Sample records for blue aqueous solution

  1. Photolysis of Diazo Dye in Aqueous Solutions of Metal Nitrates

    NASA Astrophysics Data System (ADS)

    Volkova, N. A.; Evstrop'ev, S. K.; Istomina, O. V.; Kolobkova, E. V.

    2018-04-01

    The photolysis of Chicago Blue Sky diazo dye is studied. It is experimentally shown that the presence of metal nitrates in aqueous solutions changes the photolysis mechanism and sharply increases the photolysis rate.

  2. 7 CFR 201.58d - Fungal endophyte test.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) Method of preparation of aniline blue stain for use in testing grass seed and plant material for the presence of fungal endophyte: (1) Prepare a 1 percent aqueous aniline blue solution by dissolving 1 gram aniline blue in 100 ml distilled water. (2) Prepare the endophyte staining solution of one part of 1...

  3. 7 CFR 201.58d - Fungal endophyte test.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) Method of preparation of aniline blue stain for use in testing grass seed and plant material for the presence of fungal endophyte: (1) Prepare a 1 percent aqueous aniline blue solution by dissolving 1 gram aniline blue in 100 ml distilled water. (2) Prepare the endophyte staining solution of one part of 1...

  4. 7 CFR 201.58d - Fungal endophyte test.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) Method of preparation of aniline blue stain for use in testing grass seed and plant material for the presence of fungal endophyte: (1) Prepare a 1 percent aqueous aniline blue solution by dissolving 1 gram aniline blue in 100 ml distilled water. (2) Prepare the endophyte staining solution of one part of 1...

  5. Removal of Methylene Blue from aqueous solution using spent bleaching earth

    NASA Astrophysics Data System (ADS)

    Saputra, E.; Saputra, R.; Nugraha, M. W.; Irianty, R. S.; Utama, P. S.

    2018-04-01

    The waste from industrial textile waste is one of the environmental problems, it is required effective and efficient processing. In this study spent bleaching earth was used as absorbent. It was found that the absorbent was effective to remove methylene blue from aqueous solution with removal efficiency 99.97 % in 120 min. Several parameters such as pH, amount of absorbent loading, stirring speed are found as key factor influencing removal of methylene blue. The mechanism of adsorption was also studied, and it was found that Langmuir isotherm fitted to data of experiment with adsorption capacity 0.5 mg/g.

  6. Spectrophotometric investigation of the hetero-association of Caffeine and thiazine dye in aqueous solution

    NASA Astrophysics Data System (ADS)

    Bolotin, P. A.; Baranovsky, S. F.; Evstigneev, M. P.

    2006-06-01

    The self-association of thiazine dye, Methylene Blue (MB), and its hetero-association with Caffeine (CAF), were studied in aqueous solution by means of spectrophotometry in the visible range of spectrum. Concentration and temperature dependences of molar absorption of the interacting molecules were used to analyse dynamic equilibrium in solution in terms of two-component model of molecular hetero-association. The magnitudes of equilibrium dimerization and hetero-association constants as well as thermodynamic parameters, enthalpy and entropy, were determined. The calculation of the fraction of different types of associates in the mixed solution, containing Methylene Blue and Caffeine, was done. It was concluded that the hetero-association of Methylene Blue and Caffeine molecules results in lower effective concentration of the dye in solution, which may account for the alteration of its biological activity.

  7. Removal of Reactofix Navy Blue 2 GFN from aqueous solutions using adsorption techniques.

    PubMed

    Gupta, Vinod Kumar; Jain, Rajeev; Varshney, Shaily; Saini, Vipin Kumar

    2007-03-15

    The wheat husk, an agricultural by-product, has been activated and used as an adsorbent for the adsorption of Reactofix Navy Blue 2 GFN from aqueous solution. In this work, adsorption of Reactofix Navy Blue 2 GFN on wheat husk and charcoal has been studied by using batch studies. The equilibrium adsorption level was determined to be a function of the solution pH, adsorbent dosage, dye concentration and contact time. The equilibrium adsorption capacities of wheat husk and charcoal for dye removal were obtained using Freundlich and Langmuir isotherms. Thermodynamic parameters such as the free energies, enthalpies and entropies of adsorption were also evaluated. Adsorption process is considered suitable for removing color, COD from waste water.

  8. Potential adsorption of methylene blue from aqueous solution using green macroalgaePosidonia oceanica.

    NASA Astrophysics Data System (ADS)

    Allouche, F.-N.; Yassaa, N.

    2018-03-01

    The use of inexpensive biological materials, such as marine algae for removing dyes from contaminated industrial effluents appears as a potential alternative method. The aim of this study is to investigate the aptitude of marine macroalgae Posidonia Oceanica local biomass abundant on the coasts of Algeria for selective sorption of methylene blue (MB) from an aqueous solution in batch experiments at 20 °C. A maximum percentage removal of Posidonia oceanica occurs at pH 5. Equilibrium isotherm data were analyzed using the Langmuir and the Freundlich isotherms. The adsorption equilibrium of methylene blue was best describe by Langmuir model than the Freundlich model. The maximum sorption capacity was 357 mgg-1at pH 5. The sorption data were very well described by the pseudo-second-order model. Keywords: Posidonia oceanica, Methylene blue (MB), Biosorption, Isotherm Equilibrium, Kinetics; Modelling.

  9. Photo-catalytic decolourisation of toxic dye with N-doped titania: a case study with Acid Blue 25.

    PubMed

    Chakrabortty, Dhruba; Gupta, Susmita Sen

    2013-05-01

    Dyes are one of the hazardous water pollutants. Toxic Acid Blue 25, an anthraquinonic dye, has been decolourised by photo-catalysing it with nitrogen doped titania in aqueous medium. The photo catalyst was prepared from 15% TiCl3 and 25% aqueous NH3 solution as precursor. XRD and TEM revealed the formation of well crystalline anatase phase having particle size in the nano-range. BET surface area of the sample was higher than that of pure anatase TiO2. DRS showed higher absorption of radiation in visible range compared to pure anatase TiO2. XPS revealed the presence of nitrogen in N-Ti-O environment. The experimental parameters, namely, photocatalyst dose, initial dye concentration as well as solution pH influence the decolourisation process. At pH 3.0, the N-TiO2 could decolourise almost 100% Acid Blue 25 within one hour. The influence of N-TiO2 dose, initial concentration of Acid Blue 25 and solution pH on adsorption-desorption equilibrium is also studied. The adsorption process follows Lagergren first order kinetics while the modified Langmuir-Hinselwood model is suitably fitted for photocatalytic decolourisation of Acid Blue 25.

  10. Heat-induced morphological transformation of gold nanodumbbells in ionic surfactant solutions

    NASA Astrophysics Data System (ADS)

    Wen, Ting-Chun; Lu, Chung-Wen; Hsieh, Wei-Chi; Chang, Sheng-Te; Yang, Ya-Ting; Deng, Jin-Pei

    2018-01-01

    The thermal stability of gold nanodumbbells (NDs) is studied in aqueous solution of ionic surfactants. It is found in aqueous solution of cetyltrimethylammonium bromide that the blue-shift of longitudinal surface plasmon resonance band of gold NDs occurs at 75 °C and the new gold nanorods (NRs) with shortened aspect ratio are formed at the same time. The aspect ratio of the generated gold NRs gradually decreases and finally approaches ∼1.7 after repeated processing. Similarly, the same results are also obtained in aqueous solution of sodium dodecyl sulfate at room temperature. Mechanism is proposed for the shape transformation of gold NDs.

  11. Potential Biosorbent Derived from Calligonum polygonoides for Removal of Methylene Blue Dye from Aqueous Solution

    PubMed Central

    Nasrullah, Asma; Khan, Hizbullah; Khan, Amir Sada; Man, Zakaria; Muhammad, Nawshad; Khan, Muhammad Irfan; Abd El-Salam, Naser M.

    2015-01-01

    The ash of C. polygonoides (locally called balanza) was collected from Lakki Marwat, Khyber Pakhtunkhwa, Pakistan, and was utilized as biosorbent for methylene blue (MB) removal from aqueous solution. The ash was used as biosorbent without any physical or chemical treatment. The biosorbent was characterized by using various techniques such as Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). The particle size and surface area were measured using particle size analyzer and Brunauer-Emmett-Teller equation (BET), respectively. The SEM and BET results expressed that the adsorbent has porous nature. Effects of various conditions such as initial concentration of methylene blue (MB), initial pH, contact time, dosage of biosorbent, and stirring rate were also investigated for the adsorption process. The rate of the adsorption of MB on biomass sample was fast, and equilibrium has been achieved within 1 hour. The kinetics of MB adsorption on biosorbent was studied by pseudo-first- and pseudo-second-order kinetic models and the pseudo-second-order has better mathematical fit with correlation coefficient value (R 2) of 0.999. The study revealed that C. polygonoides ash proved to be an effective, alternative, inexpensive, and environmentally benign biosorbent for MB removal from aqueous solution. PMID:25705714

  12. Antioxidant activity of Citrus paradisi seeds glyceric extract.

    PubMed

    Giamperi, Laura; Fraternale, Daniele; Bucchini, Anahi; Ricci, Donata

    2004-03-01

    The antioxidant activity of Citrus paradisi (grapefruit) seeds glyceric extract dissolved in ethanol and in aqueous media was evaluated using three different methods: evaluation by DPPH assay, by 5-lipoxygenase assay and by luminol/xanthine/xanthine oxidase chemiluminescence assay. The total phenolic content was determined by the Prussian Blue method opportunely modified. The grapefruit seeds glyceric extract utilized as aqueous solutions demonstrated antioxidant properties better than those displayed by alcoholic solutions.

  13. Visible light induced photobleaching of methylene blue over melamine-doped TiO2 nanocatalyst

    EPA Science Inventory

    TiO2 doping with N-rich melamine produced a stable, active and visible light sentisized nanocatalyst that showed a remarkable efficiency towards the photobleaching of a model compound – methylene blue (MB) in aqueous solution. The photobleaching followed a mixed reaction order ki...

  14. A convenient method for determining the concentration of hydrogen in water: use of methylene blue with colloidal platinum

    PubMed Central

    2012-01-01

    A simple titration (oxidimetry) method using a methylene blue-platinum colloid reagent is effective in determining the concentration of hydrogen gas in an aqueous solution. The method performs as effectively as the more complex and expensive electrochemical method. PMID:22273079

  15. Adsorption of a textile dye "Indanthrene Blue RS (C.I. Vat Blue 4)" from aqueous solutions onto smectite-rich clayey rock.

    PubMed

    Chaari, Islem; Feki, Mongi; Medhioub, Mounir; Bouzid, Jalel; Fakhfakh, Emna; Jamoussi, Fakher

    2009-12-30

    The adsorption of a textile dye, namely, Indanthrene Blue RS (C.I. Vat Blue 4) onto smectite-rich clayey rock (AYD) and its sulphuric acid-activated products (AYDS) in aqueous solution was studied in a batch system with respect to contact time, pH, and temperature. The adsorbents employed were characterized by X-ray diffraction, infrared spectroscopy and specific surface area, cation exchange capacity and point of zero charge were also estimated. The effect of contact time on dye adsorption showed that the equilibrium was reached after a contact time of 40 min for the both adsorbents. The optimum pH for dye retention was found 6.0 for AYDS and 7.3 for AYD. The equilibrium adsorption data were analysed using the Langmuir and Freundlich isotherms. The adsorption capacities (Q(m)) for AYD and AYDS were found 13.92 mg/g and 17.85 mg/g, respectively. The effect of temperature on the adsorption was also investigated; adsorption of Indanthrene Blue RS is an endothermic process. This study demonstrates that all the considered adsorbents can be used as an alternative emerging technology for water treatment.

  16. Suppression of cucurbit scab on cucumber leaves by photodynamic dyes

    USDA-ARS?s Scientific Manuscript database

    The goal of this study was to test the ability of the photodynamic dyes bengal rose, toluidine blue, and methylene blue, to protect systemically cucumber plants from cucurbit scab. At the stage of one true leaf, water or aqueous solutions of the dyes were applied to the leaf as droplets. When the se...

  17. Quenching characteristics of bathocuproinedisulfonic acid, disodium salt in aqueous solution and copper sulfate plating solution

    NASA Astrophysics Data System (ADS)

    Koga, Toshiaki; Hirakawa, Chieko; Takeshita, Michinori; Terasaki, Nao

    2018-04-01

    Bathocuproinedisulfonic acid, disodium salt (BCS) is generally used to detect Cu(I) through a color reaction. We newly found BCS fluorescence in the visible blue region in an aqueous solution. However, the fluorescence mechanism of BCS is not well known, so we should investigate its fundamental information. We confirmed that the characteristics of fluorescence are highly dependent on the molecular concentration and solvent properties. In particular, owing to the presence of the copper compound, the fluorescence intensity extremely decreases. By fluorescence quenching, we observed that a copper compound concentration of 10-6 mol/L or less could easily be measured in an aqueous solution. We also observed BCS fluorescence in copper sulfate plating solution and the possibility of detecting monovalent copper by fluorescence reabsorption.

