Science.gov

Sample records for blood gas analyzers

  1. Blood Gas Analyzers.

    PubMed

    Gonzalez, Anthony L; Waddell, Lori S

    2016-03-01

    Acid-base and respiratory disturbances are common in sick and hospitalized veterinary patients; therefore, blood gas analyzers have become integral diagnostic and monitoring tools. This article will discuss uses of blood gas analyzers, types of samples that can be used, sample collection methods, potential sources of error, and potential alternatives to blood gas analyzers and their limitations. It will also discuss the types of analyzers that are available, logistical considerations that should be taken into account when purchasing an analyzer, and the basic principles of how these analyzers work. PMID:27451046

  2. Blood Analyzer

    NASA Technical Reports Server (NTRS)

    1992-01-01

    In the 1970's, NASA provided funding for development of an automatic blood analyzer for Skylab at the Oak Ridge National Laboratory (ORNL). ORNL devised "dynamic loading," which employed a spinning rotor to load, transfer, and analyze blood samples by centrifugal processing. A refined, commercial version of the system was produced by ABAXIS and is marketed as portable ABAXIS MiniLab MCA. Used in a doctor's office, the equipment can perform 80 to 100 chemical blood tests on a single drop of blood and report results in five minutes. Further development is anticipated.

  3. Are sodium and potassium results on arterial blood gas analyzer equivalent to those on electrolyte analyzer?

    PubMed Central

    Gupta, Shalini; Gupta, Ashwani K.; Singh, Kamaljit; Verma, Minni

    2016-01-01

    Objectives: The present study was conducted with the aim to compare the sodium (Na) and  potassium (K) results on arterial blood gas (ABG) and electrolyte analyzers both of which use direct ion selective electrode technology. Materials and Methods: This was a retrospective study in which data were collected for simultaneous ABG and serum electrolyte samples of a patient received in Biochemistry Laboratory during February to May 2015. The ABG samples received in heparinized syringes were processed on Radiometer ABL80 analyzer immediately. Electrolytes in serum sample were measured on ST-100 Sensa Core analyzer after centrifugation. Data were collected for 112 samples and analyzed with the help of Excel 2010 and  Statistical software for Microsoft excel XLSTAT 2015 software. Results: The mean Na level in serum sample was 139.4 ± 8.2 mmol/L compared to 137.8 ± 10.5 mmol/L in ABG (P < 0.05). The mean difference between the results was 1.6 mmol/L. Mean K level in serum sample was 3.8 ± 0.9 mmol/L as compared to 3.7 ± 0.9 mmol/L in ABG sample (P < 0.05). The mean difference between the results was 0.14 mmol/L. Statistically significant difference was observed in results of two instruments in low Na (<135 mmol/L) and normal K (3.5-5.2 mmol/L) ranges. The 95% limit of agreement for Na and K on both instruments was 9.9 to −13.2 mmol/L and 0.79 to −1.07 mmol/L respectively. Conclusions: The clinicians should be cautious in using the electrolyte results of electrolyte and ABG analyzer in inter exchangeable manner. PMID:27303138

  4. Portable automatic blood analyzer

    NASA Technical Reports Server (NTRS)

    Coleman, R. L.

    1975-01-01

    Analyzer employs chemical-sensing electrodes for determination of blood, gas, and ion concentrations. It is rugged, easily serviced, and comparatively simple to operate. System can analyze up to eight parameters and can be modified to measure other blood constituents including nonionic species, such as urea, glucose, and oxygen.

  5. Gas Analyzer

    NASA Astrophysics Data System (ADS)

    1989-01-01

    The M200 originated in the 1970's under an Ames Research Center/Stanford University contract to develop a small, lightweight gas analyzer for Viking Landers. Although the unit was not used on the spacecraft, it was further developed by The National Institute for Occupational Safety and Health (NIOSH). Three researchers from the project later formed Microsensor Technology, Inc. (MTI) to commercialize the analyzer. The original version (Micromonitor 500) was introduced in 1982, and the M200 in 1988. The M200, a more advanced version, features dual gas chromatograph which separate a gaseous mixture into components and measure concentrations of each gas. It is useful for monitoring gas leaks, chemical spills, etc. Many analyses are completed in less than 30 seconds, and a wide range of mixtures can be analyzed.

  6. Environmental testing of a blood gas/pH and electrolyte analyzer for field hospital use.

    PubMed

    Dubill, P M

    1990-11-01

    In 1983 the U.S. Army Academy of Health Sciences developed a Letter Requirement for a Blood Gas/pH Analyzer for use in Echelon 3 and 4 facilities. Field trials of several nondevelopment items and a subsequent market survey did not produce a suitable instrument. Recently, a relatively small, lightweight, and simple device became commercially available, and was tested for field applicability in accordance with MIL-STD-810D. Results indicated that with minor modifications, the instrument would be sufficiently rugged to withstand the severe storage temperature extremes and transit shock and vibration conditions associated with deployment of field medical materiel. PMID:2126851

  7. [On-line data management system using a portable blood gas analyzer in the operating room].

    PubMed

    Shimosato, G; Ibuki, T; Hirata, M; Shigemi, K; Tanaka, Y

    2000-03-01

    It is very important to establish a clinical testing system which is not only prompt, simple and accurate but also safe for the patients and medical staff in the operating room, emergency room and intensive care unit. In our institution an i-STAT portable blood gas analyser has been widely used for point of care testing in all the operating rooms. This clinical testing system has been upgraded by adding an i-STAT communication protocol to our online data management system. The analysed data transmitted by the i-STAT as an infrared signal is transformed to an electronic signal through the IR link and sent to the central data station (CDS) via RS232C. The data received by the CDS is then sent to the upper grade computer system where the data is recorded on the hard disk. One advantage of this system is that it is connected to the hospital computer system. Not only does this new system meet the need for accurate, safe, effective and economical laboratory testing, but also retrospective and multifactorial analysis of intraoperative events can be easily carried out. In the future this system can be applied to telemedicine through the Internet and contribute to the treatment of critically ill patients.

  8. Portable Gas Analyzer

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The Michromonitor M500 universal gas analyzer contains a series of miniature modules, each of which is a complete gas chromatograph, an instrument which separates a gaseous mixture into its components and measures the concentrations of each gas in the mixture. The system is manufactured by Microsensor Technology, and is used for environmental analysis, monitoring for gas leaks and chemical spills, compliance with pollution laws, etc. The technology is based on a Viking attempt to detect life on Mars. Ames/Stanford miniaturized the system and NIOSH funded further development. Three Stanford researchers commercialized the technology, which can be operated by unskilled personnel.

  9. Residual gas analyzer calibration

    NASA Technical Reports Server (NTRS)

    Lilienkamp, R. H.

    1972-01-01

    A technique which employs known gas mixtures to calibrate the residual gas analyzer (RGA) is described. The mass spectra from the RGA are recorded for each gas mixture. This mass spectra data and the mixture composition data each form a matrix. From the two matrices the calibration matrix may be computed. The matrix mathematics requires the number of calibration gas mixtures be equal to or greater than the number of gases included in the calibration. This technique was evaluated using a mathematical model of an RGA to generate the mass spectra. This model included shot noise errors in the mass spectra. Errors in the gas concentrations were also included in the valuation. The effects of these errors was studied by varying their magnitudes and comparing the resulting calibrations. Several methods of evaluating an actual calibration are presented. The effects of the number of gases in then, the composition of the calibration mixture, and the number of mixtures used are discussed.

  10. Market study: Whole blood analyzer

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A market survey was conducted to develop findings relative to the commercialization potential and key market factors of the whole blood analyzer which is being developed in conjunction with NASA's Space Shuttle Medical System.

  11. CONTINUOUS GAS ANALYZER

    DOEpatents

    Katz, S.; Weber, C.W.

    1960-02-16

    A reagent gas and a sample gas are chemically combined on a continuous basis in a reaction zone maintained at a selected temperature. The reagent gas and the sample gas are introduced to the reaction zone at preselected. constant molar rates of flow. The reagent gas and the selected gas in the sample mixture combine in the reaction zone to form a product gas having a different number of moles from the sum of the moles of the reactants. The difference in the total molar rates of flow into and out of the reaction zone is measured and indicated to determine the concentration of the selected gas.

  12. Implementation of the ABL-90 blood gas analyzer in a ground-based mobile emergency care unit.

    PubMed

    Mikkelsen, Søren; Wolsing-Hansen, Jonathan; Nybo, Mads; Maegaard, Christian Ulrik; Jepsen, Søren

    2015-01-01

    Point-of Care analysis is increasingly being applied in the prehospital scene. Arterial blood gas analysis is one of many new initiatives adding to the diagnostic tools of the prehospital physician. In this paper we present a study on the feasibility of the Radiometer ABL-90 in a ground-based Mobile Emergency Care Unit and report on some clinical situations in which the apparatus has proven beneficial.

  13. Regolith Evolved Gas Analyzer

    NASA Technical Reports Server (NTRS)

    Hoffman, John H.; Hedgecock, Jud; Nienaber, Terry; Cooper, Bonnie; Allen, Carlton; Ming, Doug

    2000-01-01

    The Regolith Evolved Gas Analyzer (REGA) is a high-temperature furnace and mass spectrometer instrument for determining the mineralogical composition and reactivity of soil samples. REGA provides key mineralogical and reactivity data that is needed to understand the soil chemistry of an asteroid, which then aids in determining in-situ which materials should be selected for return to earth. REGA is capable of conducting a number of direct soil measurements that are unique to this instrument. These experimental measurements include: (1) Mass spectrum analysis of evolved gases from soil samples as they are heated from ambient temperature to 900 C; and (2) Identification of liberated chemicals, e.g., water, oxygen, sulfur, chlorine, and fluorine. REGA would be placed on the surface of a near earth asteroid. It is an autonomous instrument that is controlled from earth but does the analysis of regolith materials automatically. The REGA instrument consists of four primary components: (1) a flight-proven mass spectrometer, (2) a high-temperature furnace, (3) a soil handling system, and (4) a microcontroller. An external arm containing a scoop or drill gathers regolith samples. A sample is placed in the inlet orifice where the finest-grained particles are sifted into a metering volume and subsequently moved into a crucible. A movable arm then places the crucible in the furnace. The furnace is closed, thereby sealing the inner volume to collect the evolved gases for analysis. Owing to the very low g forces on an asteroid compared to Mars or the moon, the sample must be moved from inlet to crucible by mechanical means rather than by gravity. As the soil sample is heated through a programmed pattern, the gases evolved at each temperature are passed through a transfer tube to the mass spectrometer for analysis and identification. Return data from the instrument will lead to new insights and discoveries including: (1) Identification of the molecular masses of all of the gases

  14. Trace Gas Analyzer (TGA) program

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The design, fabrication, and test of a breadboard trace gas analyzer (TGA) is documented. The TGA is a gas chromatograph/mass spectrometer system. The gas chromatograph subsystem employs a recirculating hydrogen carrier gas. The recirculation feature minimizes the requirement for transport and storage of large volumes of carrier gas during a mission. The silver-palladium hydrogen separator which permits the removal of the carrier gas and its reuse also decreases vacuum requirements for the mass spectrometer since the mass spectrometer vacuum system need handle only the very low sample pressure, not sample plus carrier. System performance was evaluated with a representative group of compounds.

  15. Commercial Hy-Line W-36 pullet and laying hen venous blood gas and chemistry profiles utilizing the portable i-STAT®1 analyzer

    PubMed Central

    Schaal, T. P.; Arango, J.; Wolc, A.; Brady, J. V.; Fulton, J. E.; Rubinoff, I.; Ehr, I. J.; Persia, M. E.; O'Sullivan, N. P.

    2015-01-01

    Venous blood gas and chemistry reference ranges were determined for commercial Hy-Line W-36 pullets and laying hens utilizing the portable i-STAT®1 analyzer and CG8+ cartridges. A total of 632 samples were analyzed from birds between 4 and 110 wk of age. Reference ranges were established for pullets (4 to 15 wk), first cycle laying hens (20 to 68 wk), and second cycle (post molt) laying hens (70 to 110 wk) for the following traits: sodium (Na mmol/L), potassium (K mmol/L), ionized calcium (iCa mmol/L), glucose (Glu mg/dl), hematocrit (Hct% Packed Cell Volume [PCV]), pH, partial pressure carbon dioxide (PCO2 mm Hg), partial pressure oxygen (PO2 mm Hg), total concentration carbon dioxide (TCO2 mmol/L), bicarbonate (HCO3 mmol/L), base excess (BE mmol/L), oxygen saturation (sO2%), and hemoglobin (Hb g/dl). Data were analyzed using ANOVA to investigate the effect of production status as categorized by bird age. Trait relationships were evaluated by linear correlation and their spectral decomposition. All traits differed significantly among pullets and mature laying hens in both first and second lay cycles. Levels for K, iCa, Hct, pH, TCO2, HCO3, BE, sO2, and Hb differed significantly between first cycle and second cycle laying hens. Many venous blood gas and chemistry parameters were significantly correlated. The first 3 eigenvalues explained ∼2/3 of total variation. The first 2 principal components (PC) explained 51% of the total variation and indicated acid-balance and relationship between blood O2 and CO2. The third PC explained 16% of variation and seems to be related to blood iCa. Establishing reference ranges for pullet and laying hen blood gas and chemistry with the i-STAT®1 handheld unit provides a mechanism to further investigate pullet and layer physiology, evaluate metabolic disturbances, and may potentially serve as a means to select breeder candidates with optimal blood gas or chemistry levels on-farm. PMID:26706355

  16. Molecular wake shield gas analyzer

    NASA Technical Reports Server (NTRS)

    Hoffman, J. H.

    1980-01-01

    Techniques for measuring and characterizing the ultrahigh vacuum in the wake of an orbiting spacecraft are studied. A high sensitivity mass spectrometer that contains a double mass analyzer consisting of an open source miniature magnetic sector field neutral gas analyzer and an identical ion analyzer is proposed. These are configured to detect and identify gas and ion species of hydrogen, helium, nitrogen, oxygen, nitric oxide, and carbon dioxide and any other gas or ion species in the 1 to 46 amu mass range. This range covers the normal atmospheric constituents. The sensitivity of the instrument is sufficient to measure ambient gases and ion with a particle density of the order of one per cc. A chemical pump, or getter, is mounted near the entrance aperture of the neutral gas analyzer which integrates the absorption of ambient gases for a selectable period of time for subsequent release and analysis. The sensitivity is realizable for all but rare gases using this technique.

  17. Effect of the hemoglobin-based oxygen carrier HBOC-201 on laboratory instrumentation: cobas integra, chiron blood gas analyzer 840, Sysmex SE-9000 and BCT.

    PubMed

    Wolthuis, A; Peek, D; Scholten, R; Moreira, P; Gawryl, M; Clark, T; Westerhuis, L

    1999-01-01

    As part of a clinical trial, we evaluated the effects of the hemoglobin-based oxygen-carrier (HBOC) HBOC-201 (an ultrapurified, stroma-free bovine hemoglobin product, Biopure, Cambridge, MA, USA) on our routine clinical chemistry analyzer (Cobas Integra, F. Hoffmann-La Roche Ltd, Basel, Switzerland ), blood gas analyzer (Chiron 840, Chiron Diagnostics Corporation, East Walpole, MA, USA), routine hemocytometry analyzer (Sysmex SE-9000, TOA Medical Electronics Co Ltd., Kobe, Japan), hemostasis analyzer (BCT, Dade-Behring, Marburg, Germany) and bloodbanking system (Dia-Med-ID Micro Typing System, DiaMed AG, Cressier, Switzerland). The maximum tested concentration of HBOC-201 was 65 g/l. Of the 27 routine clinical chemistry tests challenged with HBOC-201, bilirubin-direct, creatine kinase MB-fraction (CK-MB), creatine kinase (CK), gamma-glutamyltransferase (GGT), magnesium and uric acid were influenced by even low concentrations of HBOC-201. These tests were excluded from use on the plasma of patients treated with HBOC-201. Since the non-availability of the cardiac marker CK-MB may lead to problems in acute situations, we introduced the qualitative Trop T-test (Boehringer Mannheim), which was not influenced. The applicability of another nine tests was limited by the concentration of the HBOC-201 in the patients' plasma. No interference of HBOC-201 in routine hemocytometry, hemostasis-analysis and red-blood cell agglutination detection (blood-bank tests) was observed. Although immediate patient-care was not compromised, routine use of hemoglobin-based oxygen carriers will have a strong impact on logistical management. The development of robust laboratory tests free from the interference of the pigmented oxygen carriers should therefore precede its introduction into routine transfusion medicine.

  18. Gas dynamics in residual gas analyzer calibration

    SciTech Connect

    Santeler, D.J.

    1987-01-01

    Residual gas analyzers are used for measuring partial flow rates as well as for measuring partial pressures. The required calibration may also be obtained with either known flow rates or known pressures. The calibration and application procedures are straightforward when both are of the same type; however, substantial errors may occur if the two types are mixed. This report develops the basic equations required to convert between partial pressure calibrations and partial flow rate calibrations. It also discusses the question of fractionating and nonfractionating gas flow in various gas inlet and pumping systems.

  19. Automating a residual gas analyzer

    NASA Technical Reports Server (NTRS)

    Petrie, W. F.; Westfall, A. H.

    1982-01-01

    A residual gas analyzer (RGA), a device for measuring the amounts and species of various gases present in a vacuum system is discussed. In a recent update of the RGA, it was shown that the use of microprocessors could revolutionize data acquisition and data reduction. This revolution is exemplified by the Inficon 1Q200 RGA which was selected to meet the needs of this update. The Inficon RGA and the Zilog microcomputer were interfaced in order the receive and format the digital data from the RGA. This automated approach is discussed in detail.

  20. Thermal and evolved gas analyzer

    NASA Technical Reports Server (NTRS)

    Williams, M. S.; Boynton, W. V.; James, R. L.; Verts, W. T.; Bailey, S. H.; Hamara, D. K.

    1998-01-01

    The Thermal and Evolved Gas Analyzer (TEGA) instrument will perform calorimetry and evolved gas analysis on soil samples collected from the Martian surface. TEGA is one of three instruments, along with a robotic arm, that form the Mars Volatile and Climate Survey (MVACS) payload. The other instruments are a stereo surface imager, built by Peter Smith of the University of Arizona and a meteorological station, built by JPL. The MVACS lander will investigate a Martian landing site at approximately 70 deg south latitude. Launch will take place from Kennedy Space Center in January, 1999. The TEGA project started in February, 1996. In the intervening 24 months, a flight instrument concept has been designed, prototyped, built as an engineering model and flight model, and tested. The instrument performs laboratory-quality differential-scanning calorimetry (DSC) over the temperature range of Mars ambient to 1400K. Low-temperature volatiles (water and carbon dioxide ices) and the carbonates will be analyzed in this temperature range. Carbonates melt and evolve carbon dioxide at temperatures above 600 C. Evolved oxygen (down to a concentration of 1 ppm) is detected, and C02 and water vapor and the isotopic variations of C02 and water vapor are detected and their concentrations measured. The isotopic composition provides important tests of the theory of solar system formation.

  1. Deuterium Gas Analysis by Residual Gas Analyzer

    NASA Astrophysics Data System (ADS)

    Das, B. K.; Shukla, R.; Das, R.; Shyam, A.; Rao, A. D. P.

    2012-11-01

    Hydrogen gas is generated by electrolysis method in a compact hydrogen generator. A simple procedure reduces handling and storage of hydrogen cylinders for laboratory applications. In such a system, we are producing deuterium gas from heavy water by electrolysis method. After production of the deuterium gas, we have checked the purity level of the outgoing deuterium from the electrolyser. The test was carried out in a high vacuum system in which one residual gas analyser (RGA) was mounted. The deuterium gas was inserted by one manual gas leak valve in to the vacuum system. In this study, the effect of the emission current of the RGA on the detection of the deuterium was performed. In this paper, we will discuss the detail analysis of the deuterium gas and the effect of the emission current on the partial pressure measurement.

  2. Multiple-tracer gas analyzer

    SciTech Connect

    Uhl, J.E.

    1982-01-01

    A multi-gas tracer system has been designed, built, and used on an explosively fractured oil shale rubble bed. This paper deals exclusively with the hardware, software, and overall operation of the tracer system. This system is a field portable, self-contained unit, which utilizes a mass spectrometer for gas analysis. The unit has a 20 channel sample port capability and is controlled by a desk top computer. The system is configured to provide a dynamic sensitivity range of up to six orders of magnitude. A roots blower is manifolded to the unit to provide continuous flow in all sample lines. The continuous flow process allows representative samples as well as decreasing the time between each measurement. Typical multiplex cycle time to evaluate four unique gases is approximately 12 seconds.

  3. [Blood-oxygen analyzer boa 802 (author's transl)].

    PubMed

    Folwaczny, H; Finsterer, U

    1976-08-01

    Experiences with a new blood oxygen analyzer (BOA 802, Dräger-Bio Marine) are reported. In the range up to 100 mm Hg data about 6 mm Hg to high were found compared with the AVL Gas Check. In the range between 100-300 mm Hg there was an increasing difference between values measured with the BOA 802 and a conventional oxygen electrode, however this does not seem to be of clinical relevance.

  4. RGA-5 process gas analyzer test report

    SciTech Connect

    Weamer, J.L.

    1994-11-09

    The gas monitoring system, GMS-2, includes two gas monitors. GC-2 measures high hydrogen concentrations (0.2--10%) and GC-3 measures the lower concentration levels (10--100 ppm). Although redundant instruments are in place for accurately measuring the higher hydrogen concentrations, there are no redundant instruments to accurately measure the relatively low baseline hydrogen concentrations. The RGA-5 process gas analyzer is a two-column GC that will replace GC-2 and provide redundancy for GC-3. This upgrade will provide faster response time and reduce tank farm entries for routine operations because the RGA-5 is remotely operable. Tests were conducted according to WHC-SD-WM-TP-262, RGA-5 Process Gas Analyzer Test Plan. The first objective was to verify that the vendor-supplied RGA host data acquisition software allowed communication between the RGA-5 and an ISA bus personal computer. The second objective was to determine the capabilities of the RGA-5 process gas analyzer. The tests did the following: with a constant flow rate and pressure, determined the concentration range that each column can accurately and precisely measure; identified any uncorrected interferences from other tank gases such as ammonia, nitrous oxide, or methane; and determined the response and decay time.

  5. LED-based NDIR natural gas analyzer

    NASA Astrophysics Data System (ADS)

    Fanchenko, Sergey; Baranov, Alexander; Savkin, Alexey; Sleptsov, Vladimir

    2016-03-01

    A new generation of the light-emitting diodes (LEDs) and photodiodes (PDs) was used recently to develop an open path non-dispersive infrared (NDIR) methane analyzer. The first open path detector prototype was constructed using LEDs for measurement and reference channels, accordingly, and first measurements for methane gas have been performed using optical paths of the order of several meters [3]. The natural gas consists of several first alkanes, mainly methane, and it is important to have a possibility of measuring all of them. In the present work we report the results of NDIR measurements for propane-butane mixture and new measurements of methane using LEDs for measurement and reference channels at 2300 and 1700 nm wavelengths, accordingly. The necessity of the double beam scheme is demonstrated and obtained results for methane and propane-butane mixture are compared.

  6. 21 CFR 868.1670 - Neon gas analyzer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Neon gas analyzer. 868.1670 Section 868.1670 Food... DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1670 Neon gas analyzer. (a) Identification. A neon gas analyzer is a device intended to measure the concentration of neon in a gas mixture exhaled by...

  7. 21 CFR 868.1670 - Neon gas analyzer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Neon gas analyzer. 868.1670 Section 868.1670 Food... DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1670 Neon gas analyzer. (a) Identification. A neon gas analyzer is a device intended to measure the concentration of neon in a gas mixture exhaled by...

  8. 21 CFR 868.1075 - Argon gas analyzer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Argon gas analyzer. 868.1075 Section 868.1075 Food... DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1075 Argon gas analyzer. (a) Identification. An argon gas analyzer is a device intended to measure the concentration of argon in a gas mixture to aid...

  9. 21 CFR 868.1075 - Argon gas analyzer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Argon gas analyzer. 868.1075 Section 868.1075 Food... DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1075 Argon gas analyzer. (a) Identification. An argon gas analyzer is a device intended to measure the concentration of argon in a gas mixture to aid...

  10. 21 CFR 868.1670 - Neon gas analyzer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Neon gas analyzer. 868.1670 Section 868.1670 Food... DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1670 Neon gas analyzer. (a) Identification. A neon gas analyzer is a device intended to measure the concentration of neon in a gas mixture exhaled by...

  11. 21 CFR 868.1075 - Argon gas analyzer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Argon gas analyzer. 868.1075 Section 868.1075 Food... DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1075 Argon gas analyzer. (a) Identification. An argon gas analyzer is a device intended to measure the concentration of argon in a gas mixture to aid...

  12. 21 CFR 868.1075 - Argon gas analyzer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Argon gas analyzer. 868.1075 Section 868.1075 Food... DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1075 Argon gas analyzer. (a) Identification. An argon gas analyzer is a device intended to measure the concentration of argon in a gas mixture to aid...

  13. 21 CFR 868.1670 - Neon gas analyzer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Neon gas analyzer. 868.1670 Section 868.1670 Food... DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1670 Neon gas analyzer. (a) Identification. A neon gas analyzer is a device intended to measure the concentration of neon in a gas mixture exhaled by...

  14. Rapid evaluation of fibrinogen levels using the CG02N whole blood coagulation analyzer.

    PubMed

    Hayakawa, Mineji; Gando, Satoshi; Ono, Yuichi; Mizugaki, Asumi; Katabami, Kenichi; Maekawa, Kunihiko; Miyamoto, Daisuke; Wada, Takeshi; Yanagida, Yuichiro; Sawamura, Atsushi

    2015-04-01

    Rapid evaluation of fibrinogen (Fbg) levels is essential for maintaining homeostasis in patients with massive bleeding during severe trauma and major surgery. This study evaluated the accuracy of fibrinogen levels measured by the CG02N whole blood coagulation analyzer (A&T Corporation, Kanagawa, Japan) using heparinized blood drawn for blood gas analysis (whole blood-Fbg). A total of 100 matched pairs of heparinized blood samples and citrated blood samples were simultaneously collected from patients in the intensive care unit. Whole blood-Fbg results were compared with those of citrated plasma (standard-Fbg). The whole blood coagulation analyzer measured fibrinogen levels within 2 minutes. Strong correlations between standard-Fbg and whole blood-Fbg were observed (ρ = 0.91, p < 0.001). Error grid analysis showed that 88% of the values were clinically acceptable, and 12% were in a range with possible effects on clinical decision-making; none were in a clinically dangerous range without appropriate treatment. Using a fibrinogen cutoff value of 1.5 g/L for standard-Fbg, the area under the receiver operating characteristic curve of whole blood-Fbg was 0.980 (95% confidence interval 0.951-1.000, p < 0.001). The whole blood coagulation analyzer can rapidly measure fibrinogen levels in heparinized blood and could be useful in critical care settings where excessive bleeding is a concern.

  15. Development of an Infrared Fluorescent Gas Analyzer.

    ERIC Educational Resources Information Center

    McClatchie, E. A.

    A prototype model low level carbon monoxide analyzer was developed using fluorescent cell and negative chopping techniques to achieve a device superior to state of art NDIR (Nondispersive infrared) analyzers in stability and cross-sensitivity to other gaseous species. It is clear that this type of analyzer has that capacity. The prototype…

  16. 21 CFR 868.1690 - Nitrogen gas analyzer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nitrogen gas analyzer. 868.1690 Section 868.1690...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1690 Nitrogen gas analyzer. (a) Identification. A nitrogen gas analyzer is a device intended to measure the concentration of nitrogen...

  17. 21 CFR 868.1400 - Carbon dioxide gas analyzer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Carbon dioxide gas analyzer. 868.1400 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1400 Carbon dioxide gas analyzer. (a) Identification. A carbon dioxide gas analyzer is a device intended to measure the concentration of carbon...

  18. 21 CFR 868.1620 - Halothane gas analyzer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Halothane gas analyzer. 868.1620 Section 868.1620...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1620 Halothane gas analyzer. (a) Identification. A halothane gas analyzer is a device intended to measure the concentration of...

  19. 21 CFR 868.1640 - Helium gas analyzer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Helium gas analyzer. 868.1640 Section 868.1640...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1640 Helium gas analyzer. (a) Identification. A helium gas analyzer is a device intended to measure the concentration of helium in a...

  20. 21 CFR 868.1690 - Nitrogen gas analyzer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nitrogen gas analyzer. 868.1690 Section 868.1690...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1690 Nitrogen gas analyzer. (a) Identification. A nitrogen gas analyzer is a device intended to measure the concentration of nitrogen...

  1. 21 CFR 868.1720 - Oxygen gas analyzer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Oxygen gas analyzer. 868.1720 Section 868.1720...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1720 Oxygen gas analyzer. (a) Identification. An oxygen gas analyzer is a device intended to measure the concentration of oxygen in...

  2. 21 CFR 868.1720 - Oxygen gas analyzer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Oxygen gas analyzer. 868.1720 Section 868.1720...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1720 Oxygen gas analyzer. (a) Identification. An oxygen gas analyzer is a device intended to measure the concentration of oxygen in...

  3. 21 CFR 868.1700 - Nitrous oxide gas analyzer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nitrous oxide gas analyzer. 868.1700 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1700 Nitrous oxide gas analyzer. (a) Identification. A nitrous oxide gas analyzer is a device intended to measure the concentration of nitrous...

  4. 21 CFR 868.1700 - Nitrous oxide gas analyzer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nitrous oxide gas analyzer. 868.1700 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1700 Nitrous oxide gas analyzer. (a) Identification. A nitrous oxide gas analyzer is a device intended to measure the concentration of nitrous...

  5. 21 CFR 868.1500 - Enflurane gas analyzer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Enflurane gas analyzer. 868.1500 Section 868.1500...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1500 Enflurane gas analyzer. (a) Identification. An enflurane gas analyzer is a device intended to measure the concentration of...

  6. 21 CFR 868.1400 - Carbon dioxide gas analyzer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Carbon dioxide gas analyzer. 868.1400 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1400 Carbon dioxide gas analyzer. (a) Identification. A carbon dioxide gas analyzer is a device intended to measure the concentration of carbon...

  7. 21 CFR 868.1690 - Nitrogen gas analyzer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nitrogen gas analyzer. 868.1690 Section 868.1690...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1690 Nitrogen gas analyzer. (a) Identification. A nitrogen gas analyzer is a device intended to measure the concentration of nitrogen...

  8. 21 CFR 868.1720 - Oxygen gas analyzer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Oxygen gas analyzer. 868.1720 Section 868.1720...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1720 Oxygen gas analyzer. (a) Identification. An oxygen gas analyzer is a device intended to measure the concentration of oxygen in...

  9. 21 CFR 868.1620 - Halothane gas analyzer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Halothane gas analyzer. 868.1620 Section 868.1620...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1620 Halothane gas analyzer. (a) Identification. A halothane gas analyzer is a device intended to measure the concentration of...

  10. 21 CFR 868.1640 - Helium gas analyzer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Helium gas analyzer. 868.1640 Section 868.1640...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1640 Helium gas analyzer. (a) Identification. A helium gas analyzer is a device intended to measure the concentration of helium in a...

  11. 21 CFR 868.1640 - Helium gas analyzer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Helium gas analyzer. 868.1640 Section 868.1640...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1640 Helium gas analyzer. (a) Identification. A helium gas analyzer is a device intended to measure the concentration of helium in a...

  12. 21 CFR 868.1690 - Nitrogen gas analyzer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nitrogen gas analyzer. 868.1690 Section 868.1690...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1690 Nitrogen gas analyzer. (a) Identification. A nitrogen gas analyzer is a device intended to measure the concentration of nitrogen...

  13. 21 CFR 868.1430 - Carbon monoxide gas analyzer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Carbon monoxide gas analyzer. 868.1430 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1430 Carbon monoxide gas analyzer. (a) Identification. A carbon monoxide gas analyzer is a device intended to measure the concentration of...

  14. 21 CFR 868.1430 - Carbon monoxide gas analyzer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Carbon monoxide gas analyzer. 868.1430 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1430 Carbon monoxide gas analyzer. (a) Identification. A carbon monoxide gas analyzer is a device intended to measure the concentration of...

  15. 21 CFR 868.1430 - Carbon monoxide gas analyzer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Carbon monoxide gas analyzer. 868.1430 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1430 Carbon monoxide gas analyzer. (a) Identification. A carbon monoxide gas analyzer is a device intended to measure the concentration of...

  16. 21 CFR 868.1620 - Halothane gas analyzer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Halothane gas analyzer. 868.1620 Section 868.1620...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1620 Halothane gas analyzer. (a) Identification. A halothane gas analyzer is a device intended to measure the concentration of...

  17. 21 CFR 868.1700 - Nitrous oxide gas analyzer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nitrous oxide gas analyzer. 868.1700 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1700 Nitrous oxide gas analyzer. (a) Identification. A nitrous oxide gas analyzer is a device intended to measure the concentration of nitrous...

  18. 21 CFR 868.1430 - Carbon monoxide gas analyzer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Carbon monoxide gas analyzer. 868.1430 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1430 Carbon monoxide gas analyzer. (a) Identification. A carbon monoxide gas analyzer is a device intended to measure the concentration of...

  19. 21 CFR 868.1500 - Enflurane gas analyzer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Enflurane gas analyzer. 868.1500 Section 868.1500...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1500 Enflurane gas analyzer. (a) Identification. An enflurane gas analyzer is a device intended to measure the concentration of...

  20. 21 CFR 868.1500 - Enflurane gas analyzer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Enflurane gas analyzer. 868.1500 Section 868.1500...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1500 Enflurane gas analyzer. (a) Identification. An enflurane gas analyzer is a device intended to measure the concentration of...

  1. 21 CFR 868.1720 - Oxygen gas analyzer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Oxygen gas analyzer. 868.1720 Section 868.1720...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1720 Oxygen gas analyzer. (a) Identification. An oxygen gas analyzer is a device intended to measure the concentration of oxygen in...

  2. 21 CFR 868.1620 - Halothane gas analyzer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Halothane gas analyzer. 868.1620 Section 868.1620...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1620 Halothane gas analyzer. (a) Identification. A halothane gas analyzer is a device intended to measure the concentration of...

  3. 21 CFR 868.1700 - Nitrous oxide gas analyzer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nitrous oxide gas analyzer. 868.1700 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1700 Nitrous oxide gas analyzer. (a) Identification. A nitrous oxide gas analyzer is a device intended to measure the concentration of nitrous...

  4. 21 CFR 868.1400 - Carbon dioxide gas analyzer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Carbon dioxide gas analyzer. 868.1400 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1400 Carbon dioxide gas analyzer. (a) Identification. A carbon dioxide gas analyzer is a device intended to measure the concentration of carbon...

  5. 21 CFR 868.1500 - Enflurane gas analyzer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Enflurane gas analyzer. 868.1500 Section 868.1500...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1500 Enflurane gas analyzer. (a) Identification. An enflurane gas analyzer is a device intended to measure the concentration of...

  6. 21 CFR 868.1400 - Carbon dioxide gas analyzer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Carbon dioxide gas analyzer. 868.1400 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1400 Carbon dioxide gas analyzer. (a) Identification. A carbon dioxide gas analyzer is a device intended to measure the concentration of carbon...

  7. 21 CFR 868.1690 - Nitrogen gas analyzer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nitrogen gas analyzer. 868.1690 Section 868.1690...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1690 Nitrogen gas analyzer. (a) Identification. A nitrogen gas analyzer is a device intended to measure the concentration of nitrogen...

  8. 21 CFR 868.1640 - Helium gas analyzer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Helium gas analyzer. 868.1640 Section 868.1640...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1640 Helium gas analyzer. (a) Identification. A helium gas analyzer is a device intended to measure the concentration of helium in a...

  9. 21 CFR 868.1400 - Carbon dioxide gas analyzer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Carbon dioxide gas analyzer. 868.1400 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1400 Carbon dioxide gas analyzer. (a) Identification. A carbon dioxide gas analyzer is a device intended to measure the concentration of carbon...

  10. 21 CFR 868.1120 - Indwelling blood oxyhemoglobin concentration analyzer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Indwelling blood oxyhemoglobin concentration analyzer. 868.1120 Section 868.1120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices §...

  11. 21 CFR 868.1120 - Indwelling blood oxyhemoglobin concentration analyzer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Indwelling blood oxyhemoglobin concentration analyzer. 868.1120 Section 868.1120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices §...

  12. 21 CFR 868.1120 - Indwelling blood oxyhemoglobin concentration analyzer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Indwelling blood oxyhemoglobin concentration analyzer. 868.1120 Section 868.1120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices §...

  13. 21 CFR 868.1120 - Indwelling blood oxyhemoglobin concentration analyzer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Indwelling blood oxyhemoglobin concentration analyzer. 868.1120 Section 868.1120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices §...

  14. 21 CFR 868.1120 - Indwelling blood oxyhemoglobin concentration analyzer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Indwelling blood oxyhemoglobin concentration analyzer. 868.1120 Section 868.1120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices §...

  15. Studies of deionization and impedance spectroscopy for blood analyzer

    NASA Astrophysics Data System (ADS)

    Kwong, Charlotte C.; Li, Nan; Ho, Chih-Ming

    2005-11-01

    Blood analysis provides vital information for health conditions. For instance, typical infection response is correlated to an elevated White Blood Cell (WBC) count, while low Red Blood Cell (RBC) count, hemoglobin and hematocrit are caused by anemia or internal bleeding. We are developing two essential modules, deionization (DI) chip and microfluidic cytometer with impedance spectroscopy flow, for enabling the realization of a single platform miniaturized blood analyzer. In the proposed analyzer, blood cells are preliminarily sorted by Dielectrophoretic (DEP) means into sub-groups, differentiated and counted by impedance spectroscopy in a flow cytometer. DEP techniques have been demonstrated to stretch DNA, align Carbon Nanotubes (CNT) and trap cells successfully. However, DEP manipulation does not function in biological media with high conductivity. The DI module is designed to account for this challenge. H Filter will serve as an ion extraction platform in a microchamber. Sample and buffer do not mix well in micro scale allowing the ions being extracted by diffusion without increasing the volume. This can keep the downstream processing time short. Micro scale hydrodynamic focusing is employed to place single cell passing along the central plane of the flow cytometer module. By applying an AC electrical field, suspended cells are polarized, membrane capacitance C m, cytoplasm conductivity σ c, and cytoplasm permittivity ɛ c will vary as functions of frequency. Tracing back the monitored current, the numbers of individual cell species can be evaluated.

  16. Point-of-care, portable microfluidic blood analyzer system

    NASA Astrophysics Data System (ADS)

    Maleki, Teimour; Fricke, Todd; Quesenberry, J. T.; Todd, Paul W.; Leary, James F.

    2012-03-01

    Recent advances in MEMS technology have provided an opportunity to develop microfluidic devices with enormous potential for portable, point-of-care, low-cost medical diagnostic tools. Hand-held flow cytometers will soon be used in disease diagnosis and monitoring. Despite much interest in miniaturizing commercially available cytometers, they remain costly, bulky, and require expert operation. In this article, we report progress on the development of a battery-powered handheld blood analyzer that will quickly and automatically process a drop of whole human blood by real-time, on-chip magnetic separation of white blood cells (WBCs), fluorescence analysis of labeled WBC subsets, and counting a reproducible fraction of the red blood cells (RBCs) by light scattering. The whole blood (WB) analyzer is composed of a micro-mixer, a special branching/separation system, an optical detection system, and electronic readout circuitry. A droplet of un-processed blood is mixed with the reagents, i.e. magnetic beads and fluorescent stain in the micro-mixer. Valve-less sorting is achieved by magnetic deflection of magnetic microparticle-labeled WBC. LED excitation in combination with an avalanche photodiode (APD) detection system is used for counting fluorescent WBC subsets using several colors of immune-Qdots, while counting a reproducible fraction of red blood cells (RBC) is performed using a laser light scatting measurement with a photodiode. Optimized branching/channel width is achieved using Comsol Multi-Physics™ simulation. To accommodate full portability, all required power supplies (40v, +/-10V, and +3V) are provided via step-up voltage converters from one battery. A simple onboard lock-in amplifier is used to increase the sensitivity/resolution of the pulse counting circuitry.

  17. 46 CFR 148.415 - Toxic gas analyzers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Toxic gas analyzers. 148.415 Section 148.415 Shipping... MATERIALS THAT REQUIRE SPECIAL HANDLING Additional Special Requirements § 148.415 Toxic gas analyzers. When... vessel transporting the material, other than an unmanned barge, must have on board a gas...

  18. 46 CFR 148.420 - Flammable gas analyzers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Flammable gas analyzers. 148.420 Section 148.420... MATERIALS THAT REQUIRE SPECIAL HANDLING Additional Special Requirements § 148.420 Flammable gas analyzers..., each vessel transporting the material, other than an unmanned barge, must have on board a gas...

  19. 46 CFR 148.420 - Flammable gas analyzers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Flammable gas analyzers. 148.420 Section 148.420... MATERIALS THAT REQUIRE SPECIAL HANDLING Additional Special Requirements § 148.420 Flammable gas analyzers..., each vessel transporting the material, other than an unmanned barge, must have on board a gas...

  20. 46 CFR 148.415 - Toxic gas analyzers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Toxic gas analyzers. 148.415 Section 148.415 Shipping... MATERIALS THAT REQUIRE SPECIAL HANDLING Additional Special Requirements § 148.415 Toxic gas analyzers. When... vessel transporting the material, other than an unmanned barge, must have on board a gas...

  1. 46 CFR 148.415 - Toxic gas analyzers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Toxic gas analyzers. 148.415 Section 148.415 Shipping... MATERIALS THAT REQUIRE SPECIAL HANDLING Additional Special Requirements § 148.415 Toxic gas analyzers. When... vessel transporting the material, other than an unmanned barge, must have on board a gas...

  2. 46 CFR 148.415 - Toxic gas analyzers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Toxic gas analyzers. 148.415 Section 148.415 Shipping... MATERIALS THAT REQUIRE SPECIAL HANDLING Additional Special Requirements § 148.415 Toxic gas analyzers. When... vessel transporting the material, other than an unmanned barge, must have on board a gas...

  3. 46 CFR 148.420 - Flammable gas analyzers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Flammable gas analyzers. 148.420 Section 148.420... MATERIALS THAT REQUIRE SPECIAL HANDLING Additional Special Requirements § 148.420 Flammable gas analyzers..., each vessel transporting the material, other than an unmanned barge, must have on board a gas...

  4. Performance of a blood chemistry analyzer during parabolic flight

    NASA Technical Reports Server (NTRS)

    Spooner, Brian S.; Claassen, Dale E.; Guikema, James A.

    1990-01-01

    The performance of the Vision System Blood Analyzer during parabolic flight on a KC-135 aircraft (NASA 930) has been tested. This fully automated instrument performed flawlessly in these trials, demonstrating its potential for efficient, reliable use in a microgravity environment. In addition to instrument capability, it is demonstrated that investigators could readily fill specially modified test packs with fluid during zero gravity, and that filled test packs could be easily loaded into VISION during an episode of microgravity.

  5. Performance of a blood chemistry analyzer during parabolic flight.

    PubMed

    Spooner, B S; Claassen, D E; Guikema, J A

    1990-01-01

    We have tested the performance of the VISION System Blood Analyzer, produced by Abbott Laboratories, during parabolic flight on a KC-135 aircraft (NASA 930). This fully automated instrument performed flawlessly in these trials, demonstrating its potential for efficient, reliable use in a microgravity environment. In addition to instrument capability, we demonstrated that investigators could readily fill specially modified test packs with fluid during zero gravity, and that filled test packs could be easily loaded into VISION during an episode of microgravity.

  6. A gas filter correlation analyzer for methane

    NASA Technical Reports Server (NTRS)

    Sebacher, D. I.

    1978-01-01

    A fast-response instrument for monitoring CH4 was designed and tested using a modified nondispersive infrared technique. An analysis of the single-beam rotating-cell system is presented along with the signal processing circuit. A calibration of the instrument shows that the technique can be used to measure CH4 concentrations as small as 5 ppm-m and the effects of interfering gases are analyzed.

  7. Expert Assistant For A Clinical Hematology Blood Cell Analyzer

    NASA Astrophysics Data System (ADS)

    Young, Carole; Navlakha, Jainendra K.

    1989-03-01

    The COULTER COUNTER Model S Plus Series instruments are automated clinical hematology blood cell analyzers which measure the count, volume and population distribution of red blood cells, white blood cells and platelets, and hemoglobin from patient blood samples. In the clinical laboratory environment, instrument startup consists of a number of component and system checks to assure proper operation and calibration to insure reliable results are produced on patient samples. If a startup check fails, troubleshooting procedures are provided to assist the operator in determining the cause of the error. Troubleshooting requires expertise in instrument operation, troubleshooting procedures and evaluation of the data produced. This expert system is designed and developed to assist the startup diagnostics of COULTER COUNTER Model S Plus Series instruments. The system reads data produced by the instrument and validates it against expected values. If the values are not all correct, then the troubleshooting starts. Troubleshooting is handled for the most common subsystem problems and those which the operator has the equipment and knowledge to handle, problems that are cheapest to fix and problems that are quickest to fix. The expert system restarts the startup sequence whenever troubleshooting has been successful or recommends calling Customer Service when unsuccessful.

  8. The use of mass spectrometry to analyze dried blood spots.

    PubMed

    Wagner, Michel; Tonoli, David; Varesio, Emmanuel; Hopfgartner, Gérard

    2016-01-01

    Dried blood spots (DBS) typically consist in the deposition of small volumes of capillary blood onto dedicated paper cards. Comparatively to whole blood or plasma samples, their benefits rely in the fact that sample collection is easier and that logistic aspects related to sample storage and shipment can be relatively limited, respectively, without the need of a refrigerator or dry ice. Originally, this approach has been developed in the sixties to support the analysis of phenylalanine for the detection of phenylketonuria in newborns using bacterial inhibition test. In the nineties tandem mass spectrometry was established as the detection technique for phenylalanine and tyrosine. DBS became rapidly recognized for their clinical value: they were widely implemented in pediatric settings with mass spectrometric detection, and were closely associated to the debut of newborn screening (NBS) programs, as a part of public health policies. Since then, sample collection on paper cards has been explored with various analytical techniques in other areas more or less successfully regarding large-scale applications. Moreover, in the last 5 years a regain of interest for DBS was observed and originated from the bioanalytical community to support drug development (e.g., PK studies) or therapeutic drug monitoring mainly. Those recent applications were essentially driven by improved sensitivity of triple quadrupole mass spectrometers. This review presents an overall view of all instrumental and methodological developments for DBS analysis with mass spectrometric detection, with and without separation techniques. A general introduction to DBS will describe their advantages and historical aspects of their emergence. A second section will focus on blood collection, with a strong emphasis on specific parameters that can impact quantitative analysis, including chromatographic effects, hematocrit effects, blood effects, and analyte stability. A third part of the review is dedicated to

  9. 21 CFR 868.1640 - Helium gas analyzer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Helium gas analyzer. 868.1640 Section 868.1640 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1640 Helium gas analyzer....

  10. 21 CFR 868.1075 - Argon gas analyzer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Argon gas analyzer. 868.1075 Section 868.1075 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1075 Argon gas analyzer. (a) Identification....

  11. 21 CFR 868.1720 - Oxygen gas analyzer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Oxygen gas analyzer. 868.1720 Section 868.1720 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1720 Oxygen gas analyzer....

  12. 21 CFR 868.1500 - Enflurane gas analyzer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Enflurane gas analyzer. 868.1500 Section 868.1500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1500 Enflurane gas analyzer....

  13. 21 CFR 868.1670 - Neon gas analyzer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Neon gas analyzer. 868.1670 Section 868.1670 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1670 Neon gas analyzer. (a) Identification. A...

  14. 21 CFR 868.1430 - Carbon monoxide gas analyzer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Carbon monoxide gas analyzer. 868.1430 Section 868.1430 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1430 Carbon monoxide gas analyzer....

  15. 21 CFR 868.1700 - Nitrous oxide gas analyzer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nitrous oxide gas analyzer. 868.1700 Section 868.1700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1700 Nitrous oxide gas analyzer....

  16. 21 CFR 868.1620 - Halothane gas analyzer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Halothane gas analyzer. 868.1620 Section 868.1620 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1620 Halothane gas analyzer....

  17. Blood culture cross contamination associated with a radiometric analyzer

    SciTech Connect

    Griffin, M.R.; Miller, A.D.; Davis, A.C.

    1982-04-01

    During a 9-day period in August 1980 in a New Jersey hospital, three pairs of consecutively numbered blood cultures from different patients were identified as positive for the same organism, for each pair, both cultures were positive in the same atmosphere, both organisms had the same sensitivities, and the second of each pair grew at least 2 days after the first and was the only positive blood culture obtained from the patient. When the hospital laboratory discontinued use of its radiometric culture analyzer for 15 days, no more consecutive pairs of positive cultures occurred. Subsequent use of the machine for 9 days with a new power unit but the original circuit boards resulted in one more similar consecutive pair (Staphylococcus epidermidis). After replacement of the entire power unit, there were no further such pairs. Examination of the machine by the manufacturer revealed a defective circuit board which resulted in inadequate needle sterilization. Laboratories which utilize radiometric analyzers should be aware of the potential for cross contamination. Recognition of such events requires alert microbiologists and infection control practitioners and a record system in the bacteriology laboratory designed to identify such clusters.

  18. Sensor gas analyzer for acetone determination in expired air

    NASA Astrophysics Data System (ADS)

    Baranov, Vitaly V.

    2001-05-01

    Diseases and changes in the way of life change the concentration and composition of the expired air. Our adaptable gas analyzer is intended for the selective analysis of expired air and can be adapted for the solution of current diagnostic and analytical tasks by the user (a physician or a patient). Having analyzed the existing trends in the development of noninvasive diagnostics we have chosen the method of noninvasive acetone detection in expired air, where the acetone concentration correlates with blood and urine glucose concentrations. The appearance of acetone in expired air is indicative of disorders that may be caused not only by diabetes but also be wrong diet, incorrect sportsmen training etc. To control the disorders one should know the acetone concentration in the human body. This knowledge allows one to judge upon the state of the patient, choose a correct diet that will not cause damage to the patient's health, determine sportsmen training efficiency and results and solve the artificial pancreas problem. Our device provide highly accurate analysis, rapid diagnostics and authentic acetone quantification in the patient's body at any time aimed at prediction of the patient's state and assessing the efficiency of the therapy used. Clinical implementation of the device will improve the health and save lives of many thousands of diabetes sufferers.

  19. Colorimetric blood-gas monitoring sensors

    NASA Astrophysics Data System (ADS)

    Proctor, Keith J.; Seifert, George P.

    1993-05-01

    Colorimetric fiber optic sensors have been developed for measuring the pH and pCO2 of blood. These sensors are fabricated using a single 125 micrometers diameter optical fiber. Located at the distal end of the fiber is a capsule that contains a pH sensitive dye. The pCO2 sensor is fabricated from a pH sensor with the addition of a salt, bicarbonate, and the encapsulation with an ion impermeable gas permeable membrane. The distal end of the capsule is terminated with a reflective surface. The reflective surface can either be a polished metallic surface or, in this case, a TiO2 impregnated epoxy. The disposable sensor mates with an optical connector that contains two optical fibers of the same size as the disposable sensor. The two fibers within the optical cable provide a light path for both the antegrade and retrograde optical signals. These fibers are terminated at either the LED source or the detector. A prototype sensor assembly that incorporates the measurement of three physiological parameters (pH, pCO2, and sO2) has been demonstrated to fit within a standard 20 gauge arterial catheter, typically used for radial artery blood pressure monitoring, without significant damping of the blood pressure waveform. The pH sensor has a range of 6.9 - 7.8 with a precision of 0.01 pH units and the pCO2 sensor has a range of 15 - 95 mm Hg with a precision of 3 mm Hg. The long term drift pH drift is less than 0.01 pH unit per 8 hours and the pCO2 drift is less than 1 mm Hg per 8 hours. Sensor performance in the canine has demonstrated that the pH sensor is accurate to within +/- 0.03 pH units and the pCO2 sensor is accurate to within +/- 3 mm Hg when compared to a typical blood gas analyzer.

  20. 20 CFR 718.105 - Arterial blood-gas studies.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 4 2012-04-01 2012-04-01 false Arterial blood-gas studies. 718.105 Section... blood-gas studies. (a) Blood-gas studies are performed to detect an impairment in the process of... either at rest or during exercise. No blood-gas study shall be performed if medically contraindicated....

  1. In situ ultrahigh vacuum residual gas analyzer 'calibration'

    SciTech Connect

    Malyshev, O. B.; Middleman, K. J.

    2008-11-15

    Knowing the residual gas spectrum is essential for many applications and research in ultrahigh vacuum (UHV). Residual gas analyzers (RGAs) are used for both qualitative and quantitative gas analyses, where the quadrupole mass analyzers are now the most popular. It was found that RGAs supplied by different manufacturers are not necessarily well calibrated for quantitative gas analysis. A procedure applied for in situ RGA 'calibration' against a calibrated UHV total pressure gauge is described in this article. It was found that special attention should be paid to H{sub 2} calibration, as RGAs are usually much more sensitive to H{sub 2} than ionization gauges. The calibration coefficients are quite reproducible in Faraday cup mode, however, using the secondary electron multiplier requires frequent checks of the calibration coefficients. The coefficients obtained for the RGA allow the use of the RGA as an accurate device for gas spectrum analysis.

  2. 40 CFR 1065.309 - Continuous gas analyzer system-response and updating-recording verification-for gas analyzers...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calibrations and Verifications § 1065.309 Continuous... ambient air drawn into the probe. Select span gases for the species being continuously combined, other... air. You may use a multi-gas span gas, such as NO-CO-CO2-C3H8-CH4, to verify multiple analyzers at...

  3. 40 CFR 1065.309 - Continuous gas analyzer system-response and updating-recording verification-for gas analyzers...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calibrations and Verifications § 1065.309 Continuous... ambient air drawn into the probe. Select span gases for the species being continuously combined, other... air. You may use a multi-gas span gas, such as NO-CO-CO2-C3H8-CH4, to verify multiple analyzers at...

  4. 40 CFR 1065.309 - Continuous gas analyzer system-response and updating-recording verification-for gas analyzers...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calibrations and Verifications § 1065.309 Continuous... ambient air drawn into the probe. Select span gases for the species being continuously combined, other... air. You may use a multi-gas span gas, such as NO-CO-CO2-C3H8-CH4, to verify multiple analyzers at...

  5. 40 CFR 1065.309 - Continuous gas analyzer system-response and updating-recording verification-for gas analyzers...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calibrations and Verifications § 1065.309 Continuous... ambient air drawn into the probe. Select span gases for the species being continuously combined, other... air. You may use a multi-gas span gas, such as NO-CO-CO2-C3H8-CH4, to verify multiple analyzers at...

  6. Comparison of two analyzers to determine selected venous blood analytes of Quaker parrots (Myiopsitta monachus).

    PubMed

    Rettenmund, Christy L; Heatley, J Jill; Russell, Karen E

    2014-06-01

    Point of care devices can assess electrolyte, blood gas, biochemical, and hematologic values in a critical care setting. Although these devices are commonly used in humans and companion mammals, few studies have assessed their use in avian species. This study compares electrolyte, hemoglobin (Hgb), hematocrit (Hct), acid-base, and venous blood gas parameters between the i-STAT and IRMA TruPoint blood gas analysis systems for 35 Quaker parrots. Agreement between the two analyzers and the effect of gender, time lag between sample analysis, and cartridge expiration were evaluated. Male birds had increased Hgb and Hct compared with females, independent of analyzer method. In expired i-STAT cartridges, only glucose significantly increased. Packed cell volume determined by centrifugation was higher than Hct, as calculated by either analyzer. The analyzers had good agreement for total carbon dioxide, bicarbonate, pH, and Hgb, fair agreement for potassium (K), ionized calcium (iCa), venous partial pressure of carbon dioxide, and base excess, and poor agreement for sodium (Na), venous partial pressure of oxygen (PO2), and oxygen saturation (SO2). Values for Na, iCa, PO2, and SO2 were significantly higher on the IRMA than the i-STAT, while K was significantly lower on the IRMA when compared with the i-STAT. The time lag between sample analyses on the i-STAT and IRMA did not be correlate to any analyte changes. Despite these differences, both the i-STAT and the IRMA appear to be acceptable clinical tools in avian critical care, although reference ranges for each analyzer should be created.

  7. A novel CO 2 gas analyzer based on IR absorption

    NASA Astrophysics Data System (ADS)

    Zhang, Guangjun; Wu, Xiaoli

    2004-08-01

    Carbon dioxide (CO 2) gas analyzer can be widely used in many fields. A novel CO 2 gas analyzer based on infrared ray (IR) absorption is presented sufficiently in this paper. Applying Lambert-Beer Law, a novel space-double-beam optical structure is established successfully. The optical structure includes an IR source, a gas cell, a bandpass filter with a transmission wavelength at 4.26 μm, another bandpass filter with a transmission wavelength at 3.9 μm, and two IR detectors. Based on Redial Basic Function (RBF) artificial neural network, the measuring model of IR CO 2 analyzer is established with a high accuracy. A dynamic compensation filter is effectively designed to improve the dynamic characteristic of the IR CO 2 analyzer without gas pump. The IR CO 2 analyzer possesses the advantages of high accuracy and mechanical reliability with small volume, lightweight, and low-power consumption. Therefore, it can be used in such relevant fields as environmental protection, processing control, chemical analysis, medical diagnosis, and space environmental and control systems.

  8. 20 CFR 718.105 - Arterial blood-gas studies.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 4 2013-04-01 2013-04-01 false Arterial blood-gas studies. 718.105 Section... blood-gas studies. (a) Blood-gas studies are performed to detect an impairment in the process of alveolar gas exchange. This defect will manifest itself primarily as a fall in arterial oxygen...

  9. 20 CFR 718.105 - Arterial blood-gas studies.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false Arterial blood-gas studies. 718.105 Section... blood-gas studies. (a) Blood-gas studies are performed to detect an impairment in the process of alveolar gas exchange. This defect will manifest itself primarily as a fall in arterial oxygen...

  10. 46 CFR 148.420 - Flammable gas analyzers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS CARGOES CARRIAGE OF BULK SOLID..., each vessel transporting the material, other than an unmanned barge, must have on board a gas analyzer... instructions of its manufacturer. The atmosphere in the cargo hold must be tested before any person is...

  11. Implantable blood pressure sensor for analyzing elasticity in arteries

    NASA Astrophysics Data System (ADS)

    Franco-Ayala, Marco; Martínez-Piñón, Fernando; Reyes-Barranca, Alfredo; Sánchez de la Peña, Salvador; Álvarez-Chavez, José A.

    2009-03-01

    MEMS technology could be an option for the development of a pressure sensor which allows the monitoring of several electronic signals in humans. In this work, a comparison is made between the typical elasticity curves of several arteries in the human body and the elasticity obtained for MEMS silicon microstructures such as membranes and cantilevers employing Finite Element analysis tools. The purpose is to identify which types of microstructures are mechanically compatible with human arteries. The goal is to integrate a blood pressure sensor which can be implanted in proximity with an artery. The expected benefits for this type of sensor are mainly to reduce the problems associated with the use of bulk devices through the day and during several days. Such a sensor could give precise blood pressure readings in a continuous or periodic form, i.e. information that is especially important for some critical cases of hypertension patients.

  12. 21 CFR 868.1170 - Indwelling blood hydrogen ion concentration (pH) analyzer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Indwelling blood hydrogen ion concentration (pH... Indwelling blood hydrogen ion concentration (pH) analyzer. (a) Identification. An indwelling blood hydrogen... used to measure, in vivo, the hydrogen ion concentration (pH) in blood to aid in determining...

  13. Polarized 3He Gas Circulating Technologies for Neutron Analyzers

    SciTech Connect

    Watt, David; Hersman, Bill

    2014-12-10

    We describe the development of an integrated system for quasi-continuous operation of a large volume neutron analyzer. The system consists of a non-magnetic diaphragm compressor, a prototype large volume helium polarizer, a surrogate neutron analyzer, a non-depolarizing gas storage reservoir, a non-ferrous valve manifold for handling gas distribution, a custom rubidium-vapor gas return purifier, and wire-wound transfer lines, all of which are immersed in a two-meter external magnetic field. Over the Phase II period we focused on three major tasks required for the successful deployment of these types of systems: 1) design and implementation of gas handling hardware, 2) automation for long-term operation, and 3) improvements in polarizer performance, specifically fabrication of aluminosilicate optical pumping cells. In this report we describe the design, implementation, and testing of the gas handling hardware. We describe improved polarizer performance resulting from improved cell materials and fabrication methods. These improvements yielded valved 8.5 liter cells with relaxation times greater than 12 hours. Pumping this cell with 1500W laser power with 1.25nm linewidth yielded peak polarizations of 60%, measured both inside and outside the polarizer. Fully narrowing this laser to 0.25nm, demonstrated separately on one stack of the four, would have allowed 70% polarization with this cell. We demonstrated the removal of 5 liters of polarized helium from the polarizer with no measured loss of polarization. We circulated the gas through a titanium-clad compressor with polarization loss below 3% per pass. We also prepared for the next phase of development by refining the design of the polarizer so that it can be engineer-certified for pressurized operation. The performance of our system far exceeds comparable efforts elsewhere.

  14. 21 CFR 868.1170 - Indwelling blood hydrogen ion concentration (pH) analyzer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Indwelling blood hydrogen ion concentration (pH... Indwelling blood hydrogen ion concentration (pH) analyzer. (a) Identification. An indwelling blood hydrogen ion concentration (pH) analyzer is a device that consists of a catheter-tip pH electrode and that...

  15. 21 CFR 868.1170 - Indwelling blood hydrogen ion concentration (pH) analyzer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Indwelling blood hydrogen ion concentration (pH... Indwelling blood hydrogen ion concentration (pH) analyzer. (a) Identification. An indwelling blood hydrogen ion concentration (pH) analyzer is a device that consists of a catheter-tip pH electrode and that...

  16. 21 CFR 868.1170 - Indwelling blood hydrogen ion concentration (pH) analyzer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Indwelling blood hydrogen ion concentration (pH... Indwelling blood hydrogen ion concentration (pH) analyzer. (a) Identification. An indwelling blood hydrogen ion concentration (pH) analyzer is a device that consists of a catheter-tip pH electrode and that...

  17. 21 CFR 868.1170 - Indwelling blood hydrogen ion concentration (pH) analyzer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Indwelling blood hydrogen ion concentration (pH... Indwelling blood hydrogen ion concentration (pH) analyzer. (a) Identification. An indwelling blood hydrogen ion concentration (pH) analyzer is a device that consists of a catheter-tip pH electrode and that...

  18. 21 CFR 868.1150 - Indwelling blood carbon dioxide partial pressure (PCO2) analyzer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Indwelling blood carbon dioxide partial pressure....1150 Indwelling blood carbon dioxide partial pressure (PCO2) analyzer. (a) Identification. An indwelling blood carbon dioxide partial pressure PCO2 analyzer is a device that consists of a...

  19. 21 CFR 868.1150 - Indwelling blood carbon dioxide partial pressure (PCO2) analyzer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Indwelling blood carbon dioxide partial pressure....1150 Indwelling blood carbon dioxide partial pressure (PCO2) analyzer. (a) Identification. An indwelling blood carbon dioxide partial pressure PCO2 analyzer is a device that consists of a...

  20. 21 CFR 868.1150 - Indwelling blood carbon dioxide partial pressure (PCO2) analyzer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Indwelling blood carbon dioxide partial pressure....1150 Indwelling blood carbon dioxide partial pressure (PCO2) analyzer. (a) Identification. An indwelling blood carbon dioxide partial pressure PCO2 analyzer is a device that consists of a...

