Optical researches for cyanobacteria bloom monitoring in Curonian Lagoon
NASA Astrophysics Data System (ADS)
Shirshin, Evgeny A.; Budylin, Gleb B.; Yakimov, Boris P.; Voloshina, Olga V.; Karabashev, Genrik S.; Evdoshenko, Marina A.; Fadeev, Victor V.
2016-04-01
Cyanobacteria bloom is a great ecological problem of Curonian Lagoon and Baltic Sea. The development of novel methods for the on-line control of cyanobacteria concentration and, moreover, for prediction of bloom spreading is of interest for monitoring the state of ecosystem. Here, we report the results of the joint application of hyperspectral measurements and remote sensing of Curonian Lagoon in July 2015 aimed at the assessment of cyanobacteria communities. We show that hyperspectral data allow on-line detection and qualitative estimation of cyanobacteria concentration, while the remote sensing data indicate the possibility of cyanobacteria bloom detection using the spectral features of upwelling irradiation.
NASA Technical Reports Server (NTRS)
Lekki, John; Anderson, Robert; Nguyen, Quang-Viet; Demers, James; Leshkevich, George; Flatico, Joseph; Kojima, Jun
2013-01-01
Hyperspectral imagers have significant capability for detecting and classifying waterborne constituents. One particularly appropriate application of such instruments in the Great Lakes is to detect and monitor the development of potentially Harmful Algal Blooms (HABs). Two generations of small hyperspectral imagers have been built and tested for aircraft based monitoring of harmful algal blooms. In this paper a discussion of the two instruments as well as field studies conducted using these instruments will be presented. During the second field study, in situ reflectance data was obtained from the Research Vessel Lake Guardian in conjunction with reflectance data obtained with the hyperspectral imager from overflights of the same locations. A comparison of these two data sets shows that the airborne hyperspectral imager closely matches measurements obtained from instruments on the lake surface and thus positively supports its utilization for detecting and monitoring HABs.
NASA Astrophysics Data System (ADS)
Ahmed, S.; Amin, R.; Gladkova, I.; Gilerson, A.; Grossberg, M.; Hlaing, S.; Shariar, F.; Alabi, P.
2010-04-01
The detection and monitoring of harmful algal blooms using in-situ field measurements is both labor intensive and is practically limited on achievable temporal and spatial resolutions, since field measurements are typically carried out at a series of discrete points and at discrete times, with practical limitations on temporal continuity. The planning and preparation of remedial measures to reduce health risks, etc., requires detection approaches which can effectively cover larger areas with contiguous spatial resolutions, and at the same time offer a more comprehensive and contemporaneous snapshot of entire blooms as they occur. This is beyond capabilities of in-situ measurements and it is in this context that satellite Ocean Color sensors offer potential advantages for bloom detection and monitoring. In this paper we examine the applications and limitations of an approach we have recently developed for the detection of K. brevis blooms from satellite Ocean Color Sensors measurements, the Red Band Difference Technique, and compare it to other detection algorithm approaches, including a new statistical based approach also proposed here. To achieve more uniform standards of comparisons, the performance of different techniques for detection are applied to the same specific verified blooms occurring off the West Florida Shelf (WFS) that have been verified by in-situ measurements.
Applications of satellite ocean color sensors for monitoring and predicting harmful algal blooms
Stumpf, Richard P.
2001-01-01
The new satellite ocean color sensors offer a means of detecting and monitoring algal blooms in the ocean and coastal zone. Beginning with SeaWiFS (Sea Wide Field-of-view Sensor) in September 1997, these sensors provide coverage every 1 to 2 days with 1-km pixel view at nadir. Atmospheric correction algorithms designed for the coastal zone combined with regional chlorophyll algorithms can provide good and reproducible estimates of chlorophyll, providing the means of monitoring various algal blooms. Harmful algal blooms (HABs) caused by Karenia brevis in the Gulf of Mexico are particularly amenable to remote observation. The Gulf of Mexico has relatively clear water and K. brevis, in bloom conditions, tends to produce a major portion of the phytoplankton biomass. A monitoring program has begun in the Gulf of Mexico that integrates field data from state monitoring programs with satellite imagery, providing an improved capability for the monitoring of K. brevis blooms.
NASA Astrophysics Data System (ADS)
Kudela, R. M.; Accorsi, E.; Austerberry, D.; Palacios, S. L.
2013-12-01
Freshwater Cyanobacterial Harmful algal blooms (CHABs) represent a pressing and apparently increasing threat to both human and environmental health. In California, toxin producing blooms of several species, including Aphanizomenon, Microcystis, Lyngbya, and Anabaena are common; toxins from these blooms have been linked to impaired drinking water, domestic and wild animal deaths, and increasing evidence for toxin transfer to coastal marine environments, including the death of several California sea otters, a threatened marine species. California scientists and managers are under increasing pressure to identify and mitigate these potentially toxic blooms, but point-source measurements and grab samples have been less than effective. There is increasing awareness that these toxic events are both spatially widespread and ephememeral, leading to the need for better monitoring methods applicable to large spatial and temporal scales. Based on monitoring in several California water bodies, it appears that Aphanizomenon blooms frequently precede dangerous levels of toxins from Microcystis. We are exploring new detection methods for identifying CHABs and potentially distinguishing between blooms of the harmful cyanobacteria Aphanizomenon and Microcystis using remote sensing reflectance from a variety of airborne and satellite sensors. We suggest that Aphanizomenon blooms could potentially be used as an early warning of more highly toxic subsequent blooms, and that these methods, combined with better toxin monitoring, can lead to improved understanding and prediction of CHABs by pinpointing problematic watersheds.
Aerial Images and Convolutional Neural Network for Cotton Bloom Detection.
Xu, Rui; Li, Changying; Paterson, Andrew H; Jiang, Yu; Sun, Shangpeng; Robertson, Jon S
2017-01-01
Monitoring flower development can provide useful information for production management, estimating yield and selecting specific genotypes of crops. The main goal of this study was to develop a methodology to detect and count cotton flowers, or blooms, using color images acquired by an unmanned aerial system. The aerial images were collected from two test fields in 4 days. A convolutional neural network (CNN) was designed and trained to detect cotton blooms in raw images, and their 3D locations were calculated using the dense point cloud constructed from the aerial images with the structure from motion method. The quality of the dense point cloud was analyzed and plots with poor quality were excluded from data analysis. A constrained clustering algorithm was developed to register the same bloom detected from different images based on the 3D location of the bloom. The accuracy and incompleteness of the dense point cloud were analyzed because they affected the accuracy of the 3D location of the blooms and thus the accuracy of the bloom registration result. The constrained clustering algorithm was validated using simulated data, showing good efficiency and accuracy. The bloom count from the proposed method was comparable with the number counted manually with an error of -4 to 3 blooms for the field with a single plant per plot. However, more plots were underestimated in the field with multiple plants per plot due to hidden blooms that were not captured by the aerial images. The proposed methodology provides a high-throughput method to continuously monitor the flowering progress of cotton.
Moradi, Masoud
2014-10-15
Medium Resolution Imaging Spectrometer (MERIS) data, Moderate Resolution Imaging Spectroradiometer (MODIS) data, and hydro-biological measurements were used to detect two very severe blooms in the southern Caspian Sea in 2005 and 2010. The MERIS Cyanobacteria Index (CIMERIS) was more reliable for detecting cyanobacterial blooms. The CIMERIS and MODIS cyanobacteria indices (CIMODIS) were compared in an effort to find a reliable method for detecting future blooms, as MERIS data were not available after April 2012. The CIMODIS had a linear relationship with and similar spatial patterns to the CIMERIS. On the CIMODIS images, extremely high biomass cyanobacteria patches were masked. A comparison of classified in situ data with the CIMODIS and Floating Algal Index (FAI) from four images of a severe bloom event in 2005 showed that the FAI is a reliable index for bloom detection over extremely dense patches. The corrected CIMODIS, the MODIS FAI and in situ data are adequate tools for cyanobacterial bloom monitoring in the southern Caspian Sea. Copyright © 2014 Elsevier Ltd. All rights reserved.
This presentation describes preliminary work that is underway that will illustrate the use of ocean land colour instrument data (Sentinel-3 & Landsat) to detect and monitor harmful algal blooms (HABS) in freshwater lakes for two types of economic analyses. This project is a j...
Airborne Monitoring of Harmful Algal Blooms over Lake Erie
NASA Technical Reports Server (NTRS)
Tokars, Roger; Lekki, John
2013-01-01
The Hyperspectral Imager mounted to an aircraft was used to develop a remote sensing capability to detect the pigment Phycocyanin, an indicator of Microcystis, in low concentration as an early indicator of harmful algal bloom prediction.
NASA Astrophysics Data System (ADS)
Blondeau-Patissier, David; Gower, James F. R.; Dekker, Arnold G.; Phinn, Stuart R.; Brando, Vittorio E.
2014-04-01
The need for more effective environmental monitoring of the open and coastal ocean has recently led to notable advances in satellite ocean color technology and algorithm research. Satellite ocean color sensors' data are widely used for the detection, mapping and monitoring of phytoplankton blooms because earth observation provides a synoptic view of the ocean, both spatially and temporally. Algal blooms are indicators of marine ecosystem health; thus, their monitoring is a key component of effective management of coastal and oceanic resources. Since the late 1970s, a wide variety of operational ocean color satellite sensors and algorithms have been developed. The comprehensive review presented in this article captures the details of the progress and discusses the advantages and limitations of the algorithms used with the multi-spectral ocean color sensors CZCS, SeaWiFS, MODIS and MERIS. Present challenges include overcoming the severe limitation of these algorithms in coastal waters and refining detection limits in various oceanic and coastal environments. To understand the spatio-temporal patterns of algal blooms and their triggering factors, it is essential to consider the possible effects of environmental parameters, such as water temperature, turbidity, solar radiation and bathymetry. Hence, this review will also discuss the use of statistical techniques and additional datasets derived from ecosystem models or other satellite sensors to characterize further the factors triggering or limiting the development of algal blooms in coastal and open ocean waters.
Monitoring cyanobacterial blooms by satellite remote sensing
NASA Astrophysics Data System (ADS)
Kutser, Tiit; Metsamaa, Liisa; Strömbeck, Niklas; Vahtmäe, Ele
2006-03-01
Cyanobacterial blooms are attracting the increasing attention of environment agencies, water authorities, and human and animal health organizations, since they can present a range of amenity, water quality ant treatment problems, and hazards to human and animal health. The problem is especially acute in the Baltic Sea where cyanobacterial blooms occur every summer covering areas of more than 100 000 km 2. It has been shown that quantitative mapping of cyanobacteria during bloom conditions is possible with hyperspectral instruments. These sensors, however, cannot provide synoptic spatial coverage and high revisit times needed for near real-time monitoring of potentially harmful blooms. The aim was to estimate whether spectral resolution of multispectral sensors, which can provide needed coverage, is adequate for quantitative mapping of cyanobacteria and whether it is possible to separate potentially harmful blooms of cyanobacteria from waters dominated by algae using ocean colour satellites. The modelling results show that multispectral sensors like ALI, Landsat or MODIS are not capable of separating waters dominated by cyanobacteria from waters dominated by other algae species, as their spectral band configuration does not allow detecting absorption features caused by phycocyanin (present primarily in cyanobacteria) or any other spectral features that are characteristic to cyanobacteria only. MERIS bands 6 and 7 allow detecting phycocyanin absorption feature near 630 nm and a small peak in reflectance spectra near 650 nm characteristic to only cyanobacteria. Thus, MERIS can be used in detecting cyanobacteria if they are present in relatively high quantities. Unfortunately it is not possible to use MERIS for early warning of emerging potentially harmful blooms as the minimum biomass needed to cause features in reflectance spectra typical to cyanobacteria is higher than the biomass already considered as a bloom in the Baltic Sea.
NASA Astrophysics Data System (ADS)
Page, Benjamin P.; Kumar, Abhishek; Mishra, Deepak R.
2018-04-01
As the frequency of cyanobacterial harmful algal blooms (CyanoHABs) become more common in recreational lakes and water supply reservoirs, demand for rapid detection and temporal monitoring will be imminent for effective management. The goal of this study was to demonstrate a novel and potentially operational cross-satellite based protocol for synoptic monitoring of rapidly evolving and increasingly common CyanoHABs in inland waters. The analysis involved a novel way to cross-calibrate a chlorophyll-a (Chl-a) detection model for the Landsat-8 OLI sensor from the relationship between the normalized difference chlorophyll index and the floating algal index derived from Sentinel-2A on a coinciding overpass date during the summer CyanoHAB bloom in Utah Lake. This aided in the construction of a time-series phenology of the Utah Lake CyanoHAB event. Spatio-temporal cyanobacterial density maps from both Sentinel-2A and Landsat-8 sensors revealed that the bloom started in the first week of July 2016 (July 3rd, mean cell count: 9163 cells/mL), reached peak in mid-July (July 15th, mean cell count: 108176 cells/mL), and reduced in August (August 24th, mean cell count: 9145 cells/mL). Analysis of physical and meteorological factors suggested a complex interaction between landscape processes (high surface runoff), climatic conditions (high temperature, high rainfall followed by negligible rainfall, stable wind), and water quality (low water level, high Chl-a) which created a supportive environment for triggering these blooms in Utah Lake. This cross satellite-based monitoring methods can be a great tool for regular monitoring and will reduce the budget cost for monitoring and predicting CyanoHABs in large lakes.
Real-Time Event Detection for Monitoring Natural and Source Waterways - Sacramento, CA
The use of event detection systems in finished drinking water systems is increasing in order to monitor water quality in both operational and security contexts. Recent incidents involving harmful algal blooms and chemical spills into watersheds have increased interest in monitori...
Monitoring red tide with satellite imagery and numerical models: a case study in the Arabian Gulf.
Zhao, Jun; Ghedira, Hosni
2014-02-15
A red tide event that occurred in August 2008 in the Arabian Gulf was monitored and assessed using satellite observations and numerical models. Satellite observations revealed the bloom extent and evolution from August 2008 to August 2009. Flow patterns of the bloom patch were confirmed by results from a HYCOM model. HYCOM data and satellite-derived sea surface temperature data further suggested that the bloom could have been initiated offshore and advected onshore by bottom Ekman layer. Analysis indicated that nutrient sources supporting the bloom included upwelling, Trichodesmium, and dust deposition while other potential sources of nutrient supply should also be considered. In order to monitor and detect red tide effectively and provide insights into its initiation and maintenance mechanisms, the integration of multiple platforms is required. The case study presented here demonstrated the benefit of combing satellite observations and numerical models for studying red tide outbreaks and dynamics. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holt, Ashley C.; Stumpf, Richard P.; Tomlinson, Michelle C.
2003-08-01
Harmful algal blooms (HABs) attributed to Pseudo-nitzschia species, a diatom that produces Domoic acid, are a common occurrence and serious threat along the coast of the US Northwest. Monitoring these events or providing advanced warning of their occurrence at the coast would provide an important aid to fisheries managers. Remote sensing, which is being used in the Gulf of Mexico for HAB detection and forecasting (of a different algae), could provide a tool for monitoring and warnings. Chlorophyll and SST imagery are being used to support a research and monitoring program for the region, and HAB monitoring techniques used inmore » the Gulf of Mexico are being examined for their potential utility along the Washington coast. The focus of this study is to determine the efficacy of using satellite ocean color imagery for HAB monitoring off of Washingtons Olympic Peninsula region, and to provide support in the form of ocean color imagery products for management and mitigation efforts.« less
NASA Astrophysics Data System (ADS)
Hu, Chuanmin; Feng, Lian
2017-01-01
Several satellite-based methods have been used to detect and trace Karenia brevis red tide blooms in the eastern Gulf of Mexico. Some require data statistics and multiple data products while others use a single data product. Of these, the MODIS normalized fluorescence line height (nFLH) has shown its advantage of detecting blooms in waters rich in colored dissolved organic matter, thus having been used routinely to assess bloom conditions by the Florida Fish and Wildlife Conservation Commission (FWC), the official state agency of Florida responsible for red tide monitoring and mitigation. However, elevated sediment concentrations in the water column due to wind storms can also result in high nFLH values, leading to false-positive bloom interpretation. Here, a modified nFLH data product is developed to minimize such impacts through empirical adjustments of the nFLH values using MODIS-derived remote sensing reflectance in the green band at 547 nm. The new product is termed as an algal bloom index (ABI), which has shown improved performance over the original nFLH in both retrospective evaluation statistics and near real-time applications. The ABI product has been made available in near real-time through a Web portal and has been used by the FWC on a routine basis to guide field sampling efforts and prepare for red tide bulletins distributed to many user groups.
Coquereau, Laura; Jolivet, Aurélie; Hégaret, Hélène; Chauvaud, Laurent
2016-01-01
Harmful algal blooms produced by toxic dinoflagellates have increased worldwide, impacting human health, the environment, and fisheries. Due to their potential sensitivity (e.g., environmental changes), bivalves through their valve movements can be monitored to detect harmful algal blooms. Methods that measure valve activity require bivalve-attached sensors and usually connected cables to data transfers, leading to stress animals and limit the use to sessile species. As a non-intrusive and continuously deployable tool, passive acoustics could be an effective approach to detecting harmful algal blooms in real time based on animal sound production. This study aimed to detect reaction changes in the valve movements of adult Pecten maximus exposed to the toxic dinoflagellate Alexandrium minutum using both accelerometry and passive acoustic methods. Scallops were experimentally exposed to three ecologically relevant concentrations of A. minutum for 2 hours. The number of each type of valve movement and their sound intensity, opening duration, and valve-opening amplitude were measured. Four behaviours were identified: closures, expulsion, displacement, and swimming. The response of P. maximus to A. minutum occurred rapidly at a high concentration. The valve activity of P. maximus was different when exposed to high concentrations (500 000 cells L-1) of A. minutum compared to the non-toxic dinoflagellate Heterocapsa triquetra; the number of valve movements increased, especially closure and expulsion, which were detected acoustically. Thus, this study demonstrates the potential for acoustics and sound production changes in the detection of harmful algal blooms. However, field trials and longer duration experiments are required to provide further evidence for the use of acoustics as a monitoring tool in the natural environment where several factors may interfere with valve behaviours.
Coquereau, Laura; Jolivet, Aurélie; Hégaret, Hélène; Chauvaud, Laurent
2016-01-01
Harmful algal blooms produced by toxic dinoflagellates have increased worldwide, impacting human health, the environment, and fisheries. Due to their potential sensitivity (e.g., environmental changes), bivalves through their valve movements can be monitored to detect harmful algal blooms. Methods that measure valve activity require bivalve-attached sensors and usually connected cables to data transfers, leading to stress animals and limit the use to sessile species. As a non-intrusive and continuously deployable tool, passive acoustics could be an effective approach to detecting harmful algal blooms in real time based on animal sound production. This study aimed to detect reaction changes in the valve movements of adult Pecten maximus exposed to the toxic dinoflagellate Alexandrium minutum using both accelerometry and passive acoustic methods. Scallops were experimentally exposed to three ecologically relevant concentrations of A. minutum for 2 hours. The number of each type of valve movement and their sound intensity, opening duration, and valve-opening amplitude were measured. Four behaviours were identified: closures, expulsion, displacement, and swimming. The response of P. maximus to A. minutum occurred rapidly at a high concentration. The valve activity of P. maximus was different when exposed to high concentrations (500 000 cells L-1) of A. minutum compared to the non-toxic dinoflagellate Heterocapsa triquetra; the number of valve movements increased, especially closure and expulsion, which were detected acoustically. Thus, this study demonstrates the potential for acoustics and sound production changes in the detection of harmful algal blooms. However, field trials and longer duration experiments are required to provide further evidence for the use of acoustics as a monitoring tool in the natural environment where several factors may interfere with valve behaviours. PMID:27508498
This presentation is a compilation of harmful algal bloom (HAB) related field monitoring data from the 2015 bloom season, treatment plant monitoring data from the 2013 and 2014 bloom seasons, and bench-scale treatment study data from 2015.
Monitoring of Harmful Algal Blooms in Influent and Through Drinking Water Treatment Facilities Located on Lake Erie in the 2013 and 2014 Bloom SeasonsToby Sanan, Nicholas Dugan, Darren Lytle, Heath MashHarmful algal blooms (HABs) and their associated toxins are emerging as signif...
NASA Astrophysics Data System (ADS)
Teta, Roberta; Romano, Vincenza; Della Sala, Gerardo; Picchio, Stefano; De Sterlich, Carlo; Mangoni, Alfonso; Di Tullio, Giacomo; Costantino, Valeria; Lega, Massimiliano
2017-02-01
Cyanobacterial blooms (CBs) are generally triggered by eutrophic conditions due to anthropogenic nutrient inputs to local waters (wastewater or contaminated waters). During the bloom, some species produce toxic secondary metabolites (cyanotoxins) that are dangerous for humans and animals. Here, a multidisciplinary strategy for an early detection and constant monitoring is proposed. This strategy combines remote/proximal sensing technology with analytical/biotechnological analyses. To demonstrate the applicability of this strategy, four anthropogenically-impacted sites were selected along the Campania coast of southwestern Italy, in the so called ‘Land of Fires’. The sites were observed using satellite and aircraft images during summer, 2015. Algal community composition was determined using spectrophotometric analysis for the detection of the cyanobacterial pigment phycocyanin (PC). Complementary metagenomic analysis revealed the taxonomic presence of cyanobacteria belonging to genera associated with strong eutrophic conditions. Key elements of this strategy are the combination and integration of applying different methodological approaches such as the parallel and combined use of satellite, aerial and in-situ data, the simplified multispectral image indexing and classification for a truly efficient method in detecting early blooms of cyanobacteria. The effectiveness of the strategy has been validated also by the specific taxa of cyanobacteria found in the examined areas that confirm the assumption that cyanobacterial blooms may serve as useful bioindicators of degraded water quality in coastal ecosystems. To our knowledge this is the first time that the presence of cyanobacteria has been observed in water bodies along the Campania coast.
Monitoring Cyanobacteria Bloom in Taihu Lake by High-Resolution Geostationary Satellite GF4
NASA Astrophysics Data System (ADS)
Liu, J.
2018-04-01
The high-resolution remote-sensing satellite, GF4 PMS, of China's geosynchronous earth orbit was successfully launched on December 29, 2015. Its high spatial resolution and high temporal resolution allow GF4 PMS to play a very important role in water environment monitoring, especially in the dynamic monitoring of lake and reservoir cyanobacteria blooms. As GF4 PMS has just been launched, there is still relatively little related research, and the practical application effect of GF4 PMS in the extraction of cyanobacteria blooms remains to be further tested. Therefore, in this study, the method and effect of GF4 PMS application in cyanobacteria bloom monitoring were studied in Taihu. It turned that GF4 PMS can be applied to the dynamic monitoring of the distribution of cyanobacteria blooms in Taihu, thereby finding the temporal and spatial variation of the distribution of cyanobacteria blooms.
Detection of a Planktothrix agardhii Bloom in Portuguese Marine Coastal Waters.
Churro, Catarina; Azevedo, Joana; Vasconcelos, Vitor; Silva, Alexandra
2017-12-03
Cyanobacteria blooms are frequent in freshwaters and are responsible for water quality deterioration and human intoxication. Although, not a new phenomenon, concern exists on the increasing persistence, scale, and toxicity of these blooms. There is evidence, in recent years, of the transfer of these toxins from inland to marine waters through freshwater outflow. However, the true impact of these blooms in marine habitats has been overlooked. In the present work, we describe the detection of Planktothrix agardhii , which is a common microcystin producer, in the Portuguese marine coastal waters nearby a river outfall in an area used for shellfish harvesting and recreational activities. P. agardhii was first observed in November of 2016 in seawater samples that are in the scope of the national shellfish monitoring system. This occurrence was followed closely between November and December of 2016 by a weekly sampling of mussels and water from the sea pier and adjacent river mouth with salinity ranging from 35 to 3. High cell densities were found in the water from both sea pier and river outfall, reaching concentrations of 4,960,608 cells·L -1 and 6810.3 × 10⁶ cells·L -1 respectively. Cultures were also established with success from the environment and microplate salinity growth assays showed that the isolates grew at salinity 10. HPLC-PDA analysis of total microcystin content in mussel tissue, water biomass, and P. agardhii cultures did not retrieve a positive result. In addition, microcystin related genes were not detected in the water nor cultures. So, the P. agardhii present in the environment was probably a non-toxic strain. This is, to our knowledge, the first report on a P. agardhii bloom reaching the sea and points to the relevance to also monitoring freshwater harmful phytoplankton and related toxins in seafood harvesting and recreational coastal areas, particularly under the influence of river plumes.
Detection of a Planktothrix agardhii Bloom in Portuguese Marine Coastal Waters
Azevedo, Joana; Vasconcelos, Vitor; Silva, Alexandra
2017-01-01
Cyanobacteria blooms are frequent in freshwaters and are responsible for water quality deterioration and human intoxication. Although, not a new phenomenon, concern exists on the increasing persistence, scale, and toxicity of these blooms. There is evidence, in recent years, of the transfer of these toxins from inland to marine waters through freshwater outflow. However, the true impact of these blooms in marine habitats has been overlooked. In the present work, we describe the detection of Planktothrix agardhii, which is a common microcystin producer, in the Portuguese marine coastal waters nearby a river outfall in an area used for shellfish harvesting and recreational activities. P. agardhii was first observed in November of 2016 in seawater samples that are in the scope of the national shellfish monitoring system. This occurrence was followed closely between November and December of 2016 by a weekly sampling of mussels and water from the sea pier and adjacent river mouth with salinity ranging from 35 to 3. High cell densities were found in the water from both sea pier and river outfall, reaching concentrations of 4,960,608 cells·L−1 and 6810.3 × 106 cells·L−1 respectively. Cultures were also established with success from the environment and microplate salinity growth assays showed that the isolates grew at salinity 10. HPLC-PDA analysis of total microcystin content in mussel tissue, water biomass, and P. agardhii cultures did not retrieve a positive result. In addition, microcystin related genes were not detected in the water nor cultures. So, the P. agardhii present in the environment was probably a non-toxic strain. This is, to our knowledge, the first report on a P. agardhii bloom reaching the sea and points to the relevance to also monitoring freshwater harmful phytoplankton and related toxins in seafood harvesting and recreational coastal areas, particularly under the influence of river plumes. PMID:29207501
Murray, Shauna A.; Wiese, Maria; Stüken, Anke; Brett, Steve; Kellmann, Ralf; Hallegraeff, Gustaaf; Neilan, Brett A.
2011-01-01
The recent identification of genes involved in the production of the potent neurotoxin and keystone metabolite saxitoxin (STX) in marine eukaryotic phytoplankton has allowed us for the first time to develop molecular genetic methods to investigate the chemical ecology of harmful algal blooms in situ. We present a novel method for detecting and quantifying the potential for STX production in marine environmental samples. Our assay detects a domain of the gene sxtA that encodes a unique enzyme putatively involved in the sxt pathway in marine dinoflagellates, sxtA4. A product of the correct size was recovered from nine strains of four species of STX-producing Alexandrium and Gymnodinium catenatum and was not detected in the non-STX-producing Alexandrium species, other dinoflagellate cultures, or an environmental sample that did not contain known STX-producing species. However, sxtA4 was also detected in the non-STX-producing strain of Alexandrium tamarense, Tasmanian ribotype. We investigated the copy number of sxtA4 in three strains of Alexandrium catenella and found it to be relatively constant among strains. Using our novel method, we detected and quantified sxtA4 in three environmental blooms of Alexandrium catenella that led to STX uptake in oysters. We conclude that this method shows promise as an accurate, fast, and cost-effective means of quantifying the potential for STX production in marine samples and will be useful for biological oceanographic research and harmful algal bloom monitoring. PMID:21841034
Satellite Remote Sensing of Harmful Algal Blooms (HABs) and a Potential Synthesized Framework
Shen, Li; Xu, Huiping; Guo, Xulin
2012-01-01
Harmful algal blooms (HABs) are severe ecological disasters threatening aquatic systems throughout the World, which necessitate scientific efforts in detecting and monitoring them. Compared with traditional in situ point observations, satellite remote sensing is considered as a promising technique for studying HABs due to its advantages of large-scale, real-time, and long-term monitoring. The present review summarizes the suitability of current satellite data sources and different algorithms for detecting HABs. It also discusses the spatial scale issue of HABs. Based on the major problems identified from previous literature, including the unsystematic understanding of HABs, the insufficient incorporation of satellite remote sensing, and a lack of multiple oceanographic explanations of the mechanisms causing HABs, this review also attempts to provide a comprehensive understanding of the complicated mechanism of HABs impacted by multiple oceanographic factors. A potential synthesized framework can be established by combining multiple accessible satellite remote sensing approaches including visual interpretation, spectra analysis, parameters retrieval and spatial-temporal pattern analysis. This framework aims to lead to a systematic and comprehensive monitoring of HABs based on satellite remote sensing from multiple oceanographic perspectives. PMID:22969372
NASA Astrophysics Data System (ADS)
Volent, Zsolt; Johnsen, Geir; Hovland, Erlend K.; Folkestad, Are; Olsen, Lasse M.; Tangen, Karl; Sørensen, Kai
2011-01-01
Monitoring of the coastal environment is vitally important as these areas are of economic value and at the same time highly exposed to anthropogenic influence, in addition to variation of environmental variables. In this paper we show how the combination of bio-optical data from satellites, analysis of water samples, and a ship-mounted automatic flow-through sensor system (Ferrybox) can be used to detect and monitor phytoplankton blooms both spatially and temporally. Chlorophyll a (Chl a) data and turbidity from Ferrybox are combined with remotely sensed Chl a and total suspended matter from the MERIS instrument aboard the satellite ENVISAT (ENVIronmental SATellite) European Space Agency. Data from phytoplankton speciation and enumeration obtained by a national coastal observation network consisting of fish farms and the Norwegian Food Safety Authority are supplemented with data on phytoplankton pigments. All the data sets are then integrated in order to describe phytoplankton bloom dynamics in a Norwegian fjord over a growth season, with particular focus on Emiliania huxleyi. The approach represents a case example of how coastal environmental monitoring can be improved with existing instrument platforms. The objectives of the paper is to present the operative phytoplankton monitoring scheme in Norway, and to present an improved model of how such a scheme can be designed for a large part of the world's coastal areas.
NASA Astrophysics Data System (ADS)
Tomlinson, Michelle C.; Stumpf, Richard P.; Dupuy, Danielle; Wynne, Timothy T.; Briggs, Travis
2015-12-01
Algal blooms of high biomass and cyanobacteria are on the rise, occurring both nationally and internationally. These blooms can foul beaches, clog water intakes, produce toxins that contaminate drinking water, and pose a threat to human and domestic animal health. A quantitative tool can aid in the management needs to respond to these issues. These blooms can affect many lakes within a state management district, pointing to the need for a synoptic and timely assessment. The 300 m Medium Resolution Imaging Spectrometer (MERIS) satellite imagery provided by the European Space Agency from 2002 to 2012 has led to advances in our ability to monitor these systems. Algorithms specific to quantifying high biomass blooms have been developed for use by state managers through a comparison of field radiometry, water quality and cell enumeration measurements, and remotely-sensed satellite data. These algorithms are designed to detect blooms even with atmospheric interference and suspended sediments. Initial evaluations were conducted for Florida lakes and the St. Johns River, Florida, USA and showed that cyanobacteria blooms, especially of Microcystis, can be identified and their biomass can be estimated (as chlorophyll concentration and other metrics). Forecasts and monitoring have been demonstrated for Lake Erie and for Florida. A multi-agency (NASA, EPA, NOAA, and USGS) project, “Cyanobacteria Assessment Network (CyAN)” intends to apply these methods to Sentinel-3 data in near real-time on a U.S. national scale, in order to support state management agencies in protecting public health and the environment.
POTENTIAL OF BIOLOGICAL MONITORING SYSTEMS TO DETECT TOXICITY IN A FINISHED MATRIX
Distribution systems of the U.S. are vulnerable to natural and anthropogenic factors affecting quality for use as drinking water. Important factors include physical parameters such as increased turbidity, ecological cycles such as algal blooms, and episodic contamination events ...
Gárate-Lizárraga, Ismael
2013-02-15
As part of a continuing toxic microalgae monitoring program, phytoplankton samples were collected on 16-17 August 2012 at several sampling sites in the southern part of the Bahía de La Paz. A bloom of the dinoflagellate Cochlodinium polykrikoides was detected. Abundance of C. polykrikoides ranged from 73 to 276×10(3) cells L(-1) on the first day to 980-1425×10(3) cells L(-1) on the second day. Study of live specimens showed great variation in cell size and form, mainly as single cells or chains of two cells. Live cells were 30-47 μm long and 20-35 μm wide (n=30). Seawater temperature during the bloom was 29-30°C. Low densities of Cochlodinium convolutum, Cochlodinium helicoides, and Cochlodinium shuettii were also found in the samples of the bloom event. These high densities of C. polykrikoides did not lead to fish die-offs in the bay. Copyright © 2012 Elsevier Ltd. All rights reserved.
Zamyadi, Arash; Dorner, Sarah; Ndong, Mouhamed; Ellis, Donald; Bolduc, Anouka; Bastien, Christian; Prévost, Michèle
2014-02-01
The increasing presence of potentially toxic cyanobacterial blooms in drinking water sources and within drinking water treatment plants (DWTPs) has been reported worldwide. The objectives of this study are to validate the application of in vivo probes for the detection and management of cyanobacteria breakthrough inside DWTPs, and to verify the possibility of treatment adjustment based on intensive real-time monitoring. In vivo phycocyanin YSI probes were used to monitor the fate of cyanobacteria in raw water, clarified water, filtered water, and chlorinated water in a full scale DWTP. Simultaneous samples were also taken for microscopic enumeration. The in vivo probe was successfully used to detect the incoming densities of high cyanobacterial cell number into the clarification process and their breakthrough into the filtered water. In vivo probes were used to trace the increase in floating cells over the clarifier, a robust sign of malfunction of the coagulation-sedimentation process. Pre-emptive treatment adjustments, based on in vivo probe monitoring, resulted in successful removal of cyanobacterial cells. The field results on validation of the probes with cyanobacterial bloom samples showed that the probe responses are highly linear and can be used to trigger alerts to take action.
Using Satellite Data to Monitor the Impacts of CyanoHAB Events on Drinking Water: A Texas Case Study
Overview of CYAN and it's mission to support the environmental management and public use of U.S. lakes and estuaries by providing a capability of detecting and quantifying algal blooms and related water quality using satellite data records.
Approaches to monitoring, control and management of harmful algal blooms (HABs)
Anderson, Donald M.
2009-01-01
Virtually every coastal country in the world is affected by harmful algal blooms (HABs, commonly called “red tides”). These phenomena are caused by blooms of microscopic algae. Some of these algae are toxic, and can lead to illness and death in humans, fish, seabirds, marine mammals, and other oceanic life, typically as a result of the transfer of toxins through the food web. Sometimes the direct release of toxic compounds can be lethal to marine animals. Non-toxic HABs cause damage to ecosystems, fisheries resources, and recreational facilities, often due to the sheer biomass of the accumulated algae. The term “HAB” also applies to non-toxic blooms of macroalgae (seaweeds), which can cause major ecological impacts such as the displacement of indigenous species, habitat alteration and oxygen depletion in bottom waters. Globally, the nature of the HAB problem has changed considerably over the last several decades. The number of toxic blooms, the resulting economic losses, the types of resources affected, and the number of toxins and toxic species have all increased dramatically. Some of this expansion has been attributed to storms, currents and other natural phenomena, but human activities are also frequently implicated. Humans have contributed by transporting toxic species in ballast water, and by adding massive and increasing quantities of industrial, agricultural and sewage effluents to coastal waters. In many urbanized coastal regions, these inputs have altered the size and composition of the nutrient pool which has, in turn, created a more favorable nutrient environment for certain HAB species. The steady expansion in the use of fertilizers for agricultural production represents a large and worrisome source of nutrients in coastal waters that promote some HABs. The diversity in HAB species and their impacts presents a significant challenge to those responsible for the management of coastal resources. Furthermore, HABs are complex oceanographic phenomena that require multidisciplinary study ranging from molecular and cell biology to large-scale field surveys, numerical modelling, and remote sensing from space. Our understanding of these phenomena is increasing dramatically, and with this understanding come technologies and management tools that can reduce HAB incidence and impact. Here I summarize the global HAB problem, its trends and causes, and new technologies and approaches to monitoring, control and management, highlighting molecular probes for cell detection, rapid and sensitive toxin assays, remote sensing detection and tracking of blooms, bloom control and mitigation strategies, and the use of large-scale physical/biological models to analyze past blooms and forecast future ones. PMID:20161650
Approaches to monitoring, control and management of harmful algal blooms (HABs).
Anderson, Donald M
2009-07-01
Virtually every coastal country in the world is affected by harmful algal blooms (HABs, commonly called "red tides"). These phenomena are caused by blooms of microscopic algae. Some of these algae are toxic, and can lead to illness and death in humans, fish, seabirds, marine mammals, and other oceanic life, typically as a result of the transfer of toxins through the food web. Sometimes the direct release of toxic compounds can be lethal to marine animals. Non-toxic HABs cause damage to ecosystems, fisheries resources, and recreational facilities, often due to the sheer biomass of the accumulated algae. The term "HAB" also applies to non-toxic blooms of macroalgae (seaweeds), which can cause major ecological impacts such as the displacement of indigenous species, habitat alteration and oxygen depletion in bottom waters.Globally, the nature of the HAB problem has changed considerably over the last several decades. The number of toxic blooms, the resulting economic losses, the types of resources affected, and the number of toxins and toxic species have all increased dramatically. Some of this expansion has been attributed to storms, currents and other natural phenomena, but human activities are also frequently implicated. Humans have contributed by transporting toxic species in ballast water, and by adding massive and increasing quantities of industrial, agricultural and sewage effluents to coastal waters. In many urbanized coastal regions, these inputs have altered the size and composition of the nutrient pool which has, in turn, created a more favorable nutrient environment for certain HAB species. The steady expansion in the use of fertilizers for agricultural production represents a large and worrisome source of nutrients in coastal waters that promote some HABs.The diversity in HAB species and their impacts presents a significant challenge to those responsible for the management of coastal resources. Furthermore, HABs are complex oceanographic phenomena that require multidisciplinary study ranging from molecular and cell biology to large-scale field surveys, numerical modelling, and remote sensing from space. Our understanding of these phenomena is increasing dramatically, and with this understanding come technologies and management tools that can reduce HAB incidence and impact. Here I summarize the global HAB problem, its trends and causes, and new technologies and approaches to monitoring, control and management, highlighting molecular probes for cell detection, rapid and sensitive toxin assays, remote sensing detection and tracking of blooms, bloom control and mitigation strategies, and the use of large-scale physical/biological models to analyze past blooms and forecast future ones.
Advection of Karenia brevis blooms from the Florida Panhandle towards Mississippi coastal waters.
Soto, Inia M; Cambazoglu, Mustafa Kemal; Boyette, Adam D; Broussard, Kristina; Sheehan, Drew; Howden, Stephan D; Shiller, Alan M; Dzwonkowski, Brian; Hode, Laura; Fitzpatrick, Patrick J; Arnone, Robert A; Mickle, Paul F; Cressman, Kimberly
2018-02-01
Harmful Algal Blooms (HABs) of Karenia brevis have been documented along coastal waters of every state bordering the Gulf of Mexico (GoM). Some Gulf Coast locations, such as Florida and Texas, suffer from recurrent intense and spatially large blooms, while others such as Mississippi seem to rarely observe them. The main objective of this work is to understand the dynamics that led to the K. brevis bloom in Mississippi coastal waters in fall 2015. Blooms of K. brevis from the Florida Panhandle region are often advected westward towards the Mississippi-Alabama coast; however there is interannual variability in their presence and intensity in Mississippi coastal waters. The 2015 K. brevis bloom was compared to the 2007 Florida Panhandle K. brevis bloom, which showed a westward advection pattern, but did not intensify along the Mississippi coast. Cell counts and flow cytometry were obtained from the Mississippi Department of Marine Resources, Alabama Department of Public Health, Florida Fish and Wildlife Conservation Commission and The University of Southern Mississippi. Ocean color satellite imagery from the Moderate Resolution Imaging Spectroradiometer onboard the Aqua satellite was used to detect and delineate the blooms in 2007 and 2015. Two different regional applications of NCOM-Navy Coastal Ocean Model (1-km resolution NCOM-GoM/Gulf of Mexico and 6-km resolution NCOM-IASNFS/Intra Americas Sea Nowcast Forecast System) were used to understand the circulation and transport pathways. A Lagrangian particle tracking software was used to track the passive movement of particles released at different locations for both bloom events. Ancillary data (e.g., nutrients, wind, salinity, river discharge) from local buoys, monitoring stations and coincident oceanographic cruises were also included in the analysis. The blooms of K. brevis reached the Mississippi coast both years; however, the bloom in 2007 lasted only a few days and there is no evidence that it entered the Mississippi Sound. Two major differences were observed between both years. First, circulation patterns in 2015 resulting from an intense westward-northwestward that persisted until December allowed for continuous advection, whereas this pattern was not evident in 2007. Second, local river discharge was elevated throughout late fall 2015 while 2007 was below the average. Thus, elevated discharge may have provided sufficient nutrients for bloom intensification. These results illustrate the complex, but important interactions in coastal zones. Further, they emphasize the importance in establishing comprehensive HAB monitoring programs, which facilitate our understanding of nutrient and phytoplankton dynamics, and stress the importance for multi-agency cooperation across state boundaries. Copyright © 2017 Elsevier B.V. All rights reserved.
Great Lakes Hyperspectral Water Quality Instrument Suite for Airborne Monitoring of Algal Blooms
NASA Technical Reports Server (NTRS)
Lekki, John; Leshkevich, George; Nguyen, Quang-Viet; Flatico, Joseph; Prokop, Norman; Kojima, Jun; Anderson, Robert; Demers, James; Krasowski, Michael
2007-01-01
NASA Glenn Research Center and NOAA Great Lakes Environmental Research Lab are collaborating to utilize an airborne hyperspectral imaging sensor suite to monitor Harmful Algal Blooms (HABs) in the western basin of Lake Erie. The HABs are very dynamic events as they form, spread and then disappear within a 4 to 8 week time period in late summer. They are a concern for human health, fish and wildlife because they can contain blue green toxic algae. Because of this toxicity there is a need for the blooms to be continually monitored. This situation is well suited for aircraft based monitoring because the blooms are a very dynamic event and they can spread over a large area. High resolution satellite data is not suitable by itself because it will not give the temporal resolution due to the infrequent overpasses of the quickly changing blooms. A custom designed hyperspectral imager and a point spectrometer mounted on aT 34 aircraft have been used to obtain data on an algal bloom that formed in the western basin of Lake Erie during September 2006. The sensor suite and operations will be described and preliminary hyperspectral data of this event will be presented
Real-Time Event Detection for Monitoring Natural and Source ...
The use of event detection systems in finished drinking water systems is increasing in order to monitor water quality in both operational and security contexts. Recent incidents involving harmful algal blooms and chemical spills into watersheds have increased interest in monitoring source water quality prior to treatment. This work highlights the use of the CANARY event detection software in detecting suspected illicit events in an actively monitored watershed in South Carolina. CANARY is an open source event detection software that was developed by USEPA and Sandia National Laboratories. The software works with any type of sensor, utilizes multiple detection algorithms and approaches, and can incorporate operational information as needed. Monitoring has been underway for several years to detect events related to intentional or unintentional dumping of materials into the monitored watershed. This work evaluates the feasibility of using CANARY to enhance the detection of events in this watershed. This presentation will describe the real-time monitoring approach used in this watershed, the selection of CANARY configuration parameters that optimize detection for this watershed and monitoring application, and the performance of CANARY during the time frame analyzed. Further, this work will highlight how rainfall events impacted analysis, and the innovative application of CANARY taken in order to effectively detect the suspected illicit events. This presentation d
Implementation of New Technologies to Monitor Phytoplankton Blooms in the South of Chile
NASA Astrophysics Data System (ADS)
Rodríguez-Benito, C.; Haag, C.; Alvial, A.
2004-05-01
A pilot project has been carried out to demonstrate the applicability of remote sensing in the Xth region of Chile, related to the monitoring of algal blooms. Most of the fish farms of the country are located in this area, where considerable economic losses for this activity are the consequence of algal blooms. The implementation of new technologies to monitor this natural disaster is one of the main goals of local institutions. The project has been developed using ENVISAT/MERIS and AATSR images and oceanographic instrumentation in order to improve the information of the ongoing coastal monitoring programs.
Carvalho, Gustavo A; Minnett, Peter J; Fleming, Lora E; Banzon, Viva F; Baringer, Warner
2010-06-01
In a continuing effort to develop suitable methods for the surveillance of Harmful Algal Blooms (HABs) of Karenia brevis using satellite radiometers, a new multi-algorithm method was developed to explore whether improvements in the remote sensing detection of the Florida Red Tide was possible. A Hybrid Scheme was introduced that sequentially applies the optimized versions of two pre-existing satellite-based algorithms: an Empirical Approach (using water-leaving radiance as a function of chlorophyll concentration) and a Bio-optical Technique (using particulate backscatter along with chlorophyll concentration). The long-term evaluation of the new multi-algorithm method was performed using a multi-year MODIS dataset (2002 to 2006; during the boreal Summer-Fall periods - July to December) along the Central West Florida Shelf between 25.75°N and 28.25°N. Algorithm validation was done with in situ measurements of the abundances of K. brevis; cell counts ≥1.5×10(4) cells l(-1) defined a detectable HAB. Encouraging statistical results were derived when either or both algorithms correctly flagged known samples. The majority of the valid match-ups were correctly identified (~80% of both HABs and non-blooming conditions) and few false negatives or false positives were produced (~20% of each). Additionally, most of the HAB-positive identifications in the satellite data were indeed HAB samples (positive predictive value: ~70%) and those classified as HAB-negative were almost all non-bloom cases (negative predictive value: ~86%). These results demonstrate an excellent detection capability, on average ~10% more accurate than the individual algorithms used separately. Thus, the new Hybrid Scheme could become a powerful tool for environmental monitoring of K. brevis blooms, with valuable consequences including leading to the more rapid and efficient use of ships to make in situ measurements of HABs.
Carvalho, Gustavo A.; Minnett, Peter J.; Fleming, Lora E.; Banzon, Viva F.; Baringer, Warner
2010-01-01
In a continuing effort to develop suitable methods for the surveillance of Harmful Algal Blooms (HABs) of Karenia brevis using satellite radiometers, a new multi-algorithm method was developed to explore whether improvements in the remote sensing detection of the Florida Red Tide was possible. A Hybrid Scheme was introduced that sequentially applies the optimized versions of two pre-existing satellite-based algorithms: an Empirical Approach (using water-leaving radiance as a function of chlorophyll concentration) and a Bio-optical Technique (using particulate backscatter along with chlorophyll concentration). The long-term evaluation of the new multi-algorithm method was performed using a multi-year MODIS dataset (2002 to 2006; during the boreal Summer-Fall periods – July to December) along the Central West Florida Shelf between 25.75°N and 28.25°N. Algorithm validation was done with in situ measurements of the abundances of K. brevis; cell counts ≥1.5×104 cells l−1 defined a detectable HAB. Encouraging statistical results were derived when either or both algorithms correctly flagged known samples. The majority of the valid match-ups were correctly identified (~80% of both HABs and non-blooming conditions) and few false negatives or false positives were produced (~20% of each). Additionally, most of the HAB-positive identifications in the satellite data were indeed HAB samples (positive predictive value: ~70%) and those classified as HAB-negative were almost all non-bloom cases (negative predictive value: ~86%). These results demonstrate an excellent detection capability, on average ~10% more accurate than the individual algorithms used separately. Thus, the new Hybrid Scheme could become a powerful tool for environmental monitoring of K. brevis blooms, with valuable consequences including leading to the more rapid and efficient use of ships to make in situ measurements of HABs. PMID:21037979
Chen, Qiuwen; Rui, Han; Li, Weifeng; Zhang, Yanhui
2014-06-01
Algal blooms are a serious problem in waters, which damage aquatic ecosystems and threaten drinking water safety. However, the outbreak mechanism of algal blooms is very complex with great uncertainty, especially for large water bodies where environmental conditions have obvious variation in both space and time. This study developed an innovative method which integrated a self-organizing map (SOM) and fuzzy information diffusion theory to comprehensively analyze algal bloom risks with uncertainties. The Lake Taihu was taken as study case and the long-term (2004-2010) on-site monitoring data were used. The results showed that algal blooms in Taihu Lake were classified into four categories and exhibited obvious spatial-temporal patterns. The lake was mainly characterized by moderate bloom but had high uncertainty, whereas severe blooms with low uncertainty were observed in the northwest part of the lake. The study gives insight on the spatial-temporal dynamics of algal blooms, and should help government and decision-makers outline policies and practices on bloom monitoring and prevention. The developed method provides a promising approach to estimate algal bloom risks under uncertainties. Copyright © 2014 Elsevier B.V. All rights reserved.
Mortality of sea lions along the central California coast linked to a toxic diatom bloom.
Scholin, C A; Gulland, F; Doucette, G J; Benson, S; Busman, M; Chavez, F P; Cordaro, J; DeLong, R; De Vogelaere, A; Harvey, J; Haulena, M; Lefebvre, K; Lipscomb, T; Loscutoff, S; Lowenstine, L J; Marin, R; Miller, P E; McLellan, W A; Moeller, P D; Powell, C L; Rowles, T; Silvagni, P; Silver, M; Spraker, T; Trainer, V; Van Dolah, F M
2000-01-06
Over 400 California sea lions (Zalophus californianus) died and many others displayed signs of neurological dysfunction along the central California coast during May and June 1998. A bloom of Pseudo-nitzschia australis (diatom) was observed in the Monterey Bay region during the same period. This bloom was associated with production of domoic acid (DA), a neurotoxin that was also detected in planktivorous fish, including the northern anchovy (Engraulis mordax), and in sea lion body fluids. These and other concurrent observations demonstrate the trophic transfer of DA resulting in marine mammal mortality. In contrast to fish, blue mussels (Mytilus edulus) collected during the DA outbreak contained no DA or only trace amounts. Such findings reveal that monitoring of mussel toxicity alone does not necessarily provide adequate warning of DA entering the food web at levels sufficient to harm marine wildlife and perhaps humans.
Microcystin Prevalence throughout Lentic Waterbodies in Coastal Southern California
Nagoda, Carey; Kudela, Raphael M.; Tatters, Avery; Caron, David A.; Busse, Lilian; Brown, Jeff; Sutula, Martha
2017-01-01
Toxin producing cyanobacterial blooms have increased globally in recent decades in both frequency and intensity. Despite the recognition of this growing risk, the extent and magnitude of cyanobacterial blooms and cyanotoxin prevalence is poorly characterized in the heavily populated region of southern California. Recent assessments of lentic waterbodies (depressional wetlands, lakes, reservoirs and coastal lagoons) determined the prevalence of microcystins and, in some cases, additional cyanotoxins. Microcystins were present in all waterbody types surveyed although toxin concentrations were generally low across most habitats, as only a small number of sites exceeded California’s recreational health thresholds for acute toxicity. Results from passive samplers (Solid Phase Adsorption Toxin Tracking (SPATT)) indicated microcystins were prevalent throughout lentic waterbodies and that traditional discrete samples underestimated the presence of microcystins. Multiple cyanotoxins were detected simultaneously in some systems, indicating multiple stressors, the risk of which is uncertain since health thresholds are based on exposures to single toxins. Anatoxin-a was detected for the first time from lakes in southern California. The persistence of detectable microcystins across years and seasons indicates a low-level, chronic risk through both direct and indirect exposure. The influence of toxic cyanobacterial blooms is a more complex stressor than presently recognized and should be included in water quality monitoring programs. PMID:28737685
Management of toxic cyanobacteria for drinking water production of Ain Zada Dam.
Saoudi, Amel; Brient, Luc; Boucetta, Sabrine; Ouzrout, Rachid; Bormans, Myriam; Bensouilah, Mourad
2017-07-01
Blooms of toxic cyanobacteria in Algerian reservoirs represent a potential health problem, mainly from drinking water that supplies the local population of Ain Zada (Bordj Bou Arreridj). The objective of this study is to monitor, detect, and identify the existence of cyanobacteria and microcystins during blooming times. Samples were taken in 2013 from eight stations. The results show that three potentially toxic cyanobacterial genera with the species Planktothrix agardhii were dominant. Cyanobacterial biomass, phycocyanin (PC) concentrations, and microcystin (MC) concentrations were high in the surface layer and at 14 m depth; these values were also high in the treated water. On 11 May 2013, MC concentrations were 6.3 μg/L in MC-LR equivalent in the drinking water. This study shows for the first time the presence of cyanotoxins in raw and treated waters, highlighting that regular monitoring of cyanobacteria and cyanotoxins must be undertaken to avoid potential health problems.
Monitoring Bloom Dynamics of a Common Coastal Bioluminescent Ctenophore
2010-09-30
photodiodes. IMPACT/APPLICATIONS More frequent and more rapidly developing jellyfish blooms, especially Mnemiopsis leidyi as well as Harmful Algal...To meet the need for a bioluminescent jellyfish monitoring and forecasting system, predictive models will depend upon dense networks of sensor
NASA Technical Reports Server (NTRS)
Moore, Timothy; Dowell, Mark; Franz, Bryan A.
2012-01-01
A generalized coccolithophore bloom classifier has been developed for use with ocean color imagery. The bloom classifier was developed using extracted satellite reflectance data from SeaWiFS images screened by the default bloom detection mask. In the current application, we extend the optical water type (OWT) classification scheme by adding a new coccolithophore bloom class formed from these extracted reflectances. Based on an in situ coccolithophore data set from the North Atlantic, the detection levels with the new scheme were between 1,500 and 1,800 coccolithophore cellsmL and 43,000 and 78,000 lithsmL. The detected bloom area using the OWT method was an average of 1.75 times greater than the default bloom detector based on a collection of SeaWiFS 1 km imagery. The versatility of the scheme is shown with SeaWiFS, MODIS Aqua, CZCS and MERIS imagery at the 1 km scale. The OWT scheme was applied to the daily global SeaWiFS imagery mission data set (years 19972010). Based on our results, average annual coccolithophore bloom area was more than two times greater in the southern hemisphere compared to the northern hemi- sphere with values of 2.00 106 km2 and 0.75 106 km2, respectively. The new algorithm detects larger bloom areas in the Southern Ocean compared to the default algorithm, and our revised global annual average of 2.75106 km2 is dominated by contributions from the Southern Ocean.
Lake Granbury and Lake Whitney Assessment Initiative Final Scientific/Technical Report Summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, B. L.; Roelke, Daniel; Brooks, Bryan
A team of Texas AgriLife Research, Baylor University and University of Texas at Arlington researchers studied the biology and ecology of Prymnesium parvum (golden algae) in Texas lakes using a three-fold approach that involved system-wide monitoring, experimentation at the microcosm and mesocosm scales, and mathematical modeling. The following are conclusions, to date, regarding this organism's ecology and potential strategies for mitigation of blooms by this organism. In-lake monitoring revealed that golden algae are present throughout the year, even in lakes where blooms do not occur. Compilation of our field monitoring data with data collected by Texas Parks and Wildlife andmore » Brazos River Authority (a period spanning a decade) revealed that inflow and salinity variables affect bloom formations. Thresholds for algae populations vary per lake, likely due to adaptations to local conditions, and also to variations in lake-basin morphometry, especially the presence of coves that may serve as hydraulic storage zones for P. parvum populations. More specifically, our in-lake monitoring showed that the highly toxic bloom that occurred in Lake Granbury in the winter of 2006/2007 was eliminated by increased river inflow events. The bloom was flushed from the system. The lower salinities that resulted contributed to golden algae not blooming in the following years. However, flushing is not an absolute requirement for bloom termination. Laboratory experiments have shown that growth of golden algae can occur at salinities ~1-2 psu but only when temperatures are also low. This helps to explain why blooms are possible during winter months in Texas lakes. Our in-lake experiments in Lake Whitney and Lake Waco, as well as our laboratory experiments, revealed that cyanobacteria, or some other bacteria capable of producing algicides, were able to prevent golden algae from blooming. Identification of this organism is a high priority as it may be a key to managing golden algae blooms. Our numerical modeling results support the idea that cyanobacteria, through allelopathy, control the timing of golden algae blooms in Lake Granbury. The in-lake experiments in Lake Whitney and Lake Waco also revealed that as golden algae blooms develop, there are natural enemies (a species of rotifer, and a virus) that help slow the population growth. Again, better characterization of these organisms is a high priority as it may be key to managing golden algae blooms. Our laboratory and in-lake experiments and field monitoring have shown that nutrient additions will remove toxicity and prevent golden algae from blooming. In fact, other algae displace the golden algae after nutrient additions. Additions of ammonia are particularly effective, even at low doses (much lower than what is employed in fish hatchery ponds). Application of ammonia in limited areas of lakes, such as in coves, should be explored as a management option. The laboratory experiments and field monitoring also show that the potency of toxins produced by P. parvum is greatly reduced when water pH is lower, closer to neutral levels. Application of mild acid to limited areas of lakes (but not to a level where acidic conditions are created), such as in coves, should be explored as a management option. Finally, our field monitoring and mathematical modeling revealed that flushing/dilution at high enough levels could prevent P. parvum from forming blooms and/or terminate existing blooms. This technique could work using deeper waters within a lake to flush the surface waters of limited areas of the same lakes, such as in coves and should be explored as a management option. In this way, water releases from upstream reservoirs would not be necessary and there would be no addition of nutrients in the lake.« less
NASA Astrophysics Data System (ADS)
Aoki, Kazuhiro; Onitsuka, Goh; Shimizu, Manabu; Kuroda, Hiroshi; Matsuyama, Yukihiko; Kimoto, Katsunori; Matsuo, Hitoshi; Kitadai, Yuuki; Sakurada, Kiyonari; Nishi, Hiromi; Tahara, Yoshio
2012-12-01
A harmful bloom due to the raphidophycean flagellate, Chattonella antiqua, was found in the Yatsushiro Sea, western Kyushu, Japan, from the end of July to the beginning of August 2009. The bloom resulted in enormous economic damage to cultured finfish production in aquaculture farms concentrated in the southwestern area. To investigate the factors controlling the spatio-temporal distribution of the bloom, data analysis and numerical simulations were conducted using field monitoring data and a three-dimensional hydrodynamic model coupled to a Lagrangian particle-tracking model. Results of the monitoring data analysis showed that the initial development of the C. antiqua bloom occurred in Kusuura Bay and the northeastern area near the mouth of the Kuma River, and subsequently the bloom expanded rapidly to the whole area. The simulation results indicated that the source region of the widespread bloom was not Kusuura Bay but the northeastern area. The southwestward evolution of the bloom was primarily controlled by the passive transport due to the surface residual current driven by fresh water discharge from the Kuma River and northeasterly winds. On the favorable conditions of river discharge and wind, the massive bloom of C. antiqua that formed in the northeastern area was quickly transported southwestward within a few days.
Fortin, Nathalie; Aranda-Rodriguez, Rocio; Jing, Hongmei; Pick, Frances; Bird, David; Greer, Charles W.
2010-01-01
Toxic cyanobacterial blooms, as well as their increasing global occurrence, pose a serious threat to public health, domestic animals, and livestock. In Missisquoi Bay, Lake Champlain, public health advisories have been issued from 2001 to 2009, and local microcystin concentrations found in the lake water regularly exceeded the Canadian drinking water guideline of 1.5 μg liter−1. A quantitative PCR (Q-PCR) approach was developed for the detection of blooms formed by microcystin-producing cyanobacteria. Primers were designed for the β-ketoacyl synthase (mcyDKS) and the first dehydratase domain (mcyDDH) of the mcyD gene, involved in microcystin synthesis. The Q-PCR method was used to track the toxigenic cyanobacteria in Missisquoi Bay during the summers of 2006 and 2007. Two toxic bloom events were detected in 2006: more than 6.5 × 104 copies of the mcyDKS gene ml−1 were detected in August, and an average of 4.0 × 104 copies ml−1 were detected in September, when microcystin concentrations were more than 4 μg liter−1 and approximately 2 μg liter−1, respectively. Gene copy numbers and total microcystin concentrations (determined by enzyme-linked immunosorbent assay [ELISA]) were highly correlated in the littoral (r = 0.93, P < 0.001) and the pelagic station (r = 0.87, P < 0.001) in 2006. In contrast to the situation in 2006, a cyanobacterial bloom occurred only in late summer-early fall of 2007, reaching only 3 × 102 mcyDKS copies ml−1, while the microcystin concentration was barely detectable. The Q-PCR method allowed the detection of microcystin-producing cyanobacteria when toxins and toxigenic cyanobacterial abundance were still below the limit of detection by high-pressure liquid chromatography (HPLC) and microscopy. Toxin gene copy numbers grew exponentially at a steady rate over a period of 7 weeks. Onshore winds selected for cells with a higher cell quota of microcystin. This technique could be an effective approach for the routine monitoring of the most at-risk water bodies. PMID:20562282
A new bio-optical algorithm for the remote sensing of algal blooms in complex ocean waters
NASA Astrophysics Data System (ADS)
Shanmugam, Palanisamy
2011-04-01
A new bio-optical algorithm has been developed to provide accurate assessments of chlorophyll a (Chl a) concentration for detection and mapping of algal blooms from satellite data in optically complex waters, where the presence of suspended sediments and dissolved substances can interfere with phytoplankton signal and thus confound conventional band ratio algorithms. A global data set of concurrent measurements of pigment concentration and radiometric reflectance was compiled and used to develop this algorithm that uses the normalized water-leaving radiance ratios along with an algal bloom index (ABI) between three visible bands to determine Chl a concentrations. The algorithm is derived using Sea-viewing Wide Field-of-view Sensor bands, and it is subsequently tuned to be applicable to Moderate Resolution Imaging Spectroradiometer (MODIS)/Aqua data. When compared with large in situ data sets and satellite matchups in a variety of coastal and ocean waters the present algorithm makes good retrievals of the Chl a concentration and shows statistically significant improvement over current global algorithms (e.g., OC3 and OC4v4). An examination of the performance of these algorithms on several MODIS/Aqua images in complex waters of the Arabian Sea and west Florida shelf shows that the new algorithm provides a better means for detecting and differentiating algal blooms from other turbid features, whereas the OC3 algorithm has significant errors although yielding relatively consistent results in clear waters. These findings imply that, provided that an accurate atmospheric correction scheme is available to deal with complex waters, the current MODIS/Aqua, MERIS and OCM data could be extensively used for quantitative and operational monitoring of algal blooms in various regional and global waters.
Monitoring Bloom Dynamics of a Common Coastal Bioluminescent Ctenophore
2007-09-30
jellyfish blooms are not well understood, but are generally assumed to be a combination of physical and biological factors, with temperature and...bioluminescent jellyfish , especially of Mnemiopsis leidyi, are a common occurrence that appear to be on the rise. Evidence indicates that these blooms
Te, Shu Harn; Chen, Enid Yingru
2015-01-01
The increasing occurrence of harmful cyanobacterial blooms, often linked to deteriorated water quality and adverse public health effects, has become a worldwide concern in recent decades. The use of molecular techniques such as real-time quantitative PCR (qPCR) has become increasingly popular in the detection and monitoring of harmful cyanobacterial species. Multiplex qPCR assays that quantify several toxigenic cyanobacterial species have been established previously; however, there is no molecular assay that detects several bloom-forming species simultaneously. Microcystis and Cylindrospermopsis are the two most commonly found genera and are known to be able to produce microcystin and cylindrospermopsin hepatotoxins. In this study, we designed primers and probes which enable quantification of these genera based on the RNA polymerase C1 gene for Cylindrospermopsis species and the c-phycocyanin beta subunit-like gene for Microcystis species. Duplex assays were developed for two molecular techniques—qPCR and droplet digital PCR (ddPCR). After optimization, both qPCR and ddPCR assays have high linearity and quantitative correlations for standards. Comparisons of the two techniques showed that qPCR has higher sensitivity, a wider linear dynamic range, and shorter analysis time and that it was more cost-effective, making it a suitable method for initial screening. However, the ddPCR approach has lower variability and was able to handle the PCR inhibition and competitive effects found in duplex assays, thus providing more precise and accurate analysis for bloom samples. PMID:26025892
Fayad, Paul B; Roy-Lachapelle, Audrey; Duy, Sung Vo; Prévost, Michèle; Sauvé, Sébastien
2015-12-15
An analytical method based on on-line SPE-LC-HESI-MS/MS has been developed for the detection and quantification of eight selected cyanotoxins in algal bloom waters that include mycrocystins, anatoxin-a and cylindrospermopsin. The injection volume was 2 mL according to the expected concentration of cyanotoxins in matrix. The method provides an analysis time of 7 min per sample, acceptable recovery values (91-101%), good precision (RSD < 13%) and method limits of detection at the sub-microgram per liter levels (0.01-0.02 μg L(-1)). A detailed discussion on optimization parameters that have an impact on the overall performance of the method are presented. In particular, method optimization permitted the chromatographic separation of anatoxin-a and phenylalanine, an isobaric interference with a similar chromatographic characteristics. All optimization and validation experiments for the on-line SPE method and chromatographic separation were performed in environmentally relevant algal bloom water matrices. The applicability of the method was tested on several algal bloom water samples from monitored lakes across the province of Québec (Québec, Canada) known to produce cyanotoxins. All of the targeted cyanotoxins were detected with the exception of cylindrospermopsin. In addition, it was found that total microcystin concentrations in several surface water samples exceeded the proposed guidelines established by the province of Québec in Canada of 1.5 μg L(-1) as well as the World Health Organization of 1 μg L(-1) for both free and cell-bound microcystin-LR equivalent. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Weiying; Lou, Inchio; Ung, Wai Kin; Kong, Yijun; Mok, Kai Meng
2014-06-01
Freshwater algal blooms have become a growing concern world-wide. They are caused by a high level of cyanobacteria, predominantly Microcystis spp. and Cylindrospermopsis raciborskii, which can produce microcystin and cylindrospermopsin, respectively. Longtime exposure to these cyanotoxins may affect public health, thus reliable detection, quantification, and enumeration of these harmful algae species has become a priority in water quality management. Traditional manual enumeration of algal bloom cells primarily involves microscopic identification which limited by inaccuracy and time-consumption.With the development of molecular techniques and an increasing number of microbial sequences available in the Genbank database, the use of molecular methods can be used for more rapid, reliable, and accurate detection and quantification. In this study, multiplex polymerase chain reaction (PCR) and real-time quantitative PCR (qPCR) techniques were developed and applied for monitoring cyanobacteria Microcystis spp. and C. raciborskii in the Macau Storage Reservoir (MSR). The results showed that the techniques were successful for identifying and quantifying the species in pure cultures and mixed cultures, and proved to be a potential application for water sampling in MSR. When the target species were above 1 million cells/L, similar cell numbers estimated by microscopic enumeration and qPCR were obtained. Further quantification in water samples indicated that the ratio of the estimated number of cell by microscopy and qPCR was 0.4-12.9 for cyanobacteria and 0.2-3.9 for C. raciborskii. However, Microcystis spp. was not observed by manual enumeration, while it was detected at low levels by qPCR, suggesting that qPCR is more sensitive and accurate. Thus the molecular approaches provide an additional reliable monitoring option to traditional microscopic enumeration for the ecosystems monitoring program.
NASA Technical Reports Server (NTRS)
Lekki, John; Anderson, Robert; Avouris, Dulcinea; Becker, RIchard; Churnside, James; Cline, Michael; Demers, James; Leshkevich, George; Liou, Larry; Luvall, Jeffrey;
2017-01-01
Harmful algal blooms (HABs) in Lake Erie have been prominent in recent years. The bloom in 2014 reached a severe level causing the State of Ohio to declare a state of emergency. At that time NASA Glenn Research Center was requested by stakeholders to help monitor the blooms in Lake Erie. Glenn conducted flights twice a week in August and September and assembled and distributed the HAB information to the shoreline water resource managers using its hyperspectral imaging sensor (in development since 2006), the S??3 Viking aircraft, and funding resources from the NASA Headquarters Earth Science Division. Since then, the State of Ohio, National Oceanic and Atmospheric Administration (NOAA), and U.S. Environmental Protection Agency (EPA) have elevated their funding and activities for observing, monitoring, and addressing the root cause of HABs. Also, the communities and stakeholders have persistently requested NASA Glenn??s participation in HAB observation. Abundant field campaigns and sample analyses have been funded by Ohio and NOAA, which provided a great opportunity for NASA to advance science and airborne hyperspectral remote sensing economically. Capitalizing on this opportunity to advance the science of algal blooms and remote sensing, NASA Glenn conducted the Airborne Hyperspectral Observation of harmful algal blooms campaign in 2015 that was, in many respects, twice as large as the 2014 campaign. Focusing mostly on Lake Erie, but also including other small inland lakes and the Ohio River, the campaign was conducted in partnership with a large number of partners specializing in marine science and remote sensing. Airborne hyperspectral observation of HABs holds promise to distinguish potential HABs from nuisance blooms, determine their concentrations, and delineate their movement in an augmented spatial and temporal resolution and under clouds??all of which are excellent complements to satellite observations. Working with collaborators at several Ohio and Michigan institutions as well as one in South Dakota and one in Alabama, this effort was able to provide next-day georeferenced estimates of cyanobacteria and scum concentrations. Very prompt processing and analysis of the hyperspectral imagery is necessary for the information to be acted upon. For example, a next-day report of an overflight over the Ohio River indicated that a bloom could be present as far downstream as the Cincinnati intake, but the Ohio EPA had not received visual reports of a bloom that far downstream. Water samples were obtained at the Cincinnati water intake, based on the flight data, and detected microcystins in the source water. The flight data helped State and municipal authorities realize the potential extent of that bloom, and triggered response sampling, before the visual river-wide scums started forming. The present document describes the process that was utilized to take raw remote sensing data and create information products; this includes system calibration and validation, efforts to correct atmospheric effects, and algorithms that produce the data products. Furthermore, successful research into improved algorithms for expanding the capability to delineate in water constituents is included. Finally, comparisons that show expected relationships between ground-based measurements and hyperspectral imager version 2 (HSI2) data results are presented, giving confidence in the remote sensing products.
Extreme Algal Bloom Detection with MERIS
NASA Astrophysics Data System (ADS)
Amin, R.; Gilerson, A.; Gould, R.; Arnone, R.; Ahmed, S.
2009-05-01
Harmful Algal Blooms (HAB's) are a major concern all over the world due to their negative impacts on the marine environment, human health, and the economy. Their detection from space still remains a challenge particularly in turbid coastal waters. In this study we propose a simple reflectance band difference approach for use with Medium Resolution Imaging Spectrometer (MERIS) data to detect intense plankton blooms. For convenience we label this approach as the Extreme Bloom Index (EBI) which is defined as EBI = Rrs (709) - Rrs (665). Our initial analysis shows that this band difference approach has some advantages over the band ratio approaches, particularly in reducing errors due to imperfect atmospheric corrections. We also do a comparison between the proposed EBI technique and the Maximum Chlorophyll Index (MCI) Gower technique. Our preliminary result shows that both the EBI and MCI indeces detect intense plankton blooms, however, MCI is more vulnerable in highly scattering waters, giving more positive false alarms than EBI.
Phytoplankton blooms in estuarine and coastal waters: Seasonal patterns and key species
Carstensen, Jacob; Klais, Riina; Cloern, James E.
2015-01-01
Phytoplankton blooms are dynamic phenomena of great importance to the functioning of estuarine and coastal ecosystems. We analysed a unique (large) collection of phytoplankton monitoring data covering 86 coastal sites distributed over eight regions in North America and Europe, with the aim of investigating common patterns in the seasonal timing and species composition of the blooms. The spring bloom was the most common seasonal pattern across all regions, typically occurring early (February–March) at lower latitudes and later (April–May) at higher latitudes. Bloom frequency, defined as the probability of unusually high biomass, ranged from 5 to 35% between sites and followed no consistent patterns across gradients of latitude, temperature, salinity, water depth, stratification, tidal amplitude or nutrient concentrations. Blooms were mostly dominated by a single species, typically diatoms (58% of the blooms) and dinoflagellates (19%). Diatom-dominated spring blooms were a common feature in most systems, although dinoflagellate spring blooms were also observed in the Baltic Sea. Blooms dominated by chlorophytes and cyanobacteria were only common in low salinity waters and occurred mostly at higher temperatures. Key bloom species across the eight regions included the diatoms Cerataulina pelagica and Dactyliosolen fragilissimus and dinoflagellates Heterocapsa triquetra and Prorocentrum cordatum. Other frequent bloom-forming taxa were diatom genera Chaetoceros, Coscinodiscus, Skeletonema, and Thalassiosira. Our meta-analysis shows that these 86 estuarine-coastal sites function as diatom-producing systems, the timing of that production varies widely, and that bloom frequency is not associated with environmental factors measured in monitoring programs. We end with a perspective on the limitations of conclusions derived from meta-analyses of phytoplankton time series, and the grand challenges remaining to understand the wide range of bloom patterns and processes that select species as bloom dominants in coastal waters.
Status, Alert System, and Prediction of Cyanobacterial Bloom in South Korea
Srivastava, Ankita; Ahn, Chi-Yong; Asthana, Ravi Kumar; Lee, Hyung-Gwan; Oh, Hee-Mock
2015-01-01
Bloom-forming freshwater cyanobacterial genera pose a major ecological problem due to their ability to produce toxins and other bioactive compounds, which can have important implications in illnesses of humans and livestock. Cyanobacteria such as Microcystis, Anabaena, Oscillatoria, Phormidium, and Aphanizomenon species producing microcystins and anatoxin-a have been predominantly documented from most South Korean lakes and reservoirs. With the increase in frequency of such blooms, various monitoring approaches, treatment processes, and prediction models have been developed in due course. In this paper we review the field studies and current knowledge on toxin producing cyanobacterial species and ecological variables that regulate toxin production and bloom formation in major rivers (Han, Geum, Nakdong, and Yeongsan) and reservoirs in South Korea. In addition, development of new, fast, and high-throughput techniques for effective monitoring is also discussed with cyanobacterial bloom advisory practices, current management strategies, and their implications in South Korean freshwater bodies. PMID:25705675
Detection of macroalgae blooms by complex SAR imagery.
Shen, Hui; Perrie, William; Liu, Qingrong; He, Yijun
2014-01-15
Increased frequency and enhanced damage to the marine environment and to human society caused by green macroalgae blooms demand improved high-resolution early detection methods. Conventional satellite remote sensing methods via spectra radiometers do not work in cloud-covered areas, and therefore cannot meet these demands for operational applications. We present a methodology for green macroalgae bloom detection based on RADARSAT-2 synthetic aperture radar (SAR) images. Green macroalgae patches exhibit different polarimetric characteristics compared to the open ocean surface, in both the amplitude and phase domains of SAR-measured complex radar backscatter returns. In this study, new index factors are defined which have opposite signs in green macroalgae-covered areas, compared to the open water surface. These index factors enable unsupervised detection from SAR images, providing a high-resolution new tool for detection of green macroalgae blooms, which can potentially contribute to a better understanding of the mechanisms related to outbreaks of green macroalgae blooms in coastal areas throughout the world ocean. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Cyanobacterial blooms occur worldwide and are associated with human respiratory irritation, undesirable taste and odor of potable water, increased drinking water treatment costs, loss of revenue from recreational use, and human illness as a result of ingestion or skin exposure du...
A number of drinking water treatment plants on Lake Erie have supplied water samples on a monthly basis for analysis related to the occurrence of harmful algal blooms (HABs). General water quality parameters including total organic carbon (TOC), orthophosphate, and chlorophyll-A ...
Microcystin in cyanobacterial blooms in a Chilean lake.
Campos, V; Cantarero, S; Urrutia, H; Heinze, R; Wirsing, B; Neumann, U; Weckesser, J
1999-05-01
Cyanobacterial blooms dominated by Microcystis sp. occurred in lake Rocuant ("marisma", near Concepción/Chile) in February 1995 and 1996. In the bloom samples collected in both years the hepatotoxin microcystin was detected by RP-HPLC in both samples and in the sample of 1995 also by a toxicity assay using primary rat hepatocytes. In the bloom of 1995, the microcystin content of the dry bloom biomass was determined to be 130 micrograms/g on the basis of the RP-HPLC peak area and 800 micrograms/g on the basis of the rat hepatotoxicity assay, respectively. In the bloom of 1996, RP-HPLC analysis revealed a microcystin content of 8.13 micrograms/g bloom material dry weight. In this year no hepatotoxicity was measured using a concentration range up to 0.8 mg (d. w.) of bloom material per ml in the rat hepatotoxicity assay. This is the first report on the detection of microcystins in Chilean water bodies.
NASA Astrophysics Data System (ADS)
El Alem, A.; Chokmani, K.; Laurion, I.; El Adlouni, S.
2013-12-01
Occurrence and extent of Harmful Algal Bloom (HAB) has increased in inland water bodies around the world. The appearance of these blooms reflects the advanced state of eutrophication of several aquatic systems caused by urban, agricultural, and industrial development. Algal blooms, especially those cyanobacterial origins, are capable to produce and release toxins, threatening human and animal health, quality of drinking water, and recreational water bodies. Conventional monitoring networks, based on infrequent sampling in a few fixed monitoring stations, cannot provide the information needed as HABs are spatially and temporally heterogeneous. Remote sensing represents an interesting alternative to provide the required spatial and temporal coverage. The usefulness of air-borne and satellite remote sensing data to detect HABs was demonstrated since three decades ago, and since several empirical and semi-empirical models, using satellite imagery, were developed to estimate chlorophyll-a concentration [Chl-a] as a proxy to detect bloom proliferations. However, most of those models presented several weaknesses that are generally linked to the range of [Chl-a] to be estimated. Indeed, models originally calibrated for high [Chl-a] fail to estimate low concentrations and vice versa. In this study, an adaptive model to estimate [Chl-a], spread over a wide range of concentrations, is developed for optically complex inland water bodies based on combination of water spectral response classification and three developed semi-empirical algorithms using a multivariate regression. Three distinct water types (low, medium, and high [Chl-a]) are first identified using the Classification and Regression Tree (CART) method performed on remote sensing reflectance over a dataset of 44 [Chl-a] samples collected from Lakes over Quebec province. Based on the water classification, a specific multivariate model to each water type is developed using the same dataset and the MODIS data at 250-m spatial resolution. By pre-clustering inland water bodies, the results were very interesting as the determination coefficients as well as the relative RMSE of the cross-validation were of 0.99, 0.98 and 0.95 and of 0.5%, 8% and 17% for high, medium, and low [Chl-a], respectively. On the other hand, the adaptive model reached a global success rate of 92% using an independent, semi-qualitative, [Chl-a] samples collected over more than twenty inland water bodies for the years 2009 and 2010 over the Quebec province.
NASA Astrophysics Data System (ADS)
Lubkin, S. H.; Morgan, C.
2015-12-01
Harmful algal bloom species have had an increasing ecological impact on the Chesapeake Bay Watershed where they disrupt water chemistry, kill fish and cause human illness. In Virginia, scientists from Virginia Institute of Marine Science and Old Dominion University monitor HABs and their effect on water quality; however, these groups lack a method to monitor HABs in real time. This limits the ability to document associated water quality conditions and predict future blooms. Band reflectance values from Landsat 8 Surface Reflectance data (USGS Earth Explorer) and MODIS Chlorophyll imagery (NOAA CoastWatch) were cross calibrated to create a regression model that calculated concentrations of chlorophyll. Calculations were verified with in situ measurements from the Virginia Estuarine and Coastal Observing System. Imagery produced with the Chlorophyll-A calculation model will allow VIMS and ODU scientists to assess the timing, magnitude, duration and frequency of HABs in Virginia's Chesapeake watershed and to predict the environmental and water quality conditions that favor bloom development.
Ndong, Mouhamed; Bird, David; Nguyen-Quang, Tri; de Boutray, Marie-Laure; Zamyadi, Arash; Vinçon-Leite, Brigitte; Lemaire, Bruno J; Prévost, Michèle; Dorner, Sarah
2014-06-01
The sudden appearance of toxic cyanobacteria (CB) blooms is still largely unpredictable in waters worldwide. Many post-hoc explanations for CB bloom occurrence relating to physical and biochemical conditions in lakes have been developed. As potentially toxic CB can accumulate in drinking water treatment plants and disrupt water treatment, there is a need for water treatment operators to determine whether conditions are favourable for the proliferation and accumulation of CB in source waters in order to adjust drinking water treatment accordingly. Thus, a new methodology with locally adaptable variables is proposed in order to have a single index, f(p), related to various environmental factors such as temperature, wind speed and direction. The index is used in conjunction with real time monitoring data to determine the probability of CB occurrence in relation to meteorological factors, and was tested at a drinking water intake in Missisquoi Bay, a shallow transboundary bay in Lake Champlain, Québec, Canada. These environmental factors alone were able to explain a maximum probability of 68% that a CB bloom would occur at the drinking water treatment plant. Nutrient limitation also influences CB blooms and intense blooms only occurred when the dissolved inorganic nitrogen (DIN) to total phosphorus (TP) mass ratio was below 3. Additional monitoring of DIN and TP could be considered for these source waters prone to cyanobacterial blooms to determine periods of favourable growth. Real time monitoring and the use of the index could permit an adequate and timely response to CB blooms in drinking water sources. Copyright © 2014 Elsevier Ltd. All rights reserved.
