Chung, Jun-Young; Ogawa, Seiji
2015-01-01
The fusiform face area (FFA) is known to play a pivotal role in face processing. The FFA is located in the ventral region, at the base of the brain, through which large blood vessels run. The location of the FFA via functional MRI (fMRI) may be influenced by these large blood vessels. Responses of large blood vessels may not exactly correspond to neuronal activity in a target area, because they may be diluted and influenced by inflow effects. In this study, we investigated the effects of large blood vessels in the FFA, that is, whether the FFA includes large blood vessels and/or whether inflow signals contribute to fMRI signals of the FFA. For this purpose, we used susceptibility-weighted imaging (SWI) sequences to visualize large blood vessels and dual-echo gradient-echo echo-planar imaging (GE-EPI) to measure inflow effects. These results showed that the location and response signals of the FFA were not influenced by large blood vessels or inflow effects, although large blood vessels were located near the FFA. Therefore, the data from the FFA obtained by individual analysis were robust to large blood vessels but leaving a warning that the data obtained by group analysis may be prone to large blood vessels. PMID:26413511
Markelc, Bostjan; Sersa, Gregor; Cemazar, Maja
2013-01-01
Electropermeabilization/electroporation (EP) provides a tool for the introduction of molecules into cells and tissues. In electrochemotherapy (ECT), cytotoxic drugs are introduced into cells in tumors, and nucleic acids are introduced into cells in gene electrotransfer. The normal and tumor tissue blood flow modifying effects of EP and the vascular disrupting effect of ECT in tumors have already been determined. However, differential effects between normal vs. tumor vessels, to ensure safety in the clinical application of ECT, have not been determined yet. Therefore, the aim of our study was to determine the effects of EP and ECT with bleomycin on the HT-29 human colon carcinoma tumor model and its surrounding blood vessels. The response of blood vessels to EP and ECT was monitored in real time, directly at the single blood vessel level, by in vivo optical imaging in a dorsal window chamber in SCID mice with 70 kDa fluorescently labeled dextrans. The response of tumor blood vessels to EP and ECT started to differ within the first hour. Both therapies induced a vascular lock, decreased functional vascular density (FVD) and increased the diameter of functional blood vessels within the tumor. The effects were more pronounced for ECT, which destroyed the tumor blood vessels within 24 h. Although the vasculature surrounding the tumor was affected by EP and ECT, it remained functional. The study confirms the current model of tumor blood flow modifying effects of EP and provides conclusive evidence that ECT is a vascular disrupting therapy with a specific effect on the tumor blood vessels. PMID:23555705
An update on the blood vessel in migraine.
Brennan, K C; Charles, Andrew
2010-06-01
The cranial blood vessel is considered an integral player in the pathophysiology of migraine, but its perceived role has been subject to much discussion and controversy over the years. We will discuss the evolution in our scientific understanding of cranial blood vessels (primarily arteries) in migraine. Recent developments have clarified the role of cranial blood vessels in the trigemino-vascular system and in cortical spreading depression. An underlying theme is the intimate relation between vascular activity and neural function, and we will emphasize the various roles of the blood vessel that go beyond delivering blood. We conclude that migraine cannot be understood, either from a research or clinical point of view, without an understanding of the vascular derangements that accompany it. Migraine is accompanied by significant derangements in vascular function that may represent important targets for investigation and treatment.
Ma, Shang; Kwon, Hyo Jun; Huang, Zhen
2012-01-01
Astroglia are a major cell type in the brain and play a key role in many aspects of brain development and function. In the adult brain, astrocytes are known to intimately ensheath blood vessels and actively coordinate local neural activity and blood flow. During development of the neural retina, blood vessel growth follows a meshwork of astrocytic processes. Several genes have also been implicated in retinal astrocytes for regulating vessel development. This suggests a role of astrocytes in promoting angiogenesis throughout the central nervous system. To determine the roles that astrocytes may play during brain angiogenesis, we employ genetic approaches to inhibit astrogliogenesis during perinatal corticogenesis and examine its effects on brain vessel development. We find that conditional deletion from glial progenitors of orc3, a gene required for DNA replication, dramatically reduces glial progenitor cell number in the subventricular zone and astrocytes in the early postnatal cerebral cortex. This, in turn, results in severe reductions in both the density and branching frequency of cortical blood vessels. Consistent with a delayed growth but not regression of vessels, we find neither significant net decreases in vessel density between different stages after normalizing for cortical expansion nor obvious apoptosis of endothelial cells in these mutants. Furthermore, concomitant with loss of astroglial interactions, we find increased endothelial cell proliferation, enlarged vessel luminal size as well as enhanced cytoskeletal gene expression in pericytes, which suggests compensatory changes in vascular cells. Lastly, we find that blood vessel morphology in mutant cortices recovers substantially at later stages, following astrogliosis. These results thus implicate a functional requirement for astroglia in promoting blood vessel growth during brain development.
An update on the blood vessel in migraine
Brennan, K.C.; Charles, Andrew
2017-01-01
Purpose of review The cranial blood vessel is considered an integral player in the pathophysiology of migraine, but its perceived role has been subject to much discussion and controversy over the years. We will discuss the evolution in our scientific understanding of cranial blood vessels (primarily arteries) in migraine. Recent findings Recent developments have clarified the role of cranial blood vessels in the trigemino-vascular system and in cortical spreading depression. An underlying theme is the intimate relation between vascular activity and neural function, and we will emphasize the various roles of the blood vessel that go beyond delivering blood. We conclude that migraine cannot be understood, either from a research or clinical point of view, without an understanding of the vascular derangements that accompany it. Summary Migraine is accompanied by significant derangements in vascular function that may represent important targets for investigation and treatment. PMID:20216215
Zherebtsov, Evgeny A; Zherebtsova, Angelina I; Doronin, Alexander; Dunaev, Andrey V; Podmasteryev, Konstantin V; Bykov, Alexander; Meglinski, Igor
2017-04-01
We introduce a noninvasive diagnostic approach for functional monitoring of blood microflows in capillaries and thermoregulatory vessels within the skin. The measuring system is based on the combined use of laser Doppler flowmetry and skin contact thermometry. The obtained results suggest that monitoring of blood microcirculation during the occlusion, performed in conjunction with the skin temperature measurements in the thermally stabilized medium, has a great potential for quantitative assessment of angiospatic dysfunctions of the peripheral blood vessels. The indices of blood flow reserve and temperature response were measured and used as the primarily parameters of the functional diagnostics of the peripheral vessels of skin. Utilizing these parameters, a simple phenomenological model has been suggested to identify patients with angiospastic violations in the vascular system.
NASA Astrophysics Data System (ADS)
Zherebtsov, Evgeny A.; Zherebtsova, Angelina I.; Doronin, Alexander; Dunaev, Andrey V.; Podmasteryev, Konstantin V.; Bykov, Alexander; Meglinski, Igor
2017-04-01
We introduce a noninvasive diagnostic approach for functional monitoring of blood microflows in capillaries and thermoregulatory vessels within the skin. The measuring system is based on the combined use of laser Doppler flowmetry and skin contact thermometry. The obtained results suggest that monitoring of blood microcirculation during the occlusion, performed in conjunction with the skin temperature measurements in the thermally stabilized medium, has a great potential for quantitative assessment of angiospatic dysfunctions of the peripheral blood vessels. The indices of blood flow reserve and temperature response were measured and used as the primarily parameters of the functional diagnostics of the peripheral vessels of skin. Utilizing these parameters, a simple phenomenological model has been suggested to identify patients with angiospastic violations in the vascular system.
Schmidt, Dörthe; Asmis, Lars M; Odermatt, Bernhard; Kelm, Jens; Breymann, Christian; Gössi, Matthias; Genoni, Michele; Zund, Gregor; Hoerstrup, Simon P
2006-10-01
Tissue-engineered living blood vessels (TEBV) with growth capacity represent a promising new option for the repair of congenital malformations. We investigate the functionality of TEBV with endothelia generated from human umbilical cord blood-derived endothelial progenitor cells. Tissue-engineered living blood vessels were generated from human umbilical cord-derived myofibroblasts seeded on biodegradable vascular scaffolds, followed by endothelialization with differentiated cord blood-derived endothelial progenitor cells. During in vitro maturation the TEBV were exposed to physiologic conditioning in a flow bioreactor. For functional assessment, a subgroup of TEBV was stimulated with tumor necrosis factor-alpha. Control vessels endothelialized with standard vascular endothelial cells were treated in parallel. Analysis of the TEBV included histology, immunohistochemistry, biochemistry (extracellular matrix analysis, DNA), and biomechanical testing. Endothelia were analyzed by flow cytometry and immunohistochemistry (CD31, von Willebrand factor, thrombomodulin, tissue factor, endothelial nitric oxide synthase). Histologically, a three-layered tissue organization of the TEBV analogous to native vessels was observed, and biochemistry revealed the major matrix constituents (collagen, proteoglycans) of blood vessels. Biomechanical properties (Young's modulus, 2.03 +/- 0.65 MPa) showed profiles resembling those of native tissue. Endothelial progenitor cells expressed typical endothelial cell markers CD31, von Willebrand factor, and endothelial nitric oxide synthase comparable to standard vascular endothelial cells. Stimulation with tumor necrosis factor-alpha resulted in physiologic upregulation of tissue factor and downregulation of thrombomodulin expression. These results indicate that TEBV with tissue architecture and functional endothelia similar to native blood vessels can be successfully generated from human umbilical cord progenitor cells. Thus, blood-derived progenitor cells obtained before or at birth may enable the clinical realization of tissue engineering constructs for pediatric applications.
Dynamic stroma reorganization drives blood vessel dysmorphia during glioma growth.
Mathivet, Thomas; Bouleti, Claire; Van Woensel, Matthias; Stanchi, Fabio; Verschuere, Tina; Phng, Li-Kun; Dejaegher, Joost; Balcer, Marly; Matsumoto, Ken; Georgieva, Petya B; Belmans, Jochen; Sciot, Raf; Stockmann, Christian; Mazzone, Massimiliano; De Vleeschouwer, Steven; Gerhardt, Holger
2017-12-01
Glioma growth and progression are characterized by abundant development of blood vessels that are highly aberrant and poorly functional, with detrimental consequences for drug delivery efficacy. The mechanisms driving this vessel dysmorphia during tumor progression are poorly understood. Using longitudinal intravital imaging in a mouse glioma model, we identify that dynamic sprouting and functional morphogenesis of a highly branched vessel network characterize the initial tumor growth, dramatically changing to vessel expansion, leakage, and loss of branching complexity in the later stages. This vascular phenotype transition was accompanied by recruitment of predominantly pro-inflammatory M1-like macrophages in the early stages, followed by in situ repolarization to M2-like macrophages, which produced VEGF-A and relocate to perivascular areas. A similar enrichment and perivascular accumulation of M2 versus M1 macrophages correlated with vessel dilation and malignancy in human glioma samples of different WHO malignancy grade. Targeting macrophages using anti-CSF1 treatment restored normal blood vessel patterning and function. Combination treatment with chemotherapy showed survival benefit, suggesting that targeting macrophages as the key driver of blood vessel dysmorphia in glioma progression presents opportunities to improve efficacy of chemotherapeutic agents. We propose that vessel dysfunction is not simply a general feature of tumor vessel formation, but rather an emergent property resulting from a dynamic and functional reorganization of the tumor stroma and its angiogenic influences. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.
Automatic retinal blood vessel parameter calculation in spectral domain optical coherence tomography
NASA Astrophysics Data System (ADS)
Wehbe, Hassan; Ruggeri, Marco; Jiao, Shuliang; Gregori, Giovanni; Puliafito, Carmen A.
2007-02-01
Measurement of retinal blood vessel parameters like the blood blow in the vessels may have significant impact on the study and diagnosis of glaucoma, a leading blinding disease worldwide. Optical coherence tomography (OCT) is a noninvasive imaging technique that can provide not only microscopic structural imaging of the retina but also functional information like the blood flow velocity in the retina. The aim of this study is to automatically extract the parameters of retinal blood vessels like the 3D orientation, the vessel diameters, as well as the corresponding absolute blood flow velocity in the vessel. The parameters were extracted from circular OCT scans around the optic disc. By removing the surface reflection through simple segmentation of the circular OCT scans a blood vessel shadowgram can be generated. The lateral coordinates and the diameter of each blood vessel are extracted from the shadowgram through a series of signal processing. Upon determination of the lateral position and the vessel diameter, the coordinate in the depth direction of each blood vessel is calculated in combination with the Doppler information for the vessel. The extraction of the vessel coordinates and diameter makes it possible to calculate the orientation of the vessel in reference to the direction of the incident sample light, which in turn can be used to calculate the absolute blood flow velocity and the flow rate.
Yamakoshi, Yoshiki
2016-01-01
Blood circulation function of peripheral blood vessels in skin dermis was evaluated employing an optical sensor with a pressurization mechanism using the blood outflow and reflow characteristics. The device contains a light source and an optical sensor. When applied to the skin surface, it first exerts the primary pressure (higher than the systolic blood pressure), causing an outflow of blood from the dermal peripheral blood vessels. After two heartbeats, the pressure is lowered (secondary pressure) and blood reflows into the peripheral blood vessels. Hemoglobin concentration, which changes during blood outflow and reflow, is derived from the received light intensity using the Beer–Lambert law. This method was evaluated in 26 healthy female volunteers and 26 female scleroderma patients. In order to evaluate the blood circulation function of the peripheral blood vessels of scleroderma patients, pressurization sequence which consists of primary pressure followed by secondary pressure was adopted. Blood reflow during the first heartbeat period after applying the secondary pressure of 40mmHg was (mean±SD) 0.059±0.05%mm for scleroderma patients and 0.173±0.104%mm for healthy volunteers. Blood reflow was significantly lower in scleroderma patients than in healthy volunteers (p<0.05). This result indicates that the information necessary for assessing blood circulation disorder of peripheral blood vessels in scleroderma patients is objectively obtained by the proposed method. PMID:27479094
Yamakoshi, Yoshiki; Motegi, Sei-Ichiro; Ishikawa, Osamu
2016-01-01
Blood circulation function of peripheral blood vessels in skin dermis was evaluated employing an optical sensor with a pressurization mechanism using the blood outflow and reflow characteristics. The device contains a light source and an optical sensor. When applied to the skin surface, it first exerts the primary pressure (higher than the systolic blood pressure), causing an outflow of blood from the dermal peripheral blood vessels. After two heartbeats, the pressure is lowered (secondary pressure) and blood reflows into the peripheral blood vessels. Hemoglobin concentration, which changes during blood outflow and reflow, is derived from the received light intensity using the Beer-Lambert law. This method was evaluated in 26 healthy female volunteers and 26 female scleroderma patients. In order to evaluate the blood circulation function of the peripheral blood vessels of scleroderma patients, pressurization sequence which consists of primary pressure followed by secondary pressure was adopted. Blood reflow during the first heartbeat period after applying the secondary pressure of 40mmHg was (mean±SD) 0.059±0.05%mm for scleroderma patients and 0.173±0.104%mm for healthy volunteers. Blood reflow was significantly lower in scleroderma patients than in healthy volunteers (p<0.05). This result indicates that the information necessary for assessing blood circulation disorder of peripheral blood vessels in scleroderma patients is objectively obtained by the proposed method.
NASA Astrophysics Data System (ADS)
Bureau, Lionel; Coupier, Gwennou; Dubois, Frank; Duperray, Alain; Farutin, Alexander; Minetti, Christophe; Misbah, Chaouqi; Podgorski, Thomas; Tsvirkun, Daria; Vysokikh, Mikhail
2017-01-01
The absence of gravity during space flight can alter cardio-vascular functions partially due to reduced physical activity. This affects the overall hemodynamics, and in particular the level of shear stresses to which blood vessels are submitted. Long-term exposure to space environment is thus susceptible to induce vascular remodeling through a mechanotransduction cascade that couples vessel shape and function with the mechanical cues exerted by the circulating cells on the vessel walls. Central to such processes, the glycocalyx - i.e. the micron-thick layer of biomacromolecules that lines the lumen of blood vessels and is directly exposed to blood flow - is a major actor in the regulation of biochemical and mechanical interactions. We discuss in this article several experiments performed under microgravity, such as the determination of lift force and collective motion in blood flow, and some preliminary results obtained in artificial microfluidic circuits functionalized with endothelium that offer interesting perspectives for the study of the interactions between blood and endothelium in healthy condition as well as by mimicking the degradation of glycocalyx caused by long space missions. A direct comparison between experiments and simulations is discussed. xml:lang="fr"
Cell-free collagen-based scaffolds used for making blood vessels in cardiovascular surgery.
Akhmedov, Sh D; Afanas'ev, S A; Egorova, M V; Andreev, S L; Ivanov, A V; Rogovskaia, Yu V; Usov, V Yu; Shvedov, A N; Steinhoff, G
2012-01-01
The present article deals with the technology of obtaining decellularized cell-free collagen-based scaffolds from arterial vessels and surgical assessment of the possibility of experimentally implanting them into the blood system of laboratory animals for experimental purposes. The study was performed on arterial vessels (n=60) and fragments of the human internal thoracic artery (n=20). Described herein is a method of obtaining a connective-tissue matrix of a blood vessel by means of vessel's perfusion for 2-3 hours with detergent solutions. Cell-free collagen-based conduits were implanted to a total of ten dogs. After the operation, the blood flow remained functional. The anastomoses established turned out to be leak-proof and the acellular vessels were able to withstand the haemodynamic load of the arterial blood flow.
Engineering a Blood Vessel Network Module for Body-on-a-Chip Applications.
Ryu, Hyunryul; Oh, Soojung; Lee, Hyun Jae; Lee, Jin Young; Lee, Hae Kwang; Jeon, Noo Li
2015-06-01
The blood circulatory system links all organs from one to another to support and maintain each organ's functions consistently. Therefore, blood vessels have been considered as a vital unit. Engineering perfusable functional blood vessels in vitro has been challenging due to difficulties in designing the connection between rigid macroscale tubes and fragile microscale ones. Here, we propose a generalizable method to engineer a "long" perfusable blood vessel network. To form millimeter-scale vessels, fibroblasts were co-cultured with human umbilical vein endothelial cells (HUVECs) in close proximity. In contrast to previous works, in which all cells were permanently placed within the device, we developed a novel method to culture paracrine factor secreting fibroblasts on an O-ring-shaped guide that can be transferred in and out. This approach affords flexibility in co-culture, where the effects of secreted factors can be decoupled. Using this, blood vessels with length up to 2 mm were successfully produced in a reproducible manner (>90%). Because the vessels form a perfusable network within the channel, simple links to inlets and outlets of the device allowed connections to the outside world. The robust and reproducible formation of in vitro engineered vessels can be used as a module to link various organ components as parts of future body-on-a-chip applications. © 2014 Society for Laboratory Automation and Screening.
Aminopeptidase A is a functional target in angiogenic blood vessels.
Marchiò, Serena; Lahdenranta, Johanna; Schlingemann, Reinier O; Valdembri, Donatella; Wesseling, Pieter; Arap, Marco A; Hajitou, Amin; Ozawa, Michael G; Trepel, Martin; Giordano, Ricardo J; Nanus, David M; Dijkman, Henri B P M; Oosterwijk, Egbert; Sidman, Richard L; Cooper, Max D; Bussolino, Federico; Pasqualini, Renata; Arap, Wadih
2004-02-01
We show that a membrane-associated protease, aminopeptidase A (APA), is upregulated and enzymatically active in blood vessels of human tumors. To gain mechanistic insight, we evaluated angiogenesis in APA null mice. We found that, although these mice develop normally, they fail to mount the expected angiogenic response to hypoxia or growth factors. We then isolated peptide inhibitors of APA from a peptide library and show that they specifically bind to and inhibit APA, suppress migration and proliferation of endothelial cells, inhibit angiogenesis, and home to tumor blood vessels. Finally, we successfully treated tumor-bearing mice with APA binding peptides or anti-APA blocking monoclonal antibodies. These data show that APA is a regulator of blood vessel formation, and can serve as a functional vascular target.
"Data characterizing microfabricated human blood vessels created via hydrodynamic focusing".
DiVito, Kyle A; Daniele, Michael A; Roberts, Steven A; Ligler, Frances S; Adams, André A
2017-10-01
This data article provides further detailed information related to our research article titled "Microfabricated Blood Vessels Undergo Neovascularization" (DiVito et al., 2017) [1], in which we report fabrication of human blood vessels using hydrodynamic focusing (HDF). Hydrodynamic focusing with advection inducing chevrons were used in concert to encase one fluid stream within another, shaping the inner core fluid into 'bullseye-like" cross-sections that were preserved through click photochemistry producing streams of cellularized hollow 3-dimensional assemblies, such as human blood vessels (Daniele et al., 2015a, 2015b, 2014, 2016; Roberts et al., 2016) [2], [3], [4], [5], [6]. Applications for fabricated blood vessels span general tissue engineering to organ-on-chip technologies, with specific utility in in vitro drug delivery and pharmacodynamics studies. Here, we report data regarding the construction of blood vessels including cellular composition and cell positioning within the engineered vascular construct as well as functional aspects of the tissues.
Code of Federal Regulations, 2013 CFR
2013-10-01
... composite allograft (defined in this section). Blood vessels recovered from an organ donor during the... composite allograft means a body part: (1) That is vascularized and requires blood flow by surgical connection of blood vessels to function after transplantation; (2) Containing multiple tissue types; (3...
Code of Federal Regulations, 2014 CFR
2014-10-01
... composite allograft (defined in this section). Blood vessels recovered from an organ donor during the... composite allograft means a body part: (1) That is vascularized and requires blood flow by surgical connection of blood vessels to function after transplantation; (2) Containing multiple tissue types; (3...
Automatic retinal blood flow calculation using spectral domain optical coherence tomography
NASA Astrophysics Data System (ADS)
Wehbe, Hassan; Ruggeri, Marco; Jiao, Shuliang; Gregori, Giovanni; Puliafito, Carmen A.
2008-02-01
Optical Doppler tomography (ODT) is a branch of optical coherence tomography (OCT) that can measure the speed of a blood flow by measuring the Doppler shift impinged on the probing sample light by the moving blood cells. However, the measured speed of blood flow is a function of the Doppler angle, which needs to be determined in order to calculate the absolute velocity of the blood flow inside a vessel. We developed a technique that can extract the Doppler angle from the 3D data measured with spectral-domain OCT, which needs to extract the lateral and depth coordinates of a vessel in each measured ODT and OCT image. The lateral coordinates and the diameter of a blood vessel were first extracted in each OCT structural image by using the technique of blood vessel shadowgram, a technique first developed by us for enhancing the retinal blood vessel contrast in the en face view of the 3D OCT. The depth coordinate of a vessel was then determined by using a circular averaging filter moving in the depth direction along the axis passing through the vessel center in the ODT image. The Doppler angle was then calculated from the extracted coordinates of the blood vessel. The technique was applied in blood flow measurements in retinal blood vessels, which has potential impact on the study and diagnosis of blinding diseases like glaucoma and diabetic retinopathy.
Investigation of the blood behaviour and vascular diseases by using mathematical physic principles
NASA Astrophysics Data System (ADS)
Yardimci, Ahmet; Simsek, Buket
2017-07-01
In this paper we prepare a short survey for using of mathematical physic principles in blood flow and vascular diseases researches. The study of the behavior of blood flow in the blood vessels provides understanding on connection between flow and the development of dieseases such as atherosclerosis, thrombosis, aneurysms etc. and how the flow dynamics is changed under these conditions. Blood flow phenomena are often too complex that it would be possible to describe them entirely analytically, although simple models, such as Poiseuille model, can still provide some insight into blood flow. Blood is not an "ideal fluid" and energy is lost as flowing blood overcomes resistance. Resistance to blood flow is a function of viscosity, vessel radius, and vessel length. So, mathematical Physic principles are useful tools for blood flow research studies. Blood flow is a function of pressure gradient and resistance and resistance to flow can be estimates using Poiseuille's law. Reynold's number can be used to determine whether flow is laminar or turbulent.
Generation of Functional Blood Vessels from a Single c-kit+ Adult Vascular Endothelial Stem Cell
Fang, Shentong; Wei, Jing; Pentinmikko, Nalle; Leinonen, Hannele; Salven, Petri
2012-01-01
In adults, the growth of blood vessels, a process known as angiogenesis, is essential for organ growth and repair. In many disorders including cancer, angiogenesis becomes excessive. The cellular origin of new vascular endothelial cells (ECs) during blood vessel growth in angiogenic situations has remained unknown. Here, we provide evidence for adult vascular endothelial stem cells (VESCs) that reside in the blood vessel wall endothelium. VESCs constitute a small subpopulation within CD117+ (c-kit+) ECs capable of undergoing clonal expansion while other ECs have a very limited proliferative capacity. Isolated VESCs can produce tens of millions of endothelial daughter cells in vitro. A single transplanted c-kit-expressing VESC by the phenotype lin−CD31+CD105+Sca1+CD117+ can generate in vivo functional blood vessels that connect to host circulation. VESCs also have long-term self-renewal capacity, a defining functional property of adult stem cells. To provide functional verification on the role of c-kit in VESCs, we show that a genetic deficit in endothelial c-kit expression markedly decreases total colony-forming VESCs. In vivo, c-kit expression deficit resulted in impaired EC proliferation and angiogenesis and retardation of tumor growth. Isolated VESCs could be used in cell-based therapies for cardiovascular repair to restore tissue vascularization after ischemic events. VESCs also provide a novel cellular target to block pathological angiogenesis and cancer growth. PMID:23091420
Saunders, Norman R; Dziegielewska, Katarzyna M; Unsicker, Klaus; Ek, C Joakim
2016-11-01
The brain functions within a specialized environment tightly controlled by brain barrier mechanisms. Understanding the regulation of barrier formation is important for understanding brain development and may also lead to finding new ways to deliver pharmacotherapies to the brain; access of many potentially promising drugs is severely hindered by these barrier mechanisms. The cellular composition of the neurovascular unit of the blood-brain barrier proper and their effects on regulation of its function are beginning to be understood. One hallmark of the neurovascular unit in the adult is the astroglial foot processes that tightly surround cerebral blood vessels. However their role in barrier formation is still unclear. In this study we examined barrier function in newborn, juvenile and adult mice lacking fibroblast growth factor-2 (FGF-2), which has been shown to result in altered astroglial differentiation during development. We show that during development of FGF-2 deficient mice the astroglial contacts with cerebral blood vessels are delayed compared with wild-type animals. However, this delay did not result in changes to the permeability properties of the blood brain barrier as assessed by exclusion of either small or larger sized molecules at this interface. In addition cerebral vessels were positive for tight-junction proteins and we observed no difference in the ultrastructure of the tight-junctions. The results indicate that the direct contact of astroglia processes to cerebral blood vessels is not necessary for either the formation of the tight-junctions or for basic permeability properties and function of the blood-brain barrier. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1201-1212, 2016. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Munn, Lance
2009-11-01
``Normalization'' of tumor blood vessels has shown promise to improve the efficacy of chemotherapeutics. In theory, anti-angiogenic drugs targeting endothelial VEGF signaling can improve vessel network structure and function, enhancing the transport of subsequent cytotoxic drugs to cancer cells. In practice, the effects are unpredictable, with varying levels of success. The predominant effects of anti-VEGF therapies are decreased vessel leakiness (hydraulic conductivity), decreased vessel diameters and pruning of the immature vessel network. It is thought that each of these can influence perfusion of the vessel network, inducing flow in regions that were previously sluggish or stagnant. Unfortunately, when anti-VEGF therapies affect vessel structure and function, the changes are dynamic and overlapping in time, and it has been difficult to identify a consistent and predictable normalization ``window'' during which perfusion and subsequent drug delivery is optimal. This is largely due to the non-linearity in the system, and the inability to distinguish the effects of decreased vessel leakiness from those due to network structural changes in clinical trials or animal studies. We have developed a mathematical model to calculate blood flow in complex tumor networks imaged by two-photon microscopy. The model incorporates the necessary and sufficient components for addressing the problem of normalization of tumor vasculature: i) lattice-Boltzmann calculations of the full flow field within the vasculature and within the tissue, ii) diffusion and convection of soluble species such as oxygen or drugs within vessels and the tissue domain, iii) distinct and spatially-resolved vessel hydraulic conductivities and permeabilities for each species, iv) erythrocyte particles advecting in the flow and delivering oxygen with real oxygen release kinetics, v) shear stress-mediated vascular remodeling. This model, guided by multi-parameter intravital imaging of tumor vessel structure and function, provides a tool for identifying the structural and functional determinants of tumor vessel normalization.
Wang, Liang; Yuan, Jin; Jiang, Hong; Yan, Wentao; Cintrón-Colón, Hector R; Perez, Victor L; DeBuc, Delia C; Feuer, William J; Wang, Jianhua
2016-03-01
This study determined (1) how many vessels (i.e., the vessel sampling) are needed to reliably characterize the bulbar conjunctival microvasculature and (2) if characteristic information can be obtained from the distribution histogram of the blood flow velocity and vessel diameter. Functional slitlamp biomicroscope was used to image hundreds of venules per subject. The bulbar conjunctiva in five healthy human subjects was imaged on six different locations in the temporal bulbar conjunctiva. The histograms of the diameter and velocity were plotted to examine whether the distribution was normal. Standard errors were calculated from the standard deviation and vessel sample size. The ratio of the standard error of the mean over the population mean was used to determine the sample size cutoff. The velocity was plotted as a function of the vessel diameter to display the distribution of the diameter and velocity. The results showed that the sampling size was approximately 15 vessels, which generated a standard error equivalent to 15% of the population mean from the total vessel population. The distributions of the diameter and velocity were not only unimodal, but also somewhat positively skewed and not normal. The blood flow velocity was related to the vessel diameter (r=0.23, P<0.05). This was the first study to determine the sampling size of the vessels and the distribution histogram of the blood flow velocity and vessel diameter, which may lead to a better understanding of the human microvascular system of the bulbar conjunctiva.
Notch3 is necessary for blood vessel integrity in the central nervous system.
Henshall, Tanya L; Keller, Annika; He, Liqun; Johansson, Bengt R; Wallgard, Elisabet; Raschperger, Elisabeth; Mäe, Maarja Andaloussi; Jin, Shaobo; Betsholtz, Christer; Lendahl, Urban
2015-02-01
Vascular smooth muscle cells (VSMC) are important for contraction, blood flow distribution, and regulation of blood vessel diameter, but to what extent they contribute to the integrity of blood vessels and blood-brain barrier function is less well understood. In this report, we explored the impact of the loss of VSMC in the Notch3(-/-) mouse on blood vessel integrity in the central nervous system. Notch3(-/-) mice showed focal disruptions of the blood-brain barrier demonstrated by extravasation of tracers accompanied by fibrin deposition in the retinal vasculature. This blood-brain barrier leakage was accompanied by a regionalized and patchy loss of VSMC, with VSMC gaps predominantly in arterial resistance vessels of larger caliber. The loss of VSMC appeared to be caused by progressive degeneration of VSMC resulting in a gradual loss of VSMC marker expression and a progressive acquisition of an aberrant VSMC phenotype closer to the gaps, followed by enhanced apoptosis and cellular disintegration in the gaps. Arterial VSMC were the only mural cell type that was morphologically affected, despite Notch3 also being expressed in pericytes. Transcriptome analysis of isolated brain microvessels revealed gene expression changes in Notch3(-/-) mice consistent with loss of arterial VSMC and presumably secondary transcriptional changes were observed in endothelial genes, which may explain the compromised vascular integrity. We demonstrate that Notch3 is important for survival of VSMC, and reveal a critical role for Notch3 and VSMC in blood vessel integrity and blood-brain barrier function in the mammalian vasculature. © 2014 American Heart Association, Inc.
Extension of Murray's law using a non-Newtonian model of blood flow.
Revellin, Rémi; Rousset, François; Baud, David; Bonjour, Jocelyn
2009-05-15
So far, none of the existing methods on Murray's law deal with the non-Newtonian behavior of blood flow although the non-Newtonian approach for blood flow modelling looks more accurate. MODELING: In the present paper, Murray's law which is applicable to an arterial bifurcation, is generalized to a non-Newtonian blood flow model (power-law model). When the vessel size reaches the capillary limitation, blood can be modeled using a non-Newtonian constitutive equation. It is assumed two different constraints in addition to the pumping power: the volume constraint or the surface constraint (related to the internal surface of the vessel). For a seek of generality, the relationships are given for an arbitrary number of daughter vessels. It is shown that for a cost function including the volume constraint, classical Murray's law remains valid (i.e. SigmaR(c) = cste with c = 3 is verified and is independent of n, the dimensionless index in the viscosity equation; R being the radius of the vessel). On the contrary, for a cost function including the surface constraint, different values of c may be calculated depending on the value of n. We find that c varies for blood from 2.42 to 3 depending on the constraint and the fluid properties. For the Newtonian model, the surface constraint leads to c = 2.5. The cost function (based on the surface constraint) can be related to entropy generation, by dividing it by the temperature. It is demonstrated that the entropy generated in all the daughter vessels is greater than the entropy generated in the parent vessel. Furthermore, it is shown that the difference of entropy generation between the parent and daughter vessels is smaller for a non-Newtonian fluid than for a Newtonian fluid.
In vitro fabrication of functional three-dimensional tissues with perfusable blood vessels
Sekine, Hidekazu; Shimizu, Tatsuya; Sakaguchi, Katsuhisa; Dobashi, Izumi; Wada, Masanori; Yamato, Masayuki; Kobayashi, Eiji; Umezu, Mitsuo; Okano, Teruo
2013-01-01
In vitro fabrication of functional vascularized three-dimensional tissues has been a long-standing objective in the field of tissue engineering. Here we report a technique to engineer cardiac tissues with perfusable blood vessels in vitro. Using resected tissue with a connectable artery and vein as a vascular bed, we overlay triple-layer cardiac cell sheets produced from coculture with endothelial cells, and support the tissue construct with media perfused in a bioreactor. We show that endothelial cells connect to capillaries in the vascular bed and form tubular lumens, creating in vitro perfusable blood vessels in the cardiac cell sheets. Thicker engineered tissues can be produced in vitro by overlaying additional triple-layer cell sheets. The vascularized cardiac tissues beat and can be transplanted with blood vessel anastomoses. This technique may create new opportunities for in vitro tissue engineering and has potential therapeutic applications. PMID:23360990
Distinct bone marrow blood vessels differentially regulate haematopoiesis.
Itkin, Tomer; Gur-Cohen, Shiri; Spencer, Joel A; Schajnovitz, Amir; Ramasamy, Saravana K; Kusumbe, Anjali P; Ledergor, Guy; Jung, Yookyung; Milo, Idan; Poulos, Michael G; Kalinkovich, Alexander; Ludin, Aya; Kollet, Orit; Shakhar, Guy; Butler, Jason M; Rafii, Shahin; Adams, Ralf H; Scadden, David T; Lin, Charles P; Lapidot, Tsvee
2016-04-21
Bone marrow endothelial cells (BMECs) form a network of blood vessels that regulate both leukocyte trafficking and haematopoietic stem and progenitor cell (HSPC) maintenance. However, it is not clear how BMECs balance these dual roles, and whether these events occur at the same vascular site. We found that mammalian bone marrow stem cell maintenance and leukocyte trafficking are regulated by distinct blood vessel types with different permeability properties. Less permeable arterial blood vessels maintain haematopoietic stem cells in a low reactive oxygen species (ROS) state, whereas the more permeable sinusoids promote HSPC activation and are the exclusive site for immature and mature leukocyte trafficking to and from the bone marrow. A functional consequence of high permeability of blood vessels is that exposure to blood plasma increases bone marrow HSPC ROS levels, augmenting their migration and differentiation, while compromising their long-term repopulation and survival. These findings may have relevance for clinical haematopoietic stem cell transplantation and mobilization protocols.
What determines blood vessel structure? Genetic prespecification vs. hemodynamics.
Jones, Elizabeth A V; le Noble, Ferdinand; Eichmann, Anne
2006-12-01
Vascular network remodeling, angiogenesis, and arteriogenesis play an important role in the pathophysiology of ischemic cardiovascular diseases and cancer. Based on recent studies of vascular network development in the embryo, several novel aspects to angiogenesis have been identified as crucial to generate a functional vascular network. These aspects include specification of arterial and venous identity in vessels and network patterning. In early embryogenesis, vessel identity and positioning are genetically hardwired and involve neural guidance genes expressed in the vascular system. We demonstrated that, during later stages of embryogenesis, blood flow plays a crucial role in regulating vessel identity and network remodeling. The flow-evoked remodeling process is dynamic and involves a high degree of vessel plasticity. The open question in the field is how genetically predetermined processes in vessel identity and patterning balance with the contribution of blood flow in shaping a functional vascular architecture. Although blood flow is essential, it remains unclear to what extent flow is able to act on the developing cardiovascular system. There is significant evidence that mechanical forces created by flowing blood are biologically active within the embryo and that the level of mechanical forces and the type of flow patterns present in the embryo are able to affect gene expression. Here, we highlight the pivotal role for blood flow and physical forces in shaping the cardiovascular system.
Computer aided solution for segmenting the neuron line in hippocampal microscope images
NASA Astrophysics Data System (ADS)
Albaidhani, Tahseen; Jassim, Sabah; Al-Assam, Hisham
2017-05-01
The brain Hippocampus component is known to be responsible for memory and spatial navigation. Its functionality depends on the status of different blood vessels within the Hippocampus and is severely impaired by Alzheimer's disease as a result blockage of increasing number of blood vessels by accumulation of amyloid-beta (Aβ) protein. Accurate counting of blood vessels within the Hippocampus of mice brain, from microscopic images, is an active research area for the understanding of Alzheimer's disease. Here, we report our work on automatic detection of the Region of Interest, i.e. the region in which blood vessels are located. This area typically falls between the hippocampus edge and the line of neurons within the Hippocampus. This paper proposes a new method to detect and exclude the neuron line to improve the accuracy of blood vessel counting because some neurons on it might lead to false positive cases as they look like blood vessels. Our proposed solution is based on using trainable segmentation approach with morphological operations, taking into account variation in colour, intensity values, and image texture. Experiments on a sufficient number of microscopy images of mouse brain demonstrate the effectiveness of the developed solution in preparation for blood vessels counting.
Gong, Peijun; Es’haghian, Shaghayegh; Harms, Karl-Anton; Murray, Alexandra; Rea, Suzanne; Wood, Fiona M.; Sampson, David D.; McLaughlin, Robert A.
2016-01-01
We present an automated, label-free method for lymphangiography of cutaneous lymphatic vessels in humans in vivo using optical coherence tomography (OCT). This method corrects for the variation in OCT signal due to the confocal function and sensitivity fall-off of a spectral-domain OCT system and utilizes a single-scattering model to compensate for A-scan signal attenuation to enable reliable thresholding of lymphatic vessels. A segment-joining algorithm is then incorporated into the method to mitigate partial-volume effects with small vessels. The lymphatic vessel images are augmented with images of the blood vessel network, acquired from the speckle decorrelation with additional weighting to differentiate blood vessels from the observed high decorrelation in lymphatic vessels. We demonstrate the method with longitudinal scans of human burn scar patients undergoing ablative fractional laser treatment, showing the visualization of the cutaneous lymphatic and blood vessel networks. PMID:28018713
Leukemic Cells "Gas Up" Leaky Bone Marrow Blood Vessels.
Itkin, Tomer; Rafii, Shahin
2017-09-11
In this issue of Cancer Cell, Passaro et al. demonstrate how leukemia through aberrant induction of reactive oxygen species and nitric oxide production trigger marrow vessel leakiness, instigating pro-leukemic function. Disrupted tumor blood vessels promote exhaustion of non-malignant stem and progenitor cells and may facilitate leukemia relapse following chemotherapeutic treatment. Copyright © 2017. Published by Elsevier Inc.
Molecular parallels between neural and vascular development.
Eichmann, Anne; Thomas, Jean-Léon
2013-01-01
The human central nervous system (CNS) features a network of ~400 miles of blood vessels that receives >20% of the body's cardiac output and uses most of its blood glucose. Many human diseases, including stroke, retinopathy, and cancer, are associated with the biology of CNS blood vessels. These vessels originate from extrinsic cell populations, including endothelial cells and pericytes that colonize the CNS and interact with glia and neurons to establish the blood-brain barrier and control cerebrovascular exchanges. Neurovascular interactions also play important roles in adult neurogenic niches, which harbor a unique population of neural stem cells that are intimately associated with blood vessels. We here review the cellular and molecular mechanisms required to establish the CNS vascular network, with a special focus on neurovascular interactions and the functions of vascular endothelial growth factors.
Daneman, Richard; Prat, Alexandre
2015-01-01
Blood vessels are critical to deliver oxygen and nutrients to all of the tissues and organs throughout the body. The blood vessels that vascularize the central nervous system (CNS) possess unique properties, termed the blood–brain barrier, which allow these vessels to tightly regulate the movement of ions, molecules, and cells between the blood and the brain. This precise control of CNS homeostasis allows for proper neuronal function and also protects the neural tissue from toxins and pathogens, and alterations of these barrier properties are an important component of pathology and progression of different neurological diseases. The physiological barrier is coordinated by a series of physical, transport, and metabolic properties possessed by the endothelial cells (ECs) that form the walls of the blood vessels, and these properties are regulated by interactions with different vascular, immune, and neural cells. Understanding how these different cell populations interact to regulate the barrier properties is essential for understanding how the brain functions during health and disease. PMID:25561720
NASA Astrophysics Data System (ADS)
Chaturvedi, Amal; Shukair, Shetha A.; Le Rolland, Paul; Vijayvergia, Mayank; Subramanian, Hariharan; Gunn, Jonathan W.
2016-03-01
Minimally invasive operations require surgeons to make difficult cuts to blood vessels and other tissues with impaired tactile and visual feedback. This leads to inadvertent cuts to blood vessels hidden beneath tissue, causing serious health risks to patients and a non-reimbursable financial burden to hospitals. Intraoperative imaging technologies have been developed, but these expensive systems can be cumbersome and provide only a high-level view of blood vessel networks. In this research, we propose a lean reflectance-based system, comprised of a dual wavelength LED, photodiode, and novel signal processing algorithms for rapid vessel characterization. Since this system takes advantage of the inherent pulsatile light absorption characteristics of blood vessels, no contrast agent is required for its ability to detect the presence of a blood vessel buried deep inside any tissue type (up to a cm) in real time. Once a vessel is detected, the system is able to estimate the distance of the vessel from the probe and the diameter size of the vessel (with a resolution of ~2mm), as well as delineate the type of tissue surrounding the vessel. The system is low-cost, functions in real-time, and could be mounted on already existing surgical tools, such as Kittner dissectors or laparoscopic suction irrigation cannulae. Having been successfully validated ex vivo, this technology will next be tested in a live porcine study and eventually in clinical trials.
Optimal occlusion uniformly partitions red blood cells fluxes within a microvascular network
Tu, Shenyinying; Liu, Yu-Hsiu; Savage, Van M.; Hsiai, Tzung K.; Roper, Marcus
2017-01-01
In animals, gas exchange between blood and tissues occurs in narrow vessels, whose diameter is comparable to that of a red blood cell. Red blood cells must deform to squeeze through these narrow vessels, transiently blocking or occluding the vessels they pass through. Although the dynamics of vessel occlusion have been studied extensively, it remains an open question why microvessels need to be so narrow. We study occlusive dynamics within a model microvascular network: the embryonic zebrafish trunk. We show that pressure feedbacks created when red blood cells enter the finest vessels of the trunk act together to uniformly partition red blood cells through the microvasculature. Using mathematical models as well as direct observation, we show that these occlusive feedbacks are tuned throughout the trunk network to prevent the vessels closest to the heart from short-circuiting the network. Thus occlusion is linked with another open question of microvascular function: how are red blood cells delivered at the same rate to each micro-vessel? Our analysis shows that tuning of occlusive feedbacks increase the total dissipation within the network by a factor of 11, showing that uniformity of flows rather than minimization of transport costs may be prioritized by the microvascular network. PMID:29244812
NASA Astrophysics Data System (ADS)
Deng, Zijian; Li, Changhui
2016-06-01
Imaging small blood vessels and measuring their functional information in finger joint are still challenges for clinical imaging modalities. In this study, we developed a multi-transducer functional photoacoustic tomography (PAT) system and successfully imaged human finger-joint vessels from ˜1 mm to <0.2 mm in diameter. In addition, the oxygen saturation (SO2) values of these vessels were also measured. Our results demonstrate that PAT can provide both anatomical and functional information of individual finger-joint vessels with different sizes, which might help the study of finger-joint diseases, such as rheumatoid arthritis.
Patients with chronic kidney disease: safety aspects in the preoperative management.
Malovrh, Marko
2015-01-01
Chronic kidney disease (CKD) is a major public health problem worldwide. Early detection and treatment of CKD can often prevent or delay some of the negative outcomes of CKD. This chapter shows how treatment of hypertension, proteinuria and metabolic disorders slow down the deterioration of renal function. Irrespective of the mode of renal replacement therapy, maintaining the veins in the upper extremities is of vital importance. Below are suggestions on how to protect blood vessels of the upper limbs and when to start preparing for the construction of vascular access. In this chapter, it is also shown how necessary it is to conduct a clinical evaluation of the blood vessels, which is required before the start of vascular access management. The methodology of noninvasive evaluation of vessels by duplex sonography is also presented. This method is very useful, especially if the vessels are not clinically visible, as well as the information concerning the morphological and functional properties of blood vessels. © 2015 S. Karger AG, Basel
In vivo measurement of blood flow in the vitelline network
NASA Astrophysics Data System (ADS)
Poelma, Christian; Vennemann, Peter; Lindken, Ralph; Westerweel, Jerry
2007-11-01
The growth and adaptation of blood vessels is studied in vivo in the so-called vitelline network of a chick embryo. The vitelline network, a system of extra-embryonic blood vessels that transports nutrients from the yolk sac to the chick embryo, is an easily accessible model system for the study of human cardiovascular development and functioning. We present measurements obtained by means of scanning microscopic Particle Image Velocimetry. Using phase-locking, we can reconstruct the full three-dimensional flow as a function of the cardiac cycle. Typical reconstructed volumes are 0.4x0.5x0.2 mm^3 with a spatial resolution (i.e. vector spacing) of 6 μm. These hemodynamic measurements allow a study of the coupling between form and functioning of the blood vessels. Special attention is given to the local wall shear stress (WSS), an important physiological parameter that is thought to determine - to great extent - the adaptation of the vessels to changing conditions. The WSS can be estimated directly from the velocity gradient at the wall or from a fit to the blood velocity profile. The former method slightly underestimates the WSS (most likely due to lack of resolution) but is significantly easier to apply in the complex geometries under consideration.
Zhang, Bo; Jiang, Ting; Tuo, Yanyan; Jin, Kai; Luo, Zimiao; Shi, Wei; Mei, Heng; Hu, Yu; Pang, Zhiqing; Jiang, Xinguo
2017-12-01
Poor tumor perfusion and unfavorable vessel permeability compromise nanomedicine drug delivery to tumors. Captopril dilates blood vessels, reducing blood pressure clinically and bradykinin, as the downstream signaling moiety of captopril, is capable of dilating blood vessels and effectively increasing vessel permeability. The hypothesis behind this study was that captopril can dilate tumor blood vessels, improving tumor perfusion and simultaneously enlarge the endothelial gaps of tumor vessels, therefore enhancing nanomedicine drug delivery for tumor therapy. Using the U87 tumor xenograft with abundant blood vessels as the tumor model, tumor perfusion experiments were carried out using laser Doppler imaging and lectin-labeling experiments. A single treatment of captopril at a dose of 100 mg/kg significantly increased the percentage of functional vessels in tumor tissues and improved tumor blood perfusion. Scanning electron microscopy of tumor vessels also indicated that the endothelial gaps of tumor vessels were enlarged after captopril treatment. Immunofluorescence-staining of tumor slices demonstrated that captopril significantly increased bradykinin expression, possibly explaining tumor perfusion improvements and endothelial gap enlargement. Additionally, imaging in vivo, imaging ex vivo and nanoparticle distribution in tumor slices indicated that after a single treatment with captopril, the accumulation of 115-nm nanoparticles in tumors had increased 2.81-fold with a more homogeneous distribution pattern in comparison to non-captopril treated controls. Finally, pharmacodynamics experiments demonstrated that captopril combined with paclitaxel-loaded nanoparticles resulted in the greatest tumor shrinkage and the most extensive necrosis in tumor tissues among all treatment groups. Taken together, the data from the present study suggest a novel strategy for improving tumor perfusion and enlarging blood vessel permeability simultaneously in order to improve nanomedicine delivery for tumor therapy. As captopril has already been extensively used clinically, such a strategy has great therapeutic potential. Copyright © 2017. Published by Elsevier B.V.
Micro-anatomical changes in major blood vessel caused by dengue virus (serotype 2) infection.
Priya, Sivan Padma; Sakinah, S; Ling, Mok Pooi; Chee, Hui-Yee; Higuchi, Akon; Hamat, Rukman Awang; Neela, Vasantha Kumari; Alarfaj, Abdullah A; Munusamy, Murugan A; Hatamleh, Ashraf A; Al-Sabri, Ahmed E; Abdulaziz Al-Suwailem, Ibrahim Ahmad; Rajan, Mariappan; Benelli, Giovanni; Marlina; Kumar, S Suresh
2017-07-01
Dengue virus (DENV) has emerged as a major economic concern in developing countries, with 2.5 billion people believed to be at risk. Vascular endothelial cells (ECs) lining the circulatory system from heart to end vessels perform crucial functions in the human body, by aiding gas exchange in lungs, gaseous, nutritional and its waste exchange in all tissues, including the blood brain barrier, filtration of fluid in the glomeruli, neutrophil recruitment, hormone trafficking, as well as maintenance of blood vessel tone and hemostasis. These functions can be deregulated during DENV infection. In this study, BALB/c mice infected with DENV serotype 2 were analyzed histologically for changes in major blood vessels in response to DENV infection. In the uninfected mouse model, blood vessels showed normal architecture with intact endothelial monolayer, tunica media, and tunica adventitia. In the infected mouse model, DENV distorted the endothelium lining and disturbed the smooth muscle, elastic laminae and their supporting tissues causing vascular structural disarrangement. This may explain the severe pathological illness in DENV-infected individuals. The overall DENV-induced damages on the endothelial and it's supporting tissues and the dysregulated immune reactions initiated by the host were discussed. Copyright © 2017. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vigl, Benjamin; Zgraggen, Claudia; Rehman, Nadia
Lymphatic vessels play an important role in tissue fluid homeostasis, intestinal fat absorption and immunosurveillance. Furthermore, they are involved in pathologic conditions, such as tumor cell metastasis and chronic inflammation. In comparison to blood vessels, the molecular phenotype of lymphatic vessels is less well characterized. Performing comparative gene expression analysis we have recently found that coxsackie- and adenovirus receptor (CAR) is significantly more highly expressed in cultured human, skin-derived lymphatic endothelial cells (LECs), as compared to blood vascular endothelial cells. Here, we have confirmed these results at the protein level, using Western blot and FACS analysis. Immunofluorescence performed on humanmore » skin confirmed that CAR is expressed at detectable levels in lymphatic vessels, but not in blood vessels. To address the functional significance of CAR expression, we modulated CAR expression levels in cultured LECs in vitro by siRNA- and vector-based transfection approaches. Functional assays performed with the transfected cells revealed that CAR is involved in distinct cellular processes in LECs, such as cell adhesion, migration, tube formation and the control of vascular permeability. In contrast, no effect of CAR on LEC proliferation was observed. Overall, our data suggest that CAR stabilizes LEC-LEC interactions in the skin and may contribute to lymphatic vessel integrity.« less
Nakamachi, Eiji; Uchida, Takahiro; Kuramae, Hiroyuki; Morita, Yusuke
2014-08-01
In this study, we developed a multi-scale finite element (FE) analysis code to obtain the stress and strain that occurred in the smooth muscle cell (SMC) at micro-scale, which was seeded in the real fabricated braid fibril artificial blood vessel. This FE code can predict the dynamic response of stress under the blood pressure loading. We try to establish a computer-aided engineering (CAE)-driven scaffold design technique for the blood vessel regeneration. Until now, there occurred the great progresses for the endothelial cell activation and intima layer regeneration in the blood vessel regeneration study. However, there remains the difficulty of the SMC activation and media layer regeneration. Therefore, many researchers are now studying to elucidate the fundamental mechanism of SMC activation and media layer regeneration by using the biomechanical technique. As the numerical tool, we used the dynamic-explicit FE code PAM-CRASH, ESI Ltd. For the material models, the nonlinear viscoelastic constitutive law was adapted for the human blood vessel, SMC and the extra-cellular matrix, and the elastic law for the polyglycolic acid (PGA) fiber. Through macro-FE and micro-FE analyses of fabricated braid fibril tubes by using PGA fiber under the combined conditions of the orientation angle and the pitch of fiber, we searched an appropriate structure for the stress stimulation for SMC functionalization. Objectives of this study are indicated as follows: 1. to analyze the stress and strain of the human blood vessel and SMC, and 2. to calculate stress and strain of the real fabricated braid fibril artificial blood vessel and SMC to search an appropriate PGA fiber structure under combined conditions of PGA fiber numbers, 12 and 24, and the helical orientation angles of fiber, 15, 30, 45, 60, and 75 degrees. Finally, we found a braid fibril tube, which has an angle of 15 degree and 12 PGA fibers, as a most appropriate artificial blood vessel for SMC functionalization. Copyright © 2014 John Wiley & Sons, Ltd.
Tissue Engineering of Blood Vessels: Functional Requirements, Progress, and Future Challenges.
Kumar, Vivek A; Brewster, Luke P; Caves, Jeffrey M; Chaikof, Elliot L
2011-09-01
Vascular disease results in the decreased utility and decreased availability of autologus vascular tissue for small diameter (< 6 mm) vessel replacements. While synthetic polymer alternatives to date have failed to meet the performance of autogenous conduits, tissue-engineered replacement vessels represent an ideal solution to this clinical problem. Ongoing progress requires combined approaches from biomaterials science, cell biology, and translational medicine to develop feasible solutions with the requisite mechanical support, a non-fouling surface for blood flow, and tissue regeneration. Over the past two decades interest in blood vessel tissue engineering has soared on a global scale, resulting in the first clinical implants of multiple technologies, steady progress with several other systems, and critical lessons-learned. This review will highlight the current inadequacies of autologus and synthetic grafts, the engineering requirements for implantation of tissue-engineered grafts, and the current status of tissue-engineered blood vessel research.
Secomb, Timothy W.
2016-01-01
A review is presented of the physical principles governing the distribution of blood flow and blood pressure in the vascular system. The main factors involved are the pulsatile driving pressure generated by the heart, the flow characteristics of blood, and the geometric structure and mechanical properties of the vessels. The relationship between driving pressure and flow in a given vessel can be understood by considering the viscous and inertial forces acting on the blood. Depending on the vessel diameter and other physical parameters, a wide variety of flow phenomena can occur. In large arteries, the propagation of the pressure pulse depends on the elastic properties of the artery walls. In the microcirculation, the fact that blood is a suspension of cells strongly influences its flow properties and leads to a non-uniform distribution of hematocrit among microvessels. The forces acting on vessel walls include shear stress resulting from blood flow and circumferential stress resulting from blood pressure. Biological responses to these forces are important in the control of blood flow and the structural remodeling of vessels, and also play a role in major disease processes including hypertension and atherosclerosis. Consideration of hemodynamics is essential for a comprehensive understanding of the functioning of the circulatory system. PMID:27065172
Yang, Zhigang; Yao, Hong; Fei, Fei; Li, Yuwei; Qu, Jie; Li, Chunyuan; Zhang, Shiwu
2018-04-01
During development and tumor progression, cells need a sufficient blood supply to maintain development and rapid growth. It is reported that there are three patterns of blood supply for tumor growth: endothelium-dependent vessels, mosaic vessels, and vasculogenic mimicry (VM). VM was first reported in highly aggressive uveal melanomas, with tumor cells mimicking the presence and function of endothelial cells forming the walls of VM vessels. The walls of mosaic vessels are randomly lined with both endothelial cells and tumor cells. We previously proposed a three-stage process, beginning with VM, progressing to mosaic vessels, and eventually leading to endothelium-dependent vessels. However, many phenomena unique to VM channel formation remain to be elucidated, such as the origin of erythrocytes before VM vessels connect with endothelium-dependent vessels. In adults, erythroid cells are generally believed to be generated from hematopoietic stem cells in the bone marrow. In contrast, embryonic tissue obtains oxygen through formation of blood islands, which are largely composed of embryonic hemoglobin with a higher affinity with oxygen, in the absence of mature erythrocytes. Recent data from our laboratory suggest that embryonic blood-forming mechanisms also exist in cancer tissue, particularly when these tissues are under environmental stress such as hypoxia. We review the evidence from induced pluripotent stem cells in vitro and in vivo to support this previously underappreciated cell functionality in normal and cancer cells, including the ability to generate erythroid cells. We will also summarize the current understanding of tumor angiogenesis, VM, and our recent work on polyploid giant cancer cells, with emphasis on their ability to generate erythroid cells and their association with tumor growth under hypoxia. An alternative embryonic pathway to obtain oxygen in cancer cells exists, particularly when they are under hypoxic conditions.
Basic Components of Vascular Connective Tissue and Extracellular Matrix.
Halper, Jaroslava
2018-01-01
Though the composition of the three layers constituting the blood vessel wall varies among the different types of blood vessels, and some layers may even be missing in capillaries, certain basic components, and properties are shared by all blood vessels, though each histologically distinct layer contains a unique complement of extracellular components, growth factors and cytokines, and cell types as well. The structure and composition of vessel layers informs and is informed by the function of the particular blood vessel. The adaptation of the composition and the resulting function of the extracellular matrix (ECM) to changes in circulation/blood flow and a variety of other extravascular stimuli can be characterized as remodeling spearheaded by vascular cells. There is a surprising amount of cell traffic among the three layers. It starts with endothelial cell mediated transmigration of inflammatory cells from the bloodstream into the subendothelium, and then into tissue adjoining the blood vessel. Smooth muscle cells and a variety of adventitial cells reside in tunica media and tunica externa, respectively. The latter cells are a mixture of progenitor/stem cells, fibroblasts, myofibroblasts, pericytes, macrophages, and dendritic cells and respond to endothelial injury by transdifferentiation as they travel into the two inner layers, intima and media for corrective mission in the ECM composition. This chapter addresses the role of various vascular cell types and ECM components synthesized by them in maintenance of normal structure and in their contribution to major pathological processes, such as atherosclerosis, organ fibrosis, and diabetic retinopathy. © 2018 Elsevier Inc. All rights reserved.
Unusual intraosseous fossilized soft tissues from the Middle Triassic Nothosaurus bone
NASA Astrophysics Data System (ADS)
Surmik, Dawid; Rothschild, Bruce M.; Pawlicki, Roman
2017-04-01
Fossilized soft tissues, occasionally found together with skeletal remains, provide insights to the physiology and functional morphology of extinct organisms. Herein, we present unusual fossilized structures from the cortical region of bone identified in isolated skeletal remains of Middle Triassic nothosaurs from Upper Silesia, Poland. The ribbed or annuli-shaped structures have been found in a sample of partially demineralized coracoid and are interpreted as either giant red blood cells or as blood vessel walls. The most probable function is reinforcing the blood vessels from changes of nitrogen pressure in air-breathing diving reptiles. These structures seem to have been built of extensible muscle layers which prevent the vessel damage during rapid ascent. Such suspected function presented here is parsimonious with results of previous studies, which indicate rarity of the pathological modification of bones associated with decompression syndrome in Middle Triassic nothosaurs.
Bone marrow blood vessel ossification and "microvascular dead space" in rat and human long bone.
Prisby, Rhonda D
2014-07-01
Severe calcification of the bone microvascular network was observed in rats, whereby the bone marrow blood vessels appeared ossified. This study sought to characterize the magnitude of ossification in relation to patent blood vessels and adipocyte content in femoral diaphyses. Additionally, this study confirmed the presence of ossified vessels in patients with arteriosclerotic vascular disease and peripheral vascular disease and cellulitis. Young (4-6 month; n=8) and old (22-24 month; n=8) male Fischer-344 rats were perfused with barium sulfate to visualize patent bone marrow blood vessels. Femoral shafts were processed for bone histomorphometry to quantify ossified (Goldner's Trichrome) and calcified (Alizarin Red) vessels. Adipocyte content was also determined. Additional femora (n=5/age group) were scanned via μCT to quantify microvascular ossification. Bone marrow blood vessels from the rats and the human patients were also isolated and examined via microscopy. Ossified vessels (rats and humans) had osteocyte lacunae on the vessel surfaces and "normal" vessels were transitioning into bone. The volume of ossified vessels was 4800% higher (p<0.05) in the old vs. young rats. Calcified and ossified vessel volumes per tissue volume and calcified vessel volume per patent vessel volume were augmented (p<0.05) 262%, 375% and 263%, respectively, in the old vs. young rats. Ossified and patent vessel number was higher (171%) and lower (40%), respectively, in the old vs. young rats. Finally, adipocyte volume per patent vessel volume was higher (86%) with age. This study is the first to report ossification of bone marrow blood vessels in rats and humans. Ossification presumably results in "microvascular dead space" in regard to loss of patency and vasomotor function as opposed to necrosis. Progression of bone microvascular ossification may provide the common link associated with age-related changes in bone and bone marrow. The clinical implications may be evident in the difficulties treating bone disease in the elderly. Copyright © 2014 Elsevier Inc. All rights reserved.
Bone Marrow Blood Vessel Ossification and “Microvascular Dead Space” in Rat and Human Long Bone
Prisby, Rhonda D.
2014-01-01
Severe calcification of the bone microvascular network was observed in rats, whereby the bone marrow blood vessels appeared ossified. This study sought to characterize the magnitude of ossification in relation to patent blood vessels and adipocyte content in femoral diaphyses. Additionally, this study confirmed the presence of ossified vessels in patients with arteriosclerotic vascular disease and peripheral vascular disease and cellulitis. Young (4–6 mon; n=8) and old (22–24 mon; n=8) male Fischer-344 rats were perfused with barium sulfate to visualize patent bone marrow blood vessels. Femoral shafts were processed for bone histomorphometry to quantify ossified (Goldner’s Trichrome) and calcified (Alizarin Red) vessels. Adipocyte content was also determined. Additional femora (n=5/age group) were scanned via µCT to quantify microvascular ossification. Bone marrow blood vessels from rats and the human patients were also isolated and examined via microscopy. Ossified vessels (rats and humans) had osteocyte lacunae on the vessel surfaces and “normal” vessels were transitioning into bone. The volume of ossified vessels was 4800% higher (p <0.05) in old vs. young rats. Calcified and ossified vessel volumes per tissue volume and calcified vessel volume per patent vessel volume were augmented (p <0.05) 262%, 375% and 263%, respectively, in old vs. young rats. Ossified and patent vessel number was higher (171%) and lower (40%), respectively, in old vs. young rats. Finally, adipocyte volume per patent vessel volume was higher (86%) with age. This study is the first to report ossification of bone marrow blood vessels in rats and humans. Ossification presumably results in “microvascular dead space” in regards to loss of patency and vasomotor function as opposed to necrosis. The progression of bone microvascular ossification may provide the common link associated with age-related changes in bone and bone marrow. The clinical implications may be evident in the difficulties treating bone disease in the elderly. PMID:24680721
Tumors induce coordinate growth of artery, vein, and lymphatic vessel triads.
Ruddell, Alanna; Croft, Alexandra; Kelly-Spratt, Karen; Furuya, Momoko; Kemp, Christopher J
2014-05-21
Tumors drive blood vessel growth to obtain oxygen and nutrients to support tumor expansion, and they also can induce lymphatic vessel growth to facilitate fluid drainage and metastasis. These processes have generally been studied separately, so that it is not known how peritumoral blood and lymphatic vessels grow relative to each other. The murine B16-F10 melanoma and chemically-induced squamous cell carcinoma models were employed to analyze large red-colored vessels growing between flank tumors and draining lymph nodes. Immunostaining and microscopy in combination with dye injection studies were used to characterize these vessels. Each peritumoral red-colored vessel was found to consist of a triad of collecting lymphatic vessel, vein, and artery, that were all enlarged. Peritumoral veins and arteries were both functional, as detected by intravenous dye injection. The enlarged lymphatic vessels were functional in most mice by subcutaneous dye injection assay, however tumor growth sometimes blocked lymph drainage to regional lymph nodes. Large red-colored vessels also grew between benign papillomas or invasive squamous cell carcinomas and regional lymph nodes in chemical carcinogen-treated mice. Immunostaining of the red-colored vessels again identified the clustered growth of enlarged collecting lymphatics, veins, and arteries in the vicinity of these spontaneously arising tumors. Implanted and spontaneously arising tumors induce coordinate growth of blood and lymphatic vessel triads. Many of these vessel triads are enlarged over several cm distance between the tumor and regional lymph nodes. Lymphatic drainage was sometimes blocked in mice before lymph node metastasis was detected, suggesting that an unknown mechanism alters lymph drainage patterns before tumors reach draining lymph nodes.
CD4+ T Cell Activation and Vascular Normalization: Two Sides of the Same Coin?
De Palma, Michele; Jain, Rakesh K
2017-05-16
Normalization of tumor blood vessels enhances the infiltration and functions of T cells. Tian et al. (2017) report that effector CD4 + T cells, in turn, support vascular normalization, highlighting intertwined roles for blood vessels and T cells in cancer. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Globus, R. K.; Alwood, J.; Tahimic, C.; Schreurs, A.-S.; Shirazi-Fard, Y.; Terada, M.; Zaragoza, J.; Truong, T.; Bruns, K.; Castillo, A.;
2018-01-01
We examined experimentally the effects of radiation and/or simulated weightlessness by hindlimb unloading on bone and blood vessel function either after a short period or at a later time after transient exposures in adult male, C57Bl6J mice. In sum, recent findings from our studies show that in the short term, ionizing radiation and simulate weightlessness cause greater deficits in blood vessels when combined compared to either challenge alone. In the long term, heavy ion radiation, but not unloading, can lead to persistent, adverse consequences for bone and vessel function, possibly due to oxidative stress-related pathways.
Molecular Parallels between Neural and Vascular Development
Eichmann, Anne; Thomas, Jean-Léon
2013-01-01
The human central nervous system (CNS) features a network of ∼400 miles of blood vessels that receives >20% of the body’s cardiac output and uses most of its blood glucose. Many human diseases, including stroke, retinopathy, and cancer, are associated with the biology of CNS blood vessels. These vessels originate from extrinsic cell populations, including endothelial cells and pericytes that colonize the CNS and interact with glia and neurons to establish the blood–brain barrier and control cerebrovascular exchanges. Neurovascular interactions also play important roles in adult neurogenic niches, which harbor a unique population of neural stem cells that are intimately associated with blood vessels. We here review the cellular and molecular mechanisms required to establish the CNS vascular network, with a special focus on neurovascular interactions and the functions of vascular endothelial growth factors. PMID:23024177
Chu, Dafeng; Gao, Jin; Wang, Zhenjia
2015-12-22
Endothelial cells form a monolayer in lumen of blood vessels presenting a great barrier for delivery of therapeutic nanoparticles (NPs) into extravascular tissues where most diseases occur, such as inflammation disorders and infection. Here, we report a strategy for delivering therapeutic NPs across this blood vessel barrier by nanoparticle in situ hitchhiking activated neutrophils. Using intravital microscopy of TNF-α-induced inflammation of mouse cremaster venules and a mouse model of acute lung inflammation, we demonstrated that intravenously (iv) infused NPs made from denatured bovine serum albumin (BSA) were specifically internalized by activated neutrophils, and subsequently, the neutrophils containing NPs migrated across blood vessels into inflammatory tissues. When neutrophils were depleted using anti-Gr-1 in a mouse, the transport of albumin NPs across blood vessel walls was robustly abolished. Furthermore, it was found that albumin nanoparticle internalization did not affect neutrophil mobility and functions. Administration of drug-loaded albumin NPs markedly mitigated the lung inflammation induced by LPS (lipopolysaccharide) or infection by Pseudomonas aeruginosa. These results demonstrate the use of an albumin nanoparticle platform for in situ targeting of activated neutrophils for delivery of therapeutics across the blood vessel barriers into diseased sites. This study demonstrates our ability to hijack neutrophils to deliver nanoparticles to targeted diseased sites.
Roy, Sashwati; Patel, Darshan; Khanna, Savita; Gordillo, Gayle M.; Biswas, Sabyasachi; Friedman, Avner; Sen, Chandan K.
2007-01-01
Chronic wounds represent a substantial public health problem. The development of tools that would enable sophisticated scrutiny of clinical wound tissue material is highly desirable. This work presents evidence enabling rapid specific identification and laser capture of blood vessels from human tissue in a manner which lends itself to successful high-density (U133A) microarray analysis. Such screening of transcriptome followed by real-time PCR and immunohistochemical verification of candidate genes and their corresponding products were performed by using 3 mm biopsies. Of the 18,400 transcripts and variants screened, a focused set of 53 up-regulated and 24 down-regulated genes were noted in wound-derived blood vessels compared with blood vessels from intact human skin. The mean abundance of periostin in wound-site blood vessels was 96-fold higher. Periostin is known to be induced in response to vascular injury and its expression is associated with smooth muscle cell differentiation in vitro and promotes cell migration. Forty-fold higher expression of heparan sulfate 6-O-endosulfatase1 (Sulf1) was noted in wound-site vessels. Sulf1 has been recently recognized to be anti-angiogenic. During embryonic vasculogenesis, CD24 expression is down-regulated in human embryonic stem cells. Wound-site vessels had lower CD24 expression. The findings of this work provide a unique opportunity to appreciate the striking contrast in the transcriptome composition in blood vessels collected from the intact skin and from the wound-edge tissue. Sets of genes with known vascular functions but never connected to wound healing were identified to be differentially expressed in wound-derived blood vessels paving the way for innovative clinically relevant hypotheses. PMID:17728400
Thin and open vessel windows for intra-vital fluorescence imaging of murine cochlear blood flow
Shi, Xiaorui; Zhang, Fei; Urdang, Zachary; Dai, Min; Neng, Lingling; Zhang, Jinhui; Chen, Songlin; Ramamoorthy, Sripriya; Nuttall, Alfred L.
2014-01-01
Normal microvessel structure and function in the cochlea is essential for maintaining the ionic and metabolic homeostasis required for hearing function. Abnormal cochlear microcirculation has long been considered an etiologic factor in hearing disorders. A better understanding of cochlear blood flow (CoBF) will enable more effective amelioration of hearing disorders that result from aberrant blood flow. However, establishing the direct relationship between CoBF and other cellular events in the lateral wall and response to physio-pathological stress remains a challenge due to the lack of feasible interrogation methods and difficulty in accessing the inner ear. Here we report on new methods for studying the CoBF in a mouse model using a thin or open vessel-window in combination with fluorescence intra-vital microscopy (IVM). An open vessel-window enables investigation of vascular cell biology and blood flow permeability, including pericyte (PC) contractility, bone marrow cell migration, and endothelial barrier leakage, in wild type and fluorescent protein-labeled transgenic mouse models with high spatial and temporal resolution. Alternatively, the thin vessel-window method minimizes disruption of the homeostatic balance in the lateral wall and enables study CoBF under relatively intact physiological conditions. A thin vessel-window method can also be used for time-based studies of physiological and pathological processes. Although the small size of the mouse cochlea makes surgery difficult, the methods are sufficiently developed for studying the structural and functional changes in CoBF under normal and pathological conditions. PMID:24780131
Seiwerth, Sven; Brcic, Luka; Vuletic, Lovorka Batelja; Kolenc, Danijela; Aralica, Gorana; Misic, Marija; Zenko, Anita; Drmic, Domagoj; Rucman, Rudolf; Sikiric, Predrag
2014-01-01
This review focuses on the described effects of BPC 157 on blood vessels after different types of damage, and elucidate by investigating different aspects of vascular response to injury (endothelium damage, clotting, thrombosis, vasoconstriction, vasodilatation, vasculoneogenesis and edema formation) especially in connection to the healing processes. In this respect, BPC 157 was concluded to be the most potent angiomodulatory agent, acting through different vasoactive pathways and systems (e.g. NO, VEGF, FAK) and leading to optimization of the vascular response followed, as it has to be expected, by optimization of the healing process. Formation of new blood vessels involves two main, partly overlapping mechanisms, angiogenesis and vasculogenesis. The additional mechanism of arteriogenesis is involved in the formation of collaterals. In conjunction with blood vessel function, we at least have to consider leakage of fluid/proteins/plasma, resulting in edema/exudate formation as well as thrombogenesis. Blood vessels are also strongly involved in tumor biology. In this aspect, we have neoangiogenesis resulting in pathological vascularization, vascular invasion resulting in release of metastatic cells and the phenomenon of homing resulting in formation of secondary tumors--metastases.
A Comparison of Microvascular Responses to Visible and Near-Infrared Lasers
Li, D.; Farshidi, D.; Wang, G.X.; He, Y.L.; Kelly, K.M.; Wu, W.J.; Chen, B.; Ying, Z.X.
2015-01-01
Background and Objective Pulsed dye laser (PDL) is a commonly used treatment for Port Wine Stain birthmarks (PWS). However, deeper components of PWS are often resistant to PDL. Deeper penetrating lasers, including the long pulsed Neodymium:Yttrium Aluminum Garnet (Nd:YAG) laser have been used, but carry greater risk. This study evaluates the distinct blood vessel thermal responses to visible (595 nm) and near infrared (1,064 nm) lasers using animal and numerical models. Study Design/Materials and Methods Blood vessels in the rodent dorsal skin chamber (DSC) were irradiated by a 595 nm PDL and a long-pulsed 1,064 nm Nd:YAG laser. Laser-induced immediate and 1-hour post-structural and functional changes in the vessels were documented. Numerical simulations were conducted using a 1,000 μm depth SD mouse skin fold to simulate experimental conditions. Results PDL irradiation produced immediate blood vessel hemorrhage. Modeling indicated this occurs due to preferential heating of the superior parts of large blood vessels. Nd:YAG irradiation resulted in blood vessel constriction; modeling indicated more uniform heating of vessel walls. Conclusion PDL and Nd:YAG lasers result in distinct tissue responses. This supports different observable clinical treatment end points when using these devices. Vessel constriction associated with the Nd:YAG may be more difficult to observe and is one reason this device may carry greater risk. Lasers Surg. Med. 46:479–487, 2014. PMID:24974953
Changes in gravity inhibit lymphocyte locomotion through type I collagen
NASA Technical Reports Server (NTRS)
Pellis, N. R.; Goodwin, T. J.; Risin, D.; McIntyre, B. W.; Pizzini, R. P.; Cooper, D.; Baker, T. L.; Spaulding, G. F.
1997-01-01
Immunity relies on the circulation of lymphocytes through many different tissues including blood vessels, lymphatic channels, and lymphoid organs. The ability of lymphocytes to traverse the interstitium in both nonlymphoid and lymphoid tissues can be determined in vitro by assaying their capacity to locomote through Type I collagen. In an attempt to characterize potential causes of microgravity-induced immunosuppression, we investigated the effects of simulated microgravity on human lymphocyte function in vitro using a specialized rotating-wall vessel culture system developed at the Johnson Space Center. This very low shear culture system randomizes gravitational vectors and provides an in vitro approximation of microgravity. In the randomized gravity of the rotating-wall vessel culture system, peripheral blood lymphocytes did not locomote through Type I collagen, whereas static cultures supported normal movement. Although cells remained viable during the entire culture period, peripheral blood lymphocytes transferred to unit gravity (static culture) after 6 h in the rotating-wall vessel culture system were slow to recover and locomote into collagen matrix. After 72 h in the rotating-wall vessel culture system and an additional 72 h in static culture, peripheral blood lymphocytes did not recover their ability to locomote. Loss of locomotory activity in rotating-wall vessel cultures appears to be related to changes in the activation state of the lymphocytes and the expression of adhesion molecules. Culture in the rotating-wall vessel system blunted the ability of peripheral blood lymphocytes to respond to polyclonal activation with phytohemagglutinin. Locomotory response remained intact when peripheral blood lymphocytes were activated by anti-CD3 antibody and interleukin-2 prior to introduction into the rotating-wall vessel culture system. Thus, in addition to the systemic stress factors that may affect immunity, isolated lymphocytes respond to gravitational changes by ceasing locomotion through model interstitium. These in vitro investigations suggest that microgravity induces non-stress-related changes in cell function that may be critical to immunity. Preliminary analysis of locomotion in true microgravity revealed a substantial inhibition of cellular movement in Type I collagen. Thus, the rotating-wall vessel culture system provides a model for analyzing the microgravity-induced inhibition of lymphocyte locomotion and the investigation of the mechanisms related to lymphocyte movement.
Heterogeneity of the tumor vasculature.
Nagy, Janice A; Chang, Sung-Hee; Shih, Shou-Ching; Dvorak, Ann M; Dvorak, Harold F
2010-04-01
The blood vessels supplying tumors are strikingly heterogeneous and differ from their normal counterparts with respect to organization, structure, and function. Six distinctly different tumor vessel types have been identified, and much has been learned about the steps and mechanisms by which they form. Four of the six vessel types (mother vessels, capillaries, glomeruloid microvascular proliferations, and vascular malformations) develop from preexisting normal venules and capillaries by angiogenesis. The two remaining vessel types (feeder arteries and draining veins) develop from arterio-venogenesis, a parallel, poorly understood process that involves the remodeling of preexisting arteries and veins. All six of these tumor vessel types can be induced to form sequentially in normal mouse tissues by an adenoviral vector expressing vascular endothelial growth factor (VEGF)-A164. Current antiangiogenic cancer therapies directed at VEGF-A or its receptors have been of only limited benefit to cancer patients, perhaps because they target only the endothelial cells of the tumor blood vessel subset that requires exogenous VEGF-A for maintenance. A goal of future work is to identify therapeutic targets on tumor blood vessel endothelial cells that have lost this requirement. Thieme Medical Publishers.
Heterogeneity of the Tumor Vasculature
Nagy, Janice A.; Chang, Sung-Hee; Shih, Shou-Ching; Dvorak, Ann M.; Dvorak, Harold F.
2012-01-01
The blood vessels supplying tumors are strikingly heterogeneous and differ from their normal counterparts with respect to organization, structure, and function. Six distinctly different tumor vessel types have been identified, and much has been learned about the steps and mechanisms by which they form. Four of the six vessel types (mother vessels, capillaries, glomeruloid microvascular proliferations, and vascular malformations) develop from preexisting normal venules and capillaries by angiogenesis. The two remaining vessel types (feeder arteries and draining veins) develop from arterio-venogenesis, a parallel, poorly understood process that involves the remodeling of preexisting arteries and veins. All six of these tumor vessel types can be induced to form sequentially in normal mouse tissues by an adenoviral vector expressing vascular endothelial growth factor (VEGF)-A164. Current antiangiogenic cancer therapies directed at VEGF-A or its receptors have been of only limited benefit to cancer patients, perhaps because they target only the endothelial cells of the tumor blood vessel subset that requires exogenous VEGF-A for maintenance. A goal of future work is to identify therapeutic targets on tumor blood vessel endothelial cells that have lost this requirement. PMID:20490982
Functional photoacoustic microscopy of diabetic vasculature
NASA Astrophysics Data System (ADS)
Krumholz, Arie; Wang, Lidai; Yao, Junjie; Wang, Lihong V.