  18. Microwave atmospheric pressure plasma jets for wastewater treatment: Degradation of methylene blue as a model dye.

    PubMed

    García, María C; Mora, Manuel; Esquivel, Dolores; Foster, John E; Rodero, Antonio; Jiménez-Sanchidrián, César; Romero-Salguero, Francisco J

    2017-08-01

    The degradation of methylene blue in aqueous solution as a model dye using a non thermal microwave (2.45 GHz) plasma jet at atmospheric pressure has been investigated. Argon has been used as feed gas and aqueous solutions with different concentrations of the dye were treated using the effluent from plasma jet in a remote exposure. The removal efficiency increased as the dye concentration decreased from 250 to 5 ppm. Methylene blue degrades after different treatment times, depending on the experimental plasma conditions. Thus, kinetic constants up to 0.177 min -1 were obtained. The higher the Ar flow, the faster the degradation rate. Optical emission spectroscopy (OES) was used to gather information about the species present in the gas phase, specifically excited argon atoms. Argon excited species and hydrogen peroxide play an important role in the degradation of the dye. In fact, the conversion of methylene blue was directly related to the density of argon excited species in the gas phase and the concentration of hydrogen peroxide in the aqueous liquid phase. Values of energy yield at 50% dye conversion of 0.296 g/kWh were achieved. Also, the use of two plasma applicators in parallel has been proven to improve energy efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. α-keratin/Alginate Biosorbent for Removal of Methylene Blue on Aqueous Solution in a Batch System

    NASA Astrophysics Data System (ADS)

    Fadillah, G.; Putri, E. N. K.; Febrianastuti, S.; Munawaroh, H.; Purnawan, C.; Wahyuningsih, S.

    2018-03-01

    Methylene Blue (MB) is a cationic dyes which is commonly used in textile industries for coloring agent. The precence of MB in water caused some negative effect on the environment and human health. Many common technologies such as membrane filtration, electrophoresis and adsorption have been widely empolyed for removal of MB in water, but the adsorption technique still has advantages than the others. In this study, removal of MB used a biosorbent α-keratin/alginate (KA). The biosorbent KA was prepared by using the encapsulation technique in CaCl2 2 % (w/v) solution. The biosorbent was characterized by Fourier Transform Infrared (FTIR) and Scanning Electron Microscope (SEM). The effect of composition of α-keratin and alginate, the pH of solution and contact time on the adsorption were investigated. The optimum adsorption of MB in aqueous solution was found at the composition of α-keratin and alginate of 1:2 (w/w), the pH at 5.0 and contact time at 4 hours. The adsorption of MB on KA biosorbent was comparatively higher than α-keratin and alginate only. Adsorption of MB dyes in aqueous solution followed the Langmuir adsorption isotherm, and the dynamic adsorption model could be described through a pseudo-second order kinetics.

  20. Prussian Blue Coated Electrode as a Sensor for Electroinactive Cations in Aqueous Solutions

    ERIC Educational Resources Information Center

    Byrd, Houston; Chapman, Blake E.; Talley, Christopher L.

    2013-01-01

    Prussian Blue (PB) is an excellent material as a sensor for electroinactive cations because of its electrochemical behavior and its zeolytic character. A simple 3-h laboratory designed for a quantitative analysis or an instrumental methods course is reported. This laboratory studies the transport of various cations into a PB-modified electrode…

  1. Microwave-assisted one-step synthesis of white light-emitting carbon dot suspensions

    NASA Astrophysics Data System (ADS)

    Vanessa, Hinterberger; Wenshuo, Wang; Cornelia, Damm; Simon, Wawra; Martin, Thoma; Wolfgang, Peukert

    2018-06-01

    In this contribution, we demonstrate that an aqueous solution with adjustable fluorescent color, including white light emission, can be achieved by a rapid one-step microwave synthesis method resulting in a mixture of blue-emitting carbon dots (CDs) and the yellow-emitting 2,3-diaminophenazine (DAP). Aqueous mixtures of o-phenylene-diamine (oPD) and citric acid (CA) are used as precursors. The resulting product structures are analyzed by FT-IR and NMR spectroscopy and the size of the resulting CDs is determined by atomic force microscopy to be 1.1 ± 0.3 nm. The synthesized solution exhibits two fluorescence emission peaks at 430 and 560 nm, which were found to originate from the CDs and DAP, respectively. The intensity ratio of both fluorescence peaks depends on pH, which is driven by the protonation state of DAP. In consequence, the fluorescence emission color of the CD solution can be tuned precisely and reproducibly from blue to white to yellow by careful control of the pH. Finally, at a pH level of 5.4, at which there is equal blue and yellow emission intensity, a white light emitting solution can be successfully produced in a very fast and simple synthesis procedure.

  2. Peach gum for efficient removal of methylene blue and methyl violet dyes from aqueous solution.

    PubMed

    Zhou, Li; Huang, Jiachang; He, Benzhao; Zhang, Faai; Li, Huabin

    2014-01-30

    This study investigated the potential use of natural peach gum (PG) as alternative adsorbent for the removal of dyes from aqueous solutions. The PG showed high adsorption capacities and selectivity for cationic dyes (e.g., methylene blue (MB) and methyl violet (MV)) in the pH range 6-10. 98% of MB and MV could be adsorbed within 5 min, and both of the adsorptions reached equilibrium within 30 min. The dye uptake process followed the pseudo-second-order kinetic model. The intraparticle diffusion was not the sole rate controlling step. Equilibrium adsorption isotherm data indicated a good fit to the Langmuir isotherm model. Regeneration study revealed that PG could be well regenerated in acid solution. The recovered PG still exhibited high adsorption capacity even after five cycles of desorption-adsorption. On the basis of its excellent adsorption performance and facile availability, PG can be employed as an efficient low cost adsorbent for environmental cleanup. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Removal of methyl orange and methylene blue dyes from aqueous solution using lala clam (Orbicularia orbiculata) shell

    NASA Astrophysics Data System (ADS)

    Eljiedi, Arwa Alseddig Ahmed; Kamari, Azlan

    2017-05-01

    Textile effluents are considered as potential sources of water pollution because they contain toxic dyes. In the present study, lala clam shell was used as an alternative low-cost adsorbent for the removal of two harmful dyes, namely methyl orange (MO) and methylene blue (MB) from aqueous solution. Batch adsorption studies were carried out by varying experimental parameters such as solution pH, initial concentration and adsorbent dosage. The optimum pH values for MO and MB removal were pH 2.0 and pH 8.0, respectively. At an initial MO and MB concentration of 20 mg/L, the maximum removal percentage of MO and MB were 18.9 % and 81.3 %, respectively. The adsorption equilibrium data were correlated with both Langmuir and Freundlich isotherm models. The biomass adsorbent was characterised using Field Emission Scanning Electron Microscope (FESEM) and Fourier Transform Infrared Spectrometer (FTIR). Results from this study suggest that lala clam shell, a fishery waste, can be beneficial for water treatment.

  4. Reuse of waste beer yeast sludge for biosorptive decolorization of reactive blue 49 from aqueous solution.

    PubMed

    Wang, Baoe; Guo, Xiu

    2011-06-01

    Reactive blue 49 was removed from aqueous solution by biosorption using powder waste sludge composed of Saccharomyces cerevisiae from the beer-brewing industry. The effect of initial pH, temperature and the biosorption thermodynamics, equilibrium, kinetics was investigated in this study. It was found that the biosorption capacity was at maximum at initial pH 3, that the effect of temperature on biosorption of reactive blue 49 was only slight in relation to the large biosorption capacity (25°C, 361 mg g(-1)) according as the biosorption capacity decreased only 43 mg g(-1) at the temperature increased from 25 to 50°C. The biosorption was spontaneous, exothermic in nature and the dye molecules movements decreased slightly in random at the solid/liquid interface during the biosorption of dye on biosorbents. The biosorption equilibrium data could be described by Freundich isotherm model. The biosorption rates were found to be consistent with a pseudo-second-order kinetics model. The functional group interaction analysis between waste beer yeast sludge and reactive blue 49 by the aid of Fourier transform infrared (abbr. FTIR) spectroscopy indicated that amino components involved in protein participated in the biosorption process, which may be achieved by the mutual electrostatic adsorption process between the positively charged amino groups in waste beer yeast sludge with negatively charged sulfonic groups in reactive blue 49.

  5. Hydrogels Containing Prussian Blue Nanoparticles Toward Removal of Radioactive Cesium Ions.

    PubMed

    Kamachi, Yuichiro; Zakaria, Mohamed B; Torad, Nagy L; Nakato, Teruyuki; Ahamad, Tansir; Alshehri, Saad M; Malgras, Victor; Yamauchil, Yusuke

    2016-04-01

    Recent reports have demonstrated the practical application of Prussian blue (PB) nanoparticles toward environmental clean-up of radionuclide 173Cs. Herein, we prepared a large amount of PB nanoparticles by mixing both iron(III) chloride and sodium ferrocyanide hydrate as starting precursors. The obtained PB nanoparticles show a high surface area (440 m2. g-1) and consequently an excellent uptake ability of Cs ions from aqueous solutions. The uptake ability of Cs ions into poly(N-isopropylacrylamide (PNIPA) hydrogel is drastically increased up to 156.7 m2. g-1 after incorporating our PB nanoparticles, compared to 30.2 m2 . g-1 after using commercially available PB. Thus, our PB-containing PNIPA hydrogel can be considered as an excellent candidate for the removal of Cs ions from aqueous solutions, which will be useful for the remediation of the nuclear waste.

  6. Preparation of iron oxide-impregnated spherical granular activated carbon-carbon composite and its photocatalytic removal of methylene blue in the presence of oxalic acid.

    PubMed

    Kadirova, Zukhra C; Hojamberdiev, Mirabbos; Katsumata, Ken-Ichi; Isobe, Toshihiro; Matsushita, Nobuhiro; Nakajima, Akira; Sharipov, Khasan; Okada, Kiyoshi

    2014-01-01

    The spherical granular activated carbon-carbon composites (GAC-Fe) with different iron oxide contents (Fe mass% = 0.6-10) were prepared by a pore volume impregnation method. The X-ray diffraction (XRD), scanning electron microscopy (SEM), and N2-adsorption results confirm the presence of amorphous iron oxide, pyrolytic carbon, and graphitized globular carbon nanoparticles covered with amorphous carbon in the CAG-Fe. The rate of photodegradation of methylene blue (MB) in aqueous solution under UV light in the presence of oxalic acid correlates with porosity of the prepared materials. The total MB removal includes the combination of adsorption and photodegradation without the addition of H2O2. The results of total organic carbon (TOC) analysis reveal that the decolorization of MB in aqueous solution containing oxalic acid corresponds to the decomposition of organic compounds to CO2 and H2O.

  7. Enhanced adsorptive removal of methyl orange and methylene blue from aqueous solution by alkali-activated multiwalled carbon nanotubes.

    PubMed

    Ma, Jie; Yu, Fei; Zhou, Lu; Jin, Lu; Yang, Mingxuan; Luan, Jingshuai; Tang, Yuhang; Fan, Haibo; Yuan, Zhiwen; Chen, Junhong

    2012-11-01

    An alkali-acitvated method was explored to synthesize activated carbon nanotubes (CNTs-A) with a high specific surface area (SSA), and a large number of mesopores. The resulting CNTs-A were used as an adsorbent material for removal of anionic and cationic dyes in aqueous solutions. Experimental results indicated that CNTs-A have excellent adsorption capacity for methyl orange (149 mg/g) and methylene blue (399 mg/g). Alkali-activation treatment of CNTs increased the SSA and pore volume (PV), and introduced oxygen-containing functional groups on the surface of CNTs-A, which would be beneficial to improving the adsorption affinity of CNTs-A for removal of dyes. Kinetic regression results shown that the adsorption kinetic was more accurately represented by a pseudo second-order model. The overall adsorption process was jointly controlled by external mass transfer and intra-particle diffusion, and intra-particle diffusion played a dominant role. Freundlich isotherm model showed a better fit with adsorption data than Langmuir isotherm model. Adsorption interactions of dyes onto CNTs-A from aqueous solutions were investigated using Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) method. The remarkable adsorption capacity of dye onto CNTs-A can be attributed to the multiple adsorption interaction mechanisms (hydrogen bonding, π-π electron-donor-acceptor interactions, electrostatic interactions, mesopore filling) on the CNTs-A. Results of this work are of great significance for environmental applications of activated CNTs as a promising adsorbent nanomaterial for organic pollutants from aqueous solutions.

