administration. Blood levels of ethanol, estimated with a breath analyser, did not correlate with the CBF changes.

  10. Regulation of Coronary Blood Flow.

    PubMed

    Goodwill, Adam G; Dick, Gregory M; Kiel, Alexander M; Tune, Johnathan D

    2017-03-16

    The heart is uniquely responsible for providing its own blood supply through the coronary circulation. Regulation of coronary blood flow is quite complex and, after over 100 years of dedicated research, is understood to be dictated through multiple mechanisms that include extravascular compressive forces (tissue pressure), coronary perfusion pressure, myogenic, local metabolic, endothelial as well as neural and hormonal influences. While each of these determinants can have profound influence over myocardial perfusion, largely through effects on end-effector ion channels, these mechanisms collectively modulate coronary vascular resistance and act to ensure that the myocardial requirements for oxygen and substrates are adequately provided by the coronary circulation. The purpose of this series of Comprehensive Physiology is to highlight current knowledge regarding the physiologic regulation of coronary blood flow, with emphasis on functional anatomy and the interplay between the physical and biological determinants of myocardial oxygen delivery. © 2017 American Physiological Society. Compr Physiol 7:321-382, 2017.

  11. Blood Flow in the Stenotic Carotid Bifurcation

    NASA Astrophysics Data System (ADS)

    Rayz, Vitaliy

    2005-11-01

    The carotid artery is prone to atherosclerotic disease and the growth of plaque in the vessel, leading often to severe occlusion or plaque rupture, resulting in emboli and thrombus, and, possibly, stroke. Modeling the flow in stenotic blood vessels can elucidate the influence of the flow on plaque growth and stability. Numerical simulations are carried out to model the complex flows in anatomically realistic, patient-specific geometries constructed from magnetic resonance images. The 3-D unsteady Navier-Stokes equations are solved in a finite-volume formulation, using an iterative pressure-correction algorithm. The flow field computed is highly three-dimensional, with high-speed jets and strong recirculating secondary flows. Sharp spatial and temporal variations of the velocities and shear stresses are observed. The results are in a good agreement with the available experimental and clinical data. The influence of non-Newtonian blood behavior and arterial wall compliance are considered. Transitional and turbulent regimes have been looked at using LES. This work supports the conjecture that numerical simulations can provide a diagnostic tool for assessing plaque stability.

  12. Some potential blood flow experiments for space

    NASA Technical Reports Server (NTRS)

    Cokelet, G. R.; Meiselman, H. J.; Goldsmith, H. L.

    1979-01-01

    Blood is a colloidal suspension of cells, predominantly erythrocytes, (red cells) in an aqueous solution called plasma. Because the red cells are more dense than the plasma, and because they tend to aggregate, erythrocyte sedimentation can be significant when the shear stresses in flowing blood are small. This behavior, coupled with equipment restrictions, has prevented certain definitive fluid mechanical studies from being performed with blood in ground-based experiments. Among such experiments, which could be satisfactorily performed in a microgravity environment, are the following: (1) studies of blood flow in small tubes, to obtain pressure-flow rate relationships, to determine if increased red cell aggregation can be an aid to blood circulation, and to determine vessel entrance lengths, and (2) studies of blood flow through vessel junctions (bifurcations), to obtain information on cell distribution in downstream vessels of (arterial) bifurcations, and to test flow models of stratified convergent blood flows downstream from (venous) bifurcations.

  13. Cutaneous blood flow in psoriasis

    SciTech Connect

    Klemp, P.; Staberg, B.

    1983-12-01

    The disappearance rate of /sup 133/Xe was studied in 20 patients with psoriasis vulgaris, using an epicutaneous labeling technique in involved skin lesions or normal-appearing skin of the proximal extensor site of the forearm. Control experiments were performed in 10 normal subjects. Calculations of the cutaneous blood flow (CBF) in psoriatic skin lesions were performed using a tissue-to-blood partition coefficient for /sup 133/Xe, lambda c,pso, of 1.2 ml/100 g/min. lambda c,pso was estimated after the relative content of water, lipids, and proteins had been analyzed in psoriatic skin biopsies of 6 patients with untreated psoriasis. The mean relative content of water was markedly reduced to 23.5 +/- 1.5% (SEM), and lipids and proteins were markedly increased to 2.5 +/- 0.7% and 74.0 +/- 2.2, respectively, compared to previously published data for normal skin (water 72.5%, lipids 1%, proteins 26.5%). Mean CBF in untreated psoriatic skin was 63.5 +/- 9.0 ml/100 g/min. This was significantly higher than the mean CBF in 10 normal subjects, 6.3 +/- 0.5 ml/100 g/min (p much less than 0.0001). Mean CBF in normal-appearing skin in patients with psoriasis was 11.0 +/- 1.3 ml/100 g/min. This was significantly higher than CBF in normal subjects (p less than 0.0002).

  14. Microsphere estimates of blood flow: Methodological considerations

    SciTech Connect

    von Ritter, C.; Hinder, R.A.; Womack, W.; Bauerfeind, P.; Fimmel, C.J.; Kvietys, P.R.; Granger, D.N.; Blum, A.L. Louisianna State Univ. Medical Center, Shreveport Universitaire Vaudois )

    1988-02-01

    The microsphere technique is a standard method for measuring blood flow in experimental animals. Sporadic reports have appeared outlining the limitations of this method. In this study the authors have systematically assessed the effect of blood withdrawals for reference sampling, microsphere numbers, and anesthesia on blood flow estimates using radioactive microspheres in dogs. Experiments were performed on 18 conscious and 12 anesthetized dogs. Four blood flow estimates were performed over 120 min using 1 {times} 10{sup 6} microspheres each time. The effects of excessive numbers of microspheres pentobarbital sodium anesthesia, and replacement of volume loss for reference samples with dextran 70 were assessed. In both conscious and anesthetized dogs a progressive decrease in gastric mucosal blood flow and cardiac output was observed over 120 min. This was also observed in the pancreas in conscious dogs. The major factor responsible for these changes was the volume loss due to the reference sample withdrawals. Replacement of the withdrawn blood with dextran 70 led to stable blood flows to all organs. The injection of excessive numbers of microspheres did not modify hemodynamics to a greater extent than did the injection of 4 million microspheres. Anesthesia exerted no influence on blood flow other than raising coronary flow. The authors conclude that although blood flow to the gastric mucosa and the pancreas is sensitive to the minor hemodynamic changes associated with the microsphere technique, replacement of volume loss for reference samples ensures stable blood flow to all organs over a 120-min period.

  15. Blood Cell Interactions and Segregation in Flow

    PubMed Central

    Munn, Lance L.; Dupin, Michael M.

    2009-01-01

    For more than a century, pioneering researchers have been using novel experimental and computational approaches to probe the mysteries of blood flow. Thanks to their efforts, we know that blood cells generally prefer to migrate to the axis of flow, that red and white cells segregate in flow, and that cell deformability and their tendency to reversibly aggregate contribute to the non-Newtonian nature of this unique fluid. All of these properties have beneficial physiological consequences, allowing blood to perform a variety of critical functions. Our current understanding of these unusual flow properties of blood have been made possible by the ingenuity and diligence of a number of researchers, including Harry Goldsmith, who developed novel technologies to visualize and quantify the flow of blood at the level of individual cells. Here we summarize efforts in our lab to continue this tradition and to further our understanding of how blood cells interact with each other and with the blood vessel wall. PMID:18188702

  16. Fetal carotid blood flow during videofetoscopy.

    PubMed

    Fauza, D O; Fishman, S J

    1998-12-01

    Intracranial bleeding has been reported as one of the complications of both open and minimally invasive fetal surgery and putatively attributed to intraoperative fluctuations of carotid blood flow. The aim of this study was to look at fetal carotid blood flow and its relationship with umbilical blood flow, blood pressure, oxygen delivery, and acid-base status in the fetus at various intraamniotic pressures with both liquid and gas media during fetoscopic surgery. Six 115- to 130-day-gestation ewes underwent continuous invasive systemic blood pressure monitoring in the descending aorta. A hysterotomy was performed. A 6-mm ultrasonic blood flow probe was placed around the common umbilical artery at its origin from the fetal aorta. This was followed by placement of a double-lumen, 4F catheter in the fetal descending aorta through a femoral artery. A 4-mm ultrasonic blood flow probe was then placed around the fetal left common carotid artery. A pressure-monitoring, multiperforated catheter was placed inside the amniotic cavity. The fetus was repositioned inside the uterus, which was then closed. The abdominal wall was closed loosely. No further manipulation was performed for 1 hour. Intraamniotic pressure was raised from 0 to 30 mm Hg at 5-mm Hg intervals by infusing either warmed saline or medical air. Common umbilical artery and left carotid artery blood flows, blood pressure, blood gases, bicarbonate, sodium, and hematocrit were recorded in all fetuses at each 5-mm Hg interval. Maternal systemic blood pressure, O2 saturation, and temperature were kept constant. Carotid blood flow remained stable within the intra-amniotic pressure range studied (0 to 30 mm Hg), despite the significant drop in common umbilical artery blood flow uniformly observed above 20 mm Hg when saline was infused and above 15 mm Hg when air was infused. There was fetal hypoxemia and hypercarbia concomitant with decreased common umbilical artery blood flow (however, without fetal acidosis, because

  17. Regional cerebral blood flow in schizophrenia

    SciTech Connect

    Mathew, R.J.; Duncan, G.C.; Weinman, M.L.; Barr, D.L.

    1982-10-01

    Regional cerebral blood flow (rCBF) was measured via xenon133 inhalation technique in 23 patients with schizophrenia and 18 age- and sex-matched controls. The mean blood flow to both hemispheres was found to be lower for the patients. The patients and their controls did not differ on interhemispheric differences in blood flow. There were no differences in rCBF between medicated and unmedicated, subchronic and chronic, and paranoid and nonparanoid patients. Hallucinations were associated with reduced blood flow to several postcentral regions.

  18. Local cooling reduces regional bone blood flow.

    PubMed

    Venjakob, Arne J; Vogt, Stephan; Stöckl, Klaus; Tischer, Thomas; Jost, Philipp J; Thein, Eckart; Imhoff, Andreas B; Anetzberger, Hermann

    2013-11-01

    Local cooling is very common after bone and joint surgery. Therefore the knowledge of bone blood flow during local cooling is of substantial interest. Previous studies revealed that hypothermia leads to vasoconstriction followed by decreased blood flow levels. The aim of this study was to characterize if local cooling is capable of inducing reduced blood flow in bone tissue using a stepwise-reduced temperature protocol in experimental rabbits. To examine bone blood flow we utilized the fluorescent microsphere (FM) method. In New Zealand white rabbits one randomly chosen hind limb was cooled stepwise from 32 to 2°C, whereas the contra lateral hind limb served as control. Injection of microspheres was performed after stabilization of bone and muscle temperature at each temperature level. Bones were removed, dissected and fluorescence intensity was determined to calculate blood flow values. We found that blood flow of all cooled regions decreased relative to the applied external temperature. At maximum cooling blood flow was almost completely disrupted, indicating local cooling as powerful regulatory mechanism for regional bone blood flow (RBBF). Postoperative cooling therefore may lead to strongly decreased bone blood flow values. As a result external cooling has capacity to both diminish bone healing and reduce bleeding complications.

  19. Pulsatile Ocular Blood Flow in Healthy Koreans

    PubMed Central

    Kim, Seung Kab; Cho, Byung Joo; Hong, Samin; Kang, Sung Yong; Kim, Jae Sung; Kim, Chan Yun

    2008-01-01

    Purpose To determine the normal reference range of pulsatile ocular blood flow (POBF) values in healthy Korean subjects and to find out the factors that may affect them. Methods A total of 280 eyes of 280 normal subjects were included in this study. Best corrected visual acuity (BCVA), intraocular pressure (IOP), axial length, POBF, systemic blood pressure, and pulse rate were measured. The mean, standard deviation, range, and the 5th and 95th percentiles of POBF were calculated, and the influences of various parameters to POBF were determined by multiple regression analyses. Results The mean POBF value was 766.0±221.6 µl/min in men and 1021.1±249.5 µl/min in women. The 5th and 95th percentiles for POBF values were 486.0 µl/min and 1140.0 µl/min in men and 672.0 µl/min and 1458.0 µl/min in women. The POBF values were significantly influenced by gender, mean blood pressure, pulse rate, and axial length. Conclusions Even though the POBF values were influenced by gender, BP, and axial length, we could define the normal reference range of POBF in healthy Koreans. PMID:18323699

  20. Ultrasonic Blood Flow Measurement in Haemodialysis

    PubMed Central

    Sampson, D.; Papadimitriou, M.; Kulatilake, A. E.

    1970-01-01

    A 5-megacycle Doppler flow meter, calibrated in-vitro, was found to give a linear response to blood flow in the ranges commonly encountered in haemodialysis. With this, blood flow through artificial kidneys could be measured simply and with a clinically acceptable error. The method is safe, as blood lines do not have to be punctured or disconnected and hence there is no risk of introducing infection. Besides its value as a research tool the flow meter is useful in evaluating new artificial kidneys. Suitably modified it could form the basis of an arterial flow alarm system. PMID:5416812

  1. Multifractality of cerebral blood flow

    NASA Astrophysics Data System (ADS)

    West, Bruce J.; Latka, Miroslaw; Glaubic-Latka, Marta; Latka, Dariusz

    2003-02-01

    Scale invariance, the property relating time series across multiple scales, has provided a new perspective of physiological phenomena and their underlying control systems. The traditional “signal plus noise” paradigm of the engineer was first replaced with a model in which biological time series have a fractal structure in time (Fractal Physiology, Oxford University Press, Oxford, 1994). This new paradigm was subsequently shown to be overly restrictive when certain physiological signals were found to be characterized by more than one scaling parameter and therefore to belong to a class of more complex processes known as multifractals (Fractals, Plenum Press, New York, 1988). Here we demonstrate that in addition to heart rate (Nature 399 (1999) 461) and human gait (Phys. Rev. E, submitted for publication), the nonlinear control system for cerebral blood flow (CBF) (Phys. Rev. Lett., submitted for publication; Phys. Rev. E 59 (1999) 3492) is multifractal. We also find that this multifractality is greatly reduced for subjects with “serious” migraine and we present a simple model for the underlying control process to describe this effect.

  2. Blood flow reprograms lymphatic vessels to blood vessels

    PubMed Central

    Chen, Chiu-Yu; Bertozzi, Cara; Zou, Zhiying; Yuan, Lijun; Lee, John S.; Lu, MinMin; Stachelek, Stan J.; Srinivasan, Sathish; Guo, Lili; Vincente, Andres; Mericko, Patricia; Levy, Robert J.; Makinen, Taija; Oliver, Guillermo; Kahn, Mark L.

    2012-01-01

    Human vascular malformations cause disease as a result of changes in blood flow and vascular hemodynamic forces. Although the genetic mutations that underlie the formation of many human vascular malformations are known, the extent to which abnormal blood flow can subsequently influence the vascular genetic program and natural history is not. Loss of the SH2 domain–containing leukocyte protein of 76 kDa (SLP76) resulted in a vascular malformation that directed blood flow through mesenteric lymphatic vessels after birth in mice. Mesenteric vessels in the position of the congenital lymphatic in mature Slp76-null mice lacked lymphatic identity and expressed a marker of blood vessel identity. Genetic lineage tracing demonstrated that this change in vessel identity was the result of lymphatic endothelial cell reprogramming rather than replacement by blood endothelial cells. Exposure of lymphatic vessels to blood in the absence of significant flow did not alter vessel identity in vivo, but lymphatic endothelial cells exposed to similar levels of shear stress ex vivo rapidly lost expression of PROX1, a lymphatic fate–specifying transcription factor. These findings reveal that blood flow can convert lymphatic vessels to blood vessels, demonstrating that hemodynamic forces may reprogram endothelial and vessel identity in cardiovascular diseases associated with abnormal flow. PMID:22622036

  3. Blood flow reprograms lymphatic vessels to blood vessels.

    PubMed

    Chen, Chiu-Yu; Bertozzi, Cara; Zou, Zhiying; Yuan, Lijun; Lee, John S; Lu, MinMin; Stachelek, Stan J; Srinivasan, Sathish; Guo, Lili; Vicente, Andres; Vincente, Andres; Mericko, Patricia; Levy, Robert J; Makinen, Taija; Oliver, Guillermo; Kahn, Mark L

    2012-06-01

    Human vascular malformations cause disease as a result of changes in blood flow and vascular hemodynamic forces. Although the genetic mutations that underlie the formation of many human vascular malformations are known, the extent to which abnormal blood flow can subsequently influence the vascular genetic program and natural history is not. Loss of the SH2 domain-containing leukocyte protein of 76 kDa (SLP76) resulted in a vascular malformation that directed blood flow through mesenteric lymphatic vessels after birth in mice. Mesenteric vessels in the position of the congenital lymphatic in mature Slp76-null mice lacked lymphatic identity and expressed a marker of blood vessel identity. Genetic lineage tracing demonstrated that this change in vessel identity was the result of lymphatic endothelial cell reprogramming rather than replacement by blood endothelial cells. Exposure of lymphatic vessels to blood in the absence of significant flow did not alter vessel identity in vivo, but lymphatic endothelial cells exposed to similar levels of shear stress ex vivo rapidly lost expression of PROX1, a lymphatic fate-specifying transcription factor. These findings reveal that blood flow can convert lymphatic vessels to blood vessels, demonstrating that hemodynamic forces may reprogram endothelial and vessel identity in cardiovascular diseases associated with abnormal flow.

  4. Vascular structure determines pulmonary blood flow distribution

    NASA Technical Reports Server (NTRS)

    Hlastala, M. P.; Glenny, R. W.

    1999-01-01

    Scientific knowledge develops through the evolution of new concepts. This process is usually driven by new methodologies that provide observations not previously available. Understanding of pulmonary blood flow determinants advanced significantly in the 1960s and is now changing rapidly again, because of increased spatial resolution of regional pulmonary blood flow measurements.

  5. Vascular structure determines pulmonary blood flow distribution

    NASA Technical Reports Server (NTRS)

    Hlastala, M. P.; Glenny, R. W.

    1999-01-01

    Scientific knowledge develops through the evolution of new concepts. This process is usually driven by new methodologies that provide observations not previously available. Understanding of pulmonary blood flow determinants advanced significantly in the 1960s and is now changing rapidly again, because of increased spatial resolution of regional pulmonary blood flow measurements.

  6. Increased hippocampal blood volume and normal blood flow in schizophrenia.

    PubMed

    Talati, Pratik; Rane, Swati; Skinner, Jack; Gore, John; Heckers, Stephan

    2015-06-30

    Neuroimaging studies have provided compelling evidence for abnormal hippocampal activity in schizophrenia. Most studies made inferences about baseline hippocampal activity using a single hemodynamic parameter (e.g., blood volume or blood flow). Here we studied several hemodynamic measures in the same cohort to test the hypothesis of increased hippocampal activity in schizophrenia. We used dynamic susceptibility contrast- (DSC-) magnetic resonance imaging (MRI) to assess blood volume, blood flow, and mean transit time in the hippocampus of 15 patients with chronic schizophrenia and 15 healthy controls. Left and right hippocampal measurements were combined for absolute measures of cerebral blood volume (CBV), cerebral blood flow (CBF), and mean transit time (MTT). We found significantly increased hippocampal CBV, but normal CBF and MTT, in schizophrenia. The uncoupling of CBV and CBF could be due to several factors, including antipsychotic medication, loss of cerebral perfusion pressure, or angiogenesis. Further studies need to incorporate several complementary imaging modalities to better characterize hippocampal dysfunction in schizophrenia.

  7. Pancreatic islet blood flow and its measurement.

    PubMed

    Jansson, Leif; Barbu, Andreea; Bodin, Birgitta; Drott, Carl Johan; Espes, Daniel; Gao, Xiang; Grapensparr, Liza; Källskog, Örjan; Lau, Joey; Liljebäck, Hanna; Palm, Fredrik; Quach, My; Sandberg, Monica; Strömberg, Victoria; Ullsten, Sara; Carlsson, Per-Ola

    2016-05-01

    Pancreatic islets are richly vascularized, and islet blood vessels are uniquely adapted to maintain and support the internal milieu of the islets favoring normal endocrine function. Islet blood flow is normally very high compared with that to the exocrine pancreas and is autonomously regulated through complex interactions between the nervous system, metabolites from insulin secreting β-cells, endothelium-derived mediators, and hormones. The islet blood flow is normally coupled to the needs for insulin release and is usually disturbed during glucose intolerance and overt diabetes. The present review provides a brief background on islet vascular function and especially focuses on available techniques to measure islet blood perfusion. The gold standard for islet blood flow measurements in experimental animals is the microsphere technique, and its advantages and disadvantages will be discussed. In humans there are still no methods to measure islet blood flow selectively, but new developments in radiological techniques hold great hopes for the future.

  8. Pancreatic islet blood flow and its measurement

    PubMed Central

    Jansson, Leif; Barbu, Andreea; Bodin, Birgitta; Drott, Carl Johan; Espes, Daniel; Gao, Xiang; Grapensparr, Liza; Källskog, Örjan; Lau, Joey; Liljebäck, Hanna; Palm, Fredrik; Quach, My; Sandberg, Monica; Strömberg, Victoria; Ullsten, Sara; Carlsson, Per-Ola

    2016-01-01

    Pancreatic islets are richly vascularized, and islet blood vessels are uniquely adapted to maintain and support the internal milieu of the islets favoring normal endocrine function. Islet blood flow is normally very high compared with that to the exocrine pancreas and is autonomously regulated through complex interactions between the nervous system, metabolites from insulin secreting β-cells, endothelium-derived mediators, and hormones. The islet blood flow is normally coupled to the needs for insulin release and is usually disturbed during glucose intolerance and overt diabetes. The present review provides a brief background on islet vascular function and especially focuses on available techniques to measure islet blood perfusion. The gold standard for islet blood flow measurements in experimental animals is the microsphere technique, and its advantages and disadvantages will be discussed. In humans there are still no methods to measure islet blood flow selectively, but new developments in radiological techniques hold great hopes for the future. PMID:27124642

  9. Ciliary Blood Flow and Aqueous Humor Production

    PubMed Central

    Kiel, J.W.; Hollingsworth, M.; Rao, R.; Chen, M.; Reitsamer, H.A.

    2010-01-01

    Aqueous humor production is a metabolically active process sustained by the delivery of oxygen and nutrients and removal of metabolic waste by the ciliary circulation. This article describes our investigations into the relationship between ciliary blood flow and aqueous humor production. The results presented indicate that there is a dynamic relationship between ciliary blood flow and aqueous humor production, with production being blood flow independent above a critical level of perfusion, and blood flow dependent below it. The results also show that the plateau portion of the relationship shifts up or down depending on the level of secretory stimulation or inhibition, and that oxygen is one critical factor provided by ciliary blood flow. Also presented is a theoretical model of ocular hydrodynamics incorporating these new findings. PMID:20801226

  10. Raised intracranial pressure and cerebral blood flow

    PubMed Central

    Johnston, I. H.; Rowan, J. O.; Harper, A. M.; Jennett, W. B.

    1972-01-01

    Changes in cerebral blood flow during incremental increases of intracranial pressure produced by infusion of fluid into the cisterna magna were studied in anaesthetized baboons. Cerebral blood flow remained constant at intracranial pressure levels up to approximately 50 mm Hg. At intracranial pressure levels between 50-96 mm Hg a marked increase in cerebral blood flow occurred, associated with the development of systemic hypertension and changes in cerebrovascular resistance. Further increases of intracranial pressure led to a progressive fall in cerebral blood flow. Prior section of the cervical cord prevented both the increase in cerebral blood flow and the systemic hypertension. Alteration of cerebral perfusion pressure by bleeding during the hyperaemia in a further group of animals suggested that autoregulation was at least partially preserved during this phase. After maximum hyperaemia had occurred, however, autoregulation appeared to be lost. The clinical implications of these findings are discussed. PMID:4624687

  11. Subcutaneous blood flow in psoriasis

    SciTech Connect

    Klemp, P.

    1985-03-01

    The simultaneously recorded disappearance rates of /sup 133/xe from subcutaneous adipose tissue in the crus were studied in 10 patients with psoriasis vulgaris using atraumatic labeling of the tissue in lesional skin (LS) areas and symmetrical, nonlesional skin (NLS) areas. Control experiments were performed bilaterally in 10 younger, healthy subjects. The subcutaneous washout rate constant was significantly higher in LS, 0.79 +/- 0.05 min-1 x 10(2) compared to the washout rate constant of NLS, 0.56 +/- 0.07 min-1. 10(2), or the washout rate constant in the normal subjects, 0.46 +/- 0.17 min-1 x 10(2). The mean washout rate constant in NLS was 25% higher than the mean washout rate constant in the normal subjects. The difference was, however, not statistically significant. Differences in the washout rate constants might be due to abnormal subcutaneous tissue-to-blood partition (lambda) in the LS--and therefore not reflecting the real differences in the subcutaneous blood flow (SBF). The lambda for /sup 133/Xe was therefore measured--using a double isotope washout method (/sup 133/Xe and (/sup 131/I)antipyrine)--in symmetrical sites of the lateral crus in LS and NLS of 10 patients with psoriasis vulgaris and in 10 legs of normal subjects. In LS the lambda was 4.52 +/- 1.67 ml/g, which was not statistically different from that of NLS, 5.25 +/- 2.19 ml/g, nor from that of normal subcutaneous tissue, 4.98 +/- 1.04 ml/g. Calculations of the SBF using the obtained lambda values gave a significantly higher SBF in LS, 3.57 +/- 0.23 ml/100 g/min, compared to SBF in the NLS, 2.94 +/- 0.37 ml/100 g/min. There was no statistically significant difference between SBF in NLS and SBF in the normal subjects. The increased SBF in LS of psoriatics might be a secondary phenomenon to an increased heat loss in the lesional skin.

  12. Renal blood flow in sepsis

    PubMed Central

    Langenberg, Christoph; Bellomo, Rinaldo; May, Clive; Wan, Li; Egi, Moritoki; Morgera, Stanislao

    2005-01-01

    Introduction To assess changes in renal blood flow (RBF) in human and experimental sepsis, and to identify determinants of RBF. Method Using specific search terms we systematically interrogated two electronic reference libraries to identify experimental and human studies of sepsis and septic acute renal failure in which RBF was measured. In the retrieved studies, we assessed the influence of various factors on RBF during sepsis using statistical methods. Results We found no human studies in which RBF was measured with suitably accurate direct methods. Where it was measured in humans with sepsis, however, RBF was increased compared with normal. Of the 159 animal studies identified, 99 reported decreased RBF and 60 reported unchanged or increased RBF. The size of animal, technique of measurement, duration of measurement, method of induction of sepsis, and fluid administration had no effect on RBF. In contrast, on univariate analysis, state of consciousness of animals (P = 0.005), recovery after surgery (P < 0.001), haemodynamic pattern (hypodynamic or hyperdynamic state; P < 0.001) and cardiac output (P < 0.001) influenced RBF. However, multivariate analysis showed that only cardiac output remained an independent determinant of RBF (P < 0.001). Conclusion The impact of sepsis on RBF in humans is unknown. In experimental sepsis, RBF was reported to be decreased in two-thirds of studies (62 %) and unchanged or increased in one-third (38%). On univariate analysis, several factors not directly related to sepsis appear to influence RBF. However, multivariate analysis suggests that cardiac output has a dominant effect on RBF during sepsis, such that, in the presence of a decreased cardiac output, RBF is typically decreased, whereas in the presence of a preserved or increased cardiac output RBF is typically maintained or increased. PMID:16137349

  13. Blood hyperviscosity with reduced skin blood flow in scleroderma

    PubMed Central

    McGrath, M. A.; Peek, R.; Penny, R.

    1977-01-01

    The vascular complications of scleroderma have previously been attributed to the progressive obliteration of small vessels. Our study was carried out to determine whether abnormalities of blood viscosity occur in this disease, thereby contributing to the ischaemic process. Blood viscosity was measured in 20 patients using a rotational viscometer. At a high rate of shear, blood hyperviscosity was found in 35% of the patients and at a low rate of shear, in 70%. In addition there was a significant increase in the plasma viscosity which implicates changes in plasma proteins (fibrinogen, immunoglobulins) as causing the hyperviscosity. Measurement of the hand blood flow by venous occlusion plethysmography showed reduced flow at 32°, 27°, and 20°C. A unique finding was a delayed recovery of the blood flow after cooling. These observations suggest that the increased resistance to blood flow in skin affected by scleroderma may be caused by an interaction between the occlusive vascular lesion and blood hyperviscosity. In addition, blood flow patterns and hyperviscosity could help distinguish scleroderma from primary Raynaud's disease. PMID:596950

  14. Radioisotopic flow scanning for portal blood flow and portal hypertension

    SciTech Connect

    Hesdorffer, C.S.; Bezwoda, W.R.; Danilewitz, M.D.; Esser, J.D.; Tobias, M.

    1987-08-01

    The use of a simple, noninvasive, isotope scanning technique for the determination of relative portal blood flow and detection of portal hypertension is described. Using this technique the presence of portal hypertension was demonstrated in seven of nine patients known to have elevated portal venous pressure. By contrast, esophageal varices were demonstrated in only five of these patients, illustrating the potential value of the method. Furthermore, this technique has been adapted to the study of portal blood flow in patients with myeloproliferative disorders with splenomegaly but without disturbances in hepatic architecture. Results demonstrate that the high relative splenic flow resulting from the presence of splenomegaly may in turn be associated with elevated relative portal blood flow and portal hypertension. The theoretic reasons for the development of flow-related portal hypertension and its relationship to splenic blood flow are discussed.

  15. Postradiation regional cerebral blood flow in primates

    SciTech Connect

    Cockerham, L.G.; Cerveny, T.J.; Hampton, J.D.

    1986-06-01

    Early transient incapacitation (ETI) is the complete cessation of performance during the first 30 min after radiation exposure and performance decrement (PD) is a reduction in performance at the same time. Supralethal doses of radiation have been shown to produce a marked decrease in regional cerebral blood flow in primates concurrent with hypotension and a dramatic release of mast cell histamine. In an attempt to elucidate mechanisms underlying the radiation-induced ETI/PD phenomenon and the postradiation decrease in cerebral blood flow, primates were exposed to 100 Gy (1 Gy = 100 rads), whole-body, gamma radiation. Pontine and cortical blood flows were measured by hydrogen clearance, before and after radiation exposure. Systemic blood pressures were determined simultaneously. Systemic arterial histamine levels were determined preradiation and postradiation. Data obtained indicated that radiated animals showed a decrease in blood flow of 63% in the motor cortex and 51% in the pons by 10 min postradiation. Regional cerebral blood flow of radiated animals showed a slight recovery 20 min postradiation, followed by a fall to the 10 min nadir by 60 min postradiation. Immediately, postradiation systemic blood pressure fell 67% and remained at that level for the remainder of the experiment. Histamine levels in the radiated animals increased a hundredfold 2 min postradiation. This study indicates that regional cerebral blood flow decreases postradiation with the development of hypotension and may be associated temporally with the postradiation release of histamine.

  16. Carbon dioxide and liver blood flow.

    PubMed

    Dutton, R; Levitzky, M; Berkman, R

    1976-01-01

    This study was designed to determine blood flow to the liver during hypercapnia and combined hypercapnia-hypoxia with the portal vein and hepatic artery intact except for placement of an electromagnetic flow probe around these vessels. Twenty mongrel dogs weighing 30-45 kg were anesthetized with pentobarbital and flow probes and occluders were surgically implanted. Ten of these dogs were subjected to hypercapnia alone. During inspiration of 6% CO2 in room air, portal vein flow increased from 588 +/- 73 ml/min to 731 +/- 113 ml/min (p less than .05), while hepatic artery flow did not change significantly from its control mean of 221 +/- 38 ml/min. In the remaining dogs, inhalation of 6% O2 resulted in a reduction of portal blood flow within 30 min from 527 +/- 55 ml/min to 381 +/- 41 ml/min (p less than .01). Again, mean hepatic artery flow did not increase significantly above its control of 273 +/- 43 ml/min. Subsequent inhalation of 6% CO2 plus 6% O2 (combined hypercapniahypoxia) for 30 min in these same animals resulted in a significant increase of portal vein blood flow from 514 +/- 46 ml/min to 716 +/- 116 ml/min (p less than .05). Thus, hypercapnia alone increases total liver blood flow, primarily by an increase in portal vein flow. Hypoxia results in a decrease in portal vein flow. The superimposition of hypercapnia on hypoxia restores blood flow to a level close to that found with hypercapnia alone. Hypercapnia in the range of 63 +/- 4 mmHg PCO2 overwhelms the tendency toward a reduction of portal vein blood flow induced by an arterial PO2 of 42 +/- 5 mmHg in the presence of mild hypocapnia (PCO2 : 30.2 +/- 1 mmHg).

  17. Flow in Atherosclerotic Blood Vessels

    NASA Astrophysics Data System (ADS)

    Berger, Stanley A.; Stroud, Jenn S.

    2000-11-01

    Atherosclerotic lesions occur in arteries where there are major changes in flow structure, e.g. bifurcations and junctions. The reduction of vessel lumen alters the flow, including the mechanical forces on the walls. We have examined the flow in carotid artery bifurcations with realistic plaque contours. The unsteady, incompressible, Navier-Stokes equations are solved in finite-volume form. Steady and pulsatile flows have been analyzed for laminar and turbulent flows, using for the latter a low-Reynolds number k- ɛ model and a k-ω model. Non-Newtonian viscosity is also considered using a power-law model. In general the very irregular contours of the vessels lead to recirculating regions, strong spatial variations of wall shear stresses, and in some cases, vortex shedding. Even steady inlet flow exhibits fluctuating, unsteady behavior. Neither turbulence models captures all the physics of the flow. The flow, in fact, appears to be transitional and not fully turbulent. For unsteady flow, there are also strong temporal variations of normal and shear stresses, which together with the strong spatial variations, has important implications for the onset and progression of atherosclerotic disease.

  18. Brachial blood flow under relative levels of blood flow restriction is decreased in a nonlinear fashion.

    PubMed

    Mouser, J Grant; Ade, Carl J; Black, Christopher D; Bemben, Debra A; Bemben, Michael G

    2017-04-12

    Blood flow restriction (BFR), the application of external pressure to occlude venous return and restrict arterial inflow, has been shown to increase muscular size and strength when combined with low-load resistance exercise. BFR in the research setting uses a wide range of pressures, applying a pressure based upon an individual's systolic pressure or a percentage of occlusion pressure; not a directly determined reduction in blood flow. The relationship between relative pressure and blood flow has not been established. To measure blood flow in the arm under relative levels of BFR. Forty-five people (18-40 years old) participated. Arterial occlusion pressure in the right arm was measured using a 5-cm pneumatic cuff. Blood flow in the brachial artery was measured at rest and at pressures between 10% and 90% of occlusion using ultrasound. Blood flow decreased in a nonlinear, stepped fashion. Blood flow decreased at 10% of occlusion and remained constant until decreasing again at 40%, where it remained until 90% of occlusion. The decrease in brachial blood flow is not proportional to the applied relative pressure. The prescription of blood flow restriction should take into account the stimulus provided at each relative level of blood flow. © 2017 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  19. Blood flow and oxygen uptake during exercise

    NASA Technical Reports Server (NTRS)

    Mitchell, J. W.; Stolwijk, J. A. J.; Nadel, E. R.

    1973-01-01

    A model is developed for predicting oxygen uptake, muscle blood flow, and blood chemistry changes under exercise conditions. In this model, the working muscle mass system is analyzed. The conservation of matter principle is applied to the oxygen in a unit mass of working muscle under transient exercise conditions. This principle is used to relate the inflow of oxygen carried with the blood to the outflow carried with blood, the rate of change of oxygen stored in the muscle myoglobin, and the uptake by the muscle. Standard blood chemistry relations are incorporated to evaluate venous levels of oxygen, pH, and carbon dioxide.

  20. Blood flow and oxygen uptake during exercise

    NASA Technical Reports Server (NTRS)

    Mitchell, J. W.; Stolwijk, J. A. J.; Nadel, E. R.

    1973-01-01

    A model is developed for predicting oxygen uptake, muscle blood flow, and blood chemistry changes under exercise conditions. In this model, the working muscle mass system is analyzed. The conservation of matter principle is applied to the oxygen in a unit mass of working muscle under transient exercise conditions. This principle is used to relate the inflow of oxygen carried with the blood to the outflow carried with blood, the rate of change of oxygen stored in the muscle myoglobin, and the uptake by the muscle. Standard blood chemistry relations are incorporated to evaluate venous levels of oxygen, pH, and carbon dioxide.

  1. Blood flow patterns underlie developmental heart defects.

    PubMed

    Midgett, Madeline; Thornburg, Kent; Rugonyi, Sandra

    2017-03-01

    Although cardiac malformations at birth are typically associated with genetic anomalies, blood flow dynamics also play a crucial role in heart formation. However, the relationship between blood flow patterns in the early embryo and later cardiovascular malformation has not been determined. We used the chicken embryo model to quantify the extent to which anomalous blood flow patterns predict cardiac defects that resemble those in humans and found that restricting either the inflow to the heart or the outflow led to reproducible abnormalities with a dose-response type relationship between blood flow stimuli and the expression of cardiac phenotypes. Constricting the outflow tract by 10-35% led predominantly to ventricular septal defects, whereas constricting by 35-60% most often led to double outlet right ventricle. Ligation of the vitelline vein caused mostly pharyngeal arch artery malformations. We show that both cardiac inflow reduction and graded outflow constriction strongly influence the development of specific and persistent abnormal cardiac structure and function. Moreover, the hemodynamic-associated cardiac defects recapitulate those caused by genetic disorders. Thus our data demonstrate the importance of investigating embryonic blood flow conditions to understand the root causes of congenital heart disease as a prerequisite to future prevention and treatment.NEW & NOTEWORTHY Congenital heart defects result from genetic anomalies, teratogen exposure, and altered blood flow during embryonic development. We show here a novel "dose-response" type relationship between the level of blood flow alteration and manifestation of specific cardiac phenotypes. We speculate that abnormal blood flow may frequently underlie congenital heart defects. Copyright © 2017 the American Physiological Society.

  2. Personality and regional cerebral blood flow.

    PubMed

    Mathew, R J; Weinman, M L; Barr, D L

    1984-05-01

    The extraversion-introversion dimension of personality is believed to have an inverse relationship with cortical arousal. Brain capillary perfusion is a well established index of brain function and arousal. Regional cerebral blood flow was measured in 51 right-handed females whose personality structure was examined with the Eysenck Personality Inventory (EPI). Significant inverse correlations were found between the brain blood flow and the extraversion-introversion score of EPI.

  3. Nutrient and nonnutrient renal blood flow

    SciTech Connect

    Young, J.S.; Passmore, J.C.; Hartupee, D.A.; Baker, C.H. )

    1990-06-01

    The role of prostaglandins in the distribution of total renal blood flow (TRBF) between nutrient and nonnutrient compartments was investigated in anesthetized mongrel dogs. Renal blood flow distribution was assessed by the xenon 133 freeze-dissection technique and by rubidium 86 extraction after ibuprofen treatment. Ibuprofen (13 mg/kg) significantly decreased TRBF by 16.3% +/- 1.2% (mean +/- SEM electromagnetic flow probe; p less than 0.005), but did not alter blood flows to the outer cortex (3.7 vs 4.3 ml/min per gram), the inner cortex (2.6 vs 2.7 ml/min per gram), and the other medulla (1.5 vs 1.5 ml/min per gram), which suggests a decrease in nonnutrient flow. In a separate group of animals the effect of reduced blood flow on the nutrient and nonnutrient components was determined by mechanically reducing renal arterial blood flow by 48%. Unlike the ibuprofen group, nutrient blood flows were proportionally reduced with the mechanical decrease in TRBF in the outer cortex (1.9 ml/min per gram, p less than 0.05), the inner cortex (1.4 ml/min per gram, p less than 0.05), and the outer medulla (0.8 ml/min per gram, p less than 0.01). These results indicate no shift between nutrient and nonnutrient compartments. Nutrient and nonnutrient renal blood flows of the left kidney were also determined by 86Rb extraction. After ibuprofen treatment, nonextracted 86Rb decreased to 12.1% from the control value of 15.6% (p less than 0.05). Mechanical reduction of TRBF did not significantly decrease the proportion of unextracted 86Rb (18.7%).

  4. Modeling Blood Flow in the Aorta.

    ERIC Educational Resources Information Center

    McConnell, Colin J.; Carmichael, Jonathan B.; DeMont, M. Edwin

    1997-01-01

    Presents an exercise to demonstrate two fundamental concepts of fluid mechanics: the Reynolds number and the Principle of Continuity. The exercise demonstrates flow in a major blood vessel, such as the aorta, with and without a stenosis. Students observe the transition from laminar to turbulent flow as well as downstream persistence of turbulence.…

  5. Modeling Blood Flow in the Aorta.

    ERIC Educational Resources Information Center

    McConnell, Colin J.; Carmichael, Jonathan B.; DeMont, M. Edwin

    1997-01-01

    Presents an exercise to demonstrate two fundamental concepts of fluid mechanics: the Reynolds number and the Principle of Continuity. The exercise demonstrates flow in a major blood vessel, such as the aorta, with and without a stenosis. Students observe the transition from laminar to turbulent flow as well as downstream persistence of turbulence.…

  6. 21 CFR 870.2120 - Extravascular blood flow probe.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Extravascular blood flow probe. 870.2120 Section... blood flow probe. (a) Identification. An extravascular blood flow probe is an extravascular ultrasonic or electromagnetic probe used in conjunction with a blood flowmeter to measure blood flow in...

  7. 21 CFR 870.2120 - Extravascular blood flow probe.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Extravascular blood flow probe. 870.2120 Section... blood flow probe. (a) Identification. An extravascular blood flow probe is an extravascular ultrasonic or electromagnetic probe used in conjunction with a blood flowmeter to measure blood flow in...

  8. 21 CFR 870.2120 - Extravascular blood flow probe.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Extravascular blood flow probe. 870.2120 Section... blood flow probe. (a) Identification. An extravascular blood flow probe is an extravascular ultrasonic or electromagnetic probe used in conjunction with a blood flowmeter to measure blood flow in...

  9. 21 CFR 870.2120 - Extravascular blood flow probe.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Extravascular blood flow probe. 870.2120 Section... blood flow probe. (a) Identification. An extravascular blood flow probe is an extravascular ultrasonic or electromagnetic probe used in conjunction with a blood flowmeter to measure blood flow in...

  10. 21 CFR 870.2120 - Extravascular blood flow probe.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Extravascular blood flow probe. 870.2120 Section... blood flow probe. (a) Identification. An extravascular blood flow probe is an extravascular ultrasonic or electromagnetic probe used in conjunction with a blood flowmeter to measure blood flow in...

  11. Anionic biopolymers as blood flow sensors.

    PubMed

    Siegel, G; Walter, A; Kauschmann, A; Malmsten, M; Buddecke, E

    1996-01-01

    The finding of flow-dependent vasodilation rests on the basic observation that with an increase in blood flow the vessels become wider, with a decrease the vascular smooth muscle cells contract. Proteoheparan sulphate could be the sensor macromolecule at the endothelial cell membrane-blood interface, that reacts on the shear stress generated by the flowing blood, and that informs and regulates the vascular smooth muscle cells via a signal transduction chain. This anionic biopolyelectrolyte possesses viscoelastic and specific ion binding properties which allow a change of its configuration in dependence on shear stress and electrostatic charge density. The blood flow sensor undergoes a conformational transition from a random coil to an extended filamentous state with increasing flow, whereby Na+ ions from the blood are bound. Owing to the intramolecular elastic recoil forces of proteoheparan sulphate the slowing of a flow rate causes an entropic coiling, the expulsion of Na+ ions and thus an interruption of the signal chain. Under physiological conditions, the conformation and Na+ binding proved to be extremely Ca(2+)-sensitive while K+ and Mg2+ ions play a minor role for the susceptibility of the sensor. Via counterion migration of the bound Na+ ions along the sensor glycosaminoglycan side chains and following Na+ passage through an unspecific ion channel in the endothelial cell membrane, the signal transduction chain leads to a membrane depolarization with Ca2+ influx into the cells. This stimulates the EDRF/NO production and release from the endothelial cells. The consequence is vasodilation.

  12. Electromagnetic corrections to the zonal flow residual

    NASA Astrophysics Data System (ADS)

    Pusztai, Istvan; Catto, Peter J.; Parra, Felix I.

    2014-10-01

    The axisymmetric zonal flow residual calculation in tokamak plasmas is generalized to include electromagnetic perturbations. Instead of imposing magnetic perturbations externally, we formulate and solve a description retaining the fully self-consistent temporal and spatial perturbations in the electric and magnetic fields. Simple expressions for the electrostatic, shear and compressional magnetic residual responses derived provide a fully electromagnetic test of the zonal flow residual in gyrokinetic codes. We find that at β ~ O (1) the most easily testable quantity is the compressional magnetic perturbation generated by the density perturbation corresponding to the zonal flow potential, while at small values of β, the electrostatic and shear magnetic responses to an initial compressional magnetic perturbation can also be detectable. Without collisions any initial magnetic perturbation remain completely undamped. Supported by US Department of Energy grant at DE-FG02-91ER-54109 at MIT. IP is supported by the International Postdoc grant of Vetenskapsradet.

  13. The modal and flow velocity corrections of microphone turbulence screens

    NASA Astrophysics Data System (ADS)

    Davy, J. L.

    2007-09-01

    Microphone turbulence screens are used to suppress turbulent pressure fluctuations when measuring the acoustic pressure inside a duct with flow. They consist of a long tube with a slit covered with porous material, and thus are also called sampling tubes. Because they are not omnidirectional, it is necessary to calculate corrections when higher-order modes are propagating in the duct. In order to calculate these corrections it is necessary to know the directivity of the microphone turbulence screen, the propagation direction and energy of the duct modes and the flow velocity of the air in the duct. This paper derives a theoretical formula for the directivity of a microphone turbulence screen. It shows that this theoretical formula agrees better with experimental directivity data than the previously used empirical directivity formula. Because the empirical directivity formula is not a function of the flow velocity, previous research has separated the modal correction from the flow velocity correction. It is shown that it is not theoretically valid to separate the corrections, and that doing so can lead to large errors at high frequencies in the outlet duct. A new method of calculating the modal correction with flow is presented. This method uses a statistical room acoustics approach in contrast to the deterministic numerical approach of the older method. The new method requires much less computing. It is shown that the new method agrees fairly well with the old method for modal corrections without flow. The new method is compared with experimental measurements of the combined modal and flow velocity corrections. Although the trend is the same, the experimental results are higher than the theoretical results in the mid frequency range. The new method agrees reasonably well with the corrections given in ISO 5136:2003.

  14. [CORRECTION OF BLOOD CIRCULATION IN THE PROSTATE IN PATIENTS WITH CHRONIC PROSTATITIS ASSOCIATED WITH UROGENITAL INFECTIONS].

    PubMed

    Kondrat'eva, Ju S; Nejmark, A I; Zheltikova, Ja D; Subbotin, E A

    2015-01-01

    The aim of the study was to assess the effect of a combined preparation of Vitaprost on blood supply and microcirculation in the prostate gland in 35 patients with chronic infectious urethral prostatitis. The effectiveness of treatment was estimated by a combination of clinical, bacteriological and instrumental diagnostic methods. Transrectal ultrasonography with color Doppler and laser Doppler flowmetry were used to estimate all components of blood circulation in the prostate. Examination results obtained before and after treatment showed better clinical outcomes and improved parameters of blood flow and microcirculation in the prostate in patients receiving Vitapost. These results indicate that combination therapy including Vitaprost is effective in correcting blood flow and microcirculatory disorders of the prostate and can be utilized in the treatment of chronic infectious urethral prostatitis.

  15. An implantable blood pressure and flow transmitter.

    NASA Technical Reports Server (NTRS)

    Rader, R. D.; Meehan, J. P.; Henriksen, J. K. C.

    1973-01-01

    A miniature totally implantable FM/FM telemetry system has been developed to simultaneously measure blood pressure and blood flow, thus providing an appreciation of the hemodynamics of the circulation to the entire body or to a particular organ. Developed for work with animal subjects, the telemetry system's transmission time is controlled by an RF signal that permits an operating life of several months. Pressure is detected by a miniature intravascular transducer and flow is detected by an extravascular interferometric ultrasonic technique. Both pressure and flow are calibrated prior to implanting. The pressure calibration can be checked after the implanting by cannulation; flow calibration can be verified only at the end of the experiment by determining the voltage output from the implanted sensing system as a function of several measured flow rates. The utility of this device has been established by its use in investigating canine renal circulation during exercise, emotional encounters, administration of drugs, and application of accelerative forces.

  16. An implantable blood pressure and flow transmitter.

    NASA Technical Reports Server (NTRS)

    Rader, R. D.; Meehan, J. P.; Henriksen, J. K. C.

    1973-01-01

    A miniature totally implantable FM/FM telemetry system has been developed to simultaneously measure blood pressure and blood flow, thus providing an appreciation of the hemodynamics of the circulation to the entire body or to a particular organ. Developed for work with animal subjects, the telemetry system's transmission time is controlled by an RF signal that permits an operating life of several months. Pressure is detected by a miniature intravascular transducer and flow is detected by an extravascular interferometric ultrasonic technique. Both pressure and flow are calibrated prior to implanting. The pressure calibration can be checked after the implanting by cannulation; flow calibration can be verified only at the end of the experiment by determining the voltage output from the implanted sensing system as a function of several measured flow rates. The utility of this device has been established by its use in investigating canine renal circulation during exercise, emotional encounters, administration of drugs, and application of accelerative forces.

  17. Optical coherence Doppler tomography for quantitative cerebral blood flow imaging

    PubMed Central

    You, Jiang; Du, Congwu; Volkow, Nora D.; Pan, Yingtian

    2014-01-01

    Optical coherence Doppler tomography (ODT) is a promising neurotechnique that permits 3D imaging of the cerebral blood flow (CBF) network; however, quantitative CBF velocity (CBFv) imaging remains challenging. Here we present a simple phase summation method to enhance slow capillary flow detection sensitivity without sacrificing dynamic range for fast flow and vessel tracking to improve angle correction for absolute CBFv quantification. Flow phantom validation indicated that the CBFv quantification accuracy increased from 15% to 91% and the coefficient of variation (CV) decreased 9.3-fold; in vivo mouse brain validation showed that CV decreased 4.4-/10.8- fold for venular/arteriolar flows. ODT was able to identify cocaine-elicited microischemia and quantify CBFv disruption in branch vessels and capillaries that otherwise would have not been possible. PMID:25401033

  18. Blood flow in abdominal aortic aneurysms: pulsatile flow hemodynamics.

    PubMed

    Finol, E A; Amon, C H

    2001-10-01

    Numerical predictions of blood flow patterns and hemodynamic stresses in Abdominal Aortic Aneurysms (AAAs) are performed in a two-aneurysm, axisymmetric, rigid wall model using the spectral element method. Physiologically realistic aortic blood flow is simulated under pulsatile conditions for the range of time-averaged Reynolds numbers 50< or =Re(m)< or =300, corresponding to a range of peak Reynolds numbers 262.5< or =Re(peak) < or = 1575. The vortex dynamics induced by pulsatile flow in AAAs is characterized by a sequence of five different flow phases in one period of the flow cycle. Hemodynamic disturbance is evaluated for a modified set of indicator functions, which include wall pressure (p(w)), wall shear stress (tau(w)), and Wall Shear Stress Gradient (WSSG). At peak flow, the highest shear stress and WSSG levels are obtained downstream of both aneurysms, in a pattern similar to that of steady flow. Maximum values of wall shear stresses and wall shear stress gradients obtained at peak flow are evaluated as a function of the time-average Reynolds number resulting in a fourth order polynomial correlation. A comparison between predictions for steady and pulsatile flow is presented, illustrating the importance of considering time-dependent flow for the evaluation of hemodynamic indicators.

  19. Quantitative blood flow velocity imaging using laser speckle flowmetry

    PubMed Central

    Nadort, Annemarie; Kalkman, Koen; van Leeuwen, Ton G.; Faber, Dirk J.

    2016-01-01

    Laser speckle flowmetry suffers from a debated quantification of the inverse relation between decorrelation time (τc) and blood flow velocity (V), i.e. 1/τc = αV. Using a modified microcirculation imager (integrated sidestream dark field - laser speckle contrast imaging [SDF-LSCI]), we experimentally investigate on the influence of the optical properties of scatterers on α in vitro and in vivo. We found a good agreement to theoretical predictions within certain limits for scatterer size and multiple scattering. We present a practical model-based scaling factor to correct for multiple scattering in microcirculatory vessels. Our results show that SDF-LSCI offers a quantitative measure of flow velocity in addition to vessel morphology, enabling the quantification of the clinically relevant blood flow, velocity and tissue perfusion. PMID:27126250

  20. Quantitative blood flow velocity imaging using laser speckle flowmetry

    NASA Astrophysics Data System (ADS)

    Nadort, Annemarie; Kalkman, Koen; van Leeuwen, Ton G.; Faber, Dirk J.

    2016-04-01

    Laser speckle flowmetry suffers from a debated quantification of the inverse relation between decorrelation time (τc) and blood flow velocity (V), i.e. 1/τc = αV. Using a modified microcirculation imager (integrated sidestream dark field - laser speckle contrast imaging [SDF-LSCI]), we experimentally investigate on the influence of the optical properties of scatterers on α in vitro and in vivo. We found a good agreement to theoretical predictions within certain limits for scatterer size and multiple scattering. We present a practical model-based scaling factor to correct for multiple scattering in microcirculatory vessels. Our results show that SDF-LSCI offers a quantitative measure of flow velocity in addition to vessel morphology, enabling the quantification of the clinically relevant blood flow, velocity and tissue perfusion.

  1. GLP-2 and mesenteric blood flow.

    PubMed

    Hansen, Lasse Bremholm

    2013-05-01

    The 33 amino acid peptide hormone GLP-2 is produced by enteroendocrine L-cells, the density of which is highest in the ileum and the colon, in response to the presence of nutrients in the lumen. The biological effect of GLP-2 is mediated by activation of a G-protein-coupled 7-transmembrane receptor. GLP-2 receptors are expressed in the brainstem, lungs, stomach, small intestine and colon, but not in the heart. It has been shown in several animal studies that GLP-2 infusion increases intestinal blood flow and that this increase is confined to the small intestine. The aim of the three studies, on which the thesis is based, was to investigate basic physiological effects of GLP-2, in healthy volunteers and in SBS patients, with focus on the effects on mesenteric blood flow, blood flow at other vascular sites and effects on cardiac parameters. These parameters have been evaluated after both meal stimulation and GLP-2 administration. The studies showed the following results: Blood flow: In all three studies, blood flow changes in the SMA after GLP-2 administration were similar regarding changes over time and degree of change. Blood flow changes were similar to changes seen after a standard meal. Only RI changes were registered in all three studies, but the TAMV changes in study 2 and 3 had similar characteristics. Cardiovascular parameters: In all three studies no significant changes in blood pressure were registered in relation to GLP-2 administration. In study two and three, where cardiac parameters also were registered by impedance cardiography, increases in CO and SV were seen. Plasma GLP-2: There were, as expected, supraphysiological GLP-2 plasma levels after SC administration. All three studies have shown rapid changes in mesenteric blood flow after administration GLP-2. The changes have been the same both in regards to time to maximum changes (increase) and relatively close in regards to maximum extent of change. The changes in the SBS patients were less than in

  2. Estimation of Blood Flow With Radioactive Tracers

    PubMed Central

    Bassingthwaighte, James B.; Holloway, G. Allen

    2010-01-01

    The techniques of tracer dilution in the circulation, and of tracer uptake by and washout from an organ, may be described using expressions that are general and are not dependent on specific models such as exponentials. The expressions have been applied to the measurement of cardiac output using impulse and constant rate injection techniques. Further expressions have been given for estimating organ blood flow from inflow/outflow concentration-time curves, washout curves, and from the distribution of deposited tracer. Some problems with respect to the use of deposition techniques as they are ordinarily applied to the estimation of regional blood flow must be considered, particularly where there are capillary beds in series or where there is countercurrent diffusional shunting of diffusible tracers between inflow and outflow. This review deals with these various aspects of tracer theory as they relate to the measurement of blood flow. PMID:775641

  3. Luteal blood flow and luteal function

    PubMed Central

    Takasaki, Akihisa; Tamura, Hiroshi; Taniguchi, Ken; Asada, Hiromi; Taketani, Toshiaki; Matsuoka, Aki; Yamagata, Yoshiaki; Shimamura, Katsunori; Morioka, Hitoshi; Sugino, Norihiro

    2009-01-01

    Background Blood flow in the corpus luteum (CL) is associated with luteal function. The present study was undertaken to investigate whether luteal function can be improved by increasing CL blood flow in women with luteal phase defect (LFD). Methods Blood flow impedance in the CL was measured by transvaginal color-pulsed-Doppler-ultrasonography and was expressed as a resistance index (RI). The patients with both LFD [serum progesterone (P) concentrations < 10 ng/ml during mid-luteal phase] and high CL-RI (≥ 0.51) were given vitamin-E (600 mg/day, n = 18), L-arginine (6 g/day, n = 14) as a potential nitric oxide donor, melatonin (3 mg/day, n = 13) as an antioxidant, or HCG (2,000 IU/day, n = 10) during the subsequent menstrual cycle. Results In the control group (n = 11), who received no medication to increase CL blood flow, only one patient (9%) improved in CL-RI and 2 patients (18%) improved in serum P. Vitamin-E improved CL-RI in 15 patients (83%) and improved serum P in 12 patients (67%). L-arginine improved CL-RI in all the patients (100%) and improved serum P in 10 patients (71%). HCG improved CL-RI in all the patients (100%) and improved serum P in 9 patients (90%). Melatonin had no significant effect. Conclusion Vitamin-E or L-arginine treatment improved luteal function by decreasing CL blood flow impedance. CL blood flow is a critical factor for luteal function. PMID:19144154

  4. The Role of Neuronal Signaling in Controlling Cerebral Blood Flow

    ERIC Educational Resources Information Center

    Drake, Carrie T.; Iadecola, Costantino

    2007-01-01

    Well-regulated blood flow within the brain is vital to normal function. The brain's requirement for sufficient blood flow is ensured by a tight link between neural activity and blood flow. The link between regional synaptic activity and regional cerebral blood flow, termed functional hyperemia, is the basis for several modern imaging techniques…

  5. The Role of Neuronal Signaling in Controlling Cerebral Blood Flow

    ERIC Educational Resources Information Center

    Drake, Carrie T.; Iadecola, Costantino

    2007-01-01

    Well-regulated blood flow within the brain is vital to normal function. The brain's requirement for sufficient blood flow is ensured by a tight link between neural activity and blood flow. The link between regional synaptic activity and regional cerebral blood flow, termed functional hyperemia, is the basis for several modern imaging techniques…

  6. Assessing intraoperative blood flow in cardiovascular surgery.

    PubMed

    Yamamoto, Masaki; Sasaguri, Shiro; Sato, Takayuki

    2011-11-01

    Off-pump coronary arterial bypass grafting and new surgical apparatus and techniques have decreased the mortality rate associated with this procedure to approximately 1.5%. If we could detect problems in the constructed coronary anastomoses by an alternative imaging system to coronary angiography during surgery, decisions to revise the surgical procedure could be made without hesitation. Meanwhile, the intraoperative direct evaluation of intestinal blood flow during abdominal aortic aneurysmal surgery is required to prevent ischemic colitis, which is a devastating complication. Indocyanine green (ICG) has recently improved ophthalmic angiography and the navigation systems of oncological surgery. The fluorescence illumination of ICG with a near-infrared light is captured on camera. In coronary arterial surgery, the ICG imaging system is also becoming increasingly useful. A new ICG imaging system, the HyperEye Medical System (HEMS), provides a clear view of the blood flow and ischemic area with color visualization. Furthermore, its combination with a quantitative blood flow assessment tool such as transit time flow measurement could improve the accuracy of intraoperative examination. In this review, we evaluate the current strategies of assessing blood flow intraoperatively with an ICG imaging system in cardiovascular surgery.

  7. Blood flow characteristics in the aortic arch

    NASA Astrophysics Data System (ADS)

    Prahl Wittberg, Lisa; van Wyk, Stevin; Mihaiescu, Mihai; Fuchs, Laszlo; Gutmark, Ephraim; Backeljauw, Philippe; Gutmark-Little, Iris

    2012-11-01

    The purpose with this study is to investigate the flow characteristics of blood in the aortic arch. Cardiovascular diseases are associated with specific locations in the arterial tree. Considering atherogenesis, it is claimed that the Wall Shear Stress (WSS) along with its temporal and spatial gradients play an important role in the development of the disease. The WSS is determined by the local flow characteristics, that in turn depends on the geometry as well as the rheological properties of blood. In this numerical work, the time dependent fluid flow during the entire cardiac cycle is fully resolved. The Quemada model is applied to account for the non-Newtonian properties of blood, an empirical model valid for different Red Blood Cell loading. Data obtained through Cardiac Magnetic Resonance Imaging have been used in order to reconstruct geometries of the the aortic arch. Here, three different geometries are studied out of which two display malformations that can be found in patients having the genetic disorder Turner's syndrome. The simulations show a highly complex flow with regions of secondary flow that is enhanced for the diseased aortas. The financial support from the Swedish Research Council (VR) and the Sweden-America Foundation is gratefully acknowledged.

  8. Transcutaneous measurement of volume blood flow

    NASA Technical Reports Server (NTRS)

    Daigle, R. E.; Mcleod, F. D.; Miller, C. W.; Histand, M. B.; Wells, M. K.

    1974-01-01

    Blood flow velocity measurements, using Doppler velocimeter, are described. The ability to measure blood velocity using ultrasound is derived from the Doppler effect; the change in frequency which occurs when sound is reflected or transmitted from a moving target. When ultrasound of the appropriate frequency is transmitted through a moving blood stream, the blood cells act as point scatterers of ultrasonic energy. If this scattered ultrasonic energy is detected, it is found to be shifted in frequency according to the velocity of the blood cells, nu, the frequency of the incident sound, f sub o, the speed of sound in the medium, c, and the angle between the sound beam and the velocity vector, o. The relation describing this effect is known as the Doppler equation. Delta f = 2 f sub o x nu x cos alpha/c. The theoretical and experimental methods are evaluated.

  9. Using flow feature to extract pulsatile blood flow from 4D flow MRI images

    NASA Astrophysics Data System (ADS)

    Wang, Zhiqiang; Zhao, Ye; Yu, Whitney; Chen, Xi; Lin, Chen; Kralik, Stephen F.; Hutchins, Gary D.

    2017-02-01

    4D flow MRI images make it possible to measure pulsatile blood flow inside deforming vessel, which is critical in accurate blood flow visualization, simulation, and evaluation. Such data has great potential to overcome problems in existing work, which usually does not reflect the dynamic nature of elastic vessels and blood flows in cardiac cycles. However, the 4D flow MRI data is often low-resolution and with strong noise. Due to these challenges, few efforts have been successfully conducted to extract dynamic blood flow fields and deforming artery over cardiac cycles, especially for small artery like carotid. In this paper, a robust flow feature, particularly the mean flow intensity is used to segment blood flow regions inside vessels from 4D flow MRI images in whole cardiac cycle. To estimate this flow feature more accurately, adaptive weights are added to the raw velocity vectors based on the noise strength of MRI imaging. Then, based on this feature, target arteries are tracked in at different time steps in a cardiac cycle. This method is applied to the clinical 4D flow MRI data in neck area. Dynamic vessel walls and blood flows are effectively generated in a cardiac cycle in the relatively small carotid arteries. Good image segmentation results on 2D slices are presented, together with the visualization of 3D arteries and blood flows. Evaluation of the method was performed by clinical doctors and by checking flow volume rates in the vertebral and carotid arteries.

  10. Raised intracranial pressure and cerebral blood flow

    PubMed Central

    Johnston, I. H.; Rowan, J. O.; Harper, A. M.; Jennett, W. B.

    1973-01-01

    Changes in cerebral blood flow with increasing intracranial pressure were studied in anaesthetized baboons during expansion of a subdural balloon in one of two different sites. With an infratentorial balloon, cerebral blood flow bore no clear relation to intracranial pressure, but was linearly related to cerebral perfusion pressure. Apart from an initial change in some animals, cerebrovascular resistance remained constant with increasing intracranial pressure, and autoregulation appeared to be lost from the outset. With a supratentorial balloon, cerebral blood flow remained constant as intracranial pressure was increased to levels around 60 mm Hg, corresponding to a cerebral perfusion pressure range of approximately 100 to 40 mmHg. Cerebrovascular resistance fell progressively, and autoregulation appeared to be effective during this phase. At higher intracranial pressure levels (lower cerebral perfusion pressure levels), autoregulation was lost and cerebral blood flow became directly dependent on cerebral perfusion pressure. The importance of the cause of the increase in intracranial pressure on the response of the cerebral circulation and the relevance of these findings to the clinical situation are discussed. PMID:4196632

  11. Effects of aortic irregularities on blood flow.

    PubMed

    Prahl Wittberg, Lisa; van Wyk, Stevin; Fuchs, Laszlo; Gutmark, Ephraim; Backeljauw, Philippe; Gutmark-Little, Iris

    2016-04-01

    Anatomic aortic anomalies are seen in many medical conditions and are known to cause disturbances in blood flow. Turner syndrome (TS) is a genetic disorder occurring only in females where cardiovascular anomalies, particularly of the aorta, are frequently encountered. In this study, numerical simulations are applied to investigate the flow characteristics in four TS patient- related aortic arches (a normal geometry, dilatation, coarctation and elongation of the transverse aorta). The Quemada viscosity model was applied to account for the non-Newtonian behavior of blood. The blood is treated as a mixture consisting of water and red blood cells (RBC) where the RBCs are modeled as a convected scalar. The results show clear geometry effects where the flow structures and RBC distribution are significantly different between the aortas. Transitional flow is observed as a jet is formed due to a constriction in the descending aorta for the coarctation case. RBC dilution is found to vary between the aortas, influencing the WSS. Moreover, the local variations in RBC volume fraction may induce large viscosity variations, stressing the importance of accounting for the non-Newtonian effects.