Te, Shu Harn; Chen, Enid Yingru; Gin, Karina Yew-Hoong
2015-08-01
The increasing occurrence of harmful cyanobacterial blooms, often linked to deteriorated water quality and adverse public health effects, has become a worldwide concern in recent decades. The use of molecular techniques such as real-time quantitative PCR (qPCR) has become increasingly popular in the detection and monitoring of harmful cyanobacterial species. Multiplex qPCR assays that quantify several toxigenic cyanobacterial species have been established previously; however, there is no molecular assay that detects several bloom-forming species simultaneously. Microcystis and Cylindrospermopsis are the two most commonly found genera and are known to be able to produce microcystin and cylindrospermopsin hepatotoxins. In this study, we designed primers and probes which enable quantification of these genera based on the RNA polymerase C1 gene for Cylindrospermopsis species and the c-phycocyanin beta subunit-like gene for Microcystis species. Duplex assays were developed for two molecular techniques-qPCR and droplet digital PCR (ddPCR). After optimization, both qPCR and ddPCR assays have high linearity and quantitative correlations for standards. Comparisons of the two techniques showed that qPCR has higher sensitivity, a wider linear dynamic range, and shorter analysis time and that it was more cost-effective, making it a suitable method for initial screening. However, the ddPCR approach has lower variability and was able to handle the PCR inhibition and competitive effects found in duplex assays, thus providing more precise and accurate analysis for bloom samples. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Ferranti, Pasquale; Nasi, Antonella; Bruno, Milena; Basile, Adriana; Serpe, Luigi; Gallo, Pasquale
2011-05-15
In recent years, the occurrence of cyanobacterial blooms in eutrophic freshwaters has been described all over the world, including most European countries. Blooms of cyanobacteria may produce mixtures of toxic secondary metabolites, called cyanotoxins. Among these, the most studied are microcystins, a group of cyclic heptapeptides, because of their potent hepatotoxicity and activity as tumour promoters. Other peptide cyanotoxins have been described whose structure and toxicity have not been thoroughly studied. Herein we present a peptidomic approach aimed to characterise and quantify the peptide cyanotoxins produced in two Italian lakes, Averno and Albano. The procedure was based on matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry mass spectrometry (MALDI-TOF-MS) analysis for rapid detection and profiling of the peptide mixture complexity, combined with liquid chromatography/electrospray ionisation quadrupole time-of- flight tandem mass spectrometry (LC/ESI-Q-TOF-MS/MS) which provided unambiguous structural identification of the main compounds, as well as accurate quantitative analysis of microcystins. In the case of Lake Averno, a novel variant of microcystin-RR and two novel anabaenopeptin variants (Anabaenopeptins B(1) and Anabaenopeptin F(1)), presenting homoarginine in place of the commonly found arginine, were detected and characterised. In Lake Albano, the peculiar peptide patterns in different years were compared, as an example of the potentiality of the peptidomic approach for fast screening analysis, prior to fine structural analysis and determination of cyanotoxins, which included six novel aeruginosin variants. This approach allows for wide range monitoring of cyanobacteria blooms, and to collect data for evaluating possible health risks to consumers, through the panel of the compounds produced along different years. Copyright © 2011 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Alawadi, Fahad
2010-10-01
Quantifying ocean colour properties has evolved over the past two decades from being able to merely detect their biological activity to the ability to estimate chlorophyll concentration using optical satellite sensors like MODIS and MERIS. The production of chlorophyll spatial distribution maps is a good indicator of plankton biomass (primary production) and is useful for the tracing of oceanographic currents, jets and blooms, including harmful algal blooms (HABs). Depending on the type of HABs involved and the environmental conditions, if their concentration rises above a critical threshold, it can impact the flora and fauna of the aquatic habitat through the introduction of the so called "red tide" phenomenon. The estimation of chlorophyll concentration is derived from quantifying the spectral relationship between the blue and the green bands reflected from the water column. This spectral relationship is employed in the standard ocean colour chlorophyll-a (Chlor-a) product, but is incapable of detecting certain macro-algal species that float near to or at the water surface in the form of dense filaments or mats. The ability to accurately identify algal formations that sometimes appear as oil spill look-alikes in satellite imagery, contributes towards the reduction of false-positive incidents arising from oil spill monitoring operations. Such algal formations that occur in relatively high concentrations may experience, as in land vegetation, what is known as the "red-edge" effect. This phenomena occurs at the highest reflectance slope between the maximum absorption in the red due to the surrounding ocean water and the maximum reflectance in the infra-red due to the photosynthetic pigments present in the surface algae. A new algorithm termed the surface algal bloom index (SABI), has been proposed to delineate the spatial distributions of floating micro-algal species like for example cyanobacteria or exposed inter-tidal vegetation like seagrass. This algorithm was specifically modelled to adapt to the marine habitat through its inclusion of ocean-colour sensitive bands in a four-band ratio-based relationship. The algorithm has demonstrated high stability against various environmental conditions like aerosol and sun glint.
Fiber-optic microarray for simultaneous detection of multiple harmful algal bloom species.
Ahn, Soohyoun; Kulis, David M; Erdner, Deana L; Anderson, Donald M; Walt, David R
2006-09-01
Harmful algal blooms (HABs) are a serious threat to coastal resources, causing a variety of impacts on public health, regional economies, and ecosystems. Plankton analysis is a valuable component of many HAB monitoring and research programs, but the diversity of plankton poses a problem in discriminating toxic from nontoxic species using conventional detection methods. Here we describe a sensitive and specific sandwich hybridization assay that combines fiber-optic microarrays with oligonucleotide probes to detect and enumerate the HAB species Alexandrium fundyense, Alexandrium ostenfeldii, and Pseudo-nitzschia australis. Microarrays were prepared by loading oligonucleotide probe-coupled microspheres (diameter, 3 mum) onto the distal ends of chemically etched imaging fiber bundles. Hybridization of target rRNA from HAB cells to immobilized probes on the microspheres was visualized using Cy3-labeled secondary probes in a sandwich-type assay format. We applied these microarrays to the detection and enumeration of HAB cells in both cultured and field samples. Our study demonstrated a detection limit of approximately 5 cells for all three target organisms within 45 min, without a separate amplification step, in both sample types. We also developed a multiplexed microarray to detect the three HAB species simultaneously, which successfully detected the target organisms, alone and in combination, without cross-reactivity. Our study suggests that fiber-optic microarrays can be used for rapid and sensitive detection and potential enumeration of HAB species in the environment.
Detecting Potential Water Quality Issues by Mapping Trophic Status Using Google Earth Engine
NASA Astrophysics Data System (ADS)
Nguy-Robertson, A. L.; Harvey, K.; Huening, V.; Robinson, H.
2017-12-01
The identification, timing, and spatial distribution of recurrent algal blooms and aquatic vegetation can help water managers and policy makers make better water resource decisions. In many parts of the world there is little monitoring or reporting of water quality due to the required costs and effort to collect and process water samples. We propose to use Google Earth Engine to quickly identify the recurrence of trophic states in global inland water systems. Utilizing Landsat and Sentinel multispectral imagery, inland water quality parameters (i.e. chlorophyll a concentration) can be estimated and waters can be classified by trophic state; oligotrophic, mesotrophic, eutrophic, and hypereutrophic. The recurrence of eutrophic and hypereutrophic observations can highlight potentially problematic locations where algal blooms or aquatic vegetation occur routinely. Eutrophic and hypereutrophic waters commonly include many harmful algal blooms and waters prone to fish die-offs from hypoxia. While these maps may be limited by the accuracy of the algorithms utilized to estimate chlorophyll a; relative comparisons at a local scale can help water managers to focus limited resources.
Monitoring Bloom Dynamics of a Common Coastal Bioluminescent Ctenophore
2009-09-30
potential in the coastal zone environment. OBJECTIVES Blooms of bioluminescent jellyfish , especially of Mnemiopsis leidyi, are a common occurrence... jellyfish populations are done with net collections by hand at stations weekly, monthly, or seasonally. These time scales severely limit our knowledge...the collection of both biotic and abiotic data continuously. 5 IMPACT/APPLICATIONS As incidents of jellyfish blooms, especially Mnemiopsis
A novel single-parameter approach for forecasting algal blooms.
Xiao, Xi; He, Junyu; Huang, Haomin; Miller, Todd R; Christakos, George; Reichwaldt, Elke S; Ghadouani, Anas; Lin, Shengpan; Xu, Xinhua; Shi, Jiyan
2017-01-01
Harmful algal blooms frequently occur globally, and forecasting could constitute an essential proactive strategy for bloom control. To decrease the cost of aquatic environmental monitoring and increase the accuracy of bloom forecasting, a novel single-parameter approach combining wavelet analysis with artificial neural networks (WNN) was developed and verified based on daily online monitoring datasets of algal density in the Siling Reservoir, China and Lake Winnebago, U.S.A. Firstly, a detailed modeling process was illustrated using the forecasting of cyanobacterial cell density in the Chinese reservoir as an example. Three WNN models occupying various prediction time intervals were optimized through model training using an early stopped training approach. All models performed well in fitting historical data and predicting the dynamics of cyanobacterial cell density, with the best model predicting cyanobacteria density one-day ahead (r = 0.986 and mean absolute error = 0.103 × 10 4 cells mL -1 ). Secondly, the potential of this novel approach was further confirmed by the precise predictions of algal biomass dynamics measured as chl a in both study sites, demonstrating its high performance in forecasting algal blooms, including cyanobacteria as well as other blooming species. Thirdly, the WNN model was compared to current algal forecasting methods (i.e. artificial neural networks, autoregressive integrated moving average model), and was found to be more accurate. In addition, the application of this novel single-parameter approach is cost effective as it requires only a buoy-mounted fluorescent probe, which is merely a fraction (∼15%) of the cost of a typical auto-monitoring system. As such, the newly developed approach presents a promising and cost-effective tool for the future prediction and management of harmful algal blooms. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hattenrath-Lehmann, Theresa K.; Lusty, Mark W.; Wallace, Ryan B.; Haynes, Bennie; Wang, Zhihong; Broadwater, Maggie; Deeds, Jonathan R.; Morton, Steve L.; Hastback, William; Porter, Leonora; Chytalo, Karen
2018-01-01
Marine biotoxin-contaminated seafood has caused thousands of poisonings worldwide this century. Given these threats, there is an increasing need for improved technologies that can be easily integrated into coastal monitoring programs. This study evaluates approaches for monitoring toxins associated with recurrent toxin-producing Alexandrium and Dinophysis blooms on Long Island, NY, USA, which cause paralytic and diarrhetic shellfish poisoning (PSP and DSP), respectively. Within contrasting locations, the dynamics of pelagic Alexandrium and Dinophysis cell densities, toxins in plankton, and toxins in deployed blue mussels (Mytilus edulis) were compared with passive solid-phase adsorption toxin tracking (SPATT) samplers filled with two types of resin, HP20 and XAD-2. Multiple species of wild shellfish were also collected during Dinophysis blooms and used to compare toxin content using two different extraction techniques (single dispersive and double exhaustive) and two different toxin analysis assays (liquid chromatography/mass spectrometry and the protein phosphatase inhibition assay (PP2A)) for the measurement of DSP toxins. DSP toxins measured in the HP20 resin were significantly correlated (R2 = 0.7–0.9, p < 0.001) with total DSP toxins in shellfish, but were detected more than three weeks prior to detection in deployed mussels. Both resins adsorbed measurable levels of PSP toxins, but neither quantitatively tracked Alexandrium cell densities, toxicity in plankton or toxins in shellfish. DSP extraction and toxin analysis methods did not differ significantly (p > 0.05), were highly correlated (R2 = 0.98–0.99; p < 0.001) and provided complete recovery of DSP toxins from standard reference materials. Blue mussels (Mytilus edulis) and ribbed mussels (Geukensia demissa) were found to accumulate DSP toxins above federal and international standards (160 ng g−1) during Dinophysis blooms while Eastern oysters (Crassostrea virginica) and soft shell clams (Mya arenaria) did not. This study demonstrated that SPATT samplers using HP20 resin coupled with PP2A technology could be used to provide early warning of DSP, but not PSP, events for shellfish management. PMID:29342840
NASA Astrophysics Data System (ADS)
Wang, Kui; Chen, Jianfang; Ni, Xiaobo; Zeng, Dingyong; Li, Dewang; Jin, Haiyan; Glibert, Patricia M.; Qiu, Wenxian; Huang, Daji
2017-07-01
The Changjiang Estuary is a large-river estuary ecosystem in the East China Sea, and its plume, the Changjiang Diluted Water (CDW), transports a large mass of nutrients (NO3- + NO2-, PO43-, SiO32-) to the shelf sea, leading to substantial eutrophication; the CDW also supports high primary production. However, relationships between nutrient delivery and phytoplankton responses have been difficult to establish, as many nutrient delivery events and algal blooms are episodic, and the CDW may expand or become detached with changing winds. To study the relationship between nutrient delivery events, algal blooms and estuarine metabolism dynamics, a buoy system was deployed in the CDW from 9 September to 10 October 2013, with measurements of chlorophyll a and dissolved nutrients. Day-to-day nutrient increases covaried with salinity decreases, regulated by both the spring-neap tidal cycle and wind events. Several specific nutrient injection periods were detected, each followed by nutrient drawdown and chlorophyll a accumulation (algal blooms). Each algal bloom had its own unique pattern of nutrient uptake based on change in nutrient ratios (ΔN:ΔP; ΔN:ΔSi) and appeared to be dominated by different algal groups. These events occurred under weak wind and stable hydrodynamic conditions. Ecosystem metabolism based on net community production (NCP) showed that the upper estuarine ecosystem was autotrophic when chlorophyll a accumulated, but heterotrophic when wind-induced mixing strengthened, and upwelling brought organic-rich water to the near surface. In spite of several short-lived algal blooms, the average NCPdaily was negative during the observation period, indicating a net source of CO2 to the atmosphere.
Wynne, Timothy T; Stumpf, Richard P
2015-05-12
Lake Erie, the world's tenth largest freshwater lake by area, has had recurring blooms of toxic cyanobacteria for the past two decades. These blooms pose potential health risks for recreation, and impact the treatment of drinking water. Understanding the timing and distribution of the blooms may aid in planning by local communities and resources managers. Satellite data provides a means of examining spatial patterns of the blooms. Data sets from MERIS (2002-2012) and MODIS (2012-2014) were analyzed to evaluate bloom patterns and frequencies. The blooms were identified using previously published algorithms to detect cyanobacteria (~25,000 cells mL-1), as well as a variation of these algorithms to account for the saturation of the MODIS ocean color bands. Images were binned into 10-day composites to reduce cloud and mixing artifacts. The 13 years of composites were used to determine frequency of presence of both detectable cyanobacteria and high risk (>100,000 cells mL-1) blooms. The bloom season according to the satellite observations falls within June 1 and October 31. Maps show the pattern of development and areas most commonly impacted during all years (with minor and severe blooms). Frequencies during years with just severe blooms (minor bloom years were not included in the analysis) were examined in the same fashion. With the annual forecasts of bloom severity, these frequency maps can provide public water suppliers and health departments with guidance on the timing of potential risk.
González Taboada, Fernando; Anadón, Ricardo
2014-03-01
Seasonal pulses of phytoplankton drive seasonal cycles of carbon fixation and particle sedimentation, and might condition recruitment success in many exploited species. Taking advantage of long-term series of remotely sensed chlorophyll a (1998-2012), we analyzed changes in phytoplankton seasonality in the North Atlantic Ocean. Phytoplankton phenology was analyzed based on a probabilistic characterization of bloom incidence. This approach allowed us to detect changes in the prevalence of different seasonal cycles and, at the same time, to estimate bloom timing and magnitude taking into account uncertainty in bloom detection. Deviations between different sensors stressed the importance of a prolonged overlap between successive missions to ensure a correct assessment of phenological changes, as well as the advantage of semi-analytical chlorophyll algorithms over empirical ones to reduce biases. Earlier and more intense blooms were detected in the subpolar Atlantic, while advanced blooms of less magnitude were common in the Subtropical gyre. In the temperate North Atlantic, spring blooms advanced their timing and decreased in magnitude, whereas fall blooms delayed and increased their intensity. At the same time, the prevalence of locations with a single autumn/winter bloom or with a bimodal seasonal cycle increased, in consonance with a poleward expansion of subtropical conditions. Changes in bloom timing and magnitude presented a clear signature of environmental factors, especially wind forcing, although changes on incident photosynthetically active radiation and sea surface temperature were also important depending on latitude. Trends in bloom magnitude matched changes in mean chlorophyll a during the study period, suggesting that seasonal peaks drive long-term trends in chlorophyll a concentration. Our results link changes in North Atlantic climate with recent trends in the phenology of phytoplankton, suggesting an intensification of these impacts in the near future. © 2013 John Wiley & Sons Ltd.
Nagai, Satoshi; Itakura, Shigeru
2012-09-01
In this study, we succeeded in developing a loop-mediated isothermal amplification (LAMP) method that enables sensitive and specific detection of the toxic marine dinoflagellates Alexandrium tamarense and Alexandrium catenella from single cells of both laboratory cultures and naturally blooming cells within 25 min, by monitoring the turbidimeter from the start of the LAMP reaction. The fluorescence intensity was strong enough to allow discrimination between positive and negative results by naked eye under a UV lamp, even in amplified samples from a single cell, by using the LAMP method. Unambiguous detection by naked eye was possible even in half the volume of LAMP cocktail recommended by the manufacturer, suggesting the potential to significantly reduce the cost of Alexandrium monitoring. Therefore, we can conclude that this method is one of the most convenient, sensitive, and cost-effective molecular tools for Alexandrium monitoring. Copyright © 2012 Elsevier B.V. All rights reserved.
Wavelet Analysis of SAR Images for Coastal Monitoring
NASA Technical Reports Server (NTRS)
Liu, Antony K.; Wu, Sunny Y.; Tseng, William Y.; Pichel, William G.
1998-01-01
The mapping of mesoscale ocean features in the coastal zone is a major potential application for satellite data. The evolution of mesoscale features such as oil slicks, fronts, eddies, and ice edge can be tracked by the wavelet analysis using satellite data from repeating paths. The wavelet transform has been applied to satellite images, such as those from Synthetic Aperture Radar (SAR), Advanced Very High-Resolution Radiometer (AVHRR), and ocean color sensor for feature extraction. In this paper, algorithms and techniques for automated detection and tracking of mesoscale features from satellite SAR imagery employing wavelet analysis have been developed. Case studies on two major coastal oil spills have been investigated using wavelet analysis for tracking along the coast of Uruguay (February 1997), and near Point Barrow, Alaska (November 1997). Comparison of SAR images with SeaWiFS (Sea-viewing Wide Field-of-view Sensor) data for coccolithophore bloom in the East Bering Sea during the fall of 1997 shows a good match on bloom boundary. This paper demonstrates that this technique is a useful and promising tool for monitoring of coastal waters.
Pitois, Frédéric; Vezie, Chantal; Thoraval, Isabelle; Baurès, Estelle
2016-05-01
Cyanobacteria and their toxins are known as a health hazard in recreative and distributed waters. Monitoring data from 2004 to 2011 were collected at regional scale to characterize exposition parameters to microcystins in Brittany (Western France). The data show that cyanobacteria populations are experiencing a composition shift leading to a longer duration of cell densities higher than WHO alert levels 2 and 3. Microcystins however appear to be more frequently detected with subacute concentrations in low cell density samples than in high cell density samples or during bloom episodes. Positive relations are described between microcystin concentrations, detection frequencies and cyanobacteria biovolumes, allowing for a novel definition of alert levels and decision framework following WHO recommendations. Copyright © 2015 Elsevier GmbH. All rights reserved.
Coccolithophorid blooms in the global ocean
NASA Technical Reports Server (NTRS)
Brown, Christopher W.; Yoder, James A.
1994-01-01
The global distribution pattern of coccolithophrid blooms was mapped in order to ascertain the prevalence of these blooms in the world's oceans and to estimate their worldwide production of CaCO3 and dimethyl sulfide (DMS). Mapping was accomplished by classifying pixels of 5-day global composites of coastal zone color scanner imagery into bloom and nonbloom classes using a supervised, multispectral classification scheme. Surface waters with the spectral signature of coccolithophorid blooms annually covered an average of 1.4 x 10(exp 6) sq km in the world oceans from 1979 to 1985, with the subpolar latitudes accounting for 71% of this surface area. Classified blooms were most extensive in the Subartic North Atlantic. Large expanses of the bloom signal were also detected in the North Pacific, on the Argentine shelf and slope, and in numerous lower latitude marginal seas and shelf regions. The greatest spatial extent of classified blooms in subpolar oceanic regions occurred in the months from summer to early autumn, while those in lower latitude marginal seas occurred in midwinter to early spring. Though the classification scheme was effcient in separating bloom and nonbloom classes during test simulations, and biogeographical literature generally confirms the resulting distribution pattern of blooms in the subpolar regions, the cause of the bloom signal is equivocal in some geographic areas, particularly on shelf regions at lower latitudes. Standing stock estimates suggest that the presumed Emiliania huxleyi blooms act as a significant source of calcite carbon and DMS sulfur on a regional scale. On a global scale, however, the satellite-detected coccolithophorid blooms are estimated to play only a minor role in the annual production of these two compounds and their flux from the surface mixed layer.
High Frequency Monitoring for Harmful Algal Blooms
Harmful algal blooms (HABs) are increasingly becoming a significant ecologic, economic, and social driver in the use of water resources. Cyanobacteria and their toxins play an important role in management decisions for drinking water utilities and public health officials. Online ...
NASA Astrophysics Data System (ADS)
Nieuwkerk, D.; Ulrich, R. M.; Paul, J. H.; Hubbard, K.; Kirkpatrick, B. A.; Fanara, T. A.; Bruzek, S.; Hoeglund, A.
2016-02-01
Harmful algal blooms of the dinoflagellate Karenia brevis can cause massive fish-kills and marine mammal mortalities, as well as impact human health via the consumption of brevetoxin-contaminated shellfish and the inhalation of aerosolized toxins. There is a strong effort to predict human health impacts by monitoring the bloom stages of K. brevis, and to prevent health impacts by closing shellfish beds when K. brevis cell concentrations reach toxic levels. The current standard method for quantifying K. brevis is by microscopic enumeration, which requires taxonomic expertise to discern K. brevis cells from other Karenia species as well as a long turnover time to generate data, which limits the number of water samples that can be processed. This EPA-funded study compared a variety of technologies against the current standard (microscopic counts) to quantify the number of K. brevis cells per liter in the water column. Results of this study showed a strong correlation between Real Time Nucleic Acid Sequence-Based Amplification (RT-NASBA) and enumeration by microscopy performed by members of the Florida Fish and Wildlife Research Institute, who are responsible for such monitoring. We are adapting the bench-top RT-NASBA assay to the AmpliFire platform (a handheld sensor that can be used in the field), for point of need K. brevis detection. These handheld sensors will be used by a trained volunteer network and government agencies (FWC, NOAA, and Mote Marine Lab.) to quantify K. brevis cells in the water column of core Gulf of Mexico sites; the results from these sensors will be reported back to the GCOOS observation systems to provide real-time monitoring of K. brevis counts. The real-time information will allow agencies to better monitor fishery closures and predict human health impacts of harmful algal blooms, because a larger number of samples can be processed each week, as the NASBA process removes the rate-limiting step of microscope time.
Hyperspectral remote sensing study of harmful algal blooms in the Chesapeake Bay
NASA Astrophysics Data System (ADS)
Nie, Yixiang
Recent development of hyperspectral remote sensing provides capability to identify and classify harmful algal blooms beyond the estimation of chlorophyll concentrations. This study uses hyperspectral data to extract spectral signatures, classify algal blooms, and map the spatial distribution of the algal blooms in the upper Chesapeake Bay. Furthermore, water quality parameters from ground stations have been used together with remote sensing data to provide better understanding of the formation and transformation of the life cycle of harmful algal blooms, and the cause of their outbreaks in the upper Chesapeake Bay. The present results show a strong and significant positive correlation between chlorophyll concentrations and total organic nitrogen concentrations. This relation suggests that total organic nitrogen played an important role in triggering the harmful algal blooms in the upper Chesapeake Bay in this study. This study establishes an integrated approach which combines hyperspectral imaging with multispectral ocean color remote sensing data and traditional water quality monitoring system in the study of harmful algal blooms in small water bodies such as the Chesapeake Bay. Presently, remote sensing is well integrated into the research community, but is less commonly used by resource managers. This dissertation couples remote sensing technologies with specific monitoring programs. The present results will help natural resource managers, local authorities, and the public to utilize an integrated approach in order to better understand, evaluate, preserve, and restore the health of the Chesapeake Bay waters and habitats.
Predicting potentially toxigenic Pseudo-nitzschia blooms in the Chesapeake Bay
Anderson, C.R.; Sapiano, M.R.P.; Prasad, M.B.K.; Long, W.; Tango, P.J.; Brown, C.W.; Murtugudde, R.
2010-01-01
Harmful algal blooms are now recognized as a significant threat to the Chesapeake Bay as they can severely compromise the economic viability of important recreational and commercial fisheries in the largest estuary of the United States. This study describes the development of empirical models for the potentially domoic acid-producing Pseudo-nitzschia species complex present in the Bay, developed from a 22-year time series of cell abundance and concurrent measurements of hydrographic and chemical properties. Using a logistic Generalized Linear Model (GLM) approach, model parameters and performance were compared over a range of Pseudo-nitzschia bloom thresholds relevant to toxin production by different species. Small-threshold blooms (???10cellsmL-1) are explained by time of year, location, and variability in surface values of phosphate, temperature, nitrate plus nitrite, and freshwater discharge. Medium- (100cellsmL-1) to large- threshold (1000cellsmL-1) blooms are further explained by salinity, silicic acid, dissolved organic carbon, and light attenuation (Secchi) depth. These predictors are similar to other models for Pseudo-nitzschia blooms on the west coast, suggesting commonalities across ecosystems. Hindcasts of bloom probabilities at a 19% bloom prediction point yield a Heidke Skill Score of -53%, a Probability of Detection ~75%, a False Alarm Ratio of ~52%, and a Probability of False Detection ~9%. The implication of possible future changes in Baywide nutrient stoichiometry on Pseudo-nitzschia blooms is discussed. ?? 2010 Elsevier B.V.
The Cyanobacteria Assessment Network - Recent Success in Harmful Algal Bloom Detection
Cyanobacteria blooms, which can become harmful algal blooms (HABs), are a huge environmental problem across the United States. They are capable of producing dangerous toxins that threaten the health of humans and animals, quality of drinking water supplies, and the ecosystem in w...
Hilborn, Elizabeth D.; Beasley, Val R.
2015-01-01
Harmful cyanobacterial blooms have adversely impacted human and animal health for thousands of years. Recently, the health impacts of harmful cyanobacteria blooms are becoming more frequently detected and reported. However, reports of human and animal illnesses or deaths associated with harmful cyanobacteria blooms tend to be investigated and reported separately. Consequently, professionals working in human or in animal health do not always communicate findings related to these events with one another. Using the One Health concept of integration and collaboration among health disciplines, we systematically review the existing literature to discover where harmful cyanobacteria-associated animal illnesses and deaths have served as sentinel events to warn of potential human health risks. We find that illnesses or deaths among livestock, dogs and fish are all potentially useful as sentinel events for the presence of harmful cyanobacteria that may impact human health. We also describe ways to enhance the value of reports of cyanobacteria-associated illnesses and deaths in animals to protect human health. Efficient monitoring of environmental and animal health in a One Health collaborative framework can provide vital warnings of cyanobacteria-associated human health risks. PMID:25903764
Hilborn, Elizabeth D; Beasley, Val R
2015-04-20
Harmful cyanobacterial blooms have adversely impacted human and animal health for thousands of years. Recently, the health impacts of harmful cyanobacteria blooms are becoming more frequently detected and reported. However, reports of human and animal illnesses or deaths associated with harmful cyanobacteria blooms tend to be investigated and reported separately. Consequently, professionals working in human or in animal health do not always communicate findings related to these events with one another. Using the One Health concept of integration and collaboration among health disciplines, we systematically review the existing literature to discover where harmful cyanobacteria-associated animal illnesses and deaths have served as sentinel events to warn of potential human health risks. We find that illnesses or deaths among livestock, dogs and fish are all potentially useful as sentinel events for the presence of harmful cyanobacteria that may impact human health. We also describe ways to enhance the value of reports of cyanobacteria-associated illnesses and deaths in animals to protect human health. Efficient monitoring of environmental and animal health in a One Health collaborative framework can provide vital warnings of cyanobacteria-associated human health risks.
The Ecological Stewardship Institute at Northern Kentucky University and the U.S. Environmental Protection Agency are collaborating to optimize a harmful algal bloom detection algorithm that estimates the presence and count of cyanobacteria in freshwater systems by image analysis...
McFarland, Katherine; Jean, Fred; Thébault, Julien; Volety, Aswani K
2016-01-01
Red tide blooms formed by Karenia brevis are frequent along the Gulf coast of Florida and it is unclear what tolerance the green mussel Perna viridis, a recently introduced species to coastal waters, has toward these events. Established populations of P. viridis were monitored along the coastal waters of Estero Bay, Florida before, during and following two consecutive red tide blooms to assess the potential effects on growth, survival and juvenile recruitment. Upon onset of the bloom, growth rates fell from 6 to 10 mm month(-1) (March 2011-November 2011) to less than 3 mm month(-1). In the succeeding years, K. brevis blooms were present, and average growth of individually tagged mussels remained below 3 mm month(-1). During growth monitoring the use of calcein as an internal marker was tested with positive staining results and no observed effect on growth or survival. In March 2012, following the first red tide bloom, a population-wide mortality event was observed. Following this event, increased mortality rates were observed with peaks during onset of the bloom in the fall of 2012 and 2013. Juvenile recruitment was also limited during years in which blooms persisted into the spring spawning period suggesting gamete and/or larval sensitivity to K. brevis. Although it cannot be conclusively determined that the cause of reduced growth and survival is due to red tide events, the parallels observed suggest that K. brevis is a factor in the observed changes in population structure. Copyright © 2015 Elsevier Ltd. All rights reserved.
Satellite Remote Sensing and Crowd Sourcing to Monitor and Predict Cyanobacteria Blooms
Cyanobacterial blooms occur worldwide and are associated with human respiratory irritation, undesirable taste and odor of potable water, increased drinking water treatment costs, loss of revenue from recreational use, and human illness as a result of ingestion or skin exposure du...
Is qPCR a Reliable Indicator of Cyanotoxin Risk in Freshwater?
Pacheco, Ana Beatriz F.; Guedes, Iame A.; Azevedo, Sandra M.F.O.
2016-01-01
The wide distribution of cyanobacteria in aquatic environments leads to the risk of water contamination by cyanotoxins, which generate environmental and public health issues. Measurements of cell densities or pigment contents allow both the early detection of cellular growth and bloom monitoring, but these methods are not sufficiently accurate to predict actual cyanobacterial risk. To quantify cyanotoxins, analytical methods are considered the gold standards, but they are laborious, expensive, time-consuming and available in a limited number of laboratories. In cyanobacterial species with toxic potential, cyanotoxin production is restricted to some strains, and blooms can contain varying proportions of both toxic and non-toxic cells, which are morphologically indistinguishable. The sequencing of cyanobacterial genomes led to the description of gene clusters responsible for cyanotoxin production, which paved the way for the use of these genes as targets for PCR and then quantitative PCR (qPCR). Thus, the quantification of cyanotoxin genes appeared as a new method for estimating the potential toxicity of blooms. This raises a question concerning whether qPCR-based methods would be a reliable indicator of toxin concentration in the environment. Here, we review studies that report the parallel detection of microcystin genes and microcystin concentrations in natural populations and also a smaller number of studies dedicated to cylindrospermopsin and saxitoxin. We discuss the possible issues associated with the contradictory findings reported to date, present methodological limitations and consider the use of qPCR as an indicator of cyanotoxin risk. PMID:27338471
Effects of fertilizers used in agricultural fields on algal blooms
NASA Astrophysics Data System (ADS)
Chakraborty, Subhendu; Tiwari, P. K.; Sasmal, S. K.; Misra, A. K.; Chattopadhyay, Joydev
2017-06-01
The increasing occurrence of algal blooms and their negative ecological impacts have led to intensified monitoring activities. This needs the proper identification of the most responsible factor/factors for the bloom formation. However, in natural systems, algal blooms result from a combination of factors and from observation it is difficult to identify the most important one. In the present paper, using a mathematical model we compare the effects of three human induced factors (fertilizer input in agricultural field, eutrophication due to other sources than fertilizers, and overfishing) on the bloom dynamics and DO level. By applying a sophisticated sensitivity analysis technique, we found that the increasing use of fertilizers in agricultural field causes more rapid algal growth and decreases DO level much faster than eutrophication from other sources and overfishing. We also look at the mechanisms how fertilizer input rate affects the algal bloom dynamics and DO level. The model can be helpful for the policy makers in determining the influential factors responsible for the bloom formation.
Zhang, Jian Heng; Huo, Yuan Zi; Zhang, Zheng Long; Yu, Ke Feng; He, Qing; Zhang, Lin Hui; Yang, Li Li; Xu, Ren; He, Pei Min
2013-12-01
Since 2007, the world's largest macroalgal blooms have occurred along the coastal area of the Yellow Sea for 6 consecutive years. In 2012, shipboard surveying and satellite remote sensing were used to monitor the whole blooming process. The blooms originated in Rudong sea area of the South Yellow Sea where bloom patches were of dark green and filamentous thalli were the dominant morphology. The scale of the blooms reached its peak size in Rizhao sea area of the North Yellow Sea, and decreased promptly and became insignificant in Qingdao coast where the blooms turned yellow, mostly with air sac blades. Meanwhile, vegetative cells of the green tide algae changed into cytocysts gradually from which germ cells were released as the blooms drifted northward. Additionally, chlorophyll contents and fluorescence activity of free-floating thalli in the North Yellow Sea were both significantly lower than that in the South Yellow Sea. Those studies presented here contributed to increasing our understanding about how the green tide declined gradually in the North Yellow Sea. Copyright © 2013 Elsevier Ltd. All rights reserved.
This project will monitor selected water quality parameters, including water temperature, turbidity, salinity, and algal blooms to assess the impacts of freshwater diversions for several selected areas within the New Orleans metropolitan area. The specific areas of study include ...
Predicting potentially toxigenic Pseudo-nitzschia blooms in the Chesapeake Bay
NASA Astrophysics Data System (ADS)
Anderson, Clarissa R.; Sapiano, Mathew R. P.; Prasad, M. Bala Krishna; Long, Wen; Tango, Peter J.; Brown, Christopher W.; Murtugudde, Raghu
2010-11-01
Harmful algal blooms are now recognized as a significant threat to the Chesapeake Bay as they can severely compromise the economic viability of important recreational and commercial fisheries in the largest estuary of the United States. This study describes the development of empirical models for the potentially domoic acid-producing Pseudo-nitzschia species complex present in the Bay, developed from a 22-year time series of cell abundance and concurrent measurements of hydrographic and chemical properties. Using a logistic Generalized Linear Model (GLM) approach, model parameters and performance were compared over a range of Pseudo-nitzschia bloom thresholds relevant to toxin production by different species. Small-threshold blooms (≥10 cells mL -1) are explained by time of year, location, and variability in surface values of phosphate, temperature, nitrate plus nitrite, and freshwater discharge. Medium- (100 cells mL -1) to large- threshold (1000 cells mL -1) blooms are further explained by salinity, silicic acid, dissolved organic carbon, and light attenuation (Secchi) depth. These predictors are similar to other models for Pseudo-nitzschia blooms on the west coast, suggesting commonalities across ecosystems. Hindcasts of bloom probabilities at a 19% bloom prediction point yield a Heidke Skill Score of ~53%, a Probability of Detection ˜ 75%, a False Alarm Ratio of ˜ 52%, and a Probability of False Detection ˜9%. The implication of possible future changes in Baywide nutrient stoichiometry on Pseudo-nitzschia blooms is discussed.
Northern Kentucky University and the U.S. EPA Office of Research Development in Cincinnati Agency are collaborating to develop a harmful algal bloom detection algorithm that estimates the presence of cyanobacteria in freshwater systems by image analysis. Green and blue-green alg...
Li, Xiaochuang; Dreher, Theo W; Li, Renhui
2016-04-01
The new genus name Dolichospermum, for most of the planktonic former members of the genus Anabaena, is one of the most ubiquitous bloom-forming cyanobacterial genera. Its dominance and persistence have increased in recent years, due to eutrophication from anthropogenic activities and global climate change. Blooms of Dolichospermum species, with their production of secondary metabolites that commonly include toxins, present a worldwide threat to environmental and public health. In this review, recent advances of the genus Dolichospermum are summarized, including taxonomy, genetics, bloom occurrence, and production of toxin and taste-and-odor compounds. The recent and continuing acquisition of genome sequences is ushering in new methods for monitoring and understanding the factors regulating bloom dynamics. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
McKay, Robert Michael L.; Tuttle, Taylor; Reitz, Laura A.; Bullerjahn, George S.; Cody, William R.; McDowell, Adam J.; Davis, Timothy W.
2018-05-01
In late May 2016, a cyanobacterial harmful algal bloom (cHAB) was detected in the Maumee River, the largest tributary to Lake Erie, the southernmost lake of the Laurentian Great Lakes system. Testing on 31 May identified Planktothrix agardhii as the dominant cyanobacterium with cell abundance exceeding 1.7×10 9 cells/L and total microcystins (MC) reaching 19 μg/L MC-LR equivalents, a level over 10-fold higher than the 2015 revised U.S. Environmental Protection Agency (EPA) national health advisory levels for drinking water exposure to adults. Low river discharge coincident with negligible precipitation through the latter half of May coincided with an 80% decline in river turbidity that likely favored bloom formation by a low-light adapted P. agardhii population. Also contributing to the cHAB were high initial nutrient loads and an increase of the river temperature from 13°C to 26°C over this same period. The bloom persisted through 5 June with microcystins exceeding 22 μg/L MC-LR equivalents at the bloom peak. By 6 June, the river had returned to its muddy character following a rain event and sampling on 7 June detected only low levels of toxin (<0.6 μg/L) at public water systems located near the bloom origin. The elevated toxin production associated with this early onset bloom was without precedent for the Maumee River and an unique attribute of the cHAB was the high proportion of potentially-toxic genotypes. Whereas Planktothrix spp. is common in lotic environments, and has been previously detected in the Maumee, blooms are not commonly reported. This early onset, microcystin-producing cHAB provided a rare opportunity to glean insights into environmental factors that promote bloom development and dominance by Planktothrix in lotic environments.
Cyanobacterial harmful algal blooms (cyanoHABs) cause extensive problems in lakes worldwide, including human and ecological health risks, anoxia and fish kills, and taste and odor problems. CyanoHABs are a particular concern because of their dense biomass and the risk of expos...
The use of near-infrared photography for biodegradable pollution monitoring of tidal rivers
NASA Technical Reports Server (NTRS)
Bressette, W. E.; Lear, D. E., Jr.
1973-01-01
On October 2, 1972, a pattern of chlorophyll a containing phytoplankton (algae) was detected from 3-km altitude in a series of near-infrared photographs of the Potomac River 'Salt Wedge Area.' Densitometer traces over the film images, related to in situ measurements of chlorophyll a concentrations that varied from 4 to more than 3000 micrograms/liter, revealed a phytoplankton 'bloom' threshold in the near infrared between the concentration of 34 and 51 micrograms/liter. The photography also revealed bottom features through two meters of water and made it possible to integrate chlorophyll a concentrations over a 16 sq km area to demonstrate this remote sensing technique for biodegradable pollution monitoring.
UV-Visible Spectroscopic Method and Models for Assessment and Monitoring of Harmful Algal Blooms
NASA Technical Reports Server (NTRS)
Mitchell, B. Greg
2000-01-01
The development of an enhanced predictive and early warning capability for the occurrence and impact of harmful algal blooms (HABs) would be of great benefit to coastal communities. A critical issue for early detection and monitoring of HABs is the need to detect harmful algal species within a mixed-species phytoplankton assemblage. Possession of UV-absorbing compounds called mycosporine-like amino acids (MAAs) may be one factor that allows HAB species to out-compete their phytoplankton neighbors. Possession of MAAs, which we believe can be inferred from strong UV-absorption signals in phytoplankton absorption coefficients, can be used as a flag for potential HAB outbreak. The goal of this project was to develop a solar simulating UV-visible incubator to grow HAB dinoflagellates, to begin MAA analysis of samples collected on global cruises, and to carry out initial experiments on HAB dinoflagellate species in pure culture. Our scientific objectives are to quantify MAA production and spectral induction mechanisms in HAB species, to characterize spectral absorption of MAAs, and to define the ecological benefit of MAAs (i.e. photoprotection). Data collected on cruises to the global oceans will be used to parameterize phytoplankton absorption in the UV region, and this parameterization could be incorporated into existing models of seawater optical properties in the UV spectral region. Data collected in this project were used for graduate fellowship applications by Elizabeth Frame. She has been awarded an EPA STAR fellowship to continue the work initiated by this project.
Backer, Lorraine C.; Manassaram-Baptiste, Deana; LePrell, Rebecca; Bolton, Birgit
2015-01-01
Algae and cyanobacteria are present in all aquatic environments. We do not have a good sense of the extent of human and animal exposures to cyanobacteria or their toxins, nor do we understand the public health impacts from acute exposures associated with recreational activities or chronic exposures associated with drinking water. We describe the Harmful Algal Bloom-related Illness Surveillance System (HABISS) and summarize the collected reports describing bloom events and associated adverse human and animal health events. For the period of 2007–2011, Departments of Health and/or Environment from 11 states funded by the National Center for Environmental Health (NCEH), Centers for Disease Control and Prevention contributed reports for 4534 events. For 2007, states contributed 173 reports from historical data. The states participating in the HABISS program built response capacity through targeted public outreach and prevention activities, including supporting routine cyanobacteria monitoring for public recreation waters. During 2007–2010, states used monitoring data to support196 public health advisories or beach closures. The information recorded in HABISS and the application of these data to develop a wide range of public health prevention and response activities indicate that cyanobacteria and algae blooms are an environmental public health issue that needs continuing attention. PMID:25826054
Feng, Tao; Wang, Chao; Wang, Peifang; Qian, Jin; Wang, Xun
2018-09-01
Cyanobacterial blooms have emerged as one of the most severe ecological problems affecting large and shallow freshwater lakes. To improve our understanding of the factors that influence, and could be used to predict, surface blooms, this study developed a novel Euler-Lagrangian coupled approach combining the Eulerian model with agent-based modelling (ABM). The approach was subsequently verified based on monitoring datasets and MODIS data in a large shallow lake (Lake Taihu, China). The Eulerian model solves the Eulerian variables and physiological parameters, whereas ABM generates the complete life cycle and transport processes of cyanobacterial colonies. This model ensemble performed well in fitting historical data and predicting the dynamics of cyanobacterial biomass, bloom distribution, and area. Based on the calculated physical and physiological characteristics of surface blooms, principal component analysis (PCA) captured the major processes influencing surface bloom formation at different stages (two bloom clusters). Early bloom outbreaks were influenced by physical processes (horizontal transport and vertical turbulence-induced mixing), whereas buoyancy-controlling strategies were essential for mature bloom outbreaks. Canonical correlation analysis (CCA) revealed the combined actions of multiple environment variables on different bloom clusters. The effects of buoyancy-controlling strategies (ISP), vertical turbulence-induced mixing velocity of colony (VMT) and horizontal drift velocity of colony (HDT) were quantitatively compared using scenario simulations in the coupled model. VMT accounted for 52.9% of bloom formations and maintained blooms over long periods, thus demonstrating the importance of wind-induced turbulence in shallow lakes. In comparison, HDT and buoyancy controlling strategies influenced blooms at different stages. In conclusion, the approach developed here presents a promising tool for understanding the processes of onshore/offshore algal blooms formation and subsequent predicting. Copyright © 2018 Elsevier Ltd. All rights reserved.
McGregor, Glenn B.; Stewart, Ian; Sendall, Barbara C.; Sadler, Ross; Reardon, Karen; Carter, Steven; Wruck, Dan; Wickramasinghe, Wasa
2012-01-01
Cyanobacterial blooms represent one of the most conspicuous and widespread waterborne microbial hazards to human and ecosystem health. Investigation of a cyanobacterial bloom in a shallow brackish water recreational cable ski lake in south-eastern Queensland, Australia revealed the dominance of the toxigenic species Nodularia spumigena. The bloom spanned three months, during which time cell concentrations exceeded human guideline thresholds for recreational risk, and concentrations of the hepatotoxic cyanotoxin nodularin exceeded 200 µg L−1. Cyanotoxin origin and identification was confirmed by amplification of the ndaF-specific PCR product and sequencing of the 16S rRNA gene. From the limited data available leading up to, and throughout the bloom, it was not possible to establish the set of causative factors responsible for its occurrence. However a combination of factors including salinity, hydraulic retention time and nutrient status associated with an extended period of drought are likely to have contributed. This was the first known occurrence of this species in bloom proportions from sub-tropical Australia and as such represents a hitherto uncharacterized risk to human and ecosystem health. It highlights the need for adaptive monitoring regimes to ensure a comprehensive understanding of the potentially toxic cyanobacteria likely to inhabit any given region. Such monitoring needs to recognize that cyanobacteria have a significant capacity for range expansion that has been facilitated by recent changes in global climate. PMID:22851951
Spatial early warning signals in a lake manipulation
Butitta, Vince L.; Carpenter, Stephen R.; Loken, Luke; Pace, Michael L.; Stanley, Emily H.
2017-01-01
Rapid changes in state have been documented for many of Earth's ecosystems. Despite a growing toolbox of methods for detecting declining resilience or early warning indicators (EWIs) of ecosystem transitions, these methods have rarely been evaluated in whole-ecosystem trials using reference ecosystems. In this study, we experimentally tested EWIs of cyanobacteria blooms based on changes in the spatial structure of a lake. We induced a cyanobacteria bloom by adding nutrients to an experimental lake and mapped fine-resolution spatial patterning of cyanobacteria using a mobile sensor platform. Prior to the bloom, we detected theoretically predicted spatial EWIs based on variance and spatial autocorrelation, as well as a new index based on the extreme values. Changes in EWIs were not discernible in an unenriched reference lake. Despite the fluid environment of a lake where spatial heterogeneity driven by biological processes may be overwhelmed by physical mixing, spatial EWIs detected an approaching bloom suggesting the utility of spatial metrics for signaling ecological thresholds.
NASA Astrophysics Data System (ADS)
Karki, S.; Sultan, M.; Elkadiri, R.; Chouinard, K.
2017-12-01
Numerous occurrences of harmful algal blooms (Karenia Brevis) were reported from Southwest Florida along the coast of Charlotte County, Florida. We are developing data-driven (remote sensing, field, and meteorological data) models to accomplish the following: (1) identify the factors controlling bloom development, (2) forecast bloom occurrences, and (3) make recommendations for monitoring variables that are found to be most indicative of algal bloom occurrences and for identifying optimum locations for monitoring stations. To accomplish these three tasks we completed/are working on the following steps. Firstly, we developed an automatic system for downloading and processing of ocean color data acquired through MODIS Terra and MODIS Aqua products using SeaDAS ocean color processing software. Examples of extracted variables include: chlorophyll a (OC3M), chlorophyll a Generalized Inherent Optical Property (GIOP), chlorophyll a Garver-Siegel- Maritorena (GSM), sea surface temperature (SST), Secchi disk depth, euphotic depth, turbidity index, wind direction and speed, colored dissolved organic material (CDOM). Secondly we are developing a GIS database and a web-based GIS to host the generated remote sensing-based products in addition to relevant meteorological and field data. Examples of the meteorological and field inputs include: precipitation amount and rates, concentrations of nitrogen, phosphorous, fecal coliform and Dissolved Oxygen (DO). Thirdly, we are constructing and validating a multivariate regression model and an artificial neural network model to simulate past algal bloom occurrences using the compiled archival remote sensing, meteorological, and field data. The validated model will then be used to predict the timing and location of algal bloom occurrences. The developed system, upon completion, could enhance the decision making process, improve the citizen's quality of life, and strengthen the local economy.
Bowers, Holly A; Marin, Roman; Birch, James M; Scholin, Christopher A
2017-12-01
New sandwich hybridization assay (SHA) probes for detecting Pseudo-nitzschia species (P. arenysensis, P. fraudulenta, P. hasleana, P. pungens) are presented, along with updated cross-reactivity information on historical probes (SHA and FISH; fluorescence in situ hybridization) targeting P. australis and P. multiseries. Pseudo-nitzschia species are a cosmopolitan group of diatoms that produce varying levels of domoic acid (DA), a neurotoxin that can accumulate in finfish and shellfish and transfer throughout the food web. Consumption of infected food sources can lead to illness in humans (amnesic shellfish poisoning; ASP) and marine wildlife (domoic acid poisoning; DAP). The threat of human illness, along with economic loss from fishery closures has resulted in the implementation of monitoring protocols and intensive ecological studies. SHA probes have been instrumental in some of these efforts, as the technique performs well in complex heterogeneous sample matrices and has been adapted to benchtop and deployable (Environmental Sample Processor) platforms. The expanded probe set will enhance future efforts towards understanding spatial, temporal and successional patterns in species during bloom and non-bloom periods. Copyright © 2017 Elsevier B.V. All rights reserved.
Beach-goer behavior during a retrospectively detected algal ...
Algal blooms occur among nutrient rich, warm surface waters and may adversely impact recreational beaches. During July – September 2003, a prospective study of beachgoers was conducted on weekends at a public beach on a Great Lake in the United States. We measured each beachgoer’s activity at the start and end of their beach visit and the environmental factors: water and air temperature, wind speed and wave height at the study site each day. At the time, there was no notification of algal blooms; we retrospectively evaluated the presence of algal blooms using MERIS data from the Envisat-1 satellite. A total of 2840 people participated in the study over 16 study days. The majority (55%) were female, and 751 (26%) were < 18 years of age. An algal bloom was detected retrospectively by remotely sensed satellite imagery during August 16 – 24. This peak bloom period (PB) included 4 study days. During PB study days, more study participants 226/742 (31%) reported body contact with the water compared to contact 531/2098 (25%) on non-peak days. During the 4 PB days, of the environmental factors, only mean water temperature was significantly different, 250 C vs. 230 C (p<0.05) from other days.These results suggest that beachgoer body contact with water was not deterred by the presence of an algal bloom, and that interventions to actively discourage water contact during a bloom are needed to reduce exposure to blooms. This is an abstract of a proposed presentation and
Water Quality Conditions in Upper Klamath and Agency Lakes, Oregon, 2006
Lindenberg, Mary K.; Hoilman, Gene; Wood, Tamara M.
2008-01-01
The U.S. Geological Survey Upper Klamath Lake water quality monitoring program gathered information from multiparameter continuous water quality monitors, physical water samples, dissolved oxygen production and consumption experiments, and meteorological stations during the June-October 2006 field season. The 2006 study area included Agency Lake and all of Upper Klamath Lake. Seasonal patterns in water quality were similar to those observed in 2005, the first year of the monitoring program, and were closely related to bloom dynamics of the cyanobacterium (blue-green alga) Aphanizomenon flos-aquae (AFA) in the two lakes. High dissolved oxygen and pH conditions in both lakes before the bloom declined in July, which coincided with seasonal high temperatures and resulted in seasonal lows in dissolved oxygen and decreased pH. Dissolved oxygen and pH in Upper Klamath and Agency Lakes increased again after the bloom recovered. Seasonal low dissolved oxygen and decreased pH coincided with seasonal highs in ammonia and orthophosphate concentrations. Seasonal maximum daily average temperatures were higher and minimum dissolved oxygen concentrations were lower in 2006 than in 2005. Conditions potentially harmful to fish were influenced by seasonal patterns in bloom dynamics and bathymetry. Potentially harmful low dissolved oxygen and high un-ionized ammonia concentrations occurred mostly at the deepest sites in the Upper Klamath Lake during late July, coincident with a bloom decline. Potentially harmful pH conditions occurred mostly at sites outside the deepest parts of the lake in July and September, coincident with a heavy bloom. Instances of possible gas bubble formation, inferred from dissolved oxygen data, were estimated to occur frequently in shallow areas of Upper Klamath and Agency Lakes simultaneously with potentially harmful pH conditions. Comparison of the data from monitors in nearshore areas and monitors near the surface of the water column in the open waters of Upper Klamath Lake revealed few differences in water quality dynamics. Median daily temperatures were higher in nearshore areas, and dissolved oxygen concentrations were periodically higher as well during periods of high AFA bloom. Differences between the two areas in water quality conditions potentially harmful to fish were not statistically significant (p < 0.05). Chlorophyll a concentrations varied temporally and spatially throughout Upper Klamath Lake. Chlorophyll a concentrations indicated an algal bloom in late June and early July that was followed by an algae bloom decline in late July and early August and a subsequent recovery in mid-August. Sites in the deepest part of the lake, where some of the highest chlorophyll a concentrations were observed, were the same sites where the lowest dissolved oxygen concentrations and the highest un-ionized ammonia concentrations were recorded during the bloom decline, indicating cell senescence. Total phosphorus concentrations limited the initial algal bloom in late June and early July. The rate of net dissolved oxygen production (that is, production in excess of community respiration) and consumption (due to community respiration) in the lake water column as measured in light and dark bottles, respectively, ranged from 2.79 to -2.14 milligrams of oxygen per liter per hour. Net production rate generally correlated positively with chlorophyll a concentration, except episodically at a few sites where high chlorophyll a concentrations resulted in self-shading that inhibited photosynthesis. The depth of photic zone was inversely correlated with chlorophyll a concentration. Calculations of a 24-hour change in dissolved oxygen concentration indicated that oxygen-consuming processes predominated at the deep trench sites and oxygen-producing processes predominated at the shallow sites. In addition, calculations of the 24-hour change in dissolved oxygen indicate that oxygen-consuming processes in the water column di
HABs Monitoring and Prediction
Monitoring techniques for harmful algal blooms (HABs) vary across temporal and spatial domains. Remote satellite imagery provides information on water quality at relatively broad spatial and lengthy temporal scales. At the other end of the spectrum, local in-situ monitoring tec...
Molecular Characterization of cyanobacterial blooms
Traditionally, the detection and identification of cyanobacteria implicated in harmful algal blooms has been conducted using microscopical techniques. Such conventional methods are time consuming and cumbersome, cannot discriminate between closely related taxa, and cannot discrim...
Hu, Chuanmin; Barnes, Brian B.; Qi, Lin; Corcoran, Alina A.
2015-01-01
The most recent Visible Infrared Imager Radiometer Suite (VIIRS) is not equipped with a spectral band to detect solar-stimulated phytoplankton fluorescence. The lack of such a band may affect the ability of VIIRS to detect and quantify harmful algal blooms (HABs) in coastal waters rich in colored dissolved organic matter (CDOM) because of the overlap of CDOM and chlorophyll absorption within the blue-green spectrum. A recent HAB dominated by the toxin-producing dinoflagellate Karenia brevis in the northeastern Gulf of Mexico, offshore of Florida's Big Bend region, allowed for comparison of the capacities of VIIRS and Moderate Resolution Imaging Spectroradiometer (MODIS) to detect blooms in CDOM-rich waters. Both VIIRS and MODIS showed general consistency in mapping the CDOM-rich dark water, which measured a maximum area of 8900 km2 by mid-July 2014. However, within the dark water, only MODIS allowed detection of bloom patches—as indicated by high normalized fluorescence line height (nFLH). Field surveys between late July and mid-September confirmed Karenia brevis at bloom abundances up to 20 million cells·L−1 within these patches. The bloom patches were well captured by the MODIS nFLH images, but not by the default chlorophyll a concentration (Chla) images from either MODIS or VIIRS. Spectral analysis showed that VIIRS could not discriminate these high-phytoplankton water patches within the dark water due to its lack of fluorescence band. Such a deficiency may be overcome with new algorithms or future satellite missions such as the U.S. NASA's Pre-Aerosol-Clouds-Ecology mission and the European Space Agency's Sentinel-3 mission. PMID:25635412
Hu, Chuanmin; Barnes, Brian B; Qi, Lin; Corcoran, Alina A
2015-01-28
The most recent Visible Infrared Imager Radiometer Suite (VIIRS) is not equipped with a spectral band to detect solar-stimulated phytoplankton fluorescence. The lack of such a band may affect the ability of VIIRS to detect and quantify harmful algal blooms (HABs) in coastal waters rich in colored dissolved organic matter (CDOM) because of the overlap of CDOM and chlorophyll absorption within the blue-green spectrum. A recent HAB dominated by the toxin-producing dinoflagellate Karenia brevis in the northeastern Gulf of Mexico, offshore of Florida's Big Bend region, allowed for comparison of the capacities of VIIRS and Moderate Resolution Imaging Spectroradiometer (MODIS) to detect blooms in CDOM-rich waters. Both VIIRS and MODIS showed general consistency in mapping the CDOM-rich dark water, which measured a maximum area of 8900 km2 by mid-July 2014. However, within the dark water, only MODIS allowed detection of bloom patches-as indicated by high normalized fluorescence line height (nFLH). Field surveys between late July and mid-September confirmed Karenia brevis at bloom abundances up to 20 million cells·L(-1) within these patches. The bloom patches were well captured by the MODIS nFLH images, but not by the default chlorophyll a concentration (Chla) images from either MODIS or VIIRS. Spectral analysis showed that VIIRS could not discriminate these high-phytoplankton water patches within the dark water due to its lack of fluorescence band. Such a deficiency may be overcome with new algorithms or future satellite missions such as the U.S. NASA's Pre-Aerosol-Clouds-Ecology mission and the European Space Agency's Sentinel-3 mission.
Toxin composition of the 2016 Microcystis aeruginosa bloom in the St. Lucie Estuary, Florida.
Oehrle, Stuart; Rodriguez-Matos, Marliette; Cartamil, Michael; Zavala, Cristian; Rein, Kathleen S
2017-11-01
A bloom of the cyanobacteria, Microcystis aeruginosa occurred in the St. Lucie Estuary during the summer of 2016, stimulated by the release of waters from Lake Okeechobee. This cyanobacterium produces the microcystins, a suite of heptapeptide hepatotoxins. The toxin composition of the bloom was analyzed and was compared to an archived bloom sample from 2005. Microcystin-LR was the most abundant toxin with lesser amounts of microcystin variants. Nodularin, cylindrospermopsin and anatoxin-a were not detected. Copyright © 2017 Elsevier Ltd. All rights reserved.
The structure and toxicity of winter cyanobacterial bloom in a eutrophic lake of the temperate zone.
Wejnerowski, Łukasz; Rzymski, Piotr; Kokociński, Mikołaj; Meriluoto, Jussi
2018-06-22
Winter cyanobacterial blooms have become increasingly common in eutrophic lakes advocating a need for their monitoring and risk assessment. The present study evaluated the toxicity of a winter cyanobacterial bloom in a eutrophicated freshwater lake located in Western Poland. The bloom was dominated by potentially toxic species: Planktothrix agardhii, Limnothrix redekei, and Aphanizomenon gracile. The toxin analysis revealed the presence of demethylated forms of microcystin-RR and microcystin-LR in ranges of 24.6-28.7 and 6.6-7.6 µg/L, respectively. The toxicity of sampled water was further evaluated in platelet-rich plasma isolated from healthy human subjects using lipid peroxidation and lactate dehydrogenase assays. No significant adverse effects were observed. The present study demonstrates that toxicity of some winter cyanobacterial blooms in the temperate zone, like that in Lubosińskie Lake, may not exhibit significant health risks despite microcystin production.
Water-quality data from Upper Klamath and Agency Lakes, Oregon, 2009-10
Eldridge, D. Blake; Caldwell Eldridge, Sara L.; Schenk, Liam N.; Tanner, Dwight Q.; Wood, Tamara M.
2012-01-01
The U.S. Geological Survey Upper Klamath Lake water-quality monitoring program collected data from multiparameter continuous water-quality monitors, weekly water-quality samples, and meteorological stations during 2009 and 2010 from May through November each year. The results of these measurements and sample analyses, as well as quality-control data for the water-quality samples, are presented in this report for 14 sites on Upper Klamath Lake and 2 sites on Agency Lake. These 2 years of data demonstrate a contrast in the seasonal bloom of the dominant cyanobacterium, Aphanizomenon flos-aquae, that can be related to differences in the measured water quality and meteorological variables. Some of the significant findings from 2009 and 2010 are listed below. * Both 2009 and 2010 were characterized by two cyanobacteria blooms, but the blooms differed in timing and intensity. The first bloom in 2009 peaked in late June and at higher chlorophyll a concentrations at most sites than the first bloom in 2010, which peaked in mid-July. A major decline in the first 2009 bloom occurred in late July and was followed by a second bloom that peaked at most sites in mid-August and persisted through September. The decline of the weaker first bloom in 2010 occurred in early August and was followed by a more substantial second bloom that peaked between late August and early September at most sites. * Dissolved oxygen minima associated with bloom declines occurred approximately 2 weeks earlier in 2009 (mid-July) than in 2010 (early August). pH maxima associated with rapid bloom growth occurred in late June and again in mid-August in 2009 and in mid-July and late August in 2010. * In both years, the maxima for total phosphorus and total nitrogen concentrations coincided with the chlorophyll a maximum. The maxima for dissolved nutrient concentrations (orthophosphate, ammonia, and nitrite plus nitrate) coincided with the declines of the first blooms. * Total particulate carbon, total particulate nitrogen, and total particulate phosphorus concentrations were measured in 2009 only. The ratios of carbon to phosphorus and nitrogen to phosphorus in particulates were the highest of the entire season during the rapid growth phase of the first bloom and were the lowest of the season during the decline of the first bloom. These ratios increased with the onset of the second bloom in that year, but to a lesser degree. * Meteorological data show that 2009 was warmer (particularly in June and July), less windy, and more humid early in the season than 2010. The difference in water temperatures reflected the difference in air temperatures in that the lakes were warmer in 2009 than in 2010 starting in early May, when the sensors were deployed, through most of June. Water temperature peaked at a higher value in 2009, and there were more clear days in June 2009 than in June 2010.
Paul, Carsten; Reunamo, Anna; Lindehoff, Elin; Bergkvist, Johanna; Mausz, Michaela A.; Larsson, Henrik; Richter, Hannes; Wängberg, Sten-Åke; Leskinen, Piia; Båmstedt, Ulf; Pohnert, Georg
2012-01-01
Several marine and freshwater diatoms produce polyunsaturated aldehydes (PUA) in wound-activated processes. These metabolites are also released by intact diatom cells during algal blooms. Due to their activity in laboratory experiments, PUA are considered as potential mediators of diatom-bacteria interactions. Here, we tested the hypothesis that PUA mediate such processes in a close-to-field mesocosm experiment. Natural plankton communities enriched with Skeletonema marinoi strains that differ in their PUA production, a plankton control, and a plankton control supplemented with PUA at natural and elevated concentrations were observed. We monitored bacterial and viral abundance as well as bacterial community composition and did not observe any influence of PUA on these parameters even at elevated concentrations. We rather detected an alternation of the bacterial diversity over time and differences between the two S. marinoi strains, indicating unique dynamic bacterial communities in these algal blooms. These results suggest that factors other than PUA are of significance for interactions between diatoms and bacteria. PMID:22690143
Evaluation of the Harmful Algal Bloom Mapping System (HABMapS) and Bulletin
NASA Technical Reports Server (NTRS)
Hall, Callie; Zanoni, Vicki; Estep, Leland; Terrie, Gregory; D'Sa, Eurico; Pagnutti, Mary
2004-01-01
The National Oceanic and Atmospheric Administration (NOAA) Harmful Algal Bloom (HAB) Mapping System and Bulletin provide a Web-based geographic information system (GIS) and an e-mail alert system that allow the detection, monitoring, and tracking of HABs in the Gulf of Mexico. NASA Earth Science data that potentially support HABMapS/Bulletin requirements include ocean color, sea surface temperature (SST), salinity, wind fields, precipitation, water surface elevation, and ocean currents. Modeling contributions include ocean circulation, wave/currents, along-shore current regimes, and chlorophyll modeling (coupled to imagery). The most immediately useful NASA contributions appear to be the 1-km Moderate Resolution Imaging Spectrometer (MODIS) chlorophyll and SST products and the (presently used) SeaWinds wind vector data. MODIS pigment concentration and SST data are sufficiently mature to replace imagery currently used in NOAA HAB applications. The large file size of MODIS data is an impediment to NOAA use and modified processing schemes would aid in NOAA adoption of these products for operational HAB forecasting.
Integrity Verification for SCADA Devices Using Bloom Filters and Deep Packet Inspection
2014-03-27
prevent intrusions in smart grids [PK12]. Parthasarathy proposed an anomaly detection based IDS that takes into account system state. In his implementation...Security, 25(7):498–506, 10 2006. [LMV12] O. Linda, M. Manic, and T. Vollmer. Improving cyber-security of smart grid systems via anomaly detection and...6 2012. 114 [PK12] S. Parthasarathy and D. Kundur. Bloom filter based intrusion detection for smart grid SCADA. In Electrical & Computer Engineering
Silva, Marisa; Rey, Verónica; Botana, Ana; Vasconcelos, Vitor; Botana, Luis
2015-01-01
Paralytic Shellfish Toxin blooms are common worldwide, which makes their monitoring crucial in the prevention of poisoning incidents. These toxins can be monitored by a variety of techniques, including mouse bioassay, receptor binding assay, and liquid chromatography with either mass spectrometric or pre- or post-column fluorescence detection. The post-column oxidation liquid chromatography with fluorescence detection method, used routinely in our laboratory, has been shown to be a reliable method for monitoring paralytic shellfish toxins in mussel, scallop, oyster and clam species. However, due to its high sensitivity to naturally fluorescent matrix interferences, when working with unconventional matrices, there may be problems in identifying toxins because of naturally fluorescent interferences that co-elute with the toxin peaks. This can lead to erroneous identification. In this study, in order to overcome this challenge in echinoderm and gastropod matrices, we optimized the conversion of Gonyautoxins 1 and 4 to Neosaxitoxin with 2-mercaptoethanol. We present a new and less time-consuming method with a good recovery (82.2%, RSD 1.1%, n = 3), requiring only a single reaction step. PMID:26729166
An open science approach to modeling and visualizing ...
It is expected that cyanobacteria blooms will increase in frequency, duration, and severity as inputs of nutrients increase and the impacts of climate change are realized. Partly in response to this, federal, state, and local entities have ramped up efforts to better understand blooms which has resulted in new life for old datasets, new monitoring programs, and novel uses for non-traditional sources of data. To fully benefit from these datasets, it is also imperative that the full body of work including data, code, and manuscripts be openly available (i.e., open science). This presentation will provide several examples of our work which occurs at the intersection of open science and research on cyanobacetria blooms in lakes and ponds. In particular we will discuss 1) why open science is particularly important for environmental human health issues; 2) the lakemorpho and elevatr R packages and how we use those to model lake morphometry; 3) Shiny server applications to visualize data collected as part of the Cyanobacteria Monitoring Collaborative; and 4) distribution of our research and models via open access publications and as R packages on GitHub. Modelling and visualizing information on cyanobacteria blooms is important as it provides estimates of the extent of potential problems associated with these blooms. Furthermore, conducting this work in the open allows others to access our code, data, and results. In turn, this allows for a greater impact because the
Spatiotemporal Changes of Cyanobacterial Bloom in Large Shallow Eutrophic Lake Taihu, China
Qin, Boqiang; Yang, Guijun; Ma, Jianrong; Wu, Tingfeng; Li, Wei; Liu, Lizhen; Deng, Jianming; Zhou, Jian
2018-01-01
Lake Taihu is a large shallow eutrophic lake with frequent recurrence of cyanobacterial bloom which has high variable distribution in space and time. Based on the field observations and remote sensing monitoring of cyanobacterial bloom occurrence, in conjunction with laboratory controlled experiments of mixing effects on large colony formation and colonies upward moving velocity measurements, it is found that the small or moderate wind-induced disturbance would increase the colonies size and enable it more easily to overcome the mixing and float to water surface rapidly during post-disturbance. The proposed mechanism of wind induced mixing on cyanobacterial colony enlargement is associated with the presence of the extracellular polysaccharide (EPS) which increased the size and buoyancy of cyanobacteria colonies and promote the colonies aggregate at the water surface to form bloom. Both the vertical movement and horizontal migration of cyanobacterial colonies were controlled by the wind induced hydrodynamics. Because of the high variation of wind and current coupling with the large cyanobacterial colony formation make the bloom occurrence as highly mutable in space and time. This physical factor determining cyanobacterial bloom formation in the large shallow lake differ from the previously documented light-mediated bloom formation dynamics. PMID:29619011
A Fluorescence Based Miniaturized Detection Module for Toxin Producing Algae
NASA Astrophysics Data System (ADS)
Zieger, S. E.; Mistlberger, G.; Troi, L.; Lang, A.; Holly, C.; Klimant, I.
2016-12-01
Algal blooms are sensitive to external environmental conditions and may pose a serious threat to marine and human life having an adverse effect on the ecosystem. Harmful algal blooms can produce different toxins, which can lead to massive fish kills or to human disorders. Facing these problems, miniaturized and low-cost instrumentation for an early detection and identification of harmful algae classes has become more important over the last years. 1,2Based on the characteristic pigment pattern of different algae classes, we developed a miniaturized detection module, which is able to detect and identify algae classes after analyzing their spectral behavior. Our device combines features of a flow-cytometer and fluorimeter and is build up as a miniaturized and low-cost device of modular design. Similar to a fluorimeter, it excites cells in the capillary with up to 8 different excitation wavelengths recording the emitted fluorescence at 4 different emission channels. Furthermore, the device operates in a flow-through mode similar to a flow-cytometer, however, using only low-cost elements such as LEDs and photodiodes. Due to its miniaturized design, the sensitivity and selectivity increase, whereas background effects are reduced. With a sampling frequency of 140 Hz, we try to detect and count particular cell events even at a concentration of 2 cells / 7.3 µL illuminated volume. Using a self-learning multivariate algorithm, the data are evaluated autonomously on the device enabling an in-situ analysis. The flexibility in choosing excitation and emission wavelengths as well as the high sampling rate enables laboratory applications such as measuring induction kinetics. However, in its first application, the device is part of an open and modular monitoring system enabling the sensing of chemical compounds such as toxic and essential Hg, Cd, Pb, As and Cu trace metal species, nutrients and species related to the carbon cycle, VOCs and potentially toxic algae classes (FP7 614002). 1. Faber, S. Saxitoxin and the Induction of Paralytic Shellfish Poisoning. J. Young Investig. 23,7 (2012). 2. Bláha, L., Babica, P. & Maršálek, B. Toxins produced in cyanobacterial water blooms - toxicity and risks. Interdiscip. Toxicol. 2, (2009).
Bullerjahn, George S; McKay, Robert M; Davis, Timothy W; Baker, David B; Boyer, Gregory L; D'Anglada, Lesley V; Doucette, Gregory J; Ho, Jeff C; Irwin, Elena G; Kling, Catherine L; Kudela, Raphael M; Kurmayer, Rainer; Michalak, Anna M; Ortiz, Joseph D; Otten, Timothy G; Paerl, Hans W; Qin, Boqiang; Sohngen, Brent L; Stumpf, Richard P; Visser, Petra M; Wilhelm, Steven W
2016-04-01
In early August 2014, the municipality of Toledo, OH (USA) issued a 'do not drink' advisory on their water supply directly affecting over 400,000 residential customers and hundreds of businesses (Wilson, 2014). This order was attributable to levels of microcystin, a potent liver toxin, which rose to 2.5μgL -1 in finished drinking water. The Toledo crisis afforded an opportunity to bring together scientists from around the world to share ideas regarding factors that contribute to bloom formation and toxigenicity, bloom and toxin detection as well as prevention and remediation of bloom events. These discussions took place at an NSF- and NOAA-sponsored workshop at Bowling Green State University on April 13 and 14, 2015. In all, more than 100 attendees from six countries and 15 US states gathered together to share their perspectives. The purpose of this review is to present the consensus summary of these issues that emerged from discussions at the Workshop. As additional reports in this special issue provide detailed reviews on many major CHAB species, this paper focuses on the general themes common to all blooms, such as bloom detection, modeling, nutrient loading, and strategies to reduce nutrients. Copyright © 2016 Elsevier B.V. All rights reserved.
Bullerjahn, George S.; McKay, Robert M.; Davis, Timothy W.; Baker, David B.; Boyer, Gregory L.; D’Anglada, Lesley V.; Doucette, Gregory J.; Ho, Jeff C.; Irwin, Elena G.; Kling, Catherine L.; Kudela, Raphael M.; Kurmayer, Rainer; Michalak, Anna M.; Ortiz, Joseph D.; Otten, Timothy G.; Paerl, Hans W.; Qin, Boqiang; Sohngen, Brent L.; Stumpf, Richard P.; Visser, Petra M.; Wilhelm, Steven W.
2016-01-01
In early August 2014, the municipality of Toledo, OH (USA) issued a ‘do not drink’ advisory on their water supply directly affecting over 400,000 residential customers and hundreds of businesses (Wilson, 2014). This order was attributable to levels of microcystin, a potent liver toxin, which rose to 2.5 μg L-1 in finished drinking water. The Toledo crisis afforded an opportunity to bring together scientists from around the world to share ideas regarding factors that contribute to bloom formation and toxigenicity, bloom and toxin detection as well as prevention and remediation of bloom events. These discussions took place at an NSF- and NOAA-sponsored workshop at Bowling Green State University on April 13 and 14, 2015. In all, more than 100 attendees from six countries and 15 US states gathered together to share their perspectives. The purpose of this review is to present the consensus summary of these issues that emerged from discussions at the Workshop. As additional reports in this special issue provide detailed reviews on many major CHAB species, this paper focuses on the general themes common to all blooms, such as bloom detection, modeling, nutrient loading, and strategies to reduce nutrients. PMID:28073479
In situ survey of life cycle phases of the coccolithophore Emiliania huxleyi (Haptophyta).
Frada, Miguel J; Bidle, Kay D; Probert, Ian; de Vargas, Colomban
2012-06-01
The cosmopolitan coccolithophore Emiliania huxleyi is characterized by a strongly differentiated haplodiplontic life cycle consisting of a diploid phase, generally bearing coccoliths (calcified) but that can be also non-calcified, and a non-calcified biflagellated haploid phase. Given most studies have focused on the bloom-producing calcified phase, there is little-to-no information about non-calcified cells in nature. Using field mesocoms as experimental platforms, we quantitatively surveyed calcified and non-calcified cells using the combined calcareous detection fluorescent in situ hybridization (COD-FISH) method and qualitatively screened for haploid specific transcripts using reverse transcription-PCR during E. huxleyi bloom successions. Diploid, calcified cells formed dense blooms that were followed by the massive proliferation of E. huxleyi viruses (EhVs), which caused bloom demise. Non-calcified cells were also detected throughout the experiment, accounting for a minor fraction of the population but becoming progressively more abundant during mid-late bloom periods concomitant with EhV burst. Non-calcified cell growth also paralleled a distinct window of haploid-specific transcripts and the appearance of autotrophic flagellates morphologically similar to haploid cells, both of which are suggestive of meiosis and sexual life cycling during natural blooms of this prominent marine phytoplankton species. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.
Monitoring indicators of harmful cyanobacteria in Texas
Kiesling, Richard L.; Gary, Robin H.; Gary, Marcus O.
2008-01-01
Harmful algal blooms can occur when certain types of microscopic algae grow quickly in water, forming visible patches that might harm the health of the environment, plants, or animals. In freshwater, species of Cyanobacteria (also known as bluegreen algae) are the dominant group of harmful, bloom-forming algae. When Cyanobacteria form a harmful algal bloom, potential impairments include restricted recreational activities because of algal scums or algal mats, potential loss of public water supply because of taste and odor compounds (for example, geosmin), and the production of toxins (for example, microcystin) in amounts capable of threatening human health and wildlife.
Buscato, Monise Helen Masuchi; Hara, Larissa Miho; Bonomi, Élida Castilho; Calligaris, Guilherme de Andrade; Cardoso, Lisandro Pavie; Grimaldi, Renato; Kieckbusch, Theo Guenter
2018-08-01
Two formulations of dark chocolate were developed by adding cocoa butter stearin (CBSt) or sorbitan monostearate (SMS) and compared to a standard formulation in order to investigate fat bloom formation over time. Fat bloom was monitored by Whiteness Index (WI), melting behavior and polymorphism determinations, in bars stored during 90 days at 20 °C and under oscillating temperature between 20 and 32 °C. All samples stored at 20 °C did not develop fat bloom and the required β(V) form was maintained. Under oscillating storage condition, samples with CBSt (6.0%, w/w) and SMS (0.15%, w/w) delayed the surface fat bloom formation by at least 45 and 15 days, respectively, compared to standard chocolate, observed visually and through WI increments. The β(V) to β(VI) polymorphic transition correlated well with the WI, and also with changes in DSC thermograms, confirming the higher effectiveness of specific triacylglycerol (mainly StOSt) in delaying bloom formation. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Godin, M. A.; Ryan, J. P.; Zhang, Y.; Bellingham, J. G.
2012-12-01
Observing plankton in their drifting frame of reference permits effective studies of marine ecology from the perspective of microscopic life itself. By minimizing variation caused simply by advection, observations in a plankton-tracking frame of reference focus measurement capabilities on the processes that influence the life history of populations. Further, the patchy nature of plankton populations motivates use of sensor data in real-time to resolve patch boundaries and adapt observing resources accordingly. We have developed capabilities for population-centric plankton observation and sampling by autonomous underwater vehicles (AUVs). Our focus has been on phytoplankton populations, both because of their ecological significance - as the core of the oceanic food web and yet potentially harmful under certain bloom conditions, as well as the accessibility of their signal to simple optical sensing. During the first field deployment of these capabilities in 2010, we tracked a phytoplankton patch containing toxigenic diatoms and found that their toxicity correlated with exposure to resuspended sediments. However, this first deployment was labor intensive as the AUV drove in a pre-programmed pattern centered around a patch-marking drifter; it required a boat deployment of the patch-marking drifter and required full-time operators to periodically estimate of the position of the patch with respect to the drifter and adjust the AUV path accordingly. In subsequent field experiments during 2011 and 2012, the Tethys-class long-range AUVs ran fully autonomous patch tracking algorithms which detected phytoplankton patches and continually updated estimates of each patch center by driving adaptive patterns through the patch. Iterations of the algorithm were generated to overcome the challenges of tracking advecting and evolving patches while minimizing human involvement in vehicle control. Such fully autonomous monitoring will be necessary to perform long-term in-situ observation of the full growth and decay cycle of bloom patches. Doing so will enhance our understanding of the temporal and spatial dynamics of bloom patches and the observable conditions that lead to bloom formation, ultimately improving our ability to predict the evolution of harmful algal blooms (HABs) and provide warnings for the fishing and tourism industries.
NASA Astrophysics Data System (ADS)
Alshatti, Amani
2017-04-01
Seasonal changes in bacterioplankton populations in two south coast UK estuaries Southampton Water and Christchurch Harbour have been investigated between March and November 2013. Four different phylogenetic bacterial groups with two alphaproteobacteria clades were quantitatively determined in subsurface water samples by Fluorescence in-situ hybridization (FISH) with oligonucleotide probes during phytoplankton bloom periods. During the spring phytoplankton bloom in Southampton water, extracted chlorophyll-a concentrations of between 6.7 and 7.6 µg L-1 were detected while gammaproteobacteria relative abundances (28.7-32.8%) and alphaproteobacteria (35.0-44.0%) dominated the eubacteria with smaller proportions of betaproteobacteria (6.4-13.0%) under high salinity conditions (27.9-32.7). Gammaproteobacteria abundance was significantly negatively correlated with chlorophyll-a concentration (R =-0.5, p < 0.05). In the Christchurch Harbour estuary, betaproteobacteria (21.2-41.1%) dominated throughout the study period in lower salinity waters (1.3-20.7). A significant relationship with negative trend was detected in both estuaries between salinity and betaproteobacteria (R = - 0.95, p < 0.0001). A higher proportion of gammaproteobacteria (29.7-30.3 %) occurred after the spring bloom chlorophyll-a concentration of 5-44.3 µg L-1 and proportion of alphaproteobacteria was highly variable. Archaea were detected in low percentages throughout the blooming season in both estuaries with maximum detected relative abundances of 10.6% in Southampton water and 8.2% in Christchurch harbour. The variation in salinity range therefore between the two estuaries plus the differences in phytoplankton biomass had a marked influence on the dominance of the different proteobacterial groups detected.
NASA Astrophysics Data System (ADS)
Nolan, M.; Ziccarelli, L.; Kudela, R. M.
2013-12-01
Certain species of the diatom genus Pseudo-nitzschia are producers of the neurotoxin, domoic acid (DA). DA is known to cause amnesic shellfish poisoning also known as domoic acid poisoning, which can lead to permanent brain damage in humans and marine mammals. DA accumulates at higher trophic levels, generally due to consumption of toxic cells or through trophic transfer, and can potentially cause death of both humans and marine wildlife. The Santa Cruz Municipal Warf experiences periodic rises in DA concentrations, which can reach toxic levels in shellfish, fish, and other marine organisms. While these increases in toxicity often occur during Pseudo-nitzschia blooms, several periods of elevated DA have occurred when diatom abundance is restricted and/or dominated by non-toxic species, and there is increasing evidence that DA dissolved in seawater may be prevalent. One theory suggests that senescent or dead Pseudo-nitzschia cells sink to the benthos while retaining their toxin and are buried in sediment following the death of a bloom. Therefore, DA may accumulate in the benthos, where it is eventually released during storms or wave and tide conditions that disturb the sediment. We sampled DA in situ using Solid Phase Adsorption Toxin Tracking (SPATT) bags SPATT uses a synthetic resin to capture dissolved DA, allowing for the determination of integrated DA concentrations at known time intervals. The alternative method is mussel biotoxin monitoring, but it is less accurate due to uncertainties in the time of DA accumulation within the mussel, and the lack of uptake of dissolved DA by the mussel. We deployed and collected SPATT off the Santa Cruz Municipal Wharf at multiple depths beginning in February 2013. We expect to see increasing DA following the death of a harmful algal bloom. Under pre-bloom conditions, little to no DA has been detected in mussels or surface SPATT, but DA from SPATT is frequently observed at depth, suggesting that the sediment is exposed to (or acts as a reservoir for) DA, and that benthic organisms are chronically exposed to DA.
This project, sponsored by EPA's Environmental Monitoring for Public Access and Community Tracking (EMPACT) program, evaluated the ability of an automated biological monitoring system that measures fish ventilatory responses (ventilatory rate, ventilatory depth, and cough rate) t...
2013-09-30
environmental factors that impact toxic algal blooms in the Great Lakes, including their initiation, development, and senescence. The project is...integrated with existing harmful algal bloom monitoring and observational activities through the NOAA Great Lakes Environmental Research Laboratory...holograms showing the orientation of Ditylum chains within a phytoplankton thin layer in East Sound, WA, 2013. IMPACT /APPLICATIONS The HOLOCAM
Monitoring Bloom Dynamics of a Common Coastal Bioluminescent Ctenophore
2008-01-01
profound impacts on coastal ecosystems. Although the causes of jellyfish blooms are not well understood, correlations have been made between...changes in jellyfish density and changes in physical factors, such as temperature and salinity, and biological factors, such as prey abundance and...Current sampling methods for jellyfish populations are done with net collections by hand at stations weekly, monthly, or seasonally. These time scales
Brewer, Michael J; Anderson, Darwin J; Armstrong, J Scott
2013-10-01
Verde plant bugs, Creontiades signatus Distant (Hemiptera: Miridae), were released onto caged cotton, Cossypium hirsutum L., for a 1-wk period to characterize the effects of insect density and bloom period of infestation on cotton injury and yield in 2011 and 2012, Corpus Christi, TX. When plants were infested during early bloom (10-11 nodes above first white flower), a linear decline in fruit retention and boll load and a linear increase in boll injury were detected as verde plant bug infestation levels increased from an average of 0.5 to 4 bugs per plant. Lint and seed yield per plant showed a corresponding decline. Fruit retention, boll load, and yield were not affected on plants infested 1 wk later at peak bloom (8-9 nodes above first white flower), even though boll injury increased as infestation levels increased. Second-year testing verified boll injury but not yield loss, when infestations occurred at peak bloom. Incidence of cotton boll rot, known to be associated with verde plant bug feeding, was low to modest (< 1% [2012] to 12% [2011] of bolls with disease symptoms), and drought stress persisted throughout the study. Caging effect was minimal: a 10% fruit retention decline was associated with caging, and the effect was not detectable in the other measurements. Overall, reduced fruit retention and boll load caused by verde plant bug were important contributors to yield decline, damage potential was greatest during the early bloom period of infestation, and a simple linear response best described the yield response-insect density relationship at early bloom. Confirmation that cotton after peak bloom was less prone to verde plant bug injury and an early bloom-specific economic injury level were key findings that can improve integrated pest management decision-making for dryland cotton, at least under low-rainfall growing conditions.