  1. 21 CFR 868.1150 - Indwelling blood carbon dioxide partial pressure (PCO2) analyzer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Indwelling blood carbon dioxide partial pressure....1150 Indwelling blood carbon dioxide partial pressure (PCO2) analyzer. (a) Identification. An indwelling blood carbon dioxide partial pressure PCO2 analyzer is a device that consists of a...

  2. 21 CFR 868.1150 - Indwelling blood carbon dioxide partial pressure (PCO2) analyzer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Indwelling blood carbon dioxide partial pressure....1150 Indwelling blood carbon dioxide partial pressure (PCO2) analyzer. (a) Identification. An indwelling blood carbon dioxide partial pressure PCO2 analyzer is a device that consists of a...

  3. Characteristics and performance of several mass spectrometer residual gas analyzers

    NASA Technical Reports Server (NTRS)

    Hultzman, W. W.

    1974-01-01

    The operation and properties of various mass-spectrometer residual gas analyzers for use in vacuum measurements were analyzed in terms of efficiencies of ion extraction, ion separation and transmission, and ion collection. Types of instruments studied were magnetic sector, omegatron, quadrupole, and monopole. Experimental results presented include absolute sensitivity to argon, relative sensitivity to 10 gases, and cracking patterns for these gases. It is shown that the properties are strongly dependent on instrument range, resolution, and the particular voltages, currents, or field intensities used to control the instrument.

  4. Gas Reactor Plant Analyzer and Simulator for Hydrogen Production

    2004-01-01

    This software is used to study and analyze various configurations of plant equipment for gas cooled nuclear reactor applications. The user of this software would likely be interested in optimizing the economic, safety, and operating performance of this type of reactor. The code provides the capability for the user through his input to configure networks of nuclear reactor components. The components available include turbine, compressor, heat exchanger, reactor core, coolers, bypass valves, and control systems.

  5. 20 CFR 718.105 - Arterial blood-gas studies.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 4 2014-04-01 2014-04-01 false Arterial blood-gas studies. 718.105 Section... MINE HEALTH AND SAFETY ACT OF 1969, AS AMENDED STANDARDS FOR DETERMINING COAL MINERS' TOTAL DISABILITY... blood-gas studies. (a) Blood-gas studies are performed to detect an impairment in the process...

  6. Graphic Three-Axes Presentation of Residual Gas Analyzer Data

    NASA Technical Reports Server (NTRS)

    Johnson, Kenneth R.; Levi, Alejandro G.

    1997-01-01

    Residual gas analyzers (RGA) are commonly used to measure the composition of residual gases in thermal-vacuum test chambers. Measurements from RGA's are often used to identify and quantify outgassing contaminants from a test article during thermal-vacuum testing. RGA data is typically displayed as snapshots in time, showing instantaneous concentrations of ions from ionized residual gas molecules at different atomic masses. This ion concentration information can be interpreted to be representative of the composition of the residual gas in the chamber at the instant of analysis. Typically, test personnel are most interested in tracking the time history of changes in the composition of chamber residual gas to determine the relative cleanliness and the clean-up rate of the test article under vacuum. However, displays of instantaneous RGA data cannot provide test personnel with the preferred time history information. In order to gain an understanding of gas composition trends, a series of plots of individual data snapshots must be analyzed. This analysis is cumbersome and still does not provide a very satisfactory view of residual gas composition trends. A method was devised by the authors to present RCA data in a three-axis format, plotting Atomic Mass Unit (AMU), the Ionization Signal Response (ISR) as amps/torr as a function of AMU, and Time, to provide a clear graphic visualization of trends of changes in ISR with respect to time and AMU (representative of residual gas composition). This graphic visualization method provides a valuable analytical tool to interpret test article outgassing rates during thermal vacuum tests. Raw RGA data was extracted from a series of delimited ASCII files and then converted to a data array in a spreadsheet. Consequently, using the 3-D plotting functionality provided by the spreadsheet program, 3-D plots were produced. After devising the data format conversion process, the authors began developing a program to provide real-time 3-D

  7. Stack gas analyzer and thermal oxidation device therefor

    SciTech Connect

    Vincent, A.

    1980-07-08

    A stack gas analyzer is described for connection from a recovery stack, said stack gas analyzer comprising: first means including a first outlet for producing a flow of a dehydrated mixture of the gases flowing in said recovery stck, said dehydrated mixture including sulfur dioxide, total reduced sulfur (TRS), and oxygen remaining after combustion utilizing an oxygen rate a few percent in excess of the stoichiometric rate; a scrubber having an inlet and an outlet to receive said dehydrated mixture, said scrubber having a composition to remove sulfur dioxide from said dehydrated mixture without removing the said TRS, said scrubber outlet having a flow therethrough of a trs sample mixture the same as said dehydrated mixture except for the removal of sulfur dioxide therefrom and including at least some of said oxygen; a coulometric titrator having a cell including an inlet and an outlet, and having second means to produce an electrical output signal proportional to the concentration of sulfur dioxide in an oxidized gas mixture passing through said cell from said cell inlet to said cell outlet; a conduit connected from said scrubber outlet to said cell inlet, saidaconduit having a flow of said TRS sample therein; and third means to heat said TRS sample in said conduit to a pedetermined temperature such that said trs is oxidized to sulfur dioxide.

  8. Description of the prototype diagnostic residual gas analyzer for ITER.

    PubMed

    Younkin, T R; Biewer, T M; Klepper, C C; Marcus, C

    2014-11-01

    The diagnostic residual gas analyzer (DRGA) system to be used during ITER tokamak operation is being designed at Oak Ridge National Laboratory to measure fuel ratios (deuterium and tritium), fusion ash (helium), and impurities in the plasma. The eventual purpose of this instrument is for machine protection, basic control, and physics on ITER. Prototyping is ongoing to optimize the hardware setup and measurement capabilities. The DRGA prototype is comprised of a vacuum system and measurement technologies that will overlap to meet ITER measurement requirements. Three technologies included in this diagnostic are a quadrupole mass spectrometer, an ion trap mass spectrometer, and an optical penning gauge that are designed to document relative and absolute gas concentrations.

  9. Description of the prototype diagnostic residual gas analyzer for ITER

    SciTech Connect

    Younkin, T. R.; Biewer, T. M.; Klepper, C. C.; Marcus, C.

    2014-11-15

    The diagnostic residual gas analyzer (DRGA) system to be used during ITER tokamak operation is being designed at Oak Ridge National Laboratory to measure fuel ratios (deuterium and tritium), fusion ash (helium), and impurities in the plasma. The eventual purpose of this instrument is for machine protection, basic control, and physics on ITER. Prototyping is ongoing to optimize the hardware setup and measurement capabilities. The DRGA prototype is comprised of a vacuum system and measurement technologies that will overlap to meet ITER measurement requirements. Three technologies included in this diagnostic are a quadrupole mass spectrometer, an ion trap mass spectrometer, and an optical penning gauge that are designed to document relative and absolute gas concentrations.

  10. A critical evaluation of automated blood gas measurements in comparative respiratory physiology.

    PubMed

    Malte, Christian Lind; Jakobsen, Sashia Lindhøj; Wang, Tobias

    2014-12-01

    Precise measurements of blood gases and pH are of pivotal importance to respiratory physiology. However, the traditional electrodes that could be calibrated and maintained at the same temperature as the experimental animal are increasingly being replaced by new automated blood gas analyzers. These are typically designed for clinical use and automatically heat the blood sample to 37°C for measurements. While most blood gas analyzers allow for temperature corrections of the measurements, the underlying algorithms are based on temperature-effects for human blood, and any discrepancies in the temperature dependency between the blood sample from a given species and human samples will bias measurements. In this study we review the effects of temperature on blood gases and pH and evaluate the performance of an automated blood gas analyzer (GEM Premier 3500). Whole blood obtained from pythons and freshwater turtles was equilibrated in rotating Eschweiler tonometers to a variety of known P(O2)'s and P(CO2)'s in gas mixtures prepared by Wösthoff gas mixing pumps and blood samples were measured immediately on the GEM Premier 3500. The pH measurements were compared to measurements using a Radiometer BMS glass capillary pH electrode kept and calibrated at the experimental temperature. We show that while the blood gas analyzer provides reliable temperature-corrections for P(CO2) and pH, P(O2) measurements were substantially biased. This was in agreement with the theoretical considerations and emphasizes the need for critical calibrations/corrections when using automated blood gas analyzers.

  11. A critical evaluation of automated blood gas measurements in comparative respiratory physiology.

    PubMed

    Malte, Christian Lind; Jakobsen, Sashia Lindhøj; Wang, Tobias

    2014-12-01

    Precise measurements of blood gases and pH are of pivotal importance to respiratory physiology. However, the traditional electrodes that could be calibrated and maintained at the same temperature as the experimental animal are increasingly being replaced by new automated blood gas analyzers. These are typically designed for clinical use and automatically heat the blood sample to 37°C for measurements. While most blood gas analyzers allow for temperature corrections of the measurements, the underlying algorithms are based on temperature-effects for human blood, and any discrepancies in the temperature dependency between the blood sample from a given species and human samples will bias measurements. In this study we review the effects of temperature on blood gases and pH and evaluate the performance of an automated blood gas analyzer (GEM Premier 3500). Whole blood obtained from pythons and freshwater turtles was equilibrated in rotating Eschweiler tonometers to a variety of known P(O2)'s and P(CO2)'s in gas mixtures prepared by Wösthoff gas mixing pumps and blood samples were measured immediately on the GEM Premier 3500. The pH measurements were compared to measurements using a Radiometer BMS glass capillary pH electrode kept and calibrated at the experimental temperature. We show that while the blood gas analyzer provides reliable temperature-corrections for P(CO2) and pH, P(O2) measurements were substantially biased. This was in agreement with the theoretical considerations and emphasizes the need for critical calibrations/corrections when using automated blood gas analyzers. PMID:25088182

  12. User's guide to the Residual Gas Analyzer (RGA)

    SciTech Connect

    Artman, S.A.

    1988-08-04

    The Residual Gas Analyzer (RGA), a Model 100C UTI quadrupole mass spectrometer, measures the concentrations of selected masses in the Fusion Energy Division's (FED) Advanced Toroidal Facility (ATF). The RGA software is a VAX FORTRAN computer program which controls the experimental apparatus, records the raw data, performs data reduction, and plots the data. The RGA program allows data to be collected from an RGA on ATF or from either of two RGAs in the laboratory. In the laboratory, the RGA diagnostic plays an important role in outgassing studied on various candidate materials for fusion experiments. One such material, graphite, is being used more often in fusion experiments due to its ability to withstand high power loads. One of the functions of the RGA diagnostic is aid in the determination of the best grade of graphite to be used in these experiments and to study the procedures used to condition it. A procedure of particular interest involves baking the graphite sample in order to remove impurities that may be present in it. These impurities can be studied while in the ATF plasma or while being baked and outgassed in the laboratory. The Residual Gas Analyzer is a quadrupole mass spectrometer capable of scanning masses ranging in size from 1 atomic mass unit (amu) to 300 amu while under computer control. The procedure for collecting data for a particular mass is outlined.

  13. 20 CFR 718.105 - Arterial blood-gas studies.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Arterial blood-gas studies. 718.105 Section 718.105 Employees' Benefits EMPLOYMENT STANDARDS ADMINISTRATION, DEPARTMENT OF LABOR FEDERAL COAL MINE...-gas studies. (a) Blood-gas studies are performed to detect an impairment in the process of...

  14. Stochastic PArallel Rarefied-gas Time-accurate Analyzer

    SciTech Connect

    Michael Gallis, Steve Plimpton

    2014-01-24

    The SPARTA package is software for simulating low-density fluids via the Direct Simulation Monte Carlo (DSMC) method, which is a particle-based method for tracking particle trajectories and collisions as a model of a multi-species gas. The main component of SPARTA is a simulation code which allows the user to specify a simulation domain, populate it with particles, embed triangulated surfaces as boundary conditions for the flow, overlay a grid for finding pairs of collision partners, and evolve the system in time via explicit timestepping. The package also includes various pre- and post-processing tools, useful for setting up simulations and analyzing the results. The simulation code runs either in serial on a single processor or desktop machine, or can be run in parallel using the MPI message-passing library, to enable faster performance on large problems.

  15. INGAS: Iranian Noble Gas Analyzing System for radioxenon measurement

    NASA Astrophysics Data System (ADS)

    Doost-Mohammadi, V.; Afarideh, H.; Etaati, G. R.; Safari, M. J.; Rouhi, H.

    2016-03-01

    In this article, Iranian Noble Gas Analyzing System (INGAS) will be introduced. This system is based on beta-gamma coincidence technique and consists of a well-type NaI(Tl) as gamma or X radiation detector and a cylindrical plastic scintillator to detect beta or conversion electron. Standard NIM modules were utilized to detect coincidence events of detectors. Both the beta and gamma detectors were appropriately calibrated. The efficiency curve of gamma detector for volume geometry was obtained by comparing the results of gamma point sources measurements and simulations of GATE V7.0 Monte Carlo code. The performance of detection system was checked by injection of 222Rn and 131mXe gaseous source in the detection cell. The minimum detectable activity of the system for 133Xe is 1.240±0.024 mBq for 24 h measurement time.

  16. Stochastic PArallel Rarefied-gas Time-accurate Analyzer

    2014-01-24

    The SPARTA package is software for simulating low-density fluids via the Direct Simulation Monte Carlo (DSMC) method, which is a particle-based method for tracking particle trajectories and collisions as a model of a multi-species gas. The main component of SPARTA is a simulation code which allows the user to specify a simulation domain, populate it with particles, embed triangulated surfaces as boundary conditions for the flow, overlay a grid for finding pairs of collision partners,more » and evolve the system in time via explicit timestepping. The package also includes various pre- and post-processing tools, useful for setting up simulations and analyzing the results. The simulation code runs either in serial on a single processor or desktop machine, or can be run in parallel using the MPI message-passing library, to enable faster performance on large problems.« less

  17. Phoenix Mars Mission--the thermal evolved gas analyzer.

    PubMed

    Hoffman, John H; Chaney, Roy C; Hammack, Hilton

    2008-10-01

    The Phoenix spacecraft that was launched to Mars in August 2007 landed safely on the Martian northern arctic region on May 25, 2008. It carried six experiments to study the history of water on the planet and search for organic molecules in the icy subsurface Martian soil. The spacecraft is a lander with an arm and scoop designed to dig a trench though the top soil to reach an expected ice layer near the surface. One of the instruments on board is the thermal evolved gas analyzer (TEGA), which consists of two components, a set of eight very small ovens that will heat samples of the ice soil mixtures from the trench to release imbedded gases and mineral decomposition products, and a mass spectrometer that serves as the analysis tool for the evolved gases, and also for measurements of the composition and isotopic ratios of the gases that comprise the atmosphere of Mars. The mass spectrometer is a miniature magnetic sector instrument controlled by microprocessor-driven power supplies. One feature is the gas enrichment cell that will increase the partial pressures of the noble gases in an atmosphere sample by removing all the active gases, carbon dioxide, and nitrogen, to improve the accuracy of their isotopic ratio measurements. PMID:18715800

  18. On-line analysis of stack gas composition by commercial FTIR gas analyzer system

    NASA Astrophysics Data System (ADS)

    Jaakkola, Petri; Vahlman, Tuula; Saarinen, Pekka; Kauppinen, Jyrki K.

    1994-01-01

    Stack gases of wood and oil burning boilers operating at Technical Research Centre of Finland were analyzed by a commercial FTIR-Gas Analyzer System. Concentrations of CO2, CO, NO, NO2, N2O, HCN, NH3, SO2, HCl, CH4, and H2O were monitored in real time by multicomponent analysis software of the Gas Analyzer System. Detection limits for different components varied from sub-ppms to few ppms using 8 cm-1 spectral resolution and 20 second measurement time. Analysis of calibration gases showed a high degree of accuracy and repeatability of the measurement method.

  19. A portable blood analyzer that uses on-line data management to deliver higher-quality patient information.

    PubMed

    Shibasaki, Masayuki; Ibuki, Takae; Tanaka, Yoshifumi

    2010-08-01

    We constructed an on-line data management system and linked it to the communication protocol of a portable blood analyzer (i-STAT) in each operating room of our institution. We developed a new program that integrates circulatory dynamics data from a monitor with laboratory data from the i-STAT. Our new program permits the results to be viewed through an intranet using a novel prototype communication device for the i-STAT 300F. We verified that this system can improve the quality of patient care both bedside and in the monitoring room and compared the costs of blood testing using a conventional desktop blood-gas analyzer and using the i-STAT. We found that the novel integration of circulatory dynamics with laboratory data enhanced the quality of intraoperative patient monitoring and reduced the cost and work load of doctors working in the operating room.

  20. A modified photo- and magnetoacoustic multigas analyzer applied in gas exchange measurements.

    PubMed

    Clemensen, P; Christensen, P; Norsk, P; Grønlund, J

    1994-06-01

    The feasibility of replacing a conventional mass spectrometer (MS) with a specially modified multicomponent (O2, CO2, Freon 22, and SF6) acoustic infrared and paramagnetic (IR/PM) gas analyzer in inert gas-rebreathing and metabolic gas exchange measurements has been investigated. Rebreathing variables were determined simultaneously with the MS and IR/PM analyzers in duplicate measurements at rest and during submaximal exercise in 10 subjects. The differences (means +/- SD, IR/PM - MS) were 0.028 +/- 0.048 liters [functional residual capacity (FRC)], 0.18 +/- 0.38 l/min [cardiac output (Qc)], -0.006 +/- 0.030 l/min [O2 consumption (VO2)], and -33 +/- 108 ml [combined lung tissue and capillary blood volume (Vti,c)]. The coefficients of variation on repeated estimates were 5.8% (FRC), 5.4% (Qc), 6.2% (VO2), and 17% (Vti,c) with the IR/PM analyzer and 5.9% (FRC), 4.2% (Qc), 5.0% (VO2), and 9.8% (Vti,c) with the MS. The differences (IR/PM - MS) obtained in mixed-expirate measurements were -0.006 +/- 0.020 l/min (VO2) and 0.020 +/- 0.021 l/min (CO2 production). Breath-by-breath estimates of VO2 and CO2 production with the IR/PM analyzer were, on average, 2.4 and 4.4% higher than the MS estimates, respectively. Our results demonstrate that the IR/PM gas analyzer, when appropriately modified, can substitute for a complex MS in a variety of noninvasive pulmonary gas exchange measurements.

  1. Hubble space telescope component qualification utilizing a residual gas analyzer

    NASA Technical Reports Server (NTRS)

    Westfall, A. H.

    1984-01-01

    An approach is described for integrating an automated residual gas analyzer (RGA) into the thermal vacuum outgas process. The RGA has the capability of detailed analysis over a 200 amu range with monitoring of each peak as the test progresses. The NASA criterion of either a 50% reduction of each peak over 44 amu or less than an 0.1% amplitude of the 28 amu base peak for all amu's above 44 amu is satisfied. A computer sorts, reports which peaks do not satisfy the criterion, and reports test completion. The computer plots amplitudes of all the peaks from 1 amu through 200 amu for each scan. This RGA real time approach is unique in that it provides sufficient detail to highlight a problem as it occurs. By comparison, a quartz crystal microbalance (QCM) or a thermoelectric quartz crystal microbalance (TQCM) indicates to the operator when changes occur, but not what has happened. Optical witness samples indicate whether a test was satisfactory within a few days after the test was completed.

  2. Analyzing Illumina Gene Expression Microarray Data Obtained From Human Whole Blood Cell and Blood Monocyte Samples.

    PubMed

    Teumer, Alexander; Schurmann, Claudia; Schillert, Arne; Schramm, Katharina; Ziegler, Andreas; Prokisch, Holger

    2016-01-01

    Microarray profiling of gene expression is widely applied to studies in molecular biology and functional genomics. Experimental and technical variations make not only the statistical analysis of single studies but also meta-analyses of different studies very challenging. Here, we describe the analytical steps required to substantially reduce the variations of gene expression data without affecting true effect sizes. A software pipeline has been established using gene expression data from a total of 3358 whole blood cell and blood monocyte samples, all from three German population-based cohorts, measured on the Illumina HumanHT-12 v3 BeadChip array. In summary, adjustment for a few selected technical factors greatly improved reliability of gene expression analyses. Such adjustments are particularly required for meta-analyses of different studies. PMID:26614070

  3. Using Willie's Acid-Base Box for Blood Gas Analysis

    ERIC Educational Resources Information Center

    Dietz, John R.

    2011-01-01

    In this article, the author describes a method developed by Dr. William T. Lipscomb for teaching blood gas analysis of acid-base status and provides three examples using Willie's acid-base box. Willie's acid-base box is constructed using three of the parameters of standard arterial blood gas analysis: (1) pH; (2) bicarbonate; and (3) CO[subscript…

  4. [Fallacies in arterial blood gas interpretation].

    PubMed

    Thurnheer, Robert

    2013-08-01

    The arterial blood gas analysis (ABGA) is a valuable diagnostic tool in daily clinical practice. It yields information about oxygenation, ventilation and acid-base status. ABGAs should always be interpreted within a clinical context. If a result is absolutely not compatible with a clinical situation, the probe should be repeated or prompt further differential diagnoses. A probe should be free of air bubbles and be rapidly proceeded in the laboratory. Body temperature and fraction of inspired oxygen are mandatory prerequisites for adequate interpretation. With CO-oximetry, not only oxygenated hemoglobin but also carboxihemoglobin and met-hemoglobin content can be measured in the case of a suspected intoxication. For the assessment of ventilation, PaCO2 must be interpreted in the context of PaO2, as already a "normal value" of PaCO2 may indicate severe ventilator failure in a patient with hypoxemia. A normal pH does not exclude acid-base disorders, PaCO2 and bicarbonate must also be taken into account. When FIO2 is changed, steady state conditions must be awaited before a next control especially in the case of ventilation-perfusion mismatch, e. g. in COPD, pneumonia, pulmonary embolism. In a hypoxic state, immediate application of oxygen is warranted, in hypercapnia, ventilation should be increased. In acid-base disorders, treatment of the underlying disease is most often conducive.

  5. Detection of Cervical Cancer Analyzing Blood Samples with Raman Spectroscopy and Multivariate Analysis

    NASA Astrophysics Data System (ADS)

    González-Solís, J. L.; Rodríguez-López, J.; Martínez-Espinosa, J. C.; Frausto-Reyes, C.; Jave-Suárez, L. F.; Aguilar-Lemarroy, A. C.; Vargas-Rodríguez, H.; Martínez-Cano, E.

    2010-05-01

    The use of Raman spectroscopy to analyze blood biochemistry and hence distinguish between normal and abnormal blood was investigated. The blood samples were obtained from 20 patients who were clinically diagnosed with cervical cancer and 10 healthy volunteer. The imprint was put under the Olympus microscope and several points were chosen for Raman measurement. All spectra were collected at a Jobin-Yvon LabRAM HR800 Raman Spectrometer with NIR 830 nm laser. It is shown that the serum samples from patients with cervical cancer and from the control group can be discriminated when the multivariate statistical methods of Principal Component Analysis (PCA) and Linear Discriminated Analysis (LDA) is applied to their Raman spectra. The ratios of some band intensities were analyzed and some band ratios were significant and corresponded to proteins, phospholipids, and polysaccharides. The preliminary results suggest that Raman spectroscopy could be a new technique for the detection using just blood samples.

  6. Blood gas analysis as a determinant of occupationally related disability

    SciTech Connect

    Morgan, W.K.; Zaldivar, G.L. )

    1990-05-01

    Arterial blood gas analysis is one of the criteria used by the Department of Labor to award total and permanent disability for coal workers' pneumoconiosis (Black Lung). We have observed that Black Lung claimants often undergo several blood gas analyses with widely differing results that sometimes range from complete normality to life-threatening hypoxemia in the same subject. We concluded that blood gas analysis in occupationally related disability determination is unreliable, in that quality control and instrumentation are variable; that severe hypoxemia is rare in coal workers' pneumoconiosis; and that such hypoxemia is nonspecific and correlates poorly with breathlessness.

  7. A sample-to-result system for blood coagulation tests on a microfluidic disk analyzer.

    PubMed

    Lin, Chia-Hui; Liu, Cheng-Yuan; Shih, Chih-Hsin; Lu, Chien-Hsing

    2014-09-01

    In this report, we describe in detail a microfluidic analyzer, which is able to conduct blood coagulation tests using whole blood samples. Sample preparation steps, such as whole blood aliquoting and metering, plasma separation, decanting, and mixing with reagents were performed in sequence through microfluidic functions integrated on a disk. Both prothrombin time (PT) and activated partial thromboplastin time (aPTT) were carried out on the same platform and the test results can be reported in 5 min. Fifty clinical samples were tested for both PT and aPTT utilizing the microfluidic disk analyzer and the instrument used in hospitals. The test results showed good correlation and agreement between the two instruments.

  8. A sample-to-result system for blood coagulation tests on a microfluidic disk analyzer

    PubMed Central

    Lin, Chia-Hui; Liu, Cheng-Yuan; Shih, Chih-Hsin; Lu, Chien-Hsing

    2014-01-01

    In this report, we describe in detail a microfluidic analyzer, which is able to conduct blood coagulation tests using whole blood samples. Sample preparation steps, such as whole blood aliquoting and metering, plasma separation, decanting, and mixing with reagents were performed in sequence through microfluidic functions integrated on a disk. Both prothrombin time (PT) and activated partial thromboplastin time (aPTT) were carried out on the same platform and the test results can be reported in 5 min. Fifty clinical samples were tested for both PT and aPTT utilizing the microfluidic disk analyzer and the instrument used in hospitals. The test results showed good correlation and agreement between the two instruments. PMID:25332733

  9. 21 CFR 868.1200 - Indwelling blood oxygen partial pressure (PO2) analyzer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Indwelling blood oxygen partial pressure (PO2) analyzer. 868.1200 Section 868.1200 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices §...

  10. 21 CFR 868.1200 - Indwelling blood oxygen partial pressure (PO2) analyzer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Indwelling blood oxygen partial pressure (PO2) analyzer. 868.1200 Section 868.1200 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices §...

  11. 21 CFR 868.1200 - Indwelling blood oxygen partial pressure (PO2) analyzer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Indwelling blood oxygen partial pressure (PO2) analyzer. 868.1200 Section 868.1200 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices §...

  12. 21 CFR 868.1200 - Indwelling blood oxygen partial pressure (PO2) analyzer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Indwelling blood oxygen partial pressure (PO2) analyzer. 868.1200 Section 868.1200 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices §...

  13. 21 CFR 868.1200 - Indwelling blood oxygen partial pressure (PO2) analyzer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Indwelling blood oxygen partial pressure (PO2) analyzer. 868.1200 Section 868.1200 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices §...

  14. 40 CFR 1065.309 - Continuous gas analyzer system-response and updating-recording verification-for gas analyzers...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calibrations and Verifications § 1065.309 Continuous... for water removed from the sample done in post-processing according to § 1065.659 (40 CFR 1066.620 for... ambient air drawn into the probe. We recommend you use the final, stabilized analyzer reading as the...

  15. Peripheral venous blood gas analysis: An alternative to arterial blood gas analysis for initial assessment and resuscitation in emergency and intensive care unit patients.

    PubMed

    Awasthi, Shilpi; Rani, Raka; Malviya, Deepak

    2013-01-01

    Arterial blood gas (ABG) analysis is the gold standard method for assessment of oxygenation and acid base analysis, yielding valuable information about a variety of disease process. This study is aimed to determine the extent of correlation between arterial and peripheral venous samples for blood gases and acid base status in critically ill and emergency department patients and to evaluate if venous sample may be a better alternative for initial assessment and resuscitation. The prospective study was conducted on 45 patients of either sex in the age group of 15-80 years of intensive care unit and emergency ward. Relevant history, presenting complaints, vital signs, and indication for testing were recorded. Arterial and peripheral venous samples were drawn simultaneously in a pre-heparinized syringe and analyzed immediately for blood gases and acid base status. Mean difference and Pearson's product moment correlation coefficient was used to compare the result. After statistical evaluation, the present study shows minimal mean difference and good correlation (r > 0.9) between arterial and peripheral venous sample for blood gases and acid base status. Correlation in PO2 measurement was poor (r < 0.3). Thus, venous blood may be a useful alternative to arterial blood during blood gas analysis obviating the need for arterial puncture in difficult clinical situation especially trauma patients, for initial emergency department assessment and early stages of resuscitation.

  16. 21 CFR 870.4330 - Cardiopulmonary bypass on-line blood gas monitor.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Cardiopulmonary bypass on-line blood gas monitor... Cardiopulmonary bypass on-line blood gas monitor. (a) Identification. A cardiopulmonary bypass on-line blood gas monitor is a device used in conjunction with a blood gas sensor to measure the level of gases in the...

  17. 21 CFR 870.4330 - Cardiopulmonary bypass on-line blood gas monitor.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Cardiopulmonary bypass on-line blood gas monitor... Cardiopulmonary bypass on-line blood gas monitor. (a) Identification. A cardiopulmonary bypass on-line blood gas monitor is a device used in conjunction with a blood gas sensor to measure the level of gases in the...

  18. 21 CFR 870.4330 - Cardiopulmonary bypass on-line blood gas monitor.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Cardiopulmonary bypass on-line blood gas monitor... Cardiopulmonary bypass on-line blood gas monitor. (a) Identification. A cardiopulmonary bypass on-line blood gas monitor is a device used in conjunction with a blood gas sensor to measure the level of gases in the...

  19. 21 CFR 870.4330 - Cardiopulmonary bypass on-line blood gas monitor.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Cardiopulmonary bypass on-line blood gas monitor... Cardiopulmonary bypass on-line blood gas monitor. (a) Identification. A cardiopulmonary bypass on-line blood gas monitor is a device used in conjunction with a blood gas sensor to measure the level of gases in the...

  20. Arterial blood gas tensions and pH.

    PubMed

    Flenley, D C

    1980-02-01

    1 The definition of PO2 and its relationship to the oxygen saturation (SO2) by the oxygen dissociation curve (ODC) is described with details of the ligands of the ODC and the effects of haemoglobinopathies on P50 (the position of the ODC) and the slope of the ODC (Hill's 'n'). 2 The definition of PCO2 and description of CO2 transport by blood leads to consideration of the basis of acid base balance. 3 Acid base balance is expressed in terms of arterial blood (H+) (or pH) PCO2 relationship using a non-logarithmic diagram. 4 The measurement of arterial blood gas tensions is described with comments on arterial puncture and available modern automated blood gas electrodes and their calibration. 5 Non-invasive indirect measurements of blood gas tensions, by ear oximetry are described, with calibration figures on the Hewlett-Packard 47021A ear oximeter. End-tidal PO2 and PCO2 measurements by mass spectrometer or infra-red CO2 analyser, and of transcutaneous PO2 measurements by a heated polarographic electrode are described. 6 These measurements are necessary to study the effects of pharmacological agents on the chemical control of breathing, on pulmonary gas exchange, and on acid base balance in humans. The measurements are in everyday use in clinical practice, both to aid diagnosis of respiratory diseases, assess their severity, and to quantiate the effects of therapeutic agents.

  1. Measuring statistical agreement between four point of care (POC) lactate meters and a laboratory blood analyzer in cats.

    PubMed

    Acierno, Mark J; Johnson, Meghan E; Eddleman, Lee Ann; Mitchell, Mark A

    2008-04-01

    The use of blood lactate concentrations as a prognostic indicator and therapeutic gauge in feline medicine has been hindered by the inability to obtain values in a timely manner with minimal quantities of blood. Recently, hand-held point-of-care (POC) lactate meters have become commercially available. The objective of this prospective study was to determine if lactate values produced by three commercially available and one medical grade POC meter were in agreement with a laboratory blood analyzer. Blood samples from 47 cats were collected on presentation to an emergency service and processed on four POC meters and a Stat Profile Critical Care Xpress blood analyzer. The results were analyzed using the Bland-Altman method. The blood lactate values produced by the hospital grade POC meter and one of the commercially POC meters were in good agreement with the Critical Care Xpress blood analyzer. Other commercially available POC meters produced acceptable agreement. PMID:17904887

  2. Creative ways to teach arterial blood gas interpretation.

    PubMed

    Barnette, LaShonda; Kautz, Donald D

    2013-01-01

    There are many creative ways to teach arterial blood gas interpretation. This article illustrates the use of the stepwise approach, tables, figures, case studies, illustrations, computer-based learning modules, and the tic-tac-toe approach. The authors recommend making several approaches available so students and new critical care nurses can choose the ones that work best for them.

  3. 21 CFR 870.4410 - Cardiopulmonary bypass in-line blood gas sensor.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cardiopulmonary bypass in-line blood gas sensor... Cardiopulmonary bypass in-line blood gas sensor. (a) Identification. A cardiopulmonary bypass in-line blood gas sensor is a transducer that measures the level of gases in the blood. (b) Classification. Class...

  4. 21 CFR 870.4410 - Cardiopulmonary bypass in-line blood gas sensor.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Cardiopulmonary bypass in-line blood gas sensor... Cardiopulmonary bypass in-line blood gas sensor. (a) Identification. A cardiopulmonary bypass in-line blood gas sensor is a transducer that measures the level of gases in the blood. (b) Classification. Class...

  5. 21 CFR 870.4410 - Cardiopulmonary bypass in-line blood gas sensor.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Cardiopulmonary bypass in-line blood gas sensor... Cardiopulmonary bypass in-line blood gas sensor. (a) Identification. A cardiopulmonary bypass in-line blood gas sensor is a transducer that measures the level of gases in the blood. (b) Classification. Class...

  6. 21 CFR 870.4410 - Cardiopulmonary bypass in-line blood gas sensor.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Cardiopulmonary bypass in-line blood gas sensor... Cardiopulmonary bypass in-line blood gas sensor. (a) Identification. A cardiopulmonary bypass in-line blood gas sensor is a transducer that measures the level of gases in the blood. (b) Classification. Class...

  7. 21 CFR 870.4410 - Cardiopulmonary bypass in-line blood gas sensor.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Cardiopulmonary bypass in-line blood gas sensor... Cardiopulmonary bypass in-line blood gas sensor. (a) Identification. A cardiopulmonary bypass in-line blood gas sensor is a transducer that measures the level of gases in the blood. (b) Classification. Class...

  8. Continuous intra-arterial blood gas monitoring. A clinical experience.

    PubMed

    Paolillo, G; Tosoni, A; Mariani, M A; Venturino, M

    1994-01-01

    Miniaturized sensors, based upon the principles of optical fluorescence, can measure in vivo the pH, pCO2 value and pO2 value of blood. In this report we studied continuous intra-arterial blood gas monitoring in 27 patients undergoing cardiac surgery (no. 16 coronary artery by-pass grafting, no. 2 valvular surgery) and major vascular surgery (no. 9 abdominal aortic aneurysms). Total duration of continuous intra-arterial blood gas monitoring was 677 hours, with a ratio of 25.0 +/- 14.8 hours/patient (range 4-96 hours). The in vitro values of pH, pCO2 and pO2 were compared to simultaneous records from the fiberoptic sensor for each of the 283 arterial blood gas samples obtained, by means of linear regression and Bland-Altman method, in order to test the correlation and the agreement between the two methods of measuring. For pH average bias was -0.023 and intersensor precision was 0.028, with a strong correlation (R = 0.92; p < 0.001) and agreement. For pCO2 the average bias was 0.91 and the inter-sensor precision was 2.65, with a slight decrease in correlation (R = 0.89; p < 0.001) and agreement. For pO2 average bias was -2.69 and the intersensor precision was 12.16, with a strong correlation (R = 0.97; p < 0.001) and agreement. In addition, we tested the reliability of the system for values of pO2 above 100 mmHg and we found a strong correlation (R = 0.96; p20.001) and agreement even for these clinical conditions, largely out of physiologic parameters. This study demonstrates the feasibility and reliability of continuous intra-arterial three-component PB 3300 (Puritan Bennett) blood gas monitoring. PMID:7800182

  9. Detection of gas and water using HHT by analyzing P- and S-wave attenuation in tight sandstone gas reservoirs

    NASA Astrophysics Data System (ADS)

    Xue, Ya-juan; Cao, Jun-xing; Wang, Da-xing; Tian, Ren-fei; Shu, Ya-xiang

    2013-11-01

    A direct detection of hydrocarbons is used by connecting increased attenuation of seismic waves with oil and gas fields. This study analyzes the seismic attenuation of P- and S-waves in one tight sandstone gas reservoir and attempts to give the quantitative distinguishing results of gas and water by the characteristics of the seismic attenuation of P- and S-waves. The Hilbert-Huang Transform (HHT) is used to better measure attenuation associated with gas saturation. A formation absorption section is defined to compute the values of attenuation using the common frequency sections obtained by the HHT method. Values of attenuation have been extracted from three seismic sections intersecting three different wells: one gas-saturated well, one fully water-saturated well, and one gas- and water- saturated well. For the seismic data from the Sulige gas field located in northwest Ordos Basin, China, we observed that in the gas-saturated media the S-wave attenuation was very low and much lower than the P-wave attenuation. In the fully water-saturated media the S-wave attenuation was higher than the P-wave attenuation. We suggest that the joint application of P- and S-wave attenuation can improve the direct detection between gas and water in seismic sections. This study is hoped to be useful in seismic exploration as an aid for distinguishing gas and water from gas- and water-bearing formations.

  10. Blood gas testing and related measurements: National recommendations on behalf of the Croatian Society of Medical Biochemistry and Laboratory Medicine

    PubMed Central

    Dukić, Lora; Kopčinović, Lara Milevoj; Dorotić, Adrijana; Baršić, Ivana

    2016-01-01

    Blood gas analysis (BGA) is exposed to risks of errors caused by improper sampling, transport and storage conditions. The Clinical and Laboratory Standards Institute (CLSI) generated documents with recommendations for avoidance of potential errors caused by sample mishandling. Two main documents related to BGA issued by the CLSI are GP43-A4 (former H11-A4) Procedures for the collection of arterial blood specimens; approved standard – fourth edition, and C46-A2 Blood gas and pH analysis and related measurements; approved guideline – second edition. Practices related to processing of blood gas samples are not standardized in the Republic of Croatia. Each institution has its own protocol for ordering, collection and analysis of blood gases. Although many laboratories use state of the art analyzers, still many preanalytical procedures remain unchanged. The objective of the Croatian Society of Medical Biochemistry and Laboratory Medicine (CSMBLM) is to standardize the procedures for BGA based on CLSI recommendations. The Working Group for Blood Gas Testing as part of the Committee for the Scientific Professional Development of the CSMBLM prepared a set of recommended protocols for sampling, transport, storage and processing of blood gas samples based on relevant CLSI documents, relevant literature search and on the results of Croatian survey study on practices and policies in acid-base testing. Recommendations are intended for laboratory professionals and all healthcare workers involved in blood gas processing. PMID:27812301

  11. Flow-based ammonia gas analyzer with an open channel scrubber for indoor environments.

    PubMed

    Ohira, Shin-Ichi; Heima, Minako; Yamasaki, Takayuki; Tanaka, Toshinori; Koga, Tomoko; Toda, Kei

    2013-11-15

    A robust and fully automated indoor ammonia gas monitoring system with an open channel scrubber (OCS) was developed. The sample gas channel dimensions, hydrophilic surface treatment to produce a thin absorbing solution layer, and solution flow rate of the OCS were optimized to connect the OCS as in-line gas collector and avoid sample humidity effects. The OCS effluent containing absorbed ammonia in sample gas was injected into a derivatization solution flow. Derivatization was achieved with o-phthalaldehyde and sulfite in pH 11 buffer solution. The product, 1-sulfonateisoindole, is detected with a home-made fluorescence detector. The limit of detection of the analyzer based on three times the standard deviation of baseline noise was 0.9 ppbv. Sample gas could be analyzed 40 times per hour. Furthermore, relative humidity of up to 90% did not interfere considerably with the analyzer. Interference from amines was not observed. The developed gas analysis system was calibrated using a solution-based method. The system was used to analyze ammonia in an indoor environment along with an off-site method, traditional impinger gas collection followed by ion chromatographic analysis, for comparison. The results obtained using both methods agreed well. Therefore, the developed system can perform on-site monitoring of ammonia in indoor environments with improved time resolution compared with that of other methods.

  12. 40 CFR 1065.550 - Gas analyzer range validation, drift validation, and drift correction.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... correction. (a) Range validation. If an analyzer operated above 100% of its range at any time during the test... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Gas analyzer range validation, drift validation, and drift correction. 1065.550 Section 1065.550 Protection of Environment...

  13. 28 CFR Appendix B to Part 79 - Blood-Gas Study Tables

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 28 Judicial Administration 2 2012-07-01 2012-07-01 false Blood-Gas Study Tables B Appendix B to... COMPENSATION ACT Pt. 79, App. B Appendix B to Part 79—Blood-Gas Study Tables For arterial blood-gas studies... mmHg 65 mmHg or below. Above 50 mmHg Any value. For arterial blood-gas studies performed at...

  14. 28 CFR Appendix B to Part 79 - Blood-Gas Study Tables

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Blood-Gas Study Tables B Appendix B to... COMPENSATION ACT Pt. 79, App. B Appendix B to Part 79—Blood-Gas Study Tables For arterial blood-gas studies... mmHg 65 mmHg or below. Above 50 mmHg Any value. For arterial blood-gas studies performed at...

  15. Arterial blood gas reference values for sea level and an altitude of 1,400 meters.

    PubMed

    Crapo, R O; Jensen, R L; Hegewald, M; Tashkin, D P

    1999-11-01

    Blood gas measurements were collected on healthy lifetime nonsmokers at sea level (n = 96) and at an altitude of 1,400 meters (n = 243) to establish reference equations. At each study site, arterial blood samples were analyzed in duplicate on two separate blood gas analyzers and CO-oximeters. Arterial blood gas variables included Pa(O(2)), Pa(CO(2)), pH, and calculated alveolar-arterial PO(2) difference (AaPO(2)). CO-oximeter variables were Hb, COHb, MetHb, and Sa(O(2)). Subjects were 18 to 81 yr of age with 166 male and 173 female. Outlier data were excluded from multiple regression analysis, and reference equations were fitted to the data in two ways: (1) best fit using linear, squared, and cross-product terms; (2) simple equations, including only the variables that explained at least 3% of the variance. Two sets of equations were created: (1) using only the sea level data and (2) using the combined data with barometric pressure as an independent variable. Comparisons with earlier studies revealed small but significant differences; the decline in Pa(O(2)) with age at each altitude was consistent with most previous studies. At sea level, the equation that included barometric pressure predicted Pa(O(2)) slightly better than the sea level specific equation. The inclusion of barometric pressure in the equations allows better prediction of blood gas reference values at sea level and at altitudes as high as 1,400 meters. PMID:10556115

  16. [Blood gas analysis in dogs in veterinary practice. A review].

    PubMed

    Wagner, J; Rieker, T; Siegling-Vlitakis, C

    2015-01-01

    Blood gas analysis is useful to obtain information about acid-base state and gas exchange of the lung. Interpretation is based on the Henderson-Hasselbalch equation. This approach has its limitations especially in interpretation of complex disturbances of acid-base status and has been complemented by base excess and anion gap. Peter Stewart described a model of quantitative approach to the acid-base disturbances which has been further developed and is known as the strong ion approach. This model differs from the traditional approach in the assessment of metabolic disorders of acid base status. Both models complement each other but also have their advantages and disadvantages. For simple disorders of the acid-base state the Henderson-Hasselbalch approach can be used, however in complex disturbances of acid-base balance, especially with abnormalities of serum albumin and phosphate concentrations, the strong ion approach is recommended. With the understanding of both models and of the clinical presentation of blood gas abnormalities, optimal case management and therapy can be provided.

  17. Use of liquid heparin for blood gas sampling in pediatric intensive care unit: A comparative study of effects of varying volumes of heparin on blood gas parameters

    PubMed Central

    Chhapola, Viswas; Kumar, Sandeep; Goyal, Pallavi; Sharma, Rajni

    2013-01-01

    Background and Aims: Pre-analytical errors in sample collection affect the reliability of blood gas (BG) analysis. Amount of liquid heparin as anticoagulant in samples for BG can affect results by its dilutional direct binding and compositional effects. The aim of this study was to examine the effect of varying amounts of heparin in blood samples on results. Materials and Methods: The prospective study was conducted on 15 children at a pediatric intensive care unit (PICU). Three different heparinized syringes were used containing minimal, 60 IU and 120 IU of heparin. A total volume of 1 ml blood in each syringe was taken and was analyzed by blood gas analyzer. Statistical analysis used related samples Friedman's test and Wilcoxon signed ranks test for paired comparisons. The observed bias was also compared with the desirable bias according to specifications by Ricos et al. Results: There was a significant difference (P < 0.05) in values of pH, pCO2, HCO3−, Hb and Na+ in the three syringes. The pCO2, HCO3− and Na+ levels decreased with the increasing amount of heparin. The observed percentage bias was more than desirable percentage bias specifications for pCO2, HCO3−, Hb, Na+, K+ and Cl− levels. Conclusions: Syringes with minimal liquid heparin are most appropriate for studying BG parameters as they have the least effect on these parameters. There is a need to standardize the procedure of syringe preparation for BG analysis. Further studies are needed to compare minimal amounts of heparin with commercially available dry balanced heparin syringes. PMID:24501486

  18. Field intercomparison of four methane gas analyzers suitable for eddy covariance flux measurements

    NASA Astrophysics Data System (ADS)

    Peltola, O.; Mammarella, I.; Haapanala, S.; Burba, G.; Vesala, T.

    2013-06-01

    Performances of four methane gas analyzers suitable for eddy covariance measurements are assessed. The assessment and comparison was performed by analyzing eddy covariance data obtained during summer 2010 (1 April to 26 October) at a pristine fen, Siikaneva, Southern Finland. High methane fluxes with pronounced seasonality have been measured at this fen. The four participating methane gas analyzers are commercially available closed-path units TGA-100A (Campbell Scientific Inc., USA), RMT-200 (Los Gatos Research, USA), G1301-f (Picarro Inc., USA) and an early prototype open-path unit Prototype-7700 (LI-COR Biosciences, USA). The RMT-200 functioned most reliably throughout the measurement campaign, during low and high flux periods. Methane fluxes from RMT-200 and G1301-f had the smallest random errors and the fluxes agree remarkably well throughout the measurement campaign. Cospectra and power spectra calculated from RMT-200 and G1301-f data agree well with corresponding temperature spectra during a high flux period. None of the gas analyzers showed statistically significant diurnal variation for methane flux. Prototype-7700 functioned only for a short period of time, over one month, in the beginning of the measurement campaign during low flux period, and thus, its overall accuracy and season-long performance were not assessed. The open-path gas analyzer is a practical choice for measurement sites in remote locations due to its low power demand, whereas for G1301-f methane measurements interference from water vapor is straightforward to correct since the instrument measures both gases simultaneously. In any case, if only the performance in this intercomparison is considered, RMT-200 performed the best and is the recommended choice if a new fast response methane gas analyzer is needed.

  19. Gas chromatographic and mass spectrometric analysis of polychlorinated biphenyls in human placenta and cord blood

    SciTech Connect

    Ando, M.; Saito, H.; Wakisaka, I.

    1986-10-01

    Gas chromatographic and mass spectrometric analyses of polychlorinated biphenyls (PCBs) in placenta, maternal blood, cord blood, and milk were carried out. Trichlorobiphenyl, tetrachlorobiphenyl, pentachlorobiphenyls, and hexachlorobiphenyls were identified by the mass chromatogram and the mass spectra. Some minor peaks of PCBs were identified by gas chromatography. The relationship between the PCB concentration in placenta and that in milk is different in each PCB congener. The higher the chlorine content of the PCB congener, the more significant the correlation. No significant but a low negative correlation exists between the concentration of some PCB congeners in the placenta and that in cord blood. On the other hand, a significant linear correlation exists between the concentration of hexachlorobenzene in the placenta and that in cord blood. The transplacental transport of each PCB congener varied depending upon its chemical nature. Trichlorobiphenyl and tetrachlorobiphenyl were more transferable than hexachlorobiphenyls. The results show that the placenta and cord blood are useful human samples to analyze the body burden of environmental pollutants and to estimate their transfer from mother to fetus.

  20. Measurement of partial pressures in extremely high vacuum region using a modified residual gas analyzer

    NASA Astrophysics Data System (ADS)

    Watanabe, Shu; Oyama, Hitoshi; Kato, Shigeki; Aono, Masakazu

    1999-03-01

    The measurement of partial pressures using a residual gas analyzer (RGA) in an extremely high vacuum (XHV) region has several problems, including the influence of electron stimulated desorption ions and the outgassing rate from the ion source of the RGA. In order to measure partial pressures in the XHV, a commercial RGA was modified as follows: an electrostatic analyzer was used to only measure gas phase ions; a low work function material, thoria, was used as a filament of the ion source to lower temperature of the filament and Cu wires connected the filament and releasing the heat around the ion source to atmosphere. After these modifications, the RGA could measure only gas phase ions and, at the same time the outgassing rate from the RGA was reduced. Partial pressures and total pressure in the XHV could be measured by the RGA.

  1. 40 CFR 1065.550 - Gas analyzer range validation and drift validation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Cycles § 1065.550 Gas analyzer range validation and drift validation. (a) Range validation. If an... a dry sample measured with a CLD and the removed water is corrected based on measured CO2, CO, THC... interval results or composite brake-specific emissions over the entire duty cycle for drift. For...

  2. 40 CFR 1065.550 - Gas analyzer range verification and drift verification.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Cycles § 1065.550 Gas analyzer range verification and drift verification. (a) Range verification. If an... with a CLD and the removed water is corrected based on measured CO2, CO, THC, and NOX concentrations...-specific emissions over the entire duty cycle for drift. For each constituent to be verified, both sets...

  3. Integrated gas analyzer for complete monitoring of turbine engine test cells.

    PubMed

    Markham, James R; Bush, Patrick M; Bonzani, Peter J; Scire, James J; Zaccardi, Vincent A; Jalbert, Paul A; Bryant, M Denise; Gardner, Donald G

    2004-01-01

    Fourier transform infrared (FT-IR) spectroscopy is proving to be reliable and economical for the quantification of many gas-phase species during testing and development of gas turbine engines in ground-based facilities such as sea-level test cells and altitude test cells. FT-IR measurement applications include engine-generated exhaust gases, facility air provided as input to engines, and ambient air in and around test cells. Potentially, the traditionally used assembly of many gas-specific single gas analyzers will be eliminated. However, the quest for a single instrument capable of complete gas-phase monitoring at turbine engine test cells has previously suffered since the FT-IR method cannot measure infrared-inactive oxygen molecules, a key operational gas to both air-breathing propulsion systems and test cell personnel. To further the quest, the FT-IR sensor used for the measurements presented in this article was modified by integration of a miniature, solid-state electrochemical oxygen sensor. Embedded in the FT-IR unit at a location near the long-effective-optical-path-length gas sampling cell, the amperometric oxygen sensor provides simultaneous, complementary information to the wealth of spectroscopic data provided by the FT-IR method.

  4. Method and apparatus for automated processing and aliquoting of whole blood samples for analysis in a centrifugal fast analyzer

    DOEpatents

    Burtis, C.A.; Johnson, W.F.; Walker, W.A.

    1985-08-05

    A rotor and disc assembly for use in a centrifugal fast analyzer. The assembly is designed to process multiple samples of whole blood followed by aliquoting of the resultant serum into precisely measured samples for subsequent chemical analysis. The assembly requires minimal operator involvement with no mechanical pipetting. The system comprises: (1) a whole blood sample disc; (2) a serum sample disc; (3) a sample preparation rotor; and (4) an analytical rotor. The blood sample disc and serum sample disc are designed with a plurality of precision bore capillary tubes arranged in a spoked array. Samples of blood are loaded into the blood sample disc by capillary action and centrifugally discharged into cavities of the sample preparation rotor where separation of serum and solids is accomplished. The serum is loaded into the capillaries of the serum sample disc by capillary action and subsequently centrifugally expelled into cuvettes of the analyticaly rotor for conventional methods. 5 figs.

  5. Method and apparatus for automated processing and aliquoting of whole blood samples for analysis in a centrifugal fast analyzer

    DOEpatents

    Burtis, Carl A.; Johnson, Wayne F.; Walker, William A.

    1988-01-01

    A rotor and disc assembly for use in a centrifugal fast analyzer. The assembly is designed to process multiple samples of whole blood followed by aliquoting of the resultant serum into precisely measured samples for subsequent chemical analysis. The assembly requires minimal operator involvement with no mechanical pipetting. The system comprises (1) a whole blood sample disc, (2) a serum sample disc, (3) a sample preparation rotor, and (4) an analytical rotor. The blood sample disc and serum sample disc are designed with a plurality of precision bore capillary tubes arranged in a spoked array. Samples of blood are loaded into the blood sample disc in capillary tubes filled by capillary action and centrifugally discharged into cavities of the sample preparation rotor where separation of serum and solids is accomplished. The serum is loaded into the capillaries of the serum sample disc by capillary action and subsequently centrifugally expelled into cuvettes of the analytical rotor for analysis by conventional methods.

  6. Comparative usefulness of inflammatory markers to indicate bacterial infection-analyzed according to blood culture results and related clinical factors.

    PubMed

    Nishikawa, Hirokazu; Shirano, Michinori; Kasamatsu, Yu; Morimura, Ayumi; Iida, Ko; Kishi, Tomomi; Goto, Tetsushi; Okamoto, Saki; Ehara, Eiji

    2016-01-01

    To assess relationships of inflammatory markers and 2 related clinical factors with blood culture results, we retrospectively investigated inpatients' blood culture and blood chemistry findings that were recorded from January to December 2014 using electronic medical records and analyzed the data of 852 subjects (426 culture-positive and 426 culture-negative). Results suggested that the risk of positive blood culture statistically increased as inflammatory marker levels and the number of related factors increased. Concerning the effectiveness of inflammatory markers, when the outcome definition was also changed for C-reactive protein (CRP), the odds ratio had a similar value, whereas when the outcome definition of blood culture positivity was used for procalcitonin (PCT), the greatest effectiveness of that was detected. Therefore, the current results suggest that PCT is more useful than CRP as an auxiliary indication of bacterial infection.

  7. Development and Remodeling of the Vertebrate Blood-Gas Barrier

    PubMed Central

    Makanya, Andrew; Anagnostopoulou, Aikaterini; Djonov, Valentin

    2013-01-01

    During vertebrate development, the lung inaugurates as an endodermal bud from the primitive foregut. Dichotomous subdivision of the bud results in arborizing airways that form the prospective gas exchanging chambers, where a thin blood-gas barrier (BGB) is established. In the mammalian lung, this proceeds through conversion of type II cells to type I cells, thinning, and elongation of the cells as well as extrusion of the lamellar bodies. Subsequent diminution of interstitial tissue and apposition of capillaries to the alveolar epithelium establish a thin BGB. In the noncompliant avian lung, attenuation proceeds through cell-cutting processes that result in remarkable thinning of the epithelial layer. A host of morphoregulatory molecules, including transcription factors such as Nkx2.1, GATA, HNF-3, and WNT5a; signaling molecules including FGF, BMP-4, Shh, and TFG-β and extracellular proteins and their receptors have been implicated. During normal physiological function, the BGB may be remodeled in response to alterations in transmural pressures in both blood capillaries and airspaces. Such changes are mitigated through rapid expression of the relevant genes for extracellular matrix proteins and growth factors. While an appreciable amount of information regarding molecular control has been documented in the mammalian lung, very little is available on the avian lung. PMID:23484070

  8. Application to cows and horses of Spotchem, a dry-chemistry blood analyzer for use in veterinary clinics.

    PubMed

    Hoshi, F; Satho, M; Koyama, S; Nakadaka, K; Chiba, M; Ikeda, N; Hakamada, R; Higuchi, S; Kawamura, S

    1994-02-01

    The usefulness of a dry-chemistry blood analyzer, Spotchem SP-4410 (SP-4410) in a veterinary clinic for analysis of bovine and equine blood chemistry was studied. We quantitated total protein (TP), albumin (Alb), total bilirubin (T-Bil), blood urea nitrogen (BUN), total cholesterol (T-Cho), glucose (Glu), calcium (Ca), aspartate aminotransferase (AST), gamma-glutamyltransferase (GGT), creatinine phosphokinase (CPK), and alkaline phosphatase (ALP) in bovine sera. Each sample was assayed with both the SP-4410 and an automated blood analyzer which served as a wet-chemistry reference system, and the data were analyzed with regression analysis. The correlation coefficient for AST was 0.997 being the highest for all the parameters, and all the correlation coefficients were 0.93 or higher. The coefficients of variation were lower than 5.0 except in the case of bovine T-Bil where it was 5,756. The ranges of normal reference values measured by SP-4410 were the same as those reported by other investigators in most cases, but those for GGT and CPK were slightly higher. The strongest interference was observed with hemoglobin. It seems that dry-chemical-analysis of blood serum using the SP-4410 is useful for analysis of bovine and equine blood. PMID:8085395

  9. 21 CFR 870.4330 - Cardiopulmonary bypass on-line blood gas monitor.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cardiopulmonary bypass on-line blood gas monitor. 870.4330 Section 870.4330 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Cardiopulmonary bypass on-line blood gas monitor. (a) Identification. A cardiopulmonary bypass on-line blood...

  10. Low outgassing residual gas analyzer with a beryllium--copper-alloy-flanged ion source

    SciTech Connect

    Watanabe, F.; Kasai, A.

    1995-03-01

    By using a newly developed beryllium--copper (BeCu)-alloy ConFlat flange to house the hot-cathode ion source, a remarkable decrease in the outgassing from a quadrupole residual gas analyzer (RGA) has been achieved. The reduction in outgassing between the new BeCu-flanged RGA and an ordinary stainless-steel RGA of otherwise similar design was a factor of 60 or more in the 10{sup {minus}9} Pa total pressure range. From these results, the possibility of high accuracy residual gas analysis below 10{sup {minus}9} Pa is introduced. {copyright} {ital 1995} {ital American} {ital Vacuum} {ital Society}

  11. Low outgassing residual gas analyzer with a beryllium-copper-alloy-flanged ion source

    NASA Astrophysics Data System (ADS)

    Watanabe, Fumio; Kasai, Akinari

    1995-03-01

    By using a newly developed beryllium-copper (BeCu)-alloy ConFlat flange to house the hot-cathode ion source, a remarkable decrease in the outgassing from a quadrupole residual gas analyzer (RGA) has been achieved. The reduction in outgassing between the new BeCu-flanged RGA and an ordinary stainless-steel RGA of otherwise similar design was a factor of 60 or more in the 10(exp -9) Pa total pressure range. From these results, the possibility of high accuracy residual gas analysis below 10(exp -9) Pa is introduced.

  12. 20 CFR Appendix C to Part 718 - Blood-Gas Tables

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 4 2013-04-01 2013-04-01 false Blood-Gas Tables C Appendix C to Part 718... DUE TO PNEUMOCONIOSIS Pt. 718, App. C Appendix C to Part 718—Blood-Gas Tables The following tables set... gas exchange values for any particular individual. Tests shall not be performed during or soon...

  13. 20 CFR Appendix C to Part 718 - Blood-Gas Tables

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false Blood-Gas Tables C Appendix C to Part 718... DUE TO PNEUMOCONIOSIS Pt. 718, App. C Appendix C to Part 718—Blood-Gas Tables The following tables set... gas exchange values for any particular individual. Tests shall not be performed during or soon...

  14. An experimental setup with ultrasonic gas analyzers and real time analysis of the composition of a binary gas mixture

    NASA Astrophysics Data System (ADS)

    Vacek, V.; Vítek, M.; Doubek, M.

    2013-04-01

    This paper describes an automated measuring apparatus with an ultrasonic gas analyzer and realtime analysis of the composition of the gas. The apparatus is designed for preparing binary gas mixtures and making measurements in a wide range of pressures (from 0.8 bara to 15 bara) and temperatures (between -15°C and 80°C). The apparatus was developed to determine the thermophysical properties of fluorocarbon mixtures for potential use in the cooling circuits of several Large Hadron Collider projects at CERN. The design of its control system took into account the safety and reliability o the gas analyzer, and the need to limit the presence of laboratory personnel. The control system was implemented in PVSS-II, the Supervisory, Control and Data Acquisition standard chosen for LHC and its experiments at CERN. The second part of the paper describes the implementation and verification of the algorithm for continuous real-time determination of the composition of the refrigerant mixture. The algorithm is based on minimizing the quadratic norm fromthe measured data and from the pre-generated look-up tables acquired from the NIST REFPROP software package.

  15. Blood lead levels of wild Steller's eiders (Polysticta stelleri) and black scoters (Melanitta nigra) in Alaska using a portable blood lead analyzer

    USGS Publications Warehouse

    Brown, C.S.; Luebbert, J.; Mulcahy, D.; Schamber, J.; Rosenberg, D.H.

    2006-01-01

    Sea duck populations are declining in Alaska. The reasons for the decline are not known; environmental lead exposure is one suspected cause. Thirty wild Steller's eider ducks (Polysticta stelleri) and 40 wild black scoter ducks (Melanitta nigra) were tested for blood lead levels using a portable blood lead analyzer (LeadCare; ESA, Inc., Chelmsford, Massachusetts 01824, USA). Sixty-seven and one-tenth percent of the sea ducks had undetectable blood lead levels, 30.0% had values indicating normal or background lead exposure, and 2.9% had values indicating lead exposure. None of the birds had values indicating lead toxicity, and no birds demonstrated clinical signs of toxicity. Birds in areas with higher human population density had higher blood lead levels than those in less densely populated areas. This is the first time a portable blood lead analyzer has been utilized with sea ducks in a field setting. Because it provides immediate results, it is valuable as a screening tool for investigators carrying out surgical procedures on birds in the field as well as establishing baseline blood lead data on sea ducks. Lead exposure does occur in wild sea ducks, and the study indicates that additional research is needed in order to determine the role environmental lead plays in declining sea duck populations. Copyright 2006 by American Association of Zoo Veterinarians.

  16. Measurement of CO2 Dissolved in Aqueous Solutions Using a Modified Infrared Gas Analyzer System 1

    PubMed Central

    Schumacher, Thomas E.; Smucker, Alvin J. M.

    1983-01-01

    Total dissolved inorganic carbon (ΣCO2) and aqueous carbon dioxide (H2CO3*) in nutrient solutions may be measured by the injection of small gas or liquid samples (1 microliter to 8 milliliters) into a gas stripping column connected in-line with an infrared gas analyzer. The measurement of ΣCO2 in solution requires sample acidification, while H2CO3* and gaseous CO2 are measured without the addition of lactic acid. The standard curve for ΣCO2 was linear up to 300 nanomoles CO2. Maximum sensitivity was approximately 300 picomoles. Measurements of H2CO3* were independent of pH. Consequently, ΣCO2 and H2CO3* could be used to calculate the pH, HCO3−, and CO32− values of nutrient solutions. Injection and complete analyses required from 0.8 to 2 minutes. PMID:16662962

  17. [Bronchodilator aerosol propellant interferes with an photoacoustic spectrophotometer respiratory gas analyzer].

    PubMed

    Makino, A; Morimoto, Y; Matsumoto, S; Oka, H; Shimizu, K; Miyauchi, Y

    1998-05-01

    A patient with bronchial asthma was scheduled for an operation under nitrous oxide-isoflurane anesthesia. We monitored isoflurane concentrations continuously using an anesthetic gas analyzer (BK 1304). Upon puffing procaterol hydrochloride aerosol for 4 times, the analyzer showed a rapid increase in end-tidal isoflurane concentration. The BK 1304 uses infrared photoacoustic spectrophotometry and it is susceptible to interferences caused by Freon propellants in bronchodilator aerosols. We should take care in monitoring inhalational anesthetics when using aerosols containing Freon propellants. PMID:9621676

  18. [Effect of heparin on acid-base and blood gas parameters].