2012-06-01
We used functional photoacoustic microscopy to image diabetes-induced damage to the microvasculature. To produce an animal model for Type 1 diabetes, we used streptozotocin (STZ), which is particularly toxic to the insulin-producing beta cells of the pancreas in mammals. A set number of ND4 Swiss Webster mice received intraperitoneal injections of STZ for five consecutive days at 50 mg/kg. Most mice developed a significant rise in blood glucose level (~400 mg/dL) within three weeks of the first injection. Changes in vasculature and hemodynamics were monitored for six weeks. The mouse ear was imaged with an optical-resolution photoacoustic microscope at a main blood vessel branch from the root of the ear. There are noticeable and measurable changes associated with the disease, including decreased vessel diameter and possible occlusion due to vessel damage and polyurea. We also observed an increase in the blood flow speed in the vein and a decrease in the artery, which could be due to compensation for the dehydration and vessel diameter changes. Functional and metabolic parameters such as hemoglobin oxygen saturation, oxygen extraction fraction, and oxygen consumption rate were also measured, but showed no significant change.
Functional photoacoustic microscopy of diabetic vasculature
Krumholz, Arie; Wang, Lidai; Yao, Junjie
2012-01-01
Abstract. We used functional photoacoustic microscopy to image diabetes-induced damage to the microvasculature. To produce an animal model for Type 1 diabetes, we used streptozotocin (STZ), which is particularly toxic to the insulin-producing beta cells of the pancreas in mammals. A set number of ND4 Swiss Webster mice received intraperitoneal injections of STZ for five consecutive days at 50 mg/kg. Most mice developed a significant rise in blood glucose level (∼400 mg/dL) within three weeks of the first injection. Changes in vasculature and hemodynamics were monitored for six weeks. The mouse ear was imaged with an optical-resolution photoacoustic microscope at a main blood vessel branch from the root of the ear. There are noticeable and measurable changes associated with the disease, including decreased vessel diameter and possible occlusion due to vessel damage and polyurea. We also observed an increase in the blood flow speed in the vein and a decrease in the artery, which could be due to compensation for the dehydration and vessel diameter changes. Functional and metabolic parameters such as hemoglobin oxygen saturation, oxygen extraction fraction, and oxygen consumption rate were also measured, but showed no significant change. PMID:22734725
Three-dimensional multi-scale model of deformable platelets adhesion to vessel wall in blood flow
Wu, Ziheng; Xu, Zhiliang; Kim, Oleg; Alber, Mark
2014-01-01
When a blood vessel ruptures or gets inflamed, the human body responds by rapidly forming a clot to restrict the loss of blood. Platelets aggregation at the injury site of the blood vessel occurring via platelet–platelet adhesion, tethering and rolling on the injured endothelium is a critical initial step in blood clot formation. A novel three-dimensional multi-scale model is introduced and used in this paper to simulate receptor-mediated adhesion of deformable platelets at the site of vascular injury under different shear rates of blood flow. The novelty of the model is based on a new approach of coupling submodels at three biological scales crucial for the early clot formation: novel hybrid cell membrane submodel to represent physiological elastic properties of a platelet, stochastic receptor–ligand binding submodel to describe cell adhesion kinetics and lattice Boltzmann submodel for simulating blood flow. The model implementation on the GPU cluster significantly improved simulation performance. Predictive model simulations revealed that platelet deformation, interactions between platelets in the vicinity of the vessel wall as well as the number of functional GPIbα platelet receptors played significant roles in platelet adhesion to the injury site. Variation of the number of functional GPIbα platelet receptors as well as changes of platelet stiffness can represent effects of specific drugs reducing or enhancing platelet activity. Therefore, predictive simulations can improve the search for new drug targets and help to make treatment of thrombosis patient-specific. PMID:24982253
NASA Technical Reports Server (NTRS)
1978-01-01
In the photo, a medical researcher is using a specially designed laboratory apparatus for measuring blood vessel tension. It was designed by Langley Research Center as a service to researchers of Norfolk General Hospital and Eastern Virginia Medical School, Norfolk, Virginia. The investigators are studying how vascular smooth muscle-muscle in the walls of blood vessels-reacts to various stimulants, such as coffee, tea, alcohol or drugs. They sought help from Langley Research Center in devising a method of measuring the tension in blood vessel segments subjected to various stimuli. The task was complicated by the extremely small size of the specimens to be tested, blood vessel "loops" resembling small rubber bands, some only half a millimeter in diameter. Langley's Instrumentation Development Section responded with a miniaturized system whose key components are a "micropositioner" for stretching a length of blood vessel and a strain gage for measuring the smooth muscle tension developed. The micropositioner is a two-pronged holder. The loop of Mood vessel is hooked over the prongs and it is stretched by increasing the distance between the prongs in minute increments, fractions of a millimeter. At each increase, the tension developed is carefully measured. In some experiments, the holder and specimen are lowered into the test tubes shown, which contain a saline solution simulating body fluid; the effect of the compound on developed tension is then measured. The device has functioned well and the investigators say it has saved several months research time.
Wang, Chen; Guo, Fangfang; Zhou, Heng; Zhang, Yun; Xiao, Zhigang
2013-01-01
Adipose-derived stem cells (ASCs) can differentiate into smooth muscle cells and have been engineered into elastic small diameter blood vessel walls in vitro. However, the mechanisms involved in the development of three-dimensional (3D) vascular tissue remain poorly understood. The present study analyzed protein expression profiles of engineered blood vessel walls constructed by human ASCs using methods of two-dimensional gel electrophoresis (2DE) and mass spectrometry (MS). These results were compared to normal arterial walls. A total of 1701±15 and 1265±26 protein spots from normal and engineered blood vessel wall extractions were detected by 2DE, respectively. A total of 20 spots with at least 2.0-fold changes in expression were identified, and 38 differently expressed proteins were identified by 2D electrophoresis and ion trap MS. These proteins were classified into seven functional categories: cellular organization, energy, signaling pathway, enzyme, anchored protein, cell apoptosis/defense, and others. These results demonstrated that 2DE, followed by ion trap MS, could be successfully utilized to characterize the proteome of vascular tissue, including tissue-engineered vessels. The method could also be employed to achieve a better understanding of differentiated smooth muscle protein expression in vitro. These results provide a basis for comparative studies of protein expression in vascular smooth muscles of different origin and could provide a better understanding of the mechanisms of action needed for constructing blood vessels that exhibit properties consistent with normal blood vessels. PMID:22963350
Wang, Chen; Guo, Fangfang; Zhou, Heng; Zhang, Yun; Xiao, Zhigang; Cui, Lei
2013-02-01
Adipose-derived stem cells (ASCs) can differentiate into smooth muscle cells and have been engineered into elastic small diameter blood vessel walls in vitro. However, the mechanisms involved in the development of three-dimensional (3D) vascular tissue remain poorly understood. The present study analyzed protein expression profiles of engineered blood vessel walls constructed by human ASCs using methods of two-dimensional gel electrophoresis (2DE) and mass spectrometry (MS). These results were compared to normal arterial walls. A total of 1701±15 and 1265±26 protein spots from normal and engineered blood vessel wall extractions were detected by 2DE, respectively. A total of 20 spots with at least 2.0-fold changes in expression were identified, and 38 differently expressed proteins were identified by 2D electrophoresis and ion trap MS. These proteins were classified into seven functional categories: cellular organization, energy, signaling pathway, enzyme, anchored protein, cell apoptosis/defense, and others. These results demonstrated that 2DE, followed by ion trap MS, could be successfully utilized to characterize the proteome of vascular tissue, including tissue-engineered vessels. The method could also be employed to achieve a better understanding of differentiated smooth muscle protein expression in vitro. These results provide a basis for comparative studies of protein expression in vascular smooth muscles of different origin and could provide a better understanding of the mechanisms of action needed for constructing blood vessels that exhibit properties consistent with normal blood vessels.
Flt-1 (VEGFR-1) coordinates discrete stages of blood vessel formation
Chappell, John C.; Cluceru, Julia G.; Nesmith, Jessica E.; Mouillesseaux, Kevin P.; Bradley, Vanessa B.; Hartland, Caitlin M.; Hashambhoy-Ramsay, Yasmin L.; Walpole, Joseph; Peirce, Shayn M.; Mac Gabhann, Feilim; Bautch, Victoria L.
2016-01-01
Aims In developing blood vessel networks, the overall level of vessel branching often correlates with angiogenic sprout initiations, but in some pathological situations, increased sprout initiations paradoxically lead to reduced vessel branching and impaired vascular function. We examine the hypothesis that defects in the discrete stages of angiogenesis can uniquely contribute to vessel branching outcomes. Methods and results Time-lapse movies of mammalian blood vessel development were used to define and quantify the dynamics of angiogenic sprouting. We characterized the formation of new functional conduits by classifying discrete sequential stages—sprout initiation, extension, connection, and stability—that are differentially affected by manipulation of vascular endothelial growth factor-A (VEGF-A) signalling via genetic loss of the receptor flt-1 (vegfr1). In mouse embryonic stem cell-derived vessels genetically lacking flt-1, overall branching is significantly decreased while sprout initiations are significantly increased. Flt-1−/− mutant sprouts are less likely to retract, and they form increased numbers of connections with other vessels. However, loss of flt-1 also leads to vessel collapse, which reduces the number of new stable conduits. Computational simulations predict that loss of flt-1 results in ectopic Flk-1 signalling in connecting sprouts post-fusion, causing protrusion of cell processes into avascular gaps and collapse of branches. Thus, defects in stabilization of new vessel connections offset increased sprout initiations and connectivity in flt-1−/− vascular networks, with an overall outcome of reduced numbers of new conduits. Conclusions These results show that VEGF-A signalling has stage-specific effects on vascular morphogenesis, and that understanding these effects on dynamic stages of angiogenesis and how they integrate to expand a vessel network may suggest new therapeutic strategies. PMID:27142980
NASA Astrophysics Data System (ADS)
Asselin, Marie-Claude; Cunningham, Vincent J.; Amano, Shigeko; Gunn, Roger N.; Nahmias, Claude
2004-03-01
A non-invasive alternative to arterial blood sampling for the generation of a blood input function for brain positron emission tomography (PET) studies is presented. The method aims to extract the dimensions of the blood vessel directly from PET images and to simultaneously correct the radioactivity concentration for partial volume and spillover. This involves simulation of the tomographic imaging process to generate images of different blood vessel and background geometries and selecting the one that best fits, in a least-squares sense, the acquired PET image. A phantom experiment was conducted to validate the method which was then applied to eight subjects injected with 6-[18F]fluoro-L-DOPA and one subject injected with [11C]CO-labelled red blood cells. In the phantom study, the diameter of syringes filled with an 11C solution and inserted into a water-filled cylinder were estimated with an accuracy of half a pixel (1 mm). The radioactivity concentration was recovered to 100 ± 4% in the 8.7 mm diameter syringe, the one that most closely approximated the superior sagittal sinus. In the human studies, the method systematically overestimated the calibre of the superior sagittal sinus by 2-3 mm compared to measurements made in magnetic resonance venograms on the same subjects. Sources of discrepancies related to the anatomy of the blood vessel were found not to be fundamental limitations to the applicability of the method to human subjects. This method has the potential to provide accurate quantification of blood radioactivity concentration from PET images without the need for blood samples, corrections for delay and dispersion, co-registered anatomical images, or manually defined regions of interest.
Thin and open vessel windows for intra-vital fluorescence imaging of murine cochlear blood flow.
Shi, Xiaorui; Zhang, Fei; Urdang, Zachary; Dai, Min; Neng, Lingling; Zhang, Jinhui; Chen, Songlin; Ramamoorthy, Sripriya; Nuttall, Alfred L
2014-07-01
Normal microvessel structure and function in the cochlea is essential for maintaining the ionic and metabolic homeostasis required for hearing function. Abnormal cochlear microcirculation has long been considered an etiologic factor in hearing disorders. A better understanding of cochlear blood flow (CoBF) will enable more effective amelioration of hearing disorders that result from aberrant blood flow. However, establishing the direct relationship between CoBF and other cellular events in the lateral wall and response to physio-pathological stress remains a challenge due to the lack of feasible interrogation methods and difficulty in accessing the inner ear. Here we report on new methods for studying the CoBF in a mouse model using a thin or open vessel-window in combination with fluorescence intra-vital microscopy (IVM). An open vessel-window enables investigation of vascular cell biology and blood flow permeability, including pericyte (PC) contractility, bone marrow cell migration, and endothelial barrier leakage, in wild type and fluorescent protein-labeled transgenic mouse models with high spatial and temporal resolution. Alternatively, the thin vessel-window method minimizes disruption of the homeostatic balance in the lateral wall and enables study CoBF under relatively intact physiological conditions. A thin vessel-window method can also be used for time-based studies of physiological and pathological processes. Although the small size of the mouse cochlea makes surgery difficult, the methods are sufficiently developed for studying the structural and functional changes in CoBF under normal and pathological conditions. Copyright © 2014 Elsevier B.V. All rights reserved.
Altered bulbar conjunctival microcirculation in response to contact lens wear
Chen, Wan; Xu, Zhe; Jiang, Hong; Zhou, Jin; Wang, Liang; Wang, Jianhua
2015-01-01
Purpose This study was conducted to determine blood flow velocities and corresponding vessel diameters to characterize the response of the bulbar conjunctival microvasculature to contact lens wear. Methods A Functional Slit-lamp Biomicroscope (FSLB), an adapted traditional slit-lamp, was used to image the temporal bulbar conjunctiva of 22 healthy subjects before and after 6 hours of contact lens wear. All of the measurable venules on the conjunctiva were processed to yield vessel diameters and blood flow velocities. Results The averaged blood flow velocity increased from 0.51 ± 0.20 mm/s to 0.65 ± 0.22 mm/s (P < 0.001) after 6 hours of lens wear. The blood flow velocity distribution showed a velocity increase that correlated with the vessel diameter increase from the baseline (r = 0.826, P < 0.05). This pattern maintained a similar trend after 6 hours of lens wear (r = 0.925, P < 0.05), and increased velocities were found across all of the vessel diameter ranges (P < 0.001). Conclusions Blood flow velocity increases across all of the vessel diameter ranges in response to contact lens wear. FSLB is capable of characterizing the bulbar microvascular response to contact lens wear. PMID:27078615
Regulation of blood vessels by prolactin and vasoinhibins.
Clapp, Carmen; Thebault, Stéphanie; Macotela, Yazmín; Moreno-Carranza, Bibiana; Triebel, Jakob; Martínez de la Escalera, Gonzalo
2015-01-01
Prolactin (PRL) stimulates the growth of new blood vessels (angiogenesis) either directly through actions on endothelial cells or indirectly by upregulating proangiogenic factors like vascular endothelial growth factor (VEGF). Moreover, PRL acquires antiangiogenic properties after undergoing proteolytic cleavage to vasoinhibins, a family of PRL fragments (including 16 kDa PRL) with potent antiangiogenic, vasoconstrictive, and antivasopermeability effects. In view of the opposing actions of PRL and vasoinhibins, the regulation of the proteases responsible for specific PRL cleavage represents an efficient mechanism for controlling blood vessel growth and function. This review briefly describes the vascular actions of PRL and vasoinhibins, and addresses how their interplay could help drive biological effects of PRL in the context of health and disease.
Ager, Ann
2017-01-01
The blood vasculature regulates both the development and function of secondary lymphoid organs by providing a portal for entry of hemopoietic cells. During the development of lymphoid organs in the embryo, blood vessels deliver lymphoid tissue inducer cells that initiate and sustain the development of lymphoid tissues. In adults, the blood vessels are structurally distinct from those in other organs due to the requirement for high levels of lymphocyte recruitment under non-inflammatory conditions. In lymph nodes (LNs) and Peyer’s patches, high endothelial venules (HEVs) especially adapted for lymphocyte trafficking form a spatially organized network of blood vessels, which controls both the type of lymphocyte and the site of entry into lymphoid tissues. Uniquely, HEVs express vascular addressins that regulate lymphocyte entry into lymphoid organs and are, therefore, critical to the function of lymphoid organs. Recent studies have demonstrated important roles for CD11c+ dendritic cells in the induction, as well as the maintenance, of vascular addressin expression and, therefore, the function of HEVs. Tertiary lymphoid organs (TLOs) are HEV containing LN-like structures that develop inside organized tissues undergoing chronic immune-mediated inflammation. In autoimmune lesions, the development of TLOs is thought to exacerbate disease. In cancerous tissues, the development of HEVs and TLOs is associated with improved patient outcomes in several cancers. Therefore, it is important to understand what drives the development of HEVs and TLOs and how these structures contribute to pathology. In several human diseases and experimental animal models of chronic inflammation, there are some similarities between the development and function of HEVs within LN and TLOs. This review will summarize current knowledge of how hemopoietic cells with lymphoid tissue-inducing, HEV-inducing, and HEV-maintaining properties are recruited from the bloodstream to induce the development and control the function of lymphoid organs. PMID:28217126
Wavelength dependence of the apparent diameter of retinal blood vessels
NASA Astrophysics Data System (ADS)
Park, Robert; Twietmeyer, Karen; Chipman, Russell; Beaudry, Neil; Salyer, David
2005-04-01
Imaging of retinal blood vessels may assist in the diagnosis and monitoring of diseases such as glaucoma, diabetic retinopathy, and hypertension. However, close examination reveals that the contrast and apparent diameter of vessels are dependent on the wavelength of the illuminating light. In this study multispectral images of large arteries and veins within enucleated swine eyes are obtained with a modified fundus camera by use of intravitreal illumination. The diameters of selected vessels are measured as a function of wavelength by cross-sectional analysis. A fixed scale with spectrally independent dimension is placed above the retina to isolate the chromatic effects of the imaging system and eye. Significant apparent differences between arterial and venous diameters are found, with larger diameters observed at shorter wavelengths. These differences are due primarily to spectral absorption in the cylindrical blood column.
NASA Astrophysics Data System (ADS)
Sills, Tiffany M.; Hirschi, Karen K.
Blood and blood vessels develop in parallel within mammalian systems, and this temporal and spatial association has led to the confirmation of an endothelial origin of hematopoiesis. The extraembryonic yolk sac and aorto-gonado-mesonephros (AGM) region both contain a specialized population of endothelial cells ("hemogenic endothelium") that function to produce hematopoietic stem and progenitor cells, which then differentiate to provide the full complement of blood cells within the developing embryo and furthermore in the adult system. Therefore, this population has great therapeutic potential in the fields of regenerative medicine and tissue engineering. This chapter reviews the development of the vascular and hematopoietic systems, characterization and function of the hemogenic endothelium within embryonic and embryonic stem cell (ES cell) models, and speculate on the presence of such a population within the adult system. In order to harness this endothelial subtype for clinical application, we must understand both the normal functions of these cells and the potential for misregulation in disease states.
Gene Expression Analysis in Human Breast Cancer Associated Blood Vessels
Jones, Dylan T.; Lechertier, Tanguy; Mitter, Richard; Herbert, John M. J.; Bicknell, Roy; Jones, J. Louise; Li, Ji-Liang; Buffa, Francesca; Harris, Adrian L.; Hodivala-Dilke, Kairbaan
2012-01-01
Angiogenesis is essential for solid tumour growth, whilst the molecular profiles of tumour blood vessels have been reported to be different between cancer types. Although presently available anti-angiogenic strategies are providing some promise for the treatment of some cancers it is perhaps not surprisingly that, none of the anti-angiogenic agents available work on all tumours. Thus, the discovery of novel anti-angiogenic targets, relevant to individual cancer types, is required. Using Affymetrix microarray analysis of laser-captured, CD31-positive blood vessels we have identified 63 genes that are upregulated significantly (5–72 fold) in angiogenic blood vessels associated with human invasive ductal carcinoma (IDC) of the breast as compared with blood vessels in normal human breast. We tested the angiogenic capacity of a subset of these genes. Genes were selected based on either their known cellular functions, their enriched expression in endothelial cells and/or their sensitivity to anti-VEGF treatment; all features implicating their involvement in angiogenesis. For example, RRM2, a ribonucleotide reductase involved in DNA synthesis, was upregulated 32-fold in IDC-associated blood vessels; ATF1, a nuclear activating transcription factor involved in cellular growth and survival was upregulated 23-fold in IDC-associated blood vessels and HEX-B, a hexosaminidase involved in the breakdown of GM2 gangliosides, was upregulated 8-fold in IDC-associated blood vessels. Furthermore, in silico analysis confirmed that AFT1 and HEX-B also were enriched in endothelial cells when compared with non-endothelial cells. None of these genes have been reported previously to be involved in neovascularisation. However, our data establish that siRNA depletion of Rrm2, Atf1 or Hex-B had significant anti-angiogenic effects in VEGF-stimulated ex vivo mouse aortic ring assays. Overall, our results provide proof-of-principle that our approach can identify a cohort of potentially novel anti-angiogenic targets that are likley to be, but not exclusivley, relevant to breast cancer. PMID:23056178
The meningeal lymphatic system: a route for HIV brain migration?
Lamers, Susanna L; Rose, Rebecca; Ndhlovu, Lishomwa C; Nolan, David J; Salemi, Marco; Maidji, Ekaterina; Stoddart, Cheryl A; McGrath, Michael S
2016-06-01
Two innovative studies recently identified functional lymphatic structures in the meninges that may influence the development of HIV-associated neurological disorders (HAND). Until now, blood vessels were assumed to be the sole transport system by which HIV-infected monocytes entered the brain by bypassing a potentially hostile blood-brain barrier through inflammatory-mediated semi-permeability. A cascade of specific chemokine signals promote monocyte migration from blood vessels to surrounding brain tissues via a well-supported endothelium, where the cells differentiate into tissue macrophages capable of productive HIV infection. Lymphatic vessels on the other hand are more loosely organized than blood vessels. They absorb interstitial fluid from bodily tissues where HIV may persist and exchange a variety of immune cells (CD4(+) T cells, monocytes, macrophages, and dendritic cells) with surrounding tissues through discontinuous endothelial junctions. We propose that the newly discovered meningeal lymphatics are key to HIV migration among viral reservoirs and brain tissue during periods of undetectable plasma viral loads due to suppressive combinational antiretroviral therapy, thus redefining the migration process in terms of a blood-lymphatic transport system.
Vanilloid Receptor-1 (TRPV1) Expression and Function in the Vasculature of the Rat
Czikora, Ágnes; Pásztor, Enikő T.; Dienes, Beatrix; Bai, Péter; Csernoch, László; Rutkai, Ibolya; Csató, Viktória; Mányiné, Ivetta S.; Pórszász, Róbert; Édes, István; Papp, Zoltán; Boczán, Judit
2014-01-01
Transient receptor potential (TRP) cation channels are emerging in vascular biology. In particular, the expression of the capsaicin receptor (TRPV1) was reported in vascular smooth muscle cells. This study characterized the arteriolar TRPV1 function and expression in the rat. TRPV1 mRNA was expressed in various vascular beds. Six commercially available antibodies were tested for TRPV1 specificity. Two of them were specific (immunostaining was abolished by blocking peptides) for neuronal TRPV1 and one recognized vascular TRPV1. TRPV1 was expressed in blood vessels in the skeletal muscle, mesenteric and skin tissues, as well as in the aorta and carotid arteries. TRPV1 expression was found to be regulated at the level of individual blood vessels, where some vessels expressed, while others did not express TRPV1 in the same tissue sections. Capsaicin (a TRPV1 agonist) evoked constrictions in skeletal muscle arteries and in the carotid artery, but had no effect on the femoral and mesenteric arteries or the aorta. In blood vessels, TRPV1 expression was detected in most of the large arteries, but there were striking differences at level of the small arteries. TRPV1 activity was suppressed in some isolated arteries. This tightly regulated expression and function suggests a physiological role for vascular TRPV1. PMID:24217926
Qi, Li; Zhu, Jiang; Hancock, Aneeka M.; Dai, Cuixia; Zhang, Xuping; Frostig, Ron D.; Chen, Zhongping
2016-01-01
Doppler optical coherence tomography (DOCT) is considered one of the most promising functional imaging modalities for neuro biology research and has demonstrated the ability to quantify cerebral blood flow velocity at a high accuracy. However, the measurement of total absolute blood flow velocity (BFV) of major cerebral arteries is still a difficult problem since it is related to vessel geometry. In this paper, we present a volumetric vessel reconstruction approach that is capable of measuring the absolute BFV distributed along the entire middle cerebral artery (MCA) within a large field-of-view. The Doppler angle at each point of the MCA, representing the vessel geometry, is derived analytically by localizing the artery from pure DOCT images through vessel segmentation and skeletonization. Our approach could achieve automatic quantification of the fully distributed absolute BFV across different vessel branches. Experiments on rodents using swept-source optical coherence tomography showed that our approach was able to reveal the consequences of permanent MCA occlusion with absolute BFV measurement. PMID:26977365
Qi, Li; Zhu, Jiang; Hancock, Aneeka M; Dai, Cuixia; Zhang, Xuping; Frostig, Ron D; Chen, Zhongping
2016-02-01
Doppler optical coherence tomography (DOCT) is considered one of the most promising functional imaging modalities for neuro biology research and has demonstrated the ability to quantify cerebral blood flow velocity at a high accuracy. However, the measurement of total absolute blood flow velocity (BFV) of major cerebral arteries is still a difficult problem since it is related to vessel geometry. In this paper, we present a volumetric vessel reconstruction approach that is capable of measuring the absolute BFV distributed along the entire middle cerebral artery (MCA) within a large field-of-view. The Doppler angle at each point of the MCA, representing the vessel geometry, is derived analytically by localizing the artery from pure DOCT images through vessel segmentation and skeletonization. Our approach could achieve automatic quantification of the fully distributed absolute BFV across different vessel branches. Experiments on rodents using swept-source optical coherence tomography showed that our approach was able to reveal the consequences of permanent MCA occlusion with absolute BFV measurement.
Microvascular Branching as a Determinant of Blood Flow by Intravital Particle Imaging Velocimetry
NASA Technical Reports Server (NTRS)
Parsons-Wingerter, Patricia; McKay, Terri L.; Vickerman, Mary B.; Wernet, Mark P.; Myers, Jerry G.; Radhakrishnan, Krishnan
2007-01-01
The effects of microvascular branching on blood flow were investigated in vivo by microscopic particle imaging velocimetry (micro-PIV). We use micro-PIV to measure blood flow by tracking red blood cells (RBC) as the moving particles. Velocity flow fields, including flow pulsatility, were analyzed for the first four branching orders of capillaries, postcapillary venules and small veins of the microvascular network within the developing avian yolksac at embryonic day 5 (E5). Increasing volumetric flowrates were obtained from parabolic laminar flow profiles as a function of increasing vessel diameter and branching order. Maximum flow velocities increased approximately twenty-fold as the function of increasing vessel diameter and branching order compared to flow velocities of 100 - 150 micron/sec in the capillaries. Results from our study will be useful for the increased understanding of blood flow within anastomotic, heterogeneous microvascular networks.
Color Doppler imaging of the retrobulbar vessels in diabetic retinopathy.
Pauk-Domańska, Magdalena; Walasik-Szemplińska, Dorota
2014-03-01
Diabetes is a metabolic disease characterized by elevated blood glucose level due to impaired insulin secretion and activity. Chronic hyperglycemia leads to functional disorders of numerous organs and to their damage. Vascular lesions belong to the most common late complications of diabetes. Microangiopathic lesions can be found in the eyeball, kidneys and nervous system. Macroangiopathy is associated with coronary and peripheral vessels. Diabetic retinopathy is the most common microangiopathic complication characterized by closure of slight retinal blood vessels and their permeability. Despite intensive research, the pathomechanism that leads to the development and progression of diabetic retinopathy is not fully understood. The examinations used in assessing diabetic retinopathy usually involve imaging of the vessels in the eyeball and the retina. Therefore, the examinations include: fluorescein angiography, optical coherence tomography of the retina, B-mode ultrasound imaging, perimetry and digital retinal photography. There are many papers that discuss the correlations between retrobulbar circulation alterations and progression of diabetic retinopathy based on Doppler sonography. Color Doppler imaging is a non-invasive method enabling measurements of blood flow velocities in small vessels of the eyeball. The most frequently assessed vessels include: the ophthalmic artery, which is the first branch of the internal carotid artery, as well as the central retinal vein and artery, and the posterior ciliary arteries. The analysis of hemodynamic alterations in the retrobulbar vessels may deliver important information concerning circulation in diabetes and help to answer the question whether there is a relation between the progression of diabetic retinopathy and the changes observed in blood flow in the vessels of the eyeball. This paper presents the overview of literature regarding studies on blood flow in the vessels of the eyeball in patients with diabetic retinopathy.
Li, Xiaozhe; Zhang, Sujuan
2017-03-12
In the treatment of premature ovarian failure (POF), professor LAI Xinsheng focuses on the determination of syndrome to seek for etiology, associating with the differentiation of meridian and collateral and that of zangfu organs. Professor LAI believes that POF is mainly manifested as amenorrhea and infertility, localized in the kidney, with the dysfunction of liver, spleen and heart. It is impacted by many pathological factors, such as cold blockage, qi stagnation, blood stagnation, blood deficiency, yin deficiency, etc., which leads to the damage of the thoroughfare vessel and the conception vessel and the blockage of menstrual flow. On the basis of four diagnostic Methods and syndrome differentiation, there are four common syndromes of POF, named qi and blood deficiency, qi and blood stagnation, liver and kidney deficiency and yang deficiency of spleen and kidney. Tongyuan acupuncture technique is summarized by Professor LAI Xinsheng on the basis of yinyang theory. It is an effective and scientific method for acupoint selection along the meridians. The acupoints on the back, communicating with the governor vessel and mind regulation, acting on the brain are selected to promote yang qi of the governor vessel. The back- shu points of five zang organs are selected to regulate the functions of internal organs. The acupoints on the abdomen and the conception vessel are selected to conduce qi to the primary so as to improve reproductive function. In the guidance of tongyuan acupuncture technique, the acupoint prescription is formed and the Chinese herbal medicines are selected in combination to improve ovarian function and regulate menstruation. Hence, the satisfactory therapeutic effects have been achieved.
Highly localized laser-induced vascular responses
NASA Astrophysics Data System (ADS)
Stiukhina, Elena S.; Kurochkin, Maxim A.; Fedosov, Ivan V.; Postnov, Dmitry E.
2018-04-01
The assessment of functioning microcirculatory network implies usage of adequate tools for testing the network responses on local changes of vessels state. While there are well-developed and widely used methods, such as focal application of vasoactive substances, or electric stimulation, there is a need for a non-destructive (and ideally - non-contact) and local method of impact a single vessel in order to trigger the network responce. In this paper, we investigate the possibility of applying the effect of a reversible change in the diameter of a blood vessel caused by laser radiation as a functional test of a microcirculatory system. For this purpose, we combine this effect with the method of micro-PIV (particle image velocimetry), which provides information on both the dynamics of blood flow in neighboring segments and the changes in their diameters.
Targeting Pancreatic Islets with Phage Display Assisted by Laser Pressure Catapult Microdissection
Yao, Virginia J.; Ozawa, Michael G.; Trepel, Martin; Arap, Wadih; McDonald, Donald M.; Pasqualini, Renata
2005-01-01
Heterogeneity of the microvasculature in different organs has been well documented by multiple methods including in vivo phage display. However, less is known about the diversity of blood vessels within functionally distinct regions of organs. Here, we combined in vivo phage display with laser pressure catapult microdissection to identify peptide ligands for vascular receptors in the islets of Langerhans in the murine pancreas. Protein database analyses of the peptides, CVSNPRWKC and CHVLWSTRC, showed sequence identity to two ephrin A-type ligand homologues, A2 and A4. Confocal microscopy confirmed that most immunoreactivity of CVSNPRWKC and CHVLWSTRC phage was associated with blood vessels in pancreatic islets. Antibodies recognizing EphA4, a receptor for ephrin-A ligands, were similarly associated with islet blood vessels. Importantly, binding of both islet-homing phage and anti-EphA4 antibody was strikingly increased in blood vessels of pancreatic islet tumors in RIP-Tag2 transgenic mice. These results indicate that endothelial cells of blood vessels in pancreatic islets preferentially express EphA4 receptors, and this expression is increased in tumors. Our findings show in vivo phage display and laser pressure catapult microdissection can be combined to reveal endothelial cell specialization within focal regions of the microvasculature. PMID:15681844
Glioblastoma: A Pathogenic Crosstalk between Tumor Cells and Pericytes
Redondo-Garcia, Carolina; Martinez, Salvador
2014-01-01
Cancers likely originate in progenitor zones containing stem cells and perivascular stromal cells. Much evidence suggests stromal cells play a central role in tumor initiation and progression. Brain perivascular cells (pericytes) are contractile and function normally to regulate vessel tone and morphology, have stem cell properties, are interconvertible with macrophages and are involved in new vessel formation during angiogenesis. Nevertheless, how pericytes contribute to brain tumor infiltration is not known. In this study we have investigated the underlying mechanism by which the most lethal brain cancer, Glioblastoma Multiforme (GBM) interacts with pre-existing blood vessels (co-option) to promote tumor initiation and progression. Here, using mouse xenografts and laminin-coated silicone substrates, we show that GBM malignancy proceeds via specific and previously unknown interactions of tumor cells with brain pericytes. Two-photon and confocal live imaging revealed that GBM cells employ novel, Cdc42-dependent and actin-based cytoplasmic extensions, that we call flectopodia, to modify the normal contractile activity of pericytes. This results in the co-option of modified pre-existing blood vessels that support the expansion of the tumor margin. Furthermore, our data provide evidence for GBM cell/pericyte fusion-hybrids, some of which are located on abnormally constricted vessels ahead of the tumor and linked to tumor-promoting hypoxia. Remarkably, inhibiting Cdc42 function impairs vessel co-option and converts pericytes to a phagocytic/macrophage-like phenotype, thus favoring an innate immune response against the tumor. Our work, therefore, identifies for the first time a key GBM contact-dependent interaction that switches pericyte function from tumor-suppressor to tumor-promoter, indicating that GBM may harbor the seeds of its own destruction. These data support the development of therapeutic strategies directed against co-option (preventing incorporation and modification of pre-existing blood vessels), possibly in combination with anti-angiogenesis (blocking new vessel formation), which could lead to improved vascular targeting not only in Glioblastoma but also for other cancers. PMID:25032689
Krivic, A; Majerovic, M; Jelic, I; Seiwerth, S; Sikiric, P
2008-05-01
In the presented study we compared the effect of stable peptide BPC 157 and methylprednisolone on early functional recovery after Achilles tendon to bone transection in a rat model before collagen healing started. Surgical transection of the right Achilles tendon to bone area was performed in seventy two Wistar Albino male rats. Healing Achilles tendon edges were harvested at days 1-4 following the transection. Using Achilles functional index (AFI), myeloperoxidase activity, histological inflammatory cell influx and vascular index early functional recovery was evaluated. Agents (stable peptide BPC 157 10 microg methylprednisolone 5 mg, normal saline 5 ml) were given alone (/kg b.w., intraperitoneally, once daily, first 30 min after surgery, last 24 h before analysis). Control group received normal saline 5 ml/kg. BPC 157 improved functional recovery (AFI values increased at all time points, p <0.05) by anti-inflammatory (decreased myeloperoxidase (MPO) activity and histological inflammatory cell influx, p <0.05) and increased new blood vessel formation (increased vascular index, p <0.05). Methyprednisolone decreased MPO activity and histological inflammatory cell influx, (p <0.05) but also decreased new blood vessel formation and did not affect early functional recovery. Stable peptide BPC 157 with combined anti-inflammatory action and induction of early new blood vessel formation facilitates early functional recovery in Achilles tendon to bone healing.
Growth and regression of vasculature in healthy and diabetic mice after hindlimb ischemia.
Landázuri, Natalia; Joseph, Giji; Guldberg, Robert E; Taylor, W Robert
2012-07-01
The formation of vascular networks during embryogenesis and early stages of development encompasses complex and tightly regulated growth of blood vessels, followed by maturation of some vessels, and spatially controlled disconnection and pruning of others. The adult vasculature, while more quiescent, is also capable of adapting to changing physiological conditions by remodeling blood vessels. Numerous studies have focused on understanding key factors that drive vessel growth in the adult in response to ischemic injury. However, little is known about the extent of vessel rarefaction and its potential contribution to the final outcome of vascular recovery. We addressed this topic by characterizing the endogenous phases of vascular repair in a mouse model of hindlimb ischemia. We showed that this process is biphasic. It encompasses an initial rapid phase of vessel growth, followed by a later phase of vessel rarefaction. In healthy mice, this process resulted in partial recovery of perfusion and completely restored the ability of mice to run voluntarily. Given that the ability to revascularize can be compromised by a cardiovascular risk factor such as diabetes, we also examined vascular repair in diabetic mice. We found that paradoxically both the initial growth and subsequent regression of collateral vessels were more pronounced in the setting of diabetes and resulted in impaired recovery of perfusion and impaired functional status. In conclusion, our findings demonstrate that the formation of functional collateral vessels in the hindlimb requires vessel growth and subsequent vessel rarefaction. In the setting of diabetes, the physiological defect was not in the initial formation of vessels but rather in the inability to sustain newly formed vessels.
Regulation of Cellular Communication by Signaling Microdomains in the Blood Vessel Wall
Billaud, Marie; Lohman, Alexander W.; Johnstone, Scott R.; Biwer, Lauren A.; Mutchler, Stephanie; Isakson, Brant E.
2014-01-01
It has become increasingly clear that the accumulation of proteins in specific regions of the plasma membrane can facilitate cellular communication. These regions, termed signaling microdomains, are found throughout the blood vessel wall where cellular communication, both within and between cell types, must be tightly regulated to maintain proper vascular function. We will define a cellular signaling microdomain and apply this definition to the plethora of means by which cellular communication has been hypothesized to occur in the blood vessel wall. To that end, we make a case for three broad areas of cellular communication where signaling microdomains could play an important role: 1) paracrine release of free radicals and gaseous molecules such as nitric oxide and reactive oxygen species; 2) role of ion channels including gap junctions and potassium channels, especially those associated with the endothelium-derived hyperpolarization mediated signaling, and lastly, 3) mechanism of exocytosis that has considerable oversight by signaling microdomains, especially those associated with the release of von Willebrand factor. When summed, we believe that it is clear that the organization and regulation of signaling microdomains is an essential component to vessel wall function. PMID:24671377
Regulation of cellular communication by signaling microdomains in the blood vessel wall.
Billaud, Marie; Lohman, Alexander W; Johnstone, Scott R; Biwer, Lauren A; Mutchler, Stephanie; Isakson, Brant E
2014-01-01
It has become increasingly clear that the accumulation of proteins in specific regions of the plasma membrane can facilitate cellular communication. These regions, termed signaling microdomains, are found throughout the blood vessel wall where cellular communication, both within and between cell types, must be tightly regulated to maintain proper vascular function. We will define a cellular signaling microdomain and apply this definition to the plethora of means by which cellular communication has been hypothesized to occur in the blood vessel wall. To that end, we make a case for three broad areas of cellular communication where signaling microdomains could play an important role: 1) paracrine release of free radicals and gaseous molecules such as nitric oxide and reactive oxygen species; 2) role of ion channels including gap junctions and potassium channels, especially those associated with the endothelium-derived hyperpolarization mediated signaling, and lastly, 3) mechanism of exocytosis that has considerable oversight by signaling microdomains, especially those associated with the release of von Willebrand factor. When summed, we believe that it is clear that the organization and regulation of signaling microdomains is an essential component to vessel wall function.
Tumor vessel normalization by the PI3K inhibitor HS-173 enhances drug delivery.
Kim, Soo Jung; Jung, Kyung Hee; Son, Mi Kwon; Park, Jung Hee; Yan, Hong Hua; Fang, Zhenghuan; Kang, Yeo Wool; Han, Boreum; Lim, Joo Han; Hong, Soon-Sun
2017-09-10
Tumor vessels are leaky and immature, which causes poor oxygen and nutrient supply to tumor vessels and results in cancer cell metastasis to distant organs. This instability of tumor blood vessels also makes it difficult for anticancer drugs to penetrate and reach tumors. Numerous tumor vessel normalization approaches have been investigated for improving drug delivery into tumors. In this study, we investigated whether phosphoinositide 3-kinase (PI3K) inhibitors are able to improve vascular structure and function over the prolonged period necessary to achieve effective vessel normalization. The PI3K inhibitors, HS-173 and BEZ235 potently suppressed tumor growth and hypoxia, and increased tumor apoptosis in animal models. PI3K inhibitors also induced a regular, flat monolayer of endothelial cells (ECs) in vessels, improving stability of vessel structure, and normalized tumor vessels by increasing vascular maturity, pericyte coverage, basement membrane thickness, and tight-junctions. These effects resulted in a decrease in tumor vessel tortuosity and vessel thinning, and improved vessel function and blood flow. The tumor vessel stabilization effect of the PI3K inhibitor HS-173 also decreased the number of metastatic lung nodules in vivo metastasis model. Furthermore, HS-173 improved the delivery of doxorubicin into the tumor region, enhancing its anticancer effects. Mechanistic studies suggested that PI3K inhibitor HS-173-induced vessel normalization reflected changes in endothelial Notch signaling. Taken together, our findings indicate that vessel normalization by PI3K inhibitors restrained tumor growth and metastasis while improving chemotherapy by enhancing drug delivery into the tumor, suggesting that HS-173 may have a therapeutic value as an enhancer or an anticancer drug. Copyright © 2017 Elsevier B.V. All rights reserved.
Bio-Adaption between Magnesium Alloy Stent and the Blood Vessel: A Review.
Ma, Jun; Zhao, Nan; Betts, Lexxus; Zhu, Donghui
2016-09-01
Biodegradable magnesium (Mg) alloy stents are the most promising next generation of bio-absorbable stents. In this article, we summarized the progresses on the in vitro studies, animal testing and clinical trials of biodegradable Mg alloy stents in the past decades. These exciting findings led us to propose the importance of the concept "bio-adaption" between the Mg alloy stent and the local tissue microenvironment after implantation. The healing responses of stented blood vessel can be generally described in three overlapping phases: inflammation, granulation and remodeling. The ideal bio-adaption of the Mg alloy stent, once implanted into the blood vessel, needs to be a reasonable function of the time and the space/dimension. First, a very slow degeneration of mechanical support is expected in the initial four months in order to provide sufficient mechanical support to the injured vessels. Although it is still arguable whether full mechanical support in stented lesions is mandatory during the first four months after implantation, it would certainly be a safety design parameter and a benchmark for regulatory evaluations based on the fact that there is insufficient human in vivo data available, especially the vessel wall mechanical properties during the healing/remodeling phase. Second, once the Mg alloy stent being degraded, the void space will be filled by the regenerated blood vessel tissues. The degradation of the Mg alloy stent should be 100% completed with no residues, and the degradation products (e.g., ions and hydrogen) will be helpful for the tissue reconstruction of the blood vessel. Toward this target, some future research perspectives are also discussed.
Bio-Adaption between Magnesium Alloy Stent and the Blood Vessel: A Review
Ma, Jun; Zhao, Nan; Betts, Lexxus; Zhu, Donghui
2016-01-01
Biodegradable magnesium (Mg) alloy stents are the most promising next generation of bio-absorbable stents. In this article, we summarized the progresses on the in vitro studies, animal testing and clinical trials of biodegradable Mg alloy stents in the past decades. These exciting findings led us to propose the importance of the concept “bio-adaption” between the Mg alloy stent and the local tissue microenvironment after implantation. The healing responses of stented blood vessel can be generally described in three overlapping phases: inflammation, granulation and remodeling. The ideal bio-adaption of the Mg alloy stent, once implanted into the blood vessel, needs to be a reasonable function of the time and the space/dimension. First, a very slow degeneration of mechanical support is expected in the initial four months in order to provide sufficient mechanical support to the injured vessels. Although it is still arguable whether full mechanical support in stented lesions is mandatory during the first four months after implantation, it would certainly be a safety design parameter and a benchmark for regulatory evaluations based on the fact that there is insufficient human in vivo data available, especially the vessel wall mechanical properties during the healing/remodeling phase. Second, once the Mg alloy stent being degraded, the void space will be filled by the regenerated blood vessel tissues. The degradation of the Mg alloy stent should be 100% completed with no residues, and the degradation products (e.g., ions and hydrogen) will be helpful for the tissue reconstruction of the blood vessel. Toward this target, some future research perspectives are also discussed. PMID:27698548
Heart and Blood Vessels in Marfan Syndrome
... The most common of these problems affects the aorta, the main blood vessel carrying blood from the ... have problems in blood vessels other than the aorta. Even though heart and blood vessel problems affect ...
Dynamic Effect of Rolling Massage on Blood Flow
NASA Astrophysics Data System (ADS)
Chen, Yan-Yan; Yi, Hou-Hui; Li, Hua-Bing; Fang, Hai-Ping
2009-02-01
The Chinese traditional medical massage has been used as a natural therapy to eliminate some diseases. Here, the effect of the rolling massage frequency to the blood flow in the blood vessels under the rolling massage manipulation is studied by the lattice Boltzmann simulation. The simulation results show that when the frequency is smaller than or comparable to the pulsatile frequency of the blood flow, the effect on the blood flux by the rolling massage is small. On the contrast, if the frequency is twice or more times of the pulsatile frequency of the blood flow, the blood flux is greatly enhanced and increases linearly with respect to the frequency. Similar behavior has also been observed on the shear stress on the blood vessel walls. The result is helpful for understanding that the rolling massage has the function of promoting the blood circulation and removing the blood stasis.
Liao, Lun-De; Lin, Chin-Teng; Shih, Yen-Yu I.; Lai, Hsin-Yi; Zhao, Wan-Ting; Duong, Timothy Q.; Chang, Jyh-Yeong; Chen, You-Yin
2012-01-01
Abstract. The specificity of the hemodynamic response function (HRF) is determined spatially by the vascular architecture and temporally by the evolution of hemodynamic changes. Here, we used functional photoacoustic microscopy (fPAM) to investigate single cerebral blood vessels of rats after left forepaw stimulation. In this system, we analyzed the spatiotemporal evolution of the HRFs of the total hemoglobin concentration (HbT), cerebral blood volume (CBV), and hemoglobin oxygen saturation (SO2). Changes in specific cerebral vessels corresponding to various electrical stimulation intensities and durations were bilaterally imaged with 36×65-μm2 spatial resolution. Stimulation intensities of 1, 2, 6, and 10 mA were applied for periods of 5 or 15 s. Our results show that the relative functional changes in HbT, CBV, and SO2 are highly dependent not only on the intensity of the stimulation, but also on its duration. Additionally, the duration of the stimulation has a strong influence on the spatiotemporal characteristics of the HRF as shorter stimuli elicit responses only in the local vasculature (smaller arterioles), whereas longer stimuli lead to greater vascular supply and drainage. This study suggests that the current fPAM system is reliable for studying relative cerebral hemodynamic changes, as well as for offering new insights into the dynamics of functional cerebral hemodynamic changes in small animals. PMID:22734740
Le, Catherine T K; Laidlaw, Grace; Morehouse, Christopher A; Naiman, Brian; Brohawn, Philip; Mustelin, Tomas; Connor, Jane R; McDonald, Donald M
2015-11-01
Remodeling of blood vessels and lymphatics are prominent features of sustained inflammation. Angiopoietin-2 (Ang2)/Tie2 receptor signaling and tumor necrosis factor-α (TNF)/TNF receptor signaling are known to contribute to these changes in airway inflammation after Mycoplasma pulmonis infection in mice. We determined whether Ang2 and TNF are both essential for the remodeling on blood vessels and lymphatics, and thereby influence the actions of one another. Their respective contributions to the initial stage of vascular remodeling and sprouting lymphangiogenesis were examined by comparing the effects of function-blocking antibodies to Ang2 or TNF, given individually or together during the first week after infection. As indices of efficacy, vascular enlargement, endothelial leakiness, venular marker expression, pericyte changes, and lymphatic vessel sprouting were assessed. Inhibition of Ang2 or TNF alone reduced the remodeling of blood vessels and lymphatics, but inhibition of both together completely prevented these changes. Genome-wide analysis of changes in gene expression revealed synergistic actions of the antibody combination over a broad range of genes and signaling pathways involved in inflammatory responses. These findings demonstrate that Ang2 and TNF are essential and synergistic drivers of remodeling of blood vessels and lymphatics during the initial stage of inflammation after infection. Inhibition of Ang2 and TNF together results in widespread suppression of the inflammatory response. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Le, Catherine T.K.; Laidlaw, Grace; Morehouse, Christopher A.; Naiman, Brian; Brohawn, Philip; Mustelin, Tomas; Connor, Jane R.; McDonald, Donald M.
2016-01-01
Remodeling of blood vessels and lymphatics are prominent features of sustained inflammation. Angiopoietin-2 (Ang2)/Tie2 receptor signaling and tumor necrosis factor-α (TNF)/TNF receptor signaling are known to contribute to these changes in airway inflammation after Mycoplasma pulmonis infection in mice. We determined whether Ang2 and TNF are both essential for the remodeling on blood vessels and lymphatics, and thereby influence the actions of one another. Their respective contributions to the initial stage of vascular remodeling and sprouting lymphangiogenesis were examined by comparing the effects of function-blocking antibodies to Ang2 or TNF, given individually or together during the first week after infection. As indices of efficacy, vascular enlargement, endothelial leakiness, venular marker expression, pericyte changes, and lymphatic vessel sprouting were assessed. Inhibition of Ang2 or TNF alone reduced the remodeling of blood vessels and lymphatics, but inhibition of both together completely prevented these changes. Genome-wide analysis of changes in gene expression revealed synergistic actions of the antibody combination over a broad range of genes and signaling pathways involved in inflammatory responses. These findings demonstrate that Ang2 and TNF are essential and synergistic drivers of remodeling of blood vessels and lymphatics during the initial stage of inflammation after infection. Inhibition of Ang2 and TNF together results in widespread suppression of the inflammatory response. PMID:26348576
NASA Astrophysics Data System (ADS)
Bose, Sayan; Banerjee, Moloy
2015-01-01
Magnetic nanoparticles drug carriers continue to attract considerable interest for drug targeting in the treatment of cancer and other pathological conditions. Magnetic carrier particles with surface-bound drug molecules are injected into the vascular system upstream from the desired target site, and are captured at the target site via a local applied magnetic field. Herein, a numerical investigation of steady magnetic drug targeting (MDT) using functionalized magnetic micro-spheres in partly occluded blood vessel having a 90° bent is presented considering the effects of non-Newtonian characteristics of blood. An Eulerian-Lagrangian technique is adopted to resolve the hemodynamic flow and the motion of the magnetic particles in the flow using ANSYS FLUENT. An implantable infinitely long cylindrical current carrying conductor is used to create the requisite magnetic field. Targeted transport of the magnetic particles in a partly occluded vessel differs distinctly from the same in a regular unblocked vessel. Parametric investigation is conducted and the influence of the insert configuration and its position from the central plane of the artery (zoffset), particle size (dp) and its magnetic property (χ) and the magnitude of current (I) on the "capture efficiency" (CE) is reported. Analysis shows that there exists an optimum regime of operating parameters for which deposition of the drug carrying magnetic particles in a target zone on the partly occluded vessel wall can be maximized. The results provide useful design bases for in vitro set up for the investigation of MDT in stenosed blood vessels.
A novel perivascular cell population in the zebrafish brain.
Venero Galanternik, Marina; Castranova, Daniel; Gore, Aniket V; Blewett, Nathan H; Jung, Hyun Min; Stratman, Amber N; Kirby, Martha R; Iben, James; Miller, Mayumi F; Kawakami, Koichi; Maraia, Richard J; Weinstein, Brant M
2017-04-11
The blood-brain barrier is essential for the proper homeostasis and function of the CNS, but its mechanism of function is poorly understood. Perivascular cells surrounding brain blood vessels are thought to be important for blood-brain barrier establishment, but their roles are not well defined. Here, we describe a novel perivascular cell population closely associated with blood vessels on the zebrafish brain. Based on similarities in their morphology, location, and scavenger behavior, these cells appear to be the zebrafish equivalent of cells variably characterized as Fluorescent Granular Perithelial cells (FGPs), perivascular macrophages, or 'Mato Cells' in mammals. Despite their macrophage-like morphology and perivascular location, zebrafish FGPs appear molecularly most similar to lymphatic endothelium, and our imaging studies suggest that these cells emerge by differentiation from endothelium of the optic choroidal vascular plexus. Our findings provide the first report of a perivascular cell population in the brain derived from vascular endothelium.
The absorbed dose to blood from blood-borne activity
NASA Astrophysics Data System (ADS)
Hänscheid, H.; Fernández, M.; Lassmann, M.
2015-01-01
The radiation absorbed dose to blood and organs from activity in the blood is relevant for nuclear medicine dosimetry and for research in biodosimetry. The present study provides coefficients for the average absorbed dose rates to the blood from blood-borne activity for radionuclides frequently used in targeted radiotherapy and in PET diagnostics. The results were deduced from published data for vessel radius-dependent dose rate coefficients and reasonable assumptions on the blood-volume distribution as a function of the vessel radius. Different parts of the circulatory system were analyzed separately. Vessel size information for heart chambers, aorta, vena cava, pulmonary artery, and capillaries was taken from published results of morphometric measurements. The remaining blood not contained in the mentioned vessels was assumed to reside in fractal-like vascular trees, the smallest branches of which are the arterioles or venules. The applied vessel size distribution is consistent with recommendations of the ICRP on the blood-volume distribution in the human. The resulting average absorbed dose rates to the blood per nuclear disintegration per milliliter (ml) of blood are (in 10-11 Gy·s-1·Bq-1·ml) Y-90: 5.58, I-131: 2.49, Lu-177: 1.72, Sm-153: 2.97, Tc-99m: 0.366, C-11: 4.56, F-18: 3.61, Ga-68: 5.94, I-124: 2.55. Photon radiation contributes 1.1-1.2·10-11 Gy·s-1·Bq-1·ml to the total dose rate for positron emitters but significantly less for the other nuclides. Blood self-absorption of the energy emitted by ß-particles in the whole blood ranges from 37% for Y-90 to 80% for Tc-99m. The correspondent values in vascular trees, which are important for the absorbed dose to organs, range from 30% for Y-90 to 82% for Tc-99m.
Engineering of functional, perfusable 3D microvascular networks on a chip.
Kim, Sudong; Lee, Hyunjae; Chung, Minhwan; Jeon, Noo Li
2013-04-21
Generating perfusable 3D microvessels in vitro is an important goal for tissue engineering, as well as for reliable modelling of blood vessel function. To date, in vitro blood vessel models have not been able to accurately reproduce the dynamics and responses of endothelial cells to grow perfusable and functional 3D vascular networks. Here we describe a microfluidic-based platform whereby we model natural cellular programs found during normal development and angiogenesis to form perfusable networks of intact 3D microvessels as well as tumor vasculatures based on the spatially controlled co-culture of endothelial cells with stromal fibroblasts, pericytes or cancer cells. The microvessels possess the characteristic morphological and biochemical markers of in vivo blood vessels, and exhibit strong barrier function and long-term stability. An open, unobstructed microvasculature allows the delivery of nutrients, chemical compounds, biomolecules and cell suspensions, as well as flow-induced mechanical stimuli into the luminal space of the endothelium, and exhibits faithful responses to physiological shear stress as demonstrated by cytoskeleton rearrangement and increased nitric oxide synthesis. This simple and versatile platform provides a wide range of applications in vascular physiology studies as well as in developing vascularized organ-on-a-chip and human disease models for pharmaceutical screening.
Optical Histology: High-Resolution Visualization of Tissue Microvasculature
NASA Astrophysics Data System (ADS)
Moy, Austin Jing-Ming
Mammalian tissue requires the delivery of nutrients, growth factors, and the exchange of oxygen and carbon dioxide gases to maintain normal function. These elements are delivered by the blood, which travels through the connected network of blood vessels, known as the vascular system. The vascular system consists of large feeder blood vessels (arteries and veins) that are connected to the small blood vessels (arterioles and venules), which in turn are connected to the capillaries that are directly connected to the tissue and facilitate gas exchange and nutrient delivery. These small blood vessels and capillaries make up an intricate but organized network of blood vessels that exist in all mammalian tissues known as the microvasculature and are very important in maintaining the health and proper function of mammalian tissue. Due to the importance of the microvasculature in tissue survival, disruption of the microvasculature typically leads to tissue dysfunction and tissue death. The most prevalent method to study the microvasculature is visualization. Immunohistochemistry (IHC) is the gold-standard method to visualize tissue microvasculature. IHC is very well-suited for highly detailed interrogation of the tissue microvasculature at the cellular level but is unwieldy and impractical for wide-field visualization of the tissue microvasculature. The objective my dissertation research was to develop a method to enable wide-field visualization of the microvasculature, while still retaining the high-resolution afforded by optical microscopy. My efforts led to the development of a technique dubbed "optical histology" that combines chemical and optical methods to enable high-resolution visualization of the microvasculature. The development of the technique first involved preliminary studies to quantify optical property changes in optically cleared tissues, followed by development and demonstration of the methodology. Using optical histology, I successfully obtained high resolution, depth sectioned images of the microvasculature in mouse brain and the coronary microvasculature in mouse heart. Future directions of optical histology include the potential to facilitate visualization of the entire microvascular structure of an organ as well as visualization of other tissue molecular markers of interest.
Watanabe, Takafumi; Arai, Fumihito
2018-01-01
Surgical simulators have recently attracted attention because they enable the evaluation of the surgical skills of medical doctors and the performance of medical devices. However, thermal damage to the human body during surgery is difficult to evaluate using conventional surgical simulators. In this study, we propose a functional surgical model with a temperature-indicating function for the evaluation of thermal damage during surgery. The simulator is made of a composite material of polydimethylsiloxane and a thermochromic dye, which produces an irreversible color change as the temperature increases. Using this material, we fabricated a three-dimensional blood vessel model using the lost-wax process. We succeeded in fabricating a renal vessel model for simulation of catheter ablation. Increases in the temperature of the materials can be measured by image analysis of their color change. The maximum measurement error of the temperature was approximately −1.6 °C/+2.4 °C within the range of 60 °C to 100 °C. PMID:29370139
Lagerlöf, Jakob H; Kindblom, Jon; Cortez, Eliane; Pietras, Kristian; Bernhardt, Peter
2013-02-01
Hypoxia is one of the most important factors influencing clinical outcome after radiotherapy. Improved knowledge of factors affecting the levels and distribution of oxygen within a tumor is needed. The authors constructed a theoretical 3D model based on histological images to analyze the influence of vessel density and hemoglobin (Hb) concentration on the response to irradiation. The pancreases of a Rip-Tag2 mouse, a model of malignant insulinoma, were excised, cryosectioned, immunostained, and photographed. Vessels were identified by image thresholding and a 3D vessel matrix assembled. The matrix was reduced to functional vessel segments and enlarged by replication. The steady-state oxygen tension field of the tumor was calculated by iteratively employing Green's function method for diffusion and the Michaelis-Menten model for consumption. The impact of vessel density on the radiation response was studied by removing a number of randomly selected vessels. The impact of Hb concentration was studied by independently changing vessel oxygen partial pressure (pO(2)). For each oxygen distribution, the oxygen enhancement ratio (OER) was calculated and the mean absorbed dose at which the tumor control probability (TCP) was 0.99 (D(99)) was determined using the linear-quadratic cell survival model (LQ model). Decreased pO(2) shifted the oxygen distribution to lower values, whereas decreased vessel density caused the distribution to widen and shift to lower values. Combined scenarios caused lower-shifted distributions, emphasising log-normal characteristics. Vessel reduction combined with increased blood pO(2) caused the distribution to widen due to a lack of vessels. The most pronounced radiation effect of increased pO(2) occurred with tumor tissue with 50% of the maximum vessel density used in the simulations. A 51% decrease in D(99), from 123 to 60 Gy, was found between the lowest and highest pO(2) concentrations. Our results indicate that an intermediate vascular density region exists where enhanced blood oxygen concentration may be beneficial for radiation response. The results also suggest that it is possible to distinguish between diffusion-limited and anemic hypoxia from the characteristics of the pO(2) distribution.
NASA Astrophysics Data System (ADS)
Kyoden, Tomoaki; Akiguchi, Shunsuke; Tajiri, Tomoki; Andoh, Tsugunobu; Hachiga, Tadashi
2017-11-01
The development of a system for in vivo visualization of occluded distal blood vessels for diabetic patients is the main target of our research. We herein describe two-beam multipoint laser Doppler velocimetry (MLDV), which measures the instantaneous multipoint flow velocity and can be used to observe the blood flow velocity in peripheral blood vessels. By including a motorized stage to shift the measurement points horizontally and in the depth direction while measuring the velocity, the path of the blood vessel in the skin could be observed using blood flow velocity in three-dimensional space. The relationship of the signal power density between the blood vessel and the surrounding tissues was shown and helped us identify the position of the blood vessel. Two-beam MLDV can be used to simultaneously determine the absolute blood flow velocity distribution and identify the blood vessel position in skin.
Cuff for Blood-Vessel Pressure Measurements
NASA Technical Reports Server (NTRS)
Shimizu, M.
1982-01-01
Pressure within blood vessel is measured by new cufflike device without penetration of vessel. Device continuously monitors blood pressure for up to 6 months or longer without harming vessel. Is especially useful for vessels smaller than 4 or 5 millimeters in diameter. Invasive methods damage vessel wall, disturb blood flow, and cause clotting. They do not always give reliable pressure measurements over prolonged periods.
On the linear stability of blood flow through model capillary networks.
Davis, Jeffrey M
2014-12-01
Under the approximation that blood behaves as a continuum, a numerical implementation is presented to analyze the linear stability of capillary blood flow through model tree and honeycomb networks that are based on the microvascular structures of biological tissues. The tree network is comprised of a cascade of diverging bifurcations, in which a parent vessel bifurcates into two descendent vessels, while the honeycomb network also contains converging bifurcations, in which two parent vessels merge into one descendent vessel. At diverging bifurcations, a cell partitioning law is required to account for the nonuniform distribution of red blood cells as a function of the flow rate of blood into each descendent vessel. A linearization of the governing equations produces a system of delay differential equations involving the discharge hematocrit entering each network vessel and leads to a nonlinear eigenvalue problem. All eigenvalues in a specified region of the complex plane are captured using a transformation based on contour integrals to construct a linear eigenvalue problem with identical eigenvalues, which are then determined using a standard QR algorithm. The predicted value of the dimensionless exponent in the cell partitioning law at the instability threshold corresponds to a supercritical Hopf bifurcation in numerical simulations of the equations governing unsteady blood flow. Excellent agreement is found between the predictions of the linear stability analysis and nonlinear simulations. The relaxation of the assumption of plug flow made in previous stability analyses typically has a small, quantitative effect on the stability results that depends on the specific network structure. This implementation of the stability analysis can be applied to large networks with arbitrary structure provided only that the connectivity among the network segments is known.
How platelets safeguard vascular integrity
Ho-Tin-Noé, Benoit; Demers, Mélanie; Wagner, Denisa D
2011-01-01
Summary The haemostatic role of platelets was established in the 1880s by Bizzozero who observed their ability to adhere and aggregate at sites of vascular injury. It was only some 80 years later that the function of platelets in maintaining the structural integrity of intact blood vessels was reported by Danielli. Danielli noted that platelets help preserve the barrier function of endothelium during organ perfusion. Subsequent studies have demonstrated further that platelets are continuously needed to support intact mature blood vessels. More recently, platelets were shown to safeguard developing vessels, lymphatics, as well as the microvasculature at sites of leukocyte infiltration, including inflamed organs and tumours. Interestingly, from a mechanistic point of view, the supporting role of platelets in these various vessels does not necessarily involve the well-understood process of platelet plug formation but, rather, may rely on secretion of the various platelet granules and their many active components. The present review focuses on these nonconventional aspects of platelet biology and function by presenting situations in which platelets intervene to maintain vascular integrity and discusses possible mechanisms of their actions. We propose that modulating these newly described platelet functions may help treat haemorrhage as well as treat cancer by increasing the efficacy of drug delivery to tumours. PMID:21781242
Cueni, Leah N.; Chen, Lu; Zhang, Hui; Marino, Daniela; Huggenberger, Reto; Alitalo, Annamari; Bianchi, Roberta
2010-01-01
Podoplanin is a small transmembrane protein required for development and function of the lymphatic vascular system. To investigate the effects of interfering with its function, we produced an Fc fusion protein of its ectodomain. We found that podoplanin-Fc inhibited several functions of cultured lymphatic endothelial cells and also specifically suppressed lymphatic vessel growth, but not blood vessel growth, in mouse embryoid bodies in vitro and in mouse corneas in vivo. Using a keratin 14 expression cassette, we created transgenic mice that overexpressed podoplanin-Fc in the skin. No obvious outward phenotype was identified in these mice, but surprisingly, podoplanin-Fc—although produced specifically in the skin—entered the blood circulation and induced disseminated intravascular coagulation, characterized by microthrombi in most organs and by thrombocytopenia, occasionally leading to fatal hemorrhage. These findings reveal an important role of podoplanin in lymphatic vessel formation and indicate the potential of podoplanin-Fc as an inhibitor of lymphangiogenesis. These results also demonstrate the ability of podoplanin to induce platelet aggregation in vivo, which likely represents a major function of lymphatic endothelium. Finally, keratin 14 podoplanin-Fc mice represent a novel genetic animal model of disseminated intravascular coagulation. PMID:20716773
Chhatbar, Pratik Y.; Kara, Prakash
2013-01-01
Neural activity leads to hemodynamic changes which can be detected by functional magnetic resonance imaging (fMRI). The determination of blood flow changes in individual vessels is an important aspect of understanding these hemodynamic signals. Blood flow can be calculated from the measurements of vessel diameter and blood velocity. When using line-scan imaging, the movement of blood in the vessel leads to streaks in space-time images, where streak angle is a function of the blood velocity. A variety of methods have been proposed to determine blood velocity from such space-time image sequences. Of these, the Radon transform is relatively easy to implement and has fast data processing. However, the precision of the velocity measurements is dependent on the number of Radon transforms performed, which creates a trade-off between the processing speed and measurement precision. In addition, factors like image contrast, imaging depth, image acquisition speed, and movement artifacts especially in large mammals, can potentially lead to data acquisition that results in erroneous velocity measurements. Here we show that pre-processing the data with a Sobel filter and iterative application of Radon transforms address these issues and provide more accurate blood velocity measurements. Improved signal quality of the image as a result of Sobel filtering increases the accuracy and the iterative Radon transform offers both increased precision and an order of magnitude faster implementation of velocity measurements. This algorithm does not use a priori knowledge of angle information and therefore is sensitive to sudden changes in blood flow. It can be applied on any set of space-time images with red blood cell (RBC) streaks, commonly acquired through line-scan imaging or reconstructed from full-frame, time-lapse images of the vasculature. PMID:23807877
Gasomediators (·NO, CO, and H₂S) and their role in hemostasis and thrombosis.
Olas, Beata
2015-05-20
Hemostasis is a group of mechanisms used to prevent the outflow of blood from its vessels, and to ensure its liquidity and flow within them. The system incorporates aspects of the blood vessel wall (mainly the intima), the clotting process, together with its factors (i.e. fibrinogen) and coagulation inhibitors, as well as fibrinolysis, blood platelets and the phagocyte system. The modulation of hemostasis is associated with the pathogenesis of cardiovascular diseases, such as thrombosis. The study examines the action of three selected gasomediators, nitric oxide ((•)NO), carbon monoxide (CO) and hydrogen sulfide (H2S), on hemostasis and thrombosis, although these gasses are also involved in a multitude of other physiological functions. (•)NO inhibits blood platelet activation, relaxes blood vessels and, as a free radical chain, may rapidly react with superoxide anion (O2(-•)) in blood platelets to form peroxynitrite (ONOO(-)). ONOO(-) is a reactive nitrating and nitrosating agent which induces oxidative/nitrative stress in blood platelets and plasma. Moreover, ONOO(-) changes the structure and function of fibrinogen and proteins associated with fibrinolysis. Recently, proteomic studies have provided unequivocal evidence that human platelets lack any expression of nitric oxide synthase isoforms. Other studies have demonstrated that CO and H2S, reduce blood platelet reactivity. Moreover, H2S has been reported to demonstrate anticoagulatory activity, and CO may act not only as an anticoagulant, but also aprocoagulant. This review article summarizes current knowledge of the biological roles of gasomediators (NO, CO, H2S) in hemostasis and in cardiovascular diseases. Copyright © 2015 Elsevier B.V. All rights reserved.
Pandey, Deepesh; Patel, Anand; Patel, Vijay; Chen, Feng; Qian, Jin; Wang, Yusi; Barman, Scott A.; Venema, Richard C.; Stepp, David W.; Daniel Rudic, R.
2012-01-01
The expression and functional significance of NADPH oxidase 5 (Nox5) and its five isoforms in vascular cells is poorly understood. The goal of this study was to determine whether Nox5-α, -β, -δ, -γ, and -ε (short) are expressed in human blood vessels and evaluate their respective functions. Nox5 mRNA and protein were detected in human blood vessels, cultured human vascular smooth muscle (HVSMC) and endothelium, but not fibroblasts. The most abundant isoforms were α and β, whereas δ and γ were not detected. Nox5-α and -β produced reactive oxygen species (ROS), but -δ, -γ, and -ε were not catalytically active. Coexpression of the active Nox5 isoforms with inactive Nox5 variants suppressed ROS production, and coimmunoprecipitation revealed that Nox5-β binds the inactive ε variant, which may account for reduced ROS production. In HVSMC, angiotensin II, endothelin-1 and TNF-α increased endogenous Nox5 mRNA levels, while adenovirus-mediated overexpression of Nox5 promoted p38 MAPK, JAK2, JNK, and ERK1/2 phosphorylation in endothelial cells (EC), but only increased ERK1/2 phosphorylation in HVSMC. At higher levels of Nox5, there was evidence of increased apoptosis in EC, but not in HVSMC, as detected by the presence of cleaved caspase-3 and cleaved poly(ADP-ribose)polymerase. Although catalytically inactive, Nox5-ε potently activated ERK in HVSMC, and increased expression of Nox5-ε promoted HVSMC proliferation. Nox5 is expressed in human blood vessels. The Nox5-α and -β splice variants are the major isoforms that are expressed and the only variants capable of ROS production. Nox5-ε can inhibit Nox5 activity and activate ERK and HVSMC proliferation. PMID:22427510
Mikhal, Julia; Geurts, Bernard J
2013-12-01
A volume-penalizing immersed boundary method is presented for the simulation of laminar incompressible flow inside geometrically complex blood vessels in the human brain. We concentrate on cerebral aneurysms and compute flow in curved brain vessels with and without spherical aneurysm cavities attached. We approximate blood as an incompressible Newtonian fluid and simulate the flow with the use of a skew-symmetric finite-volume discretization and explicit time-stepping. A key element of the immersed boundary method is the so-called masking function. This is a binary function with which we identify at any location in the domain whether it is 'solid' or 'fluid', allowing to represent objects immersed in a Cartesian grid. We compare three definitions of the masking function for geometries that are non-aligned with the grid. In each case a 'staircase' representation is used in which a grid cell is either 'solid' or 'fluid'. Reliable findings are obtained with our immersed boundary method, even at fairly coarse meshes with about 16 grid cells across a velocity profile. The validation of the immersed boundary method is provided on the basis of classical Poiseuille flow in a cylindrical pipe. We obtain first order convergence for the velocity and the shear stress, reflecting the fact that in our approach the solid-fluid interface is localized with an accuracy on the order of a grid cell. Simulations for curved vessels and aneurysms are done for different flow regimes, characterized by different values of the Reynolds number (Re). The validation is performed for laminar flow at Re = 250, while the flow in more complex geometries is studied at Re = 100 and Re = 250, as suggested by physiological conditions pertaining to flow of blood in the circle of Willis.
You, Weon-Kyoo; Bonaldo, Paolo; Stallcup, William B.
2012-01-01
To investigate the importance of the vascular basal lamina in tumor blood vessel morphogenesis and function, we compared vessel development, vessel function, and progression of B16F10 melanoma tumors in the brains of wild-type and collagen VI-null mice. In 7-day tumors in the absence of collagen VI, the width of the vascular basal lamina was reduced twofold. Although the ablation of collagen VI did not alter the abundance of blood vessels, a detailed analysis of the number of either pericytes or endothelial cells (or pericyte coverage of endothelial cells) showed that collagen VI-dependent defects during the assembly of the basal lamina have negative effects on both pericyte maturation and the sprouting and survival of endothelial cells. As a result of these deficits, vessel patency was reduced by 25%, and vessel leakiness was increased threefold, resulting in a 10-fold increase in tumor hypoxia along with a fourfold increase in hypoxia-inducible factor-1α expression. In 12-day collagen VI-null tumors, vascular endothelial growth factor expression was increased throughout the tumor stroma, in contrast to the predominantly vascular pattern of vascular endothelial growth factor expression in wild-type tumors. Vessel size was correspondingly reduced in 12-day collagen VI-null tumors. Overall, these vascular deficits produced a twofold decrease in tumor volume in collagen VI-null mice, confirming that collagen VI-dependent basal lamina assembly is a critical aspect of vessel development. PMID:22200614
Sensing of Vascular Permeability in Inflamed Vessel of Live Animal.
Park, Sang A; Jeong, Soi; Choe, Young Ho; Hyun, Young-Min
2018-01-01
Increase in vascular permeability is a conclusive response in the progress of inflammation. Under controlled conditions, leukocytes are known to migrate across the vascular barriers to the sites of inflammation without severe vascular rupture. However, when inflammatory state becomes excessive, the leakage of blood components may occur and can be lethal. Basically, vascular permeability can be analyzed based on the intensity of blood outflow. To evaluate the amount and rate of leakage in live mice, we performed cremaster muscle exteriorization to visualize blood flow and neutrophil migration. Using two-photon intravital microscopy of the exteriorized cremaster muscle venules, we found that vascular barrier function is transiently and locally disrupted in the early stage of inflammatory condition induced by N-formylmethionyl-leucyl-phenylalanine (fMLP). Measurement of the concentration of intravenously (i.v.) injected Texas Red dextran inside and outside the vessels resulted in clear visualization of real-time increases in transient and local vascular permeability increase in real-time manner. We successfully demonstrated repeated leakage from a target site on a blood vessel in association with increasing severity of inflammation. Therefore, compared to other methods, two-photon intravital microscopy more accurately visualizes and quantifies vascular permeability even in a small part of blood vessels in live animals in real time.
Endothelial Notch signalling limits angiogenesis via control of artery formation
Hasan, Sana S.; Tsaryk, Roman; Lange, Martin; Wisniewski, Laura; Moore, John C.; Lawson, Nathan D.; Wojciechowska, Karolina; Schnittler, Hans; Siekmann, Arndt F.
2017-01-01
Angiogenic sprouting needs to be tightly controlled. It has been suggested that the Notch ligand dll4 expressed in leading tip cells restricts angiogenesis by activating Notch signalling in trailing stalk cells. Here, we show using live imaging in zebrafish that activation of Notch signalling is rather required in tip cells. Notch activation initially triggers expression of the chemokine receptor cxcr4a. This allows for proper tip cell migration and connection to the pre-existing arterial circulation, ultimately establishing functional arterial-venous blood flow patterns. Subsequently, Notch signalling reduces cxcr4a expression, thereby preventing excessive blood vessel growth. Finally, we find that Notch signalling is dispensable for limiting blood vessel growth during venous plexus formation that does not generate arteries. Together, these findings link the role of Notch signalling in limiting angiogenesis to its role during artery formation and provide a framework for our understanding of the mechanisms underlying blood vessel network expansion and maturation. PMID:28714969
Khosravi, Arezoo; Bani, Milad Salimi; Bahreinizade, Hossein; Karimi, Alireza
2016-01-01
In the present study, three layers of the ascending aorta in respect to the time and space at various blood pressures have been simulated. Two well-known commercial finite element (FE) software have used to be able to provide a range of reliable numerical results while independent on the software type. The radial displacement compared with the time as well as the peripheral stress and von Mises stress of the aorta have calculated. The aorta model was validated using the differential quadrature method (DQM) solution and, then, in order to design functionally graded materials (FGMs) with different heterogeneous indexes for the artificial vessel, two different materials have been employed. Fluid–structure interaction (FSI) simulation has been carried out on the FGM and a natural vessel of the human body. The heterogeneous index defines the variation of the length in a function. The blood pressure was considered to be a function of both the time and location. Finally, the response characteristics of functionally graded biomaterials (FGBMs) models with different values of heterogeneous material parameters were determined and compared with the behaviour of a natural vessel. The results showed a very good agreement between the numerical findings of the FGM materials and that of the natural vessel. The findings of the present study may have implications not only to understand the performance of different FGMs in bearing the stress and deformation in comparison with the natural human vessels, but also to provide information for the biomaterials expert to be able to select a suitable material as an implant for the aorta. PMID:27836981
Deficiency of bone marrow beta3-integrin enhances non-functional neovascularization.
Watson, Alan R; Pitchford, Simon C; Reynolds, Louise E; Direkze, Natalie; Brittan, Mairi; Alison, Malcolm R; Rankin, Sara; Wright, Nicholas A; Hodivala-Dilke, Kairbaan M
2010-03-01
beta3-Integrin is a cell surface adhesion and signalling molecule important in the regulation of tumour angiogenesis. Mice with a global deficiency in beta3-integrin show increased pathological angiogenesis, most likely due to increased vascular endothelial growth factor receptor 2 expression on beta3-null endothelial cells. Here we transplanted beta3-null bone marrow (BM) into wild-type (WT) mice to dissect the role of BM beta3-integrin deficiency in pathological angiogenesis. Mice transplanted with beta3-null bone marrow show significantly enhanced angiogenesis in subcutaneous B16F0 melanoma and Lewis lung carcinoma (LLC) cell models and in B16F0 melanoma lung metastasis when compared with tumours grown in mice transplanted with WT bone marrow. The effect of bone marrow beta3-integrin deficiency was also assessed in the RIPTAg mouse model of pancreatic tumour growth. Again, angiogenesis in mice lacking BM beta3-integrin was enhanced. However, tumour weight between the groups was not significantly altered, suggesting that the enhanced blood vessel density in the mice transplanted with beta3-null bone marrow was not functional. Indeed, we demonstrate that in mice transplanted with beta3-null bone marrow a significant proportion of tumour blood vessels are non-functional when compared with tumour blood vessels in WT-transplanted controls. Furthermore, beta3-null-transplanted mice showed an increased angiogenic response to VEGF in vivo when compared with WT-transplanted animals. BM beta3-integrin deficiency affects the mobilization of progenitor cells to the peripheral circulation. We show that VEGF-induced mobilization of endothelial progenitor cells is enhanced in mice transplanted with beta3-null bone marrow when compared with WT-transplanted controls, suggesting a possible mechanism underlying the increased blood vessel density seen in beta3-null-transplanted mice. In conclusion, although BM beta3-integrin is not required for pathological angiogenesis, our studies demonstrate a role for BM beta3-integrin in VEGF-induced mobilization of bone marrow-derived cells to the peripheral circulation and for the functionality of those vessels in which BM-derived cells become incorporated.
Mitchell, Karen; Al-Anbaki, Ali; Shaikh Qureshi, Wasay Mohiuddin; Tenin, Gennadiy; Lu, Yinhui; Clowes, Christopher; Robertson, Abigail; Barnes, Emma; Wright, Jayne A.; Keavney, Bernard; Lovell, Simon C.