Lee, Tammy A; Rollwagen-Bollens, Gretchen; Bollens, Stephen M; Faber-Hammond, Joshua J
2015-04-01
The increasing frequency of harmful cyanobacterial blooms in freshwater systems is a commonly recognized problem due to detrimental effects on water quality. Vancouver Lake, a shallow, tidally influenced lake in the flood plain of the Columbia River within the city of Vancouver, WA, USA, has experienced numerous summertime cyanobacterial blooms, dominated by Aphanizomenon sp. and Anabaena sp. Cyanobacteria abundance and toxin (microcystin) levels have been monitored in this popular urban lake for several years; however, no previous studies have identified which cyanobacteria species produce toxins, nor analyzed how changes in environmental variables contribute to the fluctuations in toxic cyanobacteria populations. We used a suite of molecular techniques to analyze water samples from Vancouver Lake over two summer bloom cycles (2009 and 2010). Both intracellular and extracellular microcystin concentrations were measured using an ELISA kit. Intracellular microcystin concentrations exceeded WHO guidelines for recreational waters several times throughout the sampling period. PCR results demonstrated that Microcystis sp. was the sole microcystin-producing cyanobacteria species present in Vancouver Lake, although Microcystis sp. was rarely detected in microscopical counts. qPCR results indicated that the majority of the Microcystis sp. population contained the toxin-producing gene (mcyE), although Microcystis sp. abundance rarely exceeded 1 percent of overall cyanobacteria abundance. Non-metric multidimensional scaling (NMDS) revealed that PO4-P was the main environmental variable influencing the abundance of toxic and non-toxic cyanobacteria, as well as intracellular microcystin concentrations. Our study underscores the importance of using molecular genetic techniques, in addition to traditional microscopy, to assess the importance of less conspicuous species in the dynamics of harmful algal blooms. Copyright © 2014 Elsevier Inc. All rights reserved.
Fish sound production in the presence of harmful algal blooms in the eastern Gulf of Mexico.
Wall, Carrie C; Lembke, Chad; Hu, Chuanmin; Mann, David A
2014-01-01
This paper presents the first known research to examine sound production by fishes during harmful algal blooms (HABs). Most fish sound production is species-specific and repetitive, enabling passive acoustic monitoring to identify the distribution and behavior of soniferous species. Autonomous gliders that collect passive acoustic data and environmental data concurrently can be used to establish the oceanographic conditions surrounding sound-producing organisms. Three passive acoustic glider missions were conducted off west-central Florida in October 2011, and September and October 2012. The deployment period for two missions was dictated by the presence of red tide events with the glider path specifically set to encounter toxic Karenia brevis blooms (a.k.a red tides). Oceanographic conditions measured by the glider were significantly correlated to the variation in sounds from six known or suspected species of fish across the three missions with depth consistently being the most significant factor. At the time and space scales of this study, there was no detectable effect of red tide on sound production. Sounds were still recorded within red tide-affected waters from species with overlapping depth ranges. These results suggest that the fishes studied here did not alter their sound production nor migrate out of red tide-affected areas. Although these results are preliminary because of the limited measurements, the data and methods presented here provide a proof of principle and could serve as protocol for future studies on the effects of algal blooms on the behavior of soniferous fishes. To fully capture the effects of episodic events, we suggest that stationary or vertically profiling acoustic recorders and environmental sampling be used as a complement to glider measurements.
Fish Sound Production in the Presence of Harmful Algal Blooms in the Eastern Gulf of Mexico
Wall, Carrie C.; Lembke, Chad; Hu, Chuanmin; Mann, David A.
2014-01-01
This paper presents the first known research to examine sound production by fishes during harmful algal blooms (HABs). Most fish sound production is species-specific and repetitive, enabling passive acoustic monitoring to identify the distribution and behavior of soniferous species. Autonomous gliders that collect passive acoustic data and environmental data concurrently can be used to establish the oceanographic conditions surrounding sound-producing organisms. Three passive acoustic glider missions were conducted off west-central Florida in October 2011, and September and October 2012. The deployment period for two missions was dictated by the presence of red tide events with the glider path specifically set to encounter toxic Karenia brevis blooms (a.k.a red tides). Oceanographic conditions measured by the glider were significantly correlated to the variation in sounds from six known or suspected species of fish across the three missions with depth consistently being the most significant factor. At the time and space scales of this study, there was no detectable effect of red tide on sound production. Sounds were still recorded within red tide-affected waters from species with overlapping depth ranges. These results suggest that the fishes studied here did not alter their sound production nor migrate out of red tide-affected areas. Although these results are preliminary because of the limited measurements, the data and methods presented here provide a proof of principle and could serve as protocol for future studies on the effects of algal blooms on the behavior of soniferous fishes. To fully capture the effects of episodic events, we suggest that stationary or vertically profiling acoustic recorders and environmental sampling be used as a complement to glider measurements. PMID:25551564
A Multiscale Mapping Assessment of Lake Champlain Cyanobacterial Harmful Algal Blooms
Torbick, Nathan; Corbiere, Megan
2015-01-01
Lake Champlain has bays undergoing chronic cyanobacterial harmful algal blooms that pose a public health threat. Monitoring and assessment tools need to be developed to support risk decision making and to gain a thorough understanding of bloom scales and intensities. In this research application, Landsat 8 Operational Land Imager (OLI), Rapid Eye, and Proba Compact High Resolution Imaging Spectrometer (CHRIS) images were obtained while a corresponding field campaign collected in situ measurements of water quality. Models including empirical band ratio regressions were applied to map chlorophyll-a and phycocyanin concentrations; all sensors performed well with R2 and root-mean-square error (RMSE) ranging from 0.76 to 0.88 and 0.42 to 1.51, respectively. The outcomes showed spatial patterns across the lake with problematic bays having phycocyanin concentrations >25 µg/L. An alert status metric tuned to the current monitoring protocol was generated using modeled water quality to illustrate how the remote sensing tools can inform a public health monitoring system. Among the sensors utilized in this study, Landsat 8 OLI holds the most promise for providing exposure information across a wide area given the resolutions, systematic observation strategy and free cost. PMID:26389930
Brosnahan, Michael L; Ralston, David K; Fischer, Alexis D; Solow, Andrew R; Anderson, Donald M
2017-11-01
New resting cyst production is crucial for the survival of many microbial eukaryotes including phytoplankton that cause harmful algal blooms. Production in situ has previously been estimated through sediment trap deployments, but here was instead assessed through estimation of the total number of planktonic cells and new resting cysts produced by a localized, inshore bloom of Alexandrium catenella , a dinoflagellate that is a globally important cause of paralytic shellfish poisoning. Our approach utilizes high frequency, automated water monitoring, weekly observation of new cyst production, and pre- and post-bloom spatial surveys of total resting cyst abundance. Through this approach, new cyst recruitment within the study area was shown to account for at least 10.9% ± 2.6% (SE) of the bloom's decline, ∼ 5× greater than reported from comparable, sediment trap based studies. The observed distribution and timing of new cyst recruitment indicate that: (1) planozygotes, the immediate precursor to cysts in the life cycle, migrate nearer to the water surface than other planktonic stages and (2) encystment occurs after planozygote settlement on bottom sediments. Near surface localization by planozygotes explains the ephemerality of red surface water discoloration by A. catenella blooms, and also enhances the dispersal of new cysts. Following settlement, bioturbation and perhaps active swimming promote sediment infiltration by planozygotes, reducing the extent of cyst redistribution between blooms. The concerted nature of bloom sexual induction, especially in the context of an observed upper limit to A. catenella bloom intensities and heightened susceptibility of planozygotes to the parasite Amoebophrya , is also discussed.
Guo, Yunyan; Liu, Min; Liu, Lemian; Liu, Xuan; Chen, Huihuang; Yang, Jun
2018-05-04
In freshwater systems, both antibiotic resistance genes (ARGs) and cyanobacterial blooms attract global public health concern. Cyanobacterial blooms can greatly impact bacterial taxonomic communities, but very little is known about the influence of the blooms on antibiotic resistance functional community. In this study, the ARGs in both free-living (FL) and particle-attached (PA) bacteria under bloom and non-bloom conditions were simultaneously investigated in a subtropical reservoir using high-throughput approaches. In total, 145 ARGs and 9 mobile genetic elements (MGEs) were detected. The most diverse and dominant of which (68.93%) were multidrug resistance genes and efflux pump mechanism. The richness of ARGs in both FL and PA bacteria was significantly lower during the bloom period compared with non-bloom period. The abundance of ARGs in FL bacteria was significantly lower under bloom condition than in the non-bloom period, but the abundance of ARGs in PA bacteria stayed constant. More importantly, the resistant functional community in PA bacteria was more strongly influenced by the cyanobacterial bloom than in the FL bacteria, although >96% ARGs were shared in both FL and PA bacteria or both bloom and non-bloom periods. We also compared the community compositions between taxonomy and function, and found antibiotic resistant communities were highly variable and exhibited lower similarity between bloom and non-bloom periods than seen in the taxonomic composition, with an exception of FL bacteria. Altogether, cyanobacterial blooms appear to have stronger inhibitory effect on ARG abundance in FL bacteria, and stronger influence on antibiotic resistant community composition in PA bacteria. Our results further suggested that both neutral and selective processes interactively affected the ARG composition dynamics of the FL and PA bacteria. However, the antibiotic resistant community of FL bacteria exhibited a higher level of temporal stochasticity following the bloom event than PA bacteria. Therefore, we emphasized the bacterial lifestyles as an important mechanism, giving rise to different responses of antibiotic resistant community to the cyanobacterial bloom. Copyright © 2018 Elsevier Ltd. All rights reserved.
Great Lake beach-goer behavior during a retrospectively detected bloom of cyanobacteria
Cyanobacteria blooms pose a potential health risk to beachgoers. We conducted a prospective study of weekend beachgoers at a public Great Lake site during July – September 2003. We recorded each person’s health status and activity during their beach visit. We measured...
[Clinical and molecular analysis of two Chinese siblings with Bloom syndrome].
Wu, M L; Wang, X M; Li, J; Ding, Y; Chen, Y; Chang, G Y; Wang, J; Shen, Y P
2018-05-02
Objective: To expand the knowledge of the clinical and molecular characteristics of the children with Bloom syndrome. Methods: Clinical data of two siblings with classic Bloom syndrome of Shanghai Children's Medical Center from January 2009 to June 2017 were obtained and analyzed. The DNA of peripheral blood was collected from two Bloom syndrome siblings and their parents during 2015. The mutations were detected with high-throughput sequencing by Illumina sequencing platform. Results: The two siblings (probands) visited our department for short stature and growth retardation, they had full-term normal delivery after normal pregnancy of their mother. Both cases presented with feeding difficulties, malnutrition, microcephaly and mental retardation, repeated infection, symmetrical short stature and special faces. At first, the proband was an 8-year-3-month old girl, her height was 99.7 cm, body mass index (BMI) 12.07 kg/m(2), head circumference was 45.5 cm, and birth weight was 1.6 kg. Her younger brother was 3-year-11-month old, his height was 86.6 cm, BMI was 14 kg/m(2), birth weight was 1.95 kg, and the head circumference reached 36 cm at 16 months. No evidence of cancer and characteristic rash was detected at 8-year follow-up. Pathogenic complex heterozygous mutations c.772_773delCT, p.Leu258Glufs*7 and c.959+ 2T>A in BLM gene were detected in both siblings, which were separately inherited from their unaffected parents. Besides , c.959 + 2T>A has not been reported previously. Conclusions: Children with Bloom syndrome are characterized by short stature, microcephaly, special faces, feeding difficulties, and immunodeficiency. And butterfly erythematous rash may be absent. The c.959+2T>A mutation detected in our patients maybe a novel pathogenic mutation.
Caldwell Eldridge, Sara L.; Driscoll, Conner; Dreher, Theo W.
2017-06-05
Monitoring the community structure and metabolic activities of cyanobacterial blooms in Upper Klamath Lake, Oregon, is critical to lake management because these blooms degrade water quality and produce toxic microcystins that are harmful to humans, domestic animals, and wildlife. Genetic tools, such as DNA fingerprinting by terminal restriction fragment length polymorphism (T-RFLP) analysis, high-throughput DNA sequencing (HTS), and real-time, quantitative polymerase chain reaction (qPCR), provide more sensitive and rapid assessments of bloom ecology than traditional techniques. The objectives of this study were (1) to characterize the microbial community at one site in Upper Klamath Lake and determine changes in the cyanobacterial community through time using T-RFLP and HTS in comparison with traditional light microscopy; (2) to determine relative abundances and changes in abundance over time of toxigenic Microcystis using qPCR; and (3) to determine relative abundances and changes in abundance over time of Aphanizomenon, Microcystis, and total cyanobacteria using qPCR. T-RFLP analysis of total cyanobacteria showed a dominance of only one or two distinct genotypes in samples from 2013, but results of HTS in 2013 and 2014 showed more variations in the bloom cycle that fit with the previous understanding of bloom dynamics in Upper Klamath Lake and indicated that potentially toxigenic Microcystis was more prevalent in 2014 than in years prior. The qPCR-estimated copy numbers of all target genes were higher in 2014 than in 2013, when microcystin concentrations also were higher. Total Microcystis density was shown with qPCR to be a better predictor of late-season increases in microcystin concentrations than the relative proportions of potentially toxigenic cells. In addition, qPCR targeting Aphanizomenon at one site in Upper Klamath Lake indicated a moderate bloom of this species (corresponding to chlorophyll a concentrations between approximately 75 and 200 micrograms per liter) from mid-June to mid-August, 2014. After August 18, the Aphanizomenon bloom was overtaken by Microcystis late in the season as microcystin concentrations peaked. Overall, results of this study showed how DNA-based, genetic methods may provide rapid and sensitive diagnoses for the presence of toxigenic cyanobacteria and that they are useful for general monitoring or ecological studies and identification of cyanobacterial community members in complex aquatic habitats. These same methods can also be used to simultaneously address spatial (horizontal and vertical) and temporal variation and under different conditions. Additionally, with some modifications, the same techniques can be applied to different sample types, including water, sediment, and tissue.
Insights into toxic Prymnesium parvum blooms: the role of sugars and algal viruses.
Wagstaff, Ben A; Hems, Edward S; Rejzek, Martin; Pratscher, Jennifer; Brooks, Elliot; Kuhaudomlarp, Sakonwan; O'Neill, Ellis C; Donaldson, Matthew I; Lane, Steven; Currie, John; Hindes, Andrew M; Malin, Gill; Murrell, J Colin; Field, Robert A
2018-04-17
Prymnesium parvum is a toxin-producing microalga that causes harmful algal blooms globally, which often result in large-scale fish kills that have severe ecological and economic implications. Although many toxins have previously been isolated from P. parvum , ambiguity still surrounds the responsible ichthyotoxins in P. parvum blooms and the biotic and abiotic factors that promote bloom toxicity. A major fish kill attributed to P. parvum occurred in Spring 2015 on the Norfolk Broads, a low-lying set of channels and lakes (Broads) found on the East of England. Here, we discuss how water samples taken during this bloom have led to diverse scientific advances ranging from toxin analysis to discovery of a new lytic virus of P. parvum , P. parvum DNA virus (PpDNAV-BW1). Taking recent literature into account, we propose key roles for sialic acids in this type of viral infection. Finally, we discuss recent practical detection and management strategies for controlling these devastating blooms. © 2018 The Author(s).
Beach-goer behavior during a retrospectively detected algal bloom at a Great Lakes beach
Algal blooms occur among nutrient rich, warm surface waters and may adversely impact recreational beaches. During July – September 2003, a prospective study of beachgoers was conducted on weekends at a public beach on a Great Lake in the United States. We measured each beac...
Harmful cyanobacterial blooms have adversely impacted human and animal health for thousands of years. Recently, the health impacts of harmful cyanobacteria blooms are becoming more frequently detected and reported. However, reports of human and animal illnesses or deaths associat...
NASA Astrophysics Data System (ADS)
Zhou, Feng; Xuan, Jiliang; Huang, Daji; Liu, Chenggang; Sun, Jun
2013-12-01
The development of phytoplankton bloom and its association with physical forcing is examined through an interdisciplinary field-work conducted in the vicinity of the central trough of the southern Yellow Sea during March-April 2009, with the aid of a surface Lagrangian drifter deployed at the bloom site. Bloom patches were detected using an empirical value and two of them were traced by the drifter for a period of several days respectively. Both of them appears as thin-layer subsurface chlorophyll a maximum (SCM) throughout the tracing, although their dominant phytoplankton species are not identical at all. The magnitude as well as the onset of these two blooms is different from each other, but both found to be relevant to local oceanic and meteorological conditions. Both of them demonstrate that the changes in the stability of hydrographical structure, especially at layers around the SCM, take a substantial role in triggering or terminating the blooming processes. Those changes in meteorological conditions, like wind speed and directions, solar radiation, are short and cause daily or synoptic scale variations in phytoplankton concentrations, but the frequency of northerly wind events predating the bloom season has a positive effect on the occurrence of spring blooms. The horizontal advection is another contributing factor indicated by the drifter which accounts for the bloom extinction at the station B20. In addition, due to the weak orbital horizontal movement, the bloom above the central trough persists longer and larger.
Cyanobacteria, Toxins and Indicators: Full-Scale Monitoring & Bench-Scale Treatment Studies
Summary of: 1) Lake Erie 2014 bloom season full-scale treatment plant monitoring data for cyanobacteria and cyanobacteria toxins; 2) Follow-up work to examine the impact of pre-oxidation on suspensions of intact toxin-producing cyanobacterial cells.
A novel earth observation based ecological indicator for cyanobacterial blooms
NASA Astrophysics Data System (ADS)
Anttila, Saku; Fleming-Lehtinen, Vivi; Attila, Jenni; Junttila, Sofia; Alasalmi, Hanna; Hällfors, Heidi; Kervinen, Mikko; Koponen, Sampsa
2018-02-01
Cyanobacteria form spectacular mass occurrences almost annually in the Baltic Sea. These harmful algal blooms are the most visible consequences of marine eutrophication, driven by a surplus of nutrients from anthropogenic sources and internal processes of the ecosystem. We present a novel Cyanobacterial Bloom Indicator (CyaBI) targeted for the ecosystem assessment of eutrophication in marine areas. The method measures the current cyanobacterial bloom situation (an average condition of recent 5 years) and compares this to the estimated target level for 'good environmental status' (GES). The current status is derived with an index combining indicative bloom event variables. As such we used seasonal information from the duration, volume and severity of algal blooms derived from earth observation (EO) data. The target level for GES was set by using a remote sensing based data set named Fraction with Cyanobacterial Accumulations (FCA; Kahru & Elmgren, 2014) covering years 1979-2014. Here a shift-detection algorithm for time series was applied to detect time-periods in the FCA data where the level of blooms remained low several consecutive years. The average conditions from these time periods were transformed into respective CyaBI target values to represent target level for GES. The indicator is shown to pass the three critical factors set for marine indicator development, namely it measures the current status accurately, the target setting can be scientifically proven and it can be connected to the ecosystem management goal. An advantage of the CyaBI method is that it's not restricted to the data used in the development work, but can be complemented, or fully applied, by using different types of data sources providing information on cyanobacterial accumulations.
MODIS-Aqua detects Noctiluca scintillans and hotspots in the central Arabian Sea.
Dwivedi, R; Priyaja, P; Rafeeq, M; Sudhakar, M
2016-01-01
Northern Arabian Sea is considered as an ecologically sensitive area as it experiences a massive upwelling and long-lasting algal bloom, Noctiluca scintillans (green tide) during summer and spring-winter, respectively. Diatom bloom is also found to be co-located with N. scintillans and both have an impact on ecology of the basin. In-house technique of detecting species of these blooms from Moderate Resolution Imaging Spectroradiometer (MODIS)-Aqua data was used to generate a time-series of images revealing their spatial distribution. A study of spatial-temporal variability of these blooms using satellite data expressed a cyclic pattern of their spread over a period of 13 years. An average distribution of the blooms for January-March period revealed a peak in 2015 and minimum in 2013. Subsequently, a time-series of phytoplankton species images were generated for these 2 years to study their inter-annual variability and the associated factors. Species images during active phase of the bloom (February) in 2015 indicated development of N. scintillans and diatom in the central Arabian Sea also, up to 12° N. This observation was substantiated with relevant oceanic parameters measured from the ship as well as satellite data and the same is highlight of the paper. While oxygen depletion and release of ammonia associated with N. scintillans are detrimental for waters on the western side; it is relatively less extreme and supports the entire food chain on the eastern side. In view of these contrasting eco-sensitive events, it is a matter of concern to identify biologically active persistent areas, hot spots, in order to study their ecology in detail. An ecological index, persistence of the bloom, was derived from the time-series of species images and it is another highlight of our study.
Centers for Oceans and Human Health: a unified approach to the challenge of harmful algal blooms
Erdner, Deana L; Dyble, Julianne; Parsons, Michael L; Stevens, Richard C; Hubbard, Katherine A; Wrabel, Michele L; Moore, Stephanie K; Lefebvre, Kathi A; Anderson, Donald M; Bienfang, Paul; Bidigare, Robert R; Parker, Micaela S; Moeller, Peter; Brand, Larry E; Trainer, Vera L
2008-01-01
Background Harmful algal blooms (HABs) are one focus of the national research initiatives on Oceans and Human Health (OHH) at NIEHS, NOAA and NSF. All of the OHH Centers, from the east coast to Hawaii, include one or more research projects devoted to studying HAB problems and their relationship to human health. The research shares common goals for understanding, monitoring and predicting HAB events to protect and improve human health: understanding the basic biology of the organisms; identifying how chemistry, hydrography and genetic diversity influence blooms; developing analytical methods and sensors for cells and toxins; understanding health effects of toxin exposure; and developing conceptual, empirical and numerical models of bloom dynamics. Results In the past several years, there has been significant progress toward all of the common goals. Several studies have elucidated the effects of environmental conditions and genetic heterogeneity on bloom dynamics. New methods have been developed or implemented for the detection of HAB cells and toxins, including genetic assays for Pseudo-nitzschia and Microcystis, and a biosensor for domoic acid. There have been advances in predictive models of blooms, most notably for the toxic dinoflagellates Alexandrium and Karenia. Other work is focused on the future, studying the ways in which climate change may affect HAB incidence, and assessing the threat from emerging HABs and toxins, such as the cyanobacterial neurotoxin β-N-methylamino-L-alanine. Conclusion Along the way, many challenges have been encountered that are common to the OHH Centers and also echo those of the wider HAB community. Long-term field data and basic biological information are needed to develop accurate models. Sensor development is hindered by the lack of simple and rapid assays for algal cells and especially toxins. It is also critical to adequately understand the human health effects of HAB toxins. Currently, we understand best the effects of acute toxicity, but almost nothing is known about the effects of chronic, subacute toxin exposure. The OHH initiatives have brought scientists together to work collectively on HAB issues, within and across regions. The successes that have been achieved highlight the value of collaboration and cooperation across disciplines, if we are to continue to advance our understanding of HABs and their relationship to human health. PMID:19025673
An overview of cyanobacterial bloom occurrences and research in Africa over the last decade.
Ndlela, L L; Oberholster, P J; Van Wyk, J H; Cheng, P H
2016-12-01
Cyanobacterial blooms are a current cause for concern globally, with vital water sources experiencing frequent and increasingly toxic blooms in the past decade. These increases are resultant of both anthropogenic and natural factors, with climate change being the central concern. Of the more affected parts of the world, Africa has been considered particularly vulnerable due to its historical predisposition and lag in social economic development. This review collectively assesses the available information on cyanobacterial blooms in Africa as well as any visible trends associated with reported occurrences over the last decade. Of the 54 countries in Africa, only 21 have notable research information in the area of cyanobacterial blooms within the last decade, although there is substantial reason to attribute these blooms as some of the major water quality threats in Africa collectively. The collected information suggests that civil wars, disease outbreaks and inadequate infrastructure are at the core of Africa's delayed advancement. This is even more so in the area of cyanobacteria related research, with 11 out of 21 countries having recorded toxicity and physicochemical parameters related to cyanobacterial blooms. Compared to the rest of the continent, peripheral countries are at the forefront of research related to cyanobacteria, with countries such as Angola having sufficient rainfall, but poor water quality with limited information on bloom occurrences. An assessment of the reported blooms found nitrogen concentrations to be higher in the water column of more toxic blooms, validating recent global studies and indicating that phosphorous is not the only factor to be monitored in bloom mitigation. Blooms occurred at low TN: TP ratios and at temperatures above 12°C. Nitrogen was linked to toxicity and temperature also had a positive effect on bloom occurrence and toxicity. Microcystis was the most ubiquitous of the cyanobacterial strains reported in Africa and the one most frequently toxic. Cylindrospermopsis was reported more in the dry, north and western parts of the continent countries as opposed to the rest of the continent, whilst Anabaena was more frequent on the south eastern regions. In light of the entire continent, the inadequacy in reported blooms and advances in this area of research require critical intervention and action. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Beiermann, Timo
2010-12-01
Toxic algal blooms are an issue affecting water quality and can cause harmful health impacts. The aim of the conducted case study is to assess such blooms by chlorophyll a and phycocyanin detection as indicators of the occurrence. Using demonstrated single reflectance ratio algorithms published as in [7] and processed with provided tools for hyperspectral Proba1-CHRIS imagery in a study site including Loumbila reservoir near Ouagadougou, capital of Burkina Faso to investigate potentials of this approach.
A multispectral analysis of algal bloom in the Gulf of Mexico
NASA Technical Reports Server (NTRS)
Johnson, W. R.; Norris, D. R.
1977-01-01
Skylab multispectral scanner data acquired on January 21, 1974, were used to study the spectral characteristics of an algal bloom in the Gulf of Mexico west of Fort Myers, Florida. Radiance profiles of the water and algae were prepared with data from ten bands of the S192 scanner covering the spectral range from .42 to 2.35 micrometers. The high spectral response in the near-infrared spectral bands implies a possible classification and discrimination parameter for detection of blooms of phytoplankton concentrations such as the so-called red tides of Florida.
Nie, Yudong; Zhang, Zhi; Shen, Qian; Gao, Wenjin; Li, Yingfan
2016-05-18
The Three Gorges Dam is one of the largest hydroelectric power plants worldwide; its reservoir was preliminarily impounded in 2003 and finally impounded to 175 m in 2012. The impoundment caused some environmental problems, such as algal blooms. Carbonic anhydrase (CA) is an important biocatalyst in the carbon utilization by algae and plays an important role in algal blooms. CA has received considerable attention for its role in red tides in oceans, but less investigation has been focused on its role in algal blooms in fresh water. In this study, the seasonal variation of water quality parameters, different carbon forms, carbonic anhydrase activity (CAA), and the algal cell density of four sampling sites in the urban section of the Jialing River were investigated from November 1, 2013 to October 31, 2014. Results indicated that CAA exhibited a positive correlation with dissoluble organic carbon (DOC), pH, and temperature, but a negative correlation with CO2 and dissoluble inorganic carbon (DIC). Algal cell density exhibited a positive correlation with flow velocity (V), pH, particulate organic carbon (POC), and CAA, a negative correlation with CO2, and a negative partial correlation with DIC. The relationship between CAA and algal cell density for the entire year can be described as cells = 23.278CAA - 42.666POC + 139.547pH - 1057.106. The algal bloom prediction model for the key control period can be described as cells = -45.895CAA + 776.103V- 29.523DOC + 14.219PIC + 35.060POC + 19.181 (2 weeks in advance) and cells = 69.200CAA + 203.213V + 4.184CO2 + 38.911DOC + 40.770POC - 189.567 (4 weeks in advance). The findings in this study demonstrate that the carbon utilization by algae is conducted by CA and provide a new method of monitoring algal cell density and predicting algal blooms.
A PILOT PROJECT TO DETECT AND PREDICT HARMFUL ALGAL BLOOMS IN THE NORTHERN GULF OF MEXICO
More timely access to data and information on the initiation, evolution and effects of harmful algal blooms can reduce adverse impacts on valued natural resources and human health. To achieve this, a workshop was held to develop a user-driven, end-to-end (measurements to applicat...
A PILOT PROJECT TO DETECT AND FORECAST HARMFUL ALGAL BLOOMS IN THE NORTHERN GULF OF MEXICO
More timely access to data and information on the initiation, evolution and effects of harmful algal blooms can reduce adverse impacts on valued natural resources and human health. To achieve this in the northern Gulf of Mexico, a pilot project was initiated to develop a user-dr...
NASA Technical Reports Server (NTRS)
Fletcher, Rose; Knowlton, Kelly; Ryan, Robert E.
2007-01-01
This candidate solution proposes to use the night-imaging capabilities of the HSTC from SAC-C and of the HSC from SAC-D/Aquarius to detect bioluminescent events associated with HABs (harmful algal blooms). Once detected, this information could be fed to the NOAA CSCOR (Center for Sponsored Coastal Ocean Research) Harmful Algal Bloom Event Response Program, which acts quickly to fund the mobilization of research teams and to engage local agencies in a response. The HSC/HSTC data can serve as input to the HABSOS decision support system to provide information on location, extent, and duration of HAB events. Society will benefit from improved protection of the health of humans beings, aquatic ecosystems, and coastal economies. This work supports coastal management, public health, and homeland security applications.
Naar, Jerome; Bourdelais, Andrea; Tomas, Carmelo; Kubanek, Julia; Whitney, Philip L; Flewelling, Leanne; Steidinger, Karen; Lancaster, Johnny; Baden, Daniel G
2002-01-01
We developed a competitive enzyme-linked immunosorbent assay (ELISA) to analyze brevetoxins, using goat anti-brevetoxin antibodies obtained after immunization with keyhole limpet hemocyanin-brevetoxin conjugates, in combination with a three-step signal amplification process. The procedure, which used secondary biotinylated antibodies, streptavidine-horseradish peroxidase conjugate, and chromogenic enzyme substrate, was useful in reducing nonspecific background signals commonly observed with complex matrices. This competitive ELISA detected brevetoxins in seawater, shellfish extract and homogenate, and mammalian body fluid such as urine and serum without pretreatment, dilution, or purification. We investigated the application of this technique for shellfish monitoring by spiking shellfish meat with brevetoxins and by analyzing oysters from two commercial shellfish beds in Florida that were exposed to a bloom of Karenia brevis (formerly Gymnodinium breve). We performed brevetoxin analysis of shellfish extracts and homogenates by ELISA and compared it with the mouse bioassay and receptor binding assay. The detection limit for brevetoxins in spiked oysters was 2.5 microg/100 g shellfish meat. This assay appears to be a useful tool for neurotoxic shellfish poisoning monitoring in shellfish and seawater, and for mammalian exposure diagnostics, and significantly reduces the time required for analyses. PMID:11836147
Monitoring of potentially toxic cyanobacteria using an online multi-probe in drinking water sources.
Zamyadi, A; McQuaid, N; Prévost, M; Dorner, S
2012-02-01
Toxic cyanobacteria threaten the water quality of drinking water sources across the globe. Two such water bodies in Canada (a reservoir on the Yamaska River and a bay of Lake Champlain in Québec) were monitored using a YSI 6600 V2-4 (YSI, Yellow Springs, Ohio, USA) submersible multi-probe measuring in vivo phycocyanin (PC) and chlorophyll-a (Chl-a) fluorescence, pH, dissolved oxygen, conductivity, temperature, and turbidity in parallel. The linearity of the in vivo fluorescence PC and Chl-a probe measurements were validated in the laboratory with Microcystis aeruginosa (r(2) = 0.96 and r(2) = 0.82 respectively). Under environmental conditions, in vivo PC fluorescence was strongly correlated with extracted PC (r = 0.79) while in vivo Chl-a fluorescence had a weaker relationship with extracted Chl-a (r = 0.23). Multiple regression analysis revealed significant correlations between extracted Chl-a, extracted PC and cyanobacterial biovolume and in vivo fluorescence parameters measured by the sensors (i.e. turbidity and pH). This information will help water authorities select the in vivo parameters that are the most useful indicators for monitoring cyanobacteria. Despite highly toxic cyanobacterial bloom development 10 m from the drinking water treatment plant's (DWTP) intake on several sampling dates, low in vivo PC fluorescence, cyanobacterial biovolume, and microcystin concentrations were detected in the plant's untreated water. The reservoir's hydrodynamics appear to have prevented the transport of toxins and cells into the DWTP which would have deteriorated the water quality. The multi-probe readings and toxin analyses provided critical evidence that the DWTP's untreated water was unaffected by the toxic cyanobacterial blooms present in its source water.
Spatio-Temporal Interdependence of Bacteria and Phytoplankton during a Baltic Sea Spring Bloom
Bunse, Carina; Bertos-Fortis, Mireia; Sassenhagen, Ingrid; Sildever, Sirje; Sjöqvist, Conny; Godhe, Anna; Gross, Susanna; Kremp, Anke; Lips, Inga; Lundholm, Nina; Rengefors, Karin; Sefbom, Josefin; Pinhassi, Jarone; Legrand, Catherine
2016-01-01
In temperate systems, phytoplankton spring blooms deplete inorganic nutrients and are major sources of organic matter for the microbial loop. In response to phytoplankton exudates and environmental factors, heterotrophic microbial communities are highly dynamic and change their abundance and composition both on spatial and temporal scales. Yet, most of our understanding about these processes comes from laboratory model organism studies, mesocosm experiments or single temporal transects. Spatial-temporal studies examining interactions of phytoplankton blooms and bacterioplankton community composition and function, though being highly informative, are scarce. In this study, pelagic microbial community dynamics (bacteria and phytoplankton) and environmental variables were monitored during a spring bloom across the Baltic Proper (two cruises between North Germany to Gulf of Finland). To test to what extent bacterioplankton community composition relates to the spring bloom, we used next generation amplicon sequencing of the 16S rRNA gene, phytoplankton diversity analysis based on microscopy counts and population genotyping of the dominating diatom Skeletonema marinoi. Several phytoplankton bloom related and environmental variables were identified to influence bacterial community composition. Members of Bacteroidetes and Alphaproteobacteria dominated the bacterial community composition but the bacterial groups showed no apparent correlation with direct bloom related variables. The less abundant bacterial phyla Actinobacteria, Planctomycetes, and Verrucomicrobia, on the other hand, were strongly associated with phytoplankton biomass, diatom:dinoflagellate ratio, and colored dissolved organic matter (cDOM). Many bacterial operational taxonomic units (OTUs) showed high niche specificities. For example, particular Bacteroidetes OTUs were associated with two distinct genetic clusters of S. marinoi. Our study revealed the complexity of interactions of bacterial taxa with inter- and intraspecific genetic variation in phytoplankton. Overall, our findings imply that biotic and abiotic factors during spring bloom influence bacterial community dynamics in a hierarchical manner. PMID:27148206
Differential response of coral communities to Caulerpa spp. bloom in the reefs of Indian Ocean.
Manikandan, B; Ravindran, J
2017-02-01
Coral reef ecosystems are disturbed in tandem by climatic and anthropogenic stressors. A number of factors act synergistically to reduce the live coral cover and threaten the existence of reefs. Continuous monitoring of the coral communities during 2012-2014 captured an unprecedented growth of macroalgae as a bloom at Gulf of Mannar (GoM) and Palk Bay (PB) which are protected and unprotected reefs, respectively. The two reefs varying in their protection level enabled to conduct an assessment on the response of coral communities and their recovery potential during and after the macroalgal bloom. Surveys in 2012 revealed a live coral cover of 36.8 and 14.6% in GoM and PB, respectively. Live coral cover was lost at an annual rate of 4% in PB due to the Caulerpa racemosa blooms that occurred in 2013 and 2014. In GoM, the loss of live coral cover was estimated to be 16.5% due to C. taxifolia bloom in 2013. Tissue regeneration by the foliose and branching coral morphotypes aided the recovery of live coral cover in GoM, whereas the chances for the recovery of live coral cover in PB reef were low, primarily due to frequent algal blooms, and the existing live coral cover was mainly due to the abundance of slow-growing massive corals. In combination, results of this study suggested that the recovery of a coral reef after a macroalgal bloom largely depends on coral species composition and the frequency of stress events. A further study linking macroalgal bloom to its specific cause is essential for the successful intervention and management.
NASA Astrophysics Data System (ADS)
Ajani, Penelope; Larsson, Michaela E.; Rubio, Ana; Bush, Stephen; Brett, Steve; Farrell, Hazel
2016-12-01
Dinoflagellates belonging to the toxigenic genus Dinophysis are increasing in abundance in the Hawkesbury River, south-eastern Australia. This study investigates a twelve year time series of abundance and physico-chemical data to model these blooms. Four species were reported over the sampling campaign - Dinophysis acuminata, Dinophysis caudata, Dinophysis fortii and Dinophysis tripos-with D. acuminata and D. caudata being most abundant. Highest abundance of D. acuminata occurred in the austral spring (max. abundance 4500 cells l-1), whilst highest D. caudata occurred in the summer to autumn (max. 12,000 cells l-1). Generalised additive models revealed abundance of D. acuminata was significantly linked to season, thermal stratification and nutrients, whilst D. caudata was associated with nutrients, salinity and dissolved oxygen. The models' predictive capability was up to 60% for D. acuminata and 53% for D. caudata. Altering sampling strategies during blooms accompanied with in situ high resolution monitoring will further improve Dinophysis bloom prediction capability.
Castilla, Eva Pintado; Cunha, Davi Gasparini Fernandes; Lee, Fred Wang Fat; Loiselle, Steven; Ho, Kin Chung; Hall, Charlotte
2015-11-01
Freshwater ecosystems are severely threatened by urban development and agricultural intensification. Increased occurrence of algal blooms is a main issue, and the identification of local dynamics and drivers is hampered by a lack of field data. In this study, data from 13 cities (250 water bodies) were used to examine the capacity of trained community members to assess elevated phytoplankton densities in urban and peri-urban freshwater ecosystems. Coincident nutrient concentrations and land use observations were used to examine possible drivers of algal blooms. Measurements made by participants showed a good relationship to standard laboratory measurements of phytoplankton density, in particular in pond and lake ecosystems. Links between high phytoplankton density and nutrients (mainly phosphate) were observed. Microscale observations of pollution sources and catchment scale estimates of land cover both influenced the occurrence of algal blooms. The acquisition of environmental data by committed and trained community members represents a major opportunity to support agency monitoring programmes and to complement field campaigns in the study of catchment dynamics.
Xing, Qian-Guo; Zheng, Xiang-Yang; Shi, Ping; Hao, Jia-Jia; Yu, Ding-Feng; Liang, Shou-Zhen; Liu, Dong-Yan; Zhang, Yuan-Zhi
2011-06-01
Landsat-TM (Theme Mapper) and EOS (Earth Observing System)-MODIS (MODerate resolution Imaging Spectrora-diometer) Terra/Aqua images were used to monitor the macro-algae (Ulva prolifera) bloom since 2007 at the Yellow Sea and the East China Sea. At the turbid waters of Northern Jiangsu Shoal, there is strong spectral mixing behavior, and satellite images with finer spatical resolution are more effective in detection of macro-algae patches. Macro-algae patches were detected by the Landsat images for the first time at the Sheyang estuary where is dominated by very turbid waters. The MODIS images showed that the macro-algae from the turbid waters near the Northern Jiangsu Shoal drifted southwardly in the early of May and affected the East China Sea waters; with the strengthening east-asian Summer Monsoon, macro-algae patches mainly drifted in a northward path which was mostly observed at the Yellow Sea. Macro-algae patches were also found to drift eastwardly towards the Korea Peninsular, which are supposed to be driven by the sea surface wind.
Miller, Melissa A.; Kudela, Raphael M.; Mekebri, Abdu; Crane, Dave; Oates, Stori C.; Tinker, M. Timothy; Staedler, Michelle; Miller, Woutrina A.; Toy-Choutka, Sharon; Dominik, Clare; Hardin, Dane; Langlois, Gregg; Murray, Michael; Ward, Kim; Jessup, David A.
2010-01-01
"Super-blooms" of cyanobacteria that produce potent and environmentally persistent biotoxins (microcystins) are an emerging global health issue in freshwater habitats. Monitoring of the marine environment for secondary impacts has been minimal, although microcystin-contaminated freshwater is known to be entering marine ecosystems. Here we confirm deaths of marine mammals from microcystin intoxication and provide evidence implicating land-sea flow with trophic transfer through marine invertebrates as the most likely route of exposure. This hypothesis was evaluated through environmental detection of potential freshwater and marine microcystin sources, sea otter necropsy with biochemical analysis of tissues and evaluation of bioaccumulation of freshwater microcystins by marine invertebrates. Ocean discharge of freshwater microcystins was confirmed for three nutrient-impaired rivers flowing into the Monterey Bay National Marine Sanctuary, and microcystin concentrations up to 2,900 ppm (2.9 million ppb) were detected in a freshwater lake and downstream tributaries to within 1 km of the ocean. Deaths of 21 southern sea otters, a federally listed threatened species, were linked to microcystin intoxication. Finally, farmed and free-living marine clams, mussels and oysters of species that are often consumed by sea otters and humans exhibited significant biomagnification (to 107 times ambient water levels) and slow depuration of freshwater cyanotoxins, suggesting a potentially serious environmental and public health threat that extends from the lowest trophic levels of nutrient-impaired freshwater habitat to apex marine predators. Microcystin-poisoned sea otters were commonly recovered near river mouths and harbors and contaminated marine bivalves were implicated as the most likely source of this potent hepatotoxin for wild otters. This is the first report of deaths of marine mammals due to cyanotoxins and confirms the existence of a novel class of marine "harmful algal bloom" in the Pacific coastal environment; that of hepatotoxic shellfish poisoning (HSP), suggesting that animals and humans are at risk from microcystin poisoning when consuming shellfish harvested at the land-sea interface.
How many Coccolithovirus genotypes does it take to terminate an Emiliania huxleyi bloom?
Highfield, Andrea; Evans, Claire; Walne, Anthony; Miller, Peter I; Schroeder, Declan C
2014-10-01
Giant viruses are known to be significant mortality agents of phytoplankton, often being implicated in the terminations of large Emiliania huxleyi blooms. We have previously shown the high temporal variability of E. huxleyi-infecting coccolithoviruses (EhVs) within a Norwegian fjord mesocosm. In the current study we investigated EhV dynamics within a naturally-occurring E. huxleyi bloom in the Western English Channel. Using denaturing gradient gel electrophoresis and marker gene sequencing, we uncovered a spatially highly dynamic Coccolithovirus population that was associated with a genetically stable E. huxleyi population as revealed by the major capsid protein gene (mcp) and coccolith morphology motif (CMM), respectively. Coccolithoviruses within the bloom were found to be variable with depth and unique virus populations were detected at different stations sampled indicating a complex network of EhV-host infections. This ultimately will have significant implications to the internal structure and longevity of ecologically important E. huxleyi blooms. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
The impacts of a massive harmful algal bloom along the US west coast in 2015
NASA Astrophysics Data System (ADS)
Kudela, R. M.; Trainer, V. L.; McCabe, R. M.; Hickey, B. M.; Negrey, K.
2016-02-01
In 2015, a massive bloom of the marine diatom Pseudo-nitzschia, stretching from southern California to southern Alaska, resulted in significant impacts to coastal resources and marine life. This bloom was first detected in early May 2015, when Washington closed its scheduled razor clam digs on coastal beaches. It is the largest and longest-lasting bloom in at least the past 15 years, and concentrations of domoic acid in seawater, some forage fish, and crab samples have been among the highest ever reported for this region. By mid-May, domoic acid concentrations in Monterey Bay, California were 10 to 30 times the level that would be considered high for a normal Pseudo-nitzschia bloom. Impacts to coastal communities and marine life include shellfish and Dungeness crab closures in multiple states, impacting commercial, recreational and subsistence harvesters, anchovy and sardine fishery health advisories in some areas of California, and sea lion strandings in California and Washington. Other marine mammal and bird mortalities have been reported in multiple states, and domoic acid poisoning is a suspected cause. In addition to the spatial extent and toxicity, the bloom has also lasted for many months (ongoing as of September 2015). While the exact causes of the bloom's severity and early onset are not yet known, unusually warm surface water in the Pacific Ocean may be a contributing factor. Here we present an overview of the bloom dynamics and impacts, and preliminary analysis about the bloom initiation and relationship to unusual ocean conditions in 2014-2015.
Monitoring of ocean surface algal blooms in coastal and oceanic waters around India.
Tholkapiyan, Muniyandi; Shanmugam, Palanisamy; Suresh, T
2014-07-01
The National Aeronautics and Space Administration's (NASA) sensor MODIS-Aqua provides an important tool for reliable observations of the changing ocean surface algal bloom paradigms in coastal and oceanic waters around India. A time series of the MODIS-Aqua-derived OSABI (ocean surface algal bloom index) and its seasonal composite images report new information and comprehensive pictures of these blooms and their evolution stages in a wide variety of events occurred at different times of the years from 2003 to 2011, providing the first large area survey of such phenomena around India. For most of the years, the results show a strong seasonal pattern of surface algal blooms elucidated by certain physical and meteorological conditions. The extent of these blooms reaches a maximum in winter (November-February) and a minimum in summer (June-September), especially in the northern Arabian Sea. Their spatial distribution and retention period are also significantly increased in the recent years. The increased spatial distribution and intensity of these blooms in the northern Arabian Sea in winter are likely caused by enhanced cooling, increased convective mixing, favorable winds, and atmospheric deposition of the mineral aerosols (from surrounding deserts) of the post-southwest monsoon period. The southward Oman coastal current and southwestward winds become apparently responsible for their extension up to the central Arabian Sea. Strong upwelling along this coast further triggers their initiation and growth. Though there is a warming condition associated with increased sea surface height anomalies along the coasts of India and Sri Lanka in winter, surface algal bloom patches are still persistent along these coasts due to northeast monsoonal winds, enhanced precipitation, and subsequent nutrient enrichment in these areas. The occurrence of the surface algal blooms in the northern Bay of Bengal coincides with a region of the well-known Ganges-Brahmaputra Estuarine Frontal (GBEF) system, which increases supply of nutrients in addition to the land-derived inputs triggering surface algal blooms in this region. Low density (initiation stage) of such blooms observed in clear oceanic waters southeast and northeast of Sri Lanka may be caused by the vertical mixing processes (strong monsoonal winds) and the occurrence of Indian Ocean Dipole events. Findings based on the analyses of time series satellite data indicate that the new information on surface algal blooms will have important bearing on regional fisheries, ecosystem and environmental studies, and implications of climate change scenarios.
Decadal-Scale Changes of Dinoflagellates and Diatoms in the Anomalous Baltic Sea Spring Bloom
Klais, Riina; Tamminen, Timo; Kremp, Anke; Spilling, Kristian; Olli, Kalle
2011-01-01
The algal spring bloom in the Baltic Sea represents an anomaly from the winter-spring bloom patterns worldwide in terms of frequent and recurring dominance of dinoflagellates over diatoms. Analysis of approximately 3500 spring bloom samples from the Baltic Sea monitoring programs revealed (i) that within the major basins the proportion of dinoflagellates varied from 0.1 (Kattegat) to >0.8 (central Baltic Proper), and (ii) substantial shifts (e.g. from 0.2 to 0.6 in the Gulf of Finland) in the dinoflagellate proportion over four decades. During a recent decade (1995–2004) the proportion of dinoflagellates increased relative to diatoms mostly in the northernmost basins (Gulf of Bothnia, from 0.1 to 0.4) and in the Gulf of Finland, (0.4 to 0.6) which are typically ice-covered areas. We hypothesize that in coastal areas a specific sequence of seasonal events, involving wintertime mixing and resuspension of benthic cysts, followed by proliferation in stratified thin layers under melting ice, favors successful seeding and accumulation of dense dinoflagellate populations over diatoms. This head-start of dinoflagellates by the onset of the spring bloom is decisive for successful competition with the faster growing diatoms. Massive cyst formation and spreading of cyst beds fuel the expanding and ever larger dinoflagellate blooms in the relatively shallow coastal waters. Shifts in the dominant spring bloom algal groups can have significant effects on major elemental fluxes and functioning of the Baltic Sea ecosystem, but also in the vast shelves and estuaries at high latitudes, where ice-associated cold-water dinoflagellates successfully compete with diatoms. PMID:21747911
Decadal-scale changes of dinoflagellates and diatoms in the anomalous baltic sea spring bloom.
Klais, Riina; Tamminen, Timo; Kremp, Anke; Spilling, Kristian; Olli, Kalle
2011-01-01
The algal spring bloom in the Baltic Sea represents an anomaly from the winter-spring bloom patterns worldwide in terms of frequent and recurring dominance of dinoflagellates over diatoms. Analysis of approximately 3500 spring bloom samples from the Baltic Sea monitoring programs revealed (i) that within the major basins the proportion of dinoflagellates varied from 0.1 (Kattegat) to >0.8 (central Baltic Proper), and (ii) substantial shifts (e.g. from 0.2 to 0.6 in the Gulf of Finland) in the dinoflagellate proportion over four decades. During a recent decade (1995-2004) the proportion of dinoflagellates increased relative to diatoms mostly in the northernmost basins (Gulf of Bothnia, from 0.1 to 0.4) and in the Gulf of Finland, (0.4 to 0.6) which are typically ice-covered areas. We hypothesize that in coastal areas a specific sequence of seasonal events, involving wintertime mixing and resuspension of benthic cysts, followed by proliferation in stratified thin layers under melting ice, favors successful seeding and accumulation of dense dinoflagellate populations over diatoms. This head-start of dinoflagellates by the onset of the spring bloom is decisive for successful competition with the faster growing diatoms. Massive cyst formation and spreading of cyst beds fuel the expanding and ever larger dinoflagellate blooms in the relatively shallow coastal waters. Shifts in the dominant spring bloom algal groups can have significant effects on major elemental fluxes and functioning of the Baltic Sea ecosystem, but also in the vast shelves and estuaries at high latitudes, where ice-associated cold-water dinoflagellates successfully compete with diatoms.
NASA Technical Reports Server (NTRS)
Fischer, Andrew; Moreno-Mardinan, Max; Ryan, John P.
2012-01-01
Recent advances in satellite and airborne remote sensing, such as improvements in sensor and algorithm calibrations, processing techniques and atmospheric correction procedures have provided for increased coverage of remote-sensing, ocean-color products for coastal regions. In particular, for the Moderate Resolution Imaging Spectrometer (MODIS) sensor calibration updates, improved aerosol retrievals and new aerosol models has led to improved atmospheric correction algorithms for turbid waters and have improved the retrieval of ocean color in coastal waters. This has opened the way for studying ocean phenomena and processes at finer spatial scales, such as the interactions at the land-sea interface, trends in coastal water quality and algal blooms. Human population growth and changes in coastal management practices have brought about significant changes in the concentrations of organic and inorganic, particulate and dissolved substances entering the coastal ocean. There is increasing concern that these inputs have led to declines in water quality and have increase local concentrations of phytoplankton, which cause harmful algal blooms. In two case studies we present MODIS observations of fluorescence line height (FLH) to 1) assess trends in water quality for Tampa Bay, Florida and 2) illustrate seasonal and annual variability of algal bloom activity in Monterey Bay, California as well as document estuarine/riverine plume induced red tide events. In a comprehensive analysis of long term (2003-2011) in situ monitoring data and satellite imagery from Tampa Bay we assess the validity of the MODIS FLH product against chlorophyll-a and a suite of water quality parameters taken in a variety of conditions throughout a large optically complex estuarine system. A systematic analysis of sampling sites throughout the bay is undertaken to understand how the relationship between FLH and in situ chlorophyll-a responds to varying conditions and to develop a near decadal trend in water quality changes. In situ monitoring locations that correlated well with satellite imagery were in depths greater than seven meters and were located over five kilometers from shore. Water quality parameter of total nitrogen, phosphorous, turbidity and biological oxygen demand had high correlations with these sites, as well. Satellite FLH estimates show improving water quality from 2003-2007 with a slight decline up through 2011. Dinoflagellate blooms in Monterey Bay, California (USA) have recently increased in frequency and intensity. Nine years of MODIS FLH observations are used to describe the annual and seasonal variability of bloom activity within the Bay. Three classes of MODIS algorithms were correlated against in situ chlorophyll measurements. The FLH algorithm provided the most robust estimate of bloom activity. Elevated concentrations of phytoplankton were evident during the months of August-November, a period during which increased occurrences of dinoflagellate blooms have been observed in situ. Seasonal patterns of FLH show the on- and offshore movement of areas of high phytoplankton biomass between oceanographic seasons. Higher concentrations of phytoplankton are also evident in the vicinity of the land-based nutrient sources and outflows, and the cyclonic bay-wide circulation can transport these nutrients to the northern Bay bloom incubation region. Both of these case studies illustrate the utility MODIS FLH observations in supporting management decisions in coastal and estuarine waters.
Kumar, S.; Spaulding, S.A.; Stohlgren, T.J.; Hermann, K.A.; Schmidt, T.S.; Bahls, L.L.
2009-01-01
The diatom Didymosphenia geminata is a single-celled alga found in lakes, streams, and rivers. Nuisance blooms of D geminata affect the diversity, abundance, and productivity of other aquatic organisms. Because D geminata can be transported by humans on waders and other gear, accurate spatial prediction of habitat suitability is urgently needed for early detection and rapid response, as well as for evaluation of monitoring and control programs. We compared four modeling methods to predict D geminata's habitat distribution; two methods use presence-absence data (logistic regression and classification and regression tree [CART]), and two involve presence data (maximum entropy model [Maxent] and genetic algorithm for rule-set production [GARP]). Using these methods, we evaluated spatially explicit, bioclimatic and environmental variables as predictors of diatom distribution. The Maxent model provided the most accurate predictions, followed by logistic regression, CART, and GARP. The most suitable habitats were predicted to occur in the western US, in relatively cool sites, and at high elevations with a high base-flow index. The results provide insights into the factors that affect the distribution of D geminata and a spatial basis for the prediction of nuisance blooms. ?? The Ecological Society of America.
Le Jeune, Anne-Hélène; Colombet, Jonathan; Thouvenot, Antoine; Latour, Delphine
2017-01-01
ABSTRACT Monitoring of water and surface sediment in a French eutrophic lake (Lake Aydat) was carried out over a 2-year period in order to determine whether akinetes in sediment could be representative of the most recent bloom and to estimate their germination potential. Sediment analysis revealed two akinete species, Dolichospermum macrosporum and Dolichospermum flos-aquae, present in the same proportions as observed for the pelagic populations. Moreover, similar spatial patterns observed for vegetative cells in the water column and akinete distributions in the sediment suggest that akinetes in the sediment may be representative of the previous bloom. However, the relationship between akinetes in the sediment and vegetative cells in the water column was not linear, and other factors may interfere. For example, our results highlighted horizontal transport of akinetes during the winter. The benthic overwinter phase did not seem to influence the percentages of intact akinetes, which remained stable at approximately 7% and 60% for D. macrosporum and D. flos-aquae, respectively. These percentages may thus be the result of processes that occurred in the water column. The intact overwintering akinetes showed germination rates of up to 90% after 72 h for D. flos-aquae or 144 h for D. macrosporum. The difference in akinete germination rates between these two species demonstrates different ecological strategies, which serve to expand the window for germination in time and space and thus optimize colonization of the water column by nostocalean cyanobacteria. IMPORTANCE Cyanobacteria have the ability to proliferate and to form blooms. These blooms can then affect the local ecology, health, and economy. The akinete, a resistant cell type that persists in sediment, is an important intermediate phase between previous and future blooms. We monitored the water column and the surface sediment of a French eutrophic lake (Lake Aydat) to investigate the relationship between vegetative cells in the water column and akinetes in the sediment. This study focused on the characterization of spatiotemporal akinete distributions, cellular integrity, and germination potential. Species-specific ecological strategies were highlighted and may partly explain the temporal succession of species in the water column. Akinetes may also be used to understand past nostocalean blooms and to predict future ones. PMID:28970224
NASA Technical Reports Server (NTRS)
Signorini, Sergio R.; Garcia, Virginia M.T.; Piola, Alberto R.; Evangelista, Heitor; McClain, Charles R.; Garcia, Carlos A.E.; Mata, Mauricio M.
2009-01-01
A very strong and persistent phytoplankton bloom was observed by ocean color satellites during September - December 2003 along the northern Patagonian shelf. The 2003 bloom had the highest extent and chlorophyll a (Chl-a) concentrations of the entire Sea-viewing Wide Field-of-view Sensor (SeaWiFS) period (1997 to present). SeaWiFS-derived Chl-a exceeded 20 mg/cu m in November at the bloom center. The bloom was most extensive in December when it spanned more than 300 km across the shelf and nearly 900 km north-south (35degS to 43degS). The northward reach and the deep penetration on the shelf of the 2003 bloom were quite anomalous when compared with other years, which showed the bloom more confined to the Patagonian shelf break (PSB). The PSB bloom is a conspicuous austral spring-summer feature detected by ocean color satellites and its timing can be explained using the Sverdrup critical depth theory. Based on high-resolution numerical simulations, in situ and remote sensing data, we provide some suggestions for the probable mechanisms responsible for that large interannual change of biomass as seen by ocean color satellites. Potential sources of macro and micro (e.g., Fe) nutrients that sustain the high phytoplankton productivity of the Patagonian shelf waters are identified, and the most likely physical processes that maintain the nutrient balance in the region are discussed.
Jiang, Jinlin; Wang, Xiaorong; Shan, Zhengjun; Yang, Liuyan; Zhou, Junying; Bu, Yuanqin
2014-01-01
With the rapid development of industry and agriculture and associated pollution, the cyanobacterial blooms in Lake Taihu have become a major threat to aquatic wildlife and human health. In this study, the ecotoxicological effects of cyanobacterial blooms on cage-cultured carp (Cyprinus carpio L.) in Meiliang Bay of Lake Taihu were investigated. Microcystins (MCs), major cyanobacterial toxins, have been detected in carp cultured at different experimental sites of Meiliang Bay. We observed that the accumulation of MCs in carp was closely associated with several environmental factors, including temperature, pH value, and density of cyanobacterial blooms. The proteomic profile of carp liver exposed to cyanobacterial blooms was analyzed using two-dimensional difference in-gel electrophoresis (2D-DIGE) and mass spectrometry. The toxic effects of cyanobacterial blooms on carp liver were similar to changes caused by MCs. MCs were transported into liver cells and induced the excessive production of reactive oxygen species (ROS). MCs and ROS inhibited protein phosphatase and aldehyde dehydrogenase (ALDH), directly or indirectly resulting in oxidative stress and disruption of the cytoskeleton. These effects further interfered with metabolic pathways in the liver through the regulation of series of related proteins. The results of this study indicated that cyanobacterial blooms pose a major threat to aquatic wildlife in Meiliang Bay in Lake Taihu. These results provided evidence of the molecular mechanisms underlying liver damage in carp exposed to cyanobacterial blooms. PMID:24558380
McNamee, Sara E; Medlin, Linda K; Kegel, Jessica; McCoy, Gary R; Raine, Robin; Barra, Lucia; Ruggiero, Maria Valeria; Kooistra, Wiebe H C F; Montresor, Marina; Hagstrom, Johannes; Blanco, Eva Perez; Graneli, Edna; Rodríguez, Francisco; Escalera, Laura; Reguera, Beatriz; Dittami, Simon; Edvardsen, Bente; Taylor, Joe; Lewis, Jane M; Pazos, Yolanda; Elliott, Christopher T; Campbell, Katrina
2016-05-01
Harmful algal blooms (HABs) are a natural global phenomena emerging in severity and extent. Incidents have many economic, ecological and human health impacts. Monitoring and providing early warning of toxic HABs are critical for protecting public health. Current monitoring programmes include measuring the number of toxic phytoplankton cells in the water and biotoxin levels in shellfish tissue. As these efforts are demanding and labour intensive, methods which improve the efficiency are essential. This study compares the utilisation of a multitoxin surface plasmon resonance (multitoxin SPR) biosensor with enzyme-linked immunosorbent assay (ELISA) and analytical methods such as high performance liquid chromatography with fluorescence detection (HPLC-FLD) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) for toxic HAB monitoring efforts in Europe. Seawater samples (n=256) from European waters, collected 2009-2011, were analysed for biotoxins: saxitoxin and analogues, okadaic acid and dinophysistoxins 1/2 (DTX1/DTX2) and domoic acid responsible for paralytic shellfish poisoning (PSP), diarrheic shellfish poisoning (DSP) and amnesic shellfish poisoning (ASP), respectively. Biotoxins were detected mainly in samples from Spain and Ireland. France and Norway appeared to have the lowest number of toxic samples. Both the multitoxin SPR biosensor and the RNA microarray were more sensitive at detecting toxic HABs than standard light microscopy phytoplankton monitoring. Correlations between each of the detection methods were performed with the overall agreement, based on statistical 2×2 comparison tables, between each testing platform ranging between 32% and 74% for all three toxin families illustrating that one individual testing method may not be an ideal solution. An efficient early warning monitoring system for the detection of toxic HABs could therefore be achieved by combining both the multitoxin SPR biosensor and RNA microarray. Copyright © 2016 Elsevier B.V. All rights reserved.
Utilization of ERTS-1 data in North Carolina
NASA Technical Reports Server (NTRS)
Welby, C. W. (Principal Investigator); Lammi, J. O.; Carson, R. J., III
1973-01-01
The author has identified the following significant results. A wide range of potential uses for ERTS-1 imagery is described. Special emphasis has been placed upon studies in the Coastal Plain of North Carolina. Soil groups, water quality, and suspended sediment patterns in estuaries and offshore have been studied. A phytoplankton bloom has possibly been detected. The usefulness of the imagery in coastal landform surveys has been demonstrated as has its usefulness in monitoring developmental activity in the forests. Planners appear hesitant to use the imagery because of its small scale, but it is felt that as they become familiar with the imagery they will find it useful and time-saving for many purposes.
NASA Astrophysics Data System (ADS)
Wei, Guifeng; Tang, Danling; Wang, Sufen
Monitoring of spatial and temporal distribution of chlorophyll (Chl-a) concentrations in the aquatic milieu is always challenging and often interesting. However, the recent advancements in satellite digital data play a significant role in providing outstanding results for the marine environmental investigations. The present paper is aimed to review ‘remote sensing research in Chinese seas’ within the period of 24 years from 1978 to 2002. Owing to generalized distributional pattern, the Chl-a concentrations are recognized high towards northern Chinese seas than the southern. Moreover, the coastal waters, estuaries, and upwelling zones always exhibit relatively high Chl-a concentrations compared with offshore waters. On the basis of marine Chl-a estimates obtained from satellite and other field measured environmental parameters, we have further discussed on the applications of satellite remote sensing in the fields of harmful algal blooms (HABs), primary production and physical oceanographic currents of the regional seas. Concerned with studies of HABs, satellite remote sensing proved more advantageous than any other conventional methods for large-scale applications. Probably, it may be the only source of authentic information responsible for the evaluation of new research methodologies to detect HABs. At present, studies using remote sensing methods are mostly confined to observe algal bloom occurrences, hence, it is essential to coordinate the mechanism of marine ecological and oceanographic dynamic processes of HABs using satellite remote sensing data with in situ measurements of marine environmental parameters. The satellite remote sensing on marine environment and HABs is believed to have a great improvement with popular application of technology.
Manganelli, Maura; Stefanelli, Mara; Vichi, Susanna; Andreani, Paolo; Nascetti, Giuseppe; Scialanca, Fabrizio; Scardala, Simona; Testai, Emanuela; Funari, Enzo
2016-06-01
Vico Lake, a volcanic meso-eutrophic lake in Central Italy, whose water is used for drinking and recreational activities, experienced the presence of the microcystins (MC) producing cyanobacterium Planktothrix rubescens. In order to assess the human health risks and to provide the local health authorities with a scientific basis for planning tailored monitoring activities, we studied P. rubescens ecology and toxicity for two years. P. rubescens generally dominated the phytoplankton community, alternating with Limnothrix redekei, potentially toxic. P. rubescens was distributed throughout the water column during winter; in summer it produced intense blooms where drinking water is collected (-20 m); here MC were detected all year round (0.5-5 μg/L), with implications for drinking water quality. In surface waters, MC posed no risk for recreational activities in summer, while in winter surface blooms and foams (containing up to 56 μg MC/L) can represent a risk for people and children practicing water sports and for animals consuming raw water. Total phosphorus, phosphate and inorganic nitrogen were not relevant to predict densities nor toxicity; however, a strong correlation between P. rubescens density and aminopeptidase ectoenzymatic activity, an enzyme involved in protein degradation, suggested a role of organic nitrogen for this species. The fraction of potentially toxic population, determined both as mcyB(+)/16SrDNA (10-100%) and as the MC/mcyB(+) cells (0.03-0.79 pg MC/cell), was much more variable than usually observed for P. rubescens. Differently from other Italian and European lakes, the correlation between cell density or the mcyB(+) cells and MC explained only ∼50 and 30% of MC variability, respectively: for Vico Lake, monitoring only cell or the mcyB(+) cell density is not sufficient to predict MC concentrations, and consequently to protect population health. Finally, during a winter bloom one site has been sampled weekly, showing that monthly sampling during such a phase could greatly underestimate the 'hazard'. Our results highlight the need to adopt a stepwise monitoring activity, considering the lake and the cyanobacteria specific features. This activity should be complemented with communication to the public and involvement of stakeholders. Copyright © 2016 Elsevier Ltd. All rights reserved.
Chain response of microbial loop to the decay of a diatom bloom in the East China Sea
NASA Astrophysics Data System (ADS)
Wu, Linnan; Lin, Shiquan; Huang, Lingfeng; Lu, Jiachang; Chen, Wenzhao; Guo, Weidong; Zhang, Wuchang; Xiao, Tian; Sun, Jun
2016-02-01
Algal bloom has been regarded as one of the key causes for the summer hypoxia phenomena in the bottom water adjacent to the Yangtze River estuary in the East China Sea. Although a series of biological processes within microbial loop are involved in the development of oxygen depletion during the bloom decay, little has been known about the dynamics of microorganisms in response to the decaying process of the bloom through trophic interaction context. Here, we report some preliminary results of our observations about the response of microbial loop to the bloom decay, based on the onboard incubation experiments for 10 days during a diatom bloom near the Yangtze River estuary in August, 2011. Light and dark incubations were conducted to simulate the bloom decay inside and below the euphotic layer, respectively. In the first stage of bloom decay (Day 0 to Day 4), rapid response was found in heterotrophic bacteria (HB) and ciliate growth, which was in accordance with the decrease of total Chl a, indicating a "bottom-up" control at the early stage of bloom decay. However, the increase of heterotrophic nanoflagellates (HNF) abundance was rather inconspicuous, suggesting predation pressure on HNF from ciliate or other predator at this stage. In the second stage (Day 4 to Day 8), HB and ciliate decreased rapidly with the increase of HNF, revealing the release of HNF form ciliate predation, which suggested a "top-down" control. In the last stage of our experiment (Day 8 to Day 10), the trophic interactions were more complex, but it also implied a "top-down" control within the microbial loop. Meanwhile, virus had been monitored in the whole process of our incubations. It was found that virus lysed microalgae at the first stage, and lysed HB at the second stage. In addition, the bacterial mortality was principally caused by HNF grazing in the light-sufficient incubations and by viral lysis in the light-insufficient incubations. Our results suggest tight trophic interactions within the microbial loop in the decaying process of the algal bloom, which may assist our understanding of the role of microbial loop in hypoxia formation in coastal waters.
The profound effect of harmful cyanobacterial blooms: From food-web and management perspectives.
Šulčius, Sigitas; Montvydienė, Danguolė; Mazur-Marzec, Hanna; Kasperovičienė, Jūratė; Rulevičius, Rokas; Cibulskaitė, Živilė
2017-12-31
Sustainable and effective water management plans must have a reliable risk assessment strategies for harmful cyanobacterial blooms (HABs) that would enable timely decisions to be made, thus avoiding the trespassing of ecological thresholds, leading to the collapse of ecosystem structure and function. Such strategies are usually based on cyanobacterial biomass and/or on the monitoring of known toxins, which may, however, in many cases, under- or over-represent the actual toxicity of the HAB. Therefore, in this study, by the application of growth-inhibition assays using different bacteria, algae, zooplankton and fish species, we assessed the toxicological potential of two cyanobacterial blooms that differed in total cyanobacterial biomass, species composition and cyanopeptide profiles. We demonstrated that neither cyanobacterial community composition nor its relative abundance, nor indeed concentrations of known toxins reflected the potential risk of HAB based on growth-inhibition assays. We discuss our findings in the context of food-web dynamics and ecosystem management, and suggest that toxicological tests should constitute a key element in the routine monitoring of water bodies so as to prevent under-/over-estimation of potential HAB risk for both ecosystem and public health. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Monitoring Cyanobacteria with Satellites Webinar
real-world satellite applications can quantify cyanobacterial harmful algal blooms and related water quality parameters. Provisional satellite derived cyanobacteria data and different software tools are available to state environmental and health agencies.
2007-10-01
Blooms in the Mississippi Sound & Mobile Bay: Using MODIS Aqua & In Situ Data for HABs in the Northern Gulf of Mexico 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...shores. Phytoplankton populations and in situ water quality were monitored at 3 to 6 week intervals at 17 locations in Mobile Bay & the Mississippi...Sound beginning in July, 2005 & continuing thru June, 2006 along w/ concurrent MODIS Aqua weekly composite or same-day imagery. In situ or satellite
NASA Astrophysics Data System (ADS)
Greenfield, D.; Jones, W. J.; Mortensen, R.; Doll, C.; Reed, M.
2016-02-01
Molecular probe technologies have enabled more rapid and specific phytoplankton identification and enumeration compared to traditional technologies, such as microscopy. The method considered for this study is sandwich hybridization assay (SHA), a fast, efficient, and economic approach to detecting and quantifying plankton species. SHA employs two DNA probes, capture and signal, to detect ribosomal RNA (rRNA) sequences. The reaction entails an anti-digoxygenin horse-radish peroxidase (HRP) conjugate to which a HRP substrate is applied. The result is a colorimetric reaction, and the resultant absorbance can be used to estimate organism abundances. This project focuses on two raphidophyte HAB species that have been responsible for declining water quality and fish kills globally, but are particularly problematic in states along the southeastern (US) coast, Fibrocapsa japonica and Chattonella subsalsa. These species produce recurrent, dense blooms annually, and are directly linked with fish kills. Work presented here also includes the domoic acid (DA) producing diatom Pseudo-nitzschia pseudodelicatissima because DA has been associated with pigmy and dwarf sperm whale strandings in the southeastern US, and blooms of this genus are frequently reported in regional waters. Here we present findings from field samplings and multiple blooms (2014-2015) of all three species that occurred in South Carolina (US) and regional waters. We also provide updates on the development, validation, and quantification of SHA applications for each of these HAB species.
Microbial Community Response during the Iron Fertilization Experiment LOHAFEX
Thiele, Stefan; Ramaiah, Nagappa; Amann, Rudolf
2012-01-01
Iron fertilization experiments in high-nutrient, low-chlorophyll areas are known to induce phytoplankton blooms. However, little is known about the response of the microbial community upon iron fertilization. As part of the LOHAFEX experiment in the southern Atlantic Ocean, Bacteria and Archaea were monitored within and outside an induced bloom, dominated by Phaeocystis-like nanoplankton, during the 38 days of the experiment. The microbial production increased 1.6-fold (thymidine uptake) and 2.1-fold (leucine uptake), while total cell numbers increased only slightly over the course of the experiment. 454 tag pyrosequencing of partial 16S rRNA genes and catalyzed reporter deposition fluorescence in situ hybridization (CARD FISH) showed that the composition and abundance of the bacterial and archaeal community in the iron-fertilized water body were remarkably constant without development of typical bloom-related succession patterns. Members of groups usually found in phytoplankton blooms, such as Roseobacter and Gammaproteobacteria, showed no response or only a minor response to the bloom. However, sequence numbers and total cell numbers of the SAR11 and SAR86 clades increased slightly but significantly toward the end of the experiment. It seems that although microbial productivity was enhanced within the fertilized area, a succession-like response of the microbial community upon the algal bloom was averted by highly effective grazing. Only small-celled members like the SAR11 and SAR86 clades could possibly escape the grazing pressure, explaining a net increase of those clades in numbers. PMID:23064339
Bill Would Extend Efforts Against Harmful Algal Blooms and Hypoxia
NASA Astrophysics Data System (ADS)
Showstack, Randy
Legislation to deal with the problems of harmful algal blooms and hypoxia in U.S. waters needs to recognize the growing national scope and economic effects of these phenomena, improve monitoring capabilities, and target remedies for them. It should also emphasize research and management in the Great Lakes and other fresh water bodies, as well as in U.S. coastal waters. This, according to a panel of scientists who testified at a 13 March hearing of the Science Subcommittee on Environment, Technology, and Standards of the U.S. House of Representatives. Those testifying said the two phenomena are causing enormous, negative ecological and economic impacts. Donald Scavia, a senior scientist with National Ocean Service of the National Oceanic and Atmospheric Administration, said, ``Harmful algal blooms and hypoxia are now among the most pressing environmental issues facing coastal states.''
From MERIS To OLCI And Sentinel 2: Harmful Algal Bloom Applications & Modelling In South Africa
NASA Astrophysics Data System (ADS)
Robertson Lain, L.; Bernard, S.; Evers-King, H.; Matthews, M. W.; Smith, M.
2013-12-01
The Sentinel 2 and 3 missions offer new capabilities for Harmful Algal Bloom (HAB) observations in Southern Africa and further afield on the African continent where there is a great need for improved monitoring of water quality: both in freshwater resources where eutrophication is common, and in vulnerable coastal ecosystems. Two well validated algorithms - Equivalent Algal Populations (EAP) & Maximum Peak Height (MPH) - available for operational use on eutrophic waters are described. Spectral remote sensing reflectances (Rrs) and inherent optical properties (IOPs) are characterised via measurement and modelling of phytoplankton assemblages typical of high biomass algal blooms of the Southern Benguela and inland waters of South Africa. Sensitivity to phytoplankton functional types (PFTs) is investigated, with focus on optically significant biological characteristics e.g. particle size distribution and intracellular structure (including vacuoles).
Use of biosensors for the detection of marine toxins
McPartlin, Daniel A.; Lochhead, Michael J.; Connell, Laurie B.; Doucette, Gregory J.
2016-01-01
Increasing occurrences of harmful algal blooms (HABs) in the ocean are a major concern for countries around the globe, and with strong links between HABs and climate change and eutrophication, the occurrences are only set to increase. Of particular concern with regard to HABs is the presence of toxin-producing algae. Six major marine biotoxin groups are associated with HABs. Ingestion of such toxins via contaminated shellfish, fish, or other potential vectors, can lead to intoxication syndromes with moderate to severe symptoms, including death in extreme cases. There are also major economic implications associated with the diverse effects of marine biotoxins and HABs. Thus, effective monitoring programmes are required to manage and mitigate their detrimental global effect. However, currently legislated detection methods are labour-intensive, expensive and relatively slow. The growing field of biosensor diagnostic devices is an exciting area that has the potential to produce robust, easy-to-use, cost-effective, rapid and accurate detection methods for marine biotoxins and HABs. This review discusses recently developed biosensor assays that target marine biotoxins and their microbial producers, both in harvested fish/shellfish samples and in the open ocean. The effective deployment of such biosensor platforms could address the pressing need for improved monitoring of HABs and marine biotoxins, and could help to reduce their global economic impact. PMID:27365035
Kaya, Kunimitsu; Liu, Yong-Ding; Shen, Yin-Wu; Xiao, Bang-Ding; Sano, Tomoharu
2005-04-01
Three enclosures (10 x 10 x 1.5-1.3 m in depth) were set beside Dianch Lake, Kunming, People's Republic of China, for the period from July 28 to August 26, 2002. The enclosures were filled with cyanobacterial (Microcystis aeruginosa) water bloom-containing lake water. Lake sediment that contained macrophytes and water chestnut seeds was spread over the entire bottom of each enclosure. Initially, 10 g/m(2) of lysine was sprayed in Enclosure B, and 10 g/m(2) each of lysine and malonic acid were sprayed together in Enclosure C. Enclosure A remained untreated and was used as a control. The concentrations of lysine, malonic acid, chlorophyll a, and microcystin as well as the cell numbers of phytoplankton such as cyanobacteria, diatom, and euglena were monitored. On day 1 of the treatment, formation of cyanobacterial blooms almost ceased in Enclosures B and C, although Microcystis cells in the control still formed blooms. On day 7 Microcystis cells in Enclosure B that had been treated with lysine started growing again, whereas growth was not observed in Microcystis cells in Enclosure C, which had been treated with lysine and malonic acid. On day 28 the surface of Enclosure B was covered with water chestnut (Trapa spp.) and the Microcystis blooms again increased. In contrast, growth of macrophytes (Myriophllum spicatum and Potamogeton crispus) was observed in Enclosure C; however, no cyanobacterial blooms were observed. Lysine and malonic acid had completely decomposed. The microcystin concentration on day 28 decreased to 25% of the initial value, and the pH shifted from the initial value of 9.2 to 7.8. We concluded that combined treatment with lysine and malonic acid selectively controlled toxic Microcystis water blooms and induced the growth of macrophytes.
NASA Astrophysics Data System (ADS)
Wilson, C.; Villareal, T. A.; Anderson, E.
2015-12-01
Satellite ocean color data over the past decade has revealed the existence of large phytoplankton blooms in the North Pacific Ocean - specifically in the region NE of Hawai´I near 30°N. These blooms cover thousands of km2, persist for weeks or longer, and are often dominated by nitrogen-fixing diatom symbioses. These events have proven difficult to study outside of the time series station ALOHA at Hawai´i. The limited data indicates that the 30°N blooms are longer-lived, larger, and occur at a greater temperature range than the blooms that develop closer to Hawai´i. In the NE Pacific, at least some of these blooms occur at or near the subtropical front, a salinity-defined temperature compensated frontal zone that has a number of fronts imbedded in it. Here we will report on the results from the MAGI (Mesoscale features Aggregates Interaction) project. In this project, we deployed a Liquid Robotics SV2 Wave Glider® in June, 2015 for a multiple (up to 6) month mission to sample these features and assist in characterizing the bloom dynamics of this region. The Wave Gliders are the first unmanned autonomous marine robots to use only the ocean's wave energy for propulsion. The gliders are navigated remotely allowing a dynamic route through the keying of unique waypoints. Waypoints can be changed to sample features as they develop in the near-real time satellite imagery. The wave glider named Honey Badger is equipped with a CTD, two C3 fluorometers (one with an anti-biofouling coating applied), a Turner Designs PhytoFlash, meteorology and wave sensors, a downward facing camera, a Vengmar passive acoustic monitor, and a towed LISST-Holo.
NASA Astrophysics Data System (ADS)
Carreto, José I.; Carignan, Mario O.; Montoya, Nora G.; Cozzolino, Ezequiel; Akselman, Rut
2018-02-01
In Grande Bay (Southern Patagonian Shelf) in a eutrophic and recirculating area slightly stratified during spring, we observed an intense (up to 1 × 107 cells L- 1) and shallow, quasi mono-specific bloom of the dinoflagellate Prorocentrum minimum. Peridinin was the most abundant carotenoid, but the relative amounts of the xanthophyll cycle carotenoids (diadinoxanthin + diatoxanthin = DT) to light-harvesting pigments were high (DT/Chl a ratio = 0.32 and DT/peridinin ratio = 0.40). Shinorine, usujirene, palythene, mycosporine-serine-glycine methyl ester and palythenic acid were the primary mycosporine-like amino acids (MAAs), followed by mycosporine-glycine, palythine, and porphyra-334. The ΣMAAs/Chl a ratios (up to 27.9 nmol/nmol) were in the upper range reported either in nutrient-replete dinoflagellate cultures or natural populations. We monitored, from space (using satellite ocean colour data), the spatial and temporal bloom variability (from September 22 to October 31, 2005) using an approach to discriminate dinoflagellate from diatom blooms. The results indicated that an intense diatom bloom started in early spring but was rapidly replaced by an intense bloom of the dinoflagellate P. minimum, although the nutrient concentrations were apparently not limiting. The most notorious change in this period was a sharp increase in the levels of solar UVB radiation (UVB index 9.0) as a consequence of the overpass of the polar vortex over this area. We postulated that the synthesis and accumulation of MAAs and xanthophyll pigments, were competitive advantages for the opportunistic red tide dinoflagellate P. minimum over the sensitive diatoms, favouring the development of their surface blooms in this seasonally solar UVB radiation (UVBR) affected area.
Pagarete, António; Le Corguillé, Gildas; Tiwari, Bela; Ogata, Hiroyuki; de Vargas, Colomban; Wilson, William H; Allen, Michael J
2011-12-01
Lytic viruses have been implicated in the massive cellular lysis observed during algal blooms, through which they assume a prominent role in oceanic carbon and nutrient flows. Despite their impact on biogeochemical cycling, the transcriptional dynamics of these important oceanic events is still poorly understood. Here, we employ an oligonucleotide microarray to monitor host (Emiliania huxleyi) and virus (coccolithovirus) transcriptomic features during the course of E. huxleyi blooms induced in seawater-based mesocosm enclosures. Host bloom development and subsequent coccolithovirus infection was associated with a major shift in transcriptional profile. In addition to the expected metabolic requirements typically associated with viral infection (amino acid and nucleotide metabolism, as well as transcription- and replication-associated functions), the results strongly suggest that the manipulation of lipid metabolism plays a fundamental role during host-virus interaction. The results herein reveal the scale, so far massively underestimated, of the transcriptional domination that occurs during coccolithovirus infection in the natural environment. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lohmann, Gerrit; Wiltshire, Karen
2015-04-01
Analysing long-term diatom data from the German Bight and observational climate data for the period 1962-2005, we found a close connection of the inter-annual variation of the timing of the spring bloom with the boreal winter atmospheric circulation. We examined the fact that high diatom counts of the spring bloom tended to occur later when the atmospheric circulation was characterized by winter blocking over Scandinavia. The associated pattern in the sea level pressure showed a pressure dipole with two centres located over the Azores and Norway and was tilted compared to the North Atlantic Oscillation. The bloom was earlier when the cyclonic circulation over Scandinavia allowed an increased inflow of Atlantic water into the North Sea which is associated with clearer, more marine water, and warmer conditions. The bloom was later when a more continental atmospheric flow from the east was detected. At Helgoland Roads, it seems that under turbid water conditions (= low light) zooplankton grazing can affect the timing of the phytoplankton bloom negatively. Warmer water temperatures will facilitate this. Under clear water conditions, light will be the main governing factor with regard to the timing of the spring bloom. These different water conditions are shown here to be mainly related to large-scale weather patterns. We found that the mean diatom bloom could be predicted from the sea level pressure one to three months in advance. Using historical pressure data, we derived a proxy for the timing of the spring bloom over the last centuries, showing an increased number of late (proxy-) blooms during the eighteenth century when the climate was considerably colder than today. We argue that these variations are important for the interpretation of inter-annual to centennial variations of biological processes. This is of particular interest when considering future scenarios, as well to considerations on past and future effects on the primary production and food webs.