  12. Ergot alkaloids decrease rumen epithelial blood flow

    USDA-ARS?s Scientific Manuscript database

    Two experiments were conducted to determine if ergot alkaloids affect blood flow to the absorptive surface of the rumen of steers. Steers (n=8 total) were pair-fed alfalfa cubes at 1.5× NEM and received ground endophyte-infected tall fescue seed (E+) or endophyte-free tall fescue seed (E-) via rumen...

  13. Acetabular blood flow during total hip arthroplasty

    PubMed Central

    ElMaraghy, Amr W.; Schemitsch, Emil H.; Waddell, James P.

    2000-01-01

    Objective To determine the immediate effect of reaming and insertion of the acetabular component with and without cement on periacetabular blood flow during primary total hip arthroplasty (THA). Design A clinical experimental study. Setting A tertiary referral and teaching hospital in Toronto. Patients Sixteen patients (9 men, 7 women) ranging in age from 30 to 78 years and suffering from arthritis. Intervention Elective primary THA with a cemented (8 patients) and noncemented (8 patients) acetabular component. All procedures were done by a single surgeon who used a posterior approach. Main outcome measure Acetabular bone blood-flow measurements made with a laser Doppler flowmeter before reaming, after reaming and after insertion of the acetabular prosthesis. Results Acetabular blood flow after prosthesis insertion was decreased by 52% in the noncemented group (p < 0.001) and 59% in the cemented group (p < 0.001) compared with baseline (prereaming) values. Conclusion The significance of these changes in periacetabular bone blood flow during THA may relate to the extent of bony ingrowth, periprosthetic remodelling and ultimately the incidence of implant failure because of aseptic loosening. PMID:10851413

  14. Blood flow dynamics in the snake spectacle.

    PubMed

    van Doorn, Kevin; Sivak, Jacob G

    2013-11-15

    The eyes of snakes are shielded beneath a layer of transparent integument referred to as the 'reptilian spectacle'. Well adapted to vision by virtue of its optical transparency, it nevertheless retains one characteristic of the integument that would otherwise prove detrimental to vision: its vascularity. Given the potential consequence of spectacle blood vessels on visual clarity, one might expect adaptations to have evolved that mitigate their negative impact. Earlier research demonstrated an adaptation to their spatial layout in only one species to reduce the vessels' density in the region serving the foveal and binocular visual fields. Here, we present a study of spectacle blood flow dynamics and provide evidence of a mechanism to mitigate the spectacle blood vessels' deleterious effect on vision by regulation of blood flow through them. It was found that when snakes are at rest and undisturbed, spectacle vessels undergo cycles of dilation and constriction, such that the majority of the time the vessels are fully constricted, effectively removing them from the visual field. When snakes are presented with a visual threat, spectacle vessels constrict and remain constricted for longer periods than occur during the resting cycles, thus guaranteeing the best possible visual capabilities in times of need. Finally, during the snakes' renewal phase when they are generating a new stratum corneum, the resting cycle is abolished, spectacle vessels remain dilated and blood flow remains strong and continuous. The significance of these findings in terms of the visual capabilities and physiology of snakes is discussed.

  15. Local aggregation characteristics of microscale blood flows

    NASA Astrophysics Data System (ADS)

    Kaliviotis, Efstathios; Sherwood, Joseph M.; Dusting, Jonathan; Balabani, Stavroula

    2015-11-01

    Erythrocyte aggregation (EA) is an important aspect of microvascular flows affecting blood flow and viscosity. Microscale blood flows have been studied extensively in recent years using computational and microfluidic based approaches. However, the relationship between the local structural characteristics of blood and the velocity field has not been quantified. We report simultaneous measurements of the local velocity, aggregation and haematocrit distributions of human erythrocytes flowing in a microchannel. EA was induced using Dextran and flows were imaged using brightfield microscopy. Local aggregation characteristics were investigated using statistical and edge-detection image processing techniques while velocity profiles were obtained using PIV algorithms. Aggregation intensity was found to strongly correlate with local variations in velocity in both the central and wall regions of the channel. The edge detection method showed that near the side wall large aggregates are associated with high local velocities and low local shear rates. In the central region large aggregates occurred in regions of low velocity and high erythrocyte concentration. The results demonstrate the combined effect of haematocrit and velocity distributions on local aggregation characteristics.

  16. Raised intracranial pressure and cerebral blood flow

    PubMed Central

    Johnston, I. H.; Rowan, J. O.

    1974-01-01

    Intracranial pressure was raised by expansion of a supratentorial subdural ballon in anaesthetized baboons. Pressures were measured at several sites, both supratentorial and infratentorial, and cerebral blood flow was measured in each cerebral hemisphere separately. Pressures recorded from the right and left lateral ventricles corresponded closely throughout. Highly significant correlations were also obtained between the pressures in the right and left subdural spaces and the mean intraventricular pressure. There was, thus, no evidence of intracompartmental pressure gradients within the supratentorial space. Pressure gradients did, however, develop between the supratentorial and infratentorial compartments in the majority of experiments, although the level of supratentorial pressure at which this occurred, varied. Despite the presence of a large mass lesion over the right cerebral hemisphere, no significant differences developed between levels of cerebral blood flow in the two hemispheres, although flow in the right hemisphere remained consistently slightly lower than that in the left after the ballon was inserted. PMID:4836754

  17. Application of compressibility correction to calculation of flow in inlets.

    NASA Technical Reports Server (NTRS)

    Albers, J. A.

    1973-01-01

    An application of the compressibility correction developed by Lieblein and Stockman (1972) to the calculation of flow in axisymmetric inlets is described. The results with experimental data from wind tunnel model tests are compared. The configuration is a conventional subsonic inlet with a NACA series one external cowl shape and a two-to-one ellipse internal lip. It is shown that the compressibility correction gives a relatively good approximation to the internal compressible flow behavior, and thus should be useful in the design and analysis of engine nacelle inlets.

  18. A correction on coastal heads for groundwater flow models.

    PubMed

    Lu, Chunhui; Werner, Adrian D; Simmons, Craig T; Luo, Jian

    2015-01-01

    We introduce a simple correction to coastal heads for constant-density groundwater flow models that contain a coastal boundary, based on previous analytical solutions for interface flow. The results demonstrate that accurate discharge to the sea in confined aquifers can be obtained by direct application of Darcy's law (for constant-density flow) if the coastal heads are corrected to ((α + 1)/α)hs  - B/2α, in which hs is the mean sea level above the aquifer base, B is the aquifer thickness, and α is the density factor. For unconfined aquifers, the coastal head should be assigned the value hs1+α/α. The accuracy of using these corrections is demonstrated by consistency between constant-density Darcy's solution and variable-density flow numerical simulations. The errors introduced by adopting two previous approaches (i.e., no correction and using the equivalent fresh water head at the middle position of the aquifer to represent the hydraulic head at the coastal boundary) are evaluated. Sensitivity analysis shows that errors in discharge to the sea could be larger than 100% for typical coastal aquifer parameter ranges. The location of observation wells relative to the toe is a key factor controlling the estimation error, as it determines the relative aquifer length of constant-density flow relative to variable-density flow. The coastal head correction method introduced in this study facilitates the rapid and accurate estimation of the fresh water flux from a given hydraulic head measurement and allows for an improved representation of the coastal boundary condition in regional constant-density groundwater flow models.

  19. Changes in chorioretinal blood flow velocity and cerebral blood flow after carotid endarterectomy.

    PubMed

    Enaida, Hiroshi; Nagata, Shinji; Takeda, Atsunobu; Nakao, Shintaro; Ikeda, Yasuhiro; Ishibashi, Tatsuro

    2016-11-01

    To investigate the changes in chorioretinal blood flow velocity and cerebral blood after carotid endarterectomy (CEA). Nine patients with moderate to severe internal carotid artery stenosis underwent CEA. Chorioretinal blood flow velocity was measured by laser speckle flowgraphy (LSFG), while cerebral blood flow (CBF) was measured by single-photon emission computed tomography (SPECT), on the affected side both before and after CEA. LSFG was evaluated in five areas to determine mean blur rate, while CBF was calculated from regional CBF and cerebrovascular reactivity (CVR), at the middle cerebral artery (MCA) region of each patient. Five cases showed an increase (mean 3.49 %, range -29.82 to 35.59 %) of average chorioretinal blood flow velocity using LSFG after CEA. A particularly averaged increase in chorioretinal blood flow was observed in the macular area compared with other areas. Similarly, there was an increase in CBF at rest (mean 11.46 %, range -14.51 to 74.14 %) observed using SPECT after surgery. Improvement of CVR was confirmed in four cases. All general and visual symptoms disappeared after CEA. Severe adverse effects, including hyperperfusion syndrome, were not observed in any cases. LSFG may be useful for the analysis of chorioretinal blood flow changes after CEA.

  20. Measuring sickle cell morphology during blood flow.

    PubMed

    Kviatkovsky, Inna; Zeidan, Adel; Yeheskely-Hayon, Daniella; Shabad, Eveline L; Dann, Eldad J; Yelin, Dvir

    2017-03-01

    During a sickle cell crisis in sickle cell anemia patients, deoxygenated red blood cells may change their mechanical properties and block small blood vessels, causing pain, local tissue damage, and possibly organ failure. Measuring the structural and morphological changes in sickle cells is important for understanding the factors contributing to vessel blockage and for developing an effective treatment. In this work, we image blood cells from sickle cell anemia patients using spectrally encoded flow cytometry, and analyze the interference patterns between reflections from the cell membranes. Using a numerical simulation for calculating the interference pattern obtained from a model of a red blood cell, we propose an analytical expression for the three-dimensional shape of characteristic sickle cells and compare our results to a previously suggested model. Our imaging approach offers new means for analyzing the morphology of sickle cells, and could be useful for studying their unique physiological and biomechanical properties.

  1. Dexmedetomidine decreases the oral mucosal blood flow.

    PubMed

    Kawaai, Hiroyoshi; Yoshida, Kenji; Tanaka, Eri; Togami, Kohei; Tada, Hitoshi; Ganzberg, Steven; Yamazaki, Shinya

    2013-12-01

    There is an abundance of blood vessels in the oral cavity, and intraoperative bleeding can disrupt operations. There have been some interesting reports about constriction of vessels in the oral cavity, one of which reported that gingival blood flow in cats is controlled by sympathetic α-adrenergic fibres that are involved with vasoconstriction. Dexmedetomidine is a sedative and analgesic agent that acts through the α-2 adrenoceptor, and is expected to have a vasoconstrictive action in the oral cavity. We have focused on the relation between the effects of α-adrenoceptors by dexmedetomidine and vasoconstriction in oral tissues, and assessed the oral mucosal blood flow during sedation with dexmedetomidine. The subjects comprised 13 healthy male volunteers, sedated with dexmedetomidine in a loading dose of 6 μg/kg/h for 10 min and a continuous infusion of 0.7 μg/kg/h for 32 min. The mean arterial pressure (MAP), heart rate (HR), cardiac output (CO), stroke volume (SV), systemic vascular resistance (SVR), and palatal mucosal blood flow (PMBF) were measured at 0, 5, 10, 12, 22, and 32 min after the start of the infusion. The HR, CO, and PBMF decreased significantly during the infusion even though there were no differences in the SV. The SVR increased significantly but the PMBF decreased significantly. In conclusion, PMBF was reduced by the mediating effect of dexmedetomidine on α-2 adrenoceptors.

  2. Measurement of Liver Blood Flow: A Review

    PubMed Central

    Stansby, G. P.; Hobbs, K. E. F.; Hawkes, D. J.; Colchester, A. C. F.

    1991-01-01

    The study of hepatic haemodynamics is of importance in understanding both hepatic physiology and disease processes as well as assessing the effects of portosystemic shunting and liver transplantation. The liver has the most complicated circulation of any organ and many physiological and pathological processes can affect it1,2. This review surveys the methods available for assessing liver blood flow, examines the different parameters being measured and outlines problems of applicability and interpretation for each technique. The classification of these techniques is to some extent arbitrary and several so called “different” methods may share certain common principles. The methods reviewed have been classified into two groups (Table 1): those primarily reflecting flow through discrete vessels or to the whole organ and those used to assess local microcirculatory blood flow. All techniques have their advantages and disadvantages and in some situations a combination may provide the most information. In addition, because of the many factors affecting liver blood flow and sinusoidal perfusion, readings in a single subject may vary depending on positioning, recent food intake, anxiety, anaesthesia and drug therapy. This must be borne in mind if different studies are to be meaningfully compared. PMID:1931785

  3. The effect of blood cell count on coronary flow in patients with coronary slow flow phenomenon.

    PubMed

    Soylu, Korhan; Gulel, Okan; Yucel, Huriye; Yuksel, Serkan; Aksan, Gokhan; Soylu, Ayşegül İdil; Demircan, Sabri; Yılmaz, Ozcan; Sahin, Mahmut

    2014-09-01

    The coronary slow flow phenomenon (CSFP) is a coronary artery disease with a benign course, but its pathological mechanisms are not yet fully understood.The purpose of this controlled study was to investigate the cellular content of blood in patients diagnosed with CSFP and the relationship of this with coronary flow rates. Selective coronary angiographies of 3368 patients were analyzed to assess Thrombolysis in Myocardial Infarction (TIMI) frame count (TFC) values. Seventy eight of them had CSFP, and their demographic and laboratory findings were compared with 61 patients with normal coronary flow. Patients' demographic characteristics were similar in both groups. Mean corrected TFC (cTFC) values were significantly elevated in CSFP patients (p<0.001). Furthermore, hematocrit and hemoglobin values, and eosinophil and basophil counts of the CSFP patients were significantly elevated compared to the values obtained in the control group (p=0.005, p=0.047, p=0.001 and p=0.002, respectively). The increase observed in hematocrit and eosinophil levels showed significant correlations with increased TFC values (r=0.288 and r=0.217, respectively). Significant changes have been observed in the cellular composition of blood in patients diagnosed with CSFP as compared to the patients with normal coronary blood flow. The increases in hematocrit levels and in the eosinophil and basophil counts may have direct or indirect effects on the rate of coronary blood flow.

  4. Caffeine reduces myocardial blood flow during exercise.

    PubMed

    Higgins, John P; Babu, Kavita M

    2013-08-01

    Caffeine consumption has been receiving increased interest from both the medical and lay press, especially given the increased amounts now available in energy products. Acute ingestion of caffeine usually increases cardiac work; however, caffeine impairs the expected proportional increase in myocardial blood flow to match this increased work of the heart, most notably during exercise. This appears to be mainly due to caffeine's effect on blocking adenosine-induced vasodilatation in the coronary arteries in normal healthy subjects. This review summarizes the available medical literature specifically relating to pure caffeine tablet ingestion and reduced exercise coronary blood flow, and suggests possible mechanisms. Further studies are needed to evaluate this effect for other common caffeine-delivery systems, including coffee, energy beverages, and energy gels, which are often used for exercise performance enhancement, especially in teenagers and young athletes.

  5. Myocardial blood flow: Roentgen videodensitometry techniques

    NASA Technical Reports Server (NTRS)

    Smith, H. C.; Robb, R. A.; Wood, E. H.

    1975-01-01

    The current status of roentgen videodensitometric techniques that provide an objective assessment of blood flow at selected sites within the coronary circulation were described. Roentgen videodensitometry employs conventional radiopaque indicators, radiological equipment and coronary angiographic techniques. Roentgen videodensitometry techniques developed in the laboratory during the past nine years, and for the past three years were applied to analysis of angiograms in the clinical cardiac catheterization laboratory.

  6. Myocardial blood flow: Roentgen videodensitometry techniques

    NASA Technical Reports Server (NTRS)

    Smith, H. C.; Robb, R. A.; Wood, E. H.

    1975-01-01

    The current status of roentgen videodensitometric techniques that provide an objective assessment of blood flow at selected sites within the coronary circulation were described. Roentgen videodensitometry employs conventional radiopaque indicators, radiological equipment and coronary angiographic techniques. Roentgen videodensitometry techniques developed in the laboratory during the past nine years, and for the past three years were applied to analysis of angiograms in the clinical cardiac catheterization laboratory.

  7. Deterministic Aperiodic Sickle Cell Blood Flows

    NASA Astrophysics Data System (ADS)

    Atsaves, Louis; Harris, Wesley

    2013-11-01

    In this paper sickle cell blood flow in the capillaries is modeled as a hydrodynamical system. The hydrodynamical system consists of the axisymmetric unsteady, incompressible Navier-Stokes equations and a set of constitutive equations for oxygen transport. Blood cell deformation is not considered in this paper. The hydrodynamical system is reduced to a system of non-linear partial differential equations that are then transformed into a system of three autonomous non-linear ordinary differential equations and a set of algebraic equations. We examine the hydrodynamical system to discern stable/unstable, periodic/nonperiodic, reversible/irreversible properties of the system. The properties of the solutions are driven in large part by the coefficients of the governing system of equations. These coefficients depend on the physiological properties of the sickle cell blood. The chaotic nature of the onset of crisis in sickle cell patients is identified. Research Assistant.

  8. Blood flow dynamics in heart failure

    NASA Technical Reports Server (NTRS)

    Shoemaker, J. K.; Naylor, H. L.; Hogeman, C. S.; Sinoway, L. I.

    1999-01-01

    BACKGROUND: Exercise intolerance in heart failure (HF) may be due to inadequate vasodilation, augmented vasoconstriction, and/or altered muscle metabolic responses that lead to fatigue. METHODS AND RESULTS: Vascular and metabolic responses to rhythmic forearm exercise were tested in 9 HF patients and 9 control subjects (CTL) during 2 protocols designed to examine the effect of HF on the time course of oxygen delivery versus uptake (protocol 1) and on vasoconstriction during exercise with 50 mm Hg pressure about the forearm to evoke a metaboreflex (protocol 2). In protocol 1, venous lactate and H+ were greater at 4 minutes of exercise in HF versus CTL (P<0.05) despite similar blood flow and oxygen uptake responses. In protocol 2, mean arterial pressure increased similarly in each group during ischemic exercise. In CTL, forearm blood flow and vascular conductance were similar at the end of ischemic and ambient exercise. In HF, forearm blood flow and vascular conductance were reduced during ischemic exercise compared with the ambient trial. CONCLUSIONS: Intrinsic differences in skeletal muscle metabolism, not vasodilatory dynamics, must account for the augmented glycolytic metabolic responses to moderate-intensity exercise in class II and III HF. The inability to increase forearm vascular conductance during ischemic handgrip exercise, despite a normal pressor response, suggests that enhanced vasoconstriction of strenuously exercising skeletal muscle contributes to exertional fatigue in HF.

  9. Blood flow dynamics in heart failure

    NASA Technical Reports Server (NTRS)

    Shoemaker, J. K.; Naylor, H. L.; Hogeman, C. S.; Sinoway, L. I.

    1999-01-01

    BACKGROUND: Exercise intolerance in heart failure (HF) may be due to inadequate vasodilation, augmented vasoconstriction, and/or altered muscle metabolic responses that lead to fatigue. METHODS AND RESULTS: Vascular and metabolic responses to rhythmic forearm exercise were tested in 9 HF patients and 9 control subjects (CTL) during 2 protocols designed to examine the effect of HF on the time course of oxygen delivery versus uptake (protocol 1) and on vasoconstriction during exercise with 50 mm Hg pressure about the forearm to evoke a metaboreflex (protocol 2). In protocol 1, venous lactate and H+ were greater at 4 minutes of exercise in HF versus CTL (P<0.05) despite similar blood flow and oxygen uptake responses. In protocol 2, mean arterial pressure increased similarly in each group during ischemic exercise. In CTL, forearm blood flow and vascular conductance were similar at the end of ischemic and ambient exercise. In HF, forearm blood flow and vascular conductance were reduced during ischemic exercise compared with the ambient trial. CONCLUSIONS: Intrinsic differences in skeletal muscle metabolism, not vasodilatory dynamics, must account for the augmented glycolytic metabolic responses to moderate-intensity exercise in class II and III HF. The inability to increase forearm vascular conductance during ischemic handgrip exercise, despite a normal pressor response, suggests that enhanced vasoconstriction of strenuously exercising skeletal muscle contributes to exertional fatigue in HF.

  10. Gender Differences in Ocular Blood Flow

    PubMed Central

    Schmidl, Doreen; Garhöfer, Gerhard; Popa-Cherecheanu, Alina

    2015-01-01

    Gender medicine has been a major focus of research in recent years. The present review focuses on gender differences in the epidemiology of the most frequent ocular diseases that have been found to be associated with impaired ocular blood flow, such as age-related macular degeneration, glaucoma and diabetic retinopathy. Data have accumulated indicating that hormones have an important role in these diseases, since there are major differences in the prevalence and incidence between men and pre- and post-menopausal women. Whether this is related to vascular factors is, however, not entirely clear. Interestingly, the current knowledge about differences in ocular vascular parameters between men and women is sparse. Although little data is available, estrogen, progesterone and testosterone are most likely important regulators of blood flow in the retina and choroid, because they are key regulators of vascular tone in other organs. Estrogen seems to play a protective role since it decreases vascular resistance in large ocular vessels. Some studies indicate that hormone therapy is beneficial for ocular vascular disease in post-menopausal women. This evidence is, however, not sufficient to give any recommendation. Generally, remarkably few data are available on the role of sex hormones on ocular blood flow regulation, a topic that requires more attention in the future. PMID:24892919

  11. Computational Analysis of Human Blood Flow

    NASA Astrophysics Data System (ADS)

    Panta, Yogendra; Marie, Hazel; Harvey, Mark

    2009-11-01

    Fluid flow modeling with commercially available computational fluid dynamics (CFD) software is widely used to visualize and predict physical phenomena related to various biological systems. In this presentation, a typical human aorta model was analyzed assuming the blood flow as laminar with complaint cardiac muscle wall boundaries. FLUENT, a commercially available finite volume software, coupled with Solidworks, a modeling software, was employed for the preprocessing, simulation and postprocessing of all the models.The analysis mainly consists of a fluid-dynamics analysis including a calculation of the velocity field and pressure distribution in the blood and a mechanical analysis of the deformation of the tissue and artery in terms of wall shear stress. A number of other models e.g. T branches, angle shaped were previously analyzed and compared their results for consistency for similar boundary conditions. The velocities, pressures and wall shear stress distributions achieved in all models were as expected given the similar boundary conditions. The three dimensional time dependent analysis of blood flow accounting the effect of body forces with a complaint boundary was also performed.

  12. Correlation of flow probe determinations of common carotid artery blood flow and internal carotid artery blood flow with microsphere determinations of cerebral blood flow in piglets.

    PubMed

    Meadow, W; Rudinsky, B; Raju, T; John, E; Fornell, L; Shankararao, R

    1999-03-01

    We investigated whether blood flow determined by a flow probe situated on one common carotid artery provided an accurate estimation of unilateral cerebral blood flow (CBF) in piglets. In eight anesthetized, mechanically ventilated piglets, blood flow determined by an ultrasonic flow probe placed on the right common carotid artery was correlated with CBF determined by microspheres under two experimental conditions: 1) before ligation of the right external carotid artery with both the right external and internal carotid circulations intact [common carotid artery blood flow (CCABF) condition], and 2) after ligation of the right external carotid artery (ipsilateral to the flow probe) with all residual right-sided carotid artery blood flow directed through the right internal carotid artery [internal carotid artery blood flow (ICABF) condition]. The left carotid artery was not manipulated in any way in either protocol. Independent correlations of unilateral CCABF and ICABF with microsphere-determined unilateral CBF were highly significant over a 5-fold range of CBF induced by hypercarbia or hypoxia (r = 0.94 and 0.92, respectively; both p < 0.001). The slope of the correlation of unilateral CCABF versus unilateral CBF was 1.68 +/- 0.19 (SEM), suggesting that CCABF overestimated CBF by 68%. The slope of the correlation of unilateral ICABF versus unilateral CBF did not differ significantly from unity (1.06 +/- 0.15), and the y intercept did not differ significantly from zero [-1.3 +/- 5.2 (SEM) mL]. Consequently, unilateral ICABF determined by flow probe accurately reflected unilateral CBF determined by microspheres under these conditions. Flow probe assessments of CCABF and ICABF in piglets may provide information about dynamic aspects of vascular control in the cerebral circulation that has heretofore been unavailable.

  13. Microconfined flow behavior of red blood cells.

    PubMed

    Tomaiuolo, Giovanna; Lanotte, Luca; D'Apolito, Rosa; Cassinese, Antonio; Guido, Stefano

    2016-01-01

    Red blood cells (RBCs) perform essential functions in human body, such as gas exchange between blood and tissues, thanks to their ability to deform and flow in the microvascular network. The high RBC deformability is mainly due to the viscoelastic properties of the cell membrane. Since an impaired RBC deformability could be found in some diseases, such as malaria, sickle cell anemia, diabetes and hereditary disorders, there is the need to provide further insight into measurement of RBC deformability in a physiologically relevant flow field. Here, RBCs deformability has been studied in terms of the minimum apparent plasma-layer thickness by using high-speed video microscopy of RBCs flowing in cylindrical glass capillaries. An in vitro systematic microfluidic investigation of RBCs in micro-confined conditions has been performed, resulting in the determination of the RBCs time recovery constant, RBC volume and surface area and RBC membrane shear elastic modulus and surface viscosity. It has been noticed that the deformability of RBCs induces cells aggregation during flow in microcapillaries, allowing the formation of clusters of cells. Overall, our results provide a novel technique to estimate RBC deformability and also RBCs collective behavior, which can be used for the analysis of pathological RBCs, for which reliable quantitative methods are still lacking.

  14. Unsteady Flow in Stenotic Blood Vessels

    NASA Astrophysics Data System (ADS)

    Rayz, Vitaliy L.; Devi Williamson, Shobha; Berger, Stanley A.; Saloner, David

    2003-11-01

    Recent studies show that many heart attacks and strokes occur from sudden rupture of partially occluding atherosclerotic plaque rather than total vessel occlusion. Our goal is to understand how the mechanical forces induced by blood flow on specific plaque deposits makes them vulnerable to rupture. Models of severely stenotic carotid bifurcations are created from MR images and grids generated for the flow domains. The three-dimensional, unsteady, incompressible Navier-Stokes equations in finite-volume form are solved numerically using physiological boundary conditions. During systole a high velocity jet forms at the stenotic throat in one of the branches, and a long recirculation zone is observed downstream of the plaque. During diastole the flow is more stagnant. The flow is highly three-dimensional and unsteady with chaotic streamlines. Whereas flow in healthy arteries is laminar, irregular geometries and sharp changes in vessel diameter of a severely stenotic artery significantly disrupt the flow, with consequences for shear and normal wall stresses at the wall, and important implications for plaque stability. Supported by NIH Grant HL61823

  15. Gender differences in regional cerebral blood flow

    SciTech Connect

    Gur, R.E.; Gur, R.C. )

    1990-01-01

    Gender differences have been noted in neurobehavioral studies. The 133xenon inhalation method for measuring regional cerebral blood flow (rCBF) can contribute to the understanding of the neural basis of gender differences in brain function. Few studies have examined gender differences in rCBF. In studies of normal subjects, women have higher rates of CBF than men, and this is related to age. Usually by the sixth decade men and women have similar flow rates. Fewer studies on rCBF in schizophrenia have examined sex differences. The pattern of higher flows for females maintains, but its correlates with gender differences in clinical as well as other parameters of brain function remain to be examined.

  16. Lagrangian Coherent Structures in Blood Flow

    NASA Astrophysics Data System (ADS)

    Shadden, Shawn

    2008-11-01

    Knowledge of fluid transport is particularly compelling in understanding the function of cardiovascular processes. Transport of chemicals, cells, and compounds in the vascular system is influenced by local flow structures in large vessels. Local flow features can also induce cell-signaling pathways and biologic response critical to maintaining health or disease progression. Complex vessel geometry, the pulsatile pumping of blood, and low Reynolds number turbulence leads to complex flow features in large vessels. However, we are gaining the ability to study transport in large vessels with unprecedented detail, which is in part allowing us to broaden the ``shear-centric'' view of hemodynamics. In this talk we will describe the application of computational fluid mechanics and the computation of Lagrangian coherent structures (LCS) to study transport in various cardiovascular applications. We will discuss some of the challenges of this work and some results of computing LCS in several regions of the vascular system. In collaboration with Charles Taylor, Stanford University.

  17. Spatial fluctuation of regional myocardial blood flows.

    PubMed

    Matsumoto, T; Ebata, J; Tsujioka, K; Ogasawara, Y; Kajiya, F

    1997-12-01

    Digital radiography (100 pixels/mm2) combined with the technique of 3H-labeled desmethylimipramine deposition was employed to visualize regional blood flow distributions in rabbit left ventricular myocardium. A fluctuated pattern of myocardial flow and its dependence on arterial oxygen tension (PaO2) was evaluated with the coefficient of variation (CV) computed at each step of coarse-graining; flow images were revisualized by increasing pixel area (PA) step by step from 0.01 to 1 mm2. The CV values decreased with hypoxia at all resolution levels, suggesting that there is a vascular regulatory mechanism for making myocardial perfusion uniform in response to decreased PaO2. In both perfusion states, CV decreased with increasing PA. The relationship between CV and PA fitted the noninteger power law function, implying an apparent fractality of CV.

  18. Foetal placental blood flow in the lamb

    PubMed Central

    Faber, J. Job; Green, Thomas J.

    1972-01-01

    1. Fifteen sheep foetuses of 1·5-5·2 kg body weight were prepared with indwelling arterial and venous catheters for experimentation one to six days later. 2. Unanaesthetized foetuses were found to have mean arterial and central venous blood pressures of 40 ± 1·5 (S.E. of mean) and 2·0 ± 0·3 (S.E. of mean) mm Hg respectively, compared to intra-uterine pressure. Intra-uterine pressure was 16 ± 0·8 (S.E. of mean) mm Hg with respect to atmospheric pressure at mid-uterine level. 3. Mean placental blood flow of the foetuses was 199 ± 20 (S.E. of mean) ml./(min.kg body wt.). Mean cardiac output in eleven of the foetuses was 658 ± 102 (S.E. of mean) ml./(min.kg). 4. Mean foetal and maternal colloid osmotic pressures were 17·5 ± 0·7 (S.E. of mean) and 20·5 ± 0·6 (S.E. of mean) mm Hg respectively at 38° C. 5. Intravenous infusions into six ewes of 1·8 mole of mannitol and 0·4 mole of NaCl resulted in significant increases in foetal plasma osmolarity, sodium, potassium, and haemoglobin concentrations, without detectable transfer of mannitol to the foetal circulation. 6. In the sheep placenta there is osmotic and hydrostatic equilibration of water. As a consequence, there should be an interaction between foetal placental blood flow and foetal water exchange with the maternal circulation. It was concluded that this interaction tends to stabilize foetal placental blood flow. PMID:5039279

  19. Modified Numerical Simulation Model of Blood Flow in Bend

    PubMed Central

    Liu, X; Zhou, X; Hao, X; Sang, X

    2015-01-01

    ABSTRACT The numerical simulation model of blood flow in bend is studied in this paper. The curvature modification is conducted for the blood flow model in bend to obtain the modified blood flow model in bend. The modified model is verified by U tube. By comparing the simulation results with the experimental results obtained by measuring the flow data in U tube, it was found that the modified blood flow model in bend can effectively improve the prediction accuracy of blood flow data affected by the curvature effect. PMID:27398727

  20. What is the correct value for the brain: blood partition coefficient for water

    SciTech Connect

    Herscovitch, P.; Raichle, M.E.

    1984-01-01

    A knowledge of the brain: blood partition coefficient (lambda) for water is usually required for the measurement of cerebral blood flow (CBF) with positron emission tomography (PET) and 0-15 labelled water. The correct calculation of this important parameter from the ratio of brain and blood water contents is reviewed, and the effect of physiological variations in these water contents on lambda is demonstrated. The currently accepted value for whole brain lambda is 0.95-0.96 ml/g, calculated from brain and blood water contents of 77g/100g and 80.5g/100g, respectively. However, this value for lambda is incorrect, because in the calculation the blood water content value was not adjusted for the density of blood. The correct value is 0.91 ml/g. Variations in brain or blood water content affect lambda. Over an hematocrit range of 25% to 55%, lambda varies from 0.86 to 0.93 ml/g, due to a decrease in blood water content. lambda changes with age, and varies regionally in the brain, as brain water content is inversely related to lipid and myelin content. The lambda of the human newborn brain, 1.10 ml/g, is considerably higher than in the adult. Differences in lambda between gray and white matter are well known. However, because of variations in water content, the lambda's of thalamus (0.88 ml/g) and caudate nucleus (0.96 ml/g) are less than that of cerebral cortex (0.99 ml/g), while the lambda of corpus callosum (0.89 ml/g) is greater than that of centrum semiovale (0.83 ml/g). These regional variations in lambda will assume more importance as PET resolution improves. The impact of using an incorrect lambda will depend upon the sensitivity of the particular CBF measurement technique to errors in lambda.

  1. Regional cerebral blood flow in childhood headache

    SciTech Connect

    Roach, E.S.; Stump, D.A.

    1989-06-01

    Regional cerebral blood flow (rCBF) was measured in 16 cranial regions in 23 children and adolescents with frequent headaches using the non-invasive Xenon-133 inhalation technique. Blood flow response to 5% carbon dioxide (CO2) was also determined in 21 patients, while response to 50% oxygen was measured in the two patients with hemoglobinopathy. Included were 10 patients with a clinical diagnosis of migraine, 4 with musculoskeletal headaches, and 3 with features of both types. Also studied were 2 patients with primary thrombocythemia, 2 patients with hemoglobinopathy and headaches, 1 patient with polycythemia, and 1 with headaches following trauma. With two exceptions, rCBF determinations were done during an asymptomatic period. Baseline rCBF values tended to be higher in these young patients than in young adults done in our laboratory. Localized reduction in the expected blood flow surge after CO2 inhalation, most often noted posteriorly, was seen in 8 of the 13 vascular headaches, but in none of the musculoskeletal headache group. Both patients with primary thrombocythemia had normal baseline flow values and altered responsiveness to CO2 similar to that seen in migraineurs; thus, the frequently reported headache and transient neurologic signs with primary thrombocythemia are probably not due to microvascular obstruction as previously suggested. These data support the concept of pediatric migraine as a disorder of vasomotor function and also add to our knowledge of normal rCBF values in younger patients. Demonstration of altered vasomotor reactivity to CO2 could prove helpful in children whose headache is atypical.

  2. Light controls cerebral blood flow in naive animals

    PubMed Central

    Rungta, Ravi L; Osmanski, Bruno-Félix; Boido, Davide; Tanter, Mickael; Charpak, Serge

    2017-01-01

    Optogenetics is increasingly used to map brain activation using techniques that rely on functional hyperaemia, such as opto-fMRI. Here we test whether light stimulation protocols similar to those commonly used in opto-fMRI or to study neurovascular coupling modulate blood flow in mice that do not express light sensitive proteins. Combining two-photon laser scanning microscopy and ultrafast functional ultrasound imaging, we report that in the naive mouse brain, light per se causes a calcium decrease in arteriolar smooth muscle cells, leading to pronounced vasodilation, without excitation of neurons and astrocytes. This photodilation is reversible, reproducible and energy-dependent, appearing at about 0.5 mJ. These results impose careful consideration on the use of photo-activation in studies involving blood flow regulation, as well as in studies requiring prolonged and repetitive stimulations to correct cellular defects in pathological models. They also suggest that light could be used to locally increase blood flow in a controlled fashion. PMID:28139643

  3. Regulation of coronary blood flow during exercise.

    PubMed

    Duncker, Dirk J; Bache, Robert J

    2008-07-01

    Exercise is the most important physiological stimulus for increased myocardial oxygen demand. The requirement of exercising muscle for increased blood flow necessitates an increase in cardiac output that results in increases in the three main determinants of myocardial oxygen demand: heart rate, myocardial contractility, and ventricular work. The approximately sixfold increase in oxygen demands of the left ventricle during heavy exercise is met principally by augmenting coronary blood flow (~5-fold), as hemoglobin concentration and oxygen extraction (which is already 70-80% at rest) increase only modestly in most species. In contrast, in the right ventricle, oxygen extraction is lower at rest and increases substantially during exercise, similar to skeletal muscle, suggesting fundamental differences in blood flow regulation between these two cardiac chambers. The increase in heart rate also increases the relative time spent in systole, thereby increasing the net extravascular compressive forces acting on the microvasculature within the wall of the left ventricle, in particular in its subendocardial layers. Hence, appropriate adjustment of coronary vascular resistance is critical for the cardiac response to exercise. Coronary resistance vessel tone results from the culmination of myriad vasodilator and vasoconstrictors influences, including neurohormones and endothelial and myocardial factors. Unraveling of the integrative mechanisms controlling coronary vasodilation in response to exercise has been difficult, in part due to the redundancies in coronary vasomotor control and differences between animal species. Exercise training is associated with adaptations in the coronary microvasculature including increased arteriolar densities and/or diameters, which provide a morphometric basis for the observed increase in peak coronary blood flow rates in exercise-trained animals. In larger animals trained by treadmill exercise, the formation of new capillaries maintains

  4. Testing of models of flow-induced hemolysis in blood flow through hypodermic needles.

    PubMed

    Chen, Yangsheng; Kent, Timothy L; Sharp, M Keith

    2013-03-01

    Hemolysis caused by flow in hypodermic needles interferes with a number of tests on blood samples drawn by venipuncture, including assays for metabolites, electrolytes, and enzymes, causes discomfort during dialysis sessions, and limits transfusion flow rates. To evaluate design modifications to address this problem, as well as hemolysis issues in other cardiovascular devices, computational fluid dynamics (CFD)-based prediction of hemolysis has potential for reducing the time and expense for testing of prototypes. In this project, three CFD-integrated blood damage models were applied to flow-induced hemolysis in 16-G needles and compared with experimental results, which demonstrated that a modified needle with chamfered entrance increased hemolysis, while a rounded entrance decreased hemolysis, compared with a standard needle with sharp entrance. After CFD simulation of the steady-state velocity field, the time histories of scalar stress along a grid of streamlines were calculated. A strain-based cell membrane failure model and two empirical power-law blood damage models were used to predict hemolysis on each streamline. Total hemolysis was calculated by weighting the predicted hemolysis along each streamline by the flow rate along each streamline. The results showed that only the strain-based blood damage model correctly predicted increased hemolysis in the beveled needle and decreased hemolysis in the rounded needle, while the power-law models predicted the opposite trends. © 2013, Copyright the Authors. Artificial Organs © 2013, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  5. Integrative regulation of human brain blood flow

    PubMed Central

    Willie, Christopher K; Tzeng, Yu-Chieh; Fisher, Joseph A; Ainslie, Philip N

    2014-01-01

    Herein, we review mechanisms regulating cerebral blood flow (CBF), with specific focus on humans. We revisit important concepts from the older literature and describe the interaction of various mechanisms of cerebrovascular control. We amalgamate this broad scope of information into a brief review, rather than detailing any one mechanism or area of research. The relationship between regulatory mechanisms is emphasized, but the following three broad categories of control are explicated: (1) the effect of blood gases and neuronal metabolism on CBF; (2) buffering of CBF with changes in blood pressure, termed cerebral autoregulation; and (3) the role of the autonomic nervous system in CBF regulation. With respect to these control mechanisms, we provide evidence against several canonized paradigms of CBF control. Specifically, we corroborate the following four key theses: (1) that cerebral autoregulation does not maintain constant perfusion through a mean arterial pressure range of 60–150 mmHg; (2) that there is important stimulatory synergism and regulatory interdependence of arterial blood gases and blood pressure on CBF regulation; (3) that cerebral autoregulation and cerebrovascular sensitivity to changes in arterial blood gases are not modulated solely at the pial arterioles; and (4) that neurogenic control of the cerebral vasculature is an important player in autoregulatory function and, crucially, acts to buffer surges in perfusion pressure. Finally, we summarize the state of our knowledge with respect to these areas, outline important gaps in the literature and suggest avenues for future research. PMID:24396059

  6. The Role of Blood Flow and Blood Flow Modifiers in Clinical Hyperthermia Therapy

    NASA Astrophysics Data System (ADS)

    Olch, Arthur Jacob

    A quantitative assessment of the effect of localized magnetic-loop hyperthermia on blood flow was performed on 12 patients (19 tumor studies) using the Xenon-133 clearance method. After it was discovered that blood flow in most of the tumors increased in response to needle injection, a physiologically based, one compartment model was developed that included both a hyperemic (transient) and a steady state component. In the tumors of six patients, increases in blood flow induced by heat were also observed. The same model was used to describe the measured clearance data for both types of hyperemic response. The ability of tumor vessels to respond dynamically to stress and the degree of response may be predictive of tumor heating efficiency and subsequent therapeutic response. Many tumors treated by hyperthermia, therefore, do not reach therapeutic temperatures (42(DEGREES)C). One explanation for this may be that some tumors react to thermal stress in a manner similar to normal tissues; i.e., they increase blood flow during hyperthermia in order to dissipate heat. Higher temperatures might be achieved in these heat-resistant tumors by administering vasoconstrictive agents in an effort to reduce blood flow. In the second part of this research study, the extent to which pharmacologic inhibition of local blood flow might allow higher temperatures to develop in normal muscles exposed to localized radiofrequency hyperthermia was determined. It was found that the local muscle temperature rise could be increased by at least 90% in dogs and rabbits with the use of a local vasoconstrictive drug.

  7. Thermoregulatory control of finger blood flow

    NASA Technical Reports Server (NTRS)

    Wenger, C. B.; Roberts, M. F.; Nadel, E. R.; Stolwijk, J. A. J.

    1975-01-01

    In the present experiment, exercise was used to vary internal temperature and ambient air heat control was used to vary skin temperature. Finger temperature was fixed at about 35.7 C. Esophageal temperature was measured with a thermocouple at the level of the left atrium, and mean skin temperature was calculated from a weighted mean of thermocouple temperatures at different skin sites. Finger blood flow was measured by electrocapacitance plethysmography. An equation in these quantities is given which accounts for the data garnered.

  8. Thermoregulatory control of finger blood flow

    NASA Technical Reports Server (NTRS)

    Wenger, C. B.; Roberts, M. F.; Nadel, E. R.; Stolwijk, J. A. J.

    1975-01-01

    In the present experiment, exercise was used to vary internal temperature and ambient air heat control was used to vary skin temperature. Finger temperature was fixed at about 35.7 C. Esophageal temperature was measured with a thermocouple at the level of the left atrium, and mean skin temperature was calculated from a weighted mean of thermocouple temperatures at different skin sites. Finger blood flow was measured by electrocapacitance plethysmography. An equation in these quantities is given which accounts for the data garnered.

  9. Absolute quantification of myocardial blood flow.

    PubMed

    Yoshinaga, Keiichiro; Manabe, Osamu; Tamaki, Nagara

    2016-07-21

    With the increasing availability of positron emission tomography (PET) myocardial perfusion imaging, the absolute quantification of myocardial blood flow (MBF) has become popular in clinical settings. Quantitative MBF provides an important additional diagnostic or prognostic information over conventional visual assessment. The success of MBF quantification using PET/computed tomography (CT) has increased the demand for this quantitative diagnostic approach to be more accessible. In this regard, MBF quantification approaches have been developed using several other diagnostic imaging modalities including single-photon emission computed tomography, CT, and cardiac magnetic resonance. This review will address the clinical aspects of PET MBF quantification and the new approaches to MBF quantification.

  10. Cerebral blood flow in humans following resuscitation from cardiac arrest

    SciTech Connect

    Cohan, S.L.; Mun, S.K.; Petite, J.; Correia, J.; Tavelra Da Silva, A.T.; Waldhorn, R.E.

    1989-06-01

    Cerebral blood flow was measured by xenon-133 washout in 13 patients 6-46 hours after being resuscitated from cardiac arrest. Patients regaining consciousness had relatively normal cerebral blood flow before regaining consciousness, but all patients who died without regaining consciousness had increased cerebral blood flow that appeared within 24 hours after resuscitation (except in one patient in whom the first measurement was delayed until 28 hours after resuscitation, by which time cerebral blood flow was increased). The cause of the delayed-onset increase in cerebral blood flow is not known, but the increase may have adverse effects on brain function and may indicate the onset of irreversible brain damage.

  11. Effects of vasoactive stimuli on blood flow to choroid plexus

    SciTech Connect

    Faraci, F.M.; Mayhan, W.G.; Williams, J.K.; Heistad, D.D. )

    1988-02-01

    The goal of this study was to examine effects of vasoactive stimuli on blood flow to choroid plexus. The authors used microspheres to measure blood flow to choroid plexus and cerebrum in anesthetized dogs and rabbits. A critical assumption of the microsphere method is that microspheres do not pass through arteriovenous shunts. Blood flow values obtained with simultaneous injection of 15- and 50-{mu}m microspheres were similar, which suggest that shunting of 15-{mu}m microspheres was minimal. Blood flow to choroid plexus under control conditions was 287 {plus minus} 26 (means {plus minus} SE) ml {center dot} min{sup {minus}1} {center dot} 100 g{sup {minus}1} in dogs and 385 {plus minus} 73 ml {center dot} min{sup {minus}1} 100 g{sup {minus}1} in rabbits. Consecutive measurements under control conditions indicated that values for blood flow are reproducible. Adenosine did not alter blood flow to cerebrum but increased blood flow to choroid plexus two- to threefold in dogs and rabbits. Norepinephrine and phenylephrine did not affect blood flow to choroid plexus and cerebrum but decreased blood flow to choroid plexus by {approx} 50%. The authors suggest that (1) the microsphere method provides reproducible valid measurements of blood flow to the choroid plexus in dogs and rabbits and (2) vasoactive stimuli may have profoundly different effects on blood flow to choroid plexus and cerebrum.

  12. Influence of aortic blood flow velocity on changes of middle cerebral artery blood flow velocity during isoflurane and sevoflurane anaesthesia.

    PubMed

    Holzer, A; Greher, M; Hetz, H; Standhardt, H; Donner, A; Heinzl, H; Zimpfer, M; Illievich, U M

    2001-04-01

    We studied the influence of systemic (aortic) blood flow velocity on changes of cerebral blood flow velocity under isoflurane or sevoflurane anaesthesia. Forty patients (age: isoflurane 24-62 years; sevoflurane 24-61 years; ASA I-III) requiring general anaesthesia undergoing routine spinal surgery were randomly assigned to either group. Cerebral blood flow velocity was measured in the middle cerebral artery by transcranial Doppler sonography (depth: 50-60 mm). Systemic blood flow velocity was determined by transthoracic Doppler sonography at the aortic valve. Heart rate, arterial pressure, arterial oxygen saturation and body temperature were monitored. After standardized anaesthesia induction (propofol, remifentanil, vecuronium) sevoflurane or isoflurane were used as single agent anaesthetics. Cerebral blood flow velocity and systemic blood flow velocity were measured in the awake patient (baseline) and repeated 5 min after reaching a steady state of inspiratory and end-expiratory concentrations of 0.75, 1.00, and 1.25 mean alveolar concentrations of either anaesthetic. To calculate the influence of systemic blood flow velocity on cerebral blood flow velocity, we defined the cerebral-systemic blood flow velocity index (CSvI). CSvI of 100% indicates a 1:1 relationship of changes of cerebral blood flow velocity and systemic blood flow velocity. Isoflurane and sevoflurane reduced both cerebral blood flow velocity and systemic blood flow velocity. The CSvI decreased significantly at all three concentrations vs. 100% (isoflurane/sevoflurane: 0.75 MAC: 85 +/- 25%/81 +/- 23%, 1.0 MAC: 79 +/- 19%/74 +/- 16%, 1.25 MAC: 71 +/- 16%/79 +/- 21%; [mean +/- SD] P = 0.0001). The reduction of the CSvI vs. 100% indicates a direct reduction of cerebral blood flow velocity caused by isoflurane/sevoflurane, independently of systemic blood flow velocity.

  13. Raised intracranial pressure and cerebral blood flow

    PubMed Central

    Johnston, I. H.; Rowan, J. O.

    1974-01-01

    Pressure changes within the venous outflow tract from the brain were studied in anaesthetized baboons. Segmental vascular resistance changes were also calculated and the results correlated with the changes in cerebral blood flow, measured by the 133Xenon clearance method. Three different methods were used to raise intracranial pressure: cisterna magna infusion, a supratentorial subdural balloon, and an infratentorial subdural balloon. A close correlation was found between the cortical vein pressure and intracranial pressure with all methods of raising intracranial pressure: the overall correlation coefficient was 0·98. In the majority of animals sagittal sinus pressure showed little change through a wide range of intracranial pressure. In three of the six animals in the cisterna magna infusion group, however, sagittal sinus pressure increased to levels approaching the intracranial pressure during the later stages of intracranial hypertension. Jugular venous pressure showed little change with increasing intracranial pressure. The relationship between cerebral prefusion pressure and cerebral blood flow differed according to the method of increasing intracranial pressure. This was due to differing patterns of change in prevenous vascular resistance as venous resistance increased progressively with increasing pressure in all three groups. The present results confirm, therefore, the validity of the current definition of cerebral perfusion pressure—that is, cerebral perfusion pressure is equal to mean arterial pressure minus mean intracranial pressure—by demonstrating that intracranial pressure does represent the effective cerebral venous outflow pressure. Images PMID:4209160

  14. Cerebral blood flow tomography with xenon-133

    SciTech Connect

    Lassen, N.A.

    1985-10-01

    Cerebral blood flow (CBF) can be measured tomographically by inhalation of Xenon-/sup 133/. The calculation is based on taking a sequence of tomograms during the wash-in and wash-out phase of the tracer. Due to the dynamic nature of the process, a highly sensitive and fast moving single photon emission computed tomograph (SPECT) is required. Two brain-dedicated SPECT systems designed for this purpose are mentioned, and the method is described with special reference to the limitations inherent in the soft energy of the 133Xe primary photons. CBF tomography can be used for a multitude of clinical and investigative purposes. This article discusses in particular its use for the selection of patients with carotid occlusion for extracranial/intracranial bypass surgery, for detection of severe arterial spasm after aneurysm bleeding, and for detection of low flow areas during severe migraine attacks. The use of other tracers for CBF tomography using SPECT is summarized with emphasis on the /sup 99m/Tc chelates that freely pass the intact blood-brain barrier. The highly sensitive brain-dedicated SPECT systems described are a prerequisite for achieving high resolution tomograms with such tracers.

  15. Blood-Flow Magnetic Resonance Imaging of Retinal Degeneration

    PubMed Central

    Li, Yingxia; Cheng, Haiying; Shen, Qiang; Kim, Moon; Thule, Peter M; Olson, Darin E; Pardue, Machelle T; Duong, Timothy Q

    2009-01-01

    Purpose To investigate quantitative basal blood flow, hypercapnia- and hyperoxia-induced blood-flow changes in the retinas of the Royal-College-of-Surgeons (RCS) rats with spontaneous retinal degeneration and to compare with those of normal rat retinas. Methods Experiments were performed on male RCS rats at post-natal day P90 (n=4), P220 (n=5) and age-matched controls at P90 (n=7) and P220 (n=6). Hyperoxic (100% O2) and hypercapnic (5% CO2, 21% O2, balance N2) challenges were used to modulate blood flow. Quantitative baseline blood flow, hypercapnia- and hyperoxia-induced blood-flow changes in the retinas were imaged using continuous arterial-spin-labeling magnetic resonance imaging at 90×90×1500 μm. Results In the normal rat retinas, basal blood flow was 5.5ml/gram/min, significantly higher than those reported in the brain (∼1ml/gram/min). Hyperoxia decreased blood flow due to vasoconstriction and hypercapnia increased blood flow due to vasodilation in the normal retinas. In the RCS rat retinas, basal blood flow was diminished significantly (P<0.05). Interestingly, absolute hyperoxia- and hypercapnia-induced blood-flow changes in the RCS retinas were not statistically different from those in the normal retinas (P>0.05). However, percent changes in blood-flow were significantly larger than in normal retinas due to lower basal blood flow. Conclusion Retinal degeneration markedly reduces basal blood-flow but does not appear to impair vascular reactivity. These data also suggest caution when interpreting the relative stimulus-evoked functional MRI changes in diseased states where basal parameters are significantly perturbed. Quantitative blood-flow MRI may serve as a valuable tool to study the retina without depth limitation. PMID:18952917

  16. Exercise blood pressure: clinical relevance and correct measurement.

    PubMed

    Sharman, J E; LaGerche, A

    2015-06-01

    Blood pressure (BP) is a mandatory safety measure during graded intensity clinical exercise stress testing. While it is generally accepted that exercise hypotension is a poor prognostic sign linked to severe cardiac dysfunction, recent meta-analysis data also implicate excessive rises in submaximal exercise BP with adverse cardiovascular events and mortality, irrespective of resting BP. Although more data is needed to derive submaximal normative BP thresholds, the association of a hypertensive response to exercise with increased cardiovascular risk may be due to underlying hypertension that has gone unnoticed by conventional resting BP screening methods. Delayed BP decline during recovery is also associated with adverse clinical outcomes. Thus, above and beyond being used as a routine safety measure during stress testing, exercise (and recovery) BP may be useful for identifying high-risk individuals and also as an aid to optimise care through appropriate follow-up after exercise stress testing. Accordingly, careful attention should be paid to correct measurement of exercise stress test BP (before, during and after exercise) using a standardised approach with trained operators and validated BP monitoring equipment (manual or automated). Recommendations for exercise BP measurement based on consolidated international guidelines and expert consensus are presented in this review.

  17. Modified Beer-Lambert law for blood flow

    PubMed Central

    Baker, Wesley B.; Parthasarathy, Ashwin B.; Busch, David R.; Mesquita, Rickson C.; Greenberg, Joel H.; Yodh, A. G.

    2014-01-01

    We develop and validate a Modified Beer-Lambert law for blood flow based on diffuse correlation spectroscopy (DCS) measurements. The new formulation enables blood flow monitoring from temporal intensity autocorrelation function data taken at single or multiple delay-times. Consequentially, the speed of the optical blood flow measurement can be substantially increased. The scheme facilitates blood flow monitoring of highly scattering tissues in geometries wherein light propagation is diffusive or non-diffusive, and it is particularly well-suited for utilization with pressure measurement paradigms that employ differential flow signals to reduce contributions of superficial tissues. PMID:25426330

  18. Modified Beer-Lambert law for blood flow.

    PubMed

    Baker, Wesley B; Parthasarathy, Ashwin B; Busch, David R; Mesquita, Rickson C; Greenberg, Joel H; Yodh, A G

    2014-11-01

    We develop and validate a Modified Beer-Lambert law for blood flow based on diffuse correlation spectroscopy (DCS) measurements. The new formulation enables blood flow monitoring from temporal intensity autocorrelation function data taken at single or multiple delay-times. Consequentially, the speed of the optical blood flow measurement can be substantially increased. The scheme facilitates blood flow monitoring of highly scattering tissues in geometries wherein light propagation is diffusive or non-diffusive, and it is particularly well-suited for utilization with pressure measurement paradigms that employ differential flow signals to reduce contributions of superficial tissues.

  19. Blood-flow magnetic resonance imaging of the retina.

    PubMed

    Li, Yingxia; Cheng, Haiying; Duong, Timothy Q

    2008-02-15

    This study describes a novel MRI application to image basal blood flow, physiologically induced blood-flow changes, and the effects of isoflurane concentration on blood flow in the retina. Continuous arterial-spin-labeling technique with a separate neck coil for spin labeling was used to image blood flow of the rat retina at 90 x 90 x 1500-microm resolution. The average blood flow of the whole retina was 6.3+/-1.0 ml/g/min under 1% isoflurane, consistent with the high blood flow in the retina reported using other techniques. Blood flow is relatively constant along the length of the retina, except it dipped slightly around the optic nerve head and dropped significantly at the distal edges where the retina terminates. Hyperoxia (100% O(2)) decreased blood flow 25+/-6% relative to baseline (air) due to vasoconstriction. Hypercapnia (5% CO(2)+21% O(2)) increased blood flow 16+/-6% due to vasodilation. Increasing isoflurane (a potent vasodilator) concentration to 1.5% increased blood flow to 9.3+/-2.7 ml/g/min. Blood-flow signals were confirmed to be genuine by repeating measurements after the animals were sacrificed in the MRI scanner. This study demonstrates a proof of concept that quantitative blood flow of the retina can be measured using MRI without depth limitation. Blood-flow MRI has the potential to provide unique insights into retinal physiology, serve as an early biomarker for some retinal diseases, and could complement optically based imaging techniques.

  20. Cerebral blood flow in patients with congestive heart failure treated with captopril

    SciTech Connect

    Paulson, O.B.; Jarden, J.O.; Godtfredsen, J.; Vorstrup, S.

    1984-05-31

    The effect of captopril on cerebral blood flow was studied in five patients with severe congestive heart failure and in five control subjects. Cerebral blood flow was measured by inhalation of /sup 133/xenon and registration of its uptake and washout from the brain by single photon emission computer tomography. In addition, cerebral (internal jugular) venous oxygen tension was determined in the controls. The measurements were made before and 15, 60, and 180 minutes after a single oral dose of captopril (6.25 mg in patients with congestive heart failure and 25 mg in controls). Despite a marked decrease in blood pressure, cerebral blood flow increased slightly in the patients with severe congestive heart failure. When a correction was applied to take account of a change in arterial carbon dioxide tension, however, cerebral blood flow was unchanged after captopril administration even in patients with the greatest decrease in blood pressure, in whom a decrease in cerebral blood flow might have been expected. In the controls, blood pressure was little affected by captopril, whereas a slight, but not statistically significant, decrease in cerebral blood flow was observed. The cerebral venous oxygen tension decreased concomitantly.

  1. Intraoperative cerebral blood flow imaging of rodents

    NASA Astrophysics Data System (ADS)

    Li, Hangdao; Li, Yao; Yuan, Lu; Wu, Caihong; Lu, Hongyang; Tong, Shanbao

    2014-09-01

    Intraoperative monitoring of cerebral blood flow (CBF) is of interest to neuroscience researchers, which offers the assessment of hemodynamic responses throughout the process of neurosurgery and provides an early biomarker for surgical guidance. However, intraoperative CBF imaging has been challenging due to animal's motion and position change during the surgery. In this paper, we presented a design of an operation bench integrated with laser speckle contrast imager which enables monitoring of the CBF intraoperatively. With a specially designed stereotaxic frame and imager, we were able to monitor the CBF changes in both hemispheres during the rodent surgery. The rotatable design of the operation plate and implementation of online image registration allow the technician to move the animal without disturbing the CBF imaging during surgery. The performance of the system was tested by middle cerebral artery occlusion model of rats.

  2. Cerebral blood flow variations in CNS lupus

    SciTech Connect

    Kushner, M.J.; Tobin, M.; Fazekas, F.; Chawluk, J.; Jamieson, D.; Freundlich, B.; Grenell, S.; Freemen, L.; Reivich, M. )

    1990-01-01

    We studied the patterns of cerebral blood flow (CBF), over time, in patients with systemic lupus erythematosus and varying neurologic manifestations including headache, stroke, psychosis, and encephalopathy. For 20 paired xenon-133 CBF measurements, CBF was normal during CNS remissions, regardless of the symptoms. CBF was significantly depressed during CNS exacerbations. The magnitude of change in CBF varied with the neurologic syndrome. CBF was least affected in patients with nonspecific symptoms such as headache or malaise, whereas patients with encephalopathy or psychosis exhibited the greatest reductions in CBF. In 1 patient with affective psychosis, without clinical or CT evidence of cerebral ischemia, serial SPECT studies showed resolution of multifocal cerebral perfusion defects which paralleled clinical recovery.

  3. Tachykinin regulation of basal synovial blood flow

    PubMed Central

    Ferrell, W R; Lockhart, J C; Karimian, S M

    1997-01-01

    Experiments were performed to investigate the role of endogenously released tachykinins in the regulation of blood flow to the rat knee joint. Synovial perfusion was assessed by laser Doppler perfusion imaging, which permitted spatial measurement of relative changes in perfusion from control (pre drug administration), expressed as the percentage change. Most experiments were performed on the exposed medial aspect of the knee joint capsule.Neither the selective tachykinin NK1 receptor antagonist, FK888, nor the selective tachykinin NK2 receptor antagonist, SR48968, significantly influenced synovial blood flow at doses of 10−12, 10−10 and 10−8 mol. However, topical co-administration of these agents produced significant dose-dependent reductions in basal synovial perfusion of 6.3±4.6, 12.0±3.4 and 19.9±2.6%, respectively; n=29. The non-selective tachykinin NK1/NK2 receptor antagonist, FK224, also produced significant (at 10−10 and 10−8 mol), but less potent, reductions in perfusion of 5.3±4.0, 8.4±2.2 and 5.9±2.8%, respectively; n=25.Topical administration of the α1-, α2-adrenoceptor antagonist phenoxybenzamine elicited a 31.3±6.2% increase in blood flow which was substantially reduced to 10.4±3.8% by co-administration of the FK888 and SR48968 (both at 10−8 mol; n=8–13), suggesting that normally there is sympathetic vasoconstrictor ‘tone' which is opposed by the vasodilator action of endogenous tachykinins.One week after surgical interruption of the nerve supply to the knee joint, co-administration of FK888 and SR48968 (both at 10−8 mol) now produced slight vasodilatation (6.7±4.6%; n=9) which did not differ significantly from vehicle treatment. Depletion of tachykinins from sensory nerve fibres by systemic capsaicin administration also resulted in abolition of the vasoconstrictor effect of FK888 and SR48968 (both at 10−8 mol), with these agents only producing a slight vasodilatation (2.5±5.3%; n=6).By use of a near infra

  4. Topical menthol increases cutaneous blood flow

    PubMed Central

    Craighead, Daniel H.; Alexander, Lacy M.

    2017-01-01

    Menthol, the active ingredient in several topically applied analgesics, activates transient receptor potential melastatin 8 (TRPM8) receptors on sensory nerves and on the vasculature inducing a cooling sensation on the skin. Ilex paraguariensis is also a common ingredient in topical analgesics that has potential vasoactive properties and may alter the mechanisms of action of menthol. We sought to characterize the microvascular effects of topical menthol and ilex application and to determine the mechanism(s) through which these compounds may independently and combined alter cutaneous blood flow. We hypothesized that menthol would induce vasoconstriction and that ilex would not alter skin blood flow (SkBF). Three separate protocols were conducted to examine menthol and ilex-mediated changes in SkBF. In protocol 1, placebo, 4% menthol, 0.7% ilex, and combination menthol + ilex gels were applied separately to the skin and red cell flux was continuously measured utilizing laser speckle contrast imaging (LSCI). In protocol 2, seven concentrations of menthol gel (0.04%, 0.4%, 1%, 2%, 4%, 7%, 8%) were applied to the skin to model the dose-response curve. In protocol 3, placebo, menthol, ilex, and menthol + ilex gels were applied to skin under local thermal control (34°C) both with and without sensory nerve blockage (topical lidocaine 4%). Post-occlusive reactive hyperemia (PORH) and local heating (42°C) protocols were conducted to determine the relative contribution of endothelium derived hyperpolarizing factors (EDHFs)/sensory nerves and nitric oxide (NO), respectively. Red cell flux was normalized to mean arterial pressure expressed as cutaneous vascular conductance (CVC: flux•mmHg-1) in all protocols. Topical menthol application increased SkBF compared to placebo (3.41±0.33 v 1.1±0.19 CVC: p<0.001). During the dose-response, SkBF increased with increasing doses of menthol (main effect, p<0.05) with an ED50 of 1.0%. Similarly, SkBF was increased after menthol

  5. Cerebral blood flow in normal pressure hydrocephalus

    SciTech Connect

    Mamo, H.L.; Meric, P.C.; Ponsin, J.C.; Rey, A.C.; Luft, A.G.; Seylaz, J.A.

    1987-11-01

    A xenon-133 method was used to measure cerebral blood flow (CBF) before and after cerebrospinal fluid (CSF) removal in patients with normal pressure hydrocephalus (NPH). Preliminary results suggested that shunting should be performed on patients whose CBF increased after CSF removal. There was a significant increase in CBF in patients with NPH, which was confirmed by the favorable outcome of 88% of patients shunted. The majority of patients with senile and presenile dementia showed a decrease or no change in CBF after CSF removal. It is suggested that although changes in CBF and clinical symptoms of NPH may have the same cause, i.e., changes in the cerebral intraparenchymal pressure, there is no simple direct relation between these two events. The mechanism underlying the loss of autoregulation observed in NPH is also discussed.

  6. Quantitative Estimation of Tissue Blood Flow Rate.

    PubMed

    Tozer, Gillian M; Prise, Vivien E; Cunningham, Vincent J

    2016-01-01

    The rate of blood flow through a tissue (F) is a critical parameter for assessing the functional efficiency of a blood vessel network following angiogenesis. This chapter aims to provide the principles behind the estimation of F, how F relates to other commonly used measures of tissue perfusion, and a practical approach for estimating F in laboratory animals, using small readily diffusible and metabolically inert radio-tracers. The methods described require relatively nonspecialized equipment. However, the analytical descriptions apply equally to complementary techniques involving more sophisticated noninvasive imaging.Two techniques are described for the quantitative estimation of F based on measuring the rate of tissue uptake following intravenous administration of radioactive iodo-antipyrine (or other suitable tracer). The Tissue Equilibration Technique is the classical approach and the Indicator Fractionation Technique, which is simpler to perform, is a practical alternative in many cases. The experimental procedures and analytical methods for both techniques are given, as well as guidelines for choosing the most appropriate method.