    PubMed

    Pöge, A W

    1981-09-15

    The influence of blood-heparin-mixing proportion on the acid-base- and blood-gas parameters was measured by means of the blood-gas- automation ABL 1 with the help of 15 test persons. More than 0.15 ml heparin per ml blood, i.e. more than 750 I.U. heparin per ml blood falsify the measuring data and may lead to wrong diagnostic and therapeutic measures. In clinical practice for one 2-ml-blood test only the dead space of the plastic of various producers are characterized by acid-base- and gas values considerable differing from each other. However, they do not influence the blood parameters. By heparin-Weddel (Wales), heparin-Spofa (CSSR), heparin-Richer (Hungary) and heparin-Polfa (Poland) the same acid-base- and blood gas values will be obtained.

  19. Application of the can technique and radon gas analyzer for radon exhalation measurements.

    PubMed

    Fazal-ur-Rehman; Al-Jarallah, M I; Musazay, M S; Abu-Jarad, F

    2003-01-01

    A passive "can technique" and an active radon gas analyzer with an emanation container were applied for radon exhalation rate measurements from different construction materials, viz. five marble seven ceramic and 100 granite tiles used in Saudi Arabia. The marble and ceramic tiles did not show detectable radon exhalation using the active radon gas analyzer system. However the granite tiles showed relatively high radon exhalations, indicating a relatively high uranium content. A comparison of the radon exhalation rates measured by the two techniques showed a linear correlation coefficient of 0.57. The radon exhalation rates from the granites varied from 0.02 to 6.58 Bqm(-2)h(-1) with an average of 1.35+/-1.40 Bqm(-2)h(-1). The geometric mean and the geometric standard deviation of the frequency distribution were found to be 0.80 and 3.1, respectively. The track density found on the nuclear track detectors in the can technique exposed to the granites, having high exhalation rates, varied linearly with exposure time with a linear correlation coefficient of 0.99. This experimental finding agrees with the theoretical prediction. The can technique showed sensitivity to low radon exhalation rates from ceramic, marble and some granite over a period of 2 months, which were not detectable by the active radon gas analyzer system. The reproducibility of data with both measuring techniques was found to be within a 7% deviation.

  20. Sensor-based analyzer for continuous emission monitoring in gas pipeline applications

    SciTech Connect

    Schubert, P.F.; Sheridan, D.R.; Cooper, M.D.; Banchieri, A.J.

    1998-04-01

    Continuous emissions monitoring of gas turbine engines in pipeline service have typically been monitored using either laboratory derived instruments (CEMS), or predicted using data from low cost sensors on the engines and algorithms generated by mapping engine performance (PEMS). A new cost-effective system developed under a program sponsored by the Gas Research Institute (Chicago) combines the advantages of both systems to monitor engine emissions in gas transmission service. This hybrid system is a sensor-based analyzer that uses a sensor array, including a newly developed NO{sub x} sensor, to directly monitor NO{sub x}, CO, and O{sub 2} emissions at the stack. The gases are measured hot and wet. The new systems were installed and tested on a gas-fired Rolls Royce Spey turbine engine and on Ingersoll-Rand KVG-410 and Cooper GMVH-10 reciprocating engines in gas transmission service. These systems passed the Relative Accuracy Test (Part B) required under US EPA regulations (40 CFR 60).

  1. Design, fabrication, assembly and delivery of a laboratory prototype of a residual gas analyzer

    NASA Technical Reports Server (NTRS)

    Kreisman, W. S.; Torney, F. L.; Roehrig, J. R.

    1972-01-01

    The design, development, and testing of a wide mass range residual gas analyzer which will be one component of an integrated real time contamination monitor system are described. The instrument has been developed and tested to the laboratory prototype phase, demonstrating the performance that can be expected from a flight instrument of similar design. The instrument's analyzer is of the quadrupole type and a cold cathode ion source is employed as the ionizer. The associated electronics supply all necessary operating and mass sweep voltages for the ionizer, analyzer and electron multiplier ion detector. The instrument features a very fast linear electrometer with automatic range changing. The full mass range of 2 to 300 amu is automatically and repetitively scanned every sixty seconds and suitable telemetry outputs are provided for intensity and mass identification as well as a digital identification of the electrometer range.

  2. Blood cholesterol screening in several environments using a portable, dry-chemistry analyzer and fingerstick blood samples. Lipid Research Clinics Cholesterol Screening Study Group.

    PubMed

    Bradford, R H; Bachorik, P S; Roberts, K; Williams, O D; Gotto, A M

    1990-01-01

    A multicenter study of blood cholesterol screening was performed in several typical environments, such as community sites (shopping malls and a supermarket), health care sites, work sites, a blood bank and a school. Cholesterol was measured with a portable, dry-chemistry analyzer using capillary blood obtained by fingerstick. Data are reported from a total of 13,824 participants, spanning the entire age spectrum. Overall, 25% of screened subjects had blood cholesterol levels above the age-specific cutpoints used in the current study. Although in the aggregate this screening experience very closely approximates the expected level of referrals, the proportion of referred screened subjects differed significantly among the 5 types of screening environments and by gender. Follow-up telephone interviews indicated that 53% of referrals had initiated a physician contact. More than 75% of those who had seen a physician reported that the diagnosis of hypercholesterolemia had been confirmed, and almost 72% had been prescribed a diet. A large proportion of referred screened subjects reported having modified their diet, particularly when recommended to do so by a physician. This study has yielded encouraging evidence that physicians gave referred screened subjects appropriate initial advice for managing hypercholesterolemia. The new technology for blood cholesterol measurement evaluated in the current study has proven to be a feasible and reliable means for measuring blood cholesterol in typical screening settings.

  3. [Condition setting for the measurement of blood coagulation factor XIII activity using a fully automated blood coagulation analyzer, COAGTRON-350].

    PubMed

    Kanno, Nobuko; Kaneko, Makoto; Tanabe, Kumiko; Jyona, Masahiro; Yokota, Hiromitsu; Yatomi, Yutaka

    2012-12-01

    The automated laboratory analyzer COAGTRON-350 (Trinity Biotech) is used for routine and specific coagulation testing for the detection of fibrin formation utilizing either mechanical principles (ball method) or photo-optical principles, chromogenic kinetic enzyme analysis, and immune-turbidimetric detection systems in one benchtop unit. In this study, we demonstrated and established a parameter for the measurement of factor XIII (FXIII) activity using Berichrom FXIII reagent and the COAGTRON-350 analyzer. The usual protocol used for this reagent, based on the handling method, was slightly modified for this device. The analysis showed that fundamental study for the measurement of FXIII activity under our condition setting was favorable in terms of reproducibility, linearity, and correlation with another assays. Since FXIII is the key enzyme that plays important roles in hemostasis by stabilizing fibrin formation, the measurement of FXIII is essential for the diagnosis of bleeding disorders. Therefore, FXIII activity assessment as well as a routine coagulation testing can be conducted simultaneously with one instrument, which is useful in coagulopathy assessment.

  4. Differential Scanning Calorimetry and Evolved Gas Analysis at Mars Ambient Conditions Using the Thermal Evolved Gas Analyzer (TEGA)

    NASA Technical Reports Server (NTRS)

    Musselwhite, D. S.; Boynton, W. V.; Ming, Douglas W.; Quadlander, G.; Kerry, K. E.; Bode, R. C.; Bailey, S. H.; Ward, M. G.; Pathare, A. V.; Lorenz, R. D.

    2000-01-01

    Differential Scanning Calorimetry (DSC) combined with evolved gas analysis (EGA) is a well developed technique for the analysis of a wide variety of sample types with broad application in material and soil sciences. However, the use of the technique for samples under conditions of pressure and temperature as found on other planets is one of current C development and cutting edge research. The Thermal Evolved Gas Analyzer (MGA), which was designed, built and tested at the University of Arizona's Lunar and Planetary Lab (LPL), utilizes DSC/EGA. TEGA, which was sent to Mars on the ill-fated Mars Polar Lander, was to be the first application of DSC/EGA on the surface of Mars as well as the first direct measurement of the volatile-bearing mineralogy in martian soil.

  5. LOW COST METHODOLOGIES TO ANALYZE AND CORRECT ABNORMAL PRODUCTION DECLINE IN STRIPPER GAS WELLS

    SciTech Connect

    Jerry James; Gene Huck; Tim Knobloch

    2001-12-01

    A study group of 376 Clinton Sand wells in Ohio provided data to determine the historic frequency of the problem of abnormal production declines in stripper gas wells and the causes of the abnormal production decline. Analysis of the historic frequency of the problem indicates over 70% of the wells experienced abnormal production decline. The most frequently occurring causes of abnormal production declines were determined to be fluid accumulation (46%), gas gathering restrictions (24%), and mechanical failures (23%). Data collection forms and decision trees were developed to cost-effectively diagnose the abnormal production declines and suggest corrective action. The decision trees and data collection sheets were incorporated into a procedure guide to provide stripper gas well operators with a methodology to analyze and correct abnormal production declines. The systematic methodologies and techniques developed should increase the efficiency of problem well assessment and implementation of solutions for stripper gas wells. This final technical progress report provides a summary of the deliverables completed to date, including the results of the remediations, the procedure guide, and the technology transfer. Due to the successful results of the study to date and the efficiency of the methodology development, two additional wells were selected for remediation and included into the study. Furthermore, the remediation results of wells that were a part of the study group of wells are also described.

  6. LOW COST METHODOLOGIES TO ANALYZE AND CORRECT ABNORMAL PRODUCTION DECLINE IN STRIPPER GAS WELLS

    SciTech Connect

    Jerry James; Gene Huck; Tim Knobloch

    2001-10-01

    A study group of 376 Clinton Sand wells in Ohio provided data to determine the historic frequency of the problem of abnormal production declines in stripper gas wells and the causes of the abnormal production decline. Analysis of the historic frequency of the problem indicates over 70% of the wells experienced abnormal production decline. The most frequently occurring causes of abnormal production declines were determined to be fluid accumulation (46%), gas gathering restrictions (24%), and mechanical failures (23%). Data collection forms and decision trees were developed to cost-effectively diagnose the abnormal production declines and suggest corrective action. The decision trees and data collection sheets were incorporated into a procedure guide to provide stripper gas well operators with a methodology to analyze and correct abnormal production declines. The systematic methodologies and techniques developed should increase the efficiency of problem well assessment and implementation of solutions for stripper gas wells. This eight quarterly technical progress report provides a summary of the deliverables completed to date, including the results of the remediations, the procedure guide, and the technology transfer. Due to the successful results of the study to date and the efficiency of the methodology development, two to three additional wells will be selected for remediation for inclusion into the study. The results of the additional remediations will be included in the final report.

  7. Evaluation of Portable Multi-Gas Analyzers for use by Safety Personnel

    NASA Technical Reports Server (NTRS)

    Lueck, D. E.; Meneghelli, B. J.; Bardel, D. N.

    1998-01-01

    During confined space entry operations as well as Shuttle-safing operations, United Space Alliance (USA)/National Aeronautics and Space Administration (NASA) safety personnel use a variety of portable instrumentation to monitor for hazardous levels of compounds such as nitrogen dioxide (N%), monomethylhydrazine (NMM), FREON 21, ammonia (NH3), oxygen (O2), and combustibles (as hydrogen (H2)). Except for O2 and H2, each compound is monitored using a single analyzer. In many cases these analyzers are 5 to 10 years old and require frequent maintenance. In addition, they are cumbersome to carry and tend to make the job of personnel monitoring physically taxing. As part of an effort to upgrade the sensor technology background information was requested from a total of 27 manufacturers of portable multi-gas instruments. A set of criteria was established to determine which vendors would be selected for laboratory evaluation. These criteria were based on requests made by USA/NASA Safety personnel in order to meet requirements within their respective areas for confined-space and Shuttle-safing operations. Each of the 27 manufacturers of multi-gas analyzers was sent a copy of the criteria and asked to fill in the appropriate information pertaining to their instrumentation. Based on the results of the sensor criteria worksheets, a total of 9 vendors out of 27 surveyed manufacturers were chosen for evaluation. Each vendor included in the final evaluation process was requested to configure each of two analyzers with NO2, NH3, O2, and combustible sensors. A set of lab tests was designed in order to determine which of the multi-gas instruments under evaluation was best suited for use in both shuttle and confined space operations. These tests included linearity/repeatability, zero/span drift response/recovery, humidity, interference, and maintenance. At the conclusion of lab testing three vendors were selected for additional field testing. Based on the results of both the lab and

  8. Evaluation of low cost residual gas analyzers for ultrahigh vacuum applications

    SciTech Connect

    M. Rao; D. Dong

    1996-10-01

    In recent years several low cost computer controlled residual gas analyzers (RGAs) have been introduced into the market place. It would be very useful to know the performance characteristics of these RGAs in order to make an informed selection for UHV applications. The UHV applications include extreme sensitivity helium leak detection and monitoring of the residual gas spectra in UHV systems. In this article, the sensitivity and linearity data for nitrogen, hydrogen, and helium are presented in the pressure range 10{sup {minus}8}---10{sup {minus}1} Pa. Further, the relationships between focus voltage and ion currents, relative sensitivity, and fragmentation factor are also included. A direct comparison method is used in obtaining this data. Spinning rotor and extractor gauges are the transfer standard gauges used in Jefferson Lab's vacuum calibration facility, with which all the reported measurements here were carried out.

  9. Crowdsourcing Malaria Parasite Quantification: An Online Game for Analyzing Images of Infected Thick Blood Smears

    PubMed Central

    Arranz, Asier; Frean, John

    2012-01-01

    Background There are 600,000 new malaria cases daily worldwide. The gold standard for estimating the parasite burden and the corresponding severity of the disease consists in manually counting the number of parasites in blood smears through a microscope, a process that can take more than 20 minutes of an expert microscopist’s time. Objective This research tests the feasibility of a crowdsourced approach to malaria image analysis. In particular, we investigated whether anonymous volunteers with no prior experience would be able to count malaria parasites in digitized images of thick blood smears by playing a Web-based game. Methods The experimental system consisted of a Web-based game where online volunteers were tasked with detecting parasites in digitized blood sample images coupled with a decision algorithm that combined the analyses from several players to produce an improved collective detection outcome. Data were collected through the MalariaSpot website. Random images of thick blood films containing Plasmodium falciparum at medium to low parasitemias, acquired by conventional optical microscopy, were presented to players. In the game, players had to find and tag as many parasites as possible in 1 minute. In the event that players found all the parasites present in the image, they were presented with a new image. In order to combine the choices of different players into a single crowd decision, we implemented an image processing pipeline and a quorum algorithm that judged a parasite tagged when a group of players agreed on its position. Results Over 1 month, anonymous players from 95 countries played more than 12,000 games and generated a database of more than 270,000 clicks on the test images. Results revealed that combining 22 games from nonexpert players achieved a parasite counting accuracy higher than 99%. This performance could be obtained also by combining 13 games from players trained for 1 minute. Exhaustive computations measured the parasite

  10. Enabling Continuous, Field-Based Isotope and Greenhouse Gas Measurements with WS-CRDS-based Analyzers

    NASA Astrophysics Data System (ADS)

    Rella, C.; van Pelt, A.

    2009-04-01

    When new instrumentation becomes widely available, it has the power to fundamentally change how measurements are made. In particular, technology developments that enable measurements to be done more simply, at lower cost, by a greater number of scientists, moving information-rich, laboratory-quality measurements from the lab out into the field -- these are the innovations that can aid in moving the science forward. Here we describe how the application of a novel cavity-enhanced spectroscopic technique called wavelength scanned cavity ring down spectroscopy (WS-CRDS) has been pivotal in developing gas an isotope analyzers capable of being deployed in the field, unattended, for long periods of time. This particular implementation of the traditional cavity ring down technique employs several additional key aspects of control and design to achieve highly sensitive, highly stable measurements. WS-CRDS owes its high sensitivity to an extremely long optical interaction pathlengh, as well as to its complete immunity to laser noise since the laser is actually off during the measurement. To stabilize the spectroscopic line itself, the temperature and pressure of the gas are tightly controlled. The analyzer's optical cavity, gas handling system and analog electronics are themselves also tightly temperature controlled. The heart of the WS-CRDS technique is, however, the wavelength monitor which further ensures the stability of the measurement by continuously measuring and tightly controlling the laser wavelength. A key design aspect of the WS-CRDS analyzer is its three-mirror, traveling-wave cavity which allows optical backreflections to be avoided and further adds to the inherent stability of the optical train. The analyzer owes its ease of use to the design requirement that it be field-deployable, in locations without personnel, with the ability to restart itself and automatically resume collecting data even after a power failure. Beyond the design aspects of the analyzer

  11. LOW COST METHODOLOGIES TO ANALYZE AND CORRECT ABNORMAL PRODUCTION DECLINE IN STRIPPER GAS WELLS

    SciTech Connect

    Jerry James; Gene Huck; Tim Knobloch

    2001-07-01

    The goal of this research program is to develop and deliver a procedure guide of low cost methodologies to analyze and correct problems with stripper wells experiencing abnormal production declines. A study group of wells will provide data to determine the historic frequency of the problem of abnormal production declines in stripper gas wells and the historic frequency of the causes of the production problems. Once the most frequently occurring causes of the production problems are determined, data collection forms and decision trees will be designed to cost-effectively diagnose these problems and suggest corrective action. Finally, economic techniques to solve the most frequently occurring problems will be researched and implemented. These systematic methodologies and techniques will increase the efficiency of problem assessment and implementation of solutions for stripper gas wells. This seventh quarterly technical progress report further describes the data reduction and methodology to develop diagnostic tools to evaluate the cause of declines in problem wells, specifically addressing the methodology to analyze the group of wells where recent problems have occurred utilizing the data gathering forms. This report also describes the methodology to select the two wells with the greatest potential for increase and also having the most frequently occurring problem. Finally, this report describes the preliminary results of the remediation applied to the two wells selected. Two wells selected and analyzed from a twenty-four well study group indicated that their current abnormal production decline was attributable to fluid build-up in the wellbore. Subsequent remediation work of putting both wells on pump to reduce fluid build-up in the well bore decreased the flowing bottom hole pressure and increased gas production dramatically.

  12. Rare cancer cell analyzer for whole blood applications: microcytometer cell counting and sorting subcircuits.

    PubMed

    Lancaster, C; Kokoris, M; Nabavi, M; Clemmens, J; Maloney, P; Capadanno, J; Gerdes, J; Battrell, C F

    2005-09-01

    We demonstrate sorting of rare cancer cells from blood using a thin ribbon monolayer of cells within a credit-card sized, microfluidic laboratory-on-a-card ("lab card") structure. This enables higher cell throughput per minute thereby speeding up cell interrogation. In this approach, multiple cells are viewed and sorted, not individually, but as a whole cell row or section of the ribbon at a time. Gated selection of only the cell rows containing a tagged rare cell provides enrichment of the rare cell relative to background blood cells. We also designed the cell injector for laminar flow antibody labeling within 20s. The approach combines rapid laminar flow cell labeling with monolayer cell sorting thereby enabling rare cell target detection at sensitivity levels 1000 to 10,000 times that of existing flow cytometers. Using this method, total cell labeling and data acquisition time on card may be reduced to a few minutes compared to 30-60 min for standard flow methods. PMID:16199174

  13. 40 CFR 1065.308 - Continuous gas analyzer system-response and updating-recording verification-for gas analyzers not...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calibrations and Verifications § 1065.308 Continuous... adjusted to account for the dilution from ambient air drawn into the probe. We recommend you use the final... gases diluted in air. You may use a multi-gas span gas, such as NO-CO-CO2-C3H8-CH4, to verify...

  14. Detection of room air contamination of angiographic CO2 with use of a gas analyzer.

    PubMed

    Culp, William C; Culp, William C

    2002-07-01

    The purpose of this study was to describe a practical method to detect room air contamination in CO2 used for angiography. Samples of CO2 with known room air contamination levels were used in a "bag system" of CO2 delivery and sampled by a gas analyzer commonly used in anesthesia. Nitrogen levels were reliably detected indicating contamination with as little as 2% air. Oxygen levels were reliably detected, indicating contamination with as little as 5% air. Measured CO2 values were unreliable with higher-than-true values at all levels except 100%. All clinically important amounts of N2 and O2 contamination were readily detected by this practical method.

  15. Final Scientific/Technical Report. A closed path methane and water vapor gas analyzer

    SciTech Connect

    Xu, Liukang; McDermitt, Dayle; Anderson, Tyler; Riensche, Brad; Komissarov, Anatoly; Howe, Julie

    2012-02-01

    Robust, economical, low-power and reliable closed-path methane (CH4), carbon dioxide (CO2), and water vapor (H2O) analyzers suitable for long-term measurements are not readily available commercially. Such analyzers are essential for quantifying the amount of CH4 and CO2 released from various ecosystems (wetlands, rice paddies, forests, etc.) and other surface contexts (e.g. landfills, animal husbandry lots, etc.), and for understanding the dynamics of the atmospheric CH4 and CO2 budget and their impact on climate change and global warming. The purpose of this project is to develop a closed-path methane, carbon dioxide gas and water vapor analyzer capable of long-term measurements in remote areas for global climate change and environmental research. The analyzer will be capable of being deployed over a wide range of ecosystems to understand methane and carbon dioxide exchange between the atmosphere and the surface. Measurements of methane and carbon dioxide exchange need to be made all year-round with limited maintenance requirements. During this Phase II effort, we successfully completed the design of the electronics, optical bench, trace gas detection method and mechanical infrastructure. We are using the technologies of two vertical cavity surface emitting lasers, a multiple-pass Herriott optical cell, wavelength modulation spectroscopy and direct absorption to measure methane, carbon dioxide, and water vapor. We also have designed the instrument application software, Field Programmable Gate Array (FPGA), along with partial completion of the embedded software. The optical bench has been tested in a lab setting with very good results. Major sources of optical noise have been identified and through design, the optical noise floor is approaching -60dB. Both laser modules can be temperature controlled to help maximize the stability of the analyzer. Additionally, a piezo electric transducer has been

  16. 20 CFR Appendix C to Part 718 - Blood-Gas Tables

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Blood-Gas Tables C Appendix C to Part 718 Employees' Benefits EMPLOYMENT STANDARDS ADMINISTRATION, DEPARTMENT OF LABOR FEDERAL COAL MINE HEALTH AND... PNEUMOCONIOSIS Pt. 718, App. C Appendix C to Part 718—Blood-Gas Tables The following tables set forth the...

  17. Effect of therapeutic doses of optical radiation on gas composition of venous blood

    NASA Astrophysics Data System (ADS)

    Zalesskaya, G. A.; Laskina, O. V.

    2013-05-01

    We have studied the effect of in vivo irradiation of blood by radiation at different wavelengths (254 nm, 632.8 nm, and 670 nm), which can be absorbed by blood, on the absorption spectra and gas composition of venous blood for individual patients. We have determined the differences in short-term and long-term changes in both spectral characteristics and the gas composition of blood induced by irradiation. During and immediately after irradiation, for all the patients we observed an increase in the partial pressure of oxygen and a decrease in the partial pressure of carbon dioxide in venous blood. After irradiation was completed, the changes in the partial pressures of blood gases were different for different patients: the gas pressures both increased and decreased, depending on the photo-induced changes in the level of hemoglobin oxygen saturation in venous blood.

  18. Fast Methane Measurements Using a Novel Laser-based Gas Analyzer

    NASA Astrophysics Data System (ADS)

    Baer, D.; Gupta, M.; Owano, T.; Provencal, R.; Ricci, K.; O'Keefe, A.

    2005-12-01

    Methane has increased significantly with human population levels. Pre-1750 ice core data indicates that pre-industrialization levels were ~700 ppbv, while current levels are ~1745 ppbv. In current budget estimates of atmospheric CH4, major contributors include both natural (wetlands) and anthropogenic sources (energy, landfills, ruminants, biomass burning, rice agriculture). The strengths of these sources vary spatially and temporally. Estimates of emissions from wetlands are also uncertain due to the extreme variability of these ecosystems. Because methane lifetime is relatively long (8.4 years), atmospheric variations in concentration are small and accuracy in measurement is important for understanding spatial and temporal variability. We report on the application and independent performance characterization of a novel gas analyzer based on cavity-enhanced laser absorption spectroscopy. The Analyzer was used for the measurements of methane in ambient air for eddy correlation flux measurements and for chamber flux measurements. The Analyzer provided continuous measurements at data rates up to 20 Hz and a replicate precision of better than 2 ppbv in a 1 second measurement time.

  19. A simple inexpensive gas phase chemiluminescence analyzer for measuring trace levels of arsenic in drinking water.

    PubMed

    Sengupta, Mrinal K; Hossain, Zafreen A; Ohira, Shin-Ichi; Dasgupta, Purnendu K

    2010-01-01

    An inexpensive sensitive gas-phase chemiluminescence (GPCL) based analyzer for arsenic is described; this device utilizes manual fluid dispensing operations to reduce size, weight and cost. The analyzer in its present form has a limit of detection (LOD, S/N = 3) of 1.0 microg/L total inorganic As (peak heightbased, 3 mL sample). The system was used to measure low level arsenic in tap water samples from Texas and New Mexico and compared with results obtained by inductively coupled plasma-mass spectrometry (ICP-MS) as well as those from an automated GPCL analyzer. Good correlations were observed. Higher levels of As (50-500 microg/L, As(III), As(V) and mixtures thereof) were spiked into local tap water; the recoveries ranged from 95 +/- 2% to 101 +/- 1%. A single instrument weighs less than 3 kg, consumes <25 W in power, can be incorporated in a briefcase and constructed for <$US $1000. It is easily usable in the field.

  20. bpshape wk4: a computer program that implements a physiological model for analyzing the shape of blood pressure waveforms

    NASA Technical Reports Server (NTRS)

    Ocasio, W. C.; Rigney, D. R.; Clark, K. P.; Mark, R. G.; Goldberger, A. L. (Principal Investigator)

    1993-01-01

    We describe the theory and computer implementation of a newly-derived mathematical model for analyzing the shape of blood pressure waveforms. Input to the program consists of an ECG signal, plus a single continuous channel of peripheral blood pressure, which is often obtained invasively from an indwelling catheter during intensive-care monitoring or non-invasively from a tonometer. Output from the program includes a set of parameter estimates, made for every heart beat. Parameters of the model can be interpreted in terms of the capacitance of large arteries, the capacitance of peripheral arteries, the inertance of blood flow, the peripheral resistance, and arterial pressure due to basal vascular tone. Aortic flow due to contraction of the left ventricle is represented by a forcing function in the form of a descending ramp, the area under which represents the stroke volume. Differential equations describing the model are solved by the method of Laplace transforms, permitting rapid parameter estimation by the Levenberg-Marquardt algorithm. Parameter estimates and their confidence intervals are given in six examples, which are chosen to represent a variety of pressure waveforms that are observed during intensive-care monitoring. The examples demonstrate that some of the parameters may fluctuate markedly from beat to beat. Our program will find application in projects that are intended to correlate the details of the blood pressure waveform with other physiological variables, pathological conditions, and the effects of interventions.

  1. Penile rehabilitation with a vacuum erectile device in an animal model is related to an antihypoxic mechanism: blood gas evidence.

    PubMed

    Lin, Hao-Cheng; Yang, Wen-Li; Zhang, Jun-Lan; Dai, Yu-Tian; Wang, Run

    2013-05-01

    Our previous study showed that vacuum erectile device (VED) therapy has improved erectile function in rats with bilateral cavernous nerve crush (BCNC) injuries. This study was designed to explore the mechanism of VED in penile rehabilitation by analyzing cavernous oxygen saturation (SO2) and to examine the effect of VED therapy on preventing penile shrinkage after BCNC. Thirty adult Sprague-Dawley rats were randomly assigned into three groups: group 1, sham surgery; group 2, BCNC; and group 3, BCNC+VED. Penile length and diameter were measured on a weekly basis. After 4 weeks of therapy, the penile blood was extracted by three methods for blood gas analysis (BGA): method 1, cavernous blood was aspirated at the flaccid state; method 2, cavernous blood was aspirated at the traction state; and method 3, cavernous blood was aspirated immediately after applying VED. SO2 values were tested by the blood gas analyzer. The results showed that VED therapy is effective in preventing penile shrinkage induced by BCNC (Penile shortening: BCNC group 1.9±1.1 mm; VED group 0.3±1.0 mm; P<0.01. Penile diameter reduction: BCNC group 0.28±0.14 mm; VED group 0.04±0.14 mm; P<0.01). The mean SO2±s.d. values were increased by VED application (88.25%±4.94%) compared to the flaccid (76.53%±4.16%) or traction groups (78.93%±2.56%) (P<0.05). The calculated blood constructs in the corpus cavernosum right after VED application were 62% arterial and 38% venous blood. These findings suggest that VED therapy can effectively preserve penile size in rats with BCNC injury. The beneficial effect of VED therapy is related to antihypoxia by increasing cavernous blood SO2. PMID:23564044

  2. Effects of age and blood pressure on the retinal arterial wall, analyzed using adaptive optics scanning laser ophthalmoscopy.

    PubMed

    Arichika, Shigeta; Uji, Akihito; Ooto, Sotaro; Muraoka, Yuki; Yoshimura, Nagahisa

    2015-07-20

    The wall-to-lumen ratio (WLR) of the vasculature is a promising early marker of retinal microvascular changes. Recently, adaptive optics scanning laser ophthalmoscopy (AOSLO) enabled direct and noninvasive visualization of the arterial wall. Using AOSLO, we analyzed the correlation between age and WLR in 51 normal subjects. In addition, correlations between blood pressure and WLR were analyzed in 73 subjects (51 normal subjects and 22 hypertensive patients). WLR showed a strong correlation with age (r = 0.68, P < 0.0001), while outer diameter and inner diameter did not show significant correlation with age in the normal group (r = 0.13, P = 0.36 and r = -0.12, P =  .41, respectively). In the normal and hypertensive groups, WLR showed a strong correlation with systolic and diastolic blood pressure (r = 0.60, P < 0.0001 and r = 0.65, P < 0.0001, respectively). In conclusion, AOSLO provided noninvasive and reproducible arterial measurements. WLR is an early marker of morphological changes in the retinal arteries due to age and blood pressure.

  3. 40 CFR 1065.308 - Continuous gas analyzer system-response and updating-recording verification-for gas analyzers not...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calibrations and Verifications § 1065.308 Continuous..., the gas concentrations must be adjusted to account for the dilution from ambient air drawn into the... recommended when blending span gases diluted in N2 with span gases diluted in air. You may use a...

  4. 40 CFR 1065.308 - Continuous gas analyzer system-response and updating-recording verification-for gas analyzers not...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calibrations and Verifications § 1065.308 Continuous..., the gas concentrations must be adjusted to account for the dilution from ambient air drawn into the... recommended when blending span gases diluted in N2 with span gases diluted in air. You may use a...

  5. 40 CFR 1065.308 - Continuous gas analyzer system-response and updating-recording verification-for gas analyzers not...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calibrations and Verifications § 1065.308 Continuous..., the gas concentrations must be adjusted to account for the dilution from ambient air drawn into the... recommended when blending span gases diluted in N2 with span gases diluted in air. You may use a...

  6. 40 CFR 1065.308 - Continuous gas analyzer system-response and updating-recording verification-for gas analyzers not...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calibrations and Verifications § 1065.308 Continuous..., the gas concentrations must be adjusted to account for the dilution from ambient air drawn into the... recommended when blending span gases diluted in N2 with span gases diluted in air. You may use a...

  7. The modification of residual gas analyzers to produce mass-selected ion beams

    SciTech Connect

    Gilbert, J.R.

    1990-01-01

    The authors have constructed an instrument designed to trap mass-selected ions at low temperatures within a solid inert gas matrix for spectroscopic analysis. The goal was to construct a flexible instrument that would permit the study of a wide variety of mass-selected positive ions, and which could also be used to investigate the role that counterions play in the effective trapping of ionic species in inert cryogenic hosts. The instrument was designed to utilize both laser-induced fluorescence (LIF) and Fourier transform infrared (FTIR) spectroscopies to identify and investigate the structure of the trapped species. The sources employed in this experiment must produce high current ion beams for extended periods to allow the accumulation of a significant number of absorbers in the optical beam for FTIR investigation. Residual gas analyzers (RGAs) were selected as the basis for the mass-selected ion sources for this instrument. This dissertation focuses on the modification of two RGAs to produce controlled beams of mass-selected positive and negative ions that can be directed onto a remote surface for matrix isolation experiments. The discussion includes descriptions of the modifications made to the RGA ion sources and to a commercially available chemical ionization source to produce ions by surface emission, chemical ionization, and negative surface ionization. The mass-selected beams produced by the RGA quadrupoles were focused and deflected using a series of electrostatic optics. The design of these elements was optimized using computer modeling and ion beam visualization techniques. The modifications have allowed these RGAs to produce mass-selected ion beams that have been effectively used in the isolation of mass-selected ions within solid inert gas matrices.

  8. Summary of Results from the Mars Phoenix Lander's Thermal Evolved Gas Analyzer

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Ming, D. W.; Boynton, W. V.; Niles, P. B.; Hoffman, J.; Lauer, H. V.; Golden, D. C.

    2009-01-01

    The Mars Phoenix Scout Mission with its diverse instrument suite successfully examined several soils on the Northern plains of Mars. The Thermal and Evolved Gas Analyzer (TEGA) was employed to detect evolved volatiles and organic and inorganic materials by coupling a differential scanning calorimeter (DSC) with a magnetic-sector mass spectrometer (MS) that can detect masses in the 2 to 140 dalton range [1]. Five Martian soils were individually heated to 1000 C in the DSC ovens where evolved gases from mineral decompostion products were examined with the MS. TEGA s DSC has the capability to detect endothermic and exothermic reactions during heating that are characteristic of minerals present in the Martian soil.

  9. Status of the design of the Diagnostic Residual Gas Analyzer System for ITER first plasma

    NASA Astrophysics Data System (ADS)

    Biewer, T. M.; Klepper, C. C.; Devan, B.; Graves, V.; Marcus, C.; Younkin, T.; Andrew, P.; Johnson, D. W.

    2013-10-01

    Among the ITER procurements awarded to the US ITER Domestic Agency, and subsequently to the ORNL Fusion & Materials for Nuclear Systems Division, is the design and fabrication of the Diagnostc Residual Gas Analyzer (DRGA) system. The DRGA system reached the Preliminary Design Review (PDR) in Spring 2013, and has transitioned into the Final Design phase. As a result of the PDR, and ITER systems design evolutions, several design changes have been incorporated into the DRGA system. The design effort has focused on the vacuum and mechanical interface of the DRGA gas sampling tube with the ITER vacuum vessel and cyrostat. Moreover, R&D tasks to demonstrate the 3-sensor instrumentation design (quadrupole mass spectrometer, ion-trap mass spectrometer, and optical Penning gauge) are maturing through the construction and testing of a DRGA prototype at ORNL. Results will be presented at this poster along with the DRGA design overview. This work was supported by the U.S. D.O.E. contract DE-AC05-00OR22725.

  10. LOW COST METHODOLOGIES TO ANALYZE AND CORRECT ABNORMAL PRODUCTION DECLINE IN STRIPPER GAS WELLS

    SciTech Connect

    Jerry James; Gene Huck; Tim Knobloch

    2001-01-01

    The goal of this research program is to develop and deliver a procedure guide of low cost methodologies to analyze and correct problems with stripper wells experiencing abnormal production declines. A study group of wells will provide data to determine the historic frequency of the problem of abnormal production declines in stripper gas wells and the historic frequency of the cases of the production problems. Once the most frequently occurring causes of the production problems are determined, data collection forms and decision trees will be designed to cost-effectively diagnose these problems and suggest corrective action. Finally, economic techniques to solve the most frequently occurring problems will be research and implemented. These systematic methodologies and techniques will increase the efficiency of problem assessment and implementation of solutions for stripper gas wells. This fifth quarterly technical report describes the data reduction and methodology to develop diagnostic tools to evaluate the cause of declines in problem wells, specifically addressing the development of data gathering forms for tubing plunger wells, casing plunger wells, pumping wells, and swab or flow wells. This report also describes the methodology to select a group of wells for field review utilizing data gathering forms developed during this quarter.

  11. LOW COST METHODOLOGIES TO ANALYZE AND CORRECT ABNORMAL PRODUCTION DECLINE IN STRIPPER GAS WELLS

    SciTech Connect

    Jerry James; Gene Huck; Tim Knobloch

    2001-04-01

    The goal of this research program is to develop and deliver a procedure guide of low cost methodologies to analyze and correct problems with stripper wells experiencing abnormal production declines. A study group of wells will provide data to determine the historic frequency of the problem of abnormal production declines in stripper gas wells and the historic frequency of the causes of the production problems. Once the most frequently occurring causes of the production problems are determined, data collection forms and decision trees will be designed to cost-effectively diagnose these problems and suggest corrective action. Finally, economic techniques to solve the most frequently occurring problems will be researched and implemented. These systematic methodologies and techniques will increase the efficiency of problem assessment and implementation of solutions for stripper gas wells. This sixth quarter technical progress report further describes the data reduction and methodology to develop diagnostic tools to evaluate the cause of declines in problem wells, specifically addressing the development of data gathering forms for tubing plunger wells, casing plunger wells, pumping wells, and swab or flow wells. This report also further describes the methodology to select a group of wells for field review utilizing data gathering forms further developed during this quarter.

  12. A volatile organic analyzer for Space Station: Description and evaluation of a gas chromatography/ ion mobility

    NASA Technical Reports Server (NTRS)

    Limero, Thomas F.; James, John T.

    1994-01-01

    A Volatile Organic Analyzer (VOA) is being developed as an essential component of the Space Station's Environmental Health System (EHS) air quality monitoring strategy to provide warning to the crew and ground personnel if volatile organic compounds exceed established exposure limits. The short duration of most Shuttle flights and the relative simplicity of the contaminant removal mechanism have lessened the concern about crew exposure to air contaminants on the Shuttle. However, the longer missions associated with the Space Station, the complex air revitalization system and the proposed number of experiments have led to a desire for real-time monitoring of the contaminants in the Space Station atmosphere. Achieving the performance requirements established for the VOA within the Space Station resource (e.g., power, weight) allocations led to a novel approach that joined a gas chromatograph (GC) to an ion mobility spectrometer (IMS). The authors of this paper will discuss the rational for selecting the GC/IMS technology as opposed to the more established gas chromatography/mass spectrometry (GC/MS) for the foundation of the VOA. The data presented from preliminary evaluations will demonstrate the versatile capability of the GC/IMS to analyze the major contaminants expected in the Space Station atmosphere. The favorable GC/IMS characteristics illustrated in this paper included excellent sensitivity, dual-mode operation for selective detection, and mobility drift times to distinguish co-eluting GC peaks. Preliminary studies have shown that the GC/IMS technology can meet surpass the performance requirements of the Space Station VOA.

  13. Analyzing the blood-brain barrier: the benefits of medical imaging in research and clinical practice.

    PubMed

    Chassidim, Yoash; Vazana, Udi; Prager, Ofer; Veksler, Ronel; Bar-Klein, Guy; Schoknecht, Karl; Fassler, Michael; Lublinsky, Svetlana; Shelef, Ilan

    2015-02-01

    A dysfunctional BBB is a common feature in a variety of brain disorders, a fact stressing the need for diagnostic tools designed to assess brain vessels' permeability in space and time. Biological research has benefited over the years various means to analyze BBB integrity. The use of biomarkers for improper BBB functionality is abundant. Systemic administration of BBB impermeable tracers can both visualize brain regions characterized by BBB impairment, as well as lead to its quantification. Additionally, locating molecular, physiological content in regions from which it is restricted under normal BBB functionality undoubtedly indicates brain pathology-related BBB disruption. However, in-depth research into the BBB's phenotype demands higher analytical complexity than functional vs. pathological BBB; criteria which biomarker based BBB permeability analyses do not meet. The involvement of accurate and engineering sciences in recent brain research, has led to improvements in the field, in the form of more accurate, sensitive imaging-based methods. Improvements in the spatiotemporal resolution of many imaging modalities and in image processing techniques, make up for the inadequacies of biomarker based analyses. In pre-clinical research, imaging approaches involving invasive procedures, enable microscopic evaluation of BBB integrity, and benefit high levels of sensitivity and accuracy. However, invasive techniques may alter normal physiological function, thus generating a modality-based impact on vessel's permeability, which needs to be corrected for. Non-invasive approaches do not affect proper functionality of the inspected system, but lack in spatiotemporal resolution. Nevertheless, the benefit of medical imaging, even in pre-clinical phases, outweighs its disadvantages. The innovations in pre-clinical imaging and the development of novel processing techniques, have led to their implementation in clinical use as well. Specialized analyses of vessels' permeability

  14. Assessment of a continuous blood gas monitoring system in animals during circulatory stress

    PubMed Central

    2011-01-01

    Background The study was aimed to determine the measurement accuracy of The CDI™ blood parameter monitoring system 500 (Terumo Cardiovascular Systems Corporation, Ann Arbor MI) in the real-time continuous measurement of arterial blood gases under different cardiocirculatory stress conditions Methods Inotropic stimulation (Dobutamine 2.5 and 5 μg/kg/min), vasoconstriction (Arginine-vasopressin 4, 8 and 16 IU/h), hemorrhage (-10%, -20%, -35%, and -50% of the theoretical volemia), and volume resuscitation were induced in ten swine (57.4 ± 10.7 Kg).Intermittent blood gas assessments were carried out using a routine gas analyzer at any experimental phase and compared with values obtained at the same time settings during continuous monitoring with CDI™ 500 system. The Bland-Altman analysis was employed. Results Bias and precision for pO2 were - 0.06 kPa and 0.22 kPa, respectively (r2 = 0.96); pCO2 - 0.02 kPa and 0.15 kPa, respectively; pH -0.001 and 0.01 units, respectively ( r2 = 0.96). The analysis showed very good agreement for SO2 (bias 0.04,precision 0.33, r2 = 0.95), Base excess (bias 0.04,precision 0.28, r2 = 0.98), HCO3 (bias 0.05,precision 0.62, r2 = 0.92),hemoglobin (bias 0.02,precision 0.23, r2 = 0.96) and K+ (bias 0.02, precision 0.27, r2 = 0.93). The sensor was reliable throughout the experiment during hemodynamic variations. Conclusions Continuous blood gas analysis with the CDI™ 500 system was reliable and it might represent a new useful tool to accurately and timely monitor gas exchange in critically ill patients. Nonetheless, our findings need to be confirmed by larger studies to prove its reliability in the clinical setting. PMID:21223536

  15. New Measurement Method of Outgassing Speed with a Sealed off Residual Gas Analyzer

    NASA Astrophysics Data System (ADS)

    Watanabe, Fumio

    The new measurement method of outgassing speed with a sealed off quadrupole residual gas analyzer (RGA) has been proposed. The unique feature of this method is that the high vacuum can be maintained by the self-pumping effect of the ultra low outgassing RGA. The newly-developed mass analyzer combined with BA-gauge is the key for this method. The pressure of chamber can be maintained below 2~5×10-7 Pa for a year without any pumping system. The majority of residual gases in the chamber were found to be hydrogen, methane and carbon-monoxide. In order to measure the outgassing speed of the RGA, the pumping speeds were measured by the self-pumping effect of RGA for hydrogen, deuterium, methane, nitrogen, carbon-monoxide, carbon-dioxide, oxygen and argon. When the pumping speed of RGA is balanced for outgassing from the RGA itself, we can calculate its value from the partial pressure in the spectrum. Then, we obtain the outgassing speeds for hydrogen=8.8×10-13 Pa m3/s, methane=1.2×10-13 Pa m3/s, carbon-monoxide=1.0×10-13 Pa m3/s.

  16. EVALUATION OF A PORTABLE FOURIER TRANSFORM INFRARED GAS ANALYZER FOR MEASUREMENTS OF AIR TOXICS IN POLLUTION PREVENTION RESEARCH

    EPA Science Inventory

    A portable Fourier transform infrared gas analyzer with a photoacoustic detector performed reliably during pollution prevention research at two industrial facilities. It exhibited good agreement (within approximately 6%) with other analytical instruments (dispersive infrared and ...

  17. Development of a Contingency Gas Analyzer for the Orion Crew Exploration Vehicle

    NASA Technical Reports Server (NTRS)

    Niu, Bill; Carney, Kenneth; Steiner, George; OHarra, William; Lewis, John

    2010-01-01

    NASA's experience with electrochemical sensors in a hand-held toxic gas monitor serves as a basis for the development of a fixed on-board instrument, the Contingency Gas Analyzer (CGA), for monitoring selected toxic combustion products as well as oxygen and carbon dioxide on the Orion Crew Exploration Vehicle (CEV). Oxygen and carbon dioxide are major components of the cabin environment and accurate measurement of these compounds is critical to maintaining a safe working environment for the crew. Fire or thermal degradation events may produce harmful levels of toxic products, including carbon monoxide (CO), hydrogen cyanide (HCN), and hydrogen chloride (HCl) in the environment. These three components, besides being toxic in their own right, can serve as surrogates for a panoply of hazardous combustion products. On orbit monitoring of these surrogates provides for crew health and safety by indicating the presence of toxic combustion products in the environment before, during and after combustion or thermal degradation events. Issues identified in previous NASA experiences mandate hardening the instrument and components to endure the mechanical and operational stresses of the CEV environment while maintaining high analytical fidelity. Specific functional challenges involve protecting the sensors from various anticipated events- such as rapid pressure changes, low cabin pressures, and extreme vibration/shock exposures- and extending the sensor lifetime and calibration periods far beyond the current state of the art to avoid the need for on-orbit calibration. This paper focuses on lessons learned from the earlier NASA hardware, current testing results, and engineering solutions to the identified problems. Of particular focus will be the means for protecting the sensors, addressing well known cross-sensitivity issues and the efficacy of a novel self monitoring mechanism for extending sensor calibration periods.

  18. Development of an In-Situ Data Logging System for Multiple Trace Gas Analyzers

    SciTech Connect

    Mioduszewski, John R.; Yu, Xiao-Ying

    2008-09-01

    A field deployable in-situ data logging system was developed at Pacific Northwest National Laboratory for trace gases including carbon monoxide (CO), ozone (O3), sulfur dioxide (SO2), and nitrogen oxides including nitric oxide, nitrogen dioxide, and odd nitrogens (NO/NO2/NOx). On-line data acquisition and calibration are essential to analysis of observables and data integrity. As such, a program was written to control the communication between the data logger and each analyzer in Logger Net, a program used to communicate with the data logger. Analog outputs were collected by a CR-23X Campbell data logger between July 2, 2007 and August 7, 2007 in Richland, Washington, with data being averaged every minute. A dynamic calibrator was used to calibrate the instruments using a gas standard with NIST-certified concentration. The National Oceanic and Atmospheric Administration’s HYSPLIT model was used to create a backward and forward trajectory of air during an episode of peak O3 to determine pollutant sources and sinks. Data collected through the duration of the sampling period revealed several observations. Concentrations of all trace gases were low, due in part to the scarcity of pollutant sources in the region. The average SO2 reading was less than 0.05 ppb over the period, whereas mixing ratios of 1-20 ppb are more common in rural-suburban environments. NO, NO2, and NOx averaged 0.3, 12.2, and 12.8 ppb, respectively, while the average CO was 228.5 ppb. Typical O3 in similar environments peaks at 80-150 ppb, but the highest mixing ratio of O3 observed was less than 45 ppb. HYSPLIT offered no apparent source for additional pollutants during the high O3 episode, but increased photochemistry due to high temperatures would explain the increase in O3. Both SO2 and NO readings registered near the detection limit of the instruments, and displayed a trend similar to background noise. The development of the data logging and display system for key trace gas species is an

  19. Sampling Line Heating Improves Frequency Response of Enclosed Eddy Covariance Gas Analyzers

    NASA Astrophysics Data System (ADS)

    Burba, G. G.; Fratini, G.; Metzger, S.; Kathilankal, J. C.; Trutna, D.; Luo, H.; Burns, S. P.; Blanken, P.

    2015-12-01

    One of the challenges when measuring eddy-covariance fluxes with closed gas analyzers is high frequency attenuation due to the passage of the sampled air through a gas sampling system (GSS). The problem is particularly relevant for gases that undergo strong sorption processes, such as H2O. Recent "enclosed" analyzer designs (e.g. LI-7200, LI-COR Biosciences Inc.) mitigate the problem by allowing a reduced length of the intake tube (<1 m). Further improvements can come from carefully designed filtering and heating systems that reduce hygroscopic particulates and H2O adsorption on GSS surfaces. Because the sorption processes of H2O increase exponentially with air relative humidity (RH), low-pass filtering effects can be reduced by reducing RH inside the GSS, for example by increasing air temperature via heating. In this work, we evaluate the effects of several heating strategies with the aim of optimizing the LI-7200 performance while limiting the implied increase in power consumption. From field tests we found that 4 W of heating applied uniformly to a rain cap-integrated 2 µm particulate filter (FW-series, Swagelok) and a 700 mm stainless steel tube with 4.8 mm inner diameter reduces the occurrence of problematic RH levels (>60%) in the LI-7200 by ≈50%. As a result, the system half-power frequency increased by ≈1 Hz, and the remaining cospectral correction did not exceed 3%, even at very high ambient RH (95%). While little further improvement was found for increased heating powers, it is possible to optimize the sequence of GSS components and their heating: we found that positioning the particulate filter ≈20 cm downstream of the rain cap and concentrating 2/3 of the heat in this first 20 cm, and 1/3 in the remainder of the tube, provides optimal performances. Using model cospectra and a range of realistic measurement and environmental conditions, we estimated H2O spectral corrections to reduce by ≈50-70%, getting very close to those of CO2 in most

  20. Eddy Covariance Measurements of Methane Flux Using an Open-Path Gas Analyzer

    NASA Astrophysics Data System (ADS)

    Burba, G.; Anderson, T.; Zona, D.; Schedlbauer, J.; Anderson, D.; Eckles, R.; Hastings, S.; Ikawa, H.; McDermitt, D.; Oberbauer, S.; Oechel, W.; Riensche, B.; Starr, G.; Sturtevant, C.; Xu, L.

    2008-12-01

    Methane is an important greenhouse gas with a warming potential of about 23 times that of carbon dioxide over a 100-year cycle (Houghton et al., 2001). Measurements of methane fluxes from the terrestrial biosphere have mostly been made using flux chambers, which have many advantages, but are discrete in time and space and may disturb surface integrity and air pressure. Open-path analyzers offer a number of advantages for measuring methane fluxes, including undisturbed in- situ flux measurements, spatial integration using the Eddy Covariance approach, zero frequency response errors due to tube attenuation, confident water and thermal density terms from co-located fast measurements of water and sonic temperature, and remote deployment due to lower power demands in the absence of a pump. The prototype open-path methane analyzer is a VCSEL (vertical-cavity surface-emitting laser)-based instrument. It employs an open Herriott cell and measures levels of methane with RMS noise below 6 ppb at 10 Hz sampling in controlled laboratory environment. Field maintenance is minimized by a self-cleaning mechanism to keep the lower mirror free of contamination. Eddy Covariance measurements of methane flux using the prototype open-path methane analyzer are presented for the period between 2006 and 2008 in three ecosystems with contrasting weather and moisture conditions: (1) Fluxes over a short-hydroperiod sawgrass wetland in the Florida Everglades were measured in a warm and humid environment with temperatures often exceeding 25oC, variable winds, and frequent heavy dew at night; (2) Fluxes over coastal wetlands in an Arctic tundra were measured in an environment with frequent sub-zero temperatures, moderate winds, and ocean mist; (3) Fluxes over pacific mangroves in Mexico were measured in an environment with moderate air temperatures high winds, and sea spray. Presented eddy covariance flux data were collected from a co-located prototype open-path methane analyzer, LI-7500, and

  1. Determination of carbon monoxide in blood by means of electrochemical pocket gas meter

    SciTech Connect

    Bogusz, M.; Aderjan, R.; Boesche, J.

    1988-07-01

    The Comopac electrochemical device for CO determination in the workplace was adapted for CO and COHb determination in blood. The method enables the determination of COHb from 1 to 95% in 0.5 mL of blood in 20 min. Comparison of results obtained with the Comopac, spectrophotometry, and gas chromatography showed comparable accuracy and precision. The specificity of the electrochemical method was better than spectrophotometry and comparable with gas chromatography.

  2. Analyzing the Impact of Residential Building Attributes, Demographic and Behavioral Factors on Natural Gas Usage

    SciTech Connect

    Livingston, Olga V.; Cort, Katherine A.

    2011-03-03

    study attempts to bridge that gap by analyzing behavioral data and investigate the applicability of additive nonparametric regression to this task. This study evaluates the impact of 31 regressors on residential natural gas usage. The regressors include weather, economic variables, demographic and behavioral characteristics, and building attributes related to energy use. In general, most of the regression results were in line with previous engineering and economic studies in this area. There were, however, some counterintuitive results, particularly with regard to thermostat controls and behaviors. There are a number of possible reasons for these counterintuitive results including the inability to control for regional climate variability due to the data sanitization (to prevent identification of respondents), inaccurate data caused by to self-reporting, and the fact that not all relevant behavioral variables were included in the data set, so we were not able to control for them in the study. The results of this analysis could be used as an in-sample prediction for approximating energy demand of a residential building whose characteristics are described by the regressors in this analysis, but a certain combination of their particular values does not exist in the real world. In addition, this study has potential applications for benefit-cost analysis of residential upgrades and retrofits under a fixed budget, because the results of this study contain information on how natural gas consumption might change once a particular characteristic or attribute is altered. Finally, the results of this study can help establish a relationship between natural gas consumption and changes in behavior of occupants.

  3. Assessing Atmospheric CO2 Entrapped in Clay Nanotubes using Residual Gas Analyzer.

    PubMed

    Das, Sankar; Maity, Abhijit; Pradhan, Manik; Jana, Subhra

    2016-02-16

    A residual gas analyzer (RGA) coupled with a high-vacuum chamber has been explored to measure atmospheric CO2 entrapped in aminosilane-modified clay nanotubes. Ambient CO2 uptake efficacy together with stability of these novel adsorbents composed of both primary and/or secondary amine sites has been demonstrated at standard ambient temperature and pressure. The unprecedented sensitivity and accuracy of the RGA-based mass spectrometry technique toward atmospheric CO2 measurement has been substantiated with a laser-based optical cavity-enhanced integrated cavity output spectroscopy. The adsorption kinetics of atmospheric CO2 on amine-functionalized clay nanotubes followed the fractional-order kinetic model compared to that of the pseudo-first-order or pseudo-second-order rate equations. The efficiency along with stability of these novel adsorbents has also been demonstrated by their repetitive use for CO2 capture in the oxidative environment. Our findings thus point to a fundamental study on the atmospheric CO2 adsorption by amine-loaded adsorbents using an easy handling and low-cost benchtop RGA-based mass spectrometer, opening a new strategy for CO2 capture and sequestering study. PMID:26790755

  4. Assessing Atmospheric CO2 Entrapped in Clay Nanotubes using Residual Gas Analyzer.

    PubMed

    Das, Sankar; Maity, Abhijit; Pradhan, Manik; Jana, Subhra

    2016-02-16

    A residual gas analyzer (RGA) coupled with a high-vacuum chamber has been explored to measure atmospheric CO2 entrapped in aminosilane-modified clay nanotubes. Ambient CO2 uptake efficacy together with stability of these novel adsorbents composed of both primary and/or secondary amine sites has been demonstrated at standard ambient temperature and pressure. The unprecedented sensitivity and accuracy of the RGA-based mass spectrometry technique toward atmospheric CO2 measurement has been substantiated with a laser-based optical cavity-enhanced integrated cavity output spectroscopy. The adsorption kinetics of atmospheric CO2 on amine-functionalized clay nanotubes followed the fractional-order kinetic model compared to that of the pseudo-first-order or pseudo-second-order rate equations. The efficiency along with stability of these novel adsorbents has also been demonstrated by their repetitive use for CO2 capture in the oxidative environment. Our findings thus point to a fundamental study on the atmospheric CO2 adsorption by amine-loaded adsorbents using an easy handling and low-cost benchtop RGA-based mass spectrometer, opening a new strategy for CO2 capture and sequestering study.

  5. Data Processing for Making Eddy Covariance Methane Flux Measurement with Laser-Based CH4 Gas Analyzer

    NASA Astrophysics Data System (ADS)

    Xu, L.; Burba, G. G.; McDermitt, D. K.

    2014-12-01

    First we will discuss the fundamental difference in the theory of operation between NDIR (Non-dispersive Infrared) based and laser-based gas analyzer. Taking LI-7500A (an open-path CO2 gas analyzer) as an example for a NDIR-based gas analyzer, the wavelength of the infrared radiation for making the gas concentration measurement is from 4.20 to 4.34 μm which includes many absorption lines. While the LI-7700 (an open-path methane gas analyzer) is a laser-based analyzer. It uses a single absorption line at 1.651 μm to make the methane concentration measurement. It employs a Herriott cell configuration with mirror spacing of 0.47 m and a total optical path length of 28.2 m. Methane density is measured using wavelength modulation spectroscopy. As a result, the measured methane density is affected by sensible heat and latent heat flux, and also by spectroscopic effects (e.g., line broadening) due to changes in temperature and water vapor content. Here we propose a new procedure to account for spectroscopic effects. Since both density effects and spectroscopic effects are predictable with the ideal gas law and HITRAN respectively, the spectroscopic effect can be incorporated into WPL correction. In this paper, we will discuss the details of this new procedure to account for the spectroscopic effect in the methane flux calculation. Field experiment results will be presented to show the accuracy of this new procedure.

  6. Greenhouse gas source identification and flux measurements using an optical remote sensing method and a photoacoustic multi-gas analyzer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil properties such as particle size, soil organic carbon (SOC) and moisture contents, tillage operations and crop management practices influence greenhouse gas emission or consumption patterns from agricultural lands. Greenhouse gas (GG) emissions have been measured on small field plots, although ...

  7. Phoenix Lander's Thermal Evolved Gas Analyzer: Differential Scanning Calorimeter and Mass Spectrometer Database Development

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Lauer, H. V.; Golden, D. C.; Ming, D. W.; Boynton, W. V.

    2008-01-01

    The Mars Scout Phoenix lander will land in the north polar region of Mars in May, 2008. One objective of the Phoenix lander is to search for evidence of past life in the form of molecular organics that may be preserved in the subsurface soil. The Thermal Evolved Gas Analyzer (TEGA) was developed to detect these organics by coupling a simultaneous differential thermal analyzer (SDTA) with a mass spectrometer. Martian soil will be heated to approx.1000 C and potential organic decomposition products such as CO2, CH4 etc. will be examined for with the MS. TEGA s SDTA will also assess the presence of endothermic and exothermic reactions that are characteristic of soil organics and minerals as the soil is heated. The MS in addition to detecting organic decompositon products, will also assess the levels of soil inorganic volatiles such as H2O, SO2, and CO2. Organic detection has a high priority for this mission; however, TEGA has the ability to provide valuable insight into the mineralogical composition of the soil. The overall goal of this work is to develop a TEGA database of minerals that will serve as a reference for the interpretation of Phoenix-TEGA. Previous databases for the ill-fated Mars Polar Lander (MPL)-TEGA instrument only went to 725 C. Furthermore, the MPL-TEGA could only detect CO2 and H2O while the Phoenix-TEGA MS can examine up to 144 atomic mass units. The higher temperature Phoenix-TEGA SDTA coupled with the more capable MS indicates that a higher temperature database is required for TEGA interpretation. The overall goal of this work is to develop a differential scanning calorimeter (DSC) database of minerals along with corresponding MS data of evolved gases that can used to interpret TEGA data during and after mission operations. While SDTA and DSC measurement techniques are slightly different (SDTA does not use a reference pan), the results are fundamentally similar and thus DSC is a useful technique in providing comparative data for the TEGA

  8. Determination of Natural In Vivo Noble-Gas Concentrations in Human Blood

    PubMed Central

    Tomonaga, Yama; Brennwald, Matthias S.; Livingstone, David M.; Tomonaga, Geneviève; Kipfer, Rolf

    2014-01-01

    Although the naturally occurring atmospheric noble gases He, Ne, Ar, Kr, and Xe possess great potential as tracers for studying gas exchange in living beings, no direct analytical technique exists for simultaneously determining the absolute concentrations of these noble gases in body fluids in vivo. In this study, using human blood as an example, the absolute concentrations of all stable atmospheric noble gases were measured simultaneously by combining and adapting two analytical methods recently developed for geochemical research purposes. The partition coefficients determined between blood and air, and between blood plasma and red blood cells, agree with values from the literature. While the noble-gas concentrations in the plasma agree rather well with the expected solubility equilibrium concentrations for air-saturated water, the red blood cells are characterized by a distinct supersaturation pattern, in which the gas excess increases in proportion to the atomic mass of the noble-gas species, indicating adsorption on to the red blood cells. This study shows that the absolute concentrations of noble gases in body fluids can be easily measured using geochemical techniques that rely only on standard materials and equipment, and for which the underlying concepts are already well established in the field of noble-gas geochemistry. PMID:24811123

  9. Gas chromatographic determination of pentachlorophenol in human blood and urine

    SciTech Connect

    Atuma, S.S.; Okor, D.I.

    1985-09-01

    The extraction, identification and quantification of pentachlorophenol (PCP) in human blood and urine are of great importance for monitoring human exposure to this environmental chemical. Although reports abound in the literature on PCP residues, toxicity and environmental fate, there is hardly any information on its existence in the developing tropical countries, particularly in Nigeria. There is therefore the need to survey the status of PCP in Nigerian environment with a view to establishing the potential health hazards resulting from its bioaccumulation. This paper reports a preliminary survey of the residue levels of PCP in human blood and urine of the general population in Bendel State of Nigeria.

  10. Gas-liquid chromatography in routine processing of blood cultures for detecting anaerobic bacteraemia.

    PubMed Central

    Reig, M; Molina, D; Loza, E; Ledesma, M A; Meseguer, M A

    1981-01-01

    Gas-liquid chromatography was performed on 233 positive blood cultures and findings were compared with culture results. Obligate anaerobic bacteria were recovered from 78 out of 79 blood cultures containing butyric or iso-valeric acids, or both; from 28 out of 69 blood cultures containing succinic acid; and from only one out of 41 blood cultures containing succinic but not butyric or iso-valeric acid. Good correlations (88%) were found for the recovery of anaerobic bacteria and the detection of butyric and/or iso-valeric acids. Detecting volatile fatty acids by gas-liquid chromatography performed on blood cultures at the first signs of growth can therefore provide an early and reliable indication of the presence of anaerobic bacteria. PMID:7014645

  11. Blood

    MedlinePlus

    ... solid part of your blood contains red blood cells, white blood cells, and platelets. Red blood cells (RBC) deliver oxygen from your lungs to your tissues and organs. White blood cells (WBC) fight infection and are part of your ...

  12. Prediction of the hematocrit of dried blood spots via potassium measurement on a routine clinical chemistry analyzer.