NASA Astrophysics Data System (ADS)
Kondrik, D.; Pozdnyakov, D.; Pettersson, L.
2017-12-01
Based on the method developed for the delineation of E. huxleyi blooms, a new technique is achieved for (1) the automated detection of E. huxleyi blooms among coexisting massive blooms of microalgae species of other phytoplankton groups and (2) quantifying the boom surface of this type of coccolithophores. As a result, according to the data of the Climate Change Initiative Ocean Colour (OC CCI) for 1998-2013, we have obtained multiyear time series of variability in both the incidence of E. huxleyi bloom and its area in the North, Norwegian, Greenland, Barents, and Bering seas. It is found that E. huxleyi blooms propagate within the intra-annual cycle from the studied middle-latitude marine areas towards the northern areas of the Northern Atlantic Ocean (NAO) and the Arctic Ocean (AO) following the pathways of the main Gulfstream and its branches. It is also found that E. huxleyi blooms are formed annually, initially in the vicinity of the British Islands; then they successively emerge in the northward direction following the western coast of the Great Britain, turn over its northern extremity to reach, firstly, the North Sea (in May), the Norwegian Sea, and finally the Greenland Sea (in June). Then they burst out in the Barents Sea, where the typical period of blooming lasts until late August and, in some years, even to mid-September. We determine the patterns of maximal rates and duration of blooms for each of the seas studied in the Atlantic and Arctic Oceans. As for the Bering Sea, the temporal and spatial variability in the growth of E. huxleyi has an irregular pattern: after a period of remarkably high expression of this phenomenon in 1998-2001, there was an abrupt decrease in both the number and, especially, extent of bloom areas.
NASA Astrophysics Data System (ADS)
Kim, Hansoo; Kang, Donhyug; Jung, Seung Won
2018-03-01
The overgrowth of phytoplankton leads to negative effects such as harmful algal blooms (HABs, also called red tides) in marine environments. The HAB species Cochlodinium polykrikoides ( C. polykrikoides) appears frequently in Korea during summer. In this study, we developed a real-time acoustic detection and remote-control system to detect red tides using an ultrasonic digital sensor. In the laboratory, the acoustic signals increased as the number of cells increased. At the same time, for field application, we deployed the system near the southern coast of Korea, where red tides frequently occurred in summer seasons 2013-2015. The system developed here detected red tides in situ, with a good correlation between the acoustic signals and C. polykrikoides populations. These results suggest that it may be useful for early detection of red tides.
NASA Astrophysics Data System (ADS)
Hauss, Helena; Franz, Jasmin M. S.; Sommer, Ulrich
2012-10-01
Inorganic dissolved macronutrient (nitrogen, N, and phosphorus, P) supply to surface waters in the eastern tropical South Pacific is influenced by expanding oxygen minimum zones, since N loss occurs due to microbial processes under anoxic conditions while P is increasingly released from the shelf sediments. To investigate the impact of decreasing N:P supply ratios in the Peruvian Upwelling, we conducted nutrient manipulation experiments using a shipboard mesocosm setup with a natural phytoplankton community. In a first experiment, either N or P or no nutrients were added with mesozooplankton present or absent. In a second experiment, initial nutrient concentrations were adjusted to four N:P ratios ranging from 2.5 to 16 using two "high N" and two "high P" levels in combination (i.e., + N, + P, + N and P, no addition). Over six and seven days, respectively, microalgal biomass development as well as nutrient uptake was monitored. Phytoplankton biomass strongly responded to N addition, in both mesozooplankton-grazed and not grazed treatments. The developing diatom bloom in the "high N" exceeded that in the "low N" treatments by a factor of two. No modulation of the total biomass by P-addition was observed, however, species-specific responses were more variable. Notably, some organisms were able to benefit from low N:P fertilization ratios, especially Heterosigma sp. and Phaeocystis globosa which are notorious for forming blooms that are toxic or inadequate for mesozooplankton nutrition. After the decline of the diatom bloom, the relative contribution of unsaturated fatty acid to the lipid content of seston was positively correlated to diatom biomass in the peak bloom, indicating that positive effects of diatom blooms on food quality of the protist community to higher trophic levels remain even after the phytoplankton biomass was incorporated by grazers. Our results indicate an overall N-limitation of the system, especially in the case of dominating diatoms, which were able to immediately utilize the available nitrate (within two days) and develop a biomass maximum within three days of incubation. After the decline of diatom biomass, detection of the cyanobacterial marker pigment aphanizophyll indicated the occurrence of diazotrophs, especially in those enclosures initially provided with high N supply. This was surprising, as diazotrophs are thought to play a role in compensating to some extent the N deficit above OMZs in the succession of phytoplankton after an upwelling event.
Source Water Quality Monitoring Networks
Harmful Algal Blooms (HABs) are increasingly impacting aquatic systems, reducing provided ecological services and requiring expensive engineered solutions. HABs, particularly those dominated by cyanobacteria (cyanoHABs) are a public health, ecologic, and economic concern. Charac...
Curriculum Development Based on the Big Picture Assessment of the Mechanical Engineering Program
ERIC Educational Resources Information Center
Sabri, Mohd Anas Mohd; Khamis, Nor Kamaliana; Tahir, Mohd Faizal Mat; Wahid, Zaliha; Kamal, Ahmad; Ihsan, Ariffin Mohd; Sulong, Abu Bakar; Abdullah, Shahrum
2013-01-01
One of the major concerns of the Engineering Accreditation Council (EAC) is the need for an effective monitoring and evaluation of program outcome domains that can be associated with courses taught under the Mechanical Engineering program. However, an effective monitoring method that can determine the results of each program outcome using Bloom's…
Aerosolized red-tide toxins (brevetoxins) and asthma.
Fleming, Lora E; Kirkpatrick, Barbara; Backer, Lorraine C; Bean, Judy A; Wanner, Adam; Reich, Andrew; Zaias, Julia; Cheng, Yung Sung; Pierce, Richard; Naar, Jerome; Abraham, William M; Baden, Daniel G
2007-01-01
With the increasing incidence of asthma, there is increasing concern over environmental exposures that may trigger asthma exacerbations. Blooms of the marine microalgae, Karenia brevis, cause red tides (or harmful algal blooms) annually throughout the Gulf of Mexico. K brevis produces highly potent natural polyether toxins, called brevetoxins, which are sodium channel blockers, and possibly histamine activators. In experimental animals, brevetoxins cause significant bronchoconstriction. In humans, a significant increase in self-reported respiratory symptoms has been described after recreational and occupational exposures to Florida red-tide aerosols, particularly among individuals with asthma. Before and after 1 h spent on beaches with and without an active K brevis red-tide exposure, 97 persons >or= 12 years of age with physician-diagnosed asthma were evaluated by questionnaire and spirometry. Concomitant environmental monitoring, water and air sampling, and personal monitoring for brevetoxins were performed. Participants were significantly more likely to report respiratory symptoms after K brevis red-tide aerosol exposure than before exposure. Participants demonstrated small, but statistically significant, decreases in FEV(1), midexpiratory phase of forced expiratory flow, and peak expiratory flow after exposure, particularly among those participants regularly using asthma medications. No significant differences were detected when there was no Florida red tide (ie, during nonexposure periods). This study demonstrated objectively measurable adverse changes in lung function from exposure to aerosolized Florida red-tide toxins in asthmatic subjects, particularly among those requiring regular therapy with asthma medications. Future studies will assess these susceptible subpopulations in more depth, as well as the possible long-term effects of these toxins.
Aerosolized Red-Tide Toxins (Brevetoxins) and Asthma
Fleming, Lora E.; Kirkpatrick, Barbara; Backer, Lorraine C.; Bean, Judy A.; Wanner, Adam; Reich, Andrew; Zaias, Julia; Cheng, Yung Sung; Pierce, Richard; Naar, Jerome; Abraham, William M.; Baden, Daniel G.
2009-01-01
Background With the increasing incidence of asthma, there is increasing concern over environmental exposures that may trigger asthma exacerbations. Blooms of the marine microalgae, Karenia brevis, cause red tides (or harmful algal blooms) annually throughout the Gulf of Mexico. K brevis produces highly potent natural polyether toxins, called brevetoxins, which are sodium channel blockers, and possibly histamine activators. In experimental animals, brevetoxins cause significant bronchoconstriction. In humans, a significant increase in self-reported respiratory symptoms has been described after recreational and occupational exposures to Florida red-tide aerosols, particularly among individuals with asthma. Methods Before and after 1 h spent on beaches with and without an active K brevis red-tide exposure, 97 persons ≥ 12 years of age with physician-diagnosed asthma were evaluated by questionnaire and spirometry. Concomitant environmental monitoring, water and air sampling, and personal monitoring for brevetoxins were performed. Results Participants were significantly more likely to report respiratory symptoms after K brevis red-tide aerosol exposure than before exposure. Participants demonstrated small, but statistically significant, decreases in FEV1, midexpiratory phase of forced expiratory flow, and peak expiratory flow after exposure, particularly among those participants regularly using asthma medications. No significant differences were detected when there was no Florida red tide (ie, during nonexposure periods). Conclusions This study demonstrated objectively measurable adverse changes in lung function from exposure to aerosolized Florida red-tide toxins in asthmatic subjects, particularly among those requiring regular therapy with asthma medications. Future studies will assess these susceptible subpopulations in more depth, as well as the possible long-term effects of these toxins. PMID:17218574
Smith, Kirsty F; de Salas, Miguel; Adamson, Janet; Rhodes, Lesley L
2014-03-07
The identification of toxin-producing dinoflagellates for monitoring programmes and bio-compound discovery requires considerable taxonomic expertise. It can also be difficult to morphologically differentiate toxic and non-toxic species or strains. Various molecular methods have been used for dinoflagellate identification and detection, and this study describes the development of eight real-time polymerase chain reaction (PCR) assays targeting the large subunit ribosomal RNA (LSU rRNA) gene of species from the genera Gymnodinium, Karenia, Karlodinium, and Takayama. Assays proved to be highly specific and sensitive, and the assay for G. catenatum was further developed for quantification in response to a bloom in Manukau Harbour, New Zealand. The assay estimated cell densities from environmental samples as low as 0.07 cells per PCR reaction, which equated to three cells per litre. This assay not only enabled conclusive species identification but also detected the presence of cells below the limit of detection for light microscopy. This study demonstrates the usefulness of real-time PCR as a sensitive and rapid molecular technique for the detection and quantification of micro-algae from environmental samples.
Johansen, Richard; Beck, Richard; Nowosad, Jakub; Nietch, Christopher; Xu, Min; Shu, Song; Yang, Bo; Liu, Hongxing; Emery, Erich; Reif, Molly; Harwood, Joseph; Young, Jade; Macke, Dana; Martin, Mark; Stillings, Garrett; Stumpf, Richard; Su, Haibin
2018-06-01
This study evaluated the performances of twenty-nine algorithms that use satellite-based spectral imager data to derive estimates of chlorophyll-a concentrations that, in turn, can be used as an indicator of the general status of algal cell densities and the potential for a harmful algal bloom (HAB). The performance assessment was based on making relative comparisons between two temperate inland lakes: Harsha Lake (7.99 km 2 ) in Southwest Ohio and Taylorsville Lake (11.88 km 2 ) in central Kentucky. Of interest was identifying algorithm-imager combinations that had high correlation with coincident chlorophyll-a surface observations for both lakes, as this suggests portability for regional HAB monitoring. The spectral data utilized to estimate surface water chlorophyll-a concentrations were derived from the airborne Compact Airborne Spectral Imager (CASI) 1500 hyperspectral imager, that was then used to derive synthetic versions of currently operational satellite-based imagers using spatial resampling and spectral binning. The synthetic data mimics the configurations of spectral imagers on current satellites in earth's orbit including, WorldView-2/3, Sentinel-2, Landsat-8, Moderate-resolution Imaging Spectroradiometer (MODIS), and Medium Resolution Imaging Spectrometer (MERIS). High correlations were found between the direct measurement and the imagery-estimated chlorophyll-a concentrations at both lakes. The results determined that eleven out of the twenty-nine algorithms were considered portable, with r 2 values greater than 0.5 for both lakes. Even though the two lakes are different in terms of background water quality, size and shape, with Taylorsville being generally less impaired, larger, but much narrower throughout, the results support the portability of utilizing a suite of certain algorithms across multiple sensors to detect potential algal blooms through the use of chlorophyll-a as a proxy. Furthermore, the strong performance of the Sentinel-2 algorithms is exceptionally promising, due to the recent launch of the second satellite in the constellation, which will provide higher temporal resolution for temperate inland water bodies. Additionally, scripts were written for the open-source statistical software R that automate much of the spectral data processing steps. This allows for the simultaneous consideration of numerous algorithms across multiple imagers over an expedited time frame for the near real-time monitoring required for detecting algal blooms and mitigating their adverse impacts. Copyright © 2018 Elsevier B.V. All rights reserved.
Twiner, Michael J.; Flewelling, Leanne J.; Fire, Spencer E.; Bowen-Stevens, Sabrina R.; Gaydos, Joseph K.; Johnson, Christine K.; Landsberg, Jan H.; Leighfield, Tod A.; Mase-Guthrie, Blair; Schwacke, Lori; Van Dolah, Frances M.; Wang, Zhihong; Rowles, Teresa K.
2012-01-01
In the Florida Panhandle region, bottlenose dolphins (Tursiops truncatus) have been highly susceptible to large-scale unusual mortality events (UMEs) that may have been the result of exposure to blooms of the dinoflagellate Karenia brevis and its neurotoxin, brevetoxin (PbTx). Between 1999 and 2006, three bottlenose dolphin UMEs occurred in the Florida Panhandle region. The primary objective of this study was to determine if these mortality events were due to brevetoxicosis. Analysis of over 850 samples from 105 bottlenose dolphins and associated prey items were analyzed for algal toxins and have provided details on tissue distribution, pathways of trophic transfer, and spatial-temporal trends for each mortality event. In 1999/2000, 152 dolphins died following extensive K. brevis blooms and brevetoxin was detected in 52% of animals tested at concentrations up to 500 ng/g. In 2004, 105 bottlenose dolphins died in the absence of an identifiable K. brevis bloom; however, 100% of the tested animals were positive for brevetoxin at concentrations up to 29,126 ng/mL. Dolphin stomach contents frequently consisted of brevetoxin-contaminated menhaden. In addition, another potentially toxigenic algal species, Pseudo-nitzschia, was present and low levels of the neurotoxin domoic acid (DA) were detected in nearly all tested animals (89%). In 2005/2006, 90 bottlenose dolphins died that were initially coincident with high densities of K. brevis. Most (93%) of the tested animals were positive for brevetoxin at concentrations up to 2,724 ng/mL. No DA was detected in these animals despite the presence of an intense DA-producing Pseudo-nitzschia bloom. In contrast to the absence or very low levels of brevetoxins measured in live dolphins, and those stranding in the absence of a K. brevis bloom, these data, taken together with the absence of any other obvious pathology, provide strong evidence that brevetoxin was the causative agent involved in these bottlenose dolphin mortality events. PMID:22916189
Gobler, Christopher J; Lobanov, Alexei V; Tang, Ying-Zhong; Turanov, Anton A; Zhang, Yan; Doblin, Martina; Taylor, Gordon T; Sañudo-Wilhelmy, Sergio A; Grigoriev, Igor V; Gladyshev, Vadim N
2013-07-01
The trace element selenium (Se) is required for the biosynthesis of selenocysteine (Sec), the 21st amino acid in the genetic code, but its role in the ecology of harmful algal blooms (HABs) is unknown. Here, we examined the role of Se in the biology and ecology of the harmful pelagophyte, Aureococcus anophagefferens, through cell culture, genomic analyses, and ecosystem studies. This organism has the largest and the most diverse selenoproteome identified to date that consists of at least 59 selenoproteins, including known eukaryotic selenoproteins, selenoproteins previously only detected in bacteria, and novel selenoproteins. The A. anophagefferens selenoproteome was dominated by the thioredoxin fold proteins and oxidoreductase functions were assigned to the majority of detected selenoproteins. Insertion of Sec in these proteins was supported by a unique Sec insertion sequence. Se was required for the growth of A. anophagefferens as cultures grew maximally at nanomolar Se concentrations. In a coastal ecosystem, dissolved Se concentrations were elevated before and after A. anophagefferens blooms, but were reduced by >95% during the peak of blooms to 0.05 nM. Consistent with this pattern, enrichment of seawater with selenite before and after a bloom did not affect the growth of A. anophagefferens, but enrichment during the peak of the bloom significantly increased population growth rates. These findings demonstrate that Se inventories, which can be anthropogenically enriched, can support proliferation of HABs, such as A. anophagefferens through its synthesis of a large arsenal of Se-dependent oxidoreductases that fine-tune cellular redox homeostasis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gobler, Christopher J.; Lobanov, Alexei V.; Tang, Ying-Zhong
The trace element selenium (Se) is required for the biosynthesis of selenocysteine (Sec), the 21st amino acid in the genetic code, but its role in the ecology of harmful algal blooms (HABs) is unknown. Here, we examined the role of Se in the biology and ecology of the harmful pelagophyte, Aureococcus anophagefferens, through cell culture, genomic analyses, and ecosystem studies. This organism has the largest and the most diverse selenoproteome identified to date that consists of at least 59 selenoproteins, including known eukaryotic selenoproteins, selenoproteins previously only detected in bacteria, and novel selenoproteins. The A. anophagefferens selenoproteome was dominated bymore » the thioredoxin fold proteins and oxidoreductase functions were assigned to the majority of detected selenoproteins. Insertion of Sec in these proteins was supported by a unique Sec insertion sequence. Se was required for the growth of A. anophagefferens as cultures grew maximally at nanomolar Se concentrations. In a coastal ecosystem, dissolved Se concentrations were elevated before and after A. anophagefferens blooms, but were reduced by >95percent during the peak of blooms to 0.05 nM. Consistent with this pattern, enrichment of seawater with selenite before and after a bloom did not affect the growth of A. anophagefferens, but enrichment during the peak of the bloom significantly increased population growth rates. These findings demonstrate that Se inventories, which can be anthropogenically enriched, can support proliferation of HABs, such as A. anophagefferens through its synthesis of a large arsenal of Se-dependent oxidoreductases that fine-tune cellular redox homeostasis.« less
Real-Time monitoring of the eutrophication and hypoxia off the Changjiang Estuary
NASA Astrophysics Data System (ADS)
Chen, J. F.
2016-02-01
Inputs of anthropogenic nutrients and carbon dioxide-rich waters to the coastal waters can not only lead to eutrophication in the surface water and hypoxia in the bottom water, but also will enhance acidification of coastal water. In order to understand the details mechanism of concurrence of eutrophication and hypoxia in the Changjiang Estuary, a real time monitoring system has been established since 2010 under the support of Chinese National Key Technologies R&D Program and Chinese Marine Research Special Funds for Public Welfare Projects. The platforms of the monitoring system includes a 3-meter buoy with water column chain unit and a seabed mounted unit, the sensors includes those can detect wind speed and direction, air and water temperature, salinity, currents, PAR, DO, pH, nutrients, Chl a, turbidity and pCO2 etc.. Two highlights of our scientific findings will introduced in this presentation, one is how typhoon affected the coastal hypoxia (positive and negative), and the other is how fresh water input induced a algal bloom in the Changjiang Estuary in summer.
Molecular Insights Into a Dinoflagellate Bloom Imply Bacterial Cultivation
NASA Astrophysics Data System (ADS)
Gong, W.; Hall, N.; Schruth, D.; Paerl, H. W.; Marchetti, A.
2016-02-01
In coastal waters, an increase in frequency and intensity of algal blooms worldwide has recently been observed primarily due to eutrophication, with further increases predicted as a consequence of climate change. In many marine habitats most impacted by human activities, efforts have been made to prevent conditions that promote harmful algal blooms, or HABs, although progress is limited, due in part to our current lack of understanding of the environmental and cellular processes that promote and propagate these blooms. Comparative metatranscriptomics was used to investigate the underlying molecular mechanisms associated with a dinoflagellate bloom in a highly eutrophied estuarine system. Here we show that under bloom conditions, there is increased expression of metabolic pathways indicative of rapidly growing cells, including energy production, carbon metabolism, transporters and synthesis of nucleic acids and cellular membrane components. In addition, there is a prominence of highly expressed genes involved in synthesis of membrane-associated molecules, including those for the production of glycosaminoglycans (GAGs), which may serve roles in nutrient acquisition and/or cell surface adhesion. Biotin and thiamine synthesis genes also increased expression along with several cobalamin biosynthesis-associated genes that suggests processing of B12 intermediates by dinoflagellates. The patterns in gene expression observed are consistent with bloom-forming dinoflagellates eliciting a cellular response to facilitate interactions with their surrounding bacterial consortium, possibly in an effort to cultivate for enhancement of vitamin and nutrient exchanges and/or direct consumption. Our findings provide potential molecular targets for HAB detection and remediation efforts.
Anderson, Donald M.; Keafer, Bruce A.; Kleindinst, Judith L.; McGillicuddy, Dennis J.; Martin, Jennifer L.; Norton, Kerry; Pilskaln, Cynthia H.; Smith, Juliette L.; Sherwood, Christopher R.; Butman, Bradford
2014-01-01
Here we document Alexandrium fundyense cyst abundance and distribution patterns over nine years (1997 and 2004–2011) in the coastal waters of the Gulf of Maine (GOM) and identify linkages between those patterns and several metrics of the severity or magnitude of blooms occurring before and after each autumn cyst survey. We also explore the relative utility of two measures of cyst abundance and demonstrate that GOM cyst counts can be normalized to sediment volume, revealing meaningful patterns equivalent to those determined with dry weight normalization. Cyst concentrations were highly variable spatially. Two distinct seedbeds (defined here as accumulation zones with>300 cysts cm−3) are evident, one in the Bay of Fundy (BOF) and one in mid-coast Maine. Overall, seedbed locations remained relatively constant through time, but their area varied 3–4 fold, and total cyst abundance more than 10 fold among years. A major expansion of the mid-coast Maine seedbed occurred in 2009 following an unusually intense A. fundyense bloom with visible red-water conditions, but that feature disappeared by late 2010. The regional system thus has only two seedbeds with the bathymetry, sediment characteristics, currents, biology, and environmental conditions necessary to persist for decades or longer. Strong positive correlations were confirmed between the abundance of cysts in both the 0–1 and the 0–3 cm layers of sediments in autumn and geographic measures of the extent of the bloom that occurred the next year (i.e., cysts→blooms), such as the length of coastline closed due to shellfish toxicity or the southernmost latitude of shellfish closures. In general, these metrics of bloom geographic extent did not correlate with the number of cysts in sediments following the blooms (blooms→cysts). There are, however, significant positive correlations between 0–3 cm cyst abundances and metrics of the preceding bloom that are indicative of bloom intensity or vegetative cell abundance (e.g., cumulative shellfish toxicity, duration of detectable toxicity in shellfish, and bloom termination date). These data suggest that it may be possible to use cyst abundance to empirically forecast the geographic extent of the forthcoming bloom and, conversely, to use other metrics from bloom and toxicity events to forecast the size of the subsequent cyst population as the inoculum for the next year's bloom. This is an important step towards understanding the excystment/encystment cycle in A. fundyense bloom dynamics while also augmenting our predictive capability for this HAB-forming species in the GOM.
Bioactive trace metal time series during Austral summer in Ryder Bay, Western Antarctic Peninsula
NASA Astrophysics Data System (ADS)
Bown, Johann; Laan, Patrick; Ossebaar, Sharyn; Bakker, Karel; Rozema, Patrick; de Baar, Hein J. W.
2017-05-01
The Western Antarctic Peninsula, one of the most productive regions of the Southern Ocean, is currently affected by the increasing of atmospheric and oceanic temperatures. For several decades, the Rothera Time Series (RaTS) site located in Ryder Bay has been monitored by the British Antarctic Survey and has shown long lasting phytoplankton summer blooms (over a month) that are likely driven by the length of the sea ice season. The dynamics of phytoplankton blooms in Ryder Bay may just as well be influenced by natural fertilization of iron and other bioactive trace metals due to the proximity of land, islands and glaciers. For the first time, temporal distributions in the surface layer (0-75 m depth) of six bioactive trace metals (dissolved: Fe, Mn, Zn, Cd, Cu and dissolved labile Co) have been investigated with high temporal and spatial resolution at the RaTS site during a total of 2 and 3.5 months respectively, over two consecutive summers. Most of the studied trace elements showed wide ranges of concentrations and this dynamics appears to be driven by phytoplankton uptake, remineralization and occasional vertical mixing associated with storm episodes. The biological uptake of DMn, DZn, DCd, DCoL and DCu was proportional to uptake of phosphate and silicate, which was associated with weak to strong linear relationships depending on which phytoplankton bloom events was considered. This further suggests that the surface water distributions of these studied bio-active trace metals were mainly driven by biological uptake and remineralization during austral spring and summer in Ryder Bay. Even though DFe did not show any strong relationship with phosphate, DFe decreasing concentrations during each bloom event suggest that Fe is a key essential element for phytoplankton in the area of study. The consistency of trace metals/nutrient ratios during two consecutive summers indicates that over-winter scavenging removal was slow relative to mixing. The increase of DCd/P and DCoL/P drawdown ratios during the two consecutive blooms monitored during the second season could reflect the substitution of DZn by trace metals DCd and DCoL due to lowered DZn concentrations after the first bloom. Relationships of trace elements versus silicate appear to be dominated by diatoms abundances which tend to vary both at the season and bloom time scale. Simultaneous short-term events of depletions of both nutrients and bio-active trace metals might induce stress in the growth of the phytoplankton assemblage.
Winter bloom of a rare betaproteobacterium in the Arctic Ocean
Alonso-Sáez, Laura; Zeder, Michael; Harding, Tommy; Pernthaler, Jakob; Lovejoy, Connie; Bertilsson, Stefan; Pedrós-Alió, Carlos
2014-01-01
Extremely low abundance microorganisms (members of the “rare biosphere”) are believed to include dormant taxa, which can sporadically become abundant following environmental triggers. Yet, microbial transitions from rare to abundant have seldom been captured in situ, and it is uncertain how widespread these transitions are. A bloom of a single ribotype (≥99% similarity in the 16S ribosomal RNA gene) of a widespread betaproteobacterium (Janthinobacterium sp.) occurred over 2 weeks in Arctic marine waters. The Janthinobacterium population was not detected microscopically in situ in January and early February, but suddenly appeared in the water column thereafter, eventually accounting for up to 20% of bacterial cells in mid February. During the bloom, this bacterium was detected at open water sites up to 50 km apart, being abundant down to more than 300 m. This event is one of the largest monospecific bacterial blooms reported in polar oceans. It is also remarkable because Betaproteobacteria are typically found only in low abundance in marine environments. In particular, Janthinobacterium were known from non-marine habitats and had previously been detected only in the rare biosphere of seawater samples, including the polar oceans. The Arctic Janthinobacterium formed mucilagenous monolayer aggregates after short (ca. 8 h) incubations, suggesting that biofilm formation may play a role in maintaining rare bacteria in pelagic marine environments. The spontaneous mass occurrence of this opportunistic rare taxon in polar waters during the energy-limited season extends current knowledge of how and when microbial transitions between rare and abundant occur in the ocean. PMID:25191307
Impacts of the 2014 severe drought on the Microcystis bloom in San Francisco Estuary.
Lehman, P W; Kurobe, T; Lesmeister, S; Baxa, D; Tung, A; Teh, S J
2017-03-01
The increased frequency and intensity of drought with climate change may cause an increase in the magnitude and toxicity of freshwater cyanobacteria harmful algal blooms (CHABs), including Microcystis blooms, in San Francisco Estuary, California. As the fourth driest year on record in San Francisco Estuary, the 2014 drought provided an opportunity to directly test the impact of severe drought on cyanobacteria blooms in SFE. A field sampling program was conducted between July and December 2014 to sample a suite of physical, chemical, and biological variables at 10 stations in the freshwater and brackish reaches of the estuary. The 2014 Microcystis bloom had the highest biomass and toxin concentration, earliest initiation, and the longest duration, since the blooms began in 1999. Median chlorophyll a concentration increased by 9 and 12 times over previous dry and wet years, respectively. Total microcystin concentration also exceeded that in previous dry and wet years by a factor of 11 and 65, respectively. Cell abundance determined by quantitative PCR indicated the bloom contained multiple potentially toxic cyanobacteria species, toxic Microcystis and relatively high total cyanobacteria abundance. The bloom was associated with extreme nutrient concentrations, including a 20-year high in soluble reactive phosphorus concentration and low to below detection levels of ammonium. Stable isotope analysis suggested the bloom varied with both inorganic and organic nutrient concentration, and used ammonium as the primary nitrogen source. Water temperature was a primary controlling factor for the bloom and was positively correlated with the increase in both total and toxic Microcystis abundance. In addition, the early initiation and persistence of warm water temperature coincided with the increased intensity and duration of the Microcystis bloom from the usual 3 to 4 months to 8 months. Long residence time was also a primary factor controlling the magnitude and persistence of the bloom, and was created by a 66% to 85% reduction in both the water inflow and diversion of water for agriculture during the summer. We concluded that severe drought conditions can lead to a significant increase in the abundance of Microcystis and other cyanobacteria, as well as their associated toxins. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Mind the gap: The impact of missing data on the calculation of phytoplankton phenology metrics
NASA Astrophysics Data System (ADS)
Cole, Harriet; Henson, Stephanie; Martin, Adrian; Yool, Andrew
2012-08-01
Annual phytoplankton blooms are key events in marine ecosystems and interannual variability in bloom timing has important implications for carbon export and the marine food web. The degree of match or mismatch between the timing of phytoplankton and zooplankton annual cycles may impact larval survival with knock-on effects at higher trophic levels. Interannual variability in phytoplankton bloom timing may also be used to monitor changes in the pelagic ecosystem that are either naturally or anthropogenically forced. Seasonality metrics that use satellite ocean color data have been developed to quantify the timing of phenological events which allow for objective comparisons between different regions and over long periods of time. However, satellite data sets are subject to frequent gaps due to clouds and atmospheric aerosols, or persistent data gaps in winter due to low sun angle. Here we quantify the impact of these gaps on determining the start and peak timing of phytoplankton blooms. We use the NASA Ocean Biogeochemical Model that assimilates SeaWiFS data as a gap-free time series and derive an empirical relationship between the percentage of missing data and error in the phenology metric. Applied globally, we find that the majority of subpolar regions have typical errors of 30 days for the bloom initiation date and 15 days for the peak date. The errors introduced by intermittent data must be taken into account in phenological studies.
Blooms and subsurface phytoplankton layers on the Scotian Shelf: Insights from profiling gliders
NASA Astrophysics Data System (ADS)
Ross, Tetjana; Craig, Susanne E.; Comeau, Adam; Davis, Richard; Dever, Mathieu; Beck, Matthew
2017-08-01
Understanding how phytoplankton respond to their physical environment is key to predicting how bloom dynamics might change under future climate change scenarios. Phytoplankton are at the base of most marine food webs and play an important role in drawing CO2 out of the atmosphere. Using nearly 5 years of simultaneous CTD, irradiance, chlorophyll a fluorescence and optical backscattering observations obtained from Slocum glider missions, we observed the subsurface phytoplankton populations across the Scotian Shelf, near Halifax (Nova Scotia, Canada) along with their physical environment. Bloom conditions were observed in each of the 5 springs, with the average chlorophyll in the upper 60 m of water generally exceeding 3 mg m- 3. These blooms occurred when the upper water column stratification was at its lowest, in apparent contradiction of the critical depth hypothesis. A subsurface chlorophyll layer was observed each summer at about 30 m depth, which was below the base of the mixed layer. This subsurface layer lasted 3-4 months and contained, on average, 1/4 of the integrated water column chlorophyll found during the spring bloom. This suggests that a significant portion of the primary productivity over the Scotian Shelf occurs at depths that cannot be observed by satellites-highlighting the importance of including subsurface observations in the monitoring of future changes to primary productivity in the ocean.
NASA Astrophysics Data System (ADS)
Pavlov, A. K.; Granskog, M. A.; Hudson, S. R.; Taskjelle, T.; Kauko, H.; Hamre, B.; Assmy, P.; Mundy, C. J.; Nicolaus, M.; Kowalczuk, P.; Stedmon, C. A.; Fernandez Mendez, M.
2016-02-01
A thinner and younger Arctic sea-ice cover has led to an increase in solar light transmission into the surface ocean, especially during late spring and summer. A description of the seasonal evolution of polar surface water optical properties is essential, in order to understand how changes are affecting light availability for photosynthetic organisms and the surface ocean energy budget. The development of the bio-optical properties of Arctic surface waters under predominantly first-year sea ice in the southern Nansen Basin were studied from January to June 2015 during the Norwegian Young Sea Ice Cruise (N-ICE2015). Observations included inherent optical properties, absorption by colored dissolved organic matter and particles, as well as radiometric measurements. We documented a rapid transition from relatively clear and transparent waters in winter to turbid waters in late May and June. This transition was associated with a strong under-ice phytoplankton bloom detected first under the compact ice pack and then monitored during drift across the marginal ice zone. We discuss potential implications of underwater light availability for photosynthesis, heat redistribution in the upper ocean layer, and energy budget of the sea-ice - ocean system.
REAL-TIME MONITORING FOR TOXICITY CAUSED BY ...
This project, sponsored by EPA's Environmental Monitoring for Public Access and Community Tracking (EMPACT) program, evaluated the ability of an automated biological monitoring system that measures fish ventilatory responses (ventilatory rate, ventilatory depth, and cough rate) to detect developing toxic conditions in water.In laboratory tests, acutely toxic levels of both brevetoxin (PbTx-2) and toxic Pfiesteria piscicida cultures caused fish responses primarily through large increases in cough rate. In the field, the automated biomonitoring system operated continuously for 3 months on the Chicamacomico River, a tributary to the Chesapeake Bay that has had a history of intermittent toxic algal blooms. Data gathered through this effort complemented chemical monitoring data collected by the Maryland Department of Natural Resources (DNR) as part of their Pfiesteria monitoring program. After evaluation by DNR personnel, the public could access the data on the DNR Internet web site at www.dnr.state.md.us/bay/pfiesteria/00results.html or receive more detailed information at www.aquaticpath.umd.edu/empact.. The field biomonitor identified five fish response events. Increased conductivity combined with a substantial decrease in water temperature was the likely cause of one event, while contaminants (probably surfactants) released from inadequately rinsed particle filters produced another response. The other three events, characterized by greatly increased cough ra
NASA Astrophysics Data System (ADS)
Taş, Seyfettin; Okuş, Erdoğan; Aslan-Yılmaz, Aslı
2006-07-01
The distribution of toxic cyanobacterium Microcystis cf. aeruginosa in the severely polluted Golden Horn Estuary was studied from 1998 to 2000. Microcystis persisted at the upper estuary where the water circulation was poor and values ranged between 2.9 × 10 4 and 2.7 × 10 6 cells ml -1 throughout the study. Simultaneously measured physical (salinity, temperature, rainfall and secchi disc) and chemical parameters (nutrients and dissolved oxygen) were evaluated together with Microcystis data. Although the Microcystis blooms generally occur in summer due to the increase in temperature, the blooms were recorded in winter in the present study. The abundance of Microcystis depended on the variations in salinity and both blooms were recorded below S = 2. A moderate partial correlation between Microcystis abundance and salinity was detected in the presence of temperature, dissolved oxygen and precipitation data ( r = -0.561, p = 0.002). The M. cf. aeruginosa abundance was low in the summer when the salinity was higher than winter. A remarkable increase in the eukaryotic phytoplankton abundance following the improvements in the water quality of the estuary occurred, whilst the Microcystis abundance remained below bloom level.
Tan, Feng; Saucedo, Nuvia Maria; Ramnani, Pankaj; Mulchandani, Ashok
2015-08-04
Microcystin-LR (MCLR) is one of the most commonly detected and toxic cyclic heptapeptide cyanotoxins released by cyanobacterial blooms in surface waters, for which sensitive and specific detection methods are necessary to carry out its recognition and quantification. Here, we present a single-walled carbon nanotube (SWCNTs)-based label-free chemiresistive immunosensor for highly sensitive and specific detection of MCLR in different source waters. MCLR was initially immobilized on SWCNTs modified interdigitated electrode, followed by incubation with monoclonal anti-MCLR antibody. The competitive binding of MCLR in sample solutions induced departure of the antibody from the antibody-antigen complexes formed on SWCNTs, resulting in change in the conductivity between source and drain of the sensor. The displacement assay greatly improved the sensitivity of the sensor compared with direct immunoassay on the same device. The immunosensor exhibited a wide linear response to log value of MCLR concentration ranging from 1 to 1000 ng/L, with a detection limit of 0.6 ng/L. This method showed good reproducibility, stability and recovery. The proposed method provides a powerful tool for rapid and sensitive monitoring of MCLR in environmental samples.
Lefebvre, Kathi A; Bill, Brian D; Erickson, Aleta; Baugh, Keri A; O'Rourke, Lohna; Costa, Pedro R; Nance, Shelly; Trainer, Vera L
2008-05-14
Traditionally, harmful algal bloom studies have primarily focused on quantifying toxin levels contained within the phytoplankton cells of interest. In the case of paralytic shellfish poisoning toxins (PSTs), intracellular toxin levels and the effects of dietary consumption of toxic cells by planktivores have been well documented. However, little information is available regarding the levels of extracellular PSTs that may leak or be released into seawater from toxic cells during blooms. In order to fully evaluate the risks of harmful algal bloom toxins in the marine food web, it is necessary to understand all potential routes of exposure. In the present study, extracellular and intracellular PST levels were measured in field seawater samples (collected weekly from June to October 2004-2007) and in Alexandrium spp. culture samples isolated from Sequim Bay, Washington. Measurable levels of intra- and extra-cellular toxins were detected in both field and culture samples via receptor binding assay (RBA) and an enzyme-linked immunosorbent assay (ELISA). Characterization of the PST toxin profile in the Sequim Bay isolates by pre-column oxidation and HPLC-fluorescence detection revealed that gonyautoxin 1 and 4 made up 65 +/- 9.7% of the total PSTs present. Collectively, these data confirm that extracellular PSTs are present during blooms of Alexandrium spp. in the Sequim Bay region.
Lefebvre, Kathi A.; Bill, Brian D.; Erickson, Aleta; Baugh, Keri A.; O’Rourke, Lohna; Costa, Pedro R.; Nance, Shelly; Trainer, Vera L.
2008-01-01
Traditionally, harmful algal bloom studies have primarily focused on quantifying toxin levels contained within the phytoplankton cells of interest. In the case of paralytic shellfish poisoning toxins (PSTs), intracellular toxin levels and the effects of dietary consumption of toxic cells by planktivores have been well documented. However, little information is available regarding the levels of extracellular PSTs that may leak or be released into seawater from toxic cells during blooms. In order to fully evaluate the risks of harmful algal bloom toxins in the marine food web, it is necessary to understand all potential routes of exposure. In the present study, extracellular and intracellular PST levels were measured in field seawater samples (collected weekly from June to October 2004–2007) and in Alexandrium spp. culture samples isolated from Sequim Bay, Washington. Measurable levels of intra- and extra-cellular toxins were detected in both field and culture samples via receptor binding assay (RBA) and an enzyme-linked immunosorbent assay (ELISA). Characterization of the PST toxin profile in the Sequim Bay isolates by pre-column oxidation and HPLC-fluorescence detection revealed that gonyautoxin 1 and 4 made up 65 ± 9.7 % of the total PSTs present. Collectively, these data confirm that extracellular PSTs are present during blooms of Alexandrium spp. in the Sequim Bay region. PMID:18728762
A rare Uroglena bloom in Beaver Lake, Arkansas, spring 2015
Green, William R.; Hufhines, Brad
2017-01-01
A combination of factors triggered a Uroglena volvox bloom and taste and odor event in Beaver Lake, a water-supply reservoir in northwest Arkansas, in late April 2015. Factors contributing to the bloom included increased rainfall and runoff containing increased concentrations of dissolved organic carbon, followed by a stable pool, low nutrient concentrations, and an expansion of lake surface area and littoral zone. This was the first time U. volvox was identified in Beaver Lake and the first time it was recognized as a source of taste and odor. Routine water quality samples happened to be collected by the US Geological Survey and the Beaver Water District throughout the reservoir during the bloom—. Higher than normal rainfall in March 2015 increased the pool elevation in Beaver Lake by 2.3 m (by early April), increased the surface area by 10%, and increased the littoral zone by 1214 ha; these conditions persisted for 38 days, resulting from flood water being retained behind the dam. Monitoring programs that cover a wide range of reservoir features, including dissolved organic carbon, zooplankton, and phytoplankton, are valuable in explaining unusual events such as this Uroglena bloom.
Teta, Roberta; Della Sala, Gerardo; Glukhov, Evgenia; Gerwick, Lena; Gerwick, William H; Mangoni, Alfonso; Costantino, Valeria
2015-12-15
Cyanotoxins obtained from a freshwater cyanobacterial collection at Green Lake, Seattle during a cyanobacterial harmful algal bloom in the summer of 2014 were studied using a new approach based on molecular networking analysis of liquid chromatography tandem mass spectrometry (LC-MS/MS) data. This MS networking approach is particularly well-suited for the detection of new cyanotoxin variants and resulted in the discovery of three new cyclic peptides, namely microcystin-MhtyR (6), which comprised about half of the total microcystin content in the bloom, and ferintoic acids C (12) and D (13). Structure elucidation of 6 was aided by a new microscale methylation procedure. Metagenomic analysis of the bloom using the 16S-ITS rRNA region identified Microcystis aeruginosa as the predominant cyanobacterium in the sample. Fragments of the putative biosynthetic genes for the new cyanotoxins were also identified, and their sequences correlated to the structure of the isolated cyanotoxins.
NASA Astrophysics Data System (ADS)
Tao, Bangyi; Mao, Zhihua; Lei, Hui; Pan, Delu; Bai, Yan; Zhu, Qiankun; Zhang, Zhenglong
2017-03-01
A new bio-optical algorithm based on the green and red bands of the Medium Resolution Imaging Spectrometer (MERIS) is developed to differentiate the harmful algal blooms of Prorocentrum donghaiense Lu (P. donghaiense) from diatom blooms in the East China Sea (ECS). Specifically, a novel green-red index (GRI), actually an indicator for a(510) of bloom waters, is retrieved from a semianalytical bio-optical model based on the green and red bands of phytoplankton-absorption and backscattering spectra. In addition, a MERIS-based diatom index (DIMERIS) is derived by adjusting a Moderate Resolution Imaging Spectroradiometer (MODIS) diatom index algorithm to the MERIS bands. Finally, bloom types are effectively differentiated in the feature spaces of the green-red index and DIMERIS. Compared with three previous MERIS-based quasi-analytical algorithm (QAA) algorithms and three existing classification methods, the proposed GRI and classification method have the best discrimination performance when using the MERIS data. Further validations of the algorithm by using several MERIS image series and near-concurrent in situ observations indicate that our algorithm yields the best classification accuracy and thus can be used to reliably detect and classify P. donghaiense and diatom blooms in the ECS. This is the first time that the MERIS data have been used to identify bloom types in the ECS. Our algorithm can also be used for the successor of the MERIS, the Ocean and Land Color Instrument, which will aid the long-term observation of species succession in the ECS.
Remote sensing of bacterial response to degrading phytoplankton in the Arabian Sea.
Priyaja, P; Dwivedi, R; Sini, S; Hatha, M; Saravanane, N; Sudhakar, M
2016-12-01
A remote sensing technique has been developed to detect physiological condition of phytoplankton using in situ and moderate imaging spectroradiometer (MODIS)-Aqua data. The recurring massive mixed algal bloom of diatom and Noctiluca scintillans in the Northern Arabian Sea during winter-spring was used as test bed to study formation, growth and degradation of phytoplankton. The ratio of chlorophyll (chl) to particulate organic carbon (POC) was considered as an indicator of phytoplankton physiological condition and used for the approach development. Algal blooms represent the areas of new production, and therefore, knowledge of their degradation is important to the study microbial loop and export carbon flux. Relation of chl/POC ratio with bacterial abundance revealed Gaussian distribution. Bacteria were strongly correlated with POC, and hence, the latter which is available from satellite data could be used as a proxy for remote assessment of bacteria. Thresholds for active and degrading phytoplankton were determined using the ratio computed from the satellite data. The criteria were implemented on MODIS data to generate an image representing distribution of degrading algal bloom. Bacteria abundance data from two validation cruises during dinoflagellate and cyanobacteria bloom confirmed well match up of phytoplankton degradation information from the satellite. Comparison of environmental parameters during decay phase of dinoflagellate (N. scintillans bloom (winter) and Trichodesmium bloom (summer) revealed that degradation after active Trichodesmium bloom was more severe as compared to the N. scintillans. The present study also highlights the prediction capability of phytoplankton degradation using a time series of satellite retrieved chlorophyll/POC images.
Recent Salmon Declines: A Result of Lost Feeding Opportunities Due to Bad Timing?
Chittenden, Cedar M.; Jensen, Jenny L. A.; Ewart, David; Anderson, Shannon; Balfry, Shannon; Downey, Elan; Eaves, Alexandra; Saksida, Sonja; Smith, Brian; Vincent, Stephen; Welch, David; McKinley, R. Scott
2010-01-01
As the timing of spring productivity blooms in near-shore areas advances due to warming trends in global climate, the selection pressures on out-migrating salmon smolts are shifting. Species and stocks that leave natal streams earlier may be favoured over later-migrating fish. The low post-release survival of hatchery fish during recent years may be in part due to static release times that do not take the timing of plankton blooms into account. This study examined the effects of release time on the migratory behaviour and survival of wild and hatchery-reared coho salmon (Oncorhynchus kisutch) using acoustic and coded-wire telemetry. Plankton monitoring and near-shore seining were also conducted to determine which habitat and food sources were favoured. Acoustic tags (n = 140) and coded-wire tags (n = 266,692) were implanted into coho salmon smolts at the Seymour and Quinsam Rivers, in British Columbia, Canada. Differences between wild and hatchery fish, and early and late releases were examined during the entire lifecycle. Physiological sampling was also carried out on 30 fish from each release group. The smolt-to-adult survival of coho salmon released during periods of high marine productivity was 1.5- to 3-fold greater than those released both before and after, and the fish's degree of smoltification affected their downstream migration time and duration of stay in the estuary. Therefore, hatchery managers should consider having smolts fully developed and ready for release during the peak of the near-shore plankton blooms. Monitoring chlorophyll a levels and water temperature early in the spring could provide a forecast of the timing of these blooms, giving hatcheries time to adjust their release schedule. PMID:20805978
Brooks, Bryan W; Lazorchak, James M; Howard, Meredith D A; Johnson, Mari-Vaughn V; Morton, Steve L; Perkins, Dawn A K; Reavie, Euan D; Scott, Geoffrey I; Smith, Stephanie A; Steevens, Jeffery A
2016-01-01
In this Focus article, the authors ask a seemingly simple question: Are harmful algal blooms (HABs) becoming the greatest inland water quality threat to public health and aquatic ecosystems? When HAB events require restrictions on fisheries, recreation, and drinking water uses of inland water bodies significant economic consequences result. Unfortunately, the magnitude, frequency, and duration of HABs in inland waters are poorly understood across spatiotemporal scales and differentially engaged among states, tribes, and territories. Harmful algal bloom impacts are not as predictable as those from conventional chemical contaminants, for which water quality assessment and management programs were primarily developed, because interactions among multiple natural and anthropogenic factors determine the likelihood and severity to which a HAB will occur in a specific water body. These forcing factors can also affect toxin production. Beyond site-specific water quality degradation caused directly by HABs, the presence of HAB toxins can negatively influence routine surface water quality monitoring, assessment, and management practices. Harmful algal blooms present significant challenges for achieving water quality protection and restoration goals when these toxins confound interpretation of monitoring results and environmental quality standards implementation efforts for other chemicals and stressors. Whether HABs presently represent the greatest threat to inland water quality is debatable, though in inland waters of developed countries they typically cause more severe acute impacts to environmental quality than conventional chemical contamination events. The authors identify several timely research needs. Environmental toxicology, environmental chemistry, and risk-assessment expertise must interface with ecologists, engineers, and public health practitioners to engage the complexities of HAB assessment and management, to address the forcing factors for HAB formation, and to reduce the threats posed to inland surface water quality. © 2015 SETAC.
Phosphorus limitation during a phytoplankton spring bloom in the western Dutch Wadden Sea
NASA Astrophysics Data System (ADS)
Ly, Juliette; Philippart, Catharina J. M.; Kromkamp, Jacco C.
2014-04-01
Like many aquatic ecosystems, the western Dutch Wadden Sea has undergone eutrophication. Due to changes in management policy, nutrient loads, especially phosphorus decreased after the mid-80s. It is still under debate, however, whether nutrients or light is limiting phytoplankton production in the western Wadden Sea, as studies using monitoring data delivered sometimes opposite conclusions and outcomes were related to years, seasons and approaches used. Clearly, the monitoring data alone were not sufficient. We therefore examined the limiting factors for the phytoplankton spring bloom using different experimental approaches. During the spring bloom in April 2010, we investigated several nutrient regimes on natural phytoplankton assemblages at a long term monitoring site, the NIOZ-Jetty sampling (Marsdiep, The Netherlands). Four bioassays, lasting 6 days each, were performed in controlled conditions. From changes in phytoplankton biomass, chlorophyll-a (Chla), we could conclude that the phytoplankton in general was mainly P-limited during this period, whereas a Si-P-co-limitation was likely for the diatom populations, when present. These results were confirmed by changes in the photosynthetic efficiency (Fv/Fm), in the expression of alkaline phosphatase activity (APA) measured with the fluorescent probe ELF-97, and in the 13C stable isotope incorporation in particulate organic carbon (POC). During our bioassay experiments, we observed a highly dynamic phytoplankton community with regard to species composition and growth rates. The considerable differences in net population growth rates, occurring under more or less similar environmental incubation conditions, suggest that phytoplankton species composition and grazing activity by small grazers were important structuring factors for net growth during this period.
Method Development, Monitoring, and Occurrence of Microcystins in Ambient Water
The occurrence and intensity of cyanobacterial harmful blooms have become increasingly common over the last few decades. Cyanobacteria are a worldwide concern in areas with eutrophic water conditions. Cyanotoxins generated from cyanobacteria are harmful ecologically, cause econom...
Responding to Harmful Algal Blooms: Treatment Optimization
This presentation discusses: (1) analytical methods for toxins and cyanobacteria within the context of monitoring a treatment process, (2) toxin and cell removal capacities for common drinking water treatment processes, (3) issues to consider when evaluating a treatment facility...
NASA Astrophysics Data System (ADS)
Fischer, A.; Ryan, J. P.; Moreno-Madriñán, M. J.
2012-12-01
Recent advances in satellite and airborne remote sensing, such as improvements in sensor and algorithm calibrations and atmospheric correction procedures have provided for increased coverage of remote-sensing, ocean color products for coastal regions. In particular, for the Moderate Resolution Imaging Spectrometer (MODIS), calibration updates, improved aerosol retrievals, and new aerosol models have led to improved atmospheric correction algorithms for turbid waters and have improved the retrieval of ocean-color. This has opened the way for studying coastal ocean phenomena and processes at finer spatial scales. Human population growth and changes in coastal management practices have brought about significant changes in the concentrations of organic and inorganic, particulate and dissolved substances entering the coastal ocean. There is increasing concern that these inputs have led to declines in water quality and increases in local concentrations of phytoplankton, which could result in harmful algal blooms. In two case studies we present improved and validated MODIS coastal observations of fluorescence line height (FLH) to: (1) assess trends in water quality for Tampa Bay, Florida; and (2) illustrate seasonal and annual variability of algal bloom activity in Monterey Bay, California, as well as document estuarine/riverine plume induced red tide events. In a comprehensive analysis of long term (2003-2011) in situ monitoring data and imagery from Tampa Bay, we assess the validity of the MODIS FLH product against chlorophyll-a and a suite of water quality parameters taken in a variety of conditions throughout this large, optically complex estuarine system. A systematic analysis of sampling sites throughout the bay illustrates that the correlations between FLH and in situ chlorophyll-a are influenced by water quality parameters of total nitrogen, total phosphorous, turbidity and biological oxygen demand. Sites that correlated well with satellite imagery were in depths greater than seven meters and were located over five kilometers from shore. Satellite FLH estimates show improving water quality from 2003-2007 with a slight decline up through 2011. Dinoflagellate blooms in Monterey Bay, California have recently increased in frequency and intensity. Nine years of MODIS FLH observations are used to describe the annual and seasonal variability of bloom activity within the Bay. Three classes of MODIS algorithms were correlated against in situ chlorophyll measurements. The FLH algorithm provided the most robust estimate of bloom activity. Elevated concentrations of phytoplankton were evident during the months of August-November, a period during which increased occurrences of dinoflagellate blooms have been observed in situ. Seasonal patterns of FLH show the on- and offshore movement of areas of high phytoplankton biomass between oceanographic seasons. Higher concentrations of phytoplankton are also evident in the vicinity of the land-based nutrient sources and outflows, and cyclonic bay-wide circulation transports these nutrients to a northern Bay bloom incubation region. Both of these case studies illustrate the utility of improved MODIS FLH observations in supporting management decisions in coastal and estuarine waters.
Zhang, Huajun; Lv, Jinglin; Peng, Yun; Zhang, Su; An, Xinli; Xu, Hong; Zhang, Jun; Tian, Yun; Zheng, Wei; Zheng, Tianling
2014-09-01
Harmful algal blooms occur throughout the world, destroying aquatic ecosystems and threatening human health. The culture supernatant of the marine algicidal bacteria DHQ25 was able to lysis dinoflagellate Alexandrium tamarense. Loss of photosynthetic pigments, accompanied by a decline in Photosystem II (PSII) photochemical efficiency (Fv/Fm), in A. tamarense was detected under bacterial supernatant stress. Transmission electron microscope analysis showed obvious morphological modifications of chloroplast dismantling as a part of the algicidal process. The PSII electron transport chain was seriously blocked, with its reaction center damaged. This damage was detected in a relative transcriptional level of psbA and psbD genes, which encode the D1 and D2 proteins in the PSII reaction center. And the block in the electron transport chain of PSII might generate excessive reactive oxygen species (ROS) which could destroy the membrane system and pigment synthesis and activated enzymic antioxidant systems including superoxide dismutase (SOD) and catalase (CAT). This study indicated that marine bacteria with indirect algicidal activity played an important role in the changes of photosynthetic process in a harmful algal bloom species.
NASA Technical Reports Server (NTRS)
2007-01-01
For several weeks in May and early June, daily satellite images of the North Atlantic Ocean west of Ireland have captured partial glimpses of luxuriant blooms of microscopic marine plants between patches of clouds. On June 4, 2007, the skies over the ocean cleared, displaying the sea's spring bloom in brilliant color. A bright blue bloom stretches north from the Mouth of the River Shannon and tapers off like a plume of blue smoke north of Clare Island. (In the large image, a second bloom is visible to the north, wrapping around County Donegal, on the island's northwestern tip.) The image was captured by the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra satellite. Cold, nutrient-stocked water often wells up to the surface from the deeper ocean along coastal shelves and at the edges of ocean currents. When it does, it delivers a boost of nutrients that fuel large blooms of single-celled plants collectively known as phytoplankton. The plants are the foundation of the marine food web, and their proliferation in this area of the North Atlantic explains why the waters of western Ireland support myriad fisheries and populations of large mammals like seals, whales, and dolphins. Like plants on land, phytoplankton make their food through photosynthesis, harnessing sunlight for energy using chlorophyll and other light-capturing pigments. The pigments change the way light reflects off the surface water, appearing as colorful swirls of turquoise and green against the darker blue of the ocean. Though individually tiny, collectively these plants play a big role in Earth's carbon and climate cycles; worldwide, they remove about as much carbon dioxide from the atmosphere during photosynthesis as land plants do. Satellites are the only way to map the occurrence of phytoplankton blooms across the global oceans on a regular basis. That kind of information is important not only to scientists who model carbon and climate, but also to biologists and fisheries managers who monitor the health of marine natural resources like coral reefs and fish populations.
Tarutani, Kenji; Nagasaki, Keizo; Yamaguchi, Mineo
2000-01-01
Recent observations that viruses are very abundant and biologically active components in marine ecosystems suggest that they probably influence various biogeochemical and ecological processes. In this study, the population dynamics of the harmful bloom-forming phytoplankton Heterosigma akashiwo (Raphidophyceae) and the infectious H. akashiwo viruses (HaV) were monitored in Hiroshima Bay, Japan, from May to July 1998. Concurrently, a number of H. akashiwo and HaV clones were isolated, and their virus susceptibilities and host ranges were determined through laboratory cross-reactivity tests. A sudden decrease in cell density of H. akashiwo was accompanied by a drastic increase in the abundance of HaV, suggesting that viruses contributed greatly to the disintegration of the H. akashiwo bloom as mortality agents. Despite the large quantity of infectious HaV, however, a significant proportion of H. akashiwo cells survived after the bloom disintegration. The viral susceptibility of H. akashiwo isolates demonstrated that the majority of these surviving cells were resistant to most of the HaV clones, whereas resistant cells were a minor component during the bloom period. Moreover, these resistant cells were displaced by susceptible cells, presumably due to viral infection. These results demonstrated that the properties of dominant cells within the H. akashiwo population change during the period when a bloom is terminated by viral infection, suggesting that viruses also play an important role in determining the clonal composition and maintaining the clonal diversity of H. akashiwo populations. Therefore, our data indicate that viral infection influences the total abundance and the clonal composition of one host algal species, suggesting that viruses are an important component in quantitatively and qualitatively controlling phytoplankton populations in natural marine environments. PMID:11055943
MERIS observations of phytoplankton phenology in the Baltic Sea.
Zhang, Daoxi; Lavender, Samantha; Muller, Jan-Peter; Walton, David; Zou, Xi; Shi, Fang
2018-06-13
The historical data from the MEdium Resolution Imaging Spectrometer (MERIS) is an invaluable archive for studying global waters from inland lakes to open oceans. Although the MERIS sensor ceased to operate in April 2012, the data capacities are now re-established through the recently launched Sentinel-3 Ocean and Land Colour Instrument (OLCI). The development of a consistent time series for investigating phytoplankton phenology features is crucial if the potential of MERIS and OLCI data is to be fully exploited for inland water monitoring. This study presents a time series of phytoplankton abundance and bloom spatial extent for the highly eutrophic inland water of the Baltic Sea using the 10-year MERIS archive (2002-2011) and a chlorophyll-a based Summed Positive Peaks (SPP) algorithm. A gradient approach in conjunction with the histogram analysis was used to determine a global threshold from the entire collection of SPP images for identifying phytoplankton blooms. This allows spatio-temporal dynamics of daily bloom coverage, timing, phytoplankton abundance and spatial extent to be investigated for each Baltic basin. Furthermore, a number of meteorological and hydrological variables, including spring excess phosphate, summer sea surface temperature and photosynthetically active radiation, were explored using boosted regression trees and generalised additive models to understand the ecological response of phytoplankton assemblages to environmental perturbations and potential predictor variables of summer blooms. The results indicate that the surface layer excess phosphate available in February and March had paramount importance over all other variables considered in governing summer bloom abundance in the major Baltic basins. This finding allows new insights into the development of early warning systems for summer phytoplankton blooms in the Baltic Sea and elsewhere. Copyright © 2018 Elsevier B.V. All rights reserved.
REMOTE MEASUREMENT OF PHYTOPLANKTON PIGMENTS IN THE PAMLICO SOUND, NC USING HYPERSPECTRAL IMAGERY
Monitoring of phytoplankton concentrations in estuarine environments is important for managing both recreational and commercial fishery resources. Impacts on estuarine areas from phytoplankton blooms include neurotoxic shellfish poisoning; fish, bird, and vegetation kills; and p...
Great Lakes Nearshore Assessment: What Would Goldilocks Do?
Concerns with the nearshore water quality of the Great Lakes, such as excessive eutrophication and harmful algal blooms, called for establishing a nearshore monitoring program to gain a better understanding of the watershed-nearshore link. This is challenging, as sporadic runoff ...
Floral attractants for monitoring pest moths
USDA-ARS?s Scientific Manuscript database
Many species of moths, including pest species, are known to be attracted to volatile compounds emitted by flowers. Some of the flower species studied included glossy abelia, night-blooming jessamine, three species of Gaura, honeysuckle, lesser butterfly orchid, and Oregongrape. The volatiles relea...
New Zealand risk management approach for toxic cyanobacteria in drinking water.
Kouzminov, Alexander; Ruck, John; Wood, Susanna A
2007-06-01
Cyanobacterial blooms are common seasonal phenomena occurring worldwide in fresh, estuarine and coastal waters, including those used for drinking-water supplies, recreation and stock watering. In New Zealand, the frequency of blooms and their geographic spread is likely to grow with increasing eutrophication and global climate change. The New Zealand Ministry of Health has recently developed national criteria for assessing and managing the risk of toxic cyanobacteria in drinking-water supplies. This paper investigates a cyanobacterial bloom incident in the summer 2002/03 in the Waikato River and hydro lakes, which are a major drinking-water supply for Hamilton City and many other smaller towns along the river. The procedures invoked by the Hamilton City Council and other authorities to deal with this bloom event are considered in terms of the best practice of the day and compared with the Drinking-Water Standards for New Zealand 2005. The presence of cyanobacteria has significant economic effects because of increases in water supply treatment costs or the need to use an alternative source, and there are also social effects from the disruption of recreational use of water bodies and loss of confidence in the quality of reticulated, treated water supplies. Notional evaluation of economic cost of monitoring regimes and control, based on the Waikato River cyanobacterial bloom incident, is also given. The multi-barrier and process-control risk management approach, reliant on good vertical communication systems between central and local government, is an advanced approach useful for any country that regularly experiences cyanobacterial problems.
Jung, Chan Jin; Hur, Youn Young; Yu, Hee-Ju; Noh, Jung-Ho; Park, Kyo-Sun; Lee, Hee Jae
2014-01-01
Fruit set is initiated only after fertilization and is tightly regulated primarily by gibberellins (GAs) and auxins. The application of either of these hormones induces parthenocarpy, fruit set without fertilization, but the molecular mechanism underlying this induction is poorly understood. In the present study, we have shown that the parthenocarpic fruits induced by GA application at pre-bloom result from the interaction of GA with auxin signaling. The transcriptional levels of the putative negative regulators of fruit set initiation, including Vitis auxin/indole-3-acetic acid transcription factor 9 (VvIAA9), Vitis auxin response factor 7 (VvARF7), and VvARF8 were monitored during inflorescence development in seeded diploid ‘Tamnara’ grapevines with or without GA application. Without GA application, VvIAA9, VvARF7, and VvARF8 were expressed at a relatively high level before full bloom, but decreased thereafter following pollination. After GA application at 14 days before full bloom (DBF); however, the expression levels of VvIAA9 and VvARF7 declined at 5 DBF prior to pollination. The effects of GA application on auxin levels or auxin signaling were also analyzed by monitoring the expression patterns of auxin biosynthesis genes and auxin-responsive genes with or without GA application. Transcription levels of the auxin biosynthesis genes Vitis anthranilate synthase β subunit (VvASB1-like), Vitis YUCCA2 (VvYUC2), and VvYUC6 were not significantly changed by GA application. However, the expressions of Vitis Gretchen Hagen3.2 (VvGH3.2) and VvGH3.3, auxin-responsive genes, were up-regulated from 2 DBF to full bloom with GA application. Furthermore, the Vitis GA signaling gene, VvDELLA was up-regulated by GA application during 12 DBF to 7 DBF, prior to down-regulation of VvIAA9 and VvARF7. These results suggest that VvIAA9 and VvARF7 are negative regulators of fruit set initiation in grapevines, and GA signaling is integrated with auxin signaling via VvDELLA during parthenocarpic fruit development in grapevines. PMID:24743886
Jung, Chan Jin; Hur, Youn Young; Yu, Hee-Ju; Noh, Jung-Ho; Park, Kyo-Sun; Lee, Hee Jae
2014-01-01
Fruit set is initiated only after fertilization and is tightly regulated primarily by gibberellins (GAs) and auxins. The application of either of these hormones induces parthenocarpy, fruit set without fertilization, but the molecular mechanism underlying this induction is poorly understood. In the present study, we have shown that the parthenocarpic fruits induced by GA application at pre-bloom result from the interaction of GA with auxin signaling. The transcriptional levels of the putative negative regulators of fruit set initiation, including Vitis auxin/indole-3-acetic acid transcription factor 9 (VvIAA9), Vitis auxin response factor 7 (VvARF7), and VvARF8 were monitored during inflorescence development in seeded diploid 'Tamnara' grapevines with or without GA application. Without GA application, VvIAA9, VvARF7, and VvARF8 were expressed at a relatively high level before full bloom, but decreased thereafter following pollination. After GA application at 14 days before full bloom (DBF); however, the expression levels of VvIAA9 and VvARF7 declined at 5 DBF prior to pollination. The effects of GA application on auxin levels or auxin signaling were also analyzed by monitoring the expression patterns of auxin biosynthesis genes and auxin-responsive genes with or without GA application. Transcription levels of the auxin biosynthesis genes Vitis anthranilate synthase β subunit (VvASB1-like), Vitis YUCCA2 (VvYUC2), and VvYUC6 were not significantly changed by GA application. However, the expressions of Vitis Gretchen Hagen3.2 (VvGH3.2) and VvGH3.3, auxin-responsive genes, were up-regulated from 2 DBF to full bloom with GA application. Furthermore, the Vitis GA signaling gene, VvDELLA was up-regulated by GA application during 12 DBF to 7 DBF, prior to down-regulation of VvIAA9 and VvARF7. These results suggest that VvIAA9 and VvARF7 are negative regulators of fruit set initiation in grapevines, and GA signaling is integrated with auxin signaling via VvDELLA during parthenocarpic fruit development in grapevines.
Crespo, Bibiana G.; Keafer, Bruce A.; Ralston, David K.; Lind, Henry; Farber, Dawson; Anderson, Donald M.
2017-01-01
Paralytic Shellfish Poisoning (PSP) toxins are annually recurrent along the Massachusetts coastline (USA), which includes many small embayments and salt ponds. Among these is the Nauset Marsh System (NMS), which has a long history of PSP toxicity. Little is known, however, about the bloom dynamics of the causative organism Alexandrium fundyense within that economically and socially important system. The overall goal of this work was to characterize the distribution and dynamics of A. fundyense blooms within the NMS and adjacent coastal waters by documenting the distribution and abundance of resting cysts and vegetative cells. Cysts were found predominantly in three drowned kettle holes or salt ponds at the distal ends of the NMS – Salt Pond, Mill Pond, and Town Cove. The central region of the NMS had a much lower concentration of cysts. Two types of A. fundyense blooms were observed. One originated entirely within the estuary, seeded by cysts in the three seedbeds. These blooms developed independently of each other and of the A. fundyense population observed in adjacent coastal waters outside the NMS. The temporal development of the blooms was different in the three salt ponds, with initiation differing by as much as 30 days. These differences do not appear to reflect the initial cyst abundances in these locations, and may simply result from higher cell retention and higher nutrient concentrations in Mill Pond, the first site to bloom. Germination of cysts accounted for a small percentage of the peak cell densities in the ponds, so population size was influenced more by the factors affecting growth than by cyst abundance. Subsurface cell aggregation (surface avoidance) limited advection of the vegetative A. fundyense cells out of the salt ponds through the shallow inlet channels. Thus, the upper reaches of the NMS are at the greatest risk for PSP since the highest cyst abundances and cell concentrations were found there. After these localized blooms in the salt ponds peaked and declined, a second, late season bloom occurred within the central portions of the NMS. The timing of this second bloom relative to those within the salt ponds and the coastal circulation patterns at that time strongly suggest that those cells originated from a regional A. fundyense bloom in the Gulf of Maine, delivered to the central marsh from coastal waters outside the NMS through Nauset Inlet. These results will guide policy decisions about water quality as well as shellfish monitoring and utilization within the NMS and highlight the potential for “surgical” closures of shellfish during PSP events, leaving some areas open for harvesting while others are closed. PMID:28690476
Comparative Analysis of Flower Volatiles from Nine Citrus at Three Blooming Stages
Azam, Muhammad; Song, Min; Fan, Fangjuan; Zhang, Bo; Xu, Yaying; Xu, Changjie; Chen, Kunsong
2013-01-01
Volatiles from flowers at three blooming stages of nine citrus cultivars were analyzed by headspace-solid phase microextraction (HS-SPME)-GC-MS. Up to 110 volatiles were detected, with 42 tentatively identified from citrus flowers for the first time. Highest amounts of volatiles were present in fully opened flowers of most citrus, except for pomelos. All cultivars were characterized by a high percentage of either oxygenated monoterpenes or monoterpene hydrocarbons, and the presence of a high percentage of nitrogen containing compounds was also observed. Flower volatiles varied qualitatively and quantitatively among citrus types during blooming. Limonene was the most abundant flower volatile only in citrons; α-citral and β-citral ranked 2nd and 3rd only for Bergamot, and unopened flowers of Ponkan had a higher amount of linalool and β-pinene while much lower amount of γ-terpinene and p-cymene than Satsuma. Taking the average of all cultivars, linalool and limonene were the top two volatiles for all blooming stages; β-pinene ranked 3rd in unopened flowers, while indole ranked 3rd for half opened and fully opened flower volatiles. As flowers bloomed, methyl anthranilate increased while 2-hexenal and p-cymene decreased. In some cases, a volatile could be high in both unopened and fully opened flowers but low in half opened ones. Through multivariate analysis, the nine citrus cultivars were clustered into three groups, consistent with the three true citrus types. Furthermore, an influence of blooming stages on clustering was observed, especially with hybrids Satsuma and Huyou. Altogether, it was suggested that flower volatiles can be suitable markers for revealing the genetic relationships between citrus cultivars but the same blooming stage needs to be strictly controlled. PMID:24232454
Comparative analysis of flower volatiles from nine citrus at three blooming stages.
Azam, Muhammad; Song, Min; Fan, Fangjuan; Zhang, Bo; Xu, Yaying; Xu, Changjie; Chen, Kunsong
2013-11-13
Volatiles from flowers at three blooming stages of nine citrus cultivars were analyzed by headspace-solid phase microextraction (HS-SPME)-GC-MS. Up to 110 volatiles were detected, with 42 tentatively identified from citrus flowers for the first time. Highest amounts of volatiles were present in fully opened flowers of most citrus, except for pomelos. All cultivars were characterized by a high percentage of either oxygenated monoterpenes or monoterpene hydrocarbons, and the presence of a high percentage of nitrogen containing compounds was also observed. Flower volatiles varied qualitatively and quantitatively among citrus types during blooming. Limonene was the most abundant flower volatile only in citrons; α-citral and β-citral ranked 2nd and 3rd only for Bergamot, and unopened flowers of Ponkan had a higher amount of linalool and β-pinene while much lower amount of γ-terpinene and p-cymene than Satsuma. Taking the average of all cultivars, linalool and limonene were the top two volatiles for all blooming stages; β-pinene ranked 3rd in unopened flowers, while indole ranked 3rd for half opened and fully opened flower volatiles. As flowers bloomed, methyl anthranilate increased while 2-hexenal and p-cymene decreased. In some cases, a volatile could be high in both unopened and fully opened flowers but low in half opened ones. Through multivariate analysis, the nine citrus cultivars were clustered into three groups, consistent with the three true citrus types. Furthermore, an influence of blooming stages on clustering was observed, especially with hybrids Satsuma and Huyou. Altogether, it was suggested that flower volatiles can be suitable markers for revealing the genetic relationships between citrus cultivars but the same blooming stage needs to be strictly controlled.
Pírez, Macarena; Gonzalez-Sapienza, Gualberto; Sienra, Daniel; Ferrari, Graciela; Last, Michael; Last, Jerold A; Brena, Beatriz M
2013-01-15
In recent years, the international demand for commodities has prompted enormous growth in agriculture in most South American countries. Due to intensive use of fertilizers, cyanobacterial blooms have become a recurrent phenomenon throughout the continent, but their potential health risk remains largely unknown due to the lack of analytical capacity. In this paper we report the main results and conclusions of more than five years of systematic monitoring of cyanobacterial blooms in 20 beaches of Montevideo, Uruguay, on the Rio de la Plata, the fifth largest basin in the world. A locally developed microcystin ELISA was used to establish a sustainable monitoring program that revealed seasonal peaks of extremely high toxicity, more than one-thousand-fold greater than the WHO limit for recreational water. Comparison with cyanobacterial cell counts and chlorophyll-a determination, two commonly used parameters for indirect estimation of toxicity, showed that such indicators can be highly misleading. On the other hand, the accumulated experience led to the definition of a simple criterion for visual classification of blooms, that can be used by trained lifeguards and technicians to take rapid on-site decisions on beach management. The simple and low cost approach is broadly applicable to risk assessment and risk management in developing countries. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rajendran, Kishore; Leng, Shuai; Jorgensen, Steven M.; Abdurakhimova, Dilbar; Ritman, Erik L.; McCollough, Cynthia H.
2017-03-01
Changes in arterial wall perfusion are an indicator of early atherosclerosis. This is characterized by an increased spatial density of vasa vasorum (VV), the micro-vessels that supply oxygen and nutrients to the arterial wall. Detection of increased VV during contrast-enhanced computed tomography (CT) imaging is limited due to contamination from blooming effect from the contrast-enhanced lumen. We report the application of an image deconvolution technique using a measured system point-spread function, on CT data obtained from a photon-counting CT system to reduce blooming and to improve the CT number accuracy of arterial wall, which enhances detection of increased VV. A phantom study was performed to assess the accuracy of the deconvolution technique. A porcine model was created with enhanced VV in one carotid artery; the other carotid artery served as a control. CT images at an energy range of 25-120 keV were reconstructed. CT numbers were measured for multiple locations in the carotid walls and for multiple time points, pre and post contrast injection. The mean CT number in the carotid wall was compared between the left (increased VV) and right (control) carotid arteries. Prior to deconvolution, results showed similar mean CT numbers in the left and right carotid wall due to the contamination from blooming effect, limiting the detection of increased VV in the left carotid artery. After deconvolution, the mean CT number difference between the left and right carotid arteries was substantially increased at all the time points, enabling detection of the increased VV in the artery wall.
Spring bloom onset in the Nordic Seas
NASA Astrophysics Data System (ADS)
Mignot, Alexandre; Ferrari, Raffaele; Mork, Kjell Arne
2016-06-01
The North Atlantic spring bloom is a massive annual growth event of marine phytoplankton, tiny free-floating algae that form the base of the ocean's food web and generates a large fraction of the global primary production of organic matter. The conditions that trigger the onset of the spring bloom in the Nordic Seas, at the northern edge of the North Atlantic, are studied using in situ data from six bio-optical floats released north of the Arctic Circle. It is often assumed that spring blooms start as soon as phytoplankton cells daily irradiance is sufficiently abundant that division rates exceed losses. The bio-optical float data instead suggest the tantalizing hypothesis that Nordic Seas blooms start when the photoperiod, the number of daily light hours experienced by phytoplankton, exceeds a critical value, independently of division rates. The photoperiod trigger may have developed at high latitudes where photosynthesis is impossible during polar nights and phytoplankton enters into a dormant stage in winter. While the first accumulation of biomass recorded by the bio-optical floats is consistent with the photoperiod hypothesis, it is possible that some biomass accumulation started before the critical photoperiod but at levels too low to be detected by the fluorometers. More precise observations are needed to test the photoperiod hypothesis.
Harmful Algae Records in Venice Lagoon and in Po River Delta (Northern Adriatic Sea, Italy)
Bilaničovà, Dagmar; Marcomini, Antonio
2014-01-01
A detailed review of harmful algal blooms (HAB) in northern Adriatic Sea lagoons (Po River Delta and Venice lagoon) is presented to provide “updated reference conditions” for future research and monitoring activities. In the study areas, the high mollusc production requires the necessity to identify better methods able to prevent risks for human health and socioeconomical interests. So, an integrated approach for the identification and quantification of algal toxins is presented by combining microscopy techniques with Liquid Chromatography coupled with High Resolution Time of Flight Mass Spectrometry (HPLC-HR-TOF-MS). The method efficiency was first tested on some samples from the mentioned coastal areas, where Dinophysis spp. occurred during summer in the sites directly affected by seawaters. Although cell abundance was always <200 cells/L, the presence of Pectenotoxin-2 (PTX2), detected by HPLC-HR-TOF-MS, indicated the potential release of detectable amounts of toxins even at low cell abundance. PMID:24683360
Millisecond Pulsars: The Gifts that Keep on Giving
NASA Astrophysics Data System (ADS)
Ransom, Scott M.
2011-01-01
There are about 2000 pulsars known, and while all of them as neutron stars are fascinating objects, the best and most exciting science comes from a very small percentage ( 1%) of exotic objects, most of which are millisecond pulsars (MSPs). These systems are notoriously hard to detect, yet their numbers have bloomed in the past 5-6 years via surveys using the world's largest radio telescopes and the Fermi Gamma-ray Space Telescope. Timing observations of these new MSPs as well as much improved monitoring of previously known MSPs are providing a wealth of science. In this talk I'll briefly cover 3 main areas in basic physics where systems like these are making an impact: strong-field tests of general relativity, the nature of matter at supra-nuclear densities, and the direct detection of gravitational waves (e.g. NANOGrav). In addition, several of the systems exhibit some very interesting astrophysics as well, including a transition from X-ray binary to MSP and a likely triple system that turned into an eccentric MSP binary.
Harmful algae records in Venice lagoon and in Po River Delta (northern Adriatic Sea, Italy).
Facca, Chiara; Bilaničovà, Dagmar; Pojana, Giulio; Sfriso, Adriano; Marcomini, Antonio
2014-01-01
A detailed review of harmful algal blooms (HAB) in northern Adriatic Sea lagoons (Po River Delta and Venice lagoon) is presented to provide "updated reference conditions" for future research and monitoring activities. In the study areas, the high mollusc production requires the necessity to identify better methods able to prevent risks for human health and socioeconomical interests. So, an integrated approach for the identification and quantification of algal toxins is presented by combining microscopy techniques with Liquid Chromatography coupled with High Resolution Time of Flight Mass Spectrometry (HPLC-HR-TOF-MS). The method efficiency was first tested on some samples from the mentioned coastal areas, where Dinophysis spp. occurred during summer in the sites directly affected by seawaters. Although cell abundance was always <200 cells/L, the presence of Pectenotoxin-2 (PTX2), detected by HPLC-HR-TOF-MS, indicated the potential release of detectable amounts of toxins even at low cell abundance.
Alacid, Elisabet; Reñé, Albert; Camp, Jordi; Garcés, Esther
2017-01-01
Dinoflagellate blooms are natural phenomena that often occur in coastal areas, which in addition to their large number of nutrient-rich sites are characterized by highly restricted hydrodynamics within bays, marinas, enclosed beaches, and harbors. In these areas, massive proliferations of dinoflagellates have harmful effects on humans and the ecosystem. However, the high cell density reached during blooms make them vulnerable to parasitic infections. Under laboratory conditions parasitoids are able to exterminate an entire host population. In nature, Parvilucifera parasitoids infect the toxic dinoflagellate Alexandrium minutum during bloom conditions but their prevalence and impact remain unexplored. In this study, we evaluated the in situ occurrence, prevalence, and dynamics of Parvilucifera parasitoids during recurrent blooms of A. minutum in a confined site in the NW Mediterranean Sea as well as the contribution of parasitism to bloom termination. Parvilucifera parasitoids were recurrently detected from 2009 to 2013, during seasonal outbreaks of A. minutum. Parasitic infections in surface waters occurred after the abundance of A. minutum reached 104–105 cells L−1, suggesting a density threshold beyond which Parvilucifera transmission is enhanced and the number of infected cells increases. Moreover, host and parasitoid abundances were not in phase. Instead, there was a lag between maximum A. minutum and Parvilucifera densities, indicative of a delayed density-dependent response of the parasitoid to host abundances, similar to the temporal dynamics of predator-prey interactions. The highest parasitoid prevalence was reached after a peak in host abundance and coincided with the decay phase of the bloom, when a maximum of 38% of the A. minutum population was infected. According to our estimates, Parvilucifera infections accounted for 5–18% of the total observed A. minutum mortality, which suggested that the contribution of parasitism to bloom termination is similar to that of other biological factors, such as encystment and grazing. PMID:28912757
Scott, Laura L; Downing, Simoné; Downing, Tim
2018-06-18
The suggested link between β-N-methylamino-L-alanine (BMAA) and the onset of neurodegenerative diseases and the detection of this cyanotoxin in aquatic organisms has prompted research into the potential human exposure risk associated with sourcing food items from eutrophied water bodies worldwide. The Hartbeespoort Dam reservoir in the North West province of South Africa has persistent cyanobacterial blooms and is used extensively by anglers, many of whom consume their catch. The commercial sale of fish species harvested from this reservoir as part of a recent biomanipulative remediation strategy may pose an additional hazard. BMAA and Microcystins (MC) were detected in fish sourced from this reservoir. BMAA levels of up to 1630 ng g -1 dry weight and MC concentrations of up to 29.44 ng g -1 dry weight were detected in fish sourced during an extensive bloom episode, with a clear correlation between the total amount of BMAA detected in the fish muscle tissue and their relative position in the Hartbeespoort Dam reservoir food web. Interestingly, fish sourced from this reservoir in winter when dense cyanobacterial blooms were lacking contained BMAA levels of up to 3055 ng g -1 dry weight. We also comment on the observed seasonal variations of BMAA levels in phytoplankton and fish sourced from this water body as well as the potential exposure risks associated with harvesting food items from this reservoir. Copyright © 2018 Elsevier Ltd. All rights reserved.
Method Development and Monitoring of Cyanotoxins in Water (ACS Central Presentation)
Increasing occurrence of cyanobacterial harmful algal blooms (HABs) in ambient waters has become a worldwide concern. Numerous cyanotoxins can be produced during HAB events which are toxic to animals and humans. Validated standardized methods that are rugged, selective and sensit...