  8. Indian jujuba seed powder as an eco-friendly and a low-cost biosorbent for removal of acid blue 25 from aqueous solution.

    PubMed

    Krishna, L Sivarama; Reddy, A Sreenath; Zuhairi, W Y Wan; Taha, M R; Reddy, A Varada

    2014-01-01

    Indian jujuba seed powder (IJSP) has been investigated as a low-cost and an eco-friendly biosorbent, prepared for the removal of Acid Blue 25 (AB25) from aqueous solution. The prepared biomaterial was characterized by using FTIR and scanning electron microscopic studies. The effect of operation variables, such as IJSP dosage, contact time, concentration, pH, and temperature on the removal of AB25 was investigated, using batch biosorption technique. Removal efficiency increased with increase of IJSP dosage but decreased with increase of temperature. The equilibrium data were analyzed by the Langmuir and the Freundlich isotherm models. The data fitted well with the Langmuir model with a maximum biosorption capacity of 54.95 mg g(-1). The pseudo-second-order kinetics was the best for the biosorption of AB25 by IJSP, with good correlation. Thermodynamic parameters such as standard free energy change (ΔG(0)), standard enthalpy changes (ΔH(0)), and standard entropy changes (ΔS(0)) were analyzed. The removal of AB25 from aqueous solution by IJSP was a spontaneous and exothermic adsorption process. The results suggest that IJSP is a potential low-cost and an eco-friendly biosorbent for the AB25 removal from synthetic AB25 wastewater.

  9. Guava (Psidium guajava) leaf powder: novel adsorbent for removal of methylene blue from aqueous solutions.

    PubMed

    Ponnusami, V; Vikram, S; Srivastava, S N

    2008-03-21

    Batch sorption experiments were carried out using a novel adsorbent, guava leaf powder (GLP), for the removal of methylene blue (MB) from aqueous solutions. Potential of GLP for adsorption of MB from aqueous solution was found to be excellent. Effects of process parameters pH, adsorbent dosage, concentration, particle size and temperature were studied. Temperature-concentration interaction effect on dye uptake was studied and a quadratic model was proposed to predict dye uptake in terms of concentration, time and temperature. The model conforms closely to the experimental data. The model was used to find optimum temperature and concentration that result in maximum dye uptake. Langmuir model represent the experimental data well. Maximum dye uptake was found to be 295mg/g, indicating that GLP can be used as an excellent low-cost adsorbent. Pseudo-first-order, pseudo-second order and intraparticle diffusion models were tested. From experimental data it was found that adsorption of MB onto GLP follow pseudo second order kinetics. External diffusion and intraparticle diffusion play roles in adsorption process. Free energy of adsorption (DeltaG degrees ), enthalpy change (DeltaH degrees ) and entropy change (DeltaS degrees ) were calculated to predict the nature of adsorption. Adsorption in packed bed was also evaluated.

  10. Indian Jujuba Seed Powder as an Eco-Friendly and a Low-Cost Biosorbent for Removal of Acid Blue 25 from Aqueous Solution

    PubMed Central

    Krishna, L. Sivarama; Reddy, A. Sreenath; Zuhairi, W. Y. Wan; Taha, M. R.; Reddy, A. Varada

    2014-01-01

    Indian jujuba seed powder (IJSP) has been investigated as a low-cost and an eco-friendly biosorbent, prepared for the removal of Acid Blue 25 (AB25) from aqueous solution. The prepared biomaterial was characterized by using FTIR and scanning electron microscopic studies. The effect of operation variables, such as IJSP dosage, contact time, concentration, pH, and temperature on the removal of AB25 was investigated, using batch biosorption technique. Removal efficiency increased with increase of IJSP dosage but decreased with increase of temperature. The equilibrium data were analyzed by the Langmuir and the Freundlich isotherm models. The data fitted well with the Langmuir model with a maximum biosorption capacity of 54.95 mg g−1. The pseudo-second-order kinetics was the best for the biosorption of AB25 by IJSP, with good correlation. Thermodynamic parameters such as standard free energy change (ΔG 0), standard enthalpy changes (ΔH 0), and standard entropy changes (ΔS 0) were analyzed. The removal of AB25 from aqueous solution by IJSP was a spontaneous and exothermic adsorption process. The results suggest that IJSP is a potential low-cost and an eco-friendly biosorbent for the AB25 removal from synthetic AB25 wastewater. PMID:25383360

  11. Uniform Cu{sub 2}Cl(OH){sub 3} hierarchical microspheres: A novel adsorbent for methylene blue adsorptive removal from aqueous solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Wei; Gao, Pin; Xie, Jimin, E-mail: xiejm391@sohu.com

    2013-08-15

    Using the solution phase method without any surfactants or templates, the hierarchical of Cu{sub 2}Cl(OH){sub 3} microspheres were synthesized by freeze drying. The size and surface area of the microspheres are ca. 1–2 µm and 76.61 m{sup 2} g{sup −1}, respectively. A possible formation mechanism is presented based on the experimental results. Methylene blue was chosen to investigate the adsorption capacity of the as-prepared adsorbent. The effects of various experimental parameters, such as pH, initial dye concentration, and contact time were investigated. The results showed that the dye removal increased with the increasing in the initial concentration of the dyemore » and also increased in the amount of microspheres used and initial pH. Adsorption data fitted well with the Freundlich adsorption isotherm. The thermodynamic analysis presented the exothermic, spontaneous and more ordered arrangement process. The microspheres could be employed effective for removal of dyes from aqueous solution. - Graphical abstract: The single-crystalline hierarchical Cu{sub 2}Cl(OH){sub 3} spheres can be prepared for the first time by using a template-free process through freeze-drying. Meanwhile, the hierarchical spheres exhibited high adsorption capacity to methylene blue. Display Omitted - Highlights: • Cu{sub 2}Cl(OH){sub 3} microspheres were successfully synthesized through a freeze drying process. • A possible formation mechanism of hierarchical microspheres was presented. • The Cu{sub 2}Cl(OH){sub 3} microspheres have high methylene blue adsorption capacity. • Methylene blue adsorption is a spontaneous and exothermic process. • The adsorption mechanism of microspheres onto dye was proposed in detail.« less

  12. Reaction mechanisms of methylene-blue degradation in three-dimensionally integrated micro-solution plasma

    NASA Astrophysics Data System (ADS)

    Shirafuji, Tatsuru; Ishida, Yodai; Nomura, Ayano; Hayashi, Yui; Goto, Motonobu

    2017-06-01

    We have performed matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) on methylene-blue aqueous solutions treated with three-dimensionally integrated micro-solution plasma, in which we have acquired the time evolution of mass spectra as a function of treatment time. The time evolution of mass spectral peak intensities for major detected species has clearly indicated that the parent methylene-blue molecules are degraded through consecutive reactions. The primary reaction is the oxidation of the parent molecules. The oxidized species still have two benzene rings in the parent molecules. The secondary reactions are the separation of the oxidized species and the formation of compounds with one benzene ring. We have also performed the numerical fitting of the time evolution of the mass spectral peak intensities, the results of which have indicated that we must assume additional primary reactions before the primary oxidation for better agreement with experimental results.

  13. Pyrene As a New Detector for Determining the Composition of Silver Nanoparticle Dispersions in Aqueous Solutions

    NASA Astrophysics Data System (ADS)

    Romanovskaya, G. I.; Kazakova, S. Yu.; Koroleva, M. V.; Zuev, B. K.

    2018-03-01

    It is proposed that the fluorescence of monomeric molecules of pyrene in solid matrices or in concentrated micellar solutions be used as a detector for determining the compositional homogeneity of silver nanoparticle (NP) dispersions in aqueous solutions synthesized in different ways. It is found that the morphology of silver NPs affects the change in the fluorescence intensity of monomeric molecules of pyrene in a certain (violet or blue) region of the pyrene optical spectrum. The observed phenomenon is attributed to the resonance of electronic transitions in the monomeric molecules of pyrene in regions with plasmon oscillations in silver nanoparticles. A new way of obtaining fluorescent silver NPs is found.

  14. Graphene oxide/Fe3O4/chitosan nanocomposite: a recoverable and recyclable adsorbent for organic dyes removal. Application to methylene blue

    NASA Astrophysics Data System (ADS)

    Tran, Hoang V.; Bui, Lieu T.; Dinh, Thuy T.; Le, Dang H.; Huynh, Chinh D.; Trinh, Anh X.

    2017-03-01

    In this research, the potential of chitosan/Fe3O4/graphene oxide (CS/Fe3O4/GO) nanocomposite for efficient removal of methylene blue (MB) as a cationic dye from aqueous solutions was investigated. For this purpose, first, graphene oxide (GO) was prepared from pencil’s graphite by Hummer’s method, then after, CS/Fe3O4/GO was synthesized via chemical co-precipitation method from a mixture solution of GO, Fe3+, Fe2+ and chitosan. The synthesized CS/Fe3O4/GO was characterized by XRD, VSM and SEM techniques. Also, the various parameters affecting dye removal were investigated. Dye adsorption equilibrium data were fitted well to the Langmuir isotherm rather than Freundlich isotherm. The maximum monolayer capacity (q max), was calculated from the Langmuir as 30.10 mg · g-1. The results show that, CS/Fe3O4/GO nanocomposite, can be used as a cheap and efficient adsorbent for removal of cationic dyes from aqueous solutions.

  15. Removal of acid blue 062 on aqueous solution using calcinated colemanite ore waste.

    PubMed

    Atar, Necip; Olgun, Asim

    2007-07-19

    Colemanite ore waste (CW) has been employed as adsorbent for the removal of acid blue 062 anionic dye (AB 062) from aqueous solution. The adsorption of AB 062 onto CW was examined with respect to contact time, calcination temperature, particle size, pH, adsorbent dosage and temperature. The physical and chemical properties of the CW, such as particle sizes and calcinations temperature, play important roles in dye adsorption. The dye adsorption largely depends on the initial pH of the solution with maximum uptake occurring at pH 1. Three simplified kinetics models, namely, pseudo-first order, pseudo-second order, and intraparticle diffusion models were tested to investigate the adsorption mechanisms. The kinetic adsorption of AB 062 on CW follows a pseudo-second order equation. The adsorption data have been analyzed using Langmuir and Freundlich isotherms. The results indicate that the Langmuir model provides the best correlation of the experimental data. Isotherms have also been used to obtain the thermodynamic parameters such as free energy, enthalpy and entropy of the adsorption of dye onto CW.

  16. Ozonation of the food dye Brilliant Blue in aqueous medium: monitoring and characterization of products by direct infusion electrospray ionization coupled to high-resolution mass spectrometry.

    PubMed

    da Silva, Júlio César Cardoso; Bispo, Glayson Leonardo; Pavanelli, Sérgio Pinton; Afonso, Robson José de Cássia Franco; Augusti, Rodinei

    2012-06-15

    Dyes have been widely used to accentuate or to provide different colors to foods. However, the high concentrations of dyes in effluents from the food industries can cause serious and unpredictable damages to aquatic life in general. Furthermore, since conventional biological treatments have been shown to be ineffective, the use of advanced oxidation processes to promote the depletion of such dyes in water bodies has turned out to be mandatory. The degradation of the food dye Brilliant Blue by ozone in aqueous solution is reported herein. The overall process was monitored in real time by using direct infusion electrospray ionization high-resolution mass spectrometry in the negative ion mode, ESI(-)-HRMS. Preliminary results (visual inspection and UV-vis spectra) showed the high efficiency of ozonation in causing the decoloration of an aqueous solution of the dye whereas TOC (total organic carbon) measurements revealed that such an oxidation process was unable to promote its complete mineralization. ESI(-)-HRMS data showed that the substrate consumption occurred concomitantly with the appearance of four by-products, all of them produced by an initial attack of hydroxyl radicals (generated via the decomposition of ozone) on the two imino moieties of the dye molecule. Structures were proposed for all the by-products based mainly on the high-resolution mass measurements and on the characteristic reactivity of typical functional groups towards hydroxyl radicals. An unprecedented degradation route of Brilliant Blue by ozone in aqueous solution could thus be proposed. A greater ecotoxicity against Artemia salina was observed for the by-products than for the original dye. This indicates that the identification of by-products arising from oxidation treatments is of primary importance since such compounds can be more hazardous than the precursor itself. Copyright © 2012 John Wiley & Sons, Ltd.

  17. Gibbs Energy Changes during Cobalt Complexation: A Thermodynamics Experiment for the General Chemistry Laboratory

    ERIC Educational Resources Information Center

    DeGrand, Michael J.; Abrams, M. Leigh; Jenkins, Judith L.; Welch, Lawrence E.