2017-01-01
The coronary vasculature is an essential vessel network providing the blood supply to the heart. Disruptions in coronary blood flow contribute to cardiac disease, a major cause of premature death worldwide. The generation of treatments for cardiovascular disease will be aided by a deeper understanding of the developmental processes that underpin coronary vessel formation. From an ENU mutagenesis screen, we have isolated a mouse mutant displaying embryonic hydrocephalus and cardiac defects (EHC). Positional cloning and candidate gene analysis revealed that the EHC phenotype results from a point mutation in a splice donor site of the Myh10 gene, which encodes NMHC IIB. Complementation testing confirmed that the Myh10 mutation causes the EHC phenotype. Characterisation of the EHC cardiac defects revealed abnormalities in myocardial development, consistent with observations from previously generated NMHC IIB null mouse lines. Analysis of the EHC mutant hearts also identified defects in the formation of the coronary vasculature. We attribute the coronary vessel abnormalities to defective epicardial cell function, as the EHC epicardium displays an abnormal cell morphology, reduced capacity to undergo epithelial-mesenchymal transition (EMT), and impaired migration of epicardial-derived cells (EPDCs) into the myocardium. Our studies on the EHC mutant demonstrate a requirement for NMHC IIB in epicardial function and coronary vessel formation, highlighting the importance of this protein in cardiac development and ultimately, embryonic survival. PMID:29084269
Influence of cerebral blood vessel movements on the position of perivascular synapses.
Urrecha, Miguel; Romero, Ignacio; DeFelipe, Javier; Merchán-Pérez, Angel
2017-01-01
Synaptic activity is regulated and limited by blood flow, which is controlled by blood vessel dilation and contraction. Traditionally, the study of neurovascular coupling has mainly focused on energy consumption and oxygen delivery. However, the mechanical changes that blood vessel movements induce in the surrounding tissue have not been considered. We have modeled the mechanical changes that movements of blood vessels cause in neighboring synapses. Our simulations indicate that synaptic densities increase or decrease during vascular dilation and contraction, respectively, near the blood vessel walls. This phenomenon may alter the concentration of neurotransmitters and vasoactive substances in the immediate vicinity of the vessel wall and thus may have an influence on local blood flow.
Non-invasive method and apparatus for measuring pressure within a pliable vessel
NASA Technical Reports Server (NTRS)
Shimizu, M. (Inventor)
1983-01-01
A non-invasive method and apparatus is disclosed for measuring pressure within a pliable vessel such as a blood vessel. The blood vessel is clamped by means of a clamping structure having a first portion housing a pressure sensor and a second portion extending over the remote side of the blood vessel for pressing the blood vessel into engagement with the pressure sensing device. The pressure sensing device includes a flat deflectable diaphragm portion arranged to engage a portion of the blood vessel flattened against the diaphragm by means of the clamp structure. In one embodiment, the clamp structure includes first and second semicylindrical members held together by retaining rings. In a second embodiment the clamp structure is of one piece construction having a solid semicylindrical portion and a hollow semicylindrical portion with a longitudinal slot in the follow semicylindrical portion through which a slip the blood vessel. In a third embodiment, an elastic strap is employed for clamping the blood vessel against the pressure sensing device.
Pang, Yonggang; Tsigkou, Olga; Spencer, Joel A; Lin, Charles P; Neville, Craig; Grottkau, Brian
2015-10-01
Vascularization is a key challenge in tissue engineering. Three-dimensional structure and microcirculation are two fundamental parameters for evaluating vascularization. Microscopic techniques with cellular level resolution, fast continuous observation, and robust 3D postimage processing are essential for evaluation, but have not been applied previously because of technical difficulties. In this study, we report novel video-rate confocal microscopy and 3D postimage processing techniques to accomplish this goal. In an immune-deficient mouse model, vascularized bone tissue was successfully engineered using human bone marrow mesenchymal stem cells (hMSCs) and human umbilical vein endothelial cells (HUVECs) in a poly (D,L-lactide-co-glycolide) (PLGA) scaffold. Video-rate (30 FPS) intravital confocal microscopy was applied in vitro and in vivo to visualize the vascular structure in the engineered bone and the microcirculation of the blood cells. Postimage processing was applied to perform 3D image reconstruction, by analyzing microvascular networks and calculating blood cell viscosity. The 3D volume reconstructed images show that the hMSCs served as pericytes stabilizing the microvascular network formed by HUVECs. Using orthogonal imaging reconstruction and transparency adjustment, both the vessel structure and blood cells within the vessel lumen were visualized. Network length, network intersections, and intersection densities were successfully computed using our custom-developed software. Viscosity analysis of the blood cells provided functional evaluation of the microcirculation. These results show that by 8 weeks, the blood vessels in peripheral areas function quite similarly to the host vessels. However, the viscosity drops about fourfold where it is only 0.8 mm away from the host. In summary, we developed novel techniques combining intravital microscopy and 3D image processing to analyze the vascularization in engineered bone. These techniques have broad applicability for evaluating vascularization in other engineered tissues as well.
NASA Technical Reports Server (NTRS)
Parsons-Wingerter, Patricia; McKay, Terri L.; Leontiev, Dmitry; Condrich, Terence K.; DiCorleto, Paul E.
2005-01-01
The development of effective vascular therapies requires the understanding of all modes of vessel formation contributing to vasculogenesis, angiogenesis (here termed hemangiogenesis) and lymphangiogenesis. We show that lymphangiogenesis proceeds by blind-ended vessel sprouting via recruitment of isolated endothelial progenitor cells to the tips of growing vessels, whereas hemangiogenesis occurs by non-sprouting vessel expansion from the capillary network, during middevelopment in the quail chorioallantoic membrane (CAM). Blood vessels expanded out of capillaries that displayed transient expression of alpha smooth muscle actin (alphaSMA), accompanied by mural recruitment of migratory progenitor cells expressing SMA. Lymphatics and blood vessels were identified by confocal/fluorescence microscopy of vascular endothelial growth factor (VEGF) receptors VEGFR-1 and VEGFR-2, alphaSMA (expressed on CAM blood vessels but not on lymphatics), homeobox transcription factor Prox-1 (specific to CAM lymphatic endothelium), and the quail hematopoetic/vascular marker, QH-1. Expression of VEGFR-1 was highly restricted to blood vessels (primarily capillaries). VEGFR-2 was expressed intensely in isolated hematopoietic cells, lymphatic vessels and moderately in blood vessels. Prox-1 was absent from endothelial progenitor cells prior to lymphatic recruitment. Although vascular endothelial growth factor-165 (VEGF(sub 165)) is a key regulator of numerous cellular processes in hemangiogenesis and vasculogenesis, the role of VEGF(sub 165) in lymphangiogenesis is less clear. Exogenous VEGF(sub 165) increased blood vessel density without changing endogenous modes of vascular/lymphatic vessel formation or marker expression patterns. However, VEGF(sub 165) did increase the frequency of blood vascular anastomoses and strongly induced the antimaturational dissociation of lymphatics from blood vessels, with frequent formation of homogeneous lymphatic networks.
Fluid Dynamics of Magnetic Nanoparticles in Simulated Blood Vessels
NASA Astrophysics Data System (ADS)
Blue, Lauren; Sewell, Mary Kathryn; Brazel, Christopher S.
2008-11-01
Magnetic nanoparticles (MNPs) can be used to locally target therapies and offer the benefit of using an AC magnetic field to combine hyperthermia treatment with the triggered release of therapeutic agents. Here, we investigate localization of MNPs in a simulated environment to understand the relationship between magnetic field intensity and bulk fluid dynamics to determine MNP retention in a simulated blood vessel. As MNPs travel through blood vessels, they can be slowed or trapped in a specific area by applying a magnetic field. Magnetic cobalt ferrite nanoparticles were synthesized and labeled with a fluorescent rhodamine tag to visualize patterns in a flow cell, as monitored by a fluorescence microscope. Particle retention was determined as a function of flow rate, concentration, and magnetic field strength. Understanding the relationship between magnetic field intensity, flow behavior and nanoparticle characteristics will aid in the development of therapeutic systems specifically targeted to diseased tissue.
Savik, Z F; Rokhlenko, K D
1981-01-01
Electron microscopy was used to study ultrastructures of the wall of blood vessels and muscle fibers of the red (soleus) and mixed (gastrocnemius) muscles of rats flown on Cosmos-605 for 22.5 days and on Cosmos-782 for 19,5 days and sacrificed 4-6 hours, 48 hours and 25-27 days postflight. It was demonstrated that the orbital flight did not induce significant changes in the ultrastructure of blood vessels of the soleus and gastrocnemius muscles but caused atrophy of muscle fibers and reduction of the number of functioning capillaries. Readaptation of the soleus vascular system to 1 g led to degradation of permeability of capillary and venular walls and development of edema of the perivascular connective tissue. This may be one of the factors responsible for dystrophic changes in muscle fibers.
NASA Astrophysics Data System (ADS)
Xiao, Di; Vignarajan, Janardhan; An, Dong; Tay-Kearney, Mei-Ling; Kanagasingam, Yogi
2016-03-01
Retinal photography is a non-invasive and well-accepted clinical diagnosis of ocular diseases. Qualitative and quantitative assessment of retinal images is crucial in ocular diseases related clinical application. In this paper, we proposed approaches for improving the quality of blood vessel detection based on our initial blood vessel detection methods. A blood vessel spur pruning method has been developed for removing the blood vessel spurs both on vessel medial lines and binary vessel masks, which are caused by artifacts and side-effect of Gaussian matched vessel enhancement. A Gaussian matched filtering compensation method has been developed for removing incorrect vessel branches in the areas of low illumination. The proposed approaches were applied and tested on the color fundus images from one publicly available database and our diabetic retinopathy screening dataset. A preliminary result has demonstrated the robustness and good performance of the proposed approaches and their potential application for improving retinal blood vessel detection.
A novel perivascular cell population in the zebrafish brain
Galanternik, Marina Venero; Castranova, Daniel; Gore, Aniket V; Blewett, Nathan H; Jung, Hyun Min; Stratman, Amber N; Kirby, Martha R; Iben, James; Miller, Mayumi F; Kawakami, Koichi; Maraia, Richard J; Weinstein, Brant M
2017-01-01
The blood-brain barrier is essential for the proper homeostasis and function of the CNS, but its mechanism of function is poorly understood. Perivascular cells surrounding brain blood vessels are thought to be important for blood-brain barrier establishment, but their roles are not well defined. Here, we describe a novel perivascular cell population closely associated with blood vessels on the zebrafish brain. Based on similarities in their morphology, location, and scavenger behavior, these cells appear to be the zebrafish equivalent of cells variably characterized as Fluorescent Granular Perithelial cells (FGPs), perivascular macrophages, or ‘Mato Cells’ in mammals. Despite their macrophage-like morphology and perivascular location, zebrafish FGPs appear molecularly most similar to lymphatic endothelium, and our imaging studies suggest that these cells emerge by differentiation from endothelium of the optic choroidal vascular plexus. Our findings provide the first report of a perivascular cell population in the brain derived from vascular endothelium. DOI: http://dx.doi.org/10.7554/eLife.24369.001 PMID:28395729
Influence of cerebral blood vessel movements on the position of perivascular synapses
DeFelipe, Javier
2017-01-01
Synaptic activity is regulated and limited by blood flow, which is controlled by blood vessel dilation and contraction. Traditionally, the study of neurovascular coupling has mainly focused on energy consumption and oxygen delivery. However, the mechanical changes that blood vessel movements induce in the surrounding tissue have not been considered. We have modeled the mechanical changes that movements of blood vessels cause in neighboring synapses. Our simulations indicate that synaptic densities increase or decrease during vascular dilation and contraction, respectively, near the blood vessel walls. This phenomenon may alter the concentration of neurotransmitters and vasoactive substances in the immediate vicinity of the vessel wall and thus may have an influence on local blood flow. PMID:28199396
NASA Astrophysics Data System (ADS)
Yu, Tianhao; Li, Qian; Li, Lin; Zhou, Chuanqing
2016-10-01
Accuracy of photoacoustic signal is the crux on measurement of oxygen saturation in functional photoacoustic imaging, which is influenced by factors such as defocus of laser beam, curve shape of large vessels and nonlinear saturation effect of optical absorption in biological tissues. We apply Monte Carlo model to simulate energy deposition in tissues and obtain photoacoustic signals reaching a simulated focused surface detector to investigate corresponding influence of these factors. We also apply compensation on photoacoustic imaging of in vivo cat cerebral cortex blood vessels, in which signals from different lateral positions of vessels are corrected based on simulation results. And this process on photoacoustic images can improve the smoothness and accuracy of oxygen saturation results.
Method and device for supporting blood vessels during anastomosis
Doss, J.D.
1985-05-20
A device and method for preventing first and second severed blood vessels from collapsing during attachment to each other. The device comprises a dissolvable non-toxic stent that is sufficiently rigid to prevent the blood vessels from collapsing during anastomosis. The stent can be hollow or have passages to permit blood flow before it dissolves. A single stent can be inserted with an end in each of the two blood vessels or separate stents can be inserted into each blood vessel. The stent may include a therapeutically effective amount of a drug which is slowly released into the blood stream as the stent dissolves. 12 figs.
Paraskevaidis, I A; Kremastinos, D T; Kassimatis, A S; Karavolias, G K; Kordosis, G D; Kyriakides, Z S; Toutouzas, P K
1993-01-01
OBJECTIVE--To determine whether an abnormal response of diastolic blood pressure during treadmill exercise stress testing correlated with the number of obstructed vessels and with left ventricular systolic function in patients with coronary artery disease. DESIGN--Diastolic blood pressure was measured invasively during exercise stress testing and coronary angiograms and left ventriculograms were obtained at rest in patients with coronary artery disease. The abnormal (> or = 15 mm Hg) diastolic blood pressure response was compared with the number of obstructed coronary arteries and with left ventricular systolic function. SETTING--Two tertiary referral centres. PATIENTS--50 consecutive patients (mean age 57 years) with coronary artery disease. MAIN OUTCOME MEASURES--The increase in diastolic blood pressure during exercise and its correlation with the appearance and disappearance of ST segment deviation, resting left ventricular systolic function, and the number of obstructed coronary arteries. RESULTS--Group 1: 10 (20%) patients (three with one, four with two, and three with three vessel coronary artery disease) (mean (SD) age 54.7 (12) years) had an abnormal diastolic blood pressure response that appeared 1.2 (0.3) min before ST segment deviation and became normal 0.9 (0.3) min after the ST segment returned to normal. Group 2: 40 (80%) patients (12 with one, 16 with two, and 12 with three vessel coronary arteries disease) (aged 56.8 (8.2) years) had a normal diastolic blood pressure response to stress testing. The ejection fraction (46.3 (5)%) and cardiac index (2.6 (0.1) 1/min/m2) in group 1 were less than in group 2 (61.6 (4.2)% and 3.8 (0.3) 1/min/m2 respectively, p < or = 0.001). The end systolic volume was greater in group 1 than in group 2: 38.7 (0.7 ml/m2 v 28.2 (2.1) ml/m2, p < or = 0.001. CONCLUSION--In patients with coronary artery disease an abnormal increase in diastolic blood pressure during exercise stress testing correlated well with left ventricular systolic function at rest but not with the number of obstructed coronary arteries. The abnormal response of diastolic blood pressure probably reflects deterioration of myocardial function. Images PMID:8343317
Modelling dynamic changes in blood flow and volume in the cerebral vasculature.
Payne, S J; El-Bouri, W K
2018-08-01
The cerebral microvasculature plays a key role in the transport of blood and the delivery of nutrients to the cells that perform brain function. Although recent advances in experimental imaging techniques mean that its structure and function can be interrogated to very small length scales, allowing individual vessels to be mapped to a fraction of 1 μm, these techniques currently remain confined to animal models. In-vivo human data can only be obtained at a much coarser length scale, of order 1 mm, meaning that mathematical models of the microvasculature play a key role in interpreting flow and metabolism data. However, there are close to 10,000 vessels even within a single voxel of size 1 mm 3 . Given the number of vessels present within a typical voxel and the complexity of the governing equations for flow and volume changes, it is computationally challenging to solve these in full, particularly when considering dynamic changes, such as those found in response to neural activation. We thus consider here the governing equations and some of the simplifications that have been proposed in order more rigorously to justify in what generations of blood vessels these approximations are valid. We show that two approximations (neglecting the advection term and assuming a quasi-steady state solution for blood volume) can be applied throughout the cerebral vasculature and that two further approximations (a simple first order differential relationship between inlet and outlet flows and inlet and outlet pressures, and matching of static pressure at nodes) can be applied in vessels smaller than approximately 1 mm in diameter. We then show how these results can be applied in solving flow fields within cerebral vascular networks providing a simplified yet rigorous approach to solving dynamic flow fields and compare the results to those obtained with alternative approaches. We thus provide a framework to model cerebral blood flow and volume within the cerebral vasculature that can be used, particularly at sub human imaging length scales, to provide greater insight into the behaviour of blood flow and volume in the cerebral vasculature. Copyright © 2018 Elsevier Inc. All rights reserved.
[Role of C5b-9 expression in skeletal muscle blood vessels in necrotizing myopathy].
Cong, Lu; Pu, Chuanqiang; Mao, Yanling; Liu, Jiexiao; Lu, Xianghui; Wang, Qian
2012-05-01
To investigate the expression of C5b-9 in the skeletal muscle blood vessels in patients with necrotizing myopathy and explore its role in the pathogenesis of this disease. The expression of C5b-9 and MHC-I in the skeletal muscular fibers and blood vessels in 4 patients with necrotizing myopathy was detected using enzymohistochemistry and immunohistochemistry. Focal or dispersive necrotic muscle fibers with obvious phagocytosis were observed in all the 4 patients. No inflammatory cell infiltration was found in the perimysium or perivascular regions. HE staining showed a decreased number of local small blood vessels, and the some small blood vessels showed thickened vascular walls. Immunohistochemistry detected prominent C5b-9 expression in the necrotic muscle fibers and the blood vessels, and diffuse strong C5b-9 expression was found in the vascular walls, vascular endothelial cells and the smooth muscle layer. No MHC-I deposition was detected in the muscular fibers and blood vessels. C5b-9 contributes to the pathogenesis of necrotizing myopathy mediated by pathologies in the blood vessels.
Silver, A
1977-05-01
The distribution of acetylcholinesterase-containing blood vessels in the ovary has been investigated histochemically during the reproductive cycle of the guinea-pig. Whole mounts as well as frozen sections have been studied. Stained vessels were found in the stroma throughout the oestrous cycle and pregnancy. In the corpus luteum the vascular reaction varied at different stages of the oestrous cycle; while never very pronounced, it was more marked in lactating than in non-lactating animals. A feregnancy advanced an increasing number of vessels were strongly stained. At the end of pregnancy, stained vessels were less prominent. Acetylcholinesterase appeared to be localized prinicipally in the vessels themselves (possibly in muscle cells) rather than in associated nerves. Experiments in which ovaries were injected, via their arterial or venous supply, with starch or coloured gelatine suggested that most stained vessels were arterioles but a reaction also occurred in some vessels which were probably arteries and others which could have been the postulated arterio-venous shunts. Capillaries were unstained; whether the veins were also totally unreactive could not be established. The significance of the changes in acetylcholinesterase staining in varying functional states remains obscure; they may or may not reflect the emergence of certain types of vessel at different stages.
NASA Astrophysics Data System (ADS)
Li, Yuandong; Choi, Woo June; Wang, Ruikang K.
2017-03-01
The adaptive growth of collateral vessels, termed "arteriogenesis", is crucial for maintaining regional blood supply during arterial obstruction and offsetting the adverse effect of tissue ischemia. Stimulation of arteriogenesis has been applied for the treatment of occlusive vascular diseases, and in vivo imaging of the progressive development of collateral vessel will facilitate a better understanding of the mechanism. We present using high-resolution OCT-based microangiography (OMAG) to image arteriogenesis process longitudinally in mouse cerebral cortex after middle cerebral artery occlusion (MCAO). We imaged the collateral arterioles at the arteriolo-arteriolar anastomosis (AAA) within 7-day period after MCAO to reveal key elements of collateral vessel remodeling, including alteration in vessel morphology, velocity and directionality of blood flow. The magnitudes of changes in these parameters matched the time course of the active building of collateral vessels stated in previous studies using histology. Hence, OMAG is a promising imaging tool for non-invasive longitudinal study of functional collateral vessel growth in small animal models and can be potentially applied in the experimental study of arteriogenesis stimulation.
Goodrich, K C; Blatter, D D; Parker, D L; Du, Y P; Meyer, K J; Bernstein, M A
1996-06-01
The authors compare the effectiveness of various magnetic resonance (MR) angiography acquisition strategies in enhancing the visibility of small intracranial vessels. Blood vessel contrast-to-noise ratio (CNR) in time-of-flight MR angiography was studied as a function of vessel size and several selectable imaging parameters. Contrast-to-noise measurements were made on 257 vessel segments ranging in size from 0.3 mm to 4.2 mm in patients who recently had undergone intraarterial cerebral angiography. Imaging parameters studied included magnetization transfer, spatially variable radio frequency (RF) pulse profile (ramped RF), and imaging slab thickness. The combination of thin slabs (16 slices/slab), ramped RF, and magnetization transfer resulted in the highest CNR for all but the smallest vessel sizes. The smallest vessels (< 0.5 mm) had the highest CNR, using the thick slab (64 slices/slab) with ramped RF and magnetization transfer. Magnetization transfer always improved vessel CNR, but the improvement diminished as the slab thickness was reduced. The CNR increased with a decrease in slab thickness for all but the smallest vessel sizes. Overall, the results provide a quantitative demonstration that inflow enhancement of blood is reduced for small vessels. Thus, whereas magnetization transfer is important at all vessel sizes, it becomes the primary factor in improving the visibility of the smallest vessels.
Feder, Idit; Duadi, Hamootal; Dreifuss, Tamar; Fixler, Dror
2016-10-01
Optical methods for detecting physiological state based on light-tissue interaction are noninvasive, inexpensive, simplistic, and thus very useful. The blood vessels in human tissue are the main cause of light absorbing and scattering. Therefore, the effect of blood vessels on light-tissue interactions is essential for optically detecting physiological tissue state, such as oxygen saturation, blood perfusion and blood pressure. We have previously suggested a new theoretical and experimental method for measuring the full scattering profile, which is the angular distribution of light intensity, of cylindrical tissues. In this work we will present experimental measurements of the full scattering profile of heterogenic cylindrical phantoms that include blood vessels. We show, for the first time that the vessel diameter influences the full scattering profile, and found higher reflection intensity for larger vessel diameters accordance to the shielding effect. For an increase of 60% in the vessel diameter the light intensity in the full scattering profile above 90° is between 9% to 40% higher, depending on the angle. By these results we claim that during respiration, when the blood-vessel diameter changes, it is essential to consider the blood-vessel diameter distribution in order to determine the optical path in tissues. A CT scan of the measured silicon-based phantoms. The phantoms contain the same blood volume in different blood-vessel diameters. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Latimer, Cassandra A; Nelson, Meghan; Moore, Camille M; Martin, Kimberly E
2014-01-01
Bipolar devices are routinely used to seal blood vessels instead of sutures and clips. Recent work examining the impact of vascular proteins on bipolar seal performance found that collagen and elastin (CE) content within porcine arteries was a significant predictor of a vessel's burst pressure (VBPr). This study examined seal performance across a range of human blood vessels to investigate whether a similar relationship existed. In addition, we compared VBPr and CE content between porcine and human blood vessels. Our primary hypothesis is that higher collagen-to-elastin ratio will predict higher VBPr in human vasculature. In six cadavers, 185 blood vessels from nine anatomic locations were sealed using a bipolar electrosurgical system. A linear mixed model framework was used to evaluate the impact of vessel diameter and CE content on VBPr. The effect of CE ratio on VBPr is modified by vessel size, with CE ratio having larger influence on VBPr in smaller diameter vessels. Seal burst pressure of vessels 2-5 mm in diameter was significantly associated with their CE content. Comparison of average VBPr between species revealed porcine carotid and iliac arteries (440-670 mmHg) to be the best vessel types for predicting the seal strength of most human blood vessels (420-570 mmHg) examined. CE content significantly modified the seal strength of small to medium sized blood vessels but had limited impact on vessels >5 mm. Copyright © 2014 Elsevier Inc. All rights reserved.
Establishing the diffuse correlation spectroscopy signal relationship with blood flow.
Boas, David A; Sakadžić, Sava; Selb, Juliette; Farzam, Parisa; Franceschini, Maria Angela; Carp, Stefan A
2016-07-01
Diffuse correlation spectroscopy (DCS) measurements of blood flow rely on the sensitivity of the temporal autocorrelation function of diffusively scattered light to red blood cell (RBC) mean square displacement (MSD). For RBCs flowing with convective velocity [Formula: see text], the autocorrelation is expected to decay exponentially with [Formula: see text], where [Formula: see text] is the delay time. RBCs also experience shear-induced diffusion with a diffusion coefficient [Formula: see text] and an MSD of [Formula: see text]. Surprisingly, experimental data primarily reflect diffusive behavior. To provide quantitative estimates of the relative contributions of convective and diffusive movements, we performed Monte Carlo simulations of light scattering through tissue of varying vessel densities. We assumed laminar vessel flow profiles and accounted for shear-induced diffusion effects. In agreement with experimental data, we found that diffusive motion dominates the correlation decay for typical DCS measurement parameters. Furthermore, our model offers a quantitative relationship between the RBC diffusion coefficient and absolute tissue blood flow. We thus offer, for the first time, theoretical support for the empirically accepted ability of the DCS blood flow index ([Formula: see text]) to quantify tissue perfusion. We find [Formula: see text] to be linearly proportional to blood flow, but with a proportionality modulated by the hemoglobin concentration and the average blood vessel diameter.
NASA Astrophysics Data System (ADS)
Cheema, Taqi Ahmad; Park, Cheol Woo
2013-08-01
Stenosis is the drastic reduction of blood vessel diameter because of cholesterol accumulation in the vessel wall. In addition to the changes in blood flow characteristics, significant changes occur in the mechanical behavior of a stenotic blood vessel. We conducted a 3-D study of such behavior in micro-scale blood vessels by considering the fluid structure interaction between blood flow and vessel wall structure. The simulation consisted of one-way coupled analysis of blood flow and the resulting structural deformation without a moving mesh. A commercial code based on a finite element method with a hyperelastic material model (Neo-Hookean) of the wall was used to calculate wall deformation. Three different cases of stenosis severity and aspect ratios with and without muscles around the blood vessel were considered. The results showed that the wall deformation in a stenotic channel is directly related to stenosis severity and aspect ratio. The presence of muscles reduces the degree of deformation even in very severe stenosis.
Blocki, Anna; Beyer, Sebastian; Jung, Friedrich; Raghunath, Michael
2018-01-01
Pericytes reside within the basement membrane of small vessels and are often in direct cellular contact with endothelial cells, fulfilling important functions during blood vessel formation and homeostasis. Recently, these pericytes have been also identified as mesenchymal stem cells. Mesenchymal stem cells, and especially their specialized subpopulation of pericytes, represent promising candidates for therapeutic angiogenesis applications, and have already been widely applied in pre-clinical and clinical trials. However, cell-based therapies of ischemic diseases (especially of myocardial infarction) have not resulted in significant long-term improvement. Interestingly, pericytes from a hematopoietic origin were observed in embryonic skin and a pericyte sub-population expressing leukocyte and monocyte markers was described during adult angiogenesis in vivo. Since mesenchymal stem cells do not express hematopoietic markers, the latter cell type might represent an alternative pericyte population relevant to angiogenesis. Therefore, we sourced blood-derived angiogenic cells (BDACs) from monocytes that closely resembled hematopoietic pericytes, which had only been observed in vivo thus far. BDACs displayed many pericytic features and exhibited enhanced revascularization and functional tissue regeneration in a pre-clinical model of critical limb ischemia. Comparison between BDACs and mesenchymal pericytes indicated that BDACs (while resembling hematopoietic pericytes) enhanced early stages of angiogenesis, such as endothelial cell sprouting. In contrast, mesenchymal pericytes were responsible for blood vessel maturation and homeostasis, while reducing endothelial sprouting.Since the formation of new blood vessels is crucial during therapeutic angiogenesis or during integration of implants into the host tissue, hematopoietic pericytes (and therefore BDACs) might offer an advantageous addition or even an alternative for cell-based therapies.
Borton, Anna Henry; Benson, Bryan L; Neilson, Lee E; Saunders, Ashley; Alaiti, M Amer; Huang, Alex Y; Jain, Mukesh K; Proweller, Aaron; Ramirez-Bergeron, Diana L
2018-06-01
Limb ischemia resulting from peripheral vascular disease is a common cause of morbidity. Vessel occlusion limits blood flow, creating a hypoxic environment that damages distal tissue, requiring therapeutic revascularization. Hypoxia-inducible factors (HIFs) are key transcriptional regulators of hypoxic vascular responses, including angiogenesis and arteriogenesis. Despite vascular smooth muscle cells' (VSMCs') importance in vessel integrity, little is known about their functional responses to hypoxia in peripheral vascular disease. This study investigated the role of VSMC HIF in mediating peripheral ischemic responses. We used Arnt SMKO mice with smooth muscle-specific deletion of aryl hydrocarbon receptor nuclear translocator (ARNT, HIF-1β), required for HIF transcriptional activity, in a femoral artery ligation model of peripheral vascular disease. Arnt SMKO mice exhibit impaired perfusion recovery despite normal collateral vessel dilation and angiogenic capillary responses. Decreased blood flow manifests in extensive tissue damage and hypoxia in ligated limbs of Arnt SMKO mice. Furthermore, loss of aryl hydrocarbon receptor nuclear translocator changes the proliferation, migration, and transcriptional profile of cultured VSMCs. Arnt SMKO mice display disrupted VSMC morphologic features and wrapping around arterioles and increased vascular permeability linked to decreased local blood flow. Our data demonstrate that traditional vascular remodeling responses are insufficient to provide robust peripheral tissue reperfusion in Arnt SMKO mice. In all, this study highlights HIF responses to hypoxia in arteriole VSMCs critical for the phenotypic and functional stability of vessels that aid in the recovery of blood flow in ischemic peripheral tissues. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
The crosstalk between autonomic nervous system and blood vessels
Sheng, Yulan; Zhu, Li
2018-01-01
The autonomic nervous system (ANS), comprised of two primary branches, sympathetic and parasympathetic nervous system, plays an essential role in the regulation of vascular wall contractility and tension. The sympathetic and parasympathetic nerves work together to balance the functions of autonomic effector organs. The neurotransmitters released from the varicosities in the ANS can regulate the vascular tone. Norepinephrine (NE), adenosine triphosphate (ATP) and Neuropeptide Y (NPY) function as vasoconstrictors, whereas acetylcholine (Ach) and calcitonin gene-related peptide (CGRP) can mediate vasodilation. On the other hand, vascular factors, such as endothelium-derived relaxing factor nitric oxide (NO), and constriction factor endothelin, play an important role in the autonomic nervous system in physiologic conditions. Endothelial dysfunction and inflammation are associated with the sympathetic nerve activity in the pathological conditions, such as hypertension, heart failure, and diabetes mellitus. The dysfunction of the autonomic nervous system could be a risk factor for vascular diseases and the overactive sympathetic nerve is detrimental to the blood vessel. In this review, we summarize findings concerning the crosstalk between ANS and blood vessels in both physiological and pathological conditions and hope to provide insight into the development of therapeutic interventions of vascular diseases. PMID:29593847
Marchesi, Vincent T
2016-02-01
Amyloid deposits are a characteristic feature of advanced Alzheimer dementia (AD), but whether they initiate the disease or are a consequence of it remains an unsettled question. To explore an alternative pathogenic mechanism, I propose that the triggering events that begin the pathogenic cascade are not amyloid deposits but damaged blood vessels caused by inflammatory reactions that lead to ischemia, amyloid accumulation, axonal degeneration, synaptic loss, and eventually irreversible neuronal cell death. Inflammation and blood vessel damage are well recognized complications of AD, but what causes them and why the cerebral microvasculature is affected have never been adequately addressed. Because heritable autosomal dominant mutations of NLRP3, APP, TREX1, NOTCH3, and Col4A1 are known to provoke inflammatory reactions and damage the brain in a wide variety of diseases, I propose that one or more low abundant, gain-of-function somatic mutations of the same 5 gene families damage the microvasculature of the brain that leads to dementia. This implies that the pathogenic triggers that lead to AD are derived not from external invaders or amyloid but from oxidative damage of our own genes. © FASEB.
Liu, Gangjun; Jia, Wangcun; Nelson, J Stuart; Chen, Zhongping
2013-12-01
Port-wine stain (PWS) is a congenital, progressive vascular malformation of the dermis. The use of optical coherence tomography (OCT) for the characterization of blood vessels in PWS skin has been demonstrated by several groups. In the past few years, advances in OCT technology have greatly increased imaging speed. Sophisticated numerical algorithms have improved the sensitivity of Doppler OCT dramatically. These improvements have enabled the noninvasive, high-resolution, three-dimensional functional imaging of PWS skin. Here, we demonstrate high-resolution, three-dimensional, microvasculature imaging of PWS and normal skin using Doppler OCT technique. The OCT system uses a swept source laser which has a central wavelength of 1,310 nm, an A-line rate of 50 kHz and a total average power of 16 mW. The system uses a handheld imaging probe and has an axial resolution of 9.3 µm in air and a lateral resolution of approximately 15 µm. Images were acquired from PWS subjects at the Beckman Laser Institute and Medical Clinic. Microvasculature of the PWS skin and normal skin were obtained from the PWS subject. High-resolution, three-dimensional microvasculature of PWS and normal skin were obtained. Many enlarged PWS vessels are detected in the dermis down to 1.0 mm below the PWS skin surface. In one subject, the blood vessel diameters range from 40 to 90 µm at the epidermal-dermal junction and increase up to 300-500 µm at deeper regions 700-1,000 µm below skin surface. The blood vessels close to the epidermal-dermal junction are more uniform, in terms of diameter. The more tortuous and dilated PWS blood vessels are located at deeper regions 600-1,000 µm below the skin surface. In another subject example, the PWS skin blood vessels are dilated at very superficial layers at a depth less than 500 µm below the skin surface. The PWS skin vessel diameters range from 60 to 650 µm, with most vessels having a diameter of around 200 µm. OCT can be used to quantitatively image in vivo skin micro-vasculature. Analysis of the PWS and normal skin blood vessels were performed and the results can provide quantitative information to optimize laser treatment on an individual patient basis. © 2013 Wiley Periodicals, Inc.
Dincer, U Deniz
2016-05-30
Endothelium represents a defense barrier and responds and integrates neuro humoral stimulus which describes as a compensatory mechanism. Endothelium formed with endothelial cells (ECs) and their progenitors. Endothelial progenitor cells (EPCs) represent minor subpopulation of mononuclear cells in the blood. During acute hypoxia, larger amount of EPCs mobilize into the peripheral blood and they directly contribute revascularization process. One of the subtypes of EPC is termed endothelial colony forming cells (ECFCs) which they possess de novo vessel-forming ability. The present study aims to investigate the role of hypoxia in EPCs functional and vessel-forming ability. Furthermore, it was investigated whether fetal exposure to a diabetic intrauterine environment influence EPCs adaptation ability. Human umbilical cord blood (HUCB) derived ECFCs were selected in all experimental procedures obtained from normal and gestational diabetes mellitus (GDM) subjects via in vitro cell culture methods. Early passage (<5) HUCB ECFCs obtain from GDM (n; 5) and control (n; 5) subjects were cultured with plates pre-coated with collagen in vitro 72 h hypoxic as well as normoxic condition. Endothelial, angiogenic and hypoxia associated gene specific primers designed to perform Real-time PCR. Senescenes assay conducted onto HUCB ECFCs to investigate their functional clonogenic ability. To quantify their vessel forming ability matrigel assay was applied. These data demonstrates that moderate hypoxia results increased vessel-forming ability and VEGFA expression in HUCB ECFCs obtained from control subjects. However, GDM caused to impede compensatory defense reaction against hypoxia which observed in control subjects. Thus, it illuminates beneficial information related future therapeutic modalities.
Awojoyogbe, O B; Faromika, O P; Dada, M; Boubaker, Karem; Ojambati, O S
2011-12-01
Most cardiovascular emergencies are directly caused by coronary artery disease. Coronary arteries can become clogged or occluded, leading to damage to the heart muscle supplied by the artery. Modem cardiovascular medicine can certainly be improved by meticulous analysis of geometrical factors closely associated with the degenerative disease that results in narrowing of the coronary arteries. There are, however, inherent difficulties in developing this type of mathematical models to completely describe the real or ideal geometries that are very critical in plaque formation and thickening of the vessel wall. Neither the mathematical models of the blood vessels with arthrosclerosis generated by the heart and blood flow or the NMR/MRI data to construct them are available. In this study, a mathematical formulation for the geometrical factors that are very critical for the understanding of coronary artery disease is presented. Based on the Bloch NMR flow equations, we derive analytical expressions to describe in detail the NMR transverse magnetizations and signals as a function of some NMR flow and geometrical parameters which are invaluable for the analysis of blood flow in restricted blood vessels. The procedure would apply to the situations in which the geometry of the fatty deposits, (plague) on the interior walls of the coronary arteries is spherical. The boundary conditions are introduced based on Bessel, Boubaker and Legendre polynomials.
NASA Astrophysics Data System (ADS)
Qi, Li; Zhu, Jiang; Hancock, Aneeka M.; Dai, Cuixia; Zhang, Xuping; Frostig, Ron D.; Chen, Zhongping
2017-02-01
Doppler optical coherence tomography (DOCT) is considered one of the most promising functional imaging modalities for neuro biology research and has demonstrated the ability to quantify cerebral blood flow velocity at a high accuracy. However, the measurement of total absolute blood flow velocity (BFV) of major cerebral arteries is still a difficult problem since it not only relates to the properties of the laser and the scattering particles, but also relates to the geometry of both directions of the laser beam and the flow. In this paper, focusing on the analysis of cerebral hemodynamics, we presents a method to quantify the total absolute blood flow velocity in middle cerebral artery (MCA) based on volumetric vessel reconstruction from pure DOCT images. A modified region growing segmentation method is first used to localize the MCA on successive DOCT B-scan images. Vessel skeletonization, followed by an averaging gradient angle calculation method, is then carried out to obtain Doppler angles along the entire MCA. Once the Doppler angles are determined, the absolute blood flow velocity of each position on the MCA is easily found. Given a seed point position on the MCA, our approach could achieve automatic quantification of the fully distributed absolute BFV. Based on experiments conducted using a swept-source optical coherence tomography system, our approach could achieve automatic quantification of the fully distributed absolute BFV across different vessel branches in the rodent brain.
Melanopsin mediates light-dependent relaxation in blood vessels.
Sikka, Gautam; Hussmann, G Patrick; Pandey, Deepesh; Cao, Suyi; Hori, Daijiro; Park, Jong Taek; Steppan, Jochen; Kim, Jae Hyung; Barodka, Viachaslau; Myers, Allen C; Santhanam, Lakshmi; Nyhan, Daniel; Halushka, Marc K; Koehler, Raymond C; Snyder, Solomon H; Shimoda, Larissa A; Berkowitz, Dan E
2014-12-16
Melanopsin (opsin4; Opn4), a non-image-forming opsin, has been linked to a number of behavioral responses to light, including circadian photo-entrainment, light suppression of activity in nocturnal animals, and alertness in diurnal animals. We report a physiological role for Opn4 in regulating blood vessel function, particularly in the context of photorelaxation. Using PCR, we demonstrate that Opn4 (a classic G protein-coupled receptor) is expressed in blood vessels. Force-tension myography demonstrates that vessels from Opn4(-/-) mice fail to display photorelaxation, which is also inhibited by an Opn4-specific small-molecule inhibitor. The vasorelaxation is wavelength-specific, with a maximal response at ∼430-460 nm. Photorelaxation does not involve endothelial-, nitric oxide-, carbon monoxide-, or cytochrome p450-derived vasoactive prostanoid signaling but is associated with vascular hyperpolarization, as shown by intracellular membrane potential measurements. Signaling is both soluble guanylyl cyclase- and phosphodiesterase 6-dependent but protein kinase G-independent. β-Adrenergic receptor kinase 1 (βARK 1 or GRK2) mediates desensitization of photorelaxation, which is greatly reduced by GRK2 inhibitors. Blue light (455 nM) regulates tail artery vasoreactivity ex vivo and tail blood blood flow in vivo, supporting a potential physiological role for this signaling system. This endogenous opsin-mediated, light-activated molecular switch for vasorelaxation might be harnessed for therapy in diseases in which altered vasoreactivity is a significant pathophysiologic contributor.
Analysis of Blood Flow in a Partially Blocked Bifurcated Blood Vessel
NASA Astrophysics Data System (ADS)
Abdul-Razzak, Hayder; Elkassabgi, Yousri; Punati, Pavan K.; Nasser, Naseer
2009-09-01
Coronary artery disease is a major cause of death in the United States. It is the narrowing of the lumens of the coronary blood vessel by a gradual build-up of fatty material, atheroma, which leads to the heart muscle not receiving enough blood. This my ocardial ischemia can cause angina, a heart attack, heart failure as well as sudden cardiac death [9]. In this project a solid model of bifurcated blood vessel with an asymmetric stenosis is developed using GAMBIT and imported into FLUENT for analysis. In FLUENT, pressure and velocity distributions in the blood vessel are studied under different conditions, where the size and position of the blockage in the blood vessel are varied. The location and size of the blockage in the blood vessel are correlated with the pressures and velocities distributions. Results show that such correlation may be used to predict the size and location of the blockage.
Exposure to hyperoxia in the neonatal period alters bone marrow function
USDA-ARS?s Scientific Manuscript database
Oxygen is often life saving in preterm infants, however, excessive exposure may lead to blood vessel and tissue injury in the lung and retina. Oxygen-treated neonates often exhibit bone marrow (BM) suppression requiring blood product transfusions. However, we do not know whether oxygen is directly t...
Buxton, R. B.; Prisk, G. K.
2012-01-01
MRI images of pulmonary blood flow using arterial spin labeling (ASL) measure the delivery of magnetically tagged blood to an image plane during one systolic ejection period. However, the method potentially suffers from two problems, each of which may depend on the imaging plane location: 1) the inversion plane is thicker than the imaging plane, resulting in a gap that blood must cross to be detected in the image; and 2) ASL includes signal contributions from tagged blood in conduit vessels (arterial and venous). By using an in silico model of the pulmonary circulation we found the gap reduced the ASL signal to 64–74% of that in the absence of a gap in the sagittal plane and 53–84% in the coronal. The contribution of the conduit vessels varied markedly as a function of image plane ranging from ∼90% of the overall signal in image planes that encompass the central hilar vessels to <20% in peripheral image planes. A threshold cutoff removing voxels with intensities >35% of maximum reduced the conduit vessel contribution to the total ASL signal to ∼20% on average; however, planes with large contributions from conduit vessels underestimate acinar flow due to a high proportion of in-plane flow, making ASL measurements of perfusion impractical. In other image planes, perfusion dominated the resulting ASL images with good agreement between ASL and acinar flow. Similarly, heterogeneity of the ASL signal as measured by relative dispersion is a reliable measure of heterogeneity of the acinar flow distribution in the same image planes. PMID:22539167
Burrowes, K S; Buxton, R B; Prisk, G K
2012-07-01
MRI images of pulmonary blood flow using arterial spin labeling (ASL) measure the delivery of magnetically tagged blood to an image plane during one systolic ejection period. However, the method potentially suffers from two problems, each of which may depend on the imaging plane location: 1) the inversion plane is thicker than the imaging plane, resulting in a gap that blood must cross to be detected in the image; and 2) ASL includes signal contributions from tagged blood in conduit vessels (arterial and venous). By using an in silico model of the pulmonary circulation we found the gap reduced the ASL signal to 64-74% of that in the absence of a gap in the sagittal plane and 53-84% in the coronal. The contribution of the conduit vessels varied markedly as a function of image plane ranging from ∼90% of the overall signal in image planes that encompass the central hilar vessels to <20% in peripheral image planes. A threshold cutoff removing voxels with intensities >35% of maximum reduced the conduit vessel contribution to the total ASL signal to ∼20% on average; however, planes with large contributions from conduit vessels underestimate acinar flow due to a high proportion of in-plane flow, making ASL measurements of perfusion impractical. In other image planes, perfusion dominated the resulting ASL images with good agreement between ASL and acinar flow. Similarly, heterogeneity of the ASL signal as measured by relative dispersion is a reliable measure of heterogeneity of the acinar flow distribution in the same image planes.
Optic cup segmentation: type-II fuzzy thresholding approach and blood vessel extraction
Almazroa, Ahmed; Alodhayb, Sami; Raahemifar, Kaamran; Lakshminarayanan, Vasudevan
2017-01-01
We introduce here a new technique for segmenting optic cup using two-dimensional fundus images. Cup segmentation is the most challenging part of image processing of the optic nerve head due to the complexity of its structure. Using the blood vessels to segment the cup is important. Here, we report on blood vessel extraction using first a top-hat transform and Otsu’s segmentation function to detect the curves in the blood vessels (kinks) which indicate the cup boundary. This was followed by an interval type-II fuzzy entropy procedure. Finally, the Hough transform was applied to approximate the cup boundary. The algorithm was evaluated on 550 fundus images from a large dataset, which contained three different sets of images, where the cup was manually marked by six ophthalmologists. On one side, the accuracy of the algorithm was tested on the three image sets independently. The final cup detection accuracy in terms of area and centroid was calculated to be 78.2% of 441 images. Finally, we compared the algorithm performance with manual markings done by the six ophthalmologists. The agreement was determined between the ophthalmologists as well as the algorithm. The best agreement was between ophthalmologists one, two and five in 398 of 550 images, while the algorithm agreed with them in 356 images. PMID:28515636
Optic cup segmentation: type-II fuzzy thresholding approach and blood vessel extraction.
Almazroa, Ahmed; Alodhayb, Sami; Raahemifar, Kaamran; Lakshminarayanan, Vasudevan
2017-01-01
We introduce here a new technique for segmenting optic cup using two-dimensional fundus images. Cup segmentation is the most challenging part of image processing of the optic nerve head due to the complexity of its structure. Using the blood vessels to segment the cup is important. Here, we report on blood vessel extraction using first a top-hat transform and Otsu's segmentation function to detect the curves in the blood vessels (kinks) which indicate the cup boundary. This was followed by an interval type-II fuzzy entropy procedure. Finally, the Hough transform was applied to approximate the cup boundary. The algorithm was evaluated on 550 fundus images from a large dataset, which contained three different sets of images, where the cup was manually marked by six ophthalmologists. On one side, the accuracy of the algorithm was tested on the three image sets independently. The final cup detection accuracy in terms of area and centroid was calculated to be 78.2% of 441 images. Finally, we compared the algorithm performance with manual markings done by the six ophthalmologists. The agreement was determined between the ophthalmologists as well as the algorithm. The best agreement was between ophthalmologists one, two and five in 398 of 550 images, while the algorithm agreed with them in 356 images.
Separating genetic and hemodynamic defects in neuropilin 1 knockout embryos.
Jones, Elizabeth A V; Yuan, Li; Breant, Christine; Watts, Ryan J; Eichmann, Anne
2008-08-01
Targeted inactivation of genes involved in murine cardiovascular development frequently leads to abnormalities in blood flow. As blood fluid dynamics play a crucial role in shaping vessel morphology, the presence of flow defects generally prohibits the precise assignment of the role of the mutated gene product in the vasculature. In this study, we show how to distinguish between genetic defects caused by targeted inactivation of the neuropilin 1 (Nrp1) receptor and hemodynamic defects occurring in homozygous knockout embryos. Our analysis of a Nrp1 null allele bred onto a C57BL/6 background shows that vessel remodeling defects occur concomitantly with the onset of blood flow and cause death of homozygous mutants at E10.5. Using mouse embryo culture, we establish that hemodynamic defects are already present at E8.5 and continuous circulation is never established in homozygous mutants. The geometry of yolk sac blood vessels is altered and remodeling into yolk sac arteries and veins does not occur. To separate flow-induced deficiencies from those caused by the Nrp1 mutation, we arrested blood flow in cultured wild-type and mutant embryos and followed their vascular development. We find that loss of Nrp1 function rather than flow induces the altered geometry of the capillary plexus. Endothelial cell migration, but not replication, is altered in Nrp1 mutants. Gene expression analysis of endothelial cells isolated from freshly dissected wild-type and mutants and after culture in no-flow conditions showed down-regulation of the arterial marker genes connexin 40 and ephrin B2 related to the loss of Nrp1 function. This method allows genetic defects caused by loss-of-function of a gene important for cardiovascular development to be isolated even in the presence of hemodynamic defects.
A study of the sink effect by blood vessels in radiofrequency ablation.
Zorbas, George; Samaras, Theodoros
2015-02-01
The objective of the current work was to study the sink effect in radiofrequency ablation (RFA) caused by a blood vessel located close to an electrode in a two-compartment numerical model, consisting of a spherical tumor embedded in healthy liver tissue. Several blood vessels of different sizes were studied at different distances from the electrode. It was found that when a straight blood vessel, cylindrical in shape, is located parallel to the electrode, the minimum distance for a drop of only 10% in the isothermal treatment volume above 50°C, compared to the model without the blood vessel, varies from 4.49 mm (for a vessel of 2mm in diameter) to 20.02 mm (for a vessel 20mm in diameter). The results can be used as a guideline to clinical practitioners, in order to quickly assess the potential impact of existing blood vessels on the resulting treatment volume. Copyright © 2014 Elsevier Ltd. All rights reserved.
Huang, Chien-Hsiang; Chen, Chiao-Chi V; Siow, Tiing-Yee; Hsu, Sheng-Hsiou S; Hsu, Yi-Hua; Jaw, Fu-Shan; Chang, Chen
2013-01-01
The ability to evaluate the cerebral microvascular structure and function is crucial for investigating pathological processes in brain disorders. Previous angiographic methods based on blood oxygen level-dependent (BOLD) contrast offer appropriate visualization of the cerebral vasculature, but these methods remain to be optimized in order to extract more comprehensive information. This study aimed to integrate the advantages of BOLD MRI in both structural and functional vascular assessments. The BOLD contrast was manipulated by a carbogen challenge, and signal changes in gradient-echo images were computed to generate ΔR2* maps. Simultaneously, a functional index representing the regional cerebral blood volume was derived by normalizing the ΔR2* values of a given region to those of vein-filled voxels of the sinus. This method is named 3D gas ΔR2*-mMRA (microscopic MRA). The advantages of using 3D gas ΔR2*-mMRA to observe the microvasculature include the ability to distinguish air-tissue interfaces, a high vessel-to-tissue contrast, and not being affected by damage to the blood-brain barrier. A stroke model was used to demonstrate the ability of 3D gas ΔR2*-mMRA to provide information about poststroke revascularization at 3 days after reperfusion. However, this technique has some limitations that cannot be overcome and hence should be considered when it is applied, such as magnifying vessel sizes and predominantly revealing venous vessels.
Papanastasiou, Giorgos; Williams, Michelle C; Kershaw, Lucy E; Dweck, Marc R; Alam, Shirjel; Mirsadraee, Saeed; Connell, Martin; Gray, Calum; MacGillivray, Tom; Newby, David E; Semple, Scott Ik
2015-02-17
Mathematical modeling of cardiovascular magnetic resonance perfusion data allows absolute quantification of myocardial blood flow. Saturation of left ventricle signal during standard contrast administration can compromise the input function used when applying these models. This saturation effect is evident during application of standard Fermi models in single bolus perfusion data. Dual bolus injection protocols have been suggested to eliminate saturation but are much less practical in the clinical setting. The distributed parameter model can also be used for absolute quantification but has not been applied in patients with coronary artery disease. We assessed whether distributed parameter modeling might be less dependent on arterial input function saturation than Fermi modeling in healthy volunteers. We validated the accuracy of each model in detecting reduced myocardial blood flow in stenotic vessels versus gold-standard invasive methods. Eight healthy subjects were scanned using a dual bolus cardiac perfusion protocol at 3T. We performed both single and dual bolus analysis of these data using the distributed parameter and Fermi models. For the dual bolus analysis, a scaled pre-bolus arterial input function was used. In single bolus analysis, the arterial input function was extracted from the main bolus. We also performed analysis using both models of single bolus data obtained from five patients with coronary artery disease and findings were compared against independent invasive coronary angiography and fractional flow reserve. Statistical significance was defined as two-sided P value < 0.05. Fermi models overestimated myocardial blood flow in healthy volunteers due to arterial input function saturation in single bolus analysis compared to dual bolus analysis (P < 0.05). No difference was observed in these volunteers when applying distributed parameter-myocardial blood flow between single and dual bolus analysis. In patients, distributed parameter modeling was able to detect reduced myocardial blood flow at stress (<2.5 mL/min/mL of tissue) in all 12 stenotic vessels compared to only 9 for Fermi modeling. Comparison of single bolus versus dual bolus values suggests that distributed parameter modeling is less dependent on arterial input function saturation than Fermi modeling. Distributed parameter modeling showed excellent accuracy in detecting reduced myocardial blood flow in all stenotic vessels.
Modulation of Endothelial Glycocalyx Structure under Inflammatory Conditions
Kolářová, Hana; Ambrůzová, Barbora; Švihálková Šindlerová, Lenka; Klinke, Anna; Kubala, Lukáš
2014-01-01
The glycocalyx of the endothelium is an intravascular compartment that creates a barrier between circulating blood and the vessel wall. The glycocalyx is suggested to play an important role in numerous physiological processes including the regulation of vascular permeability, the prevention of the margination of blood cells to the vessel wall, and the transmission of shear stress. Various theoretical models and experimental approaches provide data about changes to the structure and functions of the glycocalyx under various types of inflammatory conditions. These alterations are suggested to promote inflammatory processes in vessels and contribute to the pathogenesis of number of diseases. In this review we summarize current knowledge about the modulation of the glycocalyx under inflammatory conditions and the consequences for the course of inflammation in vessels. The structure and functions of endothelial glycocalyx are briefly discussed in the context of methodological approaches regarding the determination of endothelial glycocalyx and the uncertainty and challenges involved in glycocalyx structure determination. In addition, the modulation of glycocalyx structure under inflammatory conditions and the possible consequences for pathogenesis of selected diseases and medical conditions (in particular, diabetes, atherosclerosis, ischemia/reperfusion, and sepsis) are summarized. Finally, therapeutic strategies to ameliorate glycocalyx dysfunction suggested by various authors are discussed. PMID:24803742
Segmentation of Retinal Blood Vessels Based on Cake Filter
Bao, Xi-Rong; Ge, Xin; She, Li-Huang; Zhang, Shi
2015-01-01
Segmentation of retinal blood vessels is significant to diagnosis and evaluation of ocular diseases like glaucoma and systemic diseases such as diabetes and hypertension. The retinal blood vessel segmentation for small and low contrast vessels is still a challenging problem. To solve this problem, a new method based on cake filter is proposed. Firstly, a quadrature filter band called cake filter band is made up in Fourier field. Then the real component fusion is used to separate the blood vessel from the background. Finally, the blood vessel network is got by a self-adaption threshold. The experiments implemented on the STARE database indicate that the new method has a better performance than the traditional ones on the small vessels extraction, average accuracy rate, and true and false positive rate. PMID:26636095
Kappus, Rebecca M; Bunsawat, Kanokwan; Brown, Michael D; Phillips, Shane A; Haus, Jacob M; Baynard, Tracy; Fernhall, Bo
2017-10-01
African-Americans have a higher prevalence of hypertension compared with whites, possibly due to elevated oxidative stress and subsequent vascular dysfunction. It is unclear the contribution of aging on oxidative stress and vascular function in a racially diverse cohort. Ninety-three young and older African-American and white participants received antioxidant (AOX) or placebo supplementation in a double-blind, randomized, cross-over design. Measures of endothelial function (reactive hyperemia, flow-mediated dilation), exercise blood flow, and biomarkers of oxidative stress and AOX activity were measured following supplementation. In young adults, there were racial differences in resistance vessel response to reactive hyperemia and no effects of race on macrovascular function following AOX supplementation. Following AOX supplementation, older white adults improved while African-Americans reduced resistance vessel function responses to reactive hyperemia, whereas macrovascular function improved in both races, with a greater increase in African-Americans. There were racial differences in blood flow normalized to lean mass during handgrip exercise at 20% maximal voluntary contraction in the young group and AOX supplementation led to increased forearm vascular conductance in older whites with a decrease in older African-Americans. There was a supplement effect in superoxide dismutase activity in younger adults only. The results of the current study show that there are differential effects of AOX supplementation on macrovascular and resistance vessel function, and this is impacted by both age and race.
Zone-specific remodeling of tumor blood vessels affects tumor growth.
Tilki, Derya; Kilic, Nerbil; Sevinc, Sema; Zywietz, Friedrich; Stief, Christian G; Ergun, Suleyman
2007-11-15
Chaotic organization, abnormal leakiness, and structural instability are characteristics of tumor vessels. However, morphologic events of vascular remodeling in relation to tumor growth are not sufficiently studied yet. By using the rat rhabdomyosarcoma tumor model vascular morphogenesis was studied by light and electron microscopy and immunohistochemistry in relation to tumor regions such as tumor surrounding (TSZ), marginal (TMZ), intermediate (TIZ), and center (TCZ) zones. The analyses revealed that blood vessels of TSZ display a regular ultrastructure, whereas blood vessels of TMZ showed a chaotic organization and unstable structure with a diffuse or even lacking basal lamina, and missing or irregular assembled periendothelial cells. In contrast, blood vessels of TIZ and TCZ exhibited a more or less stabilized vessel structure with increased diameter. Correspondingly, normal assembly of alpha-smooth-muscle-actin (alpha-SMA)-positive cells into the vessel wall was observed in blood vessels of TSZ, TIZ, and TCZ. Also, Ang1 immunostaining was strongest in large vessels of TIZ and TCZ, whereas Ang2 staining was prominent in small vessels of TIZ. Tie2 staining was detectable in small and large vessels of all tumor zones. Immunostaining for alpha(v)beta(3)-integrin was strongest in small vessels of TMZ, whereas large vessels of TIZ and TCZ were almost negative. The results indicate a zone-specific remodeling of tumor blood vessels by stabilization of vessels in TIZ and TCZ, whereas small vessels of these zones obviously undergo regression leading to tumor necrosis. Thus, a better understanding of vascular remodeling and stabilization in tumors would enable new strategies in tumor therapy and imaging. (c) 2007 American Cancer Society.
Reticulon 4B (Nogo-B) is necessary for macrophage infiltration and tissue repair.
Yu, Jun; Fernández-Hernando, Carlos; Suarez, Yajaira; Schleicher, Michael; Hao, Zhengrong; Wright, Paulette L; DiLorenzo, Annarita; Kyriakides, Themis R; Sessa, William C
2009-10-13
Blood vessel formation during ischemia and wound healing requires coordination of the inflammatory response with genes that regulate blood vessel assembly. Here we show that the reticulon family member 4B, aka Nogo-B, is upregulated in response to ischemia and is necessary for blood flow recovery secondary to ischemia and wound healing. Mice lacking Nogo-B exhibit reduced arteriogenesis and angiogenesis that are linked to a decrease in macrophage infiltration and inflammatory gene expression in vivo. Bone marrow-derived macrophages isolated from Nogo knock-out mice have reduced spreading and chemotaxis due to impaired Rac activation. Bone marrow reconstitution experiments show that Nogo in myeloid cells is necessary to promote macrophage homing and functional recovery after limb ischemia. Thus, endogenous Nogo coordinates macrophage-mediated inflammation with arteriogenesis, wound healing, and blood flow control.
Blocking VEGF signaling delays development of replacement teeth in zebrafish.
Crucke, J; Huysseune, A
2015-01-01
The dentition in zebrafish is extremely and richly vascularized, but the function of the vasculature, in view of the continuous replacement of the teeth, remains elusive. Through application of SU5416, a vascular endothelial growth factor receptor inhibitor, we studied the role of the blood vessels in the dentition of the zebrafish. We were unable to show an effect on the development of first-generation teeth as well as first tooth replacement. However, in juvenile fish, a delay was observed in the developmental state of the replacement tooth compared with what was expected based on the maturation state of the functional tooth. Furthermore, we observed a difference between treated and nontreated fish in the distance between blood vessels and developing replacement teeth. In conclusion, our results provide support for a nutritive, rather than an inductive, function of the vasculature in the process of tooth development and replacement. © International & American Associations for Dental Research 2014.
Local estrogenic/androgenic balance in the cerebral vasculature
Krause, Diana N.; Duckles, Sue P.; Gonzales, Rayna J.
2011-01-01
Reproductive effects of sex steroids are well-known, however it is increasingly apparent that these hormones have important actions on non-reproductive tissues such as the vasculature. The latter effects can be relevant throughout the lifespan, not just limited to reproductive years, and are not necessarily restricted to one sex or the other. Our work has established that cerebral blood vessels are a non-reproductive target tissue for sex steroids. We have found that estrogen and androgens alter vascular tone, endothelial function, oxidative stress and inflammatory responses in cerebral vessels. Often the actions of estrogen and androgens oppose each other. Moreover, it is clear that cerebral vessels are directly targeted by sex steroids as they express specific receptors for these hormones. Interestingly, cerebral blood vessels also express enzymes that metabolize sex steroids. These findings suggest that local synthesis of 17β-estradiol and dihydrotestosterone can occur within the vessel wall. One of the enzymes present, aromatase, converts testosterone to 17β-estradiol, which would alter the local balance of androgenic and estrogenic influences. Thus cerebral vessels are affected by circulating sex hormones as well as locally synthesized sex steroids. The presence of vascular endocrine effector mechanisms has important implications for male-female differences in cerebrovascular function and disease. Moreover, the cerebral circulation is a target for gonadal hormones as well as anabolic steroids and therapeutic drugs used to manipulate sex steroid actions. The long-term consequences of these influences have yet to be determined. PMID:21535417
Sivakamasundari, J; Kavitha, G; Sujatha, C M; Ramakrishnan, S
2014-01-01
Diabetic Retinopathy (DR) is a disorder that affects the structure of retinal blood vessels due to long-standing diabetes mellitus. Real-Time mass screening system for DR is vital for timely diagnosis and periodic screening to prevent the patient from severe visual loss. Human retinal fundus images are widely used for an automated segmentation of blood vessel and diagnosis of various blood vessel disorders. In this work, an attempt has been made to perform hardware synthesis of Kirsch template based edge detection for segmentation of blood vessels. This method is implemented using LabVIEW software and is synthesized in field programmable gate array board to yield results in real-time application. The segmentation of blood vessels using Kirsch based edge detection is compared with other edge detection methods such as Sobel, Prewitt and Canny. The texture features such as energy, entropy, contrast, mean, homogeneity and structural feature namely ratio of vessel to vessel free area are obtained from the segmented images. The performance of segmentation is analysed in terms of sensitivity, specificity and accuracy. It is observed from the results that the Kirsch based edge detection technique segmented the edges of blood vessels better than other edge detection techniques. The ratio of vessel to vessel free area classified the normal and DR affected retinal images more significantly than other texture based features. FPGA based hardware synthesis of Kirsch edge detection method is able to differentiate normal and diseased images with high specificity (93%). This automated segmentation of retinal blood vessels system could be used in computer-assisted diagnosis for diabetic retinopathy screening in real-time application.
Structure and Function of Your Skin
... the innermost layer. Blood vessels, nerves, hair follicles, oil glands and sweat glands are located in the dermis. What It Does . . . The major function of skin is to provide a barrier between you and the outside environment. Without this protective covering, your life on earth ...
A probe for blood-vessel and spinal interiors
NASA Technical Reports Server (NTRS)
Frazer, R. E.
1978-01-01
Probe design allows insertion into lumen of blood vessels to perform oximetry and investigate plaque on interior vessel walls. Probe is more accurate than standard oximetry procedures of determining oxygenation of circulating blood.
Calculation and analysis of velocity and viscous drag in an artery with a periodic pressure gradient
NASA Astrophysics Data System (ADS)
Alizadeh, M.; Seyedpour, S. M.; Mozafari, V.; Babazadeh, Shayan S.
2012-07-01
Blood as a fluid that human and other living creatures are dependent on has been always considered by scientists and researchers. Any changes in blood pressure and its normal velocity can be a sign of a disease. Whatever significant in blood fluid's mechanics is Constitutive equations and finding some relations for analysis and description of drag, velocity and periodic blood pressure in vessels. In this paper, by considering available experimental quantities, for blood pressure and velocity in periodic time of a thigh artery of a living dog, at first it is written into Fourier series, then by solving Navier-Stokes equations, a relation for curve drawing of vessel blood pressure with rigid wall is obtained. Likewise in another part of this paper, vessel wall is taken in to consideration that vessel wall is elastic and its pressure and velocity are written into complex Fourier series. In this case, by solving Navier-Stokes equations, some relations for blood velocity, viscous drag on vessel wall and blood pressure are obtained. In this study by noting that vessel diameter is almost is large (3.7 mm), and blood is considered as a Newtonian fluid. Finally, available experimental quantities of pressure with obtained curve of solving Navier-Stokes equations are compared. In blood analysis in rigid vessel, existence of 48% variance in pressure curve systole peak caused vessel blood flow analysis with elastic wall, results in new relations for blood flow description. The Resultant curve is obtained from new relations holding 10% variance in systole peak.
NASA Astrophysics Data System (ADS)
Niazi, M. Khalid Khan; Hemminger, Jessica; Kurt, Habibe; Lozanski, Gerard; Gurcan, Metin
2014-03-01
Vascularity represents an important element of tissue/tumor microenvironment and is implicated in tumor growth, metastatic potential and resistence to therapy. Small blood vessels can be visualized using immunohistochemical stains specific to vascular cells. However, currently used manual methods to assess vascular density are poorly reproducible and are at best semi quantitative. Computer based quantitative and objective methods to measure microvessel density are urgently needed to better understand and clinically utilize microvascular density information. We propose a new method to quantify vascularity from images of bone marrow biopsies stained for CD34 vascular lining cells protein as a model. The method starts by automatically segmenting the blood vessels by methods of maxlink thresholding and minimum graph cuts. The segmentation is followed by morphological post-processing to reduce blast and small spurious objects from the bone marrow images. To classify the images into one of the four grades, we extracted 20 features from the segmented blood vessel images. These features include first four moments of the distribution of the area of blood vessels, first four moments of the distribution of 1) the edge weights in the minimum spanning tree of the blood vessels, 2) the shortest distance between blood vessels, 3) the homogeneity of the shortest distance (absolute difference in distance between consecutive blood vessels along the shortest path) between blood vessels and 5) blood vessel orientation. The method was tested on 26 bone marrow biopsy images stained with CD34 IHC stain, which were evaluated by three pathologists. The pathologists took part in this study by quantifying blood vessel density using gestalt assessment in hematopoietic bone marrow portions of bone marrow core biopsies images. To determine the intra-reader variability, each image was graded twice by each pathologist with two-week interval in between their readings. For each image, the ground truth (grade) was acquired through consensus among the three pathologists at the end of the study. A ranking of the features reveals that the fourth moment of the distribution of the area of blood vessels along with the first moment of the distribution of the shortest distance between blood vessels can correctly grade 68.2% of the bone marrow biopsies, while the intra- and inter-reader variability among the pathologists are 66.9% and 40.0%, respectively.
Díaz-Flores, L; Gutiérrez, R; Madrid, J F; Varela, H; Valladares, F; Acosta, E; Martín-Vasallo, P; Díaz-Flores, L
2009-07-01
We review the morphofunctional characteristics of pericytes and report our observations. After a brief historical background, we consider the following aspects of pericytes: A) Origin in embryonic vasculogenesis (mesenchymal stem cells, neurocrest and other possible sources) and in embryonic and postnatal life angiogenesis (pre-existing pericytes, fibroblast/ myofibroblasts and circulating progenitor cells). B) Location in pericytic microvasculature and in the other blood vessels (including transitional cell forms and absence in lymphatic vessels), incidence (differences depending on species, topographical location, and type and stage of vessels) and distribution (specific polarities) in blood vessels. C) Morphology (cell body, and longitudinal and circumferential cytoplasmic processes), structure (nucleus, cytoplasmic organelles and distribution of microtubules, intermediate filaments and microfilaments) and surface (caveolae system). D) Basement membrane disposition, formation, components and functions. E) Contacts with endothelial cells (ECs) (peg and socket arrangements, adherent junctions and gap junctions) and with basal membrane (adhesion plaques). F) Molecular expression (pericyte marker identification). G) Functions, such as vessel stabilization, regulation of vascular tone and maintenance of local and tissue homeostasis (contractile capacity and vessel permeability regulation), matrix protein synthesis, macrophage-like properties, immunological defense, intervention in coagulation, participation in mechanisms that regulate the quiescent and angiogenic stages of blood vessels (including the behaviour of pericytes during sprouting angiogenesis and intussuceptive vascular growth, as well as pericyte interactions with endothelium and other cells, and with extracellular matrix) and plasticity, as progenitor cells with great mesenchymal potential, originating other pericytes, fibroblast/myofibroblasts, preadipocytes, chondroblasts, osteoblasts, odontoblasts, vascular smooth muscle and myointimal cells. This mesenchymal capacity is seen in a broad section on the perivascular mesenchymal cell niche hypothesis and in the concept of pericyte and EC "marriage and divorce". H) Peculiar pericyte types, such as hepatic stellate cells (Ito cells), bone marrow reticular cells and mesangial cells. I) Involvement in pathological processes, such as repair through granulation tissue, pericyte-derived tumors, tumor angiogenesis and tumoral cell metastasis, diabetic microangiopathy, fibrosis, atherosclerosis and calcific vasculopathy, lymphedema distichiasis, chronic venous insufficiency, pulmonary hypertension, Alzheimer disease and multiple sclerosis. J) Clinical and therapeutic implications (de-stabilization of vessels or formation of a stable vasculature).
[Oxidative stress and vascular function].
Urbański, Karol; Nowak, Michal; Guzik, Tomasz J
2013-01-01
The maintenance of blood vessel homeostasis is closely associated with Reactive Oxygen and Nitrogen Species (ROS and RNS) production in the blood vessel wall. The main molecules taking part in this process are nitric oxide (NO), superoxide anion (O2*-), hydrogen peroxide (H2O2) and their derivatives. The production of these factors occurs in health and disease, however the increased ROS release is often referred to as oxidative stress. While initially oxidative stress was considered systemically, recent data indicate that it occurs locally in subcellular spaces and may be a result of dysfunction of individual enzyme systems. Oxidative stress induces inflammation, proliferation and migration of vascular smooth muscle cells, may regulate apoptosis and the function of the cells of vascular wall, finally leading to dysfunction of endothelium, media and adventitia, leading to cardiovascular diseases such as atherosclerosis, hypertension or heart failure. It is believed that a family of NADPH oxidases is the main source of ROS in the vessel wall, but also in other organs and tissues. It consists of seven known and quite precisely characterized homologues (NOX1, NOX2, NOX3, NOX4, NOX5, DUOX1 and DUOX2) which often have very distinct activity and cellular localization and function. Besides harmful actions, we are beginning to understand the protective effects of ROS and RNS. They have many functions regulating redox-sensitive gene expression and influencing a proper function of cells and vessels. NOX4 has been particularly well characterized in this respect. Thus, the maintenance of the right homeostasis depends not only on ROS removing capabilities, but especially on preserving the adequate level of ROS production.
[Echocardiography in Boid snakes: Demonstration and blood flow measurements].
Schroff, S; Starck, J M; Krautwald-Junghanns, M-E; Pees, M
2012-01-01
Comparative echocardiography and blood flow measurements in different boid species. 51 healthy snakes from seven different species were examined echocardiographically under standardized conditions. The heart and the great vessels were displayed using 2-D-ultrasonography. Pulsed-wave doppler technique measurements of the blood flow within the vessels were performed and results analyzed statistically. The examinations could be performed in non-sedated snakes in ventral recumbency. The best image quality was obtained using the ventrolateral coupling site. An examination scheme applicable to all examined snake species was established. Diversity in the anatomy of vessels could be detected in different snake species. A characteristic shape of the curve demonstrating the blood flow against time could be shown for the respective vessels. There were positive correlations between the size of the snakes and the absolute blood flow (total flow, systemic flow, pulmonary flow to body length: p<0.001; r=0.770; r=0.627; r=0.766; respectively to body mass: p<0.001; r=0.815; r=0.698; r=0.788), as well as negative correlations between the size of the animals and the blood flow relative to body mass (total flow, systemic flow, pulmonary flow to body length: p<0.001; r=-0.533; r=-0.512; r=-0.478; respectively total flow to body mass: p<0.001; r=-0.768). When using standardized conditions, echocardiography in boid snakes is a useful diagnostic tool for the assessment of cardiac function. Reference values provided in this study serve as a basis for ultrasound examination in veterinary practice.
Increased Skin Inflammation and Blood Vessel Density in Human and Experimental Diabetes
Tellechea, Ana; Kafanas, Antonios; Leal, Ermelindo C; Tecilazich, Francesco; Kuchibhotla, Sarada; Auster, Michael E; Kontoes, Iraklis; Paolino, Jacqueline; Carvalho, Eugenia; Nabzdyk, Leena Pradhan; Veves, Aristidis
2013-01-01
Systemic inflammation is associated with impaired wound healing in diabetic patients. Using immunohistochemistry techniques, the authors investigated changes in skin inflammation and skin blood vessels in human and experimental diabetes. Comparing to the non-DM human subjects, the total number of inflammatory cells per biopsy and the number of inflammatory cells around blood vessels, a strong indication of inflammation, were higher in DM subjects irrespective of their risk for developing diabetic foot ulcer. Inflammatory cell infiltration was robustly increased in all diabetic animal models compared to their non-diabetic controls. The number and density of blood vessels and CD31 positive proliferating endothelial cells around pre-existing skin vessels was also higher in the DM patients. However, there were no differences in the skin blood flow between the non-DM and DM subjects. The number of skin blood vessels was also increased in the DM animals; however, these differences were less obvious than the ones observed for inflammatory cells. We conclude that skin inflammation and skin blood vessel density is increased in diabetic human subjects and in rodent and rabbit models of diabetes. PMID:23446362
Vascular mimicry in glioblastoma following anti-angiogenic and anti-20-HETE therapies.
Angara, Kartik; Rashid, Mohammad H; Shankar, Adarsh; Ara, Roxan; Iskander, Asm; Borin, Thaiz F; Jain, Meenu; Achyut, Bhagelu R; Arbab, Ali S
2017-09-01
Glioblastoma (GBM) is one hypervascular and hypoxic tumor known among solid tumors. Antiangiogenic therapeutics (AATs) have been tested as an adjuvant to normalize blood vessels and control abnormal vasculature. Evidence of relapse exemplified in the progressive tumor growth following AAT reflects development of resistance to AATs. Here, we identified that GBM following AAT (Vatalanib) acquired an alternate mechanism to support tumor growth, called vascular mimicry (VM). We observed that Vatalanib induced VM vessels are positive for periodic acid-Schiff (PAS) matrix but devoid of any endothelium on the inner side and lined by tumor cells on the outer-side. The PAS+ matrix is positive for basal laminae (laminin) indicating vascular structures. Vatalanib treated GBM displayed various stages of VM such as initiation (mosaic), sustenance, and full-blown VM. Mature VM structures contain red blood cells (RBC) and bear semblance to the functional blood vessel-like structures, which provide all growth factors to favor tumor growth. Vatalanib treatment significantly increased VM especially in the core of the tumor, where HIF-1α was highly expressed in tumor cells. VM vessels correlate with hypoxia and are characterized by co-localized MHC-1+ tumor and HIF-1α expression. Interestingly, 20-HETE synthesis inhibitor HET0016 significantly decreased GBM tumors through decreasing VM structures both at the core and at periphery of the tumors. In summary, AAT induced resistance characterized by VM is an alternative mechanism adopted by tumors to make functional vessels by transdifferentiation of tumor cells into endothelial-like cells to supply nutrients in the event of hypoxia. AAT induced VM is a potential therapeutic target of the novel formulation of HET0016. Our present study suggests that HET0016 has a potential to target therapeutic resistance and can be combined with other antitumor agents in preclinical and clinical trials.
Interactive retinal blood flow analysis of the macular region.
Tian, Jing; Somfai, Gábor Márk; Campagnoli, Thalmon R; Smiddy, William E; Debuc, Delia Cabrera
2016-03-01
The study of retinal hemodynamics plays an important role to understand the onset and progression of diabetic retinopathy. In this work, we developed an interactive retinal analysis tool to quantitatively measure the blood flow velocity (BFV) and blood flow rate (BFR) in the macular region using the Retinal Function Imager (RFI). By employing a high definition stroboscopic fundus camera, the RFI device is able to assess retinal blood flow characteristics in vivo. However, the measurements of BFV using a user-guided vessel segmentation tool may induce significant inter-observer differences and BFR is not provided in the built-in software. In this work, we have developed an interactive tool to assess the retinal BFV and BFR in the macular region. Optical coherence tomography data was registered with the RFI image to locate the fovea accurately. The boundaries of the vessels were delineated on a motion contrast enhanced image and BFV was computed by maximizing the cross-correlation of pixel intensities in a ratio video. Furthermore, we were able to calculate the BFR in absolute values (μl/s). Experiments were conducted on 122 vessels from 5 healthy and 5 mild non-proliferative diabetic retinopathy (NPDR) subjects. The Pearson's correlation of the vessel diameter measurements between our method and manual labeling on 40 vessels was 0.984. The intraclass correlation (ICC) of BFV between our proposed method and built-in software was 0.924 and 0.830 for vessels from healthy and NPDR subjects, respectively. The coefficient of variation between repeated sessions was reduced significantly from 22.5% to 15.9% in our proposed method (p<0.001). Copyright © 2015 Elsevier Inc. All rights reserved.
Melanopsin mediates light-dependent relaxation in blood vessels
Sikka, Gautam; Hussmann, G. Patrick; Pandey, Deepesh; Cao, Suyi; Hori, Daijiro; Park, Jong Taek; Steppan, Jochen; Kim, Jae Hyung; Barodka, Viachaslau; Myers, Allen C.; Santhanam, Lakshmi; Nyhan, Daniel; Halushka, Marc K.; Koehler, Raymond C.; Snyder, Solomon H.; Shimoda, Larissa A.; Berkowitz, Dan E.
2014-01-01
Melanopsin (opsin4; Opn4), a non-image-forming opsin, has been linked to a number of behavioral responses to light, including circadian photo-entrainment, light suppression of activity in nocturnal animals, and alertness in diurnal animals. We report a physiological role for Opn4 in regulating blood vessel function, particularly in the context of photorelaxation. Using PCR, we demonstrate that Opn4 (a classic G protein-coupled receptor) is expressed in blood vessels. Force-tension myography demonstrates that vessels from Opn4−/− mice fail to display photorelaxation, which is also inhibited by an Opn4-specific small-molecule inhibitor. The vasorelaxation is wavelength-specific, with a maximal response at ∼430–460 nm. Photorelaxation does not involve endothelial-, nitric oxide-, carbon monoxide-, or cytochrome p450-derived vasoactive prostanoid signaling but is associated with vascular hyperpolarization, as shown by intracellular membrane potential measurements. Signaling is both soluble guanylyl cyclase- and phosphodiesterase 6-dependent but protein kinase G-independent. β-Adrenergic receptor kinase 1 (βARK 1 or GRK2) mediates desensitization of photorelaxation, which is greatly reduced by GRK2 inhibitors. Blue light (455 nM) regulates tail artery vasoreactivity ex vivo and tail blood blood flow in vivo, supporting a potential physiological role for this signaling system. This endogenous opsin-mediated, light-activated molecular switch for vasorelaxation might be harnessed for therapy in diseases in which altered vasoreactivity is a significant pathophysiologic contributor. PMID:25404319
Predictive simulation of bidirectional Glenn shunt using a hybrid blood vessel model.