    PubMed

    Capiau, Sara; Stove, Veronique V; Lambert, Willy E; Stove, Christophe P

    2013-01-01

    The potential of dried blood spot (DBS) sampling as an alternative for classical venous sampling is increasingly recognized, with multiple applications in, e.g., therapeutic drug monitoring and toxicology. Although DBS sampling has many advantages, it is associated with several issues, the hematocrit (Hct) issue being the most widely discussed challenge, given its possible strong impact on DBS-based quantitation. Hitherto, no approaches allow Hct prediction from nonvolumetrically applied DBS. Following a simple and rapid extraction protocol, K(+) levels from 3 mm DBS punches were measured via indirect potentiometry, using the Roche Cobas 8000 routine chemistry analyzer. The extracts' K(+) concentrations were used to calculate the approximate Hct of the blood used to generate DBS. A linear calibration line was established, with a Hct range of 0.19 to 0.63 (lower limit of quantification, LLOQ, to upper limit of quantification, ULOQ). The procedure was fully validated; the bias and imprecision of quality controls (QCs) at three Hct levels and at the LLOQ and ULOQ was less than 5 and 12%, respectively. In addition, the influence of storage (pre- and postextraction), volume spotted, and punch homogeneity was evaluated. Application on DBS from patient samples (n = 111), followed by Bland and Altman, Passing and Bablok, and Deming regression analysis, demonstrated a good correlation between the "predicted Hct" and the "actual Hct". After correcting for the observed bias, limits of agreement of ±0.049 were established. Incurred sample reanalysis demonstrated assay reproducibility. In conclusion, potassium levels in extracts from 3 mm DBS punches can be used to get a good prediction of the Hct, one of the most important "unknowns" in DBS analysis.

  13. Comparison of gas analyzers for quantifying eddy covariance fluxes- results from an irrigated alfalfa field in Davis, CA

    NASA Astrophysics Data System (ADS)

    Chan, S.; Biraud, S.; Polonik, P.; Billesbach, D.; Hanson, C. V.; Bogoev, I.; Conrad, B.; Alstad, K. P.; Burba, G. G.; Li, J.

    2015-12-01

    The eddy covariance technique requires simultaneous, rapid measurements of wind components and scalars (e.g., water vapor, carbon dioxide) to calculate the vertical exchange due to turbulent processes. The technique has been used extensively as a non-intrusive means to quantify land-atmosphere exchanges of mass and energy. A variety of sensor technologies and gas sampling designs have been tried. Gas concentrations are commonly measured using infrared or laser absorption spectroscopy. Open-path sensors directly sample the ambient environment but suffer when the sample volume is obstructed (e.g., rain, dust). Closed-path sensors utilize pumps to draw air into the analyzer through inlet tubes which can attenuate the signal. Enclosed-path sensors are a newer, hybrid of the open- and closed-path designs where the sensor is mounted in the environment and the sample is drawn through a short inlet tube with short residence time. Five gas analyzers were evaluated as part of this experiment: open-path LI-COR 7500A, enclosed-path LI-COR 7200, closed-path Picarro G2311-f, open-path Campbell Scientific IRGASON, and enclosed-path Campbell Scientific EC155. We compared the relative performance of the gas analyzers over an irrigated alfalfa field in Davis, CA. The field was host to a range of ancillary measurements including below-ground sensors, and a weighing lysimeter. The crop was flood irrigated and harvested monthly. To compare sensors, we evaluated the half-hour mean and variance of gas concentrations (or mole densities). Power spectra for the gas analyzers and turbulent fluxes (from a common sonic anemometer) were also calculated and analyzed. Eddy covariance corrections will be discussed as they relate to sensor design (e.g., density corrections, signal attenuation).

  14. Open and Closed Endotracheal Suctioning and Arterial Blood Gas Values: A Single-Blind Crossover Randomized Clinical Trial

    PubMed Central

    Faraji, Azam; Khatony, Alireza; Moradi, Gholamreza; Abdi, Alireza; Rezaei, Mansour

    2015-01-01

    Aim. This study was aimed at comparing the effects of the open and closed suctioning techniques on the arterial blood gas values in patients undergoing open-heart surgery. Methods. In a clinical trial, we recruited 42 patients after open-heart surgery in an educational hospital. Each patient randomly underwent both open and closed suctioning. ABGs, PaO2, SaO2, PaCO2, were analyzed before and one, five, and fifteen minutes after each suctioning episode. Results. At first the pressure of oxygen in arterial blood increased; however, this increase in the open technique was greater than that of the closed system (P < 0.001). The pressure of oxygen decreased five and fifteen minutes after both suctioning techniques (P < 0.05). The trends of carbon dioxide variations after the open and closed techniques were upward and downward, respectively. Moreover, the decrease in the level of oxygen saturation five and fifteen minutes after the open suctioning was greater than that of the closed suctioning technique (P < 0.05).  Conclusion. Arterial blood gas disturbances in the closed suctioning technique were less than those of the open technique. Therefore, to eliminate the unwanted effects of endotracheal suctioning on the arterial blood gases, the closed suctioning technique is recommended. PMID:26425366

  15. A multivariate statistical analysis approach to analyze gas chromatography-olfactometry data of tangerine hybrids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gas chromatography (GC) hyphenated with olfactometry (O) when a human subject smells the effluent of the GC is a useful technique to identify aroma activity of volatile compounds in a food. Many techniques have been developed, based on olfactory thresholds (CHARM analysis, AEDA), or based on psychop...

  16. Atmospheric pressure glow discharge generated in nitrogen-methane gas mixture: PTR-MS analyzes of the exhaust gas

    NASA Astrophysics Data System (ADS)

    Torokova, Lucie; Mazankova, Vera; Krcma, Frantisek; Mason, Nigel J.; Matejcik, Stefan

    2015-07-01

    This paper reports the results of an extensive study of with the in situ mass spectrometry analysis of gaseous phase species produced by an atmospheric plasma glow discharge in N2-CH4 gas mixtures (with methane concentrations ranging from 1% to 4%). The products are studied using proton-transfer-reaction mass spectrometry (PTR-MS). HCN and CH3CN are identified as the main gaseous products. Hydrazine, methanimine, methyldiazene, ethylamine, cyclohexadiene, pyrazineacetylene, ethylene, propyne and propene are identified as minor compounds. All the detected compounds and their relative abundances are determined with respect to the experimental conditions (gas composition and applied power). The same molecules were observed by the Cassini-Huygens probe in Titan's atmosphere (which has same N2-CH4 gas mixtures). Such, experiments show that the formation of such complex organics in atmospheres containing C, N and H, like that of Titan, could be a source of prebiotic molecules. Contribution to the topical issue "The 14th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XIV)", edited by Nicolas Gherardi, Ronny Brandenburg and Lars Stollenwark

  17. Blood infection with Enterobacter aerogenes--an unusual cause of portal vein gas.

    PubMed

    Fayyaz, Afshan

    2011-01-01

    Portal vein gas was once thought of as an invariably fatal condition. Now, with the availability of better equipment and expertise, the condition is more frequently diagnosed. A case of fever with rigors is presented and on ultrasound and CT examination was found to have portal venous gas which resolved with adequate antibiotic treatment. Blood culture revealed growth of gram negative bacillus; Enterobacter aerogenes. Patient was investigated further for portal vein gas, and although no other cause for the development of portal vein gas was found, she was treated with antibiotics and showed an immediate response. The aim of this case report is to highlight the benign causes of portal vein gas as well as to discuss the causes which warrant immediate surgery. Portal vein gas may herald a more ominous condition, which if intercepted in its course may result in complete cure.

  18. Design of a diagnostic residual gas analyzer for the ITER divertor

    SciTech Connect

    Klepper, C Christopher; Biewer, T. M.; Graves, Van B; Andrew, P.; Marcus, Chris; Shimada, M.; Hughes, S.; Boussier, B.; Johnson, D. W.; Gardner, W. L.; Hillis, D. L.; Vayakis, G.; Vayakis, G.; Walsh, M.

    2015-01-01

    One of the ITER diagnostics having reached an advanced design stage is a diagnostic RGA for the divertor, i.e. residual gas analysis system for the ITER divertor, which is intended to sample the divertor pumping duct region during the plasma pulse and to have a response time compatible with plasma particle and impurity lifetimes in the divertor region. Main emphasis is placed on helium (He) concentration in the ducts, as well as the relative concentration between the hydrogen isotopes (H2, D2, T2). Measurement of the concentration of radiative gases, such as neon (Ne) and nitrogen (N2), is also intended. Numerical modeling of the gas flow from the sampled region to the cluster of analysis sensors, through a long (~8m long, ~110mm diameter) sampling pipe terminating in a pressure reducing orifice, confirm that the desired response time (~1s for He or D2) is achieved with the present design.

  19. Multifrequency interrogation of nanostructured gas sensor arrays: a tool for analyzing response kinetics.

    PubMed

    Vergara, Alexander; Calavia, Raul; Vázquez, Rosa María; Mozalev, Alexander; Abdelghani, Adnane; Huerta, Ramón; Hines, Evor H; Llobet, Eduard

    2012-09-01

    This paper presents a unique perspective on enhancing the physicochemical mechanisms of two distinct highly sensitive nanostructured metal oxide micro hot plate gas sensors by utilizing an innovative multifrequency interrogation method. The two types of sensors evaluated here employ an identical silicon transducer geometry but with a different morphological structure of the sensitive film. While the first sensing film consists of self-ordered tungsten oxide nanodots, limiting the response kinetics of the sensor-chemical species pair only to the reaction phenomena occurring at the sensitive film surface, the second modality is a three-dimensional array of tungsten oxide nanotubes, which in turn involves both the diffusion and adsorption of the gas during its reaction kinetics with the sensitive film itself. By utilizing the proposed multifrequency interrogation methodology, we demonstrate that the optimal temperature modulation frequencies employed for the nanotubes-based sensors to selectively detect hydrogen, carbon monoxide, ethanol, and dimethyl methyl phosphonate (DMMP) are significantly higher than those utilized for the nanodot-based sensors. This finding helps understand better the amelioration in selectivity that temperature modulation of metal oxides brings about, and, most importantly, it sets the grounds for the nanoengineering of gas-sensitive films to better exploit their practical usage.

  20. Effect of stratified inequality of blood flow on gas exchange in liquid-filled lungs.

    NASA Technical Reports Server (NTRS)

    West, J. B.; Maloney, J. E.; Castle, B. L.

    1972-01-01

    This investigation set out to answer two questions: (1) are the distal alveoli in the terminal lung units less well perfused than the proximal alveoli, i.e., is there stratification of blood flow; and (2) if so, does this enhance gas exchange in the presence of stratified inequality of ventilation. Excised dog lungs were ventilated with saline and perfused with blood. Following single inspirations of xenon 133 in saline and various periods of breath holding, the expired xenon concentration against volume was measured and it confirmed marked stratified inequality of ventilation under these conditions. By measuring the rate of depletion of xenon from alveoli during a period of blood flow, we showed that the alveoli which emptied at the end of expiration had 16% less blood flow than those exhaling earlier. However, by measuring the xenon concentration in pulmonary venous blood, we found that about 10% less tracer was transferred from the alveoli into the blood when the inspired xenon was stratified within the respiratory zone. Thus while stratification of blood flow was confirmed, it was shown to impair rather than enhance the efficiency of gas transfer.

  1. An experimental study of gas-liquid slug flow in vertical and inclined tubes using high speed motion analyzer

    SciTech Connect

    Xia, G.; Zhou, F.; Hu, M.

    1996-12-31

    Experimental investigation was carried out for gas-liquid slug flow in vertical and inclined tubes. The non-invasive measurements of the gas-liquid slug flow were taken by using the EKTAPRO 1000 High Speed Motion Analyzer. The present paper has obtained the information on the velocity of the Taylor bubble, the size distribution of the dispersed bubbles in the liquid slugs and some characteristics of the liquid film around the Taylor bubble. The experimental results are in good agreement with the available data.

  2. Comparison of a human portable glucometer and an automated chemistry analyzer for measurement of blood glucose concentration in pet ferrets (Mustela putorius furo).

    PubMed

    Summa, Noémie M; Eshar, David; Lee-Chow, Bridget; Larrat, Sylvain; Brown, Dorothy C

    2014-09-01

    This study compared blood glucose concentrations measured with a portable blood glucometer and a validated laboratory analyzer in venous blood samples of 20 pet ferrets (Mustela putorius furo). Correlation and agreement were evaluated with a Bland-Altman plot method and Lin's concordance correlation coefficient. Blood glucose concentrations measured with the laboratory analyzer and the glucometer ranged from 1.9 to 8.6 mmol/L and from 0.9 to 9.2 mmol/L, respectively. The glucometer had a poor agreement and correlation with the laboratory analyzer (bias, -0.13 mmol/L; level of agreement, -2.0 to 3.6 mmol/L, concordance correlation coefficient 0.665). The relative sensitivity and specificity of the portable blood glucometer for detection of hypoglycemia were 100% (95% CI: 66% to 100%) and 50% (95% CI: 20% to 80%), respectively. Positive and negative predictive values were 67% (95% CI: 39% to 87%) and 100% (95% CI: 46% to 100%), respectively. Based on these results, clinicians are advised to be cautious when considering the results from this handheld glucometer in pet ferrets, and blood glucose concentrations should be determined with a laboratory analyzer validated for this species.

  3. Cardiac Morphology and Function, and Blood Gas Transport in Aquaporin-1 Knockout Mice

    PubMed Central

    Al-Samir, Samer; Wang, Yong; Meissner, Joachim D.; Gros, Gerolf; Endeward, Volker

    2016-01-01

    We have studied cardiac and respiratory functions of aquaporin-1-deficient mice by the Pressure-Volume-loop technique and by blood gas analysis. In addition, the morphological properties of the animals' hearts were analyzed. In anesthesia under maximal dobutamine stimulation, the mice exhibit a moderately elevated heart rate of < 600 min−1 and an O2 consumption of ~0.6 ml/min/g, which is about twice the basal rate. In this state, which is similar to the resting state of the conscious animal, all cardiac functions including stroke volume and cardiac output exhibited resting values and were identical between deficient and wildtype animals. Likewise, pulmonary and peripheral exchange of O2 and CO2 were normal. In contrast, several morphological parameters of the heart tissue of deficient mice were altered: (1) left ventricular wall thickness was reduced by 12%, (2) left ventricular mass, normalized to tibia length, was reduced by 10–20%, (3) cardiac muscle fiber cross sectional area was decreased by 17%, and (4) capillary density was diminished by 10%. As the P-V-loop technique yielded normal end-diastolic and end-systolic left ventricular volumes, the deficient hearts are characterized by thin ventricular walls in combination with normal intraventricular volumes. The aquaporin-1-deficient heart thus seems to be at a disadvantage compared to the wild-type heart by a reduced left-ventricular wall thickness and an increased diffusion distance between blood capillaries and muscle mitochondria. While under the present quasi-resting conditions these morphological alterations have no consequences for cardiac function, we expect that the deficient hearts will show a reduced maximal cardiac output. PMID:27252655

  4. Could We Apply a NeuroProcessor For Analyzing a Gas Response Of Multisensor Arrays?

    SciTech Connect

    Sysoev, V. V.; Musatov, V. Yu.; Maschenko, A. A.; Varegnikov, A. S.; Chrizostomov, A. A.; Kiselev, I.; Schneider, T.; Bruns, M.; Sommer, M.

    2009-05-23

    We describe an effort of implementation of hardware neuroprocessor to carry out pattern recognition of signals generated by a multisensor microarray of Electronic Nose type. The multisensor microarray is designed with the SnO{sub 2} thin film segmented by co-planar electrodes according to KAMINA (KArlsruhe Micro NAse) E-nose architecture. The response of this microarray to reducing gases mixtured with a synthetic air is processed by principal component analysis technique realized in PC (Matlab software) and the neural microprocessor NeuroMatrix NM6403. It is shown that the neuroprocessor is able to successfully carry out a gas-recognition algorithm at a real-time scale.

  5. Optimization of closed ion source for a high-sensitivity residual gas analyzer

    SciTech Connect

    Han, Cheolsu; Rok Ahn, Jong; Jung Ahn, Sang; Joon Park, Chang

    2014-03-15

    A closed ion source (CIS) has been optimized by investigating the effect of electron entrance slit size and the effect of mesh in the slit. A stainless steel mesh was placed on the electron entrance slits for a uniform potential distribution inside the CIS anode. Sensitivity of the closed ion sources having four different slit sizes with and without the mesh was compared using mass spectra of SF{sub 6} gas (97% He gas base) introduced into the CIS anode through a needle valve. For each CIS, isolation of anode potential with a mesh in the slit exhibited a significant sensitivity enhancement, but ion current measured directly behind each CIS showed negligible mesh effect. In order to elucidate the mesh effect, electron trajectories were simulated inside the anode. The computer simulation shows that, with mesh in the slit, more electrons are focused to a central region of the anode. This suggests ions generated in the CIS with mesh should have higher probability of passing through the quadrupole mass filter.

  6. Optimized design of substrate-integrated hollow waveguides for mid-infrared gas analyzers

    NASA Astrophysics Data System (ADS)

    Fortes, Paula Regina; Flávio da Silveira Petruci, João; Wilk, Andreas; Alves Cardoso, Arnaldo; Milton Raimundo, Ivo, Jr.; Mizaikoff, Boris

    2014-09-01

    Design and analytical performance studies are presented for optimizing a new generation of hollow waveguides suitable for quantitative gas sensing—the so-called substrate-integrated hollow waveguide (iHWG). Taking advantage of a particularly compact Fourier transform infrared spectrometer optimized iHWG geometries are investigated toward the development of a multi-constituent breath analysis tool compatible for usage, e.g., in exhaled mouse breath analysis. Three different iHWG geometries were compared, i.e., straight, meandering one-turn and meandering two-turn waveguide channels aiming at maximizing the related analytical figures-of-merit including the achievable limits of detection for selected exemplary analytes. In addition, efficient coupling of infrared (IR) radiation into straight iHWGs was investigated using integrated optical funnel structures. Calibration functions of butane in nitrogen serving as IR-transparent matrix gas were established and compared for the various iHWG geometries. Given the tidal volume of exhaled breath (EB) samples ranging from a few hundreds of milliliters (human, swine) to a few hundreds of microliters (mouse), it is essential for any given analysis to select an appropriate waveguide geometry and volume yet maintaining (i) a compact footprint ensuring hand-held instrumentation, (ii) modular exchange of the iHWG according to the analysis requirement yet with constant device format, and (iii) enabling inline/online measurement capabilities toward continuous EB diagnostics.

  7. Effects of zilpaterol hydrochloride on blood gas, electrolyte balance, and pH in feedlot cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to examine the effects of zilpaterol hydrochloride (ZH) on blood gas, electrolyte balance and pH in feedlot cattle. Black-hided steers and heifers (n=96) were sourced from a commercial feedlot and transported to the Texas Tech University Beef Center in New Deal, TX. C...

  8. Robustness of arterial blood gas analysis for assessment of respiratory safety pharmacology in rats.

    PubMed

    Whiteside, Garth T; Hummel, Michele; Boulet, Jamie; Beyenhof, Jessica D; Strenkowski, Bryan; John, Janet Dell; Knappenberger, Terri; Maselli, Harry; Koetzner, Lee

    2016-01-01

    Whole body plethysmography using unrestrained animals is a common technique for assessing the respiratory risk of new drugs in safety pharmacology studies in rats. However, wide variations in experimental technique make cross laboratory comparison of data difficult and raise concerns that non-appropriate conditions may mask the deleterious effects of test compounds - in particular with suspected respiratory depressants. Therefore, the objective of this study was to evaluate the robustness of arterial blood gas analysis as an alternative to plethysmography in rats. We sought to do this by assessing the effect of different vehicles and times post-surgical catheterization on blood gas measurements, in addition to determining sensitivity to multiple opioids. Furthermore, we determined intra-lab variability from multiple datasets utilizing morphine and generated within a single lab and lastly, inter-lab variability was measured by comparing datasets generated in two separate labs. Overall, our data show that arterial blood gas analysis is a measure that is both flexible in terms of experimental conditions and highly sensitive to respiratory depressants, two key limitations when using plethysmography. As such, our data strongly advocate the adoption of arterial blood gas analysis as an investigative approach to reliably examine the respiratory depressant effects of opioids. PMID:26589431

  9. Fabrication and characterization of a CNT forest integrated micromechanical resonator for a rarefied gas analyzer in a medium vacuum atmosphere

    NASA Astrophysics Data System (ADS)

    Sugano, Koji; Matsumoto, Ryu; Tsutsui, Ryota; Kishihara, Hiroyuki; Matsuzuka, Naoki; Yamashita, Ichiro; Uraoka, Yukiharu; Isono, Yoshitada

    2016-07-01

    This study focuses on the development of a multi-walled carbon nanotube (MWCNT) forest integrated micromechanical resonator working as a rarefied gas analyzer for nitrogen (N2) and hydrogen (H2) gases in a medium vacuum atmosphere. The resonant response is detected in the form of changes in the resonant frequency or damping effects, depending on the rarefied gas species. The carbon nanotube (CNT) forest on the resonator enhances the effective specific surface area of the resonator, such that the variation of the resonant frequency and the damping effect based on the gas species increase significantly. We developed the fabrication process for the proposed resonator, which consists of standard micro-electro-mechanical systems (MEMS) processes and high-density CNT synthesis on the resonator mass. The high-density CNT synthesis was realized using multistep alternate coating of two types of ferritin proteins that act as catalytic iron particles. Two devices with different CNT densities were fabricated and characterized to evaluate the effect of the surface area of the CNT forest on the resonant response as a function of gas pressures ranging from 0.011 to 1 Pa for N2 and H2. Considering the damping effect, we found that the device with higher density was able to distinguish N2 and H2 clearly, whereas the device with lower density showed no difference between N2 and H2. We confirmed that a larger surface area showed a higher damping effect. These results were explained based on the kinetic theory of gases. In the case of resonant frequency, the relative resonant frequency shift increased with gas pressure and surface area because of the adsorption of gas molecules on the resonator surfaces. Higher density CNT forest adsorbed more gas molecules on the surfaces. The developed CNT forest integrated micromechanical resonator could successfully detect N2 and H2 gases and distinguish between them under pressures of 1 Pa.

  10. Impact of arterial blood gas analysis in disability evaluation of the bituminous coal miner with simple pneumoconiosis

    SciTech Connect

    Fields, C.L.; Roy, T.M.; Dow, F.T.; Anderson, W.H. )

    1992-04-01

    The Department of Labor has set guidelines for the use of resting arterial blood gas analysis in determination of total and permanent disability for coal workers' pneumoconiosis. To determine the prevalence with which bituminous coal miners fall below the arterial tensions of both oxygen and carbon dioxide published in the Federal Register, we studied 1012 miners who had both reproducible spirometry and arterial blood gas analysis as part of their disability evaluation. Eighty-seven percent of impaired miners could be identified by the spirometric criteria. Thirteen percent of impaired bituminous coal miners had acceptable pulmonary function but were eligible for black lung benefits by the blood gas guidelines. This population would have been missed if blood gas analysis were excluded from the evaluation process. On the other hand, approximately 25% of the blood gas analyses that were performed could be eliminated if a policy was adopted to do this test only on miners with spirometry that exceed the federal guidelines.

  11. Possible Calcite and Magnesium Perchlorate Interaction in the Mars Phoenix Thermal and Evolved Gas Analyzer (TEGA)

    NASA Technical Reports Server (NTRS)

    Cannon, K. M.; Sutter, B.; Ming, D. W.; Boynton, W. V.; Quinn, R. C.

    2012-01-01

    The Mars Phoenix Lander's TEGA instrument detected a calcium carbonate phase decomposing at high temperatures (approx.700 C) from the Wicked Witch soil sample [1]. TEGA also detected a lower temperature CO2 release between 400 C and 680 C [1]. Possible explanations given for this lower temperature CO2 release include thermal decomposition of Mg or Fe carbonates, a zeolitictype desorption reaction, or combustion of organic compounds in the soil [2]. The detection of 0.6 wt % soluble perchlorate by the Wet Chemistry Laboratory (WCL) on Phoenix [3] has implications for the possibility of organic molecules in the soil. Ming et al. [4] demonstrated that perchlorates could have oxidized organic compounds to CO2 in TEGA, preventing detection of their characteristic mass fragments. Here, we propose that a perchlorate salt and calcium carbonate present in martian soil reacted to produce the 400 C - 680 C TEGA CO2 release. The parent salts of the perchlorate on Mars are unknown, but geochemical models using WCL data support the possible dominance of Mg-perchlorate salts [5]. Mg(ClO4)2 6H2O is the stable phase at ambient martian conditions [6], and breaks down at lower temperatures than carbonates giving off Cl2 and HCl gas [7,8]. Devlin and Herley [7] report two exotherms at 410-478 C and 473-533 C which correspond to the decomposition of Mg(ClO4)2.

  12. A gas-phase chemiluminescence-based analyzer for waterborne arsenic

    USGS Publications Warehouse

    Idowu, A.D.; Dasgupta, P.K.; Genfa, Z.; Toda, K.; Garbarino, J.R.

    2006-01-01

    We show a practical sequential injection/zone fluidics-based analyzer that measures waterborne arsenic. The approach is capable of differentiating between inorganic As(III) and As(V). The principle is based on generating AsH 3 from the sample in a confined chamber by borohydride reduction at controlled pH, sparging the chamber to drive the AsH3 to a small reflective cell located atop a photomultiplier tube, allowing it to react with ozone generated from ambient air, and measuring the intense chemiluminescence that results. Arsine generation and removal from solution results in isolation from the sample matrix, avoiding the pitfalls encountered in some solution-based analysis techniques. The differential determination of As(III) and As(V) is based on the different pH dependence of the reducibility of these species to AsH3. At pH ???1, both As(III) and As(V) are quantitatively converted to arsine in the presence of NaBH4. At a pH of 4-5, only As(III) is converted to arsine. In the present form, the limit of detection (S/N = 3) is 0.05 ??g/L As at pH ???1 and 0.09 ??g/L As(III) at pH ???4-5 for a 3-mL sample. The analyzer is intrinsically automated and requires 4 min per determination. It is also possible to determine As(III) first at pH 4.5 and then determine the remaining As in a sequential manner; this requires 6 min. There are no significant practical interferences. A new borohydride solution formulation permits month-long reagent stability. ?? 2006 American Chemical Society.

  13. Doping control for metandienone using hair analyzed by gas chromatography-tandem mass spectrometry.

    PubMed

    Bresson, Marie; Cirimele, Vincent; Villain, Marion; Kintz, Pascal

    2006-05-19

    A sensitive, specific and reproducible method for the quantitative determination of the anabolic metandienone in human hair has been developed. The preparation involved a decontamination step with methylene chloride. The hair sample (about 50 mg) was solubilised in 1 ml 1 M NaOH, 10 min at 95 degrees C, in presence of 2 ng of nandrolone-d(3) used as internal standard. The homogenate was neutralized and extracted using consecutively a solid-phase extraction (Isolute C(18) eluted with methanol) and a liquid-liquid extraction with pentane. The residue was derivatized by adding 5 microl MSTFA/NH(4)I/2-mercaptoethanol (250 microl; 5 mg; 15 microl) and 45 microl MSTFA, then incubated for 20 min at 60 degrees C. A 1 microl aliquot of derivatized extract was injected into the column (HP5-MS capillary column, 5% phenyl-95% methylsiloxane, 30 m x 0.32 mm i.d., 0.25 microm film thickness) of a Hewlett Packard (Palo Alto, CA, USA) gas chromatograph (6890 Series). Metandienone was identified using three transitions (its daughter ions at m/z 339 and 206 for the parent 444 and 191 for 206) using a Waters Quattro Micro MS-MS system. The transition m/z 444 to 206 has been used as quantification transition and the others as identification transitions. The assay was capable of detecting 2 pg/mg of metandienone when approximately 50 mg of hair material was processed. Linearity was observed for metandienone concentrations ranging from 2 to 500 pg/mg with a correlation coefficient of 0.9997. Intra-day and between-day precisions at 50 pg/mg were 13.4-16.5% and 22.0%, respectively, with an extraction recovery of 48%. The analysis of hair, cut into four segments, obtained from an athlete, revealed the presence of metandienone at the concentrations of 78, 7, 10 and 108 pg/mg in each segment of hair (0-1, 1-2, 2-3 and 3 cm to the tip). PMID:16597518

  14. Determination of cyanide in blood by reaction head-space gas chromatography.

    PubMed

    Felby, Søren

    2009-01-01

    A method describing determination of cyanide in blood by head-space gas chromatography with electron capture detector was reported. The method involves transformation of cyanide into cyanogen chloride by reacting hydrogen cyanide with chloramine-T on a stick of filter paper in the space above the blood in the head-space vial. The recovery was 84-96% and the coefficient of variation was 3.3-7.2%. The limit of quantitation was about 0.01 mg cyanide/l.

  15. Determination of dimethyl sulphide in blood and adipose tissue by headspace gas analysis.

    PubMed

    Terazawa, K; Kaji, H; Akabane, H; Takatori, T

    1991-04-19

    A method for the headspace analysis of dimethyl sulphide in blood and adipose tissue has been established. Blood (0.2 ml) or adipose tissue (0.5 g) with added dimethyl sulphide was sealed in a 10-ml vial using PTFE sheet to prevent escape of dimethyl sulphide from the headspace. Equilibration was performed at 60 degrees C for 4 h, and 20 microliters of gaseous phase sampled from the headspace was subjected to gas chromatography (with flame photometric detection). Calibration curves were prepared for the two samples. Linearity was observed in the range from 5-10 micrograms to 2 mg.

  16. Value of Arterialized Capillary Blood Gas Analysis in Lower Respiratory Tract Infection in Childhood

    PubMed Central

    Doig, W. B.

    1971-01-01

    Blood gas analysis on arterialized capillary blood in 70 young infants yielded satisfactory information about oxygen therapy. Inspired oxygen concentrations above 40% are often required to raise the capillary Po2 of hypoxic infants above 70 mmHg. Oxygen concentrations above 40% are difficult to achieve and maintain in presently available oxygen tents, though not in modern incubators, or oxygen chairs. A raised Pco2 has frequently been found in infants with severe respiratory infections, but oxygen therapy has not resulted in CO2 narcosis in these acute emergencies. PMID:5090657

  17. Surftherm: A program to analyze thermochemical and kinetic data in gas-phase and surface chemical reaction mechanisms

    SciTech Connect

    Coltrin, M.E.; Moffat, H.K.

    1994-06-01

    This report documents the Surftherm program that analyzes transport coefficient, thermochemical- and kinetic rate information in complex gas-phase and surface chemical reaction mechanisms. The program is designed for use with the Chemkin (gas-phase chemistry) and Surface Chemkin (heterogeneous chemistry) programs. It was developed as a ``chemist`s companion`` in using the Chemkin packages with complex chemical reaction mechanisms. It presents in tabular form detailed information about the temperature and pressure dependence of chemical reaction rate constants and their reverse rate constants, reaction equilibrium constants, reaction thermochemistry, chemical species thermochemistry and transport properties. This report serves as a user`s manual for use of the program, explaining the required input and the output.

  18. A comprehensive two-dimensional gas chromatography method for analyzing extractable petroleum hydrocarbons in water and soil.

    PubMed

    Seeley, Stacy K; Bandurski, Steven V; Brown, Robert G; McCurry, James D; Seeley, John V

    2007-01-01

    A flow-switching two-dimensional gas chromatography (GCxGC) apparatus has been constructed that can operate at temperatures as high as 340 degrees C. This system is employed to analyze complex hydrocarbon mixtures such as diesel fuel, gas-oil, motor oil, and petroleum contaminated environmental samples. The GCxGC system generates two-dimensional chromatograms with minimal overlap between the aliphatic and aromatic regions This allows these compound classes to be independently quantitated without prior fractionation. The GCxGC system is used to analyze extracts of spiked water samples, wastewater, and soil. The accuracy of the method is compared to that of the Massachusetts Extractable Petroleum Hydrocarbons (MA EPH) method. The GCxGC system generates a quantitative accuracy similar to the MA EPH method for the analysis of spiked water samples. The GCxGC method and the MA EPH method generate comparable levels of total hydrocarbons when wastewater is analyzed, but the GCxGC method detects a significantly higher aromatic content and lower aliphatic content. Both the GCxGC method and MA EPH method measure comparable levels of aromatics in the soil samples. PMID:18078573

  19. Quantitation of dissolved gas content in emulsions and in blood using mass spectrometric detection.

    PubMed

    Grimley, Everett; Turner, Nicole; Newell, Clayton; Simpkins, Cuthbert; Rodriguez, Juan

    2011-06-01

    Quantitation of dissolved gases in blood or in other biological media is essential for understanding the dynamics of metabolic processes. Current detection techniques, while enabling rapid and convenient assessment of dissolved gases, provide only direct information on the partial pressure of gases dissolved in the aqueous fraction of the fluid. The more relevant quantity known as gas content, which refers to the total amount of the gas in all fractions of the sample, can be inferred from those partial pressures, but only indirectly through mathematical modeling. Here we describe a simple mass spectrometric technique for rapid and direct quantitation of gas content for a wide range of gases. The technique is based on a mass spectrometer detector that continuously monitors gases that are rapidly extracted from samples injected into a purge vessel. The accuracy and sample processing speed of the system is demonstrated with experiments that reproduce within minutes literature values for the solubility of various gases in water. The capability of the technique is further demonstrated through accurate determination of O(2) content in a lipid emulsion and in whole blood, using as little as 20 μL of sample. The approach to gas content quantitation described here should greatly expand the range of animals and conditions that may be used in studies of metabolic gas exchange, and facilitate the development of artificial oxygen carriers and resuscitation fluids.

  20. Optimization of an enclosed gas analyzer sampling system for measuring eddy covariance fluxes of H2O and CO2

    NASA Astrophysics Data System (ADS)

    Metzger, Stefan; Burba, George; Burns, Sean P.; Blanken, Peter D.; Li, Jiahong; Luo, Hongyan; Zulueta, Rommel C.

    2016-03-01

    Several initiatives are currently emerging to observe the exchange of energy and matter between the earth's surface and atmosphere standardized over larger space and time domains. For example, the National Ecological Observatory Network (NEON) and the Integrated Carbon Observing System (ICOS) are set to provide the ability of unbiased ecological inference across ecoclimatic zones and decades by deploying highly scalable and robust instruments and data processing. In the construction of these observatories, enclosed infrared gas analyzers are widely employed for eddy covariance applications. While these sensors represent a substantial improvement compared to their open- and closed-path predecessors, remaining high-frequency attenuation varies with site properties and gas sampling systems, and requires correction. Here, we show that components of the gas sampling system can substantially contribute to such high-frequency attenuation, but their effects can be significantly reduced by careful system design. From laboratory tests we determine the frequency at which signal attenuation reaches 50 % for individual parts of the gas sampling system. For different models of rain caps and particulate filters, this frequency falls into ranges of 2.5-16.5 Hz for CO2, 2.4-14.3 Hz for H2O, and 8.3-21.8 Hz for CO2, 1.4-19.9 Hz for H2O, respectively. A short and thin stainless steel intake tube was found to not limit frequency response, with 50 % attenuation occurring at frequencies well above 10 Hz for both H2O and CO2. From field tests we found that heating the intake tube and particulate filter continuously with 4 W was effective, and reduced the occurrence of problematic relative humidity levels (RH > 60 %) by 50 % in the infrared gas analyzer cell. No further improvement of H2O frequency response was found for heating in excess of 4 W. These laboratory and field tests were reconciled using resistor-capacitor theory, and NEON's final gas sampling system was developed on this

  1. Method to synthesize polynomial current waveforms and intensity compensation functions for DFB lasers in digital sweep integration gas analyzers.

    PubMed

    Kidd, Gary

    2002-09-01

    With analysis methods using digital sweep integration of the absorbance function, linear current ramps can produce non-linear laser intensity and wavenumber functions from distributed feedback lasers. These non-linear functions produce offset and gain errors in mole fraction estimates on tunable diode laser gas analyzers. A method is described to synthesize polynomial current waveforms and laser intensity compensation functions to give linear wavenumber functions and to minimize the offset error. Quantitative and qualitative results are presented to evaluate reduction in mole fraction errors.

  2. A Volatile Organic Analyzer for Space Station - Description and evaluation of a gas chromatography/ion mobility spectrometer

    NASA Technical Reports Server (NTRS)

    Limero, Thomas; Brokenshire, John; Cumming, Colin; Overton, ED; Carney, Ken; Cross, Jay; Eiceman, Gary; James, John

    1992-01-01

    An on-board Volatile Organic Analyzer (VOA), an essential component of the Environmental Health System (EHS) air-quality monitoring strategy, is described. The strategy is aimed at warning the crew and ground personnel if volatile compounds exceed safe exposure limits. The VOA uses a combination of gas chromatography (GC) and ion-mobility spectrometry (IMS) for environmental monitoring and analysis. It is concluded that the VOA dual-mode detection capability and the ion mobilities in the drift region are unique features that can assist in the resolution of coeluting GC peaks. The VOA is capable of accurately identifying and quantifying target compounds in a complex mixture.

  3. Robotic Arm Camera Image of the South Side of the Thermal and Evolved-Gas Analyzer (Door TA4

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Thermal and Evolved-Gas Analyzer (TEGA) instrument aboard NASA's Phoenix Mars Lander is shown with one set of oven doors open and dirt from a sample delivery. After the 'seventh shake' of TEGA, a portion of the dirt sample entered the oven via a screen for analysis. This image was taken by the Robotic Arm Camera on Sol 18 (June 13, 2008), or 18th Martian day of the mission.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  4. [Evaluation of the heterogeneous immunoassay (ACMIA) for the measurement of blood cyclosporin on the Behring dimension RXL clinical chemistry analyzer].

    PubMed

    Morand, K; Huet, E; Blanchet, B; Astier, A; Hulin, A

    2003-01-01

    We propose an evaluation of a new heterogeneous immunoassay of cyclosporin on RXL HM Dimension (Dade Behring) for therapeutic cyclosporin monitoring in whole-blood patients transplant. The pretreatment step is performed automatically into the apparatus while it is a manual step with EMIT. Linearity, intra- and inter-day precision, limit of quantification, precision and accuracy of dilution steps and stability into the equipment were studied. We realized the comparison between ACMIA and EMIT methods on whole-blood patients transplant recipients. Heterogeneous immunoassay showed a good linearity between 0 and 500 ng/mL, intra- and inter-day precision with coefficient of variation inferior to 7.2%. We observed reproducible and accurate dilutions of high concentrations (500 to 2,000 ng/mL). The correlation with EMIT technique was correct for different type of transplant (n=55).

  5. 20 CFR Appendix C to Part 718 - Blood-Gas Tables

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...,999 feet above sea level: Arterial PCO2 (mm Hg) Arterial PO2 equal to or less than (mm Hg) 25 or below... above sea level: Arterial PCO2 (mm Hg) Arterial PO2 equal to or less than (mm Hg) 25 or below 70 26 69... Any value. (3) For arterial blood-gas studies performed at test sites 6,000 feet or more above...

  6. Effects of gravity and blood volume shifts on cardiogenic oscillations in respired gas.

    PubMed

    Montmerle, Stéphanie; Linnarsson, Dag

    2005-09-01

    During the cardiac cycle, cardiogenic oscillations of expired gas (x) concentrations (COS([x])) are generated. At the same time, there are heart-synchronous cardiogenic oscillations of airway flow (COS(flow)), where inflow occurs during systole. We hypothesized that both phenomena, although primarily generated by the heartbeat, would react differently to the cephalad blood shift caused by inflation of an anti-gravity (anti-G) suit and to changes in gravity. Twelve seated subjects performed a rebreathing-breath-holding-expiration maneuver with a gas mixture containing O2 and He at normal (1 G) and moderately increased gravity (2 G); an anti-G suit was inflated to 85 mmHg in each condition. When the anti-G suit was inflated, COS(flow) amplitude increased (P = 0.0028) at 1 G to 186% of the control value without inflation (1-G control) and at 2 G to 203% of the control value without inflation (2-G control). In contrast, the amplitude of COS of the concentration of the blood-soluble gas O2 (COS([O2/He])), an index of the differences in pulmonary perfusion between lung units, declined to 75% of the 1-G control value and to 74% of the 2-G control value (P = 0.0030). There were no significant changes in COS(flow) or COS([O2/He]) amplitudes with gravity. We conclude that the heart-synchronous mechanical agitation of the lungs, as expressed by COS(flow), is highly dependent on peripheral-to-central blood shifts. In contrast, COS([blood-soluble gas]) appears relatively independent of this mechanical agitation and seems to be determined mainly by differences in intrapulmonary perfusion.

  7. Alterations in acid-base status and blood gas dynamics during progressive hyperkalaemia in neonatal calves.

    PubMed

    Singh, A; Randhawa, S S; Setia, M S

    1989-03-01

    Alterations in acid-base status and blood-gas dynamics were studied during induced progressive hyperkalaemia in neonatal calves. The hyperkalaemia was associated initially with respiratory alkalosis in arterial blood when plasma K+ was increased to 6.08 +/- 1.02 mmol litre-1. The rise of plasma K+ above 6.08 +/- 1.02 mmol litre-1 led to the development of metabolic acidosis in arterial and venous blood. There was partial respiratory compensation. Plasma K+ concentrations at or above 11.03 +/- 0.34 mmol litre-1 were associated with a decrease in arterial oxygen tension and arterial oxygen saturation. The oxygen extraction ratio was increased during hyperkalaemia.

  8. Graphical arterial blood gas visualization tool supports rapid and accurate data interpretation.

    PubMed

    Doig, Alexa K; Albert, Robert W; Syroid, Noah D; Moon, Shaun; Agutter, Jim A

    2011-04-01

    A visualization tool that integrates numeric information from an arterial blood gas report with novel graphics was designed for the purpose of promoting rapid and accurate interpretation of acid-base data. A study compared data interpretation performance when arterial blood gas results were presented in a traditional numerical list versus the graphical visualization tool. Critical-care nurses (n = 15) and nursing students (n = 15) were significantly more accurate identifying acid-base states and assessing trends in acid-base data when using the graphical visualization tool. Critical-care nurses and nursing students using traditional numerical data had an average accuracy of 69% and 74%, respectively. Using the visualization tool, average accuracy improved to 83% for critical-care nurses and 93% for nursing students. Analysis of response times demonstrated that the visualization tool might help nurses overcome the "speed/accuracy trade-off" during high-stress situations when rapid decisions must be rendered. Perceived mental workload was significantly reduced for nursing students when they used the graphical visualization tool. In this study, the effects of implementing the graphical visualization were greater for nursing students than for critical-care nurses, which may indicate that the experienced nurses needed more training and use of the new technology prior to testing to show similar gains. Results of the objective and subjective evaluations support the integration of this graphical visualization tool into clinical environments that require accurate and timely interpretation of arterial blood gas data.

  9. The Search for Water and Other Volatiles in Martian Surface Materials: The Thermal Evolved Gas Analyzer (TEGA)

    NASA Technical Reports Server (NTRS)

    Ming, D. W.; Boynton, W. V.; Musselwhite, D. S.; Bailey, S. H.; Bode, R. C.; Quadlander, G.; Kerry, K. E.; Ward, M. G.; Lorenz, R. D.; Pathare, A. V.

    2000-01-01

    Volatile-bearing minerals and phases (e.g., Fe-oxyhydroxides, phyllosilicates, carbonates, sulfates, palagonites, glasses) may be important components of the Martian regolith. However, essentially no information exists on the mineralogical composition of volatile-bearing phases in the regolith. The Thermal Evolved Gas Analyzer (TEGA), which was part of the Mars Polar Lander payload, was to determine the abundances of two of the most important volatile compounds (i.e., water and carbon dioxide) in the martian soil and to identify the minerals or phases that harbor these volatiles. The TEGA instrument was composed of a differential scanning calorimeter (DSC) interfaced with evolved gas analysis (EGA). The EGA consisted of a Herriott cell of a tunable-diode laser (TDL) spectrometer that determines CO2 and H2O abundances. The sample chamber was to operate at about 100 mbar (-76 torr) with a N2 carrier gas flow of 0.4 sccm. Specifications of TEGA are described in detail elsewhere in this volume.

  10. Measuring the level of agreement between a veterinary and a human point-of-care glucometer and a laboratory blood analyzer in Hispaniolan Amazon parrots (Amazona ventralis).

    PubMed

    Acierno, Mark J; Schnellbacher, Rodney; Tully, Thomas N

    2012-12-01

    Although abnormalities in blood glucose concentrations in avian species are not as common as they are in mammals, the inability to provide point-of-care glucose measurement likely results in underreporting and missed treatment opportunities. A veterinary glucometer that uses different optimization codes for specific groups of animals has been produced. To obtain data for a psittacine bird-specific optimization code, as well as to calculate agreement between the veterinary glucometer, a standard human glucometer, and a laboratory analyzer, blood samples were obtained from 25 Hispaniolan Amazon parrots (Amazona ventralis) in a 2-phase study. In the initial phase, blood samples were obtained from 20 parrots twice at a 2-week interval. For each sample, the packed cell volume was determined, and the blood glucose concentration was measured by the veterinary glucometer. The rest of each sample was placed into a lithium heparin microtainer tube and centrifuged, and plasma was removed and frozen at -30 degrees C. Within 5 days, tubes were thawed, and blood glucose concentrations were measured with a laboratory analyzer. The data from both procedures were used to develop a psittacine bird-specific code. For the second phase of the study, the same procedure was repeated twice at a 2-week interval in 25 birds to determine agreement between the veterinary glucometer, a standard human glucometer, and a laboratory analyzer. Neither glucometer was in good agreement with the laboratory analyzer (veterinary glucometer bias, 9.0; level of agreement, -38.1 to 56.2; standard glucometer bias, 69.4; level of agreement -17.8 to 156.7). Based on these results, the use of handheld glucometers in the diagnostic testing of Hispaniolan Amazon parrots and other psittacine birds cannot be recommended.

  11. Analyzer for measurement of nitrogen oxide concentration by ozone content reduction in gas using solid state chemiluminescent sensor

    NASA Astrophysics Data System (ADS)

    Chelibanov, V. P.; Ishanin, G. G.; Isaev, L. N.

    2014-05-01

    Role of nitrogen oxide in ambient air is described and analyzed. New method of nitrogen oxide concentration measurement in gas phase is suggested based on ozone concentration measurement with titration by nitrogen oxide. Research of chemiluminescent sensor composition is carried out on experimental stand. The sensor produced on the base of solid state non-activated chemiluminescent composition is applied as ozone sensor. Composition is put on the surface of polymer matrix with developed surface. Sensor compositions includes gallic acid with addition of rodamine-6G. Model of interaction process between sensor composition and ozone has been developed, main products appeared during reaction are identified. The product determining the speed of luminescense appearance is found. This product belongs to quinone class. Then new structure of chemiluminescent composition was suggested, with absence of activation period and with high stability of operation. Experimental model of gas analyzer was constructed and operation algorithm was developed. It was demonstrated that developed NO measuring instrument would be applied for monitoring purposes of ambient air. This work was partially financially supported by Government of Russian Federation, Grant 074-U01

  12. Blood cyanide determination in two cases of fatal intoxication: comparison between headspace gas chromatography and a spectrophotometric method.

    PubMed

    Gambaro, Veniero; Arnoldi, Sebastiano; Casagni, Eleonora; Dell'acqua, Lucia; Pecoraro, Chiara; Froldi, Rino

    2007-11-01

    Blood samples of two cases were analyzed preliminarily by a classical spectrophotometric method (VIS) and by an automated headspace gas chromatographic method with nitrogen-phosphorus detector (HS-GC/NPD). In the former, hydrogen cyanide (HCN) was quantitatively determined by measuring the absorbance of chromophores forming as a result of interaction with chloramine T. In the automated HS-GC/NPD method, blood was placed in a headspace vial, internal standard (acetonitrile) and acetic acid were then added. This resulted in cyanide being liberated as HCN. The spectrophotometric (VIS) and HS-GC/NPD methods were validated on postmortem blood samples fortified with potassium cyanide in the ranges 0.5-10 and 0.05-5 mug/mL, respectively. Detection limits were 0.2 mug/mL for VIS and 0.05 mug/mL for HS-GC/NPD. This work shows that results obtained by means of the two procedures were insignificantly different and that they compared favorably. They are suitable for rapid diagnosis of cyanide in postmortem cases.

  13. Analyzing the adsorption of blood plasma components by means of fullerene-containing silica gels and NMR spectroscopy in solids

    NASA Astrophysics Data System (ADS)

    Melenevskaya, E. Yu.; Mokeev, M. V.; Nasonova, K. V.; Podosenova, N. G.; Sharonova, L. V.; Gribanov, A. V.

    2012-10-01

    The results from studying the adsorption of blood plasma components (e.g., protein, triglycerides, cholesterol, and lipoproteins of low and high density) using silica gels modified with fullerene molecules (in the form of C60 or the hydroxylated form of C60(OH) x ) and subjected to hydration (or, alternatively, dehydration) are presented. The conditions for preparing adsorbents that allow us to control the adsorption capacity of silica gel and the selectivity of adsorption toward the components of blood plasma, are revealed. The nature and strength of the interactions of the introduced components (fullerene molecules and water) with functional groups on the silica surface are studied by means of solid state NMR spectroscopy (NMR-SS). Conclusions regarding the nature of the centers that control adsorption are drawn on the basis of NMR-SS spectra in combination with direct measurements of adsorption. The interaction of the oxygen of the hydroxyl group of silica gel with fullerene, leading to the formation of electron-donor complexes of C60-H, C60-OH, or C60-OSi type, is demonstrated by the observed changes in the NMR-SS spectra of silica gels in the presence of fullerene.

  14. Reference range evaluation of complete blood count parameters with emphasis on newer research parameters on the complete blood count analyzer Sysmex XE-2100.

    PubMed

    Sehgal, Kunal K; Tina, Dadu; Choksey, Urmi; Dalal, Reeta J; Shanaz, Khodaiji J

    2013-01-01

    Since the advent of automation in the field of hematological cell counters there has been a constant refinement of the technology and increase in the number of newer parameters available on CBC analysers. Many novel parameters are being put into routine clinical use and both clinical evaluation and monitoring critically depend on knowledge of laboratory reference ranges. Here, we present reference interval for the Sysmex XE-2100, with emphasis on the novel or newer research parameters. Blood samples from a total of 122 clinically asymptomatic and apparently healthy subjects were evaluated and a final of 100 subjects (54-M, 46-F) were included in the study. A broad spectrum of parameters available with the analyser was assessed and reference ranges for the same evaluated. PMID:24056647

  15. Blood substitutes: evolution from noncarrying to oxygen- and gas-carrying fluids.

    PubMed

    Cabrales, Pedro; Intaglietta, Marcos

    2013-01-01

    The development of oxygen (O2)-carrying blood substitutes has evolved from the goal of replicating blood O2 transport properties to that of preserving microvascular and organ function, reducing the inherent or potential toxicity of the material used to carry O2, and treating pathologies initiated by anemia and hypoxia. Furthermore, the emphasis has shifted from blood replacement fluid to "O2 therapeutics" that restore tissue oxygenation to specific tissues regions. This review covers the different alternatives, potential and limitations of hemoglobin-based O2 carriers (HBOCs) and perfluorocarbon-based O2 carriers (PFCOCs), with emphasis on the physiologic conditions disturbed in the situation that they will be used. It describes how concepts learned from plasma expanders without O2-carrying capacity can be applied to maintain O2 delivery and summarizes the microvascular responses due to HBOCs and PFCOCs. This review also presents alternative applications of HBOCs and PFCOCs namely: 1) How HBOC O2 affinity can be engineered to target O2 delivery to hypoxic tissues; and 2) How the high gas solubility of PFCOCs provides new opportunities for carrying, dissolving, and delivering gases with biological activity. It is concluded that the development of current blood substitutes has amplified their applications horizon by devising therapeutic functions for O2 carriers requiring limited O2 delivery capacity restoration. Conversely, full, blood-like O2-carrying capacity reestablishment awaits the control of O2 carrier toxicity.

  16. BLOOD SUBSTITUTES: EVOLUTION FROM NON-CARRYING TO OXYGEN AND GAS CARRYING FLUIDS

    PubMed Central

    Cabrales, Pedro; Intaglietta, Marcos

    2013-01-01

    The development of oxygen (O2) carrying blood substitutes has evolved from the goal of replicating blood O2 transports properties to that of preserving microvascular and organ function, reducing the inherent or potential toxicity of the material used to carry O2, and treating pathologies initiated by anemia and hypoxia. Furthermore, the emphasis has shifted from blood replacement fluid to “O2 therapeutics” that restore tissue oxygenation to specific tissues regions. This review covers the different alternatives, potential and limitations of hemoglobin based O2 carriers (HBOCs) and perfluorocarbon based O2 carriers (PFCOCs), with emphasis on the physiological conditions disturbed in the situation that they will be used. It describes how concepts learned from plasma expanders without O2 carrying capacity can be applied to maintain O2 delivery and summarizes the microvascular responses due to HBOCs and PFCOCs. This review also presents alternative applications of HBOCs and PFCOCs namely: 1) How HBOC O2 affinity can be engineered to target O2 delivery to hypoxic tissues; and 2) How the high gas solubility of PFCOCs provides new opportunities for carrying, dissolving and delivering gases with biological activity. It is concluded that current blood substitutes development has amplified their applications horizon by devising therapeutic functions for oxygen carriers requiring limited O2 delivery capacity restoration. Conversely, full, blood-like O2 carrying capacity re-establishment awaits control of O2 carrier toxicity. PMID:23820271

  17. Determination of dimethyl trisulfide in rabbit blood using stir bar sorptive extraction gas chromatography-mass spectrometry.

    PubMed

    Manandhar, Erica; Maslamani, Nujud; Petrikovics, Ilona; Rockwood, Gary A; Logue, Brian A

    2016-08-26

    Cyanide poisoning by accidental or intentional exposure poses a severe health risk. The current Food and Drug Administration approved antidotes for cyanide poisoning can be effective, but each suffers from specific major limitations concerning large effective dosage, delayed onset of action, or dependence on enzymes generally confined to specific organs. Dimethyl trisulfide (DMTS), a sulfur donor that detoxifies cyanide by converting it into thiocyanate (a relatively nontoxic cyanide metabolite), is a promising next generation cyanide antidote. Although a validated analytical method to analyze DMTS from any matrix is not currently available, one will be vital for the approval of DMTS as a therapeutic agent against cyanide poisoning. Hence, a stir bar sorptive extraction (SBSE) gas chromatography - mass spectrometry (GC-MS) method was developed and validated for the analysis of DMTS from rabbit whole blood. Following acid denaturation of blood, DMTS was extracted into a polydimethylsiloxane-coated stir bar. The DMTS was then thermally desorbed from the stir bar and analyzed by GC-MS. The limit of detection of DMTS using this method was 0.06μM with dynamic range from 0.5-100μM. For quality control standards, the precision, as measured by percent relative standard deviation, was below 10%, and the accuracy was within 15% of the nominal concentration. The method described here will allow further investigations of DMTS as a promising antidote for cyanide poisoning.

  18. Rare cancer cell analyzer for whole blood applications: automated nucleic acid purification in a microfluidic disposable card.

    PubMed

    Kokoris, M; Nabavi, M; Lancaster, C; Clemmens, J; Maloney, P; Capadanno, J; Gerdes, J; Battrell, C F

    2005-09-01

    One current challenge facing point-of-care cancer detection is that existing methods make it difficult, time consuming and too costly to (1) collect relevant cell types directly from a patient sample, such as blood and (2) rapidly assay those cell types to determine the presence or absence of a particular type of cancer. We present a proof of principle method for an integrated, sample-to-result, point-of-care detection device that employs microfluidics technology, accepted assays, and a silica membrane for total RNA purification on a disposable, credit card sized laboratory-on-card ('lab card") device in which results are obtained in minutes. Both yield and quality of on-card purified total RNA, as determined by both LightCycler and standard reverse transcriptase amplification of G6PDH and BCR-ABL transcripts, were found to be better than or equal to accepted standard purification methods. PMID:16199179

  19. The effects of cytochalasin D and abciximab on hemostasis in canine whole blood assessed by thromboelastography and the PFA-100® platelet function analyzer system.

    PubMed

    Brainard, Benjamin M; Abed, Janan M; Koenig, Amie

    2011-07-01

    The selective inhibition of platelet function in whole blood coagulation testing may allow insights into the nature of hypercoagulability in dogs with critical illness. To determine the effects of cytochalasin D and abciximab on hemostatic parameters in canine citrated whole blood, an in-vitro study was designed using thromboelastography (TEG) and a platelet function analyzer (PFA-100®). 8 clinically healthy mixed breed dogs donated blood that was anticoagulated with 3.2% sodium citrate in a 9:1 blood-to-citrate ratio. Addition of cytochalasin D to citrated whole blood from 6 dogs at concentrations ranging from 0 µg/ml to 10 µg/ml caused a maximal reduction of TEG maximum amplitude (MA) at a concentration of 7.5 µg/ml (52.7 ± 4.3 to 14.3 ± 7.8 mm). Addition of abciximab to canine citrated whole blood at concentrations of either 20 µg/ml or 40 µg/ml did not affect the TEG tracing; however, addition of abciximab to citrated canine whole blood at concentrations of 10 µg/ml and 20 µg/ml significantly prolonged PFA-100 closure times (72.5 ± 15 to 149.2 ± 91 sec and 275.6 ± 54 sec, respectively, P < 0.04). Inhibition of canine platelet function by cytochalasin D is demonstrated by TEG, but abciximab did not change TEG tracings. Abciximab does, however, inhibit platelet aggregation under shear stress as measured by the PFA-100. Inhibition of canine platelet function with cytochalasin D may allow further TEG studies in dogs with clinical disease.

  20. Evolution of bubbles from gas micronuclei formed on the luminal aspect of ovine large blood vessels.

    PubMed

    Arieli, R; Marmur, A

    2013-08-01

    It has been shown that tiny gas nanobubbles form spontaneously on a smooth hydrophobic surface submerged in water. These nanobubbles were shown to be the source of gas micronuclei from which bubbles evolved during decompression of silicon wafers. We suggest that the hydrophobic inner surface of blood vessels may be a site of nanobubble production. Sections from the right and left atria, pulmonary artery and vein, aorta, and superior vena cava of sheep (n=6) were gently stretched on microscope slides and exposed to 1013 kPa for 18 h. Hydrophobicity was checked in the six blood vessels by advancing contact angle with a drop of saline of 71±19°, with a maximum of about 110±7° (mean±SD). Tiny bubbles ~30 μm in diameter rose vertically from the blood vessels and grew on the surface of the saline, where they were photographed. All of the blood vessels produced bubbles over a period of 80 min. The number of bubbles produced from a square cm was: in the aorta, 20.5; left atrium, 27.3; pulmonary artery, 17.9; pulmonary vein, 24.3; right atrium, 29.5; superior vena cava, 36.4. More than half of the bubbles were present for less than 2 min, but some remained on the saline-air interface for as long as 18 min. Nucleation was evident in both the venous (superior vena cava, pulmonary artery, right atrium) and arterial (aorta, pulmonary vein, left atrium) blood vessels. This newly suggested mechanism of nucleation may be the main mechanism underlying bubble formation on decompression.

  1. Assessing blood brain barrier dynamics or identifying or measuring selected substances, including ethanol or toxins, in a subject by analyzing Raman spectrum signals

    NASA Technical Reports Server (NTRS)

    Lambert, James L. (Inventor); Borchert, Mark S. (Inventor)

    2008-01-01

    A non-invasive method for analyzing the blood-brain barrier includes obtaining a Raman spectrum of a selected portion of the eye and monitoring the Raman spectrum to ascertain a change to the dynamics of the blood brain barrier.Also, non-invasive methods for determining the brain or blood level of an analyte of interest, such as glucose, drugs, alcohol, poisons, and the like, comprises: generating an excitation laser beam at a selected wavelength (e.g., at a wavelength of about 400 to 900 nanometers); focusing the excitation laser beam into the anterior chamber of an eye of the subject so that aqueous humor, vitreous humor, or one or more conjunctiva vessels in the eye is illuminated; detecting (preferably confocally detecting) a Raman spectrum from the illuminated portion of the eye; and then determining the blood level or brain level (intracranial or cerebral spinal fluid level) of an analyte of interest for the subject from the Raman spectrum. In certain embodiments, the detecting step may be followed by the step of subtracting a confounding fluorescence spectrum from the Raman spectrum to produce a difference spectrum; and determining the blood level and/or brain level of the analyte of interest for the subject from that difference spectrum, preferably using linear or nonlinear multivariate analysis such as partial least squares analysis. Apparatus for carrying out the foregoing methods are also disclosed.

  2. Assessing blood brain barrier dynamics or identifying or measuring selected substances or toxins in a subject by analyzing Raman spectrum signals of selected regions in the eye

    NASA Technical Reports Server (NTRS)

    Lambert, James L. (Inventor); Borchert, Mark S. (Inventor)

    2003-01-01

    A non-invasive method for analyzing the blood-brain barrier includes obtaining a Raman spectrum of a selected portion of the eye and monitoring the Raman spectrum to ascertain a change to the dynamics of the blood brain barrier. Also, non-invasive methods for determining the brain or blood level of an analyte of interest, such as glucose, drugs, alcohol, poisons, and the like, comprises: generating an excitation laser beam (e.g., at a wavelength of 600 to 900 nanometers); focusing the excitation laser beam into the anterior chamber of an eye of the subject so that aqueous humor, vitreous humor, or one or more conjunctiva vessels in the eye is illuminated; detecting (preferably confocally detecting) a Raman spectrum from the illuminated portion of the eye; and then determining the blood level or brain level (intracranial or cerebral spinal fluid level) of an analyte of interest for the subject from the Raman spectrum. In certain embodiments, the detecting step may be followed by the step of subtracting a confounding fluorescence spectrum from the Raman spectrum to produce a difference spectrum; and determining the blood level and/or brain level of the analyte of interest for the subject from that difference spectrum, preferably using linear or nonlinear multivariate analysis such as partial least squares analysis. Apparatus for carrying out the foregoing methods are also disclosed.

  3. Comparing laser-based open- and closed-path gas analyzers to measure methane fluxes using the eddy covariance method

    USGS Publications Warehouse

    Detto, M.; Verfaillie, J.; Anderson, F.; Xu, L.; Baldocchi, D.

    2011-01-01

    Closed- and open-path methane gas analyzers are used in eddy covariance systems to compare three potential methane emitting ecosystems in the Sacramento-San Joaquin Delta (CA, USA): a rice field, a peatland pasture and a restored wetland. The study points out similarities and differences of the systems in field experiments and data processing. The closed-path system, despite a less intrusive placement with the sonic anemometer, required more care and power. In contrast, the open-path system appears more versatile for a remote and unattended experimental site. Overall, the two systems have comparable minimum detectable limits, but synchronization between wind speed and methane data, air density corrections and spectral losses have different impacts on the computed flux covariances. For the closed-path analyzer, air density effects are less important, but the synchronization and spectral losses may represent a problem when fluxes are small or when an undersized pump is used. For the open-path analyzer air density corrections are greater, due to spectroscopy effects and the classic Webb-Pearman-Leuning correction. Comparison between the 30-min fluxes reveals good agreement in terms of magnitudes between open-path and closed-path flux systems. However, the scatter is large, as consequence of the intensive data processing which both systems require. ?? 2011.