    2011-01-01

    By adding a large quantity of Cl[superscript -] to an aqueous solution of CoCl[subscript 2][multiplied by]6H[subscript 2]O, a mixture containing a red octahedral cobalt complex and a blue tetrahedral complex is produced. When the solution temperature is modified, the equilibrium constant, K[subscript eq], of the complexation reaction is shifted…

  18. Efficient removal of dyes from aqueous solutions using a novel hemoglobin/iron oxide composite.

    PubMed

    Essandoh, Matthew; Garcia, Rafael A

    2018-05-10

    Magnetic particles entrapped in different matrices that display high thermal stability, low toxicity, interactive functions at the surface, and high saturation magnetization are of great interest. The objective of this work was to synthesize a novel hemoglobin/iron oxide composite (Hb/Fe 3 O 4 ) for the removal of different dyes (indigo carmine, naphthol blue black, tartrazine, erythrosine, eriochrome black T and bromophenol blue) from aqueous solutions. The Hb/Fe 3 O 4 composite was characterized using scanning electron microscopy (SEM), laser diffraction particle size analysis, FT-IR spectroscopy, isoelectric point determination and thermogravimetric analysis (TGA). The Hb/Fe 3 O 4 composite showed high removal efficiency toward all the different classes of dyes studied and the mechanism of adsorption was dominated by electrostatic interaction. Adsorption was found to follow pseudo-second order kinetic model and Langmuir isotherm. The Langmuir monolayer adsorption capacities for all the dyes range from 80 to 178 mg/g. The Hb/Fe 3 O 4 composite possesses extra advantage of being easily isolated from aqueous suspension using an external magnet. The stability of the prepared Hb/Fe 3 O 4 composite was also demonstrated. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Adsorption of anionic and cationic dyes on activated carbon from aqueous solutions: equilibrium and kinetics.

    PubMed

    Rodríguez, Araceli; García, Juan; Ovejero, Gabriel; Mestanza, María

    2009-12-30

    Activated carbon was utilized as adsorbent to remove anionic dye, Orange II (OII), and cationic dye, Methylene blue (MB), from aqueous solutions by adsorption. Batch experiments were conducted to study the effects of temperature (30-65 degrees C), initial concentration of adsorbate (300-500 mg L(-1)) and pH (3.0-9.0) on dyes adsorption. Equilibrium adsorption isotherms and kinetics were investigated. The equilibrium experimental data were analyzed by the Langmuir, Freundlich, Toth and Redlich-Peterson models. The kinetic data obtained with different carbon mass were analyzed using a pseudo-first order, pseudo-second order, intraparticle diffusion, Bangham and Chien-Clayton equations. The best results were achieved with the Langmuir isotherm equilibrium model and with the pseudo-second order kinetic model. The activated carbon was found to be very effective as adsorbent for MB and OII from aqueous solutions.

  20. Textile Dye Removal from Aqueous Solution using Modified Graphite Waste/Lanthanum/Chitosan Composite

    NASA Astrophysics Data System (ADS)

    Kusrini, E.; Wicaksono, B.; Yulizar, Y.; Prasetyanto, EA; Gunawan, C.

    2018-03-01

    We investigated various pre-treatment processes of graphite waste using thermal, mechanical and chemical methods. The aim of this work is to study the performance of modified graphite waste/lanthanum/chitosan composite (MG) as adsorbent for textile dye removal from aqueous solution. Effect of graphite waste resources, adsorbent size and lanthanum concentration on the dye removal were studied in batch experiments. Selectivity of MG was also investigated. Pre-heated graphite waste (NMG) was conducted at 80°C for 1 h, followed by mechanical crushing of the resultant graphite to 75 μm particle size, giving adsorption performance of ˜58%, ˜67%, ˜93% and ˜98% of the model dye rhodamine B (concentration determined by UV-vis spectroscopy at 554 nm), methyl orange (464 nm), methylene blue (664 nm) and methyl violet (580 nm), respectively from aqueous solution. For this process, the system required less than ˜5 min for adsorbent material to be completely saturated with the adsorbate. Further chemical modification of the pre-treated graphite waste (MG) with lanthanum (0.01 – V 0.03 M) and chitosan (0.5% w/w) did not improve the performance of dye adsorption. Under comparable experimental conditions, as those of the ‘thermal-mechanical-pre-treated-only’ (NMG), modification of graphite waste (MG) with 0.03 M lanthanum and 0.5% w/w chitosan resulted in ˜14%, ˜47%, ˜72% and ˜85% adsorption of rhodamine B, methyl orange, methylene blue and methyl violet, respectively. Selective adsorption of methylene blue at most to ˜79%, followed by methyl orange, methyl violet and rhodamine B with adsorption efficiency ˜67, ˜38, and ˜9% sequentially using MG with 0.03 M lanthanum and 0.5% w/w chitosan.

  1. Colloidal titration of aqueous zirconium solutions with poly(vinyl sulfate) by potentiometric endpoint detection using a toluidine blue selective electrode.

    PubMed

    Sakurada, Osamu; Kato, Yasutake; Kito, Noriyoshi; Kameyama, Keiichi; Hattori, Toshiaki; Hashiba, Minoru

    2004-02-01

    Zirconium oxy-salts were hydrolyzed to form positively charged polymer or cluster species in acidic solutions. The zirconium hydrolyzed polymer was found to react with a negatively charged polyelectrolyte, such as poly(vinyl sulfate), and to form a stoichiometric polyion complex. Thus, colloidal titration with poly(vinyl sulfate) was applied to measure the zirconium concentration in an acidic solution by using a Toluidine Blue selective plasticized poly(vinyl chloride) membrane electrode as a potentiometric end-point detecting device. The determination could be performed with 1% of the relative standard deviation. The colloidal titration stoichiometry at pH < or = 2 was one mol of zirconium per equivalent mol of poly(vinyl sulfate).

  2. Adsorption studies of methylene blue and gentian violet on sugarcane bagasse modified with EDTA dianhydride (EDTAD) in aqueous solutions: kinetic and equilibrium aspects.

    PubMed

    Gusmão, Karla Aparecida Guimarães; Gurgel, Leandro Vinícius Alves; Melo, Tânia Márcia Sacramento; Gil, Laurent Frédéric

    2013-03-30

    In this study the adsorption of cationic dyes by modified sugarcane bagasse with EDTA dianhydride (EB) was examined using methylene blue (MB) and gentian violet (GV) as model compounds in aqueous single solutions. The synthesized adsorbent (EB) was characterized by FTIR, elemental analysis, and BET. The capacity of EB to adsorb dyes was evaluated at different contact times, pH values, and initial dye concentrations. According to the obtained results, the adsorption processes could be described by a pseudo-second-order kinetic model. The adsorption isotherms were well fitted by the Langmuir model. Maximum adsorption capacities for MB and GV on EB were found to be 202.43 and 327.83 mg/g, respectively. The free energy change during adsorption of MB and GV was found to be -22.50 and -24.21 kJ/mol, respectively, suggesting that chemisorption is the main mechanism controlling the adsorption process. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Activated bauxite waste as an adsorbent for removal of Acid Blue 92 from aqueous solutions.

    PubMed

    Norouzi, Sh; Badii, Kh; Doulati Ardejani, F

    2010-01-01

    Bauxite waste, known as red mud, is produced in some industrial processes, such as aluminum production process. In this process, the waste material is produced from leached bauxite as a by product. In this research, the removal of Acid Blue 92 (AB92) dye was investigated from aqueous solution onto the activated bauxite waste (red mud) in a batch equilibration system. Besides, the influences of pH, adsorbent dosage, contact time, initial concentration of dye and temperature have been considered. It was found that the OH group is an effective functional group for the adsorption process. The intensity of the peaks correspond to OH group has been significantly climbed after the activation process. The adsorption kinetics of AB92 can be well described by the pseudo-second-order reaction model. Based on the isotherm data obtained from the fittings of the adsorption kinetics, the Langmuir model appears to fit the adsorption process better than the Freundlich and Brunauer-Emmett-Teller (BET) models.

  4. Decolorisation of Basic Textile Dye from Aqueous Solutions using a Biosorbent derived from Thespesia populnea used Biomass

    NASA Astrophysics Data System (ADS)

    Gunturu, Bhargavi; Rao Palukuri, Nageswara; Sahadevan, Renganathan

    2018-03-01

    In the present study, the efficiency of a biosorbent derived from seeds of Thespesia populnea was investigated towards the removal of basic textile dye Methylene Blue from an aqueous solution. Adsorption studies were carried out in batch system. Influence of experimental parameters such as adsorbent dosage (0.1g/L-0.3g/L), PH (2-10) and initial dye concentration (50-130mg/L) on adsorption of dye onto biosorbent was investigated. Maximum uptake of dye was observed with 0.1g/L adsorbent dosage at PH 8.0. Equilibrium uptake of methylene blue dye by the adsorbent was analyzed by Langmuir and Freundlich isotherm models. The data fitted best with Freundlich model, suggesting that adsorption of the dye was by multilayer model on the surface of the adsorbent. Experimental results obtained support that the biosorbent used in the present study can be a suitable low cost alternate for the removal of basic textile dyes.

  5. Removal of methylene blue from aqueous solution by Artist's Bracket fungi: kinetic and equilibrium studies.

    PubMed

    Naghipour, Daryush; Taghavi, Kamran; Moslemzadeh, Mehrdad

    2016-01-01

    In this study, adsorption of methylene blue (MB) dye onto Artist's Bracket (AB) fungi was investigated in aqueous solution. Fourier transform infrared and scanning electron microscopy were used to investigate surface characteristic of AB fungi. Influence of operational parameters such as pH, contact time, biosorbent dosage, dye concentration, inorganic salts and temperature was studied on dye removal efficiency. With the increase of pH from 3 to 9, removal efficiency increased from 74.0% to 90.4%. Also, it reduced from 99.8% to 81.8% with increasing initial MB concentration from 25 mg L(-1) to 100 mg L(-1), whereas it increased from 54.7% to 98.7% and from 98.5% to 99.9% with increasing biosorbent dosage from 0.5 g L(-1) to 2 g L(-1) and with increasing temperature from 25 °C to 50 °C, respectively. Isotherm studies have shown adsorption of MB dye over the AB fungi had a better coefficient of determination (R(2)) of 0.98 for Langmuir isotherm. In addition, the maximum monolayer adsorption capacity (qm) was 100 mg g(-1). Also, the MB dye adsorption process followed pseudo-second-order kinetic. In general, AB fungi particles can be favorable for removal of MB dye from dye aqueous solution with natural pH and high temperature.

  6. Naked-eye determination of oxalate anion in aqueous solution with copper ion and pyrocatechol violet.

    PubMed

    Su, Jing; Sun, Yuan-Qiang; Huo, Fang-Jun; Yang, Yu-Tao; Yin, Cai-Xia

    2010-11-01

    A novel strategy for the determination of oxalate anions was successfully established using a copper ion and pyrocatechol violet (PV) ensemble. The sensor ensemble can discriminate oxalate over other common anions including F(-), Cl(-), I(-), Br(-), HPO(4)(2-), PO(4)(3-), AcO(-), CO(3)(2-), SO(4)(2-), ClO(4)(-), P(2)O(7)(4-), S(2-) (deposited by Ag(+)), CN(-) (shielded by Fe(3+)) and can detect oxalate at low microgram levels in quasi-physiological aqueous solutions. The detection of the oxalate anion gives rise to a rapid observable visual color change from blue to yellow.

  7. Synthesis, spectroscopy, and binding constants of ketocatechol-containing iminodiacetic acid and its Fe(III), Cu(II), and Zn(II) complexes and reaction of Cu(II) complex with H₂O₂ in aqueous solution.

    PubMed

    Gao, Jiaojiao; Xing, Feifei; Bai, Yueling; Zhu, Shourong

    2014-06-07

    A new neuromelanin-like ketocatechol-containing iminodiacetic acid ligand, (N-(3,4-dihydroxyl)phenacylimino)diacetic acid (H4L), which is also quite similar to compounds found in insect cuticle, has been synthesized and characterized. The X-ray crystal structure of H4L has been successfully determined. Proton binding and coordination with Fe(III), Cu(II), and Zn(II) have been studied by potentiometric titrations and UV-vis spectrophotometry in aqueous solution. UV spectra of H4L in the absence and presence of different metal ions indicate complexes formed with the catechol moiety of H4L in aqueous solution. Visible spectra and NMR reveal that H4L with Fe(III), Cu(II), and Zn(II) can all give stable mono-(ML) and dinuclear complexes [M(ML)]. Fe(III) can also form {Fe(FeL)2} and {Fe(FeL)3} species with sufficient base. The process is accompanied by a drastic color change from light blue to deep-blue to wine-red. The Fe(III)-Cu(II) heteronuclear complex also exists in aqueous solution whose spectra are similar to the homonuclear Fe(III) complex. However, the spectra of {Fe(CuL)} shifted to a longer wavelength and {Fe(CuL)2} and {Fe(CuL)3} shifted to a shorter wavelength. Keto-enol tautomerism was observed in weak basic aqueous solution as indicated by (1)H NMR spectra. The reaction products of Cu(II) complex with H2O2 depend on the H2O2 concentration and pH value. Low concentrations of H2O2 oxidize H4L to a series of semiquinone and quinone compounds with absorption maxima at 314-400 nm, while a high concentration of H2O2 oxidizes H4L to colorless muconic acid derivatives. NaIO4 gives different oxidase products, but no 2,4,5-trihydroxyphenylalanine quinone (TPQ)-like hydroxyquinone can be found.