Physical forcing of late summer chlorophyll a blooms in the oligotrophic eastern North Pacific
NASA Astrophysics Data System (ADS)
Toyoda, Takahiro; Okamoto, Suguru
2017-03-01
We investigated physical forcing of late summer chlorophyll a (chl a) blooms in the oligotrophic eastern North Pacific Ocean by using ocean reanalysis and satellite data. Relatively large chl a blooms as defined in this study occurred in August-October following sea surface temperature (SST) anomaly (SSTA) decreases, mixed layer deepening, and temperature and salinity increases at the bottom of the mixed layer. These physical conditions were apparently induced by the entrainment of subsurface water resulting from the destabilization of the surface layer caused by anomalous northward Ekman transport of subtropical waters of higher salinity. Salinity-normalized total alkalinity data provide supporting evidence for nutrient supply by the entrainment process. We next investigated the impact of including information about the entrainment on bloom identification. The results of analyses using reanalysis data and of those using only satellite data showed large SSTA decreases when the northward Ekman salinity transports were large, implying that the entrainment of subsurface water is well represented in both types of data. After surface-destabilizing conditions were established, relatively high surface chl a concentrations were observed. The use of SST information can further improve the detection of high chl a concentrations. Although the detection of high chl a concentrations would be enhanced by finer data resolution and the inclusion of biogeochemical parameters in the ocean reanalysis, our results obtained by using existing reanalysis data as well as recent satellite data are valuable for better understanding and prediction of lower trophic ecosystem variability.
Carvalho, Gustavo A.; Minnett, Peter J.; Banzon, Viva F.; Baringer, Warner; Heil, Cynthia A.
2011-01-01
We present a simple algorithm to identify Karenia brevis blooms in the Gulf of Mexico along the west coast of Florida in satellite imagery. It is based on an empirical analysis of collocated matchups of satellite and in situ measurements. The results of this Empirical Approach is compared to those of a Bio-optical Technique – taken from the published literature – and the Operational Method currently implemented by the NOAA Harmful Algal Bloom Forecasting System for K. brevis blooms. These three algorithms are evaluated using a multi-year MODIS data set (from July, 2002 to October, 2006) and a long-term in situ database. Matchup pairs, consisting of remotely-sensed ocean color parameters and near-coincident field measurements of K. brevis concentration, are used to assess the accuracy of the algorithms. Fair evaluation of the algorithms was only possible in the central west Florida shelf (i.e. between 25.75°N and 28.25°N) during the boreal Summer and Fall months (i.e. July to December) due to the availability of valid cloud-free matchups. Even though the predictive values of the three algorithms are similar, the statistical measure of success in red tide identification (defined as cell counts in excess of 1.5 × 104 cells L−1) varied considerably (sensitivity—Empirical: 86%; Bio-optical: 77%; Operational: 26%), as did their effectiveness in identifying non-bloom cases (specificity—Empirical: 53%; Bio-optical: 65%; Operational: 84%). As the Operational Method had an elevated frequency of false-negative cases (i.e. presented low accuracy in detecting known red tides), and because of the considerable overlap between the optical characteristics of the red tide and non-bloom population, only the other two algorithms underwent a procedure for further inspecting possible detection improvements. Both optimized versions of the Empirical and Bio-optical algorithms performed similarly, being equally specific and sensitive (~70% for both) and showing low levels of uncertainties (i.e. few cases of false-negatives and false-positives: ~30%)—improved positive predictive values (~60%) were also observed along with good negative predictive values (~80%). PMID:22180667
Spring bloom dinoflagellate cyst dynamics in three eastern sub-basins of the Baltic Sea
NASA Astrophysics Data System (ADS)
Sildever, Sirje; Kremp, Anke; Enke, Annely; Buschmann, Fred; Maljutenko, Ilja; Lips, Inga
2017-04-01
Dinoflagellate cyst abundance and species composition were investigated before, during and after the spring bloom in the Gulf of Finland, north-eastern Baltic Proper and Gulf of Riga in order to detect spatial and temporal dynamics. Transport of newly formed cysts by currents was modelled to explore the possible distance travelled by cysts before sedimentation. The cyst community of the spring bloom dinoflagellates was dominated by the cysts of Biecheleria baltica in all basins, despite its marginal value in the planktonic spring bloom community in the Gulf of Riga. Dinoflagellate cyst abundance in the surface sediments displayed temporal dynamics in all basins, however, this appeared to be also influenced by physical processes. The model simulation showed that newly formed cysts are transported around 10-30 km from the point of origin before deposited. The latter suggests that transport of resting stages in the water column significantly affects spatial cyst distribution in the sediments and thus needs to be considered in the interpretation of temporal biological productivity patterns of a water body from cyst proxies.
Loukas, Christos-Moritz; Mowlem, Matthew C; Tsaloglou, Maria-Nefeli; Green, Nicolas G
2018-05-01
This paper presents a novel portable sample filtration/concentration system, designed for use on samples of microorganisms with very low cell concentrations and large volumes, such as water-borne parasites, pathogens associated with faecal matter, or toxic phytoplankton. The example application used for demonstration was the in-field collection and concentration of microalgae from seawater samples. This type of organism is responsible for Harmful Algal Blooms (HABs), an example of which is commonly referred to as "red tides", which are typically the result of rapid proliferation and high biomass accumulation of harmful microalgal species in the water column or at the sea surface. For instance, Karenia brevis red tides are the cause of aquatic organism mortality and persistent blooms may cause widespread die-offs of populations of other organisms including vertebrates. In order to respond to, and adequately manage HABs, monitoring of toxic microalgae is required and large-volume sample concentrators would be a useful tool for in situ monitoring of HABs. The filtering system presented in this work enables consistent sample collection and concentration from 1 L to 1 mL in five minutes, allowing for subsequent benchtop sample extraction and analysis using molecular methods such as NASBA and IC-NASBA. The microalga Tetraselmis suecica was successfully detected at concentrations ranging from 2 × 10 5 cells/L to 20 cells/L. Karenia brevis was also detected and quantified at concentrations between 10 cells/L and 10 6 cells/L. Further analysis showed that the filter system, which concentrates cells from very large volumes with consequently more reliable sampling, produced samples that were more consistent than the independent non-filtered samples (benchtop controls), with a logarithmic dependency on increasing cell numbers. This filtering system provides simple, rapid, and consistent sample collection and concentration for further analysis, and could be applied to a wide range of different samples and target organisms in situations lacking laboratories. Copyright © 2018. Published by Elsevier B.V.
Turner, Andrew D; Waack, Julia; Lewis, Adam; Edwards, Christine; Lawton, Linda
2018-02-01
A simple, rapid UHPLC-MS/MS method has been developed and optimised for the quantitation of microcystins and nodularin in wide variety of sample matrices. Microcystin analogues targeted were MC-LR, MC-RR, MC-LA, MC-LY, MC-LF, LC-LW, MC-YR, MC-WR, [Asp3] MC-LR, [Dha7] MC-LR, MC-HilR and MC-HtyR. Optimisation studies were conducted to develop a simple, quick and efficient extraction protocol without the need for complex pre-analysis concentration procedures, together with a rapid sub 5min chromatographic separation of toxins in shellfish and algal supplement tablet powders, as well as water and cyanobacterial bloom samples. Validation studies were undertaken on each matrix-analyte combination to the full method performance characteristics following international guidelines. The method was found to be specific and linear over the full calibration range. Method sensitivity in terms of limits of detection, quantitation and reporting were found to be significantly improved in comparison to LC-UV methods and applicable to the analysis of each of the four matrices. Overall, acceptable recoveries were determined for each of the matrices studied, with associated precision and within-laboratory reproducibility well within expected guidance limits. Results from the formalised ruggedness analysis of all available cyanotoxins, showed that the method was robust for all parameters investigated. The results presented here show that the optimised LC-MS/MS method for cyanotoxins is fit for the purpose of detection and quantitation of a range of microcystins and nodularin in shellfish, algal supplement tablet powder, water and cyanobacteria. The method provides a valuable early warning tool for the rapid, routine extraction and analysis of natural waters, cyanobacterial blooms, algal powders, food supplements and shellfish tissues, enabling monitoring labs to supplement traditional microscopy techniques and report toxicity results within a short timeframe of sample receipt. The new method, now accredited to ISO17025 standard, is simple, quick, applicable to multiple matrices and is highly suitable for use as a routine, high-throughout, fast turnaround regulatory monitoring tool. Copyright © 2017 Elsevier B.V. All rights reserved.
Satellite monitoring of cyanobacterial harmful algal bloom ...
Cyanobacterial harmful algal blooms (cyanoHABs) cause extensive problems in lakes worldwide, including human and ecological health risks, anoxia and fish kills, and taste and odor problems. CyanoHABs are a particular concern because of their dense biomass and the risk of exposure to toxins in both recreational waters and drinking source waters. Successful cyanoHAB assessment by satellites may provide a first-line of defense indicator for human and ecological health protection. In this study, assessment methods were developed to determine the utility of satellite technology for detecting cyanoHAB occurrence frequency at locations of potential management interest. The European Space Agency's MEdium Resolution Imaging Spectrometer (MERIS) was evaluated to prepare for the equivalent Sentinel-3 Ocean and Land Colour Imager (OLCI) launched in 2016. Based on the 2012 National Lakes Assessment site evaluation guidelines and National Hydrography Dataset, there were 275,897 lakes and reservoirs greater than 1 hectare in the 48 U.S. states. Results from this evaluation show that 5.6 % of waterbodies were resolvable by satellites with 300 m single pixel resolution and 0.7 % of waterbodies were resolvable when a 3x3 pixel array was applied based on minimum Euclidian distance from shore. Satellite data was also spatially joined to US public water surface intake (PWSI) locations, where single pixel resolution resolved 57% of PWSI and a 3x3 pixel array resolved 33% of
Zark, Maren; Riebesell, Ulf; Dittmar, Thorsten
2015-10-01
Marine dissolved organic matter (DOM) is one of the largest active organic carbon reservoirs on Earth, and changes in its pool size or composition could have a major impact on the global carbon cycle. Ocean acidification is a potential driver for these changes because it influences marine primary production and heterotrophic respiration. We simulated ocean acidification as expected for a "business-as-usual" emission scenario in the year 2100 in an unprecedented long-term mesocosm study. The large-scale experiments (50 m(3) each) covered a full seasonal cycle of marine production in a Swedish Fjord. Five mesocosms were artificially enriched in CO2 to the partial pressure expected in the year 2100 (900 μatm), and five more served as controls (400 μatm). We applied ultrahigh-resolution mass spectrometry to monitor the succession of 7360 distinct DOM formulae over the course of the experiment. Plankton blooms had a clear effect on DOM concentration and molecular composition. This succession was reproducible across all 10 mesocosms, independent of CO2 treatment. In contrast to the temporal trend, there were no significant differences in DOM concentration and composition between present-day and year 2100 CO2 levels at any time point of the experiment. On the basis of our results, ocean acidification alone is unlikely to affect the seasonal accumulation of DOM in productive coastal environments.
NASA Astrophysics Data System (ADS)
Kudela, Raphael M.; Lucas, Andrew J.; Hayashi, Kendra; Howard, Meredith; McLaughlin, Karen
2017-02-01
Eutrophication of coastal waters is an urgent and globally increasing problem. A significant source of nutrients to Southern California coastal waters is direct discharge of secondarily treated wastewater effluent from regional Publicly Owned Treatment Works. The planned diversion of treated wastewater from the Orange County Sanitation District's main (5-mile) pipe to a shallow 1-mile pipe off Huntington Beach, CA in autumn 2012 provided an unprecedented opportunity to monitor the response of the coastal phytoplankton community to a major anthropogenic loading event. Despite the continuous release of approximately 11.07 × 106 m3 of effluent containing 1743 μM ammonium, there was virtually no detectable change in phytoplankton biomass, in striking contrast to the harmful algal bloom dominated community that quickly developed in response to a comparable diversion in Santa Monica Bay in 2006. Field and laboratory studies demonstrate that disinfection byproducts associated with enhanced dechlorination were present in the discharged water, and that these compounds had a strong inhibitory impact on phytoplankton photophysiology and growth, lasting 24 h for photosynthetic performance and at least 3 d for growth, assessed as change in chlorophyll. Thus, the perhaps fortuitous unintended consequence of enhanced chlorination was the production of inhibitory compounds that suppressed the potential phytoplankton response over a large swath of the continental shelf during the diversion.
Zark, Maren; Riebesell, Ulf; Dittmar, Thorsten
2015-01-01
Marine dissolved organic matter (DOM) is one of the largest active organic carbon reservoirs on Earth, and changes in its pool size or composition could have a major impact on the global carbon cycle. Ocean acidification is a potential driver for these changes because it influences marine primary production and heterotrophic respiration. We simulated ocean acidification as expected for a “business-as-usual” emission scenario in the year 2100 in an unprecedented long-term mesocosm study. The large-scale experiments (50 m3 each) covered a full seasonal cycle of marine production in a Swedish Fjord. Five mesocosms were artificially enriched in CO2 to the partial pressure expected in the year 2100 (900 μatm), and five more served as controls (400 μatm). We applied ultrahigh-resolution mass spectrometry to monitor the succession of 7360 distinct DOM formulae over the course of the experiment. Plankton blooms had a clear effect on DOM concentration and molecular composition. This succession was reproducible across all 10 mesocosms, independent of CO2 treatment. In contrast to the temporal trend, there were no significant differences in DOM concentration and composition between present-day and year 2100 CO2 levels at any time point of the experiment. On the basis of our results, ocean acidification alone is unlikely to affect the seasonal accumulation of DOM in productive coastal environments. PMID:26601292
Environmental Detectives. Grades 5-8. Teacher's Guide.
ERIC Educational Resources Information Center
Beals, Kevin; Willard, Carolyn
This book uses a detective approach to teach about environmental issues. Student sleuths investigate many potential causes of fish dying including chlorine pollution, acid rain, erosion and sediment pollution, predator-prey relationships, phosphate pollution and algal blooms, and oil pollution. The text provides students the opportunity to grapple…
NASA Astrophysics Data System (ADS)
Vilmin, Lauriane; Escoffier, Nicolas; Groleau, Alexis; Poulin, Michel; Flipo, Nicolas
2014-05-01
Dissolved oxygen is a key variable in the hydro-ecological functioning of river systems. The accurate representation of the different biogeochemical processes affecting algal blooms and dissolved oxygen in the water column in hydro-ecological models is crucial for the use of these models as reliable management tools. This study focuses on the water quality of the Seine River along a 225 km stretch, from Paris to the Seine estuary. The study area is highly urbanized and located downstream France's largest agricultural area, and therefore receives large amounts of nutrients. During the last decades, nutrient inputs have been significantly reduced, especially with the implementation of new sewage water treatment technologies. Even though the frequency and the intensity of observed algal blooms have decreased, blooms were observed in 2011 and 2012. These blooms are generally followed by a period of high organic matter accumulation, leading to high mineralization fluxes and potential oxygen depletion. The hydrodynamics and the water quality of the Seine River are simulated for the 2011-2012 period with the distributed process-based hydro-ecological model ProSe (Even et al., 1998). The simulated chlorophyll a and dissolved oxygen concentrations are compared to high frequency measurements at the Bougival monitoring station (50 km downstream from Paris), which is part of the CarboSeine monitoring network. The high frequency continuous dataset allows calibrating of primary producers' physiological parameters. New growth parameters are defined for the diatom community. The blooms occur at the end of the winter period (march 2011 and march 2012) and the optimal temperature for diatom growth is calibrated at 10°C, based on an analysis of the physiological response of the diatom community. One of the main outcomes of the modelling exercise is that the precise identification of the constituting communities of algal blooms must be achieved prior to the modelling itself. With the new growth parameters and by considering additional communities, as dinoflagellates, in the model, chlorophyll a peak values (over 60 µg/L in 2011 and over 30 in 2012) are accurately simulated. Moreover, the production rate of the communities constituting an algal bloom can be estimated by interpreting the high frequency diel dissolved oxygen curves (Escoffier et al., 2013). The modelled production rate during the 2011 bloom is of the same order of magnitude as the one estimated with this method (0.5 to 2 g/m3/day of oxygen), which validates the representation of photosynthesis in the model. Therefore the simulated oxygen response is also improved. References: Even S., Poulin M., Garnier J., Billen G., Servais P., Chesterikoff A., Coste M., 1998. River ecosystem modelling: Application of the ProSe model to the Seine river (France). Hydrobiologia 373, 27-37. Escoffier N., Bensoussan N., Métivier F., Rocher V., Bernard C., Arnaud D., Vilmin L., Poulin M., Flipo N., Groleau A., 2013. Intergrating large river trophic functioning from real time sensors network measurements. American Society of Limnology and Oceanography Congress. New Orleans, February 2013.
SERVIR: The Regional Visualization and Monitoring System
NASA Technical Reports Server (NTRS)
Irwin, Daniel E.
2010-01-01
This slide presentation reviews the SERVIR program. SERVIR is a partnership between NASA and USAID and three international nodes: Central America, Africa, and the Himalaya region. SERVIR,using satellite observations and ground based observations, is used by decision makers to allow for improved monitoring of air quality, extreme weather, biodiversity, and changes in land cove and has also been used to respond to environmental threats, such as wildfires, floods, landslides, harmful algal blooms, and earthquakes.
Londe, L R; Novo, E M L M; Barbosa, C; Araujo, C A S
2016-05-03
Satellite images are an effective tool for the detection of phytoplankton blooms, since they cause striking changes in water color. Bloom intensity can be expressed in terms of chlorophyll-a concentration. Previous studies suggest the use of Landsat TM4/TM3 reflectance ratio to retrieve surface chlorophyll-a concentration from aquatic systems. In this study we assumed that a remote sensing trophic state index can be applied to investigate how changes in HRT along the hydrologic year affect the spatial distribution of the phytoplankton blooms at Ibitinga's reservoir surface. For that, we formulated two objectives: (1) apply a semi-empirical model which uses this reflectance ratio to map chlorophyll-a concentration at Ibitinga reservoir along the 2005 hydrologic year and (2) assess how changes in hydraulic residence time (HRT) affect the spatial distribution of phytoplankton blooms at Ibitinga Reservoir. The study site was chosen because previous studies reported seasonal changes in the reservoir limnology which might be related to the reservoir seasonality and hydrodynamics. Six Landsat/TM images were acquired over Ibitinga reservoir during 2005 and water flow measurements provided by the Brazilian Electric System National Operator - ONS were used to compute the reservoir´s residence time, which varied from 5.37 to 52.39 days during 2005. The HRT in the date of image acquisition was then compared to the distribution of chlorophyll-a in the reservoir. The results showed that the HRT increasing implies the increasing of the reservoir surface occupied by phytoplankton blooms.
Satellite views of the massive algal bloom in the Persian Gulf and the Gulf of Oman during 2008-2009
NASA Astrophysics Data System (ADS)
Yu, Shujie; Gong, Fang; He, Xianqiang; Bai, Yan; Zhu, Qiankun; Wang, Difeng; Chen, Peng
2016-10-01
The Persian Gulf and the Gulf of Oman locate at the northwest of the Arabian Sea, with the total area more than 50,0000 km2. The Persian Gulf is a semi-enclosed subtropical sea with high water temperature, extremely high salinity, and an average depth of 50 meters. By the Strait of Hormuz, the Persian Gulf is connected to the Gulf of Oman which is significantly affected by the monsoonal winds and by water exchange between the Arabian Sea and the Persian Gulf. Algal blooms occurred frequently in the Persian Gulf and the Gulf of Oman, and some of them are harmful algal blooms which may lead to massive fish death and thereby serious economic loss. Due to the widely spatial coverage and temporal variation, it is difficult to monitoring the dynamic of the algal bloom based on in situ measurement. In this study, we used the remote sensing data from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Aqua satellite to investigate a massive algal bloom event in the Persian Gulf and the Gulf of Oman during 2008-2009. The time series of MODIS-derived chlorophyll concentration (Chl-a) indicated that the bloom event with high Chl-a concentration ( 60 percent higher than corresponding climatological data) appeared to lasting more than 8 months from autumn of 2008 to spring of 2009. In addition, the bloom was widespread from the Persian Gulf to the Gulf of Oman and neighboring open ocean. The MODIS-derived net primary production (NPP) collected from MODIS showed the same trend with Chl-a. Multiple forces including upwelling, dust deposition was taken into account to elucidate the mechanisms for the long-lasting algal bloom. The time series chlorophyll concentration of the Persian Gulf emerges a significant seasonal pattern with maximum concentrations seen during the winter time and lowest during the summer. It also indicated slight disturbances occurred in June (May/July) and December (November/ January) in some years. The sea surface temperature and water transparency in the Persian Gulf increased with the rates of 0.3% (<0.01) and 3.02% (p<0.01) during 2003-2014, respectively. Chl-a and NPP declined with the rates of 1.61% (p=0.06) and 1.09% (p=0.08), respectively. However, there are no significant changes of the bloom initiation, termination and duration time among years over 2003-2014.
Rounds, Stewart A.; Carpenter, Kurt D.; Fesler, Kristel J.; Dorsey, Jessica L.
2015-12-17
The results and insights derived from this study can be used to enhance future monitoring and data collection strategies designed to improve water quality and plankton models and better predict dissolved-oxygen concentrations in the lower Tualatin River.
Surface water-quality activities of the U.S. Geological Survey in New England
Huntington, Thomas G.
2016-03-23
• Water quality monitoring networks • Effects of best management practices and low impact development on water quality • Load estimation techniques and total maximum daily load assistance • Mercury studies • Toxics and emerging contaminants • Eutrophication and nuisance algal blooms
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
USDA-ARS?s Scientific Manuscript database
In this research, we present a novel technique to monitor cyanobacterial algal bloom using remote sensing measurements. We have used a multi-band quasi analytical algorithm that determines phytoplankton absorption coefficients, aF('), from above-surface remote sensing reflectance, Rrs('). In situ da...
Occurrence, Monitoring and Treatment of Cyanobacterial Toxins in Drinking Water
In the summer of 2014 a number of drinking water treatment plants (DWTPs) on Lake Erie supplied water samples on a monthly basis for analysis. Chlorophyll-a measurements, LC/MS/MS and ELISA techniques specific to microcystins were employed to measure potential harmful algal bloom...
The detection and quantification of microcystins, a family of toxins associated with harmful algal blooms, is complicated by their structural diversity and a lack of commercially available analytical standards for method development. As a result, most detection methods have focus...
NASA Astrophysics Data System (ADS)
Zhang, Xiaoli; Song, Yanjing; Liu, Dongyan; Keesing, John K.; Gong, Jun
2015-09-01
Macroalgal blooms may lead to dramatic changes in physicochemical variables and biogeochemical cycling in affected waters. However, little is known about the effects of macroalgal blooms on marine bacteria, especially those functioning in nutrient cycles. We measured environmental factors and investigated bacterial diazotrophs in two niches, surface waters that were covered (CC) and non-covered (CF) with massive macroalgal canopies of Ulva prolifera, in the Yellow Sea in the summer of 2011 using real-time PCR and clone library analysis of nifH genes. We found that heterotrophic diazotrophs (Gammaproteobacteria) dominated the communities and were mostly represented by Vibrio-related phylotypes in both CC and CF. Desulfovibrio-related phylotypes were only detected in CC. There were significant differences in community composition in these two environments (p < 0.001) and a much higher abundance of nifH in CC (4.55 × 106 copies l-1) than in CF (2.49 × 106 copies l-1). The nifH copy number was inversely related to concentrations of ammonium and dissolved inorganic nitrogen and to the stoichiometric ratios of N:P and N:Si. This indicates that macroalgal blooms significantly affect diazotrophic abundance and community composition and that vibrios and Desulfovibrio-related heterotrophic diazotrophs adapt well to the (N-rich but P-limited) environment during blooming. Potential ecological and microbiological mechanisms behind this scenario are discussed.
NASA Astrophysics Data System (ADS)
Kim, B.; Cho, Y.; Kim, S.; Kim, K.
2012-12-01
Bong-Guk Kim1, Yang-Ki Cho1, Sangil Kim2, Kwang-Yul, Kim1 1 School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea 2 College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, USA To understand the ocean carbon cycle, estimating the ocean biomass is necessary and it has been done by various methods. Satellite observation is one of beneficial methods to investigate ocean biomass. Satellite data enable us to monitor chlorophyll-a for wide area with high resolution and frequency. The East/Japan Sea, which called as 'miniature ocean' due to its rapid turnover circulation, is one of the most productive ocean. With the concerning global warming, a number of studies on temporal and spatial distribution of satellite chlorophyll in the East/Japan Sea have been processed. However, most of these studies have used monthly data set which can not resolve detail evolution of chlorophyll-a. In this study, detail evolutions of spring and fall bloom are investigated by the CSEOF (Cyclo-Stationary EOF) analysis of 8-day composite MODIS chlorophyll data from July 2002 to February 2012. For the CSEOF analysis, optimal interpolation (OI) method was applied to fill the blank data which is critical problem in satellite data. Spring bloom started at western Japanese coast on 57th day of the year. And it gradually moves eastern coast of Korean and then moves to northern Primorye coast. Spring bloom spreads entire the East/Japan Sea on 113th day of the year and then, it disappears from the southern East/Japan Sea. Spring bloom ends in the northern East/Japan Sea. In the case of fall bloom, it starts at Korean coast on 265th day of the year, and it moves to the north along the Korean coast by 329th day of the year. After that day, fall bloom ends near the northern coast of Korea on 353rd day of the year.
Surface Water Quality Survey of Northern Indian River Lagoon from Sebastian Inlet to Mosquito Lagoon
NASA Astrophysics Data System (ADS)
Weaver, R. J.; Webb, B. M.
2012-12-01
Following news of an emerging brown tide algal bloom in the northern Indian River Lagoon (IRL), researchers sought to gain insight into the surface water quality in the IRL, as well as the extent of the algae coverage. A Portable SeaKeeper from YSI, mounted to a personal watercraft-based coastal profiling system, autonomously collected and analyzed the surface water. The system operates by recording sample data every 12 seconds while continuously underway at speeds up to and greater than 50 km/hr. The researchers covered a transect that started at Sebastian Inlet and followed a zig-zag path extending up through the Haulover Canal and into the Mosquito Lagoon. The survey path covered 166.7 km, and collected 2248 samples. Along the way stops were made at water quality stations used by the Saint John's River Water Management District, so that the data collected can be incorporated into ongoing monitoring efforts. The system analyzed the surface water for dissolved oxygen, pH, chlorophyll-a, salinity, temperature, turbidity, refined fuels, and CDOM. In the two days following the lagoon survey, the inlets at Port Canaveral and Sebastian were also surveyed for tidal currents and hydrography. The IRL transect survey data recorded evidence of the southern extent of the algae bloom in both chlorophyll-a and pH levels. Visual evidence of the bloom was striking as the water in the northern IRL turned a milk chocolaty brown color. Chlorophyll-a levels in the two inlets suggested bloom activity at these locations; however this bloom was different. This oceanic bloom was a result of a persistent upwelling event along the East Florida shelf, and the color was a paler green-yellow. The near-synoptic nature of the comprehensive lagoon survey, conducted in just over 7 hours, allows researchers to obtain a better understanding of water quality in coastal lagoons. Elevated levels of salinity, temperature, and refined fuels in the northern IRL indicate a low exchange rate and absence of flushing. Coordinated studies of circulation through the Haulover Canal, Ponce Inlet and Sebastian Inlet would aid in understanding the genesis of future bloom events.;
Results and evaluation of a pilot primary monitoring network, San Francisco Bay, California, 1978
Bradford, W.L.; Iwatsubo, R.T.
1980-01-01
A primary monitoring network of 12 stations, with measurements at 1-meter depth intervals every 2 weeks during periods of high inflow from the Sacramento-San Joaquin River delta, and every 4-6 weeks during seasonal low delta inflows, appears adequate to observe major changes in ambient water quality in San Francisco Bay. A 1-year study tested the network operation and determined that analysis of the data could demonstrate the major changes in salinity, temperature, and light-attenuation distributions known to occur, based on earlier research, in response to variations of delta inflow and to other physical processes. Observations of eddies at two stations, of the influence of water from a river flooding in the extreme south bay, and of difference in salinity and temperature laterally across the entrance to the south bay are all new but are consistent with existing models. The pH, dissolved oxygen, and light-attenuation measurements, while adequate to observe small-scale vertical variations, are not sufficiently sensitive to detect the effects of phytoplankton blooms. (USGS)
NASA Astrophysics Data System (ADS)
O'Higgins, T. G.; Wilson, J. G.
2005-08-01
Temperature, salinity, nutrients (total oxidised nitrogen (TON), ammonium (NH 4) and orthophosphate (PO 4)) and chlorophyll a were monitored in the Liffey estuary and Dublin Bay from June 2000 to June 2003. Four groups of sites were defined comprising the upper estuary (Gp. I), the outer estuary (Gp. III) with a small set (Gp. II) of sites between Groups I and III heavily influenced by the sewage treatment works outflow, and the Bay proper (Gp. IV). Riverine inputs of TON and PO 4 were calculated at an average of 826 t N y -1 and 31 t P y -1, respectively, and were largely controlled by flow rate. The sewage treatment works were identified as a major source of PO 4 and NH 4 to the system. Mixing in the upper estuary of nutrient limited saline waters with hypernutrified river water regularly (i.e. annually) produced relatively high concentrations of chlorophyll a (>10 mg chl a m -3), and also sporadic blooms with extremely high chlorophyll a values (max. 121.6 mg chl a m -3). These latter phytoplankton blooms occurred in high salinity waters and were due to mixing of nutrient limited saline waters and nutrient rich river waters. The mean annual flux of phytoplankton carbon from the river Liffey was calculated at 23.5 t C y -1, of which half was accumulated or remineralised in the estuary and did not enter the Bay. In the Bay proper (Gp. IV) summer nutrient concentrations dropped below detection limits, and chlorophyll a concentrations followed the classic pattern with a spring bloom maximum of 5.5 mg chl a m -3. This pattern in nutrients and chlorophyll a came from the advection of waters into the Bay from an offshore source. Overall while there was considerable evidence for eutrophication in the estuary, the bay itself showed little biological response to nutrient loading.
Surface layer and bloom dynamics observed with the Prince William Sound Autonomous Profiler
NASA Astrophysics Data System (ADS)
Campbell, R. W.
2016-02-01
As part of a recent long term monitoring effort, deployments of a WETLabs Autonomous Moored Profiler (AMP) began Prince William Sound (PWS) in 2013. The PWS AMP consists of a positively buoyant instrument frame, with a winch and associated electronics that profiles the frame from a park depth (usually 55 m) to the surface by releasing and retrieving a thin UHMWPE tether; it generally conducts a daily cast and measures temperature, salinity, chlorophyll-a fluorescence, turbidity, and oxygen and nitrate concentrations. Upward and downward looking ADCPs are mounted on a float below the profiler, and an in situ plankton imager is in development and will be installed in 2016. Autonomous profilers are a relatively new technology, and early deployments experienced a number of failures from which valuable lessons may be learned. Nevertheless, an unprecedented time series of the seasonal biogeochemical procession in the surface waters coastal Gulf of Alaska was collected in 2014 and 2015. The northern Gulf of Alaska has experienced a widespread warm anomaly since early 2014, and surface layer temperature anomalies in PWS were strongly positive during winter 2014. The spring bloom observed by the profiler began 2-3 weeks earlier than average, with surface nitrate depleted by late April. Although surface temperatures were still above average in 2015, bloom timing was much later, with a short vigorous bloom in late April and a subsurface bloom in late May that coincided with significant nitrate drawdown. As well as the vernal blooms, wind-driven upwelling events lead to several small productivity pulses that were evident in changes in nitrate and oxygen concentrations, and chlorophyll-a fluorescence. As well as providing a mechanistic understanding of surface layer biogeochemistry, high frequency observations such as these put historical observations in context, and provide new insights into the scales of variability in the annual cycles of the surface ocean in the North Pacific.
Taylor, Brad W.; Bothwell, Max L.
2014-01-01
The value of distinguishing native from nonnative invasive species has recently been questioned. However, this dichotomy is important for understanding whether a species’ successful dominance is caused by introductions, changing environmental conditions that facilitate an existing population, or both processes. We highlight the importance of knowing the origin of hard-to-detect invasive microorganisms for scientific research, management, and policy using a case study of recent algal blooms of the stalk-producing diatom Didymosphenia geminata. Nuisance blooms have been reported in rivers worldwide and have been hastily attributed to introductions. However, evidence indicates that blooms are probably not caused by introductions but, rather, by environmental conditions that promote excessive stalk production by this historically rare species. Effective responses to invasive microorganisms depend on knowing whether their proliferation is caused by being nonnative or is the result of changing environmental conditions that promote invasive characteristics of native species. PMID:26955071
Retention ponds constructed within urban watershed areas of high density populations are common as a result of green infrastructure applications. Several urban ponds in the Northern Kentucky area were monitored for algal community (algae and cyanobacteria) from October 2012 to Se...
Monitoring algal blooms in drinking water reservoirs using the Landsat-8 Operational Land Imager
In this study, we demonstrated that the Landsat-8 Operational Land Imager (OLI) sensor is a powerful tool that can provide periodic and system-wide information on the condition of drinking water reservoirs. The OLI is a multispectral radiometer (30 m spatial resolution) that allo...
1985-03-01
the phototrophic zone, high photo- ;ynthetic activity utilized CO thus reducing the alkalinity; at the 2’ ;ame time, the release of bicarbonate...1982). Like turbidity, suspended solids levels were elevated in the phototrophic zone due to phytoplankton blooms. This was especially noticeable
Cyanobacteria: State Monitoring Programs, Beach Closures, and Potential Human Health Risks
New England is rich in freshwater lakes and ponds, many of which are subject to cyanobacteria (blue-green algae) blooms that can limit recreational use and cause health problems. This study was conducted to better understand the health risks to human and animal populations that a...
A Nested Nearshore Nutrient Model (N&Sup3;M) for Nearshore Condition Assessment and Management
Nearshore conditions drive phenomena like harmful algal blooms (HABs), and the nearshore and coastal margin are the parts of the Great Lakes most used by humans. To assess conditions, optimize monitoring, and evaluate management options, a model of nearshore nutrient transport an...
Remote sensing technology has the potential to inform and accelerate the engagement of communities and managers in the implementation and performance of best management practices. Over the last few decades, satellite technology has allowed measurements on a global scale over long...
Cyanobacteria, known as blue-green algae, are photosynthetic bacteria found naturally in marine, freshwater, and estuarine ecosystems. An increase in nutrient input and changes in the climate have contributed to the proliferation of cyanobacteria, forming harmful algal blooms, or...
Role of resting cysts in Chilean Alexandrium catenella dinoflagellate blooms revisited.
Mardones, Jorge I; Bolch, Chris; Guzmán, Leonardo; Paredes, Javier; Varela, Daniel; Hallegraeff, Gustaaf M
2016-05-01
The detection of sparse Alexandrium catenella-resting cysts in sediments of southern Chilean fjords has cast doubts on their importance in the recurrence of massive toxic dinoflagellate blooms in the region. The role of resting cysts and the existence of different regional Chilean populations was studied by culturing and genetic approaches to define: (1) cyst production; (2) dormancy period; (3) excystment success; (4) offspring viability and (5) strain mating compatibility. This study newly revealed a short cyst dormancy (minimum 69 days), the role of key abiotic factors (in decreasing order salinity, irradiance, temperature and nutrients) controlling cyst germination (max. 60%) and germling growth rates (up to 0.36-0.52div.day -1 ). Amplified fragment length polymorphism (AFLP) characterization showed significant differences in genetic distances (GD) among A. catenella populations that were primarily determined by the geographical origin of isolates and most likely driven by oceanographic dispersal barriers. A complex heterothallic mating system pointed to variable reproductive compatibility (RCs) among Chilean strains that was high among northern (Los Lagos/North Aysén) and southern populations (Magallanes), but limited among the genetically differentiated central (South Aysén) populations. Field cyst surveys after a massive 2009 bloom event revealed the existence of exceptional high cyst densities in particular areas of the fjords (max. 14.627cystscm -3 ), which contrast with low cyst concentrations (<221.3cystscm -3 ) detected by previous oceanographic campaigns. In conclusion, the present study suggests that A. catenella resting cysts play a more important role in the success of this species in Chilean fjords than previously thought. Results from in vitro experiments suggest that pelagic-benthic processes can maintain year-round low vegetative cell concentrations in the water column, but also can explain the detection of high cysts aggregations after the 2009-bloom event. Regional drivers that lead to massive outbreaks, however, are still unknown but potential scenarios are discussed. Copyright © 2016 Elsevier B.V. All rights reserved.
Lotliker, Aneesh A; Baliarsingh, S K; Trainer, Vera L; Wells, Mark L; Wilson, Cara; Udaya Bhaskar, T V S; Samanta, Alakes; Shahimol, S R
2018-04-01
Intense blooms of the heterotrophic dinoflagellate, green Noctiluca scintillans, have been reported annually in the Northern Arabian Sea since the early 2000s. Although not known to produce organic toxins, these blooms are still categorized as a harmful due to their association with massive fish mortalities. Recent work has attributed these blooms to the vertical expansion of the oxygen minimum zone, driven by cultural eutrophication from major coastal cities in western India. As diatoms are preferred prey of green Noctiluca scintillans, more frequent blooms of this mixotroph will likely impact the productivity of important fisheries in the region. The present study uses a satellite algorithm to determine the distribution of both diatom and green Noctiluca blooms in the Northeastern Arabian Sea from 2009 to 2016. The results from shipboard microscopy of phytoplankton community composition were used to validate the satellite estimates. The satellite algorithm showed 76% accuracy for detection of green Noctiluca and 92% for diatoms. Shipboard measurements and data from biogeochemical-Argo floats were used to assess the relationship between oxygen concentrations and green Noctiluca blooms in the Northeastern Arabian Sea. Regardless of the presence of a Noctiluca bloom, the dissolved oxygen in the photic zone was always >70% saturated, with an average oxygen saturation >90%. The variability in the relative abundance of diatoms and green Noctiluca is not correlated with changes in oxygen concentration. These findings provide no evidence that cultural eutrophication has contributed to the decadal scale shifts in plankton composition in the Northeastern Arabian Sea oceanic waters. Conversely, the climatic warming of surface waters would have intensified stratification, thereby reducing net nutrient flux to the photic zone and decreasing silicate to nitrate ratios (Si:N); both factors that could increase the competitive advantage of the mixotroph, green Noctiluca, over diatoms. If so, the decadal-scale trajectory of phytoplankton community composition in the Northeastern Arabian Sea may be a harbinger of future climate-driven change in other productive oceanic systems. Copyright © 2018 Elsevier B.V. All rights reserved.
Cao, Qing; Steinman, Alan D; Wan, Xiang; Xie, Liqiang
2018-05-02
A 120-day field study was carried out near Lake Taihu to evaluate the bioaccumulation of microcystin (MC) congeners in a soil-plant system, as well as to assess human health risk when consuming edible plants irrigated with MCs-contaminated water. Natural cyanobacteria bloom-containing lake water (lake water) and half-diluted natural cyanobacteria bloom-containing lake water with tap water (half-lake water) were used to irrigate lettuce and rice. An additional treatment involving fertilization with a cyanobacteria bloom was applied just to the lettuce experiment. MCs in soils, roots, leaves and grains (rice) were detected. In the soil-lettuce system, the three MC congeners in soils fertilized with a cyanobacteria bloom were not detected. The highest concentrations of MCs detected in soils, lettuce roots and leaves were 24.8 (MC-LR 10.1, MC-RR 10.5, MC-YR 4.2) μg kg -1 , 424 (MC-LR 168, MC-RR 194, MC-YR 61.5) μg kg -1 and 183 (MC-LR 78.0, MC-RR 76.8, MC-YR 28.1) μg kg -1 , respectively, in the lake water treatment. In the soil-rice system, the highest concentration of MCs was accumulated in roots 1504 (MC-LR 634, MC-RR 573, MC-YR 297) μg kg -1 , in the lake water treatment. However, the concentration of MCs that accumulated in grains was extremely low with a total MCs concentration of 5.2 (MC-LR 2.1, MC-RR 2.0, MC-YR 1.1) μg kg -1 in the lake water treatment. According to the estimated daily intake (EDI) value, fertilizing with an appropriate amount (0.2% or less, w/w, dry weight (DW)) of a cyanobacteria bloom, as well as consuming rice irrigated with lake water would not pose a threat to human health. However, the EDI values for both adults and children reached tolerable daily intake (TDI) value, assuming they consumed lettuce irrigated with lake water. Results obtained from the growth and yield indicators suggest that MCs bioaccumulation in edible plants is not necessarily coupled with phytotoxic effects. Copyright © 2018. Published by Elsevier Ltd.
Adaptive Bloom Filter: A Space-Efficient Counting Algorithm for Unpredictable Network Traffic
NASA Astrophysics Data System (ADS)
Matsumoto, Yoshihide; Hazeyama, Hiroaki; Kadobayashi, Youki
The Bloom Filter (BF), a space-and-time-efficient hashcoding method, is used as one of the fundamental modules in several network processing algorithms and applications such as route lookups, cache hits, packet classification, per-flow state management or network monitoring. BF is a simple space-efficient randomized data structure used to represent a data set in order to support membership queries. However, BF generates false positives, and cannot count the number of distinct elements. A counting Bloom Filter (CBF) can count the number of distinct elements, but CBF needs more space than BF. We propose an alternative data structure of CBF, and we called this structure an Adaptive Bloom Filter (ABF). Although ABF uses the same-sized bit-vector used in BF, the number of hash functions employed by ABF is dynamically changed to record the number of appearances of a each key element. Considering the hash collisions, the multiplicity of a each key element on ABF can be estimated from the number of hash functions used to decode the membership of the each key element. Although ABF can realize the same functionality as CBF, ABF requires the same memory size as BF. We describe the construction of ABF and IABF (Improved ABF), and provide a mathematical analysis and simulation using Zipf's distribution. Finally, we show that ABF can be used for an unpredictable data set such as real network traffic.
Muhlfeld, Clint C.; Jones, Leslie A.; E. William Schweiger,; Isabel W. Ashton,; Loren L. Bahls,
2011-01-01
Didymosphenia geminata (didymo) is a freshwater alga native to North America, including Glacier National Park, Montana. It has long been considered a cold-water species, but has recently spread to lower latitudes and warmer waters, and increasingly forms large blooms that cover streambeds. We used a comprehensive monitoring data set from the National Park Service (NPS) and USGS models of stream temperatures to explore the drivers of didymo abundance in Glacier National Park. We estimate that approximately 64% of the stream length in the park contains didymo, with around 5% in a bloom state. Results suggest that didymo abundance likely increased over the study period (2007–2009), with blooms becoming more common. Our models suggest that didymo abundance is positively related to summer stream temperatures and negatively related to total nitrogen and the distance downstream from lakes. Regional climate model simulations indicate that stream temperatures in the park will likely continue to increase over the coming decades, which may increase the extent and severity of didymo blooms. As a result, didymo may be a useful indicator of thermal and hydrological modification associated with climate warming, especially in a relatively pristine system like Glacier where proximate human-related disturbances are absent or reduced. Glacier National Park plays an important role as a sentinel for climate change and associated education across the Rocky Mountain region.
William, Schweiger E.; Ashton, I.W.; Muhlfeld, C.C.; Jones, L.A.; Bahls, L.L.
2011-01-01
Didymosphenia geminata (didymo) is a freshwater alga native to North America, including Glacier National Park, Montana. It has long been considered a cold-water species, but has recently spread to lower latitudes and warmer waters, and increasingly forms large blooms that cover streambeds. We used a comprehensive monitoring data set from the National Park Service (NPS) and USGS models of stream temperatures to explore the drivers of didymo abundance in Glacier National Park. We estimate that approximately 64% of the stream length in the park contains didymo, with around 5% in a bloom state. Results suggest that didymo abundance likely increased over the study period (2007-2009), with blooms becoming more common. Our models suggest that didymo abundance is positively related to summer stream temperatures and negatively related to total nitrogen and the distance downstream from lakes. Regional climate model simulations indicate that stream temperatures in the park will likely continue to increase over the coming decades, which may increase the extent and severity of didymo blooms. As a result, didymo may be a useful indicator of thermal and hydrological modification associated with climate warming, especially in a relatively pristine system like Glacier where proximate human-related disturbances are absent or reduced. Glacier National Park plays an important role as a sentinel for climate change and associated education across the Rocky Mountain region.
Method Development and Monitoring of Cyanotoxins in Water ...
Increasing occurrence of cyanobacterial harmful algal blooms (HABs) in ambient waters has become a worldwide concern. Numerous cyanotoxins can be produced during HAB events which are toxic to animals and humans. Validated standardized methods that are rugged, selective and sensitive are needed for these cyanotoxins in drinking and ambient waters. EPA Drinking Water Methods 544 (six microcystins [MCs] and nodularin) and 545 (cylindrospermopsin [CYL] and anatoxin-a [ANA]) have been developed using liquid chromatography/tandem mass spectrometry (LC/MS/MS). This presentation will describe the adaptation of Methods 544 and 545 to ambient waters and application of these ambient water methods to seven bodies of water across the country with visible cyanobacterial blooms.Several changes were made to Method 544 to accommodate the increased complexity of ambient water. The major changes were to reduce the sample volume from 500 to 100 mL for ambient water analyses and to incorporate seven additional MCs in an effort to capture data for more MC congeners in ambient waters. The major change to Method 545 for ambient water analyses was the addition of secondary ion transitions for each of the target analytes for confirmation purposes. Both methods have been ruggedly tested in bloom samples from multiple bodies of water, some with multiple sample locations and sampling days. For ambient water bloom samples spiked with MCs (>800 congener measurements), 97% of the measurements
NASA Astrophysics Data System (ADS)
Woods, K. A.; Brozen, M.; Pelkie, A.; Malik, S.
2009-12-01
Lake Okeechobee is the second largest freshwater lake located entirely within the continental United States. The lake encompasses approximately 1,700 km2 in South Florida and is a vital part of the Lake Okeechobee and Everglades ecosystems. Lake Okeechobee has been plagued by invasive aquatic floating vegetation and in-water blooms of blue-green algae (cyanobacteria). Major cyanobacterial blooms have been documented in Lake Okeechobee since the 1970s and have continued to plague the ecosystem. Similarly, invasive hydrilla, water hyacinth, and water lettuce frequently overgrow in the lake and threaten the ecosystem. This study examines invasive aquatic vegetation occurrence through the use of the Normalized Difference Vegetation Index calculated on Moderate Resolution Imaging Spectroradiometer (MODIS) MOD09 surface reflectance imagery. Occurrence during 2008 was analyzed using the Time Series Product Tool developed at John C. Stennis Space Center. This project tracked spatial and temporal variability of cyanobacterial blooms and overgrowth of water lettuce, water hyacinth, and hydrilla. In addition, this study presents an application of MODIS data to assist in water quality management.
NASA Astrophysics Data System (ADS)
Jehlička, Jan; Culka, Adam; Nedbalová, Linda
2016-12-01
We tested the potential of a miniaturized Raman spectrometer for use in field detection of snow algae pigments. A miniature Raman spectrometer, equipped with an excitation laser at 532 nm, allowed for the detection of carotenoids in cells of Chloromonas nivalis and Chlamydomonas nivalis at different stages of their life cycle. Astaxanthin, the major photoprotective pigment, was detected in algal blooms originating in snows at two alpine European sites that differed in altitude (Krkonoše Mts., Czech Republic, 1502 m a.s.l., and Ötztal Alps, Austria, 2790 m a.s.l.). Comparison is made with a common microalga exclusively producing astaxanthin (Haematococcus pluvialis). The handheld Raman spectrometer is a useful tool for fast and direct field estimations of the presence of carotenoids (mainly astaxanthin) within blooms of snow algae. Application of miniature Raman instruments as well as flight prototypes in areas where microbes are surviving under extreme conditions is an important stage in preparation for successful deployment of this kind of instrumentation in the framework of forthcoming astrobiological missions to Mars.
Kramer, Benjamin J; Davis, Timothy W; Meyer, Kevin A; Rosen, Barry H; Goleski, Jennifer A; Dick, Gregory J; Oh, Genesok; Gobler, Christopher J
2018-01-01
Lake Okeechobee, FL, USA, has been subjected to intensifying cyanobacterial blooms that can spread to the adjacent St. Lucie River and Estuary via natural and anthropogenically-induced flooding events. In July 2016, a large, toxic cyanobacterial bloom occurred in Lake Okeechobee and throughout the St. Lucie River and Estuary, leading Florida to declare a state of emergency. This study reports on measurements and nutrient amendment experiments performed in this freshwater-estuarine ecosystem (salinity 0-25 PSU) during and after the bloom. In July, all sites along the bloom exhibited dissolved inorganic nitrogen-to-phosphorus ratios < 6, while Microcystis dominated (> 95%) phytoplankton inventories from the lake to the central part of the estuary. Chlorophyll a and microcystin concentrations peaked (100 and 34 μg L-1, respectively) within Lake Okeechobee and decreased eastwards. Metagenomic analyses indicated that genes associated with the production of microcystin (mcyE) and the algal neurotoxin saxitoxin (sxtA) originated from Microcystis and multiple diazotrophic genera, respectively. There were highly significant correlations between levels of total nitrogen, microcystin, and microcystin synthesis gene abundance across all surveyed sites (p < 0.001), suggesting high levels of nitrogen supported the production of microcystin during this event. Consistent with this, experiments performed with low salinity water from the St. Lucie River during the event indicated that algal biomass was nitrogen-limited. In the fall, densities of Microcystis and concentrations of microcystin were significantly lower, green algae co-dominated with cyanobacteria, and multiple algal groups displayed nitrogen-limitation. These results indicate that monitoring and regulatory strategies in Lake Okeechobee and the St. Lucie River and Estuary should consider managing loads of nitrogen to control future algal and microcystin-producing cyanobacterial blooms.
Evaluation of cyanobacteria cell count detection derived from ...
Inland waters across the United States (US) are at potential risk for increased outbreaks of toxic cyanobacteria (Cyano) harmful algal bloom (HAB) events resulting from elevated water temperatures and extreme hydrologic events attributable to climate change and increased nutrient loadings associated with intensive agricultural practices. Current monitoring efforts are limited in scope due to resource limitations, analytical complexity, and data integration efforts. The goals of this study were to validate a new ocean color algorithm for satellite imagery that could potentially be used to monitor CyanoHAB events in near real-time to provide a compressive monitoring capability for freshwater lakes (>100 ha). The algorithm incorporated narrow spectral bands specific to the European Space Agency’s (ESA’s) MEdium Resolution Imaging Spectrometer (MERIS) instrument that were optimally oriented at phytoplankton pigment absorption features including phycocyanin at 620 nm. A validation of derived Cyano cell counts was performed using available in situ data assembled from existing monitoring programs across eight states in the eastern US over a 39-month period (2009–2012). Results indicated that MERIS provided robust estimates for Low (10,000–109,000 cells/mL) and Very High (>1,000,000 cells/mL) cell enumeration ranges (approximately 90% and 83%, respectively). However, the results for two intermediate ranges (110,000–299,000 and 300,000–1,000,000 cells/mL)
Pizarro, Gemita; Moroño, Ángeles; Paz, Beatriz; Franco, José M.; Pazos, Yolanda; Reguera, Beatriz
2013-01-01
From June 2006 to January 2007 passive samplers (solid phase adsorbing toxin tracking, SPATT) were tested as a monitoring tool with weekly monitoring of phytoplankton and toxin content (liquid chromatography–mass spectrometry, LC-MS) in picked cells of Dinophysis and plankton concentrates. Successive blooms of Dinophysis acuminata, D. acuta and D. caudata in 2006 caused a long mussel harvesting closure (4.5 months) in the Galician Rías (NW Spain) and a record (up to 9246 ng·g resin-week−1) accumulation of toxins in SPATT discs. Best fit of a toxin accumulation model was between toxin accumulation in SPATT and the product of cell densities by a constant value, for each species of Dinophysis, of toxin content (average) in picked cells. Detection of Dinophysis populations provided earlier warning of oncoming diarrhetic shellfish poisoning (DSP) outbreaks than the SPATT, which at times overestimated the expected toxin levels in shellfish because: (i) SPATT accumulated toxins did not include biotransformation and depuration loss terms and (ii) accumulation of toxins not available to mussels continued for weeks after Dinophysis cells were undetectable and mussels were toxin-free. SPATT may be a valuable environmental monitoring and research tool for toxin dynamics, in particular in areas with no aquaculture, but does not provide a practical gain for early warning of DSP outbreaks. PMID:24152559
Pheno-anomalies of sub-alpine Vaccinium heaths in response to climatic variations
NASA Astrophysics Data System (ADS)
Puppi, Giovanna; Monti, Alessandra; Bonafede, Fausto; Vignodelli, Michele; Zanotti, Anna Letizia
2014-05-01
A phenological survey on Vaccinium heaths was repeated thirty years after the first observations, in the Northern Apennines (Italy). In line with the sampling method adopted in the earliest phases of the study, the phenological monitoring was undertaken in the same sites, located above the tree line between 1600 and 1800 m asl. The phenology of each plant species was recorded in order to single out the flowering patterns of the plant communities and their variations. In the years with average weather conditions, flowerings begin at the end of May, after the melting of the last spring snow, and finish in September, showing a bimodal pattern. The first blooming peak occurs in mid June and the second in mid July, in coincidence with the annual maximum temperatures. The first peak is due to the dwarf shrubs and to other species typical of the Vaccinium heaths, while the second is due to herbs with a wider ecology. Among the years on study, we found that 1984 and 2012 diverged from the aforementioned pattern, in that flowerings showed strong pheno-anomalies and a lower phenological diversity. In 1984, a marked delay of the blooming start (1 month) and of the first peak (3 weeks) were observed, while the second peak and the flowering end were normal: the delay was due to a very cold and snowy spring in 1984. On the contrary, 2012 was characterized by the disappearance of the second flowering peak and by a dramatic advance of the blooming end: it is worth mentioning that summer 2012 was exceptionally dry, with temperatures above the average. In summary, while the very cold spring 1984 led simply to an initial shift and then to a compaction of the blooming rhythms, the xero-thermal stress of the summer 2012 caused a deep variation of the symphenological pattern and a fail of sexual reproduction in several late flowering species. Given that xero-thermal stress occurred often in the last decades, some sensible species, flowering in mid summer, could have undergone a reduction in seed production and could have therefore be disadvantaged in turn-over. This hypothesis is consistent with the results on vegetation changes: in fact, the comparison of the actual vegetation with the historical observations in the same sites, shows a reduction of herb (Hemicryptophytes) diversity and cover in time. It is noteworthy that many of the declining species flower in the driest and hottest weeks of the year. In a climate-warming scenario, the low extension of these sub-alpine islands of the Apennines leads to a high extinction risk of the most sensible species. So, the monitoring of this vulnerable vegetation type seems necessary in order to detect the current trends and should be continued in the future. Puppi and Speranza 1980, Arch. Bot. Biogeogr. Ital. 56(3/4) Puppi et al. 1994, Fitosociologia 26: 63-79
Eldridge, Sara L. Caldwell; Wherry, Susan A.; Wood, Tamara M.
2014-01-01
Upper Klamath Lake in south-central Oregon has become increasingly eutrophic over the past century and now experiences seasonal cyanobacteria-dominated and potentially toxic phytoplankton blooms. Growth and decline of these blooms create poor water-quality conditions that can be detrimental to fish, including two resident endangered sucker species. Upper Klamath Lake is the primary water supply to agricultural areas within the upper Klamath Basin. Water from the lake is also used to generate power and to enhance and sustain downstream flows in the Klamath River. Water quality in Upper Klamath Lake has been monitored by the Klamath Tribes since the early 1990s and by the U.S. Geological Survey (USGS) since 2002. Management agencies and other stakeholders have determined that a re-evaluation of the goals for water-quality monitoring is warranted to assess whether current data-collection activities will continue to adequately provide data for researchers to address questions of interest and to facilitate future natural resource management decisions. The purpose of this study was to (1) compile an updated list of the goals and objectives for long-term water-quality monitoring in Upper Klamath Lake with input from upper Klamath Basin stakeholders, (2) assess the current water-quality monitoring programs in Upper Klamath Lake to determine whether existing data-collection strategies can fulfill the updated goals and objectives for monitoring, and (3) identify potential modifications to future monitoring plans in accordance with the updated monitoring objectives and improve stakeholder cooperation and data-collection efficiency. Data collected by the Klamath Tribes and the USGS were evaluated to determine whether consistent long-term trends in water-quality variables can be described by the dataset and whether the number and distribution of currently monitored sites captures the full range of environmental conditions and the multi-scale variability of water-quality parameters in the lake. Also, current monitoring strategies were scrutinized for unnecessary redundancy within the overall network.
Jehlička, Jan; Culka, Adam; Nedbalová, Linda
2016-12-01
We tested the potential of a miniaturized Raman spectrometer for use in field detection of snow algae pigments. A miniature Raman spectrometer, equipped with an excitation laser at 532 nm, allowed for the detection of carotenoids in cells of Chloromonas nivalis and Chlamydomonas nivalis at different stages of their life cycle. Astaxanthin, the major photoprotective pigment, was detected in algal blooms originating in snows at two alpine European sites that differed in altitude (Krkonoše Mts., Czech Republic, 1502 m a.s.l., and Ötztal Alps, Austria, 2790 m a.s.l.). Comparison is made with a common microalga exclusively producing astaxanthin (Haematococcus pluvialis). The handheld Raman spectrometer is a useful tool for fast and direct field estimations of the presence of carotenoids (mainly astaxanthin) within blooms of snow algae. Application of miniature Raman instruments as well as flight prototypes in areas where microbes are surviving under extreme conditions is an important stage in preparation for successful deployment of this kind of instrumentation in the framework of forthcoming astrobiological missions to Mars. Key Words: Snow algae-Chloromonas nivalis-Chlamydomonas nivalis-On-site field detection-Raman spectroscopy-Astaxanthin. Astrobiology 16, 913-924.
Farrer, David; Counter, Marina; Hillwig, Rebecca; Cude, Curtis
2015-01-01
Human health risks from cyanobacterial blooms are primarily related to cyanotoxins that some cyanobacteria produce. Not all species of cyanobacteria can produce toxins. Those that do often do not produce toxins at levels harmful to human health. Monitoring programs that use identification of cyanobacteria genus and species and enumeration of cyanobacterial cells as a surrogate for cyanotoxin presence can overestimate risk and lead to unnecessary health advisories. In the absence of federal criteria for cyanotoxins in recreational water, the Oregon Health Authority (OHA) developed guideline values for the four most common cyanotoxins in Oregon’s fresh waters (anatoxin-a, cylindrospermopsin, microcystins, and saxitoxins). OHA developed three guideline values for each of the cyanotoxins found in Oregon. Each of the guideline values is for a specific use of cyanobacteria-affected water: drinking water, human recreational exposure and dog recreational exposure. Having cyanotoxin guidelines allows OHA to promote toxin-based monitoring (TBM) programs, which reduce the number of health advisories and focus advisories on times and places where actual, rather than potential, risks to health exist. TBM allows OHA to more efficiently protect public health while reducing burdens on local economies that depend on water recreation-related tourism. PMID:25664510
If you ever have noticed a waterbody with a layer of green scum coating its surface or a slick green film resembling a paint spill, you likely have witnessed a cyanobacteria bloom. Cyanobacteria, sometimes referred to as blue-green algae, are tiny organisms found naturally in aqu...
Imagery acquired by the Envisat Medium Resolution Imaging Spectrometer from 2002-2011 was used to estimate cyanobacteria cell densities for 11 reservoirs in Indiana, Ohio, and Kentucky, USA (surface areas 8–43 km2; 864 total images spanning May–September). This initia...
Several factors are contributing to the development of the “perfect” Harmful algal Bloom (HAB) storm. Elevated temperatures and changes in precipitation, changes in population demographics, agricultural land use linked to nitrogen loading increases, and an aging water...
Urban growth and agricultural production have caused an influx of nutrients into Lake Erie, leading to eutrophic zones. These conditions result in the formation of algal blooms, some of which are toxic due to the presence of Microcystis (a cyanobacteria), which produces the hepat...
Several factors are contributing to the development of the “perfect” Harmful algal Bloom (HAB) storm. For example, climate change associated with elevated temperatures over prolonged time periods, changes in population demographics, agricultural land use linked to nit...
NASA Astrophysics Data System (ADS)
Belykh, O. I.; Dmitrieva, O. A.; Gladkikh, A. S.; Sorokovikova, E. G.
2013-02-01
In 2002-2008, seasonal (April-November) monitoring of the phytoplankton in the Russian part of the Curonian Lagoon at five fixed sites was performed. A total of 91 Cyanobacteria, 100 Bacillariophyta, 280 Chlorophyta, 21 Cryptophyta, and 24 Dinophyta species were found. Six potentially toxic species of cyanobacteria: Aphanizomenon flos-aquae, Anabaena sp., Microcystis aeruginosa, M. viridis, M. wesenbergii, and Planktothrix agardhii dominated the phytoplankton biomass and caused water blooms. The seasonal average phytoplankton biomass ranged from 30 to 137 g/m3. The cyanobacteria's biomass varied from 10 to 113 g/m3 forming 30-82% of the total with a mean of 50%. With the aid of genetic markers (microcystin ( mcy) and nodularin synthetases), six variants of the microcystin-producing gene mcyE from the genus Microcystis were identified. Due to the intensive and lengthy blooms of potentially toxic and toxigenic cyanobacteria, the environmental conditions in the Curonian Lagoon appear unfavorable. The water should be monitored for cyanotoxins with analytical methods in order to determine if the area is safe for recreational use.
Cyanobacteria Assessment Network (CyAN)
CyAN is a multi-agency project among the National Aeronautics and Space Administration (NASA), National Oceanic and Atmospheric Administration (NOAA), US Geological Survey (USGS), and EPA to develop an early warning indicator system to detect algal blooms.
Current-oriented swimming by jellyfish and its role in bloom maintenance.
Fossette, Sabrina; Gleiss, Adrian Christopher; Chalumeau, Julien; Bastian, Thomas; Armstrong, Claire Denise; Vandenabeele, Sylvie; Karpytchev, Mikhail; Hays, Graeme Clive
2015-02-02
Cross-flows (winds or currents) affect animal movements [1-3]. Animals can temporarily be carried off course or permanently carried away from their preferred habitat by drift depending on their own traveling speed in relation to that of the flow [1]. Animals able to only weakly fly or swim will be the most impacted (e.g., [4]). To circumvent this problem, animals must be able to detect the effects of flow on their movements and respond to it [1, 2]. Here, we show that a weakly swimming organism, the jellyfish Rhizostoma octopus, can orientate its movements with respect to currents and that this behavior is key to the maintenance of blooms and essential to reduce the probability of stranding. We combined in situ observations with first-time deployment of accelerometers on free-ranging jellyfish and simulated the behavior observed in wild jellyfish within a high-resolution hydrodynamic model. Our results show that jellyfish can actively swim countercurrent in response to current drift, leading to significant life-history benefits, i.e., increased chance of survival and facilitated bloom formation. Current-oriented swimming may be achieved by jellyfish either directly detecting current shear across their body surface [5] or indirectly assessing drift direction using other cues (e.g., magnetic, infrasound). Our coupled behavioral-hydrodynamic model provides new evidence that current-oriented swimming contributes to jellyfish being able to form aggregations of hundreds to millions of individuals for up to several months, which may have substantial ecosystem and socioeconomic consequences [6, 7]. It also contributes to improve predictions of jellyfish blooms' magnitude and movements in coastal waters. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sinang, Som Cit; Poh, Keong Bun; Shamsudin, Syakirah; Sinden, Ann
2015-10-01
Toxic cyanobacteria blooms are increasing in magnitude and frequency worldwide. However, this issue has not been adequately addressed in Malaysia. Therefore, this study aims to better understand eutrophication levels, cyanobacteria diversity, and microcystin concentrations in ten Malaysian freshwater lakes. The results revealed that most lakes were eutrophic, with total phosphorus and total chlorophyll-a concentrations ranging from 15 to 4270 µg L(-1) and 1.1 to 903.1 µg L(-1), respectively. Cyanobacteria were detected in all lakes, and identified as Microcystis spp., Planktothrix spp., Phormidium spp., Oscillatoria spp., and Lyngbya spp. Microcystis spp. was the most commonly observed and most abundant cyanobacteria recorded. Semi-quantitative microcystin analysis indicated the presence of microcystin in all lakes. These findings illustrate the potential health risk of cyanobacteria in Malaysia freshwater lakes, thus magnifying the importance of cyanobacteria monitoring and management in Malaysian waterways.
NASA Astrophysics Data System (ADS)
Wilkinson, A.; Guala, M.; Hondzo, M.
2017-12-01
Harmful Algal Blooms (HAB) are made up of potentially toxic freshwater microorganisms called cyanobacteria, because of this they are a ecological and public health hazard. The occurrences of toxic HAB are unpredictable and highly spatially and temporary variable in freshwater ecosystems. To study the abiotic drivers for toxic HAB, a floating research station has been deployed in a hyper-eutrophic lake in Madison Lake, Minnesota, from June-October 2016. This research station provides full depth water quality (hourly) and meteorological monitoring (5 minutes). Water quality monitoring is performed by an autonomously traversed water quality sonde that provides chemical, physical and biological measurements; including phycocyanin, a photosynthetic pigment distinct to cyanobacteria. A bloom of cyanobacteria recorded in the epiliminion in mid-July was driven by prolonged strong thermal stratification in the water column, high surface water temperatures and high phosphate concentrations in the epiliminion. The high biovolume (BV) persisted until late September and was sustained below the surface after stratification weakened, when the thermocline did not confine cyanobacteria-rich layers any more, and cyanobacteria vertical heterogeneities decayed in the water column. High correlations among BV stratification, surface water temperature, and stratification stability informed the development of a quantitative relationship to determine how BV heterogeneities vary with thermal structure in the water column. The BV heterogeneity decreased with thermal stratification stability and surface water temperature, and the dynamic lake stability described by the Lake Number. Finally the location of maximum BV accumulation showed diurnal patterns ie. BV peaks were observed at 1 m depth during the day and deeper layers during the night, which followed patterns in light penetration and thermocline depth. These findings capture cyanobacteria vertical and temporal heterogeneities on a on full depth, seasonal scale and quantify BV distribution throughout the water column under different stratification conditions, which can be important for mitigating risks of contamination of drinking water and recreational exposure.
NASA Astrophysics Data System (ADS)
El Alem, A.
2016-12-01
Harmful algal bloom (HAB) causes negative impacts to other organisms by producing natural toxins, mechanical damage to other micro-organisms, or simply by degrading waters quality. Contaminated waters could expose several billions of population to serious intoxications problems. Traditionally, HAB monitoring is made with standard methods limited to a restricted network of sampling points. However, rapid evolution of HABs makes it difficult to monitor their variation in time and space, threating then public safety. Daily monitoring is then the best way to control and to mitigate their harmful effect upon population, particularly for sources feeding cities. Recently, an approach for estimating chlorophyll-a (Chl-a) concentration, as a proxy of HAB presence, in inland waters based MODIS imagery downscaled to 250 meters spatial resolution was developed. Statistical evaluation of the developed approach highlighted the accuracy of Chl-a estimate with a R2 = 0.98, a relative RMSE of 15%, a relative BIAS of -2%, and a relative NASH of 0.95. Temporal resolution of MODIS sensor allows then a daily monitoring of HAB spatial distribution for inland waters of more than 2.25 Km2 of surface. Groupe-Hemisphere, a company specialized in environmental and sustainable planning in Quebec, has shown a great interest to the developed approach. Given the complexity of the preprocessing (geometric and atmospheric corrections as well as downscaling spatial resolution) and processing (Chl-a estimate) of images, a standalone application under the MATLAB's GUI environment was developed. The application allows an automated process for all preprocessing and processing steps. Outputs produced by the application for end users, many of whom may be decision makers or policy makers in the public and private sectors, allows a near-real time monitoring of water quality for a more efficient management.
NASA Astrophysics Data System (ADS)
Corcoran, Alina A.; Wolny, Jennifer; Leone, Erin; Ivey, James; Murasko, Susan
2017-02-01
In the past four decades, consistent and coordinated management actions led to the recovery of Tampa Bay, FL (USA) - an estuary that was declared dead in the 1970s. An exception to this success story is Old Tampa Bay, the northernmost subestuary of the system. Compared to the other bay segments, Old Tampa Bay is characterized by poorer water quality and spring and summer blooms of cyanobacteria, picoplankton, diatoms, and the saxitoxin-producing dinoflagellate Pyrodinium bahamense. Together, these blooms contribute to light attenuation and lagging recovery of seagrass beds. Yet, studies of phytoplankton dynamics within Old Tampa Bay have been limited - both in number and in their spatiotemporal resolution. In this study, we used field sampling and continuous monitoring to (1) characterize temporal and spatial variability in phytoplankton biomass and community composition and (2) identify key drivers of the different phytoplankton blooms in Old Tampa Bay. Overall, temporal variability in phytoplankton biomass (using chlorophyll a as a proxy) and community composition surpassed spatial variability of these parameters. We found a base community of small diatoms and flagellates, as well as certain dinoflagellates, that persisted year round in the system. Seasonally, freshwater runoff stimulated phytoplankton growth, specifically that of chlorophytes, cyanobacteria and other dinoflagellates - consistent with predictions based on ecological theory. On shorter time scales, salinity, visibility, and freshwater inflows were important predictors of phytoplankton biomass. With respect to P. bahamense, environmental drivers including salinity, temperature and dissolved nutrient concentrations explained ∼24% of the variability in cell abundance, indicating missing explanatory parameters in our study for this taxon, such as cyst density and location of cyst beds. Spatially, we found differences in community trajectories across north-south and west-east gradients, with the northernmost sampling station being the most unique in the region. This work contributes to the knowledge of phytoplankton biomass and community composition in Tampa Bay by generating spatially and temporally rich phytoplankton community and environmental data for the Old Tampa Bay subestuary. Moreover, it enhances our understanding of bloom drivers and provides recommendations for ecosystem management. Specifically, our findings support continued nutrient reduction measures as a way to mitigate seasonal blooms of diatoms, cyanobacteria and chlorophytes, but not necessarily blooms of P. bahamense. Prediction and mitigation of P. bahamnese blooms should incorporate first order drivers such as cyst location and abundance.
Koch, F; Kang, Y; Villareal, T A; Anderson, D M; Gobler, C J
2014-08-01
During the past 3 decades, brown tides caused by the pelagophytes Aureococcus anophagefferens and Aureoumbra lagunensis have caused ecological and economic damage to coastal ecosystems across the globe. While blooms of A. lagunensis had previously been confined to Texas, in 2012, an expansive brown tide occurred on Florida's East Coast, causing widespread disruption within the Indian River and Mosquito Lagoons and generating renewed interest in this organism. A major impediment to detailed investigations of A. lagunensis in an ecosystem setting has been the absence of a rapid and reliable method for cell quantification. The combination of their small size (3 to 5 μm) and nondescript extracellular features makes identification and enumeration of these cells with conventional methods a challenge. Here we report the development of an immunological-based flow cytometry method that uses a fluorescently labeled antibody developed against A. lagunensis. This method is species specific, sensitive (detection limit of 1.5 × 10(3) cells ml(-1)), precise (1% relative standard deviation of replicated samples), and accurate (108% ± 8% recovery of spiked samples) over a wide range of cell concentrations. Furthermore, this method effectively quantifies A. lagunensis in both glutaraldehyde- and formalin-preserved samples, yields a high throughput of samples (∼35 samples h(-1)), and is cost-effective, making it an ideal tool for managers and scientists. This method successfully documented the recurrence of a brown tide bloom in Florida in 2013. Bloom densities were highest in June (>2.0 × 10(6) cells ml(-1)) and spanned >60 km from the Ponce de Leon inlet in the northern Mosquito Lagoon south to Titusville in the Indian River Lagoon. Low levels of A. lagunensis cells were found >250 km south of this region. This method also quickly and accurately identified A. lagunensis as the causative agent of a 2013 brown tide bloom in Guantanamo Bay, Cuba, and thus should prove useful for both quantifying the dynamics of ongoing blooms of A. lagunensis as well as documenting new outbreaks of this harmful alga. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Koch, F.; Kang, Y.; Villareal, T. A.; Anderson, D. M.
2014-01-01
During the past 3 decades, brown tides caused by the pelagophytes Aureococcus anophagefferens and Aureoumbra lagunensis have caused ecological and economic damage to coastal ecosystems across the globe. While blooms of A. lagunensis had previously been confined to Texas, in 2012, an expansive brown tide occurred on Florida's East Coast, causing widespread disruption within the Indian River and Mosquito Lagoons and generating renewed interest in this organism. A major impediment to detailed investigations of A. lagunensis in an ecosystem setting has been the absence of a rapid and reliable method for cell quantification. The combination of their small size (3 to 5 μm) and nondescript extracellular features makes identification and enumeration of these cells with conventional methods a challenge. Here we report the development of an immunological-based flow cytometry method that uses a fluorescently labeled antibody developed against A. lagunensis. This method is species specific, sensitive (detection limit of 1.5 × 103 cells ml−1), precise (1% relative standard deviation of replicated samples), and accurate (108% ± 8% recovery of spiked samples) over a wide range of cell concentrations. Furthermore, this method effectively quantifies A. lagunensis in both glutaraldehyde- and formalin-preserved samples, yields a high throughput of samples (∼35 samples h−1), and is cost-effective, making it an ideal tool for managers and scientists. This method successfully documented the recurrence of a brown tide bloom in Florida in 2013. Bloom densities were highest in June (>2.0 × 106 cells ml−1) and spanned >60 km from the Ponce de Leon inlet in the northern Mosquito Lagoon south to Titusville in the Indian River Lagoon. Low levels of A. lagunensis cells were found >250 km south of this region. This method also quickly and accurately identified A. lagunensis as the causative agent of a 2013 brown tide bloom in Guantanamo Bay, Cuba, and thus should prove useful for both quantifying the dynamics of ongoing blooms of A. lagunensis as well as documenting new outbreaks of this harmful alga. PMID:24907319
Lessons Learned from Stakeholder-Driven Modeling in the Western Lake Erie Basin
NASA Astrophysics Data System (ADS)
Muenich, R. L.; Read, J.; Vaccaro, L.; Kalcic, M. M.; Scavia, D.
2017-12-01
Lake Erie's history includes a great environmental success story. Recognizing the impact of high phosphorus loads from point sources, the United States and Canada 1972 Great Lakes Water Quality Agreement set load reduction targets to reduce algae blooms and hypoxia. The Lake responded quickly to those reductions and it was declared a success. However, since the mid-1990s, Lake Erie's algal blooms and hypoxia have returned, and this time with a dominant algae species that produces toxins. Return of the algal blooms and hypoxia is again driven by phosphorus loads, but this time a major source is the agriculturally-dominated Maumee River watershed that covers NW Ohio, NE Indiana, and SE Michigan, and the hypoxic extent has been shown to be driven by Maumee River loads plus those from the bi-national and multiple land-use St. Clair - Detroit River system. Stakeholders in the Lake Erie watershed have a long history of engagement with environmental policy, including modeling and monitoring efforts. This talk will focus on the application of interdisciplinary, stakeholder-driven modeling efforts aimed at understanding the primary phosphorus sources and potential pathways to reduce these sources and the resulting algal blooms and hypoxia in Lake Erie. We will discuss the challenges, such as engaging users with different goals, benefits to modeling, such as improvements in modeling data, and new research questions emerging from these modeling efforts that are driven by end-user needs.
Toxic phytoplankton in San Francisco Bay
Rodgers, Kristine M.; Garrison, David L.; Cloern, James E.
1996-01-01
The Regional Monitoring Program (RMP) was conceived and designed to document the changing distribution and effects of trace substances in San Francisco Bay, with focus on toxic contaminants that have become enriched by human inputs. However, coastal ecosystems like San Francisco Bay also have potential sources of naturally-produced toxic substances that can disrupt food webs and, under extreme circumstances, become threats to public health. The most prevalent source of natural toxins is from blooms of algal species that can synthesize metabolites that are toxic to invertebrates or vertebrates. Although San Francisco Bay is nutrient-rich, it has so far apparently been immune from the epidemic of harmful algal blooms in the world’s nutrient-enriched coastal waters. This absence of acute harmful blooms does not imply that San Francisco Bay has unique features that preclude toxic blooms. No sampling program has been implemented to document the occurrence of toxin-producing algae in San Francisco Bay, so it is difficult to judge the likelihood of such events in the future. This issue is directly relevant to the goals of RMP because harmful species of phytoplankton have the potential to disrupt ecosystem processes that support animal populations, cause severe illness or death in humans, and confound the outcomes of toxicity bioassays such as those included in the RMP. Our purpose here is to utilize existing data on the phytoplankton community of San Francisco Bay to provide a provisional statement about the occurrence, distribution, and potential threats of harmful algae in this Estuary.
Weather during bloom affects pollination and yield of highbush blueberry.
Tuell, Julianna K; Isaacs, Rufus
2010-06-01
Weather plays an important role in spring-blooming fruit crops due to the combined effects on bee activity, flower opening, pollen germination, and fertilization. To determine the effects of weather on highbush blueberry, Vaccinium corymbosum L., productivity, we monitored bee activity and compared fruit set, weight, and seed number in a field stocked with honey bees, Apis mellifera L., and common eastern bumble bees, Bombus impatiens (Cresson). Flowers were subjected to one of five treatments during bloom: enclosed, open, open during poor weather only, open during good weather only, or open during poor and good weather. Fewer bees of all types were observed foraging and fewer pollen foragers returned to colonies during poor weather than during good weather. There were also changes in foraging community composition: honey bees dominated during good weather, whereas bumble bees dominated during poor weather. Berries from flowers exposed only during poor weather had higher fruit set in 1 yr and higher berry weight in the other year compared with enclosed clusters. In both years, clusters exposed only during good weather had > 5 times as many mature seeds, weighed twice as much, and had double the fruit set of those not exposed. No significant increase over flowers exposed during good weather was observed when clusters were exposed during good and poor weather. Our results are discussed in terms of the role of weather during bloom on the contribution of bees adapted to foraging during cool conditions.
Gellert, Matthew R; Kim, Beum Jun; Reffsin, Samuel E; Jusuf, Sebastian E; Wagner, Nicole D; Winans, Stephen C; Wu, Mingming
2017-12-04
Nanobiotechnology has played important roles in solving contemporary health problems, including cancer and diabetes, but has not yet been widely exploited for problems in food security and environmental protection. Water scarcity is an emerging worldwide problem as a result of climate change and population increase. Current methods of managing water resources are not efficient or sustainable. In this perspective, we focus on harmful algal blooms to demonstrate how nanobiotechnology can be explored to understand microbe-environment interactions and allow for toxin/pollutant detection with significantly improved sensitivity. These capabilities hold potential for future development of sustainable solutions for drinking water management.
Wang, Li-Ping; Lei, Kun
2016-12-01
Since 2009, Aureococcus anophagefferens has caused brown tide to occur recurrently in Qinhuangdao coastal area, China. Because the algal cells of A. anophagefferens are so tiny (~3 µm) that it is very hard to identify exactly under a microscope for natural water samples, it is very urgent to develop a method for efficient and continuous monitoring. Here specific primers and Taqman probe are designed to develop a real-time quantitative PCR (qPCR) method for identification and quantification continually. The algal community and cell abundance of A. anophagefferens in the study area (E 119°20'-119°50' and N 39°30'-39°50') from April to October in 2013 are detected by pyrosequencing, and are used to validate the specification and precision of qPCR method for natural samples. Both pyrosequencing and qPCR shows that the targeted cells are present only in May, June and July, and the cell abundance are July > June > May. Although there are various algal species including dinoflagellata, diatom, Cryptomonadales, Chrysophyceae and Chlorophyta living in the natural seawater simultaneously, no disturbance happens to qPCR method. This qPCR method could detect as few as 10 targeted cells, indicating it is able to detect the algal cells at pre-bloom levels. Therefore, qPCR with Taqman probe provides a powerful and sensitive method to monitor the brown tide continually in Qinhuangdao coastal area, China. The results provide a necessary technology support for forecasting the brown tide initiation, in China.
Personal exposure to aerosolized red tide toxins (brevetoxins).
Cheng, Yung Sung; Zhou, Yue; Naar, Jerome; Irvin, C Mitch; Su, Wei-Chung; Fleming, Lora E; Kirkpatrick, Barbara; Pierce, Richard H; Backer, Lorraine C; Baden, Daniel G
2010-06-01
Florida red tides occur annually in the Gulf of Mexico from blooms of the marine dinoflagellate, Karenia brevis, which produces highly potent natural polyether toxins, brevetoxins. Several epidemiologic studies have demonstrated that human exposure to red tide aerosol could result in increased respiratory symptoms. Environmental monitoring of aerosolized brevetoxins was performed using a high-volume sampler taken hourly at fixed locations on Siesta Beach, Florida. Personal exposure was monitored using personal air samplers and taking nasal swab samples from the subjects who were instructed to spend 1 hr on Sarasota Beach during two sampling periods of an active Florida red tide event in March 2005, and in May 2008 when there was no red tide. Results showed that the aerosolized brevetoxins from the personal sampler were in modest agreement with the environmental concentration taken from a high-volume sampler. Analysis of nasal swab samples for brevetoxins demonstrated 68% positive samples in the March 2005 sampling period when air concentrations of brevetoxins were between 50 to 120 ng/m(3) measured with the high-volume sampler. No swab samples showed detectable levels of brevetoxins in the May 2008 study, when all personal samples were below the limit of detection. However, there were no statistical correlations between the amounts of brevetoxins detected in the swab samples with either the environmental or personal concentration. Results showed that the personal sample might provide an estimate of individual exposure level. Nasal swab samples showed that brevetoxins indeed were inhaled and deposited in the nasal passage during the March 2005 red tide event.
Giannuzzi, Leda; Sedan, Daniela; Echenique, Ricardo; Andrinolo, Dario
2011-01-01
Cyanobacterial blooms and hepatotoxic microcystins (MCs) usually occur in summer, constituting a sanitary and environmental problem in Salto Grande Dam, Argentina. Water sports and recreational activities take place in summer in this lake. We reported an acute case of cyanobacterial poisoning in Salto Grande dam, Argentina, which occurred in January 2007. Accidentally, a young man was immersed in an intense bloom of Microcystis spp. A level of 48.6 μg·L(-1) of microcystin-LR was detected in water samples. Four hours after exposure, the patient showed nausea, abdominal pain and fever. Three days later, dyspnea and respiratory distress were reported. The patient was hospitalized in intensive care and diagnosed with an atypical pneumonia. Finally, a week after the exposure, the patient developed a hepatotoxicosis with a significant increase of hepatic damage biomarkers (ALT, AST and γGT). Complete recovery took place within 20 days. This is the first study to show an acute intoxication with microcystin-producing cyanobacteria blooms in recreational water.
The increase of harmful algal blooms (HABs) in freshwater estuaries, especially in the Great Lakes and Florida, is a source of growing concern. The presence of high concentrations of harmful cyanotoxins from HABs in drinking water supplies is a serious threat to human and envi...