  7. Mapping blood flow directionality in the human brain.

    PubMed

    Park, Sung-Hong; Do, Won-Joon; Choi, Seung Hong; Zhao, Tiejun; Bae, Kyongtae Ty

    2016-07-01

    Diffusion properties of tissue are often expressed on the basis of directional variance, i.e., diffusion tensor imaging. In comparison, common perfusion-weighted imaging such as arterial spin labeling yields perfusion in a scalar quantity. The purpose of this study was to test the feasibility of mapping cerebral blood flow directionality using alternate ascending/descending directional navigation (ALADDIN), a recently-developed arterial spin labeling technique with sensitivity to blood flow directions. ALADDIN was applied along 3 orthogonal directions to assess directional blood flow in a vector form and also along 6 equally-spaced directions to extract blood flow tensor matrix (P) based on a blood flow ellipsoid model. Tensor elements (eigenvalues, eigenvectors, etc) were calculated to investigate characteristics of the blood flow tensor, in comparison with time-of-flight MR angiogram. While the directions of the main eigenvectors were heterogeneous throughout the brain, regional clusters of blood flow directionality were reproducible across subjects. The technique could show heterogeneous blood flow directionality within and around brain tumor, which was different from that of the contralateral normal side. The proposed method is deemed to provide information of blood flow directionality, which has not been demonstrated before. The results warrant further studies to assess changes in the directionality map as a function of scan parameters, to understand the signal sources, to investigate the possibility of mapping local blood perfusion directionality, and to evaluate its usefulness for clinical diagnosis.

  8. Branchial blood flow distribution in the blue shark (Prionace glauca) and the leopard shark (Triakis semifasciata).

    PubMed

    Lai, N C; Graham, J B; Bhargava, V; Lowell, W R; Shabetai, R

    1989-01-01

    Electromagnetic flow (EMF) quantification of total cardiac stroke flow is not feasible for most elasmobranchs because the vascular anatomy precludes probe placement adjacent to the heart and proximal to all afferent branchial arteries (aba). Most previous studies report a fractional cardiac flow, made with the EMF probe placed on the ventral aorta between the innominate arteries and aba 3. Estimation of total cardiac stroke flow from such data requires a flow correction factor obtained by sacrificing the fish, and carrying out a two step in situ/in vitro flow calibration procedure which is based on tenuous assumptions. Ventral aortic blood flow measurements using the EMF techniques were carried out on large blue sharks, and radiographic imaging studies of ventral aortic and branchial blood flow were done on leopard sharks to verify previously estimated fractional cardiac stroke flow correction factors. The innominate flow fraction determined for both species in these studies are similar and agree with previous estimates for elasmobranchs. EMF data for Prionace show 38% of cardiac stroke flow goes to the innominate arteries, 23% into aba 3, 12% into aba 4, and 27% into aba 5. Radiographic analyses with Triakis reveal that 32% of its cardiac stroke volume flows into the innominate arteries which is in agreement with the in situ/in vitro fractional flow estimate (33%).

  9. Cerebral blood flow response to functional activation

    PubMed Central

    Paulson, Olaf B; Hasselbalch, Steen G; Rostrup, Egill; Knudsen, Gitte Moos; Pelligrino, Dale

    2010-01-01

    Cerebral blood flow (CBF) and cerebral metabolic rate are normally coupled, that is an increase in metabolic demand will lead to an increase in flow. However, during functional activation, CBF and glucose metabolism remain coupled as they increase in proportion, whereas oxygen metabolism only increases to a minor degree—the so-called uncoupling of CBF and oxidative metabolism. Several studies have dealt with these issues, and theories have been forwarded regarding the underlying mechanisms. Some reports have speculated about the existence of a potentially deficient oxygen supply to the tissue most distant from the capillaries, whereas other studies point to a shift toward a higher degree of non-oxidative glucose consumption during activation. In this review, we argue that the key mechanism responsible for the regional CBF (rCBF) increase during functional activation is a tight coupling between rCBF and glucose metabolism. We assert that uncoupling of rCBF and oxidative metabolism is a consequence of a less pronounced increase in oxygen consumption. On the basis of earlier studies, we take into consideration the functional recruitment of capillaries and attempt to accommodate the cerebral tissue's increased demand for glucose supply during neural activation with recent evidence supporting a key function for astrocytes in rCBF regulation. PMID:19738630

  10. Cerebral blood flow in small vessel disease: A systematic review and meta-analysis.

    PubMed

    Shi, Yulu; Thrippleton, Michael J; Makin, Stephen D; Marshall, Ian; Geerlings, Mirjam I; de Craen, Anton Jm; van Buchem, Mark A; Wardlaw, Joanna M

    2016-10-01

    White matter hyperintensities are frequent on neuroimaging of older people and are a key feature of cerebral small vessel disease. They are commonly attributed to chronic hypoperfusion, although whether low cerebral blood flow is cause or effect is unclear. We systematically reviewed studies that assessed cerebral blood flow in small vessel disease patients, performed meta-analysis and sensitivity analysis of potential confounders. Thirty-eight studies (n = 4006) met the inclusion criteria, including four longitudinal and 34 cross-sectional studies. Most cerebral blood flow data were from grey matter. Twenty-four cross-sectional studies (n = 1161) were meta-analysed, showing that cerebral blood flow was lower in subjects with more white matter hyperintensity, globally and in most grey and white matter regions (e.g. mean global cerebral blood flow: standardised mean difference-0.71, 95% CI -1.12, -0.30). These cerebral blood flow differences were attenuated by excluding studies in dementia or that lacked age-matching. Four longitudinal studies (n = 1079) gave differing results, e.g., more baseline white matter hyperintensity predated falling cerebral blood flow (3.9 years, n = 575); cerebral blood flow was low in regions that developed white matter hyperintensity (1.5 years, n = 40). Cerebral blood flow is lower in subjects with more white matter hyperintensity cross-sectionally, but evidence for falling cerebral blood flow predating increasing white matter hyperintensity is conflicting. Future studies should be longitudinal, obtain more white matter data, use better age-correction and stratify by clinical diagnosis.

  11. Comparison of different secondary flow correction methods for depth-average flow calculations in bends

    NASA Astrophysics Data System (ADS)

    Qin, C. C.

    2014-12-01

    Several secondary flow correction methods had been proposed in literature to account for the 3d flow characteristics of secondary circulation which was often lost in depth-averaged models. In order to evaluate their performances in singular bend, successive reverse curvature bends and natural meander rivers, three different typical secondary flow correction methods were applied to a depth-averaged hydrodynamic model, which were Lien(L), Kalkwijk and Booij(K) and modified Finnie(F) methods. There are obviously limits to the descriptive ability of the three methods in simulating sharply bend channels, especially L method which showed qualitative error. As for successive reverse curvature bends and natural meander rivers, K method gave a better performance than the others. F method increased depth-averaged velocities on the outside of curves, while L method overestimated the whole flow field. By the order of magnitude analysis, we found that L method has done the maximum correction for the secondary flow and the minimum correction for transversal velocities was F method. Those three methods were evaluated by multiple performance criteria. The results of this study can provide some references for some practical applications.

  12. Nonlinear interactions in renal blood flow regulation.

    PubMed

    Marsh, Donald J; Sosnovtseva, Olga V; Chon, Ki H; Holstein-Rathlou, Niels-Henrik

    2005-05-01

    We have developed a model of tubuloglomerular feedback (TGF) and the myogenic mechanism in afferent arterioles to understand how the two mechanisms are coupled. This paper presents the model. The tubular model predicts pressure, flow, and NaCl concentration as functions of time and tubular length in a compliant tubule that reabsorbs NaCl and water; boundary conditions are glomerular filtration rate (GFR), a nonlinear outflow resistance, and initial NaCl concentration. The glomerular model calculates GFR from a change in protein concentration using estimates of capillary hydrostatic pressure, tubular hydrostatic pressure, and plasma flow rate. The arteriolar model predicts fraction of open K channels, intracellular Ca concentration (Ca(i)), potential difference, rate of actin-myosin cross bridge formation, force of contraction, and length of elastic elements, and was solved for two arteriolar segments, identical except for the strength of TGF input, with a third, fixed resistance segment representing prearteriolar vessels. The two arteriolar segments are electrically coupled. The arteriolar, glomerular, and tubular models are linked; TGF modulates arteriolar circumference, which determines vascular resistance and glomerular capillary pressure. The model couples TGF input to voltage-gated Ca channels. It predicts autoregulation of GFR and renal blood flow, matches experimental measures of tubular pressure and macula densa NaCl concentration, and predicts TGF-induced oscillations and a faster smaller vasomotor oscillation. There are nonlinear interactions between TGF and the myogenic mechanism, which include the modulation of the frequency and amplitude of the myogenic oscillation by TGF. The prediction of modulation is confirmed in a companion study (28).

  13. Noninvasive method of estimating human newborn regional cerebral blood flow

    SciTech Connect

    Younkin, D.P.; Reivich, M.; Jaggi, J.; Obrist, W.; Delivoria-Papadopoulos, M.

    1982-12-01

    A noninvasive method of estimating regional cerebral blood flow (rCBF) in premature and full-term babies has been developed. Based on a modification of the /sup 133/Xe inhalation rCBF technique, this method uses eight extracranial NaI scintillation detectors and an i.v. bolus injection of /sup 133/Xe (approximately 0.5 mCi/kg). Arterial xenon concentration was estimated with an external chest detector. Cerebral blood flow was measured in 15 healthy, neurologically normal premature infants. Using Obrist's method of two-compartment analysis, normal values were calculated for flow in both compartments, relative weight and fractional flow in the first compartment (gray matter), initial slope of gray matter blood flow, mean cerebral blood flow, and initial slope index of mean cerebral blood flow. The application of this technique to newborns, its relative advantages, and its potential uses are discussed.

  14. Neuropsychological disturbances and cerebral blood flow in bipolar disorder.

    PubMed

    Benabarre, Antoni; Vieta, Eduard; Martínez-Arán, Anabel; Garcia-Garcia, Margarida; Martín, Francisco; Lomeña, Francisco; Torrent, Carla; Sánchez-Moreno, José; Colom, Francesc; Reinares, María; Brugue, Esteve; Valdés, Manuel

    2005-04-01

    To determine and correlate alterations in neuropsychological function and cerebral blood flow in bipolar patients. Assessments included the Positive and Negative Symptom Scale, Global Assessment Functioning, Wechsler Adult Intelligence Scale (WAIS), Wisconsin Card Sorting Test (WCST), Stroop test, Trail Making Test (TMT), California Verbal Learning Test (CVLT), Wechsler Memory Scale (WMS) and phonetic verbal fluency/controlled oral word association tests. Single photon emission computed tomography (SPECT) was carried out with the administration of 99mTc-HMPAO. Forty-three outpatients out of 85 fulfilling RDC diagnostic criteria for bipolar disorder and six healthy subjects were included in the study. SPECT and neuropsychological assessments were performed in 30 patients in manic (n = 7), hypomanic (n = 8), depressed (n = 12) or euthymic (n = 3) states. All assessments were carried out before starting treatment. Several corrected correlations between neuropsychological function and cerebral blood flow (CBF) were identified: executive function (WCST) and striatal, frontal, temporal, cerebellum, parietal and cingulate CBF; memory (WMS, WAIS-Digits) and striatal, frontal, temporal and parietal CBF; attentional tasks (Stroop) and striatal, temporo-medial and parietal CBF; verbal learning (CVLT) and frontal, posterior temporal, cingulate and occipital CBF; psychomotor disturbances (TMT) and anterior temporal CBF; poorer intelligence performance scores (WAIS-Vocabulary) and cerebellum and parietal CBF. This study confirms the presence of functional disturbances in fronto-subcortical structures, the cerebellum and limbic system in bipolar patients.

  15. The role of the arterial prestress in blood flow dynamics.

    PubMed

    Pontrelli, Giuseppe

    2006-01-01

    Blood flowing in a vessel is modelled using one-dimensional equations derived from the Navier-Stokes theory on the base of long pressure wavelength. The vessel wall is modelled as an initially highly prestressed elastic membrane, which slightly deforms under the blood pressure pulses. On the stressed configuration, the vessel wall undergoes, even in larger arteries, small deformation and its motion is linearized around such initial prestressed state. The mechanical fluid-wall interaction is expressed by a set of four partial differential equations. To account for a global circulation features, the distributed model is coupled with a six compartments lumped parameter model which provide the proper boundary conditions by reproducing the correct waveforms entering into the vessel and avoid unphysical reflections. The solution has been computed numerically: the space derivatives are discretized by a finite difference method on a staggered grid and a Runge-Kutta scheme is used to advance the solution in time. Numerical experiments show the role of the initial stresses in the flow dynamics and the wall deformation.

  16. Measurement of Retinal Blood Flow Using Fluorescently Labeled Red Blood Cells1,2,3

    PubMed Central

    Kornfield, Tess E.

    2015-01-01

    Abstract Blood flow is a useful indicator of the metabolic state of the retina. However, accurate measurement of retinal blood flow is difficult to achieve in practice. Most existing optical techniques used for measuring blood flow require complex assumptions and calculations. We describe here a simple and direct method for calculating absolute blood flow in vessels of all sizes in the rat retina. The method relies on ultrafast confocal line scans to track the passage of fluorescently labeled red blood cells (fRBCs). The accuracy of the blood flow measurements was verified by (1) comparing blood flow calculated independently using either flux or velocity combined with diameter measurements, (2) measuring total retinal blood flow in arterioles and venules, (3) measuring blood flow at vessel branch points, and (4) measuring changes in blood flow in response to hyperoxic and hypercapnic challenge. Confocal line scans oriented parallel and diagonal to vessels were used to compute fRBC velocity and to examine velocity profiles across the width of vessels. We demonstrate that these methods provide accurate measures of absolute blood flow and velocity in retinal vessels of all sizes. PMID:26082942

  17. Dynamic Effect of Rolling Massage on Blood Flow

    NASA Astrophysics Data System (ADS)

    Chen, Yan-Yan; Yi, Hou-Hui; Li, Hua-Bing; Fang, Hai-Ping

    2009-02-01

    The Chinese traditional medical massage has been used as a natural therapy to eliminate some diseases. Here, the effect of the rolling massage frequency to the blood flow in the blood vessels under the rolling massage manipulation is studied by the lattice Boltzmann simulation. The simulation results show that when the frequency is smaller than or comparable to the pulsatile frequency of the blood flow, the effect on the blood flux by the rolling massage is small. On the contrast, if the frequency is twice or more times of the pulsatile frequency of the blood flow, the blood flux is greatly enhanced and increases linearly with respect to the frequency. Similar behavior has also been observed on the shear stress on the blood vessel walls. The result is helpful for understanding that the rolling massage has the function of promoting the blood circulation and removing the blood stasis.

  18. Nuclear magnetic resonance: principles of blood flow imaging

    SciTech Connect

    Mills, C.M.; Brant-Zawadzki, M.; Crooks, L.E.; Kaufman, L.; Sheldon, P.; Norman, D.; Bank, W.; Newton, T.H.

    1984-01-01

    Nuclear magnetic resonance (NMR) imaging with spin-echo techniques defines vascular structures with superb anatomic detail. Contrast agents are not necessary as there is intrinsic contrast between flowing blood and the vascular wall. The signal intensity from blood within the vessel lumen varies with the sequence of gradient and radiofrequency pulses used to generate the image as well as with the velocity of blood flow. Appropriate imaging techniques can optimize anatomic detail, distinguish slow from rapidly flowing blood, and serve to identify marked impairment or complete obstruction of flow in an artery or vein. Some examples of these principles in the intracranial circulation are illustrated.

  19. Laser Doppler anemometer signal processing for blood flow velocity measurements

    SciTech Connect

    Borozdova, M A; Fedosov, I V; Tuchin, V V

    2015-03-31

    A new method for analysing the signal in a laser Doppler anemometer based on the differential scheme is proposed, which provides the flow velocity measurement in strongly scattering liquids, particularly, blood. A laser Doppler anemometer intended for measuring the absolute blood flow velocity in animal and human near-surface arterioles and venules is developed. The laser Doppler anemometer signal structure is experimentally studied for measuring the flow velocity in optically inhomogeneous media, such as blood and suspensions of scattering particles. The results of measuring the whole and diluted blood flow velocity in channels with a rectangular cross section are presented. (laser applications and other topics in quantum electronics)

  20. A Discussion on the Regulation of Blood Flow and Pressure.

    PubMed

    Wolff, Christopher B; Collier, David J; Shah, Mussadiq; Saxena, Manish; Brier, Timothy J; Kapil, Vikas; Green, David; Lobo, Melvin

    2016-01-01

    This paper discusses two kinds of regulation essential to the circulatory system: namely the regulation of blood flow and that of (systemic) arterial blood pressure. It is pointed out that blood flow requirements sub-serve the nutritional needs of the tissues, adequately catered for by keeping blood flow sufficient for the individual oxygen needs. Individual tissue oxygen requirements vary between tissue types, while highly specific for a given individual tissue. Hence, blood flows are distributed between multiple tissues, each with a specific optimum relationship between the rate of oxygen delivery (DO2) and oxygen consumption (VO2). Previous work has illustrated that the individual tissue blood flows are adjusted proportionately, where there are variations in metabolic rate and where arterial oxygen content (CaO2) varies. While arterial blood pressure is essential for the provision of a sufficient pressure gradient to drive blood flow, it is applicable throughout the arterial system at any one time. Furthermore, It is regulated independently of the input resistance to individual tissues (local arterioles), since they are regulated locally, that being the means by which the highly specific adequate local requirement for DO2 is ensured. Since total blood flow is the summation of all the individually regulated tissue blood flows cardiac inflow (venous return) amounts to total tissue blood flow and as the heart puts out what it receives cardiac output is therefore determined at the tissues. Hence, regulation of arterial blood pressure is independent of the distributed independent regulation of individual tissues. It is proposed here that mechanical features of arterial blood pressure regulation will depend rather on the balance between blood volume and venous wall tension, determinants of venous pressure. The potential for this explanation is treated in some detail.

  1. Multiscale modeling of blood flow: from single cells to blood rheology.

    PubMed

    Fedosov, Dmitry A; Noguchi, Hiroshi; Gompper, Gerhard

    2014-04-01

    Mesoscale simulations of blood flow, where the red blood cells are described as deformable closed shells with a membrane characterized by bending rigidity and stretching elasticity, have made much progress in recent years to predict the flow behavior of blood cells and other components in various flows. To numerically investigate blood flow and blood-related processes in complex geometries, a highly efficient simulation technique for the plasma and solutes is essential. In this review, we focus on the behavior of single and several cells in shear and microcapillary flows, the shear-thinning behavior of blood and its relation to the blood cell structure and interactions, margination of white blood cells and platelets, and modeling hematologic diseases and disorders. Comparisons of the simulation predictions with existing experimental results are made whenever possible, and generally very satisfactory agreement is obtained.

  2. [Determination of transmitral blood flow by pulsed echodoppler. Correlation with aortic blood flow in 30 patients].

    PubMed

    Tribouilloy, C; Slama, M A; Choquet, D; Delonca, J; Mertl, C; Dufosse, H; Lesbre, J P

    1991-07-01

    The aim of this study was to assess the validity of mitral valve blood flow measured by pulsed Doppler echocardiography (PDE) with the sample volume positioned at the tips of the mitral leaflets. Thirty patients with a mean age of 38.4 years underwent calculation of transmitral blood flow: by Touche's method (A) in which the mitral orifice is assumed to be an ellipse with a constant long axis equal to the diameter of the mitral annulus and a variable short axis equal to the distance between the mitral leaflets measured on the M mode recording. The velocities are recorded by PDE with the sample volume at the tips of the mitral leaflets. The instantaneous cardiac output is equal to the surface multiplied by the instantaneous velocity. The integration of the instantaneous outputs throughout the whole of diastole by a computer programme provides the stroke volume; by a simplification of this method (B) which considers the short axis of the mitral ellipse to be constant and equal to the mean mitral valve leaflet separation measured from the M mode recording, and; by Hoit's method (C) which calculates mitral valve surface area from the M mode recording alone. The transmitral blood flow was calculated by these three methods and compared to the classical PDE aortic cardiac output measurement during the same examination, the accuracy of which has been previously demonstrated.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. MRI of cerebral blood flow under hyperbaric conditions in rats.

    PubMed

    Cardenas, Damon P; Muir, Eric R; Duong, Timothy Q

    2016-07-01

    Hyperbaric oxygen (HBO) therapy has a number of clinical applications. However, the effects of acute HBO on basal cerebral blood flow (CBF) and neurovascular coupling are not well understood. This study explored the use of arterial spin labeling MRI to evaluate changes in baseline and forepaw stimulus-evoked CBF responses in rats (n = 8) during normobaric air (NB), normobaric oxygen (NBO) (100% O2 ), 3 atm absolute (ATA) hyperbaric air (HB) and 3 ATA HBO conditions. T1 was also measured, and the effects of changes in T1 caused by increasing oxygen on the CBF calculation were investigated. The major findings were as follows: (i) increased inhaled oxygen concentrations led to a reduced respiration rate; (ii) increased dissolved paramagnetic oxygen had significant effects on blood and tissue T1 , which affected the CBF calculation using the arterial spin labeling method; (iii) the differences in blood T1 had a larger effect than the differences in tissue T1 on CBF calculation; (iv) if oxygen-induced changes in blood and tissue T1 were not taken into account, CBF was underestimated by 33% at 3 ATA HBO, 10% at NBO and <5% at HB; (v) with correction, CBF values under HBO, HB and NBO were similar (p > 0.05) and all were higher than CBF under NB by ~40% (p < 0.05), indicating that hypercapnia from the reduced respiration rate masks oxygen-induced vasoconstriction, although blood gas was not measured; and (vi) substantial stimulus-evoked CBF increases were detected under HBO, similar to NB, supporting the notion that activation-induced CBF regulation in the brain does not operate through an oxygen-sensing mechanism. CBF MRI provides valuable insights into the effects of oxygen on basal CBF and neurovascular coupling under hyperbaric conditions. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Prediction of Anomalous Blood Viscosity in Confined Shear Flow

    NASA Astrophysics Data System (ADS)

    Thiébaud, Marine; Shen, Zaiyi; Harting, Jens; Misbah, Chaouqi

    2014-06-01

    Red blood cells play a major role in body metabolism by supplying oxygen from the microvasculature to different organs and tissues. Understanding blood flow properties in microcirculation is an essential step towards elucidating fundamental and practical issues. Numerical simulations of a blood model under a confined linear shear flow reveal that confinement markedly modifies the properties of blood flow. A nontrivial spatiotemporal organization of blood elements is shown to trigger hitherto unrevealed flow properties regarding the viscosity η, namely ample oscillations of its normalized value [η]=(η-η0)/(η0ϕ) as a function of hematocrit ϕ (η0=solvent viscosity). A scaling law for the viscosity as a function of hematocrit and confinement is proposed. This finding can contribute to the conception of new strategies to efficiently detect blood disorders, via in vitro diagnosis based on confined blood rheology. It also constitutes a contribution for a fundamental understanding of rheology of confined complex fluids.

  5. Cerebellar blood flow in methylmercury poisoning (Minamata disease).

    PubMed

    Itoh, K; Korogi, Y; Tomiguchi, S; Takahashi, M; Okajima, T; Sato, H

    2001-04-01

    We looked at regional cerebellar blood flow in patients with Minamata disease (MD) using technetium-99m ethyl cysteinate dimer (99m-Tc-ECD). We carried out single-photon emission computed tomography (SPECT) on 15 patients with MD (eight men, seven women, aged 51-78 years, mean 70.5 years) and 11 control subjects (eight men, three women, aged 62-80 years, mean 72.5 years). Regional blood flow was measured in the superior, middle, and inferior portions of the cerebellar hemispheres, and the frontal, temporal and occipital cerebral lobes. The degree of cerebellar atrophy was assessed on MRI. There were significant differences in regional blood flow in all parts of the cerebellum between patients and control, but no significant decrease was observed in the cerebrum. Blood flow was lower in the inferior cerebellum than in the other parts. Even in patients without cerebellar atrophy, flow was significantly decreased regional blood flow in the inferior part.

  6. Endogenous norepinephrine regulates blood flow to the intact rat tibia.

    PubMed

    Feitelson, J B A; Kulenovic, E; Beck, D J; Harris, P D; Passmore, J C; Malkani, A L; Fleming, J T

    2002-03-01

    The goal of our study was to determine if endogenous norepinephrine (NE) has a role in the regulation of basal blood flow to intact bone. The experimental plan was to measure bone blood flow before and after pharmacological blockade of alpha-adrenergic receptors. A significant increase in blood flow after receptor blockade would suggest that endogenous norepinephrine exerts a tonic constrictor effect on the vessels supplying blood to the bone. Mature, male rats were anesthetized with Inactin. Arterial blood pressure and left tibia blood flow (laser Doppler flowmetry) were measured. A cannula was inserted into the right iliac artery and advanced to the aortic bifurcation to deliver drugs into the left hindlimb circulation, including the left tibia vasculature. Bolus injection of norepinephrine caused a dose-dependent decrease in bone blood flow (30-40%). Blockade of alpha-adrenergic receptors with phentolamine or phenoxybenzamine attenuated by more than 50% the norepinephrine-induced decrease in bone blood flow. In separate rats that had not received exogenous norepinephrine, injection of phentolamine alone decreased bone vascular resistance by 34+/-3%. Similarly, phenoxybenzamine decreased resistance by 25+/-4%. These results are consistent with the conclusion that alpha-adrenergic receptors mediate a significant constriction of blood vessels which participate in the partial control of basal blood flow to the intact rat tibia.

  7. Numerical Simulation of Sickle Cell Blood Flow in the Microcirculation

    NASA Astrophysics Data System (ADS)

    Berger, Stanley A.; Carlson, Brian E.

    2001-11-01

    A numerical simulation of normal and sickle cell blood flow through the transverse arteriole-capillary microcirculation is carried out to model the dominant mechanisms involved in the onset of vascular stasis in sickle cell disease. The transverse arteriole-capillary network is described by Strahler's network branching method, and the oxygen and blood transport in the capillaries is modeled by a Krogh cylinder analysis utilizing Lighthill's lubrication theory, as developed by Berger and King. Poiseuille's law is used to represent blood flow in the arterioles. Applying this flow and transport model and utilizing volumetric flow continuity at each network bifurcation, a nonlinear system of equations is obtained, which is solved iteratively using a steepest descent algorithm coupled with a Newton solver. Ten different networks are generated and flow results are calculated for normal blood and sickle cell blood without and with precapillary oxygen loss. We find that total volumetric blood flow through the network is greater in the two sickle cell blood simulations than for normal blood owing to the anemia associated with sickle cell disease. The percentage of capillary blockage in the network increases dramatically with decreasing pressure drop across the network in the sickle cell cases while there is no blockage when normal blood flows through simulated networks. It is concluded that, in sickle cell disease, without any vasomotor dilation response to decreasing oxygen concentrations in the blood, capillary blockage will occur in the microvasculature even at average pressure drops across the transverse arteriole-capillary networks.

  8. Alterations in splanchnic blood flow following chronic ethanol exposure.

    PubMed

    Piano, M R; Ferguson, J L; Melchior, C L

    1990-08-01

    The purpose of these experiments was to determine whether or not tolerance develops to the effect of 3.0 g/kg ethanol on total and regional splanchnic blood flow in male Wistar rats. The animals were given the Lieber-DeCarli liquid diet containing ethanol for 10 days; ethanol-fed animals were withdrawn 24 hr prior to experiments. Regional blood flow and cardiac output (CO) were measured by the reference microsphere technique after an intraperitoneal injection of 3.0 g/kg of ethanol. Acute ethanol administration produced early nonsustained increases in portal vein blood flow in animals fed ethanol for 10 days and withdrawn for 24 hr and in control animals. However, after chronic exposure to ethanol, the pattern of increase in blood flow in response to ethanol in the splanchnic organs was different between the ethanol-fed and control groups. Increases in portal vein flow in control groups were due to concomitant increases in small intestinal, colonic, and cecal blood flow while the increase in the ethanol-fed group was due to a rise in small intestinal and stomach blood flow. The increase in stomach blood flow that occurred in the animals treated chronically with ethanol may be viewed as a conditioned response to ethanol, since this was not found in the control group. These results, demonstrate that the pattern of increase in blood flow in the splanchnic organs produced by an acute dose of ethanol depends on the animal's previous exposure to ethanol.

  9. Noninvasive Visualization of Human Capillary Vessel Blood Flow

    NASA Astrophysics Data System (ADS)

    Watanabe, Masao

    2005-11-01

    Human blood flows are highly susceptible to physical and health conditions. Hence quantitative evaluation of Blood flow is a useful parameter in the physical check up of individuals. However, the most convenient method is taking a blood sample, which can only examine ex vivo Blood condition. We turn our attention to the observation of the capillary loops of blood vessels in the finger skin nail fold, in which blood flow can be easily visualized without using complicated specialized tools other than capillaroscopy. We modified both the spatial and temporal resolution in capillaroscopy. A deep-focus high magnification zoom lens and a high speed video camera of 1000 fps allowed us to observe the motion of red blood cells, white blood cells and plasmas. Quantitative analysis of blood flow allowed us to observe the motion of red blood cells in capillary vessels with a diameter of about 10 micro meters. We discuss the quantitative evaluation of blood flow velocity in artery capillary vessels. We also conducted shape analysis of the capillary vessel, by using the level set method. By analyzing the obtained level set function, quantitative evaluation of the capillary blood shape, such as characteristic diameters and curvatures, are carried out.

  10. Retinitis pigmentosa and ocular blood flow

    PubMed Central

    2012-01-01

    Is the concept of integrative, preventive and personalised medicine applicable to the relationship between retinitis pigmentosa (RP) and ocular blood flow (OBF)? RP encompasses a group of hereditary diseases of the posterior segment of the eye characterised by degeneration, atrophy and finally loss of photoreceptors and retinal pigment epithelium, leading to progressive visual loss. Many different mutations affecting different genes can lead to the clinical picture of RP. Even though the disease has a clear genetic background, there are obviously other factors influencing the manifestation and progression of RP. In this review, we focus on the role of OBF. There is evidence that, in PR patients, OBF is more reduced than one would expect secondary to the retinal atrophy. The main cause of this additional component seems to be primary vascular dysregulation (PVD) syndrome. As PVD syndrome is partly treatable, a vascular evaluation of RP patients is meaningful. Based on the outcome, a targeted individualised, preventive or supportive treatment might be introduced in selected RP patients. PMID:23199279

  11. Pulsatile blood flow in Abdominal Aortic Aneurysms

    NASA Astrophysics Data System (ADS)

    Salsac, Anne-Virginie; Lasheras, Juan C.; Singel, Soeren; Varga, Chris

    2001-11-01

    We discuss the results of combined in-vitro laboratory measurements and clinical observations aimed at determining the effect that the unsteady wall shear stresses and the pressure may have on the growth and eventual rupturing of an Abdominal Aortic Aneurysm (AAA), a permanent bulging-like dilatation occurring near the aortic bifurcation. In recent years, new non-invasive techniques, such as stenting, have been used to treat these AAAs. However, the development of these implants, aimed at stopping the growth of the aneurysm, has been hampered by the lack of understanding of the effect that the hemodynamic forces have on the growth mechanism. Since current in-vivo measuring techniques lack the precision and the necessary resolution, we have performed measurements of the pressure and shear stresses in laboratory models. The models of the AAA were obtained from high resolution three-dimensional CAT/SCANS performed in patients at early stages of the disease. Preliminary DPIV measurements show that the pulsatile blood flow discharging into the cavity of the aneurysm leads to large spikes of pressure and wall shear stresses near and around its distal end, indicating a possible correlation between the regions of high wall shear stresses and the observed location of the growth of the aneurysm.

  12. Blood flow-restricted exercise in space

    PubMed Central

    2012-01-01

    Prolonged exposure to microgravity results in chronic physiological adaptations including skeletal muscle atrophy, cardiovascular deconditioning, and bone demineralization. To attenuate the negative consequences of weightlessness during spaceflight missions, crewmembers perform moderate- to high-load resistance exercise in conjunction with aerobic (cycle and treadmill) exercise. Recent evidence from ground-based studies suggests that low-load blood flow-restricted (BFR) resistance exercise training can increase skeletal muscle size, strength, and endurance when performed in a variety of ambulatory populations. This training methodology couples a remarkably low exercise training load (approximately 20%–50% one repetition maximum (1RM)) with an inflated external cuff (width, ranging between approximately 30–90 mm; pressure, ranging between approximately 100–250 mmHg) that is placed around the exercising limb. BFR aerobic (walking and cycling) exercise training methods have also recently emerged in an attempt to enhance cardiovascular endurance and functional task performance while incorporating minimal exercise intensity. Although both forms of BFR exercise training have direct implications for individuals with sarcopenia and dynapenia, the application of BFR exercise training during exposure to microgravity to prevent deconditioning remains controversial. The aim of this review is to present an overview of BFR exercise training and discuss the potential usefulness of this method as an adjunct exercise countermeasure during prolonged spaceflight. The work will specifically emphasize ambulatory BFR exercise training adaptations, mechanisms, and safety and will provide directions for future research. PMID:23849078

  13. Synthetic Capillaries to Control Microscopic Blood Flow

    PubMed Central

    Sarveswaran, K.; Kurz, V.; Dong, Z.; Tanaka, T.; Penny, S.; Timp, G.

    2016-01-01

    Capillaries pervade human physiology. The mean intercapillary distance is only about 100 μm in human tissue, which indicates the extent of nutrient diffusion. In engineered tissue the lack of capillaries, along with the associated perfusion, is problematic because it leads to hypoxic stress and necrosis. However, a capillary is not easy to engineer due to its complex cytoarchitecture. Here, it is shown that it is possible to create in vitro, in about 30 min, a tubular microenvironment with an elastic modulus and porosity consistent with human tissue that functionally mimicks a bona fide capillary using “live cell lithography”(LCL) to control the type and position of cells on a composite hydrogel scaffold. Furthermore, it is established that these constructs support the forces associated with blood flow, and produce nutrient gradients similar to those measured in vivo. With LCL, capillaries can be constructed with single cell precision—no other method for tissue engineering offers such precision. Since the time required for assembly scales with the number of cells, this method is likely to be adapted first to create minimal functional units of human tissue that constitute organs, consisting of a heterogeneous population of 100–1000 cells, organized hierarchically to express a predictable function. PMID:26905751

  14. Blood flow restricted exercise and vascular function.

    PubMed

    Horiuchi, Masahiro; Okita, Koichi

    2012-01-01

    It is established that regular aerobic training improves vascular function, for example, endothelium-dependent vasodilatation and arterial stiffness or compliance and thereby constitutes a preventative measure against cardiovascular disease. In contrast, high-intensity resistance training impairs vascular function, while the influence of moderate-intensity resistance training on vascular function is still controversial. However, aerobic training is insufficient to inhibit loss in muscular strength with advancing age; thus, resistance training is recommended to prevent sarcopenia. Recently, several lines of study have provided compelling data showing that exercise and training with blood flow restriction (BFR) leads to muscle hypertrophy and strength increase. As such, BFR training might be a novel means of overcoming the contradiction between aerobic and high-intensity resistance training. Although it is not enough evidence to obtain consensus about impact of BFR training on vascular function, available evidences suggested that BFR training did not change coagulation factors and arterial compliance though with inconsistence results in endothelial function. This paper is a review of the literature on the impact of BFR exercise and training on vascular function, such as endothelial function, arterial compliance, or other potential factors in comparison with those of aerobic and resistance training.

  15. Synthetic Capillaries to Control Microscopic Blood Flow

    NASA Astrophysics Data System (ADS)

    Sarveswaran, K.; Kurz, V.; Dong, Z.; Tanaka, T.; Penny, S.; Timp, G.

    2016-02-01

    Capillaries pervade human physiology. The mean intercapillary distance is only about 100 μm in human tissue, which indicates the extent of nutrient diffusion. In engineered tissue the lack of capillaries, along with the associated perfusion, is problematic because it leads to hypoxic stress and necrosis. However, a capillary is not easy to engineer due to its complex cytoarchitecture. Here, it is shown that it is possible to create in vitro, in about 30 min, a tubular microenvironment with an elastic modulus and porosity consistent with human tissue that functionally mimicks a bona fide capillary using “live cell lithography”(LCL) to control the type and position of cells on a composite hydrogel scaffold. Furthermore, it is established that these constructs support the forces associated with blood flow, and produce nutrient gradients similar to those measured in vivo. With LCL, capillaries can be constructed with single cell precision—no other method for tissue engineering offers such precision. Since the time required for assembly scales with the number of cells, this method is likely to be adapted first to create minimal functional units of human tissue that constitute organs, consisting of a heterogeneous population of 100-1000 cells, organized hierarchically to express a predictable function.

  16. Synthetic Capillaries to Control Microscopic Blood Flow.

    PubMed

    Sarveswaran, K; Kurz, V; Dong, Z; Tanaka, T; Penny, S; Timp, G

    2016-02-24

    Capillaries pervade human physiology. The mean intercapillary distance is only about 100 μm in human tissue, which indicates the extent of nutrient diffusion. In engineered tissue the lack of capillaries, along with the associated perfusion, is problematic because it leads to hypoxic stress and necrosis. However, a capillary is not easy to engineer due to its complex cytoarchitecture. Here, it is shown that it is possible to create in vitro, in about 30 min, a tubular microenvironment with an elastic modulus and porosity consistent with human tissue that functionally mimicks a bona fide capillary using "live cell lithography"(LCL) to control the type and position of cells on a composite hydrogel scaffold. Furthermore, it is established that these constructs support the forces associated with blood flow, and produce nutrient gradients similar to those measured in vivo. With LCL, capillaries can be constructed with single cell precision-no other method for tissue engineering offers such precision. Since the time required for assembly scales with the number of cells, this method is likely to be adapted first to create minimal functional units of human tissue that constitute organs, consisting of a heterogeneous population of 100-1000 cells, organized hierarchically to express a predictable function.

  17. Substance abuse and cerebral blood flow.

    PubMed

    Mathew, R J; Wilson, W H

    1991-03-01

    This paper reviews acute and chronic effects of drugs of abuse on cerebral blood flow (CBF) and metabolism and their clinical significance. The most important source of information for the review is human research reports published in refereed journals. A few animal studies, book chapters, and abstracts that are especially relevant are also included. In humans, ethanol in small doses produces cerebral vasodilation; higher doses induce cerebral vasoconstriction. Chronic alcoholism is associated with reduced CBF and cerebral metabolism. Sedatives and antianxiety drugs lead to global reduction in CBF and cerebral metabolism. Caffeine, even in small doses, is a potent cerebral vasoconstrictor. Cerebral vasodilation is seen immediately after cigarette smoking, but chronic smokers show global reduction in CBF. Changes in CBF after marijuana smoking are variable; both increases and decreases are seen. Chronic marijuana smoking, however, seems to reduce CBF. Most inhalants and solvents are vasodilators; chronic abuse is accompanied by a decrease in CBF. A number of drugs of abuse, including ethanol, amphetamines, cocaine, nicotine, and caffeine-phenylpropanolamine combinations, increase the risk for stroke. Reduction in CBF associated with chronic use of ethanol, nicotine, inhalants, and solvents is at least partially reversible upon abstinence. Topics for future research include regional brain function, which mediates drug-induced mood changes (euphoria); CBF concomitants of psychological and physiological characteristics that increase addiction potential; changes in CBF that accompany withdrawal syndromes; mechanisms responsible for drug-induced stroke; and effects of functional and organic complications on CBF.

  18. Video-rate optical flow corrected intraoperative functional fluorescence imaging.

    PubMed

    Koch, Maximilian; Glatz, Jürgen; Ermolayev, Vladimir; de Vries, Elisabeth G E; van Dam, Gooitzen M; Englmeier, Karl-Hans; Ntziachristos, Vasilis

    2014-04-01

    Intraoperative fluorescence molecular imaging based on targeted fluorescence agents is an emerging approach to improve surgical and endoscopic imaging and guidance. Short exposure times per frame and implementation at video rates are necessary to provide continuous feedback to the physician and avoid motion artifacts. However, fast imaging implementations also limit the sensitivity of fluorescence detection. To improve on detection sensitivity in video rate fluorescence imaging, we considered herein an optical flow technique applied to texture-rich color images. This allows the effective accumulation of fluorescence signals over longer, virtual exposure times. The proposed correction scheme is shown to improve signal-to-noise ratios both in phantom experiments and in vivo tissue imaging.

  19. Tissue Blood Flow During Remifentanil Infusion With Carbon Dioxide Loading.

    PubMed

    Kanbe, Hiroaki; Matsuura, Nobuyuki; Kasahara, Masataka; Ichinohe, Tatsuya

    2015-01-01

    The aim of this study was to investigate the effect of changes in end-tidal carbon dioxide tension (ETCO2) during remifentanil (Remi) infusion on oral tissue blood flow in rabbits. Eight male tracheotomized Japan White rabbits were anesthetized with sevoflurane under mechanical ventilation. The infusion rate of Remi was 0.4 μg/kg/min. Carbon dioxide was added to the inspired gas to change the inspired CO2 tension to prevent changes in the ventilating condition. Observed variables were systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP), heart rate (HR), common carotid artery blood flow (CCBF), tongue mucosal blood flow (TBF), mandibular bone marrow tissue blood flow (BBF), masseter muscle tissue blood flow (MBF), upper alveolar tissue blood flow (UBF), and lower alveolar tissue blood flow (LBF). The CCBF, TBF, BBF, UBF, and LBF values were increased, while MBF was decreased, under hypercapnia, and vice versa. The BBF, UBF, and LBF values were increased, while the MBF value was decreased, under hypercapnia during Remi infusion, and vice versa. The BBF, MBF, UBF, and LBF values, but not the CCBF and TBF values, changed along with ETCO2 changes during Remi infusion.

  20. Effect of prolonged hypokinesia on tissue blood flow

    NASA Technical Reports Server (NTRS)

    Levites, Z. P.; Fedotova, V. F.

    1979-01-01

    The influence of hypokinesia on the blood flow in the tissues of rabbits was studied. Motor activity of animals was restricted during 90 days and blood flow recorded through resorption rate of NaI-131. Perfusion of tissues under the influence of hypokinesia was found to be reduced.

  1. Exploration of 4D MRI blood flow using stylistic visualization.

    PubMed

    van Pelt, Roy; Oliván Bescós, Javier; Breeuwer, Marcel; Clough, Rachel E; Gröller, M Eduard; ter Haar Romenij, Bart; Vilanova, Anna

    2010-01-01

    Insight into the dynamics of blood-flow considerably improves the understanding of the complex cardiovascular system and its pathologies. Advances in MRI technology enable acquisition of 4D blood-flow data, providing quantitative blood-flow velocities over time. The currently typical slice-by-slice analysis requires a full mental reconstruction of the unsteady blood-flow field, which is a tedious and highly challenging task, even for skilled physicians. We endeavor to alleviate this task by means of comprehensive visualization and interaction techniques. In this paper we present a framework for pre-clinical cardiovascular research, providing tools to both interactively explore the 4D blood-flow data and depict the essential blood-flow characteristics. The framework encompasses a variety of visualization styles, comprising illustrative techniques as well as improved methods from the established field of flow visualization. Each of the incorporated styles, including exploded planar reformats, flow-direction highlights, and arrow-trails, locally captures the blood-flow dynamics and may be initiated by an interactively probed vessel cross-section. Additionally, we present the results of an evaluation with domain experts, measuring the value of each of the visualization styles and related rendering parameters.

  2. Myocardial blood flow during induced aortic hypertension in dogs

    SciTech Connect

    Thai, B.N.; Levesque, M.J.; Nerem, R.M.

    1986-03-01

    Myocardial blood flow was measured in anesthetized dogs during control conditions and under conditions where the aortic pressure was increased due to aortic constriction or during infusion. Blood flow was measured using the radioactive microsphere technique. Radioactive microspheres (15 m Ce-141, Sr-85, and Sc-46) were injected under control, aortic constriction and arterenol infusion in four dogs and under control conditions in two others. All microsphere injections were performed under stabilized conditions. It was found that coronary blood flow rose by 80% during aortic constriction and by 158% during arterenol infusion (P < 0.05). This increase in blood flow was not uniform throughout the heart, and higher increases were observed in the middle and apex regions of the left ventricle. Furthermore, under hypertension the increase in blood flow in LAD (left anterior descending) perfused territories was slightly higher than that in CFX (left circumflex) perfused territories.

  3. Blood flow controls bone vascular function and osteogenesis

    PubMed Central

    Ramasamy, Saravana K.; Kusumbe, Anjali P.; Schiller, Maria; Zeuschner, Dagmar; Bixel, M. Gabriele; Milia, Carlo; Gamrekelashvili, Jaba; Limbourg, Anne; Medvinsky, Alexander; Santoro, Massimo M.; Limbourg, Florian P.; Adams, Ralf H.

    2016-01-01

    While blood vessels play important roles in bone homeostasis and repair, fundamental aspects of vascular function in the skeletal system remain poorly understood. Here we show that the long bone vasculature generates a peculiar flow pattern, which is important for proper angiogenesis. Intravital imaging reveals that vessel growth in murine long bone involves the extension and anastomotic fusion of endothelial buds. Impaired blood flow leads to defective angiogenesis and osteogenesis, and downregulation of Notch signalling in endothelial cells. In aged mice, skeletal blood flow and endothelial Notch activity are also reduced leading to decreased angiogenesis and osteogenesis, which is reverted by genetic reactivation of Notch. Blood flow and angiogenesis in aged mice are also enhanced on administration of bisphosphonate, a class of drugs frequently used for the treatment of osteoporosis. We propose that blood flow and endothelial Notch signalling are key factors controlling ageing processes in the skeletal system. PMID:27922003

  4. Ultrasonic Doppler measurement of renal artery blood flow

    NASA Technical Reports Server (NTRS)

    Freund, W. R.; Beaver, W. L.; Meindl, J. D.

    1976-01-01

    Studies were made of (1) blood flow redistribution during lower body negative pressure (LBNP), (2) the profile of blood flow across the mitral annulus of the heart (both perpendicular and parallel to the commissures), (3) testing and evaluation of a number of pulsed Doppler systems, (4) acute calibration of perivascular Doppler transducers, (5) redesign of the mitral flow transducers to improve reliability and ease of construction, and (6) a frequency offset generator designed for use in distinguishing forward and reverse components of blood flow by producing frequencies above and below the offset frequency. Finally methodology was developed and initial results were obtained from a computer analysis of time-varying Doppler spectra.

  5. [How much blood flow is required by the myocardium?].

    PubMed

    Deussen, A; Flesche, C W; Loncar, R

    1999-07-01

    The myocardium of the left ventricle exhibits spatial heterogeneity of blood flow under physiological conditions. This study was designed to investigate, whether oxygen supply is jeopardized in low flow areas (blood flow < 50% of mean) under physiological conditions and whether areas of high flow (> 150% of mean) exhibit perfusion in excess of demand ("luxury perfusion"). The study was performed in anesthetized and ventilated beagle dogs. Local blood flow was reduced by mechanically narrowing of the r. circumflexus of the left coronary artery; myocardial blood flow was measured by the tracer-microsphere technique, free concentrations cellular adenosine by the SAH-technique, regional metabolism of substrates by the desoxyglucose-technique. Low flow areas exhibited normal oxygenation of the myocardium, while in high flow areas no luxury perfusion could be demonstrated. Myocardial blood flow and metabolism demonstrate significant spatial heterogeneity. There appears to be no absolute threshold of blood flow, where regional myocardial ischemia develops. Probably biochemical evidence of myocardial ischemia is determined by a local ratio of oxygen supply and demand.

  6. Fluid dynamics aspects of miniaturized axial-flow blood pump.

    PubMed

    Kang, Can; Huang, Qifeng; Li, Yunxiao

    2014-01-01

    Rotary blood pump (RBP) is a kind of crucial ventricular assist device (VAD) and its advantages have been evidenced and acknowledged in recent years. Among the factors that influence the operation performance and the durability of various rotary blood pumps, medium property and the flow features in pump's flow passages are conceivably significant. The major concern in this paper is the fluid dynamics aspects of such a kind of miniaturized pump. More specifically, the structural features of axial-flow blood pump and corresponding flow features are analyzed in detail. The narrow flow passage between blade tips and pump casing and the rotor-stator interaction (RSI) zone may exert a negative effect on the shear stress distribution in the blood flow. Numerical techniques are briefly introduced in view of their contribution to facilitating the optimal design of blood pump and the visualization of shear stress distribution and multiphase flow analysis. Additionally, with the development of flow measurement techniques, the high-resolution, effective and non-intrusive flow measurement techniques catering to the measurement of the flows inside rotary blood pumps are highly anticipated.

  7. An efficient pressure-correction method for incompressible multifluid flows

    NASA Astrophysics Data System (ADS)

    Dodd, M.; Ferrante, A.

    2013-11-01

    We present a new pressure-correction (PC) method for solving incompressible multifluid flows with large density ratios. The novelty of the method is that the variable coefficient Poisson equation that arises in solving the variable-density Navier-Stokes equations has been reduced to a constant coefficient equation, which can then be solved directly using a fast Poisson solver. The new method is coupled to our mass-conserving volume-of-fluid (VoF) method to capture the interface between the moving fluids. First, we verified the new PC/VoF solver using the capillary wave test-case up to density and viscosity ratios of 10,000. Then, we validated the new flow solver by simulating the motion of a falling water droplet in air by comparing the droplet terminal velocity with the experimental value (Beard, 1976) for 95 . 6 <= Re <= 473 , 0 . 06 <= We <= 0 . 61 , and 0 . 05 <= Bo <= 0 . 26 . We also verified the solver for a rising air bubble in water. The algorithm is shown to be second-order accurate, and stable for density and viscosity ratios up to 10,000. Also, we show that our fast Poisson solver is more than ten times faster than the Hypre multigrid solver up to a 10243 grid and 1024 cores. NSF CAREER #1054591.

  8. Micro-PIV measurements of blood flow in extraembryonic blood vessels of chicken embryos.

    PubMed

    Lee, Jung Yeop; Ji, Ho Seong; Lee, Sang Joon

    2007-10-01

    The hemodynamic characteristics of blood flow are important in the diagnosis of circulatory diseases, since such diseases are related to wall shear stress of cardiovascular vessels. In chicken embryos at early stages of development, it is possible to directly visualize blood flow inside blood vessels. We therefore employed a micro-PIV technique to assess blood flow in extraembryonic venous and arterial blood vessels of chicken embryos, using red blood cells (RBCs) as tracers and obtaining flow images of RBCs using a high-speed CMOS camera. The mean velocity field showed non-Newtonian flow characteristics. The blood flow in two venous vessels merged smoothly into the Y-shaped downstream vein without any flow separation or secondary flow. Vorticity was high in the inner regions, where the radius of curvature varied greatly. A periodic variation of temporally resolved velocity signals, due to beating of the heart, was observed in arterial blood vessels. The pulsating frequency was obtained by fast Fourier transform analysis using the measured velocity data. The measurement technique used here was useful in analyzing the hemodynamic characteristics of in vivo blood flow in chicken embryos.

  9. Cerebral blood flow and metabolism during sleep.

    PubMed

    Madsen, P L; Vorstrup, S

    1991-01-01

    A review of the current literature regarding sleep-induced changes in cerebral blood flow (CBF) and cerebral metabolic rate (CMR) is presented. Early investigations have led to the notion that dreamless sleep was characterized by global values of CBF and CMR practically at the level of wakefulness, while rapid eye movement (REM) sleep (dream sleep) was a state characterized by a dramatically increased level of CBF and possibly also of CMR. However, recent investigations firmly contradict this notion. Investigations on CBF and CMR performed during non-REM sleep, taking the effect of different levels of sleep into consideration, show that light sleep (stage II) is characterized by global levels of CBF and CMR only slightly reduced by 3-10% below the level associated with wakefulness, whereas CBF and CMR during deep sleep (stage III-IV) is dramatically reduced by 25-44%. Furthermore, recent data indicate that global levels of CBF and CMR are about the same during REM sleep as in wakefulness. On the regional level, deep sleep seems to be associated with a uniform decrease in regional CBF and CMR. Investigations concerning regional CBF and CMR during REM sleep are few but data from recent investigations seem to identify site-specific changes in regional CBF and CMR during REM sleep. CBF and CMR are reflections of cerebral synaptic activity and the magnitude of reduction in these variables associated with deep sleep indicates that overall cerebral synaptic activity is reduced to approximately one-half the level associated with wakefulness, while cerebral synaptic activity levels during REM sleep are similar to wakefulness. However, even though the new understanding of CBF and CMR during sleep provides significant and important information of the brain's mode of working during sleep, it does not at its current state identify the physiological processes involved in sleep or the physiological role of sleep.

  10. Postischemic cerebral blood flow and neuroeffector mechanisms.

    PubMed

    Macfarlane, R; Moskowitz, M A; Tasdemiroglu, E; Wei, E P; Kontos, H A

    1991-01-01

    The influence of neuroeffector mechanisms in the regulation of postischemic cerebral blood flow was investigated by microsphere determination in 8 cats after chronic unilateral vascular deafferentation by trigeminal ganglionectomy. The animals were subjected to 90 min of reperfusion following 10 min of global ischemia induced by 4-vessel occlusion and systemic hypotension. Cortical hyperemia 30 min after reperfusion was attenuated by up to 48% in cortical gray matter ipsilateral to the side of trigeminal ganglionectomy (p less than 0.01). Axon reflex mechanisms involving the release of neuropeptides from peripheral sensory nerve fibers, such as substance P (SP), calcitonin gene-related peptide (CGRP) and neurokinin A (NKA), mediate this response. SP and NKA cause vasodilation by endothelium-dependent mechanisms (endothelium-dependent relaxing factor), whereas CGRP relaxes vascular smooth muscle by direct receptor interactions. Studies were therefore undertaken to determine the extent to which endothelium-dependent mechanisms mediate the hyperemia following global cerebral ischemia. In 7 intact cats, the postischemic response of pial arterioles to the topical application of acetylcholine (ACh; 10(-7) M), an endothelial-dependent vasodilator, was measured using a closed cranial window technique. Although ACh increased pial arteriolar caliber by 17% under resting conditions, the same dose elicited a vasoconstrictor response (87% of pre-ACh diameter 30 min after reperfusion) for the first 60 min of reperfusion after 10 min of ischemia. ACh-induced vasodilation was restored by 75 min (105%), but was less than control even at 120 min (109 vs. 117%; p less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Brain metabolism and blood flow during aging.

    PubMed

    Horwitz, B

    1987-01-01

    Recent studies of cerebral metabolism have suggested that although cerebral blood flow is reduced during rest in the healthy aged brain, there is little or no decline in resting glucose consumption. Intercorrelations between resting regional cerebral rates for glucose (rCMRglc), as determined by positron emission tomography using [18F]fluorodeoxyglucose, were shown to provide a measure of the functional associativity of brain regions. Partial correlation coefficients, controlling for whole brain glucose metabolism, were used in the analysis. Dividing the brain into 59 regions, we found, for 40 healthy males (21-83 years in age) in a state of reduced sensory input, that the strongest correlations generally were between bilaterally symmetric brain regions, and that there were many statistically significant correlations (P less than 0.01) among frontal and parietal lobe regions and also among temporal and occipital lobe areas, but few significant correlations between these two domains. The correlation analysis then was applied to two groups (15 healthy males each) of young (20-32 years old) and elderly (64-83 years old) subjects in the same resting state. Compared with the young group, we found that the elderly subjects have fewer statistically significant (P less than 0.01) correlations, with the most noteworthy reductions being between parietal and frontal lobe regions, and among parietal lobe areas. These findings indicated that cerebral functional interactions were reduced in the healthy elderly. The same analysis, applied to 21 mainly mildly-to-moderately impaired presumed Alzheimer subjects (and 21 age-matched controls), revealed fewer significant correlations between homologous brain regions which correspond to metabolic asymmetries linked to neuropsychological deficiencies.

  12. Conditions of microvessel occlusion for blood coagulation in flow.

    PubMed

    Bouchnita, A; Galochkina, T; Kurbatova, P; Nony, P; Volpert, V

    2017-09-01

    Vessel occlusion is a perturbation of blood flow inside a blood vessel because of the fibrin clot formation. As a result, blood circulation in the vessel can be slowed down or even stopped. This can provoke the risk of cardiovascular events. In order to explore this phenomenon, we used a previously developed mathematical model of blood clotting to describe the concentrations of blood factors with a reaction-diffusion system of equations. The Navier-Stokes equations were used to model blood flow, and we treated the clot as a porous medium. We identify the conditions of partial or complete occlusion in a small vessel depending on various physical and physiological parameters. In particular, we were interested in the conditions on blood flow and diameter of the wounded area. The existence of a critical flow velocity separating the regimes of partial and complete occlusion was demonstrated through the mathematical investigation of a simplified model of thrombin wave propagation in Poiseuille flow. We observed different regimes of vessel occlusion depending on the model parameters both for the numerical simulations and in the theoretical study. Then, we compared the rate of clot growth in flow obtained in the simulations with experimental data. Both of them showed the existence of different regimes of clot growth depending on the velocity of blood flow. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Dynamics of blood flow in a microfluidic ladder network

    NASA Astrophysics Data System (ADS)

    Maddala, Jeevan; Zilberman-Rudenko, Jevgenia; McCarty, Owen

    The dynamics of a complex mixture of cells and proteins, such as blood, in perturbed shear flow remains ill-defined. Microfluidics is a promising technology for improving the understanding of blood flow under complex conditions of shear; as found in stent implants and in tortuous blood vessels. We model the fluid dynamics of blood flow in a microfluidic ladder network with dimensions mimicking venules. Interaction of blood cells was modeled using multiagent framework, where cells of different diameters were treated as spheres. This model served as the basis for predicting transition regions, collision pathways, re-circulation zones and residence times of cells dependent on their diameters and device architecture. Based on these insights from the model, we were able to predict the clot formation configurations at various locations in the device. These predictions were supported by the experiments using whole blood. To facilitate platelet aggregation, the devices were coated with fibrillar collagen and tissue factor. Blood was perfused through the microfluidic device for 9 min at a physiologically relevant venous shear rate of 600 s-1. Using fluorescent microscopy, we observed flow transitions near the channel intersections and at the areas of blood flow obstruction, which promoted larger thrombus formation. This study of integrating model predictions with experimental design, aids in defining the dynamics of blood flow in microvasculature and in development of novel biomedical devices.

  14. Correction.

    PubMed

    2016-02-01

    In the article by Guessous et al (Guessous I, Pruijm M, Ponte B, Ackermann D, Ehret G, Ansermot N, Vuistiner P, Staessen J, Gu Y, Paccaud F, Mohaupt M, Vogt B, Pechère-Bertschi A, Martin PY, Burnier M, Eap CB, Bochud M. Associations of ambulatory blood pressure with urinary caffeine and caffeine metabolite excretions. Hypertension. 2015;65:691–696. doi: 10.1161/HYPERTENSIONAHA.114.04512), which published online ahead of print December 8, 2014, and appeared in the March 2015 issue of the journal, a correction was needed.One of the author surnames was misspelled. Antoinette Pechère-Berstchi has been corrected to read Antoinette Pechère-Bertschi.The authors apologize for this error.

  15. Rat muscle blood flows during high-speed locomotion

    SciTech Connect

    Armstrong, R.B.; Laughlin, M.H.

    1985-10-01

    We previously studied blood flow distribution within and among rat muscles as a function of speed from walking (15 m/min) through galloping (75 m/min) on a motor-driven treadmill. The results showed that muscle blood flows continued to increase as a function of speed through 75 m/min. The purpose of the present study was to have rats run up to maximal treadmill speeds to determine if blood flows in the muscles reach a plateau as a function of running speed over the animals normal range of locomotory speeds. Muscle blood flows were measured with radiolabeled microspheres at 1 min of running at 75, 90, and 105 m/min in male Sprague-Dawley rats. The data indicate that even at these relatively high treadmill speeds there was still no clear evidence of a plateau in blood flow in most of the hindlimb muscles. Flows in most muscles continued to increase as a function of speed. These observed patterns of blood flow vs. running speed may have resulted from the rigorous selection of rats that were capable of performing the high-intensity exercise and thus only be representative of a highly specific population of animals. On the other hand, the data could be interpreted to indicate that the cardiovascular potential during exercise is considerably higher in laboratory rats than has normally been assumed and that inadequate blood flow delivery to the muscles does not serve as a major limitation to their locomotory performance.

  16. Development of quantitative Doppler indices for uteroplacental and fetal blood flow during the third trimester.

    PubMed

    Joern, H; Funk, A; Goetz, M; Kuehlwein, H; Klein, A; Fendel, H

    1996-01-01

    The aim of our study was to describe the development of uteroplacental and fetal blood flow during the third trimester. Doppler examination was carried out on 393 uncomplicated pregnancies with uncomplicated term delivery. Using a pulsed color Doppler, we calculated the maximum systolic, mean and maximum end-diastolic velocity after correcting the angle of insonation. Patients under tocolysis or other medication influencing blood flow parameters were excluded from this cross-sectional study. Summarizing the results gained by Doppler ultrasound investigation of the uteroplacental and fetal blood vessels, we created quantiles as quantitative Doppler indices for the maximum systolic, mean (TAMX = time averaged maximum velocity) and maximum end-diastolic velocity. The following conclusions could be drawn: (1) resistance to the blood flow in the maternal portion of the placenta does not change during the third trimester; (2) resistance to the blood flow on the fetal side of the placenta decreases up to week 42 of gestation; (3) cerebral vascular resistance decreases constantly up to gestational week 42; and (4) vascular resistance to the blood flow of the kidney decreases only slightly during the third trimester. This study offers clinically important values for quantitative Doppler flow velocimetry for the first time. We hope that our findings improve the usefulness of Doppler ultrasound as a diagnostic tool in obstetrical management.

  17. Continuous regional blood flow measurement during environmental heating in rats

    SciTech Connect

    Kregel, K.C.; Wall, P.T.; Gisolfi, C.V.

    1986-03-05

    With prolonged exposure to high ambient temperatures, shifting regional blood flows reflect the dominance of cardiovascular over thermoregulatory requirements. Hypotension and decreased cardiac output contribute to the circulatory failure noted in heat stroke. The purpose of this study was to investigate changes in regional blood flows during prolonged exposure (50-70 min) to 45/sup 0/C heat. Sprague-Dawley rats (250-450 g) were implanted with pulsed Doppler flow probes on the superior mesenteric, caudal, and left iliac arteries. Measurements included blood flows in kHz Doppler shift, colonic (T/sub c/) and tail-skin temperatures, and mean arterial blood pressure (MABP). As T/sub c/ rose from 37/sup 0/ to 42/sup 0/C, iliac flow remained relatively constant, caudal flow rose to peak values of 257-600%, and mesenteric flow declined 60-88% relative to baseline. The rise in caudal blood flow occurred within the first 5 min of exposure whereas the decline in mesenteric flow was progressive; MABP rose to peak levels of 180 mm Hg. Heart rate rose to 500-630 bpm. At T/sub c/ above 42/sup 0/C, mesenteric flow increased in several animals (36-75%) and MABP began to fall. The authors hypothesize that the hypotension observed with prolonged heat exposure in the rat is in part attributed to the inability of the animal to sustain splanchnic vasoconstriction.

  18. The initiation of blood flow and flow induced events in early vascular development.

    PubMed

    Jones, Elizabeth A V

    2011-12-01

    Within a day of gastrulation, the embryonic heart begins to beat and creates blood flow in the developing cardiovascular system. The onset of blood flow completely changes the environment in which the cardiovascular system is forming. Flow provides physiological feedback such that the developing network adapts to cue provided by the flow. Targeted inactivation of genes that alter early blood fluid dynamics induce secondary defects in the heart and vasculature and therefore proper blood flow is known to be essential for vascular development. Though hemodynamics, or blood fluid dynamics, are known to activate signaling pathways in the mature cardiovascular system in pathologies ranging from artherosclerosis to angiogenesis, the role in development has not been as intensively studied. The question arises how blood vessels in the embryos, which initially lack cells types such as smooth muscle cells, differ in their response to mechanical signals from blood flow as compared to the more mature cardiovascular system. Many genes known to be regulated by hemodynamics in the adult are important for developmental angiogenesis. Therefore the onset of blood flow is of primary importance to vascular development. This review will focus on how blood flow initiates and the effects of the mechanical signals created by blood flow on cardiovascular development.

  19. Noninvasive blood-flow meter using a curved cannula with zero compensation for an axial flow blood pump.

    PubMed

    Kosaka, Ryo; Fukuda, Kyohei; Nishida, Masahiro; Maruyama, Osamu; Yamane, Takashi

    2013-01-01

    In order to monitor the condition of a patient using a left ventricular assist system (LVAS), blood flow should be measured. However, the reliable determination of blood-flow rate has not been established. The purpose of the present study is to develop a noninvasive blood-flow meter using a curved cannula with zero compensation for an axial flow blood pump. The flow meter uses the centrifugal force generated by the flow rate in the curved cannula. Two strain gauges served as sensors. The first gauges were attached to the curved area to measure static pressure and centrifugal force, and the second gauges were attached to straight area to measure static pressure. The flow rate was determined by the differences in output from the two gauges. The zero compensation was constructed based on the consideration that the flow rate could be estimated during the initial driving condition and the ventricular suction condition without using the flow meter. A mock circulation loop was constructed in order to evaluate the measurement performance of the developed flow meter with zero compensation. As a result, the zero compensation worked effectively for the initial calibration and the zero-drift of the measured flow rate. We confirmed that the developed flow meter using a curved cannula with zero compensation was able to accurately measure the flow rate continuously and noninvasively.

  20. Carreau model for oscillatory blood flow in a tube

    NASA Astrophysics Data System (ADS)

    Tabakova, S.; Nikolova, E.; Radev, St.

    2014-11-01

    The analysis of the blood flow dynamics (hemodynamics) in tubes is crucial when investigating the rupture of different types of aneurysms. The blood viscosity nonlinear dependence on the flow shear rate creates complicated manifestations of the blood pulsations. Although a great number of studies exists, experimental and numerical, this phenomenon is still not very well understood. The aim of the present work is to propose a numerical model of the oscillatory blood flow in a tube on the basis of the Carreau model of the blood viscosity (nonlinear model with respect to the shear rate). The obtained results for the flow velocity and tangential stress on the tube wall are compared well with other authors' results.

  1. Cardiac cryosurgery: regional myocardial blood flow of ventricular cryolesions

    SciTech Connect

    Holman, W.L.; Ikeshita, M.; Lease, J.G.; Smith, P.K.; Ungerleider, R.M.; Cox, J.L.