  8. Post-Synthetic Polymerization of UiO-66-NH2 Nanoparticles and Polyurethane Oligomer toward Stand-Alone Membranes for Dye Removal and Separation.

    PubMed

    Yao, Bing-Jian; Jiang, Wei-Ling; Dong, Ying; Liu, Zhi-Xian; Dong, Yu-Bin

    2016-07-18

    Metal-organic frameworks (MOFs) are widely used as porous materials in the fields of adsorption and separation. However, their practical application is largely hindered by limitations to their processability. Herein, new UiO-66-Urea-based flexible membranes with MOF loadings of 50 (1), 60 (2), and 70 wt % (3) were designed and prepared by post-synthetic polymerization of UiO-66-NH2 nanoparticles and a polyurethane oligomer under mild conditions. The adsorption behavior of membrane 3 towards four hydrophilic dyes, namely, eosin Y (EY), rhodamine B (RB), malachite green (MG), and methylene blue (MB), in aqueous solution was studied in detail. It exhibits strong adsorption of EY and RB but weak adsorption of MG and MB in aqueous solution. Owing to the selective adsorption of these hydrophilic dyes, membrane 3 can remove EY and RB from aqueous solution and completely separate EY/MB, RB/MG, and RB/MB mixtures in aqueous solution. In addition, the membrane is uniformly textured, easily handled, and can be reused for dye adsorption and separation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Facile synthesis of Fe3O4@C hollow nanospheres and their application in polluted water treatment

    NASA Astrophysics Data System (ADS)

    Zhang, Yuanguang; Xu, Shihao; Xia, Hongyu; Zheng, Fangcai

    2016-11-01

    Nanostructured carbon-based materials, such as carbon nanotube arrays have shown respectable removal ability for heavy metal ions and organic dyes in aqueous solution. Although the carbon-based materials exhibited excellent removal ability, the separation of them from the aqueous solution is difficult and time-consuming. Here we demonstrated a novel and facile route for the large-scale fabrication of Fe3O4@C hollow nanospheres, with using ferrocene as a single reagent and SiO2 as a template. The as-prepared Fe3O4@C hollow nanospheres exhibited adsorption ability for heavy metal ions and organic dyes from aqueous solution, and can be easily separated by an external magnet. When the as-prepared Fe3O4@C hollow nanospheres were mixed with the aqueous solution of Hg2+ within 15 min, the removal efficiency was 90.3%. The as-prepared Fe3O4@C hollow nanospheres were also exhibited a high adsorption capacity (100%) as the adsorbent for methylene blue (MB). In addition, the as-prepared Fe3O4@C hollow nanospheres can be used as the recyclable sorbent for water treatment via a simple magnetic separation.

  10. New Electrorelease Systems Based on Microporous Membranes

    DTIC Science & Technology

    1990-08-02

    correspondence (6) we demonstrated the validity of the concept by showing that insulin and vitamin B-12 can be electroreleased from a composite membrane...applied to the membrane. The dye reservoir contained an aqueous solution of either methylene blue dye (Aldrich), K3 Fe(CN)6 (Baker), or bovine insulin

  11. Lignocellulosic composites prepared utilizing aqueous alkaline/urea solutions with cold temperatures

    USDA-ARS?s Scientific Manuscript database

    Lignocellulosic composites (LCs) were fabricated by partially dissolving cotton to create a matrix that was reinforced with Osage orange wood (OOW) particles and/or Blue agave fibers (AF). LCs were composed of 15-35% cotton matrix: 65-85% OWW/AF reinforcement. The matrix was produced by soaking cott...

  12. Solar energy storage using surfactant micelles

    NASA Astrophysics Data System (ADS)

    Srivastava, R. C.; Marwadi, P. R.; Latha, P. K.; Bhise, S. B.

    1982-09-01

    The results of experiments designed to test the soluble reduced form of thionine dye as a suitable solar energy storage agent inside the hydrophobic core of surfactant micelles are discussed. Aqueous solutions of thionine, methylene blue, cetyl pyridinium bromide, sodium lauryl sulphate, iron salts, and iron were employed as samples of anionic, cationic, and nonionic surfactants. The solutions were exposed to light until the dye disappeared, and then added drop-by-drop to surfactant solutions. The resultant solutions were placed in one cell compartment while an aqueous solution with Fe(2+) and Fe(3+) ions were placed in another, with the compartments being furnished with platinum electrodes connected using a saturated KCl-agar bridge. Data was gathered on the short circuit current, maximum power, and internal resistance encountered. Results indicate that dye-surfactant systems are viable candidates for solar energy storage for later conversion to electrical power.

  13. Removal of Remazol turquoise Blue G-133 from aqueous solution using modified waste newspaper fiber.

    PubMed

    Zhang, Xiaoyu; Tan, Jia; Wei, Xinhao; Wang, Lijuan

    2013-02-15

    Waste newspaper fiber (WNF) was separated and modified via grafting quaternary ammonium salt to obtain an adsorbent, which removes Remazol turquoise Blue G-133 (RTB G-133) from aqueous solutions. SEM and IR were used to analyze the morphology and chemical groups of the modified waste newspaper fiber (MWNF). Batch adsorption studies were conducted with varying adsorbent dosages, solution pH, and contact time. Adsorption isotherms and models were fitted. The SEM photographs show the surface of MWNF is smoother in comparison with that of WNF. The IR analysis indicates that the quaternary ammonium salt was successfully grafted onto the cellulose skeleton in WNF and the chemical interaction played an important role in adsorption. Results show that the equilibrium adsorption capacity can be reached within 360 min, and that the maximum adsorption capacity was 260 mg g(-1). The adsorption of RTB G-133 on MWNF was a spontaneous endothermic process and well fitted pseudo-second-order kinetic model and Langmuir adsorption isotherm model. The results show that MWNF is promising for dye wastewater treatment. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  14. Tuning the emission of aqueous Cu:ZnSe quantum dots to yellow light window

    NASA Astrophysics Data System (ADS)

    Wang, Chunlei; Hu, Zhiyang; Xu, Shuhong; Wang, Yanbin; Zhao, Zengxia; Wang, Zhuyuan; Cui, Yiping

    2015-07-01

    Synthesis of internally doped Cu:ZnSe QDs in an aqueous solution still suffers from narrow tunable emissions from the blue to green light window. In this work, we extended the emission window of aqueous Cu:ZnSe QDs to the yellow light window. Our results show that high solution pH, multiple injections of Zn precursors, and nucleation doping strategy are three key factors for preparing yellow emitted Cu:ZnSe QDs. All these factors can depress the reactivity of CuSe nuclei and Zn monomers, promoting ZnSe growth outside CuSe nuclei rather than form ZnSe nuclei separately. With increased ZnSe QD size, the conduction band and nearby trap state energy levels shift to higher energy sites, causing Cu:ZnSe QDs to have a much longer emission.

  15. Enhanced removal of hazardous dye form aqueous solutions and real textile wastewater using bifunctional chitin/lignin biosorbent.

    PubMed

    Wawrzkiewicz, Monika; Bartczak, Przemysław; Jesionowski, Teofil

    2017-06-01

    A new biomaterial based on chitin and lignin was prepared and applied for the removal of hazardous dye C.I. Direct Blue 71 (DB71) from aqueous solutions and wastewaters. The dye sorption on the chitin/lignin biosorbent (Ch/L) was examined depending on the initial dye concentration (50-200mg/L), phase contact time (1-1440min), kind of auxiliaries (NaCl, Na 2 SO 4 , anionic surfactant SDS) and their concentrations (1-20g/L salts, 0.1-0.75g/L SDS), initial solution pH as well as temperature (20-50°C). The equilibrium and kinetic characteristics of C.I. Direct Blue 71 uptake by chitin/lignin followed by the Freundlich isotherm model and the pseudo-second order model rather than the Langmuir, Tempkin models, and pseudo-first order model. C.I. Direct Blue 71 adsorption on chitin/lignin was spontaneous (-2.86 to -8.14kJ/mol) and endothermic (60.1kJ/mol). The possibilities of dye elution and reuse by means of the batch method were investigated and as follows the chemical reaction is an inseparable sorption mechanism. Purification of wastewaters containing direct dyes was made with 91% efficiency after 1h of phase contact time. For comparison, data obtained or obtained results in the DB71-chitin (Ch) system were also presented. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Urea enhances the photodynamic efficiency of methylene blue.

    PubMed

    Nuñez, Silvia C; Yoshimura, Tania M; Ribeiro, Martha S; Junqueira, Helena C; Maciel, Cleiton; Coutinho-Neto, Maurício D; Baptista, Maurício S

    2015-09-01

    Methylene blue (MB) is a well-known photosensitizer used mostly for antimicrobial photodynamic therapy (APDT). MB tends to aggregate, interfering negatively with its singlet oxygen generation, because MB aggregates lean towards electron transfer reactions, instead of energy transfer with oxygen. In order to avoid MB aggregation we tested the effect of urea, which destabilizes solute-solute interactions. The antimicrobial efficiency of MB (30 μM) either in water or in 2M aqueous urea solution was tested against a fungus (Candida albicans). Samples were kept in the dark and irradiation was performed with a light emitting diode (λ = 645 nm). Without urea, 9 min of irradiation was needed to achieve complete microbial eradication. In urea solution, complete eradication was obtained with 6 min illumination (light energy of 14.4 J). The higher efficiency of MB/urea solution was correlated with a smaller concentration of dimers, even in the presence of the microorganisms. Monomer to dimer concentration ratios were extracted from the absorption spectra of MB solutions measured as a function of MB concentration at different temperatures and at different concentrations of sodium chloride and urea. Dimerization equilibrium decreased by 3 and 6 times in 1 and 2M urea, respectively, and increased by a factor of 6 in 1M sodium chloride. The destabilization of aggregates by urea seems to be applied to other photosensitizers, since urea also destabilized aggregation of Meso-tetra(4-n-methyl-pyridyl)porphyrin, which is a positively charged porphyrin. We showed that urea destabilizes MB aggregates mainly by causing a decrease in the enthalpic gain of dimerization, which was exactly the opposite of the effect of sodium chloride. In order to understand this phenomenon at the molecular level, we computed the free energy for the dimer association process (ΔG(dimer)) in aqueous solution as well as its enthalpic component in aqueous and in aqueous/urea solutions by molecular dynamics simulations. In 2M-urea solution the atomistic picture revealed a preferential solvation of MB by urea compared with MB dimers while changes in ΔH(dimer) values demonstrated a clear shift favoring MB monomers. Therefore, MB monomers are more stable in urea solutions, which have significantly better photophysics and higher antimicrobial activity. This information can be of use for dental and medical professionals that are using MB based APDT protocols. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Enhanced removal of methylene blue and methyl violet dyes from aqueous solution using a nanocomposite of hydrolyzed polyacrylamide grafted xanthan gum and incorporated nanosilica.

    PubMed

    Ghorai, Soumitra; Sarkar, Asish; Raoufi, Mohammad; Panda, Asit Baran; Schönherr, Holger; Pal, Sagar

    2014-04-09

    The synthesis and characterization of a novel nanocomposite is reported that was developed as an efficient adsorbent for the removal of toxic methylene blue (MB) and methyl violet (MV) from aqueous solution. The nanocomposite comprises hydrolyzed polyacrylamide grafted onto xanthan gum as well as incorporated nanosilica. The synthesis exploits the saponification of the grafted polyacrylamide and the in situ formation of nanoscale SiO2 by a sol-gel reaction, in which the biopolymer matrix promotes the silica polymerization and therefore acts as a novel template for nanosilica formation. The detailed investigation of the kinetics and the adsorption isotherms of MB and MV from aqueous solution showed that the dyes adsorb rapidly, in accordance with a pseudo-second-order kinetics and a Langmuir adsorption isotherm. The entropy driven process was furthermore found to strongly depend on the point of zero charge (pzc) of the adsorbent. The remarkably high adsorption capacity of dyes on the nanocomposites (efficiency of MB removal, 99.4%; maximum specific removal Qmax, 497.5 mg g(-1); and efficiency of MV removal, 99.1%; Qmax, 378.8 mg g(-1)) is rationalized on the basis of H-bonding interactions as well as dipole-dipole and electrostatic interactions between anionic adsorbent and cationic dye molecules. Because of the excellent regeneration capacity the nanocomposites are considered interesting materials for the uptake of, for instance, toxic dyes from wastewater.