Li, Hao; Leow, Wee Kheng; Chiu, Ing-Sh
2009-01-01
This paper proposes a method for performing predictive simulation of cardiac surgery. It applies a hybrid approach to model the deformation of blood vessels. The hybrid blood vessel model consists of a reference Cosserat rod and a surface mesh. The reference Cosserat rod models the blood vessel's global bending, stretching, twisting and shearing in a physically correct manner, and the surface mesh models the surface details of the blood vessel. In this way, the deformation of blood vessels can be computed efficiently and accurately. Our predictive simulation system can produce complex surgical results given a small amount of user inputs. It allows the surgeon to easily explore various surgical options and evaluate them. Tests of the system using bidirectional Glenn shunt (BDG) as an application example show that the results produc by the system are similar to real surgical results.
H2O2 sensors of lungs and blood vessels and their role in the antioxidant defense of the body.
Skulachev, V P
2001-10-01
This paper considers the composition and function of sensory systems monitoring H2O2 level by the lung neuroepithelial cells and carotid bodies. These systems are localized in the plasma membrane of the corresponding cells and are composed of (O2*-)-generating NADPH-oxidase and an H2O2-activated K+ channel. This complex structure of the H2O2 sensors is probably due to their function in antioxidant defense. By means of these sensors, an increase in the H2O2 level in lung or blood results in a decrease in lung ventilation and constriction of blood vessels. This action lowers the O2 flux to the tissues and, hence, intracellular [O2]. The [O2] decrease, in turn, inhibits intracellular generation of reactive oxygen species. The possible roles of such systems under normal conditions (e.g., the effect of O2*- in air) and in some pathologies (e.g., pneumonia) is discussed.
Two ways to feel the pressure: an endothelial Ca(2+) entry channel with dual mechanosensitivity.
Groschner, Klaus
2002-01-01
One impressive function of the vascular endothelium is its ability to adjust the release of vasoactive mediators such as NO and PGI(2) almost instantaneously to changes in blood flow or blood pressure. Besides this fast feedback response to hemodynamic alterations, the endothelium is subject to long-term adaptations that are crucial for prevention of pathological processes such as atherogenesis. Among the various signals that are sensed by endothelial cells, mechanical forces which arise from pulsatile blood flow are probably most important for fast as well as long-term control of blood vessel function by the endothelium.
Homing to solid cancers: a vascular checkpoint in adoptive cell therapy using CAR T-cells.
Ager, Ann; Watson, H Angharad; Wehenkel, Sophie C; Mohammed, Rebar N
2016-04-15
The success of adoptive T-cell therapies for the treatment of cancer patients depends on transferred T-lymphocytes finding and infiltrating cancerous tissues. For intravenously transferred T-cells, this means leaving the bloodstream (extravasation) from tumour blood vessels. In inflamed tissues, a key event in extravasation is the capture, rolling and arrest of T-cells inside blood vessels which precedes transmigration across the vessel wall and entry into tissues. This depends on co-ordinated signalling of selectins, integrins and chemokine receptors on T-cells by their respective ligands which are up-regulated on inflamed blood vessels. Clinical data and experimental studies in mice suggest that tumour blood vessels are anergic to inflammatory stimuli and the recruitment of cytotoxic CD8(+)T-lymphocytes is not very efficient. Interestingly, and somewhat counter-intuitively, anti-angiogenic therapy can promote CD8(+)T-cell infiltration of tumours and increase the efficacy of adoptive CD8(+)T-cell therapy. Rather than inhibit tumour angiogenesis, anti-angiogenic therapy 'normalizes' (matures) tumour blood vessels by promoting pericyte recruitment, increasing tumour blood vessel perfusion and sensitizing tumour blood vessels to inflammatory stimuli. A number of different approaches are currently being explored to increase recruitment by manipulating the expression of homing-associated molecules on T-cells and tumour blood vessels. Future studies should address whether these approaches improve the efficacy of adoptive T-cell therapies for solid, vascularized cancers in patients. © 2016 Authors; published by Portland Press Limited.
Homing to solid cancers: a vascular checkpoint in adoptive cell therapy using CAR T-cells
Ager, Ann; Watson, H. Angharad; Wehenkel, Sophie C.; Mohammed, Rebar N.
2016-01-01
The success of adoptive T-cell therapies for the treatment of cancer patients depends on transferred T-lymphocytes finding and infiltrating cancerous tissues. For intravenously transferred T-cells, this means leaving the bloodstream (extravasation) from tumour blood vessels. In inflamed tissues, a key event in extravasation is the capture, rolling and arrest of T-cells inside blood vessels which precedes transmigration across the vessel wall and entry into tissues. This depends on co-ordinated signalling of selectins, integrins and chemokine receptors on T-cells by their respective ligands which are up-regulated on inflamed blood vessels. Clinical data and experimental studies in mice suggest that tumour blood vessels are anergic to inflammatory stimuli and the recruitment of cytotoxic CD8+ T-lymphocytes is not very efficient. Interestingly, and somewhat counter-intuitively, anti-angiogenic therapy can promote CD8+ T-cell infiltration of tumours and increase the efficacy of adoptive CD8+ T-cell therapy. Rather than inhibit tumour angiogenesis, anti-angiogenic therapy ‘normalizes’ (matures) tumour blood vessels by promoting pericyte recruitment, increasing tumour blood vessel perfusion and sensitizing tumour blood vessels to inflammatory stimuli. A number of different approaches are currently being explored to increase recruitment by manipulating the expression of homing-associated molecules on T-cells and tumour blood vessels. Future studies should address whether these approaches improve the efficacy of adoptive T-cell therapies for solid, vascularized cancers in patients. PMID:27068943
Lau, Skadi; Eicke, Dorothee; Carvalho Oliveira, Marco; Wiegmann, Bettina; Schrimpf, Claudia; Haverich, Axel; Blasczyk, Rainer; Wilhelmi, Mathias; Figueiredo, Constança; Böer, Ulrike
2018-03-01
The limited availability of native vessels suitable for the application as hemodialysis shunts or bypass material demands new strategies in cardiovascular surgery. Tissue-engineered vascular grafts containing autologous cells are considered ideal vessel replacements due to the low risk of rejection. However, endothelial cells (EC), which are central components of natural blood vessels, are difficult to obtain from elderly patients of poor health. Umbilical cord blood represents a promising alternative source for EC, but their allogeneic origin corresponds with the risk of rejection after allotransplantation. To reduce this risk, the human leukocyte antigen class I (HLA I) complex was stably silenced by lentiviral vector-mediated RNA interference (RNAi) in EC from peripheral blood and umbilical cord blood and vein. EC from all three sources were transduced by 93.1% ± 4.8% and effectively, HLA I-silenced by up to 67% compared to nontransduced (NT) cells or transduced with a nonspecific short hairpin RNA, respectively. Silenced EC remained capable to express characteristic endothelial surface markers such as CD31 and vascular endothelial cadherin important for constructing a tight barrier, as well as von Willebrand factor and endothelial nitric oxide synthase important for blood coagulation and vessel tone regulation. Moreover, HLA I-silenced EC were still able to align under unidirectional flow, to take up acetylated low-density lipoprotein, and to form capillary-like tube structures in three-dimensional fibrin gels similar to NT cells. In particular, addition of adipose tissue-derived mesenchymal stem cells significantly improved tube formation capability of HLA I-silenced EC toward long and widely branched vascular networks necessary for prevascularizing vascular grafts. Thus, silencing HLA I by RNAi represents a promising technique to reduce the immunogenic potential of EC from three different sources without interfering with EC-specific morphological and functional properties required for vascular tissue engineering. This extends the spectrum of available cell sources from autologous to allogeneic sources, thereby accelerating the generation of tissue-engineered vascular grafts in acute clinical cases.
3-D ultrafast Doppler imaging applied to the noninvasive mapping of blood vessels in vivo.
Provost, Jean; Papadacci, Clement; Demene, Charlie; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu
2015-08-01
Ultrafast Doppler imaging was introduced as a technique to quantify blood flow in an entire 2-D field of view, expanding the field of application of ultrasound imaging to the highly sensitive anatomical and functional mapping of blood vessels. We have recently developed 3-D ultrafast ultrasound imaging, a technique that can produce thousands of ultrasound volumes per second, based on a 3-D plane and diverging wave emissions, and demonstrated its clinical feasibility in human subjects in vivo. In this study, we show that noninvasive 3-D ultrafast power Doppler, pulsed Doppler, and color Doppler imaging can be used to perform imaging of blood vessels in humans when using coherent compounding of 3-D tilted plane waves. A customized, programmable, 1024-channel ultrasound system was designed to perform 3-D ultrafast imaging. Using a 32 × 32, 3-MHz matrix phased array (Vermon, Tours, France), volumes were beamformed by coherently compounding successive tilted plane wave emissions. Doppler processing was then applied in a voxel-wise fashion. The proof of principle of 3-D ultrafast power Doppler imaging was first performed by imaging Tygon tubes of various diameters, and in vivo feasibility was demonstrated by imaging small vessels in the human thyroid. Simultaneous 3-D color and pulsed Doppler imaging using compounded emissions were also applied in the carotid artery and the jugular vein in one healthy volunteer.
Provost, J.; Papadacci, C.; Demene, C.; Gennisson, J-L.; Tanter, M.; Pernot, M.
2016-01-01
Ultrafast Doppler Imaging was introduced as a technique to quantify blood flow in an entire 2-D field of view, expanding the field of application of ultrasound imaging to the highly sensitive anatomical and functional mapping of blood vessels. We have recently developed 3-D Ultrafast Ultrasound Imaging, a technique that can produce thousands of ultrasound volumes per second, based on three-dimensional plane and diverging wave emissions, and demonstrated its clinical feasibility in human subjects in vivo. In this study, we show that non-invasive 3-D Ultrafast Power Doppler, Pulsed Doppler, and Color Doppler Imaging can be used to perform quantitative imaging of blood vessels in humans when using coherent compounding of three-dimensional tilted plane waves. A customized, programmable, 1024-channel ultrasound system was designed to perform 3-D Ultrafast Imaging. Using a 32X32, 3-MHz matrix phased array (Vermon, France), volumes were beamformed by coherently compounding successive tilted plane wave emissions. Doppler processing was then applied in a voxel-wise fashion. 3-D Ultrafast Power Doppler Imaging was first validated by imaging Tygon tubes of varying diameter and its in vivo feasibility was demonstrated by imaging small vessels in the human thyroid. Simultaneous 3-D Color and Pulsed Doppler Imaging using compounded emissions were also applied in the carotid artery and the jugular vein in one healthy volunteer. PMID:26276956
Baluk, Peter; Yao, Li-Chin; Feng, Jennifer; Romano, Talia; Jung, Sonia S; Schreiter, Jessica L; Yan, Li; Shealy, David J; McDonald, Donald M
2009-10-01
Inflammation is associated with blood vessel and lymphatic vessel proliferation and remodeling. The microvasculature of the mouse trachea provides an ideal opportunity to study this process, as Mycoplasma pulmonis infection of mouse airways induces widespread and sustained vessel remodeling, including enlargement of capillaries into venules and lymphangiogenesis. Although the mediators responsible for these vascular changes in mice have not been identified, VEGF-A is known not to be involved. Here, we sought to determine whether TNF-alpha drives the changes in blood vessels and lymphatics in M. pulmonis-infected mice. The endothelial cells, but not pericytes, of blood vessels, but not lymphatics, were immunoreactive for TNF receptor 1 (TNF-R1) and lymphotoxin B receptors. Most TNF-R2 immunoreactivity was on leukocytes. Infection resulted in a large and sustained increase in TNF-alpha expression, as measured by real-time quantitative RT-PCR, and smaller increases in lymphotoxins and TNF receptors that preceded vessel remodeling. Substantially less vessel remodeling and lymphangiogenesis occurred when TNF-alpha signaling was inhibited by a blocking antibody or was silenced in Tnfr1-/- mice. When administered after infection was established, the TNF-alpha-specific antibody slowed but did not reverse blood vessel remodeling and lymphangiogenesis. The action of TNF-alpha on blood vessels is probably mediated through direct effects on endothelial cells, but its effects on lymphangiogenesis may require inflammatory mediators from recruited leukocytes. We conclude that TNF-alpha is a strong candidate for a mediator that drives blood vessel remodeling and lymphangiogenesis in inflammation.
The interaction between the meningeal lymphatics and blood-brain barrier
NASA Astrophysics Data System (ADS)
Semyachkina-Glushkovskaya, O.; Abdurashitov, A.; Dubrovsky, A.; Pavlov, A.; Shushunova, N.; Maslyakova, G.; Navolokin, N.; Bucharskaya, A.; Tuchin, V.; Kurths, J.
2018-02-01
Here we show the interaction between the meningeal lymphatic system and the blood-brain barrier (BBB) function. In normal state, the meningeal lymphatic vessels are invisible on optical coherent tomography (OCT), while during the opening of the BBB, meningeal lymphatic vessels are clearly visualized by OCT in the area of cerebral venous sinuses. These results give a significant impulse in the new application of OCT for the study of physiology of meningeal lymphatic system as well as sheds light on novel strategies in the prognosis of the opening of the BBB related with many central nervous system diseases, such as stroke, brain trauma, Alzheimers disease, etc.
Margination of Stiffened Red Blood Cells Regulated By Vessel Geometry.
Chen, Yuanyuan; Li, Donghai; Li, Yongjian; Wan, Jiandi; Li, Jiang; Chen, Haosheng
2017-11-10
Margination of stiffened red blood cells has been implicated in many vascular diseases. Here, we report the margination of stiffened RBCs in vivo, and reveal the crucial role of the vessel geometry in the margination by calculations when the blood is seen as viscoelastic fluid. The vessel-geometry-regulated margination is then confirmed by in vitro experiments in microfluidic devices, and it establishes new insights to cell sorting technology and artificial blood vessel fabrication.
Abnormal cardiovascular response to exercise in hypertension: contribution of neural factors.
Mitchell, Jere H
2017-06-01
During both dynamic (e.g., endurance) and static (e.g., strength) exercise there are exaggerated cardiovascular responses in hypertension. This includes greater increases in blood pressure, heart rate, and efferent sympathetic nerve activity than in normal controls. Two of the known neural factors that contribute to this abnormal cardiovascular response are the exercise pressor reflex (EPR) and functional sympatholysis. The EPR originates in contracting skeletal muscle and reflexly increases sympathetic efferent nerve activity to the heart and blood vessels as well as decreases parasympathetic efferent nerve activity to the heart. These changes in autonomic nerve activity cause an increase in blood pressure, heart rate, left ventricular contractility, and vasoconstriction in the arterial tree. However, arterial vessels in the contracting skeletal muscle have a markedly diminished vasoconstrictor response. The markedly diminished vasoconstriction in contracting skeletal muscle has been termed functional sympatholysis. It has been shown in hypertension that there is an enhanced EPR, including both its mechanoreflex and metaboreflex components, and an impaired functional sympatholysis. These conditions set up a positive feedback or vicious cycle situation that causes a progressively greater decrease in the blood flow to the exercising muscle. Thus these two neural mechanisms contribute significantly to the abnormal cardiovascular response to exercise in hypertension. In addition, exercise training in hypertension decreases the enhanced EPR, including both mechanoreflex and metaboreflex function, and improves the impaired functional sympatholysis. These two changes, caused by exercise training, improve the muscle blood flow to exercising muscle and cause a more normal cardiovascular response to exercise in hypertension. Copyright © 2017 the American Physiological Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Umetani, K.; Fukushima, K.
2013-03-15
An X-ray intravital microscopy technique was developed to enable in vivo visualization of the coronary, cerebral, and pulmonary arteries in rats without exposure of organs and with spatial resolution in the micrometer range and temporal resolution in the millisecond range. We have refined the system continually in terms of the spatial resolution and exposure time. X-rays transmitted through an object are detected by an X-ray direct-conversion type detector, which incorporates an X-ray SATICON pickup tube. The spatial resolution has been improved to 6 {mu}m, yielding sharp images of small arteries. The exposure time has been shortened to around 2 msmore » using a new rotating-disk X-ray shutter, enabling imaging of beating rat hearts. Quantitative evaluations of the X-ray intravital microscopy technique were extracted from measurements of the smallest-detectable vessel size and detection of the vessel function. The smallest-diameter vessel viewed for measurements is determined primarily by the concentration of iodinated contrast material. The iodine concentration depends on the injection technique. We used ex vivo rat hearts under Langendorff perfusion for accurate evaluation. After the contrast agent is injected into the origin of the aorta in an isolated perfused rat heart, the contrast agent is delivered directly into the coronary arteries with minimum dilution. The vascular internal diameter response of coronary arterial circulation is analyzed to evaluate the vessel function. Small blood vessels of more than about 50 {mu}m diameters were visualized clearly at heart rates of around 300 beats/min. Vasodilation compared to the control was observed quantitatively using drug manipulation. Furthermore, the apparent increase in the number of small vessels with diameters of less than about 50 {mu}m was observed after the vasoactive agents increased the diameters of invisible small blood vessels to visible sizes. This technique is expected to offer the potential for direct investigation of mechanisms of vascular dysfunctions.« less
Induction of Pancreatic Differentiation by Signals from Blood Vessels
NASA Astrophysics Data System (ADS)
Lammert, Eckhard; Cleaver, Ondine; Melton, Douglas
2001-10-01
Blood vessels supply developing organs with metabolic sustenance. Here, we demonstrate a role for blood vessels as a source of developmental signals during pancreatic organogenesis. In vitro experiments with embryonic mouse tissues demonstrate that blood vessel endothelium induces insulin expression in isolated endoderm. Removal of the dorsal aorta in Xenopus laevis embryos results in the failure of insulin expression in vivo. Furthermore, using transgenic mice, we show that ectopic vascularization in the posterior foregut leads to ectopic insulin expression and islet hyperplasia. These results indicate that vessels not only provide metabolic sustenance, but also provide inductive signals for organ development.
Vu, Thiennu H.; Alemayehu, Yemisrach; Werb, Zena
2009-01-01
The study of distal lung morphogenesis and vascular development would be greatly facilitated by an in vitro or ex vivo experimental model. In this study we show that the growth of mouse embryonic day 12.5 lung rudiments implanted underneath the kidney capsules of syngeneic or immunodeficient hosts follows closely lung development in utero. The epithelium develops extensively with both proximal and distal differentiation to the saccular stage. The vasculature also develops extensively. Large blood vessels accompany large airways and capillaries develop within the saccular walls. Interestingly, vessels in the lung grafts develop from endothelial progenitor cells endogenous to the explants and host vessels do not vascularize the grafts independently. This suggests that embryonic lungs possess mechanisms to prevent the inappropriate ingrowth of surrounding vessels. However, vessels in the lung grafts do connect to host vessels, showing that embryonic lungs have the ability to stimulate host angiogenesis and recruit host vessel connections. These data support the hypothesis that the lung vasculature develops by both vasculogenic and angiogenic processes: a vascular network develops in situ in lung mesenchyme, which is then connected to angiogenic processes from central vessels. The lung renal capsule allograft is thus an excellent model to study the development of the pulmonary vasculature and of late fetal lung development that requires a functional blood supply. PMID:12591600
Spatial Metrics of Tumour Vascular Organisation Predict Radiation Efficacy in a Computational Model
Scott, Jacob G.
2016-01-01
Intratumoural heterogeneity is known to contribute to poor therapeutic response. Variations in oxygen tension in particular have been correlated with changes in radiation response in vitro and at the clinical scale with overall survival. Heterogeneity at the microscopic scale in tumour blood vessel architecture has been described, and is one source of the underlying variations in oxygen tension. We seek to determine whether histologic scale measures of the erratic distribution of blood vessels within a tumour can be used to predict differing radiation response. Using a two-dimensional hybrid cellular automaton model of tumour growth, we evaluate the effect of vessel distribution on cell survival outcomes of simulated radiation therapy. Using the standard equations for the oxygen enhancement ratio for cell survival probability under differing oxygen tensions, we calculate average radiation effect over a range of different vessel densities and organisations. We go on to quantify the vessel distribution heterogeneity and measure spatial organization using Ripley’s L function, a measure designed to detect deviations from complete spatial randomness. We find that under differing regimes of vessel density the correlation coefficient between the measure of spatial organization and radiation effect changes sign. This provides not only a useful way to understand the differences seen in radiation effect for tissues based on vessel architecture, but also an alternate explanation for the vessel normalization hypothesis. PMID:26800503
NASA Astrophysics Data System (ADS)
Peng, Xiao; Yang, Shaozhuang; Yu, Bin; Wang, Qi; Lin, Danying; Gao, Jian; Zhang, Peiqi; Ma, Yiqun; Qu, Junle; Niu, Hanben
2016-03-01
Optical Coherence Tomography (OCT) has been widely applied into microstructure imaging of tissues or blood vessels with a series of advantages, including non-destructiveness, real-time imaging, high resolution and high sensitivity. In this study, a Spectral Domain OCT (SD-OCT) system with higher sensitivity and signal-to-noise ratio (SNR) was built up, which was used to observe the blood vessel distribution and blood flow in the dorsal skin window chamber of the nude mouse tumor model. In order to obtain comparable data, the distribution images of blood vessels were collected from the same mouse before and after tumor injection. In conclusion, in vivo blood vessel distribution images of the tumor mouse model have been continuously obtained during around two weeks.
Scottish Schools Science Equipment Research Centre, Bulletin No. 56, June 1972.
ERIC Educational Resources Information Center
1972
A model demonstrating the relationship between the structure of blood vessels and the flow of blood is described and illustrated in the biology section of the newsletter. The apparatus also contains a functional (but not structural) model of the heart. Suggestions for the preparation of a relatively permanent dialysis bag from visking tubing are…
[The design and applications of a non-invasive intelligent detector for cardiovascular functions].
Li, Feng; Xing, Wu; Chen, Ming-zhi; Shang, Huai
2006-05-01
An apparatus based on a high sensitive sensor which detects cardiovascular functions is introduced in this paper. Some intelligent detecting technologies, such as syntactic pattern recognition and a medical expert system are used in this detector. Its embedded single-chip microcomputer processes and analyzes pulse signals for gaining automatically the parameters about heart, blood vessel and blood etc., so as to get the health evaluation, correct medical diagnosis and prediction of cardiovascular diseases.
Vascular heterogeneity in the kidney.
Molema, Grietje; Aird, William C
2012-03-01
Blood vessels and their endothelial lining are uniquely adapted to the needs of the underlying tissue. The structure and function of the vasculature varies both between and within different organs. In the kidney, the vascular architecture is designed to function both in oxygen/nutrient delivery and filtration of blood according to the homeostatic needs of the body. Here, we review spatial and temporal differences in renal vascular phenotypes in both health and disease. Copyright © 2012 Elsevier Inc. All rights reserved.
The Barrier Within: Endothelial Transport of Hormones
Kolka, Cathryn M.; Bergman, Richard N.
2015-01-01
Hormones are involved in a plethora of processes including development and growth, metabolism, mood, and immune responses. These essential functions are dependent on the ability of the hormone to access its target tissue. In the case of endocrine hormones that are transported through the blood, this often means that the endothelium must be crossed. Many studies have shown that the concentrations of hormones and nutrients in blood can be very different from those surrounding the cells on the tissue side of the blood vessel endothelium, suggesting that transport across this barrier can be rate limiting for hormone action. This transport can be regulated by altering the surface area of the blood vessel available for diffusion through to the underlying tissue or by the permeability of the endothelium. Many hormones are known to directly or indirectly affect the endothelial barrier, thus affecting their own distribution to their target tissues. Dysfunction of the endothelial barrier is found in many diseases, particularly those associated with the metabolic syndrome. The interrelatedness of hormones may help to explain why the cluster of diseases in the metabolic syndrome occur together so frequently and suggests that treating the endothelium may ameliorate defects in more than one disease. Here, we review the structure and function of the endothelium, its contribution to the function of hormones, and its involvement in disease. PMID:22875454
The barrier within: endothelial transport of hormones.
Kolka, Cathryn M; Bergman, Richard N
2012-08-01
Hormones are involved in a plethora of processes including development and growth, metabolism, mood, and immune responses. These essential functions are dependent on the ability of the hormone to access its target tissue. In the case of endocrine hormones that are transported through the blood, this often means that the endothelium must be crossed. Many studies have shown that the concentrations of hormones and nutrients in blood can be very different from those surrounding the cells on the tissue side of the blood vessel endothelium, suggesting that transport across this barrier can be rate limiting for hormone action. This transport can be regulated by altering the surface area of the blood vessel available for diffusion through to the underlying tissue or by the permeability of the endothelium. Many hormones are known to directly or indirectly affect the endothelial barrier, thus affecting their own distribution to their target tissues. Dysfunction of the endothelial barrier is found in many diseases, particularly those associated with the metabolic syndrome. The interrelatedness of hormones may help to explain why the cluster of diseases in the metabolic syndrome occur together so frequently and suggests that treating the endothelium may ameliorate defects in more than one disease. Here, we review the structure and function of the endothelium, its contribution to the function of hormones, and its involvement in disease.
An approach to localize the retinal blood vessels using bit planes and centerline detection.
Fraz, M M; Barman, S A; Remagnino, P; Hoppe, A; Basit, A; Uyyanonvara, B; Rudnicka, A R; Owen, C G
2012-11-01
The change in morphology, diameter, branching pattern or tortuosity of retinal blood vessels is an important indicator of various clinical disorders of the eye and the body. This paper reports an automated method for segmentation of blood vessels in retinal images. A unique combination of techniques for vessel centerlines detection and morphological bit plane slicing is presented to extract the blood vessel tree from the retinal images. The centerlines are extracted by using the first order derivative of a Gaussian filter in four orientations and then evaluation of derivative signs and average derivative values is performed. Mathematical morphology has emerged as a proficient technique for quantifying the blood vessels in the retina. The shape and orientation map of blood vessels is obtained by applying a multidirectional morphological top-hat operator with a linear structuring element followed by bit plane slicing of the vessel enhanced grayscale image. The centerlines are combined with these maps to obtain the segmented vessel tree. The methodology is tested on three publicly available databases DRIVE, STARE and MESSIDOR. The results demonstrate that the performance of the proposed algorithm is comparable with state of the art techniques in terms of accuracy, sensitivity and specificity. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Cerebral amyloid angiopathy, blood-brain barrier disruption and amyloid accumulation in SAMP8 mice.
del Valle, Jaume; Duran-Vilaregut, Joaquim; Manich, Gemma; Pallàs, Mercè; Camins, Antoni; Vilaplana, Jordi; Pelegrí, Carme
2011-01-01
Cerebrovascular dysfunction and β-amyloid peptide deposition on the walls of cerebral blood vessels might be an early event in the development of Alzheimer's disease. Here we studied the time course of amyloid deposition in blood vessels and blood-brain barrier (BBB) disruption in the CA1 subzone of the hippocampus of SAMP8 mice and the association between these two variables. We also studied the association between the amyloid deposition in blood vessels and the recently described amyloid clusters in the parenchyma, as well as the association of these clusters with vessels in which the BBB is disrupted. SAMP8 mice showed greater amyloid deposition in blood vessels than age-matched ICR-CD1 control mice. Moreover, at 12 months of age the number of vessels with a disrupted BBB had increased in both strains, especially SAMP8 animals. At this age, all the vessels with amyloid deposition showed BBB disruption, but several capillaries with an altered BBB showed no amyloid on their walls. Moreover, amyloid clusters showed no spatial association with vessels with amyloid deposition, nor with vessels in which the BBB had been disrupted. Finally, we can conclude that vascular amyloid deposition seems to induce BBB alterations, but BBB disruption may also be due to other factors. Copyright © 2011 S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
Liang, Chia-Pin; Nakajima, Takahito; Watanabe, Rira; Sato, Kazuhide; Choyke, Peter L.; Chen, Yu; Kobayashi, Hisataka
2014-09-01
Photoimmunotherapy (PIT) is a cell-specific cancer therapy based on an armed antibody conjugate that induces rapid and highly selective cancer cell necrosis after exposure to near-infrared (NIR) light. The PIT treatment also induces the superenhanced permeability and retention effect, which allows high concentrations of nanoparticles to accumulate in the tumor bed. In our pilot studies, optical coherence tomography (OCT) reveals dramatic hemodynamic changes during PIT. We developed and applied speckle variance analysis, Doppler flow measurement, bulk motion removal, and automatic region of interest selection to quantify vessel diameter and blood velocity within tumors in vivo. OCT imaging reveals that blood velocity in peripheral tumor vessels quickly drops below the detection limit while the vessel lumen remains open (4 vessels from 3 animals). On the other hand, control tumor vessels (receive NIR illumination but no PIT drug) do not show the sustained blood velocity drop (5 vessels from 3 animals). Ultraslow blood velocity could result in a long drug circulation time in tumor. Increase of the blood pool volume within the central tumor (shown in histology) may be the leading cause of the periphery blood velocity drop and could also increase the drug pool volume in tumor vessels.
[Advance in studies on TRPV1 and analgesic effect of traditional Chinese medicines].
Liu, Xiao-Li; Lv, Cui; Zhang, Wen-Sheng
2014-05-01
Transient receptor potential vanilloid 1 (TRPV1) is a non-selective positive ion channel that is mainly expressed in sensory neurons and a member of transient receptor potential (TRP) family. The receptor could be activated by mechanical irritation, chemical irritation or endogenous ligand to mediate pains and cause injury to body functions. Traditional Chinese medicine believes that the mechanism of pain is that "stagnation leads to pain". Specifically, both of the contracture and tautness caused by cold and the blood stasis could result in blood impassability and pain. Most of traditional Chinese medicines for clearing heat and removing toxicity have the anti-inflammatory effect, while those for warming interior, and promoting blood circulation to remove blood stasis have the effect in smoothening blood vessels. Therefore, either with the anti-inflammatory effect or the effect in smoothening blood vessels, traditional Chinese medicines for clearing heat and removing toxicity, warming interior, and promoting blood circulation have the analgesic effect In this paper, the authors summarize the analgesic effect of the above three traditional Chinese medicines, with TRPV1 as the target.
Luczynska, Elzbieta; Niemiec, Joanna; Ambicka, Aleksandra; Adamczyk, Agnieszka; Walasek, Tomasz; Ryś, Janusz; Sas-Korczyńska, Beata
2015-09-01
Contrast-enhanced spectral mammography (CESM) is a novel technique used for detection of tumour vascularity by imaging the moment in which contrast, delivered to the lesion by blood vessels, leaks out of them, and flows out through lymphatic vessels. In our study, we included 174 women for whom spectral mammography was performed for diagnostic purposes. The relationship between enhancement in CESM and blood vessel density (BVD), lymphatic vessel density (LVD) or the percentage of fields with at least one lymphatic vessel (distribution of podoplanin-positive vessels - DPV) and other related parameters was assessed in 55 cases. BVD, LVD and DPV were assessed immunohistochemically, applying podoplanin and CD31/CD34 as markers of lymphatic and blood vessels, respectively. The sensitivity (in detection of malignant lesions) of CESM was 100%, while its specificity - 39%. We found a significant positive correlation between the intensity of enhancement in CESM and BVD (p = 0.007, r = 0.357) and a negative correlation between the intensity of enhancement in CESM and DPV (p = 0.003, r = -0.390). Lesions with the highest enhancement in CESM showed a high number of blood vessels and a low number of lymphatics. 1) CESM is a method characterized by high sensitivity and acceptable specificity; 2) the correlation between CESM results and blood/lymphatic vessel density confirms its utility in detection of tissue angiogenesis and/or lymphangiogenesis.
Structural and functional imaging for vascular targeted photodynamic therapy
NASA Astrophysics Data System (ADS)
Li, Buhong; Gu, Ying; Wilson, Brian C.
2017-02-01
Vascular targeted photodynamic therapy (V-PDT) has been widely used for the prevention or treatment of vascular-related diseases, such as localized prostate cancer, wet age-related macular degeneration, port wine stains, esophageal varices and bleeding gastrointestinal mucosal lesions. In this study, the fundamental mechanisms of vascular responses during and after V-PDT will be introduced. Based on the V-PDT treatment of blood vessels in dorsal skinfold window chamber model, the structural and functional imaging, which including white light microscopy, laser speckle imaging, singlet oxygen luminescence imaging, and fluorescence imaging for evaluating vascular damage will be presented, respectively. The results indicate that vessel constriction and blood flow dynamics could be considered as the crucial biomarkers for quantitative evaluation of vascular damage. In addition, future perspectives of non-invasive optical imaging for evaluating vascular damage of V-PDT will be discussed.
Cakiroglu, Figen; Enders-Comberg, Sora Maria; Pagel, Horst; Rohwedel, Jürgen; Lehnert, Hendrik; Kramer, Jan
2016-03-01
Beneficial effects of erythropoietin (EPO) have been reported in acute kidney injury (AKI) when administered prior to induction of AKI. We studied the effects of EPO administration on renal function shortly after ischemic AKI. For this purpose, rats were subjected to renal ischemia for 30 min and EPO was administered at a concentration of 500 U/kg either i.v. as a single shot directly after ischemia or with an additional i.p. dose until 3 days after surgery. The results were compared with AKI rats without EPO application and a sham-operated group. Renal function was assessed by measurement of serum biochemical markers, histological grading, and using an isolated perfused kidney (IPK) model. Furthermore, we performed flow cytometry to analyze the concentration of endothelial progenitor cells (EPCs) in the peripheral blood and renal vessels. Following EPO application, there was only a statistically non-significant tendency of serum creatinine and urea to improve, particularly after daily EPO application. Renal vascular resistance and the renal perfusion rate were not significantly altered. In the histological analysis, acute tubular necrosis was only marginally ameliorated following EPO administration. In summary, we could not demonstrate a significant improvement in renal function when EPO was applied after AKI. Interestingly, however, EPO treatment resulted in a highly significant increase in CD133- and CD34-positive EPC both in the peripheral blood and renal vessels. © 2015 International Federation for Cell Biology.
Arterial pressure transfer characteristics: effects of travel time.
Westerhof, Berend E; Guelen, Ilja; Stok, Wim J; Wesseling, Karel H; Spaan, Jos A E; Westerhof, Nico; Bos, Willem Jan; Stergiopulos, Nikos
2007-02-01
We investigated the quantitative contribution of all local conduit arterial, blood, and distal load properties to the pressure transfer function from brachial artery to aorta. The model was based on anatomical data, Young's modulus, wall viscosity, blood viscosity, and blood density. A three-element windkessel represented the distal arterial tree. Sensitivity analysis was performed in terms of frequency and magnitude of the peak of the transfer function and in terms of systolic, diastolic, and pulse pressure in the aorta. The root mean square error (RMSE) described the accuracy in wave-shape prediction. The percent change of these variables for a 25% alteration of each of the model parameters was calculated. Vessel length and diameter are found to be the most important parameters determining pressure transfer. Systolic and diastolic pressure changed <3% and RMSE <1.8 mmHg for a 25% change in vessel length and diameter. To investigate how arterial tapering influences the pressure transfer, a single uniform lossless tube was modeled. This simplification introduced only small errors in systolic and diastolic pressures (1% and 0%, respectively), and wave shape was less well described (RMSE, approximately 2.1 mmHg). Local (arm) vasodilation affects the transfer function little, because it has limited effect on the reflection coefficient. Since vessel length and diameter translate into travel time, this parameter can describe the transfer accurately. We suggest that with a, preferably, noninvasively measured travel time, an accurate individualized description of pressure transfer can be obtained.
Heitmar, R; Varma, C; De, P; Lau, Y C; Blann, A D
2016-11-01
To test the hypothesis of a significant relationship between systemic markers of renal and vascular function (processes linked to cardiovascular disease and its development) and retinal microvascular function in diabetes and/or cardiovascular disease. Ocular microcirculatory function was measured in 116 patients with diabetes and/or cardiovascular disease using static and continuous retinal vessel responses to three cycles of flickering light. Endothelial function was evaluated by von Willebrand factor (vWf), endothelial microparticles and soluble E selectin, renal function by serum creatinine, creatinine clearance and estimated glomerular filtration rate (eGFR). HbA1c was used as a control index. Central retinal vein equivalence and venous maximum dilation to flicker were linked to HbA1c (both p < 0.05). Arterial reaction time was linked to serum creatinine (p = 0.036) and eGFR (p = 0.039); venous reaction time was linked to creatinine clearance (p = 0.018). Creatinine clearance and eGFR were linked to arterial maximum dilatation (p < 0.001 and p = 0.003, respectively) and the dilatation amplitude (p = 0.038 and p = 0.048, respectively) responses in the third flicker cycle. Of venous responses to the first flicker cycle, HbA1c was linked to the maximum dilation response (p = 0.004) and dilatation amplitude (p = 0.017), vWf was linked to the maximum constriction response (p = 0.016), and creatinine clearance to the baseline diameter fluctuation (p = 0.029). In the second flicker cycle, dilatation amplitude was linked to serum creatinine (p = 0.022). Several retinal blood vessel responses to flickering light are linked to glycaemia and renal function, but only one index is linked to endothelial function. Renal function must be considered when interpreting retinal vessel responses.
Correlation mapping method of OCT for visualization blood vessels in brain
NASA Astrophysics Data System (ADS)
Izotova, O. A.; Kalyanov, A. L.; Lychagov, V. V.; Semyachkina-Glushkovskaya, O. V.
2013-11-01
The burning issue in modern medicine is the diagnosis and treatment of various life-threatening diseases, in particular the diseases of brain. One of them is intracranial hemorrhage (ICH). It occurs especially among newborn babies and is hard-diagnosed. In order to understand the nature of the ICH, the microcirculation of blood, which serves key functions within the body, is analyzed. On this basis a series of experiments was done, in the results of which it was showed, that latent stage of ICH is characterized by decrease of venous blood outflow and the loss of sensitivity of sagittal vein to vasoconstrictor effect of adrenaline. So, stress-related changes of the cerebral venous blood flow (CVBF) can be the source of this disease. In this paper registration CVBF was made with the help of commercially available Thorlabs Swept Source OCT System, using the correlation mapping method. In this method values of correlation coefficient of several images are analyzed. In the result of the algorithm the correlation map was obtained. By the resulting map the diameter of vessels was calculated, which is necessary for examination of effects of adrenalin to the vessels and identification symptoms of ICH.
An Unsupervised Approach for Extraction of Blood Vessels from Fundus Images.
Dash, Jyotiprava; Bhoi, Nilamani
2018-04-26
Pathological disorders may happen due to small changes in retinal blood vessels which may later turn into blindness. Hence, the accurate segmentation of blood vessels is becoming a challenging task for pathological analysis. This paper offers an unsupervised recursive method for extraction of blood vessels from ophthalmoscope images. First, a vessel-enhanced image is generated with the help of gamma correction and contrast-limited adaptive histogram equalization (CLAHE). Next, the vessels are extracted iteratively by applying an adaptive thresholding technique. At last, a final vessel segmented image is produced by applying a morphological cleaning operation. Evaluations are accompanied on the publicly available digital retinal images for vessel extraction (DRIVE) and Child Heart And Health Study in England (CHASE_DB1) databases using nine different measurements. The proposed method achieves average accuracies of 0.957 and 0.952 on DRIVE and CHASE_DB1 databases respectively.
Emerging pulmonary vasculature lacks fate specification.
Schwarz, Margaret A; Caldwell, Lauren; Cafasso, Danielle; Zheng, Haihua
2009-01-01
Lung morphogenesis requires precise coordination between branching morphogenesis and vascularization to generate distal airways capable of supporting respiration at the cell-cell interface. The specific origins and types of blood vessels that initially form in the lung, however, remain obscure. Herein, we definitively show that during the early phases of lung development [i.e., embryonic day (E) 11.5], functional vessels, replete with blood flow, are restricted to the mesenchyme, distal to the epithelium. However, by day E14.5, and in response to epithelial-derived VEGF signals, functional vessels extend from the mesenchyme to the epithelial interface. Moreover, these vessels reside adjacent to multipotent mesenchymal stromal cells that likely play a regulatory role in this process. As well as and distinct from the systemic vasculature, immunostaining for EphrinB2 and EphB4 revealed that arterial and venous identity is not distinguishable in emergent pulmonary vasculature. Collectively, this study provides evidence that lung vascularization initially originates in the mesenchyme, distal to the epithelium, and that arterial-venous specification does not exist in the early lung. At a mechanistic level, we show that basilar epithelial VEGF prompts endothelial cells to move toward the epithelium where they undergo morphogenesis during the proliferative, canalicular stage. Thus our findings challenge existing notions of vascular origin and identity during development.
Development of blood vessel searching system for HMS
NASA Astrophysics Data System (ADS)
Kandani, Hirofumi; Uenoya, Toshiyuki; Uetsuji, Yasutomo; Nakamachi, Eiji
2008-08-01
In this study, we develop a new 3D miniature blood vessel searching system by using near-infrared LED light, a CMOS camera module with an image processing unit for a health monitoring system (HMS), a drug delivery system (DDS) which requires very high performance for automatic micro blood volume extraction and automatic blood examination. Our objective is to fabricate a highly reliable micro detection system by utilizing image capturing, image processing, and micro blood extraction devices. For the searching system to determine 3D blood vessel location, we employ the stereo method. The stereo method is a common photogrammetric method. It employs the optical path principle to detect 3D location of the disparity between two cameras. The principle for blood vessel visualization is derived from the ratio of hemoglobin's absorption of the near-infrared LED light. To get a high quality blood vessel image, we adopted an LED, with peak a wavelength of 940nm. The LED is set on the dorsal side of the finger and it irradiates the human finger. A blood vessel image is captured by a CMOS camera module, which is set below the palmer side of the finger. 2D blood vessel location can be detected by the luminance distribution of a one pixel line. To examine the accuracy of our detecting system, we carried out experiments using finger phantoms with blood vessel diameters of 0.5, 0.75, 1.0mm, at the depths of 0.5 ~ 2.0 mm from the phantom's surface. The experimental results of the estimated depth obtained by our detecting system shows good agreements with the given depths, and the viability of this system is confirmed.
Dynamics of pulsatile flow in fractal models of vascular branching networks.
Bui, Anh; Sutalo, Ilija D; Manasseh, Richard; Liffman, Kurt
2009-07-01
Efficient regulation of blood flow is critically important to the normal function of many organs, especially the brain. To investigate the circulation of blood in complex, multi-branching vascular networks, a computer model consisting of a virtual fractal model of the vasculature and a mathematical model describing the transport of blood has been developed. Although limited by some constraints, in particular, the use of simplistic, uniformly distributed model for cerebral vasculature and the omission of anastomosis, the proposed computer model was found to provide insights into blood circulation in the cerebral vascular branching network plus the physiological and pathological factors which may affect its functionality. The numerical study conducted on a model of the middle cerebral artery region signified the important effects of vessel compliance, blood viscosity variation as a function of the blood hematocrit, and flow velocity profile on the distributions of flow and pressure in the vascular network.
Heterogeneity of the tumor vasculature: the need for new tumor blood vessel type-specific targets.
Nagy, Janice A; Dvorak, Harold F
2012-10-01
Therapies directed against VEGF-A and its receptors are effective in treating many mouse tumors but have been less so in treating human cancer patients. To elucidate the reasons that might be responsible for this difference in response, we investigated the nature of the blood vessels that appear in human and mouse cancers and the tumor "surrogate" blood vessels that develop in immunodeficient mice in response to an adenovirus expressing VEGF-A(164). Both tumor and tumor surrogate blood vessels are heterogeneous and form by two distinct processes, angiogenesis and arterio-venogenesis. The first new angiogenic blood vessels to form are mother vessels (MV); MV arise from preexisting venules and capillaries and evolve over time into glomeruloid microvascular proliferations (GMP) and subsequently into capillaries and vascular malformations (VM). Arterio-venogenesis results from the remodeling and enlargement of preexisting arteries and veins, leading to the formation of feeder arteries (FA) and draining veins (DV) that supply and drain angiogenic vessels. Of these different blood vessel types, only the two that form first, MV and GMP, were highly responsive to anti-VEGF therapy, whereas "late"-formed capillaries, VM, FA and DV were relatively unresponsive. This finding may explain, at least in part, the relatively poor response of human cancers to anti-VEGF/VEGFR therapies, because human cancers, present for months or years prior to discovery, are expected to contain a large proportion of late-formed blood vessels. The future of anti-vascular cancer therapy may depend on finding new targets on "late" vessels, apart from those associated with the VEGF/VEGFR axis.
Assessement of angiogenesis reveals blood vessel heterogeneity in lung carcinoma
BIRAU, AMALIA; CEAUSU, RALUCA AMALIA; CIMPEAN, ANCA MARIA; GAJE, PUSA; RAICA, MARIUS; OLARIU, TEODORA
2012-01-01
Despite advances in treatment, the prognosis for lung cancer patients remains poor. Angiogenesis appears to be a promising target for lung cancer therapy; however, the clinical significance of vascular changes are not completely understood. The aim of this study was to evaluate the types and morphology of blood vessels in various lung carcinomas. Using double immunostaining, we investigated 39 biopsies from patients admitted with various histological types of lung carcinoma. Tumor blood vessels were quantified separately for CD34/smooth muscle actin and described as either immature, intermediate or mature. Double immunostaining evaluation of the type of blood vessels in lung carcinomas revealed a marked heterogeneity. The immature and intermediate type of vessels were more common in adenocarcinomas (ADCs) and squamous cell carcinomas (SCCs) of the lung. Small cell lung carcinomas revealed a significant correlation between pathological and immature types of blood vessels. Therefore, quantifying the types of tumor vessels in lung carcinomas may be an important element to improve the results of anti-vascular therapy. PMID:23205116
Blood Vessel Normalization in the Hamster Oral Cancer Model for Experimental Cancer Therapy Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ana J. Molinari; Romina F. Aromando; Maria E. Itoiz
Normalization of tumor blood vessels improves drug and oxygen delivery to cancer cells. The aim of this study was to develop a technique to normalize blood vessels in the hamster cheek pouch model of oral cancer. Materials and Methods: Tumor-bearing hamsters were treated with thalidomide and were compared with controls. Results: Twenty eight hours after treatment with thalidomide, the blood vessels of premalignant tissue observable in vivo became narrower and less tortuous than those of controls; Evans Blue Dye extravasation in tumor was significantly reduced (indicating a reduction in aberrant tumor vascular hyperpermeability that compromises blood flow), and tumor bloodmore » vessel morphology in histological sections, labeled for Factor VIII, revealed a significant reduction in compressive forces. These findings indicated blood vessel normalization with a window of 48 h. Conclusion: The technique developed herein has rendered the hamster oral cancer model amenable to research, with the potential benefit of vascular normalization in head and neck cancer therapy.« less
Brain blood vessel segmentation using line-shaped profiles
NASA Astrophysics Data System (ADS)
Babin, Danilo; Pižurica, Aleksandra; De Vylder, Jonas; Vansteenkiste, Ewout; Philips, Wilfried
2013-11-01
Segmentation of cerebral blood vessels is of great importance in diagnostic and clinical applications, especially for embolization of cerebral aneurysms and arteriovenous malformations (AVMs). In order to perform embolization of the AVM, the structural and geometric information of blood vessels from 3D images is of utmost importance. For this reason, the in-depth segmentation of cerebral blood vessels is usually done as a fusion of different segmentation techniques, often requiring extensive user interaction. In this paper we introduce the idea of line-shaped profiling with an application to brain blood vessel and AVM segmentation, efficient both in terms of resolving details and in terms of computation time. Our method takes into account both local proximate and wider neighbourhood of the processed pixel, which makes it efficient for segmenting large blood vessel tree structures, as well as fine structures of the AVMs. Another advantage of our method is that it requires selection of only one parameter to perform segmentation, yielding very little user interaction.
Peregrina-Barreto, Hayde; Perez-Corona, Elizabeth; Rangel-Magdaleno, Jose; Ramos-Garcia, Ruben; Chiu, Roger; Ramirez-San-Juan, Julio C
2017-06-01
Visualization of deep blood vessels in speckle images is an important task as it is used to analyze the dynamics of the blood flow and the health status of biological tissue. Laser speckle imaging is a wide-field optical technique to measure relative blood flow speed based on the local speckle contrast analysis. However, it has been reported that this technique is limited to certain deep blood vessels (about ? = 300 ?? ? m ) because of the high scattering of the sample; beyond this depth, the quality of the vessel’s image decreases. The use of a representation based on homogeneity values, computed from the co-occurrence matrix, is proposed as it provides an improved vessel definition and its corresponding diameter. Moreover, a methodology is proposed for automatic blood vessel location based on the kurtosis analysis. Results were obtained from the different skin phantoms, showing that it is possible to identify the vessel region for different morphologies, even up to 900 ?? ? m in depth.
... of small blood vessels in your kidneys that filter waste and excess water from your blood. Nephrotic ... blood vessels (glomeruli) of your kidneys. The glomeruli filter your blood as it passes through your kidneys, ...
Grading system for blood vessel tumor emboli of invasive ductal carcinoma of the breast.
Sugiyama, Michiko; Hasebe, Takahiro; Shimada, Hiroko; Takeuchi, Hideki; Shimizu, Kyoko; Shimizu, Michio; Yasuda, Masanori; Ueda, Shigeto; Shigekawa, Takashi; Osaki, Akihiko; Saeki, Toshiaki
2015-06-01
We previously reported that the number of mitotic and apoptotic figures in tumor cells in blood vessel tumor emboli had the greatest significant power for the accurate prediction of the outcome of patients with invasive ductal carcinoma of the breast. The purpose of the present study was to devise a grading system for blood vessel tumor emboli based on the mitotic and apoptotic figures of tumor cells in blood vessel tumor emboli, enabling accurate prediction of the outcome of patients with invasive ductal carcinoma of the breast. We classified 263 invasive ductal carcinomas into the following 3 grades according to the numbers of mitotic and apoptotic figures in tumor cells located in blood vessels within 1 high-power field: grade 0, no blood vessel invasion; grade 1, absence of mitotic figures and presence of any number of apoptotic figures, or 1 mitotic figure and 0 to 2 apoptotic figures; and grade 2, 1 mitotic figure and 3 or more apoptotic figures, or 2 or more mitotic figures and 1 or more apoptotic figures. Multivariate analyses with well-known prognostic factors demonstrated that grade 2 blood vessel tumor emboli significantly increased the hazard ratios for tumor recurrence independent of the nodal status, pathological TNM stage, hormone receptor status, or HER2 status. The presently reported grading system for blood vessel tumor emboli is the strongest histologic factor for accurate prediction of the outcome of patients with invasive ductal carcinoma of the breast. Copyright © 2015 Elsevier Inc. All rights reserved.
Gradient changes in porcine renal arterial vascular anatomy and blood flow after cryoablation.
Lagerveld, Brunolf W; van Horssen, Pepijn; Laguna, M Pilar; van den Wijngaard, Jeroen P H M; Siebes, Maria; Wijkstra, Hessel; de la Rosette, Jean J M C H; Spaan, Jos A E
2011-08-01
We quantified temporal changes in vascular structure and blood flow after cryosurgery of the porcine kidney in vivo. We studied 5 groups of 4 kidneys each with a survival time of 20 minutes, 4 hours, 2 days, and 1 and 2 weeks after cryoablation, respectively. Before harvesting the kidneys, fluorescently labeled microspheres were administrated in the descending aorta. After harvest the kidney and its vasculature were casted with fluorescently dyed elastomer, frozen and processed in an imaging cryomicrotome to reveal the 3-dimensional arterial branching structure and microsphere distribution. In regions of interest vessels were segmented by image analysis software and histograms were constructed to reveal the total summed vessel length as a function of diameter. A characteristic diameter of the ablated area was measured. The 20-minute survival group histograms showed a significant shift of the peak to larger diameters (p<0.002), indicating that smaller vessels were destroyed. Microsphere density was decreased to 2% in the ablated region but not in the nonablated border zone, depending on the remaining crater crossing larger vessels. After 2 weeks neither vessels nor microspheres were left in the ablated area, which had shrunk by about 40% in diameter. Study limitations are the lack of histological confirmation and the use of normal rather than cancerous tissue. Larger vessels remain patent just after ablation and transport blood to the border of the ablation crater but perfusion within the crater is halted instantly. Characteristic crater diameter increases initially but decreases thereafter. Destruction of vessels and tissue is complete 2 weeks after cryoablation. Copyright © 2011 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Yazdani, Saami K; Watts, Benjamin; Machingal, Masood; Jarajapu, Yagna P R; Van Dyke, Mark E; Christ, George J
2009-04-01
Vascular smooth muscle cells (VSMCs) impart important functional characteristics in the native artery and, therefore, should logically be incorporated in the development of tissue-engineered blood vessels. However, the native architecture and low porosity of naturally derived biomaterials (i.e., decellularized vessels) have impeded efforts to seed and incorporate a VSMC layer in tissue-engineered blood vessels. To this end, the goal of this study was to develop improved methods for seeding, proliferation, and maturation of VSMCs on decellularized porcine carotid arteries. Decellularized vessels were prepared in the absence and presence of the adventitial layer, and statically seeded with a pipette containing a suspension of rat aortic VSMCs. After cell seeding, recellularized engineered vessels were placed in a custom bioreactor system for 1-2 weeks to enhance cellular proliferation, alignment, and maturation. Initial attachment of VSMCs was dramatically enhanced by removing the adventitial layer of the decellularized porcine artery. Moreover, cyclic bioreactor conditioning (i.e., flow and pressure) resulted in increased VSMC proliferation and accelerated formation of a muscularized medial layer in the absence of the adventitial layer during the first week of preconditioning. Fura-2-based digital imaging microscopy revealed marked and reproducible depolarization-induced calcium mobilization after bioreactor preconditioning in the absence, but not in the presence, of the adventitia. The major finding of this investigation is that bioreactor preconditioning accelerates the formation of a significant muscular layer on decellularized scaffolds, in particular on adventitia-denuded scaffolds. Further, the VSMC layer of bioreactor-preconditioned vessels was capable of mobilizing calcium in response to cellular depolarization. These findings represent an important first step toward the development of tissue-engineered vascular grafts that more closely mimic native vasculature.
A new fundamental bioheat equation for muscle tissue--part II: Temperature of SAV vessels.
Zhu, Liang; Xu, Lisa X; He, Qinghong; Weinbaum, Sheldon
2002-02-01
In this study, a new theoretical framework was developed to investigate temperature variations along countercurrent SAV blood vessels from 300 to 1000 microm diameter in skeletal muscle. Vessels of this size lie outside the range of validity of the Weinbaum-Jiji bioheat equation and, heretofore, have been treated using discrete numerical methods. A new tissue cylinder surrounding these vessel pairs is defined based on vascular anatomy, Murray's law, and the assumption of uniform perfusion. The thermal interaction between the blood vessel pair and surrounding tissue is investigated for two vascular branching patterns, pure branching and pure perfusion. It is shown that temperature variations along these large vessel pairs strongly depend on the branching pattern and the local blood perfusion rate. The arterial supply temperature in different vessel generations was evaluated to estimate the arterial inlet temperature in the modified perfusion source term for the s vessels in Part I of this study. In addition, results from the current research enable one to explore the relative contribution of the SAV vessels and the s vessels to the overall thermal equilibration between blood and tissue.
Ma, Jun; Chen, Bin; Li, Dong; Zhang, Yue; Ying, Zhaoxia
2018-03-14
Port-wine stain (PWS) birthmark is a congenital microvascular malformation of the skin. A 1064-nm Nd:YAG laser can achieve a deeper treatment, but the weak absorption by blood limits its clinical application. Multiple laser pulses (MLPs) are a potential solution to enhance the curative effect of a Nd:YAG laser. To reduce the pulse number (p n ) required for the thermal destruction of the blood vessel, the effect of glucose in conjunction with MLP was investigated. In vivo experiments were performed on a dorsal skin chamber model. Different concentrations (20, 25, 30, and 40%) of glucose were applied to the sub-dermal side of the hamster skin before laser irradiation. Identical vessels with diameters of 200 ± 30 and 110 ± 20 μm were chosen as representatives of typical PWS vessels. Instant thermal responses of the blood vessel were recorded by a high-speed camera. The required p n for blood vessel damage was compared with that without glucose pretreatment. Results showed that the use of glucose with a concentration of 20% combined with MLP Nd:YAG laser to damage blood vessels is more appropriate because severe hemorrhage or carbonization easily appeared in blood vessels at higher glucose concentration of 25, 30, and 40%. When 20% glycerol is pretreated on the sub-dermal hamster skin, the required p n for blood vessel damage can be significantly decreased for different power densities. For example, p n can be reduced by 40% when the power density is 57 J/cm 2 . In addition, generation of cavitation and bubbles in blood vessels is difficult upon pretreatment with glucose. The combination of glucose with MLP Nd:YAG laser could be an effective protocol for reducing the p n required for blood vessel damage. Randomized controlled trial (RCT) and human trials will be conducted in the future.
... the blood vessels that supply blood to the head, neck, upper body and arms. It is also called ... the blood vessels that supply blood to the head, neck, upper body, and arms. It most commonly occurs ...
Openings between Defective Endothelial Cells Explain Tumor Vessel Leakiness
Hashizume, Hiroya; Baluk, Peter; Morikawa, Shunichi; McLean, John W.; Thurston, Gavin; Roberge, Sylvie; Jain, Rakesh K.; McDonald, Donald M.
2000-01-01
Leakiness of blood vessels in tumors may contribute to disease progression and is key to certain forms of cancer therapy, but the structural basis of the leakiness is unclear. We sought to determine whether endothelial gaps or transcellular holes, similar to those found in leaky vessels in inflammation, could explain the leakiness of tumor vessels. Blood vessels in MCa-IV mouse mammary carcinomas, which are known to be unusually leaky (functional pore size 1.2–2 μm), were compared to vessels in three less leaky tumors and normal mammary glands. Vessels were identified by their binding of intravascularly injected fluorescent cationic liposomes and Lycopersicon esculentum lectin and by CD31 (PECAM) immunoreactivity. The luminal surface of vessels in all four tumors had a defective endothelial monolayer as revealed by scanning electron microscopy. In MCa-IV tumors, 14% of the vessel surface was lined by poorly connected, overlapping cells. The most superficial lining cells, like endothelial cells, had CD31 immunoreactivity and fenestrae with diaphragms, but they had a branched phenotype with cytoplasmic projections as long as 50 μm. Some branched cells were separated by intercellular openings (mean diameter 1.7 μm; range, 0.3–4.7 μm). Transcellular holes (mean diameter 0.6 μm) were also present but were only 8% as numerous as intercellular openings. Some CD31-positive cells protruded into the vessel lumen; others sprouted into perivascular tumor tissue. Tumors in RIP-Tag2 mice had, in addition, tumor cell-lined lakes of extravasated erythrocytes. We conclude that some tumor vessels have a defective cellular lining composed of disorganized, loosely connected, branched, overlapping or sprouting endothelial cells. Openings between these cells contribute to tumor vessel leakiness and may permit access of macromolecular therapeutic agents to tumor cells. PMID:10751361
Renal blood flow and oxygenation drive nephron progenitor differentiation.
Rymer, Christopher; Paredes, Jose; Halt, Kimmo; Schaefer, Caitlin; Wiersch, John; Zhang, Guangfeng; Potoka, Douglas; Vainio, Seppo; Gittes, George K; Bates, Carlton M; Sims-Lucas, Sunder
2014-08-01
During kidney development, the vasculature develops via both angiogenesis (branching from major vessels) and vasculogenesis (de novo vessel formation). The formation and perfusion of renal blood vessels are vastly understudied. In the present study, we investigated the regulatory role of renal blood flow and O2 concentration on nephron progenitor differentiation during ontogeny. To elucidate the presence of blood flow, ultrasound-guided intracardiac microinjection was performed, and FITC-tagged tomato lectin was perfused through the embryo. Kidneys were costained for the vasculature, ureteric epithelium, nephron progenitors, and nephron structures. We also analyzed nephron differentiation in normoxia compared with hypoxia. At embryonic day 13.5 (E13.5), the major vascular branches were perfused; however, smaller-caliber peripheral vessels remained unperfused. By E15.5, peripheral vessels started to be perfused as well as glomeruli. While the interior kidney vessels were perfused, the peripheral vessels (nephrogenic zone) remained unperfused. Directly adjacent and internal to the nephrogenic zone, we found differentiated nephron structures surrounded and infiltrated by perfused vessels. Furthermore, we determined that at low O2 concentration, little nephron progenitor differentiation was observed; at higher O2 concentrations, more differentiation of the nephron progenitors was induced. The formation of the developing renal vessels occurs before the onset of blood flow. Furthermore, renal blood flow and oxygenation are critical for nephron progenitor differentiation. Copyright © 2014 the American Physiological Society.
Application of morphological bit planes in retinal blood vessel extraction.
Fraz, M M; Basit, A; Barman, S A
2013-04-01
The appearance of the retinal blood vessels is an important diagnostic indicator of various clinical disorders of the eye and the body. Retinal blood vessels have been shown to provide evidence in terms of change in diameter, branching angles, or tortuosity, as a result of ophthalmic disease. This paper reports the development for an automated method for segmentation of blood vessels in retinal images. A unique combination of methods for retinal blood vessel skeleton detection and multidirectional morphological bit plane slicing is presented to extract the blood vessels from the color retinal images. The skeleton of main vessels is extracted by the application of directional differential operators and then evaluation of combination of derivative signs and average derivative values. Mathematical morphology has been materialized as a proficient technique for quantifying the retinal vasculature in ocular fundus images. A multidirectional top-hat operator with rotating structuring elements is used to emphasize the vessels in a particular direction, and information is extracted using bit plane slicing. An iterative region growing method is applied to integrate the main skeleton and the images resulting from bit plane slicing of vessel direction-dependent morphological filters. The approach is tested on two publicly available databases DRIVE and STARE. Average accuracy achieved by the proposed method is 0.9423 for both the databases with significant values of sensitivity and specificity also; the algorithm outperforms the second human observer in terms of precision of segmented vessel tree.
Klueh, Ulrike; Antar, Omar; Qiao, Yi; Kreutzer, Donald L.
2014-01-01
The concept of increased blood vessel (BV) density proximal to glucose sensors implanted in the interstitial tissue increases the accuracy and lifespan of sensors is accepted, despite limited existing experimental data. Interestingly, there is no previous data or even conjecture in the literature on the role of lymphatic vessels (LV) alone, or in combination with BV, in enhancing continuous glucose monitoring (CGM) in vivo. To investigate the impact of inducing vascular networks (BV and LV) at sites of glucose sensor implantation, we utilized adenovirus based local gene therapy of vascular endothelial cell growth factor-A (VEGF-A) to induce vessels at sensor implantation sites. The results of these studies demonstrated that 1) VEGF-A based local gene therapy increases vascular networks (blood vessels and lymphatic vessels) at sites of glucose sensor implantation; and 2) this local increase of vascular networks enhances glucose sensor function in vivo from 7 days to greater than 28 days post sensor implantation. This data provides “proof of concept” for the effective usage of local angiogenic factor (AF) gene therapy in mammalian models in an effort to extend CGM in vivo. It also supports the practice of a variety of viral and non-viral vectors as well as gene products (e.g. anti-inflammatory and anti-fibrosis genes) to engineer “implant friendly tissues” for the usage with implantable glucose sensors as well as other implantable devices. PMID:24243850
Longitudinal In Vivo Imaging to Assess Blood Flow and Oxygenation in Implantable Engineered Tissues
White, Sean M.; Hingorani, Ryan; Arora, Rajan P.S.; Hughes, Christopher C.W.; George, Steven C.
2012-01-01
The functionality of vascular networks within implanted prevascularized tissues is difficult to assess using traditional analysis techniques, such as histology. This is largely due to the inability to visualize hemodynamics in vivo longitudinally. Therefore, we have developed dynamic imaging methods to measure blood flow and hemoglobin oxygen saturation in implanted prevascularized tissues noninvasively and longitudinally. Using laser speckle imaging, multispectral imaging, and intravital microscopy, we demonstrate that fibrin-based tissue implants anastomose with the host (severe combined immunodeficient mice) in as short as 20 h. Anastomosis results in initial perfusion with highly oxygenated blood, and an increase in average hemoglobin oxygenation of 53%. However, shear rates in the preformed vessels were low (20.8±12.8 s−1), and flow did not persist in the vast majority of preformed vessels due to thrombus formation. These findings suggest that designing an appropriate vascular network structure in prevascularized tissues to maintain shear rates above the threshold for thrombosis may be necessary to maintain flow following implantation. We conclude that wide-field and microscopic functional imaging can dynamically assess blood flow and oxygenation in vivo in prevascularized tissues, and can be used to rapidly evaluate and improve prevascularization strategies. PMID:22435776
Yamazaki, Tomoko; Li, Wenling; Mukouyama, Yoh-Suke
2018-03-29
Here, we present a protocol of a whole-mount adult ear skin imaging technique to study comprehensive three-dimensional neuro-vascular branching morphogenesis and patterning, as well as immune cell distribution at a cellular level. The analysis of peripheral nerve and blood vessel anatomical structures in adult tissues provides some insights into the understanding of functional neuro-vascular wiring and neuro-vascular degeneration in pathological conditions such as wound healing. As a highly informative model system, we have focused our studies on adult ear skin, which is readily accessible for dissection. Our simple and reproducible protocol provides an accurate depiction of the cellular components in the entire skin, such as peripheral nerves (sensory axons, sympathetic axons, and Schwann cells), blood vessels (endothelial cells and vascular smooth muscle cells), and inflammatory cells. We believe this protocol will pave the way to investigate morphological abnormalities in peripheral nerves and blood vessels as well as the inflammation in the adult ear skin under different pathological conditions.
Predicting stroke outcome using DCE-CT measured blood velocity
NASA Astrophysics Data System (ADS)
Oosterbroek, Jaap; Bennink, Edwin; Dankbaar, Jan Willem; Horsch, Alexander D.; Viergever, Max A.; Velthuis, Birgitta K.; de Jong, Hugo W. A. M.
2015-03-01
CT plays an important role in the diagnosis of acute stroke patients. Dynamic contrast enhanced CT (DCE-CT) can estimate local tissue perfusion and extent of ischemia. However, hemodynamic information of the large intracranial vessels may also be obtained from DCE-CT data and may contain valuable diagnostic information. We describe a novel method to estimate intravascular blood velocity (IBV) in large cerebral vessels using DCE-CT data, which may be useful to help predict stroke outcome. DCE-CT scans from 34 patients with isolated M1 occlusions were included from a large prospective multi-center cohort study of patients with acute ischemic stroke. Gaussians fitted to the intravascular data yielded the time-to-peak (TTP) and cerebral-blood-volume (CBV). IBV was computed by taking the inverse of the TTP gradient magnitude. Voxels with a CBV of at least 10% of the CBV found in the arterial input function were considered part of a vessel. Mid-sagittal planes were drawn manually and averages of the IBV over all vessel-voxels (arterial and venous) were computed for each hemisphere. Mean-hemisphere IBV differences, mean-hemisphere TTP differences, and hemisphere vessel volume differences were used to differentiate between patients with good and bad outcome (modified Rankin Scale score <3 versus ≥3 at 90 days) using ROC analysis. AUCs from the ROC for IBV, TTP, and vessel volume were 0.80, 0.67 and 0.62 respectively. In conclusion, IBV was found to be a better predictor of patient outcome than the parameters used to compute it and may be a promising new parameter for stroke outcome prediction.
NASA Astrophysics Data System (ADS)
Yang, Xue; Wang, Hongbo; Sun, Li; Yu, Hongnian
2015-03-01
To develop a robot system for minimally invasive surgery is significant, however the existing minimally invasive surgery robots are not applicable in practical operations, due to their limited functioning and weaker perception. A novel wire feeder is proposed for minimally invasive vascular interventional surgery. It is used for assisting surgeons in delivering a guide wire, balloon and stenting into a specific lesion location. By contrasting those existing wire feeders, the motion methods for delivering and rotating the guide wire in blood vessel are described, and their mechanical realization is presented. A new resistant force detecting method is given in details. The change of the resistance force can help the operator feel the block or embolism existing in front of the guide wire. The driving torque for rotating the guide wire is developed at different positions. Using the CT reconstruction image and extracted vessel paths, the path equation of the blood vessel is obtained. Combining the shapes of the guide wire outside the blood vessel, the whole bending equation of the guide wire is obtained. That is a risk criterion in the delivering process. This process can make operations safer and man-machine interaction more reliable. A novel surgery robot for feeding guide wire is designed, and a risk criterion for the system is given.
Automated measurement of retinal vascular tortuosity.
Hart, W. E.; Goldbaum, M.; Côté, B.; Kube, P.; Nelson, M. R.
1997-01-01
Automatic measurement of blood vessel tortuosity is a useful capability for automatic ophthalmological diagnostic tools. We describe a suite of automated tortuosity measures for blood vessel segments extracted from RGB retinal images. The tortuosity measures were evaluated in two classification tasks: (1) classifying the tortuosity of blood vessel segments and (2) classifying the tortuosity of blood vessel networks. These tortuosity measures were able to achieve a classification rate of 91% for the first problem and 95% on the second problem, which confirms that they capture much of the ophthalmologists' notion of tortuosity. Images Figure 1 PMID:9357668
NASA Astrophysics Data System (ADS)
Asimov, M. M.; Asimov, R. M.; Rubinov, A. N.
2011-05-01
We propose and examine a new approach to visualizing a local network of cutaneous blood vessels using laser optical methods for applications in biometry and photomedicine. Various optical schemes of the formation of biometrical information on the architecture of blood vessels of skin tissue are analyzed. We developed an optical model of the interaction of the laser radiation with the biological tissue and a mathematical algorithm of processing of measurement results. We show that, in medicine, the visualization of blood vessels makes it possible to calculate and determine regions of disturbance of blood microcirculation and to control tissue hypoxia, as well as to maintain the local concentration of oxygen at a level necessary for the normal cellular metabolism. We propose noninvasive optical methods for modern photomedicine and biometry for diagnostics and elimination of tissue hypoxia and for personality identification and verification via the pattern of cutaneous blood vessels.
String Vessel Formation is Increased in the Brain of Parkinson Disease.
Yang, Panzao; Pavlovic, Darja; Waldvogel, Henry; Dragunow, Mike; Synek, Beth; Turner, Clinton; Faull, Richard; Guan, Jian
2015-01-01
String vessels are collapsed basement membrane without endothelium and have no function in circulation. String vessel formation contributes to vascular degeneration in Alzheimer disease. By comparing to age-matched control cases we have recently reported endothelial degeneration in brain capillaries of human Parkinson disease (PD). Current study evaluated changes of basement membrane of capillaries, string vessel formation and their association with astrocytes, blood-brain-barrier integrity and neuronal degeneration in PD. Brain tissue from human cases of PD and age-matched controls was used. Immunohistochemical staining for collagen IV, GFAP, NeuN, tyrosine hydroxylase, fibrinogen and Factor VIII was evaluated by image analysis in the substantia nigra, caudate nucleus and middle frontal gyrus. While the basement-membrane-associated vessel density was similar between the two groups, the density of string vessels was significantly increased in the PD cases, particularly in the substantia nigra. Neuronal degeneration was found in all brain regions. Astrocytes and fibrinogen were increased in the caudate nuclei of PD cases compared with control cases. Endothelial degeneration and preservation of basement membrane result in an increase of string vessel formation in PD. The data may suggest a possible role for cerebral hypoperfusion in the neuronal degeneration characteristic of PD, which needs further investigation. Elevated astrocytosis in the caudate nucleus of PD cases could be associated with disruption of the blood-brain barrier in this brain region.
An Immunological Fingerprint Differentiates Muscular Lymphatics from Arteries and Veins
Bridenbaugh, Eric A.; Wang, Wei; Srimushnam, Maya; Cromer, Walter E.; Zawieja, Scott D.; Schmidt, Susan E.; Jupiter, Daniel C.; Huang, Hung-Chung; Van Buren, Vincent
2013-01-01
Abstract The principal function of the lymphatic system is to transport lymph from the interstitium to the nodes and then from the nodes to the blood. In doing so lymphatics play important roles in fluid homeostasis, macromolecular/antigen transport and immune cell trafficking. To better understand the genes that contribute to their unique physiology, we compared the transcriptional profile of muscular lymphatics (prenodal mesenteric microlymphatics and large, postnodal thoracic duct) to axillary and mesenteric arteries and veins isolated from rats. Clustering of the differentially expressed genes demonstrated that the lymph versus blood vessel differences were more profound than between blood vessels, particularly the microvessels. Gene ontology functional category analysis indicated that microlymphatics were enriched in antigen processing/presentation, IgE receptor signaling, catabolic processes, translation and ribosome; while they were diminished in oxygen transport, regulation of cell proliferation, glycolysis and inhibition of adenylate cyclase activity by G-proteins. We evaluated the differentially expressed microarray genes/products by qPCR and/or immunofluorescence. Immunofluorescence documented that multiple MHC class II antigen presentation proteins were highly expressed by an antigen-presenting cell (APC) type found resident within the lymphatic wall. These APCs also expressed CD86, a co-stimulatory protein necessary for T-cell activation. We evaluated the distribution and phenotype of APCs within the pre and postnodal lymphatic network. This study documents a novel population of APCs resident within the walls of muscular, prenodal lymphatics that indicates novel roles in antigen sampling and immune responses. In conclusion, these prenodal lymphatics exhibit a unique profile that distinguishes them from blood vessels and highlights the role of the lymphatic system as an immunovascular system linking the parenchymal interstitium, lymph nodes and the blood. PMID:24044756
Kruse, Nicholas T; Scheuermann, Barry W
2017-12-01
Stretching is commonly prescribed with the intended purpose of increasing range of motion, enhancing muscular coordination, and preventing prolonged immobilization induced by aging or a sedentary lifestyle. Emerging evidence suggests that acute or long-term stretching exercise may modulate a variety of cardiovascular responses. Specifically, at the onset of stretch, the mechanical deformation of the vascular bed coupled with stimulation of group III muscle afferent fibers initiates a cascade of events resulting in both peripheral vasodilation and a heart rate-driven increase in cardiac output, blood pressure, and muscle blood flow. This potential to increase shear stress and blood flow without the use of excessive muscle energy expenditure may hold important implications for future therapeutic vascular medicine and cardiac health. However, the idea that a cardiovascular component may be involved in human skeletal muscle stretching is relatively new. Therefore, the primary intent of this review is to highlight topics related to skeletal muscle stretching and cardiovascular regulation and function. The current evidence suggests that acute stretching causes a significant macro- and microcirculatory event that alters blood flow and the relationship between oxygen availability and oxygen utilization. These acute vascular changes if performed chronically may result in improved endothelial function, improved arterial blood vessel stiffness, and/or reduced blood pressure. Although several mechanisms have been postulated, an increased nitric oxide bioavailability has been highlighted as one promising candidate for the improvement in vessel function with stretching. Collectively, the evidence provided in this review suggests that stretching acutely or long term may serve as a novel and alternative low intensity therapeutic intervention capable of improving several parameters of vascular function.
Lattice Boltzmann Simulation of Blood Flow in Blood Vessels with the Rolling Massage
NASA Astrophysics Data System (ADS)
Yi, Hou-Hui; Xu, Shi-Xiong; Qian, Yue-Hong; Fang, Hai-Ping
2005-12-01
The rolling massage manipulation is a classic Chinese massage, which is expected to improve the circulation by pushing, pulling and kneading of the muscle. A model for the rolling massage manipulation is proposed and the lattice Boltzmann method is applied to study the blood flow in the blood vessels. The simulation results show that the blood flux is considerably modified by the rolling massage and the explicit value depends on the rolling frequency, the rolling depth, and the diameter of the vessel. The smaller the diameter of the blood vessel, the larger the enhancement of the blood flux by the rolling massage. The model, together with the simulation results, is expected to be helpful to understand the mechanism and further development of rolling massage techniques.
BENTON, RICHARD L.; MADDIE, MELISSA A.; MINNILLO, DANIELLE R.; HAGG, THEO; WHITTEMORE, SCOTT R.
2009-01-01
After traumatic spinal cord injury (SCI), disruption and plasticity of the microvasculature within injured spinal tissue contribute to the pathological cascades associated with the evolution of both primary and secondary injury. Conversely, preserved vascular function most likely results in tissue sparing and subsequent functional recovery. It has been difficult to identify subclasses of damaged or regenerating blood vessels at the cellular level. Here, adult mice received a single intravenous injection of the Griffonia simplicifolia isolectin B4 (IB4) at 1–28 days following a moderate thoracic (T9) contusion. Vascular binding of IB4 was maximally observed 7 days following injury, a time associated with multiple pathologic aspects of the intrinsic adaptive angiogenesis, with numbers of IB4 vascular profiles decreasing by 21 days postinjury. Quantitative assessment of IB4 binding shows that it occurs within the evolving lesion epicenter, with affected vessels expressing a temporally specific dysfunctional tight junctional phenotype as assessed by occludin, claudin-5, and ZO-1 immunoreactivities. Taken together, these results demonstrate that intravascular lectin delivery following SCI is a useful approach not only for observing the functional status of neovascular formation but also for definitively identifying specific subpopulations of reactive spinal microvascular elements. PMID:18092342
Tubular Tissues and Organs of Human Body--Challenges in Regenerative Medicine.
Góra, Aleksander; Pliszka, Damian; Mukherjee, Shayanti; Ramakrishna, Seeram
2016-01-01
Tissue engineering of tubular organs such as the blood vessel, trachea gastrointestinal tract, urinary tract are of the great interest due to the high amount of surgeries performed annually on those organs. Development in tissue engineering in recent years and promising results, showed need to investigate more complex constructs that need to be designed in special manner. Stent technology remain the most widely used procedure to restore functions of tubular tissues after cancer treatment, or after organ removal due to traumatic accidents. Tubular structures like blood vessels, intestines, and trachea have to work in specific environment at the boundary of the liquids, solids or air and surrounding tissues and ensure suitable separation between them. This brings additional challenges in tissue engineering science in order to construct complete organs by using combinations of various cells along with the support material systems. Here we give a comprehensive review of the tubular structures of the human body, in perspective of the current methods of treatment and progress in regenerative medicine that aims to develop fully functioning organs of tubular shape. Extensive analysis of the available literature has been done focusing on materials and methods of creations of such organs. This work describes the attempts to incorporate growth factors and drugs within the scaffolds to ensure localized drug release and enhance vascularization of the organ by attracting blood vessels to the site of implantation.
... then injected into the renal artery through the catheter, and images of the vessels of the kidney are taken. The test is a useful aid in evaluating kidney function and diagnosing any narrowing of the arteries, blood clots, tumors or aneurysms.
Development of a Novel Method for the Purification and Culture of Rodent Astrocytes
Foo, Lynette C.; Allen, Nicola J.; Bushong, Eric A.; Ventura, P. Britten; Chung, Won-Suk; Zhou, Lu; Cahoy, John D.; Daneman, Richard; Zong, Hui; Ellisman, Mark H.; Barres, Ben A.
2011-01-01
Summary The inability to purify and culture astrocytes has long hindered studies of their function. Whereas astrocyte progenitor cells can be cultured from neonatal brain, culture of mature astrocytes from postnatal brain has not been possible. Here we report a new method to prospectively purify astrocytes by immunopanning. These astrocytes undergo apoptosis in culture, but vascular cells and HBEGF promote their survival in serum-free culture. We found that some developing astrocytes normally undergo apoptosis in vivo and that the vast majority of astrocytes contact blood vessels, suggesting that astrocytes are matched to blood vessels by competing for vascular-derived trophic factors such as HBEGF. Compared to traditional astrocyte cultures, the gene profiles of the cultured purified postnatal astrocytes much more closely resemble those of in vivo astrocytes. Although these astrocytes strongly promote synapse formation and function, they do not secrete glutamate in response to stimulation. PMID:21903074
[Analysis of heat transfer in the biological tissue layer with distributed system of blood vessels].