    1986-11-01

    Cryosurgery is one of three methods introduced recently for the treatment of ventricular tachyarrhythmias. Cryothermic exposure ablates arrhythmogenic ventricular myocardium, and produces a dense fibrous scar with a sharp border to histologically normal tissue. Myocardial blood flow in the region of the cryolesion, however, has not been quantitated. The purpose of this study was to measure regional blood flow within and around the cryolesion in an attempt to identify ischemic zones that might become arrhythmogenic. Left ventricular cryolesions were created in eleven adult dogs. Two weeks later, the animals underwent radioactive tracer microsphere injection for quantitation of regional myocardial blood flow. The fibrotic cryolesion demonstrated a significantly depressed blood flow (0.44 +/- 0.07 ml/min/g) compared to blood flow in control tissue (1.36 +/- 0.12 ml/min/g) (P less than 0.001). A 1-mm strip of myocardium immediately adjacent to the cryolesion, as well as other myocardium surrounding and subjacent to the cryolesion, did not show a significant decrease in regional blood flow. The border between the fibrotic cryolesion and the surrounding myocardium is, therefore, sharply defined not only in terms of histology but also in regards to regional blood flow. These data lend further support to the safe clinical use of cryothermia in the treatment of refractory ventricular tachycardia.

  2. Hyperbaric oxygenation decreases blood flows in normal and septic rats.

    PubMed

    Muhvich, K H; Piano, M R; Myers, R A; Ferguson, J L; Marzella, L

    1992-01-01

    The purpose of the study reported here was to characterize the effects of acute exposure to 100% oxygen at a pressure of 202.6 kPa on hemodynamics and organ blood flow in antibiotic-controlled bacterial sepsis. An abscess containing known numbers and strains of live Escherichia coli and Bacteroides fragilis was established in the peritoneal cavity of rats. Sham-operated rats were used as controls. Cardiac output, fractional blood flow distribution, and blood flow were calculated from data obtained using the radiolabeled microsphere technique. Myocardial and renal blood flows were decreased (20-30%) in both experimental groups during hyperbaric oxygen (HBO) exposure. Renal blood flow remained diminished for at least 20 min after rats were removed from the hyperbaric chamber. Adrenal gland perfusion in abscess-containing rats was reduced both during and after HBO exposure. Skeletal muscle blood flow (quadriceps and gastrocnemius muscles) was reduced by one third in both experimental groups 20 min after acute exposure to HBO. The results of this study indicate that changes in organ perfusion induced by HBO are similar in abscess-containing and normal rats. We conclude that HBO does not alter the regulation of blood flow in antibiotic-controlled sepsis.

  3. Neuropeptide Y reduces ovarian blood flow in the rabbit

    SciTech Connect

    Jorgensen, J.C.; Sejrsen, P. )

    1990-05-01

    Neuropeptide Y-containing nerve fibers have previously been demonstrated to innervate the mammalian ovary. These nerve fibers innervate primarily the vasculature. In this study we have developed a method for in vivo measurement of the ovary blood flow rate by means of the {sup 133}Xe method. Using this technique we measured the ovary blood flow rate and investigated the dose-response relationship between close intraarterial-injected NPY and the ovary blood flow rate. A monoexponential washout curve for {sup 133}Xe was found for the whole washout process, ensuring that the blood flow rate at any time could be calculated from the curve. We found a mean blood flow rate in the nonpregnant rabbit ovary at 43.6 +/- 4.4 ml.(100 g)-1.min-1 (mean +/- SEM). Injection of NPY (20, 200, 2000 pM) in the aorta close to a. ovarica resulted in a dose-dependent decrease in the ovarian blood flow rate with a maximum reduction to 40.7 +/- 6.3% (mean +/- SEM) of the control blood flow rate. These findings make it likely that receptors able to interact with NPY are present in the vasculature of the rabbit ovary.

  4. Nasal mucosal blood flow after intranasal allergen challenge

    SciTech Connect

    Holmberg, K.; Bake, B.; Pipkorn, U.

    1988-03-01

    The nasal mucosal blood flow in patients with allergic rhinitis was determined at nasal allergen challenges with the /sup 133/Xenon washout method. Determinations were made in 12 subjects before and 15 minutes after challenge with diluent and increasing doses of allergen. The time course was followed in eight subjects by means of repeated measurements during 1 hour after a single allergen dose. Finally, the blood flow was measured after unilateral allergen challenge in the contralateral nasal cavity. A dose-dependent decrease in blood flow was found after nasal challenge with increasing doses of allergens, whereas challenge with diluent alone did not induce any changes. The highest allergen dose, which also induced pronounced nasal symptoms, resulted in a decrease in blood flow of 25% (p less than 0.001). The time-course study demonstrated a maximum decrease in blood flow 10 to 20 minutes after challenge and then a gradual return to baseline. Unilateral allergen challenge resulted in a decrease in blood flow in the contralateral, unchallenged nasal cavity, suggesting that part of the allergen-induced changes in blood flow were reflex mediated.

  5. Mechanism of decreased blood flow to atelectatic lung.

    PubMed

    Benumof, J L

    1979-06-01

    This study examined the relative contribution of passive mechanical forces vs. hypoxic pulmonary vasoconstriction as mechanisms of blood flow reduction through atelectatic canine lung. Selective atelectasis of the left lower lobe caused the electromagnetically measured lobar blood flow to decrease 59% from control levels. Reexpansion and ventilation of the left lower lobe with 95% N2-5% CO2, which should terminate any passive mechanical contribution to the decreased test lobe blood flow, did not cause any significant increase in left lower lobe blood flow. Ventilation of the left lower lobe with 100% O2, which should terminate any hypoxic pulmonary vasoconstriction contribution to the decreased test lobe blood flow, increased blood flow back to levels not significantly different from control. Differences between degree of hypoxia, magnitude of transpulmonary pressure, and absolute pulmonary vascular pressure during left lower lobe atelectasis and ventilation with N2 were considered to be minor influences. I conclude that the mechanism of decreased blood flow to an atelectatic lobe is hypoxic pulmonary vasoconstriction.

  6. Effects of non Newtonian spiral blood flow through arterial stenosis

    NASA Astrophysics Data System (ADS)

    Hasan, Md. Mahmudul; Maruf, Mahbub Alam; Ali, Mohammad

    2016-07-01

    The spiral component of blood flow has both beneficial and detrimental effects in human circulatory system. A numerical investigation is carried out to analyze the effect of spiral blood flow through an axisymmetric three dimensional artery having 75% stenosis at the center. Blood is assumed as a Non-Newtonian fluid. Standard k-ω model is used for the simulation with the Reynolds number of 1000. A parabolic velocity profile with spiral flow is used as inlet boundary condition. The peak values of all velocity components are found just after stenosis. But total pressure gradually decreases at downstream. Spiral flow of blood has significant effects on tangential component of velocity. However, the effect is mild for radial and axial velocity components. The peak value of wall shear stress is at the stenosis zone and decreases rapidly in downstream. The effect of spiral flow is significant for turbulent kinetic energy. Detailed investigation and relevant pathological issues are delineated throughout the paper.

  7. Determinants of coronary blood flow in sandbar sharks, Carcharhinus plumbeus.

    PubMed

    Cox, Georgina K; Brill, Richard W; Bonaro, Kaitlin A; Farrell, Anthony P

    2017-02-01

    The coronary circulation first appeared in the chordate lineage in cartilaginous fishes where, as in birds and mammals but unlike most teleost fishes, it supplies arterial blood to the entire myocardium. Despite the pivotal position of elasmobranch fishes in the evolution of the coronary circulation, the determinants of coronary blood flow have never been investigated in this group. Elasmobranch fishes are of special interest because of the morphological arrangement of their cardiomyocytes. Unlike teleosts, the majority of the ventricular myocardium in elasmobranch fishes is distant to the venous blood returning to the heart (i.e., the luminal blood). Also, the majority of the myocardium is in close association with the coronary circulation. To determine the relative contribution of the coronary and luminal blood supplies to cardiovascular function in sandbar sharks, Carcharhinus plumbeus, we measured coronary blood flow while manipulating cardiovascular status using acetylcholine and adrenaline. By exploring inter- and intra-individual variation in cardiovascular variables, we show that coronary blood flow is directly related to heart rate (R (2) = 0.6; P < 0.001), as it is in mammalian hearts. Since coronary blood flow is inversely related to coronary resistance both in vivo and in vitro, we suggest that in elasmobranch fishes, changes in heart rate mediate changes in coronary vascular resistance, which adjust coronary blood flow appropriately.

  8. Connexin 36 mediates blood cell flow in mouse pancreatic islets

    PubMed Central

    Short, Kurt W.; Head, W. Steve

    2013-01-01

    The insulin-secreting β-cells are contained within islets of Langerhans, which are highly vascularized. Blood cell flow rates through islets are glucose-dependent, even though there are no changes in blood cell flow within in the surrounding exocrine pancreas. This suggests a specific mechanism of glucose-regulated blood flow in the islet. Pancreatic islets respond to elevated glucose with synchronous pulses of electrical activity and insulin secretion across all β-cells in the islet. Connexin 36 (Cx36) gap junctions between islet β-cells mediate this synchronization, which is lost in Cx36 knockout mice (Cx36−/−). This leads to glucose intolerance in these mice, despite normal plasma insulin levels and insulin sensitivity. Thus, we sought to investigate whether the glucose-dependent changes in intraislet blood cell flow are also dependent on coordinated pulsatile electrical activity. We visualized and quantified blood cell flow using high-speed in vivo fluorescence imaging of labeled red blood cells and plasma. With the use of a live animal glucose clamp, blood cell flow was measured during either hypoglycemia (∼50 mg/dl) or hyperglycemia (∼300 mg/dl). In contrast to the large glucose-dependent islet blood velocity changes observed in wild-type mice, only minimal differences are observed in both Cx36+/− and Cx36−/− mice. This observation supports a novel model where intraislet blood cell flow is regulated by the coordinated electrical activity in the islet β-cells. Because Cx36 expression and function is reduced in type 2 diabetes, the resulting defect in intraislet blood cell flow regulation may also play a significant role in diabetic pathology. PMID:24326425

  9. Connexin 36 mediates blood cell flow in mouse pancreatic islets.

    PubMed

    Short, Kurt W; Head, W Steve; Piston, David W

    2014-02-01

    The insulin-secreting β-cells are contained within islets of Langerhans, which are highly vascularized. Blood cell flow rates through islets are glucose-dependent, even though there are no changes in blood cell flow within in the surrounding exocrine pancreas. This suggests a specific mechanism of glucose-regulated blood flow in the islet. Pancreatic islets respond to elevated glucose with synchronous pulses of electrical activity and insulin secretion across all β-cells in the islet. Connexin 36 (Cx36) gap junctions between islet β-cells mediate this synchronization, which is lost in Cx36 knockout mice (Cx36(-/-)). This leads to glucose intolerance in these mice, despite normal plasma insulin levels and insulin sensitivity. Thus, we sought to investigate whether the glucose-dependent changes in intraislet blood cell flow are also dependent on coordinated pulsatile electrical activity. We visualized and quantified blood cell flow using high-speed in vivo fluorescence imaging of labeled red blood cells and plasma. With the use of a live animal glucose clamp, blood cell flow was measured during either hypoglycemia (∼50 mg/dl) or hyperglycemia (∼300 mg/dl). In contrast to the large glucose-dependent islet blood velocity changes observed in wild-type mice, only minimal differences are observed in both Cx36(+/-) and Cx36(-/-) mice. This observation supports a novel model where intraislet blood cell flow is regulated by the coordinated electrical activity in the islet β-cells. Because Cx36 expression and function is reduced in type 2 diabetes, the resulting defect in intraislet blood cell flow regulation may also play a significant role in diabetic pathology.

  10. Blood Pump Development Using Rocket Engine Flow Simulation Technology

    NASA Technical Reports Server (NTRS)

    Kwak, Dochan; Kiris, Cetin

    2001-01-01

    This paper reports the progress made towards developing complete blood flow simulation capability in humans, especially in the presence of artificial devices such as valves and ventricular assist devices. Devices modeling poses unique challenges different from computing the blood flow in natural hearts and arteries. There are many elements needed to quantify the flow in these devices such as flow solvers, geometry modeling including flexible walls, moving boundary procedures and physiological characterization of blood. As a first step, computational technology developed for aerospace applications was extended to the analysis and development of a ventricular assist device (VAD), i.e., a blood pump. The blood flow in a VAD is practically incompressible and Newtonian, and thus an incompressible Navier-Stokes solution procedure can be applied. A primitive variable formulation is used in conjunction with the overset grid approach to handle complex moving geometry. The primary purpose of developing the incompressible flow analysis capability was to quantify the flow in advanced turbopump for space propulsion system. The same procedure has been extended to the development of NASA-DeBakey VAD that is based on an axial blood pump. Due to massive computing requirements, high-end computing is necessary for simulating three-dimensional flow in these pumps. Computational, experimental, and clinical results are presented.

  11. Uterine artery blood flow, fetal hypoxia and fetal growth.

    PubMed

    Browne, Vaughn A; Julian, Colleen G; Toledo-Jaldin, Lillian; Cioffi-Ragan, Darleen; Vargas, Enrique; Moore, Lorna G

    2015-03-05

    Evolutionary trade-offs required for bipedalism and brain expansion influence the pregnancy rise in uterine artery (UtA) blood flow and, in turn, reproductive success. We consider the importance of UtA blood flow by reviewing its determinants and presenting data from 191 normotensive (normal, n = 125) or hypertensive (preeclampsia (PE) or gestational hypertension (GH), n = 29) Andean residents of very high (4100-4300 m) or low altitude (400 m, n = 37). Prior studies show that UtA blood flow is reduced in pregnancies with intrauterine growth restriction (IUGR) but whether the IUGR is due to resultant fetal hypoxia is unclear. We found higher UtA blood flow and Doppler indices of fetal hypoxia in normotensive women at high versus low altitude but similar fetal growth. UtA blood flow was markedly lower in early-onset PE versus normal high-altitude women, and their fetuses more hypoxic as indicated by lower fetal heart rate, Doppler indices and greater IUGR. We concluded that, despite greater fetal hypoxia, fetal growth was well defended by higher UtA blood flows in normal Andeans at high altitude but when compounded by lower UtA blood flow in early-onset PE, exaggerated fetal hypoxia caused the fetus to respond by decreasing cardiac output and redistributing blood flow to help maintain brain development at the expense of growth elsewhere. We speculate that UtA blood flow is not only an important supply line but also a trigger for stimulating the metabolic and other processes regulating feto-placental metabolism and growth. Studies using the natural laboratory of high altitude are valuable for identifying the physiological and genetic mechanisms involved in human reproductive success. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  12. Uterine artery blood flow, fetal hypoxia and fetal growth

    PubMed Central

    Browne, Vaughn A.; Julian, Colleen G.; Toledo-Jaldin, Lillian; Cioffi-Ragan, Darleen; Vargas, Enrique; Moore, Lorna G.

    2015-01-01

    Evolutionary trade-offs required for bipedalism and brain expansion influence the pregnancy rise in uterine artery (UtA) blood flow and, in turn, reproductive success. We consider the importance of UtA blood flow by reviewing its determinants and presenting data from 191 normotensive (normal, n = 125) or hypertensive (preeclampsia (PE) or gestational hypertension (GH), n = 29) Andean residents of very high (4100–4300 m) or low altitude (400 m, n = 37). Prior studies show that UtA blood flow is reduced in pregnancies with intrauterine growth restriction (IUGR) but whether the IUGR is due to resultant fetal hypoxia is unclear. We found higher UtA blood flow and Doppler indices of fetal hypoxia in normotensive women at high versus low altitude but similar fetal growth. UtA blood flow was markedly lower in early-onset PE versus normal high-altitude women, and their fetuses more hypoxic as indicated by lower fetal heart rate, Doppler indices and greater IUGR. We concluded that, despite greater fetal hypoxia, fetal growth was well defended by higher UtA blood flows in normal Andeans at high altitude but when compounded by lower UtA blood flow in early-onset PE, exaggerated fetal hypoxia caused the fetus to respond by decreasing cardiac output and redistributing blood flow to help maintain brain development at the expense of growth elsewhere. We speculate that UtA blood flow is not only an important supply line but also a trigger for stimulating the metabolic and other processes regulating feto-placental metabolism and growth. Studies using the natural laboratory of high altitude are valuable for identifying the physiological and genetic mechanisms involved in human reproductive success. PMID:25602072

  13. Modified Beer-Lambert law for blood flow

    NASA Astrophysics Data System (ADS)

    Baker, Wesley B.; Parthasarathy, Ashwin B.; Busch, David R.; Mesquita, Rickson C.; Greenberg, Joel H.; Yodh, A. G.

    2015-03-01

    The modified Beer-Lambert law is among the most widely used approaches for analysis of near-infrared spectroscopy (NIRS) reflectance signals for measurements of tissue blood volume and oxygenation. Briefly, the modified Beer-Lambert paradigm is a scheme to derive changes in tissue optical properties based on continuous-wave (CW) diffuse optical intensity measurements. In its simplest form, the scheme relates differential changes in light transmission (in any geometry) to differential changes in tissue absorption. Here we extend this paradigm to the measurement of tissue blood flow by diffuse correlation spectroscopy (DCS). In the new approach, differential changes of the intensity temporal auto-correlation function at a single delay-time are related to differential changes in blood flow. The key theoretical results for measurement of blood flow changes in any tissue geometry are derived, and we demonstrate the new method to monitor cerebral blood flow in a pig under conditions wherein the semi-infinite geometry approximation is fairly good. Specifically, the drug dinitrophenol was injected in the pig to induce a gradual 200% increase in cerebral blood flow, as measured with MRI velocity flow mapping and by DCS. The modified Beer-Lambert law for flow accurately recovered these flow changes using only a single delay-time in the intensity auto-correlation function curve. The scheme offers increased DCS measurement speed of blood flow. Further, the same techniques using the modified Beer-Lambert law to filter out superficial tissue effects in NIRS measurements of deep tissues can be applied to the DCS modified Beer-Lambert law for blood flow monitoring of deep tissues.

  14. Spontaneous oscillations of capillary blood flow in artificial microvascular networks.

    PubMed

    Forouzan, Omid; Yang, Xiaoxi; Sosa, Jose M; Burns, Jennie M; Shevkoplyas, Sergey S

    2012-09-01

    Previous computational studies have suggested that the capillary blood flow oscillations frequently observed in vivo can originate spontaneously from the non-linear rheological properties of blood, without any regulatory input. Testing this hypothesis definitively in experiments involving real microvasculature has been difficult because in vivo the blood flow in capillaries is always actively controlled by the host. The objective of this study was to test the hypothesis experimentally and to investigate the relative contribution of different blood cells to the capillary blood flow dynamics under static boundary conditions and in complete isolation from the active regulatory mechanisms mediated by the blood vessels in vivo. To accomplish this objective, we passed whole blood and re-constituted blood samples (purified red blood cells suspended in buffer or in autologous plasma) through an artificial microvascular network (AMVN) comprising completely inert, microfabricated vessels with the architecture inspired by the real microvasculature. We found that the flow of blood in capillaries of the AMVN indeed oscillates with characteristic frequencies in the range of 0-0.6 Hz, which is in a very good agreement with previous computational studies and in vivo observations. We also found that the traffic of leukocytes through the network (typically neglected in computational modeling) plays an important role in generating the oscillations. This study represents the key piece of experimental evidence in support of the hypothesis that spontaneous, self-sustained oscillations of capillary blood flow can be generated solely by the non-linear rheological properties of blood flowing through microvascular networks, and provides an insight into the mechanism of this fundamentally important microcirculatory phenomenon. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. [Pre- and postoperative ocular blood flow in transconjunctival orbital surgery].

    PubMed

    Grusha, Ia O; Kiseleva, T N; Danilov, S S; Markosian, A G

    2014-01-01

    to evaluate the pre- and postoperative ocular blood flow in patients with post-traumatic orbital deformities who underwent transconjunctival orbital reconstruction. A total of 40 patients with post-traumatic deformities of the inferior and medial orbital walls were examined before and after transconjunctival "Alloplant" implantation to the orbit. Before the surgery, blood flow deficiency in a. ophthalmica and elevation in peripheral vascular resistance were found in all patients. Postoperatively, orbital hemodynamic parameters were restored and remained stable over the whole follow-up period. Post-traumatic disturbances of regional blood flow are revealed and postoperative changes of the relevant parameters are assessed.

  16. Current Imaging Modalities for assessing Ocular Blood Flow in Glaucoma.

    PubMed

    Mohindroo, Chirayu; Ichhpujani, Parul; Kumar, Suresh

    2016-01-01

    Glaucoma may be caused by an interplay of elevated intraocular pressure (IOP), vascular, genetic, anatomical, brain, and immune factors. The direct assessment of ocular hemodynam-ics offers promise for glaucoma detection, differentiation, and possibly new treatment modalities. All the methods currently in use to measure ocular blood flow have inherent limitations and measure different aspects of ocular blood flow. This review article attempts to provide detailed information on ocular perfu-sion pressure as well as an overview of the newly developed imaging technologies used to investigate ocular blood flow in glaucoma patients.

  17. A Porous Media Model for Blood Flow within Reticulated Foam

    PubMed Central

    Ortega, J.M.

    2013-01-01

    A porous media model is developed for non-Newtonian blood flow through reticulated foam at Reynolds numbers ranging from 10−8 to 10. This empirical model effectively divides the pressure gradient versus flow speed curve into three regimes, in which either the non-Newtonian viscous forces, the Newtonian viscous forces, or the inertial fluid forces are most prevalent. When compared to simulation data of blood flow through two reticulated foam geometries, the model adequately captures the pressure gradient within all three regimes, especially that within the Newtonian regime where blood transitions from a power-law to a constant viscosity fluid. PMID:24031095

  18. Shock compression using flux-corrected transport in 2-D axisymmetric, nonsteady supersonic flow computations

    NASA Astrophysics Data System (ADS)

    Khalil, M. B.; Plett, E. G.; Gladstone, D. H.

    1987-01-01

    The time and space splitting procedure of finite difference computations of supersonic, nonsteady, compressible flows was altered to implement the flux-corrected transport technique into the procedure. Computations of flows from the open end of a shock tube and from the breech nozzle of a recoilless rifle were carried out using flux-correction in the numerical procedure, and the results were compared with those obtained in computations performed without flux-correction. Flux-corrected computation results depicted the details and features of the flow characteristics in both test cases. In contrast, without flux-correction, only smeared solutions were obtained.

  19. Regulation of Exercise Blood Flow: Role of Free Radicals

    PubMed Central

    Trinity, Joel D.; Broxterman, Ryan M.; Richardson, Russell S.

    2016-01-01

    During exercise, oxygen and nutrient rich blood must be delivered to the active skeletal muscle, heart, skin, and brain through the complex and highly regulated integration of central and peripheral hemodynamic factors. Indeed, even minor alterations in blood flow to these organs have profound consequences on exercise capacity by modifying the development of fatigue. Therefore, the fine-tuning of blood flow is critical for optimal physical performance. At the level of the peripheral circulation, blood flow is regulated by a balance between the mechanisms responsible for vasodilation and vasoconstriction. Once thought of as toxic by-products of in vivo chemistry, free radicals are now recognized as important signaling molecules that exert potent vasoactive responses that are dependent upon the underlying balance between oxidation-reduction reactions or redox balance. Under normal healthy conditions with low levels of oxidative stress, free radicals promote vasodilation, which is attenuated with exogenous antioxidant administration. Conversely, with advancing age and disease where background oxidative stress is elevated, an exercise-induced increase in free radicals can further shift the redox balance to a pro-oxidant state, impairing vasodilation and attenuating blood flow. Under these conditions, exogenous antioxidants improve vasodilatory capacity and augment blood flow by restoring an “optimal” redox balance. Interestingly, while the active skeletal muscle, heart, skin, and brain all have unique functions during exercise, the mechanisms by which free radicals contribute to the regulation of blood flow is remarkably preserved across each of these varied target organs. PMID:26876648

  20. Capillary pericytes regulate cerebral blood flow in health and disease

    PubMed Central

    Sutherland, Brad A.; O’Farrell, Fergus M.; Buchan, Alastair M.; Lauritzen, Martin; Attwell, David

    2014-01-01

    Brain blood flow increases, evoked by neuronal activity, power neural computation and are the basis of BOLD functional imaging. It is controversial whether blood flow is controlled solely by arteriole smooth muscle, or also by capillary pericytes. We demonstrate that neuronal activity and the neurotransmitter glutamate evoke the release of messengers that dilate capillaries by actively relaxing pericytes. Dilation is mediated by prostaglandin E2, but requires nitric oxide release to suppress vasoconstricting 20-HETE synthesis. In vivo, when sensory input increases blood flow, capillaries dilate before arterioles and are estimated to produce 84% of the blood flow increase. In pathology, ischaemia evokes capillary constriction by pericytes. We show that this is followed by pericyte death in rigor, which may irreversibly constrict capillaries and damage the blood-brain barrier. Thus, pericytes are major regulators of cerebral blood flow and initiators of functional imaging signals. Prevention of pericyte constriction and death may reduce the long-lasting blood flow decrease which damages neurons after stroke. PMID:24670647

  1. Regulation of exercise blood flow: Role of free radicals.

    PubMed

    Trinity, Joel D; Broxterman, Ryan M; Richardson, Russell S

    2016-09-01

    During exercise, oxygen and nutrient rich blood must be delivered to the active skeletal muscle, heart, skin, and brain through the complex and highly regulated integration of central and peripheral hemodynamic factors. Indeed, even minor alterations in blood flow to these organs have profound consequences on exercise capacity by modifying the development of fatigue. Therefore, the fine-tuning of blood flow is critical for optimal physical performance. At the level of the peripheral circulation, blood flow is regulated by a balance between the mechanisms responsible for vasodilation and vasoconstriction. Once thought of as toxic by-products of in vivo chemistry, free radicals are now recognized as important signaling molecules that exert potent vasoactive responses that are dependent upon the underlying balance between oxidation-reduction reactions or redox balance. Under normal healthy conditions with low levels of oxidative stress, free radicals promote vasodilation, which is attenuated with exogenous antioxidant administration. Conversely, with advancing age and disease where background oxidative stress is elevated, an exercise-induced increase in free radicals can further shift the redox balance to a pro-oxidant state, impairing vasodilation and attenuating blood flow. Under these conditions, exogenous antioxidants improve vasodilatory capacity and augment blood flow by restoring an "optimal" redox balance. Interestingly, while the active skeletal muscle, heart, skin, and brain all have unique functions during exercise, the mechanisms by which free radicals contribute to the regulation of blood flow is remarkably preserved across each of these varied target organs.

  2. Cardiovascular response to bouts of exercise with blood flow restriction

    PubMed Central

    Bunevicius, Kestutis; Sujeta, Arturas; Poderiene, Kristina; Zachariene, Birute; Silinskas, Viktoras; Minkevicius, Rimantas; Poderys, Jonas

    2016-01-01

    [Purpose] Occlusion training with low-intensity resistance exercises and blood flow restriction increases muscle cross-sectional area and strength. This form of training is used in rehabilitation; therefore, the aim of this study was to examine the effect of one occlusion training session on the cardiovascular response to bouts of exercise. [Subjects and Methods] Two groups took part: a control group without blood flow restriction and an experimental group with blood flow restriction. A single training session was used with the exercise intensity set at 40% of the one repetition maximum. Maximum voluntary contraction, arterial blood pressure, and electrocardiogram measurements were performed. [Results] Heart rate was slightly higher in the control group. The performed training had no effect on diastolic blood pressure in either group, however, a tendency for a small systolic blood pressure increase was observed during the session in the experimental group. JT interval changes did not reveal significant differences between groups. There were no significant changes in ST-segment depression during the exercise or at rest. A lower tendency for JT/RR increases was observed during the repeated exercise tasks with partial blood flow restriction. [Conclusion] Low intensity exercises carried out with a partial blood flow restriction do not result in significant overload of cardiac function. PMID:28174436

  3. Numerical Simulation of Cellular Blood Flow through a Rigid Artery

    NASA Astrophysics Data System (ADS)

    Reasor, Daniel; Clausen, Jonathan; Aidun, Cyrus

    2009-11-01

    In blood flow, red blood cells (RBCs), the most numerous constituent of blood, influence continuum-level measures by altering the suspension at microscopic scales. The presence of RBCs alters the stress and diffusion individual cells experience, which can influence cardiovascular diseases by affecting other cells present in blood like platelets and white blood cells. Simulations of blood at a cellular level provide a tool that allows exploration of both the rheology and the stress and diffusion of individual suspended cells. In this work, a hybrid lattice-Boltzmann/finite element method is used to simulate suspension flows characteristic of blood with deformable RBCs at realistic hematocrit values. We have shown the ability to simulate thousands deformable suspensions capturing non-Newtonian flow characteristics such as shear thinning, and the results agree well with experimental observations. Simulations through rigid arteries have been deformed with as many as 2500 RBCs. This work outlines results obtained for pressure-gradient driven blood flow through a rigid artery with 20%, 30%, 40%, and 50% hematocrit values. Results include the effect these deformable RBCs have on mean velocity, flow rate, radial variation of RBC concentration, and the effective viscosity for simulations at moderate to low cell capillary numbers, Ca <=0.08.

  4. Cardiovascular response to bouts of exercise with blood flow restriction.

    PubMed

    Bunevicius, Kestutis; Sujeta, Arturas; Poderiene, Kristina; Zachariene, Birute; Silinskas, Viktoras; Minkevicius, Rimantas; Poderys, Jonas

    2016-12-01

    [Purpose] Occlusion training with low-intensity resistance exercises and blood flow restriction increases muscle cross-sectional area and strength. This form of training is used in rehabilitation; therefore, the aim of this study was to examine the effect of one occlusion training session on the cardiovascular response to bouts of exercise. [Subjects and Methods] Two groups took part: a control group without blood flow restriction and an experimental group with blood flow restriction. A single training session was used with the exercise intensity set at 40% of the one repetition maximum. Maximum voluntary contraction, arterial blood pressure, and electrocardiogram measurements were performed. [Results] Heart rate was slightly higher in the control group. The performed training had no effect on diastolic blood pressure in either group, however, a tendency for a small systolic blood pressure increase was observed during the session in the experimental group. JT interval changes did not reveal significant differences between groups. There were no significant changes in ST-segment depression during the exercise or at rest. A lower tendency for JT/RR increases was observed during the repeated exercise tasks with partial blood flow restriction. [Conclusion] Low intensity exercises carried out with a partial blood flow restriction do not result in significant overload of cardiac function.

  5. Effect of plasma exchange on blood viscosity and cerebral blood flow.

    PubMed Central

    Brown, M M; Marshall, J

    1982-01-01

    The effects of plasma exchange using a low viscosity plasma substitute on blood viscosity and cerebral blood flow were investigated in eight subjects with normal cerebral vasculature. Plasma exchange resulted in significant reductions in plasma viscosity, whole blood viscosity, globulin and fibrinogen concentration without affecting packed cell volume. The reduction in whole blood viscosity was more pronounced at low shear rates suggesting an additional effect on red cell aggregation. Despite the fall in viscosity there was no significant change in cerebral blood flow. The results support the metabolic theory of autoregulation. Although changes in blood viscosity appear not to alter the level of cerebral blood flow under these circumstances, plasma exchange could still be of benefit in the management of acute cerebrovascular disease. PMID:6805689

  6. Relationship between beta-adrenoceptors and coronary blood flow heterogeneity

    SciTech Connect

    Upsher, M.E.; Weiss, H.R.

    1989-01-01

    The purpose of this study was to investigate the hypothesis that the heterogeneous distribution of ..beta.. adrenoceptors contributes to the control of flow heterogeneity in the canine myocardium. ..beta.. adrenoceptor density and affinity were measured simultaneously with coronary blood flow in multiple sections of the left ventricle of 14 anesthetized open chest dogs. Radioactive microspheres were used for the measurement of blood flow. Receptor density (Bmax) and dissociation constant (Kd) were measured using (/sup 125/I)- iodopindolol. The average control myocardial blood flow (MBF) was 86/+-/15 ml/min/100 g. Isoproterenol increased MBF by 82%, whereas propranolol reduced MBF by 13%. The mean value of Bmax was unaltered by either treatment. Under control conditions, a significant positive positive correlation was observed between Bmax and blood flow. In the isoproterenol treatment group, this correlation was enhanced. Beta adrenoceptor blockade led to a negative correlation. Kd showed no overall correlation with blood flow. Kd but not Bmax was significantly higher in the EPI than in the ENDO and in the base compared to the apex. There appears to be a direct linear relationship between the distribution of beta adrenoceptors and MBF distribution which is enhanced under conditions of high beta adrenergic activity. There is a correlation between beta adrenoceptor activity and blood flow distribution in the canine myocardium.

  7. Coronary blood flow in the anesthetized American alligator (Alligator mississippiensis).

    PubMed

    Jensen, Bjarke; Elfwing, Magnus; Elsey, Ruth M; Wang, Tobias; Crossley, Dane A

    2016-01-01

    Coronary circulation of the heart evolved early within ectothermic vertebrates and became of vital importance to cardiac performance in some teleost fish, mammals and birds. In contrast, the role and function of the coronary circulation in ectothermic reptiles remains largely unknown. Here, we investigated the systemic and coronary arterial responses of five anesthetized juvenile American alligators (Alligator mississippiensis) to hypoxia, acetylcholine, adenosine, sodium nitroprusside, isoproterenol, and phenylephrine. We recorded electrocardiograms, monitored systemic blood pressure, blood flows in both aortae, and blood flow in a major coronary artery supplying most of the right ventricle. Coronary arterial blood flow was generally forward, but there was a brief retrograde flow during a ventricular contraction. Blood pressure was significantly changed in all conditions. Acetylcholine decreased coronary forward flow, but this response was confounded by the concomitant lowered work of the ventricles due to decreased heart rate and blood pressure. Coronary forward flow was poorly correlated with heart rate and mean arterial pressure across treatments. Overall changes in coronary forward flow, significant and not significant, were generally in the same direction as mean arterial pressure and ventricular power, approximated as the product of systemic cardiac output and mean arterial pressure.

  8. Regional blood flow during continuous low-dose endotoxin infusion

    SciTech Connect

    Fish, R.E.; Lang, C.H.; Spitzer, J.A.

    1986-01-01

    Escherichia coli endotoxin (ET) was administered to adult rats by continuous IV infusion from a subcutaneously implanted osmotic pump (Alzet). Cardiac output and regional blood flow were determined by the radiolabeled microsphere method after 6 and 30 hr of ET or saline infusion. Cardiac output (CO) of ET rats was not different from time-matched controls, whereas arterial pressure was 13% lower after 30 hr of infusion. After both 6 and 30 hr of ET, pancreatic blood flow and percentage of cardiac output were lower than in controls. Estimated portal venous flow was decreased at each time point, and an increased hepatic arterial flow (significant after 30 hr) resulted in an unchanged total hepatic blood flow. Blood flow to most other tissues, including epididymal fat, muscle, kidneys, adrenals, and gastrointestinal tract, was similar between treatments. Maintenance of blood flow to metabolically important tissues indicates that the previously reported alterations in in vitro cellular metabolism are not due to tissue hypoperfusion. Earlier observations of in vitro myocardial dysfunction, coexistent with the significant impairment in pancreatic flow, raise the possibility that release of a myocardial depressant factor occurs not only in profound shock but also under less severe conditions of sepsis and endotoxemia.

  9. Pulse propagation by a capacitive mechanism drives embryonic blood flow.

    PubMed

    Anton, Halina; Harlepp, Sebastien; Ramspacher, Caroline; Wu, Dave; Monduc, Fabien; Bhat, Sandeep; Liebling, Michael; Paoletti, Camille; Charvin, Gilles; Freund, Jonathan B; Vermot, Julien

    2013-11-01

    Pulsatile flow is a universal feature of the blood circulatory system in vertebrates and can lead to diseases when abnormal. In the embryo, blood flow forces stimulate vessel remodeling and stem cell proliferation. At these early stages, when vessels lack muscle cells, the heart is valveless and the Reynolds number (Re) is low, few details are available regarding the mechanisms controlling pulses propagation in the developing vascular network. Making use of the recent advances in optical-tweezing flow probing approaches, fast imaging and elastic-network viscous flow modeling, we investigated the blood-flow mechanics in the zebrafish main artery and show how it modifies the heart pumping input to the network. The movement of blood cells in the embryonic artery suggests that elasticity of the network is an essential factor mediating the flow. Based on these observations, we propose a model for embryonic blood flow where arteries act like a capacitor in a way that reduces heart effort. These results demonstrate that biomechanics is key in controlling early flow propagation and argue that intravascular elasticity has a role in determining embryonic vascular function.

  10. Large-Eddy simulation of pulsatile blood flow.

    PubMed

    Paul, Manosh C; Mamun Molla, Md; Roditi, Giles

    2009-01-01

    Large-Eddy simulation (LES) is performed to study pulsatile blood flow through a 3D model of arterial stenosis. The model is chosen as a simple channel with a biological type stenosis formed on the top wall. A sinusoidal non-additive type pulsation is assumed at the inlet of the model to generate time dependent oscillating flow in the channel and the Reynolds number of 1200, based on the channel height and the bulk velocity, is chosen in the simulations. We investigate in detail the transition-to-turbulent phenomena of the non-additive pulsatile blood flow downstream of the stenosis. Results show that the high level of flow recirculation associated with complex patterns of transient blood flow have a significant contribution to the generation of the turbulent fluctuations found in the post-stenosis region. The importance of using LES in modelling pulsatile blood flow is also assessed in the paper through the prediction of its sub-grid scale contributions. In addition, some important results of the flow physics are achieved from the simulations, these are presented in the paper in terms of blood flow velocity, pressure distribution, vortices, shear stress, turbulent fluctuations and energy spectra, along with their importance to the relevant medical pathophysiology.

  11. Reduced myocardial blood flow in acute and chronic digitalization.

    PubMed

    Steiness, E; Bille-Brahe, N E; Hansen, J F; Lomholt, N; Ring-Larsen, H

    1978-07-01

    The myocardial blood flow was measured by the 133Xenon disappearance curve from the left ventricular wall following an injection of 133Xenon in the left coronary artery in 8 dogs without digoxin pretreatment and in 8 chronically digitalized dogs. The myocardial blood flow was significantly less (30%) in the digitalized dogs than in the dogs without pretreatment. In the digitalized dogs as well as in those without pretreatment an intravenous injection of digoxin resulted in a further significant decrease of the myocardial blood flow of about 20% and a significant increase of the coronary vascular resistance. The reduced myocardial blood flow both during acute and chronic digitalization is beleived to be of clinical importance.

  12. Current Imaging Modalities for assessing Ocular Blood Flow in Glaucoma

    PubMed Central

    Mohindroo, Chirayu; Kumar, Suresh

    2016-01-01

    Glaucoma may be caused by an interplay of elevated intraocular pressure (IOP), vascular, genetic, anatomical, brain, and immune factors. The direct assessment of ocular hemodynam-ics offers promise for glaucoma detection, differentiation, and possibly new treatment modalities. All the methods currently in use to measure ocular blood flow have inherent limitations and measure different aspects of ocular blood flow. This review article attempts to provide detailed information on ocular perfu-sion pressure as well as an overview of the newly developed imaging technologies used to investigate ocular blood flow in glaucoma patients. How to cite this article Mohindroo C, Ichhpujani P, Kumar S. Current Imaging Modalities for assessing Ocular Blood Flow in Glaucoma. J Curr Glaucoma Pract 2016;10(3):104-112. PMID:27857490

  13. Measurement of limb blood flow by electrical impedance plethysmography.

    PubMed Central

    Porter, J. M.; Swain, I. D.; Shakespeare, P. G.

    1985-01-01

    Limb blood flow has been measured in 72 individuals by the noninvasive technique of electrical impedance plethysmography. Venous occlusion was not used. Blood flow was measured in 230 limbs in which 195 limbs were either in normal individuals or the clinically normal limbs of patients (normal limbs). Thirty-five limbs were clinically abnormal. Measurements on limbs with clinical abnormalities showed that blood flow values often fell within the limits of the normal range. However 3 cases of known vascular injury and 2 cases studied after hand surgery under tourniquet showed lowered blood flow values by comparison with the unaffected limb. A simultaneously recorded range of cardiac output and stroke volume measurements gave similar results to those obtained in a previous, unconnected study. Images Fig. 1 PMID:4004047

  14. Study Links Stuttering to Less Blood Flow in Brain

    MedlinePlus

    ... medlineplus.gov/news/fullstory_162922.html Study Links Stuttering to Less Blood Flow in Brain The more ... to speech may put people at risk for stuttering, a small study suggests. There are also signs ...

  15. Astrocyte Regulation of Blood Flow in the Brain

    PubMed Central

    MacVicar, Brian A.; Newman, Eric A.

    2015-01-01

    Neuronal activity results in increased blood flow in the brain, a response named functional hyperemia. Astrocytes play an important role in mediating this response. Neurotransmitters released from active neurons evoke Ca2+ increases in astrocytes, leading to the release of vasoactive metabolites of arachidonic acid from astrocyte endfeet onto blood vessels. Synthesis of prostaglandin E2 (PGE2) and epoxyeicosatrienoic acids (EETs) dilate blood vessels, whereas 20-hydroxyeicosatetraenoic acid (20-HETE) constricts vessels. The release of K+ from astrocyte endfeet may also contribute to vasodilation. Oxygen modulates astrocyte regulation of blood flow. Under normoxic conditions, astrocytic Ca2+ signaling results in vasodilation, whereas under hyperoxic conditions, vasoconstriction is favored. Astrocytes also contribute to the generation of vascular tone. Tonic release of both 20-HETE and ATP from astrocytes constricts vascular smooth muscle cells, generating vessel tone. Under pathological conditions, including Alzheimer’s disease and diabetic retinopathy, disruption of normal astrocyte physiology can compromise the regulation of blood flow. PMID:25818565

  16. Probabilistic 4D blood flow tracking and uncertainty estimation.

    PubMed

    Friman, Ola; Hennemuth, Anja; Harloff, Andreas; Bock, Jelena; Markl, Michael; Peitgen, Heinz-Otto

    2011-10-01

    Phase-Contrast (PC) MRI utilizes signal phase shifts resulting from moving spins to measure tissue motion and blood flow. Time-resolved 4D vector fields representing the motion or flow can be derived from the acquired PC MRI images. In cardiovascular PC MRI applications, visualization techniques such as vector glyphs, streamlines, and particle traces are commonly employed for depicting the blood flow. Whereas these techniques indeed provide useful diagnostic information, uncertainty due to noise in the PC-MRI measurements is ignored, which may lend the results a false sense of precision. In this work, the statistical properties of PC MRI flow measurements are investigated and a probabilistic flow tracking method based on sequential Monte Carlo sampling is devised to calculate flow uncertainty maps. The theoretical derivations are validated using simulated data and a number of real PC MRI data sets of the aorta and carotid arteries are used to demonstrate the flow uncertainty mapping technique.

  17. Assessment of coronary blood flow in the cardiac catheterization laboratory.

    PubMed

    Blair, John E A; Ricciardi, Mark J

    2014-06-01

    Coronary blood flow is tightly autoregulated but is subject to epicardial and microvascular obstruction, primarily owing to coronary atherosclerosis. Because coronary flow limitation underlies ischemic heart disease, an understanding of coronary physiology is paramount. Measurement of coronary blood flow, once relegated to the research laboratory is now easily performed in the cardiac catheterization laboratory. In particular, the measurement of fractional flow reserve has been extensively studied and is an important adjunct to clinical decision making. Measurement of coronary flow informs clinicians of prognosis, guides revascularization therapy, and forms the basis of ongoing research in treatment of complex myocardial disease processes. Newer methods of assessing coronary flow measurements are undergoing validation for clinical use and should further enhance our ability to assess the importance of coronary flow in clinical disease.

  18. Non-Newtonian Flow of Blood in Arterioles: Consequences for Wall Shear Stress Measurements

    PubMed Central

    SRIRAM, Krishna; INTAGLIETTA, Marcos; TARTAKOVSKY, Daniel M.

    2014-01-01

    We model blood in a microvessel as an inhomogeneous non-Newtonian fluid, whose viscosity varies with hematocrit and shear rate in accordance with the Quemada rheological relation. The flow is assumed to consist of two distinct, immiscible and homogeneous fluid layers: an inner region densely packed with red blood cells, and an outer cell-free layer whose thickness depends on discharge hematocrit. We demonstrate that the proposed model provides a realistic description of velocity profiles, tube hematocrit, core hematocrit and apparent viscosities over a wide range of vessel radii and discharge hematocrits. Our analysis reveals the importance of incorporating this complex blood rheology into estimates of wall shear stress in micro-vessels. The latter is accomplished by specifying a correction factor, which accounts for the deviation of blood flow from the Poiseuille law. PMID:24703006

  19. Salt-gland secretion and blood flow in the goose.

    PubMed

    Hanwell, A; Linzell, J L; Peaker, M

    1971-03-01

    1. Salt-gland blood flow in the domestic goose has been measured using a combination of Sapirstein's indicator fractionation technique for organ blood flow and Fegler's thermodilution method for cardiac output.2. Nasal salt secretion was induced by giving 0.5 M-NaCl or 0.154 M-NaCl I.V. or by giving artificial sea water by stomach tube into the proventriculus.3. During secretion, salt-gland blood flow increased from 82.7 +/- 21.9 ml./100 g tissue. min to as high as 2179 ml./100 g. min (mean 1209 +/- 140).4. The rate of secretion in response to salt loading was very variable and was not correlated with the rate of blood flow.5. From the data obtained, it could be calculated that the median values for the percentage extraction of ions from the arterial plasma were Na 15%, K 35%, Cl 21% and water 5.8%.6. Atropine abolished secretion but not the increase in blood flow produced by salt loading.7. Unilateral complete denervation abolished secretion from and the increase in blood flow through the operated but not the control gland.8. Anaesthesia, induced by pentobarbitone sodium, almost completely blocked secretion and the increase in blood flow in the salt-gland in response to salt loading.9. In geese given 0.5 or 0.154 M-NaCl I.V. a positive, significant correlation was found between the total amount of nasal secretion collected over 30 min and the concentrations of Na and Cl in the nasal fluid. However, when the time course of secretion was followed in any one bird, the rate of secretion was inversely related to the concentrations of Na and Cl.10. Harderian gland blood flow was not affected by salt loading.

  20. Enhancement of gastric mucosal blood flow with sulglycotide.

    PubMed

    Guslandi, M; Sorghi, M; Tittobello, A

    1994-01-01

    Twelve patients with dyspepsia whose gastric abnormalities ranged from diffuse reddening of the mucosa to multiple erosions were treated for 4 weeks with oral sulglycotide, a sulphated glycopeptide with known gastroprotective and ulcer-healing properties. Before and after treatment, gastric mucosal blood flow was assessed by means of laser Doppler flowmetry. A significant (P < 0.01) increase in mucosal perfusion was observed after sulglycotide treatment, suggesting that enhancement of mucosal blood flow may contribute to the therapeutic properties of the drug.

  1. Effect of tropicamide on ocular blood flow in the rabbit

    SciTech Connect

    Delgado, D.; Michel, P.; Jaanus, S.D.

    1982-05-01

    Intracardiac injection of 15 microspheres labeled with /sup 85/Sr (strontium) and /sup 141/Ce (cerium) were used to determine ocular blood flow in seven rabbits before and 25 min after bilateral application of tropicamide to the cornea. By using two different isotopes distinguishable under gammaspectrometry, each animal served as its own control. After administration of two drops of 1% tropicamide, no significant difference in blood flow between treated and untreated eyes was observed.

  2. MRI of blood flow of the human retina.

    PubMed

    Peng, Qi; Zhang, Yi; Nateras, Oscar San Emeterio; van Osch, Matthias J P; Duong, Timothy Q

    2011-06-01

    This study reports a high-resolution MRI approach to image basal blood flow and hypercapnia-induced blood-flow changes in the unanesthetized human retina on a 3-T MRI scanner. Pseudocontinuous arterial spin labeling technique with static tissue suppression was implemented to minimize movement artifacts and improve blood-flow sensitivity. Turbo spin-echo acquisition was used to achieve high spatial resolution free of susceptibility artifacts. The size, shape, and position of a custom-made receive radiofrequency coil were optimized for sensitivity in the posterior retina. Synchronized eye blink and respiration to the end of each data readout minimized eye movement and physiological fluctuation. Robust high-contrast blood-flow MRI of the unanesthetized human retina was obtained at 500 × 800 μm(2) in-plane resolution. Blood flow in the posterior retina was 93 ± 31 mL/(100 mL min) (mean ± standard deviation, N = 5). Hypercapnic inhalation (5% CO(2)) increased blood flow by 12 ± 4% relative to air (P < 0.01, N = 5). This study demonstrates the feasibility of blood-flow MRI of the retina of unanesthetized human. Because blood flow is tightly coupled to metabolic function under normal conditions and it is often perturbed in diseases, this approach could provide unique insights into retinal physiology and serve as an objective imaging biomarker for disease staging and testing of novel therapeutic strategies. This approach could open up new avenue of retinal research. Copyright © 2011 Wiley-Liss, Inc.

  3. Non-invasive pulmonary blood flow analysis and blood pressure mapping derived from 4D flow MRI

    NASA Astrophysics Data System (ADS)

    Delles, Michael; Rengier, Fabian; Azad, Yoo-Jin; Bodenstedt, Sebastian; von Tengg-Kobligk, Hendrik; Ley, Sebastian; Unterhinninghofen, Roland; Kauczor, Hans-Ulrich; Dillmann, Rüdiger

    2015-03-01

    In diagnostics and therapy control of cardiovascular diseases, detailed knowledge about the patient-specific behavior of blood flow and pressure can be essential. The only method capable of measuring complete time-resolved three-dimensional vector fields of the blood flow velocities is velocity-encoded magnetic resonance imaging (MRI), often denoted as 4D flow MRI. Furthermore, relative pressure maps can be computed from this data source, as presented by different groups in recent years. Hence, analysis of blood flow and pressure using 4D flow MRI can be a valuable technique in management of cardiovascular diseases. In order to perform these tasks, all necessary steps in the corresponding process chain can be carried out in our in-house developed software framework MEDIFRAME. In this article, we apply MEDIFRAME for a study of hemodynamics in the pulmonary arteries of five healthy volunteers. The study included measuring vector fields of blood flow velocities by phase-contrast MRI and subsequently computing relative blood pressure maps. We visualized blood flow by streamline depictions and computed characteristic values for the left and the right pulmonary artery (LPA and RPA). In all volunteers, we observed a lower amount of blood flow in the LPA compared to the RPA. Furthermore, we visualized blood pressure maps using volume rendering and generated graphs of pressure differences between the LPA, the RPA and the main pulmonary artery. In most volunteers, blood pressure was increased near to the bifurcation and in the proximal LPA, leading to higher average pressure values in the LPA compared to the RPA.

  4. Development of blood flow velocimeter for ocular vessels.

    PubMed

    Levy, Y; Romano, A

    1988-01-01

    Clinical evidence suggests that blood flow in the retinal vessels varies in progressing diabetic retinopathy, coronary arteriole disease, hypertension and some other clinical situations. The changes of the flow in the blood vessels may serve as a monitor of the disease and as a follow up device for treatment success. Despite their importance direct blood flow velocity measurements are not easily obtainable. Recent advances in the development of a laser Doppler anemometry for the determination of in-vivo retinal blood velocity enables to obtain, with a noninvasive technique, information relevant to the flow of blood in the human retina. The described anemometry system is designed to be integrated, self-aligned and to operate with backscattered light. The influence of the important design parameters as well as focusing of the control volume on the retinal arteries is analyzed. Due to multiscattering of light from the blood cells present simultaneously in the control volume, the electronic signal obtained is very difficult to process and sophisticated signal processing routines are still being developed. At present measurements are used to obtain results with blood flowing in glass tubes of an inside diameter of 50 to 2000 microns. Preliminary experimental and theoretical simulations are currently being performed to validate the principle of the proposed data processing technique. Initial measurements have already produced relative high quality (and thus processable) signals, indicating good prospects for a practical ophthalmic system operation.

  5. APPLICATION OF THE THEORY OF INTERACTING CONTINUA TO BLOOD FLOW

    SciTech Connect

    Massoudi, Mehrdad; Kim, Jeongho; Hund, Samuel J.; Antaki, James F.

    2011-01-01

    Micro-scale investigations of the flow and deformation of blood and its formed elements have been studied for many years. Early in vitro investigations in the rotational viscometers or small glass tubes revealed important rheological properties such as the reduced blood apparent viscosity, Fahraeus effect and Fahraeus-Lindqvist effect [1], exhibiting the nonhomogeneous property of blood in microcirculation. We have applied Mixture Theory, also known as Theory of Interacting Continua, to study and model this property of blood [2, 3]. This approach holds great promise for predicting the trafficking of RBCs in micro-scale flows (such as the depletion layer near the wall), and other unique hemorheological phenomena relevant to blood trauma. The blood is assumed to be composed of an RBC component modeled as a nonlinear fluid, suspended in plasma, modeled as a linearly viscous fluid.

  6. Experimental comparison of mammalian and avian blood flow in microchannels

    NASA Astrophysics Data System (ADS)

    Fink, Kathryn; Liepmann, Dorian

    2015-11-01

    The non-Newtonian, shear rate dependent behavior of blood in microchannel fluid dynamics has been studied for nearly a century, with a significant focus on the characteristics of human blood. However, for over 200 years biologists have noted significant differences in red blood cell characteristics across vertebrate species, with particularly drastic differences in cell size and shape between mammals and non-mammalian classes. We present an experimental analysis of flow in long microchannels for several varieties of mammalian and avian blood, across a range of hematocrits, channel diameters, and flow rates. Correlation of shear rate and viscosity is compared to existing constitutive equations for human blood to further quantify the importance of red blood cell characteristics. Ongoing experimental results are made available in an online database for reference or collaboration. K.F. acknowledges funding from the ARCS Foundation and an NSF Graduate Research Fellowship through NSF Grant DGE 1106400.

  7. Hepatic and intestinal blood flow following thermal injury

    SciTech Connect

    Carter, E.A.; Tompkins, R.G.; Burke, J.F.

    1988-07-01

    Because cardiac output decreases after burn injuries, investigators have assumed, based upon dye clearance techniques, that hepatic and intestinal blood flow are also decreased following these injuries. Blood flow to the liver, stomach, small intestine, and kidney was determined by the uptake of 201thallium and 125I-labeled fatty acid (para-125I-phenyl-3-methyl pentanoic acid) in a 20% body surface area scald injury that also included plasma volume replacement resuscitation. Uptake of these radioisotopes was determined 15 minutes, 18 hours, and 72 hours after injury. The uptake of the 201thallium and 125I-labeled fatty acid by the gastrointestinal tissues was not statistically different at any of the time periods after comparison of the injured and control (sham-treated) animals. 201Thallium uptake by the kidney was significantly diminished 15 minutes after the burn injury (P less than 0.01). Based on these blood flow measurement techniques, the data suggest that the 20% body surface area scald injury did not alter blood flow to the liver or gastrointestinal tract within the initial 72 hours after the burn injury even though a decrease in renal blood flow was easily detected. These results suggest that the dysfunction of the gastrointestinal system or hepatic system observed after an acute burn injury is not simply the result of hypovolemic shock, which reduces both renal and mesenteric blood flow. These gastrointestinal and hepatic alterations may be related to a factor or factors other than intestinal ischemia.

  8. Blood flow structure in patients with coronary heart disease

    NASA Astrophysics Data System (ADS)

    Malinova, Lidia I.; Simonenko, Georgy V.; Denisova, Tatyana P.; Tuchin, Valery V.

    2007-05-01

    Blood flow structure was studied by PC integrated video camera with following slide by slide analysis. Volumetric blood flow velocity was supporting on constant level (1 ml/h). Silicone tube of diameter comparable with coronary arteries diameter was used as vessel model. Cell-cell interactions were studied under glucose and anticoagulants influence. Increased adhesiveness of blood cells to tube walls was revealed in patient with coronary heart disease (CHD) compare to practically healthy persons (PHP). In patients with stable angina pectoris of high functional class and patients with AMI shear stress resistant erythrocyte aggregates were predominating in blood flow structure up to microclots formation. Clotting and erythrocytes aggregation increase as response to glucose solution injection, sharply defined in patients with CHD. Heparin injection (10 000 ED) increased linear blood flow velocity both in patients with CHD and PHP. After compare our results with other author's data we can consider that method used in our study is sensible enough to investigate blood flow structure violations in patients with CHD and PHP. Several differences of cell-cell interaction in flow under glucose and anticoagulant influence were found out in patients with CHD and PHP.

  9. Stochastic modeling for magnetic resonance quantification of myocardial blood flow

    NASA Astrophysics Data System (ADS)

    Seethamraju, Ravi T.; Muehling, Olaf; Panse, Prasad M.; Wilke, Norbert M.; Jerosch-Herold, Michael

    2000-10-01

    Quantification of myocardial blood flow is useful for determining the functional severity of coronary artery lesions. With advances in MR imaging it has become possible to assess myocardial perfusion and blood flow in a non-invasive manner by rapid serial imaging following injection of contrast agent. To date most approaches reported in the literature relied mostly on deriving relative indices of myocardial perfusion directly from the measured signal intensity curves. The central volume principle on the other hand states that it is possible to derive absolute myocardial blood flow from the tissue impulse response. Because of the sensitivity involved in deconvolution due to noise in measured data, conventional methods are sub-optimal, hence, we propose to use stochastic time series modeling techniques like ARMA to obtain a robust impulse response estimate. It is shown that these methods when applied for the optical estimation of the transfer function give accurate estimates of myocardial blood flow. The most significant advantage of this approach, compared with compartmental tracer kinetic models, is the use of a minimum set of prior assumptions on data. The bottleneck in assessing myocardial blood flow, does not lie in the MRI acquisition, but rather in the effort or time for post processing. It is anticipated that the very limited requirements for user input and interaction will be of significant advantage for the clinical application of these methods. The proposed methods are validated by comparison with mean blood flow measurements obtained from radio-isotope labeled microspheres.

  10. Establishing the diffuse correlation spectroscopy signal relationship with blood flow.

    PubMed

    Boas, David A; Sakadžić, Sava; Selb, Juliette; Farzam, Parisa; Franceschini, Maria Angela; Carp, Stefan A

    2016-07-01

    Diffuse correlation spectroscopy (DCS) measurements of blood flow rely on the sensitivity of the temporal autocorrelation function of diffusively scattered light to red blood cell (RBC) mean square displacement (MSD). For RBCs flowing with convective velocity [Formula: see text], the autocorrelation is expected to decay exponentially with [Formula: see text], where [Formula: see text] is the delay time. RBCs also experience shear-induced diffusion with a diffusion coefficient [Formula: see text] and an MSD of [Formula: see text]. Surprisingly, experimental data primarily reflect diffusive behavior. To provide quantitative estimates of the relative contributions of convective and diffusive movements, we performed Monte Carlo simulations of light scattering through tissue of varying vessel densities. We assumed laminar vessel flow profiles and accounted for shear-induced diffusion effects. In agreement with experimental data, we found that diffusive motion dominates the correlation decay for typical DCS measurement parameters. Furthermore, our model offers a quantitative relationship between the RBC diffusion coefficient and absolute tissue blood flow. We thus offer, for the first time, theoretical support for the empirically accepted ability of the DCS blood flow index ([Formula: see text]) to quantify tissue perfusion. We find [Formula: see text] to be linearly proportional to blood flow, but with a proportionality modulated by the hemoglobin concentration and the average blood vessel diameter.

  11. Retinal blood flow is increased in type 1 diabetes mellitus patients with advanced stages of retinopathy.

    PubMed

    Nguyen, Hoang-Ton; van Duinkerken, Eelco; Verbraak, Frank D; Polak, Bettine C P; Ringens, Peter J; Diamant, Michaela; Moll, Annette C

    2016-05-26

    Diabetic retinopathy (DRP) is a common microvascular complication seen in patients with type 1 diabetes mellitus (T1DM). The effects of T1DM and concomitant (proliferative) DRP on retinal blood flow are currently unclear. Therefore, we measured retinal vascular blood flow in T1DM patients with and without DRP and non-diabetic controls. We further assessed the acute effects of panretinal photocoagulation on retinal microvascular bloodflow in eight patients with diabetes. Thirty-three T1DM patients with proliferative DRP, previously treated with panretinal photocoagulation (pDRP), 11 T1DM patients with untreated non-proliferative retinopathy (npDRP) and 32 T1DM patients without DRP (nDRP) were compared with 44 non-diabetic gender-matched controls. Using scanning laser Doppler flowmetry (HRF, Heidelberg) blood flow in the retinal microvasculature was measured temporal and nasal of the optic disc and averaged into one flow value per eye. The right eye was used as a default for further analyses. Eight patients with novel proliferative retinopathy (4 T1DM and 4 with type 2 diabetes) were measured before and several months after photocoagulation. Between-group differences in retinal blood flow were assessed using ANOVA corrected for multiple comparisons (Bonferroni). Retinal blood flow was higher in the treated pDRP compared with the nDRP group and controls (all P Bonferroni < 0.01). Furthermore, there was a positive linear trend for blood flow with lowest blood flow in the control group and highest in the pDRP group (P-for-trend < 0.01). In the eight patients with novel proliferative retinopathy, blood flow did not significantly change before and after panretinal photocoagulation (P > 0.05). Using regression analysis, no variables were found as predictors of retinal blood flow. In comparison with controls and nDRP patients, retinal blood flow significantly increased in the pDRP group, which previously underwent photocoagulation treatment, but not in the np

  12. Radiohalogenated thienylethylamine derivatives for evaluating local cerebral blood flow

    DOEpatents

    Goodman, Mark M.; Knapp, Jr., Furn F.

    1990-01-01

    Radiopharmaceuticals useful in brain imaging comprising radiohalogenated thienylethylamine derivatives. The compounds are 5-halo-thiophene-2-isopropyl amines able to cross the blood-brain barrier and be retained for a sufficient length of time to allow the evaluation or regional blood flow by radioimaging of the brain.

  13. Radiohalogenated thienylethylamine derivatives for evaluating local cerebral blood flow

    SciTech Connect

    Goodman, M.M.; Knapp, F.F. Jr.

    1990-02-13

    This patent describes radiopharmaceuticals useful in brain imaging. They comprise radiohalogenated thienylethylamine derivatives. The compounds are 5-halo-thiophene-2-isopropyl amines able to cross the blood-brain barrier and be retained for a sufficient length of time to allow the evaluation or regional blood flow by radioimaging of the brain.

  14. Measurement of directed blood flow by laser speckle

    NASA Astrophysics Data System (ADS)

    Hirst, Evan R.; Thompson, Oliver B.; Andrews, Michael K.

    2011-03-01

    Recent success in reconciling laser Doppler and speckle measurements of dermal perfusion by the use of multi-exposure speckle has prompted an investigation of speckle effects arising from directed blood flow which might be expected in the small blood vessels of the eye. Unlike dermal scatter, the blood in retinal vessels is surrounded by few small and stationary scatterers able to assist the return of light energy by large-angle scatter. Returning light is expected to come from multiple small angle scatter from the large red blood cells which dominate the fluid. This work compares speckle measurements on highly scattering skin, with measurements on flow in a retinal phantom consisting of a glass capillary which is itself immersed in an index matching fluid to provide a flat air-phantom interface. Brownian motion dominated measurements when small easily levitated scatters were used, and flow was undetectable. With whole-blood, Brownian motion was small and directed flows in the expected region of tens of mm/s were detectable. The nominal flow speed relates to the known pump rate; within the capillary the flow will have a profile reducing toward the walls. The pulsatile effects on laser speckle contrast in the retina are discussed with preliminary multi-exposure measurements on retinal vessels using a fundus camera. Differences between the multiple exposure curves and power spectra of perfused tissue and ordered flow are discussed.

  15. Numerical investigation of blood flow. Part II: In capillaries

    NASA Astrophysics Data System (ADS)

    Jafari, A.; Zamankhan, P.; Mousavi, S. M.; Kolari, P.

    2009-04-01

    In order to understand the normal and pathologic behavior of the human vascular system, detailed knowledge of blood flow and the response of blood vessels is required. In fact the ability to predict the flow hydrodynamics at any site in the vessels can lead to a better understanding of the behavior of blood flow. Simulation can play an important role in understanding the hemodynamic forces. The objective of the present attempt was to simulate the behavior of blood flow in microvessels using computational fluid dynamics (CFD). Numerical analysis is performed using a commercially available CFD package Fluent 6.2 which is based on the finite volume method. A continuum approach is proposed in which fluid structure interaction has been taken into account. Based on limitations imposed by computational resources, a more simplified model based on volume of fluid (VOF) approach is suggested to simulate movements of RBCs in capillaries and also to predict RBCs' deformation. Three-dimensional incompressible laminar flow fields are obtained by solving continuity and Navier-Stokes equations computationally. It was found that multiphase CFD simulations may give further insight into the dynamic characteristics of blood flow under complex flow conditions.

  16. Thresholds for significant decrease in hemodialysis access blood flow.

    PubMed

    Ram, Sunanda J; Nassar, Raja; Sharaf, Rashid; Magnasco, Alberto; Jones, Steven A; Paulson, William D

    2005-01-01

    During hemodialysis access surveillance, referral for evaluation and correction of stenosis is based upon determination that a significant decrease in blood flow (Q) has occurred. However, criteria for determining when a decrease is statistically significant have not yet been established. In this study we established such criteria by analyzing Q variation with the glucose pump test (GPT). We took nine Q measurements in each of 25 patients (18 grafts, 7 fistulas) during three dialysis sessions within a 2-week period (predialysis and during hours 1 and 3). We determined thresholds that define a significant percentage decrease in Q (deltaQ) for various p values. In order to confirm the general applicability of these thresholds, we computed the average within-patient Q variation during the three sessions (computed as a coefficient of variation and referred to as short-term variation). We then determined the relative influences of biological (true) variation and analytical error on short-term variation. We found that deltaQ must be > 33% to be significant at p < 0.05, whereas the threshold is > 17% for p < 0.20. Measuring Q at uniform versus different times during the sessions did not significantly reduce these thresholds. We also found that biological variation was nearly as large as short-term Q variation, whereas analytical error contributed minimally to short-term variation. In conclusion, this study defines thresholds for a significant deltaQ that have wide application in determining access referral for evaluation and correction of stenosis. Selection of a particular threshold should consider the relative importance of avoiding thrombosis versus avoiding unnecessary procedures. If avoiding unnecessary procedures is a priority, then we recommend a threshold of > 33%. These thresholds apply to other methods of measuring Q, provided analytical error is significantly less than biological variation.