  18. Application of Mn/MCM-41 as an adsorbent to remove methyl blue from aqueous solution.

    PubMed

    Shao, Yimin; Wang, Xi; Kang, Yuan; Shu, Yuehong; Sun, Qiangqiang; Li, Laisheng

    2014-09-01

    In this study, the application of Mn loaded MCM-41 (Mn/MCM-41) was reported as a novel adsorbent for methyl blue (MB) from aqueous solution. The mesoporous structure of Mn/MCM-41 was confirmed by XRD technique. Surface area, pore size and wall thickness were calculated from BET equation and BJH method using nitrogen sorption technique. FT-IR studies showed that Mn were loaded on the hexagonal mesoporous structures of MCM-41. It is found that the MCM-41 structure retained after loading of Mn but its surface area and pore diameter decreased due to pore blockage. Adsorption of MB from aqueous solution was investigated by Mn/MCM-41 with changing Mn content, adsorbent dosage, initial MB concentration, contact time, pH and the temperature. Under the chosen condition (25°C, 0.02 g adsorbent dosage, 6.32 pH, 50 mg L(-1) MB, 1 wt.% Mn), a high MB adsorption capacity (45.38 mg g(-1)) was achieved by Mn/MCM-41 process at 120 min, 8.6 times higher than MCM-41. The electrostatic interaction was considered to be the main mechanism for the dye adsorption. The experimental data fitted well to Freundlich and Dubinin-Radushkevich isotherms. The adsorption of MB on Mn/MCM-41 followed pseudo-second-order kinetics. Thermodynamic parameters suggested that the adsorption process is endothermic and spontaneous. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Use of cellulose-based wastes for adsorption of dyes from aqueous solutions.

    PubMed

    Annadurai, Gurusamy; Juang, Ruey-Shin; Lee, Duu-Jong

    2002-06-10

    Low-cost banana and orange peels were prepared as adsorbents for the adsorption of dyes from aqueous solutions. Dye concentration and pH were varied. The adsorption capacities for both peels decreased in the order methyl orange (MO) > methylene blue (MB) > Rhodamine B (RB) > Congo red (CR) > methyl violet (MV) > amido black 10B (AB). The isotherm data could be well described by the Freundlich and Langmuir equations in the concentration range of 10-120 mg/l. An alkaline pH was favorable for the adsorption of dyes. Based on the adsorption capacity, it was shown that banana peel was more effective than orange peel. Kinetic parameters of adsorption such as the Langergren rate constant and the intraparticle diffusion rate constant were determined. For the present adsorption process intraparticle diffusion of dyes within the particle was identified to be rate limiting. Both peel wastes were shown to be promising materials for adsorption removal of dyes from aqueous solutions.

  20. Fast photocatalytic degradation of methylene blue dye using a low-power diode laser.

    PubMed

    Liu, Xianhua; Yang, Yulou; Shi, Xiaoxuan; Li, Kexun

    2015-01-01

    This study focused on the application of diode lasers as alternative light sources for the fast photocatalytic degradation of methylene blue. The photocatalytic decomposition of methylene blue in aqueous solution under 443 nm laser light irradiation was found to be technically feasible using Ag/AgCl nanoparticles as photocatalysts. The effects of various experimental parameters, such as irradiation time, light source, catalyst loading, initial dye concentration, pH, and laser energy on decolorization and degradation were investigated. The mineralization of methylene blue was confirmed by chemical oxygen demand analysis. The results demonstrate that the laser-induced photocatalytic process can effectively degrade methylene blue under the optimum conditions (pH 9.63, 4 mg/L MB concentration, and 1.4 g/L Ag/AgCl nanoparticles). Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Silver removal from aqueous solution by biochar produced from biosolids via microwave pyrolysis.

    PubMed

    Antunes, Elsa; Jacob, Mohan V; Brodie, Graham; Schneider, Philip A

    2017-12-01

    The contamination of water with silver has increased due to the widespread applications of products with silver employed as antimicrobial agent. Adsorption is a cost-effective method for silver removal from aqueous solution. In this study biochar, produced from the microwave assisted pyrolysis of biosolids, was used for silver removal from an aqueous solution. The adsorption kinetics, isotherms and thermodynamics were investigated to better understand the silver removal process by biochar. X-ray diffraction results demonstrated that silver removal was a combination two consecutive mechanisms, reduction and physical adsorption. The Langmuir model fitted the experimental data well, showing that silver removal was predominantly a surface mechanism. The thermodynamic investigation demonstrated that silver removal by biochar was an exothermic process. The final nanocomposite Ag-biochar (biochar plus silver) was used for methylene blue adsorption and photodegradation. This study showed the potential of using biochar produced from biosolids for silver removal as a promising solution to mitigate water pollution and an environmentally sustainable approach for biosolids management and re-use. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Adsorptive removal of organic dyes from aqueous solution by a Zr-based metal-organic framework: effects of Ce(iii) doping.

    PubMed

    Yang, Ji-Min; Ying, Rong-Jian; Han, Chun-Xiang; Hu, Qi-Tu; Xu, Hui-Min; Li, Jian-Hui; Wang, Qiang; Zhang, Wei

    2018-03-12

    Herein, we report the synthesis and characterization of Ce(iii)-doped UiO-66 nanocrystals, revealing their potential to efficiently remove organic dyes such as methylene blue (MB), methyl orange (MO), Congo red (CR), and acid chrome blue K (AC) from aqueous solutions. Specifically, the room-temperature adsorption capacities of Ce(iii)-doped UiO-66 equaled 145.3 (MB), 639.6 (MO), and 826.7 (CR) mg g -1 , exceeding those reported for pristine UiO-66 by 490, 270, and 70%, respectively. The above behavior was rationalized based on zeta potential and adsorption isotherm investigations, which revealed that Ce(iii) doping increases the number of adsorption sites and promotes π-π interactions between the adsorbent and the adsorbate, thus improving the adsorption capacity for cationic and anionic dyes and overriding the effect of electrostatic interactions. The obtained results shed light on the mechanism of organic dye adsorption on metal-organic frameworks, additionally revealing that the synergetic interplay of electrostatic, π-π, and hydrophobic interactions results in the operation of two distinct adsorption regimes depending on adsorbate concentration.

  3. The synthesis of Cu/Fe/Fe3O4 catalyst through the aqueous solution ball milling method assisted by high-frequency electromagnetic field

    NASA Astrophysics Data System (ADS)

    Yingzhe, Zhang; Yuxing, He; Qingdong, Qin; Fuchun, Wang; Wankun, Wang; Yongmei, Luo

    2018-06-01

    In this paper, nano-magnetic Cu/Fe/Fe3O4 catalyst was prepared by a new aqueous solution ball milling method assisted by high-frequency electromagnetic field at room temperature. The products were characterized by means of X-ray diffraction (XRD), high-resolution transmission electron microscope (HRTEM), selected area electron diffraction (SAED), and vibrating sample magnetometer (VSM). Microwave induced catalytic degradation of methylene blue (MB) was carried out in the presence of Cu/Fe/Fe3O4. The concentration of methylene blue was determined by UV-Vis spectrophotometry. The solid catalyst showed high catalytic activity of degrade MB and considerable saturation magnetization, lower remanence and coercivity. It indicate that the catalyst can be effectively separated for reuse by simply applying an external magnetic field and it can greatly promote their potential industrial application to eliminate organic pollutants from waste-water. Finally, we found that it is the non-thermal effect of microwave that activated the catalytic activity of Cu/Fe/Fe3O4 to degrade MB.

  4. Fabrication of the novel hydrogel based on waste corn stalk for removal of methylene blue dye from aqueous solution

    NASA Astrophysics Data System (ADS)

    Ma, Dongzhuo; Zhu, Baodong; Cao, Bo; Wang, Jian; Zhang, Jianwei

    2017-11-01

    The novel hydrogel based on waste corn stalk was synthetized by aqueous solution polymerization technique with functional monomers in the presence of organic montmorillonite (OMMT) under ultrasonic. In this study, batch adsorption experiments were carried out to research the effect of initial dye concentration, the dosage of hydrogel, stirring speed, contact time and temperature on the adsorption of methylene blue (MB) dye. The adsorption process was best described by the pseudo-second-order kinetic model, which confirmed that it should be a chemical process. Furthermore, we ascertained the rate controlling step by establishing the intraparticle diffusion model and the liquid film diffusion model. The adsorption and synthesis mechanisms were vividly depicted in our work as well. Structural and morphological characterizations by virtue of FTIR, FESEM, and Biomicroscope supported the relationship between the adsorption performance and material's microstructure. This research is a valuable contribution for the environmental protection, which not only converts waste corn stalks into functional materials, but improves the removal of organic dye from sewage water.

  5. Removal Enhancement of Basic Blue 41 BY RGO-TiO2 Nanocomposite Synthesized Using Pulsed Laser

    NASA Astrophysics Data System (ADS)

    Ghasemi, Fatemeh; Kimiagar, Salimeh; Shahbazi, Mozhgan; Vojoudi, Hossein

    Graphene oxide (GO) and GO-TiO2 nanocomposite was produced then reduced under pulse laser irradiation (RGO-TiO2). Basic blue 41 (bb41) dye was removed from aqueous solutions by using RGO-TiO2 nanocomposites. The UV-Vis absorption and FTIR analysis were utilized to confirm the reduction of GO-TiO2 to RGO-TiO2. The results showed complete reduction of GO. X-ray diffraction (XRD), Raman spectra and scanning electron microscopy (SEM) analysis were applied to approve the RGO-TiO2 nanocomposite structure. The effect of pH on the bb41 removal by RGO-TiO2 was studied varying the pH from 1 to 11. The optimum pH and adsorbent dosage were found to be 9 and 0.2g/L with 98% efficiency, respectively. The calculated coefficients demonstrated that the Langmuir model was fixed to the experimental data. The results indicated that RGO-TiO2 could be engaged as an exceptional sorbent to remove bb41 dye which is in aqueous solution.

  6. Origin of the blue shift of the CH stretching band for 2-butoxyethanol in water.

    PubMed

    Katsumoto, Yukiteru; Komatsu, Hiroyuki; Ohno, Keiichi

    2006-07-26

    The blue shift of the isolated CD stretching band of 2-butoxyethanol (C4E1), which is observed for the aqueous solution during the dilution process, has been investigated by infrared (IR) spectroscopy and quantum chemical calculations. Mono-deuterium-labeled C4E1's were employed to remove the severe overlapping among the CH stretching bands. The isolated CD stretching mode of the alpha-methylene in the butoxy group shows a large blue shift, while those of the beta-methylene and methyl groups are not largely shifted. The spectral simulation results for the C4E1/H2O complexes indicate that the large blue shift of the CD stretching band of the butoxy group arises mainly from the hydration of the ether oxygen atom.

  7. Comparison of Photocatalytic Performance of Different Types of Graphene in Fe3O4/SnO2 Composites

    NASA Astrophysics Data System (ADS)

    Paramarta, Valentinus; Taufik, Ardiansyah; Saleh, Rosari

    2017-03-01

    We have reported the role of annealing temperature Fe3O4/SnO2 nanocomposites as a photocatalyst for remove methylene blue (MB) dye from aqueous solution. However, how to enhanced the degradation performance of Fe3O4/SnO2 nanocomposites is important to its photocatalytic application. Therefore, in this work Fe3O4/SnO2 nanocomposites was combined with two different types of graphene materials (NGP and grahene) to improve the photocatalytic performance for remove methylene blue (MB) dye. Fe3O4/SnO2/NGP and Fe3O4/SnO2/graphene have been successfully synthesized by co-precipitation method. The influence of two types graphene on Fe3O4/SnO2 nanocomposites properties were systematically investigated by means of X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and Thermal gravimetric analysis (TGA). Degradation of methylene Blue (MB) in aqueous solution was studied in detail under photocatalytic process. Effect of catalyst dosage (0.1-0.4 g/L) and scavengers on dye degradation were carried out to check the efficiency of photocatalyst. The results indicated Fe3O4/SnO2/graphene displayed higher photocatalytic activity than other catalyst. The reusability tests have also been done to ensure the stability of the used photocatalyst.

  8. Fast adsorption kinetics of highly dispersed ultrafine nickel/carbon nanoparticles for organic dye removal

    NASA Astrophysics Data System (ADS)

    Kim, Taek-Seung; Song, Hee Jo; Dar, Mushtaq Ahmad; Lee, Hack-Jun; Kim, Dong-Wan

    2018-05-01

    Magnetic metal/carbon nano-materials are attractive for pollutant adsorption and removal. In this study, ultrafine nickel/carbon nanoparticles are successfully prepared via electrical wire explosion processing in ethanol media for the elimination of pollutant organic dyes such as Rhodamine B and methylene blue in aqueous solutions. High specific surface areas originating from both the nano-sized particles and the existence of carbon on the surface of Ni nanoparticles enhance dye adsorption capacity. In addition to this, the excellent dispersity of Ni/C nanoparticles in aqueous dye solutions leads to superior adsorption rates. The adsorption kinetics for the removal of organic dyes by Ni/C nanoparticles agree with a pseudo-second-order model and follow Freundlich adsorption isotherm behavior.