  4. Dependence of phrenic motoneurone output on the oscillatory component of arterial blood gas composition.

    PubMed Central

    Cross, B A; Grant, B J; Guz, A; Jones, P W; Semple, S J; Stidwill, R P

    1979-01-01

    1. The hypothesis that respiratory oscillations of arterial blood gas composition influence ventilation has been examined. 2. Phrenic motoneurone output recorded in the C5 root of the left phrenic nerve and the respiratory oscillations of arterial pH in the right common carotid artery were measured in vagotomized anaesthetized dogs which had been paralysed and artificially ventilated. 3. The effect of a change in tidal volume for one or two breaths on phrenic motoneurone output was measured with the inspiratory pump set at a constant frequency similar to, and in phase with, the animal's own respiratory frequency. A reduction of tidal volume to zero or an increase by 30% led to a corresponding change of mean carotid artery pH level. The changes of carotid artery pH resulted in a change of phrenic motoneurone output, predominantly of expiratory time (Te) but to a lesser extent of inspiratory time (T1) and also peak amplitude of 'integrated' phrenic motoneurone output (Phr). Denervation of the carotid bifurcation blocked this response. 4. The onset of movement of the inspiratory pump was triggered by the onset of phrenic motoneurone output. When a time delay was interposed between them, the phase relationship between respiratory oscillations of arterial pH and phrenic motoneurone output altered. The dominant effect was to alter Te; smaller and less consistent changes of Phr and T1 were observed. 5. When the inspiratory pump was maintained at a constant frequency but independent of and slightly different from the animal's own respiratory frequency (as judged by phrenic motoneurone output), the phase relationship between phrenic motoneurone output and the respiratory oscillations of pH changed breath by breath over a sequence of 100-200 breaths, without change of the mean level of arterial blood gas composition. Te varied by up to 30% about its mean value depending on the phase relationship. Ti and Phr were also dependent on the phase relationship but varied to a lesser

  5. Arterial blood gas tensions during breath-hold diving in the Korean ama.

    PubMed

    Qvist, J; Hurford, W E; Park, Y S; Radermacher, P; Falke, K J; Ahn, D W; Guyton, G P; Stanek, K S; Hong, S K; Weber, R E

    1993-07-01

    Korean female unassisted divers (cachido ama) breath-hold dive > 100 times to depths of 3-7 m during a work day. We sought to determine the extent of arterial hypoxemia during normal working dives and reasonable time limits for breath-hold diving by measuring radial artery blood gas tensions and pH in five cachido ama who dove to a fixed depth of 4-5 m and then continued to breath hold for various times after their return to the surface. Eighty-two blood samples were withdrawn from indwelling radial artery catheters during 37 ocean dives. We measured compression hyperoxia [arterial PO2 = 141 +/- 24 (SD) Torr] and hypercapnia (arterial PCO2 = 46.6 +/- 2.4 Torr) at depth. Mean arterial PO2 near the end of breath-hold dives lasting 32-95 s (62 +/- 14 s) was decreased (62.6 +/- 13.5 Torr). Mean arterial PCO2 reached 49.9 +/- 5.4 Torr. Complete return of these values to their baseline did not occur until 15-20 s after breathing was resumed. In dives of usual working duration (< 30 s), blood gas tensions remained within normal ranges. Detailed analysis of hemoglobin components and intrinsic oxygenation properties revealed no evidence for adaptive changes that could increase the tolerance of the ama to hypoxic or hypothermic conditions associated with repetitive diving.

  6. Effects of crystalline menthol on blood metabolites in Holstein steers and in vitro volatile fatty acid and gas production.

    PubMed

    Van Bibber-Krueger, C L; Miller, K A; Aperce, C C; Alvarado-Gilis, C A; Higgins, J J; Drouillard, J S

    2016-03-01

    Fifty-two Holstein steers (573 ± 9.92 kg BW) were used to determine if oral administration of crystalline menthol would induce changes in endogenous secretions of IGF-1 and circulating concentrations of glucose, lactate, and plasma urea nitrogen (PUN). Steers were blocked by BW and assigned within block to treatment. Treatments consisted of 0, 0.003, 0.03, or 0.3% crystalline menthol (DM basis) added to the diet. Animals were housed in individual, partially covered pens equipped with feed bunks and automatic water fountains. On d 1 of the experiment, blood samples were obtained via jugular venipuncture at 0, 6, 12, 18, and 24 h after feeding. Treatment administration commenced on d 2, and blood samples were again drawn at 0, 6, 12, 18, and 24 h after feeding. This blood-sampling schedule was repeated on d 9, 16, 23, and 30. Plasma was analyzed for PUN, glucose, and lactate concentrations. Serum was used to analyze IGF-1 concentration. Body weights were measured on d 1, 9, 16, 23, and 30. To accompany the live animal phase, in vitro fermentations were performed using ruminal fluid cultures. Measurements included VFA concentrations and fermentative gas production for cultures containing crystalline menthol at 0, 0.003, 0.03, or 0.3% of substrate DM. Addition of menthol to the diet of steers resulted in a treatment × day interaction ( < 0.01) for concentrations of IGF-1, PUN, and plasma glucose. Cattle fed 0 and 0.003% menthol had greater serum IGF-1 concentrations on d 2 compared with steers fed 0.03% menthol. Steers fed 0% menthol had greater serum IGF-1 concentrations on d 9 compared with steers fed 0.03 and 0.3% menthol, whereas no differences were observed on d 23 or 30. Plasma glucose was similar among treatments until d 23, when steers supplemented with 0.03% menthol had lower glucose concentrations. Plasma urea nitrogen concentrations were not different among treatments; however, PUN concentrations varied by day. A linear response was detected for BW ( = 0

  7. Analyzing the kinetic response of tin oxide-carbon and tin oxide-CNT composites gas sensors for alcohols detection

    NASA Astrophysics Data System (ADS)

    Kamble, Vinayak; Umarji, Arun

    2015-03-01

    Tin oxide nanoparticles are synthesized using solution combustion technique and tin oxide - carbon composite thick films are fabricated with amorphous carbon as well as carbon nanotubes (CNTs). The x-ray diffraction, Raman spectroscopy and porosity measurements show that the as-synthesized nanoparticles are having rutile phase with average crystallite size ˜7 nm and ˜95 m2/g surface area. The difference between morphologies of the carbon doped and CNT doped SnO2 thick films, are characterized using scanning electron microscopy and transmission electron microscopy. The adsorption-desorption kinetics and transient response curves are analyzed using Langmuir isotherm curve fittings and modeled using power law of semiconductor gas sensors.

  8. Analyzing the kinetic response of tin oxide-carbon and tin oxide-CNT composites gas sensors for alcohols detection

    SciTech Connect

    Kamble, Vinayak Umarji, Arun

    2015-03-15

    Tin oxide nanoparticles are synthesized using solution combustion technique and tin oxide – carbon composite thick films are fabricated with amorphous carbon as well as carbon nanotubes (CNTs). The x-ray diffraction, Raman spectroscopy and porosity measurements show that the as-synthesized nanoparticles are having rutile phase with average crystallite size ∼7 nm and ∼95 m{sup 2}/g surface area. The difference between morphologies of the carbon doped and CNT doped SnO{sub 2} thick films, are characterized using scanning electron microscopy and transmission electron microscopy. The adsorption-desorption kinetics and transient response curves are analyzed using Langmuir isotherm curve fittings and modeled using power law of semiconductor gas sensors.

  9. Temperature, density, and composition in the disturbed thermosphere from Esro 4 gas analyzer measurements - A global model

    NASA Technical Reports Server (NTRS)

    Jacchia, L. G.; Slowey, J. W.; Von Zahn, U.

    1977-01-01

    An analysis of density measurements of Ar, N2, O, and He made at 280 km with the gas analyzer aboard the polar-orbiting satellite Esro 4 has yielded a global model of the variations in temperature, density, and composition that occur in the disturbed thermosphere. In the model the increase of temperature over quiet conditions is a nonlinear function of the planetary geomagnetic index, its latitude profile being approximated by a fourth-power sin phi law, where phi is the 'invariant' magnetic latitude. A density wave proceeding from high latitudes is approximated by a fourth power cos phi law. A strong nonlinearity in the relation between the temperature variations and the variations in the height of the homopause explains a previously found behavioral difference in the variation of atomic oxygen during magnetic storms and during periods of sustained geomagnetic activity.

  10. Changes in blood-gas tensions during apnoeic oxygenation in paediatric patients.

    PubMed

    Cook, T M; Wolf, A R; Henderson, A J

    1998-09-01

    We report changes in arterial blood-gas tensions for up to 5 min of apnoeic oxygenation in 26 anaesthetized paediatric patients (21 children, five infants). Changes in oxygen and carbon dioxide tension were greatest in the first minute of apnoeic oxygenation. In subsequent minutes, rates of change in gas tension were approximately constant. The rate of decline in oxygen tension (31 (95% confidence interval (CI) 20.1-42.2) mm Hg min-1) was more than three times that reported in studies in adults. The rate of increase in carbon dioxide tension (4.2 (95% CI 3.7-4.7) mm Hg min-1) was similar to that reported in adults. After successful preoxygenation, oxygen tension remained greater than 290 mm Hg in all children (age > 1 yr) throughout the study. This was not the case in infants. We found no correlation between changes in blood-gas tensions and age or weight of patients. The small number of infants studied showed rapid decreases in oxygen tension which if sustained would be expected to limit the safe duration of apnoeic oxygenation, unlike adults where apnoeic oxygenation is limited by hypercapnia. Extrapolation of our results suggests that when preoxygenation has been successful, apnoeic oxygenation could continue safely in children for at least 10 min. Infants may become hypoxic after only 2 min.

  11. Delta13C analyses of calcium carbonate: Comparison between the GasBench and elemental analyzer techniques.

    PubMed

    Skrzypek, Grzegorz; Paul, Debajyoti

    2006-01-01

    Measurements of stable carbon isotopic composition (delta13C) of carbonates or carbonate-rich soils are seldom performed in a continuous-flow isotope ratio mass spectrometer (IRMS) using an elemental analyzer (EA) as an online sample preparation device. Such analyses are routinely carried out with an external precision better than 0.1 per thousand using a GasBench II (GB) sample preparation device coupled online with a continuous-flow IRMS. In this paper, we report and compare delta13C analyses (86 total analyses) of calcium carbonates obtained by using both the GB and the EA. Using both techniques, the delta13C compositions of two in-house carbonate standards (MERCK carbonate and NR calcite) and ten selected carbonate-rich paleosol samples (of variable CaCO3 content) were analyzed, and data are reported in the VPDB scale calibrated against international standards, NBS 18 and 19. For the in-house standards analyzed by both techniques, a precision better than 0.08 per thousand is achieved. The analytical errors (1sigma) computed from multiple analyses of the delta13C of both the MERCK and NR obtained by the above two techniques are nearly identical. In general, the 1sigma (internal error) of paleosol analyses obtained in the GB is better than 0.06 per thousand, whereas that for the analyses in the EA (three repetitive analyses of the same sample) varies in the range 0.05-0.21 per thousand. However, for paleosols having more than 85% CaCO3, 1sigma is better than 0.15 per thousand (similar to the instrument precision), and in this case the delta13C(VPDB) of samples obtained by the GB is similar to that obtained by the EA. Our results suggest that the delta13C of pure calcium carbonate samples can also be analyzed using the EA technique.

  12. An open path H2O/CO2 gas analyzer for eddy correlation systems: theory and design.

    PubMed

    Kidd, Gary

    2002-09-01

    A fast response, open path tunable diode laser absorption spectroscopy H2O/CO2 gas analyzer suitable for eddy correlation concentration measurements in near surface turbulent environments is presented. The turbulent temperature characteristics, analysis theory, analysis methods, design structure and specifications of this dual laser analyzer are described. A fiber connected optical head with folded optical path is used to extend the resolution to ppb levels for H2O at 1.3964 microm and CO2 at 2.014 microm. The Fourier (discrete cosine) transform absorbance ratio analysis methods are outlined along with the modifications for temperature and pressure measurements in turbulent flows. Synthesis of the reference absorbance function using measured temperature, pressure and the Hitran parameters is extended with incorporation of the Hitran parameters n, gamma temperature exponent and E'', lower state energy. Additionally, the mole fraction equation developed for this Hitran model is presented and an absolute calibration technique is outlined along with methods of calibration retention. Simulation results on mole fraction estimations and errors are presented for synthetic temperature and laser noise processes and are used to verify the specifications. PMID:12353686

  13. Measurements of Flow Distortion within the IRGASON Integrated Sonic Anemometer and CO_2/H_2O Gas Analyzer

    NASA Astrophysics Data System (ADS)

    Horst, T. W.; Vogt, R.; Oncley, S. P.

    2016-07-01

    Wind-tunnel and field measurements are analyzed to investigate flow distortion within the IRGASON integrated sonic anemometer and CO_2/H_2O gas analyzer as a function of wind speed, wind direction and attack angle. The wind-tunnel measurements are complimentary to the field measurements, and the dependence of the wind-tunnel mean-wind-component flow-distortion errors on wind direction agrees well with that of the field measurements. The field measurements exhibit significant overestimation of the crosswind variance and underestimation of the momentum flux with respect to an adjacent CSAT3 sonic, as well as a transfer of turbulent kinetic energy from the streamwise wind component to the cross-stream wind components. In contrast, we find attenuation of only a few percent in the vertical velocity variance and the vertical flux of sonic temperature. The attenuation of the fluxes appears to be caused to a large extent by decorrelation between the horizontal and vertical-velocity components and between the vertical velocity and sonic temperature. Additional flow distortion due to transducer shadowing reduces to some extent the overestimation, but also increases the underestimation of the IRGASON turbulence statistics.

  14. Study of Fuel Ratios on the Fusion Reactivity in an Inertial Electrostatic Confinement Device Using a Residual Gas Analyzer

    NASA Astrophysics Data System (ADS)

    Krupakar Murali, S.; Santarius, John F.; Kulcinski, Gerald L.

    2009-09-01

    Gridded Inertial Electrostatic confinement (IEC) devices are of interest due to their flexibility in burning advanced fuels, their tuning ability of the applied voltage to the reaction cross-section. Although this device is not suitable for power production in its present form, it does have several near term applications. The number of applications of this device increases with increasing fusion reactivity. These devices are simple to operate but are inherently complicated to understand and an effort to incrementally understand the device to improve its operational efficiency is underway at University of Wisconsin, Madison. Of all the parameters under study we are focusing on the effects of flow rate and flow ratio on the fusion reactivity in the present paper. Experiments were conducted to understand the influence of fuel flow ratio on the fusion reactions. The residual gas analyzer (RGA) was used to study the impurity concentration as the flow ratio was changed. It was observed that the higher flow rate resulted in reduced impurity levels and hence an increase in fusion rate. Several different species of gases were detected, some of these molecules formed inside the RGA analyzer. The flow ratio scan revealed that the optimum mixture of D2 with 3He to be D2:3He::1:2 for maximum D-3He fusion rate.

  15. The usefulness of the arterial blood gas in pure carbon monoxide poisoning.

    PubMed

    Lebby, T I; Zalenski, R; Hryhorczuk, D O; Leikin, J B

    1989-04-01

    In a retrospective study of 49 cases of carbon monoxide (CO) intoxication presented to the University of Illinois Hospital (UIH) Emergency Department between November 1986 and April 1988, we looked for a correlation between carboxyhemoglobin (COHb) as determined by a venous sample and the pH as determined by arterial blood gas analysis. The range of COHb levels in our study was 10-64% (mean 21.8% +/- 10.2%). Smoke inhalation cases (n = 3) were excluded from our study because they did not represent pure CO intoxication. Of the remaining 46 cases, 18 had arterial blood gases drawn. In none of these 18 cases (mean COHb 24.5% +/- 12.6%) did we find a correlation between COHb levels and the pH as determined by linear regression analysis. Also, in none of the 18 cases were there any therapeutic interventions associated with the arterial blood gas result. Additionally, in none of the remaining 28 cases were any therapeutic interventions performed with regards to patients' acidosis or ventilatory status (except 100% oxygen administration. We also retrospectively reviewed records of 104 cases who presented to Cook County Hospital Emergency Department with COHb levels over 10% during the period between March 1986 and May 1988. In these cases, we found no significant correlation between COHb level and arterial pH. We therefore conclude that arterial blood gases drawn in order to determine the degree of acidosis in mild CO intoxication without respiratory distress may not be useful in guiding therapeutic intervention and need not be routinely drawn. PMID:2929122

  16. Convenient headspace gas chromatographic determination of azide in blood and plasma.

    PubMed

    Meatherall, Robert; Palatnick, Wes

    2009-10-01

    Azide in human blood and plasma samples was derivatized with propionic anhydride in a headspace vial without prior sample preparation. The reaction proceeds quickly at room temperature to form propionyl azide. A portion of the headspace was assayed by gas chromatography with a nitrogen-phosphorus detector. In the heated injector of the gas chromatograph, the propionyl azide undergoes thermal rearrangement, forming ethyl isocyanate, which is subsequently chromatographed and detected. Propionitrile was used as the internal standard. The method is linear to at least 20 microg/mL. Limit of quantitation was 0.04 microg/mL, and the within-run coefficient of variation was 5.6% at 1 microg/mL. There was no interference from cyanide. A fatality report in which blood and plasma azide concentrations from a 59-year-old man were monitored for 24 h following the ingestion of an unknown amount of sodium azide is presented. The patient became critically ill after his self-inflicted sodium azide ingestion. He was intubated and treated with vasopressors and aggressive supportive care, including extracorporeal membrane oxygenation therapy, in the intensive care facility but died from neurological brain damage secondary to anoxia. On admission, 1.4 h after ingestion, his azide level was 5.6 microg/mL (blood); shortly thereafter, it had risen to 13.7 microg/mL (plasma) and, subsequently, was projected to have been eliminated by 16.7 h. No azide was detected in the postmortem blood and vitreous humor.

  17. [Gas chromatography in quantitative analysis of hydrocyanic acid and its salts in cadaveric blood].

    PubMed

    Iablochkin, V D

    2003-01-01

    A direct gas chromatography method was designed for the quantitative determination of cyanides (prussic acid) in cadaveric blood. Its sensitivity is 0.05 mg/ml. The routine volatile products, including substances, which emerge due to putrefaction of organic matters, do not affect the accuracy and reproducibility of the method; the exception is H-propanol that was used as the internal standard. The method was used in legal chemical expertise related with acute cyanide poisoning (suicide) as well as with poisoning of products of combustion of nonmetals (foam-rubber). The absolute error does not exceed 10% with a mean quadratic deviation of 0.0029-0.0033 mg. PMID:14689782

  18. Simultaneous determination of benzene and toluene in the blood using head-space gas chromatography.

    PubMed

    Pekari, K; Riekkola, M L; Aitio, A

    1989-07-21

    A head-space method for the simultaneous determination of benzene and toluene in blood using a gas chromatograph equipped with a photoionization detector was developed. Internal standards for benzene and toluene were fluorobenzene and o-xylene, respectively, and the detection limit was 5 nmol/l for both solvents. This method is sensitive enough for needs of biological monitoring of benzene and toluene in exposed workers. With automation it offers a possibility for routine measurements. An application of the method in monitoring exposed workers in the industry is presented.

  19. [Gas chromatography in quantitative analysis of hydrocyanic acid and its salts in cadaveric blood].

    PubMed

    Iablochkin, V D

    2003-01-01

    A direct gas chromatography method was designed for the quantitative determination of cyanides (prussic acid) in cadaveric blood. Its sensitivity is 0.05 mg/ml. The routine volatile products, including substances, which emerge due to putrefaction of organic matters, do not affect the accuracy and reproducibility of the method; the exception is H-propanol that was used as the internal standard. The method was used in legal chemical expertise related with acute cyanide poisoning (suicide) as well as with poisoning of products of combustion of nonmetals (foam-rubber). The absolute error does not exceed 10% with a mean quadratic deviation of 0.0029-0.0033 mg.

  20. Practical Perspectives On The In-Vitro And In-Vivo Evaluation Of A Fiber Optic Blood Gas Sensor

    NASA Astrophysics Data System (ADS)

    Hansmann, Douglas R.; Gehrich, John L.

    1988-06-01

    in-vitro blood gas analyzer.

  1. Comparison of gas clearance and radioactive microspheres for pancreatic blood flow measurement

    SciTech Connect

    DeMar, A.R.; Graham, L.S.; Lake, R.; Fink, A.S. )

    1989-01-01

    Measurement of pancreatic blood flow (PBF) is technically demanding. Although radiolabeled microspheres are considered the gold standard for PBF assessment, they have practical limitations. In the current study, H{sub 2} and xenon-133 gas clearance techniques were adapted to PBF measurement and compared to radiolabeled microsphere techniques. Simultaneous measurements of PBF were made using either hydrogen or xenon gas washout and radiolabeled microspheres. Measurements were made under basal, vasoconstricted (vasopressin 2U i.v. or nicotine 4 micrograms/kg/h) and stimulated (secretin 125 ng/kg/h or 2 U/kg i.v.) conditions (random order). Mean PBF was 26.9 +/- 5.3, 50.5 +/- 2.3 and 27.6 +/- 5.2 ml/min/100 g basally, 36.9 +/- 8.0, 90.1 +/- 18.9, and 81.7 +/- 14.5 ml/min/100 g in the stimulated state, and 24.2 +/- 7.8, 25.0 +/- 3.5, and 14.9 +/- 7.5 ml/min/100 g in the vasoconstricted state for hydrogen gas clearance, xenon gas clearance, and radiolabeled microspheres, respectively. The H{sub 2} clearance technique resulted in tissue trauma, was complicated by frequent electrode displacement, and correlated poorly (r2 = 0.36, p greater than 0.05) with microsphere values. In contrast, xenon clearance measurement had no apparent effect on the pancreas and correlated well (r2 = 0.83, p less than 0.01) with microsphere data. We conclude that xenon clearance offers an attractive, validated alternative to radiolabeled microspheres for measuring pancreatic blood flow.

  2. Finite-sized gas bubble motion in a blood vessel: Non-Newtonian effects

    PubMed Central

    Mukundakrishnan, Karthik; Ayyaswamy, Portonovo S.; Eckmann, David M.

    2009-01-01

    We have numerically investigated the axisymmetric motion of a finite-sized nearly occluding air bubble through a shear-thinning Casson fluid flowing in blood vessels of circular cross section. The numerical solution entails solving a two-layer fluid model—a cell-free layer and a non-Newtonian core together with the gas bubble. This problem is of interest to the field of rheology and for gas embolism studies in health sciences. The numerical method is based on a modified front-tracking method. The viscosity expression in the Casson model for blood (bulk fluid) includes the hematocrit [the volume fraction of red blood cells (RBCs)] as an explicit parameter. Three different flow Reynolds numbers, Reapp=ρlUmaxd/μapp, in the neighborhood of 0.2, 2, and 200 are investigated. Here, ρl is the density of blood, Umax is the centerline velocity of the inlet Casson profile, d is the diameter of the vessel, and μapp is the apparent viscosity of whole blood. Three different hematocrits have also been considered: 0.45, 0.4, and 0.335. The vessel sizes considered correspond to small arteries, and small and large arterioles in normal humans. The degree of bubble occlusion is characterized by the ratio of bubble to vessel radius (aspect ratio), λ, in the range 0.9≤λ≤1.05. For arteriolar flow, where relevant, the Fahraeus-Lindqvist effects are taken into account. Both horizontal and vertical vessel geometries have been investigated. Many significant insights are revealed by our study: (i) bubble motion causes large temporal and spatial gradients of shear stress at the “endothelial cell” (EC) surface lining the blood vessel wall as the bubble approaches the cell, moves over it, and passes it by; (ii) rapid reversals occur in the sign of the shear stress (+ → − → +) imparted to the cell surface during bubble motion; (iii) large shear stress gradients together with sign reversals are ascribable to the development of a recirculation vortex at the rear of the bubble

  3. Automated chamber technique for gaseous flux measurements: Evaluation of a photoacoustic infrared spectrometer-trace gas analyzer

    NASA Astrophysics Data System (ADS)

    Yamulki, S.; Jarvis, S. C.

    1999-03-01

    Experiments were made in order to evaluate the accuracy and sensitivity of a photoacoustic infrared trace gas analyzer (TGA) in conjunction with an automatic opening and closing chamber system developed for near-continuous (2 min intervals) soil gaseous flux measurements. Humidity interference tests on N2O, CH4, and CO2 concentrations measured by the TGA were carried out, and the results showed a linear interference, with correction factors of 3 × 10-5x, 1.9 × 10-3x and 4.4 × 10-3x(x = H2O vapor ppm), respectively. CO2 interference on N2O and CH4 signals were also linear, with average correction factors of 2.8 × 10-4x and 6 × 10-5 x (x = CO2 ppm), respectively. Laboratory intercomparisons between the TGA and GC measurements of N2O and CH4 standards showed good agreement (R2 > 0.993), indicating the accuracy of the TGA for measurement of these gases at concentrations up to 100 and 40 ppm N2O and CH4, respectively. The relatively rapid measurement time for up to five gases simultaneously in 2 min, linearity, and ease of operation of the TGA represent major advantages compared to gas chromatography (GC). The automated chamber system provides a continuous measurement of fluxes with minimum disturbance to the soil environment enclosed by the chamber and provides the means, for example, of quantifying diurnal variability. In situ measurements of N2O-N and CH4-C fluxes with a sensitivity <10 g ha-1 d-1 (11.6 ng m-2 s-1), as well as of CO2 and water vapor (H2O), can be measured by the TGA when used with the automated system, and fluxes at background levels (i.e., from unfertilized soils) can be determined.

  4. Sample Processing technique onboard ExoMars (MOMA) to analyze organic compounds by Gas Chromatography-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Buch, A.; Freissinet, C.; Sternberg, R.; Szopa, C.; Coll, P. J.; Brault, A.; Pinnick, V.; Siljeström, S.; Raulin, F.; Steininger, H.; Goesmann, F.; MOMA Team

    2011-12-01

    With the aim of separating and detecting organic compounds from Martian soil onboard the Mars Organic Molecule Analyzer (MOMA) experiment of the ExoMars 2018 upcoming joint ESA/NASA mission, we have developed three different space compatible sample preparation techniques compatible with space missions, able to extract and analyze by GC-MS a wide range of volatile and refractory compounds, including chirality analysis. Then, a sample processing utilizing three derivatization/extraction reactions has been carried out. The first reaction is based on a silyl reagent N-Methyl-N- (Tert-Butyldimethylsilyl)trifluoroacetamide (MTBSTFA) [1], the second one, N,N-Dimethylformamide Dimethylacetal (DMF-DMA) [2,3] is dedicated to the chirality detection and the third one is a thermochemolysis based on the use of tetramethylammoniumhydroxide (TMAH). The sample processing system is performed in an oven, dedicated to the MOMA experiment containing the solid sample (50-100mg). The internal temperature of the oven ranges from 20 to 900 °C. The extraction step is achieved by using thermodesorption in the range of 100 to 300°C for 5 to 20 min. Then, the chemical derivatization of the extracted compounds is performed directly on the soil sample by using a derivatyization capsule which contains a mixture of MTBSTFA-DMF or DMF-DMA solution when enantiomeric separation is required. By decreasing the polarity of the targeted molecules, this step allows their volatilization at a temperature below 250°C without any thermal degradation. Once derivatized, the volatile target molecules are trapped in a chemical trap and promptly desorbed into the gas chromatograph coupled to a mass spectrometer. Thermochemolysis is directly performed in the oven at 400°C during 5 min with a 25% (w/w) methanol solution of tetramethylammonium hydroxide (TMAH). Then, pyrolysis in the presence of TMAH allows both an efficient cleavage of polar bonds and the subsequent methylation of COOH, OH and NH2 groups, hence

  5. Method for extending the useful shelf-life of refrigerated red blood cells by flushing with inert gas

    DOEpatents

    Bitensky, M.W.; Yoshida, Tatsuro

    1997-04-29

    A method is disclosed using oxygen removal for extending the useful shelf-life of refrigerated red blood cells. A cost-effective, 4 C storage procedure that preserves red cell quality and prolongs post-transfusion in vivo survival is described. Preservation of adenosine triphosphate levels and reduction in hemolysis and in membrane vesicle production of red blood cells stored at 4 C for prolonged periods of time is achieved by removing oxygen from the red blood cells at the time of storage; in particular, by flushing with an inert gas. Adenosine triphosphate levels of the stored red blood cells are boosted in some samples by addition of ammonium phosphate. 4 figs.

  6. Analysis of whole blood for drugs of abuse using EMIT d.a.u. reagents and a Monarch 1000 Chemistry Analyzer.

    PubMed

    Diosi, D T; Harvey, D C

    1993-01-01

    This paper describes refinements in procedures coupling methanolic extraction-precipitation of whole blood with subsequent screening for commonly encountered drugs of abuse using EMIT d.a.u. reagents on a Monarch Chemistry Analyzer. The automation capabilities inherent in the Monarch make batch processing of samples convenient and cost effective. The small sample volume requirement of the Monarch allows greater sensitivities and use of lower cutoffs than previously reported. Subsequent analysis of EMIT positives by GC/MS confirmed the presence of the indicated drugs of abuse 86.7% of the time.

  7. Gas analyzer's drift leads to systematic error in maximal oxygen uptake and maximal respiratory exchange ratio determination

    PubMed Central

    Garcia-Tabar, Ibai; Eclache, Jean P.; Aramendi, José F.; Gorostiaga, Esteban M.

    2015-01-01

    The aim was to examine the drift in the measurements of fractional concentration of oxygen (FO2) and carbon dioxide (FCO2) of a Nafion-using metabolic cart during incremental maximal exercise in 18 young and 12 elderly males, and to propose a way in which the drift can be corrected. The drift was verified by comparing the pre-test calibration values with the immediate post-test verification values of the calibration gases. The system demonstrated an average downscale drift (P < 0.001) in FO2 and FCO2 of −0.18% and −0.05%, respectively. Compared with measured values, corrected average maximal oxygen uptakevalues were 5–6% lower (P < 0.001) whereas corrected maximal respiratory exchange ratio values were 8–9% higher (P < 0.001). The drift was not due to an electronic instability in the analyzers because it was reverted after 20 min of recovery from the end of the exercise. The drift may be related to an incomplete removal of water vapor from the expired gas during transit through the Nafion conducting tube. These data demonstrate the importance of checking FO2 and FCO2 values by regular pre-test calibrations and post-test verifications, and also the importance of correcting a possible shift immediately after exercise. PMID:26578980

  8. Determination of volatile N-nitrosamines in irradiated fermented sausage by gas chromatography coupled to a thermal energy analyzer.

    PubMed

    Byun, Myung-Woo; Ahn, Hyun-Joo; Kim, Jae-Hyun; Lee, Ju-Woon; Yook, Hong-Sun; Han, Sang-Bae

    2004-10-29

    Volatile N-nitrosodimethylamine (NDMA) and N-nitrosopyrrolidine (NPYR) in irradiated pepperoni and salami sausages were determined using a gas chromatography coupled to a thermal energy analyzer (GC-TEA). These fermented sausages with aerobic or vacuum packaging were irradiated at 0, 5, 10, and 20 kGy, and then stored for 4 weeks at 4 degrees C. Both NDMA and NPYR in the fermented sausage were significantly reduced by irradiation. The vacuum packaging showed significantly lower (P < 0.05) N-nitrosamine levels than that of the aerobic ones. After storage, the contents of NDMA and NPYR in the irradiated sausage were lower than those of the non-irradiated control. Results indicated that a high dose of irradiation (>10 kGy) was needed to reduce the carcinogenic N-nitrosamines in the fermented sausage during storage and the GC-TEA analysis was effective in determining the N-nitrosamines in irradiated meats even at low trace levels. PMID:15553169

  9. EXERCISE IN THE TERRESTRIAL CHRISTMAS ISLAND RED CRAB GECARCOIDEA NATALIS - BLOOD GAS TRANSPORT

    PubMed

    Adamczewska; Morris

    1994-03-01

    The respiratory and circulatory physiology of the terrestrial Christmas Island red crab Gecarcoidea natalis was investigated with respect to exercise in the context of its annual breeding migration. Red crabs were allowed to walk for predetermined periods of up to 45 min. During this exercise period, blood gas measurements were made on venous, pulmonary and arterial samples to assess the function of the lungs in gas exchange and the performance of the circulatory system in gas transport and to determine the role and importance of the haemocyanin. The lungs of G. natalis were very efficient at O2 uptake, pulmonary blood being 80­90 % saturated throughout the 45 min exercise period. The maximum O2-carrying capacity was 1.1 mmol l-1, and haemocyanin (Hc) delivered 86 % of oxygen in resting crabs and 97 % during exercise. Oxygen delivery to the tissues was diffusion-limited during exercise. Indirect evidence, from the changes in haemolymph pH during transit through the lungs, suggested that the lung is the site of CO2 excretion. The Bohr shift was high at high pH (pH 7.8­7.5, phi=-1.23) but decreased at low pH (pH 7.1­6.8, phi=-0.48). The decreased Hc affinity for O2 during the exercise period facilitated O2 delivery to the tissues without impairing O2 loading at the lungs. The decrease in pH was sufficient to explain the change of affinity of Hc for O2 during the exercise period. The marked acidosis (0.8 pH unit decrease) was largely metabolic in origin, especially during sustained locomotion, but less than could be predicted from concomitant lactate production.

  10. Accuracy of capillary whole blood international normalized ratio on the CoaguChek S, CoaguChek XS, and i-STAT 1 point-of-care analyzers.

    PubMed

    Karon, Brad S; McBane, Robert D; Chaudhry, Rajeev; Beyer, Lisa K; Santrach, Paula J

    2008-07-01

    We evaluated the accuracy of capillary whole blood international normalized ratio (INR) on the CoaguChek S (Roche Diagnostics, Indianapolis, IN), CoaguChek XS (Roche Diagnostics), and i-STAT 1 (i-STAT, East Windsor, NJ) point-of-care (POC) analyzers compared with venous plasma INRs determined by a reference laboratory method. Overall agreement between POC and laboratory plasma INR was very good, with median bias between capillary whole blood and laboratory plasma INRs varying from 0.0 to -0.2 INR units on all devices. More than 90% of results on the CoaguChek XS and i-STAT 1 and 88% of CoaguChek S results were within 0.4 INR units of the reference laboratory method. The CoaguChek XS and i-STAT 1 demonstrated greater accuracy than the CoaguChek S as measured by the number of results that differed by more than 0.5 INR units from the reference method. Median bias between CoaguChek S capillary whole blood and laboratory plasma INRs changed over time, demonstrating the need for ongoing quality assurance measures for POC INR programs.

  11. Continuous arterial blood gas monitoring in rabbits: an efficient method for evaluation of ratio-based optrodes

    NASA Astrophysics Data System (ADS)

    Martin, Roy C.; Olstein, Alan D.; Malin, Stephen F.; Perkovich, Anne

    1992-04-01

    Laboratory bench testing of optical blood gas sensors is insufficient to completely predict capabilities. Sensor testing in animals offers advantages of known physiologic and regulatory mechanisms of hemodynamics to better predict sensor performance. The domestic rabbit, Oryctalogis Cuniculus, a lagomorph of the family Leporidae was used for sensor evaluation. The rabbits are ventilated and blood gases modulated by variations in FIO2 and rate adjustments. Twenty gauge catheters are placed in the dorsal aorta, cartoid, and femoral arteries. Pressures are monitored via transducers on the arterial lines. The optical blood gas sensors are fitted within the catheters and blood samples are collected over them for bench analysis. Sensors are on 125 micrometers glass optic fibers. Proprietary prepolymers are applied on the fiber tips through in fiber photopolymerization. These sensors are then calibrated in tonometered water and blood. Sensor monitoring is accomplished through OSR microfluorimetry systems. We have used this model in 26 studies over the past six months evaluating over fifty blood gas sensors. These studies have lasted from six to twenty-four hours. Our correlation of sensor readings to assayed blood samples is r2 equals .97 for pH values of 6.80 - 7.70, r2 equals .94 for PCO2 values of 10 - 175 mmHg and r2 equals .94 for PO2 values of 10 - 350 mmHg.

  12. Effect of breath-hold on blood gas analysis in captive Pacific white-sided dolphins (Lagenorhynchus obliquidens).

    PubMed

    Terasawa, Fumio; Ohizumi, Hiroshi; Ohshita, Isao

    2010-09-01

    The effect of a breath-hold on blood gas was evaluated in captive Pacific white-sided dolphins (Lagenorhynchus obliquidens). Serial blood collections were performed from a vessel on the ventral surface of the flukes during breath-hold. In total, 178 blood samples were taken from three dolphins for five trials in each animal. During a breath-hold, partial pressure of oxygen (Po₂) decreased from 152.5 to 21.8 mmHg and partial pressure of carbon dioxide (Po₂) conversely increased from 31.8 to 83.6 mmHg. The range of pH was 7.54 to 7.25, suggesting drastic change from alkalemia to acidemia. These wide ranges of blood gas imply a considerable change of oxygen affinity caused by the Bohr effect during breath-hold, which enable effective uptake and distribution of oxygen to metabolizing tissues.

  13. ANABEL: intelligent blood-gas analysis in the intensive care unit.

    PubMed

    Zarkadakis, G; Carson, E R; Cramp, D G; Finkelstein, L

    1989-07-01

    ANABEL (ANalysis of Acid-Base status by Evaluating Lisp) is a prototype medical intelligent decision-support system aiming to assist clinicians in an Intensive Care Unit environment with the interpretation of blood-gas measurements. Its architecture is based on the merging of representations for declarative (domain-descriptive) and procedural (problem-solving) medical knowledge. The system performs diagnosis in two stages (tentative and differential) by first evaluating elementary computational units of procedural knowledge (procedures) and then abstracting their symbolic outputs in generating text. Thus, a 'semantic trace' is built which reflects the system's line of reasoning in reaching its conclusion. This paper describes the design aspects, development and clinical validation of ANABEL. PMID:2687421

  14. EVALUATION OF CARDIORESPIRATORY, BLOOD GAS, AND LACTATE VALUES DURING EXTENDED IMMOBILIZATION OF WHITE RHINOCEROS (CERATOTHERIUM SIMUM).

    PubMed

    Buss, Peter; Olea-Popelka, Francisco; Meyer, Leith; Hofmeyr, Jennifer; Mathebula, Nomkhosi; Kruger, Marius; Brüns, Angela; Martin, Laura; Miller, Michele

    2015-06-01

    Ten white rhinoceros (Ceratotherium simum) were immobilized for a total of 13 procedures in holding facilities in Kruger National Park using etorphine, azaperone, and hyaluronidase to assess the effect of extended immobilization on serial cardiorespiratory, blood gas, and lactate values. Butorphanol was administered intravenously following initial blood collection and physiologic assessment (t=0). Respiratory and cardiovascular parameters, body temperature, and arterial blood gases were monitored at 10-min intervals for a total of 100 min. Initial parameters at the time of recumbency revealed severe hypoxemia, hypercapnia, tachycardia, an increased alveolar-arterial (A-a) gradient, and mildly elevated lactate levels. At 10 min and 20 min, there were significant (P<0.05) changes in the following physiologic parameters: heart rate decreased [96 and 80 beats/min, respectively, vs. 120 beats/min], arterial partial pressure of oxygen (PaO2) increased [48 and 45 mm Hg, respectively vs. 30 mm Hg], arterial hemoglobin oxygen saturation increased [79% and 74%, respectively, vs. 47%], A-a gradient decreased [29.13 and 30.00 mm Hg, respectively, vs. 49.19 mm Hg], and respiratory rate decreased [5 and 5 breaths/min vs. 7 breaths/min]. Blood lactate levels also decreased from 2.54 mM/L to 1.50 and 0.89 mM/L, respectively. Despite initial improvements in blood oxygen levels at t=10 and 20 min, the rhinoceros remained severely hypoxemic for the remainder of the procedure (median PaO2=50.5 mm Hg, 95% confidence interval, 43.8-58.1). Median values for respiratory rate (5 breaths/min) and arterial partial pressure of carbon dioxide (PaCO2; 68.5 mm Hg) did not change significantly for the remaining 80 min. Median lactate, base excess, bicarbonate, and pH values improved between 20 and 100 min despite the persistent hypercapnia, indicating that the animals adequately compensated for respiratory and lactic acidosis. White rhinoceros were immobilized for 100 min with no negative effects

  15. EVALUATION OF CARDIORESPIRATORY, BLOOD GAS, AND LACTATE VALUES DURING EXTENDED IMMOBILIZATION OF WHITE RHINOCEROS (CERATOTHERIUM SIMUM).

    PubMed

    Buss, Peter; Olea-Popelka, Francisco; Meyer, Leith; Hofmeyr, Jennifer; Mathebula, Nomkhosi; Kruger, Marius; Brüns, Angela; Martin, Laura; Miller, Michele

    2015-06-01

    Ten white rhinoceros (Ceratotherium simum) were immobilized for a total of 13 procedures in holding facilities in Kruger National Park using etorphine, azaperone, and hyaluronidase to assess the effect of extended immobilization on serial cardiorespiratory, blood gas, and lactate values. Butorphanol was administered intravenously following initial blood collection and physiologic assessment (t=0). Respiratory and cardiovascular parameters, body temperature, and arterial blood gases were monitored at 10-min intervals for a total of 100 min. Initial parameters at the time of recumbency revealed severe hypoxemia, hypercapnia, tachycardia, an increased alveolar-arterial (A-a) gradient, and mildly elevated lactate levels. At 10 min and 20 min, there were significant (P<0.05) changes in the following physiologic parameters: heart rate decreased [96 and 80 beats/min, respectively, vs. 120 beats/min], arterial partial pressure of oxygen (PaO2) increased [48 and 45 mm Hg, respectively vs. 30 mm Hg], arterial hemoglobin oxygen saturation increased [79% and 74%, respectively, vs. 47%], A-a gradient decreased [29.13 and 30.00 mm Hg, respectively, vs. 49.19 mm Hg], and respiratory rate decreased [5 and 5 breaths/min vs. 7 breaths/min]. Blood lactate levels also decreased from 2.54 mM/L to 1.50 and 0.89 mM/L, respectively. Despite initial improvements in blood oxygen levels at t=10 and 20 min, the rhinoceros remained severely hypoxemic for the remainder of the procedure (median PaO2=50.5 mm Hg, 95% confidence interval, 43.8-58.1). Median values for respiratory rate (5 breaths/min) and arterial partial pressure of carbon dioxide (PaCO2; 68.5 mm Hg) did not change significantly for the remaining 80 min. Median lactate, base excess, bicarbonate, and pH values improved between 20 and 100 min despite the persistent hypercapnia, indicating that the animals adequately compensated for respiratory and lactic acidosis. White rhinoceros were immobilized for 100 min with no negative effects

  16. [Pulmonary and alveolar ventilation, gas exchanges and arterial blood gases during ramp exercise].

    PubMed

    Péronnet, F; Aguilaniu, B

    2012-10-01

    In response to ramp exercise, changes in ventilation, gas exchange and arterial blood gases, which are closely interrelated, reflect the two roles of ventilation: 1) providing O(2) and eliminating metabolic CO(2) (from rest to maximal exercise); and 2) contributing to acid-base balance by eliminating non metabolic CO(2) from the alkaline reserve (from the first ventilatory threshold [VT(1)] to maximal exercise). Hyperpnea before VT(1) increases gas exchanges as needed for aerobic metabolism without large changes in ventilatory equivalent of O(2) and CO(2) (VE/V(O2) or VE/V(CO2)), in P(O2) and P(CO2) in alveoli or arterial blood (except for a small widening of alveolo-arterial P(O2) gradient), and in bicarbonate concentration. In contrast, above VT(1), CO(2) is washed-out from the alkaline reserve due to the combined effect of the fall in PA(CO2) (because of hyperventilation) and in pH, and this helps maintaining acid-base balance. Pa(CO2) and bicarbonate concentration decrease while PA(O2) and VE/V(O2) increase, and V(CO2), which follows VE, becomes higher than V(O2). In healthy young subjects, but very seldom in patients, the end of exercise can occur after a second ventilatory threshold (VT(2)), which is the zone where the increase in V(CO2) fails to follow that in VE in spite of hyperventilation and acidosis because of the progressive depletion of the alkaline reserve.

  17. Effect of edaravone on serum SP-A and arterial blood gas in patients with lobectomy

    PubMed Central

    Song, Li; Xiong, Feng; Zhang, Xue-Juan; Liu, Wei-Yi; Zhao, Yang; Feng, Wei

    2015-01-01

    Objective: To discuss the effect of edaravone on serum pulmonary surfactant protein A (SP-A) and arterial blood gas (ABG) in patients with thoracoscopic lobectomy. Methods: 40 lung cancer patients with right side of lobectomy were randomly divided into control group (group C, 20 cases) and edaravone group (group E, 20 cases). Group E was treated edaravone (1 mg/kg) between induction and skin incision, dropping within 30 min; group C was treated with equivalent normal saline. The venous and arterial blood were collected in both groups immediately before incision (T0), after 1 h of one-lung ventilation 1 h (T1) and in 1 h after lungs ventilation (T2) for ABG analysis and measurement of serum SP-A level. Results After OLV, serum SP-A levels were significantly increased in both groups (P < 0.05); compared with group C, serum levels of SP-A were reduced (P < 0.05) and ABG was significantly improved in group E. Conclusion: Edaravone can reduce serum SP-A levels in patients with lobectomy and alleviate acute lung injury to a certain extent in surgery. PMID:26309693

  18. Ventilatory and blood gas dynamics at onset and offset of exercise in the pony.

    PubMed

    Powers, S K; Beadle, R E; Thompson, D; Lawler, J

    1987-01-01

    The purpose of these experiments was to examine the temporal pattern of arterial carbon dioxide tension (PaCO2) to assess the relationship between alveolar ventilation (VA) and CO2 return to the lung at the onset and offset of submaximal treadmill exercise. Five healthy ponies exercised for 8 min at two work rates: 50 m/min 6% grade and 70 m/min 12% grade. PaCO2 decreased (P less than 0.05) below resting values within 1 min after commencement of exercise at both work rates and reached a nadir at 90 s. PaCO2 decreased maximally by 2.5 and 3.5 Torr at the low and moderate rate, respectively. After the nadir, PaCO2 increased across time during both work rates and reached values that were not significantly different (P greater than 0.05) from rest at minute 4 of exercise. Partial pressure of O2 in arterial blood and arterial pH reflected hyperventilation during the first 3 min of exercise. At the termination of exercise PaCO2 increased (1.5 Torr) above rest (P less than 0.05), reaching a zenith at 2-3 min of recovery. These data suggest that VA and CO2 flow to the lung are not tightly matched at the onset and offset of exercise in the pony and thus challenges the traditional concept of blood gas homeostasis during muscular exercise.

  19. Rapid determination of acetone in human blood by derivatization with pentafluorobenzyl hydroxylamine followed by headspace liquid-phase microextraction and gas chromatography/mass spectrometry.

    PubMed

    Deng, Chunhui; Li, Ning; Wang, Xiaochuan; Zhang, Xiangmin; Zeng, Jia

    2005-01-01

    In the current work, a simple, rapid, accurate and inexpensive method was developed for the determination of acetone in human blood. The proposed method is based on derivatization with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride (PFBHA), followed by headspace liquid-phase microextraction (HS-LPME) and gas chromatography/mass spectrometry (GC/MS). In the present method, acetone in blood samples was derivatized with PFBHA and acetone oxime formed in several seconds. The formed oxime was enriched by HS-LPME using the organic solvent film (OSF) formed in a microsyringe barrel as extraction interface. Finally, the enriched oxime was analyzed by GC/MS in electron ionization (EI) mode. HS-LPME parameters including solvent, syringe plunger withdrawal rate, sampling volume, and extraction cycle were optimized and the method reproducibility, linearity, recovery and detection limit were studied. The proposed method was applied to determination of acetone in diabetes blood and normal blood. It has been shown that derivatization with HS-LPME and GC/MS is an alternative method for determination of the diabetes biomarker, acetone, in blood samples.

  20. Method for extending the useful shelf-life of refrigerated red blood cells by flushing with inert gas

    DOEpatents

    Bitensky, Mark W.; Yoshida, Tatsuro

    1997-01-01

    Method using oxygen removal for extending the useful shelf-life of refrigerated red blood cells. A cost-effective, 4.degree. C. storage procedure that preserves red cell quality and prolongs post-transfusion in vivo survival is described. Preservation of adenosine triphosphate levels and reduction in hemolysis and in membrane vesicle production of red blood cells stored at 4.degree. C. for prolonged periods of time is achieved by removing oxygen therefrom at the time of storage; in particular, by flushing with an inert gas. Adenosine triphosphate levels of the stored red blood cells are boosted in some samples by addition of ammonium phosphate.

  1. [CHANGES BLOOD GAS AND OF FREE RADICAL OXIDATION OF LIPIDS IN THE MYOCARDIUM DURING ADAPTATION TO PHYSICAL STRESS].

    PubMed

    Balykin, M V; Sagidova, S A; Zharkov, A V

    2015-09-01

    The article considers the changes of gas composition, acid-base blood balance, lipid peroxidation processes, and activity of the antioxidant defense system in rat myocardium in the course of adaptation to physical activity (swimming). It has been found out that during the first five days physical activity is accompanied by hypoxia, acidotic blood changes, and increase of lipid peroxidation processes in myocardium. Adaptation to swimming activity (15-30 days) leads to hypoxic and acidotic blood changes, and increases antioxidant defense system in myocardium.

  2. [Hemodynamics, blood gas composition and viscosity in patients with chronic obstructive bronchitis complicated by chronic cor pulmonale].

    PubMed

    Verbitskiĭ, O N; Buturov, I V; Purkh, T Iu; Mohamed Fadi Fanari; Paraska, V I

    2004-01-01

    Hemodynamics, external respiratory function (ERF), blood gas composition and viscosity were studied in 120 patients with chronic obstructive bronchitis at different developmental stage of cor pulmonale. In pulmonary hypertension, there were moderate ERF disorders that became more marked in the compensatory and particularly decompensatory cor pulmonale. As bronchial patency deteriorated, the index of right ventricular performance increased from 0.76+0.081 to 1.23+0.022 in the examinees. Examination of blood gas composition revealed insignificant hypoxemia in pulmonary hypertension and compensatory cor pulmonale, which progressed with decompensation of chronic cor pulmonale (CCP). As bronchial obstruction progressed, there were increases in systolic, diastolic, and mean pressure in the pulmonary artery. The viscosity of blood and plasma and the indices of red blood cell aggregation and deformability were in the normal range in pulmonary hypertension and compensatory CCP. In CCP decompensation, the viscosity of blood and plasma and the index of red blood cell aggregation were increased and the index of red blood cell deformability was decreased.

  3. An investigation of accelerating mode and decelerating mode constant-momentum mass spectrometry and their application to a residual gas analyzer

    NASA Technical Reports Server (NTRS)

    Ng, Y. S.

    1977-01-01

    A theoretical analysis of constant momentum mass spectrometry was made. A maximum resolving power for the decelerating mode constant momentum mass spectrometer was shown theoretically to exist for a beam of ions of known energy. A vacuum system and an electron beam ionization source was constructed. Supporting electronics for a residual gas analyzer were built. Experimental investigations of various types of accelerating and decelerating impulsive modes of a constant momentum mass spectrometer as applied to a residual gas analyzer were made. The data indicate that the resolving power for the decelerating mode is comparable to that of the accelerating mode.

  4. Contamination Analyzer

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Measurement of the total organic carbon content in water is important in assessing contamination levels in high purity water for power generation, pharmaceutical production and electronics manufacture. Even trace levels of organic compounds can cause defects in manufactured products. The Sievers Model 800 Total Organic Carbon (TOC) Analyzer, based on technology developed for the Space Station, uses a strong chemical oxidizing agent and ultraviolet light to convert organic compounds in water to carbon dioxide. After ionizing the carbon dioxide, the amount of ions is determined by measuring the conductivity of the deionized water. The new technique is highly sensitive, does not require compressed gas, and maintenance is minimal.

  5. Sustained submaximal exercise does not alter the integrity of the lung blood-gas barrier in elite athletes.

    PubMed

    Hopkins, S R; Schoene, R B; Henderson, W R; Spragg, R G; West, J B

    1998-04-01

    The extreme thinness of the pulmonary blood-gas barrier results in high mechanical stresses in the capillary wall when the capillary pressure rises during exercise. We have previously shown that, in elite cyclists, 6-8 min of maximal exercise increase blood-gas barrier permeability and result in higher concentrations of red blood cells, total protein, and leukotriene B4 in bronchoalveolar lavage (BAL) fluid compared with results in sedentary controls. To test the hypothesis that stress failure of the barrier only occurs at the highest level of exercise, we performed BAL in six healthy athletes after 1 h of exercise at 77% of maximal O2 consumption. Controls were eight normal nonathletes who did not exercise before BAL. In contrast with our previous study, we did not find higher concentrations of red blood cells, total protein, and leukotriene B4 in the exercising athletes compared with control subjects. However, higher concentrations of surfactant apoprotein A and a higher surfactant apoprotein A-to-phospholipid ratio were observed in the athletes performing prolonged exercise, compared with both the controls and the athletes from our previous study. These results suggest that, in elite athletes, the integrity of the blood-gas barrier is altered only at extreme levels of exercise. PMID:9516183

  6. Oxygen analyzer

    DOEpatents

    Benner, W.H.

    1984-05-08

    An oxygen analyzer which identifies and classifies microgram quantities of oxygen in ambient particulate matter and for quantitating organic oxygen in solvent extracts of ambient particulate matter. A sample is pyrolyzed in oxygen-free nitrogen gas (N/sub 2/), and the resulting oxygen quantitatively converted to carbon monoxide (CO) by contact with hot granular carbon (C). Two analysis modes are made possible: (1) rapid determination of total pyrolyzable obtained by decomposing the sample at 1135/sup 0/C, or (2) temperature-programmed oxygen thermal analysis obtained by heating the sample from room temperature to 1135/sup 0/C as a function of time. The analyzer basically comprises a pyrolysis tube containing a bed of granular carbon under N/sub 2/, ovens used to heat the carbon and/or decompose the sample, and a non-dispersive infrared CO detector coupled to a mini-computer to quantitate oxygen in the decomposition products and control oven heating.

  7. Oxygen analyzer

    DOEpatents

    Benner, William H.

    1986-01-01

    An oxygen analyzer which identifies and classifies microgram quantities of oxygen in ambient particulate matter and for quantitating organic oxygen in solvent extracts of ambient particulate matter. A sample is pyrolyzed in oxygen-free nitrogen gas (N.sub.2), and the resulting oxygen quantitatively converted to carbon monoxide (CO) by contact with hot granular carbon (C). Two analysis modes are made possible: (1) rapid determination of total pyrolyzable oxygen obtained by decomposing the sample at 1135.degree. C., or (2) temperature-programmed oxygen thermal analysis obtained by heating the sample from room temperature to 1135.degree. C. as a function of time. The analyzer basically comprises a pyrolysis tube containing a bed of granular carbon under N.sub.2, ovens used to heat the carbon and/or decompose the sample, and a non-dispersive infrared CO detector coupled to a mini-computer to quantitate oxygen in the decomposition products and control oven heating.

  8. [Determination of volatile organic compounds in blood by headspace solid-phase microextraction-gas chromatography].

    PubMed

    Hao, S; Kang, J; Zhou, S; Cui, J

    2000-01-30

    The headspace solid-phase microextraction (HS-SPME) is a novel extraction technique and has been developed rapidly. It is a fast, simple, solventless and sensitive method for sampling, separating, extracting, injecting and analyzing volatile organic compounds. This paper presents the research work in detecting volatile organic compounds(including ten compounds) in blood. The extraction fiber is made by fused-silica fiber with 100 microns polydimethylsiloxane (PDMS). The extraction time of the method was 10 min. The thermal desorption time was 1 min. It was found that the optimized location of the extraction fiber in the injector of GC was to put the whole needle in the injector. The precision of the method was determined to be less 5% relative standard deviation (RSD). The linear range of the detection was rather wide. The lowest detectin limits (LODs) were all < or = 5 ng/ml.

  9. Blood-gas equilibration of CO2 and O2 in lungs of awake dogs during prolonged rebreathing.

    PubMed

    Scotto, P; Rieke, H; Schmitt, H J; Meyer, M; Piiper, J

    1984-11-01

    To reinvestigate the blood-gas CO2 equilibrium in lungs, rebreathing experiments were performed in five unanesthetized dogs prepared with a chronic tracheostomy and an exteriorized carotid loop. The rebreathing bag was initially filled with a gas mixture containing 6-8% CO2, 12, 21, or 39% O2, and 1% He in N2. During 4-6 min of rebreathing PO2 in the bag was kept constant by a controlled supply of O2 while PCO2 rose steadily from approximately 40 to 75 Torr. Spot samples of arterial blood were taken from the carotid loop; their PCO2 and PO2 were measured by electrodes and compared with the simultaneous values of end-tidal gas read from a mass spectrometer record. The mean end-tidal-to-arterial PO2 differences averaging 16, 4, and 0 Torr with bag PO2 about 260, 130, and 75 Torr, respectively, were in accordance with a venous admixture of about 1%. No substantial PCO2 differences between arterial blood and end-tidal gas (PaCO2 - PE'CO2) were found. The mean PaCO2 - PE'CO2 of 266 measurements in 70 rebreathing periods was -0.4 +/- 1.4 (SD) Torr. There was no correlation between PaCO2 - PE'CO2 and the level of arterial PCO2 or PO2. The mean PaCO2 - PE'CO2 became +0.1 Torr when the blood transit time from lungs to carotid artery (estimated at 6 s) and the rate of rise of bag PCO2 (4.5 Torr/min) were taken into account. These experimental results do not confirm the presence of significant PCO2 differences between arterial blood and alveolar gas in rebreathing equilibrium.

  10. Calculation and verification of blood ethanol measurement uncertainty for headspace gas chromatography.

    PubMed

    Sklerov, Jason H; Couper, Fiona J

    2011-09-01

    An estimate was made of the measurement uncertainty for blood ethanol testing by headspace gas chromatography. While uncertainty often focuses on compliance to a single threshold level (0.08 g/100 mL), the existence of multiple thresholds, related to enhanced sentencing, subject age, or commercial vehicle licensure, necessitate the use of an estimate with validity across multiple specification levels. The uncertainty sources, in order of decreasing magnitude, were method reproducibility, linear calibration, recovery, calibrator preparation, reference material, and sample preparation. A large set of reproducibility data was evaluated (n = 15,433) in order to encompass measurement variability across multiple conditions, operators, instruments, concentrations and timeframes. The relative, combined standard uncertainty was calculated as ±2.7%, with an expanded uncertainty of ±8.2% (99.7% level of confidence, k = 3). Bias was separately evaluated through a recovery study using standard reference material from a national metrology institute. The uncertainty estimate was verified through the use of proficiency test (PT) results. Assigned values for PT results and their associated uncertainties were calculated as robust means (x*) and standard deviations (s*) of participant values. Performance scores demonstrated that the uncertainty estimate was appropriate across the full range of PT concentrations (0.010-0.370 g/100 mL). The use of PT data as an empirical estimate of uncertainty was not examined. Until providers of blood ethanol PT samples include details on how an assigned value is obtained along with its uncertainty and traceability, the use of PT data should be restricted to the role of verification of uncertainty estimates.

  11. Analyzing Inquiry Questions of High-School Students in a Gas Chromatography Open-Ended Laboratory Experiment

    ERIC Educational Resources Information Center

    Blonder, Ron; Mamlock-Naaman, Rachel; Hofstein, Avi

    2008-01-01

    This paper describes the implementation of an open-ended inquiry experiment for high-school students, based on gas chromatography (GC). The research focuses on identifying the level of questions that students ask during the GC open inquiry laboratory, and it examines whether implementing the advanced inquiry laboratory opens up new directions for…

  12. Application of a Modified Gas Chromatograph to Analyze Space Experiment Combustion Gases on Space Shuttle Mission STS-94

    NASA Technical Reports Server (NTRS)

    Coho, William K.; Weiland, Karen J.; VanZandt, David M.

    1998-01-01

    A space experiment designed to study the behavior of combustion without the gravitational effects of buoyancy was launched aboard the Space Shuttle Columbia on July 1, 1997. The space experiment, designated as Combustion Module-1 (CM-1), was one of several manifested on the Microgravity Sciences Laboratory - 1 (MSL-1) mission. The launch, designated STS-94, had the Spacelab Module as the payload, in which the MSL-1 experiments were conducted by the Shuttle crewmembers. CM-1 was designed to accommodate two different combustion experiments during MSL-1. One experiment, the Structure of Flame Balls at Low Lewis-number experiment (SOFBALL), required gas chromatography analysis to verify the composition of the known, premixed gases prior to combustion, and to determine the remaining reactant and the products resulting from the combustion process in microgravity. A commercial, off-the-shelf, dual-channel micro gas chromatograph was procured and modified to interface with the CM-1 Fluids Supply Package and the CM-1 Combustion Chamber, to accommodate two different carrier gases, each flowing through its own independent column module, to withstand the launch environment of the Space Shuttle, to accept Spacelab electrical power, and to meet the Spacelab flight requirements for electromagnetic interference (EMI) and offgassing. The GC data was down linked to the Marshall Space Flight Center for near-real time analysis, and stored on-orbit for post-flight analysis. The gas chromatograph operated successfully during the entire SOFBALL experiment and collected 309 runs. Because of the constraints imposed upon the gas chromatograph by the CM-1 hardware, system and operations, it was unable to measure the gases to the required accuracy. Future improvements to the system for a re-flight of the SOFBALL experiment are expected to enable the gas chromatograph to meet all the requirements.

  13. Blood lactate concentrations are mildly affected by mobile gas exchange measurements.

    PubMed

    Scharhag-Rosenberger, F; Wochatz, M; Otto, C; Cassel, M; Mayer, F; Scharhag, J

    2014-06-01

    We sought to investigate the effects of wearing a mobile respiratory gas analysis system during a treadmill test on blood lactate (bLa) concentrations and commonly applied bLa thresholds. A total of 16 recreational athletes (31±3 years, VO2max: 58±6 ml · min(-1) · kg(-1)) performed one multistage treadmill test with and one without gas exchange measurements (GEM and noGEM). The whole bLa curve, the lactate threshold (LT), the individual anaerobic thresholds according to Stegmann (IATSt) and Dickhuth (IATDi), and a fixed bLa concentration of 4 mmol ∙ l(-1) (OBLA) were evaluated. The bLa curve was shifted slightly leftward in GEM compared to noGEM (P<0.05), whereas the heart rate response was not different between conditions (P=0.89). There was no difference between GEM and noGEM for LT (2.61±0.34 vs. 2.64±0.39 m · s(-1), P=0.49) and IATSt (3.47±0.42 vs. 3.55±0.47 m · s(-1), P=0.12). However, IATDi (3.57±0.39 vs. 3.66±0.44 m · s(-1), P<0.01) and OBLA (3.85±0.46 vs. 3.96±0.47 m · s(-1), P<0.01) occurred at slower running velocities in GEM. The bLa response to treadmill tests is mildly affected by wearing a mobile gas analysis system. This also applies to bLa thresholds located at higher exercise intensities. While the magnitude of the effects is of little importance for recreational athletes, it might be relevant for elite athletes and scientific studies.

  14. [Effects of procaterol on arterial blood gas and pulmonary function in asthmatic children].

    PubMed

    Obata, T; Masaki, T; Iikura, Y

    1990-12-01

    We examined the changes in arterial blood gas, FEV1 and V50 after the inhalation of procaterol on 19 occasions in 16 asthmatic children. The initial value of PaO2 had statistically significant correlation with the initial values of %FEV1 and %V50. PaO2 fell down in 11 out of 19 (57.9%) and remarkably decreased more than 5 mmHg in 6 out of 19 (31.6%). The fall in PaO2 was most significant at 5 min after the inhalation in almost subjects. The changes in PaO2 after the inhalation had good correlation with the initial value of %FEV1 and %V50. The initial values were quite lower in the patients with decreased PaO2 more than 5 mmHg than those with increased PaO2. Severe patients showed statistically low values of the initial PaO2 and %V50 and showed a fall in PaO2 after inhalation compared with moderate patients. An increase in A-aDO2 elicited that deteriorations of V/Q ratio caused a decrease in PaO2 after inhalation. There were no significant changes in heart rates and no complaints of nausea, headache or tremor.