Neurotoxic Shellfish Poisoning
Watkins, Sharon M.; Reich, Andrew; Fleming, Lora E.; Hammond, Roberta
2008-01-01
Neurotoxic shellfish poisoning (NSP) is caused by consumption of molluscan shellfish contaminated with brevetoxins primarily produced by the dinoflagellate, Karenia brevis. Blooms of K. brevis, called Florida red tide, occur frequently along the Gulf of Mexico. Many shellfish beds in the US (and other nations) are routinely monitored for presence of K. brevis and other brevetoxin-producing organisms. As a result, few NSP cases are reported annually from the US. However, infrequent larger outbreaks do occur. Cases are usually associated with recreationally-harvested shellfish collected during or post red tide blooms. Brevetoxins are neurotoxins which activate voltage-sensitive sodium channels causing sodium influx and nerve membrane depolarization. No fatalities have been reported, but hospitalizations occur. NSP involves a cluster of gastrointestinal and neurological symptoms: nausea and vomiting, paresthesias of the mouth, lips and tongue as well as distal paresthesias, ataxia, slurred speech and dizziness. Neurological symptoms can progress to partial paralysis; respiratory distress has been recorded. Recent research has implicated new species of harmful algal bloom organisms which produce brevetoxins, identified additional marine species which accumulate brevetoxins, and has provided additional information on the toxicity and analysis of brevetoxins. A review of the known epidemiology and recommendations for improved NSP prevention are presented. PMID:19005578
Milian, Alexyz; Nierenberg, Kate; Fleming, Lora E; Bean, Judy A; Wanner, Adam; Reich, Andrew; Backer, Lorraine C; Jayroe, David; Kirkpatrick, Barbara
2007-09-01
Florida red tides are naturally occurring blooms of the marine dinoflagellate, Karenia brevis. K. brevis produces natural toxins called brevetoxins. Brevetoxins become part of the marine aerosol as the fragile, unarmored cells are broken up by wave action. Inhalation of the aerosolized toxin results in upper and lower airway irritation. Symptoms of brevetoxin inhalation include: eye, nose, and throat irritation, coughing, wheezing, chest tightness, and shortness of breath. Asthmatics appear to be more sensitive to the effects of inhaled brevetoxin. This study examined data from 97 asthmatics exposed at the beach for 1 hour during K. brevis blooms, and on separate occasions when no bloom was present. In conjunction with extensive environmental monitoring, participants were evaluated utilizing questionnaires and pulmonary function testing before and after a 1-hour beach walk. A modified Likert scale was incorporated into the questionnaire to create respiratory symptom intensity scores for each individual pre- and post-beach walk. Exposure to Florida red tide significantly increased the reported intensity of respiratory symptoms; no significant changes were seen during an unexposed period. This is the first study to examine the intensity of reported respiratory symptoms in asthmatics after a 1-hour exposure to Florida red tide.
Milian, Alexyz; Nierenberg, Kate; Fleming, Lora E.; Bean, Judy A.; Wanner, Adam; Reich, Andrew; Backer, Lorraine C.; Jayroe, David; Kirkpatrick, Barbara
2010-01-01
Florida red tides are naturally occurring blooms of the marine dinoflagellate, Karenia brevis. K. brevis produces natural toxins called brevetoxins. Brevetoxins become part of the marine aerosol as the fragile, unarmored cells are broken up by wave action. Inhalation of the aerosolized toxin results in upper and lower airway irritation. Symptoms of brevetoxin inhalation include: eye, nose, and throat irritation, coughing, wheezing, chest tightness, and shortness of breath. Asthmatics appear to be more sensitive to the effects of inhaled brevetoxin. This study examined data from 97 asthmatics exposed at the beach for 1 hour during K. brevis blooms, and on separate occasions when no bloom was present. In conjunction with extensive environmental monitoring, participants were evaluated utilizing questionnaires and pulmonary function testing before and after a 1-hour beach walk. A modified Likert scale was incorporated into the questionnaire to create respiratory symptom intensity scores for each individual pre- and post-beach walk. Exposure to Florida red tide significantly increased the reported intensity of respiratory symptoms; no significant changes were seen during an unexposed period. This is the first study to examine the intensity of reported respiratory symptoms in asthmatics after a 1-hour exposure to Florida red tide. PMID:17885863
NASA Astrophysics Data System (ADS)
Countway, P. D.; Poulton, N.; Sieracki, M.; Hoeglund, A.; Anderson, S.; Burns, W. G.
2016-02-01
Protistan grazers help to shape the diversity, abundance, and composition of bacterial and phytoplankton communities, yet very little is known about the specific interactions between grazers and their prey. Grazers play key roles in the demise of phytoplankton blooms, with the abundance of grazers often increasing dramatically as prey-species decline. The timing and fate of Synechococcus blooms was investigated over a two-year period in Booth Bay, Maine (USA). The Synechococcus bloom in this region is characterized by several peaks in cell abundance, followed by periods of rapid decline. Two clades of Synechococcus (rpoC1 gene clades I and IV) were detected at our study site, with clade I typically present at higher abundance than clade IV. Modified grazing experiments were conducted at different stages of the Synechococcus bloom in which the natural plankton community was diluted with either 0.45 µm (grazer-free) or 30 kDa (grazer- and virus-free) filtered seawater. In general, the impact of grazers on Synechococcus populations was greater than the impact due to encounters with viruses during 24-hour in situ incubations. Interactions between grazers and Synechococcus were investigated using Fluorescence Activated Cell Sorting (FACS) combined with single-cell genomics to identify specific associations between sorted-grazers and their prey. Single-cell sequencing revealed a diverse array of heterotrophic protists on sampling dates that occurred after periods of rapid decrease in the abundance of Synechococcus. Cultures of Synechococcus were added to natural plankton communities to stimulate grazers, which were subsequently cell-sorted in bulk mode and sequenced. These experiments revealed similar taxonomic affiliations of putative grazer types (e.g., Cercozoa) that responded to the presence of Synechococcus prey. Protistan grazers appear to exert a strong degree of control on the abundance and duration of the annual Synechococcus bloom in the coastal Gulf of Maine.
Under Sea Ice phytoplankton bloom detection and contamination in Antarctica
NASA Astrophysics Data System (ADS)
Zeng, C.; Zeng, T.; Xu, H.
2017-12-01
Previous researches reported compelling sea ice phytoplankton bloom in Arctic, while seldom reports studied about Antarctic. Here, lab experiment showed sea ice increased the visible light albedo of the water leaving radiance. Even a new formed sea ice of 10cm thickness increased water leaving radiance up to 4 times of its original bare water. Given that phytoplankton preferred growing and accumulating under the sea ice with thickness of 10cm-1m, our results showed that the changing rate of OC4 estimated [Chl-a] varied from 0.01-0.5mg/m3 to 0.2-0.3mg/m3, if the water covered by 10cm sea ice. Going further, varying thickness of sea ice modulated the changing rate of estimating [Chl-a] non-linearly, thus current routine OC4 model cannot estimate under sea ice [Chl-a] appropriately. Besides, marginal sea ice zone has a large amount of mixture regions containing sea ice, water and snow, where is favorable for phytoplankton. We applied 6S model to estimate the sea ice/snow contamination on sub-pixel water leaving radiance of 4.25km spatial resolution ocean color products. Results showed that sea ice/snow scale effectiveness overestimated [Chl-a] concentration based on routine band ratio OC4 model, which contamination increased with the rising fraction of sea ice/snow within one pixel. Finally, we analyzed the under sea ice bloom in Antarctica based on the [Chl-a] concentration trends during 21 days after sea ice retreating. Regardless of those overestimation caused by sea ice/snow sub scale contamination, we still did not see significant under sea ice blooms in Antarctica in 2012-2017 compared with Arctic. This research found that Southern Ocean is not favorable for under sea ice blooms and the phytoplankton bloom preferred to occur in at least 3 weeks after sea ice retreating.
Goldstein, T; Mazet, J.A.K; Zabka, T.S; Langlois, G; Colegrove, K.M; Silver, M; Bargu, S; Van Dolah, F; Leighfield, T; Conrad, P.A; Barakos, J; Williams, D.C; Dennison, S; Haulena, M; Gulland, F.M.D
2007-01-01
Harmful algal blooms are increasing worldwide, including those of Pseudo-nitzschia spp. producing domoic acid off the California coast. This neurotoxin was first shown to cause mortality of marine mammals in 1998. A decade of monitoring California sea lion (Zalophus californianus) health since then has indicated that changes in the symptomatology and epidemiology of domoic acid toxicosis in this species are associated with the increase in toxigenic blooms. Two separate clinical syndromes now exist: acute domoic acid toxicosis as has been previously documented, and a second novel neurological syndrome characterized by epilepsy described here associated with chronic consequences of previous sub-lethal exposure to the toxin. This study indicates that domoic acid causes chronic damage to California sea lions and that these health effects are increasing. PMID:18006409
System Design of an Unmanned Aerial Vehicle (UAV) for Marine Environmental Sensing
2013-02-01
Malaysia to the north. Sea trials have been located through the green band. ................................................................... 56 Figure...light of recent disasters, pressure monitoring nodes mounted to the seafloor now provide advanced tsunami warning in countries including Malaysia ...organisms in huge number. Human health can also be impacted through the consumption of shellfish or other seafood contaminated with bloom-related
2011 Joint Science Education Project: Research Experience in Polar Science
NASA Astrophysics Data System (ADS)
Wilkening, J.; Ader, V.
2011-12-01
The Joint Science Education Project (JSEP), sponsored by the National Science Foundation, is a two-part program that brings together students and teachers from the United States, Greenland, and Denmark, for a unique cross-cultural, first-hand experience of the realities of polar science field research in Greenland. During JSEP, students experienced research being conducted on and near the Greenland ice sheet by attending researcher presentations, visiting NSF-funded field sites (including Summit and NEEM field stations, both located on the Greenland ice sheet), and designing and conducting research projects in international teams. The results of two of these projects will be highlighted. The atmospheric project investigated the differences in CO2, UVA, UVB, temperature, and albedo in different Arctic microenvironments, while also examining the interaction between the atmosphere and water present in the given environments. It was found that the carbon dioxide levels varied: glacial environments having the lowest levels, with an average concentration of 272.500 ppm, and non-vegetated, terrestrial environments having the highest, with an average concentration of 395.143 ppm. Following up on these results, it is planned to further investigate the interaction of the water and atmosphere, including water's role in the uptake of carbon dioxide. The ecology project investigated the occurrence of unusual large blooms of Nostoc cyanobacteria in Kangerlussuaq area lakes. The water chemistry of the lakes which contained the cyanobacteria and the lakes that did not were compared. The only noticeable difference was of the lakes' acidity, lakes containing the blooms had an average pH value of 8.58, whereas lakes without the blooms had an average pH value of 6.60. Further investigation of these results is needed to determine whether or not this was a cause or effect of the cyanobacteria blooms. As a next step, it is planned to attempt to grow the blooms to monitor their effects on different common ecosystems within the Kangerlussuaq area.
The Role of Nitrogen Fixation in Cyanobacterial Bloom Toxicity in a Temperate, Eutrophic Lake
Beversdorf, Lucas J.; Miller, Todd R.; McMahon, Katherine D.
2013-01-01
Toxic cyanobacterial blooms threaten freshwaters worldwide but have proven difficult to predict because the mechanisms of bloom formation and toxin production are unknown, especially on weekly time scales. Water quality management continues to focus on aggregated metrics, such as chlorophyll and total nutrients, which may not be sufficient to explain complex community changes and functions such as toxin production. For example, nitrogen (N) speciation and cycling play an important role, on daily time scales, in shaping cyanobacterial communities because declining N has been shown to select for N fixers. In addition, subsequent N pulses from N2 fixation may stimulate and sustain toxic cyanobacterial growth. Herein, we describe how rapid early summer declines in N followed by bursts of N fixation have shaped cyanobacterial communities in a eutrophic lake (Lake Mendota, Wisconsin, USA), possibly driving toxic Microcystis blooms throughout the growing season. On weekly time scales in 2010 and 2011, we monitored the cyanobacterial community in a eutrophic lake using the phycocyanin intergenic spacer (PC-IGS) region to determine population dynamics. In parallel, we measured microcystin concentrations, N2 fixation rates, and potential environmental drivers that contribute to structuring the community. In both years, cyanobacterial community change was strongly correlated with dissolved inorganic nitrogen (DIN) concentrations, and Aphanizomenon and Microcystis alternated dominance throughout the pre-toxic, toxic, and post-toxic phases of the lake. Microcystin concentrations increased a few days after the first significant N2 fixation rates were observed. Then, following large early summer N2 fixation events, Microcystis increased and became most abundant. Maximum microcystin concentrations coincided with Microcystis dominance. In both years, DIN concentrations dropped again in late summer, and N2 fixation rates and Aphanizomenon abundance increased before the lake mixed in the fall. Estimated N inputs from N2 fixation were large enough to supplement, or even support, the toxic Microcystis blooms. PMID:23405255
A space satellite perspective to monitor water quality using ...
Good water quality is important for human health, economic development, and the health of our environment. Across the country, we face the challenge of degraded water quality in many of our rivers, lakes, coastal regions and oceans. The EPA National Rivers and Stream Assessment report found that more than half - 55 percent - of our rivers and streams are in poor condition for aquatic life. Likewise, the EPA Lakes Assessment found that 22 percent of our lakes are in poor condition for aquatic life. The reasons for unhealthy water quality are vast. Likewise, poor water quality has numerous impacts to ecosystems. One indicator, which trends during warm weather months, is the duration and frequency of harmful algal blooms. A healthy environment includes good water quality to support a rich and varied ecosystem, economic growth, and protects the health of the people in the community who rely on that water. Having the ability to monitor and provide timely response to harmful algal blooms would be one step in protecting the benefits people receive from good water quality (U.S. EPA 2010 and 2013). Published in the North American Lake Management Society-LakeLine Magazine.
Vertical transmission of microcystins to Nile crocodile (Crocodylus niloticus) eggs.
Singo, Alukhethi; Myburgh, Jan G; Laver, Peter N; Venter, Elizabeth A; Ferreira, Gezina C H; Rösemann, Gertruida M; Botha, Christo J
2017-08-01
Cyanobacteria or blue green algae are known for their extensive and highly visible blooms in eutrophic, stagnant freshwater bodies. Climate change and global warming have also contributed to a rise in toxic cyanobacterial blooms. One of the most important cyanobacteria is Microcystis aeruginosa, which can synthesize various microcystins that can affect the health of terrestrial and aquatic animals. Commercial Nile crocodile (Crocodylus niloticus) farming in South Africa is based on keeping breeders (adult males and females) in big dams on farms (captive-bred approach). Unfortunately, cyanobacterial blooms in the breeder dams are a concern to farm owners, managers and veterinarians. The main objectives of this research project were to determine if microcystins were present in the contents of crocodile eggs and the liver and yolk of dead hatchlings, and to determine if the reduced hatchability on commercial farms might be caused by these toxins. Furthermore, the concentration of microcystins in the breeder dam was monitored on a monthly basis spanning the ovulation and egg laying period. During the hatching season microcystin concentrations in unfertilised eggs, egg shell membranes and in the yolk and liver of dead hatchlings were determined using liquid chromatography-high resolution mass spectrometry (LC-HRMS). Microcystins were detected in Nile crocodile egg and hatchling samples. Microcystin (MC-LR, MC-RR, MC-YR) concentrations in the crocodile egg and hatchling samples collected from clutches with a good hatching rate (≥90%) ranged between 0 and 1.76 ng g -1 , with the highest concentration in the egg shell membranes. Microcystin concentrations in samples collected from clutches with a bad hatching rate (≤10%) ranged from 0 - 1.63 ng g -1 with the highest concentration detected in the hatchling yolk. However, the concentrations were probably underestimated as the percentage recovery from spiked samples was very low with the extraction method employed. Bayesian analysis suggests that the liver, yolk and unfertilised egg all have similar microcystin concentrations, while the membranes have (with moderate to high certainty) higher microcystin concentrations. There appears to be no difference in microcystin concentrations among good and bad clutches across all tissue types or within a specific tissue type, but due to the small sample size, it was not possible to determine whether microcystin affected the hatchability of Nile crocodile eggs. However, vertical transmission of microcystin variants to the Nile crocodile egg does occur and the possible implications for the survival of wild Nile crocodile populations should be ascertained. Copyright © 2017 Elsevier Ltd. All rights reserved.
Spectral Feature Analysis for Quantitative Estimation of Cyanobacteria Chlorophyll-A
NASA Astrophysics Data System (ADS)
Lin, Yi; Ye, Zhanglin; Zhang, Yugan; Yu, Jie
2016-06-01
In recent years, lake eutrophication caused a large of Cyanobacteria bloom which not only brought serious ecological disaster but also restricted the sustainable development of regional economy in our country. Chlorophyll-a is a very important environmental factor to monitor water quality, especially for lake eutrophication. Remote sensed technique has been widely utilized in estimating the concentration of chlorophyll-a by different kind of vegetation indices and monitoring its distribution in lakes, rivers or along coastline. For each vegetation index, its quantitative estimation accuracy for different satellite data might change since there might be a discrepancy of spectral resolution and channel center between different satellites. The purpose this paper is to analyze the spectral feature of chlorophyll-a with hyperspectral data (totally 651 bands) and use the result to choose the optimal band combination for different satellites. The analysis method developed here in this study could be useful to recognize and monitor cyanobacteria bloom automatically and accrately. In our experiment, the reflectance (from 350nm to 1000nm) of wild cyanobacteria in different consistency (from 0 to 1362.11ug/L) and the corresponding chlorophyll-a concentration were measured simultaneously. Two kinds of hyperspectral vegetation indices were applied in this study: simple ratio (SR) and narrow band normalized difference vegetation index (NDVI), both of which consists of any two bands in the entire 651 narrow bands. Then multivariate statistical analysis was used to construct the linear, power and exponential models. After analyzing the correlation between chlorophyll-a and single band reflectance, SR, NDVI respetively, the optimal spectral index for quantitative estimation of cyanobacteria chlorophyll-a, as well corresponding central wavelength and band width were extracted. Results show that: Under the condition of water disturbance, SR and NDVI are both suitable for quantitative estimation of chlorophyll-a, and more effective than the traditional single band model; the best regression models for SR, NDVI with chlorophyll-a are linear and power, respectively. Under the condition without water disturbance, the single band model works the best. For the SR index, there are two optimal band combinations, which is comprised of infrared (700nm-900nm) and blue-green range (450nm-550nm), infrared and red range (600nm-650nm) respectively, with band width between 45nm to 125nm. For NDVI, the optimal band combination includes the range from 750nm to 900nm and 700nm to 750nm, with band width less than 30nm. For single band model, band center located between 733nm-935nm, and its width mustn't exceed the interval where band center located in. This study proved , as for SR or NDVI, the centers and widths are crucial factors for quantitative estimating chlorophyll-a. As for remote sensor, proper spectrum channel could not only improve the accuracy of recognizing cyanobacteria bloom, but reduce the redundancy of hyperspectral data. Those results will provide better reference for designing the suitable spectrum channel of customized sensors for cyanobacteria bloom monitoring at a low altitude. In other words, this study is also the basic research for developing the real-time remote sensing monitoring system with high time and high spatial resolution.
Jiang, Xin; Li, Jiajun; Ke, Zhixin; Xiang, Chenhui; Tan, Yehui; Huang, Liangmin
2017-04-15
To understand the variations of picoplankton (Prochlorococcus, Synechococcus, picoeukaryotes, and heterotrophic bacteria) abundances during diatom bloom, the distribution of picoplankton in the Taiwan Bank, South China Sea was investigated using flow cytometry during a Thalassiosira diporocyclus bloom in March 2016. The results indicated an abrupt abundance decrease for Prochlorococcus, Synechococcus, and picoeukaryotes within the bloom area while the abundance of heterotrophic bacteria showed no significant difference between the bloom and non-bloom areas. We found two sub-groups of heterotrophic bacteria: high- and low-nucleic acid content (HNA and LNA) bacteria with HNA dominated in the bloom area whereas LNA dominated in the non-bloom area. Among the picoplankton components, HNA represented the highest (61.1%) carbon biomass in the bloom area while picoeukaryotes represented the highest (37.6%) in the non-bloom area. Our findings implied that heterotrophic bacteria, especially HNA, played an essential role during the diatom bloom. Copyright © 2017 Elsevier Ltd. All rights reserved.
DETECTION OF CYANOBACTERIA AND THEIR TOXINS IN WATER
Blooms of cyanobacteria, also known as blue-green algae, have recently become more prevalent worldwide as a result of human activities. The long-term chronic human health hazard attributable to toxic cyanotoxins in drinking water has caused considerable concern in humans. Conti...
NASA Technical Reports Server (NTRS)
Clark, John M.; Schaeffer, Blake A.; Darling, John A.; Urquhart, Erin A.; Johnston, John M.; Ignatius, Amber R.; Myer, Mark H.; Loftin, Keith A.; Werdell, P. Jeremy; Stumpf, Richard P.
2017-01-01
Cyanobacterial harmful algal blooms (cyanoHAB) cause extensive problems in lakes worldwide, including human and ecological health risks, anoxia and sh kills, and taste and odor problems. CyanoHABs are a particular concern in both recreational waters and drinking water sources because of their dense biomass and the risk of exposure to toxins. Successful cyanoHAB assessment using satellites may provide an indicator for human and ecological health protection. In this study, methods were developed to assess the utility of satellite technology for detecting cyanoHAB frequency of occurrence at locations of potential management interest. The European Space Agency's MEdium Resolution Imaging Spectrometer (MERIS) was evaluated to prepare for the equivalent series of Sentinel-3 Ocean and Land Colour Imagers (OLCI) launched in 2016 as part of the Copernicus program. Based on the 2012 National Lakes Assessment site evaluation guidelines and National Hydrography Dataset, the continental United States contains 275,897 lakes and reservoirs greater than 1 ha in area. Results from this study show that 5.6% of waterbodies were resolvable by satellites with 300 m single-pixel resolution and 0.7% of waterbodies were resolvable when a three by three pixel (3 x 3-pixel) array was applied based on minimum Euclidian distance from shore. Satellite data were spatially joined to U.S. public water surface intake (PWSI) locations, where single-pixel resolution resolved 57% of the PWSI locations and a 3 x 3-pixel array resolved 33% of the PWSI locations. Recreational and drinking water sources in Florida and Ohio were ranked from 2008 through 2011 by cyanoHAB frequency above the World Health Organizations (WHO) high threshold for risk of 100,000 cells m/L. The ranking identified waterbodies with values above the WHO high threshold, where Lake Apopka, FL (99.1%) and Grand Lake St. Marys, OH (83%) had the highest observed bloom frequencies per region. The method presented here may indicate locations with high exposure to cyanoHABs and therefore can be used to assist in prioritizing management resources and actions for recreational and drinking water sources.
Clark, John M.; Schaeffer, Blake A.; Darling, John A.; Urquhart, Erin A.; Johnston, John M.; Ignatius, Amber R.; Myer, Mark H.; Loftin, Keith A.; Werdell, P. Jeremy; Stumpf, Richard P.
2017-01-01
Cyanobacterial harmful algal blooms (cyanoHAB) cause extensive problems in lakes worldwide, including human and ecological health risks, anoxia and fish kills, and taste and odor problems. CyanoHABs are a particular concern in both recreational waters and drinking water sources because of their dense biomass and the risk of exposure to toxins. Successful cyanoHAB assessment using satellites may provide an indicator for human and ecological health protection. In this study, methods were developed to assess the utility of satellite technology for detecting cyanoHAB frequency of occurrence at locations of potential management interest. The European Space Agency's MEdium Resolution Imaging Spectrometer (MERIS) was evaluated to prepare for the equivalent series of Sentinel-3 Ocean and Land Colour Imagers (OLCI) launched in 2016 as part of the Copernicus program. Based on the 2012 National Lakes Assessment site evaluation guidelines and National Hydrography Dataset, the continental United States contains 275,897 lakes and reservoirs >1 ha in area. Results from this study show that 5.6% of waterbodies were resolvable by satellites with 300 m single-pixel resolution and 0.7% of waterbodies were resolvable when a three by three pixel (3 × 3-pixel) array was applied based on minimum Euclidian distance from shore. Satellite data were spatially joined to U.S. public water surface intake (PWSI) locations, where single-pixel resolution resolved 57% of the PWSI locations and a 3 × 3-pixel array resolved 33% of the PWSI locations. Recreational and drinking water sources in Florida and Ohio were ranked from 2008 through 2011 by cyanoHAB frequency above the World Health Organization’s (WHO) high threshold for risk of 100,000 cells mL−1. The ranking identified waterbodies with values above the WHO high threshold, where Lake Apopka, FL (99.1%) and Grand Lake St. Marys, OH (83%) had the highest observed bloom frequencies per region. The method presented here may indicate locations with high exposure to cyanoHABs and therefore can be used to assist in prioritizing management resources and actions for recreational and drinking water sources.
Bowes, M J; Loewenthal, M; Read, D S; Hutchins, M G; Prudhomme, C; Armstrong, L K; Harman, S A; Wickham, H D; Gozzard, E; Carvalho, L
2016-11-01
River phytoplankton blooms can pose a serious risk to water quality and the structure and function of aquatic ecosystems. Developing a greater understanding of the physical and chemical controls on the timing, magnitude and duration of blooms is essential for the effective management of phytoplankton development. Five years of weekly water quality monitoring data along the River Thames, southern England were combined with hourly chlorophyll concentration (a proxy for phytoplankton biomass), flow, temperature and daily sunlight data from the mid-Thames. Weekly chlorophyll data was of insufficient temporal resolution to identify the causes of short term variations in phytoplankton biomass. However, hourly chlorophyll data enabled identification of thresholds in water temperature (between 9 and 19°C) and flow (<30m(3)s(-1)) that explained the development of phytoplankton populations. Analysis showed that periods of high phytoplankton biomass and growth rate only occurred when these flow and temperature conditions were within these thresholds, and coincided with periods of long sunshine duration, indicating multiple stressor controls. Nutrient concentrations appeared to have no impact on the timing or magnitude of phytoplankton bloom development, but severe depletion of dissolved phosphorus and silicon during periods of high phytoplankton biomass may have contributed to some bloom collapses through nutrient limitation. This study indicates that for nutrient enriched rivers such as the Thames, manipulating residence time (through removing impoundments) and light/temperature (by increasing riparian tree shading) may offer more realistic solutions than reducing phosphorus concentrations for controlling excessive phytoplankton biomass. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Pitarch, Jaime; Volpe, Gianluca; Colella, Simone; Krasemann, Hajo; Santoleri, Rosalia
2016-03-01
A 15-year (1997-2012) time series of chlorophyll a (Chl a) in the Baltic Sea, based on merged multi-sensor satellite data was analysed. Several available Chl a algorithms were sea-truthed against the largest in situ publicly available Chl a data set ever used for calibration and validation over the Baltic region. To account for the known biogeochemical heterogeneity of the Baltic, matchups were calculated for three separate areas: (1) the Skagerrak and Kattegat, (2) the central Baltic, including the Baltic Proper and the gulfs of Riga and Finland, and (3) the Gulf of Bothnia. Similarly, within the operational context of the Copernicus Marine Environment Monitoring Service (CMEMS) the three areas were also considered as a whole in the analysis. In general, statistics showed low linearity. However, a bootstrapping-like assessment did provide the means for removing the bias from the satellite observations, which were then used to compute basin average time series. Resulting climatologies confirmed that the three regions display completely different Chl a seasonal dynamics. The Gulf of Bothnia displays a single Chl a peak during spring, whereas in the Skagerrak and Kattegat the dynamics are less regular and composed of highs and lows during winter, progressing towards a small bloom in spring and a minimum in summer. In the central Baltic, Chl a follows a dynamics of a mild spring bloom followed by a much stronger bloom in summer. Surface temperature data are able to explain a variable fraction of the intensity of the summer bloom in the central Baltic.<
Characterization of Florida red tide aerosol and the temporal profile of aerosol concentration.
Cheng, Yung Sung; Zhou, Yue; Pierce, Richard H; Henry, Mike; Baden, Daniel G
2010-05-01
Red tide aerosols containing aerosolized brevetoxins are produced during the red tide bloom and transported by wind to coastal areas of Florida. This study reports the characterization of Florida red tide aerosols in human volunteer studies, in which an asthma cohort spent 1h on Siesta Beach (Sarasota, Florida) during aerosolized red tide events and non-exposure periods. Aerosol concentrations, brevetoxin levels, and particle size distribution were measured. Hourly filter samples were taken and analyzed for brevetoxin and NaCl concentrations. In addition, the aerosol mass concentration was monitored in real time. The results indicated that during a non-exposure period in October 2004, no brevetoxin was detected in the water, resulting in non-detectable levels of brevetoxin in the aerosol. In March 2005, the time-averaged concentrations of brevetoxins in water samples were moderate, in the range of 5-10 microg/L, and the corresponding brevetoxin level of Florida red tide aerosol ranged between 21 and 39 ng/m(3). The temporal profiles of red tide aerosol concentration in terms of mass, NaCl, and brevetoxin were in good agreement, indicating that NaCl and brevetoxins are components of the red tide aerosol. By continuously monitoring the marine aerosol and wind direction at Siesta Beach, we observed that the marine aerosol concentration varied as the wind direction changed. The temporal profile of the Florida red tide aerosol during a sampling period could be explained generally with the variation of wind direction. Copyright 2009 Elsevier Ltd. All rights reserved.
Sison-Mangus, Marilou P.; Jiang, Sunny; Kudela, Raphael M.; Mehic, Sanjin
2016-01-01
Pseudo-nitzschia blooms often occur in coastal and open ocean environments, sometimes leading to the production of the neurotoxin domoic acid that can cause severe negative impacts to higher trophic levels. Increasing evidence suggests a close relationship between phytoplankton bloom and bacterial assemblages, however, the microbial composition and succession during a bloom process is unknown. Here, we investigate the bacterial assemblages before, during and after toxic and non-toxic Pseudo-nitzschia blooms to determine the patterns of bacterial succession in a natural bloom setting. Opportunistic sampling of bacterial community profiles were determined weekly at Santa Cruz Municipal Wharf by 454 pyrosequencing and analyzed together with domoic acid levels, phytoplankton community and biomass, nutrients and temperature. We asked if the bacterial communities are similar between bloom and non-bloom events and if domoic acid or the presence of toxic algal species acts as a driving force that can significantly structure phytoplankton-associated bacterial communities. We found that bacterial diversity generally increases when Pseudo-nitzschia numbers decline. Furthermore, bacterial diversity is higher when the low-DA producing P. fraudulenta dominates the algal bloom while bacterial diversity is lower when high-DA producing P. australis dominates the algal bloom, suggesting that the presence of algal toxin can structure bacterial community. We also found bloom-related succession patterns among associated bacterial groups; Gamma-proteobacteria, were dominant during low toxic P. fraudulenta blooms comprising mostly of Vibrio spp., which increased in relative abundance (6–65%) as the bloom progresses. On the other hand, Firmicutes bacteria comprising mostly of Planococcus spp. (12–86%) dominate during high toxic P. australis blooms, with the bacterial assemblage showing the same bloom-related successional patterns in three independent bloom events. Other environmental variables such as nitrate and phosphate and temperature appear to influence some low abundant bacterial groups as well. Our results suggest that phytoplankton-associated bacterial communities are strongly affected not just by phytoplankton bloom in general, but also by the type of algal species that dominates in the natural bloom. PMID:27672385
HPLC pigment profiles of 31 harmful algal bloom species isolated from the coastal sea areas of China
NASA Astrophysics Data System (ADS)
Liu, Shuxia; Yao, Peng; Yu, Zhigang; Li, Dong; Deng, Chunmei; Zhen, Yu
2014-12-01
Chemotaxonomy based on diagnostic pigments is now a routine tool for macroscopic determination of the composition and abundance of phytoplankton in various aquatic environments. Since the taxonomic capability of this method depends on the relationships between diagnostic pigments and chlorophyll a of classified groups, it is critical to calibrate it by using pigment relationships obtained from representative and/or dominant species local to targeted investigation area. In this study, pigment profiles of 31 harmful algal bloom (HAB) species isolated from the coastal sea areas of China were analyzed with high performance liquid chromatography (HPLC). Pigment compositions, cellular pigment densities and ratios of pigments to chlorophyll a were determined and calculated. Among all these species, 25 kinds of pigments were detected, of which fucoxanthin, peridinin, 19'-butanoyloxyfucoxanthin, 19'-hexanoyloxyfucoxanthin, violaxanthin, and antheraxanthin were diagnostic pigments. Cellular pigment density was basically independent of species and environmental conditions, and therefore was recommended as a bridge to compare the results of HPLC-CHEMTAX technique with the traditional microscopy method. Pigment ratios of algal species isolated from the coast of China, especially the diagnostic pigment ratios, were higher than those from other locations. According to these results, pigment ratio ranges of four classes of phytoplankton common off the coast of China were summarized for using in the current chemotaxonomic method. Moreover, the differences of pigments ratios among different species under the same culturing conditions were consistent with their biological differences. Such differences have the potential to be used to classify the phytoplankton below class, which is meaningful for monitoring HABs by HPLC-CHEMTAX.
Lau, Winnie Lik Sing; Law, Ing Kuo; Liow, Guat Ru; Hii, Kieng Soon; Usup, Gires; Lim, Po Teen; Leaw, Chui Pin
2017-12-01
In 2015, a remarkably high density bloom of Alexandrium minutum occurred in Sungai Geting, a semi-enclosed lagoon situated in the northeast of Peninsular Malaysia, causing severe discoloration and contaminated the benthic clams (Polymesoda). Plankton and water samples were collected to investigate the mechanisms of bloom development of this toxic species. Analysis of bloom samples using flow cytometry indicated that the bloom was initiated by the process of active excystment, as planomycetes (>4C cells) were observed in the early stage of the bloom. Increase in planozygotes (2C cells) was evident during the middle stage of the bloom, coinciding with an abrupt decrease in salinity and increase of temperature. The bloom was sustained through the combination of binary division of vegetative cells, division of planozygotes, and cyst germination through continuous excystment. Nutrient depletion followed by precipitation subsequently caused the bloom to terminate. This study provides the first continuous record of in situ life-cycle stages of a natural bloom population of A. minutum through a complete bloom cycle. The event has provided a fundamental understanding of the pelagic life-cycle stages of this tropical dinoflagellate, and demonstrated a unique bloom development characteristic shared among toxic Alexandrium species in coastal embayments. Copyright © 2017 Elsevier B.V. All rights reserved.
The metabolite profiling of coastal coccolithophorid species Pleurochrysis carterae (Haptophyta)
NASA Astrophysics Data System (ADS)
Zhou, Chengxu; Luo, Jie; Ye, Yangfang; Yan, Xiaojun; Liu, Baoning; Wen, Xin
2016-07-01
Pleurochrysis carterae is a calcified coccolithophorid species that usually blooms in the coastal area and causes aquaculture losses. The cellular calcification, blooming and many other critical species specific eco-physiological processes are closely related to various metabolic pathways. The purpose of this study is to apply the unbiased and non-destructive method of nuclear magnetic resonance (NMR) to detect the unknown holistic metabolite of P. carterae. The results show that NMR spectroscopic method is practical in the analysis of metabolites of phytoplankton. The metabolome of P. carterae was dominated by 26 metabolites involved in a number of different primary and secondary metabolic pathways. Organic acids and their derivatives, amino acids, sugars, nucleic aides were mainly detected. The abundant metabolites are that closely related to the process of cellular osmotic adjustment, which possibly reflect the active ability of P. carterae to adapt to the versatile coastal niche. DMSP (dimethylsulphoniopropionate) was the most dominant metabolite in P. carterae, up to 2.065±0.278 mg/g lyophilized cells, followed by glutamate and lactose, the contents were 0.349±0.035 and 0.301±0.073 mg/g lyophilized cells respectively. Other metabolites that had the content ranged between 0.1-0.2 mg/g lyophilized cells were alanine, isethionate and arabinose. Amino acid (valine, phenylalanine, isoleucine, tyrosine), organic acid salts (lactate, succinate), scyllitol and uracil had content ranged from 0.01 to below 0.1 mg/g lyophilized cells. Trigonelline, fumarate and formate were detected in very low content (only thousandths of 1 mg per gram of lyophilized cells or below). Our results of the holistic metabolites of P. carterae are the basic references for the further studies when multiple problems will be addressed to this notorious blooming calcifying species.
Satellite detection, tracing, and early warning of harmful algal blooms (HABs) for the Asian waters
NASA Astrophysics Data System (ADS)
Tang, D. L.
Over the past two decades, Harmful Algal Blooms (HABs) appear to have increased in frequency, intensity and geographic distribution worldwide, and have caused large economic losses in aquacultured and wild fisheries in recent years. Understanding of the oceanic mechanisms is important for early warning of HAB events. The present study reported several extensive HABs in the Asian waters during 1998 to 2003 detected by satellite remote sensing data (SeaWiFS, NOAA AVHRR, and QuikScat) and in situ observations. An extensive HAB off southeastern Vietnamese waters during late June to July 2002 was detected and its related oceanographic features were analyzed. The HAB had high Chlorophyll-a (Chl-a) concentrations (up to 4.5 mg m-3), occurring about 200 km off the coast and about 200 km northeast of the Mekong River mouth, for a period of about 6 weeks. The bloom was dominated by the harmful algae haptophyte Phaeocystis cf. globosa, and caused a very significant mortality of aquacultured fishes and other marine life. In the same period, Sea Surface Temperature (SST) imagery showed a coldwater plume extending from the coast to the open sea, and QuikScat data showed strong southwesterly winds blowing parallel with the coastline. It indicated the HAB was induced and supported by offshore upwelling that bring nutrients from the deep ocean to the surface and from coastal water to the offshore, and the upwelling was driven by strong wind through Ekman transport when winds were parallel with the coastline. This study demonstrated the possibility of utilizing a combination of satellite data of Chl-a, SST and wind velocity together with coastal bathymetric information and in situ observation to give a better understanding of the biological oceanography of HABs; these results may help for the early warming of HAB.
NASA Astrophysics Data System (ADS)
Giles, C. D.; Lee, L. G.; Cade-Menun, B. J.; Rutila, B. C.; Schroth, A. W.; Xu, Y.; Hill, J. E.; Druschel, G.
2013-12-01
Lake sediments represent a significant internal source of phosphorus (P) in eutrophic freshwater systems during periods of high biological activity and oxygen depletion in sediments. Enzyme-labile and redox-sensitive P fractions may be a major component of the mobile sediment P pool which contributes to the development of harmful algal blooms. We present a high-through-put enzyme-based method for assessing potentially bioavailable (enzyme-labile) P in lake sediments and describe the relationship between enzyme-labile P, ascorbate-extractable (reactive) P and metals (Fe, Mn, Al, Ca), and P species identified using solution 31-P NMR spectroscopy. Sediment cores (0-10 cm) were collected from Lake Champlain over multiple years (Missisquoi Bay, VT, USA; 2007-2013). A principal components analysis of sediment properties suggests that enzyme-labile and reactive P, Mn, and Fe concentrations were more effective than the 31-P NMR methodology alone for differentiating algal bloom stage associated with periods of sediment anoxia. Bloom onset (July 2008) and peak bloom (August 2008, 2012) periods corresponded to the highest enzyme-labile P and lowest reactive P and metals proportions, despite 31-P NMR profiles which did not change significantly with respect to time and depth. High levels of reduced Fe and Mn ions were also detected in pore-water during this period, confirming previous reports that organic P bioavailability is linked to the redox status of sediments. High through-put analysis of enzyme-labile P fractions will provide spatially and temporally resolved information on bioavailable P pools at lower cost than traditional methods (i.e., 31-P NMR), and provide much-needed detail on aquatic P cycles during discrete stages of algal bloom development and sediment anoxia.
Two-decade reconstruction of algal blooms in China's Lake Taihu.
Duan, Hongtao; Ma, Ronghua; Xu, Xiaofeng; Kong, Fanxiang; Zhang, Shouxuan; Kong, Weijuan; Hao, Jingyan; Shang, Linlin
2009-05-15
The algal blooming in the inland lakes has become a critically important issue for its impacts not only on local natural and social environments, but also on global human community. However, the occurrences of blooming on larger spatial scale and longer time scale have rarely been studied. As the third largest freshwater lake in China, Lake Taihu has drawn increasing attention from both public and scientific communities concerning its degradation. Using available satellite images, we reconstructed the spatial and temporal patterns of algal blooms in Lake Taihu through the pasttwo decades. The blooming characteristics over the past two decades were examined with the dynamic of initial blooming date being highlighted. The initial blooming dates were gradually becoming later and later from 1987 to 1997. Since 1998, however, the initial blooming date came earlier and earlier year by year, with approximately 11.42 days advancement per year. From 1987 to 2007, the annual duration of algal blooms lengthened year by year, in line with the substantial increases in the occurrences of algal blooms in spring and summer months. The algal blooms usually occur in northern bays and spread to center and south parts of Lake Taihu. The increases in previous winter's mean daily minimum temperature partially contributed to the earlier blooming onset. However, human activities, expressed as total gross domestic product (GDP) and population, outweighed the climatic contribution on the initial blooming date and blooming duration. This study may provide insights for the policy makers who try to curb the algal blooming and improve the water quality of inland freshwater lakes.
Watershed modeling and monitoring for assessing nutrient ...
Presentation for the American Water Works Association Water Sustainability Conference. The presentation highlights latest results from water quality trading research conducted by ORD using the East Fork Watershed in Southwestern Ohio as a case study. The watershed has a nutrient enrichment problem that is creating harmful algal blooms in a reservoir used for drinking water and recreation. Innovative modeling and monitoring is combined to understand how to best manage this water quality problem and costs associated with this endeavor. The presentation will provide an overview of the water quality trading feasibility research. The research includes the development and evaluation of innovative modeling and monitoring approaches to manage watersheds for nutrient pollution using a whole systems approach.
Henrikson, Jon C; Gharfeh, Majed S; Easton, Anne C; Easton, James D; Glenn, Karen L; Shadfan, Miriam; Mooberry, Susan L; Hambright, K David; Cichewicz, Robert H
2010-06-15
Within the last two decades, Prymnesium parvum (golden algae) has rapidly spread into inland waterways across the southern portion of North America and this organism has now appeared in more northerly distributed watersheds. In its wake, golden algae blooms have left an alarming trail of ecological devastation, namely massive fish kills, which are threatening the economic and recreational value of freshwater systems throughout the United States. To further understand the nature of this emerging crisis, our group investigated the chemical nature of the toxin(s) produced by P. parvum. We approached the problem using a two-pronged strategy that included analyzing both laboratory-grown golden algae and field-collected samples of P. parvum. Our results demonstrate that there is a striking difference in the toxin profiles for these two systems. An assemblage of potently ichthyotoxic fatty acids consisting primarily of stearidonic acid was identified in P. parvum cultures. While the concentration of the fatty acids alone was sufficient to account for the rapid-onset ichthyotoxic properties of cultured P. parvum, we also detected a second type of highly labile ichthyotoxic substance(s) in laboratory-grown golden algae that remains uncharacterized. In contrast, the amounts of stearidonic acid and its related congeners present in samples from recent bloom and fish kill sites fell well below the limits necessary to induce acute toxicity in fish. However, a highly labile ichthyotoxic substance, which is similar to the one found in laboratory-grown P. parvum cultures, was also detected. We propose that the uncharacterized labile metabolite produced by P. parvum is responsible for golden algae's devastating fish killing effects. Moreover, we have determined that the biologically-relevant ichthyotoxins produced by P. parvum are not the prymnesins as is widely believed. Our results suggest that further intensive efforts will be required to chemically define P. parvum's ichthyotoxins under natural bloom conditions. 2010 Elsevier Ltd. All rights reserved.
Evaluation of cyanobacteria cell count detection derived from MERIS imagery across the eastern USA
Inland waters across the United States (US) are at potential risk for increased outbreaks of toxic cyanobacteria (Cyano) harmful algal bloom (HAB) events resulting from elevated water temperatures and extreme hydrologic events attributable to climate change and increased nutrient...
Abstract: Cylindrospermopsin is now recognized as a potent cyanobacterial toxin found in water bodies worldwide. The ever-increasing and global occurrence of massive and prolonged blooms of cylindrospermopsin-producing cyanobacteria in freshwater poses a potential threat to both ...
Cyanobacteria Assessment Network (CyAN) - 2017 NASA Water Resources PI Presentation
Presentation on the Cyanobacteria Assessment Network (CYAN) and how is supports the environmental management and public use of the U.S. lakes and estuaries by providing a capability of detecting and quantifying algal blooms and related water quality using satellite data records.
Ortelli, Didier; Edder, Patrick; Cognard, Emmanuelle; Jan, Philippe
2008-06-09
Cyanobacteria, commonly called "blue-green algae", may accumulate in surface water supplies as "blooms" and may concentrate on the surface as blue-green "scums". Some species of cyanobacteria produce toxins and are of relevance to water supplies and to microalgae dietary supplements. To ensure the safety of drinking water and blue-green algae products, analyses are the only way to determine the presence or absence of toxins. This paper shows the use of ultra performance liquid chromatography (UPLC) coupled to orthogonal acceleration time of flight (TOF) mass spectrometry for the detection and quantitation of microcystins. The method presented is very sensitive, simple, fast, robust and did not require fastidious clean-up step. Limits of detection of 0.1 microg L(-1) in water and 0.1-0.2 microg g(-1) in microalgae samples were achieved. Method performances were satisfactory and appropriate for monitoring of water and dietary supplements. The method was applied in routine to samples taken from Swiss market or buy on internet website. Among 19 samples, six showed the presence of microcystins LR and LA at harmful levels.
NASA Astrophysics Data System (ADS)
Xie, Jinlin; Yu, Gongliang; Xu, Xudong; Li, Shouchun; Li, Renhui
2018-03-01
Cylindrospermopsis raciborskii and its highly similar relatives Raphidiopsis species have been recognized as globally invasive and expansive filamentous cyanobacteria causing water blooms. Reports on C. raciborskii/ Raphidiopsis species and their harmful metabolites such as hepatotoxic cylindrospermopsins (CYNs) in Chinese waters have been increasing, but mostly restricted to the southern regions of China. To further explore the existence and distribution of C. raciborskii in China, six water samples from Beijing city were morphologically and molecularly examined. Five samples of the six were shown to have Cylindrospermopsis filaments with straight and spiral morphotypes. PCR detection targeting on Cylindrospermopsis/ Raphidiopsis specific 16S rRNA gene region also showed the positive amplification, and such amplifications were confirmed by sequencing and phylogenetic analysis. As well, three of the five Cylindrospermopsis containing samples were shown to have cyrJ — a gene of CYN synthesis gene cluster. The results represented the presence of toxic Cylindrospermopsis at the most northern line in China so far, indicating rapid expansion of this harmful invasive cyanobacterium. It is strongly suggested that the monitoring on C. raciborskii/ Raphidiopsis species and their production of cylindrospermopsin should be emphasized in Beijing and even more northern parts of China.
Giannuzzi, Leda; Sedan, Daniela; Echenique, Ricardo; Andrinolo, Dario
2011-01-01
Cyanobacterial blooms and hepatotoxic microcystins (MCs) usually occur in summer, constituting a sanitary and environmental problem in Salto Grande Dam, Argentina. Water sports and recreational activities take place in summer in this lake. We reported an acute case of cyanobacterial poisoning in Salto Grande dam, Argentina, which occurred in January 2007. Accidentally, a young man was immersed in an intense bloom of Microcystis spp. A level of 48.6 μg·L−1 of microcystin-LR was detected in water samples. Four hours after exposure, the patient showed nausea, abdominal pain and fever. Three days later, dyspnea and respiratory distress were reported. The patient was hospitalized in intensive care and diagnosed with an atypical pneumonia. Finally, a week after the exposure, the patient developed a hepatotoxicosis with a significant increase of hepatic damage biomarkers (ALT, AST and γGT). Complete recovery took place within 20 days. This is the first study to show an acute intoxication with microcystin-producing cyanobacteria blooms in recreational water. PMID:22163179
Satellite detection of phytoplankton export from the mid-Atlantic Bight during the 1979 spring bloom
NASA Technical Reports Server (NTRS)
Walsh, J. J.; Dieterle, D. A.; Esaias, W. E.
1986-01-01
Analysis of Coastal Zone Color Scanner (CZCS) imagery confirms shipboard and in situ moored fluorometer observations of resuspension of near-bottom chlorophyll within surface waters (1 to 10 m) by northwesterly wind events in the mid-Atlantic Bight. As much as 8 to 16 micrograms chl/l are found during these wind events from March to May, with a seasonal increase of algal biomass until onset of stratification of the water column. Rapid sinking or downwelling apparently occurs after subsequent wind events, however, such that the predominant surface chlorophyll pattern is approx. 0.5 to 1.5 micrograms/l over the continental shelf during most of the spring bloom. Perhaps half of the chlorophyll increase observed by satellite during a wind resuspension event represents in-situ production during the 4 to 5 day interval, with the remainder attributed to accumulation of algal biomass previously produced and temporarily stored within near-bottom water. Present calculations suggest that about 10% of the primary production of the spring bloom may be exported as ungrazed phytoplankton carbon from mid-Atlantic shelf waters to those of the continental slope.
NASA Astrophysics Data System (ADS)
Tang, DanLing
2016-07-01
Algal bloom not only can increase the primary production but also could result in negative ecological consequence, e.g., Harmful Algal Blooms (HABs). According to the classic theory for the formation of algal blooms "critical depth" and "eutrophication", oligotrophic sea area is usually difficult to form a large area of algal blooms, and actually the traditional observation is only sporadic capture to the existence of algal blooms. Taking full advantage of multiple data of satellite remote sensing, this study: 1), introduces "Wind-driven algal blooms in open oceans: observation and mechanisms" It explained except classic coastal Ekman transport, the wind through a variety of mechanisms affecting the formation of algal blooms. Proposed a conceptual model of "Strong wind -upwelling-nutrient-phytoplankton blooms" in Western South China Sea (SCS) to assess role of wind-induced advection transport in phytoplankton bloom formation. It illustrates the nutrient resources that support long-term offshore phytoplankton blooms in the western SCS; 2), Proposal of the theory that "typhoons cause vertical mixing, induce phytoplankton blooms", and quantify their important contribution to marine primary production; Proposal a new ecological index for typhoon. Proposed remote sensing inversion models. 3), Finding of the spatial and temporaldistributions pattern of harmful algal bloom (HAB)and species variations of HAB in the South Yellow Sea and East China Sea, and in the Pearl River estuary, and their oceanic dynamic mechanisms related with monsoon; The project developed new techniques and generated new knowledge, which significantly improved understanding of the formation mechanisms of algal blooms. 1), It proposed "wind-pump" mechanism integrates theoretical system combing "ocean dynamics, development of algal blooms, and impact on primary production", which will benefit fisheries management. 2), A new interdisciplinary subject "Remote Sensing Marine Ecology"(RSME) has been developed via these achievements.
Li, Yi; Yang, Caiyun; Li, Dong; Tian, Yun; Zheng, Tianling
2012-10-04
To investigate the dynamics of bacterial community in Xiamen sea during the bloom mainly caused by Skeletonema costatum and Akashiwo sanguine in August 2011. Bacterial community structures of samples from two bloom sites and one non-bloom site were evaluated by PCR-DGGE (Denaturing gradient gel electrophoresis, DGGE). The genetic diversity of bacterial community was analyzed based on the DGGE fingerprint. The correlation between bacterial community and environmental parameters was studied by Canoco. The bacterial community was largely related to pH and N/P during the start-up stage of the bloom; while in the demise stage, it was mostly correlated to salinity and temperature. According to the results of sequence analysis of DGGE dominant bands, Gammaproteobacteria accounted for 47.7% during the bloom and Pseudoalteromonas, Pseudomonas, Alteromonas, Hydrogenophaga, Actibacter and Oleibacter were dominant genus in bacterial community. The Shannon-Weaver diversity index showed that the diversity of bacterial community in bloom site increased firstly and then decreased during this bloom. Hydrogenophaga was dominant in the start-up stage of bloom, while Pseudomonas and Pseudoalteromonas were dominant in the demise stage of bloom. The diversity of attached bacteria and free-living bacteria in bloom sites reached maximum in the same day (the concentration of algae was high) , both of them changed greatly during the bloom while the environment factors which correlated with the two communities were different. It is the first report about dynamics of bacterial community during the bloom caused by several algae together. This work is helpful to understand the dynamics of bacterial community during the bloom, and provides a theoretical basis for bloom's control in the future.
Microbial control of diatom bloom dynamics in the open ocean
NASA Astrophysics Data System (ADS)
Boyd, Philip W.; Strzepek, Robert; Chiswell, Steve; Chang, Hoe; DeBruyn, Jennifer M.; Ellwood, Michael; Keenan, Sean; King, Andrew L.; Maas, Elisabeth W.; Nodder, Scott; Sander, Sylvia G.; Sutton, Philip; Twining, Benjamin S.; Wilhelm, Steven W.; Hutchins, David A.
2012-09-01
Diatom blooms play a central role in supporting foodwebs and sequestering biogenic carbon to depth. Oceanic conditions set bloom initiation, whereas both environmental and ecological factors determine bloom magnitude and longevity. Our study reveals another fundamental determinant of bloom dynamics. A diatom spring bloom in offshore New Zealand waters was likely terminated by iron limitation, even though diatoms consumed <1/3 of the mixed-layer dissolved iron inventory. Thus, bloom duration and magnitude were primarily set by competition for dissolved iron between microbes and small phytoplankton versus diatoms. Significantly, such a microbial mode of control probably relies both upon out-competing diatoms for iron (i.e., K-strategy), and having high iron requirements (i.e., r-strategy). Such resource competition for iron has implications for carbon biogeochemistry, as, blooming diatoms fixed three-fold more carbon per unit iron than resident non-blooming microbes. Microbial sequestration of iron has major ramifications for determining the biogeochemical imprint of oceanic diatom blooms.
Watkins, James M.; Rudstam, Lars G.; Crabtree, Darran L.; Walsh, Maureen
2013-01-01
Benthic monitoring by USGS off the southern shore of Lake Ontario from October 1993 to October 1995 provides a detailed view of the early stages of the decline of the native amphipod Diporeia. A loss of the 1994 and 1995 year classes of Diporeia preceded the disappearance of the native amphipod at sites near Oswego and Rochester at depths from 55 to 130 m. In succeeding years, Diporeia populations continued to decline in Lake Ontario and were nearly extirpated by 2008. Explanations for Diporeia 's decline in the Great Lakes include several hypotheses often linked to the introduction and expansion of exotic zebra and quagga mussels (Dreissena sp.). We compare the timeline of the Diporeia decline in Lake Ontario with trends in two sources of organic matter to the sediments — spring diatom blooms and late summer whiting events. The 1994–95 decline of Diporeia coincided with localized dreissenid effects on phytoplankton in the nearshore and a year (April 1994 to May 1995) of decreased flux of organic carbon recorded by sediment traps moored offshore of Oswego. Later declines of profundal (> 90 m) Diporeia populations in 2003 were poorly associated with trends in spring algal blooms and late summer whiting events. Lake Ontario/Diporeia/Dreissena/remote sensing.
Bowling, Lee C; Shaikh, Mustak; Brayan, John; Malthus, Tim
2017-09-09
A commercially available handheld spectroradiometer, the WISP-3, was assessed as a tool for monitoring freshwater cyanobacterial blooms for management purposes. Three small eutrophic urban ponds which displayed considerable within-pond and between-pond variability in water quality and cyanobacterial community composition were used as trial sites. On-board algorithms provide field measurements of phycocyanin (CPC) and chlorophyll-a (Chl-a) from surface reflectance spectra measured by the instrument. These were compared with laboratory measurements. Although significant but weak relationships were found between WISP-3 measured CPC and cyanobacterial biovolume measurements and WISP-3 and laboratory Chl-a measurements, there was considerable scatter in the data due likely to error in both WISP-3 and laboratory measurements. The relationships generally differed only slightly between ponds, indicating that different cyanobacterial communities had little effect on the pigment retrievals of the WISP-3. The on-board algorithms need appropriate modification for local conditions, posing a problem if it is to be used extensively across water bodies with differing optical properties. Although suffering a range of other limitations, the WISP-3 has a potential as a rapid screening tool for preliminary risk assessment of cyanobacterial blooms. However, such field assessment would still require adequate support by sampling and laboratory-based analysis.
NASA Astrophysics Data System (ADS)
Qiao, Y.
2013-12-01
As China's economic development, water pollution incidents happened frequently. For example, the cyanobacterial bloom events repeatedly occur in Taihu Lake. In this research, we investigate the pollutants solute transport start at different points, such as the eutrophication substances Nitrogen and Phosphorus et al, with the Lattice Boltzmann Method (LBM) performed on real pore geometries. The LBM has emerged as a powerful tool for simulating the behaviour of multi-component fluid systems in complex pore networks. We will build a quick response simulation system, which is base on the high resolution GIS figure, using the LBM numerical method.When the start two deferent points at the Meiliang Bay nearby the Wuxi City, it is shown that the pollutants solute can't transport out of the bay to influence the Taihu Lake and the diffusion areas are similar. On the other hand, when the start point at central region of the Taihu Lake, it is found that the pollutants solute covered the almost whole area of the lake and the cyanobacterial bloom with good condition. In the same way, if the cyanobacterial bloom transport in the central area, then it will pollute the whole Taihu Lake. Therefore, when we monitor and deal with the eutrophication substances, we need to focus on the central area of lake.
Tomioka, Noriko; Jutagate, Tuantong; Hiroki, Mikiya; Murata, Tomoyoshi; Preecha, Chatchai; Avakul, Piyathap; Phomikong, Pisit; Imai, Akio
2017-01-01
In the face of plans for increased construction of dams and reservoirs in the Mekong River Basin, it is critically important to better understand the primary-producer community of phytoplankton, especially the warm-water cyanobacteria. This is because these algae can serve as the primary source of carbon for higher trophic levels, including fishes, but can also form harmful blooms, threatening local fisheries and environmental and human health. We monitored the dynamics of three cyanobacteria—Synechococcus spp., Microcystis aeruginosa, and Dolichospermum spp.—for two years in nine large lakes and reservoirs in the Mekong River Basin. The densities of these algae were largely system-specific such that their abundance was uniquely determined within individual water bodies. However, after accounting for the system-specific effect, we found that cell densities of Synechococcus spp., M. aeruginosa, and Dolichospermum spp. varied in response to changes in photosynthetically active radiation (PAR), total nitrogen, and water level, respectively. Because both PAR and water level tend to fluctuate concordantly over a wide geographic area, Synechococcus spp., and to a lesser extent Dolichospermum spp., varied synchronously among the water bodies. Sustaining the production of pico-sized primary producers while preventing harmful algal blooms will be a key management goal for the proposed reservoirs in the Mekong Basin. PMID:29272288
NOAA National Ocean Service Remote Sensing Applications and Concept of Operations
2007-01-01
remote sensing technologies to monitor harmful algal blooms, hypoxia, coral bleaching , contamination, land use changes and bathymetry, and making the...NOAA’s Polar Environmental Satellites are used to help predict the likelihood of mass coral bleaching events. Both intensity and duration of...abnormally warm surface temperatures are used to help predict coral bleaching events. When a temperature anomaly reaches a critically high value or
1993-08-01
Picea glauca, and Pinus resinosus. Centaurea maculosa has increased since 1983 until it is now the most I abundant flowering plant on the hill. Also...population of Centaurea maculosa that bloomed in late July, in spite of the drought and hot temperatures. ThisI plant was not as abundant at the F2
Fadel, Ali; Atoui, Ali; Lemaire, Bruno J.; Vinçon-Leite, Brigitte; Slim, Kamal
2014-01-01
Chrysosporum ovalisporum is a cylindrospermopsin toxin producing cyanobacterium that was reported in several lakes and reservoirs. Its growth dynamics and toxin distribution in field remain largely undocumented. Chrysosporum ovalisporum was reported in 2009 in Karaoun Reservoir, Lebanon. We investigated the factors controlling the occurrence of this cyanobacterium and vertical distribution of cylindrospermopsin in Karaoun Reservoir. We conducted bi-weekly sampling campaigns between May 2012 and August 2013. Results showed that Chrysosporum ovalisporum is an ecologically plastic species that was observed in all seasons. Unlike the high temperatures, above 26 °C, which is associated with blooms of Chrysosporum ovalisporum in Lakes Kinneret (Israel), Lisimachia and Trichonis (Greece) and Arcos Reservoir (Spain), Chrysosporum ovalisporum in Karaoun Reservoir bloomed in October 2012 at a water temperature of 22 °C during weak stratification. Cylindrospermopsin was detected in almost all water samples even when Chrysosporum ovalisporum was not detected. Chrysosporum ovalisporum biovolumes and cylindrospermopsin concentrations were not correlated (n = 31, r2 = −0.05). Cylindrospermopsin reached a maximum concentration of 1.7 µg L−1. The vertical profiles of toxin concentrations suggested its possible degradation or sedimentation resulting in its disappearance from the water column. The field growth conditions of Chrysosporum ovalisporum in this study revealed that it can bloom at the subsurface water temperature of 22 °C increasing the risk of its development and expansion in lakes located in temperate climate regions. PMID:25354130
Occurrence and Distribution of Microcystins in Lake Taihu, China
Sakai, Hiroshi; Hao, Aimin; Iseri, Yasushi; Wang, Song; Kuba, Takahiro; Zhang, Zhenjia; Katayama, Hiroyuki
2013-01-01
The occurrence and distribution of microcystins were investigated in Lake Taihu, the third largest lake in China. An extensive survey, larger and broader in scale than previous studies, was conducted in summer 2010. The highest microcystin concentration was found at southern part of Taihu, which was newly included in this survey. In northern coastal areas, total cellular concentrations of 20 to 44 μg/L were observed. In northern offshore waters, levels were up to 4.8 μg/L. Microcystin occurrence was highly correlated with chemical oxygen demand, turbidity, and chlorophyll-a. Extracellular/total cellular microcystin (E/T) ratios were calculated and compared to other water quality parameters. A higher correlation was found using E/T ratios than original microcystin values. These results show that algal blooms are having a severe impact on Lake Taihu, and further and extensive monitoring and research are required to suppress blooms effectively. PMID:23853542
NASA Technical Reports Server (NTRS)
Woods, Kate; Brozen, Madeline; Malik, Sadaf; Maki, Angela
2009-01-01
Lake Okeechobee, located in southern Florida, encompasses approximately 1,700 sq km and is a vital part of the Lake Okeechobee and Everglades ecosystem. Major cyanobacterial blooms have been documented in Lake Okeechobee since the 1970s and have continued to plague the ecosystem. Similarly, hydrilla, water hyacinth, and water lettuce have been documented in the lake and continue to threaten the ecosystem by their rapid growth. This study examines invasive aquatic vegetation occurrence through the use of the Normalized Difference Vegetation Index (NDVI) calculated on MOD09 surface reflectance imagery. Occurrence during 2008 was analyzed using the Time Series Product Tool (TSPT), a MATLAB-based program developed at John C. Stennis Space Center. This project tracked spatial and temporal variability of cyanobacterial blooms, and overgrowth of water lettuce, water hyacinth, and hydrilla. In addition, this study presents an application of Moderate Resolution Imaging Spectroradiometer (MODIS) data to assist in water quality management.
Seasonal cooling and blooming in tropical oceans
NASA Astrophysics Data System (ADS)
Longhurst, Alan
1993-11-01
The relative importance of tropical pelagic algal blooms in not yet fully appreciated and the way they are induced not well understood. The tropical Atlantic supports pelagic blooms together equivalent to the North Atlantic spring bloom. These blooms are driven by thermocline tilting, curl of wind stress and eddy upwelling as the ocean responds to intensified basin-scale winds in boreal summer. The dimensions of the Pacific Ocean are such that seasonal thermocline tilting does not occur, and nutrient conditions are such that tilting might not induce bloom, in any case. Divergence at the equator is a separate process that strengthens the Atlantic bloom, is more prominent in the eastern Pacific, and in the Indian Ocean induces a bloom only in the western part of the ocean. Where western jet currents are retroflected from the coast off Somalia and Brazil, eddy upwelling induces prominent blooms. In the eastward flow of the northern equatorial countercurrents, positive wind curl stress induces Ekman pumping and the induction of algal blooms aligned with the currents. Some apparent algal bloom, such as that seen frequently in CZCS images westwards from Senegal, must be due to interference from airborne dust.
NASA Astrophysics Data System (ADS)
Tsuda, Atsushi; Sugisaki, Hiroya; Takahashi, Koji; Furuya, Ken
1994-08-01
The succession of pelagic organisms in the approximate size range 0·5-200 μm was investigated during a spring diatom bloom in Otsuchi Bay on the Pacific coast of northern Japan. The diatom bloom lasted 3 weeks in the middle of the period examined. The study period was divided into three phases: pre-bloom, bloom and post-bloom. Mesodinium rubrum, an autotrophic ciliate, was abundant in the pre-bloom phase, when vertical mixing was intense. During the bloom phase, the biomass of organisms other than diatoms themselves and bacteria was depressed. A bacterial peak was observed 4 days after the diatom peak and peaks of nano-autotrophs and -heterotrophs occurred after 14 days. Phototrophic picoplankton showed a biomass peak at the same time as nanoplankton. Grazing on diatoms by the copepod population was shown by the occurrences of faecal pellets and copepod nauplii during and after the bloom phase. These results suggest that production of copepods and bacteria depended only on the diatom bloom directly, and that heterotrophic micro-protista depended on the production of pico- and nano-autotrophs in the post-bloom phase.
NASA Astrophysics Data System (ADS)
Krishnan, Anoop A.; Krishnakumar, P. K.; Rajagopalan, M.
2007-02-01
The incidence of a large scale Trichodesmium erythraeum bloom along the southwest coast of India (Arabian Sea) observed in May 2005 is reported. Around 4802 filaments of T. erythraeum ml -1 seawater was observed and a colony consisted of 3.6 × 10 5 cells. The bloom was predominant off Suratkal (12° 59'N and 74° 31'E) with a depth of about 47 m, covering an area of 7 km in length and 2 km width. The concentrations of Zinc, Cadmium, Lead, Copper, Nickel and Cobalt were determined in samples collected from the bloom and non-bloom sites using stripping voltammetry. The observed hydrographical and meteorological parameters were found to be favorable for the bloom. The concentrations of Zinc, Cadmium and Nickel were found to be higher at bloom stations, while the concentrations of Lead, Copper and Cobalt were found to be very low at bloom stations. Elevated concentrations of Cadmium and Cobalt were observed at Valappad mainly due to the decomposition of detrital material produced in the bloom. Statistically significant differences ( P > 0.01) in metal concentrations between the bloom and non-bloom stations were not observed except for Copper. Metals such as Lead, Copper and Cobalt were removed from the seawater at all places where bloom was observed. Cadmium was found to be slowly released during the decaying process of the bloom.
Manganelli, Maura; Scardala, Simona; Stefanelli, Mara; Vichi, Susanna; Mattei, Daniela; Bogialli, Sara; Ceccarelli, Piegiorgio; Corradetti, Ernesto; Petrucci, Ines; Gemma, Simonetta; Testai, Emanuela; Funari, Enzo
2010-03-01
Increasing concern for human health related to cyanotoxin exposure imposes the identification of pattern and level of exposure; however, current monitoring programs, based on cyanobacteria cell counts, could be inadequate. An integrated approach has been applied to a small lake in Italy, affected by Planktothrix rubescens blooms, to provide a scientific basis for appropriate monitoring program design. The cyanobacterium dynamic, the lake physicochemical and trophic status, expressed as nutrients concentration and recycling rates due to bacterial activity, the identification/quantification of toxic genotype and cyanotoxin concentration have been studied. Our results indicate that low levels of nutrients are not a marker for low risk of P. rubescens proliferation and confirm that cyanobacterial density solely is not a reliable parameter to assess human exposure. The ratio between toxic/non-toxic cells, and toxin concentrations, which can be better explained by toxic population dynamic, are much more diagnostic, although varying with time and environmental conditions. The toxic fraction within P. rubescens population is generally high (30-100%) and increases with water depth. The ratio toxic/non-toxic cells is lowest during the bloom, suggesting a competitive advantage for non-toxic cells. Therefore, when P. rubescens is the dominant species, it is important to analyze samples below the thermocline, and quantitatively estimate toxic genotype abundance. In addition, the identification of cyanotoxin content and congeners profile, with different toxic potential, are crucial for risk assessment. Copyright 2009 Elsevier Ltd. All rights reserved.
IOOS: Aiding Aquaculture Industries and Their Harvest with Near Real-Time Data
NASA Astrophysics Data System (ADS)
Kerkering, H.; Shandy Buckley; Jan Newton; Julie Thomas
2011-12-01
West Coast aquaculture accounts for over 3000 jobs and brings in over 117 million in revenue to mostly small coastal communities. Larvae recruitment and growth in these systems are very susceptible to harmful algal blooms (HABs) and acidic waters (low pH). Since 2005, aquaculturists have observed a significant reduction in shellfish larvae production and recruitment. In 2008 and 2009, the Taylor Shellfish Company (Dabob Bay, WA) observed a loss of 80% in their hatchery production. Likewise in 2008, Whiskey Creek Shellfish Company (Netarts Bay, OR) produced only 25% of their normal crop. These businesses and local scientists suspect low pH to be the culprit in the declines. In 2007, the Monterey Abalone Company suffered a 60K loss in their harvest. After contacting local scientists it was determined that the abalone crop died from a harmful algal bloom event. In response, the three West Coast Regional Associations under the U.S. Integrated Ocean Observing System (NANOOS, CeNCOOS and SCCOOS) are working in collaboration with the Ocean Science Trust, Ocean Protection Council, CA Sea Grant, NOAA National Estuarine Research Reserve Program, and the Southern California Coastal Water Research Project to develop an observing and near real-time data delivery network focused on harmful algal blooms, the Harmful Algal Bloom Monitoring Alert Program and on ocean acidification, the California Current Acidification Network. The above organizations have participated in a number of workshops with members of the aquaculture community helping to design the network. It is clear that a spatial and temporal disconnect between the data needs of both groups exists. Aquaculture experts require daily and hourly data streams in the near-shore environment with a high degree of reliability in the data but not necessarily a high degree of accuracy. Conversely, scientists collect highly accurate data in the continental shelf and oceanic environment and model predictions on decadal scales. The networks are being designed to address scientific understanding and uncertainty as well as the management needs of various stakeholder groups. Better communication and delivery of near real time data will assist aquaculture growers to predict when larvae will recruit in the natural system, when and if to relocate crops, and when to pump water in a tanks system. Though an integrated west coast observational network satellite sea surface temperature, HAB tracking systems, ocean acidification buoys, and biological monitoring programs can be pulled together into a cohesive program. A network of scientists and industry stakeholders providing and utilizing a near real time data network saves money and increases efficiency. It is not possible to prevent variability in temperature, nutrients, pH and algal blooms, but increasing understanding will lead to more accurate predictions, and ultimately, better human adaptation to the harmful economic impacts of HABs and ocean acidification.
Park, Bum Soo; Kim, Jin Ho; Kim, Joo-Hwan; Baek, Seung Ho; Han, Myung-Soo
2018-01-01
Although there have been extensive studies on dinoflagellate blooms in recent decades, the mechanism that allows the maintenance of blooms over long periods remains uncertain, and studies on genetically differentiated subpopulations may provide insights into this mechanism. In this study, the influence of two genetically distinct subpopulations of the dinoflagellate Cochlodinium polykrikoides, referred to as Group I and IV, on bloom duration in Korean coastal waters (KCW) was examined using a quantitative PCR (qPCR) assay. In this study, a C. polykrikoides bloom occurred over a longer period in 2009 (49 days), whereas the bloom period was shorter in 2010 (35 days). The qPCR results indicate that intraspecific bloom succession between Groups I and IV occurred in 2009, whereas only a single subpopulation (Group I) was responsible for the bloom in 2010. Based on the statistical analysis, the Group I and Group IV blooms occurred under significantly different environmental conditions (p ≤ 0.05) in terms of water temperature, pH, and phosphate concentration, and these subpopulations exhibited significantly different relationships with environmental factors, particularly water temperature (p < 0.01). This variability may allow blooms to continue through intraspecific bloom succession even after environmental conditions change. Southern KCW are affected by outer regions via the Tsushima Warm Current (TWC) every summer. Group IV (≤1108 ± 69 cells L -1 ) was primarily observed along the route of the TWC in summer 2009, when the bloom of this subpopulation occurred in southern KCW. These results suggest that Group IV transported via the TWC may have influenced the bloom dynamics of this subpopulation in summer 2009. Copyright © 2017 Elsevier B.V. All rights reserved.
Mozetič, Patricija; Cangini, Monica; Francé, Janja; Bastianini, Mauro; Bernardi Aubry, Fabrizio; Bužančić, Mia; Cabrini, Marina; Cerino, Federica; Čalić, Marijeta; D'Adamo, Raffaele; Drakulović, Dragana; Finotto, Stefania; Fornasaro, Daniela; Grilli, Federica; Kraus, Romina; Kužat, Nataša; Marić Pfannkuchen, Daniela; Ninčević Gladan, Živana; Pompei, Marinella; Rotter, Ana; Servadei, Irene; Skejić, Sanda
2017-12-30
An inventory of phytoplankton diversity in 12 Adriatic ports was performed with the port baseline survey. Particular emphasis was put on the detection of harmful aquatic organisms and pathogens (HAOP) because of their negative impact on ecosystem, human health, and the economy. Phytoplanktonic HAOP are identified as species, either native or non-indigenous (NIS), which can trigger harmful algal blooms (HAB). A list of 691 taxa was prepared, and among them 52 were classified as HAB and five as NIS. Records of toxigenic NIS (Pseudo-nitzschia multistriata, Ostreopsis species including O. cf. ovata) indicate that the intrusion of non-native invasive phytoplankton species has already occurred in some Adriatic ports. The seasonal occurrence and abundance of HAOP offers a solid baseline for a monitoring design in ports in order to prevent ballast water uptake and possible expansion of HAOP outside their native region. Copyright © 2017 Elsevier Ltd. All rights reserved.
Stone, David; Bress, William
2007-01-01
Toxigenic cyanobacteria, commonly known as blue green algae, are an emerging public health issue. The toxins produced by cyanobacteria have been detected across the United States in marine, freshwater and estuarine systems and associated with adverse health outcomes. The intent of this paper is to focus on how to address risk in a recreational freshwater scenario when toxigenic cyanobacteria are present. Several challenges exist for monitoring, assessing and posting water bodies and advising the public when toxigenic cyanobacteria are present. These include addressing different recreational activities that are associated with varying levels of risk, the dynamic temporal and spatial aspects of blooms, data gaps in toxicological information and the lack of training and resources for adequate surveillance. Without uniform federal guidance, numerous states have taken public health action for cyanobacteria with different criteria. Vermont and Oregon independently developed a tiered decision-making framework to reduce risk to recreational users when toxigenic cyanobacteria are present. This framework is based on a combination of qualitative and quantitative information.
Wind-driven marine phytoplank blooms: Satellite observation and analysis
NASA Astrophysics Data System (ADS)
Tang, DanLing
2016-07-01
Algal bloom is defined as a rapid increase or accumulation in biomass in an aquatic system. It not only can increase the primary production but also could result in negative ecological consequence, e.g.,Harmful Algal Blooms (HABs). According to the classic theory for the formation of algal blooms "critical depth" and "eutrophication", oligotrophic sea area is usually difficult to form a large area of algal blooms, and actuallythe traditional observation is only sporadic capture to the existence of algal blooms.Taking full advantage of multiple data of satellite remote sensing , this study introduces "Wind-driven algal blooms in open oceans: observation and mechanisms" It explained except classic coastal Ekman transport, the wind through a variety of mechanisms affecting the formation of algal blooms. Proposed a conceptual model of "Strong wind -upwelling-nutrient-phytoplankton blooms" in Western South China Sea (SCS) to assess role of wind-induced advection transport in phytoplankton bloom formation. It illustrates the nutrient resources that support long-term offshore phytoplankton blooms in the western SCS; (2)Proposal of the theory that "typhoons cause vertical mixing, induce phytoplankton blooms", and quantify their important contribution to marine primary production; Proposal a new ecological index for typhoon. Proposed remote sensing inversion models. (3)Finding of the spatial and temporaldistributions pattern of harmful algal bloom (HAB)and species variations of HAB in the South Yellow Sea and East China Sea, and in the Pearl River estuary, and their oceanic dynamic mechanisms related with monsoon; The project developed new techniques and generated new knowledge, which significantly improved understanding of the formation mechanisms of algal blooms. The proposed "wind-pump" mechanism integrates theoretical system combined "ocean dynamics, development of algal blooms, and impact on primary production", which will benefit fisheries management. These achievements led to the development of a new interdisciplinary subject "Remote Sensing Marine Ecology"(RSME).
Diao, Xiao-jun; Li, Yi-wei; Wang, Shu-guang
2015-01-01
Although impacts of algal bloom on the physicochemical and biological properties of water and sediment in many lakes have been largely studied, less attention is paid to the impact of outbreak and extinction of algal blooms on the microbial community structure in sediment. In this study, outbreak and extinction of algal blooms and their effects on the microbial community structure in sediment of Chaohu Lake were studied by PCR-DGGE method. The results showed that algal blooms formed between May 15 and June 20, sustained from June 20 to September 5, and then went into extinction. In the region without algal blooms, PCR-DGGE analysis showed that microbial species, Shannon-Wiener diversity index and Simpson dominance index changed slightly over time; moreover, the microbial community structure had high similarity during the whole study. Temperature may be the main factor affecting the fluctuation of the microbial community structure in this region. In the region with algal blooms, however, microbial species and Shannon-Wiener diversity index were higher during the formation and extinction of algal blooms and lower in the sustaining blooms stage than those in the region without algal blooms. But the Simpson dominance index showed the opposite trend over time. In addition, the microbial community structure had low similarity during the whole study. The results suggested that outbreak and extinction of algal blooms produced different effects on the microbial community structure and the dominant microbial species, which may be related to the variation of water properties caused by temperature and algal blooms. This study showed that outbreak and extinction of algal blooms caused different effects on microbes in lake sediment, and this is significantly important to deeply evaluate the effects of algal bloom on the aquatic ecosystem of the lake and effectively control algal blooms using sediment microbes.
A multiomics approach to study the microbiome response to phytoplankton blooms.
Song, Liyan
2017-06-01
Phytoplankton blooms are predictable features of marine and freshwater habitats. Despite a good knowledge base of the environmental factors controlling blooms, complex interactions between the bacterial and archaeal communities and phytoplankton bloom taxa are only now emerging. Here, the current research on bacterial community's structural and functional response to phytoplankton blooms is reviewed and discussed and further research is proposed. More attention should be paid on structure and function of autotrophic bacteria and archaea during phytoplankton blooms. A multiomics integration approach is needed to investigate bacterial and archaeal communities' diversity, metabolic diversity, and biogeochemical functions of microbial interactions during phytoplankton blooms.
Jellyfish modulate bacterial dynamic and community structure.
Tinta, Tinkara; Kogovšek, Tjaša; Malej, Alenka; Turk, Valentina
2012-01-01
Jellyfish blooms have increased in coastal areas around the world and the outbreaks have become longer and more frequent over the past few decades. The Mediterranean Sea is among the heavily affected regions and the common bloom-forming taxa are scyphozoans Aurelia aurita s.l., Pelagia noctiluca, and Rhizostoma pulmo. Jellyfish have few natural predators, therefore their carcasses at the termination of a bloom represent an organic-rich substrate that supports rapid bacterial growth, and may have a large impact on the surrounding environment. The focus of this study was to explore whether jellyfish substrate have an impact on bacterial community phylotype selection. We conducted in situ jellyfish-enrichment experiment with three different jellyfish species. Bacterial dynamic together with nutrients were monitored to assess decaying jellyfish-bacteria dynamics. Our results show that jellyfish biomass is characterized by protein rich organic matter, which is highly bioavailable to 'jellyfish-associated' and 'free-living' bacteria, and triggers rapid shifts in bacterial population dynamics and composition. Based on 16S rRNA clone libraries and denaturing gradient gel electrophoresis (DGGE) analysis, we observed a rapid shift in community composition from unculturable Alphaproteobacteria to culturable species of Gammaproteobacteria and Flavobacteria. The results of sequence analyses of bacterial isolates and of total bacterial community determined by culture independent genetic analysis showed the dominance of the Pseudoalteromonadaceae and the Vibrionaceae families. Elevated levels of dissolved proteins, dissolved organic and inorganic nutrient release, bacterial abundance and carbon production as well as ammonium concentrations characterized the degradation process. The biochemical composition of jellyfish species may influence changes in the amount of accumulated dissolved organic and inorganic nutrients. Our results can contribute insights into possible changes in bacterial population dynamics and nutrient pathways following jellyfish blooms which have important implications for ecology of coastal waters.
Microfluidic devices for sample preparation and rapid detection of foodborne pathogens.
Kant, Krishna; Shahbazi, Mohammad-Ali; Dave, Vivek Priy; Ngo, Tien Anh; Chidambara, Vinayaka Aaydha; Than, Linh Quyen; Bang, Dang Duong; Wolff, Anders
2018-03-10
Rapid detection of foodborne pathogens at an early stage is imperative for preventing the outbreak of foodborne diseases, known as serious threats to human health. Conventional bacterial culturing methods for foodborne pathogen detection are time consuming, laborious, and with poor pathogen diagnosis competences. This has prompted researchers to call the current status of detection approaches into question and leverage new technologies for superior pathogen sensing outcomes. Novel strategies mainly rely on incorporating all the steps from sample preparation to detection in miniaturized devices for online monitoring of pathogens with high accuracy and sensitivity in a time-saving and cost effective manner. Lab on chip is a blooming area in diagnosis, which exploits different mechanical and biological techniques to detect very low concentrations of pathogens in food samples. This is achieved through streamlining the sample handling and concentrating procedures, which will subsequently reduce human errors and enhance the accuracy of the sensing methods. Integration of sample preparation techniques into these devices can effectively minimize the impact of complex food matrix on pathogen diagnosis and improve the limit of detections. Integration of pathogen capturing bio-receptors on microfluidic devices is a crucial step, which can facilitate recognition abilities in harsh chemical and physical conditions, offering a great commercial benefit to the food-manufacturing sector. This article reviews recent advances in current state-of-the-art of sample preparation and concentration from food matrices with focus on bacterial capturing methods and sensing technologies, along with their advantages and limitations when integrated into microfluidic devices for online rapid detection of pathogens in foods and food production line. Copyright © 2018. Published by Elsevier Inc.
Apple flower detection using deep convolutional networks
USDA-ARS?s Scientific Manuscript database
In order to optimize fruit production, a portion of the flowers and fruitlets of apple trees must be removed early in the growing season. The proportion to be removed is determined by the bloom intensity, i.e., the number of flowers present in the orchard. Several automated computer vision systems...
Background: During winter 2001-2002, an episode of microcystin exposure occurred among dialysis patients in Rio de Janiero, Brazil. During late November 2001, a cyanobacterial water bloom was detected in the Funil reservoir and the Guandu River, both of which supply drinking wate...