Bogatov, N M; Pelipenko, O N
2005-09-01
Processes of heat transfer in the skin layer with blood vessels were investigated using mathematical modeling. Analysis of influence of a pathological state of blood vessels on heterogeneity of thermal field of the skin surface was carried out. For each site of body surface, there is a certain difference of temperature between normal and pathological sites, being specific for differential diagnosis of diseases of dermal and hypodermic vessels.
Development and Application of Multifunctional Optical Coherence Tomography
NASA Astrophysics Data System (ADS)
Zhi, Zhongwei
Microcirculation refers to the functions of capillaries and the neighboring lymphatic vessels. It plays a vital role in the pathophysiology of disorders in many clinical areas including cardiology, dermatology, neurology and ophthalmology, and so forth. It is crucial to develop imaging technologies that can provide both qualitative and quantitative information as to how microcirculation responds to certain injury and/or disease, and its treatment. Optical coherence tomography (OCT) is a non-invasive optical imaging technique for high-resolution cross-sectional imaging of specimens, with many applications in clinical medicine. Current state-of-the-art OCT systems operate in the Fourier domain, using either a broadband light source with a spectrometer, known as spectral domain OCT (SDOCT), or a rapidly tunable laser, known as swept source OCT (SSOCT). The current Fourier domain OCT systems have dramatically improvement in sensitivity, resolution and speed compared to time domain OCT. In addition to the improvement in the OCT system hardware, different methods for functional measurements of tissue beds have been developed and demonstrated. This includes but not limited to, i) Phase-resolved Doppler OCT for quantifying the blood flow, ii) OCT angiography for visualization of microvasculature, iii) Polarization sensitive OCT for measuring the intrinsic optical property/ birefringence of tissue, iv) spectroscopic OCT for measuring blood oxygenation, etc. Functional OCT can provide important clinical information that is not available in the typical intensity based structural OCT images. Among these functional OCT modalities, Doppler OCT and OCT angiography attract great interests as they show high capability for in vivo study of microvascular pathology. By analyzing the Doppler effect of a flowing particle on light frequency, Doppler OCT allows the quantification of the blood flow speed and blood flow rate. The most popular approach for Doppler OCT is achieved through analysis of the phase term in complex OCT signal which termed as Phase-resolved Doppler OCT. However, as limited by the phase noise and motion, Phase-resolved Doppler OCT can only be applied for relative large blood vessels, such as arterioles and venules. On the other hand, in order to visualize the microcirculation network, a number of strategies to enable better contrast of microvasculature components, which we termed OCT angiography, have been introduced during recent years. As a variation of Fourier domain OCT, optical microangiography (OMAG) is one of earliest proposed OCT angiography technique which is capable of generating 3D images of dynamic blood perfusion distribution within microcirculatory tissue beds. The OMAG algorithm works by separating the static and moving elements by high pass filtering on complex valued interferometric data after Fourier transform. Based on the conventional OMAG algorithm, we further developed ultra-high sensitive OMAG (UHS-OMAG) by switching the high-pass filtering from fast scan direction (adjacent A-lines within one B-frame) to slow scan direction (adjacent B-frames), which has a dramatically improved performance for capillary network imaging and analysis. Apart from the microvascular study with current available functional OCT for, visualization of the lymphatic system (lymph nodes and lymphatic vessels) plays a significant role in assessing patients with various malignancies and lymphedema. However, there is a lack of label-free and noninvasive method for lymphangiography. Hence, a cutting edge research to investigate the capability of OCT as a tool for non-invasive and label-free lymphangiography would be highly desired. The objective of my thesis is to develop a multiple-functional SDOCT system to image the microcirculation and quantify the several important parameters of microcirculation within microcirculatory tissue beds, and further apply it for pre-clinical research applications. The multifunctional OCT system provides modalities including structural OCT, OCT angiography, Doppler OCT and Optical lymphangiography, for multi-parametric study of tissue microstructure, blood vessel morphology, blood flow and lymphatic vessel all together. The thesis mainly focus on two parts: first, development of multi-functional OCT/optical microangiography (OMAG) system and methods for volumetric imaging of microvasculature and quantitative measurement of blood flow, and its application for pathological research in ophthalmology on rodent eye models; second, development of ultra-high resolution OCT system and algorithm for simultaneous label free imaging of blood and lymphatic vessel, and its application in wound healing study on mouse ear flap model. Objectives of my research are achieved through the following specific aims: Aim 1: Improve the sensitivity of OMAG for microvasculature imaging; perform volumetric and quantitative imaging of vasculature with combined OMAG and Phase-resolved Doppler OCT for in vivo study of vascular physiology. Aim 2: Develop high speed high resolution OCT system and method for rodent eye imaging. Apply the combined OMAG and Phase-resolved Doppler OCT approach to investigate the impact of elevated intraocular pressure on retinal, choroidal and optic nerve head blood flow in rat eye model, which aids to the better understanding of the mechanism and development of glaucoma. Aim 3: Apply the developed OCT system and ultra-high sensitive OMAG algorithm for noninvasive imaging of retinal morphology and microvasculature in obese mice, which may play an important role in early diagnosis of Diabetic retinopathy. Aim 4: Developing an ultra-high resolution SDOCT system using broadband Supercontinuum light source to achieve ultra-high resolution microvasculature imaging of biological tissue. Aim 5: Develop methods for simultaneous label free optical imaging of blood and lymphatic vessel and demonstrate its capability by monitoring the blood and lymph response to wound healing on mouse ear pinna model.
Hiebl, B; Ascher, L; Luetzow, K; Kratz, K; Gruber, C; Mrowietz, C; Nehring, M E; Lendlein, A; Franke, R-P; Jung, F
2018-01-01
Laser tissue soldering (LTS) based on indocyanine green (ICG)-mediated heat-denaturation of proteins might be a promising alternative technique for micro-suturing, but up to now the problem of too weak shear strength of the solder welds in comparison to sutures is not solved. Earlier reports gave promising results showing that solder supported by carrier materials can enhance the cohesive strength of the liquid solder. In these studies, the solder was applied to the carriers by dip coating. Higher reliability of the connection between the solder and the carrier material is expected when the solder is bound covalently to the carrier material. In the present study a poly(ether imide) (PEI) membrane served as carrier material and ICG-supplemented albumin as solder substrate. The latter was covalently coupled to the carrier membrane under physiological conditions to prevent structural protein changes. As laser source a diode continuous-wave laser emitting at 808 nm with intensities between 250 mW and 1500 mW was utilized. The albumin functionalized carrier membrane was placed onto the tunica media of explanted pig thoracic aortae forming an overlapping area of approximately 0.5×0.5 cm2. All tests were performed in a dry state to prevent laser light absorption by water. Infrared spectroscopy, spectro-photometrical determination of the secondary and primary amine groups after acid orange II staining, contact angle measurements, and atomic force microscopy proved the successful functionalization of the PEI membrane with albumin. A laser power of 450 mW LTS could generate a membrane-blood vessel connection which was characterized by a shear strength of 0.08±0.002 MPa, corresponding to 15% of the tensile strength of the native blood vessel. Theoretically, an overlapping zone of 4.1 mm around the entire circumference of the blood vessel could have provided shear strength of the PEI membrane-blood vessel compound identical to the tensile strength of the native blood vessel. These in-vitro results confirmed the beneficial effects of solder reinforcement by carrier membranes, and suggest LTS with covalently bound solders on PEI substrates for further studies in animal models.
Angiopoietin-4 increases permeability of blood vessels and promotes lymphatic dilation.
Kesler, Cristina T; Pereira, Ethel R; Cui, Cheryl H; Nelson, Gregory M; Masuck, David J; Baish, James W; Padera, Timothy P
2015-09-01
The angiopoietin (Ang) ligands are potential therapeutic targets for lymphatic related diseases, which include lymphedema and cancer. Ang-1 and Ang-2 functions are established, but those of Ang-4 are poorly understood. We used intravital fluorescence microscopy to characterize Ang-4 actions on T241 murine fibrosarcoma-associated vessels in mice. The diameters of lymphatic vessels draining Ang-4- or VEGF-C (positive control)-expressing tumors increased to 123 and 135 μm, respectively, and parental, mock-transduced (negative controls) and tumors expressing Ang-1 or Ang-2 remained at baseline (∼60 μm). Ang-4 decreased human dermal lymphatic endothelial cell (LEC) monolayer permeability by 27% while increasing human dermal blood endothelial cell (BEC) monolayer permeability by 200%. In vivo, Ang-4 stimulated a 4.5-fold increase in tumor-associated blood vessel permeability compared with control when measured using intravital quantitative multiphoton microscopy. Ang-4 activated receptor signaling in both LECs and BECs, evidenced by tyrosine kinase with Ig and endothelial growth factor homology domains-2 (TIE2) receptor, protein kinase B, and Erk1,2 phosphorylation detectable by immunoblotting. These data suggest that Ang-4 actions are mediated through cell-type-specific networks and that lymphatic vessel dilation occurs secondarily to increased vascular leakage. Ang-4 also promoted survival of LECs. Thus, blocking Ang-4 may prune the draining lymphatic vasculature and decrease interstitial fluid pressure (IFP) by reducing vascular permeability. © FASEB.
Trends in Tissue Engineering for Blood Vessels
Nemeno-Guanzon, Judee Grace; Lee, Soojung; Berg, Johan Robert; Jo, Yong Hwa; Yeo, Jee Eun; Nam, Bo Mi; Koh, Yong-Gon; Lee, Jeong Ik
2012-01-01
Over the years, cardiovascular diseases continue to increase and affect not only human health but also the economic stability worldwide. The advancement in tissue engineering is contributing a lot in dealing with this immediate need of alleviating human health. Blood vessel diseases are considered as major cardiovascular health problems. Although blood vessel transplantation is the most convenient treatment, it has been delimited due to scarcity of donors and the patient's conditions. However, tissue-engineered blood vessels are promising alternatives as mode of treatment for blood vessel defects. The purpose of this paper is to show the importance of the advancement on biofabrication technology for treatment of soft tissue defects particularly for vascular tissues. This will also provide an overview and update on the current status of tissue reconstruction especially from autologous stem cells, scaffolds, and scaffold-free cellular transplantable constructs. The discussion of this paper will be focused on the historical view of cardiovascular tissue engineering and stem cell biology. The representative studies featured in this paper are limited within the last decade in order to trace the trend and evolution of techniques for blood vessel tissue engineering. PMID:23251085
Automated classification and quantitative analysis of arterial and venous vessels in fundus images
NASA Astrophysics Data System (ADS)
Alam, Minhaj; Son, Taeyoon; Toslak, Devrim; Lim, Jennifer I.; Yao, Xincheng
2018-02-01
It is known that retinopathies may affect arteries and veins differently. Therefore, reliable differentiation of arteries and veins is essential for computer-aided analysis of fundus images. The purpose of this study is to validate one automated method for robust classification of arteries and veins (A-V) in digital fundus images. We combine optical density ratio (ODR) analysis and blood vessel tracking algorithm to classify arteries and veins. A matched filtering method is used to enhance retinal blood vessels. Bottom hat filtering and global thresholding are used to segment the vessel and skeleton individual blood vessels. The vessel tracking algorithm is used to locate the optic disk and to identify source nodes of blood vessels in optic disk area. Each node can be identified as vein or artery using ODR information. Using the source nodes as starting point, the whole vessel trace is then tracked and classified as vein or artery using vessel curvature and angle information. 50 color fundus images from diabetic retinopathy patients were used to test the algorithm. Sensitivity, specificity, and accuracy metrics were measured to assess the validity of the proposed classification method compared to ground truths created by two independent observers. The algorithm demonstrated 97.52% accuracy in identifying blood vessels as vein or artery. A quantitative analysis upon A-V classification showed that average A-V ratio of width for NPDR subjects with hypertension decreased significantly (43.13%).
... birth (congenital). Common examples include: Coarctation of the aorta (narrowing of the large blood vessel of the heart called the aorta) Patent ductus arteriosus (blood vessel between the aorta ...
Blood circulation in the ascidian tunicate Corella inflata (Corellidae)
2016-01-01
The body of the ascidian tunicate Corella inflata is relatively transparent. Thus, the circulatory system can be visualized by injecting high molecular weight fluorescein labeled dextran into the heart or the large vessels at the ends of the heart without surgery to remove the body wall. In addition, after staining with neutral red, the movement of blood cells can be easily followed to further characterize the circulatory system. The heart is two gently curved concentric tubes extending across the width of the animal. The inner myocardial tube has a partial constriction approximately in the middle. As in other tunicates, the heart is peristaltic and periodically reverses direction. During the branchial phase blood leaves the anterior end of the heart by two asymmetric vessels that connect to the two sides of the branchial basket. Blood then flows in both transverse directions through a complex system of ducts in the basket into large ventral and dorsal vessels which carry blood back to the visceral organs in the posterior of the animal. During the visceral phase blood leaves the posterior end of the heart in two vessels that repeatedly bifurcate and fan into the stomach and gonads. Blood velocity, determined by following individual cells in video frames, is high and pulsatory near the heart. A double peak in velocity at the maximum may be due to the constriction in the middle of the heart tube. Blood velocity progressively decreases with distance from the heart. In peripheral regions with vessels of small diameter blood cells frequently collide with vessel walls and cell motion is erratic. The estimated volume of blood flow during each directional phase is greater than the total volume of the animal. Circulating blood cells are confined to vessels or ducts in the visible parts of the animal and retention of high molecular weight dextran in the vessels is comparable to that seen in vertebrates. These are characteristics of a closed circulatory system. PMID:27994977
Development of an oxygen saturation measuring system by using near-infrared spectroscopy
NASA Astrophysics Data System (ADS)
Kono, K.; Nakamachi, E.; Morita, Y.
2017-08-01
Recently, the hypoxia imaging has been recognized as the advanced technique to detect cancers because of a strong relationship with the biological characterization of cancer. In previous studies, hypoxia imaging systems for endoscopic diagnosis have been developed. However, these imaging technologies using the visible light can observe only blood vessels in gastric mucous membrane. Therefore, they could not detect scirrhous gastric cancer which accounts for 10% of all gastric cancers and spreads rapidly into submucous membrane. To overcome this problem, we developed a measuring system of blood oxygen saturation in submucous membrane by using near-infrared (NIR) spectroscopy. NIR, which has high permeability for bio-tissues and high absorbency for hemoglobin, can image and observe blood vessels in submucous membrane. NIR system with LED lights and a CCD camera module was developed to image blood vessels. We measured blood oxygen saturation using the optical density ratio (ODR) of two wavelengths, based on Lambert-Beer law. To image blood vessel clearly and measure blood oxygen saturation accurately, we searched two optimum wavelengths by using a multilayer human gastric-like phantom which has same optical properties as human gastric one. By using Monte Carlo simulation of light propagation, we derived the relationship between the ODR and blood oxygen saturation and elucidated the influence of blood vessel depth on measuring blood oxygen saturation. The oxygen saturation measuring methodology was validated with experiments using our NIR system. Finally, it was confirmed that our system can detect oxygen saturation in various depth blood vessels accurately.
Neural control of the kidney: functionally specific renal sympathetic nerve fibers.
DiBona, G F
2000-11-01
The sympathetic nervous system provides differentiated regulation of the functions of various organs. This differentiated regulation occurs via mechanisms that operate at multiple sites within the classic reflex arc: peripherally at the level of afferent input stimuli to various reflex pathways, centrally at the level of interconnections between various central neuron pools, and peripherally at the level of efferent fibers targeted to various effectors within the organ. In the kidney, increased renal sympathetic nerve activity regulates the functions of the intrarenal effectors: the tubules, the blood vessels, and the juxtaglomerular granular cells. This enables a physiologically appropriate coordination between the circulatory, filtration, reabsorptive, excretory, and renin secretory contributions to overall renal function. Anatomically, each of these effectors has a dual pattern of innervation consisting of a specific and selective innervation by unmyelinated slowly conducting C-type renal sympathetic nerve fibers in addition to an innervation that is shared among all the effectors. This arrangement permits the maximum flexibility in the coordination of physiologically appropriate responses of the tubules, the blood vessels, and the juxtaglomerular granular cells to a variety of homeostatic requirements.
Functionally specific renal sympathetic nerve fibers: role in cardiovascular regulation.
DiBona, G F
2001-06-01
The sympathetic nervous system provides differentiated regulation of the functions of various organs. This differentiated regulation occurs through mechanisms that operate at multiple sites within the classic reflex arc: peripherally at the level of afferent input stimuli to various reflex pathways, centrally at the level of interconnections between various central neuron pools, and peripherally at the level of efferent fibers targeted to various effectors within the organ. In the kidney, increased renal sympathetic nerve activity regulates the functions of the intrarenal effectors: the tubules, the blood vessels, and the juxtaglomerular granular cells. This enables a physiologically appropriate coordination between the circulatory, filtration, reabsorptive, excretory, and renin secretory contributions to overall renal function. Anatomically, each of these effectors has a dual pattern of innervation consisting of a specific and selective innervation by unmyelinated slowly conducting C-type renal sympathetic nerve fibers and an innervation that is shared among all the effectors. This arrangement facilitates maximum flexibility in the coordination of the tubules, the blood vessels, and the juxtaglomerular granular cells so as to produce physiologically appropriate responses to a variety of homeostatic requirements.
Functional adaptations of the coronary microcirculation to anaemia in fetal sheep.
Jonker, Sonnet S; Davis, Lowell; Soman, Divya; Belcik, J Todd; Davidson, Brian P; Atkinson, Tamara M; Wilburn, Adrienne; Louey, Samantha; Giraud, George D; Lindner, Jonathan R
2016-11-01
In fetuses, chronic anaemia stimulates cardiac growth; simultaneously, blood flow to the heart muscle itself is increased, and reserve blood flow capacity of the coronary vascular bed is preserved. Here we examined functional adaptations of the capillaries and small blood vessels responsible for delivering oxygen to the anaemic fetal heart muscle using contrast-enhanced echocardiography. We demonstrate that coronary microvascular flux rate doubled in anaemic fetuses compared to control fetuses, both at rest and during maximal flow, suggesting reduced microvascular resistance consistent with capillary widening. Cardiac fractional microvascular blood volume was not greater in anaemic fetuses, suggesting that growth of new microvascular vessels does not contribute to the increased flow per volume of myocardium. These unusual changes in microvascular function during anaemia may indicate novel adaptive strategies in the fetal heart. Fetal anaemia causes cardiac adaptations that have immediate and life-long repercussions on heart function and health. It is known that resting and maximal coronary conductance both increase during chronic fetal anaemia, but the coronary microvascular changes responsible for the adaptive response are unknown. Until recently, technical limitations have prevented quantifying functional capillary-level adaptations in the in vivo fetal heart. Our objective was to characterise functional microvascular adaptations in chronically anaemic fetal sheep. Chronically instrumented fetuses were randomized to a control group (n = 11) or were made anaemic by isovolumetric haemorrhage (n = 12) for 1 week prior to myocardial contrast echocardiography at 85% of gestation. Anaemia augmented cardiac mass by 23% without changing body weight. In anaemic fetuses, microvascular blood flow per volume of myocardium was twice that of control fetuses at rest, during vasodilatory hyperaemia, and during hyperaemia plus increased aortic pressure. The elevated blood flow was attributable almost entirely to an increase in microvascular blood flux rate whereas microvascular blood volumes were not different between groups at baseline, during hyperaemia, or with hyperaemia plus increased aortic pressure. Increased coronary microvascular flux rate in response to chronic fetal anaemia is consistent with expected reductions in capillary resistance from capillary diameter widening detected in earlier histological studies. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
NASA Technical Reports Server (NTRS)
McIntire, Larry V.; Wagner, John E.; Papadaki, Maria; Whitson, Peggy A.; Eskin, Suzanne G.
1996-01-01
Endothelial cells line all of the vessels of the circulatory system, providing a non-thrombogenic conduit for blood flow; they regulate many complex functions in the vasculature, such as coagulation, fibrinolysis, platelet aggregation, vessel tone and growth, and leukocyte traffic; and they form the principal barrier to transport of substances between the blood and the surrounding tissue space. The permeability of endothelial cell changes with environmental stimuli; shear stress, in particular, applied either in vivo, or in vitro, induces changes in protein expression and secretion of vasoactive factors by endothelial cells. The ability to study the effects of shear on the macromolecular permeability of the cerebral vasculature is particularly important, since in no other place is the barrier function of the endothelium more important than in the brain. The endothelial cells of this organ have developed special barrier properties that keep the cerebral system from experiencing any drastic change in composition; together with glial cells, they form the blood brain barrier (BBB). We have studied the effect of flow on bovine BBB using flow chambers and tissue culture systems.
Sikiric, P; Seiwerth, S; Brcic, L; Blagaic, A B; Zoricic, I; Sever, M; Klicek, R; Radic, B; Keller, N; Sipos, K; Jakir, A; Udovicic, M; Tonkic, A; Kokic, N; Turkovic, B; Mise, S; Anic, T
2006-12-01
Gastric pentadecapeptide BPC 157 (GEPPPGKPADDAGLV, M.W. 1419, safe in clinical trials for inflammatory bowel disease (PL 10, PLD 116, PLD 14736, Pliva, Croatia)) has a particular cytoprotective/adaptive cytoprotective activity. The cytoprotective/adaptive cytoprotection researches largely neglect that stomach distension could per se jeopardize the mucosal integrity, with constantly stretched mucosa and blood vessels, and sphincters more prone for reflux induction. After absolute alcohol instillation in fully distended rat stomach, gastric, esophageal and duodenal lesions occur. Throughout next 3 min, left gastric artery blood vessels clearly disappear at the serosal site, indicative for loss of vessels both integrity and function. Contrary, constant vessels presentation could predict the beneficial effect of applied agent. After pentadecapeptide BPC 157 instillation into the stomach the vessels presentation remains constant, and lesions of stomach, esophagus, and duodenum are inhibited. Standards (atropine, ranitidine, omeprazole) could only slightly improve the vessels presentation compared to control values, and they have only a partial effect on the lesions. In this review we emphasize BPC 157 unusual stability, and some of its important effects: effectiveness against various lesions in gastrointestinal tract, on nitric oxide (NO)-system, and NO-agents effects, on somatosensory neurons, salivary glands function, recovery of AMP-ADP-ATP system, endothelium protection, effect on endothelin, and on angiogenesis promotion. It also antagonizes other alcohol effects, including acute and chronic intoxication. Given peripherally, it counteracts the consequence of central dopamine system disturbances (receptor blockade), and induces serotonin release in substantia nigra. Therapeutic potential of BPC 157 as a cytoprotective agent is also seen in its capability to heal various wounds. Given directly into the stomach, BPC 157 instantly recovers disturbed lower esophageal and pyloric sphincter pressure in rats after 12-20 months of untreated esophagitis. All these could be suggestive for its role as a natural protectant in gastric juice with particular function throughout stomach distension.
Blood Vessels in Allotransplantation.
Abrahimi, P; Liu, R; Pober, J S
2015-07-01
Human vascularized allografts are perfused through blood vessels composed of cells (endothelium, pericytes, and smooth muscle cells) that remain largely of graft origin and are thus subject to host alloimmune responses. Graft vessels must be healthy to maintain homeostatic functions including control of perfusion, maintenance of permselectivity, prevention of thrombosis, and participation in immune surveillance. Vascular cell injury can cause dysfunction that interferes with these processes. Graft vascular cells can be activated by mediators of innate and adaptive immunity to participate in graft inflammation contributing to both ischemia/reperfusion injury and allograft rejection. Different forms of rejection may affect graft vessels in different ways, ranging from thrombosis and neutrophilic inflammation in hyperacute rejection, to endothelialitis/intimal arteritis and fibrinoid necrosis in acute cell-mediated or antibody-mediated rejection, respectively, and to diffuse luminal stenosis in chronic rejection. While some current therapies targeting the host immune system do affect graft vascular cells, direct targeting of the graft vasculature may create new opportunities for preventing allograft injury and loss. © Copyright 2015 The American Society of Transplantation and the American Society of Transplant Surgeons.
Thermographic venous blood flow characterization with external cooling stimulation
NASA Astrophysics Data System (ADS)
Saxena, Ashish; Ng, E. Y. K.; Raman, Vignesh
2018-05-01
Experimental characterization of blood flow in a human forearm is done with the application of continuous external cooling based active thermography method. Qualitative and quantitative detection of the blood vessel in a thermal image is done, along with the evaluation of blood vessel diameter, blood flow direction, and velocity in the target blood vessel. Subtraction based image manipulation is performed to enhance the feature contrast of the thermal image acquired after the removal of external cooling. To demonstrate the effect of occlusion diseases (obstruction), an external cuff based occlusion is applied after the removal of cooling and its effect on the skin rewarming is studied. Using external cooling, a transit time method based blood flow velocity estimation is done. From the results obtained, it is evident that an external cooling based active thermography method can be used to develop a diagnosis tool for superficial blood vessel diseases.
Lu, Lan; Li, Zhi Jie; Li, Long Fei; Shen, Jing; Zhang, Lin; Li, Ming Xing; Xiao, Zhan Gang; Wang, Jian Hao; Cho, Chi Hin
2017-11-01
Various vascular-targeted agents fused with tumor necrosis factor α (TNFα) have been shown to improve drug absorption into tumor tissues and enhance tumor vascular function. TCP-1 is a peptide selected through in vivo phage library biopanning against a mouse orthotopic colorectal cancer model and is a promising agent for drug delivery. This study further investigated the targeting ability of TCP-1 phage and peptide to blood vessels in an orthotopic gastric cancer model in mice and assessed the synergistic anti-cancer effect of 5-fluorouracil (5-FU) with subnanogram TNFα targeted delivered by TCP-1 peptide. In vivo phage targeting assay and in vivo colocalization analysis were carried out to test the targeting ability of TCP-1 phage/peptide. A targeted therapy for improvement of the therapeutic efficacy of 5-FU and vascular function was performed through administration of TCP-1/TNFα fusion protein in this model. TCP-1 phage exhibited strong homing ability to the orthotopic gastric cancer after phage injection. Immunohistochemical staining suggested that and TCP-1 phage/TCP-1 peptide could colocalize with tumor vascular endothelial cells. TCP-1/TNFα combined with 5-FU was found to synergistically inhibit tumor growth, induce apoptosis and reduce cell proliferation without evident toxicity. Simultaneously, subnanogram TCP-1/TNFα treatment normalized tumor blood vessels. Targeted delivery of low-dose TNFα by TCP-1 peptide can potentially modulate the vascular function of gastric cancer and increase the drug delivery of chemotherapeutic drugs. Copyright © 2017. Published by Elsevier Inc.
Corey, Daniel M; Rinkevich, Yuval; Weissman, Irving L
2016-03-15
Although tumor blood vessels have been a major therapeutic target for cancer chemotherapy, little is known regarding the stepwise development of the tumor microenvironment. Here, we use a multicolor Cre-dependent marker system to trace clonality within the tumor microenvironment to show that tumor blood vessels follow a pattern of dynamic clonal evolution. In an advanced melanoma tumor microenvironment, the vast majority of tumor vasculature clones are derived from a common precursor. Quantitative lineage analysis reveals founder clones diminish in frequency and are replaced by subclones as tumors evolve. These tumor-specific blood vessels are characterized by a developmental switch to a more invasive and immunologically silent phenotype. Gene expression profiling and pathway analysis reveals selection for traits promoting upregulation of alternative angiogenic programs such as unregulated HGF-MET signaling and enhanced autocrine signaling through VEGF and PDGF. Furthermore, we show a developmental switch in the expression of functionally significant primary lymphocyte adhesion molecules on tumor endothelium, such as the loss in expression of the mucosal addressin MAdCAM-1, whose counter receptor a4β7 on lymphocytes controls lymphocyte homing. Changes in adhesive properties on tumor endothelial subclones are accompanied by decreases in expression of lymphocyte chemokines CXCL16, CXCL13, CXCL12, CXCL9, CXCL10, and CCL19. These evolutionary patterns in the expressed genetic program within tumor endothelium will have both a quantitative and functional impact on lymphocyte distribution that may well influence tumor immune function and underlie escape mechanisms from current antiangiogenic pharmacotherapies. ©2015 American Association for Cancer Research.
New aspects of the possible sites of ultrafiltration in annelids (oligochaeta).
Hansen, U
1995-02-01
Electron microscopic investigations of blood vessels were conducted to show sites of filtration such as podocytes or fenestrated endothelia. The endothelia of the blood vessels of Aelosoma hemprichi, Nais elinguis, Dero obtusa and Enchytraeus buchholzi consist of myoendothelial cells, chloragocytes and podocytes. The podocytes form large archs over a considerable area of the vessels. On the lumen side of the vessel there are several columnar processes which split into numerous small pedicels. The gaps between the adjacent pedicles are bridged by slit membranes. The podocytes are restricted to the front part of the ventral vessel. They are presumed to form a filtration surface. Furthermore, some parts of the ventral vessel are formed by a fenestrated endothelium, mainly in Enchytraeus buchholzi. In the vascular system of E. buchholzi two separate filtration sites were found. Additionally to the filtration site between ventral vessel and coelomic cavity a second filtration site was found in the front part of the body between blood sinus and coelomic cavity. In such areas the basement membrane is the only continuous layer between the blood vessel and the coelomic cavity. Its thickness is in the range of 40 nm. Possible filtration sites in the form of podocytes and irregular fenestrations could be localized at the border between the blood compartment and the coelomic compartment. It can be presumed that the primary urine may be formed by ultrafiltration of blood.
Interactive Retinal Blood Flow Analysis of the Macular Region
Tian, Jing; Somfai, Gábor Márk; Campagnoli, Thalmon R.; Smiddy, William E.; Debuc, Delia Cabrera
2015-01-01
The study of retinal hemodynamics plays an important role to understand the onset and progression of diabetic retinopathy which is a leading cause of blindness in American adults. In this work, we developed an interactive retinal analysis tool to quantitatively measure the blood flow velocity (BFV) and blood flow rate (BFR) in the macular region using the Retinal Function Imager (RFI-3005, Optical Imaging, Rehovot, Israel). By employing a high definition stroboscopic fundus camera, the RFI device is able to assess retinal blood flow characteristics in vivo even in the capillaries. However, the measurements of BFV using a user-guided vessel segmentation tool may induce significant inter-observer differences and BFR is not provided in the built-in software. In this work, we have developed an interactive tool to assess the retinal BFV as well as BFR in the macular region. Optical coherence tomography (OCT) data from commercially available devices were registered with the RFI image to locate the fovea accurately. The boundaries of the vessels were delineated on a motion contrast enhanced image and BFV was computed by maximizing the cross-correlation of pixel intensities in a ratio video. Furthermore, we were able to calculate the BFR in absolute values (μl/s) which other currently available devices targeting the retinal microcirculation are not yet capable of. Experiments were conducted on 122 vessels from 5 healthy and 5 mild non-proliferative diabetic retinopathy (NPDR) subjects. The Pearson's correlation of the vessel diameter measurements between our method and manual labeling on 40 vessels was 0.984. The intraclass correlation (ICC) of BFV between our proposed method and built-in software were 0.924 and 0.830 for vessels from healthy and NPDR subjects, respectively. The coefficient of variation between repeated sessions was reduced significantly from 22.5% in the RFI built-in software to 15.9% in our proposed method (p<0.001). PMID:26569349
Quantitative phenomenological model of the BOLD contrast mechanism
NASA Astrophysics Data System (ADS)
Dickson, John D.; Ash, Tom W. J.; Williams, Guy B.; Sukstanskii, Alexander L.; Ansorge, Richard E.; Yablonskiy, Dmitriy A.
2011-09-01
Different theoretical models of the BOLD contrast mechanism are used for many applications including BOLD quantification (qBOLD) and vessel size imaging, both in health and disease. Each model simplifies the system under consideration, making approximations about the structure of the blood vessel network and diffusion of water molecules through inhomogeneities in the magnetic field created by deoxyhemoglobin-containing blood vessels. In this study, Monte-Carlo methods are used to simulate the BOLD MR signal generated by diffusing water molecules in the presence of long, cylindrical blood vessels. Using these simulations we introduce a new, phenomenological model that is far more accurate over a range of blood oxygenation levels and blood vessel radii than existing models. This model could be used to extract physiological parameters of the blood vessel network from experimental data in BOLD-based experiments. We use our model to establish ranges of validity for the existing analytical models of Yablonskiy and Haacke, Kiselev and Posse, Sukstanskii and Yablonskiy (extended to the case of arbitrary time in the spin echo sequence) and Bauer et al. (extended to the case of randomly oriented cylinders). Although these models are shown to be accurate in the limits of diffusion under which they were derived, none of them is accurate for the whole physiological range of blood vessels radii and blood oxygenation levels. We also show the extent of systematic errors that are introduced due to the approximations of these models when used for BOLD signal quantification.
Berardinelli, Paolo; Russo, Valentina; Bernabò, Nicola; Di Giacinto, Oriana; Mattioli, Mauro; Barboni, Barbara
2014-01-01
Background The success of ovarian follicle growth and ovulation is strictly related to the development of an adequate blood vessel network required to sustain the proliferative and endocrine functions of the follicular cells. Even if the Vascular Endothelial Growth Factor (VEGF) drives angiogenesis before ovulation, the local role exerted by Progesterone (P4) remains to be clarified, in particular when its concentration rapidly increases before ovulation. Aim This in vivo study was designed to clarify the effect promoted by a P4 receptor antagonist, RU486, on VEGF expression and follicular angiogenesis before ovulation, in particular, during the transition from pre to periovulatory follicles induced by human Chorionic Gonadotropins (hCG) administration. Material and Methods Preovulatory follicle growth and ovulation were pharmacologically induced in prepubertal gilts by combining equine Chorionic Gonadotropins (eCG) and hCG used in the presence or absence of RU486. The effects on VEGF expression were analyzed using biochemical and immunohistochemical studies, either on granulosa or on theca layers of follicles isolated few hours before ovulation. This angiogenic factor was also correlated to follicular morphology and to blood vessels architecture. Results and Conclusions VEGF production, blood vessel network and follicle remodeling were impaired by RU486 treatment, even if the cause-effect correlation remains to be clarified. The P4 antagonist strongly down-regulated theca VEGF expression, thus, preventing most of the angiogenic follicle response induced by hCG. RU486-treated follicles displayed a reduced vascular area, a lower rate of endothelial cell proliferation and a reduced recruitment of perivascular mural cells. These data provide important insights on the biological role of RU486 and, indirectly, on steroid hormones during periovulatory follicular phase. In addition, an in vivo model is proposed to evaluate how periovulatory follicular angiogenesis may affect the functionality of the corpus luteum (CL) and the success of pregnancy. PMID:24756033
vEmbryo In Silico Models: Predicting Vascular Developmental Toxicity
The cardiovascular system is the first to function in the vertebrate embryo, reflecting the critical need for nutrient delivery and waste removal during organogenesis. Blood vessel development occurs by complex interacting signaling networks, including extra-cellular matrix remod...
Yu, Jun; Bergaya, Sonia; Murata, Takahisa; Alp, Ilkay F.; Bauer, Michael P.; Lin, Michelle I.; Drab, Marek; Kurzchalia, Teymuras V.; Stan, Radu V.; Sessa, William C.
2006-01-01
Caveolae in endothelial cells have been implicated as plasma membrane microdomains that sense or transduce hemodynamic changes into biochemical signals that regulate vascular function. Therefore we compared long- and short-term flow-mediated mechanotransduction in vessels from WT mice, caveolin-1 knockout (Cav-1 KO) mice, and Cav-1 KO mice reconstituted with a transgene expressing Cav-1 specifically in endothelial cells (Cav-1 RC mice). Arterial remodeling during chronic changes in flow and shear stress were initially examined in these mice. Ligation of the left external carotid for 14 days to lower blood flow in the common carotid artery reduced the lumen diameter of carotid arteries from WT and Cav-1 RC mice. In Cav-1 KO mice, the decrease in blood flow did not reduce the lumen diameter but paradoxically increased wall thickness and cellular proliferation. In addition, in isolated pressurized carotid arteries, flow-mediated dilation was markedly reduced in Cav-1 KO arteries compared with those of WT mice. This impairment in response to flow was rescued by reconstituting Cav-1 into the endothelium. In conclusion, these results showed that endothelial Cav-1 and caveolae are necessary for both rapid and long-term mechanotransduction in intact blood vessels. PMID:16670769
Contemporary approaches to modulating the nitric oxide-cGMP pathway in cardiovascular disease
Kraehling, Jan R.; Sessa, William C.
2017-01-01
Endothelial cells lining the vessel wall control important aspects of vascular homeostasis. In particular, the production of endothelium-derived nitric oxide and activation of soluble guanylate cyclase promotes endothelial quiescence and governs vasomotor function and proportional remodeling of blood vessels. Here, we discuss novel approaches to improve endothelial nitric oxide generation and preserve its bioavailability. We also discuss therapeutic opportunities aimed at activation of soluble guanylate cyclase for multiple cardiovascular indications. PMID:28360348
Functional assembly of Kv7.1/Kv7.5 channels with emerging properties on vascular muscle physiology.
Oliveras, Anna; Roura-Ferrer, Meritxell; Solé, Laura; de la Cruz, Alicia; Prieto, Angela; Etxebarria, Ainhoa; Manils, Joan; Morales-Cano, Daniel; Condom, Enric; Soler, Concepció; Cogolludo, Angel; Valenzuela, Carmen; Villarroel, Alvaro; Comes, Núria; Felipe, Antonio
2014-07-01
Voltage-dependent K(+) (Kv) channels from the Kv7 family are expressed in blood vessels and contribute to cardiovascular physiology. Although Kv7 channel blockers trigger muscle contractions, Kv7 activators act as vasorelaxants. Kv7.1 and Kv7.5 are expressed in many vessels. Kv7.1 is under intense investigation because Kv7.1 blockers fail to modulate smooth muscle reactivity. In this study, we analyzed whether Kv7.1 and Kv7.5 may form functional heterotetrameric channels increasing the channel diversity in vascular smooth muscles. Kv7.1 and Kv7.5 currents elicited in arterial myocytes, oocyte, and mammalian expression systems suggest the formation of heterotetrameric complexes. Kv7.1/Kv7.5 heteromers, exhibiting different pharmacological characteristics, participate in the arterial tone. Kv7.1/Kv7.5 associations were confirmed by coimmunoprecipitation, fluorescence resonance energy transfer, and fluorescence recovery after photobleaching experiments. Kv7.1/Kv7.5 heterotetramers were highly retained at the endoplasmic reticulum. Studies in HEK-293 cells, heart, brain, and smooth and skeletal muscles demonstrated that the predominant presence of Kv7.5 stimulates release of Kv7.1/Kv7.5 oligomers out of lipid raft microdomains. Electrophysiological studies supported that KCNE1 and KCNE3 regulatory subunits further increased the channel diversity. Finally, the analysis of rat isolated myocytes and human blood vessels demonstrated that Kv7.1 and Kv7.5 exhibited a differential expression, which may lead to channel diversity. Kv7.1 and Kv7.5 form heterotetrameric channels increasing the diversity of structures which fine-tune blood vessel reactivity. Because the lipid raft localization of ion channels is crucial for cardiovascular physiology, Kv7.1/Kv7.5 heteromers provide efficient spatial and temporal regulation of smooth muscle function. Our results shed light on the debate about the contribution of Kv7 channels to vasoconstriction and hypertension. © 2014 American Heart Association, Inc.
Mathematical modelling of flow distribution in the human cardiovascular system
NASA Technical Reports Server (NTRS)
Sud, V. K.; Srinivasan, R. S.; Charles, J. B.; Bungo, M. W.
1992-01-01
The paper presents a detailed model of the entire human cardiovascular system which aims to study the changes in flow distribution caused by external stimuli, changes in internal parameters, or other factors. The arterial-venous network is represented by 325 interconnected elastic segments. The mathematical description of each segment is based on equations of hydrodynamics and those of stress/strain relationships in elastic materials. Appropriate input functions provide for the pumping of blood by the heart through the system. The analysis employs the finite-element technique which can accommodate any prescribed boundary conditions. Values of model parameters are from available data on physical and rheological properties of blood and blood vessels. As a representative example, simulation results on changes in flow distribution with changes in the elastic properties of blood vessels are discussed. They indicate that the errors in the calculated overall flow rates are not significant even in the extreme case of arteries and veins behaving as rigid tubes.
Experimental investigation on the vascular thermal response to near-infrared laser pulses.
Li, Dong; Chen, Bin; Wu, Wenjuan; Ying, Zhaoxia
2017-12-01
Port wine stains (PWS) are congenital vascular malformations that progressively darken and thicken with age. To improve the effect of laser therapy in clinical practice, thermal response of blood vessel to a 1064 nm Nd:YAG laser with controlled energy doses and pulse durations was evaluated using the dorsal skin chamber model. A total of 137 vessels with 30-300 μm diameters were selected from the dorsal skin of the mouse to match those capillaries in port wine stains. Experimental results showed that the thermal response of blood vessels to 1064 nm laser irradiation can be classified as follows: vessel dilation, coagulation, constriction with decreased diameter, complete constriction, hemorrhage, and collagen damage with increasing laser radiant exposure. In most cases, that is, 83 of 137 blood vessels (60.6%), Nd:YAG laser irradiation was characterized by complete constriction (immediate blood vessel disappearance). To reveal the possible damage mechanisms and evaluate blood vessel photocoagulation patterns, theoretical investigation using bioheat transfer equation was conducted in mouse skin with a depth of 1000 μm. Complete constriction as the dominant thermal response as evidenced by uniform blood heating within the vessel lumen was noted in both experimental observation and theoretical investigation. To achieve the ideal clinical effect using the Nd:YAG laser treatment, the radiant exposure should not only be high enough to induce complete constriction of the blood vessels but also controlled carefully to avoid surrounding collagen damage. The short pulse duration of 1-3 ms is better than long pulse durations because hemorrhaging of small capillaries is occasionally observed postirradiation with pulse durations longer than 10 ms.
Ring, Andrej; Langer, Stefan; Tilkorn, Daniel; Goertz, Ole; Henrich, Lena; Stricker, Ingo; Steinau, Hans-Ulrich; Steinstraesser, Lars; Hauser, Joerg
2010-09-28
Formation of encapsulating, avascular fibrous tissue is deemed to decrease implant's biocompatibility and versatility. We investigated whether plasma-mediated collagen coating possesses the ability to enhance neovascularization in the vicinity of silicone implants. Plasma-treated collagen-I-coated silicone samples were placed into the dorsal skinfold chambers of female balb/c mice (n = 10). Conventional silicone served as control (n = 10). Intravital microscopy was performed within implant's surrounding tissue on days 1, 5, and 10. Functional vessel density, intervascular distance, vessel diameter, microvascular permeability, red blood cell velocity, and leukocyte-endothelium interaction were determined. Enhanced angiogenesis in the tissue surrounding plasma-pretreated collagen-coated implants was noted. Significant increase of functional vessel density due to vascular new development was observed (t test, P < .05). Analyses of microvascular permeability and red blood cell velocity displayed stable perfusion of the vascular network neighboring the surface-modified implants. Intensified vascularity due to induced angiogenesis and neovascularization in the tissue surrounding plasma-collagen-coated samples were observed. These results indicate that plasma-mediated collagen coating might be a promising technology in order to improve the biocompatibility and versatility of silicone implants.
Ring, Andrej; Langer, Stefan; Tilkorn, Daniel; Goertz, Ole; Henrich, Lena; Stricker, Ingo; Steinau, Hans-Ulrich; Steinstraesser, Lars; Hauser, Joerg
2010-01-01
Objective: Formation of encapsulating, avascular fibrous tissue is deemed to decrease implant's biocompatibility and versatility. We investigated whether plasma-mediated collagen coating possesses the ability to enhance neovascularization in the vicinity of silicone implants. Methods: Plasma-treated collagen-I–coated silicone samples were placed into the dorsal skinfold chambers of female balb/c mice (n = 10). Conventional silicone served as control (n = 10). Intravital microscopy was performed within implant's surrounding tissue on days 1, 5, and 10. Functional vessel density, intervascular distance, vessel diameter, microvascular permeability, red blood cell velocity, and leukocyte-endothelium interaction were determined. Results: Enhanced angiogenesis in the tissue surrounding plasma-pretreated collagen-coated implants was noted. Significant increase of functional vessel density due to vascular new development was observed (t test, P < .05). Analyses of microvascular permeability and red blood cell velocity displayed stable perfusion of the vascular network neighboring the surface-modified implants. Conclusion: Intensified vascularity due to induced angiogenesis and neovascularization in the tissue surrounding plasma-collagen–coated samples were observed. These results indicate that plasma-mediated collagen coating might be a promising technology in order to improve the biocompatibility and versatility of silicone implants. PMID:20936137
3-D segmentation of retinal blood vessels in spectral-domain OCT volumes of the optic nerve head
NASA Astrophysics Data System (ADS)
Lee, Kyungmoo; Abràmoff, Michael D.; Niemeijer, Meindert; Garvin, Mona K.; Sonka, Milan
2010-03-01
Segmentation of retinal blood vessels can provide important information for detecting and tracking retinal vascular diseases including diabetic retinopathy, arterial hypertension, arteriosclerosis and retinopathy of prematurity (ROP). Many studies on 2-D segmentation of retinal blood vessels from a variety of medical images have been performed. However, 3-D segmentation of retinal blood vessels from spectral-domain optical coherence tomography (OCT) volumes, which is capable of providing geometrically accurate vessel models, to the best of our knowledge, has not been previously studied. The purpose of this study is to develop and evaluate a method that can automatically detect 3-D retinal blood vessels from spectral-domain OCT scans centered on the optic nerve head (ONH). The proposed method utilized a fast multiscale 3-D graph search to segment retinal surfaces as well as a triangular mesh-based 3-D graph search to detect retinal blood vessels. An experiment on 30 ONH-centered OCT scans (15 right eye scans and 15 left eye scans) from 15 subjects was performed, and the mean unsigned error in 3-D of the computer segmentations compared with the independent standard obtained from a retinal specialist was 3.4 +/- 2.5 voxels (0.10 +/- 0.07 mm).
Pancreatic islet blood flow and its measurement
Jansson, Leif; Barbu, Andreea; Bodin, Birgitta; Drott, Carl Johan; Espes, Daniel; Gao, Xiang; Grapensparr, Liza; Källskog, Örjan; Lau, Joey; Liljebäck, Hanna; Palm, Fredrik; Quach, My; Sandberg, Monica; Strömberg, Victoria; Ullsten, Sara; Carlsson, Per-Ola
2016-01-01
Pancreatic islets are richly vascularized, and islet blood vessels are uniquely adapted to maintain and support the internal milieu of the islets favoring normal endocrine function. Islet blood flow is normally very high compared with that to the exocrine pancreas and is autonomously regulated through complex interactions between the nervous system, metabolites from insulin secreting β-cells, endothelium-derived mediators, and hormones. The islet blood flow is normally coupled to the needs for insulin release and is usually disturbed during glucose intolerance and overt diabetes. The present review provides a brief background on islet vascular function and especially focuses on available techniques to measure islet blood perfusion. The gold standard for islet blood flow measurements in experimental animals is the microsphere technique, and its advantages and disadvantages will be discussed. In humans there are still no methods to measure islet blood flow selectively, but new developments in radiological techniques hold great hopes for the future. PMID:27124642
Onda, Kenji; Tong, Stephen; Beard, Sally; Binder, Natalie; Muto, Masanaga; Senadheera, Sevvandi N; Parry, Laura; Dilworth, Mark; Renshall, Lewis; Brownfoot, Fiona; Hastie, Roxanne; Tuohey, Laura; Palmer, Kirsten; Hirano, Toshihiko; Ikawa, Masahito; Kaitu'u-Lino, Tu'uhevaha; Hannan, Natalie J
2017-03-01
Preeclampsia is a severe complication of pregnancy. Antiangiogenic factors soluble fms-like tyrosine kinase-1 (sFlt-1) and soluble endoglin are secreted in excess from the placenta, causing hypertension, endothelial dysfunction, and multiorgan injury. Oxidative stress and vascular inflammation exacerbate the endothelial injury. A drug that can block these pathophysiological steps would be an attractive treatment option. Proton pump inhibitors (PPIs) are safe in pregnancy where they are prescribed for gastric reflux. We performed functional studies on primary human tissues and animal models to examine the effects of PPIs on sFlt-1 and soluble endoglin secretion, vessel dilatation, blood pressure, and endothelial dysfunction. PPIs decreased sFlt-1 and soluble endoglin secretion from trophoblast, placental explants from preeclamptic pregnancies, and endothelial cells. They also mitigated tumor necrosis factor-α-induced endothelial dysfunction: PPIs blocked endothelial vascular cell adhesion molecule-1 expression, leukocyte adhesion to endothelium, and disruption of endothelial tube formation. PPIs decreased endothelin-1 secretion and enhanced endothelial cell migration. Interestingly, the PPI esomeprazole vasodilated maternal blood vessels from normal pregnancies and cases of preterm preeclampsia, but its vasodilatory effects were lost when the vessels were denuded of their endothelium. Esomeprazole decreased blood pressure in a transgenic mouse model where human sFlt-1 was overexpressed in placenta. PPIs upregulated endogenous antioxidant defenses and decreased cytokine secretion from placental tissue and endothelial cells. We have found that PPIs decrease sFlt-1 and soluble endoglin secretion and endothelial dysfunction, dilate blood vessels, decrease blood pressure, and have antioxidant and anti-inflammatory properties. They have therapeutic potential for preeclampsia and other diseases where endothelial dysfunction is involved. © 2017 American Heart Association, Inc.
Naito, Hisamichi; Kidoya, Hiroyasu; Sakimoto, Susumu; Wakabayashi, Taku; Takakura, Nobuyuki
2012-01-01
Vasculogenesis, the in-situ assembly of angioblast or endothelial progenitor cells (EPCs), may persist into adult life, contributing to new blood vessel formation. However, EPCs are scattered throughout newly developed blood vessels and cannot be solely responsible for vascularization. Here, we identify an endothelial progenitor/stem-like population located at the inner surface of preexisting blood vessels using the Hoechst method in which stem cell populations are identified as side populations. This population is dormant in the steady state but possesses colony-forming ability, produces large numbers of endothelial cells (ECs) and when transplanted into ischaemic lesions, restores blood flow completely and reconstitutes de-novo long-term surviving blood vessels. Moreover, although surface markers of this population are very similar to conventional ECs, and they reside in the capillary endothelium sub-population, the gene expression profile is completely different. Our results suggest that this heterogeneity of stem-like ECs will lead to the identification of new targets for vascular regeneration therapy. PMID:22179698
Retinal biometrics based on Iterative Closest Point algorithm.
Hatanaka, Yuji; Tajima, Mikiya; Kawasaki, Ryo; Saito, Koko; Ogohara, Kazunori; Muramatsu, Chisako; Sunayama, Wataru; Fujita, Hiroshi
2017-07-01
The pattern of blood vessels in the eye is unique to each person because it rarely changes over time. Therefore, it is well known that retinal blood vessels are useful for biometrics. This paper describes a biometrics method using the Jaccard similarity coefficient (JSC) based on blood vessel regions in retinal image pairs. The retinal image pairs were rough matched by the center of their optic discs. Moreover, the image pairs were aligned using the Iterative Closest Point algorithm based on detailed blood vessel skeletons. For registration, perspective transform was applied to the retinal images. Finally, the pairs were classified as either correct or incorrect using the JSC of the blood vessel region in the image pairs. The proposed method was applied to temporal retinal images, which were obtained in 2009 (695 images) and 2013 (87 images). The 87 images acquired in 2013 were all from persons already examined in 2009. The accuracy of the proposed method reached 100%.
Automatic detection of blood vessels in retinal images for diabetic retinopathy diagnosis.
Raja, D Siva Sundhara; Vasuki, S
2015-01-01
Diabetic retinopathy (DR) is a leading cause of vision loss in diabetic patients. DR is mainly caused due to the damage of retinal blood vessels in the diabetic patients. It is essential to detect and segment the retinal blood vessels for DR detection and diagnosis, which prevents earlier vision loss in diabetic patients. The computer aided automatic detection and segmentation of blood vessels through the elimination of optic disc (OD) region in retina are proposed in this paper. The OD region is segmented using anisotropic diffusion filter and subsequentially the retinal blood vessels are detected using mathematical binary morphological operations. The proposed methodology is tested on two different publicly available datasets and achieved 93.99% sensitivity, 98.37% specificity, 98.08% accuracy in DRIVE dataset and 93.6% sensitivity, 98.96% specificity, and 95.94% accuracy in STARE dataset, respectively.
Cristofaro, Brunella; Shi, Yu; Faria, Marcella; Suchting, Steven; Leroyer, Aurelie S; Trindade, Alexandre; Duarte, Antonio; Zovein, Ann C; Iruela-Arispe, M Luisa; Nih, Lina R; Kubis, Nathalie; Henrion, Daniel; Loufrani, Laurent; Todiras, Mihail; Schleifenbaum, Johanna; Gollasch, Maik; Zhuang, Zhen W; Simons, Michael; Eichmann, Anne; le Noble, Ferdinand
2013-04-01
Arteriogenesis requires growth of pre-existing arteriolar collateral networks and determines clinical outcome in arterial occlusive diseases. Factors responsible for the development of arteriolar collateral networks are poorly understood. The Notch ligand Delta-like 4 (Dll4) promotes arterial differentiation and restricts vessel branching. We hypothesized that Dll4 may act as a genetic determinant of collateral arterial networks and functional recovery in stroke and hind limb ischemia models in mice. Genetic loss- and gain-of-function approaches in mice showed that Dll4-Notch signaling restricts pial collateral artery formation by modulating arterial branching morphogenesis during embryogenesis. Adult Dll4(+/-) mice showed increased pial collateral numbers, but stroke volume upon middle cerebral artery occlusion was not reduced compared with wild-type littermates. Likewise, Dll4(+/-) mice showed reduced blood flow conductance after femoral artery occlusion, and, despite markedly increased angiogenesis, tissue ischemia was more severe. In peripheral arteries, loss of Dll4 adversely affected excitation-contraction coupling in arterial smooth muscle in response to vasopressor agents and arterial vessel wall adaption in response to increases in blood flow, collectively contributing to reduced flow reserve. We conclude that Dll4-Notch signaling modulates native collateral formation by acting on vascular branching morphogenesis during embryogenesis. Dll4 furthermore affects tissue perfusion by acting on arterial function and structure. Loss of Dll4 stimulates collateral formation and angiogenesis, but in the context of ischemic diseases such beneficial effects are overruled by adverse functional changes, demonstrating that ischemic recovery is not solely determined by collateral number but rather by vessel functionality.
Cristofaro, Brunella; Shi, Yu; Faria, Marcella; Suchting, Steven; Leroyer, Aurelie S.; Trindade, Alexandre; Duarte, Antonio; Zovein, Ann C.; Iruela-Arispe, M. Luisa; Nih, Lina R.; Kubis, Nathalie; Henrion, Daniel; Loufrani, Laurent; Todiras, Mihail; Schleifenbaum, Johanna; Gollasch, Maik; Zhuang, Zhen W.; Simons, Michael; Eichmann, Anne; le Noble, Ferdinand
2013-01-01
Arteriogenesis requires growth of pre-existing arteriolar collateral networks and determines clinical outcome in arterial occlusive diseases. Factors responsible for the development of arteriolar collateral networks are poorly understood. The Notch ligand Delta-like 4 (Dll4) promotes arterial differentiation and restricts vessel branching. We hypothesized that Dll4 may act as a genetic determinant of collateral arterial networks and functional recovery in stroke and hind limb ischemia models in mice. Genetic loss- and gain-of-function approaches in mice showed that Dll4-Notch signaling restricts pial collateral artery formation by modulating arterial branching morphogenesis during embryogenesis. Adult Dll4+/- mice showed increased pial collateral numbers, but stroke volume upon middle cerebral artery occlusion was not reduced compared with wild-type littermates. Likewise, Dll4+/- mice showed reduced blood flow conductance after femoral artery occlusion, and, despite markedly increased angiogenesis, tissue ischemia was more severe. In peripheral arteries, loss of Dll4 adversely affected excitation-contraction coupling in arterial smooth muscle in response to vasopressor agents and arterial vessel wall adaption in response to increases in blood flow, collectively contributing to reduced flow reserve. We conclude that Dll4-Notch signaling modulates native collateral formation by acting on vascular branching morphogenesis during embryogenesis. Dll4 furthermore affects tissue perfusion by acting on arterial function and structure. Loss of Dll4 stimulates collateral formation and angiogenesis, but in the context of ischemic diseases such beneficial effects are overruled by adverse functional changes, demonstrating that ischemic recovery is not solely determined by collateral number but rather by vessel functionality. PMID:23533173
Fluid Mechanics of Blood Clot Formation.
Fogelson, Aaron L; Neeves, Keith B
2015-01-01
Intravascular blood clots form in an environment in which hydrodynamic forces dominate and in which fluid-mediated transport is the primary means of moving material. The clotting system has evolved to exploit fluid dynamic mechanisms and to overcome fluid dynamic challenges to ensure that clots that preserve vascular integrity can form over the wide range of flow conditions found in the circulation. Fluid-mediated interactions between the many large deformable red blood cells and the few small rigid platelets lead to high platelet concentrations near vessel walls where platelets contribute to clotting. Receptor-ligand pairs with diverse kinetic and mechanical characteristics work synergistically to arrest rapidly flowing cells on an injured vessel. Variations in hydrodynamic stresses switch on and off the function of key clotting polymers. Protein transport to, from, and within a developing clot determines whether and how fast it grows. We review ongoing experimental and modeling research to understand these and related phenomena.
Fluid Mechanics of Blood Clot Formation
NASA Astrophysics Data System (ADS)
Fogelson, Aaron L.; Neeves, Keith B.
2015-01-01
Intravascular blood clots form in an environment in which hydrodynamic forces dominate and in which fluid-mediated transport is the primary means of moving material. The clotting system has evolved to exploit fluid dynamic mechanisms and to overcome fluid dynamic challenges to ensure that clots that preserve vascular integrity can form over the wide range of flow conditions found in the circulation. Fluid-mediated interactions between the many large deformable red blood cells and the few small rigid platelets lead to high platelet concentrations near vessel walls where platelets contribute to clotting. Receptor-ligand pairs with diverse kinetic and mechanical characteristics work synergistically to arrest rapidly flowing cells on an injured vessel. Variations in hydrodynamic stresses switch on and off the function of key clotting polymers. Protein transport to, from, and within a developing clot determines whether and how fast it grows. We review ongoing experimental and modeling research to understand these and related phenomena.
Robotic multimodality stereotactic brain tissue identification: work in progress
NASA Technical Reports Server (NTRS)
Andrews, R.; Mah, R.; Galvagni, A.; Guerrero, M.; Papasin, R.; Wallace, M.; Winters, J.
1997-01-01
Real-time identification of tissue would improve procedures such as stereotactic brain biopsy (SBX), functional and implantation neurosurgery, and brain tumor excision. To standard SBX equipment has been added: (1) computer-controlled stepper motors to drive the biopsy needle/probe precisely; (2) multiple microprobes to track tissue density, detect blood vessels and changes in blood flow, and distinguish the various tissues being penetrated; (3) neural net learning programs to allow real-time comparisons of current data with a normative data bank; (4) three-dimensional graphic displays to follow the probe as it traverses brain tissue. The probe can differentiate substances such as pig brain, differing consistencies of the 'brain-like' foodstuff tofu, and gels made to simulate brain, as well as detect blood vessels imbedded in these substances. Multimodality probes should improve the safety, efficacy, and diagnostic accuracy of SBX and other neurosurgical procedures.
Neural Control of the Cardiovascular System in Space
NASA Technical Reports Server (NTRS)
Levine, Benjamin D.; Pawelczyk, James A.; Zuckerman, Julie; Zhang, Rong; Fu, Qi; Iwasaki, Kenichi; Ray, Chet; Blomqvist, C. Gunnar; Lane, Lynda D.; Giller, Cole A.
2003-01-01
During the acute transition from lying supine to standing upright, a large volume of blood suddenly moves from the chest into the legs. To prevent fainting, the blood pressure control system senses this change immediately, and rapidly adjusts flow (by increasing heart rate) and resistance to flow (by constricting the blood vessels) to restore blood pressure and maintain brain blood flow. If this system is inadequate, the brain has a backup plan. Blood vessels in the brain can adjust their diameter to keep blood flow constant. If blood pressure drops, the brain blood vessels dilate; if blood pressure increases, the brain blood vessels constrict. This process, which is called autoregulation, allows the brain to maintain a steady stream of oxygen, even when blood pressure changes. We examined what changes in the blood pressure control system or cerebral autoregulation contribute to the blood pressure control problems seen after spaceflight. We asked: (1) does the adaptation to spaceflight cause an adaptation in the blood pressure control system that impairs the ability of the system to constrict blood vessels on return to Earth?; (2) if such a defect exists, could we pinpoint the neural pathways involved?; and (3) does cerebral autoregulation become abnormal during spaceflight, impairing the body s ability to maintain constant brain blood flow when standing upright on Earth? We stressed the blood pressure control system using lower body negative pressure, upright tilt, handgrip exercise, and cold stimulation of the hand. Standard cardiovascular parameters were measured along with sympathetic nerve activity (the nerve activity causing blood vessels to constrict) and brain blood flow. We confirmed that the primary cardiovascular effect of spaceflight was a postflight reduction in upright stroke volume (the amount of blood the heart pumps per beat). Heart rate increased appropriately for the reduction in stroke volume, thereby showing that changes in heart rate regulation alone cannot be responsible for orthostatic hypotension after spaceflight. All of the astronauts in our study had an increase in sympathetic nerve activity during upright tilting on Earth postflight. This increase was well calibrated for the reduction in stroke volume induced by the upright posture. The results obtained from stimulating the sympathetic nervous system using handgrip exercise or cold stress were also entirely normal during and after spaceflight. No astronaut had reduced cerebral blood flow during upright tilt, and cerebral autoregulation was normal or even enhanced inflight. These experiments show that the cardiovascular adaptation to spaceflight does not lead to a defect in the regulation of blood vessel constriction via sympathetic nerve activity. In addition, cerebral autoregulation is well-maintained. It is possible that despite the increased sympathetic nerve activity, blood vessels did not respond with a greater degree of constriction than occurred preflight, possibly uncovering a limit of vasoconstrictor reserve.
Role of reactive oxygen and nitrogen species in the vascular responses to inflammation
Kvietys, Peter R.; Granger, D. Neil
2012-01-01
Inflammation is a complex and potentially life-threatening condition that involves the participation of a variety of chemical mediators, signaling pathways, and cell types. The microcirculation, which is critical for the initiation and perpetuation of an inflammatory response, exhibits several characteristic functional and structural changes in response to inflammation. These include vasomotor dysfunction (impaired vessel dilation and constriction), the adhesion and transendothelial migration of leukocytes, endothelial barrier dysfunction (increased vascular permeability), blood vessel proliferation (angiogenesis), and enhanced thrombus formation. These diverse responses of the microvasculature largely reflect the endothelial cell dysfunction that accompanies inflammation and the central role of these cells in modulating processes as varied as blood flow regulation, angiogenesis, and thrombogenesis. The importance of endothelial cells in inflammation-induced vascular dysfunction is also predicated on the ability of these cells to produce and respond to reactive oxygen and nitrogen species. Inflammation seems to upset the balance between nitric oxide and superoxide within (and surrounding) endothelial cells, which is necessary for normal vessel function. This review is focused on defining the molecular targets in the vessel wall that interact with reactive oxygen species and nitric oxide to produce the characteristic functional and structural changes that occur in response to inflammation. This analysis of the literature is consistent with the view that reactive oxygen and nitrogen species contribute significantly to the diverse vascular responses in inflammation and supports efforts that are directed at targeting these highly reactive species to maintain normal vascular health in pathological conditions that are associated with acute or chronic inflammation. PMID:22154653
Feasibility of Using the Marginal Blood Vessels as Reference Landmarks for CT Colonography
Wei, Zhuoshi; Yao, Jianhua; Wang, Shijun; Liu, Jiamin; Dwyer, Andrew J.; Pickhardt, Perry J.; Nowinski, Wieslaw L.; Summers, Ronald M.
2015-01-01
OBJECTIVE The purpose of this study was to show the spatial relationship of the colonic marginal blood vessels and the teniae coli on CT colonography (CTC) and the use of the marginal blood vessels for supine-prone registration of polyps and for determination of proper connectivity of collapsed colonic segments. MATERIALS AND METHODS We manually labeled the marginal blood vessels on 15 CTC examinations. Colon segmentation, centerline extraction, teniae detection, and teniae identification were automatically performed. For assessment of their spatial relationships, the distances from the marginal blood vessels to the three teniae coli and to the colon were measured. Student t tests (paired, two-tailed) were performed to evaluate the differences among these distances. To evaluate the reliability of the marginal vessels as reference points for polyp correlation, we analyzed 20 polyps from 20 additional patients who underwent supine and prone CTC. The average difference of the circumferential polyp position on the supine and prone scans was computed. Student t tests (paired, two-tailed) were performed to evaluate the supine-prone differences of the distance. We performed a study on 10 CTC studies from 10 patients with collapsed colonic segments by manually tracing the marginal blood vessels near the collapsed regions to resolve the ambiguity of the colon path. RESULTS The average distances (± SD) from the marginal blood vessels to the tenia mesocolica, tenia omentalis, and tenia libera were 20.1 ± 3.1 mm (95% CI, 18.5–21.6 mm), 39.5 ± 4.8 mm (37.1–42.0 mm), and 36.9 ± 4.2 mm (34.8–39.1 mm), respectively. Pairwise comparison showed that these distances to the tenia libera and tenia omentalis were significantly different from the distance to the tenia mesocolica (p < 0.001). The average distance from the marginal blood vessels to the colon wall was 15.3 ± 2.0 mm (14.2–16.3 mm). For polyp localization, the average difference of the circumferential polyp position on the supine and prone scans was 9.6 ± 9.4 mm (5.5–13.7 mm) (p = 0.15) and expressed as a percentage of the colon circumference was 3.1% ± 2.0% (2.3–4.0%) (p = 0.83). We were able to trace the marginal blood vessels for 10 collapsed colonic segments and determine the paths of the colon in these regions. CONCLUSION The marginal blood vessels run parallel to the colon in proximity to the tenia mesocolica and enable accurate supine-prone registration of polyps and localization of the colon path in areas of collapse. Thus, the marginal blood vessels may be used as reference landmarks complementary to the colon centerline and teniae coli. PMID:24370165
Wong, Lindsay L.; Lee, Nahyoung Grace; Amarnani, Dhanesh; Choi, Catherine J.; Bielenberg, Diane R.; Freitag, Suzanne K.; D’Amore, Patricia A.; Kim, Leo A.
2017-01-01
Purpose The human orbit is an environment that is vulnerable to inflammation and edema in the setting of autoimmune thyroid disease. Our study investigated the tenet that orbital adipose tissue lacks lymphatic vessels and analyzed the clinicopathologic differences between patients with acute and chronic thyroid eye disease (TED). The underlying molecular mediators of blood and lymphatic vessel formation within the orbital fat were also evaluated. Design Retrospective cohort study Participants The study included fat specimens from 26 orbits of 15 patients with TED undergoing orbital decompression. Orbital fat specimens from patients without TED as well as cadaveric orbital fat served as controls. Methods Tissue specimens were processed as formalin-fixed paraffin-embedded sections (FFPE) or frozen cryosections for immunohistochemistry. Total RNA was extracted and analyzed via quantitative (real-time) reverse transcription polymerase chain reaction (qRT-PCR). Clinicopathological correlation was made by determining the Clinical Activity Score (CAS) of each patient with TED. Main Outcome Measures Samples were examined for vascular and lymphatic markers including podoplanin, LYVE-1, and CD31 by immunohistochemistry, as well as for mRNA levels of VEGF, VEGF receptors, SEMA-3F, NRP-1, NRP-2, podoplanin and LYVE-1 by qRT-PCR. Results Clinicopathological correlation revealed increased staining of CD31-positive blood vessels in patients with acute TED with CAS > 4, as well as rare staining of podoplanin-positive lymphatic vessels within acutely inflamed orbital fat tissue. Additionally, qRT-PCR analysis demonstrated increased expression of vascular endothelial growth factor receptor 2 (VEGFR-2) as well as VEGF signaling molecules: VEGF-A, VEGF-C, and VEGF-D. Conclusions In acute TED, compared to chronic TED and control orbital fat, there is increased blood vessel density suggesting neovascularization and rare lymphatic vessels suggestive of limited lymphangiogenesis. This pro-angiogenic and pro-lymphangiogenic microenvironment is likely due to the increased expression of VEGFR-2 and VEGF-A, VEGF-C, and VEGF-D. These findings imply that orbital edema in acute TED may be mediated, in part, by both the formation of new, immature blood vessels and the formation of lymphatic capillaries that are functionally incapable of draining interstitial fluid. PMID:27423310
Primo vessel inside a lymph vessel emerging from a cancer tissue.
Lee, Sungwoo; Ryu, Yeonhee; Cha, Jinmyung; Lee, Jin-Kyu; Soh, Kwang-Sup; Kim, Sungchul; Lim, Jaekwan
2012-10-01
Primo vessels were observed inside the lymph vessels near the caudal vena cava of a rabbit and a rat and in the thoracic lymph duct of a mouse. In the current work we found a primo vessel inside the lymph vessel that came out from the tumor tissue of a mouse. A cancer model of a nude mouse was made with human lung cancer cell line NCI-H460. We injected fluorescent nanoparticles into the xenografted tumor tissue and studied their flow in blood, lymph, and primo vessels. Fluorescent nanoparticles flowed through the blood vessels quickly in few minutes, and but slowly in the lymph vessels. The bright fluorescent signals of nanoparticles disappeared within one hour in the blood vessels but remained much longer up to several hours in the case of lymph vessels. We found an exceptional case of lymph vessels that remained bright with fluorescence up to 24 hours. After detailed examination we found that the bright fluorescence was due to a putative primo vessel inside the lymph vessel. This rare observation is consistent with Bong-Han Kim's claim on the presence of a primo vascular system in lymph vessels. It provides a significant suggestion on the cancer metastasis through primo vessels and lymph vessels. Copyright © 2012. Published by Elsevier B.V.
Relationship between retinal blood flow and arterial oxygen
Cheng, Richard W.; Yusof, Firdaus; Tsui, Edmund; Jong, Monica; Duffin, James; Flanagan, John G.; Fisher, Joseph A.
2016-01-01
Key points Vascular reactivity, the response of the vessels to a vasoactive stimulus such as hypoxia and hyperoxia, can be used to assess the vascular range of adjustment in which the vessels are able to compensate for changes in PO2.Previous studies in the retina have not accurately quantified retinal vascular responses and precisely targeted multiple PaO2 stimuli at the same time as controlling the level of carbon dioxide, thus precluding them from modelling the relationship between retinal blood flow and oxygen.The present study modelled the relationship between retinal blood flow and PaO2, showing them to be a combined linear and hyperbolic function.This model demonstrates that the resting tonus of the vessels is at the mid‐point and that they have great vascular range of adjustment, compensating for decreases in oxygen above a P ETC O2 of 32–37 mmHg but being limited below this threshold. Abstract Retinal blood flow (RBF) increases in response to a reduction in oxygen (hypoxia) but decreases in response to increased oxygen (hyperoxia). However, the relationship between blood flow and the arterial partial pressure of oxygen has not been quantified and modelled in the retina, particularly in the vascular reserve and resting tonus of the vessels. The present study aimed to determine the limitations of the retinal vasculature by modelling the relationship between RBF and oxygen. Retinal vascular responses were measured in 13 subjects for eight different blood gas conditions, with the end‐tidal partial pressure of oxygen (P ETC O2) ranging from 40–500 mmHg. Retinal vascular response measurements were repeated twice; using the Canon laser blood flowmeter (Canon Inc., Tokyo, Japan) during the first visit and using Doppler spectral domain optical coherence tomography during the second visit. We determined that the relationship between RBF and PaO2 can be modelled as a combination of hyperbolic and linear functions. We concluded that RBF compensated for decreases in arterial oxygen content for all stages of hypoxia used in the present study but can no longer compensate below a P ETC O2 of 32–37 mmHg. These vessels have a great vascular range of adjustment, increasing diameter (8.5% arteriolar and 21% total venous area) with hypoxia (40 mmHg P ETC O2; P < 0.001) and decreasing diameter (6.9% arteriolar and 23% total venous area) with hyperoxia (500 mmHg P ETC O2; P < 0.001) to the same extent. This indicates that the resting tonus is near the mid‐point of the adjustment ranges at resting PaO2 where sensitivity is maximum. PMID:26607393
Relationship between retinal blood flow and arterial oxygen.
Cheng, Richard W; Yusof, Firdaus; Tsui, Edmund; Jong, Monica; Duffin, James; Flanagan, John G; Fisher, Joseph A; Hudson, Chris
2016-02-01
Vascular reactivity, the response of the vessels to a vasoactive stimulus such as hypoxia and hyperoxia, can be used to assess the vascular range of adjustment in which the vessels are able to compensate for changes in PO2. Previous studies in the retina have not accurately quantified retinal vascular responses and precisely targeted multiple PaO2 stimuli at the same time as controlling the level of carbon dioxide, thus precluding them from modelling the relationship between retinal blood flow and oxygen. The present study modelled the relationship between retinal blood flow and PaO2, showing them to be a combined linear and hyperbolic function. This model demonstrates that the resting tonus of the vessels is at the mid-point and that they have great vascular range of adjustment, compensating for decreases in oxygen above a PETCO2 of 32-37 mmHg but being limited below this threshold. Retinal blood flow (RBF) increases in response to a reduction in oxygen (hypoxia) but decreases in response to increased oxygen (hyperoxia). However, the relationship between blood flow and the arterial partial pressure of oxygen has not been quantified and modelled in the retina, particularly in the vascular reserve and resting tonus of the vessels. The present study aimed to determine the limitations of the retinal vasculature by modelling the relationship between RBF and oxygen. Retinal vascular responses were measured in 13 subjects for eight different blood gas conditions, with the end-tidal partial pressure of oxygen (PETCO2) ranging from 40-500 mmHg. Retinal vascular response measurements were repeated twice; using the Canon laser blood flowmeter (Canon Inc., Tokyo, Japan) during the first visit and using Doppler spectral domain optical coherence tomography during the second visit. We determined that the relationship between RBF and PaO2 can be modelled as a combination of hyperbolic and linear functions. We concluded that RBF compensated for decreases in arterial oxygen content for all stages of hypoxia used in the present study but can no longer compensate below a PETCO2 of 32-37 mmHg. These vessels have a great vascular range of adjustment, increasing diameter (8.5% arteriolar and 21% total venous area) with hypoxia (40 mmHg P ETC O2; P < 0.001) and decreasing diameter (6.9% arteriolar and 23% total venous area) with hyperoxia (500 mmHg PETCO2; P < 0.001) to the same extent. This indicates that the resting tonus is near the mid-point of the adjustment ranges at resting PaO2 where sensitivity is maximum. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.
Localisation of Lactate Transporters in Rat and Rabbit Placentae
Picut, Catherine A.; Charlap, Jeffrey H.
2016-01-01
The distribution of monocarboxylate transporter (MCT) isoforms 1 and 4, which mediate the plasmalemmal transport of l-lactic and pyruvic acids, has been identified in the placentae of rats and rabbits at different ages of gestation. Groups of three pregnant Sprague-Dawley rats and New Zealand White rabbits were sacrificed on gestation days (GD) 11, 14, 18, or 20 and on GD 13, 18, or 28, respectively. Placentae were removed and processed for immunohistochemical detection of MCT1 and MCT4. In the rat, staining for MCT1 was associated with lakes and blood vessels containing enucleated red blood cells (maternal vessels) while staining for MCT4 was associated with vessels containing nucleated red blood cells (embryofoetal vessels). In the rabbit, staining for MCT1 was associated with blood vessels containing nucleated red blood cells while staining for MCT4 was associated with vessels containing enucleated red blood cells. Strength of staining for MCT1 decreased during gestation in both species, but that for MCT4 was stronger than that for MCT1 and was consistent between gestation days. The results imply an opposite polarity of MCT1 and MCT4 across the trophoblast between rat and rabbit. PMID:27843454
The effects of blood vessels on electrocorticography
NASA Astrophysics Data System (ADS)
Bleichner, M. G.; Vansteensel, M. J.; Huiskamp, G. M.; Hermes, D.; Aarnoutse, E. J.; Ferrier, C. H.; Ramsey, N. F.
2011-08-01
Electrocorticography, primarily used in a clinical context, is becoming increasingly important for fundamental neuroscientific research, as well as for brain-computer interfaces. Recordings from these implanted electrodes have a number of advantages over non-invasive recordings in terms of band width, spatial resolution, smaller vulnerability to artifacts and overall signal quality. However, an unresolved issue is that signals vary greatly across electrodes. Here, we examine the effect of blood vessels lying between an electrode and the cortex on signals recorded from subdural grid electrodes. Blood vessels of different sizes cover extensive parts of the cortex causing variations in the electrode-cortex connection across grids. The power spectral density of electrodes located on the cortex and electrodes located on blood vessels obtained from eight epilepsy patients is compared. We find that blood vessels affect the power spectral density of the recorded signal in a frequency-band-specific way, in that frequencies between 30 and 70 Hz are attenuated the most. Here, the signal is attenuated on average by 30-40% compared to electrodes directly on the cortex. For lower frequencies this attenuation effect is less pronounced. We conclude that blood vessels influence the signal properties in a non-uniform manner.
Integrative models of vascular remodeling during tumor growth
Rieger, Heiko; Welter, Michael
2015-01-01
Malignant solid tumors recruit the blood vessel network of the host tissue for nutrient supply, continuous growth, and gain of metastatic potential. Angiogenesis (the formation of new blood vessels), vessel cooption (the integration of existing blood vessels into the tumor vasculature), and vessel regression remodel the healthy vascular network into a tumor-specific vasculature that is in many respects different from the hierarchically organized arterio-venous blood vessel network of the host tissues. Integrative models based on detailed experimental data and physical laws implement in silico the complex interplay of molecular pathways, cell proliferation, migration, and death, tissue microenvironment, mechanical and hydrodynamic forces, and the fine structure of the host tissue vasculature. With the help of computer simulations high-precision information about blood flow patterns, interstitial fluid flow, drug distribution, oxygen and nutrient distribution can be obtained and a plethora of therapeutic protocols can be tested before clinical trials. In this review, we give an overview over the current status of integrative models describing tumor growth, vascular remodeling, blood and interstitial fluid flow, drug delivery, and concomitant transformations of the microenvironment. © 2015 The Authors. WIREs Systems Biology and Medicine published by Wiley Periodicals, Inc. PMID:25808551
NASA Technical Reports Server (NTRS)
Delp, Michael; Vasques, Marilyn; Aquilina, Rudy (Technical Monitor)
2002-01-01
Ever rise quickly from the couch to get something from the kitchen and suddenly feel dizzy? With a low heart rate and relaxed muscles, the cardiovascular system does not immediately provide the resistance necessary to keep enough blood going to your head. Gravity wins, at least for a short time, before your heart and blood vessels can respond to the sudden change in position and correct the situation. Actually, the human cardiovascular system is quite well adapted to the constant gravitational force of the Earth. When standing, vessels in the legs constrict to prevent blood from collecting in the lower extremities. In the space environment, the usual head-to-foot blood pressure and tissue fluid gradients that exist during the upright posture on Earth are removed. The subsequent shift in fluids from the lower to the upper portions of the body triggers adaptations within the cardiovascular system to accommodate the new pressure and fluid gradients. In animal models that simulate microgravity, the vessels in the head become more robust while those in the lower limbs become thin and lax. Similar changes may also occur in humans during spaceflight and while these adaptations are appropriate for a microgravity environment, they can cause problems when the astronauts return to Earth or perhaps another planet. Astronauts often develop orthostatic intolerance which means they become dizzy or faint when standing upright. This dizziness can persist for a number of days making routine activities difficult. In an effort to understand the physiological details of these cardiovascular adaptations, Dr. Michael Delp at Texas A&M University, uses the rat as a model for his studies. For the experiment flown on STS-107, he will test the hypothesis that blood vessels in the rats' hindlimbs become thinner, weaker, and constrict less in response to pressure changes and to chemical signals when exposed to microgravity. In addition, he will test the hypothesis that arteries in the brain become thicker as a result of microgravity-induced fluid shifts toward the head.