  15. Optical Transcutaneous pCO2 Sensor using Soft Lithography Method for Arterial Blood Gas Analysis

    NASA Astrophysics Data System (ADS)

    Kang, Byoung-Ho; Kim, Do-Eok; Leem, Myoung-Kun; Kwon, Dae-Hyuk; Lee, Kwang-Man; Kang, Shin-Won

    2008-10-01

    In this study, we carried out development of non-invasive optical transcutaneous partial pressure of carbon dioxide, pCO2, monitoring system. The purpose of this system is to detect CO2 from outer skin, not from the arterial blood-gathering method. There are advantages about a reduction of analysis time and real-time monitoring that this system might be available. The measurement system is composed of the IR lamp, the pyroelectric sensor including a 4.26 μm optical filter, the optical gas reaction chamber and the signal processing circuit. The optical reaction length of chamber was reduced by 1 mm using the soft-lithography method which CO2 is exhausted in human body as we considered. The fabricated pCO2 monitoring system showed linear result of 6.50×10-6 absorbance/ppm sensitivity for CO2 concentration from 0 ˜5,000 ppm by MFC and about 2 seconds of fast response time. The proposed system can be used in the optical biosensor field for the medical diagnosis such as pCO2 monitoring system and environment monitoring systems.

  16. The use of hydrogen gas clearance for blood flow measurements in single endogenous and transplanted pancreatic islets.

    PubMed

    Barbu, Andreea; Jansson, Leif; Sandberg, Monica; Quach, My; Palm, Fredrik

    2015-01-01

    The blood perfusion of pancreatic islets is regulated independently from that of the exocrine pancreas, and is of importance for multiple aspects of normal islet function, and probably also during impaired glucose tolerance. Single islet blood flow has been difficult to evaluate due to technical limitations. We therefore adapted a hydrogen gas washout technique using microelectrodes to allow such measurements. Platinum micro-electrodes monitored hydrogen gas clearance from individual endogenous and transplanted islets in the pancreas of male Lewis rats and in human and mouse islets implanted under the renal capsule of male athymic mice. Both in the rat endogenous pancreatic islets as well as in the intra-pancreatically transplanted islets, the vascular conductance and blood flow values displayed a highly heterogeneous distribution, varying by factors 6-10 within the same pancreas. The blood flow of human and mouse islet grafts transplanted in athymic mice was approximately 30% lower than that in the surrounding renal parenchyma. The present technique provides unique opportunities to study the islet vascular dysfunction seen after transplantation, but also allows for investigating the effects of genetic and environmental perturbations on islet blood flow at the single islet level in vivo.

  17. Age- and Gender-Specific Reference Intervals for Fasting Blood Glucose and Lipid Levels in School Children Measured With Abbott Architect c8000 Chemistry Analyzer.

    PubMed

    Tamimi, Waleed; Albanyan, Esam; Altwaijri, Yasmin; Tamim, Hani; Alhussein, Fahad

    2012-04-01

    Reference intervals for pubertal characteristics are influenced by genetic, geographic, dietary and socioeconomic factors. Therefore, the aim of this study was to establish age-specific reference intervals of glucose and lipid levels among local school children. This was cross-sectional study, conducted among Saudi school children. Fasting blood samples were collected from 2149 children, 1138 (53%) boys and 1011 (47%) girls, aged 6 to 18 years old. Samples were analyzed on the Architect c8000 Chemistry System (Abbott Diagnostics, USA) for glucose, cholesterol, triglycerides, HDL and LDL. Reference intervals were established by nonparametric methods between the 2.5th and 97.5th percentiles. Significant differences were observed between boys and girls for cholesterol and triglycerides levels in all age groups (P < 0.02). Only at age 6-7 years and at adolescents, HDL and LDL levels were found to be significant (P < 0.001). No significant differences were seen in glucose levels except at age 12 to 13 years. Saudi children have comparable serum cholesterol levels than their Western counterparts. This may reflect changing dietary habits and increasing affluence in Saudi Arabia. Increased lipid screening is anticipated, and these reference intervals will aid in the early assessment of cardiovascular and diabetes risk in Saudi pediatric populations.

  18. [Autochthonous yeasts isolated in Tenerife wines and their influence on ethyl acetate and higher alcohol concentrations analyzed by gas chromatography].

    PubMed

    Salvadores, M P; Díaz, M E; Cardell, E

    1993-12-01

    A taxonomic study of yeasts present on Tenerife wines, (Tacoronte-Acentejo Specific Denomination) has been carried out. Nine species of the genera: Saccharomyces, Torulaspora, Brettanomyces, Kluyveromyces, Debaryomyces, Saccharomycodes, Hansenula, Pichia and Candida have been isolated. Parallely we analysed volatile compounds of the wines such as ethyl acetate, methanol, isobutanol and amylic alcohols by gas chromatography. Appreciable quantities of ethyl acetate were detected due to the low fermentative power of species such as Candida glabrata and Debaryomyces hansenii. The greatest concentration of amylic alcohols were found in wines containing yeast with high alcohol producing power like Saccharomyces cerevisiae.

  19. Measurements of NOx, acyl peroxynitrates, and NOy with automatic interference corrections using a NO2 analyzer and gas phase titration.

    PubMed

    Hargrove, James; Zhang, Jingsong

    2008-04-01

    NO(2) analyzers are much more valuable if they can also measure NO since the two (NO+NO(2)=NO(x)) are often found together. NO can be quantitatively converted to NO(2) by reaction with ozone and subsequent thermal decomposition of the N(2)O(5) that may form from further oxidation. The conversion of NO, along with decomposition of N(2)O(5) and removal of the remaining unreacted ozone with a heated chamber, allows for quantitative determination of NO(x) using a NO(2) analyzer and the determination of decomposed acyl peroxynitrates. Ambient tests are performed to demonstrate these methods. PMID:18447567

  20. Recent improvements in mobile greenhouse gas analyzers and what they have done for top-down emissions verification

    NASA Astrophysics Data System (ADS)

    Sweeney, C.

    2015-12-01

    Recent advances in in-situ measurements of CO2, CH4 and N2O along with their isotopes and other associated tracers on moving platforms have opened the door to significant opportunities for directly measuring emissions of greenhouse gases from distributed and single-point emitters. By coupling advances in the stability and portability of these measurements with new techniques for sampling trace gases, it has been possible to advance our understanding of the processes that contribute most to greenhouse gas emissions, to understand the distribution of these emissions in space and magnitude, as well as to quantify the regional impact of these emissions. These advances can best be illustrated through the recent focus on the CH4 emissions from oil and gas production in the US and the deployment of in-situ measurements on aircraft, automobiles and unmanned aerial vehicles (UAVs). Although these recent advances have significantly improved our ability to verify emission inventory estimates of CH4 emissions there are still gaps in our ability to extract multi-species information from point-source emissions and our ability to fully utilize the smaller UAV platforms that have reduced payload capacity and power.

  1. Investigation on the Importance of Fast Air Temperature Measurements in the Sampling Cell of Short-Tube Closed-Path Gas Analyzer for Eddy-Covariance Fluxes

    NASA Astrophysics Data System (ADS)

    Kathilankal, J. C.; Fratini, G.; Burba, G. G.

    2014-12-01

    High-speed, precise gas analyzers used in eddy covariance flux research measure gas content in a known volume, thus essentially measuring gas density. The classical eddy flux equation, however, is based on the dry mole fraction. The relation between dry mole fraction and density is regulated by the ideal gas law and law of partial pressures, and depends on water vapor content, temperature and pressure of air. If the instrument can output precise fast dry mole fraction, the flux processing is significantly simplified and WPL terms accounting for air density fluctuations are no longer required. This will also lead to the reduction in uncertainties associated with the WPL terms. For instruments adopting an open-path design, this method is difficult to use because of complexities with maintaining reliable fast temperature measurements integrated over the entire measuring path, and also because of extraordinary challenges with accurate measurements of fast pressure in the open air flow. For instruments utilizing a traditional long-tube closed-path design, with tube length 1000 or more times the tube diameter, this method can be used when instantaneous fluctuations in the air temperature of the sampled air are effectively dampened, instantaneous pressure fluctuations are regulated or negligible, and water vapor is measured simultaneously with gas, or the sample is dried. For instruments with a short-tube enclosed design, most - but not all - of the temperature fluctuations are attenuated, so calculating unbiased fluxes using fast dry mole fraction output requires high-speed, precise temperature measurements of the air stream inside the cell. In this presentation, authors look at short-term and long-term data sets to assess the importance of high-speed, precise air temperature measurements in the sampling cell of short-tube enclosed gas analyzers. The CO2 and H2O half hourly flux calculations, as well as long-term carbon and water budgets, are examined.

  2. A quantitative headspace-solid-phase microextraction-gas chromatography-flame ionization detector method to analyze short chain free fatty acids in rat feces.

    PubMed

    Fiorini, Dennis; Boarelli, Maria Chiara; Gabbianelli, Rosita; Ballini, Roberto; Pacetti, Deborah

    2016-09-01

    This study sought to develop and validate a quantitative method to analyze short chain free fatty acids (SCFAs) in rat feces by solid-phase microextraction and gas chromatography (SPME-GC) using the salt mixture ammonium sulfate and sodium dihydrogen phosphate as salting out agent. Conditioning and extraction time, linearity, limits of detection and quantification, repeatability, and recovery were evaluated. The proposed method allows quantification with improved sensitivity as compared with other methods exploiting SPME-GC. The method has been applied to analyze rat fecal samples, quantifying acetic, propionic, isobutyric, butyric, isopentanoic, pentanoic, and hexanoic acids. PMID:27267560

  3. Evaluation of a novel in-line point-of-care blood gas analyser.

    PubMed

    Miles, L F; Giraud, K; Ferris, R; Klein, A A; Martinez, G C; Jenkins, D P; Saulankey, K

    2016-09-01

    Point-of-care testing is becoming increasingly relevant to the practice of anaesthesia and critical care medicine, especially in terms of minimisation of sample volumes and decreased time to decision making. We performed a prospective observational study to evaluate a novel, in-line blood gas analysis device against a conventional benchtop model, and assessed it while placing the enrolled patients under extreme physiological conditions, specifically deep hypothermic circulatory arrest. Eight patients were studied, and had between seven and 11 samples analysed for seven variables (pH, pCO2 , pO2 , HCO3 (-) , base excess [BE], K(+) and haematocrit [Hct]), using the device during the process of cooling to 20 °C on cardiopulmonary bypass, and subsequent rewarming to normothermia. After Passing-Bablok analysis, the variables were evaluated for bias, limits of agreement and percentage error at above and below 30 °C. Of the measured variables, only pH (percentage error 2.4%) and potassium (19.8%) demonstrated acceptable (< 30%) percentage error over the full range of temperatures measured. Carbon dioxide, when stratified by temperature, was acceptable (< 30 °C percentage error 24.6%, > 30 °C percentage error 9.9%), but the overall percentage error of the dataset (45.8%) was excessively high. Bicarbonate and haematocrit both had an acceptable percentage error above 30 °C (25.2% and 18.5%, respectively), but similar to carbon dioxide, percentage error for the full range of temperatures exceeded 30%. These data differ from previous work examining this device, and highlights the difference between derived measures using different apparatuses when exposed to extreme physiological conditions.

  4. [Changes gas and electrolyte structure of blood under influence terahertz radiations on frequencies nitrogen oxide 150,176-150,664 GHz in the conditions of stress].

    PubMed

    Tsymbal, A A; Kirichuk, V F

    2011-01-01

    Influence terahertz radiations nitrogen oxide frequencies of 150,176 - 150,664 GHz on gas and electrolyte structure of blood of white rats being in condition of sharp stress. It is shown that at 15 minute mode of influence terahertz waves on frequencies nitrogen oxide observe partial restoration of studied indicators gas and electrolyte structure of blood at stress animals. At 30 minute mode of influence the specified waves observe complete recovery of the broken indicators gas and electrolyte blood structure. PMID:21688667

  5. Effects of surface water on gas sorption capacities of gravimetric sensing layers analyzed by molecular descriptors of organic adsorbates.

    PubMed

    Sugimoto, Iwao; Mitsui, Kouta; Nakamura, Masayuki; Seyama, Michiko

    2011-02-01

    The gas sorption capacities of sputtered carbonaceous films are evaluated with quartz crystal resonators. These films are sensitive to 20 ppm organic vapors and exhibit structure-dependent responses. Films derived from synthetic polymers are hydrophobic, whereas films derived from biomaterials are amphiphilic or hydrophilic. Polyethylene (PE) film has an extremely high sorption capacity for a wide range of vapors. Transient sorption responses are investigated using a humidified carrier by employing carboxylic acid esters, whose aliphatic groups are systematically changed. Small esters with a higher affinity to water induce negative U-shaped responses from amphiphilic films derived from biomaterials. On the other hand, polymeric films exhibit positive exponential response curves. Even if the concentrations are decreased, the response intensities are enhanced with the incremental expansion of carbon chains of aliphatic groups. Only fluoropolymer film shows the opposite tendency. The modeling of quantitative structure property relationships has indicated that the sorption capacities of the PE film to the carboxylic acid esters are fundamentally governed by electrostatic interactions. The intermolecular attractive forces are basically attributable to interactions between the positively polarized sites in esters and the negatively polarized/charged sites in PE film.

  6. Gas diffusion liquid storage bag and method of use for storing blood

    NASA Technical Reports Server (NTRS)

    Bank, H.; Cleland, E. L. (Inventor)

    1979-01-01

    The shelf life of stored whole blood may be doubled by adding a buffer which maintains a desired pH level. However, this buffer causes the generation of CO2 which, if not removed at a controlled rate, causes the pH value of the blood to decrease, which shortens the useful life of the blood. A blood storage bag is described which permits the CO2 to be diffused out at a controlled rate into the atmosphere, thereby maintaining the desired pH value and providing a bag strong enough to permit handling.

  7. Dietary sodium bicarbonate, cool temperatures, and feed withdrawal: impact on arterial and venous blood-gas values in broilers.

    PubMed

    Wideman, R F; Hooge, D M; Cummings, K R

    2003-04-01

    Sodium bicarbonate (NaHCO3) has been used successfully in mammals and birds to alleviate pulmonary hypertension. Experiment 1 was designed to provide measurements of arterial and venous blood-gas values from unanesthetized male broilers subjected to a cool temperature (16 degrees C) challenge and fed either a control diet or the same diet alkalinized by dilution with 1% NaHCO3. The incidences of pulmonary hypertension syndrome (PHS, ascites) for broilers fed the control or bicarbonate diets were 15.5 and 10.5%, respectively (P = 0.36, NS). Non-ascitic broilers fed the control diet were heavier than those fed the bicarbonate diet on d 49 (2,671 vs. 2,484 g, respectively); however, other comparisons failed to reveal diet-related differences in heart weight, pulse oximetry values, electrocardiogram amplitudes, or blood-gas values (P > 0.05). When the data were resorted into categories based on right:total ventricular weight ratios (RV:TV) indicative of normal (RV:TV < 0.28) or elevated (RV:TV > or = 0.28) pulmonary arterial pressures, broilers with elevated RV:TV ratios had poorly oxygenated arterial blood that was more acidic, had high partial pressure of CO2 (PCO2), and had higher HCO3 concentrations when compared with broilers with normal RV:TV ratios. Experiment 2 was conducted to determine if metabolic variations associated with differences in feed intake or environmental temperature potentially could mask an impact of diet composition on blood-gas values. Male broilers maintained at thermoneutral temperature (24 degrees C) either received feed ad libitum or had the feed withdrawn > or = 12 h prior to blood sampling. Broilers fed ad libitum had lower venous saturation of hemoglobin with O2, higher venous PCO2, and higher arterial HCO3 concentrations than broilers subjected to feed withdrawal. Broilers in experiment 2 fed ad libitum and exposed to cool temperatures (16 degrees C) had lower arterial partial pressure of O2 and higher venous PCO2 than broilers fed ad

  8. Significance of High-Speed Air Temperature Measurements in the Sampling Cell of a Closed-Path Gas Analyzer with a Short Tube

    NASA Astrophysics Data System (ADS)

    Kathilankal, James; Fratini, Gerardo; Burba, George

    2015-04-01

    Eddy covariance gas analyzers measure gas content in a known volume, thus essentially measuring gas density. The fundamental flux equation, however, is based on the dry mole fraction. The relationship between dry mole fraction and density is regulated by the ideal gas law describing the processes of temperature- and pressure-related expansions and contractions, and by the law of partial pressures, describing the process of dilution. As a result, this relationship depends on water vapor content, temperature and pressure of the air sample. If the instrument is able to output precise high-speed dry mole fraction, the flux processing is significantly simplified and WPL density terms accounting for the air density fluctuations are no longer required. This should also lead to the reduction in uncertainties associated with the density terms resulting from the eddy covariance measurements of sensible and latent heat fluxes used in these terms. In this framework, three main measurement approaches may be considered: Open-path approach Outputting correct high-speed dry mole fraction from the open-path instrument is difficult because of complexities with maintaining reliable fast temperature measurements integrated over the entire measuring path, and also because of extraordinary challenges with accurate measurements of fast pressure in the open air flow. Classical long-tube closed-path approach For instruments utilizing traditional long-tube closed-path design, with tube length 1000 or more times the tube diameter, the fast dry mole fraction can be used successfully when instantaneous fluctuations in the air temperature of the sampled air are effectively dampened to negligible levels, instantaneous pressure fluctuations are regulated or negligible, and water vapor is measured simultaneously with gas or the air sample is dried. Short-tube closed-path approach, the enclosed design For instruments with a short-tube enclosed design, most - but not all - of the temperature

  9. The effects of short- and long-term hypoxia on hemolymph gas values in the American horseshoe crab (Limulus polyphemus) using a point-of-care analyzer.

    PubMed

    Allender, Matthew C; Schumacher, Juergen; George, Robert; Milam, Jennifer; Odoi, Agricola

    2010-06-01

    Hemolymph gas parameters were evaluated using a point-of-care analyzer in healthy American horseshoe crabs (Limulus polyphemus) at rest and after short- and long-term removal from water. Baseline vascular pH, partial pressure of oxygen (PO2), partial pressure of carbon dioxide, bicarbonate, base excess, total carbon dioxide, and lactate concentrations were determined from hemolymph samples collected from 10 horseshoe crabs (group 1) submerged in water and were compared with values after removal from water for 5 min, and after recovery in water for 10 min and for longer than 60 min (range, 61-221 min). Hemolymph gas parameters were also determined in 12 horseshoe crabs (group 2) after shipment out of water for 24 hr and were compared with values obtained from group 1 animals. Baseline hemolymph gas values of the American horseshoe crab are within range for other aquatic vertebrates. After removal from water for 5 min, all group 1 crabs developed severe hypoxia, with PO2 levels falling below the detectable limit of the analyzer. Group 2 crabs had pronounced respiratory acidosis, and their PO2 values were significantly below baseline values of group 1 animals.

  10. Ultra-sensitive method for determination of ethanol in whole blood by headspace capillary gas chromatography with cryogenic oven trapping.

    PubMed

    Watanabe-Suzuki, K; Seno, H; Ishii, A; Kumazawa, T; Suzuki, O

    1999-04-30

    We have established an ultra-sensitive method for determination of ethanol in whole blood by headspace capillary gas chromatography (GC) with cryogenic oven trapping. After heating a blood sample containing ethanol and isobutyl alcohol (internal standard, IS) in a 7.0-ml vial at 55 degrees C for 15 min, 5 ml of the headspace vapor was drawn into a glass syringe and injected into a GC port. All vapor was introduced into an Rtx-BAC2 wide-bore capillary column in the splitless mode at -60 degrees C oven temperature to trap entire analytes, and then the oven temperature was programmed up to 240 degrees C for GC measurements with flame ionization detection. The present method gave sharp peaks of ethanol and IS, and low background noise for whole blood samples. The mean partition into the gaseous phase for ethanol and IS was 3.06+/-0.733 and 8.33+/-2.19%, respectively. The calibration curves showed linearity in the range 0.02-5.0 microg/ml whole blood. The detection limit was estimated to be 0.01 microg/ml. The coefficients of intra-day and inter-day variation for spiked ethanol were 8.72 and 9.47%, respectively. Because of the extremely high sensitivity, we could measure low levels of endogenous ethanol in whole blood of subjects without drinking. The concentration of endogenous ethanol measured for 10 subjects under uncontrolled conditions varied from 0 to 0.377 microg/ml (mean, 0.180 microg/ml). Data on the diurnal changes of endogenous ethanol in whole blood of five subjects under strict food control are also presented; they are in accordance with the idea that endogenous blood ethanol is of enteric bacterial origin.

  11. Blood gas dynamics at the onset of exercise in heart transplant recipients.

    PubMed

    Braith, R W; Limacher, M C; Staples, E D; Pollock, M L

    1993-06-01

    One hypothesis to explain the rapid neural component of exercise hyperpnea contends that afferent stimuli originating in the ventricles of the heart act reflexly on the respiratory center at the onset of exercise, ie, "cardiodynamic hyperpnea." Orthotopic cardiac transplantation (Tx) results in the loss of afferent information from the ventricles. Thus, Tx possibly results in transient hypercapnia and hypoxemia in deafferented heart transplant recipients (HTR) at the onset of exercise due to hypoventilation. To examine the cardiodynamic hypothesis, we collected serial arterial blood gas (ABG) samples during both the transient and the steady-state responses to moderate cycle exercise in 5 HTRs (55 +/- 7 years) 14 +/- 7 months post-Tx and 5 control subjects matched with respect to gender, age, and body composition. Forced vital capacity, forced expiratory volume in 1 s, total lung capacity, and diffusion capacity did not differ (p > or = 0.05) between groups. Resting arterial PO2, PCO2, and pH did not differ between groups (p > or = 0.05). The ABGs were drawn every 30 s during the first 5 min and at 6, 8, and 10 min of constant load square wave cycle exercise at 40 percent of the peak power output (watts). Absolute and relative changes in arterial PO2, PCO2, and pH were similar (p > or = 0.05) between HTR and the control group at all measurement periods during exercise. Heart rate (%HRmax reserve), rating of perceived exertion, and reductions in plasma volume (% delta from baseline) did not differ between HTR and control during exercise at 40 percent of peak power output (p > or = 0.05). Our results demonstrate that there is no discernible abnormality in ABG dynamics during the transient response to exercise at 40 percent of peak power output in patients with known cardiac denervation. These data do not support the cardiodynamic hyperpnea hypothesis of ventilatory control in humans. The absence of hypercapnia in HTRs is further evidence for the existence of redundant

  12. A radial differential mobility analyzer for the size-classification of gas-phase synthesized nanoparticles at low pressures

    NASA Astrophysics Data System (ADS)

    Nanda, K. K.; Kruis, F. E.

    2014-07-01

    Differential mobility analyzers (DMAs) are commonly used to generate monodisperse nanoparticle aerosols. Commercial DMAs operate at quasi-atmospheric pressures and are therefore not designed to be vacuum-tight. In certain particle synthesis methods, the use of a vacuum-compatible DMA is a requirement as a process step for producing high-purity metallic particles. A vacuum-tight radial DMA (RDMA) has been developed and tested at low pressures. Its performance has been evaluated by using a commercial NANO-DMA as the reference. The performance of this low-pressure RDMA (LP-RDMA) in terms of the width of its transfer function is found to be comparable with that of other NANO-DMAs at atmospheric pressure and is almost independent of the pressure down to 30 mbar. It is shown that LP-RDMA can be used for the classification of nanometer-sized particles (5-20 nm) under low pressure condition (30 mbar) and has been successfully applied to nanoparticles produced by ablating FeNi at low pressures.

  13. Fast-response CO2 mixing-ratio measurement with an open-path gas analyzer for eddy-flux applications

    NASA Astrophysics Data System (ADS)

    Bogoev, I.

    2014-12-01

    Infra-red gas analyzers operate on the principle of light absorption and measure the density of the gas in the sensing path. To account for density fluctuations caused by barometric pressure, thermal expansion and contraction, and water-vapor dilution, flux calculations using CO2 density measurements need to be corrected for sensible and latent heat transfer (also known as WPL corrections). In contrast, these corrections are not required if the flux calculation involves CO2 mixing ratio relative to dry air. Historically, CO2 mixing ratio measurements have been available only for analyzers with a closed-path where temperature fluctuations in the air sample are attenuated in the intake tubing to a level that they are adequately measured by a contact thermometer. Open-path gas analyzers are not able to make in situ CO2 mixing-ratio measurements because of the unavailability of a reliable, accurate and fast-response air-temperature sensor in the optical path. A newly developed eddy-flux system integrates an aerodynamic open-path gas analyzer with a sonic anemometer where the sensing volumes of the two instruments coincide. Thus the system has the ability to provide temporally and spatially synchronized fast-response measurements of the 3D wind vector, sonically derived air temperature, CO2 and water vapor densities. When these measurements are combined with a fast-response static pressure measurement an instantaneous in-situ CO2 mixing ratio can be calculated on-line, eliminating the need for density corrections in post-processing. In this study fluxes computed from CO2 mixing-ratio are compared to WPL corrected fluxes using CO2 density. Results from a field inter-comparison with an aspirated temperature probe suggest that accurate, fast response air temperature can be derived from humidity-corrected speed of sound measurements. Biases due to heat exchange with the analyzer surface are evaluated by comparing atmospheric sensible heat flux measurements with a

  14. Eddy Covariance Measurements of Methane Flux at Remote Sites with New Low-Power Lightweight Fast Gas Analyzer

    NASA Astrophysics Data System (ADS)

    Xu, Liukang; Burba, George; Schedlbauer, Jessica; Zona, Donatella; McDermitt, Dayle K.; Anderson, Tyler; Oberbauer, Steven; Oechel, Walter; Komissarov, Anatoly; Riensche, Brad

    2010-05-01

    Majority of natural methane production happens at remote unpopulated areas in ecosystems with little or no infrastructure or easily available grid power, such as arctic and boreal wetlands, tropical mangroves, etc. Present approaches for direct measurements of CH4 fluxes rely on fast closed-path analyzers, which have to work under significantly reduced pressures, and require powerful pumps and grid power. Power and labor demands may be reasons why CH4 flux is often measured at locations with good infrastructure and grid power, and not with high CH4 production. An instrument was developed to allow Eddy Covariance measurements of CH4 flux with power consumption 30-150 times below presently available technologies. This instrument, LI-7700, uses <10W of power, and can easily be run on solar panel, or with small portable generator, while present technologies require 300-1500 Watts of the grid power. The proposed extremely low-power technology would allows placing methane Eddy Covariance stations in the middle of the source (wetland, rice paddy, forest, etc.) in the absence of the grid power. This could significantly expand the Eddy Covariance CH4 flux measurements coverage, and possibly, significantly improve the budget estimates of world CH4 emissions and budget. Various prototypes of the LI-7700 were field-tested for three seasons at the remote site in middle of Everglades National Park (Florida, USA) using solar panels, at three stationary and several mobile sites during three seasons at remote Arctic wetlands near Barrow (Alaska, USA), in the tropical mangroves near La Paz (Mexico) using portable generator, and in bare agricultural field near Mead (Nebraska, USA) during 2005 through 2010. Latest data on CH4 concentration, co-spectra and fluxes, and latest details of instrumental design are examined in this presentation. Overall, hourly methane fluxes ranged from near-zero at night to about 4 mg m-2 h-1 in midday in arctic tundra. Observed fluxes were within the

  15. Development and operation of an integrated sampling probe and gas analyzer for turbulent mixing studies in complex supersonic flows

    NASA Astrophysics Data System (ADS)

    Wiswall, John D.

    -temporal characteristic scales of the flow on the resulting time-area-averaged concentration measurements. Two series of experiments were performed to verify the probe's design; the first used Schlieren photography and verified that the probe sampled from the supersonic flowfield isokinetically. The second series involved traversing the probe across a free mixing layer of air and helium, to obtain both mean concentration and high frequency measurements. High-frequency data was statistically analyzed and inspection of the Probability Density Function (PDF) of the hot-film response was instrumental to interpret how well the resulting average mixing measurements represent these types of complex flows. The probe is minimally intrusive, has accuracy comparable to its predecessors, has an improved frequency response for mean concentration measurements, and samples from a very small area in the flowfield.

  16. [Simultaneous determination of cocaine and its metabolite ecgonine methyl ester in human blood using microwave extraction-gas chromatography].

    PubMed

    Wang, Xiaobo; Ye, Nengsheng; Wang, Jifen; Gu, Xuexin

    2010-07-01

    A method was developed for the simultaneous determination of cocaine (COC) and its metabolite ecgonine methyl ester (EME) in human blood using gas chromatography-mass spectrometry (GC-MS) and gas chromatography-flame ionization detection (GC-FID). The blood sample was prepared by microwave extraction (MWE). The optimal parameters of MWE were as follows: 6 mL of chloroform-isopropanol (9: 1, v/v) mixture as extraction solvent, the pH value of the sample was adjusted at 10.0 with 0.05 mol/L Na2CO3-NaHCO3 buffer, the extraction was performed at 40 degrees C for 6 min. The COC and EME in the extract were qualified using GC-MS and quantitated using GC-FID. The average recoveries of COC and EME were from 79.91% to 99.85%, the relative standard deviations were less than 3.10%, and the limits of detection (LOD) were 60 and 40 mg/L, respectively. In the method COC and EME were detected without derivatization. The method is rapid, accurate and sensitive, and can be used for the simultaneous determination of COC and EME in blood samples. PMID:21046786

  17. Arterial blood gas tensions during exercise in a horse with laryngeal hemiplegia, before and after corrective surgery.

    PubMed

    Bayly, W M; Grant, B D; Modransky, P D

    1984-03-01

    Arterial blood samples were collected during maximal exercise over 1.6 km in a thoroughbred horse with left laryngeal hemiplegia. Acid-base and blood gas measurements were performed on each sample and compared to the results from samples which were similarly collected 48 hours after laryngoplasty surgery was performed. Before surgery, the PaO2 was 53.2 mm Hg and the PaCO2 was 58.1 mm Hg after 1.6 km. After surgery, the corresponding results were 83.6 mm Hg (PaO2) and 39.0 mm Hg (PaCO2). There was no significant difference in the times taken for each gallop. The exercise intolerance associated with laryngeal paralysis may be caused by an increase in the oxygen cost of breathing.

  18. Use of arterial blood gas analysis as a superior method for evaluating respiratory function in pet rabbits (Oryctolagus cuniculus).

    PubMed

    Eatwell, K; Mancinelli, E; Hedley, J; Benato, L; Shaw, D J; Self, I; Meredith, A

    A retrospective study compared invasive (arterial blood gas analysis) and non-invasive (capnography and pulse oximetry) methods of monitoring respiratory function in conscious rabbits. Arterial samples from 50 healthy dwarf lop rabbits, presenting for routine surgical neutering, were analysed on a point-of-care blood gas analysis machine. Reference intervals were obtained for pH (7.35-7.54), PaCO2 (mm Hg) (25.29-40.37), PaO2 (mm Hg) (50.3-98.2), base excess (mmol/l) (6.7-6.5), HCO3 (mmol/l) (17.96-29.41), TCO2 (mmol/l) (18.9-30.5). SaO2 (per cent) (88.8-98.0), Na (mmol/l) (137.6-145.2), K (mmol/l) (3.28-4.87), iCal (mmol/l) (1.64-1.94), glucose (mmol/l) (6.23-10.53), haematocrit (per cent) (23.3-40.2) and haemoglobin (mg/dl) (7.91-13.63). Pulse oximetry (SPO2) and capnography (ETCO2) readings were taken concurrently. There was no statistically significant relationship between SPO2 and SaO2 with a mean difference between SPO2 and SaO2 of 8.22 per cent. There was a statistically significant relationship between ETCO2 vs PaCO2, but a wide range of ETCO2 values were observed for a given PaCO2. The mean difference between these was 16.16 mm Hg. The study has provided reference intervals for arterial blood gas analysis in rabbits and demonstrated that capnography and pulse oximetry readings should not be relied upon in conscious rabbits as a guide to ventilation and oxygenation.

  19. In vivo support for the new concept of pulmonary blood flow-mediated CO2 gas excretion in the lungs.

    PubMed

    Kawai, Yoshiko; Ajima, Kumiko; Kaidoh, Maki; Sakaguchi, Masao; Tanaka, Satoshi; Kawamata, Mikito; Kimura, Hiroko; Ohhashi, Toshio

    2015-06-15

    To further examine the validity of the proposed concept of pulmonary blood flow-dependent CO2 gas excretion in the lungs, we investigated the effects of intramediastinal balloon catheterization-, pulmonary artery catheterization-, or isoprenaline (ISP)-induced changes in pulmonary blood flow on the end-expiratory CO2 gas pressure (PeCO2 ), the maximal velocity of the pulmonary artery (Max Vp), systemic arterial pressure, and heart rate of anesthetized rabbits. We also evaluated the changes in the PeCO2 in clinical models of anemia or pulmonary embolism. An almost linear relationship was detected between the PeCO2 and Max Vp. In an experiment in which small pulmonary arteries were subjected to stenosis, the PeCO2 fell rapidly, and the speed of the reduction was dependent on the degree of stenosis. ISP produced significant increases in the PeCO2 of the anesthetized rabbits. Conversely, treatment with piceatannol or acetazolamide induced significant reductions in the PeCO2 . Treatment with a cell surface F1/FO ATP synthase antibody caused significant reductions in the PeCO2 itself and the ISP-induced increase in the PeCO2 . Neither the PeCO2 nor SAP was significantly influenced by marked anemia [%hematocrit (Ht), 70 ∼ 47%]. On the other hand, in the presence of less severe anemia (%Ht: 100 ∼ 70%) both the PeCO2 and SAP fell significantly when the rabbits' blood viscosity was decreased. The rabbits in which pulmonary embolisms were induced demonstrated significantly reduced PeCO2 values, which was compatible with the lowering of their Max Vp. In conclusion, we reaffirm the validity of the proposed concept of CO2 gas exchange in the lungs.

  20. Endoscopic measurements of canine colonic mucosal blood flow using hydrogen gas clearance

    SciTech Connect

    Soybel, D.I.; Wan, Y.L.; Ashley, S.W.; Yan, Z.Y.; Ordway, F.S.; Cheung, L.Y.

    1987-04-01

    We have examined the feasibility of hydrogen (H/sub 2/) clearance for endoscopic measurements of colonic mucosal blood flow in anesthetized dogs. In 6 animals, measurements of H2 clearance did not differ significantly in different regions of the sigmoid colon and they were highly reproducible on different days. In a total of 12 dogs, measurements of H2 clearance correlated closely with those obtained using radioactive microspheres under resting conditions and, in 4 dogs, during infusion of vasopressin. In 8 dogs, ligation of the major arteries supplying the sigmoid colon resulted in an acute 60% decrease in sigmoid mucosal blood flow; however, in 5 animals that survived the procedure, mucosal blood flow returned nearly to control levels as early as 3 days after operation. Endoscopic H/sub 2/ clearance thus appears to be feasible for measuring mucosal blood flow in the colon. Serial measurements of H/sub 2/ clearance may prove useful in characterizing the role of mucosal blood flow in the pathogenesis of various forms of human colonic disease.

  1. Comprehensive Size-Determination of Whole Virus Vaccine Particles Using Gas-Phase Electrophoretic Mobility Macromolecular Analyzer, Atomic Force Microscopy, and Transmission Electron Microscopy

    PubMed Central

    Havlik, Marlene; Marchetti-Deschmann, Martina; Friedbacher, Gernot; Winkler, Wolfgang; Messner, Paul; Perez-Burgos, Laura; Tauer, Christa; Allmaier, Günter

    2015-01-01

    Biophysical properties including particle size distribution, integrity, and shape of whole virus vaccine particles at different stages in tick-borne encephalitis (TBE) vaccines formulation were analyzed by a new set of methods. Size-exclusion chromatography (SEC) was used as a conservative sample preparation for vaccine particle fractionation and gas-phase electrophoretic mobility macromolecular analyzer (GEMMA) for analyzing electrophoretic mobility diameters of isolated TBE virions. The derived particle diameter was then correlated with molecular weight. The diameter of the TBE virions determined after SEC by GEMMA instrumentation was 46.8 ± 1.1 nm. Atomic force microscopy (AFM) and transmission electron microscopy (TEM) were implemented for comparison purposes and to gain morphological information on the virion particle. Western blotting (Dot Blot) as an immunological method confirmed biological activity of the particles at various stages of the developed analytical strategy. AFM and TEM measurements revealed higher diameters with much higher SD for a limited number of virions, 60.4 ± 8.5 and 53.5 ± 5.3 nm, respectively. GEMMA instrumentation was also used for fractionation of virions with specifically selected diameters in the gas-phase, which were finally collected by means of an electrostatic sampler. At that point (i.e., after particle collection), AFM and TEM showed that the sampled virions were still intact, exhibiting a narrow size distribution (i.e., 59.8 ± 7.8 nm for AFM and 47.5 ± 5.2 nm for TEM images), and most importantly, dot blotting confirmed immunological activity of the collected samples. Furthermore dimers and virion artifacts were detected, too. PMID:26266988

  2. Screening for and validated quantification of phenethylamine-type designer drugs and mescaline in human blood plasma by gas chromatography/mass spectrometry.

    PubMed

    Habrdova, Vilma; Peters, Frank T; Theobald, Denis S; Maurer, Hans H

    2005-06-01

    In recent years, several newer designer drugs of the so-called 2C series such as 2C-D, 2C-E, 2C-P, 2C-B, 2C-I, 2C-T-2, and 2C-T-7 have entered the illicit drug market as recreational drugs. Some fatal intoxications involving 2C-T-7 have been reported. Only scarce data have been published about analyses of these substances in human blood and/or plasma. This paper describes a method for screening and simultaneous quantification of the above-mentioned compounds and their analog mescaline in human blood plasma. The analytes were analyzed by gas chromatography/mass spectrometry in the selected-ion monitoring mode, after mixed-mode solid-phase extraction (HCX) and derivatization with heptafluorobutyric anhydride. The method was fully validated according to international guidelines. Validation data for 2C-T-2 and 2C-T-7 were unacceptable. For all other analytes, the method was linear from 5 to 500 microg/L and the data for accuracy (bias) and precision (coefficient of variation) were within the acceptance limits of +/-15% and <15%, respectively (within +/-20% and <20% near the limit of quantification of 5 microg/L).

  3. Correlations between blood glucose and breath components from portable gas sensors and PTR-TOF-MS.

    PubMed

    Righettoni, M; Schmid, A; Amann, A; Pratsinis, S E

    2013-09-01

    Acetone is one of the most abundant volatile compounds in the human breath and might be important for monitoring diabetic patients. Here, a portable acetone sensor consisting of flame-made, nanostructured, Si-doped WO3 sensing films was used to analyse the end tidal fraction of the breath (collected in Tedlar bags) from eight healthy volunteers after overnight fasting (morning) and after lunch (afternoon). After breath sampling, the gaseous components were also analysed by proton transfer reaction time-of-flight mass spectrometry (PTR-TOF-MS), and each person's blood glucose level was measured. The portable sensor accurately detected the presence of acetone with fast response/recovery times (<12 s) and a high signal-to-noise ratio. Statistical analysis of the relationship between the PTR-TOF-MS measurements of breath gases (e.g., acetone, isoprene, ethanol and methanol), sensor response and the blood glucose level was performed for both sampling periods. The best correlations were found after overnight fasting (morning): in particular, between blood glucose level and breath acetone (Pearson's 0.98 and Spearman's 0.93). Whereas the portable sensor response correlated best with the blood glucose (Pearson's 0.96 and Spearman's 0.81) and breath acetone (Pearson's 0.92 and Spearman's 0.69). PMID:23959908

  4. Evaluation of dried blood spots as sample matrix for gas chromatography/mass spectrometry based metabolomic profiling.

    PubMed

    Kong, Sing Teang; Lin, Hai-Shu; Ching, Jianhong; Ho, Paul C

    2011-06-01

    We propose using dried blood spots (DBS) as sample matrix for gas chromatography/mass spectrometry (GC/MS) based metabolomic profiling for the benefits of higher sample stability, more convenient sample acquisition with DBS, higher analyte separation power, and more readily biomarker identification with GC/MS. To establish this proposition, the metabolomic profiles generated from DBS were compared with that obtained from the conventional whole blood and plasma matrixes and also with dried plasma spots (DPS) as another covariate control. Our findings indicated that whole blood produced the most number of detectable markers (866), whereas DPS yielded the least number (614). DBS and plasma matrix, on the other hand, produced the most similar numbers of detectable (695 vs 749) and identifiable markers (137 vs 147, matching with Fiehn library). From the analysis of the DBS and plasma metabolomic profiles, it was concluded that when l-lysine 2, iminodiacetic acid 2, dl-threo-beta-hydroxyaspartic acid, citric acid, or adenosine-5-monophosphate 2 are not involved as markers, DBS could be a suitable substitute for plasma for metabolomic profiling.

  5. Optimization of an enclosed gas analyzer sampling system for measuring eddy covariance fluxes of H2O and CO2

    DOE PAGESBeta

    Metzger, Stefan; Burba, George; Burns, Sean P.; Blanken, Peter D.; Li, Jiahong; Luo, Hongyan; Zulueta, Rommel C.

    2016-03-31

    Several initiatives are currently emerging to observe the exchange of energy and matter between the earth's surface and atmosphere standardized over larger space and time domains. For example, the National Ecological Observatory Network (NEON) and the Integrated Carbon Observing System (ICOS) are set to provide the ability of unbiased ecological inference across ecoclimatic zones and decades by deploying highly scalable and robust instruments and data processing. In the construction of these observatories, enclosed infrared gas analyzers are widely employed for eddy covariance applications. While these sensors represent a substantial improvement compared to their open- and closed-path predecessors, remaining high-frequency attenuation variesmore » with site properties and gas sampling systems, and requires correction. Here, we show that components of the gas sampling system can substantially contribute to such high-frequency attenuation, but their effects can be significantly reduced by careful system design. From laboratory tests we determine the frequency at which signal attenuation reaches 50 % for individual parts of the gas sampling system. For different models of rain caps and particulate filters, this frequency falls into ranges of 2.5–16.5 Hz for CO2, 2.4–14.3 Hz for H2O, and 8.3–21.8 Hz for CO2, 1.4–19.9 Hz for H2O, respectively. A short and thin stainless steel intake tube was found to not limit frequency response, with 50 % attenuation occurring at frequencies well above 10 Hz for both H2O and CO2. From field tests we found that heating the intake tube and particulate filter continuously with 4 W was effective, and reduced the occurrence of problematic relative humidity levels (RH > 60 %) by 50 % in the infrared gas analyzer cell. No further improvement of H2O frequency response was found for heating in excess of 4 W. These laboratory and field tests were reconciled using resistor–capacitor theory, and NEON's final gas sampling system was

  6. Long-term Calibration Strategy for the Earth Networks CO2 and CH4 Sensor Network in Urban and Background Sites Using the Picarro CRDS Gas Analyzer

    NASA Astrophysics Data System (ADS)

    Welp, L. R.; Lueker, T.; Kim, J.; Salameh, P.; Walker, S.; Keeling, R. F.; Weiss, R. F.; Sloop, C.; Callahan, W.; Bixler, D.; Long, A.

    2014-12-01

    The Earth Networks greenhouse-gas monitoring network initiated in 2010 has now expanded to nearly 35 stations across the United States. Building on this effort, the Megacities project funded by NIST has the goal of measuring CO2, CH4 and CO concentrations in the Los Angeles region to support quantitative emissions estimates. These efforts require precise concentration measurements that are internally consistent across the network so that small changes in concentration from one location to another are representative of emissions along the pathway. In this presentation, we examine the calibration strategy for these long-term monitoring efforts using data collected over the past few years. We will address the following issues as they apply to the Picarro G2301 CRDS CO2/CH4/H2O gas analyzer: (1) The frequency of calibration required. (2) The duration of calibration needed for the inlet system to stabilize. (3) The stability and linearity of the instrument span and options for monitoring with a high concentration tank or zero air tank in addition to an ambient concentration calibration tank. We will also outline the calibration tank overlap scheme employed to ensure a consistent long-term record of calibration.

  7. (Ca,Mg)-Carbonate and Mg-Carbonate at the Phoenix Landing Site: Evaluation of the Phoenix Lander's Thermal Evolved Gas Analyzer (TEGA) Data Using Laboratory Simulations

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Ming, D. W.; Boynton, W. V.; Niles, P. B.; Morris, R. V.

    2011-01-01

    Calcium carbonate (4.5 wt. %) was detected in the soil at the Phoenix Landing site by the Phoenix Lander s The Thermal and Evolved Gas Analyzer [1]. TEGA operated at 12 mbar pressure, yet the detection of calcium carbonate is based on interpretations derived from thermal analysis literature of carbonates measured under ambient (1000 mbar) and vacuum (10(exp -3) mbar) conditions [2,3] as well as at 100 and 30 mbar [4,5] and one analysis at 12 mbar by the TEGA engineering qualification model (TEGA-EQM). Thermodynamics (Te = H/ S) dictate that pressure affects entropy ( S) which causes the temperature (Te) of mineral decomposition at one pressure to differ from Te obtained at another pressure. Thermal decomposition analyses of Fe-, Mg-, and Ca-bearing carbonates at 12 mbar is required to enhance the understanding of the TEGA results at TEGA operating pressures. The objectives of this work are to (1) evaluate the thermal and evolved gas behavior of a suite of Fe-, Mg-, Ca-carbonate minerals at 1000 and 12 mbar and (2) discuss possible emplacement mechanisms for the Phoenix carbonate.

  8. Membrane Oxygenator Heat Exchanger Failure Detected by Unique Blood Gas Findings

    PubMed Central

    Hawkins, Justin L.

    2014-01-01

    Abstract: Failure of components integrated into the cardiopulmonary bypass circuit, although rare, can bring about catastrophic results. One of these components is the heat exchanger of the membrane oxygenator. In this compartment, unsterile water from the heater cooler device is separated from the sterile blood by stainless steel, aluminum, or by polyurethane. These areas are glued or welded to keep the two compartments separate, maintaining sterility of the blood. Although quality control testing is performed by the manufacturer at the factory level, transport presents the real possibility for damage. Because of this, each manufacturer has included in the instructions for use a testing procedure for testing the integrity of the heat exchanger component. Water is circulated through the heat exchanger before priming and a visible check is made of the oxygenator bundle to check for leaks. If none are apparent, then priming of the oxygenator is performed. In this particular case, this procedure was not useful in detecting communication between the water and blood chambers of the oxygenator. PMID:24779125

  9. A sportomics strategy to analyze the ability of arginine to modulate both ammonia and lymphocyte levels in blood after high-intensity exercise

    PubMed Central

    2012-01-01

    Background Exercise is an excellent tool to study the interactions between metabolic stress and the immune system. Specifically, high-intensity exercises both produce transient hyperammonemia and influence the distribution of white blood cells. Carbohydrates and glutamine and arginine supplementation were previously shown to effectively modulate ammonia levels during exercise. In this study, we used a short-duration, high-intensity exercise together with a low carbohydrate diet to induce a hyperammonemia state and better understand how arginine influences both ammonemia and the distribution of leukocytes in the blood. Methods Brazilian Jiu-Jitsu practitioners (men, n = 39) volunteered for this study. The subjects followed a low-carbohydrate diet for four days before the trials and received either arginine supplementation (100 mg·kg-1 of body mass·day-1) or a placebo. The intergroup statistical significance was calculated by a one-way analysis of variance, followed by Student’s t-test. The data correlations were calculated using Pearson’s test. Results In the control group, ammonemia increased during matches at almost twice the rate of the arginine group (25 mmol·L-1·min-1 and 13 μmol·L-1·min-1, respectively). Exercise induced an increase in leukocytes of approximately 75%. An even greater difference was observed in the lymphocyte count, which increased 2.2-fold in the control group; this increase was partially prevented by arginine supplementation. The shape of the ammonemia curve suggests that arginine helps prevent increases in ammonia levels. Conclusions These data indicate that increases in lymphocytes and ammonia are simultaneously reduced by arginine supplementation. We propose that increased serum lymphocytes could be related to changes in ammonemia and ammonia metabolism. PMID:22734448

  10. 20 CFR Appendix C to Part 718 - Blood-Gas Tables

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...-gas studies performed at test sites up to 2,999 feet above sea level: Arterial PCO2 (mm Hg) Arterial... performed at test sites 3,000 to 5,999 feet above sea level: Arterial PCO2 (mm Hg) Arterial PO2 equal to or... test sites 6,000 feet or more above sea level: Arterial PCO2 (mm Hg) Arterial PO2 equal to or less...

  11. Role of blood gas analysis during cardiopulmonary resuscitation in out-of-hospital cardiac arrest patients

    PubMed Central

    Kim, Youn-Jung; Lee, You Jin; Ryoo, Seung Mok; Sohn, Chang Hwan; Ahn, Shin; Seo, Dong-Woo; Lim, Kyoung Soo; Kim, Won Young

    2016-01-01

    Abstract To determine the relationship between acid–base findings, such as pH, pCO2, and serum lactate levels, obtained immediately after starting cardiopulmonary resuscitation and the return of spontaneous circulation (ROSC). A prospective observational study of adult, nontraumatic out-of-hospital cardiac arrest (OHCA) patients was conducted at an urban academic teaching institution between April 1, 2013 and March 31, 2015. Arterial blood sample for acid–base data was taken from all OHCA patients on arrival to the emergency department. Of 224 OHCA patients, 88 patients with unavailable blood samples or delayed blood sampling or ROSC within 4 minutes were excluded, leaving 136 patients for analysis. The pH in the ROSC group was significantly higher than in the non-ROSC group (6.96 vs. 6.85; P = 0.009). pCO2 and lactate levels in the ROSC group were significantly lower than those in the non-ROSC group (74.0 vs. 89.5 mmHg, P < 0.009; 11.6 vs. 13.6 mmol/L, P = 0.044, respectively). In a multivariate regression analysis, pCO2 was the only independent biochemical predictor for sustained ROSC (OR 0.979; 95% CI 0.960–0.997; P = 0.025) and pCO2 of <75 mmHg was 3.3 times more likely to achieve ROSC (OR 0.302; 95% CI 0.146–0.627; P = 0.001). pCO2 levels obtained during cardiopulmonary resuscitation on ER arrival was associated with ROSC in OHCA patients. It might be a potentially marker for reflecting the status of the ischemic insult. These preliminary results need to be confirmed in a larger population. PMID:27336894

  12. The hydrogen gas clearance method for liver blood flow examination: inhalation or local application of hydrogen?

    PubMed

    Metzger, H P

    1989-01-01

    The combined method of hydrogen inhalation and local hydrogen production enable the determination of hepatic blood flow (HBF) and local hepatic blood flow (LHBF). LHBF was registered within a small superficial tissue volume of 0.5 mm in diameter by means of a multi-wire electrode having 200 microns producing and 100 microns measuring wires arranged within less than 300 microns distance between the measuring wires. The feeding current for hydrogen production was 1 microA, the potential less than 10 V. The clearance in response to inhalation was registered by means of the same measuring electrodes within the same tissue volume. Spontaneously breathing rats (Wistar-Frömter strain, 180-230 g bw, N = 19, ketamin-xylazine anesthesia, artificial respiration) showed the following flow values: HBF +/- SD = 0.50 +/- 0.26 ml/g.min, n = 48 registrations; LHBF +/- SD = 4.66 +/- 2.13 ml/g.min, n = 43. The validity of the combined method is demonstrated in the LHBF/HBF graph which summarizes the data of hemorrhagic and control animals, m = 0.1 and yo = 0.001. The correlation coefficient of r = 0.685 shows a reasonable correlation of the combined data despite the wide scattering of the individual values.

  13. Breathing at birth and the associated blood gas and pH changes in the lamb.

    PubMed

    Berger, P J; Horne, R S; Soust, M; Walker, A M; Maloney, J E

    1990-11-01

    We examined the relationship between the initiation of breathing at birth and the timing of delivery of the chest in a group of 13 lambs undergoing spontaneous unassisted delivery at term. In 8 of 11 lambs with a diaphragm electromyogram or intrapleural pressure signal the first breath occurred before chest delivery. The first breath was always followed by a period of irregular and often powerful inspiratory efforts. Some of these inspirations were followed by a forceful expiration. A regular respiratory rhythm never developed until the chest had delivered, suggesting that chest expansion is essential for the establishment of rhythm. Although PaO2 increased rapidly after birth, pHa declined and reached its lowest level approximately 20 minutes postnatally suggesting that considerable anaerobic metabolism occurs in the face of adequate arterial oxygenation. The level of respiratory activity in the first 30 min following birth did not appear to be related to arterial PO2, PCO2 or pH. Neither the appearance of the EMG activity of the first breath, nor blood samples taken from 2 lambs simultaneously with the first breath, suggested that the first breath was a gasp initiated by asphyxial blood gases. Our results therefore do not support the current hypothesis that the first breath is a gasp initiated by asphyxia accompanying delivery.

  14. Focused Ultrasound-Induced Blood-Brain Barrier Opening: Association with Mechanical Index and Cavitation Index Analyzed by Dynamic Contrast-Enhanced Magnetic-Resonance Imaging.

    PubMed

    Chu, Po-Chun; Chai, Wen-Yen; Tsai, Chih-Hung; Kang, Shih-Tsung; Yeh, Chih-Kuang; Liu, Hao-Li

    2016-01-01

    Focused ultrasound (FUS) with microbubbles can temporally open the blood-brain barrier (BBB), and the cavitation activities of microbubbles play a key role in the BBB-opening process. Previous attempts used contrast-enhanced magnetic resonance imaging (CE-MRI) to correlate the mechanical index (MI) with the scale of BBB-opening, but MI only partially gauged acoustic activities, and CE-MRI did not fully explore correlations of pharmacodynamic/pharmacokinetic behaviors. Recently, the cavitation index (CI) has been derived to serve as an indicator of microbubble-ultrasound stable cavitation, and may also serve as a valid indicator to gauge the level of FUS-induced BBB opening. This study investigates the feasibility of gauging FUS-induced BBB opened level via the two indexes, MI and CI, through dynamic contrast-enhanced (DCE)-MRI analysis as well as passive cavitation detection (PCD) analysis. Pharmacodynamic/pharmacokinetic parameters derived from DCE-MRI were characterized to identify the scale of FUS-induced BBB opening. Our results demonstrated that DCE-MRI can successfully access pharmacodynamic/pharmacokinetic BBB-opened behavior, and was highly correlated both with MI and CI, implying the feasibility in using these two indices to gauge the scale of FUS-induced BBB opening. The proposed finding may facilitate the design toward using focused ultrasound as a safe and reliable noninvasive CNS drug delivery. PMID:27630037

  15. Focused Ultrasound-Induced Blood-Brain Barrier Opening: Association with Mechanical Index and Cavitation Index Analyzed by Dynamic Contrast-Enhanced Magnetic-Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Chu, Po-Chun; Chai, Wen-Yen; Tsai, Chih-Hung; Kang, Shih-Tsung; Yeh, Chih-Kuang; Liu, Hao-Li

    2016-09-01

    Focused ultrasound (FUS) with microbubbles can temporally open the blood-brain barrier (BBB), and the cavitation activities of microbubbles play a key role in the BBB-opening process. Previous attempts used contrast-enhanced magnetic resonance imaging (CE-MRI) to correlate the mechanical index (MI) with the scale of BBB-opening, but MI only partially gauged acoustic activities, and CE-MRI did not fully explore correlations of pharmacodynamic/pharmacokinetic behaviors. Recently, the cavitation index (CI) has been derived to serve as an indicator of microbubble-ultrasound stable cavitation, and may also serve as a valid indicator to gauge the level of FUS-induced BBB opening. This study investigates the feasibility of gauging FUS-induced BBB opened level via the two indexes, MI and CI, through dynamic contrast-enhanced (DCE)-MRI analysis as well as passive cavitation detection (PCD) analysis. Pharmacodynamic/pharmacokinetic parameters derived from DCE-MRI were characterized to identify the scale of FUS-induced BBB opening. Our results demonstrated that DCE-MRI can successfully access pharmacodynamic/pharmacokinetic BBB-opened behavior, and was highly correlated both with MI and CI, implying the feasibility in using these two indices to gauge the scale of FUS-induced BBB opening. The proposed finding may facilitate the design toward using focused ultrasound as a safe and reliable noninvasive CNS drug delivery.

  16. Focused Ultrasound-Induced Blood-Brain Barrier Opening: Association with Mechanical Index and Cavitation Index Analyzed by Dynamic Contrast-Enhanced Magnetic-Resonance Imaging

    PubMed Central

    Chu, Po-Chun; Chai, Wen-Yen; Tsai, Chih-Hung; Kang, Shih-Tsung; Yeh, Chih-Kuang; Liu, Hao-Li

    2016-01-01

    Focused ultrasound (FUS) with microbubbles can temporally open the blood-brain barrier (BBB), and the cavitation activities of microbubbles play a key role in the BBB-opening process. Previous attempts used contrast-enhanced magnetic resonance imaging (CE-MRI) to correlate the mechanical index (MI) with the scale of BBB-opening, but MI only partially gauged acoustic activities, and CE-MRI did not fully explore correlations of pharmacodynamic/pharmacokinetic behaviors. Recently, the cavitation index (CI) has been derived to serve as an indicator of microbubble-ultrasound stable cavitation, and may also serve as a valid indicator to gauge the level of FUS-induced BBB opening. This study investigates the feasibility of gauging FUS-induced BBB opened level via the two indexes, MI and CI, through dynamic contrast-enhanced (DCE)-MRI analysis as well as passive cavitation detection (PCD) analysis. Pharmacodynamic/pharmacokinetic parameters derived from DCE-MRI were characterized to identify the scale of FUS-induced BBB opening. Our results demonstrated that DCE-MRI can successfully access pharmacodynamic/pharmacokinetic BBB-opened behavior, and was highly correlated both with MI and CI, implying the feasibility in using these two indices to gauge the scale of FUS-induced BBB opening. The proposed finding may facilitate the design toward using focused ultrasound as a safe and reliable noninvasive CNS drug delivery. PMID:27630037

  17. Quantification of 31 volatile organic compounds in whole blood using solid-phase microextraction and gas chromatography-mass spectrometry.

    PubMed

    Blount, Benjamin C; Kobelski, Robert J; McElprang, David O; Ashley, David L; Morrow, John C; Chambers, David M; Cardinali, Frederick L

    2006-03-01

    The prevalence of exposure to volatile organic compounds (VOCs) has raised concern about possible health effects resulting from chronic human exposure. To support studies exploring the relation between VOC exposure and health effects, we developed an automated analytical method using solid-phase microextraction (SPME), capillary gas chromatography (GC), and quadrupole mass spectrometry (MS). This method quantifies trace levels (low parts per trillion) of 14 halogenated alkanes, 5 halogenated alkenes, 10 aromatic compounds, and 2 other VOCs in human blood. Detection limits for the SPME-GC-MS method range from 0.005 to 0.12 microg/L, with linear calibration curves spanning three orders of magnitude. The improved throughput of this method will enable us to expand biomonitoring efforts to assess nonoccupational VOC exposure in large epidemiological studies.

  18. Blood-gas and acid-base parameters in nontranquilized Arabian oryx (Oryx leucoryx) in the United Arab Emirates.

    PubMed

    Kilgallon, Conor; Bailey, Tom; Arca-Ruibal, Barbara; Misheff, Martha; O'Donovan, Declan

    2008-03-01

    Arterial and venous blood-gas and acid-base values were established from a herd (n = 19; 14 male, 5 female) of semi-free-ranging Arabian oryx (Oryx leucoryx) in the United Arab Emirates. The animals were restrained with the use of a modified raceway incorporating a commercially available handling crate. Statistically significant differences were found between arterial and venous values for PO2 (p < 0.001), PCO2 (p = 0.0141), SO2 (p < 0.001), pH (p = 0.0494), and glucose (p < 0.0001). The results are similar to those reported for the same species under field anesthetic conditions, and to those reported from other species of wild bovidae, both tranquilized and nontranquilized, established under similar methods of restraint. In addition, Bland and Altman plots suggest adequate levels of clinical agreement between venous and arterial pH but not between arterial and venous PCO2. PMID:18432091

  19. DIFFERENTIAL ANALYZER

    DOEpatents

    Sorensen, E.G.; Gordon, C.M.

    1959-02-10

    Improvements in analog eomputing machines of the class capable of evaluating differential equations, commonly termed differential analyzers, are described. In general form, the analyzer embodies a plurality of basic computer mechanisms for performing integration, multiplication, and addition, and means for directing the result of any one operation to another computer mechanism performing a further operation. In the device, numerical quantities are represented by the rotation of shafts, or the electrical equivalent of shafts.

  20. Hydrogen gas production is associated with reduced interleukin-1β mRNA in peripheral blood after a single dose of acarbose in Japanese type 2 diabetic patients.

    PubMed

    Tamasawa, Atsuko; Mochizuki, Kazuki; Hariya, Natsuyo; Saito, Miyoko; Ishida, Hidenori; Doguchi, Satako; Yanagiya, Syoko; Osonoi, Takeshi

    2015-09-01

    Acarbose, an α-glucosidase inhibitor, leads to the production of hydrogen gas, which reduces oxidative stress. In this study, we examined the effects of a single dose of acarbose immediately before a test meal on postprandial hydrogen gas in breath and peripheral blood interleukin (IL)-1β mRNA expression in Japanese type 2 diabetic patients. Sixteen Japanese patients (14 men, 2 women) participated in this study. The mean±standard deviation age, hemoglobin A1c and body mass index were 52.1±15.4 years, 10.2±2.0%, and 27.7±8.0kg/m(2), respectively. The patients were admitted into our hospital for 2 days and underwent test meals at breakfast without (day 1) or with acarbose (day 2). We performed continuous glucose monitoring and measured hydrogen gas levels in breath, and peripheral blood IL-1β mRNA levels before (0min) and after the test meal (hydrogen gas: 60, 120, 180, and 300min; IL-1β: 180min). The induction of hydrogen gas production and the reduction in peripheral blood IL-1β mRNA after the test meal were not significant between days 1 (without acarbose) and 2 (with acarbose). However, the changes in total hydrogen gas production from day 1 to day 2 were closely and inversely associated with the changes in peripheral blood IL-1β mRNA levels. Our results suggest that an increase in hydrogen gas production is inversely associated with a reduction of the peripheral blood IL-1β mRNA level after a single dose of acarbose in Japanese type 2 diabetic patients.

  1. Antibody tagged gold nanoparticles as scattering probes for the pico molar detection of the proteins in blood serum using nanoparticle tracking analyzer.

    PubMed

    Kashid, Sahebrao Balaso; Tak, Rajesh D; Raut, Rajesh Warluji

    2015-09-01

    We report a rapid one-step immunoassay to detect protein using antibody conjugated gold nanoparticles (AbGNPs) where the targeted protein concentration was determined by analyzing the gold nanoparticle aggregation caused by antibody-antigen interactions using nanoparticles tracking analysis (NTA) technique. The sandwich structure constituting the binding of the targeted human IgG to the gold nanoparticle conjugates with goat anti human monoclonal IgG (AbGNPs) was confirmed by transmission electron microscopy. The binding of human IgG (antigen, mentioned hence forth as AT) induce AbGNPs to form dimers or trimers through a typical antibody-antigen-antibody sandwich structure that can be analyzed for the sensitive determination on the basis of change in hydrodynamic diameter of AbGNPs. By this method the minimum detectable concentration of AT is found to be below 2pg/ml. We expect that a significant change in the hydrodynamic diameter of AbGNP could form the basis for the rapid one-step immunoassay development.

  2. Determination of endogenous ethanol in blood and breath by gas chromatography-mass spectrometry.

    PubMed

    Jones, A W; Mårdh, G; Anggård, E

    1983-01-01

    We describe methods for the determination of endogenous ethanol in biological specimens from healthy abstaining subjects. The analytical methods were headspace gas chromatography (GC) for plasma samples and gas chromatography-mass spectometry (GC/MS) with deuterium labelled species 2H3-ethanol and 2H5-ethanol as internal standards for breath analysis. Ethanol in rebreathed air was about 10% higher than in directly analysed end-expired alveolar air. Known volumes of rebreathed air were passed through a liquid-N2 freeze trap and the volatile constituents of breath were concentrated prior to analysis by GC or GC/MS. Besides endogenous ethanol, peaks were seen on the chromatograms for methanol, acetone and acetaldehyde as well as several as yet unidentified substances. The endogenous alcohols ethanol and methanol were confirmed from their mass chromatograms and the GC/MS profile also indicated the presence of endogenous propan-1-ol. The concentration of endogenous ethanol in plasma showed wide inter-subject variations ranging from below detection limits to 1.6 micrograms/ml (34.8 mumol/l) and with mean +/- SD of 0.39 +/- 0.45 micrograms/ml (8.5 +/- 9.8 mumol/l). We aim to characterise further the role of endogenous ethanol with the main focus on dynamic aspects such as the rate of formation and turnover.