Bees without flowers: before peak bloom, diverse native bees find insect-produced honeydew sugars
USDA-ARS?s Scientific Manuscript database
Bee foragers respond to complex visual, olfactory, and extrasensory cues to optimize searches for floral rewards. Their abilities to detect and distinguish floral colors, shapes, volatiles, and ultraviolet signals, and even gauge nectar availability from changes in floral humidity or electric fields...
NASA Astrophysics Data System (ADS)
Soto, Inia M.; Muller-Karger, Frank E.; Hu, Chuanmin; Wolny, Jennifer
2017-01-01
Satellite ocean color remote sensing techniques, coupled with in situ data, were used to examine the spatial extent and evolution of four Karenia brevis blooms on the West Florida Shelf (WFS) in 2004, 2005, 2006, and 2011. Observations were obtained with the moderate resolution imaging spectroradiometer (MODIS-Aqua). These four blooms were delineated by combining remote-sensing reflectance at 555 nm and normalized fluorescence line height. In 2004 and 2005, the WFS was affected by several hurricanes, including the category 5 storm Hurricane Katrina. These hurricanes led to increased river discharge and vertical mixing which favored bloom intensification and dispersion. No hurricanes passed over the WSF in 2006; however, storms in south Florida may have aided bloom intensification via increased river discharge. In 2011, a bloom appeared off Venice, Florida, where several small creeks discharge. The bloom moved south toward Charlotte Harbor where it intensified and lingered for several months as it received nutrients from riverine discharge and upwelling events. While it is difficult to identify initiation stages of a K. brevis bloom (<˜50,000 cells L-1) using satellite imagery, the techniques used here provide information about bloom evolution (size, duration, and advection) and insight into factors affecting bloom dynamics.
Peacock, Melissa B.; Gibble, Corinne M.; Senn, David B.; Cloern, James E.; Kudela, Raphael M.
2018-01-01
San Francisco Bay (SFB) is a eutrophic estuary that harbors both freshwater and marine toxigenic organisms that are responsible for harmful algal blooms. While there are few commercial fishery harvests within SFB, recreational and subsistence harvesting for shellfish is common. Coastal shellfish are monitored for domoic acid and paralytic shellfish toxins (PSTs), but within SFB there is no routine monitoring for either toxin. Dinophysis shellfish toxins (DSTs) and freshwater microcystins are also present within SFB, but not routinely monitored. Acute exposure to any of these toxin groups has severe consequences for marine organisms and humans, but chronic exposure to sub-lethal doses, or synergistic effects from multiple toxins, are poorly understood and rarely addressed. This study documents the occurrence of domoic acid and microcystins in SFB from 2011 to 2016, and identifies domoic acid, microcystins, DSTs, and PSTs in marine mussels within SFB in 2012, 2014, and 2015. At least one toxin was detected in 99% of mussel samples, and all four toxin suites were identified in 37% of mussels. The presence of these toxins in marine mussels indicates that wildlife and humans who consume them are exposed to toxins at both sub-lethal and acute levels. As such, there are potential deleterious impacts for marine organisms and humans and these effects are unlikely to be documented. These results demonstrate the need for regular monitoring of marine and freshwater toxins in SFB, and suggest that co-occurrence of multiple toxins is a potential threat in other ecosystems where freshwater and seawater mix.
Separation of wind's influence on harmful cyanobacterial blooms.
Wang, Hua; Zhang, Zhizhang; Liang, Dongfang; du, Hanbei; Pang, Yong; Hu, Kaimin; Wang, Jianjian
2016-07-01
Wind is an important physical factor involved in Harmful Cyanobacterial blooms (CyanoHABs). Its integrated influence was separated to three components: (a) Direct Disturbance Impact (DDI) on cyanbacterial proliferation, (b) Indirect Nutrient Impact (INI) by sediment release and (c) Direct Transportation Impact (DTI) by both gentle wind-induced surface drift and wave-generated Stokes drift. By the combination of field investigation, laboratory experiment and numerical simulation their individual contributions to the severe bloom event in May 2007 in Meiliang Bay, Lake Taihu, was explored. Wind synthetically made 10.5 percent promotion to the bloom on May 28, 2007, but the impact varied with locations. DTI was featured with the strongest contribution of wind's impacts on CyanoHABs, while INI stood at the lowest level and DDI played an intermediate role. From the point of whole Meiliang Bay, the influencing weights of DTI, DDI and INI were approximately 48.55%, 32.30% and 19.15% respectively. DTI exerted the higher promotion in the regions of middle-east (ME), southwest (SW) and southeast (SE), and its actual contribution rate on CyanoHABs ranged from 6.41% to 7.46%. Due to the background nutrient load, INI was characterized by a tiny effect with the contribution rate being 2.18% on average. From the south bay to the north, DDI was detected with a decreasing tendency, with the practical contribution rate generally falling from 4.13% to 2.7%. Copyright © 2016 Elsevier Ltd. All rights reserved.
Rosen, Barry H.; St. Amand, Ann
2015-09-14
Cyanobacteria can produce toxins and form harmful algal blooms. The Native American and Alaska Native communities that are dependent on subsistence fishing have an increased risk of exposure to these cyanotoxins. It is important to recognize the presence of an algal bloom in a waterbody and to distinguish a potentially toxic harmful algal bloom from a non-toxic bloom. This guide provides field images that show cyanobacteria blooms, some of which can be toxin producers, as well as other non-toxic algae blooms and floating plants that might be confused with algae. After recognition of a potential toxin-producing cyanobacterial bloom in the field, the type(s) of cyanobacteria present needs to be identified. Species identification, which requires microscopic examination, may help distinguish a toxin-producer from a non-toxin producer. This guide also provides microscopic images of the common cyanobacteria that are known to produce toxins, as well as images of algae that form blooms but do not produce toxins.
A safety monitoring system for taxi based on CMOS imager
NASA Astrophysics Data System (ADS)
Liu, Zhi
2005-01-01
CMOS image sensors now become increasingly competitive with respect to their CCD counterparts, while adding advantages such as no blooming, simpler driving requirements and the potential of on-chip integration of sensor, analogue circuitry, and digital processing functions. A safety monitoring system for taxi based on cmos imager that can record field situation when unusual circumstance happened is described in this paper. The monitoring system is based on a CMOS imager (OV7120), which can output digital image data through parallel pixel data port. The system consists of a CMOS image sensor, a large capacity NAND FLASH ROM, a USB interface chip and a micro controller (AT90S8515). The structure of whole system and the test data is discussed and analyzed in detail.
Effective Network Management via System-Wide Coordination and Optimization
2010-08-01
Srinath Sridhar, Matthew Streeter, Jimeng Sun, Michael Tschantz, Rangarajan Vasudevan, Vijay Vasude- van, Gaurav Veda, Shobha Venkataraman, Justin... Sharma and Byers [150] suggest the use of Bloom filters. While minimizing redundant measurements is a common high-level theme between cSamp and their...NSDI, 2004. [150] M. R. Sharma and J. W. Byers. Scalable Coordination Techniques for Distributed Network Monitoring. In Proc. of PAM, 2005. [151] S
Zhang, Huang-Qin; Zhu, Zhen-Hua; Qian, Da-Wei; Weng, Ze-Bin; Guo, Sheng; Duan, Jin-Ao; Lei, Zhen-Hong; Li, An-Ping
2016-12-01
This study intends to explore the potential resource-orientedutilization value of the flower of Sophora flavescents by analyzing alkaloids and flavonoids in the flower of S. flavescens from Shanxi province. This study established a rapid UPLC-TQ-MS/MS method that is used for determination of seven alkaloids and seven flavonoids in the flower of S.flavescens. The different florescences all have the seven detected alkaloids such as cytisine, oxy-matrine, oxy-sophocarpine, sophoridine, N-methylcytisine, matrine, sophocarpine.The total contents of detected alkaloids are as follows: flower buds 1.47%, primal flowers 1.34%, full bloomed flowers 1.17%, faded flowers 1.01%. The top three contents of alkaloids are N-methylcytisine , oxy-sophocarpine and oxymatrine, accounting for about 83% of the total amount of detected alkaloids. All the samples in different florescences have the seven detected flavonoids such as rutin, luteolin, quercetin, isoquercitrin, trifolirhizin, kurarinone, and kushenol I. The total contents of detected alkaloids are as follows: flower buds 495.2 μg•g⁻¹, primal flowers 313.7 μg•g⁻¹, faded flowers 224.2 μg•g⁻¹, full bloomed flowers 193.0 μg•g⁻¹. The content of luteolinis relatively higher than other detected flavonoids, accounting for about 89%-94% of the total amount of detected flavonoids. The results indicated that the flower of S.flavescens could be an important material resource to obtain the resourceful alkaloids. This result can provide scientific basis for resource-oriented utilization and industrial development of the flower of S. flavescens. Copyright© by the Chinese Pharmaceutical Association.
NASA Astrophysics Data System (ADS)
Guajardo, R.; Paerl, H. W.; Hall, N.; Whipple, A.; Luettich, R.
2007-12-01
In North Carolina's Neuse River Estuary (NRE)-Pamlico Sound (PS) System, nitrogen (N)-driven eutrophication, water quality and habitat decline have prompted the State and US EPA to mandate watershed-based N load reductions, including a total maximum daily allowable N load (TMDL). Chlorophyll a (chl-a), the indicator of algal biomass, is the measure for the efficacy of N reductions, with "acceptable" values being <40 μg chl- a L-1. However, algal blooms are patchy in time and space, making exceedances of 40 μ g L-1 difficult to track. The North Carolina ferry-based water quality monitoring program, FerryMon (www.ferrymon.org) addresses this and other environmental monitoring needs in the NRE-PS. FerryMon uses NC DOT ferries to provide continuous, space-time intensive, accurate measurements of chl-a and other key water quality criteria, using sensors placed in a flow-through system and discrete sampling of nutrients, organics, diagnostic photopigment and molecular indicators of major algal groups in a near real-time manner. Complementing FerryMon are automated vertical profilers (AVPs), which produce chl-a and other water quality indicator depth profiles with very high time and vertical resolution. In-line spectral fluorometers (Algae Online Analyzers (AOAs)) will be installed starting in late 2007, providing rapid early warning detection and quantification of algal blooms. FerryMon permits spatial characterization of trends in water quality conditions over a range of relevant physical, chemical and biological time scales. This enhanced capability is timely, given a protracted period of increased tropical storm and hurricane activity that, in combination with anthropogenic nutrient enrichment, affects water quality in unpredictable, yet significant ways. FerryMon also serves as a data source for calibrating and verifying remotely sensed indicators of water quality (photopigments, turbidity), nutrient-productivity and hydrologic modeling. Data management and communication links allow FerryMon to integrate with complementary watershed, estuarine and coastal observational programs . FerryMon's technology is readily transferable to other estuarine, large lake and coastal ecosystems served by ferries and other "ships of opportunity".
Julie, Deter; Solen, Lozach; Antoine, Véron; Jaufrey, Chollet; Annick, Derrien; Dominique, Hervio-Heath
2010-04-01
Vibrio parahaemolyticus is one of the principal bacterial causes for seafood-borne gastroenteritis in the world. In the present study, three sites located on the French Atlantic coast were monitored monthly for environmental parameters over 1 year. The presence of total and pathogenic V. parahaemolyticus in sediment, water and mussel samples was detected following enrichment by culture and real-time PCR (toxR gene, tdh, trh1 and trh2 virulence genes). Using generalized linear models, we showed that the presence of V. parahaemolyticus in water could be explained by a combination of mean temperature over the 7 days before the day of sampling (P < 0.001) and turbidity (P = 0.058). In mussels, an effect of chlorophyll a (P = 0.005) was detected when an effect of the mean salinity over the 7 days before sampling was significant for the sediment (P < 0.001). We did not detect any significant effect of phytoplanktonic blooms or of the number of culturable bacteria on V. parahaemolyticus presence. No sample was revealed positive for tdh. The presence of trh1 and trh2 was positively influenced by the mean temperature during the 2 days before the day of sampling (P < 0.001 and P = 0.032). The importance of these ecological parameters is discussed in relation to the biology of V. parahaemolyticus.
Isolation by Time During an Arctic Phytoplankton Spring Bloom.
Tammilehto, Anna; Watts, Phillip C; Lundholm, Nina
2017-03-01
The arctic phytoplankton spring bloom, which is often diatom-dominated, is a key event that provides the high latitude communities with a fundamental flux of organic carbon. During a bloom, phytoplankton may increase its biomass by orders of magnitude within days. Yet, very little is known about phytoplankton bloom dynamics, including for example how blooming affects genetic composition and diversity of a population. Here, we quantified the genetic composition and temporal changes of the diatom Fragilariopsis cylindrus, which is one of the most important primary producers in the Arctic, during the spring bloom in western Greenland, using 13 novel microsatellite markers developed for this study. We found that genetic differentiation (quantified using sample-specific F ST ) decreased between time points as the bloom progressed, with the most drastic changes in F ST occurring at the start of the bloom; thus the genetic structure of the bloom is characterized by isolation by time. There was little temporal variation in genetic diversity throughout the bloom (mean H E = 0.57), despite marked fluctuations in F. cylindrus cell concentrations and the temporal change in sample-specific F ST . On the basis of this novel pattern of genetic differentiation, we suggest that blooming behavior may promote genetic diversity of a phytoplankton population. © 2016 The Author(s) Journal of Eukaryotic Microbiology © 2016 International Society of Protistologists.
A model of phytoplankton blooms.
Huppert, Amit; Blasius, Bernd; Stone, Lewi
2002-02-01
A simple model that describes the dynamics of nutrient-driven phytoplankton blooms is presented. Apart from complicated simulation studies, very few models reported in the literature have taken this "bottom-up" approach. Yet, as discussed and justified from a theoretical standpoint, many blooms are strongly controlled by nutrients rather than by higher trophic levels. The analysis identifies an important threshold effect: a bloom will only be triggered when nutrients exceed a certain defined level. This threshold effect should be generic to both natural blooms and most simulation models. Furthermore, predictions are given as to how the peak of the bloom Pmax is determined by initial conditions. A number of counterintuitive results are found. In particular, it is shown that increasing initial nutrient or phytoplankton levels can act to decrease Pmax. Correct predictions require an understanding of such factors as the timing of the bloom and the period of nutrient buildup before the bloom.
ERIC Educational Resources Information Center
Thompson, Andrew R.; O'Loughlin, Valerie D.
2015-01-01
Bloom's taxonomy is a resource commonly used to assess the cognitive level associated with course assignments and examination questions. Although widely utilized in educational research, Bloom's taxonomy has received limited attention as an analytical tool in the anatomical sciences. Building on previous research, the Blooming Anatomy Tool (BAT)…
Xiao, Yan; Li, Zhe; Guo, Jinsong; Fang, Fang; Smith, Val H
2016-03-01
The Three Gorges Dam (TGD) has greatly altered ecological and environmental conditions within the reservoir region, but it is not known how these changes affect phytoplankton structure and dynamics. Here, a bimonthly monitoring program was implemented from 2007 to 2009 to study the impact of damming on phytoplankton assemblages in the backwater area of the Pengxi River (PBA). By application of the phytoplankton functional group (C strategists, competitive species; S strategists, stress-tolerant species; R strategists, rapid propagation species), seasonal changes in phytoplankton relative to environmental variations were evaluated using ordination analysis. Seasonal patterns of phytoplankton dynamics were detected during this study, with CS/S strategists causing algal blooms from mid-spring to early summer, CS/CR strategists often observed during flood season, and CS strategists dominant during mid-autumn. CR/R groups dominated during winter and caused algal blooms in February. Our results indicated that phytoplankton assemblages were directly related to reservoir operation effects. Generally, the TGD had a low water level during flood season, resulting in a relatively short hydraulic retention time and intensive variability, which supported the cooccurrence of CS and CR species. During the winter drought season, water storage in the TGD increased the water level and the hydraulic retention time in the PBA, enabling R/CR strategists to overcome the sedimentation effect and to out-compete S/CS species in winter. As expected, these diversity patterns were significantly correlated with the hydraulic retention time and nutrient limitation pattern in the PBA. This study provides strategic insight for evaluating the impacts of reservoir operations on phytoplankton adaptation.
Diurnal changes in ocean color in coastal waters
NASA Astrophysics Data System (ADS)
Arnone, Robert; Vandermeulen, Ryan; Ladner, Sherwin; Ondrusek, Michael; Kovach, Charles; Yang, Haoping; Salisbury, Joseph
2016-05-01
Coastal processes can change on hourly time scales in response to tides, winds and biological activity, which can influence the color of surface waters. These temporal and spatial ocean color changes require satellite validation for applications using bio-optical products to delineate diurnal processes. The diurnal color change and capability for satellite ocean color response were determined with in situ and satellite observations. Hourly variations in satellite ocean color are dependent on several properties which include: a) sensor characterization b) advection of water masses and c) diurnal response of biological and optical water properties. The in situ diurnal changes in ocean color in a dynamic turbid coastal region in the northern Gulf of Mexico were characterized using above water spectral radiometry from an AErosol RObotic NETwork (AERONET -WavCIS CSI-06) site that provides up to 8-10 observations per day (in 15-30 minute increments). These in situ diurnal changes were used to validate and quantify natural bio-optical fluctuations in satellite ocean color measurements. Satellite capability to detect changes in ocean color was characterized by using overlapping afternoon orbits of the VIIRS-NPP ocean color sensor within 100 minutes. Results show the capability of multiple satellite observations to monitor hourly color changes in dynamic coastal regions that are impacted by tides, re-suspension, and river plume dispersion. Hourly changes in satellite ocean color were validated with in situ observation on multiple occurrences during different times of the afternoon. Also, the spatial variability of VIIRS diurnal changes shows the occurrence and displacement of phytoplankton blooms and decay during the afternoon period. Results suggest that determining the temporal and spatial changes in a color / phytoplankton bloom from the morning to afternoon time period will require additional satellite coverage periods in the coastal zone.
Thompson, Andrew R; O'Loughlin, Valerie D
2015-01-01
Bloom's taxonomy is a resource commonly used to assess the cognitive level associated with course assignments and examination questions. Although widely utilized in educational research, Bloom's taxonomy has received limited attention as an analytical tool in the anatomical sciences. Building on previous research, the Blooming Anatomy Tool (BAT) was developed. This rubric provides discipline-specific guidelines to Blooming anatomy multiple-choice questions (MCQs). To test the efficacy of the BAT, a group of volunteers were randomly split up and asked to Bloom a series of anatomy MCQs using either the BAT or a traditional Bloom's reference called Bloom's Learning Objectives (BLO). Both groups utilized each rubric for a different series of MCQs. Examination question categorizations made using each rubric were tested for accuracy and interrater reliability. In addition, previous experience in anatomy and Bloom's taxonomy were considered. Results demonstrated that volunteers using the BAT had consistently higher levels of interrater reliability, but accuracy varied and was similar between rubrics. Neither measure was substantially impacted by experience in Bloom's taxonomy or anatomy. A poststudy survey indicated that volunteers strongly preferred the BAT and felt it was more helpful in categorizing anatomy MCQs than the BLO. These results suggest that the BAT can be useful in educational research in the anatomical sciences to aid in aligning observer judgment on Bloom taxonomic levels and improve consistency, especially when used in conjunction with a norming session prior to data collection. © 2014 American Association of Anatomists.
NASA Astrophysics Data System (ADS)
Legave, Jean Michel; Blanke, Michael; Christen, Danilo; Giovannini, Daniela; Mathieu, Vincent; Oger, Robert
2013-03-01
In the current context of global warming, an analysis is required of spatially-extensive and long-term blooming data in fruit trees to make up for insufficient information on regional-scale blooming changes and determinisms that are key to the phenological adaptation of these species. We therefore analysed blooming dates over long periods at climate-contrasted sites in Western Europe, focusing mainly on the Golden Delicious apple that is grown worldwide. On average, blooming advances were more pronounced in northern continental (10 days) than in western oceanic (6-7 days) regions, while the shortest advance was found on the Mediterranean coastline. Temporal trends toward blooming phase shortenings were also observed in continental regions. These regional differences in temporal variability across Western Europe resulted in a decrease in spatial variability, i.e. shorter time intervals between blooming dates in contrasted regions (8-10-day decrease for full bloom between Mediterranean and continental regions). Fitted sequential models were used to reproduce phenological changes. Marked trends toward shorter simulated durations of forcing period (bud growth from dormancy release to blooming) and high positive correlations between these durations and observed blooming dates support the notion that blooming advances and shortenings are mainly due to faster satisfaction of the heating requirement. However, trends toward later dormancy releases were also noted in oceanic and Mediterranean regions. This could tend toward blooming delays and explain the shorter advances in these regions despite similar or greater warming. The regional differences in simulated chilling and forcing periods were consistent with the regional differences in temperature increases.
NASA Astrophysics Data System (ADS)
Holderied, K.; Neher, T. H.; McCammon, M.; Hoffman, K.; Hopcroft, R. R.; Lindeberg, M.; Ballachey, B.; Coletti, H.; Esler, D.; Weingartner, T.
2016-02-01
The response of nearshore and coastal pelagic ecosystems in the northern Gulf of Alaska to the 2014-2015 Pacific Ocean warm anomaly is being assessed with multi-disciplinary observations of the Gulf Watch Alaska long-term ecosystem monitoring program. Gulf Watch Alaska is an integrated, multi-agency program, funded by the Exxon Valdez oil spill Trustee Council to track populations of nearshore and pelagic species injured by the 1989 oil spill, as well as the marine conditions that affect those species. While the primary program goals are to support management and sustained recovery of species injured directly and indirectly by the spill, the integration of oceanographic observations with monitoring of nearshore and pelagic food webs also facilitates detection and assessment of ecosystem changes. The initial 5-year phase of the Gulf Watch Alaska program was started in 2012 and has provided marine ecosystem observations through the transition in late 2013 from anomalously cool to anomalously warm ocean conditions in the Gulf of Alaska. We review results from and linkages between oceanographic, whale, seabird, intertidal, and plankton monitoring projects in Prince William Sound, Cook Inlet and the northern Gulf of Alaska shelf. We also assess the different ecosystem responses observed between the summers of 2014 and 2015, with the region experiencing unusual amounts of seabird and marine mammal mortalities and harmful algal bloom events in 2015.
Feifel, Kirsten M; Moore, Stephanie K; Horner, Rita A
2012-06-01
Since the 1970s, Puget Sound, Washington State, USA, has experienced an increase in detections of paralytic shellfish toxins (PSTs) in shellfish due to blooms of the harmful dinoflagellate Alexandrium. Natural patterns of climate variability, such as the Pacific Decadal Oscillation (PDO), and changes in local environmental factors, such as sea surface temperature (SST) and air temperature, have been linked to the observed increase in PSTs. However, the lack of observations of PSTs in shellfish prior to the 1950s has inhibited statistical assessments of longer-term trends in climate and environmental conditions on Alexandrium blooms. After a bloom, Alexandrium cells can enter a dormant cyst stage, which settles on the seafloor and then becomes entrained into the sedimentary record. In this study, we created a record of Alexandrium spp. cysts from a sediment core obtained from Sequim Bay, Puget Sound. Cyst abundances ranged from 0 to 400 cysts · cm(-3) and were detected down-core to a depth of 100 cm, indicating that Alexandrium has been present in Sequim Bay since at least the late 1800s. The cyst record allowed us to statistically examine relationships with available environmental parameters over the past century. Local air temperature and sea surface temperature were positively and significantly correlated with cyst abundances from the late 1800s to 2005; no significant relationship was found between PDO and cyst abundances. This finding suggests that local environmental variations more strongly influence Alexandrium population dynamics in Puget Sound when compared to large-scale changes. © 2012 Phycological Society of America.
Combined effects of hypoxia and ammonia to Daphnia similis estimated with life-history traits.
Lyu, Kai; Cao, Huansheng; Chen, Rui; Wang, Qianqian; Yang, Zhou
2013-08-01
The degradation of cyanobacterial blooms often causes hypoxia and elevated concentrations of ammonia, which can aggravate the adverse effects of blooms on aquatic organisms. However, it is not clear how one stressor would work in the presence of other coexistent stressors. We studied the toxic effects of elevated ammonia under hypoxia using a common yet important cladoceran species Daphnia similis isolated from heavily eutrophicated Lake Taihu. A 3 × 2 factorial experimental design was conducted with animals exposed to three un-ionized ammonia levels under two dissolved oxygen levels. Experiments lasted for 14 days and we recorded the life-history traits such as survival, molt, maturation, and fecundity. Results showed that hypoxia significantly decreased survival time and the number of molts of D. similis, whereas ammonia had no effect on them. Elevated ammonia significantly delayed development to maturity in tested animals and decreased their body sizes at maturity. Both ammonia and hypoxia were significantly detrimental to the number of broods, the number of offspring per female, and the number of total offspring per female, and significantly synergistic interactions were detected. Our data clearly demonstrate that elevated ammonia and hypoxia derived from cyanobacterial blooms synergistically affect the cladoceran D. similis.
Jones, Adriane Clark; Hambright, K David; Caron, David A
2018-05-01
Microbial communities are comprised of complex assemblages of highly interactive taxa. We employed network analyses to identify and describe microbial interactions and co-occurrence patterns between microbial eukaryotes and bacteria at two locations within a low salinity (0.5-3.5 ppt) lake over an annual cycle. We previously documented that the microbial diversity and community composition within Lake Texoma, southwest USA, were significantly affected by both seasonal forces and a site-specific bloom of the harmful alga, Prymnesium parvum. We used network analyses to answer ecological questions involving both the bacterial and microbial eukaryotic datasets and to infer ecological relationships within the microbial communities. Patterns of connectivity at both locations reflected the seasonality of the lake including a large rain disturbance in May, while a comparison of the communities between locations revealed a localized response to the algal bloom. A network built from shared nodes (microbial operational taxonomic units and environmental variables) and correlations identified conserved associations at both locations within the lake. Using network analyses, we were able to detect disturbance events, characterize the ecological extent of a harmful algal bloom, and infer ecological relationships not apparent from diversity statistics alone.
Algal Blooms and Cyanotoxins in Jordan Lake, North Carolina.
Wiltsie, Daniel; Schnetzer, Astrid; Green, Jason; Vander Borgh, Mark; Fensin, Elizabeth
2018-02-24
The eutrophication of waterways has led to a rise in cyanobacterial, harmful algal blooms (CyanoHABs) worldwide. The deterioration of water quality due to excess algal biomass in lakes has been well documented (e.g., water clarity, hypoxic conditions), but health risks associated with cyanotoxins remain largely unexplored in the absence of toxin information. This study is the first to document the presence of dissolved microcystin, anatoxin-a, cylindrospermopsin, and β- N -methylamino-l-alanine in Jordan Lake, a major drinking water reservoir in North Carolina. Saxitoxin presence was not confirmed. Multiple toxins were detected at 86% of the tested sites and during 44% of the sampling events between 2014 and 2016. Although concentrations were low, continued exposure of organisms to multiple toxins raises some concerns. A combination of discrete sampling and in-situ tracking (Solid Phase Adsorption Toxin Tracking [SPATT]) revealed that microcystin and anatoxin were the most pervasive year-round. Between 2011 and 2016, summer and fall blooms were dominated by the same cyanobacterial genera, all of which are suggested producers of single or multiple cyanotoxins. The study's findings provide further evidence of the ubiquitous nature of cyanotoxins, and the challenges involved in linking CyanoHAB dynamics to specific environmental forcing factors are discussed.
Measurement of "total" microcystins using the MMPB/LC/MS ...
The detection and quantification of microcystins, a family of toxins associated with harmful algal blooms, is complicated by their structural diversity and a lack of commercially available analytical standards for method development. As a result, most detection methods have focused on either a subset of microcystin congeners, as in US EPA Method 544, or on techniques which are sensitive to structural features common to most microcystins, as in the anti-ADDA ELISA method. A recent development has been the use of 2-methyl-3-methoxy-4-phenylbutyric acid (MMPB), which is produced by chemical oxidation the ADDA moiety in most microcystin congeners, as a proxy for the sum of congeners present. Conditions for the MMPB derivatization were evaluated and applied to water samples obtained from various HAB impacted surface waters, and results were compared with congener-based LC/MS/MS and ELISA methods. The detection and quantification of microcystins, a family of toxins associated with harmful algal blooms, is complicated by their structural diversity and a lack of commercially available analytical standards for method development. As a result, most detection methods have focused on either a subset of microcystin congeners, as in US EPA Method 544, or on techniques which are sensitive to structural features common to most microcystins, as in the anti-ADDA ELISA method. A recent development has been the use of 2-methyl-3-methoxy-4-phenylbutyric acid (MMPB), which is produce
NASA Astrophysics Data System (ADS)
El Alem, A.; Chokmani, K.; Laurion, I.; El-Adlouni, S. E.
2014-12-01
In reason of inland freshwaters sensitivity to Harmful algae blooms (HAB) development and the limits coverage of standards monitoring programs, remote sensing data have become increasingly used for monitoring HAB extension. Usually, HAB monitoring using remote sensing data is based on empirical and semi-empirical models. Development of such models requires a great number of continuous in situ measurements to reach an acceptable accuracy. However, Ministries and water management organizations often use two thresholds, established by the World Health Organization, to determine water quality. Consequently, the available data are ordinal «semi-qualitative» and they are mostly unexploited. Use of such databases with remote sensing data and statistical classification algorithms can produce hazard management maps linked to the presence of cyanobacteria. Unlike standard classification algorithms, which are generally unstable, classifiers based on ensemble systems are more general and stable. In the present study, an ensemble based classifier was developed and compared to a standard classification method called CART (Classification and Regression Tree) in a context of HAB monitoring in freshwaters using MODIS images downscaled to 250 spatial resolution and ordinal in situ data. Calibration and validation data on cyanobacteria densities were collected by the Ministère du Développement durable, de l'Environnement et de la Lutte contre les changements climatiques on 22 waters bodies between 2000 and 2010. These data comprise three density classes: waters poorly (< 20,000 cells mL-1), moderately (20,000 - 100,000 cells mL-1), and highly (> 100,000 cells mL-1) loaded in cyanobacteria. Results were very interesting and highlighted that inland waters exhibit different spectral response allowing them to be classified into the three above classes for water quality monitoring. On the other, even if the accuracy (Kappa-index = 0.86) of the proposed approach is relatively lower than that of the CART algorithm (Kappa-index = 0.87), but its robustness is higher with a standard-deviation of 0.05 versus 0.06, specifically when applied on MODIS images. A new accurate, robust, and quick approach is thus proposed for a daily near real-time monitoring of HAB in southern Quebec freshwaters.
Controls of primary production in two phytoplankton blooms in the Antarctic Circumpolar Current
NASA Astrophysics Data System (ADS)
Hoppe, C. J. M.; Klaas, C.; Ossebaar, S.; Soppa, M. A.; Cheah, W.; Laglera, L. M.; Santos-Echeandia, J.; Rost, B.; Wolf-Gladrow, D. A.; Bracher, A.; Hoppema, M.; Strass, V.; Trimborn, S.
2017-04-01
The Antarctic Circumpolar Current has a high potential for primary production and carbon sequestration through the biological pump. In the current study, two large-scale blooms observed in 2012 during a cruise with R.V. Polarstern were investigated with respect to phytoplankton standing stocks, primary productivity and nutrient budgets. While net primary productivity was similar in both blooms, chlorophyll a -specific photosynthesis was more efficient in the bloom closer to the island of South Georgia (39 °W, 50 °S) compared to the open ocean bloom further east (12 °W, 51 °S). We did not find evidence for light being the driver of bloom dynamics as chlorophyll standing stocks up to 165 mg m-2 developed despite mixed layers as deep as 90 m. Since the two bloom regions differ in their distance to shelf areas, potential sources of iron vary. Nutrient (nitrate, phosphate, silicate) deficits were similar in both areas despite different bloom ages, but their ratios indicated more pronounced iron limitation at 12 °W compared to 39 °W. While primarily the supply of iron and not the availability of light seemed to control onset and duration of the blooms, higher grazing pressure could have exerted a stronger control toward the declining phase of the blooms.
Nutrients, organic compounds, and mercury in the Meduxnekeag River watershed, Maine, 2003
Schalk, Charles W.; Tornes, Lan
2005-01-01
In 2003, the U.S. Geological Survey, in cooperation with the Houlton Band of Maliseet Indians, sampled streambed sediments and surface water of the Meduxnekeag River watershed in northeastern Maine under various hydrologic conditions for nutrients, hydrophobic organic compounds, and mercury. Nutrients were sampled to address concerns related to summer algal blooms, and organic compounds and mercury were sampled to address concerns about regional depositional patterns and overall watershed quality. In most surface-water samples, phosphorus was not detected or was detected at concentrations below the minimum reporting limit. Nitrate and organic nitrogen were detected in every surface-water sample for which they were analyzed; the highest concentration of total nitrogen was 0.75 milligrams per liter during low flow. Instantaneous nitrogen loads and yields were calculated at four stations for two sampling events. These data indicate that the part of the watershed that includes Houlton, its wastewater-treatment plant, and four small urban brooks may have contributed high concentrations of nitrate to Meduxnekeag River during the high flows on April 23-24 and high concentrations of both organic and nitrate nitrogen on June 2-3. Mercury was detected in all three bed-sediment samples for which it was analyzed; concentrations were similar to those reported from regional studies. Notable organic compounds detected in bed sediments included p,p'-DDE and p,p'-DDT (pesticides of the DDT family) and several polycyclic aromatic hydrocarbons. Polychlorinated biphenyls (PCBs) and phthalates were not detected in any sample, whereas p-cresol was the only phenolic compound detected. Phosphorus was detected at concentrations below 700 milligrams per kilogram in each bed-sediment sample for which it was analyzed. Data were insufficient to establish whether the lack of large algal blooms in 2003 was related to low concentrations of phosphorus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durham, Robin E.; Becker, James M.
This document provides a review and status of activities conducted in support of the Fluor Daniel Hanford Company (Fluor), now Mission Support Alliance (MSA), Mitigation Action Plan (MAP) for Project L-325, Electrical Utility Upgrades (2007). Three plantings have been installed on a 4.5-hectare mitigation area to date. This review provides a description and chronology of events, monitoring results, and mitigative actions through fiscal year (FY) 2012. Also provided is a review of the monitoring methods, transect layout, and FY 2012 monitoring activities and results for all planting years. Planting densities and performance criteria stipulated in the MAP were aimed atmore » a desired future condition (DFC) of 10 percent mature sagebrush (Artemisia tridentata ssp wyomingensis) cover. Current recommendations for yielding this DFC are based upon a conceptual model planting of 1000 plants/ha (400/ac) exhibiting a 60-percent survival rate after 5 monitoring years (DOE 2003). Accordingly, a DFC after 5 monitoring years would not be less than 600 plants/ha (240/ac). To date, about 8700 sagebrush plants have been grown and transplanted onto the mitigation site. Harsh site conditions and low seedling survival have resulted in an estimated 489 transplants/ha on the mitigation site, which is 111 plants/ha short of the target DFC. Despite this apparent shortcoming, 71, 91, and 24 percent of the surviving seedlings planted in FY 2007 and FY 2008 and FY 2010, respectively, showed signs of blooming in FY 2012. Blooming status may be a positive indication of future sagebrush recruitment, and is therefore a potential source for reaching the target DFC of 600 plants/ha on this mitigation site over time. Because of the difficulty establishing small transplants on this site, we propose that no additional plantings be considered for this mitigation area and to rely upon the potential recruitment by established seedlings to achieve the mitigation commitment set forth in the MAP of 600 plants/ha.« less
NASA Astrophysics Data System (ADS)
Frazier, J.; Webster, R.; Linton, T.; Hill, B. N.
2013-12-01
In 2011, the Southern Caribbean was plagued by an unusually massive amount of seaweed wrack, an event so rare that locals couldn't think of a season where Sargassum had been that abundant, for sixty years. At this time, the SEAS program had been created, however the path of the seaweed from the Atlantic to the beaches of Texas had yet to be determined. This event sparked the idea that seaweed migrated through the Caribbean then North through the Yucatan Peninsula. While this idea was only partially correct, it did initiate the second phase of the SEAS Program. As it turns out, the seaweed drifts through the Northern passages of the Caribbean (Windward, Mona, and Anegada Passages) and migrates westward, rather than entering the Caribbean from the Southeastern islands (the Virgin Islands down to Granada). Monitoring these passes using ground-truthing and local reports has proven difficult, so in order to determine the presence of seaweed, one can use remote sensing. NASA's satellite Landsat 7 produces images of the passes every eight days, allowing the SEAS Team to monitor the Sargassum. These images have a sufficient resolution to see seaweed mats in the ocean. Based on several factors, such as ocean and wind currents, time of the year, and size of seaweed mats, one can ultimately forecast Sargassum as it makes its journey through the loop system. The seaweed is monitored as it migrates westward, and eventually gets pushed North in massive blooms as a result of neritic waters. These blooms can travel North in warm water gyres. The Sargassum can then break off and wash up on the beaches of Texas or get caught in the Gulf Stream where it is flushed out the Florida Straits back into the Atlantic. Remote sensing makes the first ever system of monitoring Sargassum possible and allows for advanced warning of these troublesome seaweed wracks up and down the coast.
Rosenwasser, Shilo; Mausz, Michaela A.; Schatz, Daniella; Sheyn, Uri; Malitsky, Sergey; Aharoni, Asaph; Weinstock, Eyal; Tzfadia, Oren; Ben-Dor, Shifra; Feldmesser, Ester; Pohnert, Georg; Vardi, Assaf
2014-01-01
Marine viruses are major ecological and evolutionary drivers of microbial food webs regulating the fate of carbon in the ocean. We combined transcriptomic and metabolomic analyses to explore the cellular pathways mediating the interaction between the bloom-forming coccolithophore Emiliania huxleyi and its specific coccolithoviruses (E. huxleyi virus [EhV]). We show that EhV induces profound transcriptome remodeling targeted toward fatty acid synthesis to support viral assembly. A metabolic shift toward production of viral-derived sphingolipids was detected during infection and coincided with downregulation of host de novo sphingolipid genes and induction of the viral-encoded homologous pathway. The depletion of host-specific sterols during lytic infection and their detection in purified virions revealed their novel role in viral life cycle. We identify an essential function of the mevalonate-isoprenoid branch of sterol biosynthesis during infection and propose its downregulation as an antiviral mechanism. We demonstrate how viral replication depends on the hijacking of host lipid metabolism during the chemical “arms race” in the ocean. PMID:24920329
Phytoplankton bloom dynamics in temperate, turbid, stressed estuaries: a model study
NASA Astrophysics Data System (ADS)
de Swart, Huib E.; Liu, Bo; de Jonge, Victor
2017-04-01
To gain insight into mechanisms underlying phytoplankton bloom dynamics in temperature, turbid estuaries, experiments were conducted with an idealised model that couples physical and biological processes. Results show that the model is capable of producing the main features of the observed blooms in the Ems estuary (Northwest Germany), viz. in the lower reach a spring bloom occur, which is followed by a secondary bloom in autumn. The along-estuary distribution of suspended sediment concentration (SSC) and the along-estuary distance between the nutrient source and the seaward bound of the turbidity zone control both the along-estuary locations and intensities of the blooms. Results of further sensitivity studies reveal that in a shallow, well-mixed estuary, under temporally-constant suspended sediment conditions, the seasonally-varying water temperature has larger impact on the timing of spring blooms than the seasonally-varying incident light intensity. The occurrence of the secondary bloom is caused by the fact that the growth rate of phytoplankton attains a maximum at an optimum water temperature. Bloom intensities are also modulated by the advective processes related to subtidal current because the latter regulates the seaward transport of nutrient from riverine source. Large-scale deepening of navigation channels leads to later spring blooms due to increased mixing depth. Finally, phytoplankton blooms are unlikely to occur in the upper reach due to the elevated SSC and the landward expansion of turbidity zone related to large-scale deepening.
NASA Astrophysics Data System (ADS)
Severine, A.; Cyril, M.; Yves, D.; Laurent, B.; Hubert, L.
2006-12-01
The fate of fixed organic carbon in the ocean strongly varies with the phytoplankton group that makes photosynthesis. The monitoring of phytoplankton groups in the global ocean is thus of primary importance to evaluate and improve ocean carbon models. A new method (PHYSAT; Alvain et al., 2005) enables to distinguish between four different groups from space using SeaWiFS ocean color measurements. In addition to these four initial phytoplankton groups, which are diatoms, Prochlorococcus, Synecochoccus and haptophytes, we show that PHYSAT is also capable of identifying blooms of phaeocystis and coccolithophorids. Daily global SeaWiFS level-3 data from September 1997 to December 2004 were processed using PHYSAT. We present here the first monthly mean global climatology of the dominant phytoplankton groups. The seasonal cycle is discussed, with particular emphasis on the succession of phytoplankton groups during the North Atlantic spring bloom and on the coexistence of large phaeocystis and diatoms blooms during winter in the Austral Ocean. We also present the inter-annual variability for the 1998-2004 period. The contribution of diatoms to the total chlorophyll is highly variable (up to a factor of two) from one year to the other in both Atlantic and Austral Oceans, suggesting a significant variability in organic carbon export by diatoms in these regions. On the opposite, the phaeocystis contribution is less variable in the Austral Ocean.
NASA Astrophysics Data System (ADS)
Fuaad, Norain Farhana Ahmad; Nopiah, Zulkifli Mohd; Tawil, Norgainy Mohd; Othman, Haliza; Asshaari, Izamarlina; Osman, Mohd Hanif; Ismail, Nur Arzilah
2014-06-01
In engineering studies and researches, Mathematics is one of the main elements which express physical, chemical and engineering laws. Therefore, it is essential for engineering students to have a strong knowledge in the fundamental of mathematics in order to apply the knowledge to real life issues. However, based on the previous results of Mathematics Pre-Test, it shows that the engineering students lack the fundamental knowledge in certain topics in mathematics. Due to this, apart from making improvements in the methods of teaching and learning, studies on the construction of questions (items) should also be emphasized. The purpose of this study is to assist lecturers in the process of item development and to monitor the separation of items based on Blooms' Taxonomy and to measure the reliability of the items itself usingRasch Measurement Model as a tool. By using Rasch Measurement Model, the final exam questions of Engineering Mathematics II (Linear Algebra) for semester 2 sessions 2012/2013 were analysed and the results will provide the details onthe extent to which the content of the item providesuseful information about students' ability. This study reveals that the items used in Engineering Mathematics II (Linear Algebra) final exam are well constructed but the separation of the items raises concern as it is argued that it needs further attention, as there is abig gap between items at several levels of Blooms' cognitive skill.
Development and Application of a Low-Volume Flow System for Solution-State in Vivo NMR.
Tabatabaei Anaraki, Maryam; Dutta Majumdar, Rudraksha; Wagner, Nicole; Soong, Ronald; Kovacevic, Vera; Reiner, Eric J; Bhavsar, Satyendra P; Ortiz Almirall, Xavier; Lane, Daniel; Simpson, Myrna J; Heumann, Hermann; Schmidt, Sebastian; Simpson, André J
2018-06-18
In vivo nuclear magnetic resonance (NMR) spectroscopy is a particularly powerful technique, since it allows samples to be analyzed in their natural, unaltered state, criteria paramount for living organisms. In this study, a novel continuous low-volume flow system, suitable for in vivo NMR metabolomics studies, is demonstrated. The system allows improved locking, shimming, and water suppression, as well as allowing the use of trace amounts of expensive toxic contaminants or low volumes of precious natural environmental samples as stressors. The use of a double pump design with a sump slurry pump return allows algal food suspensions to be continually supplied without the need for filters, eliminating the possibility of clogging and leaks. Using the flow system, the living organism can be kept alive without stress indefinitely. To evaluate the feasibility and applicability of the flow system, changes in the metabolite profile of 13 C enriched Daphnia magna over a 24-h period are compared when feeding laboratory food vs exposing them to a natural algal bloom sample. Clear metabolic changes are observed over a range of metabolites including carbohydrates, lipids, amino acids, and a nucleotide demonstrating in vivo NMR as a powerful tool to monitor environmental stress. The particular bloom used here was low in microcystins, and the metabolic stress impacts are consistent with the bloom being a poor food source forcing the Daphnia to utilize their own energy reserves.
Wemheuer, Bernd; Wemheuer, Franziska; Hollensteiner, Jacqueline; Meyer, Frauke-Dorothee; Voget, Sonja; Daniel, Rolf
2015-01-01
Phytoplankton blooms exhibit a severe impact on bacterioplankton communities as they change nutrient availabilities and other environmental factors. In the current study, the response of a bacterioplankton community to a Phaeocystis globosa spring bloom was investigated in the southern North Sea. For this purpose, water samples were taken inside and reference samples outside of an algal spring bloom. Structural changes of the bacterioplankton community were assessed by amplicon-based analysis of 16S rRNA genes and transcripts generated from environmental DNA and RNA, respectively. Several marine groups responded to bloom presence. The abundance of the Roseobacter RCA cluster and the SAR92 clade significantly increased in bloom presence in the total and active fraction of the bacterial community. Functional changes were investigated by direct sequencing of environmental DNA and mRNA. The corresponding datasets comprised more than 500 million sequences across all samples. Metatranscriptomic data sets were mapped on representative genomes of abundant marine groups present in the samples and on assembled metagenomic and metatranscriptomic datasets. Differences in gene expression profiles between non-bloom and bloom samples were recorded. The genome-wide gene expression level of Planktomarina temperata, an abundant member of the Roseobacter RCA cluster, was higher inside the bloom. Genes that were differently expressed included transposases, which showed increased expression levels inside the bloom. This might contribute to the adaptation of this organism toward environmental stresses through genome reorganization. In addition, several genes affiliated to the SAR92 clade were significantly upregulated inside the bloom including genes encoding for proteins involved in isoleucine and leucine incorporation. Obtained results provide novel insights into compositional and functional variations of marine bacterioplankton communities as response to a phytoplankton bloom. PMID:26322028
Macroalgal blooms alter community structure and primary productivity in marine ecosystems.
Lyons, Devin A; Arvanitidis, Christos; Blight, Andrew J; Chatzinikolaou, Eva; Guy-Haim, Tamar; Kotta, Jonne; Orav-Kotta, Helen; Queirós, Ana M; Rilov, Gil; Somerfield, Paul J; Crowe, Tasman P
2014-09-01
Eutrophication, coupled with loss of herbivory due to habitat degradation and overharvesting, has increased the frequency and severity of macroalgal blooms worldwide. Macroalgal blooms interfere with human activities in coastal areas, and sometimes necessitate costly algal removal programmes. They also have many detrimental effects on marine and estuarine ecosystems, including induction of hypoxia, release of toxic hydrogen sulphide into the sediments and atmosphere, and the loss of ecologically and economically important species. However, macroalgal blooms can also increase habitat complexity, provide organisms with food and shelter, and reduce other problems associated with eutrophication. These contrasting effects make their overall ecological impacts unclear. We conducted a systematic review and meta-analysis to estimate the overall effects of macroalgal blooms on several key measures of ecosystem structure and functioning in marine ecosystems. We also evaluated some of the ecological and methodological factors that might explain the highly variable effects observed in different studies. Averaged across all studies, macroalgal blooms had negative effects on the abundance and species richness of marine organisms, but blooms by different algal taxa had different consequences, ranging from strong negative to strong positive effects. Blooms' effects on species richness also depended on the habitat where they occurred, with the strongest negative effects seen in sandy or muddy subtidal habitats and in the rocky intertidal. Invertebrate communities also appeared to be particularly sensitive to blooms, suffering reductions in their abundance, species richness, and diversity. The total net primary productivity, gross primary productivity, and respiration of benthic ecosystems were higher during macroalgal blooms, but blooms had negative effects on the productivity and respiration of other organisms. These results suggest that, in addition to their direct social and economic costs, macroalgal blooms have ecological effects that may alter their capacity to deliver important ecosystem services. © 2014 John Wiley & Sons Ltd.
Blooms of cyanobacteria on the potomac river.
Krogmann, D W; Butalla, R; Sprinkle, J
1986-03-01
Blooms of cyanobacteria have appeared on the Potomac River near Washington, DC in years of drought and low river volume. The location of the bloom may be related to tidal activity. In 1983, the bloom of Microcystis aeruginosa used ammonia as its nitrogen source and contained low levels of toxic peptides. Cells collected from this bloom proved to be homogeneous and were an excellent source material for the isolation of proteins involved in photosynthesis.
The Openness That Closes: Allan Bloom and the Contemporary University.
ERIC Educational Resources Information Center
Orwin, Clifford; Forbes, H. D.
1991-01-01
Discusses the contemporary university in Canada, focusing on Allan Bloom's "The Closing of the American Mind" which analyzes problems in today's education. The paper calls Bloom's book an unrivaled diagnosis of the impasse of the university, and it examines Bloom's relativistic principles. (SM)
Park, Hyun Je; Han, Eunah; Lee, Young-Jae; Kang, Chang-Keun
2016-10-15
The effects of blooms of opportunistic green macroalgae, Ulva prolifera, on the trophic structure of the macrobenthic food web in a temperate intertidal zone on the western coast of Korea were evaluated using carbon and nitrogen stable isotopes. Biomasses of Ulva and microphytobenthos (MPB) increased significantly at the macroalgae-bloom and the non-bloom sites, respectively, from March to September 2011. The δ(13)C values of most the consumers were arrayed between those of MPB and Ulva at both sites, and differed according to feeding strategies at the macroalgae-bloom site. Seasonally increasing magnitudes in δ(13)C and δ(15)N values of consumers were much steeper at the macroalgae-bloom site than at the non-bloom site. Our findings provide evidence that blooming green macroalgae play a significant role as a basal resource supporting the intertidal macrobenthic food web and their significance varies with feeding strategies of consumers as well as the resource availability. Copyright © 2016 Elsevier Ltd. All rights reserved.
Welch, Eugene Brummer
1969-01-01
Phytoplankton productivity, standing stock, and related environmental factors were studied during 1964-66 in the Duwamish River estuary, at Seattle, Wash., to ascertain the factors that affect phytoplankton growth in the estuary; a knowledge of these factors in turn permits the detection and evaluation of the influence that effluent nutrients have on phytoplankton production. The factors that control the concentration of dissolved oxygen were also evaluated because of the importance of dissolved oxygen to the salmonid populations that migrate through the estuary. Phytoplankton blooms, primarily of diatoms, occurred in the lower estuary during August 1965 and 1966. No bloom occurred during 1964, but the presence of oxygen-supersaturated surface water in August 1963 indicates that a bloom did occur then. Nutrients probably were not the primary factor controlling the timing of phytoplankton blooms. Ammonia ,and phosphate concentrations increased significantly downstream from the Municipality of Metropolitan Seattle's Renton Treatment Plant outfall after the plant began operation in June 1965, and concentrations of nitrogen and phosphorus were relatively high before operation of the Renton Treatment Plant and during nonbloom periods. The consistent coincidence of blooms with minimum fresh-water discharge and tidal exchange during August throughout the study period indicates that bloom timing probably was controlled mostly by hydrographic factors that determine retention time and stability of the surface-water layer. This control was demonstrated in part by a highly significant correlation of gross productivity with retention time (as indicated by fresh-water discharge) and vertical stability (as indicated by the difference between mean surface and mean bottom temperatures). The failure of a bloom to develop in 1964 is related to a minimum fresh-water discharge that was much greater than normal during that summer. Hydrographic factors are apparently important because, as shown by studies of other estuarine environments by other workers, phytoplankton production increases when the zone of vertical turbulent mixing is not markedly deeper than the compensation depth. Phytoplankton cells produced in the surface waters sink, thereby contributing oxidizable organic matter to the bottom saline-water wedge. The maximum BOD (biochemical oxygen demand) in this bottom wedge occurs in the same section of the estuary and ,at the same time as the maximum phytoplankton biomass (as indicated by chlorophyll a) and minimum DO (dissolved oxygen). Other sources of BOD occur in the estuary, and conditions of minimum discharge and tidal exchange assist in reducing DO. Nonetheless, the highly significant correlation of chlorophyll a with BOD throughout the summer indicates that respiration and decomposition of phytoplankton cells is dearly an important contributor of BOD. Increases in the biomass and resultant B0D of blooms because of increased effluent nutrients presumably would further decrease the concentration of DO. This possible effect of effluent nutrients was evaluated by laboratory .bioassays and by a comparison of mean annual biomasses in the estuary. A green algal population in vitro did increase in response to added effluent nutrients; however, the available field data suggest that a 46-percent increase in effluent discharge between 1965 and 1966 did not increase the estuary's phytoplankton biomass significantly.
A Hybrid Remote Sensing Approach for Detecting the Florida Red Tide
NASA Astrophysics Data System (ADS)
Carvalho, G. A.; Minnett, P. J.; Banzon, V.; Baringer, W.
2008-12-01
Harmful algal blooms (HABs) have caused major worldwide economic losses commonly linked with health problems for humans and wildlife. In the Eastern Gulf of Mexico the toxic marine dinoflagellate Karenia brevis is responsible for nearly annual, massive red tides causing fish kills, shellfish poisoning, and acute respiratory irritation in humans: the so-called Florida Red Tide. Near real-time satellite measurements could be an effective method for identifying HABs. The use of space-borne data would be a highly desired, low-cost technique offering the remote and accurate detection of K. brevis blooms over the West Florida Shelf, bringing tremendous societal benefits to the general public, scientific community, resource managers and medical health practitioners. An extensive in situ database provided by the Florida Fish and Wildlife Conservation Commission's Research Institute was used to examine the long-term accuracy of two satellite- based algorithms at detecting the Florida Red Tide. Using MODIS data from 2002 to 2006, the two algorithms are optimized and their accuracy assessed. It has been found that the sequential application of the algorithms results in improved predictability characteristics, correctly identifying ~80% of the cases (for both sensitivity and specificity, as well as overall accuracy), and exhibiting strong positive (70%) and negative (86%) predictive values.
Rapid regrowth and detection of microbial contaminants in equine fecal microbiome samples
Beckers, Kalie F.; Childers, Gary W.
2017-01-01
Advances have been made to standardize 16S rRNA gene amplicon based studies for inter-study comparisons, yet there are many opportunities for systematic error that may render these comparisons improper and misleading. The fecal microbiome of horses has been examined previously, however, no universal horse fecal collection method and sample processing procedure has been established. This study was initialized in large part to ensure that samples collected by different individuals from different geographical areas (i.e., crowdsourced) were not contaminated due to less than optimal sampling or holding conditions. In this study, we examined the effect of sampling the surface of fecal pellets compared to homogenized fecal pellets, and also the effect of time of sampling after defecation on ‘bloom’ taxa (bloom taxa refers to microbial taxa that can grow rapidly in horse feces post-defecation) using v4 16S rRNA amplicon libraries. A total of 1,440,171 sequences were recovered from 65 horse fecal samples yielding a total of 3,422 OTUs at 97% similarity. Sampling from either surface or homogenized feces had no effect on diversity and little effect on microbial composition. Sampling at various time points (0, 2, 4, 6, 12 h) had a significant effect on both diversity and community composition of fecal samples. Alpha diversity (Shannon index) initially increased with time as regrowth taxa were detected in the amplicon libraries, but by 12 h the diversity sharply decreased as the community composition became dominated by a few bloom families, including Bacillaceae, Planococcaeae, and Enterococcaceae, and other families to a lesser extent. The results show that immediate sampling of horse feces must be done in order to ensure accurate representation of horse fecal samples. Also, several of the bloom taxa found in this study are known to occur in human and cattle feces post defecation. The dominance of these taxa in feces shortly after defecation suggests that the feces is an important habitat for these organisms, and horse fecal samples that were improperly stored can be identified by presence of bloom taxa. PMID:29091944
Natsuike, Masafumi; Saito, Rui; Fujiwara, Amane; Matsuno, Kohei; Yamaguchi, Atsushi; Shiga, Naonobu; Hirawake, Toru; Kikuchi, Takashi; Nishino, Shigeto; Imai, Ichiro
2017-01-01
The eastern Bering Sea has a vast continental shelf, which contains various endangered marine mammals and large fishery resources. Recently, high numbers of toxic A. tamarense resting cysts were found in the bottom sediment surface of the eastern Bering Sea shelf, suggesting that the blooms have recently occurred. However, little is known about the presence of A. tamarense vegetative cells in the eastern Bering Sea. This study's goals were to detect the occurrence of A. tamarense vegetative cells on the eastern Bering Sea shelf and to find a relationship between environmental factors and their presence. Inter-annual field surveys were conducted to detect A. tamarense cells and environmental factors, such as nutrients, salinity, chlorophyll a, and water temperature, along a transect line on the eastern Bering Sea shelf during the summers of 2004, 2005, 2006, 2009, 2012, and 2013. A. tamarense vegetative cells were detected during every sampling year, and their quantities varied greatly from year to year. The maximum cell densities of A. tamarense observed during the summers of 2004 and 2005 were much higher than the Paralytic shellfish poisoning warning levels, which are greater than 100-1,000 cells L-1, in other subarctic areas. Lower quantities of the species occurred during the summers of 2009, 2012, and 2013. A significant positive correlation between A. tamarense quantity and water temperature and significant negative correlations between A. tamarense quantity and nutrient concentrations (of phosphate, silicate, and nitrite and nitrate) were detected in every sampling period. The surface- and bottom-water temperatures varied significantly from year to year, suggesting that water temperatures, which have been known to affect the cell growth and cyst germination of A. tamarense, might have affected the cells' quantities in the eastern Bering Sea each summer. Thus, an increase in the Bering Sea shelf's water temperature during the summer will increase the frequency and scale of toxic blooms and the toxin contamination of plankton feeders. This poses serious threats to humans and the marine ecosystem.
Variability in bacterial community structure during upwelling in the coastal ocean
Kerkhof, L.J.; Voytek, M.A.; Sherrell, Robert M.; Millie, D.; Schofield, O.
1999-01-01
Over the last 30 years, investigations at the community level of marine bacteria and phytoplankton populations suggest they are tightly coupled. However, traditional oceanographic approaches cannot assess whether associations between specific bacteria and phytoplankton exist. Recently, molecular based approaches have been implemented to characterize specific members of different marine bacterial communities. Yet, few molecular-based studies have examined coastal upwelling situations. This is important since upwelling systems provide a unique opportunity for analyzing the association between specific bacteria and specific phytoplankton in the ocean. It is widely believed that upwelling can lead to changes in phytoplankton populations (blooms). Thus, if specific associations exist, we would expect to observe changes in the bacterial population triggered by the bloom. In this paper, we present preliminary data from coastal waters off New Jersey that confirm a shift in bacterial communities during a 1995 upwelling event recorded at a long-term earth observatory (LEO-15) in the Mid-Atlantic Bight. Using PCR amplification and cloning, specific bacterial 16S ribosomal RNA sequences were found which were present in upwelling samples during a phytoplankton bloom, but were not detected in non-bloom samples (surface seawater, offshore sites or sediment samples) collected at the same time or in the same area. These findings are consistent with the notion of specific associations between bacteria and phytoplankton in the ocean. However, further examination of episodic events, such as coastal upwelling, are needed to confirm the existence of specific associations. Additionally, experiments need to be performed to elucidate the mechanisms leading to the specific linkages between a group of bacteria and a group of phytoplankton.
Changes in dark chocolate volatiles during storage.
Nightingale, Lia M; Cadwallader, Keith R; Engeseth, Nicki J
2012-05-09
Chocolate storage is critical to the quality of the final product. Inadequate storage, especially with temperature fluctuations, may lead to a change in crystal structure, which may eventually cause fat bloom. Bloom is the main cause of quality loss in the chocolate industry. The impact of various storage conditions on the flavor quality of dark chocolate was determined. Dark chocolate was stored in different conditions leading to either fat or sugar bloom and analyzed at 0, 4, and 8 weeks of storage. Changes in chocolate flavor were determined by volatile analysis and descriptive sensory evaluation. Results were analyzed by analysis of variance (ANOVA), cluster analysis, principal component analysis (PCA), and linear partial least-squares regression analysis (PLS). Volatile concentration and loss were significantly affected by storage conditions. Chocolates stored at high temperature were the most visually and texturally compromised, but volatile concentrations were affected the least, whereas samples stored at ambient, frozen, and high relative humidity conditions had significant volatile loss during storage. It was determined that high-temperature storage caused a change in crystal state due to the polymorphic shift to form VI, leading to an increase in sample hardness. Decreased solid fat content (SFC) during high-temperature storage increased instrumentally determined volatile retention, although no difference was detected in chocolate flavor during sensory analysis, possibly due to instrumental and sensory sampling techniques. When all instrumental and sensory data had been taken into account, the storage condition that had the least impact on texture, surface roughness, grain size, lipid polymorphism, fat bloom formation, volatile concentrations, and sensory attributes was storage at constant temperature and 75% relative humidity.
Blooms of Cyanobacteria on the Potomac River 1
Krogmann, David W.; Butalla, Ruth; Sprinkle, James
1986-01-01
Blooms of cyanobacteria have appeared on the Potomac River near Washington, DC in years of drought and low river volume. The location of the bloom may be related to tidal activity. In 1983, the bloom of Microcystis aeruginosa used ammonia as its nitrogen source and contained low levels of toxic peptides. Cells collected from this bloom proved to be homogeneous and were an excellent source material for the isolation of proteins involved in photosynthesis. PMID:16664682
Bloom's Taxonomy: Improving Assessment and Teaching-Learning Process
ERIC Educational Resources Information Center
Chandio, Muhammad Tufail; Pandhiani, Saima Murtaza; Iqbal, Rabia
2016-01-01
This research study critically analyzes the scope and contribution of Bloom's Taxonomy in both assessment and teaching-learning process. Bloom's Taxonomy consists of six stages, namely; remembering, understanding, applying, analyzing, evaluating and creating and moves from lower degree to the higher degree. The study applies Bloom's Taxonomy to…
NASA Astrophysics Data System (ADS)
Alves-de-Souza, Catharina; Varela, Daniel; Contreras, Cristóbal; de La Iglesia, Pablo; Fernández, Pamela; Hipp, Byron; Hernández, Cristina; Riobó, Pilar; Reguera, Beatriz; Franco, José M.; Diogène, Jorge; García, Carlos; Lagos, Néstor
2014-03-01
The fine scale vertical distribution of Dinophysis spp. and Protoceratium reticulatum (potential producers of lipophilic shellfish toxins, LSTs) and its relation with LSTs in shellfish was studied in Reloncaví fjord, a strongly stratified system in Southern Chile. Samples were taken over two years from late spring to early autumn (2007-2008 period) and from early spring to late summer (2008-2009 period). Dinophysis spp., in particular Dinophysis acuminata, were always detected, often forming thin layers in the region of the salinity driven pycnocline, with cell maxima for D. acuminata of 28.5×103 cells L-1 in March 2008 and 17.1×103 cells L-1 in November 2008. During the 2008-2009 sampling period, blooms of D. acuminata co-occurred with high densities of cryptophyceans and the ciliate Mesodinium spp. The highest levels of pectenotoxin-2 (PTX-2; 2.2 ng L-1) were found in the plankton in February 2009, associated with moderate densities of D. acuminata, Dinophysis tripos and Dinophysis subcircularis (0.1-0.6×103 cells L-1). However, only trace levels of PTX-2 were observed in bivalves at that time. Dinophysistoxin (DTX-1 and DTX-3) levels in bivalves and densities of Dinophysis spp. were not well correlated. Low DTX levels in bivalves observed during a major bloom of D. acuminata in March 2008 suggested that there is a large seasonal intraspecific variability in toxin content of Dinophysis spp. driven by changes in population structure associated with distinct LST toxin profiles in Reloncaví fjord during the study period. A heterogeneous vertical distribution was also observed for P. reticulatum, whose presence was restricted to summer months. A bloom of this species of 2.2×103 cells L-1 at 14 m depth in February 2009 was positively correlated with high concentrations of yessotoxins in bivalves (51-496 ng g-1) and plankton samples (3.2 ng L-1). Our results suggest that a review of monitoring strategies for Dinophysis spp. in strongly stratified fjord systems should be carried out. They also indicate that early warning of LST events based on Dinophysis cell numbers are not reliable for seafood control.
Algal Accessory Pigment Detection Using AVIRIS Image-Derived Spectral Radiance Data
NASA Technical Reports Server (NTRS)
Richardson, Laurie L.; Ambrosia, Vincent G.
1996-01-01
Visual and derivative analyses of AVIRIS spectral data can be used to detect algal accessory pigments in aquatic communities. This capability extends the use of remote sensing for the study of aquatic ecosystems by allowing detection of taxonomically significant pigment signatures which yield information about the type of algae present. Such information allows remote sensing-based assessment of aquatic ecosystem health, as in the detection of nuisance blooms of cyanobacteria or toxic blooms of dinoflagellates. Remote sensing of aquatic systems has traditionally focused on quantification of chlorophyll a, a photoreactive (and light-harvesting) pigment which is common to all algae as well as cyanobacteria (bluegreen algae). Due to the ubiquitousness of this pigment within algae, chl a is routinely measured to estimate algal biomass both during ground-truthing and using various airborne or satellite based sensors, including AVIRIS. Within the remote sensing and aquatic sciences communities, ongoing research has been performed to detect algal accessory pigments for assessment of algal population composition. This research is based on the fact that many algal accessory pigments are taxonomically significant, and all are spectrally unique. Aquatic scientists have been refining pigment analysis techniques, primarily high performance liquid chromatography, or HPLC, to detect specific pigments as a time-saving alternative to individual algal cell identifications and counts. Remote sensing scientists are investigating the use of pigment signatures to construct pigment libraries analogous to mineral spectral libraries used in geological remote sensing applications. The accessory pigment approach has been used successfully in remote sensing using data from the Thematic Mapper, low-altitude, multiple channel scanners, field spectroradiometers and the AVIRIS hyperspectral scanner. Due to spectral and spatial resolution capabilities, AVIRIS is the sensor of choice for such studies. We present here our results on detection of algal accessory pigments using AVIRIS data.
Cecchi, P; Garrido, M; Collos, Y; Pasqualini, V
2016-07-15
Dinoflagellate proliferation is common in coastal waters, and trophic strategies are often advanced to explain the success of these organisms. The Biguglia lagoon is a Mediterranean brackish ecosystem where eutrophication has long been an issue, and where dominance of dinoflagellates has persisted for several years. Monthly monitoring of fluorescence-based properties of phytoplankton communities carried out in 2010 suggested that photosynthesis alone could not support the observed situation all year round. Contrasting food webs developed depending on the hydrological season, with a gradual shift from autotrophy to heterotrophy. Progressively, microphytoplankton assemblages became unequivocally dominated by a Prorocentrum minimum bloom, which exhibited very weak effective photosynthetic performance, whereas paradoxically its theoretical capacities remained fully operational. Different environmental hypotheses explaining this discrepancy were examined, but rejected. We conclude that P. minimum bloom persistence is sustained by mixotrophic strategies, with complex compromises between phototrophy and phagotrophy, as evidenced by fluorescence-based observations. Copyright © 2016 Elsevier Ltd. All rights reserved.
Deininger, A; Faithfull, C L; Lange, K; Bayer, T; Vidussi, F; Liess, A
2016-08-01
Climate change scenarios predict intensified terrestrial storm runoff, providing coastal ecosystems with large nutrient pulses and increased turbidity, with unknown consequences for the phytoplankton community. We conducted a 12-day mesocosm experiment in the Mediterranean Thau Lagoon (France), adding soil (simulated runoff) and fish (different food webs) in a 2 × 2 full factorial design and monitored phytoplankton composition, shade adaptation and stoichiometry. Diatoms (Chaetoceros) increased four-fold immediately after soil addition, prymnesiophytes and dinoflagellates peaked after six- and 12 days, respectively. Soil induced no phytoplankton shade adaptation. Fish reduced the positive soil effect on dinoflagellates (Scripsiella, Glenodinium), and diatom abundance in general. Phytoplankton community composition drove seston stoichiometry. In conclusion, pulsed terrestrial runoff can cause rapid, low quality (high carbon: nutrient) diatom blooms. However, bloom duration may be short and reduced in magnitude by fish. Thus, climate change may shift shallow coastal ecosystems towards famine or feast dynamics. Copyright © 2016 Elsevier Ltd. All rights reserved.
Phytoplankton and sediments in Gulf of Mexico
NASA Technical Reports Server (NTRS)
2002-01-01
Affected both by terrestrial factors like agriculture, deforestation, and erosion, and by marine factors like salinity levels, ocean temperature and water pollution, coastal environments are the dynamic interface between land and sea. In this MODIS image from January 15, 2002, the Gulf of Mexico is awash in a mixture of phytoplankton and sediment. Tan-colored sediment is flowing out into the Gulf from the Mississippi River, whose floodplain cuts a pale, wide swath to the right of center in the image, and also from numerous smaller rivers along the Louisiana coast (center). Mixing with the sediment are the multi-colored blue and green swirls that reveal the presence of large populations of marine plants called phytoplankton. Phytoplankton populations bloom and then fade, and these cycles affect fish and mammals-including humans-higher up the food chain. Certain phytoplankton are toxic to both fish and humans, and coastal health departments must monitor ecosystems carefully, often restricting fishing or harvesting of shellfish until the blooms have subsided.
Cembella, Allan D.; Hallegraeff, Gustaaf M.
2017-01-01
The public health, tourism, fisheries and ecosystem impacts from harmful algal blooms (HABs) have all increased over the last few decades. This has led to heightened scientific and regulatory attention, and the development of many new technologies and approaches for research and management. This in turn, is leading to significant paradigm shifts with regard to, e.g., our interpretation of the phytoplankton species concept (strain variation), the dogma of their apparent cosmopolitanism, the role of bacteria and zooplankton grazing in HABs, and our approaches to investigating the ecological and genetic basis for the production of toxins and allelochemicals. Increasingly, eutrophication and climate change are viewed and managed as multifactorial environmental stressors that will further challenge managers of coastal resources and those responsible for protecting human health. Here we review HAB science with an eye towards new concepts and approaches, emphasizing, where possible, the unexpected yet promising new directions that research has taken in this diverse field. PMID:22457972
NASA Astrophysics Data System (ADS)
Anderson, Donald M.; Cembella, Allan D.; Hallegraeff, Gustaaf M.
2012-01-01
The public health, tourism, fisheries, and ecosystem impacts from harmful algal blooms (HABs) have all increased over the past few decades. This has led to heightened scientific and regulatory attention, and the development of many new technologies and approaches for research and management. This, in turn, is leading to significant paradigm shifts with regard to, e.g., our interpretation of the phytoplankton species concept (strain variation), the dogma of their apparent cosmopolitanism, the role of bacteria and zooplankton grazing in HABs, and our approaches to investigating the ecological and genetic basis for the production of toxins and allelochemicals. Increasingly, eutrophication and climate change are viewed and managed as multifactorial environmental stressors that will further challenge managers of coastal resources and those responsible for protecting human health. Here we review HAB science with an eye toward new concepts and approaches, emphasizing, where possible, the unexpected yet promising new directions that research has taken in this diverse field.
Benthic processes affecting contaminant transport in Upper Klamath Lake, Oregon
Kuwabara, James S.; Topping, Brent R.; Carter, James L.; Carlson, Rick A; Parchaso, Francis; Fend, Steven V.; Stauffer-Olsen, Natalie; Manning, Andrew J.; Land, Jennie M.
2016-09-30
Executive SummaryMultiple sampling trips during calendar years 2013 through 2015 were coordinated to provide measurements of interdependent benthic processes that potentially affect contaminant transport in Upper Klamath Lake (UKL), Oregon. The measurements were motivated by recognition that such internal processes (for example, solute benthic flux, bioturbation and solute efflux by benthic invertebrates, and physical groundwater-surface water interactions) were not integrated into existing management models for UKL. Up until 2013, all of the benthic-flux studies generally had been limited spatially to a number of sites in the northern part of UKL and limited temporally to 2–3 samplings per year. All of the benthic invertebrate studies also had been limited to the northern part of the lake; however, intensive temporal (weekly) studies had previously been completed independent of benthic-flux studies. Therefore, knowledge of both the spatial and temporal variability in benthic flux and benthic invertebrate distributions for the entire lake was lacking. To address these limitations, we completed a lakewide spatial study during 2013 and a coordinated temporal study with weekly sampling of benthic flux and benthic invertebrates during 2014. Field design of the spatially focused study in 2013 involved 21 sites sampled three times as the summer cyanobacterial bloom developed (that is, May 23, June 13, and July 3, 2013). Results of the 27-week, temporally focused study of one site in 2014 were summarized and partitioned into three periods (referred to herein as pre-bloom, bloom and post-bloom periods), each period involving 9 weeks of profiler deployments, water column and benthic sampling. Partitioning of the pre-bloom, bloom, and post-bloom periods were based on water-column chlorophyll concentrations and involved the following date intervals, respectively: April 15 through June 10, June 17 through August 13, and August 20 through October 16, 2014. To examine dissolved-solute (0.2-micrometer [μm] filtered) benthic flux, sets of nonmetallic pore-water profilers (U.S. Patent 8,051,727 B1) were deployed. In 2013, the deployment of profilers at 21 UKL sites occurred at the beginning of the annual cyanobacterial bloom of Aphanizomenon flos–aquae (AFA), in the middle of the bloom period, and at the peak of the bloom. Coordinated benthic invertebrate collections also were made. Based on results from 2013, weekly deployments of profilers and collection of benthic invertebrate samples from late spring to early autumn were used to estimate temporal trends in solute flux and benthic invertebrate densities. Estimates of nutrient efflux by benthic invertebrates were determined in the spring and autumn from 2011 through 2013 and three times (spring, summer, and autumn) in 2015. This work extends UKL studies that began in 2006 to quantify the importance of benthic solute sources in the lake. In 2015, piezometers and thermistor sets were deployed to quantify potential groundwater exchange with the lake water column. Analysis of the 2013 soluble reactive phosphorus (SRP) benthic flux indicated no effect of location (lake region), habitat, or sampling period, and the average lakewide flux values were consistent with earlier studies that had been confined to the northern region of UKL and adjacent wetlands. The 2014 study therefore focused on estimating temporal trends at a site within Ball Bay. During both 2013 and 2014 field studies, fluxes of macronutrients (soluble reactive phosphorus (SRP) and ammonia) and micronutrients (iron [Fe] and manganese [Mn]) were consistently positive and increased prior to the initial AFA bloom, varied or lagged with water-column chlorophyll during the summer bloom period, then decreased after the cyanobacterial blooms, only to rebound toward pre-bloom conditions in the final weeks of sampling. These four solutes exhibited benthic loads greater than maximum riverine loads estimated during the spring and early summers of 2013 and 2014. However, consistently detectable concentrations for all four solutes provide no evidence that they consistently serve as the limiting nutrient for primary production in the lake. In contrast to the four solutes (SRP, ammonia, Fe, and Mn), benthic fluxes of dissolved arsenic (As) were both negative and positive (that is, the lakebed currently serves as both a source and a sink for dissolved As, depending on season). In a further contrast with SRP, ammonia, dissolved Fe, and Mn, dissolved-As riverine loads to UKL were of similar magnitude to benthic loads. A negative relationship between dissolved-As flux and water-column As over the 2014 temporal study provides a potential advantage for the management of water-quality in contrast to solutes, like SRP or ammonia, with consistently positive flux. The mean total benthic invertebrate density during 2013 was 12,610 individuals per square meter (n=63). Although benthic invertebrate density did not change over the study period, it was higher in littoral habitats than open-lake or trench habitats and higher in the northern region compared to the central or southern regions of UKL. Mean total benthic invertebrate density during 2014 was 19,726 individuals m−2 (n=27). Density during the pre-bloom and bloom periods of April 15 to August 13, 2014 (the first two thirds of the 2014 sampling period), were similar to 2013. However, benthic invertebrate density more than doubled during the latter one-third of the study, that is, the post-bloom period between August 20 to October 16, 2014. Oligochaeta, Chironomidae and Hirudinea represented well over 90 percent of the benthic fauna; Oligochaeta were twice as abundant as Chironomidae or Hirudinea, the latter two of which were similar in density. Benthic invertebrates may enhance dissolved-nutrient (or toxicant) transport across the sediment-water interface by (1) modifying diffusion-layer thicknesses and permeability through bioturbation, (2) enhancing advective flow across the interface through bioirrigation, and (3) excreting or expelling dissolved or particulate solutes directly into the overlying water column (Boudreau and Jorgensen, 2001). We evaluated SRP efflux via excretion for approximately 15 different major taxa in UKL. Once these measures were scaled, it was evident that benthic invertebrates potentially contribute approximately 1.5 times the amount of SRP to the water column of Upper Klamath Lake as diffusive SRP flux alone, measured in profiler deployments. Sets of piezometers and temperature loggers were deployed in UKL to obtain estimates of vertical advective solute flux. The pressure transducer installations, within the piezometers, did not perform as designed, rendering the head gradient data unreliable. However, in terms of future research, this field work did demonstrate the feasibility of collecting vertical gradient data with piezometer deployments. Advective flux estimates herein are based solely on heat-flow modeling based on temperature data from four lake sites, without use of transducer data. Given the magnitudes (both positive or negative) of the heat-transfer fluxes for SRP, relative to diffusive-flux and macroinvertebrate efflux measurements (all positive but spanning the same orders of magnitude), further examination of solute advective flux is recommended as a potential transport process to integrate into existing water-quality (for example, Total Maximum Daily Load [TMDL]) models. As a complement to the biogeochemical focus of this study, initial analyses of suspended-particle (floc) characteristics and settling velocities from the water column were derived near the surface and lakebed at two UKL sites. To better understand changing particle characteristics during the AFA-bloom period, suspended particles were examined in 2015 using a LabSFLOC (LF), which is a Laboratory Spectral Flocculation Characteristics version of an In-Situ Settling Velocity instrument (INSSEV-LF). Particle characteristics and settling velocities were analyzed from the water column near the surface (sample dp_10) and lakebed (sample dp_90) at two lake sites (open-lake site ML and littoral site LS01). The term “floc” refers herein to suspended particles that may aggregate or disaggregate to change in size, composition, and settling velocity. During pre-bloom (May) conditions, where maximum suspended particulate matter concentration (SPMC) was 140 milligrams per liter (mg L−1) was now observed at site LS01 in close proximity to the bed, where Dmean peaked at 305 μm, and the corresponding Wsmean was 3.9 millimeters per second (mm s−1). The high near-bed SPMC (828 mg L−1) experienced during post-bloom October 2015 at LS01 formed a benthic nepheloid layer (BNL) above the lake’s bed. Numerous low density, fast settling macrofloc-sized organic aggregates (D >160 μm) were observed (some up to 1 mm in size) near bed at LS01 both during the bloom and post-bloom conditions; many of these flocs displayed fibrous organic structures. In terms of mass settling fluxes, the post-bloom BNL produced a total MSF of 4,139 milligrams per square meter per second (mg m−2 s−1) (92.1 percent of MSF credited to the macrofloc-sized organic aggregates/cyanobacterial colonies); that was nearly three times the corresponding near-bed settling flux observed during the July 2015 bloom and 360 times greater than the pre-bloom conditions from May 2015 (98.8 percent and 14 percent of MSF credited to the macrofloc-sized fractions for those respective months). Such changes in the near-bed settling flux demonstrate the highly significant seasonal effects that the AFA bloom has on the floc depositional fluxes in UKL and highlights the importance of seasonal monitoring of these conditions in order to correctly parameterize the wide range in depositional characteristics and floc properties measured throughout UKL. Collectively, floc populations observed within UKL demonstrated a wide range in settling velocity (Ws) for a given particle size, D. Similarly, a given settling velocity was not associated with a specific particle size. This variability in particle characteristics and properties indicates the influence of varying floc effective density and its effect on mass and mass settling fluxes (MSF). The use of instruments, such as the INSSEV-LF, enables measuring the variability of settling velocity and its relation to particle density and size.
[Comparison of the botanic morphology and blooming characteristics of four cultivars of rose].
Wang, Kang-cai; Tang, Xiao-qing; Sheng, Min-li; Xu, Xiao-lan; Fang, Zhen
2004-05-01
To establish identifying method for further development and utilization by studying botanic morphology and blooming characteristics of four varieties of roses in Jiangsu province. Flower-bud and flower-form were observed by dissection and plant modality and blooming process were investigated. The flower form and plant modality was obviously different among the 4 varieties of roses. The process of differentiation of flower-bud could be divided into five stages: the transformation of nutritive growth cone, the occurrence and development of sepal, formation of petal primordium, formation of pistil and stamen. The blooming process was made up of flower-bud period, display-petal period, initiating blooming period, blooming period, withering period and corresponding biological marks.
Reports of toxic cyanobacterial blooms, also known as Harmful Algal Blooms (HABS) have increased drastically in recent years. HABS impact human health from causing mild allergies to liver damage and death. The Ecological Stewardship Institute (ESI) at Northern Kentucky Universi...
USDA-ARS?s Scientific Manuscript database
Bloom in individual citrus trees typically continues for more than a month in south Florida, with even greater bloom duration within most orchard blocks because of variation in bloom timing between trees. Prolonged bloom contributes to variable fruit maturity as harvest approaches and increases seve...
Trichodesmium blooms and warm-core ocean surface features in the Arabian Sea and the Bay of Bengal.
Jyothibabu, R; Karnan, C; Jagadeesan, L; Arunpandi, N; Pandiarajan, R S; Muraleedharan, K R; Balachandran, K K
2017-08-15
Trichodesmium is a bloom-forming, diazotrophic, non-heterocystous cyanobacteria widely distributed in the warmer oceans, and their bloom is considered a 'biological indication' of stratification and nitrogen limitation in the ocean surface layer. In the first part of this paper, based on the retrospective analyses of the ocean surface mesoscale features associated with 59 Trichodesmium bloom incidences recorded in the past, 32 from the Arabian Sea and the Bay of Bengal, and 27 from the rest of the world, we have showed that warm-core features have an inducing effect on bloom formation. In the second part, we have considered the environmental preferences of Trichodesmium bloom based on laboratory and field studies across the globe, and proposed a view about how warm-core features could provide an inducing pre-requisite condition for the bloom formation in the Arabian Sea and the Bay of Bengal. Proposed that the subsurface waters of warm-core features maintain more likely chances for the conducive nutrient and light conditions required for the triggering of the blooms. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhao, Hui; Zhao, Jian; Sun, Xingli; Chen, Fajin; Han, Guoqi
2018-01-01
Summer upwelling occurs frequently off the southeast Vietnam coast in the western South China Sea (SCS), where summer phytoplankton blooms generally appear during June-August. In this study, we investigate inter-annual variation of Ekman pumping and offshore transport, and its modulation on summer blooms southeast of Vietnam. The results indicate that there are low intensities of summer blooms in El Niño years, under higher sea surface temperatures (SST) and weaker winds. However, a different pattern of monthly chlorophyll a (Chl-a) blooms occurred in summer of 2007, a transitional stage from El Niño to La Niña, with weak (strong) wind and high (low) SST before (after) early July. There is a weak phytoplankton bloom before July 2007 and a strong phytoplankton bloom after July 2007. The abrupt change in the wind intensity may enhance the upwelling associated with Ekman pumping and offshore Ekman transport, bringing more high-nutrient water into the upper layer from the subsurface, and thus leading to an evident Chl-a bloom in the region.