Hassel, Erlend; Berre, Anne Marie; Skjulsvik, Anne Jarstein; Steinshamn, Sigurd
2014-09-28
Right ventricular dysfunction in COPD is common, even in the absence of pulmonary hypertension. The aim of the present study was to examine the effects of high intensity interval training (HIIT) on right ventricular (RV) function, as well as pulmonary blood vessel remodeling in a mouse model of COPD. 42 female A/JOlaHsd mice were randomized to exposure to either cigarette smoke or air for 6 hours/day, 5 days/week for 14 weeks. Mice from both groups were further randomized to sedentariness or HIIT for 4 weeks. Cardiac function was evaluated by echocardiography and muscularization of pulmonary vessel walls by immunohistochemistry. Smoke exposure induced RV systolic dysfunction demonstrated by reduced tricuspid annular plane systolic excursion. HIIT in smoke-exposed mice reversed RV dysfunction. There were no significant effects on the left ventricle of neither smoke exposure nor HIIT. Muscularization of the pulmonary vessels was reduced after exercise intervention, but no significant effects on muscularization were observed from smoke exposure. RV function was reduced in mice exposed to cigarette smoke. No Increase in pulmonary vessel muscularization was observed in these mice, implying that other mechanisms caused the RV dysfunction. HIIT attenuated the RV dysfunction in the smoke exposed mice. Reduced muscularization of the pulmonary vessels due to HIIT suggests that exercise training not only affects the heart muscle, but also has important effects on the pulmonary vasculature.
Imaging pulse wave velocity in mouse retina using swept-source OCT (Conference Presentation)
NASA Astrophysics Data System (ADS)
Song, Shaozhen; Wei, Wei; Wang, Ruikang K.
2016-03-01
Blood vessel dynamics has been a significant subject in cardiology and internal medicine, and pulse wave velocity (PWV) on artery vessels is a classic evaluation of arterial distensibility, and has never been ascertained as a cardiovascular risk marker. The aim of this study is to develop a high speed imaging technique to capture the pulsatile motion on mouse retina arteries with the ability to quantify PWV on any arterial vessels. We demonstrate a new non-invasive method to assess the vessel dynamics on mouse retina. A Swept-source optical coherence tomography (SS-OCT) system is used for imaging micro-scale blood vessel motion. The phase-stabilized SS-OCT provides a typical displacement sensitivity of 20 nm. The frame rate of imaging is ~16 kHz, at A-line rate of ~1.62 MHz, which allows the detection of transient pulse waves with adequate temporal resolution. Imaging volumes with repeated B-scans are obtained on mouse retina capillary bed, and the mouse oxymeter signal is recorded simultaneously. The pulse wave on artery and vein are resolved, and with the synchronized heart beat signal, the temporal delay on different vessel locations is determined. The vessel specific measurement of PWV is achieved for the first time with SS-OCT, for pulse waves propagating more than 100 cm/s. Using the novel methodology of retinal PWV assessment, it is hoped that the clinical OCT scans can provide extended diagnostic information of cardiology functionalities.
Coronary artery segmentation in X-ray angiograms using gabor filters and differential evolution.
Cervantes-Sanchez, Fernando; Cruz-Aceves, Ivan; Hernandez-Aguirre, Arturo; Solorio-Meza, Sergio; Cordova-Fraga, Teodoro; Aviña-Cervantes, Juan Gabriel
2018-08-01
Segmentation of coronary arteries in X-ray angiograms represents an essential task for computer-aided diagnosis, since it can help cardiologists in diagnosing and monitoring vascular abnormalities. Due to the main disadvantages of the X-ray angiograms are the nonuniform illumination, and the weak contrast between blood vessels and image background, different vessel enhancement methods have been introduced. In this paper, a novel method for blood vessel enhancement based on Gabor filters tuned using the optimization strategy of Differential evolution (DE) is proposed. Because the Gabor filters are governed by three different parameters, the optimal selection of those parameters is highly desirable in order to maximize the vessel detection rate while reducing the computational cost of the training stage. To obtain the optimal set of parameters for the Gabor filters, the area (Az) under the receiver operating characteristics curve is used as objective function. In the experimental results, the proposed method achieves an A z =0.9388 in a training set of 40 images, and for a test set of 40 images it obtains the highest performance with an A z =0.9538 compared with six state-of-the-art vessel detection methods. Finally, the proposed method achieves an accuracy of 0.9423 for vessel segmentation using the test set. In addition, the experimental results have also shown that the proposed method can be highly suitable for clinical decision support in terms of computational time and vessel segmentation performance. Copyright © 2017 Elsevier Ltd. All rights reserved.
Vessel extraction in retinal images using automatic thresholding and Gabor Wavelet.
Ali, Aziah; Hussain, Aini; Wan Zaki, Wan Mimi Diyana
2017-07-01
Retinal image analysis has been widely used for early detection and diagnosis of multiple systemic diseases. Accurate vessel extraction in retinal image is a crucial step towards a fully automated diagnosis system. This work affords an efficient unsupervised method for extracting blood vessels from retinal images by combining existing Gabor Wavelet (GW) method with automatic thresholding. Green channel image is extracted from color retinal image and used to produce Gabor feature image using GW. Both green channel image and Gabor feature image undergo vessel-enhancement step in order to highlight blood vessels. Next, the two vessel-enhanced images are transformed to binary images using automatic thresholding before combined to produce the final vessel output. Combining the images results in significant improvement of blood vessel extraction performance compared to using individual image. Effectiveness of the proposed method was proven via comparative analysis with existing methods validated using publicly available database, DRIVE.
Tumor Vessel Compression Hinders Perfusion of Ultrasonographic Contrast Agents1
Galiè, Mirco; D'Onofrio, Mirko; Montani, Maura; Amici, Augusto; Calderan, Laura; Marzola, Pasquina; Benati, Donatella; Merigo, Flavia; Marchini, Cristina; Sbarbati, Andrea
2005-01-01
Abstract Contrast-enhanced ultrasound (CEUS) is an advanced approach to in vivo assessment of tumor vascularity and is being increasingly adopted in clinical oncology. It is based on 1- to 10 µm-sized gas microbubbles, which can cross the capillary beds of the lungs and are effective echo enhancers. It is known that high cell density, high transendothelial fluid exchange, and poorly functioning lymphatic circulation all provoke solid stress, which compresses vessels and drastically reduces tumor blood flow. Given their size, we supposed that the perfusion of microbubbles is affected by anatomic features of tumor vessels more than are contrast agents traditionally used in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Here, we compared dynamic information obtained from CEUS and DCE-MRI on two experimental tumor models exhibiting notable differences in vessel anatomy. We found that tumors with small, flattened vessels show a much higher resistance to microbubble perfusion than to MRI contrast agents, and appear scarcely vascularized at CEUS examination, despite vessel volume adequate for normal function. Thus, whereas CEUS alone could induce incorrect diagnosis when tumors have small or collapsed vessels, integrated analysis using CEUS and DCE-MRI allows in vivo identification of tumors with a vascular profile frequently associated with malignant phenotypes. PMID:15967105
Growth and Remodeling in Blood Vessels Studied In Vivo With Fractal Analysis
NASA Technical Reports Server (NTRS)
Parsons-Wingerter, Patricia A.
2003-01-01
Every cell in the human body must reside in close proximity to a blood vessel (within approximately 200 mm) because blood vessels provide the oxygen, metabolite, and fluid exchanges required for cellular existence. The growth and remodeling of blood vessels are required to support the normal physiology of embryonic development, reproductive biology, wound healing and adaptive remodeling to exercise, as well as abnormal tissue change in diseases such as cancer, diabetes, and coronary heart disease. Cardiovascular and hemodynamic (blood flow dynamics) alterations experienced by astronauts during long-term spaceflight, including orthostatic intolerance, fluid shifts in the body, and reduced numbers of red (erythrocyte) and white (immune) blood cells, are identified as risk factors of very high priority in the NASA task force report on risk reduction for human spaceflight, the "Critical Path Roadmap."
New algorithm for detecting smaller retinal blood vessels in fundus images
NASA Astrophysics Data System (ADS)
LeAnder, Robert; Bidari, Praveen I.; Mohammed, Tauseef A.; Das, Moumita; Umbaugh, Scott E.
2010-03-01
About 4.1 million Americans suffer from diabetic retinopathy. To help automatically diagnose various stages of the disease, a new blood-vessel-segmentation algorithm based on spatial high-pass filtering was developed to automatically segment blood vessels, including the smaller ones, with low noise. Methods: Image database: Forty, 584 x 565-pixel images were collected from the DRIVE image database. Preprocessing: Green-band extraction was used to obtain better contrast, which facilitated better visualization of retinal blood vessels. A spatial highpass filter of mask-size 11 was applied. A histogram stretch was performed to enhance contrast. A median filter was applied to mitigate noise. At this point, the gray-scale image was converted to a binary image using a binary thresholding operation. Then, a NOT operation was performed by gray-level value inversion between 0 and 255. Postprocessing: The resulting image was AND-ed with its corresponding ring mask to remove the outer-ring (lens-edge) artifact. At this point, the above algorithm steps had extracted most of the major and minor vessels, with some intersections and bifurcations missing. Vessel segments were reintegrated using the Hough transform. Results: After applying the Hough transform, both the average peak SNR and the RMS error improved by 10%. Pratt's Figure of Merit (PFM) was decreased by 6%. Those averages were better than [1] by 10-30%. Conclusions: The new algorithm successfully preserved the details of smaller blood vessels and should prove successful as a segmentation step for automatically identifying diseases that affect retinal blood vessels.
Seifi, Safora; Feizi, Farideh; Khafri, Thoraya; Aram, Mehrdad
2013-03-01
The present study aimed at assessment and histomorphometric analysis of intratumoral and peritumoral (cystic) blood vessels in odontogenic lesions and their pattern on their clinical behavior by immunohistochemistry and morphometry. In a descriptive and analytical cross-sectional study, 45 paraffin blocks of ameloblastoma, odontogenic keratocyst, and follicular cyst were selected and stained immunohistochemically for CD34. In each slide, images of 3 microscopic fields with the highest microvessel density in intratumoral and peritumoral (cystic) areas were captured at 40× magnification with attached camera system. Inner vascular diameter (IVD) and outer vascular diameter (OVD), cross-sectional area (CSA), and the wall thickness (WT) of the vessels were measured with Motic Plus 2 software. The vascular pattern in odontogenic lesions was analyzed. Outer vascular diameter, IVD, and CSA of the vessels in peritumoral (cystic) areas were greater in ameloblastoma than keratocyst (P = 0.001) and follicular cyst (P < 0.001). However, WT of the blood vessels did not show any significant statistical difference among the 3 odontogenic lesions (P = 0.05). The differences in OVD, IVD (P = 0.8), CSA (P = 0.6), and WT (P = 0.4) of the blood vessels in intratumoral (cystic) areas were not statistically significant. The blood vessel pattern was circumferential in ameloblastoma, and it was directional in keratocyst and follicular cyst. Morphometric specifications of blood vessels (IVD, OVD, CSA) and their pattern in peritumoral (cystic) areas may influence the aggressive clinical behavior of ameloblastoma in comparison with keratocyst and follicular cyst.
NASA Astrophysics Data System (ADS)
Zherebtsova, Angelina I.; Zherebtsov, Evgeny A.; Dunaev, Andrey V.; Podmasteryev, Konstantin V.; Pilipenko, Olga V.; Krupatkin, Alexander I.; Khakhicheva, Lyudmila S.; Muradyan, Vadim F.
2016-04-01
Vasospastic disorders are a common class of rheumatic disease. These include syndromes such as vegetative dystonia, Raynaud's syndrome, vibration disease and rheumatoid arthritis among others. The aim of this work is to develop an original method of diagnosing the functional state of peripheral vessels of the fingers, based on the simultaneous recording of LDF- and thermograms during the occlusion test, for determining vascular disorders of rheumatological patients. A diagnostic method was developed for assessing the functional state of the peripheral vessels of fingers, based on carrying out occlusion test in a thermally stabilized environment, with simultaneous recording of signals of laser Doppler flowmetry and skin thermometry. To verify the diagnostic value of the proposed method, a series of experiments were carried out on 41 rheumatological patients: 5 male and 36 females (average age 56.0+/-12.2 years). The most common diagnoses in the patient group were rheumatoid arthritis, arthrosis, gout and systemic lupus erythematosus. The laser analyser of blood microcirculation "LAKK-02" (SPE "LAZMA" Ltd, Russia) and a custom developed multi-channel thermometry device for low inertia thermometry were used for experimental measurements. The measurements of cutaneous temperature and the index of microcirculation were performed on the distal phalanx of the third finger of the right hand. Occlusion tests were performed with water baths at 25 and 42 °C and a tonometer cuff with a pressure of 200-220 mmHg for 3 min on the upper arm. The results of experimental studies are presented and interpreted. These data indicate a violation of the blood supply regulation in the form of a pronounced tendency towards microvascular vasoconstriction in the fingers. Thus, the response displaying a tendency toward angiospasm among patients in the rheumatological diseases profile group was observed mainly in the most severe cases (49 % of this group). The prospects of the developed diagnostic method of microcirculatory disorders in rheumatic diseases are evaluated. Thus, cutaneous blood microcirculation and temperature measurements performed together can help in diagnosis of the functional state of peripheral vessels both in a healthy state and when expressing pathology.
NASA Astrophysics Data System (ADS)
Hoshiar, Ali Kafash; Le, Tuan-Anh; Amin, Faiz Ul; Kim, Myeong Ok; Yoon, Jungwon
2017-04-01
Magnetic-guided targeted drug delivery (TDD) systems can enhance the treatment of diverse diseases. Despite the potential and promising results of nanoparticles, aggregation prevents precise particle guidance in the vasculature. In this study, we developed a simulation platform to investigate aggregation during steering of nanoparticles using a magnetic field function. The magnetic field function (MFF) comprises a positive and negative pulsed magnetic field generated by electromagnetic coils, which prevents adherence of particles to the vessel wall during magnetic guidance. A commonly used Y-shaped vessel was simulated and the performance of the MFF analyzed; the experimental data were in agreement with the simulation results. Moreover, the effects of various parameters on magnetic guidance were evaluated and the most influential identified. The simulation results presented herein will facilitate more precise guidance of nanoparticles in vivo.
Contemporary Approaches to Modulating the Nitric Oxide-cGMP Pathway in Cardiovascular Disease.
Kraehling, Jan R; Sessa, William C
2017-03-31
Endothelial cells lining the vessel wall control important aspects of vascular homeostasis. In particular, the production of endothelium-derived nitric oxide and activation of soluble guanylate cyclase promotes endothelial quiescence and governs vasomotor function and proportional remodeling of blood vessels. Here, we discuss novel approaches to improve endothelial nitric oxide generation and preserve its bioavailability. We also discuss therapeutic opportunities aimed at activation of soluble guanylate cyclase for multiple cardiovascular indications. © 2017 American Heart Association, Inc.
Quantitative phase imaging characterization of tumor-associated blood vessel formation on a chip
NASA Astrophysics Data System (ADS)
Guo, Peng; Huang, Jing; Moses, Marsha A.
2018-02-01
Angiogenesis, the formation of new blood vessels from existing ones, is a biological process that has an essential role in solid tumor growth, development, and progression. Recent advances in Lab-on-a-Chip technology has created an opportunity for scientists to observe endothelial cell (EC) behaviors during the dynamic process of angiogenesis using a simple and economical in vitro platform that recapitulates in vivo blood vessel formation. Here, we use quantitative phase imaging (QPI) microscopy to continuously and non-invasively characterize the dynamic process of tumor cell-induced angiogenic sprout formation on a microfluidic chip. The live tumor cell-induced angiogenic sprouts are generated by multicellular endothelial sprouting into 3 dimensional (3D) Matrigel using human umbilical vein endothelial cells (HUVECs). By using QPI, we quantitatively measure a panel of cellular morphological and behavioral parameters of each individual EC participating in this sprouting. In this proof-of-principle study, we demonstrate that QPI is a powerful tool that can provide real-time quantitative analysis of biological processes in in vitro 3D biomimetic devices, which, in turn, can improve our understanding of the biology underlying functional tissue engineering.
Scaffold-free, Human Mesenchymal Stem Cell-Based Tissue Engineered Blood Vessels.
Jung, Youngmee; Ji, HaYeun; Chen, Zaozao; Fai Chan, Hon; Atchison, Leigh; Klitzman, Bruce; Truskey, George; Leong, Kam W
2015-10-12
Tissue-engineered blood vessels (TEBV) can serve as vascular grafts and may also play an important role in the development of organs-on-a-chip. Most TEBV construction involves scaffolding with biomaterials such as collagen gel or electrospun fibrous mesh. Hypothesizing that a scaffold-free TEBV may be advantageous, we constructed a tubular structure (1 mm i.d.) from aligned human mesenchymal cell sheets (hMSC) as the wall and human endothelial progenitor cell (hEPC) coating as the lumen. The burst pressure of the scaffold-free TEBV was above 200 mmHg after three weeks of sequential culture in a rotating wall bioreactor and perfusion at 6.8 dynes/cm(2). The interwoven organization of the cell layers and extensive extracellular matrix (ECM) formation of the hMSC-based TEBV resembled that of native blood vessels. The TEBV exhibited flow-mediated vasodilation, vasoconstriction after exposure to 1 μM phenylephrine and released nitric oxide in a manner similar to that of porcine femoral vein. HL-60 cells attached to the TEBV lumen after TNF-α activation to suggest a functional endothelium. This study demonstrates the potential of a hEPC endothelialized hMSC-based TEBV for drug screening.
mRNA expression profiling of laser microbeam microdissected cells from slender embryonic structures.
Scheidl, Stefan J; Nilsson, Sven; Kalén, Mattias; Hellström, Mats; Takemoto, Minoru; Håkansson, Joakim; Lindahl, Per
2002-03-01
Microarray hybridization has rapidly evolved as an important tool for genomic studies and studies of gene regulation at the transcriptome level. Expression profiles from homogenous samples such as yeast and mammalian cell cultures are currently extending our understanding of biology, whereas analyses of multicellular organisms are more difficult because of tissue complexity. The combination of laser microdissection, RNA amplification, and microarray hybridization has the potential to provide expression profiles from selected populations of cells in vivo. In this article, we present and evaluate an experimental procedure for global gene expression analysis of slender embryonic structures using laser microbeam microdissection and laser pressure catapulting. As a proof of principle, expression profiles from 1000 cells in the mouse embryonic (E9.5) dorsal aorta were generated and compared with profiles for captured mesenchymal cells located one cell diameter further away from the aortic lumen. A number of genes were overexpressed in the aorta, including 11 previously known markers for blood vessels. Among the blood vessel markers were endoglin, tie-2, PDGFB, and integrin-beta1, that are important regulators of blood vessel formation. This demonstrates that microarray analysis of laser microbeam micro-dissected cells is sufficiently sensitive for identifying genes with regulative functions.
What to Know – and Do! – About Stroke | NIH MedlinePlus the Magazine
... function. There are two forms of stroke: an ischemic stroke occurs when a blood vessel supplying the brain ... Why is there a need to act fast?— Ischemic strokes, the most common type of stroke, can be ...
Wong, Lindsay L; Lee, Nahyoung Grace; Amarnani, Dhanesh; Choi, Catherine J; Bielenberg, Diane R; Freitag, Suzanne K; D'Amore, Patricia A; Kim, Leo A
2016-09-01
The human orbit is an environment that is vulnerable to inflammation and edema in the setting of autoimmune thyroid disease. Our study investigated the tenet that orbital adipose tissue lacks lymphatic vessels and analyzed the clinicopathologic differences between patients with acute and chronic thyroid eye disease (TED). The underlying molecular mediators of blood and lymphatic vessel formation within the orbital fat also were evaluated. Retrospective cohort study. The study included fat specimens from 26 orbits of 15 patients with TED undergoing orbital decompression. Orbital fat specimens from patients without TED as well as cadaveric orbital fat served as controls. Tissue specimens were processed as formalin-fixed, paraffin-embedded sections or frozen cryosections for immunohistochemistry. Total RNA was extracted and analyzed via quantitative (real-time) reverse-transcription polymerase chain reaction. Clinicopathologic correlation was made by determining the clinical activity score (CAS) of each patient with TED. Samples were examined for vascular and lymphatic markers including podoplanin, lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1), and cluster of differentiation 31 (CD31) by immunohistochemistry, as well as for mRNA levels of vascular endothelial growth factor (VEGF), VEGF receptors, semaphorin 3F, neuropilin 1, neuropilin 2, podoplanin, and LYVE-1 by quantitative (real-time) reverse-transcription polymerase chain reaction. Clinicopathologic correlation revealed increased staining of CD31-positive blood vessels in patients with acute TED with a CAS more than 4, as well as rare staining of podoplanin-positive lymphatic vessels within acutely inflamed orbital fat tissue. Additionally, quantitative (real-time) reverse-transcription polymerase chain reaction analysis demonstrated increased expression of VEGF receptor (VEGFR) 2 as well as VEGF signaling molecules VEGF-A, VEGF-C, and VEGF-D. In acute TED, compared with chronic TED and control orbital fat, there is increased blood vessel density, suggesting neovascularization and rare lymphatic vessels suggestive of limited lymphangiogenesis. This proangiogenic and prolymphangiogenic microenvironment is likely the result of the increased expression of VEGFR-2, VEGF-A, VEGF-C, and VEGF-D. These findings imply that orbital edema in acute TED may be mediated, in part, by both the formation of new, immature blood vessels and the formation of lymphatic capillaries that are functionally incapable of draining interstitial fluid. Copyright © 2016 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
Congleton, J.L.; LaVoie, W.J.
2001-01-01
Thirteen blood chemistry indices were compared for samples collected by three commonly used methods: caudal transection, heart puncture, and caudal vessel puncture. Apparent biases in blood chemistry values for samples obtained by caudal transection were consistent with dilution with tissue fluids: alanine aminotransferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), creatine kinase (CK), triglyceride, and K+ were increased and Na+ and Cl- were decreased relative to values for samples obtained by caudal vessel puncture. Some enzyme activities (ALT, AST, LDH) and K+ concentrations were also greater in samples taken by heart puncture than in samples taken by caudal vessel puncture. Of the methods tested, caudal vessel puncture had the least effect on blood chemistry values and should be preferred for blood chemistry studies on juvenile salmonids.
Visualizing blood vessel trees in three dimensions: clinical applications
NASA Astrophysics Data System (ADS)
Bullitt, Elizabeth; Aylward, Stephen
2005-04-01
A connected network of blood vessels surrounds and permeates almost every organ of the human body. The ability to define detailed blood vessel trees enables a variety of clinical applications. This paper discusses four such applications and some of the visualization challenges inherent to each. Guidance of endovascular surgery: 3D vessel trees offer important information unavailable by traditional x-ray projection views. How best to combine the 2- and 3D image information is unknown. Planning/guidance of tumor surgery: During tumor resection it is critical to know which blood vessels can be interrupted safely and which cannot. Providing efficient, clear information to the surgeon together with measures of uncertainty in both segmentation and registration can be a complex problem. Vessel-based registration: Vessel-based registration allows pre-and intraoperative images to be registered rapidly. The approach both provides a potential solution to a difficult clinical dilemma and offers a variety of visualization opportunities. Diagnosis/staging of disease: Almost every disease affects blood vessel morphology. The statistical analysis of vessel shape may thus prove to be an important tool in the noninvasive analysis of disease. A plethora of information is available that must be presented meaningfully to the clinician. As medical image analysis methods increase in sophistication, an increasing amount of useful information of varying types will become available to the clinician. New methods must be developed to present a potentially bewildering amount of complex data to individuals who are often accustomed to viewing only tissue slices or flat projection views.
Impaired angiogenesis in aminopeptidase N-null mice
Rangel, Roberto; Sun, Yan; Guzman-Rojas, Liliana; Ozawa, Michael G.; Sun, Jessica; Giordano, Ricardo J.; Van Pelt, Carolyn S.; Tinkey, Peggy T.; Behringer, Richard R.; Sidman, Richard L.; Arap, Wadih; Pasqualini, Renata
2007-01-01
Aminopeptidase N (APN, CD13; EC 3.4.11.2) is a transmembrane metalloprotease with several functions, depending on the cell type and tissue environment. In tumor vasculature, APN is overexpressed in the endothelium and promotes angiogenesis. However, there have been no reports of in vivo inactivation of the APN gene to validate these findings. Here we evaluated, by targeted disruption of the APN gene, whether APN participates in blood vessel formation and function under normal conditions. Surprisingly, APN-null mice developed with no gross or histological abnormalities. Standard neurological, cardiovascular, metabolic, locomotor, and hematological studies revealed no alterations. Nonetheless, in oxygen-induced retinopathy experiments, APN-deficient mice had a marked and dose-dependent deficiency of the expected retinal neovascularization. Moreover, gelfoams embedded with growth factors failed to induce functional blood vessel formation in APN-null mice. These findings establish that APN-null mice develop normally without physiological alterations and can undergo physiological angiogenesis but show a severely impaired angiogenic response under pathological conditions. Finally, in addition to vascular biology research, APN-null mice may be useful reagents in other medical fields such as malignant, cardiovascular, immunological, or infectious diseases. PMID:17360568
Motion-aware stroke volume quantification in 4D PC-MRI data of the human aorta.
Köhler, Benjamin; Preim, Uta; Grothoff, Matthias; Gutberlet, Matthias; Fischbach, Katharina; Preim, Bernhard
2016-02-01
4D PC-MRI enables the noninvasive measurement of time-resolved, three-dimensional blood flow data that allow quantification of the hemodynamics. Stroke volumes are essential to assess the cardiac function and evolution of different cardiovascular diseases. The calculation depends on the wall position and vessel orientation, which both change during the cardiac cycle due to the heart muscle contraction and the pumped blood. However, current systems for the quantitative 4D PC-MRI data analysis neglect the dynamic character and instead employ a static 3D vessel approximation. We quantify differences between stroke volumes in the aorta obtained with and without consideration of its dynamics. We describe a method that uses the approximating 3D segmentation to automatically initialize segmentation algorithms that require regions inside and outside the vessel for each temporal position. This enables the use of graph cuts to obtain 4D segmentations, extract vessel surfaces including centerlines for each temporal position and derive motion information. The stroke volume quantification is compared using measuring planes in static (3D) vessels, planes with fixed angulation inside dynamic vessels (this corresponds to the common 2D PC-MRI) and moving planes inside dynamic vessels. Seven datasets with different pathologies such as aneurysms and coarctations were evaluated in close collaboration with radiologists. Compared to the experts' manual stroke volume estimations, motion-aware quantification performs, on average, 1.57% better than calculations without motion consideration. The mean difference between stroke volumes obtained with the different methods is 7.82%. Automatically obtained 4D segmentations overlap by 85.75% with manually generated ones. Incorporating motion information in the stroke volume quantification yields slight but not statistically significant improvements. The presented method is feasible for the clinical routine, since computation times are low and essential parts run fully automatically. The 4D segmentations can be used for other algorithms as well. The simultaneous visualization and quantification may support the understanding and interpretation of cardiac blood flow.
NASA Astrophysics Data System (ADS)
Parvin, Salma; Sultana, Aysha
2017-06-01
The influence of High Intensity Focused Ultrasound (HIFU) on the obstacle through blood vessel is studied numerically. A three-dimensional acoustics-thermal-fluid coupling model is employed to compute the temperature field around the obstacle through blood vessel. The model construction is based on the linear Westervelt and conjugate heat transfer equations for the obstacle through blood vessel. The system of equations is solved using Finite Element Method (FEM). We found from this three-dimensional numerical study that the rate of heat transfer is increasing from the obstacle and both the convective cooling and acoustic streaming can considerably change the temperature field.
Smadja, David M.; Dorfmüller, Peter; Bieche, Ivan; Guerin, Coralie; Badoual, Cécile; Boscolo, Elisa; Kambouchner, Marianne; Cazes, Aurélie; Mercier, Olaf; Humbert, Marc; Gaussem, Pascale; Bischoff, Joyce; Israël-Biet, Dominique
2016-01-01
Background Fibrotic diseases of the lung are associated with a vascular remodeling process. Fibrocytes (Fy) are a distinct population of blood-borne cells that coexpress hematopoietic cell antigens and fibroblast markers, which have been shown to contribute to organ fibrosis. The purpose of this study was to test the hypothesis that Fy might cooperate with endothelial colony forming cells to induce angiogenesis. Methods/Results We successfully isolated Fy from blood of idiopathic pulmonary fibrosis (IPF) patients, which were further characterized by flow cytometry, Reverse Transcriptase quantitative-PCR (RTQ-PCR), and confocal analysis. We investigated the interaction between Fy and cord blood derived endothelial colony forming cells (ECFC) angiogenic potential in vitro and in vivo in a Matrigel implant model. Compared to fibroblast culture media, secreted media from Fy increase ECFC proliferation and their differentiation ability via SDF-1/CXCR4 pathway. IPF-Fy co-implanted with human ECFC in a matrigel plug in immunodeficient mice formed functional microvascular beds, whereas fibroblasts did not. Evaluation of implants after 2 weeks revealed an extensive network of blood vessels containing erythrocytes. CXCR4 blockade significantly inhibited blood vessel formation in the implants. The clinical relevance of these data was confirmed by the high expression level of CXCR4 in vessels close to fibrotic areas in biopsy specimens from patients with IPF, in contrast to control lungs. Conclusions Circulating Fy might be contribute to the intense remodeling of the pulmonary vasculature in patients with IPF. PMID:25103869
Surgery May Help More People After Stroke
... Stroke En español Send us your comments In ischemic stroke, blood vessels that supply the brain become blocked. ... blood vessel in the brain. These are called ischemic strokes. Strokes are a medical emergency. When blood can’ ...
Sultanov, Renat A; Guster, Dennis
2009-01-01
We report computational results of blood flow through a model of the human aortic arch and a vessel of actual diameter and length. A realistic pulsatile flow is used in all simulations. Calculations for bifurcation type vessels are also carried out and presented. Different mathematical methods for numerical solution of the fluid dynamics equations have been considered. The non-Newtonian behaviour of the human blood is investigated together with turbulence effects. A detailed time-dependent mathematical convergence test has been carried out. The results of computer simulations of the blood flow in vessels of three different geometries are presented: for pressure, strain rate and velocity component distributions we found significant disagreements between our results obtained with realistic non-Newtonian treatment of human blood and the widely used method in the literature: a simple Newtonian approximation. A significant increase of the strain rate and, as a result, the wall shear stress distribution, is found in the region of the aortic arch. Turbulent effects are found to be important, particularly in the case of bifurcation vessels.
Photoacoustic imaging for transvascular drug delivery to the rat brain
NASA Astrophysics Data System (ADS)
Watanabe, Ryota; Sato, Shunichi; Tsunoi, Yasuyuki; Kawauchi, Satoko; Takemura, Toshiya; Terakawa, Mitsuhiro
2015-03-01
Transvascular drug delivery to the brain is difficult due to the blood-brain barrier (BBB). Thus, various methods for safely opening the BBB have been investigated, for which real-time imaging methods are desired both for the blood vessels and distribution of a drug. Photoacoustic (PA) imaging, which enables depth-resolved visualization of chromophores in tissue, would be useful for this purpose. In this study, we performed in vivo PA imaging of the blood vessels and distribution of a drug in the rat brain by using an originally developed compact PA imaging system with fiber-based illumination. As a test drug, Evans blue (EB) was injected to the tail vein, and a photomechanical wave was applied to the targeted brain tissue to increase the permeability of the blood vessel walls. For PA imaging of blood vessels and EB distribution, nanosecond pulses at 532 nm and 670 nm were used, respectively. We clearly visualized blood vessels with diameters larger than 50 μm and the distribution of EB in the brain, showing spatiotemporal characteristics of EB that was transvascularly delivered to the target tissue in the brain.
Obstructions in Vascular Networks: Relation Between Network Morphology and Blood Supply
Torres Rojas, Aimee M.; Meza Romero, Alejandro; Pagonabarraga, Ignacio; Travasso, Rui D. M.; Corvera Poiré, Eugenia
2015-01-01
We relate vascular network structure to hemodynamics after vessel obstructions. We consider tree-like networks with a viscoelastic fluid with the rheological characteristics of blood. We analyze the network hemodynamic response, which is a function of the frequencies involved in the driving, and a measurement of the resistance to flow. This response function allows the study of the hemodynamics of the system, without the knowledge of a particular pressure gradient. We find analytical expressions for the network response, which explicitly show the roles played by the network structure, the degree of obstruction, and the geometrical place in which obstructions occur. Notably, we find that the sequence of resistances of the network without occlusions strongly determines the tendencies that the response function has with the anatomical place where obstructions are located. We identify anatomical sites in a network that are critical for its overall capacity to supply blood to a tissue after obstructions. We demonstrate that relatively small obstructions in such critical sites are able to cause a much larger decrease on flow than larger obstructions placed in non-critical sites. Our results indicate that, to a large extent, the response of the network is determined locally. That is, it depends on the structure that the vasculature has around the place where occlusions are found. This result is manifest in a network that follows Murray’s law, which is in reasonable agreement with several mammalian vasculatures. For this one, occlusions in early generation vessels have a radically different effect than occlusions in late generation vessels occluding the same percentage of area available to flow. This locality implies that whenever there is a tissue irrigated by a tree-like in vivo vasculature, our model is able to interpret how important obstructions are for the irrigation of such tissue. PMID:26086774
Chanavaz, M
1995-01-01
The Periosteum or periosteal membrane is a continuous composite fibroelastic covering membrane of the bone to which it is intimately linked. It consists of multipotent mesodermal cells (11, 15). Although the bone cortex is the main beneficiary of the principal anatomical and physiological functions of the periosteal membrane, the behaviour of the entire bone remains closely influenced by the periosteal activity. These principal functions are related to the cortical blood supply, osteogenesis, muscle and ligament attachments. Through its elastic and contractile nature, it participates in the maintenance of bone shape, and plays an important role in metabolic ionic exchange and physiological distribution of electro-chemical potential difference across its membranous structure. It has also been suggested that the periosteum may have its own specific proprioceptive property. This presentation will study the histo-anatomy and physiology of the periosteum and will discuss in detail its main functions of cortical blood supply and osteogenesis (fig. 1 and 2). It will also present the third intermediary report on a current study of the quantification of cortical vascularisation of femoral bone via the periosteum, using an isotonic salt solution of 85Strontium. The afferent-efferent (arterio-venous) flows of this solution in the thigh vascular system of guinea pigs were measured by gamma spectrometry after a series of selective macro and micro injections of radioactive salt into the femoral arterial system were carried out. Each vascular territory was meticulously selected and the injections were made according to size, starting with the larger vessels, with or without ligatures of neighbouring vessels, going progressively to smaller and smaller vessels not exceeding 100m in diameter.(ABSTRACT TRUNCATED AT 250 WORDS)
Blood vessel rupture by cavitation
Chen, Hong; Brayman, Andrew A.; Bailey, Michael R.
2011-01-01
Cavitation is thought to be one mechanism for vessel rupture during shock wave lithotripsy treatment. However, just how cavitation induces vessel rupture remains unknown. In this work, a high-speed photomicrography system was set up to directly observe the dynamics of bubbles inside blood vessels in ex vivo rat mesenteries. Vascular rupture correlating to observed bubble dynamics were examined by imaging bubble extravasation and dye leakage. The high-speed images show that bubble expansion can cause vessel distention, and bubble collapse can lead to vessel invagination. Liquid jets were also observed to form. Our results suggest that all three mechanisms, vessel distention, invagination and liquid jets, can contribute to vessel rupture. PMID:20680255
Cleland, Timothy P.; Schroeter, Elena R.; Zamdborg, Leonid; Zheng, Wenxia; Lee, Ji Eun; Tran, John C.; Bern, Marshall; Duncan, Michael B.; Lebleu, Valerie S.; Ahlf, Dorothy R.; Thomas, Paul M.; Kalluri, Raghu; Kelleher, Neil L.; Schweitzer, Mary H.
2016-01-01
Structures similar to blood vessels in location, morphology, flexibility, and transparency have been recovered after demineralization of multiple dinosaur cortical bone fragments from multiple specimens, some of which are as old as 80 Ma. These structures were hypothesized to be either endogenous to the bone (i.e., of vascular origin) or the result of biofilm colonizing the empty osteonal network after degradation of original organic components. Here, we test the hypothesis that these structures are endogenous and thus retain proteins in common with extant archosaur blood vessels that can be detected with high-resolution mass spectrometry and confirmed by immunofluorescence. Two lines of evidence support this hypothesis. First, peptide sequencing of Brachylophosaurus canadensis blood vessel extracts is consistent with peptides comprising extant archosaurian blood vessels and is not consistent with a bacterial, cellular slime mold, or fungal origin. Second, proteins identified by mass spectrometry can be localized to the tissues using antibodies specific to these proteins, validating their identity. Data are available via ProteomeXchange with identifier PXD001738. PMID:26595531
Direct labeling and visualization of blood vessels with lipophilic carbocyanine dye DiI
Li, Yiwen; Song, Ying; Zhao, Lian; Gaidosh, Gabriel; Laties, Alan M; Wen, Rong
2009-01-01
We describe a protocol to rapidly and reliably visualize blood vessels in experimental animals. Blood vessels are directly labeled by cardiac perfusion using a specially formulated aqueous solution containing 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate (DiI), a lipophilic carbocyanine dye, which incorporates into endothelial cell membranes upon contact. By lateral diffusion, DiI also stains membrane structures, including angiogenic sprouts and pseudopodial processes that are not in direct contact. Tissues can be immediately examined by conventional and confocal fluorescence microscopy. High-quality serial optical sections using confocal microscopy are obtainable from thick tissue sections, especially at low magnification, for three-dimensional reconstruction. It takes less than 1 h to stain the vasculature in a whole animal. Compared with alternative techniques to visualize blood vessels, including space-occupying materials such as India ink or fluorescent dye-conjugated dextran, the corrosion casting technique, endothelial cell-specific markers and lectins, the present method simplifies the visualization of blood vessels and data analysis. PMID:18846097
Cleland, Timothy P; Schroeter, Elena R; Zamdborg, Leonid; Zheng, Wenxia; Lee, Ji Eun; Tran, John C; Bern, Marshall; Duncan, Michael B; Lebleu, Valerie S; Ahlf, Dorothy R; Thomas, Paul M; Kalluri, Raghu; Kelleher, Neil L; Schweitzer, Mary H
2015-12-04
Structures similar to blood vessels in location, morphology, flexibility, and transparency have been recovered after demineralization of multiple dinosaur cortical bone fragments from multiple specimens, some of which are as old as 80 Ma. These structures were hypothesized to be either endogenous to the bone (i.e., of vascular origin) or the result of biofilm colonizing the empty osteonal network after degradation of original organic components. Here, we test the hypothesis that these structures are endogenous and thus retain proteins in common with extant archosaur blood vessels that can be detected with high-resolution mass spectrometry and confirmed by immunofluorescence. Two lines of evidence support this hypothesis. First, peptide sequencing of Brachylophosaurus canadensis blood vessel extracts is consistent with peptides comprising extant archosaurian blood vessels and is not consistent with a bacterial, cellular slime mold, or fungal origin. Second, proteins identified by mass spectrometry can be localized to the tissues using antibodies specific to these proteins, validating their identity. Data are available via ProteomeXchange with identifier PXD001738.
Ben Shoham, Adi; Rot, Chagai; Stern, Tomer; Krief, Sharon; Akiva, Anat; Dadosh, Tali; Sabany, Helena; Lu, Yinhui; Kadler, Karl E.
2016-01-01
Recently, blood vessels have been implicated in the morphogenesis of various organs. The vasculature is also known to be essential for endochondral bone development, yet the underlying mechanism has remained elusive. We show that a unique composition of blood vessels facilitates the role of the endothelium in bone mineralization and morphogenesis. Immunostaining and electron microscopy showed that the endothelium in developing bones lacks basement membrane, which normally isolates the blood vessel from its surroundings. Further analysis revealed the presence of collagen type I on the endothelial wall of these vessels. Because collagen type I is the main component of the osteoid, we hypothesized that the bone vasculature guides the formation of the collagenous template and consequently of the mature bone. Indeed, some of the bone vessels were found to undergo mineralization. Moreover, the vascular pattern at each embryonic stage prefigured the mineral distribution pattern observed one day later. Finally, perturbation of vascular patterning by overexpressing Vegf in osteoblasts resulted in abnormal bone morphology, supporting a role for blood vessels in bone morphogenesis. These data reveal the unique composition of the endothelium in developing bones and indicate that vascular patterning plays a role in determining bone shape by forming a template for deposition of bone matrix. PMID:27621060
Cekić, Sonja; Cvetković, Tatjana; Jovanović, Ivan; Jovanović, Predrag; Pesić, Milica; Stanković Babić, Gordana; Milenković, Svetislav; Risimić, Dijana
2014-08-20
The aim of the study was to investigate the correlation between the levels of C-reactive protein (CRP) and chitinase 3-like protein 1 (YKL-40) in blood samples with morpohometric parameters of retinal blood vessels in patients with diabetic retinopathy. Blood laboratory examination of 90 patients included the measurement of glycemia, HbA1C, total cholesterol, LDL-C, HDL-C, triglycerides and CRP. Levels of YKL-40 were detected and measured in serum by ELISA (Micro VueYKL-40 EIA Kit, Quidel Corporation, San Diego, USA). YKL-40 correlated positively with diameter and negatively with number of retinal blood vessels. The average number of the blood vessels per retinal zone was significantly higher in the group of patients with mild non-proliferative diabetic retinopathy than in the group with severe form in the optic disc and all five retinal zones. The average outer diameter of the evaluated retinal zones and optic disc vessels was significantly higher in the group with severe compared to the group with mild diabetic retinopathy. Morphological analysis of the retinal vessels on digital fundus photography and correlation with YKL-40 may be valuable for the follow-up of diabetic retinopathy.
Fan, Jun-jun; Mu, Tian-wang; Qin, Jun-jun; Bi, Long; Pei, Guo-xian
2014-01-01
To compare the different effects of implanting sensory nerve tracts or blood vessel on the osteogenesis, vascularization, and neurotization of the tissue-engineered bone in vivo, we constructed the tissue engineered bone and implanted the sensory nerve tracts (group SN), blood vessel (group VB), or nothing (group Blank) to the side channel of the bone graft to repair the femur defect in the rabbit. Better osteogenesis was observed in groups SN and VB than in group Blank, and no significant difference was found between groups SN and VB at 4, 8, and 12 weeks postoperatively. The neuropeptides expression and the number of new blood vessels in the bone tissues were increased at 8 weeks and then decreased at 12 weeks in all groups and were highest in group VB and lowest in group Blank at all three time points. We conclude that implanting either blood vessel or sensory nerve tract into the tissue-engineered bone can significantly enhance both the vascularization and neurotization simultaneously to get a better osteogenesis effect than TEB alone, and the method of implanting blood vessel has a little better effect of vascularization and neurotization but almost the same osteogenesis effect as implanting sensory nerve. PMID:25101279
Xie, Yibin; Yang, Qi; Xie, Guoxi; Pang, Jianing; Fan, Zhaoyang; Li, Debiao
2015-01-01
Purpose The purpose of this work is to develop a 3D black-blood imaging method for simultaneously evaluating carotid and intracranial arterial vessel wall with high spatial resolution and excellent blood suppression with and without contrast enhancement. Methods DANTE preparation module was incorporated into SPACE sequence to improve blood signal suppression. Simulations and phantom studies were performed to quantify image contrast variations induced by DANTE. DANTE-SPACE, SPACE and 2D TSE were compared for apparent SNR, CNR and morphometric measurements in fourteen healthy subjects. Preliminary clinical validation was performed in six symptomatic patients. Results Apparent residual luminal blood was observed in 5 (pre-CE) and 9 (post-CE) subjects with SPACE, and only 2 (post-CE) subjects with DANTE-SPACE. DANTE-SPACE showed 31% (pre-CE) and 100% (post-CE) improvement in wall-to-blood CNR over SPACE. Vessel wall area measured from SPACE was significantly larger than that from DANTE-SPACE due to possible residual blood signal contamination. In patients DANTE-SPACE showed the potential to detect vessel wall dissection and identify plaque components. Conclusion DANTE-SPACE significantly improved arterial and venous blood suppression compared with SPACE. Simultaneous high-resolution carotid and intracranial vessel wall imaging to potentially identify plaque components was feasible with scan time under 6 minutes. PMID:26152900
Goertz, David E.; Hynynen, Kullervo
2015-01-01
Focused ultrasound with microbubbles is an emerging technique for blood brain barrier (BBB) opening. Here, a comprehensive theoretical model of a bubble-fluid-vessel system has been developed which accounts for the bubble’s non-spherical oscillations inside a microvessel, and its resulting acoustic emissions. Numerical simulations of unbound and confined encapsulated bubbles were performed to evaluate the effect of the vessel wall on acoustic emissions and vessel wall stresses. Using a Marmottant shell model, the normalized second harmonic to fundamental emissions first decreased as a function of pressure (>50 kPa) until reaching a minima ("transition point") at which point they increased. The transition point of unbound compared to confined bubble populations occurred at different pressures and was associated with an accompanying increase in shear and circumferential wall stresses. As the wall stresses depend on the bubble to vessel wall distance, the stresses were evaluated for bubbles with their wall at a constant distance to a flat wall. As a result, the wall stresses were bubble size and frequency dependent and the peak stress values induced by bubbles larger than resonance remained constant versus frequency at a constant mechanical index. PMID:25546853
Anatomy and Physiology of the Blood-Brain Barrier
Serlin, Yonatan; Shelef, Ilan; Knyazer, Boris; Friedman, Alon
2015-01-01
Essential requisite for the preservation of normal brain activity is to maintain a narrow and stable homeostatic control in the neuronal environment of the CNS. Blood flow alterations and altered vessel permeability are considered key determinants in the pathophysiology of brain injuries. We will review the present-day literature on the anatomy, development and physiological mechanisms of the blood-brain barrier, a distinctive and tightly regulated interface between the CNS and the peripheral circulation, playing a crucial role in the maintenance of the strict environment required for normal brain function. PMID:25681530
The Humboldt Penguin (Spheniscus humboldti) Rete Tibiotarsale - A supreme biological heat exchanger.
Kazas, Shaked; Benelly, Moran; Golan, Saar
2017-07-01
Humans are unable to survive low temperature environments without custom designed clothing and support systems. In contrast, certain penguin species inhabit extremely cold climates without losing substantial energy to self-heating (emperor penguins ambient temperature plummets to as low as -45°C). Penguins accomplish this task by relying on distinct anatomical, physiological and behavioral adaptations. One such adaptation is a blood vessel heat exchanger called the 'Rete Tibiotarsale' - an intermingled network of arteries and veins found in penguins' legs. The Rete existence results in blood occupying the foot expressing a lower average temperature and thus the penguin loosing less heat to the ground. This study examines the Rete significance for the species thermal endurance. The penguin anatomy (leg and main blood vessels) is reconstructed using data chiefly based on the Humboldt species. The resulting model is thermally analyzed using finite element (COMSOL) with the species environment used as boundary conditions. A human-like blood vessel configuration, scaled to the penguin's dimensions, is used as a control for the study. Results indicate that the Rete existence facilitates upkeep of 25-65% of the species total metabolic energy production as compared with the human-like configuration; thus making the Rete probably crucial for penguin thermal endurance. Here, we quantitatively link for the first time the function and structure of this remarkable physiological phenotype. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cheng, Christopher P; Parker, David; Taylor, Charles A
2002-09-01
Arterial wall shear stress is hypothesized to be an important factor in the localization of atherosclerosis. Current methods to compute wall shear stress from magnetic resonance imaging (MRI) data do not account for flow profiles characteristic of pulsatile flow in noncircular vessel lumens. We describe a method to quantify wall shear stress in large blood vessels by differentiating velocity interpolation functions defined using cine phase-contrast MRI data on a band of elements in the neighborhood of the vessel wall. Validation was performed with software phantoms and an in vitro flow phantom. At an image resolution corresponding to in vivo imaging data of the human abdominal aorta, time-averaged, spatially averaged wall shear stress for steady and pulsatile flow were determined to be within 16% and 23% of the analytic solution, respectively. These errors were reduced to 5% and 8% with doubling in image resolution. For the pulsatile software phantom, the oscillation in shear stress was predicted to within 5%. The mean absolute error of circumferentially resolved shear stress for the nonaxisymmetric phantom decreased from 28% to 15% with a doubling in image resolution. The irregularly shaped phantom and in vitro investigation demonstrated convergence of the calculated values with increased image resolution. We quantified the shear stress at the supraceliac and infrarenal regions of a human abdominal aorta to be 3.4 and 2.3 dyn/cm2, respectively.
Development of a method for the purification and culture of rodent astrocytes.
Foo, Lynette C; Allen, Nicola J; Bushong, Eric A; Ventura, P Britten; Chung, Won-Suk; Zhou, Lu; Cahoy, John D; Daneman, Richard; Zong, Hui; Ellisman, Mark H; Barres, Ben A
2011-09-08
The inability to purify and culture astrocytes has long hindered studies of their function. Whereas astrocyte progenitor cells can be cultured from neonatal brain, culture of mature astrocytes from postnatal brain has not been possible. Here, we report a new method to prospectively purify astrocytes by immunopanning. These astrocytes undergo apoptosis in culture, but vascular cells and HBEGF promote their survival in serum-free culture. We found that some developing astrocytes normally undergo apoptosis in vivo and that the vast majority of astrocytes contact blood vessels, suggesting that astrocytes are matched to blood vessels by competing for vascular-derived trophic factors such as HBEGF. Compared to traditional astrocyte cultures, the gene profiles of the cultured purified postnatal astrocytes much more closely resemble those of in vivo astrocytes. Although these astrocytes strongly promote synapse formation and function, they do not secrete glutamate in response to stimulation. Copyright © 2011 Elsevier Inc. All rights reserved.
Targeting Therapy Resistant Tumor Vessels
2007-05-01
Porkka K, Laakko- nen P, Ruoslahti E. Nucleolin expressed at the cell surface is a marker of endothelial cells in angiogenic blood vessels. J Cell...anti-angiogenic therapy. Markers of such vessels will be useful in developing strategies for complete destruction of breast cancer vasculature, and in...express specific markers , and that these lymphatic markers are tumor type specific and distinct from blood vessel markers in the same tumors. The
NEURONAL ACTION ON THE DEVELOPING BLOOD VESSEL PATTERN
James, Jennifer M.; Mukouyama, Yoh-suke
2011-01-01
The nervous system relies on a highly specialized network of blood vessels for development and neuronal survival. Recent evidence suggests that both the central and peripheral nervous systems (CNS and PNS) employ multiple mechanisms to shape the vascular tree to meet its specific metabolic demands, such as promoting nerve-artery alignment in the PNS or the development the blood brain barrier in the CNS. In this article we discuss how the nervous system directly influences blood vessel patterning resulting in neuro-vascular congruence that is maintained throughout development and in the adult. PMID:21978864
Duadi, Hamootal; Fixler, Dror; Popovtzer, Rachela
2013-11-01
Most methods for measuring light-tissue interactions focus on the volume reflectance while very few measure the transmission. We investigate both diffusion reflection and diffuse transmission at all exit angles to receive the full scattering profile. We also investigate the influence of blood vessel diameter on the scattering profile of a circular tissue. The photon propagation path at a wavelength of 850 nm is calculated from the absorption and scattering constants via Monte Carlo simulation. Several simulations are performed where a different vessel diameter and location were chosen but the blood volume was kept constant. The fraction of photons exiting the tissue at several central angles is presented for each vessel diameter. The main result is that there is a central angle that below which the photon transmission decreased for lower vessel diameters while above this angle the opposite occurred. We find this central angle to be 135 deg for a two-dimensional 10-mm diameter circular tissue cross-section containing blood vessels. These findings can be useful for monitoring blood perfusion and oxygen delivery in the ear lobe and pinched tissues. © 2013 Society of Photo-Optical Instrumentation Engineers (SPIE)
Welter, Michael; Rieger, Heiko
2016-01-01
Tumor vasculature, the blood vessel network supplying a growing tumor with nutrients such as oxygen or glucose, is in many respects different from the hierarchically organized arterio-venous blood vessel network in normal tissues. Angiogenesis (the formation of new blood vessels), vessel cooption (the integration of existing blood vessels into the tumor vasculature), and vessel regression remodel the healthy vascular network into a tumor-specific vasculature. Integrative models, based on detailed experimental data and physical laws, implement, in silico, the complex interplay of molecular pathways, cell proliferation, migration, and death, tissue microenvironment, mechanical and hydrodynamic forces, and the fine structure of the host tissue vasculature. With the help of computer simulations high-precision information about blood flow patterns, interstitial fluid flow, drug distribution, oxygen and nutrient distribution can be obtained and a plethora of therapeutic protocols can be tested before clinical trials. This chapter provides an overview over the current status of computer simulations of vascular remodeling during tumor growth including interstitial fluid flow, drug delivery, and oxygen supply within the tumor. The model predictions are compared with experimental and clinical data and a number of longstanding physiological paradigms about tumor vasculature and intratumoral solute transport are critically scrutinized.
Blood vessel damage correlated with irradiance for in vivo vascular targeted photodynamic therapy
NASA Astrophysics Data System (ADS)
Zhang, Jinde; Tan, Zou; Niu, Xiangyu; Lin, Linsheng; Lin, Huiyun; Li, Buhong
2016-10-01
Vascular targeted photodynamic therapy (V-PDT) has been widely utilized for the prevention or treatment of vascular-related diseases, including age-related macular degeneration, port-wine stains and prostate cancer. In order to quantitative assessment the blood vessel damage during V-PDT, nude mice were implanted with Titanium dorsal skin window chambers for in vivo V-PDT studies. For treatments, various irradiances including 50, 75, 100 and 200 mW/cm2 provided by a 532 nm semiconductor laser were performed with the same total light dose of 30 J/cm2 after the mice were intravenously injection of Rose Bengal for 25 mg/Kg body weight. Laser speckle imaging and microscope were used to monitor blood flow dynamics and vessel constriction during and after V-PDT, respectively. The V-PDT induced vessel damages between different groups were compared. The results show that significant difference in blood vessel damage was found between the lower irradiances (50, 75 and 100 mW/cm2) and higher irradiance (200 mW/cm2), and the blood vessel damage induced by V-PDT is positively correlated with irradiance. This study implies that the optimization of irradiance is required for enhancing V-PDT therapeutic efficiency.
Hu, Zhi-ming; Wang, Hai-bin; Zhou, Ming-qian; Yao, Xin-sheng; Ma, Li; Wang, Xiao-ning
2006-06-01
To observe the pathological changes in the blood vessels in rabbit femoral head with glucocorticoid-induced necrosis and investigate the pathogenesis of glucocorticoid-induced osteonecrosis. Twenty New Zealand white rabbits were randomly divided into two groups, namely group A. which was injected with horse serum and prednisone and group B as the control group. Chinese ink was injected into the femoral cavity of the rabbits to observe the blood vessels in the femoral head under optical microscope and the femoral head was examined histopathologically. Compared with the normal control group, the rabbits in group A had significantly decreased number of perfused vessels, which was featured by defective perfusion, osteocytie pyknosis or necrosis, increase of empty ostoocyte lacunae and fat cells, decrease of hematopoietic tissue, and blood vessel occlusion. Vascular occlusion and vasculitis due to glucocorticoid treatment may cause avascular necrosis of the femoral head.
Vascular bursts enhance permeability of tumour blood vessels and improve nanoparticle delivery
NASA Astrophysics Data System (ADS)
Matsumoto, Yu; Nichols, Joseph W.; Toh, Kazuko; Nomoto, Takahiro; Cabral, Horacio; Miura, Yutaka; Christie, R. James; Yamada, Naoki; Ogura, Tadayoshi; Kano, Mitsunobu R.; Matsumura, Yasuhiro; Nishiyama, Nobuhiro; Yamasoba, Tatsuya; Bae, You Han; Kataoka, Kazunori
2016-06-01
Enhanced permeability in tumours is thought to result from malformed vascular walls with leaky cell-to-cell junctions. This assertion is backed by studies using electron microscopy and polymer casts that show incomplete pericyte coverage of tumour vessels and the presence of intercellular gaps. However, this gives the impression that tumour permeability is static amid a chaotic tumour environment. Using intravital confocal laser scanning microscopy we show that the permeability of tumour blood vessels includes a dynamic phenomenon characterized by vascular bursts followed by brief vigorous outward flow of fluid (named ‘eruptions’) into the tumour interstitial space. We propose that ‘dynamic vents’ form transient openings and closings at these leaky blood vessels. These stochastic eruptions may explain the enhanced extravasation of nanoparticles from the tumour blood vessels, and offer insights into the underlying distribution patterns of an administered drug.
Automated branching pattern report generation for laparoscopic surgery assistance
NASA Astrophysics Data System (ADS)
Oda, Masahiro; Matsuzaki, Tetsuro; Hayashi, Yuichiro; Kitasaka, Takayuki; Misawa, Kazunari; Mori, Kensaku
2015-05-01
This paper presents a method for generating branching pattern reports of abdominal blood vessels for laparoscopic gastrectomy. In gastrectomy, it is very important to understand branching structure of abdominal arteries and veins, which feed and drain specific abdominal organs including the stomach, the liver and the pancreas. In the real clinical stage, a surgeon creates a diagnostic report of the patient anatomy. This report summarizes the branching patterns of the blood vessels related to the stomach. The surgeon decides actual operative procedure. This paper shows an automated method to generate a branching pattern report for abdominal blood vessels based on automated anatomical labeling. The report contains 3D rendering showing important blood vessels and descriptions of branching patterns of each vessel. We have applied this method for fifty cases of 3D abdominal CT scans and confirmed the proposed method can automatically generate branching pattern reports of abdominal arteries.
Kase, Marju; Saretok, Mikk; Adamson-Raieste, Aidi; Kase, Sandra; Niinepuu, Kristi; Vardja, Markus; Asser, Toomas
2017-01-01
Glioblastoma (GB) is the most angiogenic tumor. Nevertheless, antiangiogenic therapy has not shown significant clinical efficacy. The aim of this study was to assess blood vessel characteristics on survival of GB patients. Surgically excised GB tissues were histologically examined for overall proportion of glomeruloid microvascular proliferation (MP) and the total number of blood vessels. Also, immunohistochemical vascular staining intensities of CD133 and ICAM-1 were determined. Vessel parameters were correlated with patients' overall survival. The survival time depended on the number of blood vessels (p = 0.03) but not on the proportion of MP. Median survival times for patients with low (
The role of blood vessels in high-resolution volume conductor head modeling of EEG.
Fiederer, L D J; Vorwerk, J; Lucka, F; Dannhauer, M; Yang, S; Dümpelmann, M; Schulze-Bonhage, A; Aertsen, A; Speck, O; Wolters, C H; Ball, T
2016-03-01
Reconstruction of the electrical sources of human EEG activity at high spatio-temporal accuracy is an important aim in neuroscience and neurological diagnostics. Over the last decades, numerous studies have demonstrated that realistic modeling of head anatomy improves the accuracy of source reconstruction of EEG signals. For example, including a cerebro-spinal fluid compartment and the anisotropy of white matter electrical conductivity were both shown to significantly reduce modeling errors. Here, we for the first time quantify the role of detailed reconstructions of the cerebral blood vessels in volume conductor head modeling for EEG. To study the role of the highly arborized cerebral blood vessels, we created a submillimeter head model based on ultra-high-field-strength (7T) structural MRI datasets. Blood vessels (arteries and emissary/intraosseous veins) were segmented using Frangi multi-scale vesselness filtering. The final head model consisted of a geometry-adapted cubic mesh with over 17×10(6) nodes. We solved the forward model using a finite-element-method (FEM) transfer matrix approach, which allowed reducing computation times substantially and quantified the importance of the blood vessel compartment by computing forward and inverse errors resulting from ignoring the blood vessels. Our results show that ignoring emissary veins piercing the skull leads to focal localization errors of approx. 5 to 15mm. Large errors (>2cm) were observed due to the carotid arteries and the dense arterial vasculature in areas such as in the insula or in the medial temporal lobe. Thus, in such predisposed areas, errors caused by neglecting blood vessels can reach similar magnitudes as those previously reported for neglecting white matter anisotropy, the CSF or the dura - structures which are generally considered important components of realistic EEG head models. Our findings thus imply that including a realistic blood vessel compartment in EEG head models will be helpful to improve the accuracy of EEG source analyses particularly when high accuracies in brain areas with dense vasculature are required. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Cerebral amyloid angiopathy initially occurs in the meningeal vessels.
Takeda, Shigeki; Yamazaki, Kazunori; Miyakawa, Teruo; Onda, Kiyoshi
2017-12-01
To clarify the frequency of CAA in the brain parenchyma and subarachnoid space (SAS), we counted sections of blood vessels showing positive staining for Aβ in the SAS, cerebral cortex (CC) and cerebral white matter (WM) using paraffin-embedded sections of the frontal, temporal and occipital lobes. The specimens had been taken for routine neuropathological examination from the brains of 105 Japanese patients (aged 40-95 years) selected from among 200 consecutive patients autopsied between 1989 and 2015 at our hospital. We examined the anatomical ratios of blood-vessel sections in the SAS relative to the CC in three selected CAA cases, and those of Aβ-positive blood-vessel sections in CAA cases. CAA was found in 53 of the 105 cases (50.5%), and the youngest patient affected was a 51-year-old man. The incidence of CAA increased with age. The anatomical ratio of blood vessel sections in the SAS relative to the CC was 1/3.70-1/4.37 (mean: 1/3.94). The ordinary CAA group, in which CAA was seen in both the SAS and CC, included 41 cases (77.4%). In 37 of these cases, the SAS/CC ratio of Aβ-positive blood vessels was 1/0.05-1/0.66 (mean: 1/0.26), and in the other four cases the ratio was 1/1-1/1.5. In the ordinary CAA group, the SAS/CC ratio of Aβ-positive blood vessels was smaller than the anatomical ratio. The meningeal CAA group, in which CAA was found only in the SAS, included 12 cases (22.6%). These patients ranged in age from their fifties to their nineties. There was no case in which CAA was limited only to the CC. We concluded that CAA initially develops in the meningeal blood vessels, and not in the cortical blood vessels. CAA in the WM was seen in 10 cases, not only in nine cases that were severe, but also in a mild case. © 2017 Japanese Society of Neuropathology.
NASA Astrophysics Data System (ADS)
Mann, Kulwinder S.; Kaur, Sukhpreet
2017-06-01
There are various eye diseases in the patients suffering from the diabetes which includes Diabetic Retinopathy, Glaucoma, Hypertension etc. These all are the most common sight threatening eye diseases due to the changes in the blood vessel structure. The proposed method using supervised methods concluded that the segmentation of the retinal blood vessels can be performed accurately using neural networks training. It uses features which include Gray level features; Moment Invariant based features, Gabor filtering, Intensity feature, Vesselness feature for feature vector computation. Then the feature vector is calculated using only the prominent features.
Jakobsson, Lars; van Meeteren, Laurens A
2013-05-15
Blood vessels are composed of endothelial cells, mural cells (smooth muscle cells and pericytes) and their shared basement membrane. During embryonic development a multitude of signaling components orchestrate the formation of new vessels. The process is highly dependent on correct dosage, spacing and timing of these signaling molecules. As vessels mature some cascades remain active, albeit at very low levels, and may be reactivated upon demand. Members of the Transforming growth factor β (TGF-β) protein family are strongly engaged in developmental angiogenesis but are also regulators of vascular integrity in the adult. In humans various genetic alterations within this protein family cause vascular disorders, involving disintegration of vascular integrity. Here we summarize and discuss recent data gathered from conditional and endothelial cell specific genetic loss-of-function of members of the TGF-β family in the mouse. Copyright © 2013 Elsevier Inc. All rights reserved.
Badwaik, N K; Rasweiler, J J; Muradali, F
1998-11-01
Histological and immunocytochemical studies of gravid reproductive tracts obtained from the white-winged vampire bat (Diaemus youngi) and the black mastiff bat (Molossus ater) have established that both species develop unusually invasive trophoblast. This is released by the developing discoidal haemochorial placenta, expresses both cytokeratins and vimentin, and invades the myometrium and adjacent tissues (including the ovaries) via interstitial migration within the walls of maternal blood vessels. Hence, this trophoblast is noteworthy for the extent to which it undergoes an epithelial-mesenchymal transformation. In Molossus, it originates from the cytotrophoblastic shell running along the base of the placenta, is mononuclear, and preferentially invades maternal arterial vessels serving the discoidal placenta. This trophoblast may have a role in dilatation of these vessels when the discoidal placenta becomes functional. In Diaemus, the highly invasive trophoblast appears to originate instead from a layer of syncytiotrophoblast on the periphery of the placenta is multinucleated, and vigorously invades both arterial and venous vessels. During late pregnancy, it becomes extensively branched and sends attenuated processes around many of the myometrial smooth muscle fibres. In view of its distribution, this trophoblast could have important influences upon myometrial contractility and the function of blood vessels serving the gravid tract. Other aspects of intermediate filament expression in the uteri and placentae of these bats are also noteworthy. Many of the decidual giant cells in Molossus co-express cytokeratins and vimentin, while the syncytiotrophoblast lining the placental labyrinth in Diaemus late in pregnancy expresses little cytokeratin.
Carlisle, Rachel E; Werner, Kaitlyn E; Yum, Victoria; Lu, Chao; Tat, Victor; Memon, Muzammil; No, Yejin; Ask, Kjetil; Dickhout, Jeffrey G
2016-08-01
Our purpose was to determine if endoplasmic reticulum stress inhibition lowers blood pressure (BP) in hypertension by correcting vascular dysfunction. The spontaneously hypertensive rat (SHR) was used as a model of human essential hypertension with its normotensive control, the Wistar Kyoto rat. Animals were subjected to endoplasmic reticulum stress inhibition with 4-phenylbutyric acid (4-PBA; 1 g/kg per day, orally) for 5 weeks from 12 weeks of age. BP was measured weekly noninvasively and at endpoint with carotid arterial cannulation. Small mesenteric arteries were removed for vascular studies. Function was assessed with a Mulvany-Halpern style myograph, and structure was assessed by measurement of medial-to-lumen ratio in perfusion fixed vessels as well as three-dimensional confocal reconstruction of vessel wall components. Endoplasmic reticulum stress was assessed by quantitative real time-PCR and western blotting; oxidative stress was assessed by 3-nitrotyrosine and dihydroethidium staining. 4-PBA significantly lowered BP in SHR (vehicle 206.1 ± 4.3 vs. 4-PBA 178.9 ± 3.1, systolic) but not Wistar Kyoto. 4-PBA diminished contractility and augmented endothelial-dependent vasodilation in SHR small mesenteric arteries, as well as reducing media-to-lumen ratio. 4-PBA significantly reduced endoplasmic reticulum stress in SHR resistance vessels. Normotensive resistance vessels, treated with the endoplasmic reticulum stress-inducing agent, tunicamycin, show decreased endothelial-dependent vasodilation; this was improved with 4-PBA treatment. 3-Nitrotyrosine and dihydroethidium staining indicated that endoplasmic reticulum stress leads to reactive oxygen species generation resolvable by 4-PBA treatment. Endoplasmic reticulum stress caused endothelial-mediated vascular dysfunction contributing to elevated BP in the SHR model of human essential hypertension.
Digernes, Ingrid; Bjørnerud, Atle; Vatnehol, Svein Are S; Løvland, Grete; Courivaud, Frédéric; Vik-Mo, Einar; Meling, Torstein R; Emblem, Kyrre E
2017-06-01
Mapping the complex heterogeneity of vascular tissue in the brain is important for understanding cerebrovascular disease. In this translational study, we build on previous work using vessel architectural imaging (VAI) and present a theoretical framework for determining cerebral vascular function and heterogeneity from dynamic susceptibility contrast magnetic resonance imaging (MRI). Our tissue model covers realistic structural architectures for vessel branching and orientations, as well as a range of hemodynamic scenarios for blood flow, capillary transit times and oxygenation. In a typical image voxel, our findings show that the apparent MRI relaxation rates are independent of the mean vessel orientation and that the vortex area, a VAI-based parameter, is determined by the relative oxygen saturation level and the vessel branching of the tissue. Finally, in both simulated and patient data, we show that the relative distributions of the vortex area parameter as a function of capillary transit times show unique characteristics in normal-appearing white and gray matter tissue, whereas tumour-voxels in comparison display a heterogeneous distribution. Collectively, our study presents a comprehensive framework that may serve as a roadmap for in vivo and per-voxel determination of vascular status and heterogeneity in cerebral tissue.
Lattice Boltzmann method for simulating the viscous flow in large distensible blood vessels
NASA Astrophysics Data System (ADS)
Fang, Haiping; Wang, Zuowei; Lin, Zhifang; Liu, Muren
2002-05-01
A lattice Boltzmann method for simulating the viscous flow in large distensible blood vessels is presented by introducing a boundary condition for elastic and moving boundaries. The mass conservation for the boundary condition is tested in detail. The viscous flow in elastic vessels is simulated with a pressure-radius relationship similar to that of the pulmonary blood vessels. The numerical results for steady flow agree with the analytical prediction to very high accuracy, and the simulation results for pulsatile flow are comparable with those of the aortic flows observed experimentally. The model is expected to find many applications for studying blood flows in large distensible arteries, especially in those suffering from atherosclerosis, stenosis, aneurysm, etc.
Computer-aided diagnostic detection system of venous beading in retinal images
NASA Astrophysics Data System (ADS)
Yang, Ching-Wen; Ma, DyeJyun; Chao, ShuennChing; Wang, ChuinMu; Wen, Chia-Hsien; Lo, ChienShun; Chung, Pau-Choo; Chang, Chein-I.
2000-05-01
The detection of venous beading in retinal images provides an early sign of diabetic retinopathy and plays an important role as a preprocessing step in diagnosing ocular diseases. We present a computer-aided diagnostic system to automatically detect venous beading of blood vessels. It comprises of two modules, referred to as the blood vessel extraction module and the venus beading detection module. The former uses a bell-shaped Gaussian kernel with 12 azimuths to extract blood vessels while the latter applies a neural network-based shape cognitron to detect venous beading among the extracted blood vessels for diagnosis. Both modules are fully computer-automated. To evaluate the proposed system, 61 retinal images (32 beaded and 29 normal images) are used for performance evaluation.
Why do veins appear blue? A new look at an old question
NASA Astrophysics Data System (ADS)
Kienle, Alwin; Hibst, Raimund; Steiner, Rudolf; Lilge, Lothar; Vitkin, I. Alex; Wilson, Brian C.; Patterson, Michael S.
1996-03-01
We investigate why vessels that contain blood, which has a red or a dark red color, may look bluish in human tissue. A CCD camera was used to make images of diffusely reflected light at different wavelengths. Measurements of reflectance that are due to model blood vessels in scattering media and of human skin containing a prominent vein are presented. Monte Carlo simulations were used to calculate the spatially resolved diffuse reflectance for both situations. We show that the color of blood vessels is scattering and absorption characteristics of skin at different wavelengths, (ii) the oxygenation state of blood, which affects its absorption properties, (iii) the diameter and the depth of the vessels, and (iv) the visual perception process.
Tumor surrogate blood vessel subtypes exhibit differential susceptibility to anti-VEGF therapy
Sitohy, Basel; Nagy, Janice A.; Shih, Shou-Ching; Dvorak, Harold F.
2011-01-01
Anti-vascular therapy directed against VEGF or its receptors has been successful when administered at early stages of tumor vessel growth, but is less effective when administered later. Tumor blood vessels are heterogeneous, so vessel subpopulations may differ in their requirements for tumor cell-secreted VEGF and in their susceptibility to anti-VEGF/VEGFR therapy. Human cancers contain several distinct blood vessel types, including mother vessels (MV), glomeruloid microvascular proliferations (GMP), vascular malformations (VM), feeding arteries (FA) and draining veins (DV), all of which can be generated in mice in the absence of tumor cells using expression vectors for VEGF-A164. In this study, we investigated the sensitivity of each of these vessel types to anti-VEGF therapy with aflibercept ® (VEGF Trap), a potent inhibitor of VEGF-A164. Administering VEGF Trap treatment before or shortly after injection of a recombinant VEGF-A164 expressing adenovirus could prevent or regress tumor-free neovasculature, but it was progressively less effective if initiated at later times. Early-forming MVs and GMPs in which the lining endothelial cells expressed high levels of VEGFR-2 were highly susceptible to blockade by VEGF Trap. In contrast, late-forming VMs, FAs, and DVs that expressed low levels of VEGFR-2 were largely resistant. Together, our findings define the susceptibility of different blood vessel subtypes to anti-VEGF therapy, offering a possible explanation for the limited effectiveness of anti-VEGF-A/VEGFR treatment of human cancers, which are typically present for months to years before discovery and are largely populated by late-forming blood vessels. PMID:21937680
Harper, Jennifer Y; Samuelson, Don A; Reep, Roger L
2005-01-01
The cornea of the Florida manatee is unique and unusual in its anatomy in that blood vessels have been found throughout. In all other animal species, this is considered a pathological condition impeding vision, and is usually caused by injury or trauma. The purpose of this study was to more clearly describe corneal vascularization by examining the architecture through three-dimensional reconstruction in order to find possible patterns in size, distribution, and location of blood vessels relative to gender, age, location, and season. Twenty-six eyes from 22 individuals were prepared for histologic examination and subsequent three-dimensional reconstruction. Every specimen examined had blood vessels in the cornea, comprising an average of 0.3% of total surface density (volume) of the cornea. No differences were found between individuals based on gender, age, and season. Environmental influences were not a significant factor either, which was not originally anticipated. The presence of vessels at the level of the anterior epithelium was surprising and it appeared that the vascularization was directed more anteriorly than was originally thought. The presence of blood vessels in a prenatal eye was also found. In all the eyes examined, no signs of injury or trauma could be observed. The presence of blood vessels appears to minimally impair vision based on their low density, size, and location. The association of vessels with the anterior epithelium and development of vessels within the fetus point to an evolutionary adaptation possibly due to the manatee's unique ability to move between water bodies.
Donnem, Tom; Hu, Jiangting; Ferguson, Mary; Adighibe, Omanma; Snell, Cameron; Harris, Adrian L; Gatter, Kevin C; Pezzella, Francesco
2013-08-01
Angiogenesis has been regarded as essential for tumor growth and progression. Studies of many human tumors, however, suggest that their microcirculation may be provided by nonsprouting vessels and that a variety of tumors can grow and metastasize without angiogenesis. Vessel co-option, where tumor cells migrate along the preexisting vessels of the host organ, is regarded as an alternative tumor blood supply. Vessel co-option may occur in many malignancies, but so far mostly reported in highly vascularized tissues such as brain, lung, and liver. In primary and metastatic lung cancer and liver metastasis from different primary origins, as much as 10-30% of the tumors are reported to use this alternative blood supply. In addition, vessel co-option is introduced as a potential explanation of antiangiogenic drug resistance, although the impact of vessel co-option in this clinical setting is still to be further explored. In this review we discuss tumor vessel co-option with specific examples of vessel co-option in primary and secondary tumors and a consideration of the clinical implications of this alternative tumor blood supply.
NASA Technical Reports Server (NTRS)
Smith, Genee S.
2004-01-01
Critical to the advancement of space exploration is the safety and well being of astronauts while in space. This study focuses on the second highest of NASA-defined risk categories for human space exploration, cardiovascular alterations. Current research of this problem is being tackled by investigating angiogenesis through vascular remodeling. Angiogenesis is the growth and formation of new blood vessels. Angiogenesis is an important part of maintaining normal development and bodily functions. The loss of control of this process, either insufficient or excessive vascular growth, is considered a common denominator in many diseases, such as cancer, diabetes, and coronary artery disease. Objectives are presently being met by observing the effects of various regulators, like thrombospondin 1 (TSP-1) and a novel vessel tortuosity factor (TF), through the use of the chorioallantoic membrane (CAM) of Japanese quail embryos, which enables the direct optical imaging of 2-dimensional vascular branching trees. Research within the CAM is being performed to deduce numerous methods of regulating vessel growth. This project centers on the ability of a novel vessel regulator to affect angiogenesis. For example, it is hypothesized that the TSP-1 will inhibit the growth of CAM vasculature. Fractal/VESGEN-based techniques and PTV analysis are the methodologies used to investigate vascular differentiation. This tactic is used to quantify results and measure the growth patterns and morphology of blood vessels. The regulatory mechanisms posed by this vessel regulator can be deduced by alterations found within the vasculature patterns of quail embryos.
Heterogeneous mechanics of the mouse pulmonary arterial network.
Lee, Pilhwa; Carlson, Brian E; Chesler, Naomi; Olufsen, Mette S; Qureshi, M Umar; Smith, Nicolas P; Sochi, Taha; Beard, Daniel A
2016-10-01
Individualized modeling and simulation of blood flow mechanics find applications in both animal research and patient care. Individual animal or patient models for blood vessel mechanics are based on combining measured vascular geometry with a fluid structure model coupling formulations describing dynamics of the fluid and mechanics of the wall. For example, one-dimensional fluid flow modeling requires a constitutive law relating vessel cross-sectional deformation to pressure in the lumen. To investigate means of identifying appropriate constitutive relationships, an automated segmentation algorithm was applied to micro-computerized tomography images from a mouse lung obtained at four different static pressures to identify the static pressure-radius relationship for four generations of vessels in the pulmonary arterial network. A shape-fitting function was parameterized for each vessel in the network to characterize the nonlinear and heterogeneous nature of vessel distensibility in the pulmonary arteries. These data on morphometric and mechanical properties were used to simulate pressure and flow velocity propagation in the network using one-dimensional representations of fluid and vessel wall mechanics. Moreover, wave intensity analysis was used to study effects of wall mechanics on generation and propagation of pressure wave reflections. Simulations were conducted to investigate the role of linear versus nonlinear formulations of wall elasticity and homogeneous versus heterogeneous treatments of vessel wall properties. Accounting for heterogeneity, by parameterizing the pressure/distention equation of state individually for each vessel segment, was found to have little effect on the predicted pressure profiles and wave propagation compared to a homogeneous parameterization based on average behavior. However, substantially different results were obtained using a linear elastic thin-shell model than were obtained using a nonlinear model that has a more physiologically realistic pressure versus radius relationship.
[Stem and progenitor cells in biostructure of blood vessel walls].