  9. A facile approach to fabricate porous nanocomposite gels based on partially hydrolyzed polyacrylamide and cellulose nanocrystals for adsorbing methylene blue at low concentrations.

    PubMed

    Zhou, Chengjun; Lee, Sunyoung; Dooley, Kerry; Wu, Qinglin

    2013-12-15

    Porous nanocomposite gels were fabricated by a facile method consisting of the electrospinning and subsequent heat treatment based on partially hydrolyzed polyacrylamide (HPAM) of ultra-high molecular weight, with cellulose nanocrystals (CNCs) as crosslinker. The effects of three electrospinning parameters (i.e., solution concentration, composition of solvent mixture, and CNC loading level) on morphology and diameter of electrospun fibers were systematically investigated. The swelling properties of porous gels and their application in the removal of methylene blue dye (as a compound representative of contaminants) were evaluated. Electrospun fiber morphologies without beads, branches, and ribbons were achieved by optimizing the electrospinning solutions. The thermal crosslinking between HPAM and CNCs was realized through esterification, rendering the product nanocomposite membranes insoluble in water. Electrospun fibers of approximately 220 nm in diameter comprised the 3D porous nanocomposite gels, with porosity greater than 50%. The porous nanocomposite gels displayed a rapid swelling rate and an efficient adsorption capacity in removing methylene blue at low concentrations from aqueous solutions. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Simultaneous utilization of soju industrial waste for silica production and its residue ash as effective cationic dye adsorbent

    USDA-ARS?s Scientific Manuscript database

    Soju industrial waste is an important biomass resource. The present study is aimed to utilize soju industrial waste for silica extraction, and residual ash as a low cost adsorbent for the removal of Methylene Blue (MB) from aqueous solution. High percentage of pure amorphous nanosilica was obtained ...

  11. 27 CFR 21.122 - Pyridine bases.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... with 1 N H2SO4 until a drop of the mixture placed upon Congo paper shows a distinct blue border, which soon disappears. A minimum of 9.5 ml of the acid must be required for the end point. (Congo paper: filter paper treated with 0.1 percent aqueous solution of Congo red and dried.) (b) Distillation range...

  12. 27 CFR 21.122 - Pyridine bases.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... with 1 N H2SO4 until a drop of the mixture placed upon Congo paper shows a distinct blue border, which soon disappears. A minimum of 9.5 ml of the acid must be required for the end point. (Congo paper: filter paper treated with 0.1 percent aqueous solution of Congo red and dried.) (b) Distillation range...

  13. 27 CFR 21.122 - Pyridine bases.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... with 1 N H2SO4 until a drop of the mixture placed upon Congo paper shows a distinct blue border, which soon disappears. A minimum of 9.5 ml of the acid must be required for the end point. (Congo paper: filter paper treated with 0.1 percent aqueous solution of Congo red and dried.) (b) Distillation range...

  14. 27 CFR 21.122 - Pyridine bases.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... with 1 N H2SO4 until a drop of the mixture placed upon Congo paper shows a distinct blue border, which soon disappears. A minimum of 9.5 ml of the acid must be required for the end point. (Congo paper: filter paper treated with 0.1 percent aqueous solution of Congo red and dried.) (b) Distillation range...

  15. 27 CFR 21.122 - Pyridine bases.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... with 1 N H2SO4 until a drop of the mixture placed upon Congo paper shows a distinct blue border, which soon disappears. A minimum of 9.5 ml of the acid must be required for the end point. (Congo paper: filter paper treated with 0.1 percent aqueous solution of Congo red and dried.) (b) Distillation range...

  16. Water-insoluble sericin/β-cyclodextrin/PVA composite electrospun nanofibers as effective adsorbents towards methylene blue.

    PubMed

    Zhao, Rui; Wang, Yong; Li, Xiang; Sun, Bolun; Jiang, Ziqiao; Wang, Ce

    2015-12-01

    A novel water-insoluble sericin/β-cyclodextrin/poly (vinyl alcohol) composite nanofiber adsorbent was prepared by electrospinning and followed by thermal crosslinking for removal of cationic dye methylene blue from aqueous solution. Fourier transform infrared spectroscopy and solubility experiments confirmed that sericin and β-cyclodextrin were incorporated into the nanofibers and the crosslinking reaction occurred successfully. Kinetics, isotherms and thermodynamics analysis were studied for adsorption of methylene blue. The adsorption process is better fitted with the pseudo-second-order model and Langmuir isotherm model. The maximum adsorption capacities are 187.97, 229.89, and 261.10mg/g at the temperatures 293, 313 and 333 K, respectively. Thermodynamic parameters showed that methylene blue adsorption was endothermic and spontaneous. In addition, the fiber membrane adsorbent could be easily separated from dye solution and showed high recyclable removal efficiency. All these results suggest that crosslinked sericin/β-cyclodextrin/poly(vinyl alcohol) composite nanofibers could be potential recyclable adsorbents in dye wastewater treatment. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Preparation of activated carbons from unburnt coal in bottom ash with KOH activation for liquid-phase adsorption.

    PubMed

    Wu, Feng-Chin; Wu, Pin-Hsueh; Tseng, Ru-Ling; Juang, Ruey-Shin

    2010-05-01

    In this work, unburnt coal (UC) in bottom ash from coal-fired power plants was soaked in KOH solution and activated for 1 h at 780 degrees C. The yield of activated carbons varied from 47.8 to 54.8% when the KOH/UC weight ratio changed from 2 to 4. Pore properties of these activated carbons including the BET surface area, pore volume, pore size distribution, and pore diameter were characterized based on N(2) adsorption isotherms. It was shown that the isotherms for the adsorption of methylene blue, acid blue 74, and 4-chlorophenol from aqueous solutions on these activated carbons at 30 degrees C were well fitted by the Langmuir equation (correlation coefficient r(2) > 0.9968). The adsorption capacities of methylene blue, acid blue 74, and 4-chlorophenol were obtained to be 2.40-2.88, 0.57-1.29, and 2.34-5.62 mmol/g, respectively. Moreover, the adsorption kinetics could be suitably described by the Elovich equation. Copyright 2010. Published by Elsevier Ltd.

  18. Biosorption of alpacide blue from aqueous solution by lignocellulosic biomass: Luffa cylindrica fibers.

    PubMed

    Kesraoui, Aida; Moussa, Asma; Ali, Ghada Ben; Seffen, Mongi

    2016-08-01

    The aim of the present work is to develop an effective and inexpensive pollutant-removal technology using lignocellulosic fibers: Luffa cylindrica, for the biosorption of an anionic dye: alpacide blue. The influence of some experimental parameters such as pH, temperature, initial concentration of the polluted solution, and mass of the sorbent L. cylindrica on the biosorption of alpacide blue by L. cylindrica fibers has been investigated. Optimal parameters for maximum quantity of biosorption dye were achieved after 2 h of treatment in a batch system using an initial dye concentration of 20 mg/L, a mass of 1 g of L. cylindrica fibers, and pH 2. In these conditions, the quantity of dye retained is 2 mg/g and the retention rate is 78 %. Finally, a mathematical modeling of kinetics and isotherms has been used for mathematical modeling; the model of pseudo-second order is more appropriate to describe this phenomenon of biosorption. Concerning biosorption isotherms, the Freundlich model is the most appropriate for a biosorption of alpacide blue dye by L. cylindrica fibers.

  19. Applications of Brazilian pine-fruit shell in natural and carbonized forms as adsorbents to removal of methylene blue from aqueous solutions--kinetic and equilibrium study.

    PubMed

    Royer, Betina; Cardoso, Natali F; Lima, Eder C; Vaghetti, Julio C P; Simon, Nathalia M; Calvete, Tatiana; Veses, Renato Cataluña

    2009-05-30

    The Brazilian pine-fruit shell (Araucaria angustifolia) is a food residue, which was used in natural and carbonized forms, as low-cost adsorbents for the removal of methylene blue (MB) from aqueous solutions. Chemical treatment of Brazilian pine-fruit shell (PW), with sulfuric acid produced a non-activated carbonaceous material (C-PW). Both PW and C-PW were tested as low-cost adsorbents for the removal of MB from aqueous effluents. It was observed that C-PW leaded to a remarkable increase in the specific surface area, average porous volume, and average porous diameter of the adsorbent when compared to PW. The effects of shaking time, adsorbent dosage and pH on adsorption capacity were studied. In basic pH region (pH 8.5) the adsorption of MB was favorable. The contact time required to obtain the equilibrium was 6 and 4h at 25 degrees C, using PW and C-PW as adsorbents, respectively. Based on error function values (F(error)) the kinetic data were better fitted to fractionary-order kinetic model when compared to pseudo-first order, pseudo-second order, and chemisorption kinetic models. The equilibrium data were fitted to Langmuir, Freundlich, Sips and Redlich-Peterson isotherm models. For MB dye the equilibrium data were better fitted to the Sips isotherm model using PW and C-PW as adsorbents.

  20. Color removal from acid and reactive dye solutions by electrocoagulation and electrocoagulation/adsorption processes.

    PubMed

    Bellebia, S; Kacha, S; Bouberka, Z; Bouyakoub, A Z; Derriche, Z

    2009-04-01

    In this study, electrocoagulation of Marine Blue Erionyl MR (acid dye) and electrocoagulation followed by adsorption of Brilliant Blue Levafix E-BRA (reactive dye) from aqueous solutions were investigated, using aluminum electrodes and granular activated carbon (GAC). In the electrocoagulation and adsorption of dyestuff solutions, the effects of current density, loading charge, pH, conductivity, stirring velocity, contact time, and GAC concentration were examined. The optimum conditions for the electrocoagulation process were identified as loading charges 7.46 and 1.49 F/m3, for a maximum abatement of 200 mg/L reactive and acid dye, respectively. The residual reactive dye concentration was completely removed with 700 mg/L GAC. The results of this investigation provide important data for the development of a combined process to remove significant concentrations of recalcitrant dyes from water, using moderate activated carbon energy and aluminum consumption, and thereby lowering the cost of treatment.

  1. Preparation of metallic nanoparticles by irradiation in starch aqueous solution

    NASA Astrophysics Data System (ADS)

    NemÅ£anu, Monica R.; Braşoveanu, Mirela; Iacob, Nicuşor

    2014-11-01

    Colloidal silver nanoparticles (AgNPs) were synthesized in a single step by electron beam irradiation reduction of silver ions in aqueous solution containing starch. The nanoparticles were characterized by spectrophotocolorimetry and compared with those obtained by chemical (thermal) reduction method. The results showed that the smaller sizes of AgNPs were prepared with higher yields as the irradiation dose increased. The broadening of particle size distribution occurred by increasing of irradiation dose and dose rate. Chromatic parameters such as b* (yellow-blue coordinate), C* (chroma) and ΔEab (total color difference) could characterize the nanoparticles with respect of their concentration. Hue angle ho was correlated to the particle size distribution. Experimental data of the irradiated samples were also subjected to factor analysis using principal component extraction and varimax rotation in order to reveal the relation between dependent variables and independent variables and to reduce their number. The radiation-based method provided silver nanoparticles with higher concentration and narrower size distribution than those produced by chemical reduction method. Therefore, the electron beam irradiation is effective for preparation of silver nanoparticles using starch aqueous solution as dispersion medium.

  2. Polycrystalline Si nanoparticles and their strong aging enhancement of blue photoluminescence

    NASA Astrophysics Data System (ADS)

    Yang, Shikuan; Cai, Weiping; Zeng, Haibo; Li, Zhigang

    2008-07-01

    Nearly spherical polycrystalline Si nanoparticles with 20 nm diameter were fabricated based on laser ablation of silicon wafer immersed in sodium dodecyl sulfate aqueous solution. Such Si nanoparticles consist of disordered areas and ultrafine grains of 3 nm in mean size and exhibit significant photoluminescence in blue region. Importantly, aging at ambient air leads to continuing enhancement of the emission (more than 130 times higher in 16 weeks) showing stable and strong blue emission. This aging enhancement is attributed to progressive passivation of nonradiative Pb centers corresponding to silicon dangling bonds on the particles' surface. This study could be helpful in pushing Si into optoelectronic field and Si-based full color display, biomedical tagging, and flash memories.

  3. [Flotation spectrophotometric determination of copper on isochromatic dye ion pair with crystal violet and bromopnenol blue].