Prevention of Cyanobacterial Blooms Using Nanosilica: A Biomineralization-Inspired Strategy.
Xiong, Wei; Tang, Yiming; Shao, Changyu; Zhao, Yueqi; Jin, Biao; Huang, Tingting; Miao, Ya'nan; Shu, Lei; Ma, Weimin; Xu, Xurong; Tang, Ruikang
2017-11-07
Cyanobacterial blooms represent a significant threat to global water resources because blooming cyanobacteria deplete oxygen and release cyanotoxins, which cause the mass death of aquatic organisms. In nature, a large biomass volume of cyanobacteria is a precondition for a bloom, and the cyanobacteria buoyancy is a key parameter for inducing the dense accumulation of cells on the water surface. Therefore, blooms will likely be curtailed if buoyancy is inhibited. Inspired by diatoms with naturally generated silica shells, we found that silica nanoparticles can be spontaneously incorporated onto cyanobacteria in the presence of poly(diallyldimethylammonium chloride), a cationic polyelectrolyte that can simulate biosilicification proteins. The resulting cyanobacteria-SiO 2 complexes can remain sedimentary in water. This strategy significantly inhibited the photoautotrophic growth of the cyanobacteria and decreased their biomass accumulation, which could effectively suppress harmful bloom events. Consequently, several of the adverse consequences of cyanobacteria blooms in water bodies, including oxygen consumption and microcystin release, were significantly alleviated. Based on the above results, we propose that the silica nanoparticle treatment has the potential for use as an efficient strategy for preventing cyanobacteria blooms.
NASA Technical Reports Server (NTRS)
Shuai, Yanmin; Schaaf, Crystal; Zhang, Xiaoyang; Strahler, Alan; Roy, David; Morisette, Jeffrey; Wang, Zhuosen; Nightingale, Joanne; Nickeson, Jaime; Richardson, Andrew D.;
2013-01-01
Land surface vegetation phenology is an efficient bio-indicator for monitoring ecosystem variation in response to changes in climatic factors. The primary objective of the current article is to examine the utility of the daily MODIS 500 m reflectance anisotropy direct broadcast (DB) product for monitoring the evolution of vegetation phenological trends over selected crop, orchard, and forest regions. Although numerous model-fitted satellite data have been widely used to assess the spatio-temporal distribution of land surface phenological patterns to understand phenological process and phenomena, current efforts to investigate the details of phenological trends, especially for natural phenological variations that occur on short time scales, are less well served by remote sensing challenges and lack of anisotropy correction in satellite data sources. The daily MODIS 500 m reflectance anisotropy product is employed to retrieve daily vegetation indices (VI) of a 1 year period for an almond orchard in California and for a winter wheat field in northeast China, as well as a 2 year period for a deciduous forest region in New Hampshire, USA. Compared with the ground records from these regions, the VI trajectories derived from the cloud-free and atmospherically corrected MODIS Nadir BRDF (bidirectional reflectance distribution function) adjusted reflectance (NBAR) capture not only the detailed footprint and principal attributes of the phenological events (such as flowering and blooming) but also the substantial inter-annual variability. This study demonstrates the utility of the daily 500 m MODIS reflectance anisotropy DB product to provide daily VI for monitoring and detecting changes of the natural vegetation phenology as exemplified by study regions comprising winter wheat, almond trees, and deciduous forest.
Peacock, Melissa B; Gibble, Corinne M; Senn, David B; Cloern, James E; Kudela, Raphael M
2018-03-01
San Francisco Bay (SFB) is a eutrophic estuary that harbors both freshwater and marine toxigenic organisms that are responsible for harmful algal blooms. While there are few commercial fishery harvests within SFB, recreational and subsistence harvesting for shellfish is common. Coastal shellfish are monitored for domoic acid and paralytic shellfish toxins (PSTs), but within SFB there is no routine monitoring for either toxin. Dinophysis shellfish toxins (DSTs) and freshwater microcystins are also present within SFB, but not routinely monitored. Acute exposure to any of these toxin groups has severe consequences for marine organisms and humans, but chronic exposure to sub-lethal doses, or synergistic effects from multiple toxins, are poorly understood and rarely addressed. This study documents the occurrence of domoic acid and microcystins in SFB from 2011 to 2016, and identifies domoic acid, microcystins, DSTs, and PSTs in marine mussels within SFB in 2012, 2014, and 2015. At least one toxin was detected in 99% of mussel samples, and all four toxin suites were identified in 37% of mussels. The presence of these toxins in marine mussels indicates that wildlife and humans who consume them are exposed to toxins at both sub-lethal and acute levels. As such, there are potential deleterious impacts for marine organisms and humans and these effects are unlikely to be documented. These results demonstrate the need for regular monitoring of marine and freshwater toxins in SFB, and suggest that co-occurrence of multiple toxins is a potential threat in other ecosystems where freshwater and seawater mix. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Zhang, Min; Duan, Hongtao; Shi, Xiaoli; Yu, Yang; Kong, Fanxiang
2012-02-01
Cyanobacterial blooms are often a result of eutrophication. Recently, however, their expansion has also been found to be associated with changes in climate. To elucidate the effects of climatic variables on the expansion of cyanobacterial blooms in Taihu, China, we analyzed the relationships between climatic variables and bloom events which were retrieved by satellite images. We then assessed the contribution of each climate variable to the phenology of blooms using multiple regression models. Our study demonstrates that retrieving ecological information from satellite images is meritorious for large-scale and long-term ecological research in freshwater ecosystems. Our results show that the phenological changes of blooms at an inter-annual scale are strongly linked to climate in Taihu during the past 23 yr. Cyanobacterial blooms occur earlier and last longer with the increase of temperature, sunshine hours, and global radiation and the decrease of wind speed. Furthermore, the duration increases when the daily averages of maximum, mean, and minimum temperature each exceed 20.3 °C, 16.7 °C, and 13.7 °C, respectively. Among these factors, sunshine hours and wind speed are the primary contributors to the onset of the blooms, explaining 84.6% of their variability over the past 23 yr. These factors are also good predictors of the variability in the duration of annual blooms and determined 58.9% of the variability in this parameter. Our results indicate that when nutrients are in sufficiently high quantities to sustain the formation of cyanobacterial blooms, climatic variables become crucial in predicting cyanobacterial bloom events. Climate changes should be considered when we evaluate how much the amount of nutrients should be reduced in Taihu for lake management. Copyright © 2011 Elsevier Ltd. All rights reserved.
The Genetic Diversity of Mesodinium and Associated Cryptophytes
Johnson, Matthew D.; Beaudoin, David J.; Laza-Martinez, Aitor; Dyhrman, Sonya T.; Fensin, Elizabeth; Lin, Senjie; Merculief, Aaron; Nagai, Satoshi; Pompeu, Mayza; Setälä, Outi; Stoecker, Diane K.
2016-01-01
Ciliates from the genus Mesodinium are globally distributed in marine and freshwater ecosystems and may possess either heterotrophic or mixotrophic nutritional modes. Members of the Mesodinium major/rubrum species complex photosynthesize by sequestering and maintaining organelles from cryptophyte prey, and under certain conditions form periodic or recurrent blooms (= red tides). Here, we present an analysis of the genetic diversity of Mesodinium and cryptophyte populations from 10 environmental samples (eight globally dispersed habitats including five Mesodinium blooms), using group-specific primers for Mesodinium partial 18S, ITS, and partial 28S rRNA genes as well as cryptophyte large subunit RuBisCO genes (rbcL). In addition, 22 new cryptophyte and four new M. rubrum cultures were used to extract DNA and sequence rbcL and 18S-ITS-28S genes, respectively, in order to provide a stronger phylogenetic context for our environmental sequences. Bloom samples were analyzed from coastal Brazil, Chile, two Northeastern locations in the United States, and the Pribilof Islands within the Bering Sea. Additionally, samples were also analyzed from the Baltic and Barents Seas and coastal California under non-bloom conditions. Most blooms were dominated by a single Mesodinium genotype, with coastal Brazil and Chile blooms composed of M. major and the Eastern USA blooms dominated by M. rubrum variant B. Sequences from all four blooms were dominated by Teleaulax amphioxeia-like cryptophytes. Non-bloom communities revealed more diverse assemblages of Mesodinium spp., including heterotrophic species and the mixotrophic Mesodinium chamaeleon. Similarly, cryptophyte diversity was also higher in non-bloom samples. Our results confirm that Mesodinium blooms may be caused by M. major, as well as multiple variants of M. rubrum, and further implicate T. amphioxeia as the key cryptophyte species linked to these phenomena in temperate and subtropical regions. PMID:28066344
The Genetic Diversity of Mesodinium and Associated Cryptophytes.
Johnson, Matthew D; Beaudoin, David J; Laza-Martinez, Aitor; Dyhrman, Sonya T; Fensin, Elizabeth; Lin, Senjie; Merculief, Aaron; Nagai, Satoshi; Pompeu, Mayza; Setälä, Outi; Stoecker, Diane K
2016-01-01
Ciliates from the genus Mesodinium are globally distributed in marine and freshwater ecosystems and may possess either heterotrophic or mixotrophic nutritional modes. Members of the Mesodinium major/rubrum species complex photosynthesize by sequestering and maintaining organelles from cryptophyte prey, and under certain conditions form periodic or recurrent blooms (= red tides). Here, we present an analysis of the genetic diversity of Mesodinium and cryptophyte populations from 10 environmental samples (eight globally dispersed habitats including five Mesodinium blooms), using group-specific primers for Mesodinium partial 18S, ITS, and partial 28S rRNA genes as well as cryptophyte large subunit RuBisCO genes ( rbcL ). In addition, 22 new cryptophyte and four new M. rubrum cultures were used to extract DNA and sequence rbcL and 18S-ITS-28S genes, respectively, in order to provide a stronger phylogenetic context for our environmental sequences. Bloom samples were analyzed from coastal Brazil, Chile, two Northeastern locations in the United States, and the Pribilof Islands within the Bering Sea. Additionally, samples were also analyzed from the Baltic and Barents Seas and coastal California under non-bloom conditions. Most blooms were dominated by a single Mesodinium genotype, with coastal Brazil and Chile blooms composed of M. major and the Eastern USA blooms dominated by M. rubrum variant B. Sequences from all four blooms were dominated by Teleaulax amphioxeia -like cryptophytes. Non-bloom communities revealed more diverse assemblages of Mesodinium spp., including heterotrophic species and the mixotrophic Mesodinium chamaeleon . Similarly, cryptophyte diversity was also higher in non-bloom samples. Our results confirm that Mesodinium blooms may be caused by M. major , as well as multiple variants of M. rubrum , and further implicate T. amphioxeia as the key cryptophyte species linked to these phenomena in temperate and subtropical regions.
NASA Astrophysics Data System (ADS)
Sigler, Michael F.; Stabeno, Phyllis J.; Eisner, Lisa B.; Napp, Jeffrey M.; Mueter, Franz J.
2014-11-01
The timing and magnitude of phytoplankton blooms in subarctic ecosystems often strongly influence the amount of energy that is transferred through subsequent trophic pathways. In the eastern Bering Sea, spring bloom timing has been linked to ice retreat timing and production of zooplankton and fish. A large part of the eastern Bering Sea shelf (~500 km wide) is ice-covered during winter and spring. Four oceanographic moorings have been deployed along the 70-m depth contour of the eastern Bering Sea shelf with the southern location occupied annually since 1995, the two northern locations since 2004 and the remaining location since 2001. Chlorophyll a fluorescence data from the four moorings provide 37 realizations of a spring bloom and 33 realizations of a fall bloom. We found that in the eastern Bering Sea: if ice was present after mid-March, spring bloom timing was related to ice retreat timing (p<0.001, df=1, 24); if ice was absent or retreated before mid-March, a spring bloom usually occurred in May or early June (average day 148, SE=3.5, n=11). A fall bloom also commonly occurred, usually in late September (average day 274, SE=4.2, n=33), and its timing was not significantly related to the timing of storms (p=0.88, df=1, 27) or fall water column overturn (p=0.49, df=1, 27). The magnitudes of the spring and fall blooms were correlated (p=0.011, df=28). The interval between the spring and fall blooms varied between four to six months depending on year and location. We present a hypothesis to explain how the large crustacean zooplankton taxa Calanus spp. likely respond to variation in the interval between blooms (spring to fall and fall to spring).
Summer diatom blooms in the North Pacific subtropical gyre: 2008-2009.
Villareal, Tracy A; Brown, Colbi G; Brzezinski, Mark A; Krause, Jeffrey W; Wilson, Cara
2012-01-01
The summertime North Pacific subtropical gyre has widespread phytoplankton blooms between Hawaii and the subtropical front (∼30°N) that appear as chlorophyll (chl) increases in satellite ocean color data. Nitrogen-fixing diatom symbioses (diatom-diazotroph associations: DDAs) often increase 10(2)-10(3) fold in these blooms and contribute to elevated export flux. In 2008 and 2009, two cruises targeted satellite chlorophyll blooms to examine DDA species abundance, chlorophyll concentration, biogenic silica concentration, and hydrography. Generalized observations that DDA blooms occur when the mixed layer depth is < 70 m are supported, but there is no consistent relationship between mixed layer depth, bloom intensity, or composition; regional blooms between 22-34°N occur within a broader temperature range (21-26°C) than previously reported. In both years, the Hemiaulus-Richelia and Rhizosolenia-Richelia DDAs increased 10(2)-10(3) over background concentrations within satellite-defined bloom features. The two years share a common trend of Hemiaulus dominance of the DDAs and substantial increases in the >10 µm chl a fraction (∼40-90+% of total chl a). Integrated diatom abundance varied 10-fold over <10 km. Biogenic silica concentration tracked diatom abundance, was dominated by the >10 µm size fraction, and increased up to 5-fold in the blooms. The two years differed in the magnitude of the surface chl a increase (2009>2008), the abundance of pennate diatoms within the bloom (2009>2008), and the substantially greater mixed layer depth in 2009. Only the 2009 bloom had sufficient chl a in the >10 µm fraction to produce the observed ocean color chl increase. Blooms had high spatial variability; ocean color images likely average over numerous small events over time and space scales that exceed the individual event scale. Summertime DDA export flux noted at the Hawaii time-series Sta. ALOHA is probably a generalized feature of the eastern N. Pacific north to the subtropical front.
NASA Astrophysics Data System (ADS)
Hames, J. B.; Ali, K.
2013-12-01
Millions of people visit the beaches of South Carolina every year and the increasing utilization of the coastal waters is leading to the deterioration of water quality and the marine ecosystem. Ecological stress on these environments is reflected by the increase in the frequency and severity of Harmful Algal Blooms (HABs). This was evident during recent summer seasons particularly in the shallow nearshore waters of Long Bay, South Carolina, an open coast embayment on the South Atlantic Bight. These aspects threaten human and marine life. The early detection of HABs in the coastal waters requires more efficient and accurate monitoring tools. Remote sensing provides synoptic view of the entire Long Bay waters at high temporal coverage and allows resource managers to effectively map and monitor algal bloom development, near real time. Various remote sensing (RS) algorithms have been developed but were mostly calibrated to low resolution global data and or other specific sites. In the summer of 2013, a suite of measurements and water samples were collected from 15 locations along the nearshore waters of Long Bay using the Grice Laboratory R/V. In this study, we evaluate the efficiency of 10 bio-optical blue-green and NIR-red based RS models applied to GER 1500 hyper spectral reflectance data to predict chlorophyll a, a proxy for phytoplankton density, in the Long Bay waters of SC. Efficiency of the algorithms performance in the study site were tested through a least squares regression and residual analysis. Results show that among the selected suite of algorithms the blue green models by Darecki and Stramski (2004) produced R2 of 0.68 with RMSE=0.39μg/l, Oc4v4 model by O'Reilly et al. (2000) gave R2 of 0.62 with RMSE=0.73ug/l, and the Oc2v4 also by O'Reilly et al (2000) gave R2 of 0.69 with RMSE=0.65. Among the NIR-red models, Moses et al (2009) two-band algorithm produced R2 of 0.75 and RMSE=1.79, and the three-band version generated R2 of 0.81 and RMSE=2.25ug/l. This suggests that the global RS models have the potential to monitor water quality parameters in the region but may require calibration for higher accuracy in Long Bay, SC.
Adsorption of marine phycotoxin okadaic acid on a covalent organic framework.
Salonen, Laura M; Pinela, Sara R; Fernandes, Soraia P S; Louçano, João; Carbó-Argibay, Enrique; Sarriá, Marisa P; Rodríguez-Abreu, Carlos; Peixoto, João; Espiña, Begoña
2017-11-24
Phycotoxins, compounds produced by some marine microalgal species, can reach high concentrations in the sea when a massive proliferation occurs, the so-called harmful algal bloom. These compounds are especially dangerous to human health when concentrated in the digestive glands of seafood. In order to generate an early warning system to alert for approaching toxic outbreaks, it is very important to improve monitoring methods of phycotoxins in aquatic ecosystems. Solid-phase adsorption toxin tracking devices reported thus far based on polymeric resins have not been able to provide an efficient harmful algal bloom prediction system due to their low adsorption capabilities. In this work, a water-stable covalent organic framework (COF) was evaluated as adsorbent for the hydrophobic toxin okadaic acid, one of the most relevant marine toxins and the parental compound of the most common group of toxins responsible for the diarrhetic shellfish poisoning. Adsorption kinetics of okadaic acid onto the COF in seawater showed that equilibrium concentration was reached in only 60min, with a maximum experimental adsorption of 61mgg -1 . Desorption of okadaic acid from the COF was successful with both 70% ethanol and acetonitrile as solvent, and the COF material could be reused with minor losses in adsorption capacity for three cycles. The results demonstrate that COF materials are promising candidates for solid-phase adsorption in water monitoring devices. Copyright © 2017 Elsevier B.V. All rights reserved.
Experience in non-conventional wastewater treatment techniques used in the Czech Republic.
Felberova, L; Kucera, J; Mlejnska, E
2007-01-01
Among the most common non-conventional wastewater treatment techniques used in the Czech Republic are waste stabilisation ponds (WSP), subsurface horizontal flow constructed wetlands (CW) and vertical flow groundfilters (GF). These extensive systems can be advantageously used for treatment of waters coming from sewerages where the ballast weighting commonly makes more than half of dry-weather flow. The monitoring was focused at 14 different extensive systems. Organics removal efficiencies were favourable (CW-82%; GF-88%); in the case of WSP only 57% due to the algal bloom. Total nitrogen removal efficiencies were 43 and 47% for WSP and GF; in the case of CW only 32% due to often occurring anaerobic conditions in filter beds. Total phosphorus removal efficiencies were 37, 35 and 22% for WSP, GF and CW, respectively. Often occurring problems are the ice-blockage of surface aerators at WSP during wintertimes, the pond duckweed-cover or the algal bloom at WSP during summers; a gradual colmatage of filter systems; and the oxygen deficiency in beds of subsurface horizontal flow constructed wetlands. Czech legal regulations do not allow treated wastewater disposal into underground waters. There is only an exception for individual family houses. Up to now, knowledge gained by monitoring of a village (which uses the infiltration upon a permission issued according to earlier legal regulations) have not shown an unacceptable groundwater quality deterioration into the infiltration areas.
Monitoring Population Evolution in the Pearl River Delta from 2000 TO 2010
NASA Astrophysics Data System (ADS)
Yu, S.; Liu, F.; Zhang, Z.
2018-04-01
On behalf of more populous and developed regions in China, urban agglomerations have become important carries loading active economic activities and generous social benefits, and experienced sharper population increase, which results in great threat on local eco-environment construction. Therefore, exact and detailed population monitoring and analyzing, especially on the long sequence and multi frequency, is of great significance. The nighttime light time-series (NLT) products has been proven to be one of the most useful remotely sensed imagery to acquire persons at 1 km × 1 km scales. However, the existed problems, such as light saturation and blooming, greatly limit the accuracy of estimated results. Furthermore, it's difficult to spatialize population at km2 level due to the lack of basic data in non-census years. In order to solve all problems mentioned above, the populous Pearl River Delta was selected as the study area. A new residential extent extraction index (REEI) was proposed to solve light saturation and blooming problems. Population spatialization methods in census and non-census years were applied to acquire detailed population distribution from 2000 to 2010. Results showed the feasibility of the proposed methods in this work. During the decade, population was denser in the central PRD and sparser in the eastern, western and northern PRD. The speed of population increase was various in nine cities, but faster in 2000-2005 than 2005-2010.
Privacy-Preserving Distributed Information Sharing
2006-07-01
80 B.2.4 Analysis for Bloom Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 B.3 Details of One...be chosen by slightly adjusting the analysis given in the proof of Theorem 26. 59 Using Bloom Filters. Bloom filters provide a compact probabilistic...representation of set membership [6]. Instead of using T filters, we can use a combined Bloom filter. This achieves the same asymptotic communication
A novel method for characterizing harmful algal blooms in the Persian Gulf using MODIS measurements
NASA Astrophysics Data System (ADS)
Ghanea, Mohsen; Moradi, Masoud; Kabiri, Keivan
2016-10-01
Biophysical properties of water undergo meaningful variations under red tide (RT) outbreak. A massive Cochlodinium polykrikoids RT began in the eastern Persian Gulf (PG) in October 2008 and extended to the northern PG in December 2008. It killed large fish and hampered marine industries and water desalination appliances. Yet monthly averages of satellite-derived Chl-a (Chlorophyll-a), nFLH (normalized Fluorescence Line Height), and Kd490 (diffuse attenuation coefficient at 490 nm) have not been compared in the PG. MODIS (MODerate Resolution Imaging Spectroradiometer) sensor provides global coverage, with short revisit time, and accessible, well validated ocean color products. This study compares the behavior of MODIS Chl-a, nFLH, and Kd490 in both normal and RT conditions. In doing so, their color maps are shown during normal and RT periods. Then, monthly variations of these products are shown as time-series between 2002 and 2008. HOCI (Hybrid Ocean Color Index) is defined by integrating these products to detect RT affected areas. The results gained from 100 locations in the PG show that HOCI >0.18 mW cm-2 μm-1 sr-1 mg m-4 and nFLH >0.04 mW cm-2 μm-1 sr-1 discriminates non-bloom waters from algal blooms. Rrs(443)/Rrs(412) > 1 is a proper statement to separate Trichodesmium erythtraeum from Noctiluca millaris, Noctiluca scintillans, and diatoms. Rrs(667)/Rrs(443) > 1 can differentiate Cochlodinium polykrikoids from T. erythtraeum, N. millaris, N. scintillans, and diatoms as well. So, the combination of HOCI and Rrs(667)/Rrs(443) ratio is useful for detection and quantization of C. polykrikoids.
Brown, Amber; Foss, Amanda; Miller, Melissa A; Gibson, Quincy
2018-06-01
Microcystins/Nodularins (MCs/NODs) are potent hepatotoxic cyanotoxins produced by harmful algal blooms (HABs) that occur frequently in the upper basin of the St. Johns River (SJR), Jacksonville, FL, USA. Areas downstream of bloom locations provide critical habitat for an estuarine population of bottlenose dolphins (Tursiops truncatus). Since 2010, approximately 30 of these dolphins have stranded and died within this impaired watershed; the cause of death was inconclusive for a majority of these individuals. For the current study, environmental exposure to MCs/NODs was investigated as a potential cause of dolphin mortality. Stranded dolphins from 2013 to 2017 were categorized into estuarine (n = 17) and coastal (n = 10) populations. Because estuarine dolphins inhabit areas with frequent or recurring cyanoblooms, they were considered as a comparatively high-risk group for cyanotoxin exposure in relation to coastal animals. All available liver samples from estuarine dolphins were tested regardless of stranding date, and samples from coastal individuals that stranded outside of the known cyanotoxin bloom season were assessed as controls. The MMPB (2-methyl-3-methoxy-4-phenylbutiric acid) technique was used to determine total (bound and free) concentrations of MCs/NODS in liver tissues. Free MCs/NODs extractions were conducted and analyzed using ELISA and LC-MS/MS on MMPB-positive samples to compare test results. MMPB testing resulted in low-level total MCs/NODs detection in some specimens. The Adda ELISA produced high test values that were not supported by concurrent LC-MS/MS analyses, indicative of false positives. Our results indicate that both estuarine and coastal dolphins are exposed to MCs/NODs, with potential toxic and immune health impacts. Copyright © 2018 Elsevier B.V. All rights reserved.
Breininger, David R; Breininger, Robert D; Hall, Carlton R
2017-02-01
Seagrasses are the foundation of many coastal ecosystems and are in global decline because of anthropogenic impacts. For the Indian River Lagoon (Florida, U.S.A.), we developed competing multistate statistical models to quantify how environmental factors (surrounding land use, water depth, and time [year]) influenced the variability of seagrass state dynamics from 2003 to 2014 while accounting for time-specific detection probabilities that quantified our ability to determine seagrass state at particular locations and times. We classified seagrass states (presence or absence) at 764 points with geographic information system maps for years when seagrass maps were available and with aerial photographs when seagrass maps were not available. We used 4 categories (all conservation, mostly conservation, mostly urban, urban) to describe surrounding land use within sections of lagoonal waters, usually demarcated by land features that constricted these waters. The best models predicted that surrounding land use, depth, and year would affect transition and detection probabilities. Sections of the lagoon bordered by urban areas had the least stable seagrass beds and lowest detection probabilities, especially after a catastrophic seagrass die-off linked to an algal bloom. Sections of the lagoon bordered by conservation lands had the most stable seagrass beds, which supports watershed conservation efforts. Our results show that a multistate approach can empirically estimate state-transition probabilities as functions of environmental factors while accounting for state-dependent differences in seagrass detection probabilities as part of the overall statistical inference procedure. © 2016 Society for Conservation Biology.
The problem is complex. Excessive nitrogen and phosphorous levels can cause harmful algal blooms. Different algal/cyanobacteria strains bloom under different conditions. Different strains produce different toxins at varying amounts.
Pesce, Stéphane; Fajon, Céline; Bardot, Corinne; Bonnemoy, Frédérique; Portelli, Christophe; Bohatier, Jacques
2006-07-20
The effects of the phenylurea herbicide diuron (10 microgl(-1)) on natural riverine microbial communities were investigated using a three-week laboratory microcosm study. During the first six days, a latency period was observed both in the algal and the bacterial communities despite favorable abiotic conditions and independently of diuron exposure. From the second week, an intense algal bloom (chlorophyll a concentrations and cell abundances) was observed in the uncontaminated microcosms but not in the treated microcosms. The bloom stimulated the bacterial community and led to an increase in heterotrophic bacterial production ([3H]thymidine incorporation), activity (CTC reduction) and cell abundance. In parallel, shifts in bacterial community composition were recorded by polymerase chain reaction (PCR)-temporal temperature gradient gel electrophoresis (TTGE) analysis, whereas no major variation was detected using the fluorescent in situ hybridization (FISH) method. In the treated microcosms, the diuron acted not by damaging the initial communities but by inhibiting the algal bloom and indirectly maintaining constant bacterial conditions throughout the experiment. These inhibitory effects, which were recorded in terms of abundance, activity and diversity, suggest that exposure to diuron can decrease the recovery capacities of microbial communities and delay the resumption of an efficient microbial food web despite favorable environmental conditions.
Inhibition of the growth of cyanobacteria during the recruitment stage in Lake Taihu.
Lu, Yaping; Wang, Jin; Zhang, Xiaoqian; Kong, Fanxiang
2016-03-01
Microcystis is the dominant algal bloom genus in Lake Taihu. Thus, controlling the recruitment and growth of Microcystis is the most crucial aspect of solving the problem of algal blooms. Different concentrations (0.025, 0.05, and 0.1 g L(-1)) of tea extract were used to treat barrels of lake water at the recruitment stage of cyanobacteria. There was an inhibitory effect on algal growth in all treatment groups. The inhibitory effect on cyanobacteria was stronger than on other algae. The metabolic activity of cells in the treatment groups was significantly enhanced compared to the control, as an adaptation to the stress caused by tea polyphenols. The photosynthetic activity diminished in the treatment groups and was barely detected in the 0.05 and 0.1 g L(-1) treatments. The levels of reactive oxygen species increased substantially in treated cells with the algal cells experiencing oxidative damage. The effect of tea on zooplankton was also studied. The number of Bosmina fatalis individuals did not change significantly in the 0.025 and 0.05 g L(-1) treatments. These results suggested that the application of tea extracts, during the recruitment stage of blue-green algae, suppressed the recruitment and growth of cyanobacteria, thus offering the potential to prevent cyanobacterial blooms.
Algal Blooms and Cyanotoxins in Jordan Lake, North Carolina
Wiltsie, Daniel; Schnetzer, Astrid; Green, Jason; Vander Borgh, Mark; Fensin, Elizabeth
2018-01-01
The eutrophication of waterways has led to a rise in cyanobacterial, harmful algal blooms (CyanoHABs) worldwide. The deterioration of water quality due to excess algal biomass in lakes has been well documented (e.g., water clarity, hypoxic conditions), but health risks associated with cyanotoxins remain largely unexplored in the absence of toxin information. This study is the first to document the presence of dissolved microcystin, anatoxin-a, cylindrospermopsin, and β-N-methylamino-l-alanine in Jordan Lake, a major drinking water reservoir in North Carolina. Saxitoxin presence was not confirmed. Multiple toxins were detected at 86% of the tested sites and during 44% of the sampling events between 2014 and 2016. Although concentrations were low, continued exposure of organisms to multiple toxins raises some concerns. A combination of discrete sampling and in-situ tracking (Solid Phase Adsorption Toxin Tracking [SPATT]) revealed that microcystin and anatoxin were the most pervasive year-round. Between 2011 and 2016, summer and fall blooms were dominated by the same cyanobacterial genera, all of which are suggested producers of single or multiple cyanotoxins. The study’s findings provide further evidence of the ubiquitous nature of cyanotoxins, and the challenges involved in linking CyanoHAB dynamics to specific environmental forcing factors are discussed. PMID:29495289
Bio-optical observations of the 2004 Labrador Sea phytoplankton bloom
NASA Astrophysics Data System (ADS)
Strutton, Peter G.; Martz, Todd R.; Degrandpre, Michael D.; McGillis, Wade R.; Drennan, William M.; Boss, Emmanuel
2011-11-01
A unique time series of moored bio-optical measurements documented the 2004 spring-summer bloom in the southern Labrador Sea. In situ and satellite chlorophyll data show that chlorophyll levels in the 2004 bloom were at the upper end of those typically observed in this region. Satellite chlorophyll and profiling float temperature/salinity data show that the main bloom, which typically peaks in June/July, is often preceded by ephemeral mixed layer shoaling and a lesser, short-lived bloom in May; this was the case in 2004. The particulate backscatter to beam attenuation ratio (bbp[470 nm]/Cp[660 nm]) showed peaks in the relative abundance of small particles at bloom initiation and during the decline of the bloom, while larger particles dominated during the bloom. Chlorophyll/Cp and bbp/chlorophyll were correlated with carbon export and dominated by changes in the pigment per cell associated with lower light levels due to enhanced attenuation of solar radiation during the bloom. An NPZ (nutrients, phytoplankton, zooplankton) model captured the phytoplankton bloom and an early July peak in zooplankton. Moored acoustic Doppler current profiler (ADCP) data showed an additional mid-June peak in zooplankton biomass which was attributed to egg-laying copepods. The data reported here represent one of the few moored time series of Cp, bbp and chlorophyll extending over several months in an open ocean region. Interpretation of data sets such as this will become increasingly important as these deployments become more commonplace via ocean observing systems. Moreover, these data contribute to the understanding of biological-physical coupling in a biogeochemically important, yet poorly studied region.
Floating Algae Blooms in the East China Sea
NASA Astrophysics Data System (ADS)
Qi, Lin; Hu, Chuanmin; Wang, Mengqiu; Shang, Shaoling; Wilson, Cara
2017-11-01
A floating algae bloom in the East China Sea was observed in Moderate Resolution Imaging Spectroradiometer (MODIS) imagery in May 2017. Using satellite imagery from MODIS, Visible Infrared Imaging Radiometer Suite, Geostationary Ocean Color Imager, and Ocean Land Imager, and combined with numerical particle tracing experiments and laboratory experiments, we examined the history of this bloom as well as similar blooms in previous years and attempted to trace the bloom source and identify the algae type. Results suggest that one bloom origin is offshore Zhejiang coast where algae slicks have appeared in satellite imagery almost every February-March since 2012. Following the Kuroshio Current and Taiwan Warm Current, these "initial" algae slicks are first transported to the northeast to reach South Korea (Jeju Island) and Japan coastal waters (up to 135°E) by early April 2017, and then transported to the northwest to enter the Yellow Sea by the end of April. The transport pathway covers an area known to be rich in Sargassum horneri, and spectral analysis suggests that most of the algae slicks may contain large amount of S. horneri. The bloom covers a water area of 160,000 km2 with pure algae coverage of 530 km2, which exceeds the size of most Ulva blooms that occur every May-July in the Yellow Sea. While blooms of smaller size also occurred in previous years and especially in 2015, the 2017 bloom is hypothesized to be a result of record-high water temperature, increased light availability, and continuous expansion of Porphyra aquaculture along the East China Sea coast.
Fungal community dynamics during a marine dinoflagellate (Noctiluca scintillans) bloom.
Sun, Jing-Yun; Song, Yu; Ma, Zhi-Ping; Zhang, Huai-Jing; Yang, Zhong-Duo; Cai, Zhong-Hua; Zhou, Jin
2017-10-01
Contamination and eutrophication have caused serious ecological events (such as algal bloom) in coastal area. During this ecological process, microbial community structure is critical for algal bloom succession. The diversity and composition of bacteria and archaea communities in algal blooms have been widely investigated; however, those of fungi are poorly understood. To fill this gap, we used pyrosequencing and correlation approaches to assess fungal patterns and associations during a dinoflagellate (Noctiluca scintillans) bloom. Phylum level fungal types were predominated by Ascomycota, Chytridiomycota, Mucoromycotina, and Basidiomycota. At the genus level drastic changes were observed with Hysteropatella, Malassezia and Saitoella dominating during the initial bloom stage, while Malassezia was most abundant (>50%) during onset and peak-bloom stages. Saitoella and Lipomyces gradually became more abundant and, in the decline stage, contributed almost 70% of sequences. In the terminal stage of the bloom, Rozella increased rapidly to a maximum of 50-60%. Fungal population structure was significantly influenced by temperature and substrate (N and P) availability (P < 0.05). Inter-specific network analyses demonstrated that Rozella and Saitoella fungi strongly impacted the ecological trajectory of N. scintillans. The functional prediction show that symbiotrophic fungi was dominated in the onset stage; saprotroph type was the primary member present during the exponential growth period; whereas pathogentroph type fungi enriched in decline phase. Overall, fungal communities and functions correlated significantly with N. scintillans processes, suggesting that they may regulate dinoflagellate bloom fates. Our results will facilitate deeper understanding of the ecological importance of marine fungi and their roles in algal bloom formation and collapse. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sedigh Marvasti, S.; Gnanadesikan, A.; Bidokhti, A. A.; Dunne, J. P.; Ghader, S.
2015-07-01
We examine interannual variability of phytoplankton blooms in northwestern Arabian Sea and Gulf of Oman. Satellite data (SeaWIFS ocean color) shows two climatological blooms in this region, a wintertime bloom peaking in February and a summertime bloom peaking in September. A pronounced anti-correlation between the AVISO sea surface height anomaly (SSHA) and chlorophyll is found during the wintertime bloom. On a regional scale, interannual variability of the wintertime bloom is thus dominated by cyclonic eddies which vary in location from one year to another. These results were compared against the outputs from three different 3-D Earth System models. We show that two coarse (1°) models with the relatively complex biogeochemistry (TOPAZ) capture the annual cycle but neither eddies nor the interannual variability. An eddy-resolving model (GFDL CM2.6) with a simpler biogeochemistry (miniBLING) displays larger interannual variability, but overestimates the wintertime bloom and captures eddy-bloom coupling in the south but not in the north. The southern part of the domain is a region with a much sharper thermocline and nutricline relatively close to the surface, in which eddies modulate diffusive nutrient supply to the surface (a mechanism not previously emphasized in the literature). We suggest that for the model to simulate the observed wintertime blooms within cyclones, it will be necessary to represent this relatively unusual nutrient structure as well as the cyclonic eddies. This is a challenge in the Northern Arabian Sea as it requires capturing the details of the outflow from the Persian Gulf.
Bacterial community transcription patterns during a marine phytoplankton bloom.
Rinta-Kanto, Johanna M; Sun, Shulei; Sharma, Shalabh; Kiene, Ronald P; Moran, Mary Ann
2012-01-01
Bacterioplankton consume a large proportion of photosynthetically fixed carbon in the ocean and control its biogeochemical fate. We used an experimental metatranscriptomics approach to compare bacterial activities that route energy and nutrients during a phytoplankton bloom compared with non-bloom conditions. mRNAs were sequenced from duplicate bloom and control microcosms 1 day after a phytoplankton biomass peak, and transcript copies per litre of seawater were calculated using an internal mRNA standard. Transcriptome analysis revealed a potential novel mechanism for enhanced efficiency during carbon-limited growth, mediated through membrane-bound pyrophosphatases [V-type H(+)-translocating; hppA]; bloom bacterioplankton participated less in this metabolic energy scavenging than non-bloom bacterioplankton, with possible implications for differences in growth yields on organic substrates. Bloom bacterioplankton transcribed more copies of genes predicted to increase cell surface adhesiveness, mediated by changes in bacterial signalling molecules related to biofilm formation and motility; these may be important in microbial aggregate formation. Bloom bacterioplankton also transcribed more copies of genes for organic acid utilization, suggesting an increased importance of this compound class in the bioreactive organic matter released during phytoplankton blooms. Transcription patterns were surprisingly faithful within a taxon regardless of treatment, suggesting that phylogeny broadly predicts the ecological roles of bacterial groups across 'boom' and 'bust' environmental backgrounds. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.
Cyanobacteria blooms: effects on aquatic ecosystems.
Havens, Karl E
2008-01-01
Cyanobacteria become increasingly dominant as concentrations of TP and TN increase during eutrophication of lakes, rivers and estuaries. Temporal dynamics of cyanobacteria blooms are variable--in some systems persistent blooms occur in summer to fall, whereas in other systems blooms are more sporadic. Cyanobacteria blooms have a wide range of possible biological impacts including potential toxic effects on other algae, invertebrates and fish, impacts to plants and benthic algae due to shading, and impacts to food web function as large inedible algae produce a bottleneck to C and energy flow in the plankton food web. In lakes with dense blooms of cyanobacteria, accumulation of organic material in lake sediments and increased bacterial activity also may lead to anoxic conditions that alter the structure of benthic macro-invertebrates. Diffusive internal P loading may increase, and hypolimnetic anoxia may lead to a loss of piscivorous fish that require a summer cold water refuge in temperate lakes. Ecosystem changes associated with frequent blooms may result in delayed response of lakes, rivers and estuaries to external nutrient load reduction. Despite numerous case studies and a vast literature on species-specific responses, community level effects of cyanobacterial blooms are not well understood--in particular the realized impacts of toxins and changes in food web structure/function. These areas require additional research given the prevalence of toxic blooms in the nation's lakes, rivers and coastal waters--systems that provide a wide range of valued ecosystem services.
A drinking water crisis in Lake Taihu, China: linkage to climatic variability and lake management.
Qin, Boqiang; Zhu, Guangwei; Gao, Guang; Zhang, Yunlin; Li, Wei; Paerl, Hans W; Carmichael, Wayne W
2010-01-01
In late May, 2007, a drinking water crisis took place in Wuxi, Jiangsu Province, China, following a massive bloom of the toxin producing cyanobacteria Microcystis spp. in Lake Taihu, China's third largest freshwater lake. Taihu was the city's sole water supply, leaving approximately two million people without drinking water for at least a week. This cyanobacterial bloom event began two months earlier than previously documented for Microcystis blooms in Taihu. This was attributed to an unusually warm spring. The prevailing wind direction during this period caused the bloom to accumulate at the shoreline near the intake of the water plant. Water was diverted from the nearby Yangtze River in an effort to flush the lake of the bloom. However, this management action was counterproductive, because it produced a current which transported the bloom into the intake, exacerbating the drinking water contamination problem. The severity of this microcystin toxin containing bloom and the ensuing drinking water crisis were attributable to excessive nutrient enrichment; however, a multi-annual warming trend extended the bloom period and amplified its severity, and this was made worse by unanticipated negative impacts of water management. Long-term management must therefore consider both the human and climatic factors controlling these blooms and their impacts on water supply in this and other large lakes threatened by accelerating eutrophication.
Dai, Xinfeng; Lu, Douding; Guan, Weibing; Xia, Ping; Wang, Hongxia; He, Piaoxia; Zhang, Dongsheng
2013-01-01
During the last two decades, large-scale high biomass algal blooms of the dinoflagellate Prorocentrum donghaiense Lu have occurred frequently in the East China Sea (ECS). The role of increasing nutrient concentrations in driving those blooms is well-established, but the source population that initiates them is poorly understood. We hypothesized that the front of Taiwan Warm Current (TWC) may serve as a 'seed bank' that initiates P. donghaiense blooms in the ECS, as the physiochemical conditions in the TWC are suitable for the growth of P. donghaiense. In order to test this hypothesis, two surveys at different spatio-temporal scales were conducted in 2010 and 2011. We found a strong correlation in space and time between the abundance of P. donghaiense and the TWC. The spatial extent of the P. donghaiense bloom coincided with the TWC front in both 2010 and 2011. During the early development of the blooms, P. donghaiense concentration was highest at the TWC front, and then the bloom mass shifted inshore over the course of our 2011 survey. The TWC also moved inshore, albeit after the appearance of P. donghaiense. Overall, these results support our hypothesis that P. donghaiense blooms develop from the population at the TWC front in the ECS, suggesting the role of the ocean current front as a seed bank to dinoflagellate blooms.
A Preliminary Bloom's Taxonomy Assessment of End-of-Chapter Problems in Business School Textbooks
ERIC Educational Resources Information Center
Marshall, Jennings B.; Carson, Charles M.
2008-01-01
This article examines textbook problems used in a sampling of some of the most common core courses found in schools of business to ascertain what level of learning, as defined by Bloom's Taxonomy, is required to provide a correct answer. A set of working definitions based on Bloom's Taxonomy (Bloom & Krathwohl, 1956) was developed for the six…
3. GENERAL VIEW OF REMAINS OF 40" BLOOMING MILL; THE ...
3. GENERAL VIEW OF REMAINS OF 40" BLOOMING MILL; THE ENGINE ROOM CONTAINING THE MESTA-CORLISS STEAM ENGINE, IS LOCATED AT THE FAR END OF THE MILL AS SEEN TO THE FAR RIGHT (THE BUILDING WITH THE SHED ROOF). - Republic Iron & Steel Company, Youngstown Works, Blooming Mill & Blooming Mill Engines, North of Poland Avenue, Youngstown, Mahoning County, OH
Chen, Fajin; Han, Guoqi
2018-01-01
Summer upwelling occurs frequently off the southeast Vietnam coast in the western South China Sea (SCS), where summer phytoplankton blooms generally appear during June-August. In this study, we investigate inter-annual variation of Ekman pumping and offshore transport, and its modulation on summer blooms southeast of Vietnam. The results indicate that there are low intensities of summer blooms in El Niño years, under higher sea surface temperatures (SST) and weaker winds. However, a different pattern of monthly chlorophyll a (Chl-a) blooms occurred in summer of 2007, a transitional stage from El Niño to La Niña, with weak (strong) wind and high (low) SST before (after) early July. There is a weak phytoplankton bloom before July 2007 and a strong phytoplankton bloom after July 2007. The abrupt change in the wind intensity may enhance the upwelling associated with Ekman pumping and offshore Ekman transport, bringing more high-nutrient water into the upper layer from the subsurface, and thus leading to an evident Chl-a bloom in the region. PMID:29342148
Rainfall-enhanced blooming in typhoon wakes
Lin, Y.-C.; Oey, L.-Y.
2016-01-01
Strong phytoplankton blooming in tropical-cyclone (TC) wakes over the oligotrophic oceans potentially contributes to long-term changes in global biogeochemical cycles. Yet blooming has traditionally been discussed using anecdotal events and its biophysical mechanics remain poorly understood. Here we identify dominant blooming patterns using 16 years of ocean-color data in the wakes of 141 typhoons in western North Pacific. We observe right-side asymmetric blooming shortly after the storms, attributed previously to sub-mesoscale re-stratification, but thereafter a left-side asymmetry which coincides with the left-side preference in rainfall due to the large-scale wind shear. Biophysical model experiments and observations demonstrate that heavier rainfall freshens the near-surface water, leading to stronger stratification, decreased turbulence and enhanced blooming. Our results suggest that rainfall plays a previously unrecognized, critical role in TC-induced blooming, with potentially important implications for global biogeochemical cycles especially in view of the recent and projected increases in TC-intensity that harbingers stronger mixing and heavier rain under the storm. PMID:27545899
Mesoscale Eddies Control the Timing of Spring Phytoplankton Blooms: A Case Study in the Japan Sea
NASA Astrophysics Data System (ADS)
Maúre, E. R.; Ishizaka, J.; Sukigara, C.; Mino, Y.; Aiki, H.; Matsuno, T.; Tomita, H.; Goes, J. I.; Gomes, H. R.
2017-11-01
Satellite Chlorophyll a (CHL) data were used to investigate the influence of mesoscale anticyclonic eddies (AEs) and cyclonic eddies (CEs) on the timing of spring phytoplankton bloom initiation around the Yamato Basin (133-139°E and 35-39.5°N) in the Japan Sea, for the period 2002-2011. The results showed significant differences between AEs and CEs in the timing and initiation mechanism of the spring phytoplankton bloom. Blooms were initiated earlier in CEs which were characterized by shallow mixed-layer depths (< 100 m). The early blooming preceded the end of winter cooling (i.e., while net heat flux (Q0) is still negative) and is initiated by the increased average light within the shallow mixed-layer depth. Conversely, blooms appeared in the AEs despite deeper mixed-layer depth (> 100 m) but close to the commencement of positive Q0. This suggests that the relaxation of turbulent mixing is crucial for the bloom initiation in AEs.
Rainfall-enhanced blooming in typhoon wakes.
Lin, Y-C; Oey, L-Y
2016-08-22
Strong phytoplankton blooming in tropical-cyclone (TC) wakes over the oligotrophic oceans potentially contributes to long-term changes in global biogeochemical cycles. Yet blooming has traditionally been discussed using anecdotal events and its biophysical mechanics remain poorly understood. Here we identify dominant blooming patterns using 16 years of ocean-color data in the wakes of 141 typhoons in western North Pacific. We observe right-side asymmetric blooming shortly after the storms, attributed previously to sub-mesoscale re-stratification, but thereafter a left-side asymmetry which coincides with the left-side preference in rainfall due to the large-scale wind shear. Biophysical model experiments and observations demonstrate that heavier rainfall freshens the near-surface water, leading to stronger stratification, decreased turbulence and enhanced blooming. Our results suggest that rainfall plays a previously unrecognized, critical role in TC-induced blooming, with potentially important implications for global biogeochemical cycles especially in view of the recent and projected increases in TC-intensity that harbingers stronger mixing and heavier rain under the storm.
Rainfall-enhanced blooming in typhoon wakes
NASA Astrophysics Data System (ADS)
Lin, Y.-C.; Oey, L.-Y.
2016-08-01
Strong phytoplankton blooming in tropical-cyclone (TC) wakes over the oligotrophic oceans potentially contributes to long-term changes in global biogeochemical cycles. Yet blooming has traditionally been discussed using anecdotal events and its biophysical mechanics remain poorly understood. Here we identify dominant blooming patterns using 16 years of ocean-color data in the wakes of 141 typhoons in western North Pacific. We observe right-side asymmetric blooming shortly after the storms, attributed previously to sub-mesoscale re-stratification, but thereafter a left-side asymmetry which coincides with the left-side preference in rainfall due to the large-scale wind shear. Biophysical model experiments and observations demonstrate that heavier rainfall freshens the near-surface water, leading to stronger stratification, decreased turbulence and enhanced blooming. Our results suggest that rainfall plays a previously unrecognized, critical role in TC-induced blooming, with potentially important implications for global biogeochemical cycles especially in view of the recent and projected increases in TC-intensity that harbingers stronger mixing and heavier rain under the storm.
Rainfall-enhanced blooming in typhoon wakes
NASA Astrophysics Data System (ADS)
Lin, Y.; Oey, L. Y.
2016-12-01
Strong phytoplankton blooming in tropical-cyclone (TC) wakes over the oligotrophic oceans potentially contributes to long-term changes in global biogeochemical cycles. Yet blooming has traditionally been discussed using anecdotal events and its biophysical mechanics remain poorly understood. Here we identify dominant blooming patterns using 16 years of ocean-color data in the wakes of 141 typhoons in western North Pacific. We observe right-side asymmetric blooming shortly after the storms, attributed previously to sub-mesoscale re-stratification, but thereafter a left-side asymmetry which coincides with the left-side preference in rainfall due to the large-scale wind shear. Biophysical model experiments and observations demonstrate that heavier rainfall freshens the near-surface water, leading to stronger stratification, decreased turbulence and enhanced blooming. Our results suggest that rainfall plays a previously unrecognized, critical role in TC-induced blooming, with potentially important implications for global biogeochemical cycles especially in view of the recent and projected increases in TC-intensity that harbingers stronger mixing and heavier rain under the storm.
Harrold, Z R; Hausrath, E M; Garcia, A H; Murray, A E; Tschauner, O; Raymond, J; Huang, S
2018-01-26
Snow algae can form large-scale blooms across the snowpack surface and near-surface environments. These pigmented blooms can decrease snow albedo, increase local melt rates, and may impact the global heat budget and water cycle. Yet, underlying causes for the geospatial occurrence of these blooms remain unconstrained. One possible factor contributing to snow algae blooms is the presence of mineral dust as a micronutrient source. We investigated the bioavailability of iron (Fe) -bearing minerals, including forsterite (Fo 90 , Mg 1.8 Fe 0.2 SiO 4 ), goethite, smectite and pyrite as Fe sources for a Chloromonas brevispina - bacteria co-culture through laboratory-based experimentation. Fo 90 was capable of stimulating snow algal growth and increased the algal growth rate in otherwise Fe-depleted co-cultures. Fo 90 -bearing systems also exhibited a decrease in bacteria:algae ratios compared to Fe-depleted conditions, suggesting a shift in microbial community structure. The C. brevispina co-culture also increased the rate of Fo 90 dissolution relative to an abiotic control. Analysis of 16S rRNA genes in the co-culture identified Gammaproteobacteria , Betaprotoeobacteria and Sphingobacteria , all of which are commonly found in snow and ice environments. Archaea were not detected. Collimonas and Pseudomonas , which are known to enhance mineral weathering rates, comprised two of the top eight (> 1 %) OTUs. These data provide unequivocal evidence that mineral dust can support elevated snow algae growth under otherwise Fe-depleted growth conditions, and that snow algae can enhance mineral dissolution under these conditions. IMPORTANCE Fe, a key micronutrient for photosynthetic growth, is necessary to support the formation of high-density snow algae blooms. The laboratory experiments described herein allow for a systematic investigation of snow algae-bacteria-mineral interactions and their ability to mobilize and uptake mineral-bound Fe. Results provide unequivocal and comprehensive evidence that mineral-bound Fe in Fe-bearing Fo 90 was bioavailable to Chloromonas brevispina snow algae within an algae-bacteria co-culture. This evidence includes: 1) an observed increase snow algae density and growth rate; 2) decreased bacteria:algae ratios in Fo 90 -containing cultures relative to cultures grown under similarly Fe-depleted conditions with no mineral-bound Fe present; and 3) increased Fo 90 dissolution rates in the presence of algae-bacteria co-cultures relative to abiotic mineral controls. These results have important implications for the role of mineral dust in supplying micronutrients to the snow microbiome, which may help support dense snow algae blooms capable of lowering snow albedo, and increase snow melt rates on regional, and possibly global, scales. Copyright © 2018 American Society for Microbiology.
Dyhrman, Sonya T.; Haley, Sheean T.; Borchert, Jerry A.; Lona, Bob; Kollars, Nicole; Erdner, Deana L.
2010-01-01
Alexandrium catenella is widespread in western North America and produces a suite of potent neurotoxins that cause paralytic shellfish poisoning (PSP) in humans and have deleterious impacts on public health and economic resources. There are seasonal PSP-related closures of recreational and commercial shellfisheries in the Puget Sound, but the factors that influence cell distribution, abundance, and relationship to paralytic shellfish toxins (PSTs) in this system are poorly described. Here, a quantitative PCR assay was used to detect A. catenella cells in parallel with state shellfish toxicity testing during the 2006 bloom season at 41 sites from April through October. Over 500,000 A. catenella cells liter−1 were detected at several stations, with two main pulses of cells driving cell distribution, one in June and the other in August. PSTs over the closure limit of 80 μg of PST 100 per g of shellfish tissue were detected at 26 of the 41 sites. Comparison of cell numbers and PST data shows that shellfish toxicity is preceded by an increase in A. catenella cells in 71% of cases. However, cells were also observed in the absence of PSTs in shellfish, highlighting the complex relationship between A. catenella and the resulting shellfish toxicity. These data provide important information on the dynamics of A. catenella cells in the Puget Sound and are a first step toward assessing the utility of plankton monitoring to augment shellfish toxicity testing in this system. PMID:20495054
NASA Astrophysics Data System (ADS)
Ciancia, Emanuele; Coviello, Irina; Di Polito, Carmine; Lacava, Teodosio; Pergola, Nicola; Satriano, Valeria; Tramutoli, Valerio
2018-03-01
The analysis of chlorophyll-a (chl-a) variability on a long-term basis could allow detecting possible issues in the whole marine ecosystem functioning. The Gulf of Taranto (Southern Italy), in the North-western Ionian Sea (Mediterranean Sea), has been affected by several environmental threats in the last decade, thus deserving the implementation of an adequate monitoring system able to provide accurate indications about the variability of the most relevant bio-optical parameters. In this context, the main objectives of this study are to investigate the long-term chl-a variability in the Gulf of Taranto and identify the occurrence of any past spatiotemporal anomalies by implementing the multi-temporal Robust Satellite Technique (RST) on a 12-year (2003-2015) period of MODIS/AQUA Level 3/Level 2 chlorophyll-a data. The achieved results show well-clustered near-surface positive chl-a anomalies during the January-February 2011 period. This detected offshore phytoplankton bloom may be related to sub-basin processes, such as the inflow of the Western Adriatic Coastal Current (WACC), probably fostered by the cyclonic reversal of the Bimodal Oscillating System (BiOS) mechanism. Therefore, the RST approach proved successful in detecting chl-a anomalous variations with a high level of confidence regardless of the absolute value measured, thus suggesting its exportability in other areas with different site-setting conditions.
Winter-summer succession of unicellular eukaryotes in a meso-eutrophic coastal system.
Christaki, Urania; Kormas, Konstantinos A; Genitsaris, Savvas; Georges, Clément; Sime-Ngando, Télesphore; Viscogliosi, Eric; Monchy, Sébastien
2014-01-01
The objective of this study was to explore the succession of planktonic unicellular eukaryotes by means of 18S rRNA gene tag pyrosequencing in the eastern English Channel (EEC) during the winter to summer transition. The 59 most representative (>0.1%, representing altogether 95% of total reads), unique operational taxonomic units (OTUs) from all samples belonged to 18 known high-level taxonomic groups and 1 unaffiliated clade. The five most abundant OTUs (69.2% of total reads) belonged to Dinophyceae, Cercozoa, Haptophyceae, marine alveolate group I, and Fungi. Cluster and network analysis between samples distinguished the winter, the pre-bloom, the Phaeocystis globosa bloom and the post-bloom early summer conditions. The OTUs-based network revealed that P. globosa showed a relatively low number of connections-most of them negative-with all other OTUs. Fungi were linked to all major taxonomic groups, except Dinophyceae. Cercozoa mostly co-occurred with the Fungi, the Bacillariophyceae and several of the miscellaneous OTUs. This study provided a more detailed exploration into the planktonic succession pattern of the EEC due to its increased depth of taxonomic sampling over previous efforts based on classical monitoring observations. Data analysis implied that the food web concept in a coastal system based on predator-prey (e.g. grazer-phytoplankton) relationships is just a part of the ecological picture; and those organisms exploiting a variety of strategies, such as saprotrophy and parasitism, are persistent and abundant members of the community.
Characterizing the Hygroscopicity of Nascent Sea Spray Aerosol from Synthetic Blooms
NASA Astrophysics Data System (ADS)
Forestieri, S.; Cappa, C. D.; Sultana, C. M.; Lee, C.; Wang, X.; Helgestad, T.; Moore, K.; Prather, K. A.; Cornwell, G.; Novak, G.; Bertram, T. H.
2015-12-01
Marine sea spray aerosol (SSA) particles make up a significant portion of natural aerosols and are therefore important in establishing the baseline for anthropogenic aerosol climate impacts. Scattering of solar radiation by aerosols affects Earth's radiative budget and the degree of scattering is size-dependent. Thus, aerosols scatter more light at elevated relative humidities when they grow larger via water uptake. This growth depends critically on chemical composition. SSA can become enriched in organics during phytoplankton blooms, becoming less salty and therefore less hygroscopic. Subsaturated hygroscopic growth factors at 85% relative humidity (GF(85%)) of SSA particles were quantified during two mesocosm experiments in enclosed marine aerosol reference tanks (MARTs). The two experiments were conducted with filtered seawater collected at separate times from the Scripps Institute of Oceanography Pier in La Jolla, CA. Phytoplankton blooms in each tank were induced via the addition of nutrients and photosynthetically active radiation. The "indoor" MART was illuminated with fluorescent light and the other "outdoor" MART was illuminated with sunlight. The peak chlorophyll-a concentrations were 59 micrograms/L and 341 micrograms /L for the indoor and outdoor MARTs, respectively. GF(85%) values for SSA particles were quantified using a humidified cavity ringdown spectrometer and particle size distributions. Particle composition was monitored with a single particle aerosol mass spectrometer (ATOFMS) and an Aerodyne aerosol mass spectrometer (AMS). Relationships between the observed particle GFs and the particle composition markers will be discussed.
NASA Astrophysics Data System (ADS)
Petersen, W.; Wehde, H.; Krasemann, H.; Colijn, F.; Schroeder, F.
2008-04-01
An automatic measuring system called " FerryBox" was installed in the North Sea on a ferry travelling between Germany (Cuxhaven) and Great Britain (Harwich), enabling online oceanographic and biological measurements such as salinity, temperature, fluorescence, turbidity, oxygen, pH, and nutrient concentrations. Observations made along the ferry transect reveal characteristic phenomena such as high salinity inflow through the Channel into the Southern Bight, algal bloom dynamics and related oxygen and pH changes. Combination of these online observations with remote sensing enhances the spatial resolution of the transect related measurements. Several examples of the synergy between these two measuring strategies are shown, both for large-scale algal blooms in the North Sea as well as for local intense but short-term blooms in the German Bight. Coherence of the data sets can be gained and improved by using water transport models in order to obtain synoptic overviews of the remotely sensed and FerryBox related parameters. Limitations of the currently used algorithms for deriving chlorophyll- a from remote sensing images for coastal and shelf seas (Case-2 water) are discussed, as well as depth related processes which cannot be properly resolved on the basis of water intake at a fixed point. However, in unstratified coastal waters under normal conditions FerryBox data represent average conditions. The importance of future applications of this combination of methods for monitoring of coastal waters is emphasized.
Deep-sea bioluminescence blooms after dense water formation at the ocean surface.
Tamburini, Christian; Canals, Miquel; Durrieu de Madron, Xavier; Houpert, Loïc; Lefèvre, Dominique; Martini, Séverine; D'Ortenzio, Fabrizio; Robert, Anne; Testor, Pierre; Aguilar, Juan Antonio; Samarai, Imen Al; Albert, Arnaud; André, Michel; Anghinolfi, Marco; Anton, Gisela; Anvar, Shebli; Ardid, Miguel; Jesus, Ana Carolina Assis; Astraatmadja, Tri L; Aubert, Jean-Jacques; Baret, Bruny; Basa, Stéphane; Bertin, Vincent; Biagi, Simone; Bigi, Armando; Bigongiari, Ciro; Bogazzi, Claudio; Bou-Cabo, Manuel; Bouhou, Boutayeb; Bouwhuis, Mieke C; Brunner, Jurgen; Busto, José; Camarena, Francisco; Capone, Antonio; Cârloganu, Christina; Carminati, Giada; Carr, John; Cecchini, Stefano; Charif, Ziad; Charvis, Philippe; Chiarusi, Tommaso; Circella, Marco; Coniglione, Rosa; Costantini, Heide; Coyle, Paschal; Curtil, Christian; Decowski, Patrick; Dekeyser, Ivan; Deschamps, Anne; Donzaud, Corinne; Dornic, Damien; Dorosti, Hasankiadeh Q; Drouhin, Doriane; Eberl, Thomas; Emanuele, Umberto; Ernenwein, Jean-Pierre; Escoffier, Stéphanie; Fermani, Paolo; Ferri, Marcelino; Flaminio, Vincenzo; Folger, Florian; Fritsch, Ulf; Fuda, Jean-Luc; Galatà, Salvatore; Gay, Pascal; Giacomelli, Giorgio; Giordano, Valentina; Gómez-González, Juan-Pablo; Graf, Kay; Guillard, Goulven; Halladjian, Garadeb; Hallewell, Gregory; van Haren, Hans; Hartman, Joris; Heijboer, Aart J; Hello, Yann; Hernández-Rey, Juan Jose; Herold, Bjoern; Hößl, Jurgen; Hsu, Ching-Cheng; de Jong, Marteen; Kadler, Matthias; Kalekin, Oleg; Kappes, Alexander; Katz, Uli; Kavatsyuk, Oksana; Kooijman, Paul; Kopper, Claudio; Kouchner, Antoine; Kreykenbohm, Ingo; Kulikovskiy, Vladimir; Lahmann, Robert; Lamare, Patrick; Larosa, Giuseppina; Lattuada, Dario; Lim, Gordon; Presti, Domenico Lo; Loehner, Herbert; Loucatos, Sotiris; Mangano, Salvatore; Marcelin, Michel; Margiotta, Annarita; Martinez-Mora, Juan Antonio; Meli, Athina; Montaruli, Teresa; Moscoso, Luciano; Motz, Holger; Neff, Max; Nezri, Emma Nuel; Palioselitis, Dimitris; Păvălaş, Gabriela E; Payet, Kevin; Payre, Patrice; Petrovic, Jelena; Piattelli, Paolo; Picot-Clemente, Nicolas; Popa, Vlad; Pradier, Thierry; Presani, Eleonora; Racca, Chantal; Reed, Corey; Riccobene, Giorgio; Richardt, Carsten; Richter, Roland; Rivière, Colas; Roensch, Kathrin; Rostovtsev, Andrei; Ruiz-Rivas, Joaquin; Rujoiu, Marius; Russo, Valerio G; Salesa, Francisco; Sánchez-Losa, Augustin; Sapienza, Piera; Schöck, Friederike; Schuller, Jean-Pierre; Schussler, Fabian; Shanidze, Rezo; Simeone, Francesco; Spies, Andreas; Spurio, Maurizio; Steijger, Jos J M; Stolarczyk, Thierry; Taiuti, Mauro G F; Toscano, Simona; Vallage, Bertrand; Van Elewyck, Véronique; Vannoni, Giulia; Vecchi, Manuela; Vernin, Pascal; Wijnker, Guus; Wilms, Jorn; de Wolf, Els; Yepes, Harold; Zaborov, Dmitry; De Dios Zornoza, Juan; Zúñiga, Juan
2013-01-01
The deep ocean is the largest and least known ecosystem on Earth. It hosts numerous pelagic organisms, most of which are able to emit light. Here we present a unique data set consisting of a 2.5-year long record of light emission by deep-sea pelagic organisms, measured from December 2007 to June 2010 at the ANTARES underwater neutrino telescope in the deep NW Mediterranean Sea, jointly with synchronous hydrological records. This is the longest continuous time-series of deep-sea bioluminescence ever recorded. Our record reveals several weeks long, seasonal bioluminescence blooms with light intensity up to two orders of magnitude higher than background values, which correlate to changes in the properties of deep waters. Such changes are triggered by the winter cooling and evaporation experienced by the upper ocean layer in the Gulf of Lion that leads to the formation and subsequent sinking of dense water through a process known as "open-sea convection". It episodically renews the deep water of the study area and conveys fresh organic matter that fuels the deep ecosystems. Luminous bacteria most likely are the main contributors to the observed deep-sea bioluminescence blooms. Our observations demonstrate a consistent and rapid connection between deep open-sea convection and bathypelagic biological activity, as expressed by bioluminescence. In a setting where dense water formation events are likely to decline under global warming scenarios enhancing ocean stratification, in situ observatories become essential as environmental sentinels for the monitoring and understanding of deep-sea ecosystem shifts.
Canepa, Antonio; Fuentes, Verónica; Bosch-Belmar, Mar; Acevedo, Melissa; Toledo-Guedes, Kilian; Ortiz, Antonio; Durá, Elia; Bordehore, César; Gili, Josep-Maria
2017-01-01
Jellyfish blooms cause important ecological and socio-economic problems. Among jellyfish, cubozoans are infamous for their painful, sometimes deadly, stings and are a major public concern in tropical to subtropical areas; however, there is little information about the possible causes of their outbreaks. After a bloom of the cubomedusa Carybdea marsupialis (Carybdeidae) along the coast of Denia (SW Mediterranean, Spain) in 2008 with negative consequences for local tourism, the necessity to understand the ecological restrictions on medusae abundance was evident. Here we use different models (GAM and zero-inflated models) to understand the environmental and human related factors influencing the abundance and distribution of C. marsupialis along the coast of Denia. Selected variables differed among medusae size classes, showing different environmental restriction associated to the developmental stages of the species. Variables implicated with dispersion (e.g. wind and current) affected mostly small and medium size classes. Sea surface temperature, salinity and proxies of primary production (chl a, phosphates, nitrates) were related to the abundances of small and large size classes, highlighting the roles of springtime salinity changes and increased primary production that may promote and maintain high densities of this species. The increased primary (and secondary) production due to anthropogenic impact is implicated as the factor enabling high numbers of C. marsupialis to thrive. Recommendations for monitoring blooms of this species along the study area and applicable to Mediterranean Sea include focus effort in coastal waters where productivity have been enriched by anthropogenic activities.
NASA Astrophysics Data System (ADS)
Gacia, E.; Littler, M. M.; Littler, D. S.
1999-06-01
A mechanism of competition between epiphytes and seagrasses potentially modulated by grazers was studied in a high-nutrient Thalassia testudinum meadow in the Indian River Lagoon (Florida, U.S.A.). The effects of fish grazing on epiphytes, and likely enhancing T. testudinum growth, was tested through an exclusion experiment. Twelve (2×2m) independent experimental plots were selected within a shallow monospecific bed to which three randomized treatments (exclusion fences, open fences and controls) with four replicates each were assigned. The epiphyte load was monitored on T. testudinum leaves inside the plots from January 1995 to March 1996. Treatment effects occurred during a chlorophyte bloom in March 1995, when the epiphyte biomass was significantly higher inside the exclusion cages than in either of the controls. The composition of the epiphytic community in March 1995 was dominated by sheet-like Enteromorpha and filamentous algae such as Cladophora , which are less resistant to herbivory than the coarsely-branched forms of red algae (e.g. Hypnea , Chondria and Acanthophora) that bloomed subsequently. These results suggest that herbivory change seasonally depending on the availability of different prey species to fish-grazers, which preferentially utilize the fleshy green algae typical of bloom conditions over the thicker coarsely-branched red algae. In the nutrient-rich lagoon the role of top-down interactions in enhancing T. testudinum growth is limited to the reduction of shading by green macroalgae.
Title: Water Quality Monitoring to Restore and Enhance Lake Herrick
NASA Astrophysics Data System (ADS)
Kannan, A.; Saintil, T.; Radcliffe, D. E.; Rasmussen, T. C.
2017-12-01
Lake Allyn M. Herrick is about 1.5 km2 and covers portions of the University of Georgia's East campus, the Oconee forest, residential and commercial land use. Lake Herrick, a 15-acre water body established in 1982 at the University of Georgia's campus was closed in 2002 for recreation due to fecal contamination, color change, and heavy sedimentation. Subsequent monitoring confirmed cyanobacterium blooms on the surface of lake and nutrient concentration especially phosphorus was one of the primary reasons. However, no studies have been done on lake inflows and outflows after 2005 in terms of nutrients and fecal Indicator bacteria. Two inflow tributaries and the outlet stream were monitored for discharge, E. coli, total coliform, forms of nitrogen and phosphorus and other water quality parameters during base flow and storm conditions. External environmental factors like precipitation, land-use/location, discharge, and internal factors within the water like temperature, DO, pH, conductivity, and turbidity influencing fecal indicator bacteria and nutrients will be discussed with data collected from the inflows/outflow between February 2016 to October 2017. Following this, microbial source tracking methods were also used to detect the bacterial source in the samples specific to a ruminant or human host. The source tracking data will be presented during the timeframe of January 2017 to September 2017, to draw a conclusion on the potential source of fecal contamination. The future aim of the project will include modeling flow and bacteria at the watershed scale in order to make management decisions to restore the lake for recreational uses where green infrastructure could play a key role.
Blooming Trees: Substructures and Surrounding Groups of Galaxy Clusters
NASA Astrophysics Data System (ADS)
Yu, Heng; Diaferio, Antonaldo; Serra, Ana Laura; Baldi, Marco
2018-06-01
We develop the Blooming Tree Algorithm, a new technique that uses spectroscopic redshift data alone to identify the substructures and the surrounding groups of galaxy clusters, along with their member galaxies. Based on the estimated binding energy of galaxy pairs, the algorithm builds a binary tree that hierarchically arranges all of the galaxies in the field of view. The algorithm searches for buds, corresponding to gravitational potential minima on the binary tree branches; for each bud, the algorithm combines the number of galaxies, their velocity dispersion, and their average pairwise distance into a parameter that discriminates between the buds that do not correspond to any substructure or group, and thus eventually die, and the buds that correspond to substructures and groups, and thus bloom into the identified structures. We test our new algorithm with a sample of 300 mock redshift surveys of clusters in different dynamical states; the clusters are extracted from a large cosmological N-body simulation of a ΛCDM model. We limit our analysis to substructures and surrounding groups identified in the simulation with mass larger than 1013 h ‑1 M ⊙. With mock redshift surveys with 200 galaxies within 6 h ‑1 Mpc from the cluster center, the technique recovers 80% of the real substructures and 60% of the surrounding groups; in 57% of the identified structures, at least 60% of the member galaxies of the substructures and groups belong to the same real structure. These results improve by roughly a factor of two the performance of the best substructure identification algorithm currently available, the σ plateau algorithm, and suggest that our Blooming Tree Algorithm can be an invaluable tool for detecting substructures of galaxy clusters and investigating their complex dynamics.
Zhang, Junyi; Zhu, Congming; Guan, Rui; Xiong, Zhipeng; Zhang, Wen; Shi, Junzhe; Sheng, Yi; Zhu, Bingchuan; Tu, Jing; Ge, Qinyu; Chen, Ting; Lu, Zuhong
2017-05-01
Understanding of the bacterial community structure in drinking water resources helps to enhance the security of municipal water supplies. In this study, bacterial communities were surveyed in water and sediment during a heavy cyanobacterial bloom in a drinking water resource of Lake Taihu, China. A total of 325,317 high-quality sequences were obtained from different 16S ribosomal RNA (rRNA) regions (V3, V4, and V6) using the Miseq sequencing platform. A notable difference was shown between the water and sediment samples, as predominated by Cyanobacteria, Proteobacteria, and Actinobacteria in the water and Proteobacteria, Chloroflexi, and Verrucomicrobia in the sediment, respectively. The LD12 family dominated the water surface and was tightly associated with related indicators of cyanobacterial propagation, indicating involvement in the massive proliferation of cyanobacterial blooms. Alternatively, the genus Nitrospira dominated the sediment samples, which indicates that nitrite oxidation was very active in the sediment. Although pathogenic bacteria were not detected in a large amount, some genera such as Mycobacterium, Acinetobacter, and Legionella were still identified but in very low abundance. In addition, the effects of different V regions on bacterial diversity survey were evaluated. Overall, V4 and V3 were proven to be more promising V regions for bacterial diversity survey in water and sediment samples during heavy water blooms in Lake Taihu, respectively. As longer, cheaper, and faster DNA sequencing technologies become more accessible, we expect that bacterial community structures based on 16S rRNA amplicons as an indicator could be used alongside with physical and chemical indicators, to conduct comprehensive assessments for drinking water resource management.
NASA Technical Reports Server (NTRS)
Delin, K. A.; Harvey, R. P.; Chabot, N. A.; Jackson, S. P.; Adams, Mike; Johnson, D. W.; Britton, J. T.
2003-01-01
The most rigorous tests of the ability to detect extant life will occur where biotic activity is limited by severe environmental conditions. Cryogenic environments are among the most severe-the energy and nutrients needed for biological activity are in short supply while the climate itself is actively destructive to biological mechanisms. In such settings biological activity is often limited to brief flourishes, occurring only when and where conditions are at their most favorable. The closer that typical regional conditions approach conditions that are actively hostile , the more widely distributed biological blooms will be in both time and space. On a spatial dimension of a few meters or a time dimension of a few days, biological activity becomes much more difficult to detect. One way to overcome this difficulty is to establish a Sensor Web that can monitor microclimates over appropriate scales of time and distance, allowing a continuous virtual presence for instant recognition of favorable conditions. A more sophisticated Sensor Web, incorporating metabolic sensors, can effectively meet the challenge to be in "the right place in the right time". This is particularly of value in planetary surface missions, where limited mobility and mission timelines require extremely efficient sample and data acquisition. Sensor Webs can be an effective way to fill the gap between broad scale orbital data collection and fine-scale surface lander science. We are in the process of developing an intelligent, distributed and autonomous Sensor Web that will allow us to monitor microclimate under severe cryogenic conditions, approaching those extant on the surface of Mars. Ultimately this Sensor Web will include the ability to detect and/or establish limits on extant microbiological activity through incorporation of novel metabolic gas sensors. Here we report the results of our first deployment of a Sensor Web prototype in a previously unexplored high altitude East Antarctic Plateau "micro-oasis" at the MacAlpine Hills, Law Glacier, Antarctica.
Theoretical analysis for scaling law of thermal blooming based on optical phase deference
NASA Astrophysics Data System (ADS)
Sun, Yunqiang; Huang, Zhilong; Ren, Zebin; Chen, Zhiqiang; Guo, Longde; Xi, Fengjie
2016-10-01
In order to explore the laser propagation influence of thermal blooming effect of pipe flow and to analysis the influencing factors, scaling law theoretical analysis of the thermal blooming effects in pipe flow are carry out in detail based on the optical path difference caused by thermal blooming effects in pipe flow. Firstly, by solving the energy coupling equation of laser beam propagation, the temperature of the flow is obtained, and then the optical path difference caused by the thermal blooming is deduced. Through the analysis of the influence of pipe size, flow field and laser parameters on the optical path difference, energy scaling parameters Ne=nTαLPR2/(ρɛCpπR02) and geometric scaling parameters Nc=νR2/(ɛL) of thermal blooming for the pipe flow are derived. Secondly, for the direct solution method, the energy coupled equations have analytic solutions only for the straight tube with Gauss beam. Considering the limitation of directly solving the coupled equations, the dimensionless analysis method is adopted, the analysis is also based on the change of optical path difference, same scaling parameters for the pipe flow thermal blooming are derived, which makes energy scaling parameters Ne and geometric scaling parameters Nc have good universality. The research results indicate that when the laser power and the laser beam diameter are changed, thermal blooming effects of the pipeline axial flow caused by optical path difference will not change, as long as you keep energy scaling parameters constant. When diameter or length of the pipe changes, just keep the geometric scaling parameters constant, the pipeline axial flow gas thermal blooming effects caused by optical path difference distribution will not change. That is to say, when the pipe size and laser parameters change, if keeping two scaling parameters with constant, the pipeline axial flow thermal blooming effects caused by the optical path difference will not change. Therefore, the energy scaling parameters and the geometric scaling parameters can really describe the gas thermal blooming effect in the axial pipe flow. These conclusions can give a good reference for the construction of the thermal blooming test system of laser system. Contrasted with the thermal blooming scaling parameters of the Bradley-Hermann distortion number ND and Fresnel number NF, which were derived based on the change of far field beam intensity distortion, the scaling parameters of pipe flow thermal blooming deduced from the optical path deference variation are very suitable for the optical system with short laser propagation distance, large Fresnel number and obviously changed optical path deference.
Microalgal mediation of ripple mobility.
Friend, P L; Lucas, C H; Holligan, P M; Collins, M B
2008-01-01
The interaction between physical and biological factors responsible for the cessation of ripple migration on a sandy intertidal flat was examined during a microalgal bloom period in late winter/early spring, as part of a wider study into the biostabilisation of intertidal sediments. Ripple positions and ripple geometry were monitored, and surface sediment was sampled, at weekly intervals over a 5-week period. Ripples remained in the same position for at least 4 weeks, during which time there was a progressive reduction in bedform height (smoothing) and deposition of some 1.5 cm sediment, mainly in the ripple troughs (surface levelling). The mean chlorophyll a (chl a) sediment content was 6.0 microg gDW(-1) (DW: dry weight) (0-1 mm depth fraction), with a maximum value of 7.4 microg gDW(-1) half way through the bloom. Mean colloidal-S carbohydrate (S: saline extraction) content was 131 microg GE gDW(-1) (GE: glucose equivalent) (0-1 mm), with a maximum of 261 microg GE gDW(-1 )towards the end of the bloom. Important accessory pigments were peridinin (indicative of dinophytes) and fucoxanthin (diatoms). Stepwise multiple regression showed that peridinin was the best predictor of chl a. For the first time, in situ evidence for the mediation of (wave) ripple migration by microalgae is provided. Results indicate that diatoms, and quite possibly dinophytes, can have a significant effect on intertidal flat ripple mobility on a temporal scale of weeks. In addition, microalgal effects appear capable of effecting a reduction in bed roughness on a spatial scale of up to 10(-2 )m, with a subsequent reduction in bottom stress and bed erodability. It is suggested that a unique combination of environmental conditions, in conjunction with the microalgal bloom(s), promoted the initial cessation of ripple movement, and that stationary-phase, diatom-derived extracellular polymeric substances (EPS) (and possibly dinophyte-derived EPS) may have prolonged the condition. It is reasonable to suppose that ripple stabilisation by similar processes may have contributed to ripple mark preservation in the geological record. A conceptual model of sandy intertidal flat processes is presented, illustrating two conditions: (i) a low EPS/microalgae sediment content with low ripple stabilisation and preservation potential; and (ii) a high EPS/microalgae content with higher preservation potential.
Seasonality of the plankton community at an east and west coast monitoring site in Scottish waters
NASA Astrophysics Data System (ADS)
Bresnan, Eileen; Cook, Kathryn B.; Hughes, Sarah L.; Hay, Steve J.; Smith, Kerry; Walsham, Pamela; Webster, Lynda
2015-11-01
This study presents the first comparative description of the physics, nutrients and plankton communities at two Scottish monitoring sites between 2003 and 2012; Stonehaven on the east coast of Scotland and Loch Ewe on the west coast. This description provides baseline information about the diversity of the plankton community in Scottish waters to support assessment of the plankton community for the EU Marine Strategy Framework Directive. Spring time temperatures at Loch Ewe were approximately 2 °C higher and the median secchi depth was almost 1 m greater than at Stonehaven during this period. Freshwater inflow from the river Ewe may promote water column stability at Loch Ewe. These factors may account for the earlier spring bloom observed at the Loch Ewe monitoring site. The seasonality of chlorophyll 'a' at Loch Ewe was typical of stratified waters in temperate regions with a strong spring/autumn peak attributed to increased numbers of diatoms whilst dinoflagellates dominated during the summer. At Stonehaven highest concentrations of chlorophyll were recorded between May and June and the autumn diatom bloom was considerably less than in Loch Ewe. A higher biomass of zooplankton grazers was found at Loch Ewe than at Stonehaven. Pseudocalanus was the dominant copepod at both sites, particularly during the spring period. Zooplankton carnivores were also more abundant at Loch Ewe than at Stonehaven and were dominated by cnidarians. Considerable interannual variability was observed in cnidarian abundance and diversity at both sites. Variation in the abundance of Ceratium, Calanus finmarchicus and Calanus helgolandicus at both sites followed similar trends in other time series suggesting that the plankton communities at Stonehaven and Loch Ewe are responding to large scale environmental influences.
Zhang, Haihan; Jia, Jingyu; Chen, Shengnan; Huang, Tinglin; Wang, Yue; Zhao, Zhenfang; Feng, Ji; Hao, Huiyan; Li, Sulin; Ma, Xinxin
2018-02-18
The microbial communities associated with algal blooms play a pivotal role in organic carbon, nitrogen and phosphorus cycling in freshwater ecosystems. However, there have been few studies focused on unveiling the dynamics of bacterial and fungal communities during the outbreak and decline of algal blooms in drinking water reservoirs. To address this issue, the compositions of bacterial and fungal communities were assessed in the Zhoucun drinking water reservoir using 16S rRNA and internal transcribed spacer (ITS) gene Illumina MiSeq sequencing techniques. The results showed the algal bloom was dominated by Synechococcus, Microcystis, and Prochlorothrix. The bloom was characterized by a steady decrease of total phosphorus (TP) from the outbreak to the decline period (p < 0.05) while Fe concentration increased sharply during the decline period (p < 0.05). The highest algal biomass and cell concentrations observed during the bloom were 51.7 mg/L and 1.9×108 cell/L, respectively. The cell concentration was positively correlated with CODMn (r = 0.89, p = 0.02). Illumina Miseq sequencing showed that algal bloom altered the water bacterial and fungal community structure. During the bloom, the dominant bacterial genus were Acinetobacter sp., Limnobacter sp., Synechococcus sp., and Roseomonas sp. The relative size of the fungal community also changed with algal bloom and its composition mainly contained Ascomycota, Basidiomycota and Chytridiomycota. Heat map profiling indicated that algal bloom had a more consistent effect upon fungal communities at genus level. Redundancy analysis (RDA) also demonstrated that the structure of water bacterial communities was significantly correlated to conductivity and ammonia nitrogen. Meanwhile, water temperature, Fe and ammonia nitrogen drive the dynamics of water fungal communities. The results from this work suggested that water bacterial and fungal communities changed significantly during the outbreak and decline of algal bloom in Zhoucun drinking water reservoir. Our study highlights the potential role of microbial diversity as a driving force for the algal bloom and biogeochemical cycling of reservoir ecology.