  17. Microvascular blood flow resistance: Role of red blood cell migration and dispersion.

    PubMed

    Katanov, Dinar; Gompper, Gerhard; Fedosov, Dmitry A

    2015-05-01

    Microvascular blood flow resistance has a strong impact on cardiovascular function and tissue perfusion. The flow resistance in microcirculation is governed by flow behavior of blood through a complex network of vessels, where the distribution of red blood cells across vessel cross-sections may be significantly distorted at vessel bifurcations and junctions. In this paper, the development of blood flow and its resistance starting from a dispersed configuration of red blood cells is investigated in simulations for different hematocrit levels, flow rates, vessel diameters, and aggregation interactions between red blood cells. Initially dispersed red blood cells migrate toward the vessel center leading to the formation of a cell-free layer near the wall and to a decrease of the flow resistance. The development of cell-free layer appears to be nearly universal when scaled with a characteristic shear rate of the flow. The universality allows an estimation of the length of a vessel required for full flow development, lc ≲ 25D, for vessel diameters in the range 10 μm < D < 100 μm. Thus, the potential effect of red blood cell dispersion at vessel bifurcations and junctions on the flow resistance may be significant in vessels which are shorter or comparable to the length lc. Aggregation interactions between red blood cells generally lead to a reduction of blood flow resistance. The simulations are performed using the same viscosity for both external and internal fluids and the RBC membrane viscosity is not considered; however, we discuss how the viscosity contrast may affect the results. Finally, we develop a simple theoretical model which is able to describe the converged cell-free-layer thickness at steady-state flow with respect to flow rate. The model is based on the balance between a lift force on red blood cells due to cell-wall hydrodynamic interactions and shear-induced effective pressure due to cell-cell interactions in flow. We expect that these results can

  18. A review of leakage flow in centrifugal blood pumps.

    PubMed

    Chan, Weng-Kong; Wong, Yew-Wah

    2006-05-01

    This article presents a new approach in determining the functional relationship between the leakage flow in a centrifugal blood pump and various parameters that affect it. While high leakage flow in a blood pump is essential for good washout and can help prevent thrombus formation, excessive leakage flow will result in higher fluid shear stress that may lead to hemolysis. Dimensional analysis is employed to provide a functional relationship between leakage flow rate and other important parameters governing the operation of a centrifugal blood pump. Results showed that pump performance with a smaller gap clearance is clearly superior compared to those of two other similar pumps with larger gap clearances. It was also observed that the nondimensional leakage flow rate varies almost linearly with dimensionless pump head. It also decreases with increasing volume flow rate. A smaller gap clearance will also increase the flow resistance and hence, decrease the nondimensional leakage flow rate. Increasing surface roughness, length of the gap clearance passage, or loss coefficient of the gap geometry will increase losses and hence, decrease the leakage flow rate. It is also interesting to note that for a given pump and gap clearance geometry, the nondimensional leakage flow rate is almost independent of the Reynolds number when specific speed is constant.

  19. Regional cerebral blood flow in normal pressure hydrocephalus.

    PubMed Central

    Graff-Radford, N R; Rezai, K; Godersky, J C; Eslinger, P; Damasio, H; Kirchner, P T

    1987-01-01

    Regional cerebral blood flow (rcbf) was studied preoperatively and at 2 and 6 months postoperatively in 22 normal pressure hydrocephalus patients using xenon-133 inhalation and single photon emission computed tomography. Sixteen of the 22 patients improved (improved group) and six did not (unimproved group). The following comparisons were made: (1) preoperative rcbf in the improved group, to 14 normal elderly volunteers and to that in 59 SDAT (senile dementia of the Alzheimer type) patients; (2) preoperative rcbf in the improved and unimproved groups to determine if rcbf could predict surgical outcome; (3) pre- to postoperative rcbf in the improved group to see if increased cbf accounted for clinical improvement. The findings were: (1) preoperative rcbf in the improved group was lower than that in normal controls but was the same as that in SDAT; however, the ratios of rcbf values in anterior and posterior brain regions were significantly different between improved group and SDAT (p = 0.02); (2) an anterior/posterior ratio of 1.05 correctly classified surgical outcome in 19/22 patients; five of six in the unimproved group were above this cut off while 14/16 in the improved group were below; (3) in the improved group rcbf increased at 2 but not at 6 months after surgery without a corresponding reduction of clinical signs, supporting the notion that increase in cbf probably does not account for clinical improvement in normal pressure hydrocephalus. Images PMID:3501800

  20. Three-phase CFD analytical modeling of blood flow.

    SciTech Connect

    Jung, J.; Hassanein, A.; Mathematics and Computer Science

    2008-01-01

    The behavior of blood cells in disturbed flow regions of arteries has significant relevance for understanding atherogenesis. However, their distribution with red blood cells (RBCs) and leukocytes is not so well studied and understood. Our three-phase computational fluid dynamics approach including plasma, RBCs, and leukocytes was used to numerically simulate the local hemodynamics in such a flow regime. This model has tracked the wall shear stress (WSS), phase distributions, and flow patterns for each phase in a concentrated suspension shear flow of blood. Unlike other computational approaches, this approach does not require dispersion coefficients as an input. The non-Newtonian viscosity model was applied to a wide physiological range of hematocrits, including low shear rates. The migration and segregation of blood cells in disturbed flow regions were computed, and the results compared favorably with available experimental data. The predicted higher leukocyte concentration was correlated with relatively low WSS near the stenosis having a high WSS. This behavior was attributed to flow-dependent interactions of the leukocytes with RBCs in pulsatile flow. This three-phase hemodynamic analysis may have application to vulnerable plaque formation in arteries with in vivo complex flow conditions.

  1. Research Advances: DRPS--Let The Blood Flow!

    ERIC Educational Resources Information Center

    King, Angela G.

    2007-01-01

    A team from the University of Pittsburgh's McGowan Institute for Regenerative Medicine has shown the potential for clinical use of the drag-reducing polymer (DRP) poly(N-vinylformamide), or PNVF. The high molecular weight PNVF is shown to reduce resistance to turbulent flow in a pipe and to enhance blood flow in animal models and it also…

  2. Research Advances: DRPS--Let The Blood Flow!

    ERIC Educational Resources Information Center

    King, Angela G.

    2007-01-01

    A team from the University of Pittsburgh's McGowan Institute for Regenerative Medicine has shown the potential for clinical use of the drag-reducing polymer (DRP) poly(N-vinylformamide), or PNVF. The high molecular weight PNVF is shown to reduce resistance to turbulent flow in a pipe and to enhance blood flow in animal models and it also…

  3. Blood Flow through an Open-Celled Foam

    NASA Astrophysics Data System (ADS)

    Ortega, Jason; Maitland, Duncan

    2011-11-01

    The Hazen-Dupuit-Darcy (HDD) equation is commonly used in engineering applications to model the pressure gradient of flow through a porous media. One major advantage of this equation is that it simplifies the complex geometric details of the porous media into two coefficients: the permeability, K, and form factor, C. However through this simplification, the flow details within the porous media are no longer accessible, making it difficult to study the phenomena that contribute to changes in K and C due to clotting of blood flow. To obtain a more detailed understanding of blood flow through a porous media, a direct assessment of the complex interstitial geometry and flow is required. In this study, we solve the Navier-Stokes equations for Newtonian and non-Newtonian blood flow through an open-celled foam geometry obtained from a micro-CT scan. The nominal strut size of the foam sample is of O(10e-5) m and the corresponding Reynolds number based upon this length ranges up to O(10). Fitting the pressure gradient vs. Darcy velocity data with the HDD equation demonstrates that both viscous and inertial forces play an important role in the flow through the foam at these Reynolds numbers. Recirculation zones are observed to form in the wake of the pore struts, producing regions of flow characterized by both low shear rates and long fluid residence times, factors of which have been shown in previous studies to promote blood clotting.

  4. Extensional flow of blood analog solutions in microfluidic devices

    PubMed Central

    Sousa, P. C.; Pinho, F. T.; Oliveira, M. S. N.; Alves, M. A.

    2011-01-01

    In this study, we show the importance of extensional rheology, in addition to the shear rheology, in the choice of blood analog solutions intended to be used in vitro for mimicking the microcirculatory system. For this purpose, we compare the flow of a Newtonian fluid and two well-established viscoelastic blood analog polymer solutions through microfluidic channels containing both hyperbolic and abrupt contractions∕expansions. The hyperbolic shape was selected in order to impose a nearly constant strain rate at the centerline of the microchannels and achieve a quasihomogeneous and strong extensional flow often found in features of the human microcirculatory system such as stenoses. The two blood analog fluids used are aqueous solutions of a polyacrylamide (125 ppm w∕w) and of a xanthan gum (500 ppm w∕w), which were characterized rheologically in steady-shear flow using a rotational rheometer and in extension using a capillary breakup extensional rheometer (CaBER). Both blood analogs exhibit a shear-thinning behavior similar to that of whole human blood, but their relaxation times, obtained from CaBER experiments, are substantially different (by one order of magnitude). Visualizations of the flow patterns using streak photography, measurements of the velocity field using microparticle image velocimetry, and pressure-drop measurements were carried out experimentally for a wide range of flow rates. The experimental results were also compared with the numerical simulations of the flow of a Newtonian fluid and a generalized Newtonian fluid with shear-thinning behavior. Our results show that the flow patterns of the two blood analog solutions are considerably different, despite their similar shear rheology. Furthermore, we demonstrate that the elastic properties of the fluid have a major impact on the flow characteristics, with the polyacrylamide solution exhibiting a much stronger elastic character. As such, these properties must be taken into account in the

  5. Undergraduate Contributions to Developing New Methods for Analyzing Blood Flows

    NASA Astrophysics Data System (ADS)

    Lowe, Mary L.

    1998-11-01

    At Loyola, undergraduate research is strongly encouraged for students at every stage in college. Since 1988, I have supervised undergraduates with different majors, different physics backgrounds, different grade point averages, and different maturity levels. Their contributions to three experiments will be described. The first student measured the index of refraction of the walls of a tube used to study flows in curved, macroscopic ducts at Reynolds numbers matching arterial blood flow. A second student made preliminary measurements of flows in microfabricated venular bifurcations using confocal microscopy. A third group of students tested optical flow algorithms on digital images of flows in microscopic tubes with latex beads as tracers. This led to velocimetry studies of blood flows in vivo and in vitro.

  6. A multiple disk centrifugal pump as a blood flow device.

    PubMed

    Miller, G E; Etter, B D; Dorsi, J M

    1990-02-01

    A multiple disk, shear force, valveless centrifugal pump was studied to determine its suitability as a blood flow device. A pulsatile version of the Tesla viscous flow turbine was designed by modifying the original steady flow pump concept to produce physiological pressures and flows with the aid of controlling circuitry. Pressures and flows from this pump were compared to a Harvard Apparatus pulsatile piston pump. Both pumps were connected to an artificial circulatory system. Frequency and systolic duration were varied over a range of physiological conditions for both pumps. The results indicated that the Tesla pump, operating in a pulsatile mode, is capable of producing physiologic pressures and flows similar to the Harvard pump and other pulsatile blood pumps.

  7. Ultrasonic Imaging of Hemodynamic Force in Carotid Blood Flow

    NASA Astrophysics Data System (ADS)

    Nitta, N.; Homma, K.

    Hemodynamic forces including blood pressure and shear stress affect vulnerable plaque rupture in arteriosclerosis and biochemical activation of endothelium such as NO production. In this study, a method for estimating and imaging shear stress and pressure gradient distributions in blood vessel as the hemodynamic force based on viscosity estimation is presented. Feasibility of this method was investigated by applying to human carotid blood flow. Estimated results of shear stress and pressure gradient distributions coincide with the ideal distributions obtained by numerical simulation and flow-phantom experiment.

  8. Cerebral blood flow measured by NMR indicator dilution in cats

    SciTech Connect

    Ewing, J.R.; Branch, C.A.; Helpern, J.A.; Smith, M.B.; Butt, S.M.; Welch, K.M.

    1989-02-01

    We developed techniques to assess the utility of a nuclear magnetic resonance (NMR) indicator for cerebral blood flow studies in cats, using Freon-22 for the first candidate. A PIN-diode-switched NMR experiment allowed the acquisition of an arterial as well as a cerebral fluorine-19 signal proportional to concentration vs. time in a 1.89 T magnet. Mean +/- SD blood:brain partition coefficients for Freon-22 were estimated at 0.93 +/- 0.08 for gray matter and 0.77 +/- 0.12 for white matter. Using maximum-likelihood curve fitting, estimates of mean +/- SD resting cerebral blood flow were 50 +/- 19 ml/100 g-min for gray matter and 5.0 +/- 2.0 ml/100 g-min for white matter. Hypercapnia produced the expected increases in gray and white matter blood flow. The physiologic effects of Freon-22, including an increase in cerebral blood flow itself with administration of 40% by volume, may limit its use as an indicator. Nevertheless, the NMR techniques described demonstrate the feasibility of fluorine-19-labeled compounds as cerebral blood flow indicators and the promise for their use in humans.

  9. The effects of hypoxemia on myocardial blood flow during exercise.

    PubMed

    Paridon, S M; Bricker, J T; Dreyer, W J; Reardon, M; Smith, E O; Porter, C B; Michael, L; Fisher, D J

    1989-03-01

    We evaluated the adequacy of regional and transmural blood flow during exercise and rapid pacing after 1 wk of hypoxemia. Seven mature mongrel dogs were made hypoxemic (mean O2 saturation = 72.4%) by anastomosis of left pulmonary artery to left atrial appendage. Catheters were placed in the left atrium, right atrium, pulmonary artery, and aorta. Atrial and ventricular pacing wires were placed. An aortic flow probe was placed to measure cardiac output. Ten nonshunted dogs, similarly instrumented, served as controls. Recovery time was approximately 1 wk. Cardiac output, mean aortic pressure, and oxygen saturation were measured at rest, with ventricular pacing, atrial pacing, and with treadmill exercise. Ventricular and atrial pace and exercise were at a heart rate of 200. Right ventricular free wall, left ventricular free wall, and septal blood flow were measured with radionuclide-labeled microspheres. Cardiac output, left atrial blood pressure, and aortic blood pressure were similar between the two groups of dogs in all testing states. Myocardial blood flow was significantly higher in the right and left ventricular free wall in the hypoxemic animals during resting and exercise testing states. Myocardial oxygen delivery was similar between the two groups of animals. Pacing resulted in an increase in myocardial blood flow in the control animals but not the hypoxemic animals.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Computational approach to estimating the effects of blood properties on changes in intra-stent flow.

    PubMed

    Benard, Nicolas; Perrault, Robert; Coisne, Damien

    2006-08-01

    In this study various blood rheological assumptions are numerically investigated for the hemodynamic properties of intra-stent flow. Non-newtonian blood properties have never been implemented in blood coronary stented flow investigation, although its effects appear essential for a correct estimation and distribution of wall shear stress (WSS) exerted by the fluid on the internal vessel surface. Our numerical model is based on a full 3D stent mesh. Rigid wall and stationary inflow conditions are applied. Newtonian behavior, non-newtonian model based on Carreau-Yasuda relation and a characteristic newtonian value defined with flow representative parameters are introduced in this research. Non-newtonian flow generates an alteration of near wall viscosity norms compared to newtonian. Maximal WSS values are located in the center part of stent pattern structure and minimal values are focused on the proximal stent wire surface. A flow rate increase emphasizes fluid perturbations, and generates a WSS rise except for interstrut area. Nevertheless, a local quantitative analysis discloses an underestimation of WSS for modelisation using a newtonian blood flow, with clinical consequence of overestimate restenosis risk area. Characteristic viscosity introduction appears to present a useful option compared to rheological modelisation based on experimental data, with computer time gain and relevant results for quantitative and qualitative WSS determination.

  11. Margination of White Blood Cells in Microcapillary Flow

    NASA Astrophysics Data System (ADS)

    Fedosov, Dmitry A.; Fornleitner, Julia; Gompper, Gerhard

    2012-01-01

    Margination of white blood cells (WBCs) towards vessel walls is an essential precondition for their efficient adhesion to the vascular endothelium. We perform numerical simulations with a two-dimensional blood flow model to investigate the dependence of WBC margination on hydrodynamic interactions of blood cells with the vessel walls, as well as on their collective behavior and deformability. We find WBC margination to be optimal in intermediate ranges of red blood cell (RBC) volume fractions and flow rates, while, beyond these ranges, it is substantially attenuated. RBC aggregation enhances WBC margination, while WBC deformability reduces it. These results are combined in state diagrams, which identify WBC margination for a wide range of flow and cell suspension conditions.

  12. Multiscale modeling of blood flow in cerebral malaria

    NASA Astrophysics Data System (ADS)

    Fedosov, Dmitry; Caswell, Bruce; Karniadakis, George

    2009-11-01

    The main characteristics of the malaria disease are progressing changes in red blood cell (RBC) mechanical properties and geometry, and its cytoadhesion to the vascular endothelium. Malaria-infected RBCs become considerably stiff compared to healthy ones, and may bind to the vascular endothelium of arterioles and venules. This leads to a significant reduction of blood flow, and eventual vessel obstruction. Due to a non-trivial malaria-infected RBC adhesive dynamics and obstruction formations the blood flow in cerebral malaria is extremely complex. Here, we employ multiscale modeling to couple nanometer scales at the binding level, micrometer scales at the cell level and millimeter scales at the arteriole level. Blood flow in cerebral malaria is modeled using a coarse-grained RBC model developed in our group. The RBC adhesion is simulated based on the stochastic bond formation/breakage model, which is validated against recent experiments.

  13. Blood Flow: Multi-scale Modeling and Visualization (July 2011)

    SciTech Connect

    2011-01-01

    Multi-scale modeling of arterial blood flow can shed light on the interaction between events happening at micro- and meso-scales (i.e., adhesion of red blood cells to the arterial wall, clot formation) and at macro-scales (i.e., change in flow patterns due to the clot). Coupled numerical simulations of such multi-scale flow require state-of-the-art computers and algorithms, along with techniques for multi-scale visualizations. This animation presents early results of two studies used in the development of a multi-scale visualization methodology. The fisrt illustrates a flow of healthy (red) and diseased (blue) blood cells with a Dissipative Particle Dynamics (DPD) method. Each blood cell is represented by a mesh, small spheres show a sub-set of particles representing the blood plasma, while instantaneous streamlines and slices represent the ensemble average velocity. In the second we investigate the process of thrombus (blood clot) formation, which may be responsible for the rupture of aneurysms, by concentrating on the platelet blood cells, observing as they aggregate on the wall of an aneruysm. Simulation was performed on Kraken at the National Institute for Computational Sciences. Visualization was produced using resources of the Argonne Leadership Computing Facility at Argonne National Laboratory.

  14. Magnetohydrodynamic Voltage Recorder for Comparing Peripheral Blood Flow.

    PubMed

    Wu, Kevin J; Gregory, T Stan; Lastinger, Michael C; Murrow, Jonathan R; Tse, Zion Tsz Ho

    2017-06-22

    Blood flow is a clinical metric for monitoring of cardiovascular diseases but current measurements methods are costly or uncomfortable for patients. It was shown that the interaction of the magnetic field (B 0) during MRI and blood flow in the body, through the magnetohydrodynamic (MHD) effect, produce voltages (V MHD) observable through intra-MRI electrocardiography (ECG), which are correlated with regional blood flow. This study shows the reproducibility of V MHD outside the MRI and its application in a portable flow monitoring device. To recreate this interaction outside the MRI, a static neodymium magnet (0.4T) was placed in between two electrodes to induce the V MHD in a single lead ECG measurement. V MHD was extracted, and integrated over to obtain a stroke volume metric. A smartphone-enabled device utilizing this interaction was developed in order to create a more accessible method of obtaining blood flow measurements. The portable device displayed a <6% error compared to a commercial recorder, and was able to successfully record V MHD using the 0.4T magnet. Exercise stress testing showed a V MHD increase of 23% in healthy subjects, with an 81% increase in the athlete. The study demonstrates a new device utilizing MHD interactions with body circulation to obtain blood flow metrics.

  15. Regional myocardial blood flow in man during dipyridamole coronary vasodilation

    SciTech Connect

    Sorensen, S.G.; Groves, B.M.; Horwitz, L.D.; Chaudhuri, T.K.

    1985-06-01

    Regional myocardial blood flow before and after intravenous dipyridamole (0.56 mg/kg) was measured during cardiac catheterization in 11 patients using the /sup 133/Xe washout technique. Significant increases in heart rate and decreases in systolic blood pressure were observed with dipyridamole infusion. However, double product and cardiac output did not differ before or after drug infusion. Regional myocardial blood flow increased from 67 to 117 ml/100 mg/min in myocardial segments supplied by nonobstructed coronary arteries. In stenotic coronary arteries, flow increased from 57 to 79 ml/100 mg/min with dipyridamole. We conclude that dipyridamole infusion results in flow differences which discriminate stenotic from nonstenotic coronary arteries.

  16. Effective pulmonary blood flow in normal children at rest.

    PubMed Central

    Bowyer, J J; Warner, J O; Denison, D M

    1988-01-01

    Effective pulmonary blood flow was measured with a soluble inert gas uptake method (10% argon, 3.5% freon-22, 35% oxygen, balance nitrogen) in 98 apparently healthy children aged 5-14 years. None had any evidence of cardiorespiratory disease and all had normal values for absolute and dynamic lung volumes and transfer factor for carbon monoxide. Values of blood flow measured by a rebreathing method correlated reasonably closely with height, weight, body surface area, and lung volumes, and to a lesser extent with hand and foot size. The mean (SD) effective pulmonary blood flow index was 2.7 (0.31) 1 min-1 m-2. Small children found a single breath method of measuring flow more difficult to perform and the results were more variable. PMID:3238641

  17. Blood flow in capillaries of the human lung.

    PubMed

    Haber, Shimon; Clark, Alys; Tawhai, Merryn

    2013-10-01

    A novel model for the blood system is postulated focusing on the flow rate and pressure distribution inside the arterioles and venules of the pulmonary acinus. Based upon physiological data it is devoid of any ad hoc constants. The model comprises nine generations of arterioles, venules, and capillaries in the acinus, the gas exchange unit of the lung. Blood is assumed incompressible and Newtonian and the blood vessels are assumed inextensible. Unlike previous models of the blood system, the venules and arterioles open up to the capillary network in numerous locations along each generation. The large number of interconnected capillaries is perceived as a porous medium in which the flow is macroscopically unidirectional from arterioles to venules openings. In addition, the large number of capillaries extending from each arteriole and venule allows introduction of a continuum theory and formulation of a novel system of ordinary, nonlinear differential equations which governs the blood flow and pressure fields along the arterioles, venules, and capillaries. The solution of the differential equations is semianalytical and requires the inversion of three diagonal, 9 × 9 matrices only. The results for the total flow rate of blood through the acinus are within the ballpark of physiological observations despite the simplifying assumptions used in our model. The results also manifest that the contribution of the nonlinear convection term of the Navier-Stokes equations has little effect (less than 2%) on the total blood flow entering/leaving the acinus despite the fact that the Reynolds number is not much smaller than unity at the proximal generations. The model makes it possible to examine some pathological cases. Here, centri-acinar and distal emphysema were investigated yielding a reduction in inlet blood flow rate.

  18. Characterization of intestinal collateral blood flow in the developing piglet.

    PubMed

    Crissinger, K D; Granger, D N

    1988-10-01

    Interest in the pathogenesis of neonatal necrotizing enterocolitis has prompted study of the intestinal circulation in developing animals. It is conceivable that poorly developed collateral channels may predispose the neonatal intestine to ischemic insults. We therefore characterized intestinal collateral blood flow in anesthetized and ventilated 1-day and 1-month-old piglets. Intestinal blood flow was measured with radioactive microspheres (15 micron diameter) before and after either 1) total occlusion of the superior mesenteric artery (SMA) or 2) occlusion of a distal (jejunoileal) branch of the SMA. After total SMA occlusion in 1-day and 1-month-old piglets, perfusion of the intestine via collaterals from the celiac and inferior mesenteric arteries was not evident. Jejunal, ileal, and colonic (except rectal) blood flows fell to zero 30 min after ligation of the SMA. Ligation of a distal branch of the SMA in 1-month-old animals significantly reduced total wall (by 25%) and mucosal/submucosal (by 25%) blood flows in the occluded segment. Similar experiments in 1-day-old piglets produced significantly greater reduction in total (70%) and mucosa/submucosa (70%) blood flows. Muscle/serosa blood flows in both groups were not significantly different from control values. In conclusion, collateral perfusion of the intestine via the celiac and inferior mesenteric arteries is insignificant during acute SMA occlusion in the developing piglet. Although there is significant collateral blood flow within the SMA vascular network, perfusion between adjacent gut segments is less effective in preventing intestinal ischemia after occlusion of a branch of the SMA in neonates than in 1-month-old piglets.

  19. Topical Menthol, Ice, Peripheral Blood Flow, and Perceived Discomfort

    PubMed Central

    Topp, Robert; Ledford, Elizabeth R.; Jacks, Dean E.

    2013-01-01

    Context: Injury management commonly includes decreasing arterial blood flow to the affected site in an attempt to reduce microvascular blood flow and edema and limit the induction of inflammation. Applied separately, ice and menthol gel decrease arterial blood flow, but the combined effects of ice and menthol gel on arterial blood flow are unknown. Objectives: To compare radial artery blood flow, arterial diameter, and perceived discomfort before and after the application of 1 of 4 treatment conditions. Design: Experimental crossover design. Setting: Clinical laboratory. Participants or Other Participants: Ten healthy men, 9 healthy women (mean age = 25.68 years, mean height = 1.73 m, mean weight = 76.73 kg). Intervention(s): Four treatment conditions were randomly applied for 20 minutes to the right forearm of participants on 4 different days separated by at least 24 hours: (1) 3.5 mL menthol gel, (2) 0.5 kg of crushed ice, (3) 3.5 mL of menthol gel and 0.5 kg of crushed ice, or (4) no treatment (control). Main Outcome Measure(s): Using high-resolution ultrasound, we measured right radial artery diameter (cm) and blood flow (mL/min) every 5 minutes for 20 minutes after the treatment was applied. Discomfort with the treatment was documented using a 1-to-10 intensity scale. Results: Radial artery blood flow decreased (P < .05) from baseline in the ice (−20% to −24%), menthol (−17% to −24%), and ice and menthol (−36% to −39%) treatments but not in the control (3% to 9%) at 5, 10, and 15 minutes. At 20 minutes after baseline, only the ice (−27%) and combined ice and menthol (−38%) treatments exhibited reductions in blood flow (P < .05). Discomfort was less with menthol than with the ice treatment at 5, 10, and 20 minutes after application (P < .05). Arterial diameter and heart rate did not change. Conclusions: The application of 3.5 mL of menthol was similar to the application of 0.5 kg of crushed ice in reducing peripheral blood flood. Combining

  20. Topical menthol, ice, peripheral blood flow, and perceived discomfort.

    PubMed

    Topp, Robert; Ledford, Elizabeth R; Jacks, Dean E

    2013-01-01

    Injury management commonly includes decreasing arterial blood flow to the affected site in an attempt to reduce microvascular blood flow and edema and limit the induction of inflammation. Applied separately, ice and menthol gel decrease arterial blood flow, but the combined effects of ice and menthol gel on arterial blood flow are unknown. To compare radial artery blood flow, arterial diameter, and perceived discomfort before and after the application of 1 of 4 treatment conditions. Experimental crossover design. Clinical laboratory. PARTICIPANTS OR OTHER PARTICIPANTS: Ten healthy men, 9 healthy women (mean age = 25.68 years, mean height = 1.73 m, mean weight = 76.73 kg). Four treatment conditions were randomly applied for 20 minutes to the right forearm of participants on 4 different days separated by at least 24 hours: (1) 3.5 mL menthol gel, (2) 0.5 kg of crushed ice, (3) 3.5 mL of menthol gel and 0.5 kg of crushed ice, or (4) no treatment (control). Using high-resolution ultrasound, we measured right radial artery diameter (cm) and blood flow (mL/min) every 5 minutes for 20 minutes after the treatment was applied. Discomfort with the treatment was documented using a 1-to-10 intensity scale. Radial artery blood flow decreased (P < .05) from baseline in the ice (-20% to -24%), menthol (-17% to -24%), and ice and menthol (-36% to -39%) treatments but not in the control (3% to 9%) at 5, 10, and 15 minutes. At 20 minutes after baseline, only the ice (-27%) and combined ice and menthol (-38%) treatments exhibited reductions in blood flow (P < .05). Discomfort was less with menthol than with the ice treatment at 5, 10, and 20 minutes after application (P < .05). Arterial diameter and heart rate did not change. The application of 3.5 mL of menthol was similar to the application of 0.5 kg of crushed ice in reducing peripheral blood flood. Combining crushed ice with menthol appeared to have an additive effect on reducing blood flow.

  1. Effects of cyclic motion on coronary blood flow.

    PubMed

    Hasan, Mahmudul; Rubenstein, David A; Yin, Wei

    2013-12-01

    The goal of this study was to establish a computational fluid dynamics model to investigate the effect of cyclic motion (i.e., bending and stretching) on coronary blood flow. The three-dimensional (3D) geometry of a 50-mm section of the left anterior descending artery (normal or with a 60% stenosis) was constructed based on anatomical studies. To describe the bending motion of the blood vessel wall, arbitrary Lagrangian-Eularian methods were used. To simulate artery bending and blood pressure change induced stretching, the arterial wall was modeled as an anisotropic nonlinear elastic solid using the five-parameter Mooney-Rivlin hyperelastic model. Employing a laminar model, the flow field was solved using the continuity equations and Navier-Stokes equations. Blood was modeled as an incompressible Newtonian fluid. A fluid-structure interaction approach was used to couple the fluid domain and the solid domain iteratively, allowing force and total mesh displacement to be transferred between the two domains. The results demonstrated that even though the bending motion of the coronary artery could significantly affect blood cell trajectory, it had little effect on flow parameters, i.e., blood flow velocity, blood shear stress, and wall shear stress. The shape of the stenosis (asymmetric or symmetric) hardly affected flow parameters either. However, wall normal stresses (axial, circumferential, and radial stress) can be greatly affected by the blood vessel wall motion. The axial wall stress was significantly higher than the circumferential and radial stresses, as well as wall shear stress. Therefore, investigation on effects of wall stress on blood vessel wall cellular functions may help us better understand the mechanism of mechanical stress induced cardiovascular disease.

  2. Partitioning of red blood cell aggregates in bifurcating microscale flows

    NASA Astrophysics Data System (ADS)

    Kaliviotis, E.; Sherwood, J. M.; Balabani, S.

    2017-03-01

    Microvascular flows are often considered to be free of red blood cell aggregates, however, recent studies have demonstrated that aggregates are present throughout the microvasculature, affecting cell distribution and blood perfusion. This work reports on the spatial distribution of red blood cell aggregates in a T-shaped bifurcation on the scale of a large microvessel. Non-aggregating and aggregating human red blood cell suspensions were studied for a range of flow splits in the daughter branches of the bifurcation. Aggregate sizes were determined using image processing. The mean aggregate size was marginally increased in the daughter branches for a range of flow rates, mainly due to the lower shear conditions and the close cell and aggregate proximity therein. A counterintuitive decrease in the mean aggregate size was apparent in the lower flow rate branches. This was attributed to the existence of regions depleted by aggregates of certain sizes in the parent branch, and to the change in the exact flow split location in the T-junction with flow ratio. The findings of the present investigation may have significant implications for microvascular flows and may help explain why the effects of physiological RBC aggregation are not deleterious in terms of in vivo vascular resistance.

  3. Dissipative particle dynamics modeling of blood flow in arterial bifurcations

    NASA Astrophysics Data System (ADS)

    Li, Xuejin; Lykov, Kirill; Pivkin, Igor V.; Karniadakis, George Em

    2013-11-01

    The motion of a suspension of red blood cells (RBCs) flowing in bifurcations is investigated using both low-dimensional RBC (LD-RBC) and multiscale RBC (MS-RBC) models based on dissipative particle dynamics (DPD). The blood flow is first simulated in a symmetric geometry between the diverging and converging channels to satisfy the periodic flow assumption along the flow direction. The results show that the flowrate ratio of the daughter channels and the feed hematocrit level has considerable influence on blood-plasma separation. We also propose a new method to model the inflow and outflow boundaries for the blood flow simulations: the inflow at the inlet is duplicated from a fully developed flow generated by DPD fluid with periodic boundary conditions; the outflow in two adjacent regions near the outlet is controlled by adaptive forces to keep the flowrate and velocity gradient equal, while the particles leaving the microfluidic channel at the outlet at each time step are removed from the system. The simulation results of the developing flow match analytical solutions from continuum theory. Plasma skimming and the all-or-nothing phenomenon of RBCs in bifurcation have been investigated in the simulations. The simulation results are consistent with previous experimental results and theoretical predictions. This work is supported by the NIH Grant R01HL094270.

  4. Partitioning of red blood cell aggregates in bifurcating microscale flows

    PubMed Central

    Kaliviotis, E.; Sherwood, J. M.; Balabani, S.

    2017-01-01

    Microvascular flows are often considered to be free of red blood cell aggregates, however, recent studies have demonstrated that aggregates are present throughout the microvasculature, affecting cell distribution and blood perfusion. This work reports on the spatial distribution of red blood cell aggregates in a T-shaped bifurcation on the scale of a large microvessel. Non-aggregating and aggregating human red blood cell suspensions were studied for a range of flow splits in the daughter branches of the bifurcation. Aggregate sizes were determined using image processing. The mean aggregate size was marginally increased in the daughter branches for a range of flow rates, mainly due to the lower shear conditions and the close cell and aggregate proximity therein. A counterintuitive decrease in the mean aggregate size was apparent in the lower flow rate branches. This was attributed to the existence of regions depleted by aggregates of certain sizes in the parent branch, and to the change in the exact flow split location in the T-junction with flow ratio. The findings of the present investigation may have significant implications for microvascular flows and may help explain why the effects of physiological RBC aggregation are not deleterious in terms of in vivo vascular resistance. PMID:28303921

  5. Cerebrospinal fluid and blood flow patterns in idiopathic normal pressure hydrocephalus.

    PubMed

    Qvarlander, S; Ambarki, K; Wåhlin, A; Jacobsson, J; Birgander, R; Malm, J; Eklund, A

    2017-05-01

    Increased aqueduct cerebrospinal fluid (CSF) flow pulsatility and, recently, a reversed CSF flow in the aqueduct have been suggested as hallmarks of idiopathic normal pressure hydrocephalus (INPH). However, these findings have not been adequately confirmed. Our objective was to investigate the flow of blood and CSF in INPH, as compared to healthy elderly, in order to clarify which flow parameters are related to the INPH pathophysiology. Sixteen INPH patients (73 years) and 35 healthy subjects (72 years) underwent phase-contrast magnetic resonance imaging (MRI). Measurements included aqueduct and cervical CSF flow, total arterial inflow (tCBF; i.e. carotid + vertebral arteries), and internal jugular vein flow. Flow pulsatility, net flow, and flow delays were compared (multiple linear regression, correcting for sex and age). Aqueduct stroke volume was higher in INPH than healthy (148±95 vs 90±50 mL, P<.05). Net aqueduct CSF flow was similar in magnitude and direction. The cervical CSF stroke volume was lower (P<.05). The internal carotid artery net flow was lower in INPH (P<.05), although tCBF was not. No differences were found in internal jugular vein flow or flow delays. The typical flow of blood and CSF in INPH was mainly characterized by increased CSF pulsatility in the aqueduct and reduced cervical CSF pulsatility. The direction of mean net aqueduct CSF flow was from the third to the fourth ventricle. Our findings may reflect the altered distribution of intracranial CSF volume in INPH, although the causality of these relationships is unclear. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Hydrokinetic approach to large-scale cardiovascular blood flow

    NASA Astrophysics Data System (ADS)

    Melchionna, Simone; Bernaschi, Massimo; Succi, Sauro; Kaxiras, Efthimios; Rybicki, Frank J.; Mitsouras, Dimitris; Coskun, Ahmet U.; Feldman, Charles L.

    2010-03-01

    We present a computational method for commodity hardware-based clinical cardiovascular diagnosis based on accurate simulation of cardiovascular blood flow. Our approach leverages the flexibility of the Lattice Boltzmann method to implementation on high-performance, commodity hardware, such as Graphical Processing Units. We developed the procedure for the analysis of real-life cardiovascular blood flow case studies, namely, anatomic data acquisition, geometry and mesh generation, flow simulation and data analysis and visualization. We demonstrate the usefulness of our computational tool through a set of large-scale simulations of the flow patterns associated with the arterial tree of a patient which involves two hundred million computational cells. The simulations show evidence of a very rich and heterogeneous endothelial shear stress pattern (ESS), a quantity of recognized key relevance to the localization and progression of major cardiovascular diseases, such as atherosclerosis, and set the stage for future studies involving pulsatile flows.

  7. Effects on regional cerebral blood flow of transcendental meditation.

    PubMed

    Jevning, R; Anand, R; Biedebach, M; Fernando, G

    1996-03-01

    Previous blood flow measurements in this laboratory have indicated increased nonrenal nonhepatic blood flow during behaviorally induced rest states, especially during the stylized mental technique of transcendental meditation (TM). We have hypothesized that increased cerebral blood flow (CBF) may account for most of the increased nonrenal nonhepatic blood flow during TM. In this report we describe increased frontal and occipital CBF in TM determined by the electrical impedance plethysmographic methodology known as rheoencephalography (REG), which allows noninvasive, nondisturbing, continuous CBF monitoring. We also report high correlation between increased CBF and decreased cerebrovascular resistance (CVR) during TM, suggesting that a contributing vascular mechanism to the increased CBF may be decreased CVR. Because only a small amount of stage 1 sleep was observed during TM and because stage 1 sleep has been reported to be accompanied by decreased CBF, we believe that sleep did not contribute to the CBF increase. The data of this study are consistent with the hypothesis that blood flow changes during TM comprise a patterned response subserving needs of increased cerebral activity.

  8. Regional neurohypophysial and hypothalamic blood flow in rats during hypercapnia

    SciTech Connect

    Bryan, R.M. Jr.; Myers, C.L.; Page, R.B.

    1988-08-01

    Regional cerebral blood flow (rCBF) was measured in the neurohypophysis and hypothalamus in normocapnic and hypercapnic rats using (/sup 14/C)isopropyliodoamphetamine. Rats were surgically prepared using nitrous oxide and halothane and placed in plaster restraining casts. Hypercapnia was produced by increasing the fractional concentration of inspired CO/sub 2/ (FICO/sub 2/). rCBF in normocapnic rats was higher in the paraventricular nucleus, supraoptic nucleus, median eminence, and neural lobe than rates previously measured by use of diffusible tracers. During hypercapnia blood flow increased linearly with arterial PCO/sub 2/ (PACO/sub 2/) in all regions except the median eminence and neural lobe, which were not affected by hypercapnia. When rats were pretreated with phentolamine (1 mg/kg) to block the alpha-adrenergic receptors, blood flow in the median eminence and neural lobe increased significantly during hypercapnia. We conclude that blood flow in the cell bodies of the paraventricular nucleus and supraoptic nucleus is regulated differently during hypercapnia than blood flow in the nerve terminals in the median eminence and neural lobe. Furthermore, vasodilation produced by increased CO/sub 2/ is offset by alpha-receptor stimulation in the median eminence and neural lobe.

  9. Effects of Aortic Irregularities on the Blood Flow

    NASA Astrophysics Data System (ADS)

    Gutmark-Little, Iris; Prahl-Wittberg, Lisa; van Wyk, Stevin; Mihaescu, Mihai; Fuchs, Laszlo; Backeljauw, Philippe; Gutmark, Ephraim

    2013-11-01

    Cardiovascular defects characterized by geometrical anomalies of the aorta and its effect on the blood flow are investigated. The flow characteristics change with the aorta geometry and the rheological properties of the blood. Flow characteristics such as wall shear stress often play an important role in the development of vascular disease. In the present study, blood is considered to be non-Newtonian and is modeled using the Quemada model, an empirical model that is valid for different red blood cell loading. Three patient-specific aortic geometries are studied using Large Eddy Simulations (LES). The three geometries represent malformations that are typical in patients populations having a genetic disorder called Turner syndrome. The results show a highly complex flow with regions of recirculation that are enhanced in two of the three aortas. Moreover, blood flow is diverted, due to the malformations, from the descending aorta to the three side branches of the arch. The geometry having an elongated transverse aorta has larger areas of strong oscillatory wall shear stress.

  10. Sex differences of human cortical blood flow and energy metabolism.

    PubMed

    Aanerud, Joel; Borghammer, Per; Rodell, Anders; Jónsdottir, Kristjana Y; Gjedde, Albert

    2017-07-01

    Brain energy metabolism is held to reflect energy demanding processes in neuropil related to the density and activity of synapses. There is recent evidence that men have higher density of synapses in temporal cortex than women. One consequence of these differences would be different rates of cortical energy turnover and blood flow in men and women. To test the hypotheses that rates of oxygen consumption (CMRO2) and cerebral blood flow are higher in men than in women in regions of cerebral cortex, and that the differences persist with aging, we used positron emission tomography to determine cerebral blood flow and cerebral metabolic rate of oxygen as functions of age in healthy volunteers of both sexes. Cerebral metabolic rate of oxygen did not change with age for either sex and there were no differences of mean values of cerebral metabolic rate of oxygen between men and women in cerebral cortex. Women had significant decreases of cerebral blood flow as function of age in frontal and parietal lobes. Young women had significantly higher cerebral blood flow than men in frontal and temporal lobes, but these differences had disappeared at age 65. The absent sex difference of cerebral energy turnover suggests that the known differences of synaptic density between the sexes are counteracted by opposite differences of individual synaptic activity.

  11. Effect of carbohydrate on portal vein blood flow during exercise.

    PubMed

    Rehrer, N J; Goes, E; DuGardeyn, C; Reynaert, H; DeMeirleir, K

    2005-04-01

    Effects of carbohydrate ingestion and exercise on portal vein blood flow were studied. Flow was measured by pulsed-electronic Doppler. Eight male subjects performed four tests after a standardised breakfast and 5 h fast. Beverages were CHO (10 % glucose, 30 mmol . l (-1) NaCl) and W (water, 30 mmol . l (-1) NaCl). Exercise experiments comprised a resting measurement, 10 min warm-up and 60 min 70 % VO(2)max cycling. Every 10 min subjects stopped cycling briefly (approximately 30 s) for measurements. Beverage was consumed after warm-up (500 ml) and at 20 and 40 min (250 ml). Similar tests were done at rest. Blood samples were taken concurrently with flow measurements for hormonal concentrations. Exercise decreased blood flow (repeated measures ANOVA, p < 0.0001) and carbohydrate ingestion increased flow (p = 0.015). At rest, flow was greater with CHO than with W at 20 (177 +/- 31; 101 +/- 25 %, resp.) (mean +/- SE), 30 (209 +/- 37; 120 +/- 20 %), 40 (188 +/- 32; 108 +/- 12 %), and 60 min (195 +/- 19; 112 +/- 12 %) (1-way ANOVA, Fisher's PLSD, p < 0.05). Flow was similar during exercise with CHO and W, with a tendency for CHO to maintain flow better, at 10 (124 +/- 27; 77 +/- 21 %), 20 (81 +/- 10; 60 +/- 13 %), 30 (106 +/- 26; 56 +/- 10 %), 40 (109 +/- 28; 54 +/- 8 %), 50 (85 +/- 17; 54 +/- 13 %), and 60 min (61 +/- 15; 47 +/- 7 %). A positive correlation between glucagon and flow and an inverse correlation between noradrenaline and flow were observed. Exercise reduces, and carbohydrate increases, portal vein flow. Changes in plasma concentrations suggest that noradrenaline and glucagon, respectively, may play a role in modulating flow.

  12. One dimensional blood flow in a planetocentric orbit

    NASA Astrophysics Data System (ADS)

    Haranas, Ioannis; Gkigkitzis, Ioannis

    2012-05-01

    All life on earth is accustomed to the presence of gravity. When gravity is altered, biological processes can go awry. It is of great importance to ensure safety during a spaceflight. Long term exposure to microgravity can trigger detrimental physiological responses in the human body. Fluid redistribution coupled with fluid loss is one of the effects. In particular, in microgravity blood volume is shifted towards the thorax and head. Sympathetic nervous system-induced vasoconstriction is needed to maintain arterial pressure, while venoconstriction limits venous pooling of blood prevents further reductions in venous return of blood to the heart. In this paper, we modify an existing one dimensional blood flow model with the inclusion of the hydrostatic pressure gradient that further depends on the gravitational field modified by the oblateness and rotation of the Earth. We find that the velocity of the blood flow VB is inversely proportional to the blood specific volume d, also proportional to the oblateness harmonic coefficient J2, the angular velocity of the Earth ωE, and finally proportional to an arbitrary constant c. For c = -0.39073 and ξH = -0.5 mmHg, all orbits result to less blood flow velocities than that calculated on the surface of the Earth. From all considered orbits, elliptical polar orbit of eccentricity e = 0.2 exhibit the largest flow velocity VB = 1.031 m/s, followed by the orbits of inclination i = 45°and 0°. The Earth's oblateness and its rotation contribute a 0.7% difference to the blood flow velocity.

  13. Characterizing pulmonary blood flow distribution measured using arterial spin labeling.

    PubMed

    Henderson, A Cortney; Prisk, G Kim; Levin, David L; Hopkins, Susan R; Buxton, Richard B

    2009-12-01

    The arterial spin labeling (ASL) method provides images in which, ideally, the signal intensity of each image voxel is proportional to the local perfusion. For studies of pulmonary perfusion, the relative dispersion (RD, standard deviation/mean) of the ASL signal across a lung section is used as a reliable measure of flow heterogeneity. However, the RD of the ASL signals within the lung may systematically differ from the true RD of perfusion because the ASL image also includes signals from larger vessels, which can reflect the blood volume rather than blood flow if the vessels are filled with tagged blood during the imaging time. Theoretical studies suggest that the pulmonary vasculature exhibits a lognormal distribution for blood flow and thus an appropriate measure of heterogeneity is the geometric standard deviation (GSD). To test whether the ASL signal exhibits a lognormal distribution for pulmonary blood flow, determine whether larger vessels play an important role in the distribution, and extract physiologically relevant measures of heterogeneity from the ASL signal, we quantified the ASL signal before and after an intervention (head-down tilt) in six subjects. The distribution of ASL signal was better characterized by a lognormal distribution than a normal distribution, reducing the mean squared error by 72% (p < 0.005). Head-down tilt significantly reduced the lognormal scale parameter (p = 0.01) but not the shape parameter or GSD. The RD increased post-tilt and remained significantly elevated (by 17%, p < 0.05). Test case results and mathematical simulations suggest that RD is more sensitive than the GSD to ASL signal from tagged blood in larger vessels, a probable explanation of the change in RD without a statistically significant change in GSD. This suggests that the GSD is a useful measure of pulmonary blood flow heterogeneity with the advantage of being less affected by the ASL signal from tagged blood in larger vessels.

  14. Effects of sleep state and feeding on cranial blood flow of the human neonate.

    PubMed Central

    Rahilly, P M

    1980-01-01

    Jugular venous occlusion plethysmography was performed on sleeping babies. Cranial blood flow (CBF) was calculated by correcting for noncompressible drainage pathways. Sleep state of the baby was monitored using clinical and EEG criteria. In 20 babies CBF was consistently higher in rapid eye movement (REM) sleep compared with nonREM sleep (mean difference 24.2%). In 7 babies systolic blood pressure was consistently higher in REM sleep (mean 20.2%). There was no correlation between the degree of change in blood pressure and CBF. In 11 babies in whom CBF was measured at known times after feeding, there was a consistently lower flow rate during the first hour compared with 2 hours later (mean difference 34.5%). The degree of change was unrelated to amount of feed taken, despite the method of test weighing being demonstrably accurate. PMID:7416775

  15. Femoral Blood Flow and Cardiac Output During Blood Flow Restricted Leg Press Exercise

    NASA Technical Reports Server (NTRS)

    Everett, M. E.; Hackney, K.; Ploutz-Snyder, L.

    2011-01-01

    Low load blood flow restricted resistance exercise (LBFR) causes muscle hypertrophy that may be stimulated by the local ischemic environment created by the cuff pressure. However, local blood flow (BF) during such exercise is not well understood. PURPOSE: To characterize femoral artery BF and cardiac output (CO) during leg press exercise (LP) performed at a high load (HL) and low load (LL) with different levels of cuff pressure. METHODS: Eleven subjects (men/women 4/7, age 31.4+/-12.8 y, weight 68.9+/-13.2 kg, mean+/-SD) performed 3 sets of supine left LP to fatigue with 90 s of rest in 4 conditions: HL (%1-RM/cuff pressure: 80%/0); LL (20%/0); LBFR(sub DBP) (20%/1.3 x diastolic blood pressure, BP); LBFR(sub SBP) (20%/1.3 x supine systolic BP). The cuff remained inflated throughout the LBFR exercise sessions. Artery diameter, velocity time integral (VTI), and stroke volume (SV) were measured using Doppler ultrasound at rest and immediately after each set of exercise. Heart rate (HR) was monitored using a 3-lead ECG. BF was calculated as VTI x vessel cross-sectional area. CO was calculated as HR x SV. The data obtained after each set of exercise were averaged and used for analyses. Multi-level modeling was used to determine the effect of exercise condition on dependent variables. Statistical significance was set a priori at p< 0.05. RESULTS: Artery diameter did not change from baseline. BF increased (p<0.05) after exercise in each condition except LBFR(sub SBP) in the order of HL (12.73+/-1.42 cm3,mean+/-SE) > LL (9.92+/-0.82 cm3) > LBFR(sub dBP)(6.47+/-0.79 cm3) > LBFR(sub SBP) (3.51+/-0.59 cm3). Blunted exercise induced increases occurred in HR, SV, and CO after LBFR compared to HL and LL. HR increased 45% after HL and LL and 28% after LBFR (p<0.05), but SV increased (p<0.05) only after HL. Consequently, the increase (p<0.05) in CO was greater in HL and LL (approximately 3 L/min) than in LBFR (approximately 1 L/min). CONCLUSION: BF during LBFR(sub SBP) was 1/3 of

  16. Pulmonary blood flow distribution after banding of pulmonary artery.

    PubMed Central

    Samánek, M; Fiser, B; Ruth, C; Tůma, S; Hucín, B

    1975-01-01

    Radioisotope lung scanning was used to investigate the distribution of pulmonary blood flow after banding of the pulmonary artery in children with a left-to-right shunt and pulmonary hypertension. An abnormal distribution of blood flow in the lung on the side of the operation approach was observed in all patients in the first three weeks following surgery. Abnormalities were still observed in 17 of 21 children 10 months to more than 8 years after the banding operation. There was no significant relation between the occurrence of these abnormalities and time after surgery. Diminished flow to the zones of the right lung was observed less frequently. The incidence of abnormalities in flow distribution was also high preoperatively. Respiratory complications in infants with large left-to-right shunts were considered to be responsible for most of the abnormal blood flow distributions observed. Radioactive lung scanning was found to be a valuable diagnostic method in the early and late postoperative period in infants and small children. It was more sensitive than the other techniques used in revealing deviation of blood flow from one lung in those cases with shifting of the applied band. Images PMID:1111558

  17. Nonuniform blood flow in the canine left ventricle.

    PubMed

    Flynn, A E; Coggins, D L; Austin, R E; Muehrcke, D D; Aldea, G S; Goto, M; Doucette, J W; Hoffman, J I

    1990-11-01

    In order to investigate the relationship between coronary perfusion pressure and blood flow distribution in the left ventricle (LV), we measured myocardial blood flow in small regions using radioactive microspheres in six anesthetized, open-chest dogs. Mean coronary perfusion pressure (CPP) was controlled with a femoral artery to left main coronary artery shunt which included a pressurized, servo-controlled blood reservoir. In each dog, we measured flow in 192 regions of the LV free wall (mean weight per region = 206 +/- 38 mg) at different perfusion pressures. At CPP = 80 mm Hg, blood flow to individual regions varied fourfold (0.30 to 1.18 ml/min/g; relative dispersion (RD) = 21.8 +/- 2.3%). At CPP = 50 mm Hg, flow varied over sevenfold (0.08 to 0.60 ml/min/g; RD = 42.8 +/- 10%; P less than 0.01 vs 80 mm Hg). This relationship between flow variability and CPP was present within individual LV layers as well between layers and is much higher than the error associated with the microsphere technique. We conclude that blood flow to small regions of the LV is markedly nonuniform. This heterogeneity becomes more profound at lower CPP. These findings suggest that (1) global measurements of coronary flow must be interpreted with caution, and (2) even in hearts with normal coronary arteries some regions of the LV are more susceptible to ischemia than others. In addition, these findings may help explain the patchy nature of myocardial damage that occurs following periods of low coronary pressure or inadequate myocardial protection during cardiopulmonary bypass.

  18. Optimally Repeatable Kinetic Model Variant for Myocardial Blood Flow Measurements with 82Rb PET

    PubMed Central

    deKemp, Robert A.; Renaud, Jennifer M.; Adler, Andy; Beanlands, Rob S. B.; Klein, Ran

    2017-01-01

    Purpose. Myocardial blood flow (MBF) quantification with 82Rb positron emission tomography (PET) is gaining clinical adoption, but improvements in precision are desired. This study aims to identify analysis variants producing the most repeatable MBF measures. Methods. 12 volunteers underwent same-day test-retest rest and dipyridamole stress imaging with dynamic 82Rb PET, from which MBF was quantified using 1-tissue-compartment kinetic model variants: (1) blood-pool versus uptake region sampled input function (Blood/Uptake-ROI), (2) dual spillover correction (SOC-On/Off), (3) right blood correction (RBC-On/Off), (4) arterial blood transit delay (Delay-On/Off), and (5) distribution volume (DV) constraint (Global/Regional-DV). Repeatability of MBF, stress/rest myocardial flow reserve (MFR), and stress/rest MBF difference (ΔMBF) was assessed using nonparametric reproducibility coefficients (RPCnp = 1.45 × interquartile range). Results. MBF using SOC-On, RVBC-Off, Blood-ROI, Global-DV, and Delay-Off was most repeatable for combined rest and stress: RPCnp = 0.21 mL/min/g (15.8%). Corresponding MFR and ΔMBF RPCnp were 0.42 (20.2%) and 0.24 mL/min/g (23.5%). MBF repeatability improved with SOC-On at stress (p < 0.001) and tended to improve with RBC-Off at both rest and stress (p < 0.08). DV and ROI did not significantly influence repeatability. The Delay-On model was overdetermined and did not reliably converge. Conclusion. MBF and MFR test-retest repeatability were the best with dual spillover correction, left atrium blood input function, and global DV. PMID:28293274

  19. Bone Blood Flow During Simulated Microgravity: Physiological and Molecular Mechanisms

    NASA Technical Reports Server (NTRS)

    Bloomfield, Susan A.

    1999-01-01

    Blood flow to bone has been shown to affect bone mass and presumably bone strength. Preliminary data indicate that blood flow to the rat femur decreases after 14 days of simulated microgravity, using hindlimb suspension (HLS). If adult rats subjected to HLS are given dobutamine, a synthetic catecholamine which can cause peripheral vasodilation and increased blood flow, the loss of cortical bone area usually observed is prevented. Further, mechanisms exist at the molecular level to link changes in bone blood flow to changes in bone cell activity, particularly for vasoactive agents like nitric oxide (NO). The decreases in fluid shear stress created by fluid flow associated with the shifts of plasma volume during microgravity may result in alterations in expression of vasoactive agents such as NO, producing important functional effects on bone cells. The primary aim of this project is to characterize changes in 1) bone blood flow, 2) indices of bone mass, geometry, and strength, and 3) changes in gene expression for modulators of nitric oxide activity (e.g., nitric oxide synthase) and other candidate genes involved in signal transduction of mechanical loading after 3, 7, 14, 21, and 28 days of HLS in the adult rat. Using a rat of at least 5 months of age avoids inadvertently studying effects of simulated microgravity on growing, rather than adult, bone. Utilizing the results of these studies, we will then define how altered blood flow contributes to changes in bone with simulated microgravity by administering a vasodilatory agent (which increases blood flow to tissues) during hindlimb suspension. In all studies, responses in the unloaded hindlimb bones (tibial shaft, femoral neck) will be compared with those in the weightbearing humeral shaft and the non-weightbearing calvarium (skull) from the same animal. Bone volumetric mineral density and geometry will be quantified by peripheral quantitative CT; structural and material properties of the long bones will be

  20. Characteristics of pulsatile blood flow through the curved bileaflet mechanical heart valve installed in two different types of blood vessels: velocity and pressure of blood flow.

    PubMed

    Bang, Jin Seok; Yoo, Song Min; Kim, Chang Nyung

    2006-01-01

    The aim of this study was to investigate the flow fields of blood flowing through the curved bileaflet mechanical heart valve. A numerical analysis was carried out with the fluid-structure interaction between the blood flow and the motion of leaflets in two different types of blood vessels (type A, with sinus blood vessel, and type B, without sinus blood vessel). When the leaflet was fully opened, a fluttering phenomenon was detected in association with the blood flow, and recirculation flows were observed in the sinus region of the blood vessel for type A. During the closing phase, regurgitation was formed between the ring and the edge of the each leaflet for both types. When the leaflet came into contact with the valve ring at the end of the closing phase, rebound of the leaflet occurred. In consideration of the entire domain, the pressure drop occurs mainly in the valve region. The present results showed tendencies similar to those obtained by previous experiments for blood flow and contribute to the development of the curved bileaflet mechanical heart valve prostheses.

  1. Heart blood flow simulation: a perspective review.

    PubMed

    Doost, Siamak N; Ghista, Dhanjoo; Su, Boyang; Zhong, Liang; Morsi, Yosry S

    2016-08-25

    Cardiovascular disease (CVD), the leading cause of death today, incorporates a wide range of cardiovascular system malfunctions that affect heart functionality. It is believed that the hemodynamic loads exerted on the cardiovascular system, the left ventricle (LV) in particular, are the leading cause of CVD initiation and propagation. Moreover, it is believed that the diagnosis and prognosis of CVD at an early stage could reduce its high mortality and morbidity rate. Therefore, a set of robust clinical cardiovascular assessment tools has been introduced to compute the cardiovascular hemodynamics in order to provide useful insights to physicians to recognize indicators leading to CVD and also to aid the diagnosis of CVD. Recently, a combination of computational fluid dynamics (CFD) and different medical imaging tools, image-based CFD (IB-CFD), has been widely employed for cardiovascular functional assessment by providing reliable hemodynamic parameters. Even though the capability of CFD to provide reliable flow dynamics in general fluid mechanics problems has been widely demonstrated for many years, up to now, the clinical implications of the IB-CFD patient-specific LVs have not been applicable due to its limitations and complications. In this paper, we review investigations conducted to numerically simulate patient-specific human LV over the past 15 years using IB-CFD methods. Firstly, we divide different studies according to the different LV types (physiological and different pathological conditions) that have been chosen to reconstruct the geometry, and then discuss their contributions, methodologies, limitations, and findings. In this regard, we have studied CFD simulations of intraventricular flows and related cardiology insights, for (i) Physiological patient-specific LV models, (ii) Pathological heart patient-specific models, including myocardial infarction, dilated cardiomyopathy, hypertrophic cardiomyopathy and hypoplastic left heart syndrome. Finally, we

  2. A numerical study of blood flow using mixture theory

    PubMed Central

    Wu, Wei-Tao; Aubry, Nadine; Massoudi, Mehrdad; Kim, Jeongho; Antaki, James F.

    2014-01-01

    In this paper, we consider the two dimensional flow of blood in a rectangular microfluidic channel. We use Mixture Theory to treat this problem as a two-component system: One component is the red blood cells (RBCs) modeled as a generalized Reiner–Rivlin type fluid, which considers the effects of volume fraction (hematocrit) and influence of shear rate upon viscosity. The other component, plasma, is assumed to behave as a linear viscous fluid. A CFD solver based on OpenFOAM® was developed and employed to simulate a specific problem, namely blood flow in a two dimensional micro-channel, is studied. Finally to better understand this two-component flow system and the effects of the different parameters, the equations are made dimensionless and a parametric study is performed. PMID:24791016

  3. The effect of ice packs upon nasal mucosal blood flow.

    PubMed

    Porter, M; Marais, J; Tolley, N

    1991-01-01

    The effect on nasal mucosal blood flow of ice packs on the forehead and ice packs within the mouth was investigated in 16 healthy subjects. The laser Doppler flowmeter was used to record changes in blood flow to the inferior turbinate, as measured by change in the flux. Ice packs within the mouth produced a significant decrease in nasal mucosal blood flow (p less than 0.05). The average fall was 23% (SEM 5.9) compared with the control measurements. No significant change was recorded following the application of ice packs to the forehead. The results of this study question the scientific rationale behind the use of forehead ice packs in clinical practice.

  4. Renal blood flow in man with essential hypertension.

    PubMed

    London, G M; Safar, M E; Marchais, S

    1986-01-01

    Abnormalities in renal blood flow in man with sustained essential hypertension are reviewed with emphasis on four points: renal blood flow is decreased not only per unit square meter but also as a fraction of cardiac output, a result which is not observed in other organs, the relationship between cardiac output and renal blood flow is reset, so that restriction of arteriolar renal vessels is dominantly preglomerular in origin, the renal abnormalities may be reversed by alpha-blockade, suggesting an important contribution of the autonomic nervous system, and, finally, the normal sodium balance in steady-state conditions is achieved through adaptive mechanisms involving the venous system and resulting in decreased venous compliance and increased postglomerular and venous hydrostatic pressures.

  5. Intraoperative multi-exposure speckle imaging of cerebral blood flow.

    PubMed

    Richards, Lisa M; Kazmi, Sm Shams; Olin, Katherine E; Waldron, James S; Fox, Douglas J; Dunn, Andrew K

    2017-01-01

    Multiple studies have demonstrated that laser speckle contrast imaging (LSCI) has high potential to be a valuable cerebral blood flow monitoring technique during neurosurgery. However, the quantitative accuracy and sensitivity of LSCI is limited, and highly dependent on the exposure time. An extension to LSCI called multi-exposure speckle imaging (MESI) overcomes these limitations, and was evaluated intraoperatively in patients undergoing brain tumor resection. This clinical study ( n = 8) recorded multiple exposure times from the same cortical tissue area spanning 0.5-20 ms, and evaluated images individually as single-exposure LSCI and jointly using the MESI model. This study demonstrated that the MESI estimates provided the broadest flow sensitivity for sampling the flow magnitude in the human brain, closely followed by the shorter exposure times. Conservation of flow analysis on vascular bifurcations was used to validate physiological accuracy, with highly conserved flow estimates (<10%) from both MESI and 1 ms LSCI ( n = 14 branches). The MESI model had high goodness-of-fit with proper image calibration and acquisition, and was used to monitor blood flow changes after tissue cautery. Results from this study demonstrate that intraoperative MESI can be performed with high quantitative accuracy and sensitivity for cerebral blood flow monitoring.

  6. Flow of Red Blood Cells in Stenosed Microvessels

    PubMed Central

    Vahidkhah, Koohyar; Balogh, Peter; Bagchi, Prosenjit

    2016-01-01

    A computational study is presented on the flow of deformable red blood cells in stenosed microvessels. It is observed that the Fahraeus-Lindqvist effect is significantly enhanced due to the presence of a stenosis. The apparent viscosity of blood is observed to increase by several folds when compared to non-stenosed vessels. An asymmetric distribution of the red blood cells, caused by geometric focusing in stenosed vessels, is observed to play a major role in the enhancement. The asymmetry in cell distribution also results in an asymmetry in average velocity and wall shear stress along the length of the stenosis. The discrete motion of the cells causes large time-dependent fluctuations in flow properties. The root-mean-square of flow rate fluctuations could be an order of magnitude higher than that in non-stenosed vessels. Several folds increase in Eulerian velocity fluctuation is also observed in the vicinity of the stenosis. Surprisingly, a transient flow reversal is observed upstream a stenosis but not downstream. The asymmetry and fluctuations in flow quantities and the flow reversal would not occur in absence of the cells. It is concluded that the flow physics and its physiological consequences are significantly different in micro- versus macrovascular stenosis. PMID:27319318

  7. Flow of Red Blood Cells in Stenosed Microvessels

    NASA Astrophysics Data System (ADS)

    Vahidkhah, Koohyar; Balogh, Peter; Bagchi, Prosenjit

    2016-06-01

    A computational study is presented on the flow of deformable red blood cells in stenosed microvessels. It is observed that the Fahraeus-Lindqvist effect is significantly enhanced due to the presence of a stenosis. The apparent viscosity of blood is observed to increase by several folds when compared to non-stenosed vessels. An asymmetric distribution of the red blood cells, caused by geometric focusing in stenosed vessels, is observed to play a major role in the enhancement. The asymmetry in cell distribution also results in an asymmetry in average velocity and wall shear stress along the length of the stenosis. The discrete motion of the cells causes large time-dependent fluctuations in flow properties. The root-mean-square of flow rate fluctuations could be an order of magnitude higher than that in non-stenosed vessels. Several folds increase in Eulerian velocity fluctuation is also observed in the vicinity of the stenosis. Surprisingly, a transient flow reversal is observed upstream a stenosis but not downstream. The asymmetry and fluctuations in flow quantities and the flow reversal would not occur in absence of the cells. It is concluded that the flow physics and its physiological consequences are significantly different in micro- versus macrovascular stenosis.

  8. Coronary blood flow during cardiopulmonary resuscitation in swine

    SciTech Connect

    Bellamy, R.F.; DeGuzman, L.R.; Pedersen, D.C.