  3. Process Analyzer

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The ChemScan UV-6100 is a spectrometry system originally developed by Biotronics Technologies, Inc. under a Small Business Innovation Research (SBIR) contract. It is marketed to the water and wastewater treatment industries, replacing "grab sampling" with on-line data collection. It analyzes the light absorbance characteristics of a water sample, simultaneously detects hundreds of individual wavelengths absorbed by chemical substances in a process solution, and quantifies the information. Spectral data is then processed by ChemScan analyzer and compared with calibration files in the system's memory in order to calculate concentrations of chemical substances that cause UV light absorbance in specific patterns. Monitored substances can be analyzed for quality and quantity. Applications include detection of a variety of substances, and the information provided enables an operator to control a process more efficiently.

  4. Integrated Chemical and Microorganism Monitoring of Air Using Gas Chromatography/Ion Mobility Spectometry: Toward an Expanded-Use Volatile Organic Analyzer (VOA)

    NASA Technical Reports Server (NTRS)

    Eiceman, G. A.

    1999-01-01

    The work described in this research program originated with the choice by NASA of an ion mobility spectrometer for air quality monitoring on-board the international spacestation. Though the gas chromatograph-ion mobility spectrometer analyzer known as VOA met or exceeded expectations, limitations in the basic understanding of response and the utilization of foundational principles into usable technology was considered unacceptable. In this research program, a comprehensive model for the origins of mobility spectra was proposed, tested and verified. The principles considered responsible for the appearance of mobility spectra have now been elucidated through this project. This understanding has been applied in automated identification of mobility spectra using neural networks and routine procedures for this now exist. Finally, the limitation on linear range has been shown to be a technical limitation and not a fundamental limitation so that a hardware component was crafted to extend the linear range of a mobility spectrometer by 10X. This project has led to one Ph.D. dissertation and one MS thesis. In addition, over ten public presentations at professional meetings and six journal publications have resulted from this program of research. The findings are so plentiful that total analysis of the findings may require four to six years or more. The findings confirm that the decision to use VOA was sound and that the chemical and physical principles of mobility spectrometry are both understandable and predictable.

  5. Residual gas analyzer mass spectrometry for human breath analysis: a new tool for the non-invasive diagnosis of Helicobacter pylori infection.

    PubMed

    Maity, Abhijit; Banik, Gourab D; Ghosh, Chiranjit; Som, Suman; Chaudhuri, Sujit; Daschakraborty, Sunil B; Ghosh, Shibendu; Ghosh, Barnali; Raychaudhuri, Arup K; Pradhan, Manik

    2014-03-01

    A residual gas analyzer (RGA) coupled with a high vacuum chamber is described for the non-invasive diagnosis of the Helicobacter pylori (H. pylori) infection through ¹³C-urea breath analysis. The present RGA-based mass spectrometry (MS) method is capable of measuring high-precision ¹³CO₂ isotope enrichments in exhaled breath samples from individuals harboring the H. pylori infection. The system exhibited 100% diagnostic sensitivity, and 93% specificity alongside positive and negative predictive values of 95% and 100%, respectively, compared with invasive endoscopy-based biopsy tests. A statistically sound diagnostic cut-off value for the presence of H. pylori was determined to be 3.0‰ using a receiver operating characteristic curve analysis. The diagnostic accuracy and validity of the results are also supported by optical off-axis integrated cavity output spectroscopy measurements. The δ¹³(DOB)C‰ values of both methods correlated well (R² = 0.9973 at 30 min). The RGA-based instrumental setup described here is simple, robust, easy-to-use and more portable and cost-effective compared to all other currently available detection methods, thus making it a new point-of-care medical diagnostic tool for the purpose of large-scale screening of the H. pylori infection in real time. The RGA-MS technique should have broad applicability for ¹³C-breath tests in a wide range of biomedical research and clinical diagnostics for many other diseases and metabolic disorders.

  6. A Possible Organic Contribution to the Low Temperature CO2 Release Seen in Mars Phoenix Thermal and Evolved Gas Analyzer Data

    NASA Technical Reports Server (NTRS)

    Archer, P. D. Jr.; Lauer, H. V., Jr.; Sutter, B.; Ming, D. W.; Niles, P. B.; Boynton, W. V.

    2012-01-01

    Two of the most important discoveries of the Phoenix Mars Lander were the discovery of approx.0.6% perchlorate [1] and 3-5% carbonate [2] in the soils at the landing site in the martian northern plains. The Thermal and Evolved Gas Analyzer (TEGA) instrument was one of the tools that made this discovery. After soil samples were delivered to TEGA and transferred into small ovens, the samples could be heated up to approx.1000 C and the gases that evolved during heating were monitored by a mass spectrometer. A CO2 signal was detected at high temperature (approx.750 C) that has been attributed to calcium carbonate decomposition. In addition to this CO2 release, a lower temperature signal was seen. This lower temperature CO2 release was postulated to be one of three things: 1) desorption of CO2, 2) decomposition of a different carbonate mineral, or 3) CO2 released due to organic combustion. Cannon et al. [3] present another novel hypothesis involving the interaction of decomposition products of a perchlorate salt and calcium carbonate.

  7. Defibrillator analyzers.

    PubMed

    1999-12-01

    Defibrillator analyzers automate the inspection and preventive maintenance (IPM) testing of defibrillators. They need to be able to test at least four basic defibrillator performance characteristics: discharge energy, synchronized-mode operation, automated external defibrillation, and ECG monitoring. We prefer that they also be able to test a defibrillator's external noninvasive pacing function--but this is not essential if a facility already has a pacemaker analyzer that can perform this testing. In this Evaluation, we tested seven defibrillator analyzers from six suppliers. All seven units accurately measure the energies of a variety of discharge wave-forms over a wide range of energy levels--from 1 J for use in a neonatal intensive care unit to 360 J for use on adult patients requiring maximum discharge energy. Most of the analyzers are easy to use. However, only three of the evaluated units could perform the full range of defibrillator tests that we prefer. We rated these units Acceptable--Preferred. Three more units could perform four of the five tests, they could not test the pacing feature of a defibrillator. These units were rated Acceptable. The seventh unit could perform only discharge energy testing and synchronized-mode testing and was difficult to use. We rate that unit Acceptable--Not Recommended. PMID:10604089

  8. An audit of the patient's experience of arterial blood gas testing.

    PubMed

    Crawford, Anne

    Arterial puncture is the most common method used to obtain a sample for the measurement of arterial blood gases (ABGs) and is essential to guide the prescription of long-term oxygen therapy (LTOT) in patients with chronic hypoxic lung disease. However, this procedure is often reported by patients as a painful and unpleasant experience, which to date has not been explored. This audit specifically examines the subjective views of a small group of patients (n = 41) who are receiving LTOT who have experienced repeated ABGs. Results demonstrated that 49% (n = 20) were poorly informed regarding what the procedure involved, almost half the patients 49% (n = 20) recalled pain levels of 5 and above on a visual analogue scale and 66% (n = 27) were totally unaware that the test could make a considerable difference to their treatment. While highlighting the deficits in current practice locally, this audit concludes that the respiratory nurse specialist is in an ideal position to implement changes to improve the patient's experience of chronic disease management. PMID:15215729

  9. Development and Validation of a Novel Gas Analyzer for Simultaneous Measurements of Methane, Carbon Dioxide and Water Vapor in Ambient Air at 20 Hz

    NASA Astrophysics Data System (ADS)

    Gupta, M.; Owano, T.; Fellers, R.; Dong, F.; Baer, D.

    2008-12-01

    Methane has increased significantly with human population levels. Pre-1750 ice core data indicates that pre- industrialization levels were about 700 ppbv, while current levels are over 1750 ppbv. In current budget estimates of atmospheric methane, major contributors include both natural (wetlands) and anthropogenic sources (energy, landfills, ruminants, biomass burning, rice agriculture). The strengths of these sources vary spatially and temporally. Estimates of emissions from wetlands are also uncertain due to the extreme variability of these ecosystems. Because methane lifetime is relatively long (8.4 years), atmospheric variations in concentration are small and accuracy in measurement is important for understanding spatial and temporal variability. Atmospheric concentrations of carbon dioxide and methane rose sharply in 2007. Global CO2 climbed by 0.6 percent, or 19 billion tons, in 2007. Methane increased by 27 million tons after nearly a decade with little or no increase. Atmospheric CO2 levels currently stand at 385 ppmv, or about 38 percent higher than pre- industrial levels and the rise in CO2 concentrations has been accelerating since the 1980s when annual increases were around 1.5 ppm per year. Last year the increase was 2.4 ppm. We report on the development, application and independent performance characterization of a novel gas analyzer based on cavity-enhanced laser absorption spectroscopy. The Analyzer provides simultaneous measurements of methane, carbon dioxide and water vapor in ambient air in the field for applications that require high data rates (eddy correlation flux), wide dynamic range (e.g., chamber flux and other applications with concentrations that are ten times typical ambient levels or higher) and highest accuracy (atmospheric monitoring stations). The Analyzer provides continuous measurements at data rates up to 20 Hz and with replicate precision of 1 ppbv for methane (1 second measurement time), 0.2 ppmv for carbon dioxide (1 second

  10. Toxicity of carbon monoxide-hydrogen cyanide gas mixtures: Expose concentration, time-to-incapacitation, carboxyhemoglobin, and blood cyanide parameters. Final report

    SciTech Connect

    Sanders, D.C.; Chaturvedi, A.K.; Endecott, B.R.; Ritter, R.M.; Vu, N.

    1994-04-01

    During aircraft interior fires, carbon monoxide (CO) and hydrogen cyanide (HCN) are produced in sufficient amounts to cause incapacitation and death. Time-to-incapacitation (ti) is a practical parameter for estimating escape time in fire environments. Exposures to CO-HCN mixtures have demonstrated that these gases have additive effects (producing shorter times to incapacitation), but the resulting concentrations of carboxyhemoglobin (COHb) and blood cyanide (CN-) at incapacitation are not well defined. These undefined relationships between COHb and blood CN- levels and the onset of incapacitation make the interpretation of postmortem levels difficult for medical accident investigators. To explore these relationships, ti was determined in laboratory rats exposed to two CO-HCN mixtures consisting of CO and HCN concentrations that produce 5- and 35-min ti in individual gas exposures; COHb and blood CN- concentrations were determined at incapacitation. In the high concentration CO-HCN mixture, the resultant ti was shortened from 5 min to 2.6 min; COHb dropped from 81% to 55% and CN- from 2.3 microns/mL to 1.1 microns/mL. At the lower concentration COHCN mixture, where the resultant ti was reduced from 35 min to 11.1 min, COHb dropped from 71% to 61% and blood CN- decreased from 4.2 microns/mL to 1.1 microns/mL. Comparison of the COHb and blood CN- values with the values from our signal gas exposure studies indicated that any alteration of the uptake of either gas in blood by the presence of the other was minimal. These findings suggest that changes in COHb and blood CN- may not be directly correlated with the onset of incapacitation and that postmortem blood levels should be carefully evaluated, particularly when both gases are present.

  11. Process Analyzer

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Under a NASA Small Business Innovation Research (SBIR) contract, Axiomatics Corporation developed a shunting Dielectric Sensor to determine the nutrient level and analyze plant nutrient solutions in the CELSS, NASA's space life support program. (CELSS is an experimental facility investigating closed-cycle plant growth and food processing for long duration manned missions.) The DiComp system incorporates a shunt electrode and is especially sensitive to changes in dielectric property changes in materials at measurements much lower than conventional sensors. The analyzer has exceptional capabilities for predicting composition of liquid streams or reactions. It measures concentrations and solids content up to 100 percent in applications like agricultural products, petrochemicals, food and beverages. The sensor is easily installed; maintenance is low, and it can be calibrated on line. The software automates data collection and analysis.

  12. MULTICHANNEL ANALYZER

    DOEpatents

    Kelley, G.G.

    1959-11-10

    A multichannel pulse analyzer having several window amplifiers, each amplifier serving one group of channels, with a single fast pulse-lengthener and a single novel interrogation circuit serving all channels is described. A pulse followed too closely timewise by another pulse is disregarded by the interrogation circuit to prevent errors due to pulse pileup. The window amplifiers are connected to the pulse lengthener output, rather than the linear amplifier output, so need not have the fast response characteristic formerly required.

  13. Rapid and sensitive gas-chromatographic determination of caffeine in blood plasma, saliva, and xanthine beverages.

    PubMed

    Teeuwen, H W; Elbers, E L; van Rossum, J M

    1991-02-01

    A gas chromatographic procedure is reported for the determination of caffeine in plasma, saliva, and xanthine beverages. Using a 75 cm column packed with OV-17, nitrogen-sensitive detection, and 1 ml samples, a suitable limit of analysis (coefficient of variation (CV) = 10.2%) of 50 ng/ml was obtained in plasma. Within-day CVs at caffeine concentrations of 0.1-0.5-2.0-7.5-15.0 micrograms/ml in plasma were 7.7-5.6-4.8-3.8-3.4%, respectively. The limit of detection, defined as the injected quantity of caffeine giving rise to a signal to noise ratio of 2, is 40 pg, corresponding to a plasma concentration of 1 ng/ml. The procedure involves addition of the internal standard 7-pentyl theophylline and alkaline extraction of the sample with dichloromethane. The method described rivals any gaschromatographic assay published so far in rapidness and accuracy. Plasma and saliva caffeine concentrations were determined in a healthy male volunteer after swallowing 400 ml of coffee. The calculated pharmacokinetic parameters, assuming complete absorption of caffeine from the G.I. tract, agree well with previously published values. PMID:1875916

  14. S35: a new parameter in blood gas analysis for monitoring the systemic oxygenation.

    PubMed

    Trouwborst, A; Tenbrinck, R; Van Woerkens, E C

    1990-01-01

    In the estimation of oxygen transport the term oxygen availability is used as the product of cardiac output and the arterial oxygen content (CaO2). Attempts can be made to modify the concept of oxygen availability by subtracting from the CaO2 the venous content at a critical PO2 as measured in mixed venous blood (Pv-O2), where oxygen diffusion into tissue becomes compromised and oxygen uptake (VO2) may decrease. The real arterial available oxygen content (CavlO2) can be calculated by estimating the saturation at the critical Pv-O2. For our concept S35 was chosen as such a dynamic baseline. Similar modification of oxygen extraction ratio (ERav) defined as VO2 divided by the real oxygen availability (O2av) should give, more than the classic ER, a realistic indices of oxygen availability in relation to oxygen consumption. It can be hypothesized that VO2 starts to decline when ERav is around 1.0. During isovolemic hemodilution VO2 started to drop when ERav reached 1.08 +/- 0.09. The S35 changed from 55.0 +/- 2.1% to 41.5 +/- 4.1%, correlated with changes in Pv-O2. A direct correlation was also found between the increase of the classic ER and the change in S35. We conclude that the S35, the CavlO2 and the ERav can be of value in monitoring the systemic oxygenation and that the concept also includes the effect of changes in oxyhemoglobin characteristics on oxygen delivery.

  15. Accuracy profile validation of a new method for carbon monoxide measurement in the human blood using headspace-gas chromatography-mass spectrometry (HS-GC-MS).

    PubMed

    Varlet, V; De Croutte, E Lagroy; Augsburger, M; Mangin, P

    2012-01-01

    The aim of our study was to provide an innovative headspace-gas chromatography-mass spectrometry (HS-GC-MS) method applicable for the routine determination of blood CO concentration in forensic toxicology laboratories. The main drawback of the GC/MS methods discussed in literature for CO measurement is the absence of a specific CO internal standard necessary for performing quantification. Even if stable isotope of CO is commercially available in the gaseous state, it is essential to develop a safer method to limit the manipulation of gaseous CO and to precisely control the injected amount of CO for spiking and calibration. To avoid the manipulation of a stable isotope-labeled gas, we have chosen to generate in a vial in situ, an internal labeled standard gas ((13)CO) formed by the reaction of labeled formic acid formic acid (H(13)COOH) with sulfuric acid. As sulfuric acid can also be employed to liberate the CO reagent from whole blood, the procedure allows for the liberation of CO simultaneously with the generation of (13)CO. This method allows for precise measurement of blood CO concentrations from a small amount of blood (10 μL). Finally, this method was applied to measure the CO concentration of intoxicated human blood samples from autopsies.

  16. Effects of gradual exposure to carbon dioxide gas on the blood pressure status of workers in coal mines of Kerman province, Iran

    PubMed Central

    Khodabandeh-Shahraki, Sadigheh; Azizzadeh-Forouzi, Mansoureh

    2012-01-01

    BACKGROUND The present study was conducted to investigate the probable changes in blood pressure of workers in coal mines. METHODS In this study 91 workers, who worked in forwarding, preparation and exploitation units of coal mines and were in direct contact with carbon dioxide gas (from fireworks), have been selected as the case group, and 70 workers, who did not have direct contact with this gas, from other units were selected as the control group by simple random sampling method. The inclusion criteria were over 10 years of work experience and the age range of 30 to 45 years. The blood pressure values and their classification were determined based on the Seventh Report of the Joint National Committee on Prevention of Hypertension. Statistical analysis was performed using t-test. RESULTS The results of this study showed that mean systolic and diastolic blood pressures in the case group were significantly lower than the control group (P < 0.001). CONCLUSION The mean diastolic blood pressure of workers in coal mines is less than other people due to the CO2 gas. A greater control of the existing gas in mines by relevant factors is required. Necessary medical care and support measures should also be considered. PMID:23359216

  17. Can we Replace Arterial Blood Gas Analysis by Pulse Oximetry in Neonates with Respiratory Distress Syndrome, who are Treated According to INSURE Protocol?

    PubMed Central

    Niknafs, Pedram; Norouzi, Elahe; Bahman Bijari, Bahareh; Baneshi, Mohammad Reza

    2015-01-01

    Neonates with respiratory distress syndrome (RDS), who are treated according to INSURE protocol; require arterial blood gas (ABG) analysis to decide on appropriate management. We conducted this study to investigate the validity of pulse oximetry instead of frequent ABG analysis in the evaluation of these patients. From a total of 193 blood samples obtained from 30 neonates <1500 grams with RDS, 7.2% were found to have one or more of the followings: acidosis, hypercapnia, or hypoxemia. We found that pulse oximetry in the detection of hyperoxemia had a good validity to appropriately manage patients without blood gas analysis. However, the validity of pulse oximetry was not good enough to detect acidosis, hypercapnia, and hypoxemia. PMID:25999627

  18. The evaluation of pulmonary function and blood gas analysis in patients submitted to laparoscopic versus open nephrectomy

    PubMed Central

    Koc, Ayfer; Inan, Gozde; Bozkirli, Fusun; Coskun, Demet; Tunc, Lutfi

    2015-01-01

    ABSTRACT Background: The aim of this study was to assess the early postoperative pulmonary function and arterial blood gases in patients who have undergone open versus laparoscopic nephrectomy. Materials and Methods: Forty patients were randomly assigned to undergo laparoscopic (LN, n=20) or open nephrectomy (ON, n=20). Pulmonary function tests including forced expiratory volume in 1 second (FEV1), forced vital capacity (FVC), forced expiratory volume at 25% (FEF25), forced expiratory volume at 50% (FEF50), forced expiratory volume at 25% to 75% (FEF25–75), forced expiratory volume in 1 second (FIV1) and peak expiratory flow (PEF) were performed one day before the operation and on the postoperative day 1. The arterial blood gas analysis (pH, pCO2, pO2, SaO2) was made at breathing room preoperatively, in the recovery phase and on postoperative day 1. Results: All spirometric variables decreased after both open and laparoscopic nephrectomy on postoperative day 1. FEV1, FVC, FEF25 and FEF25–75 values decreased on postoperative day 1 (39.7%, 37.4%, 27.7%, 51.8% respectively) in the open surgery group and they were significantly lower in laparoscopic group (29.9%, 32.5%, 23.2%, 44.5% respectively). There were no significant differences in FEF50, PEF and FIV1 between the groups. The SaO2 and pO2 values also decreased in both groups. During early recovery, pH decreased while pCO2 increased significantly but they returned to preoperative values on postoperative day 1 in both groups. Conclusion: Laparoscopic nephrectomy is better than open nephrectomy considering pulmonary functions. PMID:26742981

  19. The effects of different syringe volume, needle size and sample volume on blood gas analysis in syringes washed with heparin

    PubMed Central

    Küme, Tuncay; Şişman, Ali Rıza; Solak, Ahmet; Tuğlu, Birsen; Çinkooğlu, Burcu; Çoker, Canan

    2012-01-01

    Introductıon: We evaluated the effect of different syringe volume, needle size and sample volume on blood gas analysis in syringes washed with heparin. Materials and methods: In this multi-step experimental study, percent dilution ratios (PDRs) and final heparin concentrations (FHCs) were calculated by gravimetric method for determining the effect of syringe volume (1, 2, 5 and 10 mL), needle size (20, 21, 22, 25 and 26 G) and sample volume (0.5, 1, 2, 5 and 10 mL). The effect of different PDRs and FHCs on blood gas and electrolyte parameters were determined. The erroneous results from nonstandardized sampling were evaluated according to RiliBAK’s TEa. Results: The increase of PDRs and FHCs was associated with the decrease of syringe volume, the increase of needle size and the decrease of sample volume: from 2.0% and 100 IU/mL in 10 mL-syringe to 7.0% and 351 IU/mL in 1 mL-syringe; from 4.9% and 245 IU/mL in 26G to 7.6% and 380 IU/mL in 20 G with combined 1 mL syringe; from 2.0% and 100 IU/mL in full-filled sample to 34% and 1675 IU/mL in 0.5 mL suctioned sample into 10 mL-syringe. There was no statistical difference in pH; but the percent decreasing in pCO2, K+, iCa2+, iMg2+; the percent increasing in pO2 and Na+ were statistical significance compared to samples full-filled in syringes. The all changes in pH and pO2 were acceptable; but the changes in pCO2, Na+, K+ and iCa2+ were unacceptable according to TEa limits except fullfilled-syringes. Conclusions: The changes in PDRs and FHCs due nonstandardized sampling in syringe washed with liquid heparin give rise to erroneous test results for pCO2 and electrolytes. PMID:22838185

  20. Stress Analyzer

    NASA Technical Reports Server (NTRS)

    1990-01-01

    SPATE 900 Dynamic Stress Analyzer is an acronym for Stress Pattern Analysis by Thermal Emission. It detects stress-induced temperature changes in a structure and indicates the degree of stress. Ometron, Inc.'s SPATE 9000 consists of a scan unit and a data display. The scan unit contains an infrared channel focused on the test structure to collect thermal radiation, and a visual channel used to set up the scan area and interrogate the stress display. Stress data is produced by detecting minute temperature changes, down to one-thousandth of a degree Centigrade, resulting from the application to the structure of dynamic loading. The electronic data processing system correlates the temperature changes with a reference signal to determine stress level.

  1. Optical analyzer

    DOEpatents

    Hansen, A.D.

    1987-09-28

    An optical analyzer wherein a sample of particulate matter, and particularly of organic matter, which has been collected on a quartz fiber filter is placed in a combustion tube, and light from a light source is passed through the sample. The temperature of the sample is raised at a controlled rate and in a controlled atmosphere. The magnitude of the transmission of light through the sample is detected as the temperature is raised. A data processor, differentiator and a two pen recorder provide a chart of the optical transmission versus temperature and the rate of change of optical transmission versus temperature signatures (T and D) of the sample. These signatures provide information as to physical and chemical processes and a variety of quantitative and qualitative information about the sample. Additional information is obtained by repeating the run in different atmospheres and/or different rates or heating with other samples of the same particulate material collected on other filters. 7 figs.

  2. Simultaneous determination of parabens, alkylphenols, phenylphenols, bisphenol A and triclosan in human urine, blood and breast milk by continuous solid-phase extraction and gas chromatography-mass spectrometry.

    PubMed

    Azzouz, Abdelmonaim; Rascón, Andrés J; Ballesteros, Evaristo

    2016-02-01

    A highly sensitive gas chromatography-mass spectrometry (GC-MS) method for the determination of endocrine disrupting chemicals (EDCs) including parabens, alkylphenols, phenylphenols, bisphenol A and triclosan in human breast milk, blood and urine samples is proposed. Blood and milk require a pretreatment to remove proteins and other substances potentially interfering with the continuous solid-phase extraction (SPE) system used; on the other hand, urine samples can be directly introduced into the system after filtering. Analytes are retained on a LiChrolut EN column and derivatized by silylation following elution with acetonitrile. The resulting trimethylsilyl derivatives are determined by GC-MS. The proposed method exhibited good linearity (r(2)>0.995) for all target EDCs over the concentration range 0.7-10,000ng/l in urine, and 3.3-50,000ng/l in blood and milk. Also, it provided low limits of detection (0.2-1.8ng/l in urine, and 1.0-9.0ng/l in blood and milk), good precision (relative standard deviations less than 7%) and recoveries from 86 to 104%. A total of 24 human fluid samples were analyzed and most found to contain some target EDC at concentrations from 0.10 to 14μg/l. PMID:26637951

  3. Simultaneous determination of parabens, alkylphenols, phenylphenols, bisphenol A and triclosan in human urine, blood and breast milk by continuous solid-phase extraction and gas chromatography-mass spectrometry.

    PubMed

    Azzouz, Abdelmonaim; Rascón, Andrés J; Ballesteros, Evaristo

    2016-02-01

    A highly sensitive gas chromatography-mass spectrometry (GC-MS) method for the determination of endocrine disrupting chemicals (EDCs) including parabens, alkylphenols, phenylphenols, bisphenol A and triclosan in human breast milk, blood and urine samples is proposed. Blood and milk require a pretreatment to remove proteins and other substances potentially interfering with the continuous solid-phase extraction (SPE) system used; on the other hand, urine samples can be directly introduced into the system after filtering. Analytes are retained on a LiChrolut EN column and derivatized by silylation following elution with acetonitrile. The resulting trimethylsilyl derivatives are determined by GC-MS. The proposed method exhibited good linearity (r(2)>0.995) for all target EDCs over the concentration range 0.7-10,000ng/l in urine, and 3.3-50,000ng/l in blood and milk. Also, it provided low limits of detection (0.2-1.8ng/l in urine, and 1.0-9.0ng/l in blood and milk), good precision (relative standard deviations less than 7%) and recoveries from 86 to 104%. A total of 24 human fluid samples were analyzed and most found to contain some target EDC at concentrations from 0.10 to 14μg/l.

  4. Optical analyzer

    DOEpatents

    Hansen, Anthony D.

    1989-02-07

    An optical analyzer (10) wherein a sample (19) of particulate matter, and particularly of organic matter, which has been collected on a quartz fiber filter (20) is placed in a combustion tube (11), and light from a light source (14) is passed through the sample (19). The temperature of the sample (19) is raised at a controlled rate and in a controlled atmosphere. The magnitude of the transmission of light through the sample (19) is detected (18) as the temperature is raised. A data processor (23), differentiator (28) and a two pen recorder (24) provide a chart of the optical transmission versus temperature and the rate of change of optical transmission versus temperature signatures (T and D) of the sample (19). These signatures provide information as to physical and chemical processes and a variety of quantitative and qualitative information about the sample (19). Additional information is obtained by repeating the run in different atmospheres and/or different rates of heating with other samples of the same particulate material collected on other filters.

  5. Optical analyzer

    DOEpatents

    Hansen, Anthony D.

    1989-01-01

    An optical analyzer (10) wherein a sample (19) of particulate matter, and particularly of organic matter, which has been collected on a quartz fiber filter (20) is placed in a combustion tube (11), and light from a light source (14) is passed through the sample (19). The temperature of the sample (19) is raised at a controlled rate and in a controlled atmosphere. The magnitude of the transmission of light through the sample (19) is detected (18) as the temperature is raised. A data processor (23), differentiator (28) and a two pen recorder (24) provide a chart of the optical transmission versus temperature and the rate of change of optical transmission versus temperature signatures (T and D) of the sample (19). These signatures provide information as to physical and chemical processes and a variety of quantitative and qualitative information about the sample (19). Additional information is obtained by repeating the run in different atmospheres and/or different rates of heating with other samples of the same particulate material collected on other filters.

  6. ABSORPTION ANALYZER

    DOEpatents

    Brooksbank, W.A. Jr.; Leddicotte, G.W.; Strain, J.E.; Hendon, H.H. Jr.

    1961-11-14

    A means was developed for continuously computing and indicating the isotopic assay of a process solution and for automatically controlling the process output of isotope separation equipment to provide a continuous output of the desired isotopic ratio. A counter tube is surrounded with a sample to be analyzed so that the tube is exactly in the center of the sample. A source of fast neutrons is provided and is spaced from the sample. The neutrons from the source are thermalized by causing them to pass through a neutron moderator, and the neutrons are allowed to diffuse radially through the sample to actuate the counter. A reference counter in a known sample of pure solvent is also actuated by the thermal neutrons from the neutron source. The number of neutrons which actuate the detectors is a function of a concentration of the elements in solution and their neutron absorption cross sections. The pulses produced by the detectors responsive to each neu tron passing therethrough are amplified and counted. The respective times required to accumulate a selected number of counts are measured by associated timing devices. The concentration of a particular element in solution may be determined by utilizing the following relation: T2/Ti = BCR, where B is a constant proportional to the absorption cross sections, T2 is the time of count collection for the unknown solution, Ti is the time of count collection for the pure solvent, R is the isotopic ratlo, and C is the molar concentration of the element to be determined. Knowing the slope constant B for any element and when the chemical concentration is known, the isotopic concentration may be readily determined, and conversely when the isotopic ratio is known, the chemical concentrations may be determined. (AEC)

  7. Molecularly imprinted solid-phase extraction for the selective determination of methamphetamine, amphetamine, and methylenedioxyphenylalkylamine designer drugs in human whole blood by gas chromatography-mass spectrometry.

    PubMed

    Kumazawa, Takeshi; Hasegawa, Chika; Hara, Kenji; Uchigasaki, Seisaku; Lee, Xiao-Pen; Seno, Hiroshi; Suzuki, Osamu; Sato, Keizo

    2012-03-01

    A novel method is described for the extraction of methamphetamine, amphetamine, and methylenedioxyphenylalkylamine designer drugs, such as 3,4-methylenedioxy-methamphetamine, 3,4-methylenedioxyamphetamine, 3,4-methylenedioxyethylamphetamine, N-methyl-1-(3,4-methylenedioxyphenyl)-2-butanamine, and 3,4-(methylenedioxyphenyl)-2-butanamine, from human whole blood using molecularly imprinted solid-phase extraction as highly selective sample clean-up technique. Whole blood samples were diluted with 10 mmol/L ammonium acetate (pH 8.6) and applied to a SupelMIP-Amphetamine molecularly imprinted solid-phase extraction cartridge. The cartridge was then washed to eliminate interferences, and the amphetamines of interest were eluted with formic acid/methanol (1:100, v/v). After derivatization with trifluoroacetic anhydride, the analytes were quantified using gas chromatography-mass spectrometry. Recoveries of the seven amphetamines spiked into whole blood were 89.1-102%. The limits of quantification for each compound in 200 μL of whole blood were between 0.25 and 1.0 ng. The maximum intra- and inter-day coefficients of variation were 9.96 and 13.8%, respectively. The results show that methamphetamine, amphetamine, and methylenedioxyphenylalkyl-amine designer drugs can be efficiently extracted from crude biological samples such as whole blood by molecularly imprinted solid-phase extraction with good reproducibility. This extraction method will be useful for the pretreatment of human samples before gas chromatography-mass spectrometry.

  8. Multi-Component Profiling of Trace Volatiles in Blood by Gas Chromatography/Mass Spectrometry with Dynamic Headspace Extraction

    PubMed Central

    Kakuta, Shoji; Yamashita, Toshiyuki; Nishiumi, Shin; Yoshida, Masaru; Fukusaki, Eiichiro; Bamba, Takeshi

    2015-01-01

    A dynamic headspace extraction method (DHS) with high-pressure injection is described. This dynamic extraction method has superior sensitivity to solid phase micro extraction, SPME and is capable of extracting the entire gas phase by purging the headspace of a vial. Optimization of the DHS parameters resulted in a highly sensitive volatile profiling system with the ability to detect various volatile components including alcohols at nanogram levels. The average LOD for a standard volatile mixture was 0.50 ng mL−1, and the average LOD for alcohols was 0.66 ng mL−1. This method was used for the analysis of volatile components from biological samples and compared with acute and chronic inflammation models. The method permitted the identification of volatiles with the same profile pattern as in vitro oxidized lipid-derived volatiles. In addition, the concentration of alcohols and aldehydes from the acute inflammation model samples were significantly higher than that for the chronic inflammation model samples. The different profiles between these samples could also be identified by this method. Finally, it was possible to analyze alcohols and low-molecular-weight volatiles that are difficult to analyze by SPME in high sensitivity and to show volatile profiling based on multi-volatile simultaneous analysis. PMID:26819905

  9. Analysis of Arterial and Venous Blood Gases in Healthy Gyr Falcons ( Falco rusticolus ) Under Anesthesia.

    PubMed

    Raghav, Raj; Middleton, Rachael; BSc, Rinshiya Ahamed; Arjunan, Raji; Caliendo, Valentina

    2015-12-01

    Arterial and venous blood gas analysis is useful in the assessment of tissue oxygenation and ventilation and in diagnosis of metabolic and respiratory derangements. It can be performed with a relatively small volume of blood in avian patients under emergency situations. Arterial and venous blood gas analysis was performed in 30 healthy gyr falcons ( Falco rusticolus ) under anaesthesia to establish temperature-corrected reference intervals for arterial blood gas values and to compare them to temperature-corrected venous blood gas values with a portable point-of-care blood gas analyzer (i-STAT 1, Abbott Laboratories, Abbott Park, IL, USA). Statistically significant differences were observed between the temperature-corrected values of pH, partial pressure of carbon dioxide (Pco2), and partial pressure of oxygen (Po2) and the corresponding nontemperature-corrected values of these parameters in both arterial and venous blood. Values of temperature-corrected pH, temperature-corrected Pco2, bicarbonate concentrations, and base excess of extra cellular fluid did not differ significantly between arterial and venous blood, suggesting that, in anesthetized gyr falcons, venous blood gas analysis can be used in place of arterial blood gas analysis in clinical situations. Values for hematocrit, measured by the point-of-care analyzer, were significantly lower compared with those obtained by the microhematocrit method.

  10. Analyzing Leakage Through Cracks

    NASA Technical Reports Server (NTRS)

    Romine, William D.

    1993-01-01

    Two related computer programs written for use in analyzing leakage through cracks. Leakage flow laminar or turbulent. One program used to determine dimensions of crack under given flow conditions and given measured rate of leakage. Other used to determine rate of leakage of gas through crack of given dimensions under given flow conditions. Programs, written in BASIC language, accelerate and facilitate iterative calculations and parametric analyses. Solve equations of Fanno flow. Enables rapid solution of leakage problem.

  11. Capabilities of Direct Sample Introduction - Comprehensive Two-Dimensional Gas Chromatgraphy-Time-of-Flight Mass Spectrometry to Analyze Organic Chemicals of Interest in Fish Oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Most analytical methods for persistent organic pollutants (POPs) focus on targeted analytes. Therefore, analysis of multiple classes of POPs typically entails several sample preparations, fractionations, and injections, whereas other chemicals of possible interest are neglected. To analyze a wider...

  12. Highly sensitive analysis of methamphetamine and amphetamine in human whole blood using headspace solid-phase microextraction and gas chromatography-mass spectrometry.

    PubMed

    Okajima, K; Namera, A; Yashiki, M; Tsukue, I; Kojima, T

    2001-02-01

    A simple and highly sensitive method for analysis of derivatized methamphetamine (MA) and amphetamine (AM) in whole blood was developed using headspace solid-phase microextraction (HS-SPME) and gas chromatography-mass spectrometry electron impact ionization selected ion monitoring (GC-MS-EI-SIM). A whole blood sample, deuterated-MA (d(5)-MA), as an internal standard (IS), tri-n-propylamine and pentafluorobenzyl bromide were placed in a vial. The vial was heated and stirred at 90 degrees C for 30min. Then the extraction fiber of the SPME was exposed at 90 degrees C for 30min in the headspace of the vial while being stirred. The derivatives adsorbed on the fiber were desorbed by exposing the fiber in the injection port of a GC-MS. The calibration curves showed linearity in the range of 0.5-1000ng/g for both MA and AM. The time for analysis was about 80min per sample. In addition, this proposed method was applied to two autopsy cases where MA ingestion was suspected. In one case, MA and AM concentrations in the mixed left and right heart blood were 165 and 36.9ng/g, respectively. In the other case, MA and AM concentrations were 1.79 and 0.119 microg/g in the left heart blood, and 1.27 and 0.074 microg/g in the right heart blood, respectively.

  13. Determination of Neutral Monosaccharides as Per-O-methylated Derivatives Directly from a Drop of Whole Blood by Gas Chromatography-Mass Spectrometry.

    PubMed

    Ciucanu, Ionel; Pilat, Luminiţa; Ciucanu, Cristian Ionuţ; Şişu, Eugen

    2015-11-01

    A new analytical procedure was developed for the simultaneous quantification of neutral monosaccharides from a drop of whole blood using gas chromatography-mass spectrometry analysis (GC-MS) of their per-O-methylated derivatives. The per-O-methylation reaction with methyl iodide and solid sodium hydroxide in methyl sulfoxide was used for the first time for analysis of blood monosaccharides. A blood drop volume of 0.6 μL was used without special purification. The elimination of the undesirable components was carried out during methylation in the presence of a strong base and by liquid extraction of the per-O-methylated monosaccharides. The neutral monosaccharides with an anomeric center gave four per-O-methylated isomers, which were well-separated using a capillary column. Identification was done by electron impact mass spectrometry fragmentation, retention times, and library searching. The limits of detection were determined for standards and varied from 2.0 to 2.3 ng mL(-1). Recoveries for human blood samples varied from 99.22% to 99.65%. The RSD values ranged from 1.92 to 2.37. The method is fast, sensitive, reproducible, and an alternative to current methods for quantitative analysis of blood monosaccharides. PMID:26444378

  14. The role of venous blood gas in the emergency department: a systematic review and meta-analysis.

    PubMed

    Bloom, Benjamin M; Grundlingh, Johann; Bestwick, Jonathan P; Harris, Tim

    2014-04-01

    The aim of this study is to provide a systematic review of the literature reporting agreement between arterial and venous pH, partial pressure of carbon dioxide (PCO2), bicarbonate (HCO3⁻), base excess and lactate; and to perform a meta-analysis of the differences. Medline and Embase searches using Eduserv Athens from 1950 to present were conducted using the terms 'VBG', 'ABG', 'arterial', 'venous', 'blood', 'gas', 'lactate', 'emergency' and 'department'. References of the published papers were hand searched and full-text versions of those deemed helpful to the question were obtained. Mean difference (MD) and 95% limits of agreement (LOA) were either reported or calculated from the published data. Pooled MDs with 95% confidence intervals (CIs) were calculated for differences between arterial and venous pH, PCO2, bicarbonate and lactate. Thirteen articles relevant to pH, 12 relevant to PCO2, 10 relevant to bicarbonate and three relevant to lactate were found. The pooled MD (venous-arterial) for pH was -0.033 pH units (95% CI -0.039 to 0.027) with narrow 95% LOA, the pooled MD for PCO2 was 4.41 mmHg (95% CI 2.55-6.27) with 95% LOA ranging from -20.4 to 25.8 mmHg, the pooled MD for bicarbonate was 1.03 mmol/l (95% CI 0.56-1.50) with 95% LOA ranging from -7.1 to 10.0 mmol/l and the pooled MD for lactate was 0.25 mmol/l (95% CI 0.15-0.35) with 95% LOA ranging from -2.0 to 2.3 mmol/l. Venous and arterial pH and bicarbonate agree reasonably at all values, but the agreement is highest at normal values. Arteriovenous agreement for PCO2 is poor and PvCO2 cannot be relied upon as an absolute representation of PaCO2. However, normal peripheral PvCO2 has a good negative predictive value for normal arterial PCO2, and a normal PvCO2 can be used as a screen to exclude hypercapnic respiratory disease. There may be a poor agreement between arterial and venous lactate at abnormal values; however, if the venous lactate is normal, it is likely the arterial values of this parameter

  15. The effect of adding CO2 to hypoxic inspired gas on cerebral blood flow velocity and breathing during incremental exercise.

    PubMed

    Fan, Jui-Lin; Kayser, Bengt

    2013-01-01

    Hypoxia increases the ventilatory response to exercise, which leads to hyperventilation-induced hypocapnia and subsequent reduction in cerebral blood flow (CBF). We studied the effects of adding CO2 to a hypoxic inspired gas on CBF during heavy exercise in an altitude naïve population. We hypothesized that augmented inspired CO2 and hypoxia would exert synergistic effects on increasing CBF during exercise, which would improve exercise capacity compared to hypocapnic hypoxia. We also examined the responsiveness of CO2 and O2 chemoreception on the regulation ventilation ([Formula: see text]E) during incremental exercise. We measured middle cerebral artery velocity (MCAv; index of CBF), [Formula: see text]E, end-tidal PCO2, respiratory compensation threshold (RC) and ventilatory response to exercise ([Formula: see text]E slope) in ten healthy men during incremental cycling to exhaustion in normoxia and hypoxia (FIO2 = 0.10) with and without augmenting the fraction of inspired CO2 (FICO2). During exercise in normoxia, augmenting FICO2 elevated MCAv throughout exercise and lowered both RC onset and[Formula: see text]E slope below RC (P<0.05). In hypoxia, MCAv and [Formula: see text]E slope below RC during exercise were elevated, while the onset of RC occurred at lower exercise intensity (P<0.05). Augmenting FICO2 in hypoxia increased [Formula: see text]E at RC (P<0.05) but no difference was observed in RC onset, MCAv, or [Formula: see text]E slope below RC (P>0.05). The [Formula: see text]E slope above RC was unchanged with either hypoxia or augmented FICO2 (P>0.05). We found augmenting FICO2 increased CBF during sub-maximal exercise in normoxia, but not in hypoxia, indicating that the 'normal' cerebrovascular response to hypercapnia is blunted during exercise in hypoxia, possibly due to an exhaustion of cerebral vasodilatory reserve. This finding may explain the lack of improvement of exercise capacity in hypoxia with augmented CO2. Our data further indicate that

  16. Phenotype and Age Differences in Blood Gas Characteristics, Electrolytes, Hemoglobin, Plasma Glucose and Cortisol in Female Squirrel Monkeys

    NASA Technical Reports Server (NTRS)

    Brizzee, K. R.; Ordy, J. M.; Dunlap, W. P.; Kendrick, R.; Wengenack, T. M.

    1988-01-01

    Due to its small size, lower cost, tractable nature, successful breeding in captivity and its status near the middle of the primate phylogenetic scale, the squirrel monkey has become an attractive primate model for basic and biomedical research. Although the squirrel monkey now is being used more extensively in many laboratories with diverse interests, only fragmentary reports have been published regarding basic physiological characteristics, or baseline blood reference values of different phenotypes, particularly blood gases, hematology and serum chemical constituents. It is becoming recognized increasingly that these baseline blood reference values are important not only in the care and maintenance of the squirrel monkey, but are critical for assessing normal physiological status, as well as the effects of various experimental treatments. The purpose of this study was to compare differences in blood gases, electrolytes, hematology, blood glucose and cortisol among young and old Bolivian (Roman type) and Colombian (Gothic type) phenotypes of the squirrel monkey.

  17. New phase equilibrium analyzer for determination of the vapor-liquid equilibrium of carbon dioxide and permanent gas mixtures for carbon capture and storage.

    PubMed

    Ke, Jie; Parrott, Andrew J; Sanchez-Vicente, Yolanda; Fields, Peter; Wilson, Richard; Drage, Trevor C; Poliakoff, Martyn; George, Michael W

    2014-08-01

    A high-pressure, phase equilibrium analyzer incorporating a fiber-optic reflectometer is described. The analyzer has been designed for measuring the vapor-liquid equilibrium data of multi-component mixtures of carbon dioxide and permanent gases, providing a novel tool to acquire of a large number of phase equilibrium data for the development of the new carbon capture and storage technologies. We demonstrate that the analyzer is suitable for determining both the bubble- and dew-point lines at temperature from 253 K and pressure up to 25 MPa using pure CO2 and two binary mixtures of CO2 + N2 and CO2 + H2. PMID:25173315

  18. Part I. Analyzing the distribution of gas law questions in chemistry textbooks. Part II. Chlorine-35 NQR spectra of group 1 and silver dichloromethanesulfonates

    NASA Astrophysics Data System (ADS)

    Gillette, Gabriel

    Part I. Two studies involving the gas law questions in eight high school and Advanced Placement/college chemistry textbooks were performed using loglinear analysis to look for associations among six variables. These variables included Bloom's Taxonomy (higher-order, lower-order), Book Type (high school, college), Question Format (multiple-choice, problem, short answer), Question Placement (in-chapter, end-of-chapter, test bank), Representation (macroscopic, microscopic, symbolic), and Arkansas Science Standard (conceptual, mathematical; gas laws, pressure conversion, stoichiometry). The first study, involving the conceptual gas law questions, found the Book Type and Question Placement variables had the biggest impact, each appearing in 5 of the 11 significant associations. The second study, involving the mathematical gas law questions, found the Question Placement had the biggest impact, appearing in 7 of the 11 significant associations, followed by Book Type and the Arkansas Science Standard variables, which appeared in 5 of the 11 significant associations. These studies showed that compared to the high school books, college books have fewer multiple-choice questions (compared to short-answer and problem questions), fewer in-chapter questions (compared to end-of-chapter and test bank questions), fewer questions in the chapters and more questions at the end of the chapters and fewer multiple-choice questions in and at the end of the books and more multiple-choice questions in the test banks. Part II. The dichloromethanesulfonate salts of several +1 charged cations, M+Cl2CHSO3 - (M = Li, Na, K, Rb Ag, Cs Tl) were synthesized and studied by 35Cl nuclear quadrupole resonance (NQR). Dichloromethanesulfonic acid was prepared by the methanolysis of dichloromethanesulfonyl chloride, which was neutralized with the metal carbonates to produce the corresponding metal dichloromethanesulfonate salts. This study completed the NQR investigation of the family of chloroacetates

  19. Combining density functional theory (DFT) and collision cross-section (CCS) calculations to analyze the gas-phase behaviour of small molecules and their protonation site isomers.

    PubMed

    Boschmans, Jasper; Jacobs, Sam; Williams, Jonathan P; Palmer, Martin; Richardson, Keith; Giles, Kevin; Lapthorn, Cris; Herrebout, Wouter A; Lemière, Filip; Sobott, Frank

    2016-06-20

    Electrospray ion mobility-mass spectrometry (IM-MS) data show that for some small molecules, two (or even more) ions with identical sum formula and mass, but distinct drift times are observed. In spite of showing their own unique and characteristic fragmentation spectra in MS/MS, no configurational or constitutional isomers are found to be present in solution. Instead the observation and separation of such ions appears to be inherent to their gas-phase behaviour during ion mobility experiments. The origin of multiple drift times is thought to be the result of protonation site isomers ('protomers'). Although some important properties of protomers have been highlighted by other studies, correlating the experimental collision cross-sections (CCSs) with calculated values has proven to be a major difficulty. As a model, this study uses the pharmaceutical compound melphalan and a number of related molecules with alternative (gas-phase) protonation sites. Our study combines density functional theory (DFT) calculations with modified MobCal methods (e.g. nitrogen-based Trajectory Method algorithm) for the calculation of theoretical CCS values. Calculated structures can be linked to experimentally observed signals, and a strong correlation is found between the difference of the calculated dipole moments of the protomer pairs and their experimental CCS separation.

  20. Combining density functional theory (DFT) and collision cross-section (CCS) calculations to analyze the gas-phase behaviour of small molecules and their protonation site isomers.

    PubMed

    Boschmans, Jasper; Jacobs, Sam; Williams, Jonathan P; Palmer, Martin; Richardson, Keith; Giles, Kevin; Lapthorn, Cris; Herrebout, Wouter A; Lemière, Filip; Sobott, Frank

    2016-06-20

    Electrospray ion mobility-mass spectrometry (IM-MS) data show that for some small molecules, two (or even more) ions with identical sum formula and mass, but distinct drift times are observed. In spite of showing their own unique and characteristic fragmentation spectra in MS/MS, no configurational or constitutional isomers are found to be present in solution. Instead the observation and separation of such ions appears to be inherent to their gas-phase behaviour during ion mobility experiments. The origin of multiple drift times is thought to be the result of protonation site isomers ('protomers'). Although some important properties of protomers have been highlighted by other studies, correlating the experimental collision cross-sections (CCSs) with calculated values has proven to be a major difficulty. As a model, this study uses the pharmaceutical compound melphalan and a number of related molecules with alternative (gas-phase) protonation sites. Our study combines density functional theory (DFT) calculations with modified MobCal methods (e.g. nitrogen-based Trajectory Method algorithm) for the calculation of theoretical CCS values. Calculated structures can be linked to experimentally observed signals, and a strong correlation is found between the difference of the calculated dipole moments of the protomer pairs and their experimental CCS separation. PMID:27264846

  1. A selective and sensitive method for quantitation of lysergic acid diethylamide (LSD) in whole blood by gas chromatography-ion trap tandem mass spectrometry.

    PubMed

    Libong, Danielle; Bouchonnet, Stéphane; Ricordel, Ivan

    2003-01-01

    A gas chromatography-ion trap tandem mass spectrometry (GC-ion trap MS-MS) method for detection and quantitation of LSD in whole blood is presented. The sample preparation process, including a solid-phase extraction step with Bond Elut cartridges, was performed with 2 mL of whole blood. Eight microliters of the purified extract was injected with a cold on-column injection method. Positive chemical ionization was performed using acetonitrile as reagent gas; LSD was detected in the MS-MS mode. The chromatograms obtained from blood extracts showed the great selectivity of the method. GC-MS quantitation was performed using lysergic acid methylpropylamide as the internal standard. The response of the MS was linear for concentrations ranging from 0.02 ng/mL (detection threshold) to 10.0 ng/mL. Several parameters such as the choice of the capillary column, the choice of the internal standard and that of the ionization mode (positive CI vs. EI) were rationalized. Decomposition pathways under both ionization modes were studied. Within-day and between-day stability were evaluated.

  2. High-speed Air Temperature Measurements in a Closed-path Cell and Quality of CO2 and H2O Fluxes from a Short-tube Gas Analyzer.

    NASA Astrophysics Data System (ADS)

    Burba, G. G.; Kathilankal, J. C.; Fratini, G.

    2015-12-01

    Gas analyzers traditionally used for eddy covariance method measure gas density. When fluxes are calculated, corrections are applied to account for the changes in gas density due to changing temperature and pressure (Ideal Gas Law) and changing water vapor density (Dalton's Law). The new generation of gas analyzers with fast air temperature and pressure measurements in the sampling cell enables on-the-fly calculation of fast dry mole fraction. This significantly simplifies the flux processing because the WPL density terms are no longer required, and leads to the reduction in uncertainties associated with latent and sensible heat flux inputs into the density terms. Traditional closed-path instruments with long intake tubes often can effectively dampen the fast temperature fluctuations in the tube before reaching the measurement cell, thus reducing or eliminating the need for temperature correction for density-based fluxes. But in instruments with a short-tube design, most - but not all - of the temperature fluctuations are attenuated, so calculating unbiased fluxes using fast dry mole fraction requires high-speed precise temperature measurements of the air stream inside the cell. Fast pressure and water vapor content of the sampled air should also be measured in the cell and carefully aligned in time with gas density and sample temperature measurements.In this study we examine the impact of fast-response air temperature measurements in the cell on the calculations of carbon dioxide and water vapor fluxes at different time scales from three different ecosystems. The fast cell air temperature data is filtered mathematically to obtain slower response cell temperature time series, which is used in the calculation of fluxes. This exercise is intended to simulate the use of thicker slower response thermocouples instead of fast response fine wire thermocouples for estimating cell temperature. The directly measured block temperature is also utilized to illustrate the

  3. Formaldehyde vapor produced from hexamethylenetetramine and pesticide: Simultaneous monitoring of formaldehyde and ozone in chamber experiments by flow-based hybrid micro-gas analyzer.

    PubMed

    Yanaga, Akira; Hozumi, Naruto; Ohira, Shin-Ichi; Hasegawa, Asako; Toda, Kei

    2016-02-01

    Simultaneous analysis of HCHO and O3 was performed by the developed flow analysis system to prove that HCHO vapor is produced from solid pesticide in the presence of O3. HCHO is produced in many ways, including as primary emissions from fuel combustion and in secondary production from anthropogenic and biogenic volatile organic compounds by photochemical reactions. In this work, HCHO production from pesticides was investigated for the first time. Commonly pesticide contains surfactant such as hexamethylenetetramine (HMT), which is a heterocyclic compound formed from six molecules of HCHO and four molecules of NH3. HMT can react with gaseous oxidants such as ozone (O3) to produce HCHO. In the present study, a flow analysis system was developed for simultaneous analysis of HCHO and O3, and this system was used to determine if solid pesticides produced HCHO vapor in the presence of O3. HMT or the pesticide jimandaisen, which contains mancozeb as the active ingradient and HMT as a stabilizer was placed at the bottom of a 20-L stainless steel chamber. Air in the chamber was monitored using the developed flow system. Analyte gases were collected into an absorbing solution by a honeycomb-patterned microchannel scrubber that was previously developed for a micro gas analysis system (μGAS). Subsequently, indigotrisulfonate, a blue dye, was added to the absorbing solution to detect O3, which discolored the solution. HCHO was detected after mixing with the Hantzsch reaction reagent. Both gases could be detected at concentrations ranging from parts per billion by volume (ppbv) to 1000 ppbv with good linearity. Both HMT and jimandaisen emitted large amount of HCHO in the presence of O3. PMID:26653496

  4. Speciation of mercury in human whole blood by capillary gas chromatography with a microwave-induced plasma emission detector system following complexometric extraction and butylation.

    PubMed

    Bulska, E; Emteborg, H; Baxter, D C; Frech, W; Ellingsen, D; Thomassen, Y

    1992-03-01

    Methyl- and inorganic mercury were extracted from human whole blood samples, as their diethyldithiocarbamate complexes, into toluene and butylated by using a Grignard reagent. The mercury species were then separated by gas chromatography (on a 12 m non-polar DB-1 capillary column) and detected by a microwave-induced plasma atomic emission spectrometric (GC-MPD) system. The accuracy and precision of the proposed method were established by the analysis of Seronorm lyophilized human whole blood standards for methyl- and inorganic mercury. No statistical difference (t-test) between the sum of these two species determined by the GC-MPD based method and the recommended total mercury concentrations in the Seronorm samples was observed. Results for the determination of methyl- and inorganic mercury in 60 controls and 90 previously occupationally exposed (to inorganic mercury) workers are presented to illustrate the practical utility of the proposed method. No significantly elevated inorganic mercury concentrations between the two groups were evident.

  5. A comparison of the effects of hydromorphone HCl and a novel extended release hydromorphone on arterial blood gas values in conscious healthy dogs

    PubMed Central

    Wunsch, L.A.; Schmidt, B.K.; Krugner-Higby, L.A.; Smith, L.J.

    2014-01-01

    The purpose of this study was to evaluate arterial blood gases in dogs that were given hydromorphone or extended release liposome-encapsulated hydromorphone (LEH). Dogs were randomly administered LEH, n = 6, (2.0 mg kg−1), hydromorphone, n = 6, (0.2 mg kg−1) or a placebo of blank liposomes, n = 3, subcutaneously on separate occasions. Arterial blood samples were drawn at serial time points over a 6-h time period for blood gas analysis. There was no change from baseline values in PaCO2, PaO2, (HCO3−), pH, and SBEc in the dogs that received the placebo. Administration of hydromorphone resulted in significant increases in PaCO2 (maximum (mean + SD] 44.4 + 1.1 mm of Hg) and significant decreases in PaCO2 (minimum (mean + SD) 82.4 + 4.7 mm of Hg) and pH (minimum (mean + SD) 7.31 + 0.01) compared with baseline. Administration of LEH resulted in significant increases in PaCO2 (maximum (mean + SD) 44.6 + 0.9 mm of Hg) and significant decreases in PaO2 (minimum (mean + SD) 84.8 + 2.6 mm of Hg) and pH (minimum (mean + SD) 7.34 + 0.02) compared with baseline. There was no significant difference between these two groups at any time point. The changes observed in PaCO2, PaO2, and pH, however, were within clinically acceptable limits for healthy dogs. LEH was determined to cause moderate changes in arterial blood gas values similar to those caused by hydromorphone. PMID:19692102

  6. Gas exchange and the coagulation system of the blood during the effect on the body of high concentrations of oxygen and carbon dioxide

    NASA Technical Reports Server (NTRS)

    Palosh, L.; Agadzhanyan, N. A.; Davydov, G. A.; Rybakov, B. K.; Sergiyenko, A. S.

    1974-01-01

    Maximum permissible concentrations of oxygen and carbon dioxide in a controlled atmosphere were determined by evaluating their effects on human gas exchange, blood coagulation, and tolerances to acute hypoxia, acceleration, and physical loads. It was found that functional disturbances depend on the concentration of respiratory gases and the length of stay in an altered atmosphere. By changing the atmospheric composition and by bringing the gaseous environment into accordance with the work and rest regimen and energy expenditures, the general reactivity of the body changes favorably.

  7. Identification and quantitation of amphetamine, methamphetamine, MDMA, pseudoephedrine, and ephedrine in blood, plasma, and serum using gas chromatography-mass spectrometry (GC/MS).

    PubMed

    Gunn, Josh; Kriger, Scott; Terrell, Andrea R

    2010-01-01

    Amphetamine, methamphetamine, MDMA, pseudoephedrine, and ephedrine are measured in blood, serum, and plasma using gas chromatography coupled to mass spectrometry (GC/MS). Following a simple liquid-liquid extraction, analytes are derivatized with heptafluorobutyric anhydride (HFBA) and 1 microL injected onto a HP-5MS 15-meter capillary column. Quantitation of each analyte is accomplished using a multi-point calibration curve and deuterated internal standards. The method provides a simple, robust, and reliable means to identify and measure these analytes.

  8. SURFACE CHEMKIN-III: A Fortran package for analyzing heterogeneous chemical kinetics at a solid-surface - gas-phase interface

    SciTech Connect

    Coltrin, M.E.; Kee, R.J.; Rupley, F.M.; Meeks, E.

    1996-05-01

    This document is the user`s manual for the SURFACE CHEMKIN-III package. Together with CHEMKIN-III, this software facilitates the formation, solution, and interpretation of problems involving elementary heterogeneous and gas-phase chemical kinetics in the presence of a solid surface. The package consists of two major software components: an Interpreter and a Surface Subroutine Library. The Interpreter is a program that reads a symbolic description of a user-specified chemical reaction mechanism. One output from the Interpreter is a data file that forms a link to the Surface Subroutine Library, which is a collection of about seventy modular Fortran subroutines that may be called from a user`s application code to return information on chemical production rates and thermodynamic properties. This version of SURFACE CHEMKIN-III includes many modifications to allow treatment of multi-fluid plasma systems, for example modeling the reactions of highly energetic ionic species with a surface. Optional rate expressions allow reaction rates to depend upon ion energy rather than a single thermodynamic temperature. In addition, subroutines treat temperature as an array, allowing an application code to define a different temperature for each species. This version of SURFACE CHEMKIN-III allows use of real (non-integer) stoichiometric coefficients; the reaction order with respect to species concentrations can also be specified independent of the reaction`s stoichiometric coefficients. Several different reaction mechanisms can be specified in the Interpreter input file through the new construct of multiple materials.

  9. Computational study and error analysis of an integrated sampling-probe and gas-analyzer for mixing measurements in supersonic flow

    NASA Astrophysics Data System (ADS)

    Zhu, Wenbo; Ground, Cody; Maddalena, Luca; Viti, Valerio

    2016-09-01

    Concentration probes are employed in supersonic flow mixing measurements. Because the typical design of such probes is essentially based on an inviscid, adiabatic, quasi-1D analysis, the scope of this work is to understand better and quantify the severe impact of viscous effects on the probe’s internal gasdynamics and the associated uncertainties in the measured quantities via a computational fluid dynamics analysis. Specifically, the focus is on the augmented errors due to the aforementioned viscous effects when coupled with various cases of probe-flow misalignment, which is a typical scenario encountered in mixing measurements of binary gas compositions (air and helium in the present work) in vortex-dominated flows. Results show phenomena such as shock induced boundary layer separation and the formation of an oblique shock train. These flow features are found to noticeably affect the accuracy of the composition measurement. The errors associated with the inviscid, adiabatic, quasi-1D analysis of the probes are quantified in this study.

  10. Downhole Fluid Analyzer Development

    SciTech Connect

    Bill Turner

    2006-11-28

    A novel fiber optic downhole fluid analyzer has been developed for operation in production wells. This device will allow real-time determination of the oil, gas and water fractions of fluids from different zones in a multizone or multilateral completion environment. The device uses near infrared spectroscopy and induced fluorescence measurement to unambiguously determine the oil, water and gas concentrations at all but the highest water cuts. The only downhole components of the system are the fiber optic cable and windows. All of the active components--light sources, sensors, detection electronics and software--will be located at the surface, and will be able to operate multiple downhole probes. Laboratory testing has demonstrated that the sensor can accurately determine oil, water and gas fractions with a less than 5 percent standard error. Once installed in an intelligent completion, this sensor will give the operating company timely information about the fluids arising from various zones or multilaterals in a complex completion pattern, allowing informed decisions to be made on controlling production. The research and development tasks are discussed along with a market analysis.

  11. Alterations in the systemic acid-base status and blood gas dynamics during progressive hypocalcaemia in cow calves.

    PubMed

    Setia, M S; Singh, A; Kahlon, R S; Randhawa, S S

    1996-04-01

    Hypocalcaemia, induced in cow calves by slow infusion of Na2EDTA for 6 hr, led to biphasic changes in acid-base status. Decrease in ionized plasma Ca2+ concentration upto 0.82 +/- 0.06 mmole 1(-1) was associated with metabolic alkalosis. Further decrease in ionized plasma Ca2+ concentration (0.61 +/- 0.09 mmole 1(-1)) led to metabolic acidosis, superimposed by a respiratory component. There was significant decrease in oxygen tension and saturation of arterial blood as well as impaired uptake of oxygen by peripheral tissues and pulmonary blood.

  12. Serum electrolyte and blood gas changes after intrathecal and intravenous bolus injections of magnesium sulphate. An experimental study in a rat model.

    PubMed

    Bahar, M; Cohen, M L; Grinshpun, Y; Datski, R; Kaufman, J; Zaidman, J L; Nissenbaum, H; Chanimov, M

    1997-11-01

    The effect of intrathecally administered magnesium sulphate on serum levels of magnesium, sodium, potassium, calcium and blood gas variables was studied in a rat model. Magnesium sulphate given intrathecally has previously been shown to produce segmental spinal blockade with no permanent neurological damage. The previous studies, however, had not investigated the possible systemic effects of the magnesium sulphate. The serum magnesium level increased significantly at 1 and 2 h after the intrathecal injection of both 6.3% and 12.6% magnesium sulphate (6.3%: 28% at 1 h, 24% at 2 h; 12.6%: 22% at 1 h, 16% at 2 h). These changes were not as great as occurred when the same dose of magnesium sulphate was administered intravenously. In all cases, the serum magnesium had returned to normal by 24 h. There were no significant changes in calcium, sodium or potassium levels, nor in arterial blood gas variables. These results show that intrathecally administered magnesium sulphate has little effect on electrolyte homeostasis.