Korta, Krzysztof; Kupczyk, Piotr; Skóra, Jan; Pupka, Artur; Zejler, Paweł; Hołysz, Marcin; Gajda, Mariusz; Nowakowska, Beata; Barć, Piotr; Dorobisz, Andrzej T; Dawiskiba, Tomasz; Szyber, Piotr; Bar, Julia
2013-09-18
Development of vascular and hematopoietic systems during organogenesis occurs at the same time. During vasculogenesis, a small part of cells does not undergo complete differentiation but stays on this level, "anchored" in tissue structures described as stem cell niches. The presence of blood vessels within tissue stem cell niches is typical and led to identification of niches and ensures that they are functioning. The three-layer biostructure of vessel walls for artery and vein, tunica: intima, media and adventitia, for a long time was defined as a mechanical barrier between vessel light and the local tissue environment. Recent findings from vascular biology studies indicate that vessel walls are dynamic biostructures, which are equipped with stem and progenitor cells, described as vascular wall-resident stem cells/progenitor cells (VW-SC/PC). Distinct zones for vessel wall harbor heterogeneous subpopulations of VW-SC/PC, which are described as "subendothelial or vasculogenic zones". Recent evidence from in vitro and in vivo studies show that prenatal activity of stem and progenitor cells is not only limited to organogenesis but also exists in postnatal life, where it is responsible for vessel wall homeostasis, remodeling and regeneration. It is believed that VW-SC/PC could be engaged in progression of vascular disorders and development of neointima. We would like to summarize current knowledge about mesenchymal and progenitor stem cell phenotype with special attention to distribution and biological properties of VW-SC/PC in biostructures of intima, media and adventitia niches. It is postulated that in the near future, niches for VW-SC/PC could be a good source of stem and progenitor cells, especially in the context of vessel tissue bioengineering as a new alternative to traditional revascularization therapies.
Topsy-turvy: Turning the counter-current heat exchange of leatherback turtles upside down
Davenport, John; Jones, T. Todd; Work, Thierry M.; Balazs, George H.
2015-01-01
Counter-current heat exchangers associated with appendages of endotherms feature bundles of closely applied arteriovenous vessels. The accepted paradigm is that heat from warm arterial blood travelling into the appendage crosses into cool venous blood returning to the body. High core temperature is maintained, but the appendage functions at low temperature. Leatherback turtles have elevated core temperatures in cold seawater and arteriovenous plexuses at the roots of all four limbs. We demonstrate that plexuses of the hindlimbs are situated wholly within the hip musculature, and that, at the distal ends of the plexuses, most blood vessels supply or drain the hip muscles, with little distal vascular supply to, or drainage from the limb blades. Venous blood entering a plexus will therefore be drained from active locomotory muscles that are overlaid by thick blubber when the adults are foraging in cold temperate waters. Plexuses maintain high limb muscle temperature and avoid excessive loss of heat to the core, the reverse of the accepted paradigm. Plexuses protect the core from overheating generated by muscular thermogenesis during nesting.
Topsy-turvy: turning the counter-current heat exchange of leatherback turtles upside down.
Davenport, John; Jones, T Todd; Work, Thierry M; Balazs, George H
2015-10-01
Counter-current heat exchangers associated with appendages of endotherms feature bundles of closely applied arteriovenous vessels. The accepted paradigm is that heat from warm arterial blood travelling into the appendage crosses into cool venous blood returning to the body. High core temperature is maintained, but the appendage functions at low temperature. Leatherback turtles have elevated core temperatures in cold seawater and arteriovenous plexuses at the roots of all four limbs. We demonstrate that plexuses of the hindlimbs are situated wholly within the hip musculature, and that, at the distal ends of the plexuses, most blood vessels supply or drain the hip muscles, with little distal vascular supply to, or drainage from the limb blades. Venous blood entering a plexus will therefore be drained from active locomotory muscles that are overlaid by thick blubber when the adults are foraging in cold temperate waters. Plexuses maintain high limb muscle temperature and avoid excessive loss of heat to the core, the reverse of the accepted paradigm. Plexuses protect the core from overheating generated by muscular thermogenesis during nesting. © 2015 The Author(s).
Endothelial dysfunction and amyloid-β-induced neurovascular alterations
Koizumi, Kenzo; Wang, Gang; Park, Laibaik
2015-01-01
Alzheimer's disease (AD) and cerebrovascular diseases share common vascular risk factors that have disastrous effects on cerebrovascular regulation. Endothelial cells, lining inner walls of cerebral blood vessels, form a dynamic interface between the blood and the brain and are critical for the maintenance of neurovascular homeostasis. Accordingly, injury in endothelial cells is regarded as one of the earliest symptoms of impaired vasoregulatory mechanisms. Extracellular buildup of amyloid-β (Aβ) is a central pathogenic factor in AD. Aβ exerts potent detrimental effects on cerebral blood vessels and impairs endothelial structure and function. Recent evidence implicates vascular oxidative stress and activation of the nonselective cationic channel transient receptor potential melastatin (TRPM)-2 on endothelial cells in the mechanisms of Aβ-induced neurovascular dysfunction. Thus, Aβ triggers opening of TRPM2 channels in endothelial cells leading to intracellular Ca2+ overload and vasomotor dysfunction. The cerebrovascular dysfunction may contribute to AD pathogenesis by reducing the cerebral blood supply, leading to increased susceptibility to vascular insufficiency, and by promoting Aβ accumulation. The recent realization that vascular factors contribute to AD pathobiology suggests new targets for the prevention and treatment of this devastating disease. PMID:26328781
Welter, Michael; Fredrich, Thierry; Rinneberg, Herbert; Rieger, Heiko
2016-01-01
We present a computational model for trans-vascular oxygen transport in synthetic tumor and host tissue blood vessel networks, aiming at qualitatively explaining published data of optical mammography, which were obtained from 87 breast cancer patients. The data generally show average hemoglobin concentration to be higher in tumors versus host tissue whereas average oxy-to total hemoglobin concentration (vascular segment RBC-volume-weighted blood oxygenation) can be above or below normal. Starting from a synthetic arterio-venous initial network the tumor vasculature was generated by processes involving cooption, angiogenesis, and vessel regression. Calculations of spatially resolved blood flow, hematocrit, oxy- and total hemoglobin concentrations, blood and tissue oxygenation were carried out for ninety tumor and associated normal vessel networks starting from various assumed geometries of feeding arteries and draining veins. Spatial heterogeneity in the extra-vascular partial oxygen pressure distribution can be related to various tumor compartments characterized by varying capillary densities and blood flow characteristics. The reported higher average hemoglobin concentration of tumors is explained by growth and dilatation of tumor blood vessels. Even assuming sixfold metabolic rate of oxygen consumption in tumorous versus host tissue, the predicted oxygen hemoglobin concentrations are above normal. Such tumors are likely associated with high tumor blood flow caused by high-caliber blood vessels crossing the tumor volume and hence oxygen supply exceeding oxygen demand. Tumor oxy- to total hemoglobin concentration below normal could only be achieved by reducing tumor vessel radii during growth by a randomly selected factor, simulating compression caused by intra-tumoral solid stress due to proliferation of cells and extracellular matrix. Since compression of blood vessels will impede chemotherapy we conclude that tumors with oxy- to total hemoglobin concentration below normal are less likely to respond to chemotherapy. Such behavior was recently reported for neo-adjuvant chemotherapy of locally advanced breast tumors.
Welter, Michael; Fredrich, Thierry; Rinneberg, Herbert; Rieger, Heiko
2016-01-01
We present a computational model for trans-vascular oxygen transport in synthetic tumor and host tissue blood vessel networks, aiming at qualitatively explaining published data of optical mammography, which were obtained from 87 breast cancer patients. The data generally show average hemoglobin concentration to be higher in tumors versus host tissue whereas average oxy-to total hemoglobin concentration (vascular segment RBC-volume-weighted blood oxygenation) can be above or below normal. Starting from a synthetic arterio-venous initial network the tumor vasculature was generated by processes involving cooption, angiogenesis, and vessel regression. Calculations of spatially resolved blood flow, hematocrit, oxy- and total hemoglobin concentrations, blood and tissue oxygenation were carried out for ninety tumor and associated normal vessel networks starting from various assumed geometries of feeding arteries and draining veins. Spatial heterogeneity in the extra-vascular partial oxygen pressure distribution can be related to various tumor compartments characterized by varying capillary densities and blood flow characteristics. The reported higher average hemoglobin concentration of tumors is explained by growth and dilatation of tumor blood vessels. Even assuming sixfold metabolic rate of oxygen consumption in tumorous versus host tissue, the predicted oxygen hemoglobin concentrations are above normal. Such tumors are likely associated with high tumor blood flow caused by high-caliber blood vessels crossing the tumor volume and hence oxygen supply exceeding oxygen demand. Tumor oxy- to total hemoglobin concentration below normal could only be achieved by reducing tumor vessel radii during growth by a randomly selected factor, simulating compression caused by intra-tumoral solid stress due to proliferation of cells and extracellular matrix. Since compression of blood vessels will impede chemotherapy we conclude that tumors with oxy- to total hemoglobin concentration below normal are less likely to respond to chemotherapy. Such behavior was recently reported for neo-adjuvant chemotherapy of locally advanced breast tumors. PMID:27547939
NASA Astrophysics Data System (ADS)
Uchimoto, Yo; Namita, Takeshi; Kondo, Kengo; Yamakawa, Makoto; Shiina, Tsuyoshi
2018-02-01
Photoacoustic imaging is anticipated for use in portraying blood vessel structures (e.g. neovascularization in inflamed regions). To reduce invasiveness and enhance ease handling, we developed a handheld photoacoustic imaging system using multiple wavelengths. The usefulness of the proposed system was investigated in phantom experiments and in vivo measurements. A silicon tube was embedded into chicken breast meat to simulate the blood vessel. The tube was filled with ovine blood. Then laser light was guided to the phantom surface by an optical fiber bundle close to the linear ultrasound probe. Photoacoustic images were obtained at 750-950 nm wavelengths. Strong photoacoustic signals from the boundary between blood and silicon tube are observed in these images. The shape of photoacoustic spectrum at the boundary resembles that of the HbO2 absorption spectrum at 750-920 nm. In photoacoustic images, similarity between photoacoustic spectrum and HbO2 absorption spectrum was evaluated by calculating the normalized correlation coefficient. Results show high correlation in regions of strong photoacoustic signals in photoacoustic images. These analyses demonstrate the feasibility of portraying blood vessel structures under practical conditions. To evaluate the feasibility of three-dimensional vascular imaging, in vivo experiments were conducted using three wavelengths. A right hand and ultrasound probe were set in degassed water. By scanning a probe, cross-sectional ultrasound and photoacoustic images were obtained at each location. Then, all ultrasound or photoacoustic images were piled up respectively. Then three-dimensional images were constructed. Resultant images portrayed blood vessel-like structures three-dimensionally. Furthermore, to distinguish blood vessels from other tissues (e.g. skin), distinguishing images of them were constructed by comparing photoacoustic signal intensity among three wavelengths. The resultant image portrayed blood vessels as distinguished from surrounding tissues. These results demonstrated the usefulness of the proposed imaging device.
Infrared laser thermal fusion of blood vessels: preliminary ex vivo tissue studies.
Cilip, Christopher M; Rosenbury, Sarah B; Giglio, Nicholas; Hutchens, Thomas C; Schweinsberger, Gino R; Kerr, Duane; Latimer, Cassandra; Nau, William H; Fried, Nathaniel M
2013-05-01
Suture ligation of blood vessels during surgery can be time-consuming and skill-intensive. Energy-based, electrosurgical, and ultrasonic devices have recently replaced the use of sutures and mechanical clips (which leave foreign objects in the body) for many surgical procedures, providing rapid hemostasis during surgery. However, these devices have the potential to create an undesirably large collateral zone of thermal damage and tissue necrosis. We explore an alternative energy-based technology, infrared lasers, for rapid and precise thermal coagulation and fusion of the blood vessel walls. Seven near-infrared lasers (808, 980, 1075, 1470, 1550, 1850 to 1880, and 1908 nm) were tested during preliminary tissue studies. Studies were performed using fresh porcine renal vessels, ex vivo, with native diameters of 1 to 6 mm, and vessel walls flattened to a total thickness of 0.4 mm. A linear beam profile was applied normal to the vessel for narrow, full-width thermal coagulation. The laser irradiation time was 5 s. Vessel burst pressure measurements were used to determine seal strength. The 1470 nm laser wavelength demonstrated the capability of sealing a wide range of blood vessels from 1 to 6 mm diameter with burst strengths of 578 ± 154, 530 ± 171, and 426 ± 174 mmHg for small, medium, and large vessel diameters, respectively. Lateral thermal coagulation zones (including the seal) measured 1.0 ± 0.4 mm on vessels sealed at this wavelength. Other laser wavelengths (1550, 1850 to 1880, and 1908 nm) were also capable of sealing vessels, but were limited by lower vessel seal pressures, excessive charring, and/or limited power output preventing treatment of large vessels (>4 mm outer diameter).
Blood pressure and mesenteric resistance arterial function after spaceflight
NASA Technical Reports Server (NTRS)
Hatton, Daniel C.; Yue, Qi; Chapman, Justin; Xue, Hong; Dierickx, Jacqueline; Roullet, Chantal; Coste, Sarah; Roullet, Jean Baptiste; McCarron, David A.
2002-01-01
Ground studies indicate that spaceflight may diminish vascular contraction. To examine that possibility, vascular function was measured in spontaneously hypertensive rats immediately after an 18-day shuttle flight. Isolated mesenteric resistance arterial responses to cumulative additions of norepinephrine, acetylcholine, and sodium nitroprusside were measured using wire myography within 17 h of landing. After flight, maximal contraction to norepinephrine was attenuated (P < 0.001) as was relaxation to acetylcholine (P < 0.001) and sodium nitroprusside (P < 0.05). At high concentrations, acetylcholine caused vascular contraction in vessels from flight animals but not in vessels from vivarium control animals (P < 0.05). The results are consistent with data from ground studies and indicate that spaceflight causes both endothelial-dependent and endothelial-independent alterations in vascular function. The resulting decrement in vascular function may contribute to orthostatic intolerance after spaceflight.
Participation of blood vessel cells in human adaptive immune responses.
Pober, Jordan S; Tellides, George
2012-01-01
Circulating T cells contact blood vessels either when they extravasate across the walls of microvessels into inflamed tissues or when they enter into the walls of larger vessels in inflammatory diseases such as atherosclerosis. The blood vessel wall is largely composed of three cell types: endothelial cells lining the entire vascular tree; pericytes supporting the endothelium of microvessels; and smooth muscle cells forming the bulk of large vessel walls. Each of these cell types interacts with and alters the behavior of infiltrating T cells in different ways, making these cells active participants in the processes of immune-mediated inflammation. In this review, we compare and contrast what is known about the nature of these interactions in humans. Copyright © 2011 Elsevier Ltd. All rights reserved.
Robust Hidden Markov Model based intelligent blood vessel detection of fundus images.
Hassan, Mehdi; Amin, Muhammad; Murtza, Iqbal; Khan, Asifullah; Chaudhry, Asmatullah
2017-11-01
In this paper, we consider the challenging problem of detecting retinal vessel networks. Precise detection of retinal vessel networks is vital for accurate eye disease diagnosis. Most of the blood vessel tracking techniques may not properly track vessels in presence of vessels' occlusion. Owing to problem in sensor resolution or acquisition of fundus images, it is possible that some part of vessel may occlude. In this scenario, it becomes a challenging task to accurately trace these vital vessels. For this purpose, we have proposed a new robust and intelligent retinal vessel detection technique on Hidden Markov Model. The proposed model is able to successfully track vessels in the presence of occlusion. The effectiveness of the proposed technique is evaluated on publically available standard DRIVE dataset of the fundus images. The experiments show that the proposed technique not only outperforms the other state of the art methodologies of retinal blood vessels segmentation, but it is also capable of accurate occlusion handling in retinal vessel networks. The proposed technique offers better average classification accuracy, sensitivity, specificity, and area under the curve (AUC) of 95.7%, 81.0%, 97.0%, and 90.0% respectively, which shows the usefulness of the proposed technique. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Akaogi, Kotaro; Okabe, Yukie; Sato, Junji; Nagashima, Yoji; Yasumitsu, Hidetaro; Sugahara, Kazuyuki; Miyazaki, Kaoru
1996-08-01
Tumor-derived adhesion factor (TAF) was previously identified as a cell adhesion molecule secreted by human bladder carcinoma cell line EJ-1. To elucidate the physiological function of TAF, we examined its distribution in human normal and tumor tissues. Immunochemical staining with an anti-TAF monoclonal antibody showed that TAF was specifically accumulated in small blood vessels and capillaries within and adjacent to tumor nests, but not in those in normal tissues. Tumor blood vessel-specific staining of TAF was observed in various human cancers, such as esophagus, brain, lung, and stomach cancers. Double immunofluorescent staining showed apparent colocalization of TAF and type IV collagen in the vascular basement membrane. In vitro experiments demonstrated that TAF preferentially bound to type IV collagen among various extracellular matrix components tested. In cell culture experiments, TAF promoted adhesion of human umbilical vein endothelial cells to type IV collagen substrate and induced their morphological change. Furthermore, when the endothelial cells were induced to form capillary tube-like structures by type I collagen, TAF and type IV collagen were exclusively detected on the tubular structures. The capillary tube formation in vitro was prevented by heparin, which inhibited the binding of TAF to the endothelial cells. These results strongly suggest that TAF contributes to the organization of new capillary vessels in tumor tissues by modulating the interaction of endothelial cells with type IV collagen.
Systems analysis of thrombus formation
Diamond, Scott L.
2016-01-01
The systems analysis of thrombosis seeks to quantitatively predict blood function in a given vascular wall and hemodynamic context. Relevant to both venous and arterial thrombosis, a Blood Systems Biology approach should provide metrics for rate and molecular mechanisms of clot growth, thrombotic risk, pharmacological response, and utility of new therapeutic targets. As a rapidly created multicellular aggregate with a polymerized fibrin matrix, blood clots result from hundreds of unique reactions within and around platelets propagating in space and time under hemodynamic conditions. Coronary artery thrombosis is dominated by atherosclerotic plaque rupture, complex pulsatile flows through stenotic regions producing high wall shear stresses, and plaque-derived tissue factor driving thrombin production. In contrast, venous thrombosis is dominated by stasis or depressed flows, endothelial inflammation, white blood cell-derived tissue factor, and ample red blood cell incorporation. By imaging vessels, patient-specific assessment using computational fluid dynamics provides an estimate of local hemodynamics and fractional flow reserve. High dimensional ex vivo phenotyping of platelet and coagulation can now power multiscale computer simulations at the subcellular to cellular to whole vessel scale of heart attacks or strokes. Additionally, an integrated systems biology approach can rank safety and efficacy metrics of various pharmacological interventions or clinical trial designs. PMID:27126646
Microfluidic strategy to investigate dynamics of small blood vessel function
NASA Astrophysics Data System (ADS)
Yasotharan, Sanjesh; Bolz, Steffen-Sebastian; Guenther, Axel
2010-11-01
Resistance arteries (RAs, 30-300 microns in diameter) that are located within the terminal part of the vascular tree regulate the laminar perfusion of tissue with blood, via the peripheral vascular resistance, and hence controls the systemic blood pressure. The structure of RAs is adapted to actively controlling flow resistance by dynamically changing their diameter, which is non-linearly dependent on the temporal variation of the transmural pressure, perfusion flow rate and spatiotemporal changes in the chemical environment. Increases in systemic blood pressure (hypertension) resulting from pathologic changes in the RA response represent the primary risk factor for cardiovascular diseases. We use a microfluidic strategy to investigate small blood vessels by quantifying structural variations within the arterial wall, RA outer contour and diameter over time. First, we document the artery response to vasomotor drugs that were homogeneously applied at step-wise increasing concentration. Second, we investigate the response in the presence of well-defined axial and circumferential heterogeneities. Artery per- and superfusion is discussed based on microscale PIV measurements of the fluid velocity on both sides of the arterial wall. Structural changes in the arterial wall are quantified using cross-correlation and proper orthogonal decomposition analyses of bright-field micrographs.
HIFU procedures at moderate intensities--effect of large blood vessels.
Hariharan, P; Myers, M R; Banerjee, R K
2007-06-21
A three-dimensional computational model is presented for studying the efficacy of high-intensity focused ultrasound (HIFU) procedures targeted near large blood vessels. The analysis applies to procedures performed at intensities below the threshold for cavitation, boiling and highly nonlinear propagation, but high enough to increase tissue temperature a few degrees per second. The model is based upon the linearized KZK equation and the bioheat equation in tissue. In the blood vessel the momentum and energy equations are satisfied. The model is first validated in a tissue phantom, to verify the absence of bubble formation and nonlinear effects. Temperature rise and lesion-volume calculations are then shown for different beam locations and orientations relative to a large vessel. Both single and multiple ablations are considered. Results show that when the vessel is located within about a beam width (few mm) of the ultrasound beam, significant reduction in lesion volume is observed due to blood flow. However, for gaps larger than a beam width, blood flow has no major effect on the lesion formation. Under the clinically representative conditions considered, the lesion volume is reduced about 40% (relative to the no-flow case) when the beam is parallel to the blood vessel, compared to about 20% for a perpendicular orientation. Procedures involving multiple ablation sites are affected less by blood flow than single ablations. The model also suggests that optimally focused transducers can generate lesions that are significantly larger (>2 times) than the ones produced by highly focused beams.
HIFU procedures at moderate intensities—effect of large blood vessels
NASA Astrophysics Data System (ADS)
Hariharan, P.; Myers, M. R.; Banerjee, R. K.
2007-07-01
A three-dimensional computational model is presented for studying the efficacy of high-intensity focused ultrasound (HIFU) procedures targeted near large blood vessels. The analysis applies to procedures performed at intensities below the threshold for cavitation, boiling and highly nonlinear propagation, but high enough to increase tissue temperature a few degrees per second. The model is based upon the linearized KZK equation and the bioheat equation in tissue. In the blood vessel the momentum and energy equations are satisfied. The model is first validated in a tissue phantom, to verify the absence of bubble formation and nonlinear effects. Temperature rise and lesion-volume calculations are then shown for different beam locations and orientations relative to a large vessel. Both single and multiple ablations are considered. Results show that when the vessel is located within about a beam width (few mm) of the ultrasound beam, significant reduction in lesion volume is observed due to blood flow. However, for gaps larger than a beam width, blood flow has no major effect on the lesion formation. Under the clinically representative conditions considered, the lesion volume is reduced about 40% (relative to the no-flow case) when the beam is parallel to the blood vessel, compared to about 20% for a perpendicular orientation. Procedures involving multiple ablation sites are affected less by blood flow than single ablations. The model also suggests that optimally focused transducers can generate lesions that are significantly larger (>2 times) than the ones produced by highly focused beams.
Moghadamrad, Sheida; McCoy, Kathy D; Geuking, Markus B; Sägesser, Hans; Kirundi, Jorum; Macpherson, Andrew J; De Gottardi, Andrea
2015-05-01
Intestinal bacterial flora may induce splanchnic hemodynamic and histological alterations that are associated with portal hypertension (PH). We hypothesized that experimental PH would be attenuated in the complete absence of intestinal bacteria. We induced prehepatic PH by partial portal vein ligation (PPVL) in germ-free (GF) or mice colonized with altered Schaedler's flora (ASF). After 2 or 7 days, we performed hemodynamic measurements, including portal pressure (PP) and portosystemic shunts (PSS), and collected tissues for histomorphology, microbiology, and gene expression studies. Mice colonized with intestinal microbiota presented significantly higher PP levels after PPVL, compared to GF, mice. Presence of bacterial flora was also associated with significantly increased PSS and spleen weight. However, there were no hemodynamic differences between sham-operated mice in the presence or absence of intestinal flora. Bacterial translocation to the spleen was demonstrated 2 days, but not 7 days, after PPVL. Intestinal lymphatic and blood vessels were more abundant in colonized and in portal hypertensive mice, as compared to GF and sham-operated mice. Expression of the intestinal antimicrobial peptide, angiogenin-4, was suppressed in GF mice, but increased significantly after PPVL, whereas other angiogenic factors remained unchanged. Moreover, colonization of GF mice with ASF 2 days after PPVL led to a significant increase in intestinal blood vessels, compared to controls. The relative increase in PP after PPVL in ASF and specific pathogen-free mice was not significantly different. In the complete absence of gut microbial flora PP is normal, but experimental PH is significantly attenuated. Intestinal mucosal lymphatic and blood vessels induced by bacterial colonization may contribute to development of PH. © 2015 by the American Association for the Study of Liver Diseases.
Strauss, Michél; Smith, Wayne; Schutte, Aletta E
2016-08-01
Bilateral systolic blood pressure (SBP) differences > 10mmHg is a common finding in clinical practice. Such BP differences in older individuals are associated with peripheral vascular disease, linked to microvascular dysfunction. Investigating retinal vessel calibres could provide insight into systemic microvascular function and may predict cardiovascular outcomes. Therefore we investigated the link between inter-arm systolic blood pressure differences (IASBPD) and the retinal microvasculature to determine the usefulness of IASBPD as an early marker of microvascular changes. In this cross-sectional study, we used data from 403 apparently healthy participants (20-30 years) (42% men; 49% black) taking part in the African-PREDICT study. Participants underwent retinal vessel imaging, anthropometric measurements and blood sampling. Brachial BP was measured sequentially in both arms to determine the mean IASBPD. Participants were stratified into two groups with an IASBPD < 10mmHg (n=329) and ≥ 10mmHg (n=47), the only difference in characteristics being a higher right arm SBP in the latter group (p=0.005). We found no association between IASBPD and retinal vessel calibres in any group. Less than 2% of the variance in IASBPD was explained by potential risk factors, with only SBP associating independently with IASBPD (β=115; p=0.039). In a young population an increased IASBPD is not related to retinal vessel diameters suggesting that it does not reflect early microvascular alterations. Copyright © 2016 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.
Saggar, Jasdeep K; Tannock, Ian F
2014-06-01
Many chemotherapy drugs have poor therapeutic activity in regions distant from tumor blood vessels because of poor tissue penetration and low cytotoxic activity against slowly-proliferating cells. The hypoxia-activated pro-drug TH-302 may have selective toxicity for hypoxic and neighboring cells in tumors. Here we characterize the spatial distribution and ability of TH-302 to selectively target hypoxic regions and complement the effect of doxorubicin and docetaxel by modifying biomarker distribution. Athymic nude mice bearing human breast MCF-7 or prostate PC-3 tumors were treated with doxorubicin or docetaxel respectively and TH-302 alone or in combination. Biomarkers of drug effect including γH2aX (a marker of DNA damage), cleaved caspase-3 or -6 (markers of apoptosis) and reduction in Ki-67 (a marker of cell proliferation) were quantified in tumor sections in relation to functional blood vessels (recognized by DiOC7) and hypoxia (recognized by EF5) using immunohistochemistry. γH2aX expression at 10 min and cleaved caspase-3 or -6 at 24 hr after doxorubicin or docetaxel decreased with increasing distance from tumor blood vessels, with minimal expression in hypoxic regions; maximum reduction in Ki67 levels was observed in regions closest to vasculature at 24 hr. TH-302 induced maximal cell damage in hypoxic and neighboring regions, but was also active in tumor regions closer to blood vessels. TH-302 given 4 hr before doxorubicin or docetaxel increased DNA damage and apoptosis throughout the tumor compared to chemotherapy alone. When given with doxorubicin or docetaxel, TH-302 complements and enhances anticancer effects in both perivascular and hypoxic regions but also increases toxicity. © 2013 UICC.
Magnaudeix, Amandine; Usseglio, Julie; Lasgorceix, Marie; Lalloue, Fabrice; Damia, Chantal; Brie, Joël; Pascaud-Mathieu, Patricia; Champion, Eric
2016-07-01
The development of scaffolds for bone filling of large defects requires an understanding of angiogenesis and vascular guidance, which are crucial processes for bone formation and healing. There are few investigations on the ability of a scaffold to support blood vessel guidance and it this is of great importance because it relates to the quality and dispersion of the blood vessel network. This work reports an analysis of vascularisation of porous silicon-substituted hydroxyapatite (SiHA) bioceramics and the effects of pore shape on vascular guidance using an expedient ex ovo model, the chick embryo chorioallantoic membrane (CAM) assay. Image analysis of vascularised implants assessed the vascular density, fractal dimension and diameter of blood vessels at two different scales (the whole ceramic and pores alone) and was performed on model SiHA ceramics harbouring pores of various cross-sectional geometries (circles, square, rhombus, triangles and stars). SiHA is a biocompatible material which allows the conduction of blood vessels on its surface. The presence of pores did not influence angiogenesis related-parameters (arborisation, fractal dimension) but pore geometry affected the blood vessel guidance and angio-conductive potential (diameter and number of the blood vessels converging toward the pores). The measured angles of pore cross-section modulated the number and diameter of blood vessels converging to pores, with triangular pores appearing of particular interest. This result will be used for shaping ceramic scaffolds with specific porous architecture to promote vascular colonisation and osteointegration. An expedient and efficient method, using chick embryo chorioallantoic membrane (CAM) assays, has been set up to characterise quantitatively the angiogenesis and the vascular conduction in scaffolds. This approach complements the usual cell culture assays and could replace to a certain extent in vivo experiments. It was applied to silicon-substituted hydroxyapatite porous bioceramics with various pore shapes. The material was found to be biocompatible, allowing the conduction of blood vessels on its surface. The presence of pores does not influence the angiogenesis but the pore shape affects the blood vessel guidance and angio-conductive potential. Pores with triangular cross-section appear particularly attractive for the further design of scaffolds in order to promote their vascular colonisation and osteointegration and improve their performances. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Ghata, Narugopal; Aldredge, Ralph C.; Bec, Julien; Marcu, Laura
2015-01-01
SUMMARY Optical techniques including fluorescence lifetime spectroscopy have demonstrated potential as a tool for study and diagnosis of arterial vessel pathologies. However, their application in the intravascular diagnostic procedures has been hampered by the presence of blood hemoglobin that affects the light delivery to and the collection from the vessel wall. We report a computational fluid dynamics model that allows for the optimization of blood flushing parameters in a manner that minimizes the amount of saline needed to clear the optical field of view and reduces any adverse effects caused by the external saline jet. A 3D turbulence (k−ω) model was employed for Eulerian–Eulerian two-phase flow to simulate the flow inside and around a side-viewing fiber-optic catheter. Current analysis demonstrates the effects of various parameters including infusion and blood flow rates, vessel diameters, and pulsatile nature of blood flow on the flow structure around the catheter tip. The results from this study can be utilized in determining the optimal flushing rate for given vessel diameter, blood flow rate, and maximum wall shear stress that the vessel wall can sustain and subsequently in optimizing the design parameters of optical-based intravascular catheters. PMID:24953876
Improvement of retinal blood vessel detection using morphological component analysis.
Imani, Elaheh; Javidi, Malihe; Pourreza, Hamid-Reza
2015-03-01
Detection and quantitative measurement of variations in the retinal blood vessels can help diagnose several diseases including diabetic retinopathy. Intrinsic characteristics of abnormal retinal images make blood vessel detection difficult. The major problem with traditional vessel segmentation algorithms is producing false positive vessels in the presence of diabetic retinopathy lesions. To overcome this problem, a novel scheme for extracting retinal blood vessels based on morphological component analysis (MCA) algorithm is presented in this paper. MCA was developed based on sparse representation of signals. This algorithm assumes that each signal is a linear combination of several morphologically distinct components. In the proposed method, the MCA algorithm with appropriate transforms is adopted to separate vessels and lesions from each other. Afterwards, the Morlet Wavelet Transform is applied to enhance the retinal vessels. The final vessel map is obtained by adaptive thresholding. The performance of the proposed method is measured on the publicly available DRIVE and STARE datasets and compared with several state-of-the-art methods. An accuracy of 0.9523 and 0.9590 has been respectively achieved on the DRIVE and STARE datasets, which are not only greater than most methods, but are also superior to the second human observer's performance. The results show that the proposed method can achieve improved detection in abnormal retinal images and decrease false positive vessels in pathological regions compared to other methods. Also, the robustness of the method in the presence of noise is shown via experimental result. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Tanaka, Tatsurou; Oda, Masafumi; Kito, Shinji; Wakasugi-Sato, Nao; Matsumoto-Takeda, Shinobu; Otsuka, Kozue; Yoshioka, Izumi; Habu, Manabu; Kokuryo, Shinya; Kodama, Masaaki; Nogami, Shinnosuke; Miyamoto, Ikuya; Yamamoto, Noriaki; Ishikawa, Ayataka; Matsuo, Kou; Shiiba, Shunji; Seta, Yuji; Yamashita, Yoshihiro; Takahashi, Tetsu; Tominaga, Kazuhiro; Morimoto, Yasuhiro
2011-10-01
The aim of this study was to evaluate the 3-dimensional images of thinner main peripheral vessels in oral and maxillofacial regions made without contrast medium by using a new technique, fresh blood imaging (FBI). A second objective was to discern arteries from veins by using the combination of FBI with the subtraction technique. Images from FBI were compared with those from 3-dimensional phase-contrast magnetic resonance angiography (MRA) of blood vessels in 20 healthy subjects. All images were scored for visualization and image quality of the main blood vessels. In addition, appropriate flow-spoiled gradient pulses were applied to differentiate arteries from veins in the peripheral vasculature using a combination of FBI sequences and subtraction between systole- and diastole-triggered images. The scores of MRA using FBI for the visualization of thin blood vessels were significantly better than those using phase contrast, whereas scores for the visualization of main blood vessels were equal. Additionally, we succeeded in our initial attempt to differentiate arteries from veins with a reasonable acquisition time. Our initial experience shows that FBI could be a useful method to identify 3-dimensional vasculature and to differentiate arteries from veins among thinner peripheral vessels in the oral and maxillofacial regions without using contrast medium. Copyright © 2011 Mosby, Inc. All rights reserved.
Lagerlöf, Jakob H; Kindblom, Jon; Bernhardt, Peter
2014-04-01
Oxygen distribution models have been used to analyze the influences of oxygen tensions on tissue response after radiotherapy. These distributions are often generated assuming constant oxygen tension in the blood vessels. However, as red blood cells progress through the vessels, oxygen is continuously released into the plasma and the surrounding tissue, resulting in longitudinally varying oxygen levels in the blood vessels. In the present study, the authors investigated whether a tumor oxygenation model that incorporated longitudinally varying oxygen levels would provide different predictions of necrotic fractions and radiosensitivity compared to commonly used models with a constant oxygen pressure. Our models simulated oxygen diffusion based on a Green's function approach and oxygen consumption according to the Michaelis-Menten equation. The authors constructed tumor models with different vascular fractions (VFs), from which they generated depth oxygenation curves and a look-up table of oxygen pressure gradients. The authors evaluated models of spherical tumors of various sizes, from 1 to 10(4) mg. The authors compared the results from a model with constant vessel oxygen (CVO) pressure to those from models with longitudinal variations in oxygen saturation and either a constant VF (CVF) or variable VF (VVF) within the tumor tissue. The authors monitored the necrotic fractions, defined as tumor regions with an oxygen pressure below 1 mmHg. Tumor radiation sensitivity was expressed as D99, the homogeneous radiation dose required for a tumor control probability of 0.99. In the CVO saturation model, no necrosis was observed, and decreasing the VF could only decrease the D99 by up to 10%. Furthermore, the D99 vs VF dependence was similar for different tumor masses. Compared to the CVO model, the extended CVF and VVF models provided clearly different results, including pronounced effects of VF and tumor size on the necrotic fraction and D99, necrotic fractions ranging from 0% to 97%, and a maximal D99 increment of 57%. Only minor differences were observed between different vessel architectures, i.e., CVF vs VVF. In the smallest tumor with a low necrotic fraction, the D99 strictly decreased with increasing blood velocity. Increasing blood velocity also decreased the necrotic fraction in all tumor sizes. VF had the most profound influence on both the necrotic fraction and on D99. Our present analysis of necrotic formation and the impact of tumor oxygenation on D99 demonstrated the importance of including longitudinal variations in vessel oxygen content in tumor models. For small tumors, radiosensitivity was particularly dependent on VF and slightly dependent on the blood velocity and vessel arrangement. These dependences decreased with increasing tumor size, because the necrotic fraction also increased, thereby decreasing the number of viable tumor cells that required sterilization. The authors anticipate that the present model will be useful for estimating tumor oxygenation and radiation response in future detailed studies. © 2014 American Association of Physicists in Medicine.
Netrins and UNC5 receptors in angiogenesis.
Freitas, Catarina; Larrivée, Bruno; Eichmann, Anne
2008-01-01
Both neuronal and vascular development require guidance to establish a precise branching pattern of these systems in the vertebrate body. Several molecules implicated in axon navigation have also been shown to regulate vessel sprouting. Among these guidance cues, Netrins constitute a family of diffusible molecules with a bifuncional role in axon pathfinding. Recent findings implicate Netrins in other developmental processes, including vascular development. We here review recent studies and discuss the possible dual function of Netrins and its receptors during branching of blood vessels in developmental and pathological angiogenesis.
NASA Astrophysics Data System (ADS)
Jeon, S. M.; Jang, G. H.; Choi, H. C.; Park, S. H.; Park, J. O.
2012-04-01
Different magnetic navigation systems (MNSs) have been investigated for the wireless manipulation of microrobots in human blood vessels. Here we propose a MNS and methodology for generation of both the precise helical and translational motions of a microrobot to improve its maneuverability in complex human blood vessel. We then present experiments demonstrating the helical and translational motions of a spiral-type microrobot to verify the proposed MNS.
Invasive Electrical Impedance Tomography for Blood Vessel Detection
Martinsen, Ørjan G.; Kalvøy, Håvard; Grimnes, Sverre; Nordbotten, Bernt; Hol, Per Kristian; Fosse, Erik; Myklebust, Helge; Becker, Lance B
2010-01-01
We present a novel method for localization of large blood vessels using a bioimpedance based needle positioning system on an array of ten monopolar needle electrodes. The purpose of the study is to develop a portable, low cost tool for rapid vascular access for cooling and controlled reperfusion of cardiac arrest patients. Preliminary results show that localization of blood vessels is feasible with this method, but larger studies are necessary to improve the technology. PMID:21611140
Zhuang, Xu; Guo, Jun-Xia; Zhang, Cheng-Wu; Zheng, Yu
2003-11-01
Observations on medullary ischemia region, the morphology of neurons and changes of respiration and blood pressure were made, in order to give evidences on how medullary ischemia affects respiration and circulation and give some advices on how to protect from it. Using cats as the experimental animals, the different parts of the basilar artery trunk were ligated. The changes in the density of blood vessels, the morphology of neurons in the brainstem, the electromyogram (EMG) of the diaphragm and the blood pressure of the femoral artery were investigated. The density of blood vessels notably decreased in the medulla after ligating the basilar artery trunk. The ischemic range induced by ligation of the different parts of the basilar artery trunk overlapped, mainly locating in the medulla rostral to the obex. The soma were swelled and the Nissl bodies decreased in some of neurons in the ischemic region of medulla. The duration of inspiration (T1) and expiration (TE) shortened, respiratory frequency (RF) increased, and mean blood pressure (MBP) decreased in the experimental groups (P < 0.05). There is an obvious overlap of the areas in which blood supplied by different parts of the basilar artery trunk. Medullary ischemia can involve in changes of respiration and blood pressure. The ischemic damage of neurons in the medulla might be the structural basis of the changes in the respiratory and circulatory functions.
Oda, Masafumi; Tanaka, Tatsurou; Kito, Shinji; Matsumoto-Takeda, Shinobu; Otsuka, Kozue; Hayashi, Yuki; Wakasugi-Sato, Nao; Yoshioka, Izumi; Habu, Manabu; Kokuryo, Shinya; Kodama, Masaaki; Nogami, Shinnosuke; Miyamoto, Ikuya; Yamamoto, Noriaki; Ishikawa, Ayataka; Zhang, Min; Matsuo, Kou; Shiiba, Shunji; Seta, Yuji; Yamashita, Yoshihiro; Takahashi, Tetsu; Tominaga, Kazuhiro; Morimoto, Yasuhiro
2012-04-01
To evaluate fresh blood imaging (FBI), a magnetic resonance imaging technique that does not use contrast, for identifying hemangiomas and feeding arteries in the oral and maxillofacial regions. For 16 patients with hemangiomas, FBI visualizations of hemangiomas and feeding arteries in the oral and maxillofacial regions were compared with those from 3-dimensional (3D) phase-contrast magnetic resonance angiography (PC-MRA). Comparisons were based on the conspicuities of blood vessels and the 3D relationships of hemangiomas with the surrounding blood vessels. The conspicuity of hemangiomas, feeding arteries, and blood vessels were significantly better with FBI than with PC-MRA. After differentiating arteries from veins, 3D visualizations of hemangiomas and arteries or veins could be performed with FBI. FBI is a useful method in oral and maxillofacial regions for identifying the relationships between hemangiomas and the surrounding arteries or veins. Crown Copyright © 2012. Published by Mosby, Inc. All rights reserved.
Krasil'nikov, V G; Artem'eva, A I
1982-08-01
In anesthetized cats, under perfusion and with constant volume of the hemodynamically isolated brain, hypercapnia and hypoxia led to a decrease of cerebral vessels resistance and to a reduction of the brain blood flow, whereas a decrease in the PCO2 and an increase in the PO2 in the blood exerted on opposite effect. The different responses of the vessels had some similar features in respect to threshold changes of the PCO2 and PO2, to potentiation of effects of both parts of the brain vascular system on increased shifts of the blood gas tension, to greater sensitivity of both parts to PCO2 changes, to effect of the blood gas tension on reactivity of both parts to noradrenaline. The authors suggest a possibility of alterations of the filter-absorption interrelationships in the brain due to different responses of arterial and venous vessels to changes of the blood gas tension.
Histopathological findings in colorectal liver metastases after electrochemotherapy
Gasljevic, Gorana; Edhemovic, Ibrahim; Cemazar, Maja; Brecelj, Erik; Gadzijev, Eldar M.; Music, Maja M.
2017-01-01
Electrochemotherapy of colorectal liver metastases has been proven to be feasible, safe and effective in a phase I/II study. In that study, a specific group of patients underwent two-stage operation, and the detailed histopathological evaluation of the resected tumors is presented here. Regressive changes in electrochemotherapy-treated liver metastases were evaluated after the second operation (in 8–10 weeks) in 7 patients and 13 metastases when the treated metastases were resected. Macroscopic and microscopic changes were analyzed. Electrochemotherapy induced coagulation necrosis in the treated area encompassing both tumor and a narrow band of normal tissue. The area became necrotic, encapsulated in a fibrous envelope while preserving the functionality of most of the vessels larger than 5 mm in diameter and a large proportion of biliary structures, but the smaller blood vessels displayed various levels of damage. At the time of observation, 8–10 weeks after electrochemotherapy, regenerative changes were already seen in the peripheral parts of the treated area. This study demonstrates regressive changes in the whole electrochemotherapy-treated area of the liver. Further evidence of disruption of vessels less than 5 mm in diameter and preservation of the larger vessels by electrochemotherapy is provided. These findings are important because electrochemotherapy has been indicated for the therapy of metastases near major blood vessels in the liver to provide a safe approach with good antitumor efficacy. PMID:28686650
Histopathological findings in colorectal liver metastases after electrochemotherapy.
Gasljevic, Gorana; Edhemovic, Ibrahim; Cemazar, Maja; Brecelj, Erik; Gadzijev, Eldar M; Music, Maja M; Sersa, Gregor
2017-01-01
Electrochemotherapy of colorectal liver metastases has been proven to be feasible, safe and effective in a phase I/II study. In that study, a specific group of patients underwent two-stage operation, and the detailed histopathological evaluation of the resected tumors is presented here. Regressive changes in electrochemotherapy-treated liver metastases were evaluated after the second operation (in 8-10 weeks) in 7 patients and 13 metastases when the treated metastases were resected. Macroscopic and microscopic changes were analyzed. Electrochemotherapy induced coagulation necrosis in the treated area encompassing both tumor and a narrow band of normal tissue. The area became necrotic, encapsulated in a fibrous envelope while preserving the functionality of most of the vessels larger than 5 mm in diameter and a large proportion of biliary structures, but the smaller blood vessels displayed various levels of damage. At the time of observation, 8-10 weeks after electrochemotherapy, regenerative changes were already seen in the peripheral parts of the treated area. This study demonstrates regressive changes in the whole electrochemotherapy-treated area of the liver. Further evidence of disruption of vessels less than 5 mm in diameter and preservation of the larger vessels by electrochemotherapy is provided. These findings are important because electrochemotherapy has been indicated for the therapy of metastases near major blood vessels in the liver to provide a safe approach with good antitumor efficacy.
Glioblastoma niches: from the concept to the phenotypical reality.
Schiffer, Davide; Mellai, Marta; Bovio, Enrica; Bisogno, Ilaria; Casalone, Cristina; Annovazzi, Laura
2018-05-08
Recently, the concept of niches as sites of tumor progression, invasion, and angiogenesis in glioblastoma (GB) has been extensively debated. Niches, considered the sites in which glioblastoma stem cells (GSCs) reside, have been classified as perivascular, perinecrotic, and invasive. However, from a neuropathological point of view, it is not easy to establish when a tumor structure can be considered a niche. The relevant literature has been reviewed in the light of our recent experience on the subject. As for perinecrotic niches, the occurrence of GSCs around necrosis is interpreted as triggered by hypoxia through HIF-1α. Our alternative hypothesis is that, together with progenitors, they are the cell constituents of hyper-proliferative areas of GB, where perinecrotic niches have developed, and they would, therefore, represent the remnants of GSCs/progenitors spared by the developing necrosis. Perivascular structures originate from both transport vessels and exchange vessels, i.e., venules, arterioles, or the undefinable neo-formed small vessels, but only those in which a direct contact between GSCs/progenitors and endothelial cells occurs can be called niches. Both pericytes and microglia/macrophages play a role in niche function: Macrophages of blood origin invade GB only after the appearance of "mother vessels" with consequent blood-brain barrier disruption. Not all vessel/tumor cell structures can be considered niches, that is, crucial sites of tumor progression, invasion, and angiogenesis.
Optimal plane search method in blood flow measurements by magnetic resonance imaging
NASA Astrophysics Data System (ADS)
Bargiel, Pawel; Orkisz, Maciej; Przelaskowski, Artur; Piatkowska-Janko, Ewa; Bogorodzki, Piotr; Wolak, Tomasz
2004-07-01
This paper offers an algorithm for determining the blood flow parameters in the neck vessel segments using a single (optimal) measurement plane instead of the usual approach involving four planes orthogonal to the artery axis. This new approach aims at significantly shortening the time required to complete measurements using Nuclear Magnetic Resonance techniques. Based on a defined error function, the algorithm scans the solution space to find the minimum of the error function, and thus to determine a single plane characterized by a minimum measurement error, which allows for an accurate measurement of blood flow in the four carotid arteries. The paper also comprises a practical implementation of this method (as a module of a larger imaging-measuring system), including preliminary research results.
... Drugs Ear, Nose, and Throat Disorders Eye Disorders Fundamentals Heart and Blood Vessel Disorders Hormonal and Metabolic ... Drugs Ear, Nose, and Throat Disorders Eye Disorders Fundamentals Heart and Blood Vessel Disorders Hormonal and Metabolic ...
... Drugs Ear, Nose, and Throat Disorders Eye Disorders Fundamentals Heart and Blood Vessel Disorders Hormonal and Metabolic ... Drugs Ear, Nose, and Throat Disorders Eye Disorders Fundamentals Heart and Blood Vessel Disorders Hormonal and Metabolic ...
... weight loss Nausea or belly pain Small, red spider-like blood vessels on the skin As liver ... result of too much fluid Reddened palms Red spider-like blood vessels on the skin Small testicles ...
Association Between Increased Vascular Density and Loss of Protective RAS in Early-Stage NPDR
NASA Technical Reports Server (NTRS)
Radhakrishnan, Krishnan; Raghunandan, Sneha; Vyas, Ruchi J.; Vu, Amanda C.; Bryant, Douglas; Yaqian, Duan; Knecht, Brenda E.; Grant, Maria B.; Chalam, K . V.; Parsons-Wingerter, Patricia
2016-01-01
Our hypothesis predicts that retinal blood vessels increase in density during early-stage progression to moderate nonproliferative diabetic retinopathy (NPDR). The prevailing paradigm of NPDR progression is that vessels drop out prior to abnormal, vision-impairing regrowth at late-stage proliferative diabetic retinopathy (DR). However, surprising results for our previous preliminary study 1 with NASA's VESsel GENeration Analysis (VESGEN) software showed that vessels proliferated considerably during moderate NPDR compared to drop out at both mild and severe NPDR. Validation of our hypothesis will support development of successful early-stage regenerative therapies such as vascular repair by circulating angiogenic cells (CACs). The renin-angiotensin system (RAS)is implicated in the pathogenesis of DR and in the function of CACs, a critical bone marrow-derived population that is instrumental in vascular repair.
Lyle, Alicia N.; Raaz, Uwe
2017-01-01
The aorta is a blood vessel that provides a low resistance path for blood flow directed from the heart to peripheral organs and tissues. However, the aorta has another central hemodynamic function whereby the elastic nature of the aortic wall provides a significant biomechanical buffering capacity complementing the pulsatile cardiac blood flow and this is often referred to as Windkessel function. Stiffening of the arterial wall leads to fundamental alterations in central hemodynamics with widespread detrimental implications for organ function. In this review article, we aim to provide a short general overview of some of the most common mechanisms that contribute to increased arterial stiffness, the consequences of arterial stiffening, and the clinical conditions in which arterial stiffness occurs with a focus on recent advancements in the field. PMID:28122777
Dietary Sodium and Health: More Than Just Blood Pressure
Farquhar, William B.; Edwards, David G.; Jurkovitz, Claudine T.; Weintraub, William S.
2016-01-01
Sodium is essential for cellular homeostasis and physiological function. Excess dietary sodium has been linked to elevations in blood pressure (BP). Salt-sensitivity of BP varies widely, but certain subgroups tend to be more salt-sensitive. The mechanisms underlying sodium-induced increases in BP are not completely understood, but may involve alterations in renal function, fluid volume, fluid regulatory hormones, the vasculature, cardiac function, and the autonomic nervous system. Recent pre-clinical and clinical data support that even in the absence of an increase in BP, excess dietary sodium can adversely affect target organs, including the blood vessels, heart, kidneys, and brain. In this review, we address these issues and the epidemiological literature relating dietary sodium to BP and cardiovascular health outcomes, addressing recent controversies. We also provide information and strategies for reducing dietary sodium. PMID:25766952
Lammert, Eckhard; Axnick, Jennifer
2012-04-01
The vascular system developed early in evolution. It is required in large multicellular organisms for the transport of nutrients, oxygen, and waste products to and from tissues. The vascular system is composed of hollow tubes, which have a high level of complexity in vertebrates. Vasculogenesis describes the de novo formation of blood vessels, e.g., aorta formation in vertebrate embryogenesis. In contrast, angiogenesis is the formation of blood vessels from preexisting ones, e.g., sprouting of intersomitic blood vessels from the aorta. Importantly, the lumen of all blood vessels in vertebrates is lined and formed by endothelial cells. In both vasculogenesis and angiogenesis, lumen formation takes place in a cord of endothelial cells. It involves a complex molecular mechanism composed of endothelial cell repulsion at the cell-cell contacts within the endothelial cell cords, junctional rearrangement, and endothelial cell shape change. As the vascular system also participates in the course of many diseases, such as cancer, stroke, and myocardial infarction, it is important to understand and make use of the molecular mechanisms of blood vessel formation to better understand and manipulate the pathomechanisms involved.
2014-01-01
F. Pidcoke,* Philip C. Spinella,† Anand K. Ramasubramanian,‡ Geir Strandenes,§|| Tor Hervig,|| Paul M. Ness,¶ and Andrew P. Cap* * Blood Research...associated with improved clinical outcomes in acutely bleeding trauma patients (1Y9). Despite common beliefs to the contrary, PLTs are available in whole- blood ...circulation (10). Platelets participate in immunomodulation, maintenance and repair of vessel structures, and, their best-known function, clot forma
Concise Review: Therapeutic Potential of Adipose Tissue-Derived Angiogenic Cells
Brinchmann, Jan E.
2012-01-01
Inadequate blood supply to tissues is a leading cause of morbidity and mortality today. Ischemic symptoms caused by obstruction of arterioles and capillaries are currently not treatable by vessel replacement or dilatation procedures. Therapeutic angiogenesis, the treatment of tissue ischemia by promoting the proliferation of new blood vessels, has recently emerged as one of the most promising therapies. Neovascularization is most often attempted by introduction of angiogenic cells from different sources. Emerging evidence suggests that adipose tissue (AT) is an excellent reservoir of autologous cells with angiogenic potential. AT yields two cell populations of importance for neovascularization: AT-derived mesenchymal stromal cells, which likely act predominantly as pericytes, and AT-derived endothelial cells (ECs). In this concise review we discuss different physiological aspects of neovascularization, briefly present cells isolated from the blood and bone marrow with EC properties, and then discuss isolation and cell culture strategies, phenotype, functional capabilities, and possible therapeutic applications of angiogenic cells obtained from AT. PMID:23197872
[Progress of researches on the mechanism of cupping therapy].
Cui, Shuai; Cui, Jin
2012-12-01
Cupping therapy of Chinese medicine is able to relieve a variety of diseases or clinical conditions, which results from the comprehensive effects of multiple types of stimulation exerted onto the regional acupoint areas. Among the stimuli, the negative pressure from cupping is one of the main factors inducing therapeutic effects. In the present paper, the authors review development of researches on the underlying mechanism of therapeutic effects of cupping-negative pressure from 1) the factor of intra-cup negative pressure; 2) influence of intra-cup negative pressure on cup-blackspot formation; 3) influence of cupping on regional blood vessels and blood flow; 4) effect of cupping on regional ultrastructure of the capillary in the raw-surface tissue; 5) effect of cupping-negative pressure on regional endothelial cells; and 6) biological effects of negative pressure drainage. Generally, cupping induced negative pressure can dilate local blood vessels to improve microcirculation, promote capillary endothelial cells repair, accelerate granulation and angiogenesis, etc., in the regional tissues, normalizing the patients' functional state at last.
Yan, Xing; Hai, Bo; Sun, Yi-lin; Zhang, Chun-mei; Wang, Song-ling
2009-02-01
To study the ultrastructure of parotid glands, lacrimal glands and pituitary glands between miniature pig and mouse. Five adult miniature pigs and 5 mice were studied. Ultrastructure of their parotid glands, lacrimal glands, and pituitary glands was observed. The secretary granules in acinar cell of miniature pig parotid glands showed higher density and more aequalis than those of mice. The cell apparatus in acinar cell of mouse parotid glands were more plentiful than those of miniature pigs. The secretary granules on blood vessel wall were richer in parotid gland of miniature pigs compared with mouse parotid gland. Lacrimal gland had the similar ultrastructure to parotid gland in these two animals. Many blood vessel antrum were found in pituitary glands of these two animals. Compared with mouse parotid glands, there are more secretary granules in acinar cells and vascular endothelial cells in miniature pig parotid glands, which might enter blood stream and have function of endocrine secretion.
Cancer cells remodel themselves and vasculature to overcome the endothelial barrier.
Shenoy, Anitha K; Lu, Jianrong
2016-10-01
Metastasis refers to the spread of cancer cells from a primary tumor to distant organs mostly via the bloodstream. During the metastatic process, cancer cells invade blood vessels to enter circulation, and later exit the vasculature at a distant site. Endothelial cells that line blood vessels normally serve as a barrier to the movement of cells into or out of the blood. It is thus critical to understand how metastatic cancer cells overcome the endothelial barrier. Epithelial cancer cells acquire increased motility and invasiveness through epithelial-to-mesenchymal transition (EMT), which enables them to move toward vasculature. Cancer cells also express a variety of adhesion molecules that allow them to attach to vascular endothelium. Finally, cancer cells secrete or induce growth factors and cytokines to actively prompt vascular hyperpermeability that compromises endothelial barrier function and facilitates transmigration of cancer cells through the vascular wall. Elucidation of the mechanisms underlying metastatic dissemination may help develop new anti-metastasis therapeutics. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
An optical approach for non-invasive blood clot testing
NASA Astrophysics Data System (ADS)
Kalchenko, Vyacheslav; Brill, Alexander; Fine, Ilya; Harmelin, Alon
2007-02-01
Physiological blood coagulation is an essential biological process. Current tests for plasma coagulation (clotting) need to be performed ex vivo and require fresh blood sampling for every test. A recently published work describes a new, noninvasive, in vivo approach to assess blood coagulation status during mechanical occlusion1. For this purpose, we have tested this approach and applied a controlled laser beam to blood micro-vessels of the mouse ear during mechanical occlusion. Standard setup for intravital transillumination videomicroscopy and laser based imaging techniques were used for monitoring the blood clotting process. Temporal mechanical occlusion of blood vessels in the observed area was applied to ensure blood flow cessation. Subsequently, laser irradiation was used to induce vascular micro-injury. Changes in the vessel wall, as well as in the pattern of blood flow, predispose the area to vascular thrombosis, according to the paradigm of Virchow's triad. In our experiments, two elements of Virchow's triad were used to induce the process of clotting in vivo, and to assess it optically. We identified several parameters that can serve as markers of the blood clotting process in vivo. These include changes in light absorption in the area of illumination, as well as changes in the pattern of the red blood cells' micro-movement in the vessels where blood flow is completely arrested. Thus, our results indicate that blood coagulation status can be characterized by non-invasive, in vivo methodologies.
Uzunalli, Gozde; Tumtas, Yasin; Delibasi, Tuncay; Yasa, Oncay; Mercan, Sercan; Guler, Mustafa O; Tekinay, Ayse B
2015-08-01
Pancreatic islet transplantation is a promising treatment for type 1 diabetes. However, viability and functionality of the islets after transplantation are limited due to loss of integrity and destruction of blood vessel networks. Thus, it is important to provide a proper mechanically and biologically supportive environment for enhancing both in vitro islet culture and transplantation efficiency. Here, we demonstrate that heparin mimetic peptide amphiphile (HM-PA) nanofibrous network is a promising platform for these purposes. The islets cultured with peptide nanofiber gel containing growth factors exhibited a similar glucose stimulation index as that of the freshly isolated islets even after 7 days. After transplantation of islets to STZ-induced diabetic rats, 28 day-long monitoring displayed that islets that were transplanted in HM-PA nanofiber gels maintained better blood glucose levels at normal levels compared to the only islet transplantation group. In addition, intraperitoneal glucose tolerance test revealed that animals that were transplanted with islets within peptide gels showed a similar pattern with the healthy control group. Histological assessment showed that islets transplanted within peptide nanofiber gels demonstrated better islet integrity due to increased blood vessel density. This work demonstrates that using the HM-PA nanofiber gel platform enhances the islets function and islet transplantation efficiency both in vitro and in vivo. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Weigand, Annika; Beier, Justus P; Arkudas, Andreas; Al-Abboodi, Majida; Polykandriotis, Elias; Horch, Raymund E; Boos, Anja M
2016-11-02
A functional blood vessel network is a prerequisite for the survival and growth of almost all tissues and organs in the human body. Moreover, in pathological situations such as cancer, vascularization plays a leading role in disease progression. Consequently, there is a strong need for a standardized and well-characterized in vivo model in order to elucidate the mechanisms of neovascularization and develop different vascularization approaches for tissue engineering and regenerative medicine. We describe a microsurgical approach for a small animal model for induction of a vascular axis consisting of a vein and artery that are anastomosed to an arteriovenous (AV) loop. The AV loop is transferred to an enclosed implantation chamber to create an isolated microenvironment in vivo, which is connected to the living organism only by means of the vascular axis. Using 3D imaging (MRI, micro-CT) and immunohistology, the growing vasculature can be visualized over time. By implanting different cells, growth factors and matrices, their function in blood vessel network formation can be analyzed without any disturbing influences from the surroundings in a well controllable environment. In addition to angiogenesis and antiangiogenesis studies, the AV loop model is also perfectly suited for engineering vascularized tissues. After a certain prevascularization time, the generated tissues can be transplanted into the defect site and microsurgically connected to the local vessels, thereby ensuring immediate blood supply and integration of the engineered tissue. By varying the matrices, cells, growth factors and chamber architecture, it is possible to generate various tissues, which can then be tailored to the individual patient's needs.
... Drugs Ear, Nose, and Throat Disorders Eye Disorders Fundamentals Heart and Blood Vessel Disorders Hormonal and Metabolic ... Drugs Ear, Nose, and Throat Disorders Eye Disorders Fundamentals Heart and Blood Vessel Disorders Hormonal and Metabolic ...
... Drugs Ear, Nose, and Throat Disorders Eye Disorders Fundamentals Heart and Blood Vessel Disorders Hormonal and Metabolic ... Drugs Ear, Nose, and Throat Disorders Eye Disorders Fundamentals Heart and Blood Vessel Disorders Hormonal and Metabolic ...
... Drugs Ear, Nose, and Throat Disorders Eye Disorders Fundamentals Heart and Blood Vessel Disorders Hormonal and Metabolic ... Drugs Ear, Nose, and Throat Disorders Eye Disorders Fundamentals Heart and Blood Vessel Disorders Hormonal and Metabolic ...
Effect of blood vessels on light distribution in optogenetic stimulation of cortex.
Azimipour, Mehdi; Atry, Farid; Pashaie, Ramin
2015-05-15
In this Letter, the impact of blood vessels on light distribution during photostimulation of cortical tissue in small rodents is investigated. Brain optical properties were extracted using a double-integrating sphere setup, and optical coherence tomography was used to image cortical vessels and capillaries to generate a three-dimensional angiogram of the cortex. By combining these two datasets, a complete volumetric structure of the cortical tissue was developed and linked to a Monte Carlo code which simulates light propagation in this inhomogeneous structure and illustrates the effect of blood vessels on the penetration depth and pattern preservation in optogenetic stimulation.
Nuriya, Mutsuo; Shinotsuka, Takanori; Yasui, Masato
2013-09-01
Molecular diffusion in the extracellular space (ECS) plays a key role in determining tissue physiology and pharmacology. The blood-brain barrier regulates the exchange of substances between the brain and the blood, but the diffusion properties of molecules at this blood-brain interface, particularly around the astrocyte endfeet, are poorly characterized. In this study, we used 2-photon microscopy and acute brain slices of mouse neocortex and directly assessed the diffusion patterns of fluorescent molecules. By observing the diffusion of unconjugated and 10-kDa dextran-conjugated Alexa Fluor 488 from the ECS of the brain parenchyma to the blood vessels, we find various degrees of diffusion barriers at the endfeet: Some allow the invasion of dye inside the endfoot network while others completely block it. Detailed analyses of the time course for dye clearance support the existence of a tight endfoot network capable of acting as a diffusion barrier. Finally, we show that this diffusion pattern collapses under pathological conditions. These data demonstrate the heterogeneous nature of molecular diffusion dynamics around the endfeet and suggest that these structures can serve as the diffusion barrier. Therefore, astrocyte endfeet may add another layer of regulation to the exchange of molecules between blood vessels and brain parenchyma.
mRNA Expression Profiling of Laser Microbeam Microdissected Cells from Slender Embryonic Structures
Scheidl, Stefan J.; Nilsson, Sven; Kalén, Mattias; Hellström, Mats; Takemoto, Minoru; Håkansson, Joakim; Lindahl, Per
2002-01-01
Microarray hybridization has rapidly evolved as an important tool for genomic studies and studies of gene regulation at the transcriptome level. Expression profiles from homogenous samples such as yeast and mammalian cell cultures are currently extending our understanding of biology, whereas analyses of multicellular organisms are more difficult because of tissue complexity. The combination of laser microdissection, RNA amplification, and microarray hybridization has the potential to provide expression profiles from selected populations of cells in vivo. In this article, we present and evaluate an experimental procedure for global gene expression analysis of slender embryonic structures using laser microbeam microdissection and laser pressure catapulting. As a proof of principle, expression profiles from 1000 cells in the mouse embryonic (E9.5) dorsal aorta were generated and compared with profiles for captured mesenchymal cells located one cell diameter further away from the aortic lumen. A number of genes were overexpressed in the aorta, including 11 previously known markers for blood vessels. Among the blood vessel markers were endoglin, tie-2, PDGFB, and integrin-β1, that are important regulators of blood vessel formation. This demonstrates that microarray analysis of laser microbeam micro-dissected cells is sufficiently sensitive for identifying genes with regulative functions. PMID:11891179
Zhang, Yingyun; Zhang, Yufeng; Gao, Lian; Deng, Li; Hu, Xiao; Zhang, Kexin; Li, Haiyan
2017-11-01
This study assessed the variation in the frequency locations in the Doppler ultrasound spectra for the maximum blood flow velocities of in vessels with different degrees of bilaterally axisymmetric stenosis. This was done by comparing the relationship between the velocity distributions and corresponding Doppler power spectra. First, a geometric vessel model with axisymmetric stenosis was established. This made it possible to obtain the blood flow velocity distributions for different degrees of stenosis from the solutions of the Navier-Stokes equations. Then, the Doppler spectra were calculated for the entire segment of the vessel that was covered by the sound field. Finally, the maximum frequency locations for the spectra were determined based on the intersections of the maximum values chosen from the calculated blood flow velocity distributions and their corresponding spectra. The computational analysis showed that the maximum frequencies, which corresponded to the maximum blood flow velocities for different degrees of stenosis, were located at different positions along the spectral falling edges. The location for a normal (stenosis free) vessel was in the middle of the falling edge. For vessels with increasing degrees of stenosis, this location shifted approximately linearly downward along the falling edge. For 40% stenosis, the location reached a position at the falling edge of 0.32. Results obtained using the Field II simulation tool demonstrated the validity of the theoretical analysis and calculations, and may help to improve the maximum velocity estimation accuracy for Doppler blood flow spectra in stenosed vessels. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
Lymphatic and blood vessels in male breast cancer.
Niemiec, Joanna; Sas-Korczynska, Beata; Harazin-Lechowska, Agnieszka; Martynow, Dariusz; Adamczyk, Agnieszka
2015-02-01
It is assumed that lymphatic vessels are responsible for breast cancer dissemination. In 32 male breast carcinomas we evaluated the correlation between: (i) lymphatic vessel density (LVD), distribution of podoplanin-immunostained vessels (DPV), blood vessel density (BVD), infiltration of immune cells and (ii) known clinicopathological parameters. Lymphatic and blood vessels were found in 77.8% and 100% of breast carcinomas, respectively. Double-negative estrogen and progesterone receptor tumors (ER-/PR-) presented significantly higher LVD than ER/PR positive cases, while high-grade tumors exhibited significantly higher DPV than low-grade carcinomas. We detected significantly higher frequency of vascular invasion in high-grade and double-negative carcinomas than in low-grade and ER/PR-positive ones, respectively. The relationship between high number of lymphatic vessels and high tumor grade or steroid receptor negativity might confirm the hypothesis regarding the influence of lymphangiogenesis on the formation of a more aggressive phenotype in male breast cancer. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Dasgupta, Subhashish; Banerjee, Rupak K; Hariharan, Prasanna; Myers, Matthew R
2011-02-01
Experimental studies of thermal effects in high-intensity focused ultrasound (HIFU) procedures are often performed with the aid of fine wire thermocouples positioned within tissue phantoms. Thermocouple measurements are subject to several types of error which must be accounted for before reliable inferences can be made on the basis of the measurements. Thermocouple artifact due to viscous heating is one source of error. A second is the uncertainty regarding the position of the beam relative to the target location or the thermocouple junction, due to the error in positioning the beam at the junction. This paper presents a method for determining the location of the beam relative to a fixed pair of thermocouples. The localization technique reduces the uncertainty introduced by positioning errors associated with very narrow HIFU beams. The technique is presented in the context of an investigation into the effect of blood flow through large vessels on the efficacy of HIFU procedures targeted near the vessel. Application of the beam localization method allowed conclusions regarding the effects of blood flow to be drawn from previously inconclusive (because of localization uncertainties) data. Comparison of the position-adjusted transient temperature profiles for flow rates of 0 and 400ml/min showed that blood flow can reduce temperature elevations by more than 10%, when the HIFU focus is within a 2mm distance from the vessel wall. At acoustic power levels of 17.3 and 24.8W there is a 20- to 70-fold decrease in thermal dose due to the convective cooling effect of blood flow, implying a shrinkage in lesion size. The beam-localization technique also revealed the level of thermocouple artifact as a function of sonication time, providing investigators with an indication of the quality of thermocouple data for a given exposure time. The maximum artifact was found to be double the measured temperature rise, during initial few seconds of sonication. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Parsons-Wingerter, Patricia; Radhakrishnan, Krishnan; DiCorleto, Paul E.; Leontiev, Dmitry; Anand-Apte, Bela; Albarran, Brian; Farr, Andrew G.
2005-01-01
Vascular endothelial growth factor-165 (VEGF(sub 165)) stimulated angiogenesis in the quail chorioallantoic membrane (CAM) by vessel expansion from the capillary network. However, lymphangiogenesis was stimulated by the filopodial guidance of tip cells located on blind-ended lymphatic sprouts. As quantified by fractal/generational branching analysis using the computer code VESGEN, vascular density increased maximally at low VEGF concentrations, and vascular diameter increased most at high VEGF concentrations. Increased vascular density and diameter were statistically independent events (r(sub s), -0.06). By fluorescence immunohistochemistry of VEGF receptors VEGFR-1 and VEGFR-2, alpha smooth muscle actin ((alpha) SMA) and a vascular/lymphatic marker, VEGF(sub 165) increased the density and diameter of sprouting lymphatic vessels guided by tip cells (accompanied by the dissociation of lymphatics from blood vessels). Isolated migratory cells expressing (alpha)SMA were recruited to blood vessels, whereas isolated cells expressing VEGFR-2 were recruited primarily to lymphatics. In conclusion, VEGF(sub 165) increased lymphatic vessel density by lymphatic sprouting, but increased blood vessel density by vascular expansion from the capillary network.
Differential distribution of blood and lymphatic vessels in the murine cornea.
Ecoiffier, Tatiana; Yuen, Don; Chen, Lu
2010-05-01
Because of its unique characteristics, the cornea has been widely used for blood and lymphatic vessel research. However, whether limbal or corneal vessels are evenly distributed under normal or inflamed conditions has never been studied. The purpose of this study was to investigate this question and to examine whether and how the distribution patterns change during corneal inflammatory lymphangiogenesis (LG) and hemangiogenesis (HG). Corneal inflammatory LG and HG were induced in two most commonly used mouse strains, BALB/c and C57BL/6 (6-8 weeks of age), by a standardized two-suture placement model. Oriented flat-mount corneas together with the limbal tissues were used for immunofluorescence microscope studies. Blood and lymphatic vessels under normal and inflamed conditions were analyzed and quantified to compare their distributions. The data demonstrate, for the first time, greater distribution of both blood and lymphatic vessels in the nasal side in normal murine limbal areas. This nasal-dominant pattern was maintained during corneal inflammatory LG, whereas it was lost for HG. Blood and lymphatic vessels are not evenly distributed in normal limbal areas. Furthermore, corneal LG and HG respond differently to inflammatory stimuli. These new findings will shed some light on corneal physiology and pathogenesis and on the development of experimental models and therapeutic strategies for corneal diseases.
NASA Astrophysics Data System (ADS)
Smirni, Salvatore; MacDonald, Michael P.; Robertson, Catherine P.; McNamara, Paul M.; O'Gorman, Sean; Leahy, Martin J.; Khan, Faisel
2018-02-01
The cutaneous microcirculation represents an index of the health status of the cardiovascular system. Conventional methods to evaluate skin microvascular function are based on measuring blood flow by laser Doppler in combination with reactive tests such as post-occlusive reactive hyperaemia (PORH). Moreover, the spectral analysis of blood flow signals by continuous wavelet transform (CWT) reveals nonlinear oscillations reflecting the functionality of microvascular biological factors, e.g. endothelial cells (ECs). Correlation mapping optical coherence tomography (cmOCT) has been previously described as an efficient methodology for the morphological visualisation of cutaneous micro-vessels. Here, we show that cmOCT flow maps can also provide information on the functional components of the microcirculation. A spectral domain optical coherence tomography (SD-OCT) imaging system was used to acquire 90 sequential 3D OCT volumes from the forearm of a volunteer, while challenging the micro-vessels with a PORH test. The volumes were sampled in a temporal window of 25 minutes, and were processed by cmOCT to obtain flow maps at different tissue depths. The images clearly show changes of flow in response to the applied stimulus. Furthermore, a blood flow signal was reconstructed from cmOCT maps intensities to investigate the microvascular nonlinear dynamics by CWT. The analysis revealed oscillations changing in response to PORH, associated with the activity of ECs and the sympathetic innervation. The results demonstrate that cmOCT may be potentially used as diagnostic tool for the assessment of microvascular function, with the advantage of also providing spatial resolution and structural information compared to the traditional laser Doppler techniques.
Visualisation of blood and lymphatic vessels with increasing exposure time of the detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalchenko, V V; Kuznetsov, Yu L; Meglinski, I V
2013-07-31
We describe the laser speckle contrast method for simultaneous noninvasive imaging of blood and lymphatic vessels of living organisms, based on increasing detector exposure time. In contrast to standard methods of fluorescent angiography, this technique of vascular bed imaging and lymphatic and blood vessel demarcation does not employ toxic fluorescent markers. The method is particularly promising with respect to the physiology of the cardiovascular system under in vivo conditions. (laser applications in biology and medicine)
... Drugs Ear, Nose, and Throat Disorders Eye Disorders Fundamentals Heart and Blood Vessel Disorders Hormonal and Metabolic ... Drugs Ear, Nose, and Throat Disorders Eye Disorders Fundamentals Heart and Blood Vessel Disorders Hormonal and Metabolic ...
... Drugs Ear, Nose, and Throat Disorders Eye Disorders Fundamentals Heart and Blood Vessel Disorders Hormonal and Metabolic ... Drugs Ear, Nose, and Throat Disorders Eye Disorders Fundamentals Heart and Blood Vessel Disorders Hormonal and Metabolic ...
Aging changes in the heart and blood vessels
Heart disease - aging; Atherosclerosis - aging ... Some changes in the heart and blood vessels normally occur with age. However, many other changes that are common with aging are due to modifiable ...
Some potential blood flow experiments for space
NASA Technical Reports Server (NTRS)
Cokelet, G. R.; Meiselman, H. J.; Goldsmith, H. L.
1979-01-01
Blood is a colloidal suspension of cells, predominantly erythrocytes, (red cells) in an aqueous solution called plasma. Because the red cells are more dense than the plasma, and because they tend to aggregate, erythrocyte sedimentation can be significant when the shear stresses in flowing blood are small. This behavior, coupled with equipment restrictions, has prevented certain definitive fluid mechanical studies from being performed with blood in ground-based experiments. Among such experiments, which could be satisfactorily performed in a microgravity environment, are the following: (1) studies of blood flow in small tubes, to obtain pressure-flow rate relationships, to determine if increased red cell aggregation can be an aid to blood circulation, and to determine vessel entrance lengths, and (2) studies of blood flow through vessel junctions (bifurcations), to obtain information on cell distribution in downstream vessels of (arterial) bifurcations, and to test flow models of stratified convergent blood flows downstream from (venous) bifurcations.
Retinal vasculature classification using novel multifractal features
NASA Astrophysics Data System (ADS)
Ding, Y.; Ward, W. O. C.; Duan, Jinming; Auer, D. P.; Gowland, Penny; Bai, L.
2015-11-01
Retinal blood vessels have been implicated in a large number of diseases including diabetic retinopathy and cardiovascular diseases, which cause damages to retinal blood vessels. The availability of retinal vessel imaging provides an excellent opportunity for monitoring and diagnosis of retinal diseases, and automatic analysis of retinal vessels will help with the processes. However, state of the art vascular analysis methods such as counting the number of branches or measuring the curvature and diameter of individual vessels are unsuitable for the microvasculature. There has been published research using fractal analysis to calculate fractal dimensions of retinal blood vessels, but so far there has been no systematic research extracting discriminant features from retinal vessels for classifications. This paper introduces new methods for feature extraction from multifractal spectra of retinal vessels for classification. Two publicly available retinal vascular image databases are used for the experiments, and the proposed methods have produced accuracies of 85.5% and 77% for classification of healthy and diabetic retinal vasculatures. Experiments show that classification with multiple fractal features produces better rates compared with methods using a single fractal dimension value. In addition to this, experiments also show that classification accuracy can be affected by the accuracy of vessel segmentation algorithms.
Blood vessel adaptation to gravity in a semi-arboreal snake
NASA Technical Reports Server (NTRS)
Conklin, D. J.; Lillywhite, H. B.; Olson, K. R.; Ballard, R. E.; Hargens, A. R.
1996-01-01
The effects of vasoactive agonists on systemic blood vessels were examined with respect to anatomical location and gravity acclimation in the semi-arboreal snake, Elaphe Obsoleta. Major blood vessels were reactive to putative neurotransmitters, hormones or local factors in vessel specific patterns. Catecholamines, adenosine triphosphate, histamine and high potassium (80 mM) stimulated significantly greater tension per unit vessel mass in posterior than anterior arteries. Anterior vessels were significantly more sensitive to catecholamines than midbody and posterior vessels. Angiotensin II stimulated significantly greater tension in carotid artery than in midbody and posterior dorsal aorta. Arginine vasotocin strongly contracted the left and right aortic arches and anterior dorsal aorta. Veins were strongly contracted by catecholamines, high potassium and angiotensin II, but less so by adenosine triphosphate, arginine vasotocin and histamine. Precontracted vessel were relaxed by acetylcholine and sodium nitroprusside, but not by atrial natriuretic peptide or bradykinin. Chronic exposure of snakes to intermittent hypergravity stress ( + 1.5 Gz at tail) did not affect the majority of vessel responses. These data demonstrate that in vitro tension correlates with that catecholamines, as well as other agonists, are important in mediating vascular responses to gravitational stresses in snakes.
Rapid determination of particle velocity from space-time images using the Radon transform
Drew, Patrick J.; Blinder, Pablo; Cauwenberghs, Gert; Shih, Andy Y.; Kleinfeld, David
2016-01-01
Laser-scanning methods are a means to observe streaming particles, such as the flow of red blood cells in a blood vessel. Typically, particle velocity is extracted from images formed from cyclically repeated line-scan data that is obtained along the center-line of the vessel; motion leads to streaks whose angle is a function of the velocity. Past methods made use of shearing or rotation of the images and a Singular Value Decomposition (SVD) to automatically estimate the average velocity in a temporal window of data. Here we present an alternative method that makes use of the Radon transform to calculate the velocity of streaming particles. We show that this method is over an order of magnitude faster than the SVD-based algorithm and is more robust to noise. PMID:19459038
Large for Gestational Age (LGA)
... Drugs Ear, Nose, and Throat Disorders Eye Disorders Fundamentals Heart and Blood Vessel Disorders Hormonal and Metabolic ... Drugs Ear, Nose, and Throat Disorders Eye Disorders Fundamentals Heart and Blood Vessel Disorders Hormonal and Metabolic ...
Disorders of Amino Acid Metabolism
... Drugs Ear, Nose, and Throat Disorders Eye Disorders Fundamentals Heart and Blood Vessel Disorders Hormonal and Metabolic ... Drugs Ear, Nose, and Throat Disorders Eye Disorders Fundamentals Heart and Blood Vessel Disorders Hormonal and Metabolic ...