    1984-01-01

    Recent papers have raised doubt as to the magnitude of coronary blood flow during closed-chest cardiopulmonary resuscitation. We will describe experiments that concern the methods of coronary flow measurement during cardiopulmonary resuscitation. Nine anesthetized swine were instrumented to allow simultaneous measurements of coronary blood flow by both electromagnetic cuff flow probes and by the radiomicrosphere technique. Cardiac arrest was caused by electrical fibrillation and closed-chest massage was performed by a Thumper (Dixie Medical Inc., Houston). The chest was compressed transversely at a rate of 66 strokes/min. Compression occupied one-half of the massage cycle. Three different Thumper piston strokes were studied: 1.5, 2, and 2.5 inches. Mean aortic pressure and total systemic blood flow measured by the radiomicrosphere technique increased as Thumper piston stroke was lengthened (mean +/- SD): 1.5 inch stroke, 23 +/- 4 mm Hg, 525 +/- 195 ml/min; 2 inch stroke, 33 +/- 5 mm Hg, 692 +/- 202 ml/min; 2.5 inch stroke, 40 +/- 6 mm Hg, 817 +/- 321 ml/min. Both methods of coronary flow measurement (electromagnetic (EMF) and radiomicrosphere (RMS)) gave similar results in technically successful preparations (data expressed as percent prearrest flow mean +/- 1 SD): 1.5 inch stroke, EMF 12 +/- 5%, RMS 16 +/- 5%; 2 inch stroke, EMF 30 +/- 6%, RMS 26 +/- 11%; 2.5 inch stroke, EMF 50 +/- 12%, RMS 40 +/- 20%. The phasic coronary flow signal during closed-chest compression indicated that all perfusion occurred during the relaxation phase of the massage cycle. We concluded that coronary blood flow is demonstrable during closed-chest massage, but that the magnitude is unlikely to be more than a fraction of normal.

  9. Events at blood collection area due to nonconforming blood bags and plateletpheresis kits: need for timely corrective and preventive actions.

    PubMed

    Verma, Anupam; Sachan, Deepti; Elhence, Priti; Pandey, Hem; Dubey, Anju

    2012-07-01

    Good blood banking practice requires that every effort should be made to detect any deviation or defect in blood bank products and to identify any potential risk to blood donor or recipient(s). We report the findings of an exercise that provide an insight into why feedback from the user side is crucial. Various events involving blood bags and plateletpheresis kits and the corresponding appropriate actions instituted for remedial measures were recorded. These scattered events were recorded for 6 months following the use of a new batch of improved blood bags with add-on features. Several events related to plateletpheresis kits from three different manufacturers were also recorded for 1 year. The affected blood bags were utilized with no untoward incident. The complaint was closed following satisfactory response from the blood bag manufacturing company that acted in a timely manner in addressing the root causes of the problems. However, corrective and preventive actions (CAPA) could not be implemented for plateletpheresis kits. The rate of undesirable events was higher with plateletpheresis kits as compared with whole blood bags (1.75% vs. 0.06%). As defects or deviations that trigger the need for CAPA can stem from numerous sources, it is important to clearly identify and document the problems and level of risk so that appropriate investigations can be instituted and remedial actions can be taken in a timely manner. This study demonstrates the usefulness of a quality initiative to collate and analyze blood product faults in conjunction with blood product manufacturers. © 2012 American Association of Blood Banks.

  10. Diabetes augments in vivo microvascular blood flow dynamics after stroke.

    PubMed

    Tennant, Kelly A; Brown, Craig E

    2013-12-04

    Stroke usually affects people with underlying medical conditions. In particular, diabetics are significantly more likely to have a stroke and the prognosis for recovery is poor. Because diabetes is associated with degenerative changes in the vasculature of many organs, we sought to determine how hyperglycemia affects blood flow dynamics after an ischemic stroke. Longitudinal in vivo two-photon imaging was used to track microvessels before and after photothrombotic stroke in a diabetic mouse model. Chronic hyperglycemia exacerbated acute (3-7 d) ischemia-induced increases in blood flow velocity, vessel lumen diameter, and red blood cell flux in peri-infarct regions. These changes in blood flow dynamics were most evident in superficial blood vessels within 500 μm from the infarct, rather than deeper or more distant cortical regions. Long-term imaging of diabetic mice not subjected to stroke indicated that these acute stroke-related changes in vascular function could not be attributed to complications from hyperglycemia alone. Treating diabetic mice with insulin immediately after stroke resulted in less severe alterations in blood flow within the first 7 d of recovery, but had more variable results at later time points. Analysis of microvessel branching patterns revealed that stroke led to a pruning of microvessels in peri-infarct cortex, with very few instances of sprouting. These results indicate that chronic hyperglycemia significantly affects the vascular response to ischemic stroke and that insulin only partially mitigates these changes. The combination of these acute and chronic alterations in blood flow dynamics could underlie diabetes-related deficits in cortical plasticity and stroke recovery.

  11. Full dynamics of a red blood cell in shear flow.

    PubMed

    Dupire, Jules; Socol, Marius; Viallat, Annie

    2012-12-18

    At the cellular scale, blood fluidity and mass transport depend on the dynamics of red blood cells in blood flow, specifically on their deformation and orientation. These dynamics are governed by cellular rheological properties, such as internal viscosity and cytoskeleton elasticity. In diseases in which cell rheology is altered genetically or by parasitic invasion or by changes in the microenvironment, blood flow may be severely impaired. The nonlinear interplay between cell rheology and flow may generate complex dynamics, which remain largely unexplored experimentally. Under simple shear flow, only two motions, "tumbling" and "tank-treading," have been described experimentally and relate to cell mechanics. Here, we elucidate the full dynamics of red blood cells in shear flow by coupling two videomicroscopy approaches providing multidirectional pictures of cells, and we analyze the mechanical origin of the observed dynamics. We show that contrary to common belief, when red blood cells flip into the flow, their orientation is determined by the shear rate. We discuss the "rolling" motion, similar to a rolling wheel. This motion, which permits the cells to avoid energetically costly deformations, is a true signature of the cytoskeleton elasticity. We highlight a hysteresis cycle and two transient dynamics driven by the shear rate: an intermittent regime during the "tank-treading-to-flipping" transition and a Frisbee-like "spinning" regime during the "rolling-to-tank-treading" transition. Finally, we reveal that the biconcave red cell shape is highly stable under moderate shear stresses, and we interpret this result in terms of stress-free shape and elastic buckling.

  12. Kidney Function and Cerebral Blood Flow: The Rotterdam Study.

    PubMed

    Sedaghat, Sanaz; Vernooij, Meike W; Loehrer, Elizabeth; Mattace-Raso, Francesco U S; Hofman, Albert; van der Lugt, Aad; Franco, Oscar H; Dehghan, Abbas; Ikram, M Arfan

    2016-03-01

    CKD is linked with various brain disorders. Whereas brain integrity is dependent on cerebral perfusion, the association between kidney function and cerebral blood flow has yet to be determined. This study was performed in the framework of the population-based Rotterdam Study and included 2645 participants with mean age of 56.6 years (45% men). We used eGFR and albumin-to-creatinine ratio to assess kidney function and performed phase-contrast magnetic resonance imaging of basilar and carotid arteries to measure cerebral blood flow. Participants had an average (SD) eGFR of 86.3 (13.4) ml/min per 1.73 m(2) and a median (interquartile range) albumin-to-creatinine ratio of 3.4 (2.2-6.1) mg/g. In age- and sex-adjusted models, a higher albumin-to-creatinine ratio was associated with lower cerebral blood flow level (difference in cerebral blood flow [milliliters per minute per 100 ml] per doubling of the albumin-to-creatinine ratio, -0.31; 95% confidence interval, -0.58 to -0.03). The association was not present after adjustment for cardiovascular risk factors (P=0.10). Each 1 SD lower eGFR was associated with 0.42 ml/min per 100 ml lower cerebral blood flow (95% confidence interval, 0.01 to 0.83) adjusted for cardiovascular risk factors. Thus, in this population-based study, we observed that lower eGFR is independently associated with lower cerebral blood flow.

  13. Regional Myocardial Blood Flow and Ultrastructure Following Acute Temporary Ischemia.

    DTIC Science & Technology

    1982-01-01

    kidneys of dogs and cats , and suggest some element present in whole blood, but not present in filtered blood may serve to further damage ischemic...minutes of myocardial ischemia in the dog as Krug et al. (66) has reported in the cat . Finally, in this experiment the relationship of inhibited reflow...transient inhibition of flow. One has to wonder if their 6 cats with smaller areas of risk are more like the dogs in this study and may also have had

  14. The influence of gravity on regional lung blood flow in humans: SPECT in the upright and head-down posture.

    PubMed

    Ax, M; Sanchez-Crespo, A; Lindahl, S G E; Mure, M; Petersson, J

    2017-06-01

    Previous studies in humans have shown that gravity has little influence on the distribution of lung blood flow while changing posture from supine to prone. This study aimed to evaluate the maximal influence of posture by comparison of regional lung blood flow in the upright and head-down posture in 8 healthy volunteers, using a tilt table. Regional lung blood flow was marked by intravenous injection of macroaggregates of human albumin labeled with (99m)Tc or (113m)In, in the upright and head-down posture, respectively, during tidal breathing. Both radiotracers remain fixed in the lung after administration. The distribution of radioactivity was mapped using quantitative single photon emission computed tomography (SPECT) corrected for attenuation and scatter. All images were obtained supine during tidal breathing. A shift from upright to the head-down posture caused a clear redistribution of blood flow from basal to apical regions. We conclude that posture plays a role for the distribution of lung blood flow in upright humans, and that the influence of posture, and thereby gravity, is much greater in the upright and head-down posture than in horizontal postures. However, the results of the study demonstrate that lung structure is the main determinant of regional blood flow and gravity is a secondary contributor to the distribution of lung blood flow in the upright and head-down positions.NEW & NOTEWORTHY Using a dual-isotope quantitative SPECT method, we demonstrated that although a shift in posture redistributes blood flow in the direction of gravity, the results are also consistent with lung structure being a greater determinant of regional blood flow than gravity. To our knowledge, this is the first study to use modern imaging methods to quantify the shift in regional lung blood flow in humans at a change between the upright and head-down postures. Copyright © 2017 the American Physiological Society.

  15. Renal blood flow and oxygenation drive nephron progenitor differentiation.

    PubMed

    Rymer, Christopher; Paredes, Jose; Halt, Kimmo; Schaefer, Caitlin; Wiersch, John; Zhang, Guangfeng; Potoka, Douglas; Vainio, Seppo; Gittes, George K; Bates, Carlton M; Sims-Lucas, Sunder

    2014-08-01

    During kidney development, the vasculature develops via both angiogenesis (branching from major vessels) and vasculogenesis (de novo vessel formation). The formation and perfusion of renal blood vessels are vastly understudied. In the present study, we investigated the regulatory role of renal blood flow and O2 concentration on nephron progenitor differentiation during ontogeny. To elucidate the presence of blood flow, ultrasound-guided intracardiac microinjection was performed, and FITC-tagged tomato lectin was perfused through the embryo. Kidneys were costained for the vasculature, ureteric epithelium, nephron progenitors, and nephron structures. We also analyzed nephron differentiation in normoxia compared with hypoxia. At embryonic day 13.5 (E13.5), the major vascular branches were perfused; however, smaller-caliber peripheral vessels remained unperfused. By E15.5, peripheral vessels started to be perfused as well as glomeruli. While the interior kidney vessels were perfused, the peripheral vessels (nephrogenic zone) remained unperfused. Directly adjacent and internal to the nephrogenic zone, we found differentiated nephron structures surrounded and infiltrated by perfused vessels. Furthermore, we determined that at low O2 concentration, little nephron progenitor differentiation was observed; at higher O2 concentrations, more differentiation of the nephron progenitors was induced. The formation of the developing renal vessels occurs before the onset of blood flow. Furthermore, renal blood flow and oxygenation are critical for nephron progenitor differentiation. Copyright © 2014 the American Physiological Society.

  16. 1-D blood flow modelling in a running human body.

    PubMed

    Szabó, Viktor; Halász, Gábor

    2017-04-10

    In this paper an attempt was made to simulate blood flow in a mobile human arterial network, specifically, in a running human subject. In order to simulate the effect of motion, a previously published immobile 1-D model was modified by including an inertial force term into the momentum equation. To calculate inertial force, gait analysis was performed at different levels of speed. Our results show that motion has a significant effect on the amplitudes of the blood pressure and flow rate but the average values are not effected significantly.

  17. Spectral models for 1D blood flow simulations.

    PubMed

    Tamburrelli, Vincenzopio; Ferranti, Francesco; Antonini, Giulio; Cristina, Saverio; Dhaene, Tom; Knockaert, Luc

    2010-01-01

    In this paper we introduce a new theoretical formulation for the description of the blood flow in the circulatory system. Starting from a linearized version of the Navier-Stokes equations, the Green's function of the propagation problem is computed in a rational form. As a consequence, the input-output transfer function relating the upstream and downstream pressure and blood flow is written in a rational form as well, leading to a time-domain state-space model suitable for transient analysis. The proposed theoretical formulation has been validated by pertinent numerical results.

  18. Emissivity corrected infrared method for imaging anomalous structural heat flows

    DOEpatents

    Del Grande, Nancy K.; Durbin, Philip F.; Dolan, Kenneth W.; Perkins, Dwight E.

    1995-01-01

    A method for detecting flaws in structures using dual band infrared radiation. Heat is applied to the structure being evaluated. The structure is scanned for two different wavelengths and data obtained in the form of images. Images are used to remove clutter to form a corrected image. The existence and nature of a flaw is determined by investigating a variety of features.

  19. Blood flow and mass transfer regulation of coagulation

    PubMed Central

    Rana, Kuldeepsinh; Neeves, Keith B.

    2016-01-01

    Blood flow regulates coagulation and fibrin formation by controlling the transport, or mass transfer, of zymogens, co-factors, enzymes, and inhibitors to, from, and within a growing thrombus. The rate of mass transfer of these solutes relative to their consumption or production by coagulation reactions determines, in part, the rate of thrombin generation, fibrin deposition, and thrombi growth. Experimental studies on the influence of blood flow on specific coagulation reactions are reviewed here, along with a theoretical framework that predicts how flow influences surface-bound coagulation binding and enzymatic reactions. These flow-mediated transport mechanisms are also used to interpret the role of binding site densities and injury size on initiating coagulation and fibrin deposition. The importance of transport of coagulation proteins within the interstitial spaces of thrombi is shown to influence thrombi architecture, growth, and arrest. PMID:27133256

  20. Improved technique for blood flow velocity measurement using Doppler effect

    NASA Astrophysics Data System (ADS)

    Valadares Oliveira, Eduardo J.; Nantes Button, Vera L. d. S.; Maia, Joaquim M.; Costa, Eduardo T.

    2002-04-01

    The Doppler velocimeter developed allows to determine the angle between the ultrasonic beam and the velocity vector of the flow, and to calculate the precise blood flow in a vessel. Four piezoelectric transducers constitute the Doppler velocimeter. Three of these transducers are positioned to form an equilateral triangle (base of a pyramid). When these transducers move simultaneously, backward or forward from the initial position, the emitted ultrasonic beams focalize on a position (peak of the pyramid) closer or farther from the transducers faces, according to the depth of the vessel where we intend to measure de flow. The angle between the transducers allows adjusting the height of this pyramid and the position of the focus (where the three beams meet). A forth transducer is used to determine the diameter of the vessel and monitor the position of the Doppler velocimeter relative to the vessel. Simulation results showed that with this technique is possible to accomplish precise measurement of blood flow.

  1. Human placental lactogen decreases regional blood flow in anesthetized pigs.

    PubMed

    Grossini, E; Molinari, C; Battaglia, A; Mary, D A S G; Ribichini, F; Surico, N; Vacca, G

    2006-01-01

    In 22 pigs anesthetized with sodium pentobarbitone, changes in blood flow caused by infusion of human placental lactogen into the left renal, external iliac, and anterior descending coronary arteries were assessed using electromagnetic flowmeters. In 17 pigs, infusion of human placental lactogen whilst keeping the heart rate and arterial pressure constant decreased coronary, renal and iliac flow. In 5 additional pigs, increasing the dose of human placental lactogen produced a dose-related decrease in regional blood flow. The mechanisms of the above response were studied in 15 of the 17 pigs by repeating the experiment of infusion. The human placental lactogen-induced decrease in regional blood flow was not affected by blockade of cholinergic receptors (5 pigs) or of alpha-adrenergic receptors (5 pigs), but it was abolished by blockade of beta2-adrenergic receptors (5 pigs). The present study showed that intra-arterial infusion of human placental lactogen primarily decreased coronary, renal and iliac blood flow. The mechanism of this response was shown to be due to the inhibition of a vasodilatory beta2-adrenergic receptor-mediated effect.

  2. Quantitative assessment of human fetal renal blood flow.

    PubMed

    Veille, J C; Hanson, R A; Tatum, K; Kelley, K

    1993-12-01

    Our purpose was to longitudinally quantify human fetal renal blood flow. Twenty-two normal fetuses underwent a color-pulsed Doppler evaluation of the renal artery. The Doppler waveforms were digitized to assess the velocity-time integral. The size of the vessel was determined during systole with color high-resolution two-dimensional ultrasonography. Renal blood flow was estimated by multiplying the time-velocity integral (i.e., area under the curve) by the area of the renal artery. The combined cardiac output was calculated by adding right and left inflow Doppler-derived volumes. Renal artery size, peak flow velocity, time-velocity integral, and renal blood flow significantly increased with advancing gestational age. The resistivity indexes, such as the systolic/diastolic ratio or the Pourcelot index of the fetal renal artery, did not significantly change with advancing gestational age. The pulsatility index, however, was correlated with gestational age. The percentage of the combined cardiac output to the fetal kidney remained constant throughout gestation. Color pulsed Doppler can be used to visualize small and deep vascular structures in the human fetus. Renal blood flow increased with advancing gestational age. This increase seems to be related to the increase in the combined cardiac output.

  3. Impaired endothelial function and blood flow in repetitive strain injury.

    PubMed

    Brunnekreef, J; Brunnekreef, J J; Benda, N; Benda, N M M; Schreuder, T; Schreuder, T H A; Hopman, M; Hopman, M T E; Thijssen, D; Thijssen, D H J

    2012-10-01

    Repetitive Strain Injury (RSI) is a disabling upper extremity overuse injury that may be associated with pathophysiological changes in the vasculature. In this study we investigated whether RSI is associated with endothelial dysfunction and impaired exercise-induced blood flow in the affected forearm. 10 patients with RSI (age, 40.2 ± 10.3; BMI, 23.8 ± 3.3) and 10 gender- and age-matched control subjects (age, 38.0 ± 12.4; BMI, 22.7 ± 3.4) participated in this study. Brachial artery blood flow was measured at rest and during 3-min periods of isometric handgrip exercise at 15%, 30% and 45% of the individual maximal voluntary contraction. Brachial artery endothelial function was assessed as the flow mediated dilation (FMD), by measuring brachial artery diameter and velocity before and after 5-min ischemic occlusion. We found a lower exercise-induced brachial artery blood flow in patients with RSI than in controls (p=0.04). Brachial artery FMD was significantly lower in patients with RSI than in controls (p<0.01), whilst a lower FMD was also found in patient with unilateral RSI when comparing the affected arm with the non-affected arm (p=0.04). Our results suggest that patients with RSI have an attenuated exercise-induced blood flow and an impaired endothelial function in the affected arm. These findings importantly improve our understanding of the pathophysiological mechanism of RSI.

  4. Mass transfer to blood flowing through arterial stenosis

    NASA Astrophysics Data System (ADS)

    Sarifuddin; Chakravarty, Santabrata; Mandal, Prashanta Kumar; Andersson, Helge I.

    2009-03-01

    The present investigation deals with a mathematical model representing the mass transfer to blood streaming through the arteries under stenotic condition. The mass transport refers to the movement of atherogenic molecules, that is, blood-borne components, such as oxygen and low-density lipoproteins from flowing blood into the arterial walls or vice versa. The blood flowing through the artery is treated to be Newtonian and the arterial wall is considered to be rigid having differently shaped stenoses in its lumen arising from various types of abnormal growth or plaque formation. The nonlinear unsteady pulsatile flow phenomenon unaffected by concentration-field of the macromolecules is governed by the Navier-Stokes equations together with the equation of continuity while that of mass transfer is controlled by the convection-diffusion equation. The governing equations of motion accompanied by appropriate choice of the boundary conditions are solved numerically by MAC(Marker and Cell) method and checked numerical stability with desired degree of accuracy. The quantitative analysis carried out finally includes the respective profiles of the flow-field and concentration along with their distributions over the entire arterial segment as well. The key factors like the wall shear stress and Sherwood number are also examined for further qualitative insight into the flow and mass transport phenomena through arterial stenosis. The present results show quite consistency with several existing results in the literature which substantiate sufficiently to validate the applicability of the model under consideration.

  5. Accurate Blood Flow Measurements: Are Artificial Tracers Necessary?

    PubMed Central

    Poelma, Christian; Kloosterman, Astrid; Hierck, Beerend P.; Westerweel, Jerry

    2012-01-01

    Imaging-based blood flow measurement techniques, such as particle image velocimetry, have become an important tool in cardiovascular research. They provide quantitative information about blood flow, which benefits applications ranging from developmental biology to tumor perfusion studies. Studies using these methods can be classified based on whether they use artificial tracers or red blood cells to visualize the fluid motion. We here present the first direct comparison in vivo of both methods. For high magnification cases, the experiments using red blood cells strongly underestimate the flow (up to 50% in the present case), as compared to the tracer results. For medium magnification cases, the results from both methods are indistinguishable as they give the same underestimation of the real velocities (approximately 33%, based on in vitro reference measurements). These results suggest that flow characteristics reported in literature cannot be compared without a careful evaluation of the imaging characteristics. A method to predict the expected flow averaging behavior for a particular facility is presented. PMID:23028878

  6. Spring-network-based model of a red blood cell for simulating mesoscopic blood flow.

    PubMed

    Nakamura, Masanori; Bessho, Sadao; Wada, Shigeo

    2013-01-01

    We developed a mechanical model of a red blood cell (RBC) that is capable of expressing its characteristic behaviors in shear flows. The RBC was modeled as a closed shell membrane consisting of spring networks in the framework of the energy minimum concept. The fluid forces acting on RBCs were modeled from Newton's viscosity law and the conservation of momentum. In a steady shear flow, the RBC model exhibited various behaviors, depending on the shear rate; it tumbled, tank-treaded, or both. The transition from tumbling to tank-treading occurred at a shear rate of 20 s( - 1). The simulation of an RBC in steady and unsteady parallel shear flows (Couette flows) showed that the deformation parameters of the RBC were consistent with experimental results. The RBC in Poiseuille flow migrated radially towards the central axis of the flow channel. Axial migration became faster with an increase in the viscosity of the media, qualitatively consistent with experimental results. These results demonstrate that the proposed model satisfies the essential conditions for simulating RBC behavior in blood flow. Finally, a large-scale RBC flow simulation was implemented to show the capability of the proposed model for analyzing the mesoscopic nature of blood flow.

  7. Effect of warming and flow rate conditions of blood warmers on red blood cell integrity.

    PubMed

    Poder, T G; Pruneau, D; Dorval, J; Thibault, L; Fisette, J-F; Bédard, S K; Jacques, A; Beauregard, P

    2016-11-01

    Fluid warmers are routinely used to reduce the risk of hypothermia and cardiac complications associated with the infusion of cold blood products. However, warming blood products could generate haemolysis. This study was undertaken to compare the impact of temperature of blood warmers on the per cent haemolysis of packed red blood cells (RBCs) heated at different flow rates as well as non-flow conditions. Infusion warmers used were calibrated at 41·5°C ± 0·5°C and 37·5°C ± 0·5°C. Cold RBC units stored at 4°C in AS-3 (n = 30), aged 30-39 days old, were divided into half units before being allocated under two different scenarios (i.e. infusion pump or syringe). Blood warmers were effective to warm cold RBCs to 37·5°C or 41·5°C when used in conjunction with an infusion pump at flow rate up to 600 ml/h. However, when the warmed blood was held in a syringe for various periods of time, such as may occur in neonatal transfusions, the final temperature was below the expected requirements with measurement as low as 33·1°C. Increasing the flow with an infusion pump increased haemolysis in RBCs from 0·2% to up to 2·1% at a flow rate of 600 ml/h regardless of the warming device used (P < 0·05). No relevant increase of haemolysis was observed using a syringe. The use of a blood warmer adjusted to 41·5°C is probably the best choice for reducing the risk of hypothermia for the patient without generating haemolysis. However, we should be cautious with the use of an infusion pump for RBC transfusion, particularly at high flow rates. © 2016 International Society of Blood Transfusion.

  8. Blood Pump Development Using Rocket Engine Flow Simulation Technology

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin C.; Kwak, Dochan

    2002-01-01

    This viewgraph presentation provides information on the transfer of rocket engine flow simulation technology to work involving the development of blood pumps. Details are offered regarding the design and requirements of mechanical heart assist devices, or VADs (ventricular assist device). There are various computational fluid dynamics issues involved in the visualization of flow in such devices, and these are highlighted and compared to those of rocket turbopumps.

  9. Red blood cells flows in rectilinear microfluidic chip.

    PubMed

    Anandan, P; Ortiz, D; Intaglietta, M; Cabrales, P J; Bucolo, M

    2015-01-01

    The red blood cells flow in a controlled environment as a microfluidic chip with a rectilinear geometry was investigated. The optical monitoring performed by an automatic Particle Image Velocimetry procedure has allowed a quantitative analysis on flow features. Various parameters such as velocity, shear rate, strain rate, vorticity, divergence were extracted. The comparisons of the results obtained from the different experiments was used for the overall understanding of the RBC movements in different conditions and the establishment of the analysis procedure.

  10. Vortex method for blood flow through heart valves

    SciTech Connect

    McCracken, M.F.; Peskin, C.S.

    1980-04-01

    A combination vortex-grid method for solving the two-dimensional, incompressible Navier--Stokes equations in regions with complicated internal, elastic boundaries is presented. The authors believe the method to be applicable to the case of at least moderately high Reynolds number flow. The method is applied to the study of blood flow through the mammalian mitral valve. Previous work of Peskin is extended and the conjecture that the behavior of mammalian heart valves is independent of Reynolds number is supported.

  11. Ocular and orbital blood flow in cigarette smokers.

    PubMed

    Steigerwalt, R D; Laurora, G; Incandela, L; Cesarone, M R; Belcaro, G V; De Sanctis, M T

    2000-01-01

    To report the effect of cigarette smoking on the blood flow velocity of the ophthalmic artery (OA), central retinal artery (CRA), and posterior ciliary artery (PCA) in patients who smoke at least 20 cigarettes a day. The color duplex scanner was used to measure the systolic and diastolic flow velocity of the OA, CRA, and PCA in 10 smokers and 11 nonsmokers. Both the systolic and diastolic flow velocity decreased in the OA, CRA, and PCA in smokers compared with nonsmokers. The systolic flow decreased by as much as 36% and the diastolic flow by as much as 52%. This decrease was significant for the flow velocity of the CRA and PCA but not for the OA. An increase in the resistance index was also found. The authors believe that the decrease in the flow velocity of these vessels may be due to an increase in the vascular resistance of the vessels of the retina and optic nerve head in smokers. This may be important in patients with eye disease in whom altered blood flow already contributes to the ocular or orbital pathology.

  12. Esophageal blood flow in the cat. Normal distribution and effects of acid perfusion

    SciTech Connect

    Hollwarth, M.E.; Smith, M.; Kvietys, P.R.; Granger, D.N.

    1986-03-01

    The radioactive microsphere technique was used to estimate blood flow to different regions of the esophagus and to adjacent regions of the stomach before and after perfusion of the esophagus with hydrochloric acid (pH 1.5) for 5 min. Under resting conditions total blood flow, as well as blood flow to the mucosal-submucosal layer and the muscular layer, to both sphincters was significantly higher than to the esophageal body. Blood flow to the adjacent regions of the stomach was significantly higher than esophageal blood flow. Acid perfusion resulted in a large increase in total blood flow in both sphincters and the lower esophageal body. Gastric blood flow was not altered by acid perfusion. The esophageal hyperemia resulted primarily from an increase in blood flow to the muscular layer; mucosal-submucosal blood flow was increased only in the lower esophageal sphincter. The present study indicates that short periods (5 min) of gastroesophageal reflux may increase esophageal blood flow.

  13. Optical methods for correction of oxygen-transport characteristics of blood and their biomedical applications

    NASA Astrophysics Data System (ADS)

    Zalesskaya, G. A.; Akulich, N. V.; Marochkov, A. V.; Laskina, O. V.; Mit'kovskaya, N. P.

    2010-07-01

    We have carried out a comprehensive analysis of the spectral characteristics of blood and blood components, gas-exchange and oximetry parameters for venous and arterial blood, central hemodynamic parameters, and the results of a complete blood count and chemistry panel before and after extracorporeal UV irradiation of the blood (UBI, ultraviolet blood irradiation) or intravenous exposure of blood to low-intensity emission from an He-Ne laser (LBI, laser blood irradiation). We have demonstrated the possibility of correcting the oxygentransport characteristics of blood by laser optical methods based on photodissociation of blood oxyhemoglobin. We have shown that the therapeutic effects initiated both by UBI and LBI are based on a single mechanism: a change in the balance between production of active oxygen species and their inhibition by antioxidants. The data obtained are of interest not only for studying the primary (molecular) mechanisms of action for photohemotherapy and their effect on processes occurring in the living body, but also can provide a basis for designing next-generation laser optical instruments and for development of not yet existing methods for assessing the therapeutic efficacy of photohemotherapy.

  14. Melatonin differentially affects vascular blood flow in humans.

    PubMed

    Cook, Jonathan S; Sauder, Charity L; Ray, Chester A

    2011-02-01

    Melatonin is synthesized and released into the circulation by the pineal gland in a circadian rhythm. Melatonin has been demonstrated to differentially alter blood flow to assorted vascular beds by the activation of different melatonin receptors in animal models. The purpose of the present study was to determine the effect of melatonin on blood flow to various vascular beds in humans. Renal (Doppler ultrasound), forearm (venous occlusion plethysmography), and cerebral blood flow (transcranial Doppler), arterial blood pressure, and heart rate were measured in 10 healthy subjects (29±1 yr; 5 men and 5 women) in the supine position for 3 min. The protocol began 45 min after the ingestion of either melatonin (3 mg) or placebo (sucrose). Subjects returned at least 2 days later at the same time of day to repeat the trial after ingesting the other substance. Melatonin did not alter heart rate and mean arterial pressure. Renal blood flow velocity (RBFV) and renal vascular conductance (RVC) were lower during the melatonin trial compared with placebo (RBFV, 40.5±2.9 vs. 45.4±1.5 cm/s; and RVC, 0.47±0.02 vs. 0.54±0.01 cm·s(-1)·mmHg(-1), respectively). In contrast, forearm blood flow (FBF) and forearm vascular conductance (FVC) were greater with melatonin compared with placebo (FBF, 2.4±0.2 vs. 1.9±0.1 ml·100 ml(-1)·min(-1); and FVC, 0.029±0.003 vs. 0.023±0.002 arbitrary units, respectively). Melatonin did not alter cerebral blood flow measurements compared with placebo. Additionally, phentolamine (5-mg bolus) after melatonin reversed the decrease in RVC, suggesting that melatonin increases sympathetic outflow to the kidney to mediate renal vasoconstriction. In summary, exogenous melatonin differentially alters vascular blood flow in humans. These data suggest the complex nature of melatonin on the vasculature in humans.

  15. Acute effects of force and vibration on finger blood flow

    PubMed Central

    Bovenzi, M; Welsh, A J L; Vedova, A Della; Griffin, M J

    2006-01-01

    Objectives To investigate the effects of contact force at the finger on acute changes in finger circulation during exposure to vibration. Methods Each of 10 subjects attended 11 sessions in which they experienced five successive experimental 5‐minute periods: (i) no force and no vibration; (ii) force and no vibration; (iii) force and vibration; (iv) force and no vibration; (v) no force and no vibration. During periods (ii) to (iv), the intermediate phalanx of the right middle finger applied one of two forces (2 N or 5 N) on a platform that vibrated during period (iii) at one of two frequencies: 31.5 Hz (at 4 or 16 ms−2 r.m.s.) or 125 Hz (at 16 or 64 ms−2 r.m.s.). Finger blood flow was measured in the exposed right middle finger, the unexposed right little finger, and the unexposed left middle fingers throughout the 25 minutes of each session. Results The application of force alone caused a reduction in finger blood flow in the exposed finger, but not other fingers. There were additional reductions in finger blood flow caused by vibration, with greater reductions at the higher vibration magnitudes at both frequencies but no difference between the two frequencies when using unweighted acceleration. The vibration caused a similar vasoconstriction in vibrated and non‐vibrated fingers. Conclusions Modest levels of force applied by a finger can have a large effect on the finger blood flow, possibly due to the constriction of local blood vessels. The acute vascular effects of vibration cause additional reductions in finger blood flow that are not limited to the finger experiencing force and vibration. In all fingers (exposed and not exposed to vibration), the greater the magnitude of vibration, the greater the reduction in finger blood flow. In all fingers (exposed and not exposed to vibration), when the vibration was frequency weighted according to current standards, 125 Hz vibration caused greater reductions in finger blood flow than 31.5

  16. Regulation of human retinal blood flow by endothelin-1.

    PubMed

    Polak, Kaija; Luksch, Alexandra; Frank, Barbara; Jandrasits, Kerstin; Polska, Elzbieta; Schmetterer, Leopold

    2003-05-01

    There is evidence from in vitro and animal studies that endothelin is a major regulator of retinal blood flow. We set out to characterize the role of the endothelin-system in the blood flow control of the human retina. Two studies in healthy subjects were performed. The study design was randomized, placebo-controlled, double-masked, balanced, two-way crossover in protocol A and three way-way crossover in protocol B. In protocol A 18 healthy male subjects received intravenous endothelin-1 (ET-1) in a dose of 2.5 ng kg (-1)min(-1) for 30 min or placebo on two different study days and retinal vessel diameters were measured. In protocol B 12 healthy male subjects received ET-1 in stepwise increasing doses of 0, 1.25, 2.5 and 5 ng kg (-1)min(-1) (each infusion step over 20 min) in co-infusion with the specific ET(A)-receptor antagonist BQ123 (60 microg min (-1)) or placebo or BQ123 alone investigating retinal vessel diameters, retinal blood velocity and retinal blood flow. Measurements of retinal vessel size were done with the Zeiss retinal vessel analyzer. Measurements of blood velocities were done with bi-directional laser Doppler velocimetry. From these measurements retinal blood flow was calculated. In protocol A exogenous ET-1 tended to decrease retinal arterial diameter, but this effect was not significant versus placebo. No effect on retinal venous diameter was seen. In protocol B retinal venous blood velocity and retinal blood flow was significantly reduced after administration of exogenous ET-1. These effects were significantly blunted when BQ-123 was co-administered. By contrast, BQ-123 alone had no effect on retinal hemodynamic parameters. Concluding, BQ123 antagonizes the effects of exogenously administered ET-1 on retinal blood flow in healthy subjects. In addition, the results of the present study are compatible with the hypothesis that ET-1 exerts its vasoconstrictor effects in the retina mainly on the microvessels.

  17. Computational Biorheology of Human Blood Flow in Health and Disease

    PubMed Central

    Fedosov, Dmitry A.; Dao, Ming; Karniadakis, George Em; Suresh, Subra

    2014-01-01

    Hematologic disorders arising from infectious diseases, hereditary factors and environmental influences can lead to, and can be influenced by, significant changes in the shape, mechanical and physical properties of red blood cells (RBCs), and the biorheology of blood flow. Hence, modeling of hematologic disorders should take into account the multiphase nature of blood flow, especially in arterioles and capillaries. We present here an overview of a general computational framework based on dissipative particle dynamics (DPD) which has broad applicability in cell biophysics with implications for diagnostics, therapeutics and drug efficacy assessments for a wide variety of human diseases. This computational approach, validated by independent experimental results, is capable of modeling the biorheology of whole blood and its individual components during blood flow so as to investigate cell mechanistic processes in health and disease. DPD is a Lagrangian method that can be derived from systematic coarse-graining of molecular dynamics but can scale efficiently up to arterioles and can also be used to model RBCs down to the spectrin level. We start from experimental measurements of a single RBC to extract the relevant biophysical parameters, using single-cell measurements involving such methods as optical tweezers, atomic force microscopy and micropipette aspiration, and cell-population experiments involving microfluidic devices. We then use these validated RBC models to predict the biorheological behavior of whole blood in healthy or pathological states, and compare the simulations with experimental results involving apparent viscosity and other relevant parameters. While the approach discussed here is sufficiently general to address a broad spectrum of hematologic disorders including certain types of cancer, this paper specifically deals with results obtained using this computational framework for blood flow in malaria and sickle cell anemia. PMID:24419829

  18. Age and gender related differences in aortic blood flow

    NASA Astrophysics Data System (ADS)

    Enevoldsen, Marie Sand; Pedersen, Mads Møller; Hemmsen, Martin Christian; Lönn, Lars; Henneberg, Kaj-Åge; Jensen, Jørgen Arendt

    2012-03-01

    The abdominal aorta (AA) is predisposed to development of abdominal aneurysms (AAA), a focal dilatation with fatal consequences if left untreated. The blood flow patterns is thought to play an important role in the development of AAA. The purpose of this work is to investigate the blood flow patterns within a group of healthy volunteers (six females, eight males) aged 23 to 76 years to identify changes and differences related to age and gender. The healthy volunteers were categorized by gender (male/female) and age (below/above 35 years). Subject-specific flow and geometry data were acquired using the research interface on a Profocus ultrasound scanner (B-K Medical, Herlev, Denmark; segmentation of 3D magnetic resonance angiography (Magnetom Trio, Siemens Healthcare, Erlangen, Germany). The largest average diameter was among the elderly males (19.7 (+/- 1.33) mm) and smallest among the young females (12.4 (+/- 0.605) mm). The highest peak systolic velocity was in the young female group (1.02 (+/- 0.336) m/s) and lowest in the elderly male group (0.836 (+/- 0.127) m/s). A geometrical change with age was observed as the AA becomes more bended with age. This also affects the blood flow velocity patterns, which are markedly different from young to elderly. Thus, changes in blood flow patterns in the AA related to age and gender are observed. Further investigations are needed to determine the relation between changes in blood flow patterns and AAA development.

  19. Epilepsy, cerebral blood flow, and cerebral metabolic rate.

    PubMed

    Duncan, R

    1992-01-01

    Penfield's observations in the 1930s provided the first systematic evidence of changes in regional cerebral blood flow (rCBF) associated with focal seizures. Further studies in humans and animals confirmed increases in cerebral blood flow and metabolism during generalised seizures, but the interictal, ictal, and postictal changes in focal epilepsy have begun to be elucidated in the last decade with the advent of in vivo imaging techniques such as positron emission tomography (PET) and single photon emission computed tomography (SPECT) and, in the case of animal studies, of autoradiography. Most studies have been of temporal lobe epilepsy. Interictally, the characteristic finding has been reduced blood flow and/or metabolism in the affected temporal lobe, or more extensively in the ipsilateral hemisphere. The few studies to date of ictal or postictal changes have been of rCBF using SPECT. They show hyperperfusion of the whole temporal lobe ictally, hyperperfusion of the hippocampus, combined with hypoperfusion of lateral structures in the immediate postictal period. Later in the postictal period, hypoperfusion alone is seen. Studies of focal seizures in animals have shown hyperperfusion and hypermetabolism at the site of the focus often with widespread depression of both parameters in the ipsilateral neocortex. Limited studies of coupling between blood flow and metabolism in humans have suggested that flow during seizures is adequate for metabolic demand, although some animal studies have suggested localised areas of uncoupling. The results of modern in vivo imaging of ictal and postictal changes in blood flow and metabolism have correlated well with Penfield's observations, and these changes are now being used to help localise epileptic foci, allowing wider use of the surgical treatment he pioneered.

  20. [Measurement of cerebral blood flow by thermal diffusion using a flow probe with a Peltier stack].

    PubMed

    Yamagata, S; Kikuchi, H; Hashimoto, K; Minamikawa, J; Watanabe, Y

    1987-05-01

    In order to evaluate the blood flow by means of thermal diffusion, relationship between blood flow and parameters induced by thermal diffusion was investigated. Flow probe employed for measurement by thermal diffusion incorporated a Peltier stack which contained a small semiconductor and two L-shaped gold plates. These two plates were attached to both sides of the semiconductor by one side of each gold plate and the other side was surfaced with a tissue to be measured. Temperature gradient is created with current applied to the Peltier stack between two plates, one cooled and the other heated, and it is affected only by tissue blood flow. Two kinds of parameters of thermal diffusion were subjected to compare to blood flow. One was temperature gradient when the constant current was applied to the Peltier stack. The other was a current required to maintain a definite temperature gradient which was determined before hand. From the theoretical principle in thermodynamics, the correlations between blood flow and each of thermal diffusion parameters were defined by the following equations: (Formula: see text) where F is blood flow, delta V is voltage converted from temperature gradient, and Ci and Cv are constants. Each of phi v and phi i indicates the characteristics of each probe. Experimental study was carried out to confirm the above relationship using cortex of experimental animals. Under the general anesthesia, a cat was placed in prone position. After the craniotomy, dura mater was opened and a small flow probe, 10 mm in diameter, 5 mm in height and 5 g in weight, was placed on the cortex and blood flow was continuously evaluated by two parameters.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Emissivity corrected infrared method for imaging anomalous structural heat flows

    DOEpatents

    Del Grande, N.K.; Durbin, P.F.; Dolan, K.W.; Perkins, D.E.

    1995-08-22

    A method for detecting flaws in structures using dual band infrared radiation is disclosed. Heat is applied to the structure being evaluated. The structure is scanned for two different wavelengths and data obtained in the form of images. Images are used to remove clutter to form a corrected image. The existence and nature of a flaw is determined by investigating a variety of features. 1 fig.

  2. Temperature correction of arterial blood-gas parameters: A comparative review of methodology.

    PubMed

    Andritsch, R F; Muravchick, S; Gold, M I

    1981-09-01

    The need for accurate clinical diagnosis and appropriate intervention requires that a modern blood-gas laboratory have the means to correct for significant discrepancies between patient temperature and the temperature at which in vitro blood samples are analyzed. Recent advances in mini- and microcomputer technology permit application of any or all of the correction formulas above at modest cost and minimal inconvenience (See the Appendix). An expanded program for a TI-59 desk-top calculator and P-100C printer which gives labeled hard-copy readout of temperature-corrected pH, PCO2, PO2, and hemoglobin saturation values, as well as bicarbonate concentration and in vivo base excess is in daily clinical use in our operating room and is available from the authors upon request.

  3. Whole blood thallium determination by GFAAS with high-frequency modulation polarization Zeeman effect background correction.

    PubMed

    Solovyev, Nikolay D; Ivanenko, Natalya B; Ivanenko, Anatoly A

    2011-10-01

    A new technique of blood thallium direct determination based on graphite furnace atomic absorption spectrometry with Zeeman background absorption correction system was designed. The developed technique does not require sample digestion. Sample treatment includes only a fivefold per volume dilution of blood sample with 0.1% (m/v) Triton X-100. L'vov integrated platform was modified with 400 μg of Rh. Matrix modifier (200 μg NH(4)NO(3) and 160 μg Pd(NO(3))(2)) was suggested for coping chloride and blood organic matter interferences. Standard reference material (Clincheck® Plasma Control for trace elements) analysis was used for validation. Additional validation was performed by analyzing spiked blood samples in the whole dynamic range. The dynamic range was 2-50 μg/L. Precision (RSD) was found <12%. Blood thallium limit of detection was 0.2 μg/L.

  4. Cerebral blood flow modulation insufficiency in brain networks in multiple sclerosis: A hypercapnia MRI study.

    PubMed

    Marshall, Olga; Chawla, Sanjeev; Lu, Hanzhang; Pape, Louise; Ge, Yulin

    2016-12-01

    Cerebrovascular reactivity measures vascular regulation of cerebral blood flow and is responsible for maintaining healthy neurovascular coupling. Multiple sclerosis exhibits progressive neurodegeneration and global cerebrovascular reactivity deficits. This study investigates varied degrees of cerebrovascular reactivity impairment in different brain networks, which may be an underlying cause for functional changes in the brain, affecting long-distance projection integrity and cognitive function; 28 multiple sclerosis and 28 control subjects underwent pseudocontinuous arterial spin labeling perfusion MRI to measure cerebral blood flow under normocapnia (room air) and hypercapnia (5% carbon dioxide gas mixture) breathing. Cerebrovascular reactivity, measured as normocapnic to hypercapnic cerebral blood flow percent increase normalized by end-tidal carbon dioxide change, was determined from seven functional networks (default mode, frontoparietal, somatomotor, visual, limbic, dorsal, and ventral attention networks). Group analysis showed significantly decreased cerebrovascular reactivity in patients compared to controls within the default mode, frontoparietal, somatomotor, and ventral attention networks after multiple comparison correction. Regression analysis showed a significant correlation of cerebrovascular reactivity with lesion load in the default mode and ventral attention networks and with gray matter atrophy in the default mode network. Functional networks in multiple sclerosis patients exhibit varied amounts of cerebrovascular reactivity deficits. Such blood flow regulation abnormalities may contribute to functional communication disruption in multiple sclerosis.

  5. Redistribution by 5-hydroxytryptamine of carotid arterial blood at the expense of arteriovenous anastomotic blood flow

    PubMed Central

    Saxena, Pramod R.; Verdouw, Pieter D.

    1982-01-01

    1. The effects of 5-hydroxytryptamine by intravenous (1, 5 and 10 μg kg-1 min-1 in cats) and intracarotid (0·5 and 2 μg kg-1 min-1 in pigs) routes were studied on the complete distribution of common carotid artery blood flow, measured with radioactive microspheres (15 μm). In addition, the amine was also infused (0·75-3 μg kg-1 min-1) into the carotid artery of cats to observe its influence on the shunting of microspheres in the jugular venous blood. 2. The basal total common carotid blood flow was distributed ipsilaterally mainly to extracerebral tissues and only little blood entered the brain. As shown by the presence of microspheres in the lungs after injection into the carotid artery (52% in cats; 82% in pigs), a major fraction of the carotid blood by-passed the capillary bed through arteriovenous anastomoses in the head (non-nutrient fraction). 3. 5-Hydroxytryptamine redistributed the blood in favour of the nutrient compartment at the expense of arteriovenous anastomotic fraction. In cats, tissue blood flow did not significantly change but, in the pig, blood flow to all tissues, particularly to skin and ears, was substantially increased despite a reduction in total carotid blood flow. This reduction was entirely due to a change in the non-nutrient fraction. 4. Intracarotid infusion of 5-hydroxytryptamine in vagosympathectomized intact or spinal cats decreased the number of microspheres appearing in the jugular venous blood, again indicating a reduction in arteriovenous anastomotic flow due to a constriction of these non-nutrient vessels. 5. Cyproheptadine (1 mg kg-1) completely reversed the effect of 5-hydroxytryptamine on the total carotid blood flow. However, the vasoconstriction of arteriovenous anastomoses was only partially attenuated and the vasodilatatory response was either unchanged (muscle) or even enhanced (skin, ear and bones). 6. It is suggested that 5-hydroxytryptamine causes vasoconstriction of the large arteries via D-receptors which are

  6. Improved measurement of drug exposure in the brain using drug-specific correction for residual blood

    PubMed Central

    Fridén, Markus; Ljungqvist, Helena; Middleton, Brian; Bredberg, Ulf; Hammarlund-Udenaes, Margareta

    2010-01-01

    A major challenge associated with the determination of the unbound brain-to-plasma concentration ratio of a drug (Kp,uu,brain), is the error associated with correction for the drug in various vascular spaces of the brain, i.e., in residual blood. The apparent brain vascular spaces of plasma water (Vwater, 10.3 μL/g brain), plasma proteins (Vprotein, 7.99 μL/g brain), and the volume of erythrocytes (Ver, 2.13 μL/g brain) were determined and incorporated into a novel, drug-specific correction model that took the drug-unbound fraction in the plasma (fu,p) into account. The correction model was successfully applied for the determination of Kp,uu,brain for indomethacin, loperamide, and moxalactam, which had potential problems associated with correction. The influence on correction of the drug associated with erythrocytes was shown to be minimal. Therefore, it is proposed that correction for residual blood can be performed using an effective plasma space in the brain (Veff), which is calculated from the measured fu,p of the particular drug as well as from the estimates of Vwater and Vprotein, which are provided in this study. Furthermore, the results highlight the value of determining Kp,uu,brain with statistical precision to enable appropriate interpretation of brain exposure for drugs that appear to be restricted to the brain vascular spaces. PMID:19756019

  7. Blood flow analysis with considering nanofluid effects in vertical channel

    NASA Astrophysics Data System (ADS)

    Noreen, S.; Rashidi, M. M.; Qasim, M.

    2017-06-01

    Manipulation of heat convection of copper particles in blood has been considered peristaltically. Two-phase flow model is used in a channel with insulating walls. Flow analysis has been approved by assuming small Reynold number and infinite length of wave. Coupled equations are solved. Numerical solution are computed for the pressure gradient, axial velocity function and temperature. Influence of attention-grabbing parameters on flow entities has been analyzed. This study can be considered as mathematical representation to the vibrance of physiological systems/tissues/organs provided with medicine.

  8. The history of the microsphere method for measuring blood flows with special reference to myocardial blood flow: a personal memoir.

    PubMed

    Hoffman, Julien I E

    2017-04-01

    We use many types of equipment and technologies to make our measurements but give little thought to how they developed. Evolution was once described as a series of recoils from blind alleys, and this is exemplified by the gradual development of the microsphere method of measuring blood flows. The microsphere method is one of the most frequently used methods for measuring blood flow to organs and portions of organs. The method can measure myocardial blood flow with reasonable accuracy (within 10%) down to samples weighing >50 mg but probably will not do so for samples weighing 1-10 mg. Microspheres with diameters from 10 to 15 μm provide the best compromise between accurate flow measurement and retention in tissue. Radioactive labels have been almst entirely replaced by fluorescent labels, but colored microspheres and neutron-activated labels are also used.NEW & NOTEWORTHY The contributions of the various individuals who developed the microsphere method of measuring regional blood flows and how these advances took place are brought to light in this paper.

  9. Optically Measured Microvascular Blood Flow Contrast of Malignant Breast Tumors

    PubMed Central

    Choe, Regine; Putt, Mary E.; Carlile, Peter M.; Durduran, Turgut; Giammarco, Joseph M.; Busch, David R.; Jung, Ki Won; Czerniecki, Brian J.; Tchou, Julia; Feldman, Michael D.; Mies, Carolyn; Rosen, Mark A.; Schnall, Mitchell D.; DeMichele, Angela; Yodh, Arjun G.

    2014-01-01

    Microvascular blood flow contrast is an important hemodynamic and metabolic parameter with potential to enhance in vivo breast cancer detection and therapy monitoring. Here we report on non-invasive line-scan measurements of malignant breast tumors with a hand-held optical probe in the remission geometry. The probe employs diffuse correlation spectroscopy (DCS), a near-infrared optical method that quantifies deep tissue microvascular blood flow. Tumor-to-normal perfusion ratios are derived from thirty-two human subjects. Mean (95% confidence interval) tumor-to-normal ratio using surrounding normal tissue was 2.25 (1.92–2.63); tumor-to-normal ratio using normal tissues at the corresponding tumor location in the contralateral breast was 2.27 (1.94–2.66), and using normal tissue in the contralateral breast was 2.27 (1.90–2.70). Thus, the mean tumor-to-normal ratios were significantly different from unity irrespective of the normal tissue chosen, implying that tumors have significantly higher blood flow than normal tissues. Therefore, the study demonstrates existence of breast cancer contrast in blood flow measured by DCS. The new, optically accessible cancer contrast holds potential for cancer detection and therapy monitoring applications, and it is likely to be especially useful when combined with diffuse optical spectroscopy/tomography. PMID:24967878

  10. Integration and Modulation of Intercellular Signaling Underlying Blood Flow Control

    PubMed Central

    Segal, Steven S.

    2015-01-01

    Vascular resistance networks control tissue blood flow in concert with regulating arterial perfusion pressure. In response to increased metabolic demand, vasodilation arising in arteriolar networks ascends to encompass proximal feed arteries. By reducing resistance upstream, ascending vasodilation (AVD) increases blood flow into the microcirculation. Once initiated [e.g., through local activation of K+ channels in endothelial cells (ECs)], hyperpolarization is conducted through gap junctions along the endothelium. Via EC projections through the internal elastic lamina, hyperpolarization spreads into the surrounding smooth muscle cells (SMCs) through myoendothelial gap junctions (MEGJs) to promote their relaxation. Intercellular signaling through electrical signal transmission (i.e., cell-to-cell conduction) can thereby coordinate vasodilation along and among the branches of microvascular resistance networks. Perivascular sympathetic nerve fibers course through the adventitia and release norepinephrine to stimulate SMCs via α-adrenoreceptors to produce contraction. In turn, SMCs can signal ECs through MEGJs to activate K+ channels and attenuate sympathetic vasoconstriction. Activation of K+ channels along the endothelium will dissipate electrical signal transmission and inhibit AVD, thereby restricting blood flow into the microcirculation while maintaining peripheral resistance and perfusion pressure. This review explores the origins and nature of intercellular signaling governing blood flow control in skeletal muscle with respect to the interplay between AVD and sympathetic innervation. Whereas these interactions are integral to physical daily activity and athletic performance, resolving the interplay between respective signaling events provides insight into how selective interventions can improve tissue perfusion and oxygen delivery during vascular disease. PMID:26368324

  11. Dynamic deformability of sickle red blood cells in microphysiological flow.

    PubMed

    Alapan, Y; Matsuyama, Y; Little, J A; Gurkan, U A

    2016-06-01

    In sickle cell disease (SCD), hemoglobin molecules polymerize intracellularly and lead to a cascade of events resulting in decreased deformability and increased adhesion of red blood cells (RBCs). Decreased deformability and increased adhesion of sickle RBCs lead to blood vessel occlusion (vaso-occlusion) in SCD patients. Here, we present a microfluidic approach integrated with a cell dimensioning algorithm to analyze dynamic deformability of adhered RBC at the single-cell level in controlled microphysiological flow. We measured and compared dynamic deformability and adhesion of healthy hemoglobin A (HbA) and homozygous sickle hemoglobin (HbS) containing RBCs in blood samples obtained from 24 subjects. We introduce a new parameter to assess deformability of RBCs: the dynamic deformability index (DDI), which is defined as the time-dependent change of the cell's aspect ratio in response to fluid flow shear stress. Our results show that DDI of HbS-containing RBCs were significantly lower compared to that of HbA-containing RBCs. Moreover, we observed subpopulations of HbS containing RBCs in terms of their dynamic deformability characteristics: deformable and non-deformable RBCs. Then, we tested blood samples from SCD patients and analyzed RBC adhesion and deformability at physiological and above physiological flow shear stresses. We observed significantly greater number of adhered non-deformable sickle RBCs than deformable sickle RBCs at flow shear stresses well above the physiological range, suggesting an interplay between dynamic deformability and increased adhesion of RBCs in vaso-occlusive events.

  12. Matching coronary blood flow to myocardial oxygen consumption.

    PubMed

    Tune, Johnathan D; Gorman, Mark W; Feigl, Eric O

    2004-07-01

    At rest the myocardium extracts approximately 75% of the oxygen delivered by coronary blood flow. Thus there is little extraction reserve when myocardial oxygen consumption is augmented severalfold during exercise. There are local metabolic feedback and sympathetic feedforward control mechanisms that match coronary blood flow to myocardial oxygen consumption. Despite intensive research the local feedback control mechanism remains unknown. Physiological local metabolic control is not due to adenosine, ATP-dependent K(+) channels, nitric oxide, prostaglandins, or inhibition of endothelin. Adenosine and ATP-dependent K(+) channels are involved in pathophysiological ischemic or hypoxic coronary dilation and myocardial protection during ischemia. Sympathetic beta-adrenoceptor-mediated feedforward arteriolar vasodilation contributes approximately 25% of the increase in coronary blood flow during exercise. Sympathetic alpha-adrenoceptor-mediated vasoconstriction in medium and large coronary arteries during exercise helps maintain blood flow to the vulnerable subendocardium when cardiac contractility, heart rate, and myocardial oxygen consumption are high. In conclusion, several potential mediators of local metabolic control of the coronary circulation have been evaluated without success. More research is needed.

  13. Study of blood flow sensing with microwave radiometry

    NASA Technical Reports Server (NTRS)

    Porter, R. A.; Wentz, F. J., III

    1973-01-01

    A study and experimental investigation has been performed to determine the feasibility of measuring regional blood flow and volume in man by means of microwave radiometry. An indication was expected of regional blood flow from measurement of surface and subsurface temperatures with a sensitive radiometer. Following theoretical modeling of biological tissue, to determine the optimum operating frequency for adequate sensing depth, a sensitive microwave radiometer was designed for operation at 793 MHz. A temperature sensitivity of of 0.06 K rms was realized in this equipment. Measurements performed on phantom tissue models, consisting of beef fat and lean beefsteak showed that the radiometer was capable of sensing temperatures from a depth between 3.8 and 5.1 cm. Radiometric and thermodynamic temperature measurements were also performed on the hind thighs of large dogs. These showed that the radiometer could sense subsurface temperatures from a depth of, at least, 1.3 cm. Delays caused by externally-generated RF interference, coupled with the lack of reliable blood flow measurement equipment, prevented correlation of radiometer readings with reginal blood flow. For the same reasons, it was not possible to extend the radiometric observations to human subjects.

  14. Development of a miniature intraventricular axial flow blood pump.

    PubMed

    Yamazaki, K; Umezu, M; Koyanagi, H; Outa, E; Ogino, S; Otake, Y; Shiozaki, H; Fujimoto, T; Tagusari, O; Kitamura, M

    1993-01-01

    A new intraventricular axial flow blood pump has been designed and developed as a totally implantable left ventricular assist device (LVAD). This pump consists of an impeller combined with a guide-vane, a tube housing, and a DC motor. The pump is introduced into the LV cavity through the LV apex, and the outlet cannula is passed antegrade across the aortic valve. Blood is withdrawn from the LV through the inlet ports at the pump base, and discharged to the ascending aorta. Our newly developed axial flow pump system has the following advantages: 1) it is a simple and compact system, 2) minimal blood stasis both in the device and the LV cavity, 3) minimal blood contacting surface of the pump, 4) easy accessibility with a less invasive surgical procedure, and 5) low cost. A pump flow > 5 L/min was obtained against 100 mmHg differential pressure in the mock circulatory system. The pump could produce a passive pulsatile flow effect with a beating heart more efficiently than other non-pulsatile pumps because of minimal pressure drop and inertia along the bypass tract. Anatomic fit studies using dissected hearts of dilated cardiomyopathy (DCM) cadavers showed that this pump could smoothly pass through the aortic valve without any interference with mitral valve function. Recently, a dynamic pressure groove bearing and a miniature lip seal have been developed. The dynamic pressure groove bearing has a simple structure and acts as a pressure resistant sealing mechanism.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Obstetric analgesia and fetal aortic blood flow during labour.

    PubMed

    Lindblad, A; Bernow, J; Marsál, K

    1987-04-01

    Fetal aortic blood flow was studied in 50 women during labour, using a method combining real-time ultrasonography and a pulsed Doppler technique. Eleven women had no analgesia, 24 women received 75-100 mg pethidine intramuscularly, 12 epidural analgesia with 0.25% bupivacaine and three paracervical block with 0.125% bupivacaine. Fetal aortic blood flow increased during labour from 200 to 245 ml/min/kg in the group without analgesia (P less than 0.05) and from 211 to 236 ml/min/kg in the group with epidural analgesia (P less than 0.05) but decreased insignificantly from 216 to 204 ml/min/kg after pethidine. After paracervical block the aortic blood flow fell in two out of three fetuses. Not only is epidural analgesia the most effective means of pain relief during labour, it is also the type of obstetric analgesia that interferes least with the physiological response to labour in terms of its effect on the fetal blood flow.

  16. Decreased intramuscular blood flow in patients with lateral epicondylitis.

    PubMed

    Oskarsson, E; Gustafsson, B-E; Pettersson, K; Aulin, K Piehl

    2007-06-01

    The purpose of this pilot study was to investigate intramuscular microcirculation in extensor carpi radialis brevis (ECRB) in patients with lateral epicondylitis. Ten patients with unilateral epicondylitis, mean duration of symptoms of 39 (12-96) months participated. The diagnosis was based on clinical examination and none was under treatment for the last 6 months. Isometric handgrip strength, 2-pinch grip strength and muscle strength during radial deviation and dorsal extension were determined. Functional perceived pain was evaluated by a modified behaviour rating scale and perceived pain during contraction by visual analogue scale. Intramuscular and skin blood flow was recorded by a laser-Doppler flowmetry system technique (LDF) during stable temperature condition. Intramuscular blood flow was significantly lower in the affected side, 22.7+/-9.8 perfusion units (PU), as compared with 35.2+/-11.9 PU in the control side (P=0.01). There was no difference in skin blood flow or temperature between the affected and the control side. A positive correlation was found between the duration of symptoms and the difference in intramuscular blood flow between the affected and the control arm (r=0.65, P=0.06). The present data indicate that decreased microcirculation and anaerobic metabolism in ECRB may contribute to the lateral epicondylitis symptoms.

  17. Intrarenal blood flow distribution during endotoxemia in dogs.

    PubMed

    Neiberger, R E; Passmore, J C

    1978-01-01

    Intrarenal blood flow distribution during the stages of endotoxemia in the dog was studied using radioactive inert gas washout. Intrarenal blood flow distribution was determined: a) at control, b) 0.5 hours following injection of a lethal dose (3 mg/kg) of E coli endotoxin, and c) 2.5 hours following endotoxin injection in control dogs and dogs pretreated with 4 mg/kg of phenoxybenzamine. One-half hour following endotoxin injection, components I and II of the inert gas washout curve fused. Presumably this fusion occurred because component I flow decreased to a level indistinguishable from that of component II. Following 2.5 hours of endotoxemia, components I and II were both present. Pretreatment with phenoxybenzamine completely prevented the fusion of components I and II, although the mean arterial blood pressure was substantially lower than in dogs not pretreated with phenoxybenzamine. After 2.5 hours of endotoxemia, four of the five phenoxybenzamine pretreated dogs still had two clearly defined washout components. It is concluded that the renal cortical vascular response in endotoxemia is similar to that reported following hemorrhage and that the alpha-adrenergic nervous system plays a major role in decreasing renal cortical blood flow.

  18. Longitudinal Cerebral Blood Flow Changes during Speech in Hereditary Ataxia

    ERIC Educational Resources Information Center

    Sidtis, John J.; Strother, Stephen C.; Naoum, Ansam; Rottenberg, David A.; Gomez, Christopher

    2010-01-01

    The hereditary ataxias constitute a group of degenerative diseases that progress over years or decades. With principal pathology involving the cerebellum, dysarthria is an early feature of many of the ataxias. Positron emission tomography was used to study regional cerebral blood flow changes during speech production over a 21 month period in a…

  19. Abnormal blood flow in the sublingual microcirculation at high altitude.

    PubMed

    Martin, Daniel S; Ince, Can; Goedhart, Peter; Levett, Denny Z H; Grocott, Mike P W

    2009-06-01

    We report the first direct observations of deranged microcirculatory blood flow at high altitude, using sidestream dark-field imaging. Images of the sublingual microcirculation were obtained from a group of 12 volunteers during a climbing expedition to Cho Oyu (8,201 m) in the Himalayas. Microcirculatory flow index (MFI) was calculated from the moving images of microcirculatory red blood cell flow, and comparison was made between the baseline and high altitude measurements. Peripheral oxygen saturation (SpO(2)) and Lake Louise scores (LLS) were recorded along with MFI. Our data demonstrate that there was a significant reduction in MFI from baseline to 4,900 m in small (less than 25 microm) and medium (26-50 microm) sized blood vessels (P = 0.025 and P = 0.046, respectively). There was no significant correlation between MFI and SpO(2) or MFI and LLS. Disruption of blood flow within microcirculatory may explain persistent abnormal oxygen flux to tissues following the normalisation of systemic oxygen delivery that accompanies acclimatisation to high altitude.

  20. Blood flow Doppler velocimetry measured during active labor.

    PubMed

    Baron, Joel; Shwarzman, Polina; Sheiner, Eyal; Weintraub, Adi Y; Spiegel, Efrat; Sciaky, Yael; Dukler, Doron; Hershkovitz, Reli

    2015-04-01

    To evaluate blood flow Doppler velocimetry during the first and second stages of active labor. A prospective observational study was performed. Patients at term (37-42 weeks gestation), with normal fetal heart rate tracing patterns (categorized as category I) were examined during the first and second stages of labor. The sonographic parameters that were measured included the blood flow resistance of the maternal uterine artery (UtA) and umbilical artery (UA). Wilcoxon-matched pair test was used for the comparison of flows between the first and the second stages of labor. UtA and UA Doppler velocimetry measurements were obtained from 31 parturients. The left (LT) and right (RT) UtA pulsatility index (PI) was lower in the second stage of labor as compared with the first stage. However, only the LT side reached a statistically significant difference (0.88 ± 0.32 and 0.73 ± 0.18; P = 0.005). Compared with the first stage of labor, UA PI was significantly higher during the second stage of labor (0.72 ± 0.17 vs. 0.84 ± 0.33; respectively, P = 0.05). Significant blood flow resistance changes in maternal as well as in fetal blood vessels occur during the second stage as compared with the first stage of active labor.