  13. Simultaneous determination of polycyclic musks in blood and urine by solid supported liquid-liquid extraction and gas chromatography-tandem mass spectrometry.

    PubMed

    Liu, Hongtao; Huang, Liping; Chen, Yuxin; Guo, Liman; Li, Limin; Zhou, Haiyun; Luan, Tiangang

    2015-06-15

    A rapid, precise and accurate method for the simultaneous determination of 5 polycyclic musks (PCMs) in biological fluids was developed by solid supported liquid-liquid extraction (SLE) coupled with gas chromatography-tandem mass spectrometry (GC-MS/MS). All parameters influencing SLE-GC-MS performance, including electron energy of electron-impact ionization source, collision energy for tandem mass spectrometer when operated in selected-reaction monitoring (SRM) mode, type and volume of elution reagent, nitrogen evaporation time, pH and salinity of sample have been carefully optimized. Eight milliliter of n-hexane was finally chosen as elution reagent. Blood and urine sample could be loaded into SLE cartridge without adjusting pH and salinity. Deuterated tonalide (AHTN-d3) was chosen as internal standard. The correlation coefficient (r(2)) of the calibration curves of target compounds ranged from 0.9996 to 0.9998. The dynamic range spanned over two orders of magnitude. The limit of detection (LOD) of target compounds in blood and urine ranged from 0.008 to 0.105μgL(-1) and 0.005 to 0.075μgL(-1), respectively. The developed procedure was successfully applied to the analysis of PCMs in human blood and urine obtaining satisfying recoveries on low, medium and high levels. The method was compared with SLE-GC-MS and shown one to two orders of magnitude improvement in sensitivity. PMID:25965876

  14. Simultaneous determination of polycyclic musks in blood and urine by solid supported liquid-liquid extraction and gas chromatography-tandem mass spectrometry.

    PubMed

    Liu, Hongtao; Huang, Liping; Chen, Yuxin; Guo, Liman; Li, Limin; Zhou, Haiyun; Luan, Tiangang

    2015-06-15

    A rapid, precise and accurate method for the simultaneous determination of 5 polycyclic musks (PCMs) in biological fluids was developed by solid supported liquid-liquid extraction (SLE) coupled with gas chromatography-tandem mass spectrometry (GC-MS/MS). All parameters influencing SLE-GC-MS performance, including electron energy of electron-impact ionization source, collision energy for tandem mass spectrometer when operated in selected-reaction monitoring (SRM) mode, type and volume of elution reagent, nitrogen evaporation time, pH and salinity of sample have been carefully optimized. Eight milliliter of n-hexane was finally chosen as elution reagent. Blood and urine sample could be loaded into SLE cartridge without adjusting pH and salinity. Deuterated tonalide (AHTN-d3) was chosen as internal standard. The correlation coefficient (r(2)) of the calibration curves of target compounds ranged from 0.9996 to 0.9998. The dynamic range spanned over two orders of magnitude. The limit of detection (LOD) of target compounds in blood and urine ranged from 0.008 to 0.105μgL(-1) and 0.005 to 0.075μgL(-1), respectively. The developed procedure was successfully applied to the analysis of PCMs in human blood and urine obtaining satisfying recoveries on low, medium and high levels. The method was compared with SLE-GC-MS and shown one to two orders of magnitude improvement in sensitivity.

  15. Pipette tip solid-phase extraction and gas chromatography - mass spectrometry for the determination of methamphetamine and amphetamine in human whole blood.

    PubMed

    Hasegawa, Chika; Kumazawa, Takeshi; Lee, Xiao-Pen; Marumo, Akemi; Shinmen, Natsuko; Seno, Hiroshi; Sato, Keizo

    2007-09-01

    Methamphetamine and amphetamine were extracted from human whole blood samples using pipette tip solid-phase extraction (SPE) with MonoTip C(18) tips, on which C(18)-bonded monolithic silica gel was fixed. Human whole blood (0.1 mL) containing methamphetamine and amphetamine, with N-methylbenzylamine as an internal standard, was mixed with 0.4 mL of distilled water and 50 microL of 5 M sodium hydroxide solution. After centrifugation, the supernatant was extracted to the C(18) phase of the tip (pipette tip volume, 200 microL) by 25 repeated aspirating/dispensing cycles using a manual micropipettor. Analytes retained in the C(18) phase were eluted with methanol by five repeated aspirating/dispensing cycles. After derivatization with trifluoroacetic anhydride, analytes were measured by gas chromatography - mass spectrometry with selected ion monitoring in the positive-ion electron impact mode. Recoveries of methamphetamine and amphetamine spiked into whole blood were more than 87.6 and 81.7%, respectively. Regression equations for methamphetamine and amphetamine showed excellent linearity in the range of 0.5-100 ng/0.1 mL. The limits of detection for methamphetamine and amphetamine were 0.15 and 0.11 ng/0.1 mL, respectively. Intra- and interday coefficients of variation for both stimulants were not greater than 9.6 and 13.8%, respectively. The determination of methamphetamine and amphetamine in autopsy whole blood samples is presented, and was shown to validate the present methodology.

  16. Gas chromatographic method using electron-capture detection for the determination of musk xylene in human blood samples. Biological monitoring of the general population.

    PubMed

    Angerer, J; Käfferlein, H U

    1997-05-23

    Musk xylene (2,4,6-trinitro-1,3-dimethyl-5-tert.-butylbenzene, MX), a synthetic musk often used in different fragrances and soaps to substitute the natural musk, is a potential contaminant of humans. In this publication, a specific and sensitive detection method for the determination of musk xylene in human blood samples is described. The clean-up of the blood samples includes an extraction step followed by a solid-phase adsorption to separate MX from other plasma components. Separation and detection was carried out by capillary gas chromatography and an electron capture detector (GC-ECD). The results were verified using qualitative capillary gas chromatography and a mass selective detector with electron impact ionisation (GC-EI-MS). epsilon-Hexachlorocyclohexane (epsilon-HCH) is used as internal standard. The reliability of the GC-ECD method has been proved. The relative standard deviations of the within-series imprecision were 12.7% for samples with a concentration of 0.5 microg/l and 2.1% for samples with a concentration of 5.0 microg/l, whereas the relative standard deviations for the between-day imprecision were 14.9% (0.5 microg/l samples) and 3.4% (5.0 microg/l samples). The losses during sample treatment were between 10.1% and 17.8%. No interfering peaks were observed. The absolute detection limit was 0.1 microg/l plasma. A total of 72 human blood samples were analysed to determine the MX concentrations within the general population. In 66 of the 72 human blood samples, the MX concentrations ranged from 0.10 to 1.12 microg/l plasma for the described method. In six samples no MX was detected. The median concentration was 0.24+/-0.23 microg MX/l plasma. The 95 percentile was 0.79 microg/l. No correlation could be found between MX concentrations and smoking habit, broca index, age, sex as well as fish consumption habits. Nevertheless, the results demonstrate the exposure of the general population to MX.

  17. Effect of pectin, lecithin, and antacid feed supplements (Egusin®) on gastric ulcer scores, gastric fluid pH and blood gas values in horses

    PubMed Central

    2014-01-01

    Background The objectives of this study were to evaluate the effects of two commercial feed supplements, Egusin 250® [E-250] and Egusin SLH® [E-SLH], on gastric ulcer scores, gastric fluid pH, and blood gas values in stall-confined horses undergoing feed-deprivation. Methods Nine Thoroughbred horses were used in a three-period crossover study. For the three treatment groups, sweet feed was mixed with E-250, E-SLH, or nothing (control group) and fed twice daily. Horses were treated for 21 days, then an additional 7 days while on an alternating feed-deprivation model to induce or worsen ulcers (period one). In periods two and three, horses (n=6) were treated for an additional 7 days after feed-deprivation. Gastroscopies were performed on day -1 (n=9), day 21 (n=9), day 28 (n=9) and day 35 (n=6). Gastric juice pH was measured and gastric ulcer scores were assigned. Venous blood gas values were also measured. Results Gastric ulcers in control horses significantly decreased after 21 days, but there was no difference in ulcer scores when compared to the Egusin® treated horses. NG gastric ulcer scores significantly increased in E-250 and control horses on day 28 compared to day 21 as a result of intermittent feed-deprivation, but no treatment effect was observed. NG ulcer scores remained high in the control group but significantly decreased in the E-SLH- and E-250-treated horses by day 35. Gastric juice pH values were low and variable and no treatment effect was observed. Mean blood pCO2 values were significantly increased two hours after feeding in treated horses compared to controls, whereas mean blood TCO2 values increased in the 24 hour sample, but did not exceed 38 mmol/l. Conclusions The feed-deprivation model increased NG gastric ulcer severity in the horses. However, by day 35, Egusin® treated horses had less severe NG gastric ulcers compared to untreated control horses. After 35 days, Egusin® products tested here ameliorate the severity of gastric ulcers in

  18. Spatial and functional relationships between air conduits and blood capillaries in the pulmonary gas exchange tissue of adult and developing chickens.

    PubMed

    Makanya, Andrew N; El-Darawish, Yosif; Kavoi, Boniface M; Djonov, Valentin

    2011-02-01

    The documented data regarding the three-dimensional structure of the air capillaries (ACs), the ultimate sites of gas exchange in the avian lung is contradictory. Further, the mode of gas exchange, described as cross-current has not been clearly elucidated. We studied the temporal and spatial arrangement of the terminal air conduits of the chicken lung and their relationship with the blood capillaries (BCs) in embryos as well as the definitive architecture in adults. Several visualization techniques that included corrosion casting, light microscopy as well as scanning and transmission electron microscopy were used. Two to six infundibulae extend from each atrium and give rise to numerous ACs that spread centrifugally. Majority of the ACs are tubular structures that give off branches, which anastomose with their neighboring cognates. Some ACs have globular shapes and a few are blind-ending tapering tubes. During inauguration, the luminal aspects of the ACs are characterized by numerous microvillus-like microplicae, which are formed during the complex processes of cell attenuation and canalization of the ACs. The parabronchial exchange BCs, initially inaugurated as disorganized meshworks, are reoriented via pillar formation to lie predominantly orthogonal to the long axes of the ACs. The remodeling of the retiform meshworks by intussusceptive angiogenesis essentially accomplishes a cross-current system at the gas exchange interface in the adults, where BCs form ring-like patterns around the ACs, thus establishing a cross-current system. Our findings clarify the mode of gas exchange in the parabronchial mantle and illuminate the basis for the functional efficiency of the avian lung. PMID:21275004

  19. Digital Microfluidics Sample Analyzer

    NASA Technical Reports Server (NTRS)

    Pollack, Michael G.; Srinivasan, Vijay; Eckhardt, Allen; Paik, Philip Y.; Sudarsan, Arjun; Shenderov, Alex; Hua, Zhishan; Pamula, Vamsee K.

    2010-01-01

    Three innovations address the needs of the medical world with regard to microfluidic manipulation and testing of physiological samples in ways that can benefit point-of-care needs for patients such as premature infants, for which drawing of blood for continuous tests can be life-threatening in their own right, and for expedited results. A chip with sample injection elements, reservoirs (and waste), droplet formation structures, fluidic pathways, mixing areas, and optical detection sites, was fabricated to test the various components of the microfluidic platform, both individually and in integrated fashion. The droplet control system permits a user to control droplet microactuator system functions, such as droplet operations and detector operations. Also, the programming system allows a user to develop software routines for controlling droplet microactuator system functions, such as droplet operations and detector operations. A chip is incorporated into the system with a controller, a detector, input and output devices, and software. A novel filler fluid formulation is used for the transport of droplets with high protein concentrations. Novel assemblies for detection of photons from an on-chip droplet are present, as well as novel systems for conducting various assays, such as immunoassays and PCR (polymerase chain reaction). The lab-on-a-chip (a.k.a., lab-on-a-printed-circuit board) processes physiological samples and comprises a system for automated, multi-analyte measurements using sub-microliter samples of human serum. The invention also relates to a diagnostic chip and system including the chip that performs many of the routine operations of a central labbased chemistry analyzer, integrating, for example, colorimetric assays (e.g., for proteins), chemiluminescence/fluorescence assays (e.g., for enzymes, electrolytes, and gases), and/or conductometric assays (e.g., for hematocrit on plasma and whole blood) on a single chip platform.

  20. Kundt's Tube: An Acoustic Gas Analyzer

    ERIC Educational Resources Information Center

    Aristov, Natasha; Habekost, Gehsa; Habekost, Achim

    2011-01-01

    A Kundt tube is normally used to measure the speed of sound in gases. Therefore, from known speeds of sound, a Kundt tube can be used to identify gases and their fractions in mixtures. In these experiments, the speed of sound is determined by measuring the frequency of a standing sound wave at a fixed tube length, temperature, and pressure. This…

  1. Investigations of animal blood samples after fragrance drug inhalation by gas chromatography/mass spectrometry with chemical ionization and selected ion monitoring.

    PubMed

    Jirovetz, L; Jäger, W; Buchbauer, G; Nikiforov, A; Raverdino, V

    1991-12-01

    The fragrance compounds linalool (1) and linalyl acetate (2) could be detected, identified and quantified (1: 7-9 ng ml-1; and 2: 1-2 ng ml-1 and 4-5 ng ml-1 as free linalool) in blood samples after inhalation in animal experiments (mice) by gas chromatography/mass spectrometry (GC/MS) with chemical ionization (CI) (ammonia); selected ion monitoring (SIM) mode (1: m/z 81, 137 and 154; 2: 47, 57 and 137) and GC/flame ionization detection (FID). The inhalation of these monoterpenes in concentrations of 5 mg l-1 air leads to a significant reduction of the motility of the test animals down to 30-40% with respect to the control group.

  2. Blood gas tensions, acid-base status, heart rates, and venous profiles in exercising horses with laryngeal hemiplegia before and after corrective surgery.

    PubMed

    Tate, L P; Corbett, W T; Bishop, B J; Foreman, J H

    1993-01-01

    The physiologic effects of exercise were studied in four horses with complete laryngeal hemiplegia. Right carotid arteries were surgically elevated to a subcutaneous position for percutaneous catheterization. Each horse was fitted with a device designed to obtain multiple arterial samples while the horse was exercised over a 1.6-km course. After each horse completed 10 test gallops, the laryngeal hemiplegia was treated using a laryngeal prothesis and ventriculectomy. The horses were then reconditioned, and the exercise test and sampling were repeated. Horses with laryngeal hemiplegia became acidotic, hypoxic, and hypercapnic compared to normal horses. Surgical treatment improved blood gas and acid-base status, but the values were not equivalent to those in normal horses similarly tested.

  3. Blood gas values during intermittent positive pressure ventilation and spontaneous ventilation in 160 anesthetized horses positioned in lateral or dorsal recumbency.

    PubMed

    Day, T K; Gaynor, J S; Muir, W W; Bednarski, R M; Mason, D E

    1995-01-01

    P(A-a)O2 values were highest in all horses positioned in dorsal recumbency compared with lateral recumbency and in SV horses compared with IPPV horses. The pH changes paralleled the changes in PaCO2. Blood gas values during right versus left lateral recumbency in all groups were also evaluated. The PaO2 values were significantly lower and the P(A-a)O2 values were significantly higher during SV in horses positioned in left lateral (LRLG1) compared with right lateral (LRRG1) recumbency.(ABSTRACT TRUNCATED AT 400 WORDS)

  4. THE DETERMINATION OF CORRELATION LINKAGES BETWEEN LEVEL OF REACTIVE OXYGEN SPECIES, CONTENTS OF NEUTROPHILES AND BLOOD GAS COMPOSITION IN EXPERIMENTAL ACUTE LUNG INJURY.

    PubMed

    Marushchak, M; Krynytska, I; Petrenko, N; Klishch, I

    2016-04-01

    Acute lung injury (ALI) remains a major cause of acute respiratory failure and death of patients. Despite the achievements at the current stage in treatment, morbidity and mortality of ALI remain high. However, a deeper understanding of the pathogenetic links of ALI, identifying of the predictors that positively or negatively influence on the course of the syndrome, the correlation between some pathogenetic mechanisms will improve therapeutic strategies for patients with ALI, which makes the actuality of this study. The aim of the research was to detect additional pathogenetic mechanisms of the acute lung injury development in rats based on a comparative analysis of the correlations between the level of reactive oxygen species in blood and bronchoalveolar lavage, contents of neutrophils and blood gas composition. The experiments were performed on 54 white nonlinear mature male rats 200-220g in weight. The animals were divided into 5 groups: the 1st - control group (n=6), the 2nd - animals affected by hydrochloric acid for 2 hours (n=12), the 3rd - animals affected by hydrochloric acid for 6 hours (n=12), the 4th - animals affected by hydrochloric acid for 12 hours (n=12), the 5th - animals affected by hydrochloric acid for 24 hours (n=12). Correlation analysis was performed between all the studied indices. Coefficient of linear correlation (r) and its fidelity (p) was calculated that was accordingly denoted in the tables (correlation matrices). The correlation coefficient was significant at p<0.05. Conducted correlative analysis showed that the level of ROS in neutrophils of blood in rats with modeled ALI had a high negative correlative linkage with pH of arterial blood in 2nd and 3rd experimental groups. Conducted correlative analysis of data in BAL showed that the level of ROS in neutrophils in rats with modeled ALI had a strong positive correlative relationship with the number of white blood cells in 3-rd, 4-th and 5-th experimental groups and positive

  5. High-resolution CT in simple coal workers' pneumoconiosis. Lack of correlation with pulmonary function tests and arterial blood gas values

    SciTech Connect

    Collins, L.C.; Willing, S.; Bretz, R.; Harty, M.; Lane, E.; Anderson, W.H. )

    1993-10-01

    We examined 21 miners by means of standard chest radiography, high-resolution computerized tomography (HRCT), pulmonary function tests, and resting arterial blood gas levels. Using the ILO/UC classification of pneumoconiosis, 7 miners had category 1/0 or 2/1 simple coal workers' pneumoconiosis (CWP). By HRCT, nodules were identified in 12 miners; 4 of 9 were classified as category 0/0 CWP; 2 of 5, 0/1 CWP; 5 of 6, 1/0 CWP; and 1 of 1, 2/1 CWP by chest radiograph. Focal emphysema was identified by HRCT in 7 miners; 4 of 9 were classified as 0/0 CWP; 2 of 5, 0/1 CWP; and 1 of 6, 1/0 CWP by standard chest radiography. Four miners with definite nodules confirmed by HRCT had focal emphysema, while three without nodules had focal emphysema. Pulmonary function testing was not different between miners with or without CWP by standard chest radiography, nor was it different between miners with or without definite nodules evidenced by HRCT. No difference in resting oxygenation was found between any group of miners. The presence of focal emphysema confirmed by HRCT did not significantly affect pulmonary function tests on resting arterial blood gas values. There was, however, a significantly lower FEV1 and mean forced expiratory flow during the middle half of forced vital capacity with lifetime nonsmoking miners. The presence of CWP on chest radiography was significantly correlated with smoking cigarettes but not the years of mining. The presence of nodules on HRCT approached a significant correlation with cigarette smoking, but focal emphysema did not. For detecting evidence of coal dust accumulation in lung parenchyma and identifying focal emphysema, HRCT was more sensitive than standard chest radiography. However, despite earlier detection of parenchymal abnormalities, abnormal pulmonary function attributable to coal dust could not be identified.

  6. Effects of adaptive support ventilation and synchronized intermittent mandatory ventilation on peripheral circulation and blood gas markers of COPD patients with respiratory failure.

    PubMed

    Han, Ling; Wang, Yingxiao; Gan, Yonghua; Xu, Lijun

    2014-09-01

    The objective of the study was to investigate the effects of adaptive support ventilation (ASV) and synchronized intermittent mandatory ventilation (SIMV) on peripheral circulation of chronic obstructive pulmonary disease (COPD) patients with respiratory failure. 86 COPD patients with respiratory failure were recruited in this study. Self-control method was used to compare the effect of ASV and SIMV on the parameters of ventilation machine, heart rate, blood pressure, central venous pressure (CVP), and blood gas markers. When the patients in ASV and SIMV groups were compared, respiratory rate, tidal volume, and peak airway pressure (PIP) showed significant difference. When minute ventilation (MV) was compared, no significant difference was shown. When peripheral circulation parameters were compared, peripheral circulation heart rate, SBP, DBP, and CVP showed significant difference. Compared with SIMV group, PaO2, pH, and SaO2 values were remarkably increased (P < 0.01) while no significant difference was found for partial pressure of carbon dioxide (pCO2) when two groups were compared. In conclusion, when mechanical ventilation was used in COPD patients with respiratory failure, ASV can significantly improve clinical outcomes.

  7. Role of central and peripheral opiate receptors in the effects of fentanyl on analgesia, ventilation and arterial blood-gas chemistry in conscious rats

    PubMed Central

    Henderson, Fraser; May, Walter J.; Gruber, Ryan B.; Discala, Joseph F.; Puscovic, Veljko; Young, Alex P.; Baby, Santhosh M.; Lewis, Stephen J.

    2015-01-01

    This study determined the effects of the peripherally restricted µ-opiate receptor (µ-OR) antagonist, naloxone methiodide (NLXmi) on fentanyl (25 µg/kg, i.v.)-induced changes in (1) analgesia, (2) arterial blood gas chemistry (ABG) and alveolar-arterial gradient (A-a gradient), and (3) ventilatory parameters, in conscious rats. The fentanyl-induced increase in analgesia was minimally affected by a 1.5 mg/kg of NLXmi but was attenuated by a 5.0 mg/kg dose. Fentanyl decreased arterial blood pH, pO2 and sO2 and increased pCO2 and A-a gradient. These responses were markedly diminished in NLXmi (1.5 mg/kg)-pretreated rats. Fentanyl caused ventilatory depression (e.g., decreases in tidal volume and peak inspiratory flow). Pretreatment with NLXmi (1.5 mg/kg, i.v.) antagonized the fentanyl decrease in tidal volume but minimally affected the other responses. These findings suggest that (1) the analgesia and ventilatory depression caused by fentanyl involve peripheral µ-ORs and (2) NLXmi prevents the fentanyl effects on ABG by blocking the negative actions of the opioid on tidal volume and A-a gradient. PMID:24284037

  8. Measuring the human ventilatory and cerebral blood flow response to CO2: a technical consideration for the end-tidal-to-arterial gas gradient.

    PubMed

    Tymko, Michael M; Hoiland, Ryan L; Kuca, Tomas; Boulet, Lindsey M; Tremblay, Joshua C; Pinske, Bryenna K; Williams, Alexandra M; Foster, Glen E

    2016-01-15

    Our aim was to quantify the end-tidal-to-arterial gas gradients for O2 (PET-PaO2) and CO2 (Pa-PETCO2) during a CO2 reactivity test to determine their influence on the cerebrovascular (CVR) and ventilatory (HCVR) response in subjects with (PFO+, n = 8) and without (PFO-, n = 7) a patent foramen ovale (PFO). We hypothesized that 1) the Pa-PETCO2 would be greater in hypoxia compared with normoxia, 2) the Pa-PETCO2 would be similar, whereas the PET-PaO2 gradient would be greater in those with a PFO, 3) the HCVR and CVR would be underestimated when plotted against PETCO2 compared with PaCO2, and 4) previously derived prediction algorithms will accurately target PaCO2. PETCO2 was controlled by dynamic end-tidal forcing in steady-state steps of -8, -4, 0, +4, and +8 mmHg from baseline in normoxia and hypoxia. Minute ventilation (V̇E), internal carotid artery blood flow (Q̇ICA), middle cerebral artery blood velocity (MCAv), and temperature corrected end-tidal and arterial blood gases were measured throughout experimentation. HCVR and CVR were calculated using linear regression analysis by indexing V̇E and relative changes in Q̇ICA, and MCAv against PETCO2, predicted PaCO2, and measured PaCO2. The Pa-PETCO2 was similar between hypoxia and normoxia and PFO+ and PFO-. The PET-PaO2 was greater in PFO+ by 2.1 mmHg during normoxia (P = 0.003). HCVR and CVR plotted against PETCO2 underestimated HCVR and CVR indexed against PaCO2 in normoxia and hypoxia. Our PaCO2 prediction equation modestly improved estimates of HCVR and CVR. In summary, care must be taken when indexing reactivity measures to PETCO2 compared with PaCO2.

  9. Respiratory rates and arterial blood-gas tensions in healthy rabbits given buprenorphine, butorphanol, midazolam, or their combinations.

    PubMed

    Schroeder, Carrie A; Smith, Lesley J

    2011-03-01

    The objective of this study was to evaluate the respiratory effects of buprenorphine, butorphanol, midazolam, and their combinations in healthy conscious rabbits. Six adult female New Zealand white rabbits were anesthetized briefly with isoflurane by mask to allow placement of a catheter into the central ear artery. After a 60-min recovery period, a baseline arterial sample was obtained. Animals then were injected intramuscularly with either 0.9% NaCl (1 mL), buprenorphine (0.03 mg/kg), butorphanol (0.3 mg/kg), midazolam (2 mg/kg), buprenorphine + midazolam (0.03 mg/kg, 2 mg/kg), or butorphanol + midazolam (0.3 mg/kg, 2 mg/kg). Arterial blood gases were evaluated at 30, 60, 90, 120, 180, 240, and 360 min after drug administration. All drug treatments caused significant decreases in respiratory rate, compared with saline. Buprenorphine and the combinations of midazolam-butorphanol and midazolam-buprenorphine resulted in statistically significant decreases in pO(2). No significant changes in pCO(2) pressure were recorded for any treatment. Increases in blood pH were associated with administration of butorphanol, midazolam, and the combinations of midazolam-butorphanol and midazolam-buprenorphine. In light of these results, buprenorphine and the combinations of midazolam-buprenorphine and midazolam-butorphanol result in statistically significant hypoxemia in rabbits that breathe room air. The degree of hypoxemia is of questionable clinical importance in these healthy subjects. Hypoxemia resulting from these drug combinations may be amplified in rabbits with underlying pulmonary or systemic disease. PMID:21439214

  10. Validated ultra-performance liquid chromatography-tandem mass spectrometry method for analyzing LSD, iso-LSD, nor-LSD, and O-H-LSD in blood and urine.

    PubMed

    Chung, Angela; Hudson, John; McKay, Gordon

    2009-06-01

    The Royal Canadian Mounted Police Forensic Science and Identification Services was looking for a confirmatory method for lysergic acid diethylamide (LSD). As a result, an ultra-performance liquid chromatography-tandem mass spectrometry method was validated for the confirmation and quantitation of LSD, iso-LSD, N-demethyl-LSD (nor-LSD), and 2-oxo-3-hydroxy-LSD (O-H-LSD). Relative retention time and ion ratios were used as identification parameters. Limits of detection (LOD) in blood were 5 pg/mL for LSD and iso-LSD and 10 pg/mL for nor-LSD and O-H-LSD. In urine, the LOD was 10 pg/mL for all analytes. Limits of quantitation (LOQ) in blood and urine were 20 pg/mL for LSD and iso-LSD and 50 pg/mL for nor-LSD and O-H-LSD. The method was linear, accurate, and precise from 10 to 2000 pg/mL in blood and 20 to 2000 pg/mL in urine for LSD and iso-LSD and from 20 to 2000 pg/mL in blood and 50 to 2000 pg/mL in urine for nor-LSD and O-H-LSD with a coefficient of determination (R(2)) > or = 0.99. The method was applied to blinded biological control samples and biological samples taken from a suspected LSD user. This is the first reported detection of O-H-LSD in blood from a suspected LSD user.

  11. Liquid phase separation of proteins based on electrophoretic effects in an electrospray setup during sample introduction into a gas-phase electrophoretic mobility molecular analyzer (CE–GEMMA/CE–ES–DMA)

    PubMed Central

    Weiss, Victor U.; Kerul, Lukas; Kallinger, Peter; Szymanski, Wladyslaw W.; Marchetti-Deschmann, Martina; Allmaier, Günter

    2014-01-01

    Nanoparticle characterization is gaining importance in food technology, biotechnology, medicine, and pharmaceutical industry. An instrument to determine particle electrophoretic mobility (EM) diameters in the single-digit to double-digit nanometer range receiving increased attention is the gas-phase electrophoretic mobility molecular analyzer (GEMMA) separating electrophoretically single charged analytes in the gas-phase at ambient pressure. A fused-silica capillary is used for analyte transfer to the gas-phase by means of a nano electrospray (ES) unit. The potential of this capillary to separate analytes electrophoretically in the liquid phase due to different mobilities is, at measurement conditions recommended by the manufacturer, eliminated due to elevated pressure applied for sample introduction. Measurements are carried out upon constant feeding of analytes to the system. Under these conditions, aggregate formation is observed for samples including high amounts of non-volatile components or complex samples. This makes the EM determination of individual species sometimes difficult, if not impossible. With the current study we demonstrate that liquid phase electrophoretic separation of proteins (as exemplary analytes) occurs in the capillary (capillary zone electrophoresis, CE) of the nano ES unit of the GEMMA. This finding was consecutively applied for on-line desalting allowing EM diameter determination of analytes despite a high salt concentration within samples. The present study is to our knowledge the first report on the use of the GEMMA to determine EM diameters of analytes solubilized in the ES incompatible electrolyte solutions by the intended use of electrophoresis (in the liquid phase) during sample delivery. Results demonstrate the proof of concept of such an approach and additionally illustrate the high potential of a future on-line coupling of a capillary electrophoresis to a GEMMA instrument. PMID:25109866

  12. Can Blood Gas and Acid-Base Parameters at Maximal 200 Meters Front Crawl Swimming be Different Between Former Competitive and Recreational Swimmers?

    PubMed

    Kapus, Jernej; Usaj, Anton; Strumbelj, Boro; Kapus, Venceslav

    2008-01-01

    The aim of the present study was to ascertain whether maximal 200 m front crawl swimming strategies and breathing patterns influenced blood gas and acid-base parameters in a manner which gives advantage to former competitive swimmers in comparison with their recreational colleagues. Twelve former competitive male swimmers (the CS group) and nine recreational male swimmers (the RS group) performed a maximal 200 m front crawl swimming with self- selected breathing pattern. Stroke rate (SR) and breathing frequency (BF) were measured during the swimming test. Measures also included blood lactate concentration ([LA]) and parameters of blood acid-base status before and during the first minute after the swimming test. The CS group swam faster then the RS group. Both groups have similar and steady SR throughout the swimming test. This was not matched by similar BF in the CS group but matched it very well in the RS group (r = 0.89). At the beginning of swimming test the CS group had low BF, but they increased it throughout the swimming test. The BF at the RS group remained constant with only mirror variations throughout the swimming test. Such difference in velocity and breathing resulted in maintaining of blood Po2 from hypoxia and Pco2 from hypercapnia. This was similar in both groups. [LA] increased faster in the CS group than in the RS group. On the contrary, the rate of pH decrease remained similar in both groups. The former competitive swimmers showed three possible advantages in comparison to recreational swimmers during maximal 200 m front crawl swimming: a more dynamic and precise regulation of breathing, more powerful bicarbonate buffering system and better synchronization between breathing needs and breathing response during swimming. Key pointsTraining programs for competitive swimmers should promote adaptations to maximal efforts.Those adaptations should include high and maximal intensity swims with controlled breathing frequency (taking breath every fourth

  13. Neonatal clinical evaluation, blood gas and radiographic assessment after normal birth, vaginal dystocia or caesarean section in dogs.

    PubMed

    Silva, L C G; Lúcio, C F; Veiga, G A L; Rodrigues, J A; Vannucchi, C I

    2009-07-01

    This study aimed to standardize signs and diagnostic criteria of respiratory function in newborn puppies delivered normally or after dystocia and caesarean operation. A total of 48 neonates were allocated into groups: eutocia (n = 20), dystocia (n = 8), caesarean (c)-section (n = 20). Neonatal health was assessed using the Apgar score and body temperature was determined at 0, 5 and 60 min after delivery. Venous blood gases (pO(2) and SO(2)) was measured immediately and 60 min after delivery, and a thoracic radiograph was made between 0 and 5 min of life. The c-section group had significantly lower Apgar scores at birth and 5 min. Hypothermia was present at 5 min in the eutocia and c-section groups, and at 60 min in all groups. The eutocia group had an irregular respiratory pattern in 78% of puppies at birth, 27.7% at 5 min and 21% at 60 min compared with 87.5%, 62.5% and 12.5% of the pups in the dystocia group where there was irregular respiratory rhythm, moderate to intense respiratory sounds with agonic episodes. The c-section group had respiratory alterations in 70%, 45% and 16% of puppies at 0, 5 and 60 min, respectively. Radiographic abnormalities were present in 17% of the pups in the eutocia group, 25% of the pups in the dystocia group and 30% of the pups in the c-section group, respectively. The c-section group had significantly lower SO(2) values at 60 min than at birth. All puppies had hypoxaemia, but a significant decrease was observed in the c-section group. Newborn puppies had tissue hypoxia and irregular respiratory pattern at birth. Caesarean-section puppies had lower vitality; however, all developed satisfactory Apgar scores at 5 min of life, regardless of the obstetric condition.

  14. Vomiting blood

    MedlinePlus

    ... first part of the small intestine, or esophagus Blood clotting disorders Defects in the blood vessels of the ... as a complete blood count (CBC), blood chemistries, blood clotting tests, and liver function tests Esophagogastroduodenoscopy (EGD) (placing ...

  15. Blood Disorders

    MedlinePlus

    ... liquid part, called plasma, is made of water, salts and protein. Over half of your blood is plasma. The solid part of your blood contains red blood cells, white blood cells and platelets. Blood disorders affect ...

  16. Analysis of Arterial Blood Gas Report in Chronic Kidney Diseases – Comparison between Bedside and Multistep Systematic Method

    PubMed Central

    Dhat, Vaishali; Tilak, Mona A; Roy, Indranath

    2016-01-01

    Introduction Acid Base Disorders (ABDs) are commonly encountered in critically ill Chronic Kidney Disease (CKD) patients. Timely and correct analysis of Arterial Blood Gases (ABG) is critical for the diagnosis, treatment and prediction of outcome of the patients. Aim The aim was to explore type and prevalence of ABDs in 31 critically ill CKD patients from a tertiary care hospital in Maharashtra, to compare two methods of analysis- bedside and systematic approaches and to clinically correlate the nature of ABDs in these patients. Materials and Methods The initial ABG reports of 31 consecutive CKD patients were analysed by two methods. Medica Easy stat analyser was the equipment for analysis with Principle of potentiometry and ion selective electrode for pH and pCO2 and amperometry for pO2. Serum albumin was also measured by Bromocresol green dye binding method using liquixx albumin kit in Erba XL 300 autoanalyser. Statistical Analysis Chi-square test was used for statistical analysis using Epi Info version 3.5.4 and SPSS 14.0 softwares. Results The systematic method showed a significantly higher prevalence of mixed disorders (50%) compared to bedside method (12.9%). Most prevalent disorder by bedside method was metabolic acidosis in 15 cases (48.39%). By the systematic method, 3 reports were invalid. As a single category, most prevalent type was both simple respiratory alkalosis and mixed metabolic acidosis with respiratory alkalosis- 6 of 31 cases in each type (19.36% each). As a whole, metabolic acidosis (including both High Anion Gap Metabolic Acidosis or HAGMA and Non Anion Gap Metabolic Acidosis or NAGMA with 4 in each type) was most prevalent- 8 of 31(25.8%). Conclusion Systematic approach was more effective in diagnosing mixed acid base disorders. By systematic method the findings of analysis in most cases could be correlated with the clinical condition and provisional diagnosis. Thus interpretation of ABDs by using stepwise approach could be useful to the

  17. [Interpretation and use of routine pulmonary function tests: Spirometry, static lung volumes, lung diffusion, arterial blood gas, methacholine challenge test and 6-minute walk test].

    PubMed

    Bokov, P; Delclaux, C

    2016-02-01

    Resting pulmonary function tests (PFT) include the assessment of ventilatory capacity: spirometry (forced expiratory flows and mobilisable volumes) and static volume assessment, notably using body plethysmography. Spirometry allows the potential definition of obstructive defect, while static volume assessment allows the potential definition of restrictive defect (decrease in total lung capacity) and thoracic hyperinflation (increase in static volumes). It must be kept in mind that this evaluation is incomplete and that an assessment of ventilatory demand is often warranted, especially when facing dyspnoea: evaluation of arterial blood gas (searching for respiratory insufficiency) and measurement of the transfer coefficient of the lung, allowing with the measurement of alveolar volume to calculate the diffusing capacity of the lung for CO (DLCO: assessment of alveolar-capillary wall and capillary blood volume). All these pulmonary function tests have been the subject of an Americano-European Task force (standardisation of lung function testing) published in 2005, and translated in French in 2007. Interpretative strategies for lung function tests have been recommended, which define abnormal lung function tests using the 5th and 95th percentiles of predicted values (lower and upper limits of normal values). Thus, these recommendations need to be implemented in all pulmonary function test units. A methacholine challenge test will only be performed in the presence of an intermediate pre-test probability for asthma (diagnostic uncertainty), which is an infrequent setting. The most convenient exertional test is the 6-minute walk test that allows the assessment of walking performance, the search for arterial desaturation and the quantification of dyspnoea complaint.

  18. Analysing persistent organic pollutants in eggs, blood and tissue of the green sea turtle (Chelonia mydas) using gas chromatography with tandem mass spectrometry (GC-MS/MS).

    PubMed

    van de Merwe, Jason Paul; Hodge, Mary; Whittier, Joan Margaret; Lee, Shing Yip

    2009-03-01

    Investigation into persistent organic pollutants (POPs) in sea turtles is an important area of conservation research due to the harmful effects of these chemicals. However, the analysis of POPs in the green sea turtle (Chelonia mydas) has been limited by methods with relatively high limits of detection and high costs associated with multiple sample injections into complex arrangements of analytical equipment. The present study aimed to develop a method that could detect a large number of POPs in the blood, eggs and tissue of C. mydas at trace concentrations. A gas chromatography with tandem mass spectrometry (GC-MS/MS) method was developed that could report 125 POP compounds to a limit of detection of <35 pg g(-1) using a single sample injection. The recoveries of internal standards ranged from 30% to 96%, and the standard reference materials were reported to within 70% of the certified values. The coefficient of variation of ten replicates of pooled egg sample was <20% for all compounds, indicating low within-run variation. This GC-MS/MS method is an improvement of previous methods for analysing POPs in C. mydas in that more compounds can be reported at lower concentrations and the accuracy and precision of the method are sound. This is particularly important for C. mydas as they occupy a low trophic level and have lower concentrations of POPs. This method is also simple to set up, and there are minimal differences in sample preparation for the different tissue types.

  19. Quantitation of cocaine, benzoylecgonine, ecgonine methyl ester, and cocaethylene in urine and blood using gas chromatography-mass spectrometry (GC-MS).

    PubMed

    Fleming, Steven W; Dasgupta, Amitava; Garg, Uttam

    2010-01-01

    Cocaine, a stimulant, is a commonly abused drug. Cocaine and its metabolites are measured in various biological specimens for clinical and forensic purposes. Urine or plasma or serum is spiked with deuterated internal standards cocaine-d3, benzoylecgonine-d3, ecgonine methyl ester-d3, and cocaethylene-d3 and buffered with phosphate buffer. The drugs in the sample are extracted by cation-exchange solid phase extraction. The drugs from the solid phase cartridge are eluted and the eluent is dried under the stream of nitrogen. The residue is incubated with pentafluoropropionic acid anhydride and pentafluoropropanol to form pentafluoropropionyl derivatives of ecgonine methyl ester and benzoylecgonine. Cocaine and cocaethylene are refractory to derivatization. The extract is dried, reconstituted in ethyl acetate, and injected into gas chromatography mass-spectrometry analyzer. Quantitation of the drugs in the samples is made, using selected ion monitoring, from a 3-point calibration curve. PMID:20077067

  20. Blood clotting

    MedlinePlus Videos and Cool Tools

    ... the external bleeding stops. Clotting factors in the blood cause strands of blood-borne material, called fibrin, to stick together and ... the inside of the wound. Eventually, the cut blood vessel heals, and the blood clot dissolves after ...

  1. Analytical strategy based on the combination of gas chromatography coupled to time-of-flight and hybrid quadrupole time-of-flight mass analyzers for non-target analysis in food packaging.

    PubMed

    Cherta, L; Portolés, T; Pitarch, E; Beltran, J; López, F J; Calatayud, C; Company, B; Hernández, F

    2015-12-01

    The potential of an advanced analytical strategy based on the use of gas chromatography (GC) coupled to high resolution mass spectrometry (HRMS) with two different analyzers and ionization sources has been investigated and applied to the non-target analysis of food packaging contaminants. Initially, the approach based on GC-time-of-flight (TOF) MS with electron ionization (EI) source allowed performing a library search and mass accurate measurements of selected ions. Then, a second analysis was performed using hybrid quadrupole (Q) TOF MS with an atmospheric pressure chemical ionization (APCI) source in order to search for the molecular ion or the protonated molecule and study the fragmentation behavior. This analytical strategy was applied to the analysis of four polypropylene/ethylene vinyl alcohol/polypropylene (PP/EVOH/PP) multilayer trays and one PP/Al foil/PP film, each one subjected to migration assays with the food simulants isooctane and Tenax®, in order to investigate its potential on the determination of migrant substances.

  2. [THE STUDY OF THE EFFECTS OF ANXYOLYTIC, ANTIOXIDANT, IMMUNOCORRECTOR AND HYPERBARIC OXYGENATION ON THE DYNAMICS OF MAIN BLOOD GAS AND ELECTROLYTE INDICES AND BEHAVIORAL RESPONSE IN EXPERIMENTAL STRESS MODEL].

    PubMed

    Govsh, E V; Podsevatkin, V G; Blinov, D S; Kiryukhina, S V; Podsevatkina, S V; Bochkareva, N V

    2016-01-01

    Experiments on the model of immobilization stress in albino mice showed that a combination of mexidol, thymogen, and hyperbaric oxygenation reduced adverse effects of diazepam on behavioral response of animals in the black-and-white chamber and elevated cross maze tests and led to optimization of the blood gas composition as manifested by increased oxygen tension, normalization of the partial pressure of carbon dioxide, and restoration of the acid-base balance and blood bicarbonate level. The proposed combined treatment can be recommended for the treatment of patients with stress-induced pathology. PMID:27455576

  3. In-situ continuous water analyzing module

    DOEpatents

    Thompson, Cyril V.; Wise, Marcus B.

    1998-01-01

    An in-situ continuous liquid analyzing system for continuously analyzing volatile components contained in a water source comprises: a carrier gas supply, an extraction container and a mass spectrometer. The carrier gas supply continuously supplies the carrier gas to the extraction container and is mixed with a water sample that is continuously drawn into the extraction container. The carrier gas continuously extracts the volatile components out of the water sample. The water sample is returned to the water source after the volatile components are extracted from it. The extracted volatile components and the carrier gas are delivered continuously to the mass spectometer and the volatile components are continuously analyzed by the mass spectrometer.

  4. Real-time airborne particle analyzer

    DOEpatents

    Reilly, Peter T.A.

    2012-10-16

    An aerosol particle analyzer includes a laser ablation chamber, a gas-filled conduit, and a mass spectrometer. The laser ablation chamber can be operated at a low pressure, which can be from 0.1 mTorr to 30 mTorr. The ablated ions are transferred into a gas-filled conduit. The gas-filled conduit reduces the electrical charge and the speed of ablated ions as they collide and mix with buffer gases in the gas-filled conduit. Preferably, the gas filled-conduit includes an electromagnetic multipole structure that collimates the nascent ions into a beam, which is guided into the mass spectrometer. Because the gas-filled conduit allows storage of vast quantities of the ions from the ablated particles, the ions from a single ablated particle can be analyzed multiple times and by a variety of techniques to supply statistically meaningful analysis of composition and isotope ratios.

  5. The correlation between end-tidal carbon dioxide and arterial blood gas parameters in patients evaluated for metabolic acid-base disorders

    PubMed Central

    Pishbin, Elham; Ahmadi, Ghazaleh Doostkhah; Sharifi, Mohammad Davood; Deloei, Morteza Talebi; Shamloo, Alireza Sepehri; Reihani, Hamidreza

    2015-01-01

    Background: The analysis of arterial blood gas (ABG) is an invasive procedure that is used frequently in the emergency department (ED) to evaluate the acid-base status of critically-ill patients. However, capnometry is an alternative procedure that has been used in recent years to determine the metabolic status of patients’ blood. Considering the correlation between end-tidal carbon dioxide (ETCO2) and arterial partial pressure of carbon dioxide (PaCO2) identified in the previous studies and the strong correlation between PaCO2 and bicarbonate (HCO3−), we assumed that ETCO2 might be a useful parameter in predicting the presence of metabolic acidosis. The aim of this study was to determine the correlation between ETCO2 and the parameters of ABG in adult patients who were likely present metabolic acid-base disturbances in the Emergency Department of Imam Reza Hospital, the largest academic hospital in Mashhad in northeast Iran. Methods: This was a cross-sectional study conducted during six months on 62 adult patients who presented with suspected metabolic acid-base disorders to the ED. The exclusion criteria were patients with chronic obstructive pulmonary diseases, loss of consciousness, intubated patients, and those who were unable to tolerate capnography. The patients’ demographic information and vital signs were recorded. Also, ABG and ETCO2 results were recorded. The Pearson product moment correlation analysis and linear regression were used to determine the correlation between ETCO2 and ABG parameters. Results: Sixty-four patients were enrolled, consisting of 37 men and 27 women with a mean age of 55.4 ± 22.7 years. The most common complaints presented were nausea and vomiting (n = 24). The average value for ETCO2 was 26.2 ± 6.1. There were significant linear correlations between ETCO2 level, pH (r = 0.368), HCO3− (r = 0.869), PaCO2 (r = 0.795), and Base Excess (B.E.) (r = 0.346). HCO3 and PaCO2 were the significant predictor values for ETCO2 (linear

  6. Wideband digital spectrum analyzer

    NASA Technical Reports Server (NTRS)

    Morris, G. A., Jr.; Wilck, H. C.

    1979-01-01

    Modular spectrum analyzer consisting of RF receiver, fast fourier transform spectrum analyzer, and data processor samples stochastic signals in 220 channels. Construction reduces design and fabrication costs of assembled unit.

  7. Effect of extracorporeal ultraviolet blood irradiation on blood cholesterol level

    NASA Astrophysics Data System (ADS)

    Zalesskaya, G. A.; Laskina, O. V.; Mitkovskaya, N. P.; Kirkovsky, V. V.

    2012-07-01

    We have studied the effect of extracorporeal ultraviolet blood irradiation on cholesterol metabolism in patients with cardiovascular diseases. We have carried out a comprehensive analysis of the spectral characteristics of blood and plasma, gas-exchange and oximetry parameters, and the results of a complete blood count and chemistry panel before and after UV blood irradiation. We have assessed the changes in concentrations of cholesterols (total cholesterol, low-density lipoprotein (LDL) cholesterol, triglycerides) in the blood of the patients in response to a five-day course of UV blood irradiation. The changes in the spectral characteristics of blood and plasma, the chemistry panel, the gas composition, and the fractional hemoglobin composition initiated by absorption of UV radiation are used to discuss the molecular mechanisms for the effect of therapeutic doses of UV radiation on blood cholesterols.

  8. Validation of a gas chromatography-ion trap-tandem mass spectrometry assay for the simultaneous quantification of cocaine, benzoylecgonine, cocaethylene, morphine, codeine, and 6-acetylmorphine in aqueous solution, blood, and skeletal muscle tissue.

    PubMed

    Rees, Kelly A; McLaughlin, Poppy A; Osselton, M David

    2012-01-01

    A gas chromatography-ion trap-tandem mass spectrometry method was developed and validated for the simultaneous solid-phase extraction and quantification of cocaine, benzoylecgonine, cocaethylene, morphine, codeine, and 6-monoacteylmorphine in blood, muscle tissue, and water. An assay for total morphine in blood and muscle was also validated. The limit of quantification was ≤ 0.01 mg/kg in muscle and ≤ 0.005 mg/L in blood and water. Good linearity was observed over the concentration ranges studied (r ≥ 0.99). The repeatability (% RSD) at the three concentration levels was typically ≤ 15% and never exceeded 17%. Intermediate precision of ≤ 16% was obtained for all matrices. Deviation < 20% of the nominal concentration was obtained in all repeatability and intermediate precision experiments. Extraction recoveries for cocaine and metabolites ranged from 91% to 110% in water, 81% to 110% in blood, and 61% to 75% in muscle. Recoveries for opiates ranged from 59% to 104% in water, 50% to 95% in blood, and 41% to 79% in muscle. The hydrolysis efficiency for the total morphine assay in blood and muscle ranged from 91% to 99% with within-day and intermediate precisions of ≤ 14% and ≤ 12%, respectively. PMID:22290746

  9. Image quality analyzer

    NASA Astrophysics Data System (ADS)

    Lukin, V. P.; Botugina, N. N.; Emaleev, O. N.; Antoshkin, L. V.; Konyaev, P. A.

    2012-07-01

    Image quality analyzer (IQA) which used as device for efficiency analysis of adaptive optics application is described. In analyzer marketed possibility estimations quality of images on three different criterions of quality images: contrast, sharpnesses and the spectral criterion. At present given analyzer is introduced on Big Solar Vacuum Telescope in stale work that allows at observations to conduct the choice of the most contrasting images of Sun. Is it hereinafter planned use the analyzer in composition of the ANGARA adaptive correction system.

  10. Microwave-assisted on-spot derivatization for gas chromatography-mass spectrometry based determination of polar low molecular weight compounds in dried blood spots.

    PubMed

    Sadones, Nele; Van Bever, Elien; Archer, John R H; Wood, David M; Dargan, Paul I; Van Bortel, Luc; Lambert, Willy E; Stove, Christophe P

    2016-09-23

    Dried blood spot (DBS) sampling and analysis is increasingly being applied in bioanalysis. Although the use of DBS has many advantages, it is also associated with some challenges. E.g. given the limited amount of available material, highly sensitive detection techniques are often required to attain sufficient sensitivity. In gas chromatography coupled to mass spectrometry (GC-MS), derivatization can be helpful to achieve adequate sensitivity. Because this additional sample preparation step is considered as time-consuming, we introduce a new derivatization procedure, i.e. "microwave-assisted on-spot derivatization", to minimize sample preparation of DBS. In this approach the derivatization reagents are directly applied onto the DBS and derivatization takes place in a microwave instead of via conventional heating. In this manuscript we evaluated the applicability of this new concept of derivatization for the determination of two polar low molecular weight molecules, gamma-hydroxybutyric acid (GHB) and gabapentin, in DBS using a standard GC-MS configuration. The method was successfully validated for both compounds, with imprecision and bias values within acceptance criteria (<20% at LLOQ, <15% at 3 other QC levels). Calibration lines were linear over the 10-100μg/mL and 1-30μg/mL range for GHB and gabapentin, respectively. Stability studies revealed no significant decrease of gabapentin and GHB in DBS upon storage at room temperature for at least 84 days. Furthermore, DBS-specific parameters, including hematocrit and volume spotted, were evaluated. As demonstrated by the analysis of GHB and gabapentin positive samples, "microwave-assisted on-spot derivatization" proved to be reliable, fast and applicable in routine toxicology. Moreover, other polar low molecular weight compounds of interest in clinical and/or forensic toxicology, including vigabatrin, beta-hydroxybutyric acid, propylene glycol, diethylene glycol, 1,4-butanediol and 1,2-butanediol, can also be

  11. Microwave-assisted on-spot derivatization for gas chromatography-mass spectrometry based determination of polar low molecular weight compounds in dried blood spots.

    PubMed

    Sadones, Nele; Van Bever, Elien; Archer, John R H; Wood, David M; Dargan, Paul I; Van Bortel, Luc; Lambert, Willy E; Stove, Christophe P

    2016-09-23

    Dried blood spot (DBS) sampling and analysis is increasingly being applied in bioanalysis. Although the use of DBS has many advantages, it is also associated with some challenges. E.g. given the limited amount of available material, highly sensitive detection techniques are often required to attain sufficient sensitivity. In gas chromatography coupled to mass spectrometry (GC-MS), derivatization can be helpful to achieve adequate sensitivity. Because this additional sample preparation step is considered as time-consuming, we introduce a new derivatization procedure, i.e. "microwave-assisted on-spot derivatization", to minimize sample preparation of DBS. In this approach the derivatization reagents are directly applied onto the DBS and derivatization takes place in a microwave instead of via conventional heating. In this manuscript we evaluated the applicability of this new concept of derivatization for the determination of two polar low molecular weight molecules, gamma-hydroxybutyric acid (GHB) and gabapentin, in DBS using a standard GC-MS configuration. The method was successfully validated for both compounds, with imprecision and bias values within acceptance criteria (<20% at LLOQ, <15% at 3 other QC levels). Calibration lines were linear over the 10-100μg/mL and 1-30μg/mL range for GHB and gabapentin, respectively. Stability studies revealed no significant decrease of gabapentin and GHB in DBS upon storage at room temperature for at least 84 days. Furthermore, DBS-specific parameters, including hematocrit and volume spotted, were evaluated. As demonstrated by the analysis of GHB and gabapentin positive samples, "microwave-assisted on-spot derivatization" proved to be reliable, fast and applicable in routine toxicology. Moreover, other polar low molecular weight compounds of interest in clinical and/or forensic toxicology, including vigabatrin, beta-hydroxybutyric acid, propylene glycol, diethylene glycol, 1,4-butanediol and 1,2-butanediol, can also be

  12. BLOOD GAS, LACTATE, AND HEMATOLOGY EFFECTS OF VENIPUNCTURE TIMING AND LOCATION AFTER MIST-NET CAPTURE OF MOURNING DOVES (ZENAIDA MACROURA), BOAT-TAILED GRACKLES (QUISCALUS MAJOR), AND HOUSE SPARROWS (PASSER DOMESTICUS).

    PubMed

    Harms, Craig A; Jinks, Maggie R; Harms, Ronald V

    2016-04-01

    Venous blood gas partial pressures, pH, bicarbonate and lactate concentrations, packed cell volume, white blood cell differential counts, and heterophil/lymphocyte ratios were measured from Mourning Doves (Zenaida macroura), Boat-tailed Grackles (Quiscalus major), and House Sparrows (Passer domesticus). Birds were bled promptly after mist-net capture and banding or following a targeted delay of 45-60 min, in order to assess the impacts of a brief holding period commonly practiced in large-scale bird banding operations. Additionally, effects of venipuncture location (basilic [=ulnar] vein versus jugular vein) were evaluated in male Boat-tailed Grackles sampled promptly after capture and banding. All comparisons were with unpaired samples; no birds were subjected to more than one venipuncture. All three species exhibited moderate improvements in blood gas and acid-base status after the delay, with reductions in lactate concentrations with or without concurrent increases in pH and bicarbonate. Boat-tailed Grackles exhibited an increased proportion of heterophils in the differential white blood cell count following a delay in sampling, suggestive of a stress leukogram. There were no significant differences between basilic and jugular venipuncture results from male Boat-tailed Grackles. Most metabolic, respiratory, and acid-base alterations were minor, but a small number of birds exhibited values (e.g., temperature-corrected pH <7.3, lactate >10 mmol/L) that could be of concern if combined with other adverse conditions. For such birds, a short delay between capture and processing could benefit their blood gas and acid-base status, although loss of time foraging or feeding young and greater activation of the hypophyseal-pituitary-adrenal axis are additional considerations.

  13. Organic Combustion in the Presence of Ca-Carbonate and Mg-Perchlorate: A Possible Source for the Low Temperature CO2 Release Seen in Mars Phoenix Thermal and Evolved Gas Analyzer Data

    NASA Technical Reports Server (NTRS)

    Archer, Douglas; Ming, D.; Niles, P.; Sutter, B.; Lauer, H.

    2012-01-01

    Two of the most important discoveries of the Phoenix Lander were the detection of approx.0.6% perchlorate [1] and 3-5% carbonate [2] in landing site soils. The Thermal and Evolved Gas Analyzer (TEGA) instrument on the Phoenix lander could heat samples up to approx.1000 C and monitor evolved gases with a mass spectrometer. TEGA detected a low (approx.350 C) and high (approx.750 C) temperature CO2 release. The high temp release was attributed to the thermal decomposition of Ca-carbonate (calcite). The low temperature CO2 release could be due to desorption of CO2, decomposition of a different carbonate mineral, or the combustion of organic material. A new hypothesis has also been proposed that the low temperature CO2 release could be due to the early breakdown of calcite in the presence of the decomposition products of certain perchlorate salts [3]. We have investigated whether or not this new hypothesis is also compatible with organic combustion. Magnesium perchlorate is stable as Mg(ClO4)2-6H2O on the martian surface [4]. During thermal decomposition, this perchlorate salt releases H2O, Cl2, and O2 gases. The Cl2 can react with water to form HCl which then reacts with calcite, releasing CO2 below the standard thermal decomposition temperature of calcite. However, when using concentrations of perchlorate and calcite similar to what was detected by Phoenix, the ratio of high:low temperature CO2 evolved is much larger in the lab, indicating that although this process might contribute to the low temp CO2 release, it cannot account for all of it. While H2O and Cl2 cause calcite decomposition, the O2 evolved during perchlorate decomposition can lead to the combustion of any reduced carbon present in the sample [5]. We investigate the possible contribution of organic molecules to the low temperature CO2 release seen on Mars.

  14. Effects of Saccharomyces cerevisiae cell wall extract and poplar propolis ethanol extract supplementation on growth performance, digestibility, blood profile, fecal microbiota and fecal noxious gas emissions in growing pigs.

    PubMed

    Li, Jian; Kim, In H

    2014-06-01

    A total of 105 growing pigs (24.91 ± 1.06 kg) were used in a 6-week trial to investigate the effects of including Saccharomyces cerevisiae cell wall extract and poplar propolis ethanol extract (SPE) in the diet on growth performance, digestibility, blood profiles, fecal microbiota and fecal noxious gas emissions. Pigs were randomly allocated to one of three dietary treatments (seven pens/treatment, five pigs/pen) according to initial body weight and sex (two gilts and three barrows). Treatments consisted of a corn soybean meal basal diet supplemented with 0, 0.05 or 0.10% SPE. There was a significant linear improvement (P < 0.05) in average daily gain, gain/feed, the apparent total tract digestibility of dry matter, nitrogen, and gross energy, blood lymphocyte percentage, immunoglobulin G concentration, fecal Escherichia coli and Lactobacillus counts as well as fecal NH3 and H2 S emissions associated with the inclusion of SPE in the diet. Average daily feed intake, red blood cells and white blood cells concentration were not significantly (P > 0.05) affected by SPE supplementation in the diets. In conclusion, results indicate that dietary SPE supplementation can improve growth performance, digestibility and fecal microbiota, and decrease fecal gas emissions in growing pigs.

  15. Blood in ancient Jewish culture.

    PubMed

    Kottek, Samuel S

    2005-01-01

    The article analyzes the Jewish attitude towards blood, conceived both as the vehicle of life, and as a polluting product of feminine bodies. The author analyzes numerous Biblical sources concerning the 'unapproachable' blood of menstruation, the role of blood in the generation of the fetus, the blood as source of illness, the practice of bloodletting, and finally the idea that male menstruation exists as a peculiarity of the Jews.

  16. Effect of neo red cells on hemodynamics and blood gas transport in canine hemorrhagic shock and its safety for vital organs.

    PubMed

    Usuba, A; Motoki, R; Sakaguchi, K; Suzuki, K; Kamitani, T

    1994-01-01

    The purpose of this study was to evaluate the effects of liposome encapsulated hemoglobin named "Neo Red Cells (NRC)" on canine hemorrhagic shock model and its safety for the vital organs in a whole blood exchange model. HEMORRHAGIC SHOCK: Nine adult mongrel dogs were used. Under mechanical ventilation inhaling room air, blood was withdrawn via an artery at a rate of 40 ml/min in order to induce hemorrhagic shock (systolic pressure below 60 mm Hg) and then NRC was transfused. For each animal, three to five cycles of bloodletting and NRC transfusion were performed. After blood exchange, total peripheral resistance index (TPRI) decreased and cardiac index (CI) increased. These changes were more marked in the high exchange group (exchange rate over 88%; five animals) than in the low exchange group (less than 88%; four animals), indicating that the low viscosity NRC reduced the load on the circulatory system. The A-V difference in oxygen content per lg hemoglobin was greater after blood exchange, indicating that oxygen binding capacity of NRC is higher than that of red blood cells. WHOLE BLOOD EXCHANGE: Five beagles were used for the blood exchange. The blood was withdrawn from an artery at a rate of 15 ml/min and NRC was infused at the same time. A dog whose blood was exchanged with hydroxyethylstarch instead of NRC died within 15 hours after blood exchange. Three dogs whose blood was exchanged with NRC (exchange rate was from 82 to 90%) have been living over a year without any side effects. A dog sacrificed on the 15th postoperative day for autopsy, microscopically showed no side effects in vital organs. We conclude that NRC is more suitable than natural blood for treatment of hemorrhagic shock and safe for vital organs.

  17. Blood lead levels and chronic blood loss

    SciTech Connect

    Manci, E.A.; Cabaniss, M.L.; Boerth, R.C.; Blackburn, W.R.

    1986-03-01

    Over 90% of lead in blood is bound to the erythrocytes. This high affinity of lead for red cells may mean that chronic blood loss is a significant means for excretion of lead. This study sought correlations between blood lead levels and clinical conditions involving chronic blood loss. During May, June and July, 146 patients with normal hematocrits and red cell indices were identified from the hospital and clinic populations. For each patient, age, race, sex and medical history were noted, and a whole blood sample was analyzed by flameless atomic absorption spectrophotometry. Age-and race-matched pairs showed a significant correlation of chronic blood loss with lead levels. Patients with the longest history of blood loss (menstruating women) had the lowest level (mean 6.13 ..mu..g/dl, range 3.6-10.3 ..mu..g/dl). Post-menopausal women had levels (7.29 ..mu..g/dl, 1.2-14 ..mu..g/dl) comparable to men with peptic ulcer disease, or colon carcinoma (7.31 ..mu..g/dl, 5.3-8.6 ..mu..g/dl). The highest levels were among men who had no history of bleeding problems (12.39 ..mu..g/dl, 2.08-39.35 ..mu..g/dl). Chronic blood loss may be a major factor responsible for sexual differences in blood lead levels. Since tissue deposition of environmental pollutants is implicated in diseases, menstruation may represent a survival advantage for women.

  18. Blood pressure

    MedlinePlus Videos and Cool Tools

    ... called diastole. Normal blood pressure is considered to be a systolic blood pressure of 115 millimeters of ... pressure reading of 140 over 90, he would be evaluated for having high blood pressure. If left ...

  19. Blood Sugar

    MedlinePlus

    Blood sugar, or glucose, is the main sugar found in your blood. It comes from the food you eat, and is your body's main source of energy. Your blood carries glucose to all of your body's cells to use ...

  20. Simplified Digital Spectrum Analyzer

    NASA Technical Reports Server (NTRS)

    Cole, Steven W.

    1992-01-01

    Spectrum analyzer computes approximate cross-correlations between noisy input signal and reference signal of known frequency, yielding measure of amplitude of sinusoidal component of input. Complexity and power consumed less than other digital spectrum analyzers. Performs no multiplications, and because processes data on each frequency independently, focuses on narrow spectral range without processing data on rest of spectrum.