Pirfenidone normalizes the tumor microenvironment to improve chemotherapy
Papageorgis, Panagiotis; Voutouri, Chrysovalantis; Stylianopoulos, Triantafyllos
2017-01-01
Normalization of the tumor microenvironment by selectively targeting components of the tumor extracellular matrix has been recently proposed to have the potential to decompress tumor blood vessels, increase vessel perfusion and thus, improve drug delivery and the efficacy of cancer therapy. Therefore, we now need to identify safe and well tolerated pharmaceutical agents that are able to remodel the microenvironment of solid tumors and enhance chemotherapy. In this study, we repurposed Pirfenidone, a clinically approved anti-fibrotic drug for the treatment of idiopathic pulmonary fibrosis, to investigate its possible role on tumor microenvironment normalization. Using two orthotopic mammary tumor models we demonstrate that Pirfenidone reduces collagen and hyaluronan levels and, as a result, significantly increases blood vessel functionality and perfusion and improves the anti-tumor efficacy of doxorubicin. Reduction of extracellular matrix components were mediated via TGFβ signaling pathway inhibition due to downregulation of TGFβ1, COL1A1, COL3A1, HAS2, HAS3 expression levels. Our findings provide evidence that repurposing Pirfenidone could be used as a promising strategy to enhance drug delivery to solid tumors by normalizing the tumor microenvironment. PMID:28445938
Ikenaga, Yuki; Nishi, Shohei; Komagata, Yuka; Saito, Masashi; Lagrée, Pierre-Yves; Asada, Takaaki; Matsukawa, Mami
2013-11-01
A pulse wave is the displacement wave which arises because of ejection of blood from the heart and reflection at vascular bed and distal point. The investigation of pressure waves leads to understanding the propagation characteristics of a pulse wave. To investigate the pulse wave behavior, an experimental study was performed using an artificial polymer tube and viscous liquid. A polyurethane tube and glycerin solution were used to simulate a blood vessel and blood, respectively. In the case of the 40 wt% glycerin solution, which corresponds to the viscosity of ordinary blood, the attenuation coefficient of a pressure wave in the tube decreased from 4.3 to 1.6 dB/m because of the tube stiffness (Young's modulus: 60 to 200 kPa). When the viscosity of liquid increased from approximately 4 to 10 mPa·s (the range of human blood viscosity) in the stiff tube, the attenuation coefficient of the pressure wave changed from 1.6 to 3.2 dB/m. The hardening of the blood vessel caused by aging and the increase of blood viscosity caused by illness possibly have opposite effects on the intravascular pressure wave. The effect of the viscosity of a liquid on the amplitude of a pressure wave was then considered using a phantom simulating human blood vessels. As a result, in the typical range of blood viscosity, the amplitude ratio of the waves obtained by the experiments with water and glycerin solution became 1:0.83. In comparison with clinical data, this value is much smaller than that seen from blood vessel hardening. Thus, it can be concluded that the blood viscosity seldom affects the attenuation of a pulse wave.
Heterogeneity of hypoxia in solid tumours and mechanochemical reactions with oxygen nanobubbles.
Orel, V B; Zabolotny, M A; Orel, V E
2017-05-01
Tumour hypoxia leads to radio and chemotherapy resistance among cancer patients. The aim of this paper is to formulate a hypothesis on the heterogeneity of hypoxia in solid tumours. Tumour vasculature is known to be significantly variable. The great structural and functional abnormalities of tumour microcirculation cause spatial and temporal heterogeneity in its perfusion. Tumours have constantly been under the influence of pulsatile blood perfusion with variable pressure that initiates inhomogeneous erythrocyte deformation and following impact on oxygen disorder release from red blood cells into plasma within the blood vessel. Furthermore, stochastically released oxygen in tumour vessel, plasma and interstitial fluid may lead to heterogeneity of hypoxia. Under the influence of increased heterogeneity of hemodynamic force, the oxygen molecules dissolved in blood plasma are inclined to form nanobubbles (NBs) in tumour vessels. Considering the fact that tumour interstitial fluid pressure is increased compared to normal tissues, we assume that oxygen NBs may burst under the impact of shear stress. During the course of mechanochemical reaction, when a nanobubble (NB) bursts, both reactive oxygen species and ions form in various charged states. In consequence of a chain reaction, free radical oxygen molecules bind to proteins and lipids, thus reducing oxygen molecules in a chaotic manner within the tumour. The proposed hypothesis should be used as a methodical approach based on the simultaneous ultrasound imaging diagnostic techniques and therapy, regarding the mechanochemical effect on NB conglomerates with drugs in the tumour. Copyright © 2017 Elsevier Ltd. All rights reserved.
Belair, David G.; Whisler, Jordan A.; Valdez, Jorge; Velazquez, Jeremy; Molenda, James A.; Vickerman, Vernella; Lewis, Rachel; Daigh, Christine; Hansen, Tyler D.; Mann, David A.; Thomson, James A.; Griffith, Linda G.; Kamm, Roger D.; Schwartz, Michael P.; Murphy, William L.
2015-01-01
Here we describe a strategy to model blood vessel development using a well-defined iPSC-derived endothelial cell type (iPSC-EC) cultured within engineered platforms that mimic the 3D microenvironment. The iPSC-ECs used here were first characterized by expression of endothelial markers and functional properties that included VEGF responsiveness, TNF-α-induced upregulation of cell adhesion molecules (MCAM/CD146; ICAM1/CD54), thrombin-dependent barrier function, shear stress-induced alignment, and 2D and 3D capillary-like network formation in Matrigel. The iPSC-ECs also formed 3D vascular networks in a variety of engineering contexts, yielded perfusable, interconnected lumen when co-cultured with primary human fibroblasts, and aligned with flow in microfluidics devices. iPSC-EC function during tubule network formation, barrier formation, and sprouting was consistent with that of primary ECs, and the results suggest a VEGF-independent mechanism for sprouting, which is relevant to therapeutic anti-angiogenesis strategies. Our combined results demonstrate the feasibility of using a well-defined, stable source of iPSC-ECs to model blood vessel formation within a variety of contexts using standard in vitro formats. PMID:25190668
Label-free in vivo flow cytometry in zebrafish using two-photon autofluorescence imaging.
Zeng, Yan; Xu, Jin; Li, Dong; Li, Li; Wen, Zilong; Qu, Jianan Y
2012-07-01
We demonstrate a label-free in vivo flow cytometry in zebrafish blood vessels based on two-photon excited autofluorescence imaging. The major discovery in this work is the strong autofluorescence emission from the plasma in zebrafish blood. The plasma autofluorescence provides excellent contrast for visualizing blood vessels and counting blood cells. In addition, the cellular nicotinamide adenine dinucleotide autofluorescence enables in vivo imaging and counting of white blood cells (neutrophils).
Ridge-branch-based blood vessel detection algorithm for multimodal retinal images
NASA Astrophysics Data System (ADS)
Li, Y.; Hutchings, N.; Knighton, R. W.; Gregori, G.; Lujan, B. J.; Flanagan, J. G.
2009-02-01
Automatic detection of retinal blood vessels is important to medical diagnoses and imaging. With the development of imaging technologies, various modals of retinal images are available. Few of currently published algorithms are applied to multimodal retinal images. Besides, the performance of algorithms with pathologies is expected to be improved. The purpose of this paper is to propose an automatic Ridge-Branch-Based (RBB) detection algorithm of blood vessel centerlines and blood vessels for multimodal retinal images (color fundus photographs, fluorescein angiograms, fundus autofluorescence images, SLO fundus images and OCT fundus images, for example). Ridges, which can be considered as centerlines of vessel-like patterns, are first extracted. The method uses the connective branching information of image ridges: if ridge pixels are connected, they are more likely to be in the same class, vessel ridge pixels or non-vessel ridge pixels. Thanks to the good distinguishing ability of the designed "Segment-Based Ridge Features", the classifier and its parameters can be easily adapted to multimodal retinal images without ground truth training. We present thorough experimental results on SLO images, color fundus photograph database and other multimodal retinal images, as well as comparison between other published algorithms. Results showed that the RBB algorithm achieved a good performance.
Ligament, nerve, and blood vessel anatomy of the lateral zone of the lumbar intervertebral foramina.
Yuan, Shi-Guo; Wen, You-Liang; Zhang, Pei; Li, Yi-Kai
2015-11-01
To provide an anatomical basis for intrusive treatment using an approach through the lateral zones of the lumbar intervertebral foramina (LIF), especially for acupotomology lysis, percutaneous transforaminal endoscopy, and lumbar nerve root block. Blood vessels, ligaments, nerves, and adjacent structures of ten cadavers were exposed through the L1-2 to L5-S1 intervertebral foramina and examined. The lateral zones of the LIF were almost filled by ligaments, nerves, and blood vessels, which were separated into compartments by superior/inferior transforaminal ligaments and corporotransverse superior/inferior ligaments. Two zones relatively lacking in blood vessels and nerves (triangular working zones) were found beside the lamina of the vertebral arch and on the root of the transverse processus. Both the ascending lumbar vein and branches of the intervetebral vein were observed in 12 Kambin's triangles, and in only seven Kambin's triangles were without any veins. Nerves and blood vessels are fixed and protected by transforaminal ligaments and/or corporotransverse ligaments. It is necessary to distinguish the ligaments from nerves using transforaminal endoscopy so that the ligaments can be cut without damaging nerves. Care needs to be taken in intrusive operations because of the veins running through Kambin's triangle. We recommend injecting into the lamina of the vertebral arch and the midpoint between the adjacent roots of the transverse processus when administering nerve root block. Blind percutaneous incision and acupotomology lysis is dangerous in the lateral zones of the LIF, as they are filled with nerves and blood vessels.
Raster-scan optoacoustic angiography reveals 3D microcirculatory changes during cuffed occlusion
NASA Astrophysics Data System (ADS)
Subochev, Pavel; Orlova, Anna; Smolina, Ekaterina; Kirillov, Aleksey; Shakhova, Natalia; Turchin, Ilya
2018-04-01
Acoustic resolution photoacoustic microscopy at the optical wavelength of 532 nm was used to investigate the functional reaction of blood vessels of healthy human skin during cuffed venous occlusion. The high bandwidth of the polyvinilidene difluoride detector provided the opportunity for raster-scan optoacoustic angiography of both the superficial and deep plexuses at the high resolution of 35/50 microns (axial/lateral). A reversible increase of blood supply in the microcirculatory bed during occlusion was revealed.
Methods and new approaches to the calculation of physiological parameters by videodensitometry
NASA Technical Reports Server (NTRS)
Kedem, D.; Londstrom, D. P.; Rhea, T. C., Jr.; Nelson, J. H.; Price, R. R.; Smith, C. W.; Graham, T. P., Jr.; Brill, A. B.; Kedem, D.
1976-01-01
A complex system featuring a video-camera connected to a video disk, cine (medical motion picture) camera and PDP-9 computer with various input/output facilities has been developed. This system enables the performance of quantitative analysis of various functions recorded in clinical studies. Several studies are described, such as heart chamber volume calculations, left ventricle ejection fraction, blood flow through the lungs and also the possibility of obtaining information about blood flow and constrictions in small cross-section vessels
Blood vessel segmentation algorithms - Review of methods, datasets and evaluation metrics.
Moccia, Sara; De Momi, Elena; El Hadji, Sara; Mattos, Leonardo S
2018-05-01
Blood vessel segmentation is a topic of high interest in medical image analysis since the analysis of vessels is crucial for diagnosis, treatment planning and execution, and evaluation of clinical outcomes in different fields, including laryngology, neurosurgery and ophthalmology. Automatic or semi-automatic vessel segmentation can support clinicians in performing these tasks. Different medical imaging techniques are currently used in clinical practice and an appropriate choice of the segmentation algorithm is mandatory to deal with the adopted imaging technique characteristics (e.g. resolution, noise and vessel contrast). This paper aims at reviewing the most recent and innovative blood vessel segmentation algorithms. Among the algorithms and approaches considered, we deeply investigated the most novel blood vessel segmentation including machine learning, deformable model, and tracking-based approaches. This paper analyzes more than 100 articles focused on blood vessel segmentation methods. For each analyzed approach, summary tables are presented reporting imaging technique used, anatomical region and performance measures employed. Benefits and disadvantages of each method are highlighted. Despite the constant progress and efforts addressed in the field, several issues still need to be overcome. A relevant limitation consists in the segmentation of pathological vessels. Unfortunately, not consistent research effort has been addressed to this issue yet. Research is needed since some of the main assumptions made for healthy vessels (such as linearity and circular cross-section) do not hold in pathological tissues, which on the other hand require new vessel model formulations. Moreover, image intensity drops, noise and low contrast still represent an important obstacle for the achievement of a high-quality enhancement. This is particularly true for optical imaging, where the image quality is usually lower in terms of noise and contrast with respect to magnetic resonance and computer tomography angiography. No single segmentation approach is suitable for all the different anatomical region or imaging modalities, thus the primary goal of this review was to provide an up to date source of information about the state of the art of the vessel segmentation algorithms so that the most suitable methods can be chosen according to the specific task. Copyright © 2018 Elsevier B.V. All rights reserved.
Micromachined actuators/sensors for intratubular positioning/steering
Lee, Abraham P.; Krulevitch, Peter A.; Northrup, M. Allen; Trevino, Jimmy C.
1998-01-01
Micromachined thin film cantilever actuators having means for individually controlling the deflection of the cantilevers, valve members, and rudders for steering same through blood vessels, or positioning same within a blood vessel, for example. Such cantilever actuators include tactile sensor arrays mounted on a catheter or guide wire tip for navigation and tissues identification, shape-memory alloy film based catheter/guide wire steering mechanisms, and rudder-based steering devices that allow the selective actuation of rudders that use the flowing blood itself to help direct the catheter direction through the blood vessel. While particularly adapted for medical applications, these cantilever actuators can be used for steering through piping and tubing systems.
Lee, A.P.; Krulevitch, P.A.; Northrup, M.A.; Trevino, J.C.
1998-10-13
Micromachined thin film cantilever actuators having means for individually controlling the deflection of the cantilevers, valve members, and rudders for steering same through blood vessels, or positioning same within a blood vessel, for example. Such cantilever actuators include tactile sensor arrays mounted on a catheter or guide wire tip for navigation and tissues identification, shape-memory alloy film based catheter/guide wire steering mechanisms, and rudder-based steering devices that allow the selective actuation of rudders that use the flowing blood itself to help direct the catheter direction through the blood vessel. While particularly adapted for medical applications, these cantilever actuators can be used for steering through piping and tubing systems. 14 figs.
Lee, Abraham P.; Krulevitch, Peter A.; Northrup, M. Allen; Trevino, Jimmy C.
1998-01-01
Micromachined thin film cantilever actuators having means for individually controlling the deflection of the cantilevers, valve members, and rudders for steering same through blood vessels, or positioning same within a blood vessel, for example. Such cantilever actuators include tactile sensor arrays mounted on a catheter or guide wire tip for navigation and tissues identification, shape-memory alloy film based catheter/guide wire steering mechanisms, and rudder-based steering devices that allow the selective actuation of rudders that use the flowing blood itself to help direct the catheter direction through the blood vessel. While particularly adapted for medical applications, these cantilever actuators can be used for steering through piping and tubing systems.
Wide-field absolute transverse blood flow velocity mapping in vessel centerline
NASA Astrophysics Data System (ADS)
Wu, Nanshou; Wang, Lei; Zhu, Bifeng; Guan, Caizhong; Wang, Mingyi; Han, Dingan; Tan, Haishu; Zeng, Yaguang
2018-02-01
We propose a wide-field absolute transverse blood flow velocity measurement method in vessel centerline based on absorption intensity fluctuation modulation effect. The difference between the light absorption capacities of red blood cells and background tissue under low-coherence illumination is utilized to realize the instantaneous and average wide-field optical angiography images. The absolute fuzzy connection algorithm is used for vessel centerline extraction from the average wide-field optical angiography. The absolute transverse velocity in the vessel centerline is then measured by a cross-correlation analysis according to instantaneous modulation depth signal. The proposed method promises to contribute to the treatment of diseases, such as those related to anemia or thrombosis.
Biology of Bone: The Vasculature of the Skeletal System.
Watson, Emma C; Adams, Ralf H
2017-09-11
Blood vessels are essential for the distribution of oxygen, nutrients, and immune cells, as well as the removal of waste products. In addition to this conventional role as a versatile conduit system, the endothelial cells forming the innermost layer of the vessel wall also possess important signaling capabilities and can control growth, patterning, homeostasis, and regeneration of the surrounding organ. In the skeletal system, blood vessels regulate developmental and regenerative bone formation as well as hematopoiesis by providing vascular niches for hematopoietic stem cells. Here we provide an overview of blood vessel architecture, growth and properties in the healthy, aging, and diseased skeletal system. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.
Angiocrine functions of organ-specific endothelial cells
Rafii, Shahin; Butler, Jason M; Ding, Bi-Sen
2016-01-01
Preface Endothelial cells lining blood vessel capillaries are not just passive conduits for delivering blood. Tissue-specific endothelium establish specialized vascular niches that deploy specific sets of growth factors, known as angiocrine factors, which actively participate in inducing, specifying, patterning, and guiding organ regeneration and maintaining homeostasis and metabolism. Angiocrine factors upregulated in response to injury orchestrates self-renewal and differentiation of tissue-specific repopulating resident stem and progenitor cells into functional organs. Uncovering the precise mechanisms whereby physiological-levels of angiocrine factors are spatially and temporally produced, and distributed by organotypic endothelium to repopulating cells, will lay the foundation for driving organ repair without scarring. PMID:26791722
High sensitivity contrast enhanced optical coherence tomography for functional in vivo imaging
NASA Astrophysics Data System (ADS)
Liba, Orly; SoRelle, Elliott D.; Sen, Debasish; de la Zerda, Adam
2017-02-01
In this study, we developed and applied highly-scattering large gold nanorods (LGNRs) and custom spectral detection algorithms for high sensitivity contrast-enhanced optical coherence tomography (OCT). We were able to detect LGNRs at a concentration as low as 50 pM in blood. We used this approach for noninvasive 3D imaging of blood vessels deep in solid tumors in living mice. Additionally, we demonstrated multiplexed imaging of spectrally-distinct LGNRs that enabled observations of functional drainage in lymphatic networks. This method, which we call MOZART, provides a platform for molecular imaging and characterization of tissue noninvasively at cellular resolution.
Notch regulates BMP responsiveness and lateral branching in vessel networks via SMAD6
Mouillesseaux, Kevin P.; Wiley, David S.; Saunders, Lauren M.; Wylie, Lyndsay A.; Kushner, Erich J.; Chong, Diana C.; Citrin, Kathryn M.; Barber, Andrew T.; Park, Youngsook; Kim, Jun-Dae; Samsa, Leigh Ann; Kim, Jongmin; Liu, Jiandong; Jin, Suk-Won; Bautch, Victoria L.
2016-01-01
Functional blood vessel growth depends on generation of distinct but coordinated responses from endothelial cells. Bone morphogenetic proteins (BMP), part of the TGFβ superfamily, bind receptors to induce phosphorylation and nuclear translocation of SMAD transcription factors (R-SMAD1/5/8) and regulate vessel growth. However, SMAD1/5/8 signalling results in both pro- and anti-angiogenic outputs, highlighting a poor understanding of the complexities of BMP signalling in the vasculature. Here we show that BMP6 and BMP2 ligands are pro-angiogenic in vitro and in vivo, and that lateral vessel branching requires threshold levels of R-SMAD phosphorylation. Endothelial cell responsiveness to these pro-angiogenic BMP ligands is regulated by Notch status and Notch sets responsiveness by regulating a cell-intrinsic BMP inhibitor, SMAD6, which affects BMP responses upstream of target gene expression. Thus, we reveal a paradigm for Notch-dependent regulation of angiogenesis: Notch regulates SMAD6 expression to affect BMP responsiveness of endothelial cells and new vessel branch formation. PMID:27834400
Chemokine guided angiogenesis directs coronary vasculature formation in zebrafish
Harrison, Michael R.M.; Bussmann, Jeroen; Huang, Ying; Zhao, Long; Osorio, Arthela; Burns, C. Geoffrey; Burns, Caroline E.; Sucov, Henry M.; Siekmann, Arndt F.; Lien, Ching-Ling
2015-01-01
SUMMARY Interruption of coronary blood supply severely impairs heart function with often-fatal consequences for heart disease patients. However the formation and maturation of these coronary vessels is not fully understood. Here we provide a detailed analysis of coronary vessel development in zebrafish. We observe that coronary vessels form in zebrafish by angiogenic sprouting of arterial cells derived from the endocardium at the atrioventricular canal. Endothelial cells express the CXC-motif chemokine receptor Cxcr4a and migrate to vascularize the ventricle under the guidance of the myocardium-expressed ligand Cxcl12b. cxcr4a mutant zebrafish fail to form a vascular network, whereas ectopic expression of Cxcl12b ligand induces coronary vessel formation. Importantly, cxcr4a mutant zebrafish fail to undergo heart regeneration following injury. Our results suggest that chemokine-signaling has an essential role in coronary vessel formation by directing migration of endocardium-derived endothelial cells. Poorly developed vasculature in cxcr4a mutants likely underlies decreased regenerative potential in adults. PMID:26017769
Tumor-line specific causes of intertumor heterogeneity in blood supply in human melanoma xenografts.
Simonsen, Trude G; Gaustad, Jon-Vidar; Leinaas, Marit N; Rofstad, Einar K
2013-01-01
The efficacy of most cancer treatments is strongly influenced by the tumor blood supply. The results of experimental studies using xenografted tumors to evaluate novel cancer treatments may therefore vary considerably depending on the blood supply of the specific tumor model being used. Mechanisms underlying intertumor heterogeneity in the blood supply of xenografted tumors derived from same tumor line are poorly understood, and were investigated here by using intravital microscopy to assess tumor blood supply and vascular morphology in human melanomas growing in dorsal window chambers in BALB/c nu/nu mice. Two melanoma lines, A-07 and R-18, were included in the study. These lines differed substantially in angiogenic profiles. Thus, when the expression of 84 angiogenesis-related genes was investigated with a quantitative PCR array, 25% of these genes showed more than a 10-fold difference in expression. Furthermore, A-07 tumors showed higher vascular density, higher vessel tortuosity, higher vessel diameters, shorter vessel segments, and more chaotic vascular architecture than R-18 tumors. Both lines showed large intertumor heterogeneity in blood supply. In the A-07 line, tumors with low microvascular density, long vessel segment, and high vessel tortuosity showed poor blood supply, whereas in the R-18 line, poor tumor blood supply was associated with low tumor arteriolar diameters. Thus, tumor-line specific causes of intertumor heterogeneity in blood supply were identified in human melanoma xenografts, and these tumor-line specific mechanisms were possibly a result of tumor-line specific angiogenic profiles. Copyright © 2012 Elsevier Inc. All rights reserved.
notch3 is essential for oligodendrocyte development and vascular integrity in zebrafish
Zaucker, Andreas; Mercurio, Sara; Sternheim, Nitzan; Talbot, William S.; Marlow, Florence L.
2013-01-01
SUMMARY Mutations in the human NOTCH3 gene cause CADASIL syndrome (cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy). CADASIL is an inherited small vessel disease characterized by diverse clinical manifestations including vasculopathy, neurodegeneration and dementia. Here we report two mutations in the zebrafish notch3 gene, one identified in a previous screen for mutations with reduced expression of myelin basic protein (mbp) and another caused by a retroviral insertion. Reduced mbp expression in notch3 mutant embryos is associated with fewer oligodendrocyte precursor cells (OPCs). Despite an early neurogenic phenotype, mbp expression recovered at later developmental stages and some notch3 homozygous mutants survived to adulthood. These mutants, as well as adult zebrafish carrying both mutant alleles together, displayed a striking stress-associated accumulation of blood in the head and fins. Histological analysis of mutant vessels revealed vasculopathy, including: an enlargement (dilation) of vessels in the telencephalon and fin, disorganization of the normal stereotyped arrangement of vessels in the fin, and an apparent loss of arterial morphological structure. Expression of hey1, a well-known transcriptional target of Notch signaling, was greatly reduced in notch3 mutant fins, suggesting that Notch3 acts via a canonical Notch signaling pathway to promote normal vessel structure. Ultrastructural analysis confirmed the presence of dilated vessels in notch3 mutant fins and revealed that the vessel walls of presumed arteries showed signs of deterioration. Gaps in the arterial wall and the presence of blood cells outside of vessels in mutants indicated that compromised vessel structure led to hemorrhage. In notch3 heterozygotes, we found elevated expression of both notch3 itself and target genes, indicating that specific alterations in gene expression due to partial loss of Notch3 function might contribute to the abnormalities observed in heterozygous larvae and adults. Our analysis of zebrafish notch3 mutants indicates that Notch3 regulates OPC development and mbp gene expression in larvae, and maintains vascular integrity in adults. PMID:23720232
NASA Astrophysics Data System (ADS)
Parshina, S. S.; Tokaeva, L. K.; Dolgova, E. M.; Afanas'yeva, T. N.; Strelnikova, O. A.
The origin of hemorheologic and endothelial defects in patients with unstable angina (comparing with healthy persons) is determined by a solar activity period: the blood viscosity increases in a period of high solar activity in the vessels of small, medium and macro diameters, a local decompensate dysfunction of small vessels endothelium had been fixed (microcirculation area). In the period of a low solar activity there is an increase of a blood viscosity in vessels of all diameters, generalized subcompensated endothelial dysfunction is developed (on the background of the III phase blood clotting activating). In the period of a high solar activity a higher blood viscosity had been fixed, comparing with the period of a low solar activity.
1995-06-01
Spacelab Life Science -1 (SLS-1) was the first Spacelab mission dedicated solely to life sciences. The main purpose of the SLS-1 mission was to study the mechanisms, magnitudes, and time courses of certain physiological changes that occur during space flight, to investigate the consequences of the body's adaptation to microgravity and readjustment to Earth's gravity, and bring the benefits back home to Earth. The mission was designed to explore the responses of the heart, lungs, blood vessels, kidneys, and hormone-secreting glands to microgravity and related body fluid shifts; examine the causes of space motion sickness; and study changes in the muscles, bones, and cells. This photograph shows astronaut Rhea Seddon conducting an inflight study of the Cardiovascular Deconditioning experiment by breathing into the cardiovascular rebreathing unit. This experiment focused on the deconditioning of the heart and lungs and changes in cardiopulmonary function that occur upon return to Earth. By using noninvasive techniques of prolonged expiration and rebreathing, investigators can determine the amount of blood pumped out of the heart (cardiac output), the ease with which blood flows through all the vessels (total peripheral resistance), oxygen used and carbon dioxide released by the body, and lung function and volume changes. SLS-1 was launched aboard the Space Shuttle Orbiter Columbia (STS-40) on June 5, 1995.
Korakianitis, Theodosios; Shi, Yubing
2006-09-01
Numerical modeling of the human cardiovascular system has always been an active research direction since the 19th century. In the past, various simulation models of different complexities were proposed for different research purposes. In this paper, an improved numerical model to study the dynamic function of the human circulation system is proposed. In the development of the mathematical model, the heart chambers are described with a variable elastance model. The systemic and pulmonary loops are described based on the resistance-compliance-inertia concept by considering local effects of flow friction, elasticity of blood vessels and inertia of blood in different segments of the blood vessels. As an advancement from previous models, heart valve dynamics and atrioventricular interaction, including atrial contraction and motion of the annulus fibrosus, are specifically modeled. With these improvements the developed model can predict several important features that were missing in previous numerical models, including regurgitant flow on heart valve closure, the value of E/A velocity ratio in mitral flow, the motion of the annulus fibrosus (called the KG diaphragm pumping action), etc. These features have important clinical meaning and their changes are often related to cardiovascular diseases. Successful simulation of these features enhances the accuracy of simulations of cardiovascular dynamics, and helps in clinical studies of cardiac function.
Spacelab Life Science-1 Mission Onboard Photograph
NASA Technical Reports Server (NTRS)
1995-01-01
Spacelab Life Science -1 (SLS-1) was the first Spacelab mission dedicated solely to life sciences. The main purpose of the SLS-1 mission was to study the mechanisms, magnitudes, and time courses of certain physiological changes that occur during space flight, to investigate the consequences of the body's adaptation to microgravity and readjustment to Earth's gravity, and bring the benefits back home to Earth. The mission was designed to explore the responses of the heart, lungs, blood vessels, kidneys, and hormone-secreting glands to microgravity and related body fluid shifts; examine the causes of space motion sickness; and study changes in the muscles, bones, and cells. This photograph shows astronaut Rhea Seddon conducting an inflight study of the Cardiovascular Deconditioning experiment by breathing into the cardiovascular rebreathing unit. This experiment focused on the deconditioning of the heart and lungs and changes in cardiopulmonary function that occur upon return to Earth. By using noninvasive techniques of prolonged expiration and rebreathing, investigators can determine the amount of blood pumped out of the heart (cardiac output), the ease with which blood flows through all the vessels (total peripheral resistance), oxygen used and carbon dioxide released by the body, and lung function and volume changes. SLS-1 was launched aboard the Space Shuttle Orbiter Columbia (STS-40) on June 5, 1995.
Acrolein generation stimulates hypercontraction in isolated human blood vessels
Conklin, D.J.; Bhatnagar, A.; Cowley, H.R.; Johnson, G.H.; Wiechmann, R.J.; Sayre, L.M.; Trent, M.B.; Boor, P.J.
2012-01-01
Increased risk of vasospasm, a spontaneous hyperconstriction, is associated with atherosclerosis, cigarette smoking, and hypertension—all conditions involving oxidative stress, lipid peroxidation, and inflammation. To test the role of the lipid peroxidation- and inflammation-derived aldehyde, acrolein, in human vasospasm, we developed an ex vivo model using human coronary artery bypass graft (CABG) blood vessels and a demonstrated acrolein precursor, allylamine. Allylamine induces hypercontraction in isolated rat coronary artery in a semicarbazide-sensitive amine oxidase activity (SSAO) dependent manner. Isolated human CABG blood vessels (internal mammary artery, radial artery, saphenous vein) were used to determine: (1) vessel responses and sensitivity to acrolein, allylamine, and H2O2 exposure (1 μM–1 mM), (2) SSAO dependence of allylamine-induced effects using SSAO inhibitors (semicarbazide, 1 mM; MDL 72274-E, active isomer; MDL 72274-Z, inactive isomer; 100 μM), (3) the vasoactive effects of two other SSAO amine substrates, benzylamine and methylamine, and (4) the contribution of extracellular Ca2+ to hypercontraction. Acrolein or allylamine but not H2O2, benzylamine, or methylamine stimulated spontaneous and pharmacologically intractable hypercontraction in CABG blood vessels that was similar to clinical vasospasm. Allylamine-induced hypercontraction and blood vessel SSAO activity were abolished by pretreatment with semicarbazide or MDL 72274-E but not by MDL 72274-Z. Allylamine-induced hypercontraction also was significantly attenuated in Ca2+-free buffer. In isolated aorta of spontaneously hypertensive rat, allylamine-induced an SSAO-dependent contraction and enhanced norepinephrine sensitivity but not in Sprague–Dawley rat aorta. We conclude that acrolein generation in the blood vessel wall increases human susceptibility to vasospasm, an event that is enhanced in hypertension. PMID:17095030
Investigating the fluid mechanics behind red blood cell-induced lateral platelet motion
NASA Astrophysics Data System (ADS)
Crowl Erickson, Lindsay; Fogelson, Aaron
2009-11-01
Platelets play an essential role in blood clotting; they adhere to damaged tissue and release chemicals that activate other platelets. Yet in order to adhere, platelets must first come into contact with the injured vessel wall. Under arterial flow conditions, platelets have an enhanced concentration near blood vessel walls. This non-uniform cell distribution depends on the fluid dynamics of blood as a heterogeneous medium. We use a parallelized lattice Boltzmann-immersed boundary method to solve the flow dynamics of red cells and platelets in a periodic 2D vessel with no-slip boundary conditions. Red cells are treated as biconcave immersed boundary objects with isotropic Skalak membrane tension and an internal viscosity five times that of the surrounding plasma. Using this method we analyze the influence of shear rate, hematocrit, and red cell membrane properties on lateral platelet motion. We find that the effective diffusion of platelets is significantly lower near the vessel wall compared to the center of the vessel. Insight gained from this work could lead to significant improvements to current models for platelet adhesion where the presence of red blood cells is neglected due to computational intensity.
Laser speckle contrast imaging of skin blood perfusion responses induced by laser coagulation
NASA Astrophysics Data System (ADS)
Ogami, M.; Kulkarni, R.; Wang, H.; Reif, R.; Wang, R. K.
2014-08-01
We report application of laser speckle contrast imaging (LSCI), i.e., a fast imaging technique utilising backscattered light to distinguish such moving objects as red blood cells from such stationary objects as surrounding tissue, to localise skin injury. This imaging technique provides detailed information about the acute perfusion response after a blood vessel is occluded. In this study, a mouse ear model is used and pulsed laser coagulation serves as the method of occlusion. We have found that the downstream blood vessels lacked blood flow due to occlusion at the target site immediately after injury. Relative flow changes in nearby collaterals and anastomotic vessels have been approximated based on differences in intensity in the nearby collaterals and anastomoses. We have also estimated the density of the affected downstream vessels. Laser speckle contrast imaging is shown to be used for highresolution and fast-speed imaging for the skin microvasculature. It also allows direct visualisation of the blood perfusion response to injury, which may provide novel insights to the field of cutaneous wound healing.
The effects of recirculation flows on mass transfer from the arterial wall to flowing blood.
Zhang, Zhiguo; Deng, Xiaoyan; Fan, Yubo; Guidoin, Robert
2008-01-01
Using a sudden tubular expansion as a model of an arterial stenosis, the effect of disturbed flow on mass transfer from the arterial wall to flowing blood was studied theoretically and tested experimentally by measuring the dissolution rate of benzoic acid disks forming the outer tube of a sudden tubular expansion. The study revealed that mass transfer from vessel wall to flowing fluid in regions of disturbed flow is independent of wall shear rates. The rate of mass transfer is significantly higher in regions of disturbed flow with a local maximum around the reattachment point where the wall shear rate is zero. The experimental study also revealed that the rate of mass transfer from the vessel wall to a flowing fluid is much higher in the presence of microspheres (as models of blood cells) in the flowing fluid and under the condition of pulsatile flow than in steady flow. These results imply that flow disturbance may enhance the transport of biochemicals and macromolecules, such as plasma proteins and lipoproteins synthesized within the blood vessel wall, from the blood vessel wall to flowing blood.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogami, M; Kulkarni, R; Wang, H
We report application of laser speckle contrast imaging (LSCI), i.e., a fast imaging technique utilising backscattered light to distinguish such moving objects as red blood cells from such stationary objects as surrounding tissue, to localise skin injury. This imaging technique provides detailed information about the acute perfusion response after a blood vessel is occluded. In this study, a mouse ear model is used and pulsed laser coagulation serves as the method of occlusion. We have found that the downstream blood vessels lacked blood flow due to occlusion at the target site immediately after injury. Relative flow changes in nearby collateralsmore » and anastomotic vessels have been approximated based on differences in intensity in the nearby collaterals and anastomoses. We have also estimated the density of the affected downstream vessels. Laser speckle contrast imaging is shown to be used for highresolution and fast-speed imaging for the skin microvasculature. It also allows direct visualisation of the blood perfusion response to injury, which may provide novel insights to the field of cutaneous wound healing. (laser biophotonics)« less
Subconjunctival Hemorrhage (Broken Blood Vessel in Eye)
Subconjunctival hemorrhage (broken blood vessel in eye) Overview A subconjunctival hemorrhage (sub-kun-JUNK-tih-vul HEM-uh-ruj) ... may not even realize you have a subconjunctival hemorrhage until you look in the mirror and notice ...
Dietary sodium and health: more than just blood pressure.
Farquhar, William B; Edwards, David G; Jurkovitz, Claudine T; Weintraub, William S
2015-03-17
Sodium is essential for cellular homeostasis and physiological function. Excess dietary sodium has been linked to elevations in blood pressure (BP). Salt sensitivity of BP varies widely, but certain subgroups tend to be more salt sensitive. The mechanisms underlying sodium-induced increases in BP are not completely understood but may involve alterations in renal function, fluid volume, fluid-regulatory hormones, the vasculature, cardiac function, and the autonomic nervous system. Recent pre-clinical and clinical data support that even in the absence of an increase in BP, excess dietary sodium can adversely affect target organs, including the blood vessels, heart, kidneys, and brain. In this review, the investigators review these issues and the epidemiological research relating dietary sodium to BP and cardiovascular health outcomes, addressing recent controversies. They also provide information and strategies for reducing dietary sodium. Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Sivakamasundari, J; Natarajan, V
2015-01-01
Diabetic Retinopathy (DR) is a disorder that affects the structure of retinal blood vessels due to long-standing diabetes mellitus. Automated segmentation of blood vessel is vital for periodic screening and timely diagnosis. An attempt has been made to generate continuous retinal vasculature for the design of Content Based Image Retrieval (CBIR) application. The typical normal and abnormal retinal images are preprocessed to improve the vessel contrast. The blood vessels are segmented using evolutionary based Harmony Search Algorithm (HSA) combined with Otsu Multilevel Thresholding (MLT) method by best objective functions. The segmentation results are validated with corresponding ground truth images using binary similarity measures. The statistical, textural and structural features are obtained from the segmented images of normal and DR affected retina and are analyzed. CBIR in medical image retrieval applications are used to assist physicians in clinical decision-support techniques and research fields. A CBIR system is developed using HSA based Otsu MLT segmentation technique and the features obtained from the segmented images. Similarity matching is carried out between the features of query and database images using Euclidean Distance measure. Similar images are ranked and retrieved. The retrieval performance of CBIR system is evaluated in terms of precision and recall. The CBIR systems developed using HSA based Otsu MLT and conventional Otsu MLT methods are compared. The retrieval performance such as precision and recall are found to be 96% and 58% for CBIR system using HSA based Otsu MLT segmentation. This automated CBIR system could be recommended for use in computer assisted diagnosis for diabetic retinopathy screening.
Fiber-based optic sensor for detecting human blood clot: present and future revival
NASA Astrophysics Data System (ADS)
Elshikeri, Nada; Bakhtiar, Hazri
2018-05-01
Sustaining human’s life-frame away from being impeded by the clot - ghost term, we attempt to approach a mobile fiber-based optical sensor (f-s) for detecting blood clot in a blood vessel (intra-arteries/veins). Blood vessels are the part of the circulatory system that transport blood throughout the human body, thus their significance of being protected arise to the monograph focus. MRI (magnetic resonance imaging), X-rays and other medical instruments are diagnostic immobility techniques with a slackest interval. The corer causation of fiber-based optical sensor is to detect a clump of blood in the bloodstream by providing a prompt mobile diagnostic intervals preserving last-minutes-breath of human’s life. The detector (f-s) has been etched by diluting sulphuric acid ~10% at certain zone to sensate its function. The in-vitro monograph peaks its maximal monitoring when the sensor is attached to Raman Spectroscopy (RS) setup. RS quantifies the relative intensities of fibrinogen bond, which is the first type of blood coagulation elements of blood plasma. Blood coagulation parameters are the major concern of the monograph investigation, such as total haemoglobin (tHb), clotting reaction time (t), clot progression time (t2), maximum clot amplitude (ma) and mean refractive index (r). A blood sample will be drawn from the patient and after centrifugation to separate blood plasma from its constituents, then an immediate sloshing of blood plasma in the (f-s) packet which has its plug-in to RS. Estimating the quantitative analysis of blood sample concentration, RS will determine the presence of coagulation in terms of intensity and medical procedures will dominate the treatment process. Thus, the suggestive monograph provides a definite instrument for investigating blood coagulation intra-arteries/veins promptly.
[Finite Element Analysis of Intravascular Stent Based on ANSYS Software].
Shi, Gengqiang; Song, Xiaobing
2015-10-01
This paper adopted UG8.0 to bulid the stent and blood vessel models. The models were then imported into the finite element analysis software ANSYS. The simulation results of ANSYS software showed that after endothelial stent implantation, the velocity of the blood was slow and the fluctuation of velocity was small, which meant the flow was relatively stable. When blood flowed through the endothelial stent, the pressure gradually became smaller, and the range of the pressure was not wide. The endothelial shear stress basically unchanged. In general, it can be concluded that the endothelial stents have little impact on the flow of blood and can fully realize its function.
Chemical perturbation of vascular development is a putative toxicity pathway which may result in developmental toxicity. EPA’s high-throughput screening (HTS) ToxCast program contains assays which measure cellular signals and biological processes critical for blood vessel develop...
Interaction of Vascular Smooth Muscle Cells Under Low Shear Stress
NASA Technical Reports Server (NTRS)
Seidel, Charles L.
1998-01-01
The blood vessel wall consists of three cellular layers, an outer adventitial, a middle medial and an inner intimal layer. When the blood vessel forms in the embryo it begins as a tube composed of a single cell type called endothelial cells. Over time, other cells are recruited from the surrounding tissue to form additional layers on the outer surface of the endothelial tube. The cells that are recruited are called mesenchymal cells. Mesenchymal cells are responsible for the production of connective tissue that holds the blood vessel together and for developing into vascular smooth muscle cells that are responsible for regulating the diameter of the vessel (1) and therefore, blood flow. In a fully developed blood vessel, the endothelial cells make- up the majority of cells in the intimal layer while the mesenchymal cells make-up the majority of cells in the medial and adventitial layers. Within the medial layer of a mature vessel, cells are organized into multiple circular layers of alternating bands of connective tissue and cells. The cell layer is composed of a mixture of mesenchymal cells that have not developed into smooth muscle cells and fully developed smooth muscle cells (2). The assembly and organization of complex tissues is directed in part by a signaling system composed of proteins on the cell surface called adhesion molecules. Adhesion molecules enable cells to recognize each other as well as the composition of the connective tissue in which they reside (3). It was hypothesized that the different cell types that compose the vascular wall possess different adhesion molecules that enable them to recognize each other and through this recognition system, form the complex layered organization of the vascular wall. In other words, the layered organization is an intrinsic property of the cells. If this hypothesis is correct then the different cells that make up the vessel wall, when mixed together, should organize themselves into a layered structure resembling an intact blood vessel. Experiments described below were designed to test this hypothesis.
Cerebral vessels segmentation for light-sheet microscopy image using convolutional neural networks
NASA Astrophysics Data System (ADS)
Hu, Chaoen; Hui, Hui; Wang, Shuo; Dong, Di; Liu, Xia; Yang, Xin; Tian, Jie
2017-03-01
Cerebral vessel segmentation is an important step in image analysis for brain function and brain disease studies. To extract all the cerebrovascular patterns, including arteries and capillaries, some filter-based methods are used to segment vessels. However, the design of accurate and robust vessel segmentation algorithms is still challenging, due to the variety and complexity of images, especially in cerebral blood vessel segmentation. In this work, we addressed a problem of automatic and robust segmentation of cerebral micro-vessels structures in cerebrovascular images acquired by light-sheet microscope for mouse. To segment micro-vessels in large-scale image data, we proposed a convolutional neural networks (CNNs) architecture trained by 1.58 million pixels with manual label. Three convolutional layers and one fully connected layer were used in the CNNs model. We extracted a patch of size 32x32 pixels in each acquired brain vessel image as training data set to feed into CNNs for classification. This network was trained to output the probability that the center pixel of input patch belongs to vessel structures. To build the CNNs architecture, a series of mouse brain vascular images acquired from a commercial light sheet fluorescence microscopy (LSFM) system were used for training the model. The experimental results demonstrated that our approach is a promising method for effectively segmenting micro-vessels structures in cerebrovascular images with vessel-dense, nonuniform gray-level and long-scale contrast regions.
BahadarKhan, Khan; A Khaliq, Amir; Shahid, Muhammad
2016-01-01
Diabetic Retinopathy (DR) harm retinal blood vessels in the eye causing visual deficiency. The appearance and structure of blood vessels in retinal images play an essential part in the diagnoses of an eye sicknesses. We proposed a less computational unsupervised automated technique with promising results for detection of retinal vasculature by using morphological hessian based approach and region based Otsu thresholding. Contrast Limited Adaptive Histogram Equalization (CLAHE) and morphological filters have been used for enhancement and to remove low frequency noise or geometrical objects, respectively. The hessian matrix and eigenvalues approach used has been in a modified form at two different scales to extract wide and thin vessel enhanced images separately. Otsu thresholding has been further applied in a novel way to classify vessel and non-vessel pixels from both enhanced images. Finally, postprocessing steps has been used to eliminate the unwanted region/segment, non-vessel pixels, disease abnormalities and noise, to obtain a final segmented image. The proposed technique has been analyzed on the openly accessible DRIVE (Digital Retinal Images for Vessel Extraction) and STARE (STructured Analysis of the REtina) databases along with the ground truth data that has been precisely marked by the experts. PMID:27441646
Robust approach to ocular fundus image analysis
NASA Astrophysics Data System (ADS)
Tascini, Guido; Passerini, Giorgio; Puliti, Paolo; Zingaretti, Primo
1993-07-01
The analysis of morphological and structural modifications of retinal blood vessels plays an important role both to establish the presence of some systemic diseases as hypertension and diabetes and to study their course. The paper describes a robust set of techniques developed to quantitatively evaluate morphometric aspects of the ocular fundus vascular and micro vascular network. They are defined: (1) the concept of 'Local Direction of a vessel' (LD); (2) a special form of edge detection, named Signed Edge Detection (SED), which uses LD to choose the convolution kernel in the edge detection process and is able to distinguish between the left or the right vessel edge; (3) an iterative tracking (IT) method. The developed techniques use intensively both LD and SED in: (a) the automatic detection of number, position and size of blood vessels departing from the optical papilla; (b) the tracking of body and edges of the vessels; (c) the recognition of vessel branches and crossings; (d) the extraction of a set of features as blood vessel length and average diameter, arteries and arterioles tortuosity, crossing position and angle between two vessels. The algorithms, implemented in C language, have an execution time depending on the complexity of the currently processed vascular network.
Akbareian, Sophia E; Pitsillides, Andrew A; Macharia, Raymond G; McGonnell, Imelda M
2015-01-01
Cranial foramina are holes within the skull, formed during development, allowing entry and exit of blood vessels and nerves. Once formed they must remain open, due to the vital structures they contain, i.e. optic nerves, jugular vein, carotid artery, and other cranial nerves and blood vessels. Understanding cranial foramina development is essential as cranial malformations lead to the stenosis or complete closure of these structures, resulting in blindness, deafness, facial paralysis, raised intracranial pressure and lethality. Here we focus on describing early events in the formation of the jugular, carotid and hypoglossal cranial foramina that form in the mesoderm-derived, endochondral occipital bones at the base of the embryonic chick skull. Whole-mount skeletal staining of skulls indicates the appearance of these foramina from HH32/D7.5 onwards. Haematoxylin & eosin staining of sections shows that the intimately associated mesenchyme, neighbouring the contents of these cranial foramina, is initially very dense and gradually becomes sparser as development proceeds. Histological examination also revealed that these foramina initially contain relatively large-diameter nerves, which later become refined, and are closely associated with the blood vessel, which they also innervate within the confines of the foramina. Interestingly cranial foramina in the base of the skull contain blood vessels lacking smooth muscle actin, which suggests these blood vessels belong to glomus body structures within the foramina. The blood vessel shape also appears to dictate the overall shape of the resulting foramina. We initially hypothesised that cranial foramina development could involve targeted proliferation and local apoptosis to cause ‘mesenchymal clearing’ and the creation of cavities in a mechanism similar to joint cavitation. We find that this is not the case, and propose that a mechanism reliant upon local nerve/blood vessel-derived restriction of ossification may contribute to foramina formation during cranial development. PMID:25994127
Izquierdo, Elena; Cañete, Juan D; Celis, Raquel; Santiago, Begoña; Usategui, Alicia; Sanmartí, Raimon; Del Rey, Manuel J; Pablos, José L
2009-12-02
Angiogenesis is considered an important factor in the pathogenesis of Rheumatoid Arthritis (RA) where it has been proposed as a therapeutic target. In other settings, active angiogenesis is characterized by pathologic, immature vessels that lack periendothelial cells. We searched for the presence of immature vessels in RA synovium and analyzed the dynamics of synovial vasculature along the course of the disease, particularly after therapeutic response to TNF antagonists. Synovial arthroscopic biopsies from RA, osteoarthritis (OA) and normal controls were analyzed by double labeling of endothelium and pericytes/smooth muscle mural cells to identify and quantify mature/immature blood vessels. To analyze clinicopathological correlations, a cross-sectional study on 82 synovial biopsies from RA patients with variable disease duration and severity was performed. A longitudinal analysis was performed in 25 patients with active disease rebiopsied after anti-TNF-alpha therapy. We found that most RA synovial tissues contained a significant fraction of immature blood vessels lacking periendothelial coverage, whereas they were rare in OA, and inexistent in normal synovial tissues. Immature vessels were observed from the earliest phases of the disease but their presence or density was significantly increased in patients with longer disease duration, higher activity and severity, and stronger inflammatory cell infiltration. In patients that responded to anti-TNF-alpha therapy, immature vessels were selectively depleted. The mature vasculature was similarly expanded in early or late disease and unchanged by therapy. RA synovium contains a significant fraction of neoangiogenic, immature blood vessels. Progression of the disease increases the presence and density of immature but not mature vessels and only immature vessels are depleted in response to anti-TNFalpha therapy. The different dynamics of the mature and immature vascular fractions has important implications for the development of anti-angiogenic interventions in RA.
Laparoscopic prototype for optical sealing of renal blood vessels
NASA Astrophysics Data System (ADS)
Hardy, Luke A.; Hutchens, Thomas C.; Larson, Eric R.; Gonzalez, David A.; Chang, Chun-Hung; Nau, William H.; Fried, Nathaniel M.
2017-02-01
Energy-based, radiofrequency and ultrasonic devices provide rapid sealing of blood vessels during laparoscopic procedures. We are exploring infrared lasers as an alternative for vessel sealing with less collateral thermal damage. Previous studies demonstrated vessel sealing in an in vivo porcine model using a 1470-nm laser. However, the initial prototype was designed for open surgery and featured tissue clasping and light delivery mechanisms incompatible with laparoscopic surgery. In this study, a laparoscopic prototype similar to devices in surgical use was developed, and tests were conducted on porcine renal blood vessels. The 5-mm-OD prototype featured a traditional Maryland jaw configuration. Laser energy was delivered through a 550-μm-core fiber and side-delivery from the lower jaw, with beam dimensions of 18-mm-length x 1.2-mm-width. The 1470-nm diode laser delivered 68 W with 3 s activation time. A total of 69 porcine renal vessels with mean diameter of 3.3 +/- 1.7 mm were tested, ex vivo. Vessels smaller than 5 mm were consistently sealed (48/51) with burst pressures greater than malignant hypertension blood pressure (180 mmHg), averaging 1038 +/- 474 mmHg. Vessels larger than 5 mm were not consistently sealed (6/18), yielding burst pressures of only 174 +/- 221 mmHg. Seal width, thermal damage zone, and thermal spread averaged 1.7 +/- 0.8, 3.4 +/- 0.7, and 1.0 +/- 0.4 mm. A novel optical laparoscopic prototype with 5-mm- OD shaft integrated within a standard Maryland jaw design consistently sealed vessels less than 5 mm with minimal thermal spread. Further in vivo studies are planned to test performance across a variety of vessels and tissues.
Blood vessel growth blocker may treat AIDS-related Kaposi’s sarcoma
Patients with an AIDS-associated cancer, Kaposi's sarcoma (KS), showed improvement after receiving the combination of bevacizumab, a cancer drug that blocks the growth of new blood vessels, and highly active antiretroviral therapy (HAART).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lagerlöf, Jakob H., E-mail: Jakob@radfys.gu.se; Kindblom, Jon; Bernhardt, Peter
2014-04-15
Purpose: Oxygen distribution models have been used to analyze the influences of oxygen tensions on tissue response after radiotherapy. These distributions are often generated assuming constant oxygen tension in the blood vessels. However, as red blood cells progress through the vessels, oxygen is continuously released into the plasma and the surrounding tissue, resulting in longitudinally varying oxygen levels in the blood vessels. In the present study, the authors investigated whether a tumor oxygenation model that incorporated longitudinally varying oxygen levels would provide different predictions of necrotic fractions and radiosensitivity compared to commonly used models with a constant oxygen pressure. Methods:more » Our models simulated oxygen diffusion based on a Green's function approach and oxygen consumption according to the Michaelis-Menten equation. The authors constructed tumor models with different vascular fractions (VFs), from which they generated depth oxygenation curves and a look-up table of oxygen pressure gradients. The authors evaluated models of spherical tumors of various sizes, from 1 to 10{sup 4} mg. The authors compared the results from a model with constant vessel oxygen (CVO) pressure to those from models with longitudinal variations in oxygen saturation and either a constant VF (CVF) or variable VF (VVF) within the tumor tissue. The authors monitored the necrotic fractions, defined as tumor regions with an oxygen pressure below 1 mmHg. Tumor radiation sensitivity was expressed as D{sub 99,} the homogeneous radiation dose required for a tumor control probability of 0.99. Results: In the CVO saturation model, no necrosis was observed, and decreasing the VF could only decrease the D{sub 99} by up to 10%. Furthermore, the D{sub 99} vs VF dependence was similar for different tumor masses. Compared to the CVO model, the extended CVF and VVF models provided clearly different results, including pronounced effects of VF and tumor size on the necrotic fraction and D{sub 99}, necrotic fractions ranging from 0% to 97%, and a maximal D{sub 99} increment of 57%. Only minor differences were observed between different vessel architectures, i.e., CVF vs VVF. In the smallest tumor with a low necrotic fraction, the D{sub 99} strictly decreased with increasing blood velocity. Increasing blood velocity also decreased the necrotic fraction in all tumor sizes. VF had the most profound influence on both the necrotic fraction and on D{sub 99}. Conclusions: Our present analysis of necrotic formation and the impact of tumor oxygenation on D{sub 99} demonstrated the importance of including longitudinal variations in vessel oxygen content in tumor models. For small tumors, radiosensitivity was particularly dependent on VF and slightly dependent on the blood velocity and vessel arrangement. These dependences decreased with increasing tumor size, because the necrotic fraction also increased, thereby decreasing the number of viable tumor cells that required sterilization. The authors anticipate that the present model will be useful for estimating tumor oxygenation and radiation response in future detailed studies.« less
Brain vascular image segmentation based on fuzzy local information C-means clustering
NASA Astrophysics Data System (ADS)
Hu, Chaoen; Liu, Xia; Liang, Xiao; Hui, Hui; Yang, Xin; Tian, Jie
2017-02-01
Light sheet fluorescence microscopy (LSFM) is a powerful optical resolution fluorescence microscopy technique which enables to observe the mouse brain vascular network in cellular resolution. However, micro-vessel structures are intensity inhomogeneity in LSFM images, which make an inconvenience for extracting line structures. In this work, we developed a vascular image segmentation method by enhancing vessel details which should be useful for estimating statistics like micro-vessel density. Since the eigenvalues of hessian matrix and its sign describes different geometric structure in images, which enable to construct vascular similarity function and enhance line signals, the main idea of our method is to cluster the pixel values of the enhanced image. Our method contained three steps: 1) calculate the multiscale gradients and the differences between eigenvalues of Hessian matrix. 2) In order to generate the enhanced microvessels structures, a feed forward neural network was trained by 2.26 million pixels for dealing with the correlations between multi-scale gradients and the differences between eigenvalues. 3) The fuzzy local information c-means clustering (FLICM) was used to cluster the pixel values in enhance line signals. To verify the feasibility and effectiveness of this method, mouse brain vascular images have been acquired by a commercial light-sheet microscope in our lab. The experiment of the segmentation method showed that dice similarity coefficient can reach up to 85%. The results illustrated that our approach extracting line structures of blood vessels dramatically improves the vascular image and enable to accurately extract blood vessels in LSFM images.
Jiang, Xiao-Yu; Sarsons, Christopher D; Gomez-Garcia, M Juliana; Cramb, David T; Rinker, Kristina D; Childs, Sarah J
2017-04-01
Nanoparticle (NP) interactions with biological tissues are affected by the size, shape and surface chemistry of the NPs. Here we use in vivo (zebrafish) and in vitro (HUVEC) models to investigate association of quantum dots (QDs) with endothelial cells and the effect of fluid flow. After injection into the developing zebrafish, circulating QDs associate with endothelium and penetrate surrounding tissue parenchyma over time. Amino-functionalized QDs cluster, interact with cells, and clear more rapidly than carboxy-functionalized QDs in vivo, highlighting charge influences. QDs show stronger accumulation in slow-flowing, small caliber venous vessels than in fast-flowing high caliber arterial vessels. Parallel-plate flow experiments with HUVEC support these findings, showing reduced QD-EC association with increasing flow. In vivo, flow arrest after nanoparticle injection still results in venous accumulation at 18 h. Overall our results suggest that both QD charge and blood flow modulate particle-endothelial cell interactions. Copyright © 2016 Elsevier Inc. All rights reserved.
Neto, Filipa; Klaus-Bergmann, Alexandra; Ong, Yu Ting; Alt, Silvanus; Vion, Anne-Clémence; Szymborska, Anna; Carvalho, Joana R; Hollfinger, Irene; Bartels-Klein, Eireen; Franco, Claudio A
2018-01-01
Formation of blood vessel networks by sprouting angiogenesis is critical for tissue growth, homeostasis and regeneration. How endothelial cells arise in adequate numbers and arrange suitably to shape functional vascular networks is poorly understood. Here we show that YAP/TAZ promote stretch-induced proliferation and rearrangements of endothelial cells whilst preventing bleeding in developing vessels. Mechanistically, YAP/TAZ increase the turnover of VE-Cadherin and the formation of junction associated intermediate lamellipodia, promoting both cell migration and barrier function maintenance. This is achieved in part by lowering BMP signalling. Consequently, the loss of YAP/TAZ in the mouse leads to stunted sprouting with local aggregation as well as scarcity of endothelial cells, branching irregularities and junction defects. Forced nuclear activity of TAZ instead drives hypersprouting and vascular hyperplasia. We propose a new model in which YAP/TAZ integrate mechanical signals with BMP signaling to maintain junctional compliance and integrity whilst balancing endothelial cell rearrangements in angiogenic vessels. PMID:29400648
Vascular Endothelial Growth Factor and Angiogenesis in the Regulation of Cutaneous Wound Repair
Johnson, Kelly E.; Wilgus, Traci A.
2014-01-01
Significance: Angiogenesis, the growth of new blood vessels from existing vessels, is an important aspect of the repair process. Restoration of blood flow to damaged tissues provides oxygen and nutrients required to support the growth and function of reparative cells. Vascular endothelial growth factor (VEGF) is one of the most potent proangiogenic growth factors in the skin, and the amount of VEGF present in a wound can significantly impact healing. Recent Advances: The activity of VEGF was once considered to be specific for endothelial cells lining the inside of blood vessels, partly because VEGF receptor (VEGFR) expression was believed to be restricted to endothelial cells. It is now known, however, that VEGFRs can be expressed by a variety of other cell types involved in wound repair. For example, keratinocytes and macrophages, which both carry out important functions during wound healing, express VEGFRs and are capable of responding directly to VEGF. Critical Issues: The mechanisms by which VEGF promotes angiogenesis are well established. Recent studies, however, indicate that VEGF can directly affect the activity of several nonendothelial cell types present in the skin. The implications of these extra-angiogenic effects of VEGF on wound repair are not yet known, but they suggest that this growth factor may play a more complex role during wound healing than previously believed. Future Directions: Despite the large number of studies focusing on VEGF and wound healing, it is clear that the current knowledge of how VEGF contributes to the repair of skin wounds is incomplete. Further research is needed to obtain a more comprehensive understanding of VEGF activities during the wound healing process. PMID:25302139
The hormone prolactin (PRL) plays a critical role in normal breast development by stimulating the proliferation of mammary cells, the production of milk proteins, and the formation of new mammary blood vessels. Unfortunately, the same cell and vessel growth pathways controlled by PRL in normal cells also operate in breast cancer cells, and elevated plasma PRL is a risk factor
Extracellular matrix inflammation in vascular cognitive impairment and dementia.
Rosenberg, Gary A
2017-03-01
Vascular cognitive impairment and dementia (VCID) include a wide spectrum of chronic manifestations of vascular disease related to large vessel strokes and small vessel disease (SVD). Lacunar strokes and white matter (WM) injury are consequences of SVD. The main vascular risk factor for SVD is brain hypoperfusion from cerebral blood vessel narrowing due to chronic hypertension. The hypoperfusion leads to activation and degeneration of astrocytes with the resulting fibrosis of the extracellular matrix (ECM). Elasticity is lost in fibrotic cerebral vessels, reducing the response of stiffened blood vessels in times of increased metabolic need. Intermittent hypoxia/ischaemia activates a molecular injury cascade, producing an incomplete infarction that is most damaging to the deep WM, which is a watershed region for cerebral blood flow. Neuroinflammation caused by hypoxia activates microglia/macrophages to release proteases and free radicals that perpetuate the damage over time to molecules in the ECM and the neurovascular unit (NVU). Matrix metalloproteinases (MMPs) secreted in an attempt to remodel the blood vessel wall have the undesired consequences of opening the blood-brain barrier (BBB) and attacking myelinated fibres. This dual effect of the MMPs causes vasogenic oedema in WM and vascular demyelination, which are the hallmarks of the subcortical ischaemic vascular disease (SIVD), which is the SVD form of VCID also called Binswanger's disease (BD). Unravelling the complex pathophysiology of the WM injury-related inflammation in the small vessel form of VCID could lead to novel therapeutic strategies to reduce damage to the ECM, preventing the progressive damage to the WM. © 2017 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.
Kern, Kyle C; Wright, Clinton B; Bergfield, Kaitlin L; Fitzhugh, Megan C; Chen, Kewei; Moeller, James R; Nabizadeh, Nooshin; Elkind, Mitchell S V; Sacco, Ralph L; Stern, Yaakov; DeCarli, Charles S; Alexander, Gene E
2017-01-01
Cerebral small-vessel damage manifests as white matter hyperintensities and cerebral atrophy on brain MRI and is associated with aging, cognitive decline and dementia. We sought to examine the interrelationship of these imaging biomarkers and the influence of hypertension in older individuals. We used a multivariate spatial covariance neuroimaging technique to localize the effects of white matter lesion load on regional gray matter volume and assessed the role of blood pressure control, age and education on this relationship. Using a case-control design matching for age, gender, and educational attainment we selected 64 participants with normal blood pressure, controlled hypertension or uncontrolled hypertension from the Northern Manhattan Study cohort. We applied gray matter voxel-based morphometry with the scaled subprofile model to (1) identify regional covariance patterns of gray matter volume differences associated with white matter lesion load, (2) compare this relationship across blood pressure groups, and (3) relate it to cognitive performance. In this group of participants aged 60-86 years, we identified a pattern of reduced gray matter volume associated with white matter lesion load in bilateral temporal-parietal regions with relative preservation of volume in the basal forebrain, thalami and cingulate cortex. This pattern was expressed most in the uncontrolled hypertension group and least in the normotensives, but was also more evident in older and more educated individuals. Expression of this pattern was associated with worse performance in executive function and memory. In summary, white matter lesions from small-vessel disease are associated with a regional pattern of gray matter atrophy that is mitigated by blood pressure control, exacerbated by aging, and associated with cognitive performance.
NASA Astrophysics Data System (ADS)
Tan, Bingyao; Hosseinaee, Zohreh; Bizheva, Kostadinka
2017-11-01
The variability in the spatial orientation of retinal blood vessels near the optic nerve head (ONH) results in imprecision of the measured Doppler angle and therefore the pulsatile blood flow (BF), when those parameters are evaluated using Doppler OCT imaging protocols based on dual-concentric circular scans. Here, we utilized a dense concentric circle scanning protocol and evaluated its precision for measuring pulsatile retinal BF in rats for different numbers of the circular scans. An spectral domain optical coherence tomography (SD-OCT) system operating in the 1060-nm spectral range with image acquisition rate of 47,000 A-scans/s was used to acquire concentric circular scans centered at the rat's ONH, with diameters ranging from 0.8 to 1.0 mm. A custom, automatic blood vessel segmentation algorithm was used to track the spatial orientation of the retinal blood vessels in three dimensions, evaluate the spatially dependent Doppler angle and calculate more accurately the axial BF for each major retinal blood vessel. Metrics such as retinal BF, pulsatility index, and resistance index were evaluated for each and all of the major retinal blood vessels. The performance of the proposed dense concentric circle scanning protocols was compared with that of the dual-circle scanning protocol. Results showed a 3.8±2.2 deg difference in the Doppler angle calculation between the two approaches, which resulted in ˜7% difference in the calculated retinal BF.
Micromachined actuators/sensors for intratubular positioning/steering
Lee, A.P.; Krulevitch, P.A.; Northrup, M.A.; Trevino, J.C.
1998-06-30
Micromachined thin film cantilever actuators having means for individually controlling the deflection of the cantilevers, valve members, and rudders for steering same through blood vessels, or positioning same within a blood vessel, for example. Such cantilever actuators include tactile sensor arrays mounted on a catheter or guide wire tip for navigation and tissues identification, shape-memory alloy film based catheter/guide wire steering mechanisms, and rudder-based steering devices that allow the selective actuation of rudders that use the flowing blood itself to help direct the catheter direction through the blood vessel. While particularly adapted for medical applications, these cantilever actuators can be used for steering through piping and tubing systems. 14 figs.
Zhou, Yong; Liang, Jinyang; Maslov, Konstantin I.; Wang, Lihong V.
2013-01-01
We propose a cross-correlation-based method to measure blood flow velocity by using photoacoustic microscopy. Unlike in previous auto-correlation-based methods, the measured flow velocity here is independent of particle size. Thus, an absolute flow velocity can be obtained without calibration. We first measured the flow velocity ex vivo, using defibrinated bovine blood. Then, flow velocities in vessels with different structures in a mouse ear were quantified in vivo. We further measured the flow variation in the same vessel and at a vessel bifurcation. All the experimental results indicate that our method can be used to accurately quantify blood velocity in vivo. PMID:24081077
Planning-free cerebral blood flow territory mapping in patients with intracranial arterial stenosis
Arteaga, Daniel F; Strother, Megan K; Davis, L Taylor; Fusco, Matthew R; Faraco, Carlos C; Roach, Brent A; Scott, Allison O
2016-01-01
A noninvasive method for quantifying cerebral blood flow and simultaneously visualizing cerebral blood flow territories is vessel-encoded pseudocontinuous arterial spin labeling MRI. However, obstacles to acquiring such information include limited access to the methodology in clinical centers and limited work on how clinically acquired vessel-encoded pseudocontinuous arterial spin labeling data correlate with gold-standard methods. The purpose of this work is to develop and validate a semiautomated pipeline for the online quantification of cerebral blood flow maps and cerebral blood flow territories from planning-free vessel-encoded pseudocontinuous arterial spin labeling MRI with gold-standard digital subtraction angiography. Healthy controls (n = 10) and intracranial atherosclerotic disease patients (n = 34) underwent 3.0 T MRI imaging including vascular (MR angiography) and hemodynamic (cerebral blood flow-weighted arterial spin labeling) MRI. Patients additionally underwent catheter and/or CT angiography. Variations in cross-territorial filling were grouped according to diameters of circle of Willis vessels in controls. In patients, Cohen’s k-statistics were computed to quantify agreement in perfusion patterns between vessel-encoded pseudocontinuous arterial spin labeling and angiography. Cross-territorial filling patterns were consistent with circle of Willis anatomy. The intraobserver Cohen's k-statistics for cerebral blood flow territory and digital subtraction angiography perfusion agreement were 0.730 (95% CI = 0.593–0.867; reader one) and 0.708 (95% CI = 0.561–0.855; reader two). These results support the feasibility of a semiautomated pipeline for evaluating major neurovascular cerebral blood flow territories in patients with intracranial atherosclerotic disease. PMID:27389177
Xie, Yibin; Yang, Qi; Xie, Guoxi; Pang, Jianing; Fan, Zhaoyang; Li, Debiao
2016-06-01
The purpose of this study was to develop a three-dimensional black blood imaging method for simultaneously evaluating the carotid and intracranial arterial vessel walls with high spatial resolution and excellent blood suppression with and without contrast enhancement. The delay alternating with nutation for tailored excitation (DANTE) preparation module was incorporated into three-dimensional variable flip angle turbo spin echo (SPACE) sequence to improve blood signal suppression. Simulations and phantom studies were performed to quantify image contrast variations induced by DANTE. DANTE-SPACE, SPACE, and two-dimensional turbo spin echo were compared for apparent signal-to-noise ratio, contrast-to-noise ratio, and morphometric measurements in 14 healthy subjects. Preliminary clinical validation was performed in six symptomatic patients. Apparent residual luminal blood was observed in five (pre-contrast) and nine (post-contrast) subjects with SPACE and only two (post-contrast) subjects with DANTE-SPACE. DANTE-SPACE showed 31% (pre-contrast) and 100% (post-contrast) improvement in wall-to-blood contrast-to-noise ratio over SPACE. Vessel wall area measured from SPACE was significantly larger than that from DANTE-SPACE due to possible residual blood signal contamination. DANTE-SPACE showed the potential to detect vessel wall dissection and identify plaque components in patients. DANTE-SPACE significantly improved arterial and venous blood suppression compared with SPACE. Simultaneous high-resolution carotid and intracranial vessel wall imaging to potentially identify plaque components was feasible with a scan time under 6 min. Magn Reson Med 75:2286-2294, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
A rigid disc for protection of exposed blood vessels during negative pressure wound therapy.
Anesäter, Erik; Borgquist, Ola; Torbrand, Christian; Roupé, K Markus; Ingemansson, Richard; Lindstedt, Sandra; Malmsjö, Malin
2013-02-01
There are increasing reports of serious complications and deaths associated with negative pressure wound therapy (NPWT). Bleeding may occur when NPWT is applied to a wound with exposed blood vessels. Inserting a rigid disc in the wound may protect these structures. The authors examined the effects of rigid discs on wound bed tissue pressure and blood flow through a large blood vessel in the wound bed during NPWT. Wounds were created over the femoral artery in the groin of 8 pigs. Rigid discs were inserted. Wound bed pressures and arterial blood flow were measured during NPWT. Pressure transduction to the wound bed was similar for control wounds and wounds with discs. Blood flow through the femoral artery decreased in control wounds. When a disc was inserted, the blood flow was restored. NPWT causes hypoperfusion in the wound bed tissue, presumably as a result of mechanical deformation. The insertion of a rigid barrier alleviates this effect and restores blood flow.
NASA Astrophysics Data System (ADS)
Zhang, Linna; Ding, Hongyan; Lin, Ling; Wang, Yimin; Guo, Xin
2018-01-01
Noncontact discriminating human blood is significantly crucial for import-export ports and inspection and quarantine departments. We had already demonstrated that visible diffuse reflectance spectroscopy combining PLS-DA method can successfully realize noncontact human blood discrimination. However, the circulated blood vessels may be produced with different materials. The use of various kinds of blood tubes may have a negative effect on the discrimination, based on ;M+N; theory (Li et al., 2016). In this research, we explored the impact of different material of blood vessels, such as glass tube and plastic tube, on the prediction ability of the discrimination model. Furthermore, we searched for the modification method to reduce the influence from the blood tubes. Our work indicated that generalized diffuse reflectance method can greatly improve the discrimination accuracy. This research can greatly facilitate the application of noncontact discrimination method based on visible and near-infrared diffuse reflectance spectroscopy.
NASA Astrophysics Data System (ADS)
Kosukegawa, Hiroyuki; Mamada, Keisuke; Kuroki, Kanju; Liu, Lei; Inoue, Kosuke; Hayase, Toshiyuki; Ohta, Makoto
In vitro blood vessel biomodeling with realistic mechanical properties and geometrical structures is helpful for training in surgical procedures, especial those used in endovascular treatment. Poly (vinyl alcohol) hydrogel (PVA-H), which is made of Poly (vinyl alcohol) (PVA) and water, may be useful as a material for blood vessel biomodeling due to its low surface friction resistance and good transparency. In order to simulate the mechanical properties of blood vessels, measurements of mechanical properties of PVA-H were carried out with a dynamic mechanical analyzer, and the storage modulus (G’) and loss modulus (G”) of PVA-H were obtained. PVA-Hs were prepared by the low-temperature crystallization method. They were made of PVA with various concentrations (C) and degrees of polymerization (DP), and made by blending two kinds of PVA having different DP or saponification values (SV). The G’ and G” of PVA-H increased, as the C or DP of PVA increased, or as the proportion of PVA with higher DP or SV increased. These results indicate that it is possible to obtain PVA-H with desirable dynamic viscoelasticity. Furthermore, it is suggested that PVA-H is stable in the temperature range of 0°C to 40°C, indicating that biomodeling made of PVA-H should be available at 37°C, the physiological temperature. The dynamic viscoelasticity of PVA-H obtained was similar to that of the dog blood vessel measured in previous reports. In conclusion, PVA-H is suggested to be useful as a material of blood vessel biomodeling.
Trivedi, N; Steil, G M; Colton, C K; Bonner-Weir, S; Weir, G C
2000-01-01
Improving blood vessel formation around an immunobarrier device should improve the survival of the encapsulated tissue. In the present study we investigated the formation of new blood vessels around a planar membrane diffusion device (the Baxter Theracyte System) undergoing a continuous infusion of vascular endothelial growth factor through the membranes and into the surrounding tissue. Each device (20 microl) had both an inner immunoisolation membrane and an outer vascularizing membrane. Human recombinant vascular endothelial growth factor-165 was infused at 100 ng/day (low dose: n = 6) and 500 ng/day (high dose: n = 7) for 10 days into devices implanted s.c. in Sprague-Dawley rats; noninfused devices transplanted for an identical period were used as controls (n = 5). Two days following the termination of VEGF infusion, devices were loaded with 20 microl of Lispro insulin (1 U/kg) and the kinetics of insulin release from the lumen of the device was assessed. Devices were then explanted and the number of blood vessels (capillary and noncapillary) was quantified using morphometry. High-dose vascular endothelial growth factor infusion resulted in two- to threefold more blood vessels around the device than that obtained with the noninfused devices and devices infused with low-dose vascular endothelial growth factor. This increase in the number of blood vessels was accompanied by a modest increase in insulin diffusion from the device in the high-dose vascular endothelial growth factor infusion group. We conclude that vascular endothelial growth factor can be used to improve blood vessel formation adjacent to planar membrane diffusion devices.
Automatic Tortuosity-Based Retinopathy of Prematurity Screening System
NASA Astrophysics Data System (ADS)
Sukkaew, Lassada; Uyyanonvara, Bunyarit; Makhanov, Stanislav S.; Barman, Sarah; Pangputhipong, Pannet
Retinopathy of Prematurity (ROP) is an infant disease characterized by increased dilation and tortuosity of the retinal blood vessels. Automatic tortuosity evaluation from retinal digital images is very useful to facilitate an ophthalmologist in the ROP screening and to prevent childhood blindness. This paper proposes a method to automatically classify the image into tortuous and non-tortuous. The process imitates expert ophthalmologists' screening by searching for clearly tortuous vessel segments. First, a skeleton of the retinal blood vessels is extracted from the original infant retinal image using a series of morphological operators. Next, we propose to partition the blood vessels recursively using an adaptive linear interpolation scheme. Finally, the tortuosity is calculated based on the curvature of the resulting vessel segments. The retinal images are then classified into two classes using segments characterized by the highest tortuosity. For an optimal set of training parameters the prediction is as high as 100%.
Mathematical modelling of the human cardiovascular system in the presence of stenosis
NASA Technical Reports Server (NTRS)
Sud, V. K.; Srinivasan, R. S.; Charles, J. B.; Bungo, M. W.
1993-01-01
This paper reports a theoretical study on the distribution of blood flow in the human cardiovascular system when one or more blood vessels are affected by stenosis. The analysis employs a mathematical model of the entire system based on the finite element method. The arterial-venous network is represented by a large number of interconnected segments in the model. Values for the model parameters are based upon the published data on the physiological and rheological properties of blood. Computational results show how blood flow through various parts of the cardiovascular system is affected by stenosis in different blood vessels. No significant changes in the flow parameters of the cardiovascular system were found to occur when the reduction in the lumen diameter of the stenosed vessels was less than 65%.
Macrophage-induced angiogenesis is mediated by tumour necrosis factor-alpha.
Leibovich, S J; Polverini, P J; Shepard, H M; Wiseman, D M; Shively, V; Nuseir, N
Macrophages are important in the induction of new blood vessel growth during wound repair, inflammation and tumour growth. We show here that tumour necrosis factor-alpha (TNF-alpha), a secretory product of activated macrophages that is believed to mediate tumour cytotoxicity, is a potent inducer of new blood vessel growth (angiogenesis). In vivo, TNF-alpha induces capillary blood vessel formation in the rat cornea and the developing chick chorioallantoic membrane at very low doses. In vitro, TNF-alpha stimulates chemotaxis of bovine adrenal capillary endothelial cells and induces cultures of these cells grown on type-1 collagen gels to form capillary-tube-like structures. The angiogenic activity produced by activated murine peritoneal macrophages is completely neutralized by a polyclonal antibody to TNF-alpha, suggesting immunological features are common to TNF-alpha and the protein responsible for macrophage-derived angiogenic activity. In inflammation and wound repair, TNF-alpha could augment repair by stimulating new blood vessel growth; in tumours, TNF-alpha might both stimulate tumour development by promoting vessel growth and participate in tumour destruction by direct cytotoxicity.
Mesoscale Simulation of Blood Flow in Small Vessels
Bagchi, Prosenjit
2007-01-01
Computational modeling of blood flow in microvessels with internal diameter 20–500 μm is a major challenge. It is because blood in such vessels behaves as a multiphase suspension of deformable particles. A continuum model of blood is not adequate if the motion of individual red blood cells in the suspension is of interest. At the same time, multiple cells, often a few thousands in number, must also be considered to account for cell-cell hydrodynamic interaction. Moreover, the red blood cells (RBCs) are highly deformable. Deformation of the cells must also be considered in the model, as it is a major determinant of many physiologically significant phenomena, such as formation of a cell-free layer, and the Fahraeus-Lindqvist effect. In this article, we present two-dimensional computational simulation of blood flow in vessels of size 20–300 μm at discharge hematocrit of 10–60%, taking into consideration the particulate nature of blood and cell deformation. The numerical model is based on the immersed boundary method, and the red blood cells are modeled as liquid capsules. A large RBC population comprising of as many as 2500 cells are simulated. Migration of the cells normal to the wall of the vessel and the formation of the cell-free layer are studied. Results on the trajectory and velocity traces of the RBCs, and their fluctuations are presented. Also presented are the results on the plug-flow velocity profile of blood, the apparent viscosity, and the Fahraeus-Lindqvist effect. The numerical results also allow us to investigate the variation of apparent blood viscosity along the cross-section of a vessel. The computational results are compared with the experimental results. To the best of our knowledge, this article presents the first simulation to simultaneously consider a large ensemble of red blood cells and the cell deformation. PMID:17208982
NASA Astrophysics Data System (ADS)
Moore, James E., Jr.; Bertram, Christopher D.
2018-01-01
The supply of oxygen and nutrients to tissues is performed by the blood system and involves a net leakage of fluid outward at the capillary level. One of the principal functions of the lymphatic system is to gather this fluid and return it to the blood system to maintain overall fluid balance. Fluid in the interstitial spaces is often at subatmospheric pressure, and the return points into the venous system are at pressures of approximately 20 cmH2O. This adverse pressure difference is overcome by the active pumping of collecting lymphatic vessels, which feature closely spaced one-way valves and contractile muscle cells in their walls. Passive vessel squeezing causes further pumping. The dynamics of lymphatic pumping have been investigated experimentally and mathematically, revealing complex behaviors that indicate that the system performance is robust against minor perturbations in pressure and flow. More serious disruptions can lead to incurable swelling of tissues called lymphedema.