  1. Longitudinal Cerebral Blood Flow Changes during Speech in Hereditary Ataxia

    ERIC Educational Resources Information Center

    Sidtis, John J.; Strother, Stephen C.; Naoum, Ansam; Rottenberg, David A.; Gomez, Christopher

    2010-01-01

    The hereditary ataxias constitute a group of degenerative diseases that progress over years or decades. With principal pathology involving the cerebellum, dysarthria is an early feature of many of the ataxias. Positron emission tomography was used to study regional cerebral blood flow changes during speech production over a 21 month period in a…

  2. Control of cutaneous blood flow by central nervous system

    PubMed Central

    Ootsuka, Youichirou; Tanaka, Mutsumi

    2015-01-01

    Hairless skin acts as a heat exchanger between body and environment, and thus greatly contributes to body temperature regulation by changing blood flow to the skin (cutaneous) vascular bed during physiological responses such as cold- or warm-defense and fever. Cutaneous blood flow is also affected by alerting state; we ‘go pale with fright’. The rabbit ear pinna and the rat tail have hairless skin, and thus provide animal models for investigating central pathway regulating blood flow to cutaneous vascular beds. Cutaneous blood flow is controlled by the centrally regulated sympathetic nervous system. Sympathetic premotor neurons in the medullary raphé in the lower brain stem are labeled at early stage after injection of trans-synaptic viral tracer into skin wall of the rat tail. Inactivation of these neurons abolishes cutaneous vasomotor changes evoked as part of thermoregulatory, febrile or psychological responses, indicating that the medullary raphé is a common final pathway to cutaneous sympathetic outflow, receiving neural inputs from upstream nuclei such as the preoptic area, hypothalamic nuclei and the midbrain. Summarizing evidences from rats and rabbits studies in the last 2 decades, we will review our current understanding of the central pathways mediating cutaneous vasomotor control. PMID:27227053

  3. Augmentation of Regional Cerebral Blood Flow by Microvascular Anastomosis

    DTIC Science & Technology

    1974-06-01

    the Adult Foxhound after Middle Cerebral Root Occlusion 5 ABSTRACT Intracranial surgical procedures for cerebrovascular occlusive disease...11 I. INTRODUCTION Recent advances in stroke therapy have been highlighted by the development of direct intracraniai surgical approaches to...experimental acute stroke in dogs. J. Neurosurg. 38:26-31, 1973. 2. Fein, J, M. and Boulos, R, Local cerebral blood flow in experimental middle

  4. [Measurement of cerebral blood flow using phase-contrast MRI].

    PubMed

    Obata, T; Shishido, F; Koga, M; Ikehira, H; Kimura, F; Yoshida, K

    1997-07-01

    The development of phase-contrast magnetic resonance imaging(P-C MRI) provides a noninvasive method for measurement of volumetric blood flow(VFR). The VFR of the left and right internal carotid arteries and basilar artery were measured using P-C MRI, and total cerebral blood flow(tCBF) was calculated by summing up the VFR values in three vessels. We investigated the changes in these blood flows as influenced from age, head size, height, weight, body surface area and handedness. Moreover, regional CBF(rCBF) was measured by combining with the single photon emission computed tomography(SPECT) of 123I. The blood flows were 142 +/- 58 mL/ min(mean +/- SD) in the basilar artery, 229 +/- 86 mL/min in the left, 223 +/- 58 mL/min in the right internal carotid artery, and tCBF was 617 +/- 128 mL/min(Ref. Magn Resn Imaging 14:P. 1143, 1996). Significant increases were observed in head-size-related change of VFR in the basilar artery and height-related change of tCBF. The value of rCBF was easily acquired in combination with SPECT. Phase-contrast MRI is useful for a noninvasive and rapid analysis of cerebral VFR and has potential for clinical use.

  5. The flow of sickle-cell blood in the capillaries.

    PubMed Central

    Berger, S A; King, W S

    1980-01-01

    Oxygen tension levels and red cell velocities for the flow of sickle-cell blood in the capillaries are determined by using the Krogh model for oxygen transport and lubrication theory for the cell motion. The coupling and interaction between these arises from the red cell compliance, which is assumed to vary with the oxygen concentration. Microsieving data is used to establish an upper bound for this relationship. Calculations are carried out for a range of capillary sizes, taking into account the rightward shift of the oxyhemoglobin dissociation curve and the reduced hematocrit of sickle-cell blood, and are compared to, as a base case, the flow of normal blood under normal pressure gradient. The results indicate that under normal pressure gradients the oxygen tensions and cell velocities for sickle blood are considerably higher than for normal blood, thus acting against the tendency for cells to sickle, or significantly change their rheological properties, in the capillaries. Under reduced pressure gradients, however, the concentrations and velocities drop dramatically, adding to the likelihood of such shape or flow property changes. PMID:7260242

  6. Cerebral blood flow links insulin resistance and baroreflex sensitivity.

    PubMed

    Ryan, John P; Sheu, Lei K; Verstynen, Timothy D; Onyewuenyi, Ikechukwu C; Gianaros, Peter J

    2013-01-01

    Insulin resistance confers risk for diabetes mellitus and associates with a reduced capacity of the arterial baroreflex to regulate blood pressure. Importantly, several brain regions that comprise the central autonomic network, which controls the baroreflex, are also sensitive to the neuromodulatory effects of insulin. However, it is unknown whether peripheral insulin resistance relates to activity within central autonomic network regions, which may in turn relate to reduced baroreflex regulation. Accordingly, we tested whether resting cerebral blood flow within central autonomic regions statistically mediated the relationship between insulin resistance and an indirect indicator of baroreflex regulation; namely, baroreflex sensitivity. Subjects were 92 community-dwelling adults free of confounding medical illnesses (48 men, 30-50 years old) who completed protocols to assess fasting insulin and glucose levels, resting baroreflex sensitivity, and resting cerebral blood flow. Baroreflex sensitivity was quantified by measuring the magnitude of spontaneous and sequential associations between beat-by-beat systolic blood pressure and heart rate changes. Individuals with greater insulin resistance, as measured by the homeostatic model assessment, exhibited reduced baroreflex sensitivity (b = -0.16, p < .05). Moreover, the relationship between insulin resistance and baroreflex sensitivity was statistically mediated by cerebral blood flow in central autonomic regions, including the insula and cingulate cortex (mediation coefficients < -0.06, p-values < .01). Activity within the central autonomic network may link insulin resistance to reduced baroreflex sensitivity. Our observations may help to characterize the neural pathways by which insulin resistance, and possibly diabetes mellitus, relates to adverse cardiovascular outcomes.

  7. Cerebral Blood Flow Links Insulin Resistance and Baroreflex Sensitivity

    PubMed Central

    Ryan, John P.; Sheu, Lei K.; Verstynen, Timothy D.; Onyewuenyi, Ikechukwu C.; Gianaros, Peter J.

    2013-01-01

    Insulin resistance confers risk for diabetes mellitus and associates with a reduced capacity of the arterial baroreflex to regulate blood pressure. Importantly, several brain regions that comprise the central autonomic network, which controls the baroreflex, are also sensitive to the neuromodulatory effects of insulin. However, it is unknown whether peripheral insulin resistance relates to activity within central autonomic network regions, which may in turn relate to reduced baroreflex regulation. Accordingly, we tested whether resting cerebral blood flow within central autonomic regions statistically mediated the relationship between insulin resistance and an indirect indicator of baroreflex regulation; namely, baroreflex sensitivity. Subjects were 92 community-dwelling adults free of confounding medical illnesses (48 men, 30-50 years old) who completed protocols to assess fasting insulin and glucose levels, resting baroreflex sensitivity, and resting cerebral blood flow. Baroreflex sensitivity was quantified by measuring the magnitude of spontaneous and sequential associations between beat-by-beat systolic blood pressure and heart rate changes. Individuals with greater insulin resistance, as measured by the homeostatic model assessment, exhibited reduced baroreflex sensitivity (b = -0.16, p < .05). Moreover, the relationship between insulin resistance and baroreflex sensitivity was statistically mediated by cerebral blood flow in central autonomic regions, including the insula and cingulate cortex (mediation coefficients < -0.06, p-values < .01). Activity within the central autonomic network may link insulin resistance to reduced baroreflex sensitivity. Our observations may help to characterize the neural pathways by which insulin resistance, and possibly diabetes mellitus, relates to adverse cardiovascular outcomes. PMID:24358272

  8. PIV measurements of flow in a centrifugal blood pump: steady flow.

    PubMed

    Day, Steven W; McDaniel, James C

    2005-04-01

    Magnetically suspended left ventricular assist devices have only one moving part, the impeller. The impeller has absolutely no contact with any of the fixed parts, thus greatly reducing the regions of stagnant or high shear stress that surround a mechanical or fluid bearing. Measurements of the mean flow patterns as well as viscous and turbulent stresses were made in a shaft-driven prototype of a magnetically suspended centrifugal blood pump at several constant flow rates (3-9 L/min) using particle image velocimetry (PIV). The chosen range of flow rates is representative of the range over which the pump may operate while implanted. Measurements on a three-dimensional measurement grid within several regions of the pump, including the inlet, blade passage, exit volute, and diffuser are reported. The measurements are used to identify regions of potential blood damage due to high shear stress and/or stagnation of the blood, both of which have been associated with blood damage within artificial heart valves and diaphragm-type pumps. Levels of turbulence intensity and Reynolds stresses that are comparable to those in artificial heart valves are reported. At the design flow rate (6 L/min), the flow is generally well behaved (no recirculation or stagnant flow) and stress levels are below levels that would be expected to contribute to hemolysis or thrombosis. The flow at both high (9 L/min) and low (3 L/min) flow rates introduces anomalies into the flow, such as recirculation, stagnation, and high stress regions. Levels of viscous and Reynolds shear stresses everywhere within the pump are below reported threshold values for damage to red cells over the entire range of flow rates investigated; however, at both high and low flow rate conditions, the flow field may promote activation of the clotting cascade due to regions of elevated shear stress adjacent to separated or stagnant flow.

  9. Effects of insulin on coronary blood flow in anesthetized pigs.

    PubMed

    Molinari, C; Battaglia, A; Grossini, E; Mary, D A S G; Bona, G; Scott, E; Vacca, G

    2002-01-01

    Insulin can influence the vasculature by a sympathetically mediated vasoconstriction and a vasodilatation; the latter effect predominates in the renal circulation of anesthetized pigs. We determined the effect of intravenous infusion of insulin on coronary blood flow in pentobarbitone-anesthetized pigs at constant heart rate, arterial pressure and blood levels of glucose and potassium. In 6 pigs, infusion of 0.004 IU kg(-1) min(-1) of insulin decreased coronary flow despite increasing left ventricular dP dT(max)(-1); when the latter was abolished by propranolol, the coronary flow response was augmented. The mechanisms of this response were examined in 22 pigs given propranolol. Phentolamine changed coronary flow response to an increase (6 pigs) and this was abolished by intracoronary injection of N(omega)-nitro-L-arginine methyl ester (L-NAME; 5 pigs). L-NAME augmented coronary flow response (6 pigs) and this was abolished by phentolamine (5 pigs). In 18 pigs given propranolol, three incremental doses of insulin caused graded coronary flow decreases whether L-NAME was given (6 pigs) or not (6 pigs) beforehand, and caused graded coronary flow increases after phentolamine (6 pigs). Thus insulin caused a coronary vasoconstriction mediated by sympathetic alpha-adrenergic effects and a vasodilatation related to the release of nitric oxide. The net effect was a coronary vasoconstriction.

  10. Red blood cell tracking using optical flow methods.

    PubMed

    Guo, Dongmin; van de Ven, Anne L; Zhou, Xiaobo

    2014-05-01

    The investigation of microcirculation is an important task in biomedical and physiological research because the microcirculation information, such as flow velocity and vessel density, is critical to monitor human conditions and develop effective therapies of some diseases. As one of the tasks of the microcirculation study, red blood cell (RBC) tracking presents an effective approach to estimate some parameters in microcirculation. The common method for RBC tracking is based on spatiotemporal image analysis, which requires the image to have high qualification and cells should have fixed velocity. Besides, for in vivo cell tracking, cells may disappear in some frames, image series may have spatial and temporal distortions, and vessel distribution can be complex, which increase the difficulties of RBC tracking. In this paper, we propose an optical flow method to track RBCs. It attempts to describe the local motion for each visible point in the frames using a local displacement vector field. We utilize it to calculate the displacement of a cell in two adjacent frames. Additionally, another optical flow-based method, scale invariant feature transform (SIFT) flow, is also presented. The experimental results show that optical flow is quite robust to the case where the velocity of cell is unstable, while SIFT flow works well when there is a large displacement of the cell between two adjacent frames. Our proposed methods outperform other methods when doing in vivo cell tracking, which can be used to estimate the blood flow directly and help to evaluate other parameters in microcirculation.

  11. Noninvasive pulsatile flow estimation for an implantable rotary blood pump.

    PubMed

    Karantonis, Dean M; Cloherty, Shaun L; Mason, David G; Ayre, Peter J; Lovell, Nigel H

    2007-01-01

    A noninvasive approach to the task of pulsatile flow estimation in an implantable rotary blood pump (iRBP) has been proposed. Employing six fluid solutions representing a range of viscosities equivalent to 20-50% blood hematocrit (HCT), pulsatile flow data was acquired from an in vitro mock circulatory loop. The entire operating range of the pump was examined, including flows from -2 to 12 L/min. Taking the pump feedback signals of speed and power, together with the HCT level, as input parameters, several flow estimate models were developed via system identification methods. Three autoregressive with exogenous input (ARX) model structures were evaluated: structures I and II used the input parameters directly; structure II incorporated additional terms for HCT; and the third structure employed as input a non-pulsatile flow estimate equation. Optimal model orders were determined, and the associated models yielded minimum mean flow errors of 5.49% and 0.258 L/min for structure II, and 5.77% and 0.270 L/min for structure III, when validated on unseen data. The models developed in this study present a practical method of accurately estimating iRBP flow in a pulsatile environment.

  12. Prediction of leakage flow in a shrouded centrifugal blood pump.

    PubMed

    Teo, Ji-Bin; Chan, Weng-Kong; Wong, Yew-Wah

    2010-09-01

    This article proposes a phenomenological model to predict the leakage flow in the clearance gap of shrouded centrifugal blood pumps. A good washout in the gap clearance between the rotating impeller surfaces and volute casing is essential to avoid thrombosis. However, excessive leakage flow will result in higher fluid shear stress that may lead to hemolysis. Computational fluid dynamics (CFD) analysis was performed to investigate the leakage flow in a miniaturized shrouded centrifugal blood pump operating at a speed of 2000 rpm. Based on an analytical model derived earlier, a phenomenological model is proposed to predict the leakage flow. The leakage flow rate is found to be proportional to h(α) , where h is the gap size and the exponent α ranges from 2.955 to 3.15 for corresponding gap sizes of 0.2-0.5 mm. In addition, it is observed that α is a linear function of the gap size h. The exponent α compensates for the variation of pressure difference along the circumferential direction as well as inertia effects that are dominant for larger gap clearances. The proposed model displays good agreement with computational results. The CFD analysis also showed that for larger gap sizes, the total leakage flow rate is of the same order of magnitude as the operating flow rate, thus suggesting low volumetric efficiency.

  13. Noninvasive miniaturized mass-flow meter using a curved cannula for implantable axial flow blood pump.

    PubMed

    Kosaka, Ryo; Nishida, Masahiro; Maruyama, Osamu; Yamane, Takashi

    2011-01-01

    Blood flow should be measured to monitor conditions of patients with implantable artificial hearts continuously and noninvasively. We have developed a noninvasive miniaturized mass-flow meter using a curved cannula for an axial flow blood pump. The mass-flow meter utilized centrifugal force generated by the mass-flow rate in the curved cannula. Two strain gauges served as sensors. Based on the numerical analysis, the first gauge, attached to the curved area, measured static pressure and centrifugal force, and the second, attached to the straight area, measured static pressure for static pressure compensation. The mass-flow rate was determined by the differences in output from the two gauges. To compensate for the inertia force under the pulsatile flow, a 0.75-Hz low-pass filter was added to the electrical circuit. In the evaluation tests, numerical analysis and an actual measurement test using bovine blood were performed to evaluate the measurement performances. As a result, in the numerical analysis, the relationship between the differential pressure caused by centrifugal force and the flow rate was verified. In the actual measurement test, measurement error was less than ± 0.5 L/min, and the time delay was 0.12 s. We confirmed that the developed mass-flow meter was able to measure mass-flow rate continuously and noninvasively.

  14. Predictive factors for perioperative blood transfusion in surgeries for correction of idiopathic, neuromuscular or congenital scoliosis.

    PubMed

    Cristante, Alexandre Fogaça; Borges, Paulo Alvim; Barbosa, Angelo Roberto; Letaif, Olavo Biraghi; Marcon, Raphael Martus; Barros Filho, Tarcisio Eloy Pessoa de

    2014-12-01

    To evaluate the association of clinical and demographic variables in patients requiring blood transfusion during elective surgery to treat scoliosis with the aim of identifying markers predictive of the need for blood transfusion. Based on the review of medical charts at a public university hospital, this retrospective study evaluated whether the following variables were associated with the need for red blood cell transfusion (measured by the number of packs used) during scoliosis surgery: scoliotic angle, extent of arthrodesis (number of fused levels), sex of the patient, surgery duration and type of scoliosis (neuromuscular, congenital or idiopathic). Of the 94 patients evaluated in a 55-month period, none required a massive blood transfusion (most patients needed less than two red blood cell packs). The number of packs was not significantly associated with sex or type of scoliosis. The extent of arthrodesis (r = 0.103), surgery duration (r = 0.144) and scoliotic angle (r = 0.004) were weakly correlated with the need for blood transfusion. Linear regression analysis showed an association between the number of spine levels submitted to arthrodesis and the volume of blood used in transfusions (p = 0.001). This study did not reveal any evidence of a significant association between the need for red blood cell transfusion and scoliotic angle, sex or surgery duration in scoliosis correction surgery. Submission of more spinal levels to arthrodesis was associated with the use of a greater number of blood packs.

  15. Blood Flow After Exercise-Induced Muscle Damage

    PubMed Central

    Selkow, Noelle M.; Herman, Daniel C.; Liu, Zhenqi; Hertel, Jay; Hart, Joseph M.; Saliba, Susan A.

    2015-01-01

    Context: The most common modality used to address acute inflammation is cryotherapy. Whereas pain decreases with cryotherapy, evidence that changes occur in perfusion of skeletal muscle is limited. We do not know whether ice attenuates the increases in perfusion associated with acute inflammation. Objective: To examine the effects of repeated applications of ice bags on perfusion of the gastrocnemius muscle after an eccentric exercise protocol. Design: Controlled laboratory study. Setting: Laboratory. Patients or Other Participants: Eighteen healthy participants (3 men, 15 women; age = 22.2 ± 2.2 years, height = 166.0 ± 11.9 cm, mass = 69.4 ± 25.0 kg). Intervention(s): To induce eccentric muscle damage, participants performed 100 unilateral heel-lowering exercises off a step to the beat of a metronome. A randomized intervention (cryotherapy, sham, control) was applied to the exercised lower extremity immediately after the protocol and again at 10, 24, and 34 hours after the protocol. Main Outcome Measure(s): Baseline perfusion measurements (blood volume, blood flow, and blood flow velocity) were taken using contrast-enhanced ultrasound of the exercised leg. Perfusion was reassessed after the first intervention and 48 hours after the protocol as percentage change scores. Pain was measured with a visual analog scale at baseline and at 10, 24, 34, and 48 hours after the protocol. Separate repeated-measures analyses of variance were used to assess each dependent variable. Results: We found no interactions among interventions for microvascular perfusion. Blood volume and blood flow, however, increased in all conditions at 48 hours after exercise (P < .001), and blood flow velocity decreased postintervention from baseline (P = .041). We found a time-by-intervention interaction for pain (P = .009). Visual analog scale scores were lower for the cryotherapy group than for the control group at 34 and 48 hours after exercise. Conclusions: Whereas eccentric muscle damage

  16. Paroxysmal nocturnal haemoglobinuria testing in blood transfusion laboratories: do they go with the flow?

    PubMed

    Whitby, L; White, J; Fletcher, M; Whitby, A; Milkins, C; Barnett, D

    2017-08-18

    Paroxysmal nocturnal haemoglobinuria (PNH) is a rare stem cell disorder causing, in untreated patients, symptoms that include renal damage, thrombosis and increased mortality. When correctly diagnosed and treated, patients have reduced symptoms and normal life expectancies. Historically PNH testing resided within blood transfusion laboratories using techniques that were insensitive, for example, the Ham test. However, technology has evolved and flow cytometry is now regarded as the gold standard methodology. Given the clinical importance of diagnosing PNH correctly, we undertook a study to examine PNH testing procedures in blood transfusion laboratories within the UK and Ireland to determine implementation of best practices. An online survey was issued to 386 blood transfusion laboratories in the UK and Ireland requesting details of their current PNH testing practices and procedures. There were 143 responses, representing a 37% response rate. Of these, we identified seven laboratories undertaking PNH testing using obsolete methodologies. Furthermore, multiple centres did not refer samples for confirmatory testing by national PNH reference centres and inclusion on the national PNH disease registry. Staff handling requests for PNH testing should ensure that all samples are tested in accordance with current best practices using only flow cytometry. © 2017 British Blood Transfusion Society.

  17. Finite element methods of studying mechanical factors in blood flow.

    PubMed

    Davids, N

    1981-01-01

    This paper reviews some biomechanical analyses of blood flow in large arteries based on a general computer modeling using the finite element method. We study the following question: What is the role played by the interrelated factors of mechanical stress, flow irregularities, and diffusion through the endothelium on the etiology of atherosclerosis or the aggravation of vascular injury. It presents the computational features of the method and stresses the physiological significance of the results, such as the effect of geometric complexities, material nonlinearities, and non-Newtonian rheology of the blood. The specific mechanical and fluid dynamic factors analyzed are wall shear stress, flow profiles, and pressure variations. After simulating tubes of circular cross section, we apply the analysis to a number of physiological situations of significance, including blood flow in the entrance region, at bifurcations, in the annular region between an inserted catheter of varying diameter and the vessel. A model study of pulsatile flow in a 60 degree bifurcated channel of velocity profiles provided corroborative measurements of these processes with special emphasis on reversed or distributed flow conditions. The corresponding analysis was extended to the situation in which flow separates and reverses in the neighborhood of stagnation points. This required developing the nonlinear expression for the convective velocity change in the medium. A computer algorithm was developed to handle simultaneous effects of pressure and viscous forces on velocity change across the element and applied to the canine prebranch arterial segment. For mean physiological flow conditions, low shear stresses (0-10 dynes/cm2) are predicted near the wall in the diverging plane, higher values (50 dynes/cm2) along the converging sides of the wall. Backflow is predicted along the outer wall, pressure recovery prior to and into the branches, and a peak shear at the divider lip.

  18. Blood plasma separation in microfluidic channels using flow rate control.

    PubMed

    Yang, Sung; Undar, Akif; Zahn, Jeffrey D

    2005-01-01

    Several studies have clearly shown that cardiac surgery induces systemic inflammatory responses, particularly when cardiopulmonary bypass (CPB) is used. CPB induces complex inflammatory responses. Considerable evidence suggests that systemic inflammation causes many postoperative complications. Currently, there is no effective method to prevent this systemic inflammatory response syndrome in patients undergoing CPB. The ability to clinically intervene in inflammation, or even study the inflammatory response to CPB, is limited by the lack of timely measurements of inflammatory responses. In this study, a microfluidic device for continuous, real-time blood plasma separation, which may be integrated with downstream plasma analysis device, is introduced. This device is designed to have a whole blood inlet, a purified plasma outlet, and a concentrated blood cell outlet. The device is designed to separate plasma with up to 45% hematocrit of the inlet blood and is analyzed using computational fluid dynamics simulation. The simulation results show that 27% and 25% of plasma can be collected from the total inlet blood volume for 45% and 39% hematocrit, respectively. The device's functionality was demonstrated using defibrinated sheep blood (hematocrit=39%). During the experiment, all the blood cells traveled through the device toward the concentrated blood outlet while only the plasma flowed towards the plasma outlet without any clogging or lysis of cells. Because of its simple structure and control mechanism, this microdevice is expected to be used for highly efficient, realtime, continuous cell-free plasma separation.

  19. Neutrophil aggregation measured in whole blood by flow cytometry

    SciTech Connect

    Simon, S.I.; Sklar, L.A. Los Alamos National Lab., NM )

    1991-03-15

    Flow cytometry has enabled measurement of the kinetics of formyl peptide stimulated neutrophil aggregation and its dependence on the CD11b/CD18 adhesion molecule. The authors are currently measuring aggregation of neutrophils in whole blood using flow cytometry. Fresh whole blood samples were kept at 4C and stained with LDS-751 a vital nucleic stain. Cytometric detection of neutrophil aggregation in whole blood at 37C was achieved by thresholding on LDS-751 fluorescence and then gating on forward and right angle light scatter. Aggregation was up to 10 times more efficient in whole blood than in purified cells, despite the fact that the number of CD11b/CD18 sites was upregulated 5-10 fold in elutriated neutrophil preparations. The time course of whole blood aggregation was often irreversible as compared to elutriated cells. Aggregation was only partially blocked by preincubation with concentrations of antibody to the CD18 integrin effective in blocking aggregation in elutriated cells. Further study is needed to distinguish between the contributions of other cell types, as well as the activity and number of CD11b/CD18 adhesive sites on the kinetics and efficiency of neutrophil collisions in whole blood.

  20. Zebrafish thrombocyte aggregation by whole blood aggregometry and flow cytometry.

    PubMed

    Sundaramoorthi, Hemalatha; Panapakam, Rekha; Jagadeeswaran, Pudur

    2015-01-01

    Zebrafish has become an excellent model system to study mammalian hemostasis. Despite our extensive efforts to develop technologies to measure zebrafish hemostasis and even with previously established thrombocyte qualitative and quantitative functional assays, quantifying thrombocyte function for high throughput applications has been a challenge. In this paper, we have developed two quantitative methods to estimate thrombocyte aggregation: one by whole blood aggregometry and the other by flow cytometry. We found that it is possible to conduct whole blood aggregometry using only 2 µl of blood and the currently available aggregometer. Each of three agonists, arachidonic acid, ADP, and collagen yielded impedance curves similar to those obtained with human blood. We were also able to use flow cytometry to indirectly quantify the extent of thrombocyte aggregation by labeling whole blood with mepacrine, aggregating in the presence of each of the above agonists, separating the aggregates from the white blood cells by centrifugation, and then sorting the resulting white cell fraction for thrombocyte numbers. These methods have high throughput capabilities and have the potential to be used in large scale screens to detect and characterize mutants with thrombocyte functional defects or to identify genes involved in thrombocyte function by large scale knockdowns.

  1. Effects of midazolam on cerebral blood flow in human volunteers

    SciTech Connect

    Forster, A.; Juge, O.; Morel, D.

    1982-06-01

    The effects of intravenously administered midazolam on cerebral blood flow were evaluated in eight healthy volunteers using the /sup 133/Xe inhalation technique. Six minutes after an intravenous dose of 0.15 mg/kg midazolam, the cerebral blood flow decreased significantly (P less than 0.001) from a value of 40.6 +/- 3.3 to a value of 27.0 +/- 5.0 ml . 100 g-1 . min-1. Cerebrovascular resistance (CVR) increased from 2.8 +/- 0.2 to 3.9 to 0.6 mmHg/(ml . 100 g-1 . min-1)(P less than 0.001). Mean arterial blood pressure decreased significantly (P less than 0.05) from 117 +/- 8 to 109 +/- 9 mmHg and arterial carbon dioxide tension increased from 33.9 +/- 2.3 to 38.6 +/- 3.2 mmHg (P less than 0.05). Arterial oxygen tension remained stable throughout the study, 484 +/- 95 mmHg before the administration of midazolam and 453 +/- 76 mmHg after. All the subjects slept after the injection of the drug and had anterograde amnesia of 24.5 +/- 5 min. The decrease in mean arterial blood pressure was probably not important since it remained in the physiologic range for cerebral blood flow autoregulation. The increase in arterial carbon dioxide tension observed after the midazolam injection may have partially counteracted the effect of this new benzodiazepine on cerebral blood flow. Our data suggest that midazolam might be a safe agent to use for the induction of anethesia in neurosurgical patients with intracranial hypertension.

  2. SPECT study of regional cerebral blood flow in Alzheimer disease

    SciTech Connect

    Bonte, F.J.; Ross, E.D.; Chehabi, H.H.; Devous, M.D. Sr.

    1986-07-01

    A common cause of dementia in late midlife and old age is Alzheimer disease (AD), which affects more than one in 20 individuals over the age of 65. Past studies of regional cerebral blood flow (rCBF) in patients with AD here suggested blood flow abnormalities, but findings have differed. We have studied 37 patients diagnosed as having AD with inhalation and washout of /sup 133/Xe and single-photon emission computed tomography (SPECT), obtaining evidence of abnormal rCBF patterns in 19. Flow reductions were most common in the temporoparietal regions and were occasionally found in the frontal areas. Investigators using positron-emission tomography (PET) have identified similar findings with respect to rCBF and regional oxygen, glucose, and protein metabolism. The SPECT determination of rCBF, which gives information similar to that provided by PET, may assume importance in the diagnosis of AD and in the differential diagnosis of the dementias.

  3. Simulation of red blood cell aggregation in shear flow.

    PubMed

    Lim, B; Bascom, P A; Cobbold, R S

    1997-01-01

    A simulation model has been developed for red blood cell (RBC) aggregation in shear flow. It is based on a description of the collision rates of RBC, the probability of particles sticking together, and the breakage of aggregates by shear forces. The influence of shear rate, hematocrit, aggregate fractal dimension, and binding strength on aggregation kinetics were investigated and compared to other theoretical and experimental results. The model was used to simulate blood flow in a long large diameter tube under steady flow conditions at low Reynolds numbers. The time and spatial distribution of the state of aggregation are shown to be in qualitative agreement with previous B-mode ultrasound studies in which a central region of low echogenicity was noted. It is suggested that the model can provide a basis for interpreting prior measurements of ultrasound echogenicity and may help relate them to the local state of aggregation.

  4. Blood flow in the cerebral venous system: modeling and simulation.

    PubMed

    Miraucourt, Olivia; Salmon, Stéphanie; Szopos, Marcela; Thiriet, Marc

    2017-04-01

    The development of a software platform incorporating all aspects, from medical imaging data, through three-dimensional reconstruction and suitable meshing, up to simulation of blood flow in patient-specific geometries, is a crucial challenge in biomedical engineering. In the present study, a fully three-dimensional blood flow simulation is carried out through a complete rigid macrovascular circuit, namely the intracranial venous network, instead of a reduced order simulation and partial vascular network. The biomechanical modeling step is carefully analyzed and leads to the description of the flow governed by the dimensionless Navier-Stokes equations for an incompressible viscous fluid. The equations are then numerically solved with a free finite element software using five meshes of a realistic geometry obtained from medical images to prove the feasibility of the pipeline. Some features of the intracranial venous circuit in the supine position such as asymmetric behavior in merging regions are discussed.

  5. Human renal allograft blood flow and early renal function.

    PubMed Central

    Anderson, C B; Etheredge, E E

    1977-01-01

    Renal allograft blood flow (RBF) was measured at operation by electromagnetic flow meter and probes in 45 patients (34 cadaver donors and 11 living related donors). Mean RBF in 26 patients without acute tubular necrosis (ATN), was 412 +/- 80 ml/min and in 19 patients with ATN, 270 +/- 100 ml/min (p less than .001). Only two of 24 transplants (8%) with RBF greater than 350 ml/min had ATN; whereas, 17 of 21 transplants (81 per cent) with RBF less than 350 ml/min had ATN (p less than .001). In cadaver donor transplants, RBF did not correlate with duration of ATN, warm ischemia time, total ischemia time, pulsatile perfusion time or renal vascular resistance during perfusion. Measurement of renal allograft blood flow can predict presence or absence of postoperative ATN in 87% of patients. PMID:335986

  6. Influence of Gravity on Blood Volume and Flow Distribution

    NASA Technical Reports Server (NTRS)

    Pendergast, D.; Olszowka, A.; Bednarczyk, E.; Shykoff, B.; Farhi, L.

    1999-01-01

    In our previous experiments during NASA Shuttle flights SLS 1 and 2 (9-15 days) and EUROMIR flights (30-90 days) we observed that pulmonary blood flow (cardiac output) was elevated initially, and surprisingly remained elevated for the duration of the flights. Stroke volume increased initially and then decreased, but was still above 1 Gz values. As venous return was constant, the changes in SV were secondary to modulation of heart rate. Mean blood pressure was at or slightly below 1 Gz levels in space, indicating a decrease in total peripheral resistance. It has been suggested that plasma volume is reduced in space, however cardiac output/venous return do not return to 1 Gz levels over the duration of flight. In spite of the increased cardiac output, central venous pressure was not elevated in space. These data suggest that there is a change in the basic relationship between cardiac output and central venous pressure, a persistent "hyperperfusion" and a re-distribution of blood flow and volume during space flight. Increased pulmonary blood flow has been reported to increase diffusing capacity in space, presumably due to the improved homogeneity of ventilation and perfusion. Other studies have suggested that ventilation may be independent of gravity, and perfusion may not be gravity- dependent. No data for the distribution of pulmonary blood volume were available for flight or simulated microgravity. Recent studies have suggested that the pulmonary vascular tree is influenced by sympathetic tone in a manner similar to that of the systemic system. This implies that the pulmonary circulation is dilated during microgravity and that the distribution of blood flow and volume may be influenced more by vascular control than by gravity. The cerebral circulation is influenced by sympathetic tone similarly to that of the systemic and pulmonary circulations; however its effects are modulated by cerebral autoregulation. Thus it is difficult to predict if cerebral perfusion is

  7. Influence of Gravity on Blood Volume and Flow Distribution

    NASA Technical Reports Server (NTRS)

    Pendergast, D.; Olszowka, A.; Bednarczyk, E.; Shykoff, B.; Farhi, L.

    1999-01-01

    In our previous experiments during NASA Shuttle flights SLS 1 and 2 (9-15 days) and EUROMIR flights (30-90 days) we observed that pulmonary blood flow (cardiac output) was elevated initially, and surprisingly remained elevated for the duration of the flights. Stroke volume increased initially and then decreased, but was still above 1 Gz values. As venous return was constant, the changes in SV were secondary to modulation of heart rate. Mean blood pressure was at or slightly below 1 Gz levels in space, indicating a decrease in total peripheral resistance. It has been suggested that plasma volume is reduced in space, however cardiac output/venous return do not return to 1 Gz levels over the duration of flight. In spite of the increased cardiac output, central venous pressure was not elevated in space. These data suggest that there is a change in the basic relationship between cardiac output and central venous pressure, a persistent "hyperperfusion" and a re-distribution of blood flow and volume during space flight. Increased pulmonary blood flow has been reported to increase diffusing capacity in space, presumably due to the improved homogeneity of ventilation and perfusion. Other studies have suggested that ventilation may be independent of gravity, and perfusion may not be gravity- dependent. No data for the distribution of pulmonary blood volume were available for flight or simulated microgravity. Recent studies have suggested that the pulmonary vascular tree is influenced by sympathetic tone in a manner similar to that of the systemic system. This implies that the pulmonary circulation is dilated during microgravity and that the distribution of blood flow and volume may be influenced more by vascular control than by gravity. The cerebral circulation is influenced by sympathetic tone similarly to that of the systemic and pulmonary circulations; however its effects are modulated by cerebral autoregulation. Thus it is difficult to predict if cerebral perfusion is

  8. Spatial Temporal Image Correlation Spectroscopy (STICS) for Flow Analysis with Application for Blood Flow Mapping

    SciTech Connect

    Rossow, Molly; Gratton, Enrico; Mantulin, William M.

    2009-04-19

    It is important for surgeons to be able to measure blood flow in exposed arterioles during surgery. We report our progress in the development of an optical technique that will measure blood flow in surgically exposed blood vessels and enable previously difficult measurements. By monitoring optical fluctuations, the optical technique, based on Spatial Temporal Image Correlation (STICS), will directly measure the velocity of micron-scale particles--such as red blood cells. It will complement existing technology and provide qualitative measurements that were not previously possible. It relies on the concept that blood, when viewed on a small enough scale, is an inhomogeneous substance. Individual blood cells passing between a near-infrared light source and a detector will cause fluctuations in the transmitted optical signal. The speed, direction, and flow pattern of blood cells can be determined from these optical fluctuations. We present a series of computer simulations and experiments on phantom and animal systems to test this technique's ability to map complex flow patterns.

  9. Models of flow-induced loading on blood cells in laminar and turbulent flow, with application to cardiovascular device flow.

    PubMed

    Quinlan, Nathan J; Dooley, Patrick N

    2007-08-01

    Viscous shear stress and Reynolds stress are often used to predict hemolysis and thrombosis due to flow-induced stress on blood elements in cardiovascular devices. These macroscopic stresses are distinct from the true stress on an individual cell, which is determined by the local microscale flow field. In this paper the flow-induced stress on blood cells is calculated for laminar and turbulent flow, using simplified models for cells and for turbulent eddies. The model is applied to estimate shear stress on red blood cells in flow through a prosthetic heart valve, using the energy spectral density measured by Liu et al. [J. Biomech. Eng. 122:118-124, 2000]. Results show that in laminar flow, the maximum stress on a cell is approximately equal to the macroscopic viscous shear stress. In turbulent flow through a prosthetic heart valve, the estimated root mean square of flow-induced stress on a cell is at least an order of magnitude less than the Reynolds stress. The results support the hypothesis that smaller turbulent eddies cause higher stress on cells. However, the stress due to an eddy depends on the velocity scale of the eddy as well as its length scale. For the heart valve flow investigated, turbulence contributes to flow-induced stress on cells almost equally across a broad range of the frequency spectrum. The model suggests that Reynolds stress alone is not an adequate predictor of cell damage in turbulent flow, and highlights the importance of the energy spectral density.

  10. [Assessment of maternal cerebral blood flow in patients with preeclampsia].

    PubMed

    Mandić, Vesna; Miković, Zeljko; Dukić, Milan; Vasiljević, Mladenko; Filimonović, Dejan; Bogavac, Mirjana

    2005-01-01

    Systemic vasoconstriction in preeclamptic patients increases vascular resistance, and is manifested by increased arterial blood flow velocity. The aim of the study is to evaluate if there is a change of Doppler indices in maternal medial cerbral artery (MCA) in severe preeclampsia due to: 1) severity of clinical symptoms, 2) the begining of eclamptic attack and 3) the application of anticonvulsive therapy. A prospective clinical study included 92 pregnant women, gestational age 28-36 weeks. They were divided into three groups: normotensive (n=30), mild preeclampsia (n=33), and severe preeclampsia (n=29). We investigated maternal cerebral circulation by assessing the MCA. We registrated: pulsatility index (Pi), resistance index (Ri), systolic/diastolic ratio (S/D), and the maximum systolic, end diastolic and medium velocity. Patients with severe preeclampsia were divided into two subgroups. subgroup 1 included patients without symptoms of threatening eclampsia (n=18; 62.06%); while subgroup 2 included those with symptoms of preeclampsia (n=11; 37.94%). All patients with severe preeclampsia were treated with magnesium sulfate (MgSO4), and cerebral blood flow was measured before and after the treatment. Statistical analysis was done by oneway ANOVA, Student t-test and t-paired sample test. The difference was considered to be significant if p<0.05. Significantly increased Pi, Ri and all velocities were established in the group of patients with severe preeclampsia compared with the other two groups. In the group with severe preeclamsia we registrated significantly increased values of all velocities (patients with signs of threatening eclampsia). After MgSO4 treatment in patients with severe preeclampsia significantly decreased values of Pi, Ri, S/D ratio and all velocities were registered. In the studied group of patients with severe preclampsia we found increased velocity values, Pi and Ri, especially in patients with signs of threatened eclampsia, suggesting that

  11. A Reconstruction Method of Blood Flow Velocity in Left Ventricle Using Color Flow Ultrasound

    PubMed Central

    Jang, Jaeseong; Ahn, Chi Young; Jeon, Kiwan; Heo, Jung; Lee, DongHak; Choi, Jung-il

    2015-01-01

    Vortex flow imaging is a relatively new medical imaging method for the dynamic visualization of intracardiac blood flow, a potentially useful index of cardiac dysfunction. A reconstruction method is proposed here to quantify the distribution of blood flow velocity fields inside the left ventricle from color flow images compiled from ultrasound measurements. In this paper, a 2D incompressible Navier-Stokes equation with a mass source term is proposed to utilize the measurable color flow ultrasound data in a plane along with the moving boundary condition. The proposed model reflects out-of-plane blood flows on the imaging plane through the mass source term. The boundary conditions to solve the system of equations are derived from the dimensions of the ventricle extracted from 2D echocardiography data. The performance of the proposed method is evaluated numerically using synthetic flow data acquired from simulating left ventricle flows. The numerical simulations show the feasibility and potential usefulness of the proposed method of reconstructing the intracardiac flow fields. Of particular note is the finding that the mass source term in the proposed model improves the reconstruction performance. PMID:26078773

  12. A Reconstruction Method of Blood Flow Velocity in Left Ventricle Using Color Flow Ultrasound.

    PubMed

    Jang, Jaeseong; Ahn, Chi Young; Jeon, Kiwan; Heo, Jung; Lee, DongHak; Joo, Chulmin; Choi, Jung-il; Seo, Jin Keun

    2015-01-01

    Vortex flow imaging is a relatively new medical imaging method for the dynamic visualization of intracardiac blood flow, a potentially useful index of cardiac dysfunction. A reconstruction method is proposed here to quantify the distribution of blood flow velocity fields inside the left ventricle from color flow images compiled from ultrasound measurements. In this paper, a 2D incompressible Navier-Stokes equation with a mass source term is proposed to utilize the measurable color flow ultrasound data in a plane along with the moving boundary condition. The proposed model reflects out-of-plane blood flows on the imaging plane through the mass source term. The boundary conditions to solve the system of equations are derived from the dimensions of the ventricle extracted from 2D echocardiography data. The performance of the proposed method is evaluated numerically using synthetic flow data acquired from simulating left ventricle flows. The numerical simulations show the feasibility and potential usefulness of the proposed method of reconstructing the intracardiac flow fields. Of particular note is the finding that the mass source term in the proposed model improves the reconstruction performance.

  13. Blood flow quantification using 1D CFD parameter identification

    NASA Astrophysics Data System (ADS)

    Brosig, Richard; Kowarschik, Markus; Maday, Peter; Katouzian, Amin; Demirci, Stefanie; Navab, Nassir

    2014-03-01

    Patient-specific measurements of cerebral blood flow provide valuable diagnostic information concerning cerebrovascular diseases rather than visually driven qualitative evaluation. In this paper, we present a quantitative method to estimate blood flow parameters with high temporal resolution from digital subtraction angiography (DSA) image sequences. Using a 3D DSA dataset and a 2D+t DSA sequence, the proposed algorithm employs a 1D Computational Fluid Dynamics (CFD) model for estimation of time-dependent flow values along a cerebral vessel, combined with an additional Advection Diffusion Equation (ADE) for contrast agent propagation. The CFD system, followed by the ADE, is solved with a finite volume approximation, which ensures the conservation of mass. Instead of defining a new imaging protocol to obtain relevant data, our cost function optimizes the bolus arrival time (BAT) of the contrast agent in 2D+t DSA sequences. The visual determination of BAT is common clinical practice and can be easily derived from and be compared to values, generated by a 1D-CFD simulation. Using this strategy, we ensure that our proposed method fits best to clinical practice and does not require any changes to the medical work flow. Synthetic experiments show that the recovered flow estimates match the ground truth values with less than 12% error in the mean flow rates.

  14. Volumetric lattice Boltzmann simulation for blood flow in aorta arteries

    NASA Astrophysics Data System (ADS)

    Deep, Debanjan; Yu, Huidan (Whitney); Teague, Shawn

    2012-11-01

    Complicated moving boundaries pose a major challenge in computational fluid dynamics for complex flows, especially in the biomechanics of both blood flow in the cardiovascular system and air flow in the respiratory system where the compliant nature of the vessels can have significant effects on the flow rate and wall shear stress. We develop a computation approach to treat arbitrarily moving boundaries using a volumetric representation of lattice Boltzmann method, which distributes fluid particles inside lattice cells. A volumetric bounce-back procedure is applied in the streaming step while momentum exchange between the fluid and moving solid boundary are accounted for in the collision sub-step. Additional boundary-induced migration is introduced to conserve fluid mass as the boundary moves across fluid cells. The volumetric LBM (VLBM) is used to simulate blood flow in both normal and dilated aorta arteries. We first compare flow structure and pressure distribution in steady state with results from Navier-Stokes based solver and good agreements are achieved. Then we focus on wall stress within the aorta for different heart pumping condition and present quantitative measurement of wall shear and normal stress.

  15. An analysis of estimation of pulmonary blood flow by the single-breath method

    NASA Technical Reports Server (NTRS)

    Srinivasan, R.

    1986-01-01

    The single-breath method represents a simple noninvasive technique for the assessment of capillary blood flow across the lung. However, this method has not gained widespread acceptance, because its accuracy is still being questioned. A rigorous procedure is described for estimating pulmonary blood flow (PBF) using data obtained with the aid of the single-breath method. Attention is given to the minimization of data-processing errors in the presence of measurement errors and to questions regarding a correction for possible loss of CO2 in the lung tissue. It is pointed out that the estimations are based on the exact solution of the underlying differential equations which describe the dynamics of gas exchange in the lung. The reported study demonstrates the feasibility of obtaining highly reliable estimates of PBF from expiratory data in the presence of random measurement errors.

  16. An analysis of estimation of pulmonary blood flow by the single-breath method

    NASA Technical Reports Server (NTRS)

    Srinivasan, R.

    1986-01-01

    The single-breath method represents a simple noninvasive technique for the assessment of capillary blood flow across the lung. However, this method has not gained widespread acceptance, because its accuracy is still being questioned. A rigorous procedure is described for estimating pulmonary blood flow (PBF) using data obtained with the aid of the single-breath method. Attention is given to the minimization of data-processing errors in the presence of measurement errors and to questions regarding a correction for possible loss of CO2 in the lung tissue. It is pointed out that the estimations are based on the exact solution of the underlying differential equations which describe the dynamics of gas exchange in the lung. The reported study demonstrates the feasibility of obtaining highly reliable estimates of PBF from expiratory data in the presence of random measurement errors.

  17. Red blood cells radial dispersion in blood flowing through microchannels: The role of temperature.

    PubMed

    Pinho, Diana; Rodrigues, Raquel O; Faustino, Vera; Yaginuma, Tomoko; Exposto, José; Lima, Rui

    2016-07-26

    The behavior of suspensions of individual blood cells, such as red blood cells (RBCs), flowing through microvessels and microfluidic systems depend strongly on the hematocrit (Hct), microvessel topology and cell properties. Although it is well known that blood rheological properties are temperature dependent, to the best of our knowledge no work has studied the role of the temperature on the RBCs dispersion. A powerful way to investigate this latter effect is through a high-speed video microscopy system, which provides detailed flow measurements of each individual RBC. Hence, the effect of temperature on the RBCs dispersion flowing through a 100μm glass capillary was examined by means of a confocal micro-PTV system. Hundreds of labeled RBCs were tracked at moderate Hct (12%) and at four different temperatures, i.e., 25°C, 32°C, 37°C and 42°C. The results yielded an enhancement of the RBCs diffusion as the temperature increases. Hence, our findings show that RBCs radial dispersion is temperature dependent and as a result the temperature should not be ignored in future blood flow studies. We believe that this finding is important for a better understanding of blood mass transport mechanisms under both physiological and pathological conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Blood flow simulation on a role for red blood cells in platelet adhesion

    NASA Astrophysics Data System (ADS)

    Shimizu, Kazuya; Sugiyama, Kazuyasu; Takagi, Shu

    2016-11-01

    Large-scale blood flow simulations were conducted and a role for red blood cells in platelet adhesion was discussed. The flow conditions and hematocrit values were set to the same as corresponding experiments, and the numerical results were compared with the measurements. Numerical results show the number of platelets adhered on the wall is increased with the increase in hematocrit values. The number of adhered platelets estimated from the simulation was approximately 28 (per 0.01 square millimeter per minute) for the hematocrit value of 20%. These results agree well with the experimental results qualitatively and quantitatively, which proves the validity of the present numerical model including the interaction between fluid and many elastic bodies and the modeling of platelet adhesion. Numerical simulation also reproduces the behavior of red blood cells in the blood flow and their role in platelet adhesion. Red blood cells deform to a flat shape and move towards channel center region. In contrast, platelets are pushed out and have many chances to contact with the wall. As a result, the large number of adhered platelets is observed as hematocrit values becomes high. This result indicates the presence of red blood cells plays a crucial role in platelet adhesion.

  19. Pulmonary blood flow distribution in sheep: effects of anesthesia, mechanical ventilation, and change in posture

    NASA Technical Reports Server (NTRS)

    Walther, S. M.; Domino, K. B.; Glenny, R. W.; Hlastala, M. P.

    1997-01-01

    BACKGROUND: Recent studies providing high-resolution images of pulmonary perfusion have questioned the classical zone model of pulmonary perfusion. Hence the present work was undertaken to provide detailed maps of regional pulmonary perfusion to examine the influence of anesthesia, mechanical ventilation, and posture. METHODS: Pulmonary perfusion was analyzed with intravenous fluorescent microspheres (15 microm) in six sheep studied in four conditions: prone and awake, prone with pentobarbital-anesthesia and breathing spontaneously, prone with anesthesia and mechanical ventilation, and supine with anesthesia and mechanical ventilation. Lungs were air dried at total lung capacity and sectioned into approximately 1,100 pieces (about 2 cm3) per animal. The pieces were weighed and assigned spatial coordinates. Fluorescence was read on a spectrophotometer, and signals were corrected for piece weight and normalized to mean flow. Pulmonary blood flow heterogeneity was assessed using the coefficient of variation of flow data. RESULTS: Pentobarbital anesthesia and mechanical ventilation did not influence perfusion heterogeneity, but heterogeneity increased when the animals were in the supine posture (P < 0.01). Gravitational flow gradients were absent in the prone position but present in the supine (P < 0.001 compared with zero). Pulmonary perfusion was distributed with a hilar-to-peripheral gradient in animals breathing spontaneously (P < 0.05). CONCLUSIONS: The influence of pentobarbital anesthesia and mechanical ventilation on pulmonary perfusion heterogeneity is small compared with the effect of changes in posture. Analysis of flow gradients indicate that gravity plays a small role in determining pulmonary blood flow distribution.

  20. Pulmonary blood flow distribution in sheep: effects of anesthesia, mechanical ventilation, and change in posture

    NASA Technical Reports Server (NTRS)

    Walther, S. M.; Domino, K. B.; Glenny, R. W.; Hlastala, M. P.

    1997-01-01

    BACKGROUND: Recent studies providing high-resolution images of pulmonary perfusion have questioned the classical zone model of pulmonary perfusion. Hence the present work was undertaken to provide detailed maps of regional pulmonary perfusion to examine the influence of anesthesia, mechanical ventilation, and posture. METHODS: Pulmonary perfusion was analyzed with intravenous fluorescent microspheres (15 microm) in six sheep studied in four conditions: prone and awake, prone with pentobarbital-anesthesia and breathing spontaneously, prone with anesthesia and mechanical ventilation, and supine with anesthesia and mechanical ventilation. Lungs were air dried at total lung capacity and sectioned into approximately 1,100 pieces (about 2 cm3) per animal. The pieces were weighed and assigned spatial coordinates. Fluorescence was read on a spectrophotometer, and signals were corrected for piece weight and normalized to mean flow. Pulmonary blood flow heterogeneity was assessed using the coefficient of variation of flow data. RESULTS: Pentobarbital anesthesia and mechanical ventilation did not influence perfusion heterogeneity, but heterogeneity increased when the animals were in the supine posture (P < 0.01). Gravitational flow gradients were absent in the prone position but present in the supine (P < 0.001 compared with zero). Pulmonary perfusion was distributed with a hilar-to-peripheral gradient in animals breathing spontaneously (P < 0.05). CONCLUSIONS: The influence of pentobarbital anesthesia and mechanical ventilation on pulmonary perfusion heterogeneity is small compared with the effect of changes in posture. Analysis of flow gradients indicate that gravity plays a small role in determining pulmonary blood flow distribution.

  1. Laser speckle imaging of blood flow in microcirculation

    NASA Astrophysics Data System (ADS)

    Cheng, Haiying; Luo, Qingming; Liu, Qian; Lu, Qiang; Gong, Hui; Zeng, Shaoqun

    2004-04-01

    Monitoring the spatio-temporal characteristics of microcirculation is crucial for studying the functional activities of biotissue and the mechanism of disease. However, conventional methods used to measure blood flow suffer from limited spatial resolution or the injection of exogenous substances or the need of scanning to obtain the dynamic of regional blood flow. Laser speckle imaging (LSI) technique makes up these disadvantages by obtaining the regional blood flow distribution with high spatio-temporal resolution without the need to scan. In this paper, LSI was introduced to investigate the dynamic responses of the rat mesenteric microcirculation to an incremental dose of phentolamine. The results showed that when the dose of phentolamine was less than 4 µg ml-1, local application of phentolamine on the mesentery would increase the blood perfusion as the concentration increased. When the dose increased further, the improvement decreased. At a dose of 200 µg ml-1, a microcirculation impediment was caused. At the same time, different responses between veinules and arterioles were manifested. These suggested that LSI is promising to be a useful contribution to drug development and testing.

  2. Ozone Therapy on Cerebral Blood Flow: A Preliminary Report.

    PubMed

    Clavo, Bernardino; Catalá, Luis; Pérez, Juan L; Rodríguez, Victor; Robaina, Francisco

    2004-12-01

    Ozone therapy is currently being used in the treatment of ischemic disorders, but the underlying mechanisms that result in successful treatment are not well known. This study assesses the effect of ozone therapy on the blood flow in the middle cerebral and common carotid arteries. Seven subjects were recruited for the therapy that was performed by transfusing ozone-enriched autologous blood on 3 alternate days over 1 week. Blood flow quantification in the common carotid artery (n = 14) was performed using color Doppler. Systolic and diastolic velocities in the middle cerebral artery (n = 14) were estimated using transcranial Doppler. Ultrasound assessments were conducted at the following three time points: 1) basal (before ozone therapy), 2) after session #3 and 3) 1 week after session #3. The common carotid blood flow had increased by 75% in relation to the baseline after session #3 (P < 0.001) and by 29% 1 week later (P = 0.039). In the middle cerebral artery, the systolic velocity had increased by 22% after session #3 (P = 0.001) and by 15% 1 week later (P = 0.035), whereas the diastolic velocity had increased by 33% after session #3 (P < 0.001) and by 18% 1 week later (P = 0.023). This preliminary Doppler study supports the clinical experience of achieving improvement by using ozone therapy in peripheral ischemic syndromes. Its potential use as a complementary treatment in cerebral low perfusion syndromes merits further clinical evaluation.

  3. Ozone Therapy on Cerebral Blood Flow: A Preliminary Report

    PubMed Central

    2004-01-01

    Ozone therapy is currently being used in the treatment of ischemic disorders, but the underlying mechanisms that result in successful treatment are not well known. This study assesses the effect of ozone therapy on the blood flow in the middle cerebral and common carotid arteries. Seven subjects were recruited for the therapy that was performed by transfusing ozone-enriched autologous blood on 3 alternate days over 1 week. Blood flow quantification in the common carotid artery (n = 14) was performed using color Doppler. Systolic and diastolic velocities in the middle cerebral artery (n = 14) were estimated using transcranial Doppler. Ultrasound assessments were conducted at the following three time points: 1) basal (before ozone therapy), 2) after session #3 and 3) 1 week after session #3. The common carotid blood flow had increased by 75% in relation to the baseline after session #3 (P < 0.001) and by 29% 1 week later (P = 0.039). In the middle cerebral artery, the systolic velocity had increased by 22% after session #3 (P = 0.001) and by 15% 1 week later (P = 0.035), whereas the diastolic velocity had increased by 33% after session #3 (P < 0.001) and by 18% 1 week later (P = 0.023). This preliminary Doppler study supports the clinical experience of achieving improvement by using ozone therapy in peripheral ischemic syndromes. Its potential use as a complementary treatment in cerebral low perfusion syndromes merits further clinical evaluation. PMID:15841265

  4. Structural analysis of red blood cell aggregates under shear flow.

    PubMed

    Chesnutt, J K W; Marshall, J S

    2010-03-01

    A set of measures of red blood cell (RBC) aggregates are developed and applied to examine the aggregate structure under plane shear and channel flows. Some of these measures are based on averages over the set of red blood cells which are in contact with each other at a given time. Other measures are developed by first fitting an ellipse to the planar projection of the aggregate, and then examining the area and aspect ratio of the fit ellipse as well as the orientations of constituent RBCs with respect to the fit ellipse axes. The aggregate structural measures are illustrated using a new mesoscale computational model for blood cell transport, collision and adhesion. The sensitivity of this model to change in adhesive surface energy density and shear rate on the aggregate structure is examined. It is found that the mesoscale model predictions exhibit reasonable agreement with experimental and theoretical data for blood flow in plane shear and channel flows. The new structural measures are used to examine the differences between predictions of two- and three-dimensional computations of the aggregate formation, showing that two-dimensional computations retain some of the important aspects of three-dimensional computations.

  5. Characterization of Blood Flow in Capillaries by Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Wang, Tong; Xing, Zhongwen

    2011-03-01

    We presents a numerical investigation of the axisymmetric, pressure driven motion of single file erythrocyte (i.e., red blood cell) suspensions flowing in capillaries of diameter 8- 11 μ m. The governing Navier-Stokes equations are discretized using the operator splitting technique and solved by the finite element method. The study takes consideration the particulate nature of the blood. The red blood cell (RBC) is modeled as a closed membrane filled with a Newtonian fluid which has the same viscosity as the surrounding plasma. The cell membrane is described by a spring model so that the deformability of the cells can be considered. An immersed boundary method is also developed for dealing with the cell/fluid interaction in the flow. Our study successfully recreates several important in vivo hemodynamic and hemorheological properties of microscopic blood flow, such as parachute shape of the cells, blunt velocity profile, and the Fahraeus effect, and they have been shown to have strong dependence on cell deformability, hematocrit and vessel size.

  6. Compressibility Corrections to Closure Approximations for Turbulent Flow Simulations

    SciTech Connect

    Cloutman, L D

    2003-02-01

    We summarize some modifications to the usual closure approximations for statistical models of turbulence that are necessary for use with compressible fluids at all Mach numbers. We concentrate here on the gradient-flu approximation for the turbulent heat flux, on the buoyancy production of turbulence kinetic energy, and on a modification of the Smagorinsky model to include buoyancy. In all cases, there are pressure gradient terms that do not appear in the incompressible models and are usually omitted in compressible-flow models. Omission of these terms allows unphysical rates of entropy change.

  7. Blood Flow: Multi-scale Modeling and Visualization

    SciTech Connect

    2010-01-01

    Multi-scale modeling of arterial blood flow can shed light on the interaction between events happening at micro- and meso-scales (i.e., adhesion of red blood cells to the arterial wall, clot formation) and at macro-scales (i.e., change in flow patterns due to the clot). Coupled numerical simulations of such multi-scale flow require state-of-the-art computers and algorithms. Along with developing methods for multi-scale computations, techniques for multi-scale visualizations must be designed. This animation presents early results of joint efforts of teams from Brown University and Argonne National Laboratory to develop a multi-scale visualization methodology. It illustrates a flow of healthy (red) and diseased (blue) blood cells with a Dissipative Particle Dynamics (DPD) method. Each blood cell is represented by a mesh made of 500 DPD-particles, and small spheres show a sub-set of the DPD particles representing the blood plasma, while instantaneous streamlines and slices represent the ensemble average velocity. Credits: Science: Leopold Grinberg and George Karniadakis, Brown University Visualization: Joseph A. Insley and Michael E. Papka, Argonne National Laboratory This research used resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-06CH11357. This research was supported in part by the National Science Foundation through the PetaApps program and used TeraGrid resources provided by National Institute for Computational Sciences.

  8. Theoretical analysis of magnetic field interactions with aortic blood flow

    SciTech Connect

    Kinouchi, Y.; Yamaguchi, H.; Tenforde, T.S.

    1996-04-01

    The flow of blood in the presence of a magnetic field gives rise to induced voltages in the major arteries of the central circulatory system. Under certain simplifying conditions, such as the assumption that the length of major arteries (e.g., the aorta) is infinite and that the vessel walls are not electrically conductive, the distribution of induced voltages and currents within these blood vessels can be calculated with reasonable precision. However, the propagation of magnetically induced voltages and currents from the aorta into neighboring tissue structures such as the sinuatrial node of the heart has not been previously determined by any experimental or theoretical technique. In the analysis presented in this paper, a solution of the complete Navier-Stokes equation was obtained by the finite element technique for blood flow through the ascending and descending aortic vessels in the presence of a uniform static magnetic field. Spatial distributions of the magnetically induced voltage and current were obtained for the aortic vessel and surrounding tissues under the assumption that the wall of the aorta is electrically conductive. Results are presented for the calculated values of magnetically induced voltages and current densities in the aorta and surrounding tissue structures, including the sinuatrial node, and for their field-strength dependence. In addition, an analysis is presented of magnetohydrodynamic interactions that lead to a small reduction of blood volume flow at high field levels above approximately 10 tesla (T). Quantitative results are presented on the offsetting effects of oppositely directed blood flows in the ascending and descending aortic segments, and a quantitative estimate is made of the effects of assuming an infinite vs. a finite length of the aortic vessel in calculating the magnetically induced voltage and current density distribution in tissue.

  9. Longitudinal cerebral blood flow changes during speech in hereditary ataxia

    PubMed Central

    Sidtis, John J.; Strother, Stephen C.; Groshung, Ansam; Rottenberg, David A.; Gomez, Christopher

    2010-01-01

    The hereditary ataxias constitute a group of degenerative diseases that progress over years or decades. With principal pathology involving the cerebellum, dysarthria is an early feature of many of the ataxias. Positron Emission Tomography was used to study regional cerebral blood flow changes during speech production over a 21 month period in a group of seven right-handed subjects with hereditary ataxia (6 females and 1 male, 3 SCA1 and 4 SCA5, aged 38.3 +/− 18.9 years). The decline in blood flow was greatest in cerebellar regions. In contrast, blood flow actually increased during speech production in the classic speech area (Broca’s area) but not in its right hemisphere homologue at the second evaluation. This increase in cortical flow may have been compensatory for cerebellar degeneration as speech intelligibility did not decline significantly during this period. Compensation was not complete, though, as syllable timing shifted in the direction of equal syllable duration, one of the characteristics of ataxic dysarthria. These results are consistent with previous functional imaging studies of ataxia demonstrating a pattern of brain activity that reflects both loss of function and relative compensation when clinical signs and symptoms are still mild. The combination of disease-relevant tasks, behavioral measurement, and functional imaging may provide insight into the early changes associated with neurodegenerative disease. PMID:20417959

  10. Regional blood flows in running normotensive and renal hypertensive dogs.

    PubMed

    Liard, J F

    1986-08-01

    The influence of short-term hypertension on the haemodynamic response to exercise was studied by measuring arterial pressure and regional blood flow (radio-active microspheres) in dogs at two levels of treadmill exercise (5 km/h at 0 degrees and 10 km/h at 4.5 degrees). One group of dogs (n = 5) had one-kidney, one clip hypertension of 1-week duration and was compared to normotensive controls (n = 5). Both groups exhibited similar increases in heart rate, but arterial pressure increased only in the normotensive dogs. Left ventricular myocardial blood flow increased significantly in both groups. However, the increase was more pronounced in the hypertensive dogs. In some groups of active skeletal muscles (biceps brachii, tibialis cranialis), increases in blood flow in excess of 30-fold were observed during exercise in normotensive animals. Several muscles showed exaggerated increases in flow in hypertensive dogs. Perfusion of the brain, the kidneys and the splanchnic area was not compromised in either group of dogs. We conclude that in one-kidney, one clip hypertension of 1-week duration, when structural cardiovascular changes are presumably far from being completely developed, vasodilatation to increased metabolic demands in the myocardium and in most skeletal muscles is not limited in response to mild to moderate levels of exercise, and that perfusion of other vascular beds is not compromised.

  11. Axial dispersion in flowing red blood cell suspensions

    NASA Astrophysics Data System (ADS)

    Podgorski, Thomas; Losserand, Sylvain; Coupier, Gwennou

    2016-11-01

    A key parameter in blood microcirculation is the transit time of red blood cells (RBCs) through an organ, which can influence the efficiency of gas exchange and oxygen availability. A large dispersion of this transit time is observed in vivo and is partly due to the axial dispersion in the flowing suspension. In the classic Taylor-Aris example of a solute flowing in a tube, the combination of molecular diffusion and parabolic velocity profile leads to enhanced axial dispersion. In suspensions of non-Brownian deformable bodies such as RBCs, axial dispersion is governed by a combination of shear induced migration and shear-induced diffusion arising from hydrodynamic interactions. We revisit this problem in the case of RBC pulses flowing in a microchannel and show that the axial dispersion of the pulse eventually saturates with a final extension that depends directly on RBC mechanical properties. The result is especially interesting in the dilute limit since the final pulse length depends only on the channel width, exponent of the migration law and dimensionless migration velocity. In continuous flow, the dispersion of transit times is the result of complex cell-cell and cell-wall interactions and is strongy influenced by the polydispersity of the blood sample. The authors acknowledge support from LabEx TEC21 and CNES.

  12. Occlusion-free Blood Flow Animation with Wall Thickness Visualization.

    PubMed

    Lawonn, Kai; Glaßer, Sylvia; Vilanova, Anna; Preim, Bernhard; Isenberg, Tobias

    2016-01-01

    We present the first visualization tool that combines pathlines from blood flow and wall thickness information. Our method uses illustrative techniques to provide occlusion-free visualization of the flow. We thus offer medical researchers an effective visual analysis tool for aneurysm treatment risk assessment. Such aneurysms bear a high risk of rupture and significant treatment-related risks. Therefore, to get a fully informed decision it is essential to both investigate the vessel morphology and the hemodynamic data. Ongoing research emphasizes the importance of analyzing the wall thickness in risk assessment. Our combination of blood flow visualization and wall thickness representation is a significant improvement for the exploration and analysis of aneurysms. As all presented information is spatially intertwined, occlusion problems occur. We solve these occlusion problems by dynamic cutaway surfaces. We combine this approach with a glyph-based blood flow representation and a visual mapping of wall thickness onto the vessel surface. We developed a GPU-based implementation of our visualizations which facilitates wall thickness analysis through real-time rendering and flexible interactive data exploration mechanisms. We designed our techniques in collaboration with domain experts, and we provide details about the evaluation of the technique and tool.

  13. A spectral boundary integral method for flowing blood cells

    NASA Astrophysics Data System (ADS)

    Zhao, Hong; Isfahani, Amir H. G.; Olson, Luke N.; Freund, Jonathan B.

    2010-05-01

    A spectral boundary integral method for simulating large numbers of blood cells flowing in complex geometries is developed and demonstrated. The blood cells are modeled as finite-deformation elastic membranes containing a higher viscosity fluid than the surrounding plasma, but the solver itself is independent of the particular constitutive model employed for the cell membranes. The surface integrals developed for solving the viscous flow, and thereby the motion of the massless membrane, are evaluated using an O(NlogN) particle-mesh Ewald (PME) approach. The cell shapes, which can become highly distorted under physiologic conditions, are discretized with spherical harmonics. The resolution of these global basis functions is, of course, excellent, but more importantly they facilitate an approximate de-aliasing procedure that stabilizes the simulations without adding any numerical dissipation or further restricting the permissible numerical time step. Complex geometry no-slip boundaries are included using a constraint method that is coupled into an implicit system that is solved as part of the time advancement routine. The implementation is verified against solutions for axisymmetric flows reported in the literature, and its accuracy is demonstrated by comparison against exact solutions for relaxing surface deformations. It is also used to simulate flow of blood cells at 30% volume fraction in tubes between 4.9 and 16.9 μm in diameter. For these, it is shown to reproduce the well-known non-monotonic dependence of the effective viscosity on the tube diameter.

  14. Nephron blood flow dynamics measured by laser speckle contrast imaging

    PubMed Central

    Holstein-Rathlou, Niels-Henrik; Sosnovtseva, Olga V.; Pavlov, Alexey N.; Cupples, William A.; Sorensen, Charlotte Mehlin

    2011-01-01

    Tubuloglomerular feedback (TGF) has an important role in autoregulation of renal blood flow and glomerular filtration rate (GFR). Because of the characteristics of signal transmission in the feedback loop, the TGF undergoes self-sustained oscillations in single-nephron blood flow, GFR, and tubular pressure and flow. Nephrons interact by exchanging electrical signals conducted electrotonically through cells of the vascular wall, leading to synchronization of the TGF-mediated oscillations. Experimental studies of these interactions have been limited to observations on two or at most three nephrons simultaneously. The interacting nephron fields are likely to be more extensive. We have turned to laser speckle contrast imaging to measure the blood flow dynamics of 50–100 nephrons simultaneously on the renal surface of anesthetized rats. We report the application of this method and describe analytic techniques for extracting the desired data and for examining them for evidence of nephron synchronization. Synchronized TGF oscillations were detected in pairs or triplets of nephrons. The amplitude and the frequency of the oscillations changed with time, as did the patterns of synchronization. Synchronization may take place among nephrons not immediately adjacent on the surface of the kidney. PMID:21048025

  15. Effect of photodynamic therapy with verteporfin on tumor blood flow

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Pogue, Brian W.; Goodwin, Isak A.; O'Hara, Julia A.; Wilmot, Carmen M.; Hutchins, John E.; Hoopes, P. J.; Hasan, Tayyaba

    2003-06-01

    The success of photodynamic therapy with verteporfin is partially determined by the pharmacokinetic distribution of the sensitizer at the time of treatment. In this study tumor blood flow changes in the RIF-1 murine tumor model and tumor resopnse using the regrowth assay were measured, comparing two different intervals between drug and light administration. Blood flow measurements were taken with a laser Doppler system monitoring continuously over 1 hour and periodically up to 6 hours after treatment. Treatment after the longer interval caused significantly less flow decrease, to only 50% of the initial flow in 6 h. Hoechst staining of functional tumor vasculature confirmed the primary vascular damage and the decrease in tumor perfusion. The regrowth rate of tumors after the longer time interval, the regrowth rate was not signifincalty different from that of the control, indicating that only the 15-min interval group caused serious damage to the vascular bed of the tumor. These studies support the hypothesis that temporal pharmacokinetic changes in the photosensitizer distribution between the tumor parenchyma and blood vessels can significantly alter the mechanism of tumor targeting during therapy.

  16. Nephron blood flow dynamics measured by laser speckle contrast imaging.

    PubMed

    Holstein-Rathlou, Niels-Henrik; Sosnovtseva, Olga V; Pavlov, Alexey N; Cupples, William A; Sorensen, Charlotte Mehlin; Marsh, Donald J

    2011-02-01

    Tubuloglomerular feedback (TGF) has an important role in autoregulation of renal blood flow and glomerular filtration rate (GFR). Because of the characteristics of signal transmission in the feedback loop, the TGF undergoes self-sustained oscillations in single-nephron blood flow, GFR, and tubular pressure and flow. Nephrons interact by exchanging electrical signals conducted electrotonically through cells of the vascular wall, leading to synchronization of the TGF-mediated oscillations. Experimental studies of these interactions have been limited to observations on two or at most three nephrons simultaneously. The interacting nephron fields are likely to be more extensive. We have turned to laser speckle contrast imaging to measure the blood flow dynamics of 50-100 nephrons simultaneously on the renal surface of anesthetized rats. We report the application of this method and describe analytic techniques for extracting the desired data and for examining them for evidence of nephron synchronization. Synchronized TGF oscillations were detected in pairs or triplets of nephrons. The amplitude and the frequency of the oscillations changed with time, as did the patterns of synchronization. Synchronization may take place among nephrons not immediately adjacent on the surface of the kidney.

  17. [TISSUE BLOOD FLOW IN THE DIGESTIVE ORGANS OF RATS WITH ACUTE PANCREATITIS AFTER CORVITIN ADMINISTRATION].

    PubMed

    Vovkun, T V; Yanchuk, P I; Shtanova, L Y; Shalamay, A S

    2015-01-01

    We have investigated the action of quercetin (in a modified form--Corvitin, BCPP, Ukraine) on the rate of blood flow in the pancreas, liver and gastric mucosa of rats with acute pancreatitis (AP) caused by administration of L-arginine. The rate of blood flow was measured by hydrogen clearance method with electrochemical his generation using Polarographs Lr-9 (Czech Republic). During the first 10 days after modelling of AP in these organs it was observed a gradual decrease compared to the intact animals in the rate of blood flow by 42% (P < 0.01) in the pancreas; by 61% (P < 0.001) in the liver and by 64% (P < 0.001) in the gastric mucosa, i.e., the most significant changes occurred in the gastric mucosa, the least--in the tissue of the pancreas. Compared with the control group of animals with modelling acute pancreatitis which during 20 days was administered only saline, application of Corvitin (5 mg/kg, 1 time per day from 11 to 20 days of experiment) in varying degrees promoted to the recovery of the rate of blood flow in all investigated organs: in the pancreas--fully, in the liver--almost entirely and in the gastric mucosa--only partially. Thus, based on obtained results Corvitin can be recommended for partial or complete correction of blood flow disturbances, which arise in the pancreas and other organs of the digestive system in AP. Corvitin can improve the functional state of these organs in the early stages of the disease and accelerate the full restoration of their functions.

  18. Methods for blood flow measurements using ultrasound contrast agents

    NASA Astrophysics Data System (ADS)

    Fowlkes, J. Brian

    2003-10-01

    Blood flow measurements using ultrasound contrast agents are being investigated for myocardial perfusion and more recently in other organ systems. The methods are based largely on the relative increase in echogenicity due to the concentration of bubbles present in the ultrasound beam. In the simplest form, regional differences in blood volume can be inferred but the possibility exists to extract perfusion from the transit of contrast agent through tissue. Perfusion measurements rely on determining the flux of blood through a tissue volume and as such require knowledge of the fractional blood volume (FBV), i.e., ml blood/g tissue and the rate of exchange, commonly measured as the mean transit time (MTT). This presentation will discuss methods of determining each of these values and their combination to estimate tissue perfusion. Underlying principles of indicator-dilution theory will be provided in the context of ultrasound contrast agents. Current methods for determining MTT will include imaging of the intravenous bolus, in-plane contrast disruption with interval and real-time contrast recovery imaging, and control of contrast agent flow using arterial disruption (contrast interruption). The advantages and limitations of the methods will be examined along with current applications. [Work supported in part by NIH.

  19. Nitric oxide influences blood flow distribution in renovascular hypertension.

    PubMed

    Sigmon, D H; Beierwaltes, W H

    1994-01-01

    Endothelium-derived nitric oxide contributes to the regulation of regional blood flow. Inhibition of endothelium-derived nitric oxide synthesis increases blood pressure and vascular resistance. Using the substrate antagonist N omega-nitro-L-arginine-methyl ester to block endothelium-derived nitric oxide synthesis, we tested the hypothesis that, in two-kidney, one clip renovascular hypertension, endothelium-derived nitric oxide plays an increased role in maintaining blood flow to the nonclipped kidney and other visceral organs compared with normotensive controls. This could be due to increased vascular shear stress, a primary stimulus for endothelium-derived nitric oxide synthesis, after the onset of hypertension. In hypertensive rats with mild renal artery stenosis, basal renal blood flow normalized by kidney weight was similar in the nonclipped and clipped kidneys. Basal blood pressure of controls was 98 +/- 2 mm Hg compared with 145 +/- 3 mm Hg in the two-kidney, one clip hypertensive rats. N omega-nitro-L-arginine-methyl ester increased blood pressure by 20 +/- 2 and 43 +/- 3 mm Hg in control and hypertensive rats, respectively. Compared with normotensive controls, basal resistance was higher in all organ beds in the hypertensive rats including brain, heart, intestine, and kidney. With the exception of the renal circulation, the increase in vascular resistance after N omega-nitro-L-arginine-methyl ester was greater in hypertensive rats compared with normotensive controls. In the hypertensive rats, N omega-nitro-L-arginine-methyl ester caused a similar increase in vascular resistance in both the nonclipped and clipped kidneys, and this was not different from normotensive controls.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Endothelial-dependent vasodilators preferentially increase subendocardial blood flow

    SciTech Connect

    Pelc, L.R.; Gross, G.J.; Warltier, D.C.

    1986-03-05

    Interference with arachidonic acid metabolism on the effect of acetylcholine (Ach) or arachidonic acid (AA) to preferentially increase subendocardial perfusion was investigated in anesthetized dogs. Hemodynamics, regional myocardial blood flow (MBF (ml/min/g):radioactive microspheres) and the left ventricular transmural distribution of flow (endo/epi) were measured. Intracoronary infusion of Ach (10 ..mu..g/min) and AA (585 ..mu..g/min) significantly (P < .05*) increased myocardial perfusion and selectively redistributed flow to the subendocardium (increased endo/epi) without changes in systemic hemodynamics. Inhibition of phospholipase A/sub 2/ by quinacrine (Q; 600 ..mu..g/min, ic) attenuated the increase in myocardial perfusion produced by Ach but not by AA and inhibited the redistribution of flow to the subendocardium. The present results suggest that endothelium-dependent vasodilators produce a preferential increase in subendocardial perfusion via a product of AA metabolism.

  1. Lattice Boltzmann Simulation of Blood Flow in Blood Vessels with the Rolling Massage

    NASA Astrophysics Data System (ADS)

    Yi, Hou-Hui; Xu, Shi-Xiong; Qian, Yue-Hong; Fang, Hai-Ping

    2005-12-01

    The rolling massage manipulation is a classic Chinese massage, which is expected to improve the circulation by pushing, pulling and kneading of the muscle. A model for the rolling massage manipulation is proposed and the lattice Boltzmann method is applied to study the blood flow in the blood vessels. The simulation results show that the blood flux is considerably modified by the rolling massage and the explicit value depends on the rolling frequency, the rolling depth, and the diameter of the vessel. The smaller the diameter of the blood vessel, the larger the enhancement of the blood flux by the rolling massage. The model, together with the simulation results, is expected to be helpful to understand the mechanism and further development of rolling massage techniques.

  2. Regulation of blood flow and volume exchange across the microcirculation.

    PubMed

    Jacob, Matthias; Chappell, Daniel; Becker, Bernhard F

    2016-10-21

    Oxygen delivery to cells is the basic prerequisite of life. Within the human body, an ingenious oxygen delivery system, comprising steps of convection and diffusion from the upper airways via the lungs and the cardiovascular system to the microvascular area, bridges the gap between oxygen in the outside airspace and the interstitial space around the cells. However, the complexity of this evolutionary development makes us prone to pathophysiological problems. While those problems related to respiration and macrohemodynamics have already been successfully addressed by modern medicine, the pathophysiology of the microcirculation is still often a closed book in daily practice. Nevertheless, here as well, profound physiological understanding is the only key to rational therapeutic decisions. The prime guarantor of tissue oxygenation is tissue blood flow. Therefore, on the premise of intact macrohemodynamics, the microcirculation has three major responsibilities: 1) providing access for oxygenated blood to the tissues and appropriate return of volume; 2) maintaining global tissue flood flow, even in the face of changes in central blood pressure; and 3) linking local blood flow to local metabolic needs. It is an intriguing concept of nature to do this mainly by local regulatory mechanisms, impacting primarily on flow resistance, be this via endothelial or direct smooth muscle actions. The final goal of microvascular blood flow per unit of time is to ensure the needed exchange of substances between tissue and blood compartments. The two principle means of accomplishing this are diffusion and filtration. While simple diffusion is the quantitatively most important form of capillary exchange activity for the respiratory gases, water flux across the blood-brain barrier is facilitated via preformed specialized channels, the aquaporines. Beyond that, the vascular barrier is practically nowhere completely tight for water, with paracellular filtration giving rise to generally low

  3. Convergence of Defect-Correction and Multigrid Iterations for Inviscid Flows

    NASA Technical Reports Server (NTRS)

    Diskin, Boris; Thomas, James L.

    2011-01-01

    Convergence of multigrid and defect-correction iterations is comprehensively studied within different incompressible and compressible inviscid regimes on high-density grids. Good smoothing properties of the defect-correction relaxation have been shown using both a modified Fourier analysis and a more general idealized-coarse-grid analysis. Single-grid defect correction alone has some slowly converging iterations on grids of medium density. The convergence is especially slow for near-sonic flows and for very low compressible Mach numbers. Additionally, the fast asymptotic convergence seen on medium density grids deteriorates on high-density grids. Certain downstream-boundary modes are very slowly damped on high-density grids. Multigrid scheme accelerates convergence of the slow defect-correction iterations to the extent determined by the coarse-grid correction. The two-level asymptotic convergence rates are stable and significantly below one in most of the regions but slow convergence is noted for near-sonic and very low-Mach compressible flows. Multigrid solver has been applied to the NACA 0012 airfoil and to different flow regimes, such as near-tangency and stagnation. Certain convergence difficulties have been encountered within stagnation regions. Nonetheless, for the airfoil flow, with a sharp trailing-edge, residuals were fast converging for a subcritical flow on a sequence of grids. For supercritical flow, residuals converged slower on some intermediate grids than on the finest grid or the two coarsest grids.

  4. Measurement of local cerebral blood flow with (/sup 14/C)iodoantipyrine in the mouse

    SciTech Connect

    Jay, T.M.; Lucignani, G.; Crane, A.M.; Jehle, J.; Sokoloff, L.

    1988-02-01

    Local cerebral blood flow was measured in the mouse by means of the (/sup 14/C)iodoantipyrine method. This method has been previously used in the monkey, dog, cat, and rat, but its application to small mammals such as the mouse requires special attention to potential sources of error. The small size of the mouse brain requires special attention to the rapid removal and freezing of the brain to minimize effects of postmortem diffusion of tracer in the tissue. Because of the relatively low diameter/length ratios of the catheters needed for arterial sampling in small animals, substantial errors can occur in the determination of the time course of the (/sup 14/C)iodoantipyrine concentration in the arterial blood unless corrections for lag time and dead space washout in the catheter are properly applied. Local cerebral blood flow was measured in seven awake mice with appropriate care to minimize these sources of error. The values were found to vary from 48 ml/100 g/min in the corpus callosum to 198 ml/100 g/min in the inferior colliculus. The results demonstrate that the (/sup 14/C)iodoantipyrine method can be used to measure local cerebral blood flow in the mouse and that the values in that species are, in general, somewhat higher than those in the rat.

  5. Modeling Lymph Flow and Fluid Exchange with Blood Vessels in Lymph Nodes.

    PubMed

    Jafarnejad, Mohammad; Woodruff, Matthew C; Zawieja, David C; Carroll, Michael C; Moore, J E

    2015-12-01

    Lymph nodes (LNs) are positioned strategically throughout the body as critical mediators of lymph filtration and immune response. Lymph carries cytokines, antigens, and cells to the downstream LNs, and their effective delivery to the correct location within the LN directly impacts the quality and quantity of immune response. Despite the importance of this system, the flow patterns in LN have never been quantified, in part because experimental characterization is so difficult. To achieve a more quantitative knowledge of LN flow, a computational flow model has been developed based on the mouse popliteal LN, allowing for a parameter sensitivity analysis to identify the important system characteristics. This model suggests that about 90% of the lymph takes a peripheral path via the subcapsular and medullary sinuses, while fluid perfusing deeper into the paracortex is sequestered by parenchymal blood vessels. Fluid absorption by these blood vessels under baseline conditions was driven mainly by oncotic pressure differences between lymph and blood, although the magnitude of fluid transfer is highly dependent on blood vessel surface area. We also predict that the hydraulic conductivity of the medulla, a parameter that has never been experimentally measured, should be at least three orders of magnitude larger than that of the paracortex to ensure physiologic pressures across the node. These results suggest that structural changes in the LN microenvironment, as well as changes in inflow/outflow conditions, dramatically alter the distribution of lymph, cytokines, antigens, and cells within the LN, with great potential for modulating immune response.

  6. Regional brain blood flow in man during acute changes in arterial blood gases

    PubMed Central

    Willie, C K; Macleod, D B; Shaw, A D; Smith, K J; Tzeng, Y C; Eves, N D; Ikeda, K; Graham, J; Lewis, N C; Day, T A; Ainslie, P N

    2012-01-01

    Despite the importance of blood flow on brainstem control of respiratory and autonomic function, little is known about regional cerebral blood flow (CBF) during changes in arterial blood gases. We quantified: (1) anterior and posterior CBF and reactivity through a wide range of steady-state changes in the partial pressures of CO2 () and O2 () in arterial blood, and (2) determined if the internal carotid artery (ICA) and vertebral artery (VA) change diameter through the same range. We used near-concurrent vascular ultrasound measures of flow through the ICA and VA, and blood velocity in their downstream arteries (the middle (MCA) and posterior (PCA) cerebral arteries). Part A (n= 16) examined iso-oxic changes in , consisting of three hypocapnic stages (=∼15, ∼20 and ∼30 mmHg) and four hypercapnic stages (=∼50, ∼55, ∼60 and ∼65 mmHg). In Part B (n= 10), during isocapnia, was decreased to ∼60, ∼44, and ∼35 mmHg and increased to ∼320 mmHg and ∼430 mmHg. Stages lasted ∼15 min. Intra-arterial pressure was measured continuously; arterial blood gases were sampled at the end of each stage. There were three principal findings. (1) Regional reactivity: the VA reactivity to hypocapnia was larger than the ICA, MCA and PCA; hypercapnic reactivity was similar. With profound hypoxia (35 mmHg) the relative increase in VA flow was 50% greater than the other vessels. (2) Neck vessel diameters: changes in diameter (∼25%) of the ICA was positively related to changes in (R2, 0.63 ± 0.26; P < 0.05); VA diameter was unaltered in response to changed but yielded a diameter increase of +9% with severe hypoxia. (3) Intra- vs. extra-cerebral measures: MCA and PCA blood velocities yielded smaller reactivities and estimates of flow than VA and ICA flow. The findings respectively indicate: (1) disparate blood flow regulation to the brainstem and cortex; (2) cerebrovascular resistance is not solely modulated at the level of the arteriolar pial vessels; and (3

  7. Blood Flow Imaging in Maternal and Fetal Arteries and Veins

    NASA Astrophysics Data System (ADS)

    Ricci, S.; Urban, G.; Vergani, P.; Paidas, M. J.; Tortoli, P.

    Maternal and fetal blood circulation has been investigated for nearly a decade through ultrasound (US) techniques. Evaluation of the spectrogram related to a single sample volume has been proven valuable for the assessment of fetal well-being and for prediction of pregnancy complications. In this work, an alternative technique, called Multigate Spectral Doppler Analysis (MSDA), is proposed. In this approach, 128 sample volumes aligned along the same scan line are simultaneously investigated to detect the blood velocity profile with high resolution. Profiles obtained through MSDA reveal features not detectable with the standard US technique, thus representing a more accurate flow signature. Some preliminary illustrative results are reported here.

  8. Radiohalogenated thienylethylamine derivatives for evaluating local cerebral blood flow

    SciTech Connect

    Goodman, M.M.; Knapp, F.F. Jr.

    1988-12-22

    An improved method of chemical synthesis of radiohalogenated thienylethylamine derivatives useful in brain imaging is described. These 5-halo-thiophene-2-isopropyl amines readily cross the blood- brain barrier and are retained in the brain for a sufficient length of time to allow evaluation of regional blood flow in the cerebrum. The advantages of the invention include a simpler synthesis route and a final compound which is less diluted with nonradioactive halogen. Use of this invention will allow clearer radioimaging or lower radiation doses to the patient, depending on the objective. 2 figs., 1 tab. (MHB)

  9. Resistance exercise with different volumes: blood pressure response and forearm blood flow in the hypertensive elderly.

    PubMed

    Brito, Aline de Freitas; de Oliveira, Caio Victor Coutinho; Brasileiro-Santos, Maria do Socorro; Santos, Amilton da Cruz

    2014-01-01

    The purpose of this study was to evaluate the effect of two sessions of resistance exercise with different volumes on post-exercise hypotension, forearm blood flow, and forearm vascular resistance in hypertensive elderly subjects. The study was conducted with ten hypertensive elderly (65±3 years, 28.7±3 kg/m(2)) subjected to three experimental sessions, ie, a control session, exercise with a set (S1), and exercise with three sets (S3). For each session, the subjects were evaluated before and after intervention. In the pre-intervention period, blood pressure, forearm blood flow, and forearm vascular resistance were measured after 10 minutes of rest in the supine position. Thereafter, the subjects were taken to the gym to perform their exercise sessions or remained at rest during the same time period. Both S1 and S3 comprised a set of ten repetitions of ten exercises, with an interval of 90 seconds between exercises. Subsequently, the measurements were again performed at 10, 30, 50, 70, and 90 minutes of recovery (post-intervention) in the supine position. Post-exercise hypotension was greater in S3 than in S1 (systolic blood pressure, -26.5±4.2 mmHg versus -17.9±4.7 mmHg; diastolic blood pressure, -13.8±4.9 mmHg versus -7.7±5 mmHg, P<0.05). Similarly, forearm blood flow and forearm vascular resistance changed significantly in both sessions with an increase and decrease, respectively, that was more evident in S3 than in S1 (P<0.05). Resistance exercises with higher volume were more effective in causing post-exercise hypotension, being accompanied by an increase in forearm blood flow and a reduction of forearm vascular resistance.

  10. Resistance exercise with different volumes: blood pressure response and forearm blood flow in the hypertensive elderly

    PubMed Central

    Brito, Aline de Freitas; de Oliveira, Caio Victor Coutinho; Brasileiro-Santos, Maria do Socorro; Santos, Amilton da Cruz

    2014-01-01

    Background The purpose of this study was to evaluate the effect of two sessions of resistance exercise with different volumes on post-exercise hypotension, forearm blood flow, and forearm vascular resistance in hypertensive elderly subjects. Methods The study was conducted with ten hypertensive elderly (65±3 years, 28.7±3 kg/m2) subjected to three experimental sessions, ie, a control session, exercise with a set (S1), and exercise with three sets (S3). For each session, the subjects were evaluated before and after intervention. In the pre-intervention period, blood pressure, forearm blood flow, and forearm vascular resistance were measured after 10 minutes of rest in the supine position. Thereafter, the subjects were taken to the gym to perform their exercise sessions or remained at rest during the same time period. Both S1 and S3 comprised a set of ten repetitions of ten exercises, with an interval of 90 seconds between exercises. Subsequently, the measurements were again performed at 10, 30, 50, 70, and 90 minutes of recovery (post-intervention) in the supine position. Results Post-exercise hypotension was greater in S3 than in S1 (systolic blood pressure, −26.5±4.2 mmHg versus −17.9±4.7 mmHg; diastolic blood pressure, −13.8±4.9 mmHg versus −7.7±5 mmHg, P<0.05). Similarly, forearm blood flow and forearm vascular resistance changed significantly in both sessions with an increase and decrease, respectively, that was more evident in S3 than in S1 (P<0.05). Conclusion Resistance exercises with higher volume were more effective in causing post-exercise hypotension, being accompanied by an increase in forearm blood flow and a reduction of forearm vascular resistance. PMID:25540580

  11. PIV measurements of flow in a centrifugal blood pump: time-varying flow.

    PubMed

    Day, Steven W; McDaniel, James C

    2005-04-01

    Measurements of the time-varying flow in a centrifugal blood pump operating as a left ventricular assist device (LVAD) are presented. This includes changes in both the pump flow rate as a function of the left ventricle contraction and the interaction of the rotating impeller and fixed exit volute. When operating with a pulsing ventricle, the flow rate through the LVAD varies from 0-11 L/min during each cycle of the heartbeat. Phase-averaged measurements of mean velocity and some turbulence statistics within several regions of the pump, including the inlet, blade passage, exit volute, and diffuser, are reported at 20 phases of the cardiac cycle. The transient flow fields are compared to the constant flow rate condition that was reported previously in order to investigate the transient effects within the pump. It is shown that the quasi-steady assumption is a fair treatment of the time varying flow field in all regions of this representative pump, which greatly simplifies the comprehension and modeling of this flow field. The measurements are further interpreted to identify the effects that the transient nature of the flow field will have on blood damage. Although regions of recirculation and stagnant flow exist at some phases of the cardiac cycle, there is no location where flow is stagnant during the entire heartbeat.

  12. Flow cytometric determination of residual white blood cell levels in preserved samples from leukoreduced blood products.

    PubMed

    Palmer, Douglas S; Birch, Paul; O'Toole, Joan; Henderson, Deborah; Scalia, Vito

    2008-01-01

    In preparation for a proposed consolidated testing service, Canadian Blood Services undertook the evaluation of a commercial test kit for the enumeration by flow cytometry of residual white blood cells (rWBCs) present in preserved samples recovered from leukoreduced (LR) blood and platelet products. The stability of preserved WBCs, the equivalency of WBCs used for spiking, test method precision, specificity, reliability, accuracy, and sensitivity were investigated. For comparative purposes, WBC counts were also determined by Nageotte as well as by flow cytometry. WBCs were stable up to 4 weeks at room temperature for all components by either method. Within methods, no differences were observed due to the source of WBC used for spiking purposes. By either method, test precision was acceptable (<20% coefficient of variation) and of similar reliability at a target value of 10 +/- 5 WBCs per microL. The flow cytometric method was shown to be more specific and accurate than the Nageotte method. Sensitivity by either method was 0.1 WBCs per microL. On average, Nageotte counts were lower than those observed by flow cytometry. These results demonstrate that WBCs in WBC stabilizing solution-treated samples from LR blood components were stabilized up to 4 weeks at room temperature and that rWBC determinations made with a WBC enumeration kit by flow cytometry have the required precision, specificity, reliability, and accuracy in the relevant test range. This validated WBC stabilization and flow cytometric counting method is considered acceptable as part of a quality control program for leukoreduced blood products.

  13. Improving the validity of peripheral venous blood gas analysis as an estimate of arterial blood gas by correcting the venous values with SvO₂.

    PubMed

    Lemoël, Fabien; Govciyan, Sandra; El Omri, Mouna; Marquette, Charles-Hugo; Levraut, Jacques

    2013-03-01

    Peripheral venous blood gas (pVBG) analysis in replacement of arterial blood gas (ABG) is limited by the unpredictable differences between arterial and venous values, especially for PCO2 and pH (ΔPCO2 and ΔpH). We hypothesized that, using the theoretical relationship linking SvO2 and blood flow, we could diminish the effect of local circulatory conditions on ΔPCO2 and ΔpH and thereby increase pVBG validity. This was a prospective cross-sectional study performed in emergency patients requiring a blood gas analysis in which ABG and pVBG were performed simultaneously. The data of 50 randomly selected patients (model group) were used for developing two equations to correct PvCO2 and pHv according to the peripheral SvO2 (SpvO2) level. The formulas derived were PvCO2cor = PvCO2 - 0.30 × (75 - SpvO2), and pHvcor = pHv + 0.001 × (75 - SpvO2). The validity of the corrected values was then tested on the remaining population (validation group). There were 281 patients included in the study, mainly for dyspnea. ΔPCO2 and ΔpH were strongly correlated with SpvO2 (r(2) = 0.62 and r(2) = 0.53, respectively, p < 0.001). Using the data of the model group, we developed equations that we applied on the validation group. We found that the corrected values were more valid than the raw values for detecting a PaCO2 > 45 mm Hg (AUC ROC = 0.96 ± 0.01 vs. 0.89 ± 0.02, p < 0.001), a PaCO2 < 35 mm Hg (AUC = 0.95 ± 0.02 vs. 0.84 ± 0.03, p < 0.001), a pHa < 7.35 (AUC = 0.97 ± 0.01 vs. 0.95 ± 0.02, p < 0.05), or a pHa > 7.45 (AUC = 0.91 ± 0.02 vs. 0.81 ± 0.04, p < 0.001). The variability of ΔPCO2 and ΔpH is significantly lowered when the venous values are corrected according to the SpvO2 value, and pVBG is therefore more accurate and valid for detecting an arterial abnormality. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Dynamics of model blood cells in shear flow

    NASA Astrophysics Data System (ADS)

    Podgorski, Thomas; Callens, Natacha; Minetti, Christophe; Coupier, Gwennou; Dubois, Frank; Misbah, Chaouqi

    The dynamics of a vesicle suspension in shear flow was investigated by digital holographic microscopy [1] in parabolic flights and in the MASER 11 sounding rocket. Vesicles are lipid membranes which mimic the mechanical behaviour of cells, such as red blood cells in flow. In a simple shear flow between parallel walls, a lift force of purely viscous origin pushes vesicles away from walls. Our parabolic flight experiments [2] reveal that the lift velocity in a dilute suspen-sion is well described by theoretical predictions by Olla. As vesicles gather near the center of the flow chamber due to lift forces from both walls, one expects hydrodynamic interactions of pairs of vesicles to result in shear induced diffusion in the suspension. The BIOMICS experi-ment in the MASER 11 sounding rocket revealed a complex spatial structure of a polydisperse vesicle suspension due to the interplay between lift forces from the walls and hydrodynamic interactions. These phenomena have a strong impact on the structure and rheology of blood in small vessels, and a precise knowledge of the dynamics of migration and diffusion of soft particles in flow can lead to alternative ways to separate and sort blood cells. 1. Dubois, F., Schockaert, C., Callens, N., Yourrassowsky, C., "Focus plane detection criteria in digital holography microscopy by amplitude analysis", Opt. Express, Vol. 14, pp 5895-5908, 2006 2. Callens, N., Minetti, C., Coupier, G., Mader, M.-A., Dubois, F., Misbah, C., Podgorski, T., "Hydrodynamics lift of vesicles under shear flow in microgravity", Europhys. Lett., Vol. 83, p. 24002, 2008

  15. Blood coagulation and propagation of autowaves in flow.

    PubMed

    Ermakova, Elena A; Panteleev, Mikhail A; Shnol, Emmanuil E

    2005-01-01

    This study analyses the effect of flow and boundary reactions on spatial propagation of waves of blood coagulation. A simple model of coagulation in plasma consisting of three differential reaction-diffusion equations was used for numerical simulations. The vessel was simulated as a two-dimensional channel of constant width, and the anticoagulant influence of thrombomodulin present on the undamaged vessel wall was taken into account. The results of the simulations showed that this inhibition could stop the coagulation process in the absence of flow in narrow channels. For the used mathematical model of coagulation this was the case if the width was below 0.2 mm. In wider vessels, the process could be stopped by the rapid blood flow. The required flow rate increased with the increase of the damage region size. For example, in a 0.5-mm wide channel with 1-mm long damage region, the propagation of coagulation may be terminated at the flow rate of more than 20 mm/min.

  16. [Synchonization of the blood flow rate in arterial with the changing rate of space of blood pressure with time].

    PubMed

    Zhang, Shenghua; Qin, Renjia

    2012-10-01

    In physiology-related books, there are many relationship curves about blood flow rate in arteries and blood pressure changes with time, but there are not much explanation about such relationship. This is the very the question that the present article tries to answer. We clarified the relations between blood flow rate and blood pressure gradient using the experimental curves as the basis, using Poiseuille Law and relative knowledge of phisics and mathematics, and using analysis and reasoning. Based on the study, it can be concluded that in every course of cardiac cycle, the blood flow rate of any section in artery blood vessel is roughly synchronized with changing rate of space and time of the blood pressure, but blood flow rate is not synchronized with blood pressure.

  17. Quantitative flow and velocity measurements of pulsatile blood flow with 4D-DSA

    NASA Astrophysics Data System (ADS)

    Shaughnessy, Gabe; Hoffman, Carson; Schafer, Sebastian; Mistretta, Charles A.; Strother, Charles M.

    2017-03-01

    Time resolved 3D angiographic data from 4D DSA provides a unique environment to explore physical properties of blood flow. Utilizing the pulsatility of the contrast waveform, the Fourier components can be used to track the waveform motion through vessels. Areas of strong pulsatility are determined through the FFT power spectrum. Using this method, we find an accuracy from 4D-DSA flow measurements within 7.6% and 6.8% RMSE of ICA PCVIPR and phantom flow probe validation measurements, respectively. The availability of velocity and flow information with fast acquisition could provide a more quantitative approach to treatment planning and evaluation in interventional radiology.

  18. [Change of blood antioxidant capacity of experimental animals during nutritional correction under oxidative stress].

    PubMed

    Basov, A A; Bykov, I M

    2013-01-01

    The effect of nutritional correction (a diet high in foods with antioxidant content) on blood parameters in laboratory animals with metabolic disorders associated with oxidative stress has been studied. In experimental models of laboratory animals (male rabbits weighing 3.5-4.0 kg, n = 40) with purulent septic diseases it has been demonstrated that the use of nutritive correction (replacement of 100 g of the cereal mixture through day on a mixture of cabbage 50 g, carrots 50 g, beet 25 g, apple 25 g, kiwi 10 g and garnet 10 g per 1 rabbit) is not inferior to its efficiency of glutathione use (2 g per day). The use of these antioxidants in laboratory animals significantly reduced the phenomenon of oxidative stress on the 5th day: blood antioxidant capacity significantly increased by 14.9 and 26.6%, and the area of the flash of luminol-dependent H2O2-induced chemiluminescence of blood plasma reduced by 44.2 and 48.6% in the experimental groups receiving respectively nutritive correction and glutathione. The low-molecula level of blood antioxidant capacity was restored and the balance of the activity of superoxide dismutase (decrease) and catalase (increase) was achieved on the 10th day of the experiment. These figures significantly (p < 0.05) differed from than in the group of animals receiving no antioxidant correction. The latter studied parameters of prooxidant-antioxidant system reached values comparable with those in intact animals (n = 10) only on the 30th day, confirming the advisability of appointing a complex antioxidant therapy.

  19. Numerical simulations of the blood flow through vertebral arteries.

    PubMed

    Jozwik, Krzysztof; Obidowski, Damian

    2010-01-19

    Vertebral arteries are two arteries whose structure and location in human body result in development of special flow conditions. For some of the arteries, one can observe a significant difference between flow rates in the left and the right arteries during ultrasonography diagnosis. Usually the reason of such a difference was connected with pathology of the artery in which a smaller flow rate was detected. Simulations of the flow through the selected type of the vertebral artery geometry for twenty five cases of artery diameters have been carried out. The main aim of the presented experiment was to visualize the flow in the region of vertebral arteries junction in the origin of the basilar artery. It is extremely difficult to examine this part of human circulation system, thus numerical experiments may be helpful in understanding the phenomena occurring when two relatively large arteries join together to form one vessel. The obtained results have shown that an individual configuration and diameters of particular arteries can exert an influence on the flow in them and affect a significant difference between flow rates for vertebral arteries. It has been assumed in the investigations that modelled arteries were absolutely normal, without any pathology. In the numerical experiment, the non-Newtonian model of blood was employed.

  20. Spectral indices of human cerebral blood flow control: responses to augmented blood pressure oscillations.

    PubMed

    Hamner, J W; Cohen, Michael A; Mukai, Seiji; Lipsitz, Lewis A; Taylor, J Andrew

    2004-09-15

    We set out to fully examine the frequency domain relationship between arterial pressure and cerebral blood flow. Oscillatory lower body negative pressure (OLBNP) was used to create consistent blood pressure oscillations of varying frequency and amplitude to rigorously test for a frequency- and/or amplitude-dependent relationship between arterial pressure and cerebral flow. We also examined the predictions from OLBNP data for the cerebral flow response to the stepwise drop in pressure subsequent to deflation of ischaemic thigh cuffs. We measured spectral powers, cross-spectral coherence, and transfer function gains and phases in arterial pressure and cerebral flow during three amplitudes (0, 20, and 40 mmHg) and three frequencies (0.10, 0.05, and 0.03 Hz) of OLBNP in nine healthy young volunteers. Pressure fluctuations were directly related to OLBNP amplitude and inversely to OLBNP frequency. Although cerebral flow oscillations were increased, they did not demonstrate the same frequency dependence seen in pressure oscillations. The overall pattern of the pressure-flow relation was of decreasing coherence and gain and increasing phase with decreasing frequency, characteristic of a high-pass filter. Coherence between pressure and flow was increased at all frequencies by OLBNP, but was still significantly lower at frequencies below 0.07 Hz despite the augmented pressure input. In addition, predictions of thigh cuff data from spectral estimates were extremely inconsistent and highly variable, suggesting that cerebral autoregulation is a frequency-dependent mechanism that may not be fully characterized by linear methods.

  1. Cerebral blood flow and personality: a positron emission tomography study.

    PubMed

    Johnson, D L; Wiebe, J S; Gold, S M; Andreasen, N C; Hichwa, R D; Watkins, G L; Boles Ponto, L L

    1999-02-01

    This study sought to describe brain regions associated with the personality dimension of introversion/extraversion. Measures of cerebral blood flow (CBF) were obtained from 18 healthy subjects by means of [150]H20 positron emission tomography. Correlations of regional CBF with introversion/extraversion were calculated, and a three-dimensional map of those correlations was generated. Overall, introversion was associated with increased blood flow in the frontal lobes and in the anterior thalamus. Regions in the anterior cingulate gyrus, the temporal lobes, and the posterior thalamus were found to be correlated with extraversion. The findings of the study lend support to the notion that introversion is associated with increased activity in frontal lobe regions. Moreover, the study suggests that individual differences in introversion and extraversion are related to differences in a fronto-striato-thalamic circuit.

  2. Subcutaneous blood flow in early male pattern baldness

    SciTech Connect

    Klemp, P.; Peters, K.; Hansted, B.

    1989-05-01

    The subcutaneous blood flow (SBF) was measured by the /sup 133/Xe washout method in the scalp of 14 patients with early male pattern baldness. Control experiments were performed in 14 normal haired men matched for age. The SBF in the scalp of the normal individuals was about 10 times higher than previously reported SBF values in other anatomical regions. In patients with early male pattern baldness, SBF was 2.6 times lower than the values found in the normal individuals (13.7 +/- 9.6 vs 35.7 +/- 10.5 ml/100 g/min-1). This difference was statistically significant (p much less than 0.001). A reduced nutritive blood flow to the hair follicles might be a significant event in the pathogenesis of early male pattern baldness.

  3. Vesicles, capsules and red blood cells under flow

    NASA Astrophysics Data System (ADS)

    Misbah, Chaouqi

    2012-12-01

    Blood flow is dictated by the dynamics of red blood cells (RBCs), which constitute by far the major component. RBCs are made of a a two dimensional fluid bilayer of phospholipids, having underneath a network of proteins conferring to them shear elasticity, and they possess many membrane and transmembrane proteins (like ion channels). Simplified systems, like vesicles (made of a pure bilayer of phospholipid) and capsules (made of an extensible polymer shell) are used as models for RBCs. Both systems reproduce several features known for RBCs under flow. Their interest lies, besides some simplicity, in the fact that they can be fabricated in the laboratory, and their properties (size, stiffness, internal content....) can be varied in a wide range allowing thus to explore a quite significant parameter space that is essential to test predictions and discriminate between different models. We shall review the main recent achievement in this field, both for a single entity, collective effects and the impact on rheology.

  4. Cerebral blood flow imaging with thallium-201 diethyldithiocarbamate SPECT

    SciTech Connect

    van Royen, E.A.; de Brune, J.F.H.; Hill, T.C.; Vyth, A.; Limburg, M.; Byse, B.L.; O'Leary, D.H.; de Jong, J.M.; Hijdra, A.; van der Schoot, J.B.

    1987-02-01

    Thallium-201 diethyldithiocarbamate ((/sup 201/TI)DDC) was studied in humans as an agent for cerebral blood flow imaging. Brain uptake proved to be complete 90 sec after injection with no appreciable washout or redistribution for hours. Intracarotid injection suggested an almost 100% extraction during the first passage. Whole-body distribution studies demonstrated a brain uptake of 4.3% of the dose compared with 0.9% for (/sup 201/TI)chloride. No differences were found in the distribution of (/sup 201/TI)DDC versus (/sup 201/TI)chloride in other organs. After the injection of 3 mCi /sup 201/TI, good quality single photon emission computed tomographic (SPECT) images of the brain were obtained with both a rotating gamma camera and a multidetector system. In ischemic brain disease, perfusion defects were easily demonstrated. We conclude that (/sup 201/TI)DDC is a suitable radiopharmaceutical for SPECT studies of cerebral blood flow.

  5. Pressure Gradient Estimation Based on Ultrasonic Blood Flow Measurement

    NASA Astrophysics Data System (ADS)

    Nitta, Naotaka; Homma, Kazuhiro; Shiina, Tsuyoshi

    2006-05-01

    Mechanical load to the blood vessel wall, such as shear stress and pressure, which occurs in blood flow dynamics, contribute greatly to plaque rupture in arteriosclerosis and to biochemical activation of endothelial cells. Therefore, noninvasive estimations of these mechanical loads are able to provide useful information for the prevention of vascular diseases. Although the pressure is the dominant component of mechanical load, for practical purposes, the pressure gradient is also often important. So far, we have investigated the estimation of the kinematic viscosity coefficient using a combination of the Navier-Stokes equations and ultrasonic velocity measurement. In this paper, a method for pressure gradient estimation using the estimated kinematic viscosity coefficient is proposed. The validity of the proposed method was investigated on the basis of the analysis with the data obtained by computer simulation and a flow phantom experiment. These results revealed that the proposed method can provide a valid estimation of the pressure gradient.

  6. One dimensional modeling of blood flow in large networks

    NASA Astrophysics Data System (ADS)

    Wang, Xiaofei; Lagree, Pierre-Yves; Fullana, Jose-Maria; Lorthois, Sylvie; Institut de Mecanique des Fluides de Toulouse Collaboration

    2014-11-01

    A fast and valid simulation of blood flow in large networks of vessels can be achieved with a one-dimensional viscoelastic model. In this paper, we developed a parallel code with this model and computed several networks: a circle of arteries, a human systemic network with 55 arteries and a vascular network of mouse kidney with more than one thousand segments. The numerical results were verified and the speedup of parallel computing was tested on multi-core computers. The evolution of pressure distributions in all the networks were visualized and we can see clearly the propagation patterns of the waves. This provides us a convenient tool to simulate blood flow in networks.

  7. Estimating the immunogenicity of blood group antigens: a modified calculation that corrects for transfusion exposures.

    PubMed

    Stack, Gary; Tormey, Christopher A

    2016-10-01

    Calculations of blood group antigen immunogenicity have been based on antigen and antibody frequencies in transfused populations, with the assumption of a single red blood cell (RBC) unit exposure per patient. Given that patients are usually transfused >1 RBC unit, antigen exposures will be greater than assumed, resulting in inaccurate immunogenicity calculations. As such, the goal of this study was to modify the calculation to correct for RBC exposures. To further improve accuracy, we used an empirically-derived immunogenicity for the reference antigen, K, in calculations of absolute immunogencity and eliminated anamnestic and pre-existing antibodies (i.e., antibodies induced outside the study site) from the calculation. Alloantibody numbers for the top 12 specificities and mean RBCs (MRBC) transfused per patient were obtained from the records of a hospital transfusion service. A revised immunogenicity calculation, incorporating a correction for MRBC, was developed. This correction resulted in up to a 4-fold increase in the immunogenicity of relatively high frequency antigens, with smaller increases for lower frequency antigens, yielding the following revised immunogenicity ranking: K>Jk(a) >Lu(a) >E>P1>c>M>Le(b) >C>Le(a) >Fy(a) >S. Use of an empirical value for K immunogenicity resulted in a 1·9-fold increase in absolute immunogenicities for all antigens. In summary, the calculation of blood group antigen immunogenicity has been further refined.

  8. Ocular blood flow measurements in healthy human myopic eyes.

    PubMed

    Benavente-Pérez, Alexandra; Hosking, Sarah L; Logan, Nicola S; Broadway, David C

    2010-11-01

    To evaluate the haemodynamic features of young healthy myopes and emmetropes, in order to ascertain the perfusion profile of human myopia and its relationship with axial length prior to reaching a degenerative state. The retrobulbar, microretinal and pulsatile ocular blood flow (POBF) of one eye of each of twenty-two high myopes (N = 22, mean spherical equivalent (MSE) ≤-5.00D), low myopes (N = 22, MSE-1.00 to-4.50D) and emmetropes (N = 22, MSE ± 0.50D) was analyzed using color Doppler Imaging, Heidelberg retinal flowmetry and ocular blood flow analyser (OBF) respectively. Intraocular pressure, axial length (AL), systemic blood pressure, and body mass index were measured. When compared to the emmetropes and low myopes, the AL was greater in high myopia (p < 0.0001). High myopes showed higher central retinal artery resistance index (CRA RI) (p = 0.004), higher peak systolic to end diastolic velocities ratio (CRA ratio) and lower end diastolic velocity (CRA EDv) compared to low myopes (p = 0.014, p = 0.037). Compared to emmetropes, high myopes showed lower OBFamplitude (OBFa) (p = 0.016). The POBF correlated significantly with the systolic and diastolic blood velocities of the CRA (p = 0.016, p = 0.036). MSE and AL correlated negatively with OBFa (p = 0.03, p = 0.003), OBF volume (p = 0.02, p < 0.001), POBF (p = 0.01, p < 0.001) and positively with CRA RI (p = 0.007, p = 0.05). High myopes exhibited significantly reduced pulse amplitude and CRA blood velocity, the first of which may be due to an OBF measurement artefact or real decreased ocular blood flow pulsatility. Axial length and refractive error correlated moderately with the ocular pulse and with the resistance index of the CRA, which in turn correlated amongst themselves. It is hypothesized that the compromised pulsatile and CRA haemodynamics observed in young healthy myopes is an early feature of the decrease in ocular blood flow

  9. Ultrasonic Doppler measurement of renal artery blood flow

    NASA Technical Reports Server (NTRS)

    Freund, W. R.; Meindl, J. D.

    1975-01-01

    An extensive evaluation of the practical and theoretical limitations encountered in the use of totally implantable CW Doppler flowmeters is provided. Theoretical analyses, computer models, in-vitro and in-vivo calibration studies describe the sources and magnitudes of potential errors in the measurement of blood flow through the renal artery, as well as larger vessels in the circulatory system. The evaluation of new flowmeter/transducer systems and their use in physiological investigations is reported.

  10. Feasibility of patient specific aortic blood flow CFD simulation.

    PubMed

    Svensson, Johan; Gårdhagen, Roland; Heiberg, Einar; Ebbers, Tino; Loyd, Dan; Länne, Toste; Karlsson, Matts

    2006-01-01

    Patient specific modelling of the blood flow through the human aorta is performed using computational fluid dynamics (CFD) and magnetic resonance imaging (MRI). Velocity patterns are compared between computer simulations and measurements. The workflow includes several steps: MRI measurement to obtain both geometry and velocity, an automatic levelset segmentation followed by meshing of the geometrical model and CFD setup to perform the simulations follwed by the actual simulations. The computational results agree well with the measured data.

  11. Sudden infant death syndrome (SIDS) and disordered blood flow.

    PubMed

    Reid, G M; Tervit, H

    1991-11-01

    Naeye (1) has long linked SIDS with low utero-placental blood flow and foetal hypoxia. Gestational hypotension, maternal smoking and disorders of the foetal membranes are considered by Naeye to promote brainstem and neurological abnormalities. Naeye also found that SIDS' victims often showed a growth lag after birth and suggested a reduced oxygen environment after birth which pointed to chronic under-ventilation of the lungs. Another abnormality observed by Naeye was that brown fat was retained for an abnormally long time. Now Mitchell (New Zealand Herald, 27.11.90) has concluded a 3-year study of SIDS' victims in New Zealand and found a combination of stomach sleeping position, mothers' smoking and bottle feeding was implicated in 79% of SIDS' victims. (The sleeping position and maternal smoking may be additive in disordered blood flow). The effect of circulatory shock (cardiogenic) on skeletal muscle mitochondrial activity shows there is a large decrease in the activity of the mitochondrial enzyme cytochrome oxidase during circulatory shock. There is also a reduced capacity to oxidase succinate, pyruvate and palmitoyl carnitine (2). These authors discuss cellular oxidative damage due to severe hypoxia during circulatory shock and the effect on the skeletal muscle mitochondrial electron transport chain (ETC). The reasons for carnitine supplement to these patients are explained. It was concluded that during the course of circulatory shock in humans inactivation or damage to the mitochondrial ETC plays a crucial role in cellular oxidative damage. The activation of brown fat mitochondria via the ETC revolves around elevated blood flow, and the high content of cytochromes which give this tissue its characteristic brownish colour (3]. Other forms of interrupted blood flow, similar to cardiogenic shock disorders in skeletal muscle, will be discussed.

  12. [Fetal pulmonary artery blood flow depending on fetal lung maturity].

    PubMed

    Jastrzebski, Arkadiusz; Lech, Tomasz; Obcowska-Lech, Marta; Sobański, Andrzej; Sipiński, Adam

    2004-01-01

    The ultrasonographic assessment of fetal lung maturity by evaluating the elasticity of lung tissue, Dynamic Lung Score (DLS) has been being performed since 1986 in ObGyn Department in Tychy (Medical University of Silesia). The lung elasticity is evaluated on the cross sections of fetal thorax, on the level of heart ventricles. The result of the evaluation is given as the three degree scale, in which I degree indicates the lack of elasticity and fetal lung immaturity, II degrees indicates partially expressed elasticity, corresponding with incomplete maturity of lung tissue, and III degrees represents full elasticity and indicates complete maturity of fetal lungs. This study was designed to compare fetal pulmonary artery blood flow with the maturity of fetal lung tissue evaluated during the ultrasonographic assessment of fetal lung tissue elasticity. The examination was performed on pregnant women, beginning on 27th week gestation. During the examination the mean Pulsatility Index was decreased, particularly in fetuses with II degrees lung maturity. The Resistance Index (RI) was found to be stable and independent of gestational age. In the group with I degree lung maturity (DLS I), the mean PI = 2.643 (+/- 0.229), mean RI = 0.879 (+/- 0.036), in DLS II group PI = 2.039 (+/- 0.262), RI = 0.868 (+/- 0.037), and in DLS III group PI = 2,500 (+/- 0.100), RI = 0.900 (+/- 0.100). Comparing the ultrasonographic evaluation of fetal lung maturity with fetal pulmonary artery blood flow allows more accurate assessment of fetal lung maturity. Fetal lung maturity can not be evaluated univocally on the basis of blood flow assessment. Because of the divergence of blood flow parameters further studies including bigger population seem to be necessary for verification of the results and for establishing the reference values.

  13. Thromboxane A synthase enhances blood flow recovery from hindlimb ischemia.

    PubMed

    Amano, Hideki; Nakamura, Masaki; Ito, Yoshiya; Kakutani, Hiroki; Eshima, Koji; Kitasato, Hidero; Narumiya, Shuh; Majima, Masataka

    2016-07-01

    Thromboxane A synthase (TXAS) is the enzyme that converts the arachidonic acid derivative prostaglandin H2 to thromboxane A2 (TXA2). TXA2 induces platelet aggregation, vasoconstriction, and proliferation. TXAS and TXA2 receptors or thromboxane prostanoid (TP) receptors are elevated in numerous cardiovascular and inflammatory diseases. Platelets contain numerous angiogenesis stimulating factors. However, the involvement of TXAS on recovery from an ischemic condition is not well understood. We hypothesized that the TXAS-TXA2-TP receptor axis would induce blood flow recovery by platelet activation. The model of hindlimb ischemia was made by the right femoral artery ligation. The blood flow was estimated by laser Doppler images. Angiogenesis was estimated by the plasma level of the vascular endothelial growth factor and the stromal cell-derived factor-1 and by immunofluorescence analysis against CD31 and P-selectin glycoprotein ligand-1 (PSGL-1). In wild-type mice, blood flow recovery was enhanced by treatment with murine TXAS-overexpressing fibroblasts (C57-mTXAS) compared with empty vector- (EV) treated fibroblasts (C57-EV). Compared with C57-EV-treated mice, activated platelets (P-selectin(+) platelets) and plasma levels of vascular endothelial growth factor and stromal cell-derived factor-1 were increased in C57-mTXAS-treated mice. The enhanced-blood flow recovery by C57-mTXAS treatment was suppressed in the TP knockout mice (TP(-/-)). The expression of PSGL-1 in endothelial cells around the ischemic area was enhanced by C57-mTXAS treatment in wild-type but not in TP(-/-). These results indicated that local administration of C57-mTXAS-induced angiogenesis by activated platelets that bind to PSGL-1 on ischemic endothelial cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Regional cerebral blood flow and depersonalization after tetrahydrocannabinol administration.

    PubMed

    Mathew, R J; Wilson, W H; Chiu, N Y; Turkington, T G; Degrado, T R; Coleman, R E

    1999-07-01

    The aim of this study was to examine the relationship between depersonalization induced by tetrahydrocannabinol (THC), and regional brain activation. Cerebral blood flow (CBF) was measured by means of positron emission tomography (PET) in 59 normal right-handed volunteers before and following intravenous infusions of THC. After THC, CBF showed a global increase which was more marked in the right hemisphere, frontal lobes and anterior cingulate. Regression analyses showed positive correlations between the right frontal and anterior cingulate and depersonalization.

  15. Efficacy, Safety and Mechanisms of Blood Flow Restricted Exercise

    NASA Technical Reports Server (NTRS)

    Ploutz-Snyder, Lori

    2009-01-01

    This 20 minute talk will review studies in the peer-reviewed literature related to the effectiveness of blood flow restricted exercise as an exercise training program. There is controversy regarding the talk with cover the effectiveness of various exercise protocols and these differences will be compared and contrasted. Unpublished data from my laboratory at Syracuse University will be presented (see other abstract), as well as some unpublished work from the labs of Manini, Clark and Rasmussen (none are NASA funded).

  16. Efficacy, Safety and Mechanisms of Blood Flow Restricted Exercise

    NASA Technical Reports Server (NTRS)

    Ploutz-Snyder, Lori

    2009-01-01

    This 20 minute talk will review studies in the peer-reviewed literature related to the effectiveness of blood flow restricted exercise as an exercise training program. There is controversy regarding the talk with cover the effectiveness of various exercise protocols and these differences will be compared and contrasted. Unpublished data from my laboratory at Syracuse University will be presented (see other abstract), as well as some unpublished work from the labs of Manini, Clark and Rasmussen (none are NASA funded).

  17. Multiple medullary venous malformations decreasing cerebral blood flow: Case report

    SciTech Connect

    Tomura, N.; Inugami, A.; Uemura, K.; Hadeishi, H.; Yasui, N. )

    1991-02-01

    A rare case of multiple medullary venous malformations in the right cerebral hemisphere is reported. The literature review yielded only one case of multiple medullary venous malformations. Computed tomography scan showed multiple calcified lesions with linear contrast enhancement representing abnormal dilated vessels and mild atrophic change of the right cerebral hemisphere. Single-photon emission computed tomography using N-isopropyl-p-({sup 123}I) iodoamphetamine demonstrated decreased cerebral blood flow in the right cerebral hemisphere.

  18. Regulation of Blood Flow in the Retinal Trilaminar Vascular Network

    PubMed Central

    Kornfield, Tess E.

    2014-01-01

    Light stimulation evokes neuronal activity in the retina, resulting in the dilation of retinal blood vessels and increased blood flow. This response, named functional hyperemia, brings oxygen and nutrients to active neurons. However, it remains unclear which vessels mediate functional hyperemia. We have characterized blood flow regulation in the rat retina in vivo by measuring changes in retinal vessel diameter and red blood cell (RBC) flux evoked by a flickering light stimulus. We found that, in first- and second-order arterioles, flicker evoked large (7.5 and 5.0%), rapid (0.73 and 0.70 s), and consistent dilations. Flicker-evoked dilations in capillaries were smaller (2.0%) and tended to have a slower onset (0.97 s), whereas dilations in venules were smaller (1.0%) and slower (1.06 s) still. The proximity of pericyte somata did not predict capillary dilation amplitude. Expression of the contractile protein α-smooth muscle actin was high in arterioles and low in capillaries. Unexpectedly, we found that blood flow in the three vascular layers was differentially regulated. Flicker stimulation evoked far larger dilations and RBC flux increases in the intermediate layer capillaries than in the superficial and deep layer capillaries (2.6 vs 0.9 and 0.7% dilation; 25.7 vs 0.8 and 11.3% RBC flux increase). These results indicate that functional hyperemia in the retina is driven primarily by active dilation of arterioles. The dilation of intermediate layer capillaries is likely mediated by active mechanisms as well. The physiological consequences of differential regulation in the three vascular layers are discussed. PMID:25143628

  19. Flying fruit flies correct for visual sideslip depending on relative speed of forward optic flow

    PubMed Central

    Cabrera, Stephanie; Theobald, Jamie C.

    2013-01-01

    As a fly flies through its environment, static objects produce moving images on its retina, and this optic flow is essential for steering and course corrections. Different types of rotation and translation produce unique flow fields, which fly brains are wired to identify. However, a feature of optic flow unique to translational motion is that adjacent images may move across the retina at different speeds, depending on their distance from the observer. Many insects take advantage of this depth cue, called motion parallax, to determine the distance to objects. We wanted to know if differential object speeds affect the corrective responses of fruit flies when they experience unplanned course deviations. We presented tethered flying flies with optic flow and measured their corrective responses to sideways perturbations of images with different relative forward speeds. We found that flying flies attend to the relative speed of dots during forward motion, and adjust their corrective responses to sideslip deviations depending on this cue. With no other distinguishing features (such as brightness or size), flies mounted a greater response to sideways deviations that were signaled by faster moving dots in the forward flow field, those that appeared radially closer by their speeds. This is consistent with the interpretation that fruit flies attend to seemingly nearer objects, and correct more strongly when they indicate a perturbation. PMID:23847482

  20. Mechanical, hormonal and metabolic influences on blood vessels, blood flow and bone.

    PubMed

    Prisby, Rhonda D

    2017-12-01

    Bone tissue is highly vascularized due to the various roles bone blood vessels play in bone and bone marrow function. For example, the vascular system is critical for bone development, maintenance and repair and provides O2, nutrients, waste elimination, systemic hormones and precursor cells for bone remodeling. Further, bone blood vessels serve as egress and ingress routes for blood and immune cells to and from the bone marrow. It is becoming increasingly clear that the vascular and skeletal systems are intimately linked in metabolic regulation and physiological and pathological processes. This review examines how agents such as mechanical loading, parathyroid hormone, estrogen, vitamin D and calcitonin, all considered anabolic for bone, have tremendous impacts on the bone vasculature. In fact, these agents influence bone blood vessels prior to influencing bone. Further, data reveal strong associations between vasodilator capacity of bone blood vessels and trabecular bone volume, and poor associations between estrogen status and uterine mass and trabecular bone volume. Additionally, this review highlights the importance of the bone microcirculation, particularly the vascular endothelium and NO-mediated signaling, in the regulation of bone blood flow, bone interstitial fluid flow and pressure and the paracrine signaling of bone cells. Finally, the vascular endothelium as a mediator of bone health and disease is considered. © 2017 Society for Endocrinology.

  1. Effect of red blood cell rigidity on tumor blood flow: increase in viscous resistance during hyperglycemia.

    PubMed

    Sevick, E M; Jain, R K

    1991-05-15

    Elevated glucose level and low pH have been shown to increase red blood cell (RBC) rigidity. This increased rigidity has been proposed as one factor which mediates the tumor blood flow (TBF) reduction during hyperglycemia by (a) causing RBC entrapment and hence increasing geometric resistance and (b) increasing viscous resistance to blood flow. However, due to the inability to measure these resistances in vivo in tumors directly, the relative contribution of RBC rigidity in TBF reduction has not been quantified. In the present study, blood flow resistance was measured in "tissue-isolated" mammary adenocarcinoma R3230AC perfused ex vivo with (a) normally deformable, (b) glutaraldehyde-hardened, and (c) glucose-incubated RBC suspensions. Flow resistance measured during tumor perfusion with Krebs-Henseleit buffer prior to and following perfusion with the glutaraldehyde-hardened RBC suspensions showed no significant change, suggesting constant geometric resistance and lack of RBC entrapment. Instead, our measurements indicated increased viscous resistance with loss of deformability due to glutaraldehyde and glucose incubation even though glucose incubation did not significantly alter the apparent blood viscosity measured in vitro. Thus, the TBF reduction during hyperglycemia may be due to subtle changes in RBC deformability. These results suggest the development of strategies to increase the delivery of drugs or oxygen must take into account any changes in intratumor viscous resistance. For example, the increase in the oxygen-carrying capacity of blood using RBC transfusion or fluorocarbon emulsions may be offset by the increase in viscous resistance and the corresponding reduction in TBF.

  2. Strongly Accelerated Margination of Active Particles in Blood Flow

    PubMed Central

    Gekle, Stephan

    2016-01-01

    Synthetic nanoparticles and other stiff objects injected into a blood vessel filled with red blood cells are known to marginate toward the vessel walls. By means of hydrodynamic lattice-Boltzmann simulations, we show that active particles can strongly accelerate their margination by moving against the flow direction: particles located initially in the channel center migrate much faster to their final position near the wall than in the nonactive case. We explain our findings by an enhanced rate of collisions between the stiff particles and the deformable red blood cells. Our results imply that a significantly faster margination can be achieved either technically by the application of an external magnetic field (if the particles are magnetic) or biologically by self-propulsion (if the particles are, e.g., swimming bacteria). PMID:26789773

  3. Retrobulbar blood flow and ophthalmic perfusion in maximum dynamic exercise.

    PubMed

    Kozobolis, Vassilios P; Detorakis, Efstathios T; Konstas, Anastasios G; Achtaropoulos, Athanassios K; Diamandides, Evangelos D

    2008-03-01

    To study the effects of maximum dynamic physical exercise on retrobulbar blood flow and ocular perfusion pressure (OPP). Thirty male subjects undergoing routine periodic medical evaluation were included. All participants underwent cardiac stress test according to a standard protocol. Before the test, the intraocular pressure was measured and colour Doppler imaging was performed with a 7.5 MHz linear probe, to record peak systolic velocity (PSV), end diastolic velocity and resistivity index at the ophthalmic artery (OA), central retinal artery (CRA) and nasal and temporal branches of short posterior ciliary arteries (SPCA). The same measurements were repeated 1 and 30 min after the test. OPP and PSV at the OA were significantly higher at the 1-min interval, compared with the pretest scores (P = 0.01, in both cases), whereas the respective differences on the 30-min interval were statistically not significant. On the contrary, PSV at the CRA and SPCA were not significantly changed on the same intervals. Differences between pretest and post-test scores for end diastolic velocity and resistivity index were statistically not significant for all examined vessels. Maximal physical exercise increases OPP and blood flow at the OA without affecting blood flow at the CRA and SPCA, implying that auto-regulative mechanisms are active in both retinal and choroidal circulations.

  4. Ocular Blood Flow Measured Noninvasively in Zero Gravity

    NASA Technical Reports Server (NTRS)

    Ansari, Rafat R.; Manuel, Francis K.; Geiser, Martial; Moret, Fabrice; Messer, Russell K.; King, James F.; Suh, Kwang I.

    2003-01-01

    In spaceflight or a reduced-gravity environment, bodily fluids shift to the upper extremities of the body. The pressure inside the eye, or intraocular pressure, changes significantly. A significant number of astronauts report changes in visual acuity during orbital flight. To date this remains of unknown etiology. Could choroidal engorgement be the primary mechanism and a change in the curvature or shape of the cornea or lens be the secondary mechanism for this change in visual acuity? Perfused blood flow in the dense meshwork of capillaries of the choroidal tissue (see the preceding illustration) provides necessary nutrients to the outer layers of the retina (photoreceptors) to keep it healthy and maintain good vision. Unlike the vascular system, the choroid has no baroreceptors to autoregulate fluid shifts, so it can remain engorged, pushing the macula forward and causing a hyperopic (farsighted) shift of the eye. Experiments by researchers at the NASA Glenn Research Center could help answer this question and facilitate planning for long-duration missions. We are investigating the effects of zero gravity on the choroidal blood flow of volunteer subjects. This pilot project plans to determine if choroidal