    PubMed

    Liu, B; Chen, C; Zuo, B

    1999-02-01

    Bromophenol blue (BPB) was produced and entered into the aqueous phase when NaOH solution of pH = 10 was added to Cu(biq)2BPB by trichloromethane and isoamyl alcohol (20:1) extractive. And then CV x BPB was floated by crystal violet (CV) with benzene solution. The flotation was dissolved in ethanol and the absorbance of the solution measured at 590 nm. The sensitivity was raised because of the two dyes assistant effect. The molar absorptivity was 1.45 x 10(5) L x mol(-1) x cm(-1). Copper in the sample was separated first by extracting the Cu(biq)2BPB complex with trichloromethane and isoamyl alcohol, thus achieving a high selectivity. Beer's law was obeyd in the range of 0-0. 4 mg/L with a relative standard deviation of 3.6%. For 4.8 x 10(-8) g/mL copper solution, the recoveries were 97.8%-101.7%.

  4. The role of natural indigo dye in alleviation of genotoxicity of sodium dithionite as a reducing agent.

    PubMed

    Bektaş, İdris; Karaman, Şengül; Dıraz, Emel; Çelik, Mustafa

    2016-12-01

    Indigo blue is a natural dye used for thousands of years by civilizations to dye fabric blue and it is naturally obtained from Isatis tinctoria. I. tinctoria is not only used for extraction of indigo blue color but also used medicinally in Traditional Chinese Medicine because of its active compounds. Sodium dithionite (Na 2 S 2 O 4 ) is used in dye bath for indigo blue extraction, but this reducing agent and its derivatives are major pollutants of textile industry and subsequently have hazardous influences on public health. Herein, the present study was designed to obtain the high yield of natural indigo dye but with low possible toxic effect. In this context, genotoxic effects of particular combinations of natural dye solutions obtained from Isatis tinctoria subsp. tomentolla with Na 2 S 2 O 4 as reducing agent were investigated. Dye solutions were obtained using two different pH levels (pH 9 and 11) and three different concentrations of Na 2 S 2 O 4 (2.5, 5 and 10 mg/ml). In addition to the dye solutions and reducing agent, aqueous extracts of I. tinctoria were assessed for their genotoxicity on human lymphocytes. For in vitro testing of genotoxicity, chromosomal aberrations (CAs), sister chromatid exchanges (SCEs) and mitotic indexes (MI) assays were used. Accordingly, Na 2 S 2 O 4 caused significant increases in CA and SCE as well decrease in MI but the genotoxic effects of sodium dithionite were reduced with natural indigo dye. As a result, aqueous extracts of Isatis leaves removed the toxic effects of sodium dithionite and showed anti-genotoxic effect. For the optimal and desired quality but with less toxic effects of natural dye, 2.5 mg/ml (for wool yarn) and 5 mg/ml (for cotton yarn) of Na 2 S 2 O 4 doses were found to be the best doses for reduction in the dye bath at Ph 9.

  5. Sorption kinetics and isotherm studies of a cationic dye using agricultural waste: broad bean peels.

    PubMed

    Hameed, B H; El-Khaiary, M I

    2008-06-15

    In this paper, broad bean peels (BBP), an agricultural waste, was evaluated for its ability to remove cationic dye (methylene blue) from aqueous solutions. Batch mode experiments were conducted at 30 degrees C. Equilibrium sorption isotherms and kinetics were investigated. The kinetic data obtained at different concentrations have been analyzed using pseudo-first-order, pseudo-second-order and intraparticle diffusion equations. The experimental data fitted very well the pseudo-first-order kinetic model. Analysis of the temportal change of q indicates that at the beginning of the process the overall rate of adsorption is controlled by film-diffusion, then at later stage intraparticle-diffusion controls the rate. Diffusion coefficients and times of transition from film to pore-diffusion control were estimated by piecewise linear regression. The experimental data were analyzed by the Langmuir and Freundlich models. The sorption isotherm data fitted well to Langmuir isotherm and the monolayer adsorption capacity was found to be 192.7 mg/g and the equilibrium adsorption constant Ka is 0.07145 l/mg at 30 degrees C. The results revealed that BBP was a promising sorbent for the removal of methylene blue from aqueous solutions.

  6. Microwave-Hydrothermal Treated Grape Peel as an Efficient Biosorbent for Methylene Blue Removal

    PubMed Central

    Ma, Lin; Jiang, Chunhai; Lin, Zhenyu; Zou, Zhimin

    2018-01-01

    Biosorption using agricultural wastes has been proven as a low cost and efficient way for wastewater treatment. Herein, grape peel treated by microwave- and conventional-hydrothermal processes was used as low cost biosorbent to remove methylene blue (MB) from aqueous solutions. The adsorption parameters including the initial pH value, dosage of biosorbents, contact time, and initial MB concentration were investigated to find the optimum adsorption conditions. The biosorbent obtained by microwave-hydrothermal treatment only for 3 min at 180 °C (microwave-hydrothermal treated grape peel, MGP) showed faster kinetics and higher adsorption capability than that produced by a conventional-hydrothermal process (hydrothermal treated grape peel, HGP) with a duration time of 16 h. The maximum adsorption capability of MGP under the optimum conditions (pH = 11, a dosage of 2.50 g/L) as determined with the Langmuir model reached 215.7 mg/g, which was among the best values achieved so far on biosorbents. These results demonstrated that the grape peel treated by a quick microwave-hydrothermal process can be a very promising low cost and efficient biosorbent for organic dye removal from aqueous solutions. PMID:29385041

  7. Removal of Congo Red and Methylene Blue from Aqueous Solutions by Vermicompost-Derived Biochars.

    PubMed

    Yang, Gang; Wu, Lin; Xian, Qiming; Shen, Fei; Wu, Jun; Zhang, Yanzong

    2016-01-01

    Biochars, produced by pyrolyzing vermicompost at 300, 500, and 700°C were characterized and their ability to adsorb the dyes Congo red (CR) and Methylene blue (MB) in an aqueous solution was investigated. The physical and chemical properties of biochars varied significantly based on the pyrolysis temperatures. Analysis of the data revealed that the aromaticity, polarity, specific surface area, pH, and ash content of the biochars increased gradually with the increase in pyrolysis temperature, while the cation exchange capacity, and carbon, hydrogen, nitrogen and oxygen contents decreased. The adsorption kinetics of CR and MB were described by pseudo-second-order kinetic models. Both of Langmuir and Temkin model could be employed to describe the adsorption behaviors of CR and MB by these biochars. The biochars generated at higher pyrolysis temperature displayed higher CR adsorption capacities and lower MB adsorption capacities than those compared with the biochars generated at lower pyrolysis temperatures. The biochar generated at the higher pyrolytic temperature displayed the higher ability to adsorb CR owing to its promoted aromaticity, and the cation exchange is the key factor that positively affects adsorption of MB.

  8. Removal of Congo Red and Methylene Blue from Aqueous Solutions by Vermicompost-Derived Biochars

    PubMed Central

    Yang, Gang; Wu, Lin; Xian, Qiming; Shen, Fei; Wu, Jun; Zhang, Yanzong

    2016-01-01

    Biochars, produced by pyrolyzing vermicompost at 300, 500, and 700°C were characterized and their ability to adsorb the dyes Congo red (CR) and Methylene blue (MB) in an aqueous solution was investigated. The physical and chemical properties of biochars varied significantly based on the pyrolysis temperatures. Analysis of the data revealed that the aromaticity, polarity, specific surface area, pH, and ash content of the biochars increased gradually with the increase in pyrolysis temperature, while the cation exchange capacity, and carbon, hydrogen, nitrogen and oxygen contents decreased. The adsorption kinetics of CR and MB were described by pseudo-second-order kinetic models. Both of Langmuir and Temkin model could be employed to describe the adsorption behaviors of CR and MB by these biochars. The biochars generated at higher pyrolysis temperature displayed higher CR adsorption capacities and lower MB adsorption capacities than those compared with the biochars generated at lower pyrolysis temperatures. The biochar generated at the higher pyrolytic temperature displayed the higher ability to adsorb CR owing to its promoted aromaticity, and the cation exchange is the key factor that positively affects adsorption of MB. PMID:27144922

  9. Investigation on the relationship between solubility of artemisinin and polyvinylpyrroli done addition by using DAOSD approach

    NASA Astrophysics Data System (ADS)

    Zhang, Jin; Guo, Ran; He, Anqi; Weng, Shifu; Gao, Xiuxiang; Xu, Yizhuang; Noda, Isao; Wu, Jinguang

    2017-07-01

    In this work, we investigated the influence of polyvinylpyrrolidone (PVP) on the solubility of artemisinin in aqueous solution by using quantitative 1H NMR. Experimental results demonstrate that about 4 times of incremental increase occurs on the solubility of artemisinin upon introducing PVP. In addition, dipole-dipole interaction between the ester group of artemisinin and the amide group of N-methylpyrrolidone (NMP), a model compound of PVP, is characterized by two-dimensional (2D) correlation FTIR spectroscopy with the DAOSD (Double Asynchronous Orthogonal Sample Design) approach developed in our previous work. The observation of cross peaks in a pair of 2D asynchronous spectra suggests that dipole-dipole interaction indeed occurs between the ester group of artemisinin and amide group of NMP. Moreover, the pattern of cross peaks indicates that the carbonyl band of artemisinin undergoes blue-shift while the bandwidth and absorptivity increases via interaction with NMP, and the amide band of NMP undergoes blue-shift while the absorptivity increases via interaction with artemisinin. Dipole-dipole interaction, as one of the strongest intermolecular interaction between artemisinin and excipient, may play an important role in the enhancement of the solubility of artemisinin in aqueous solution.

  10. A ratiometric fluorescent probe for hydrophobic proteins in aqueous solution based on aggregation-induced emission.

    PubMed

    Peng, Lu; Wei, Ruirui; Li, Kai; Zhou, Zhaojuan; Song, Panshu; Tong, Aijun

    2013-04-07

    A novel fluorescent probe 1 is reported here with ratiometric response to hydrophobic proteins (casein) or proteins with hydrophobic pockets (BSA, HSA) through hydrophobic interaction. Probe 1 underwent deprotonation in aqueous solution at pH 7.4 and emitted blue fluorescence at 436 nm. Upon the addition of BSA, HSA or casein, the aggregation-induced emission fluorescence of 1 at 518 nm was turned on. The fluorescence intensity ratio, I518/I436 was linearly related to the concentrations of these proteins. The detection limits for BSA, HSA and casein based on IUPAC (CDL = 3Sb m(-1)) were 16.2 μg mL(-1), 10.5 μg mL(-1) and 5.7 μg mL(-1), respectively.

  11. One-Pot Process in Scalable Bath for Water-Dispersed ZnS Nanocrystals with the Tailored Size

    DOE PAGES

    Jung, Hyunsung; Phelps, Tommy J.; Rondinone, Adam J.; ...

    2017-05-01

    Well-dispersed ZnS nanocrystals with tailored size in aqueous solutions were synthesized by employing cysteine-sulfur (Cys-S) complexes with low molecular weight in a scalable anoxic vessel. High yield production of water-dispersed ZnS nanocrystals on a 10-L scale was demonstrated in an aqueous solution process. The average crystallite size of ZnS was controlled by changing the ratio of the cysteine to sulfide in the applied Cys-S complexes. A decrease in the crystallite size of ZnS likely resulted in both the blue shift of peak positions and the relative variation of peak intensities in the photoluminescence properties. In addition, the pH-dependent stability againstmore » aggregation of ZnS nanocrystals was investigated to reduce agglomeration.« less

  12. The aqueous photolysis of α-pinene in solution with humic acid

    USGS Publications Warehouse

    Goldberg, Marvin C.; Cunningham, Kirkwood M.; Aiken, George R.; Weiner, Eugene R.; ,

    1992-01-01

    Terpenes are produced abundantly by environmental processes but are found in very low concentrations in natural waters. Aqueous photolysis of solutions containing α-pinene, a representative terpene, in the presence of humic acid resulted in degradation of the pinene. Comparison of this reaction to photolysis of α-pinene in the presence of methylene blue leads to the conclusion that the reactive pathway for the abiotic degradation of α-pinene is due to reaction with singlet oxygen produced by irradiation of the humic material. The initial product of single oxygen and α-pinene is a hydroperoxide. Since humic materials are prevalent in most natural waters, this mechanism of photodecomposition for α-pinene probably also applies to other terpenes in surface waters and may be reasonably considered to contribute to their low environmental concentration.

  13. The correlation of blue shift of photoluminescence and morphology of silicon nanoporous

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Jumaili, Batool E. B., E-mail: batooleneaze@gmail.com; Department of Physics, Anbar University; Talib, Zainal A.

    Porous silicon with diameters ranging from 6.41 to 7.12 nm were synthesized via electrochemical etching by varied anodization current density in ethanoic solutions containing aqueous hydrofluoric acid up to 65 mA/cm{sup 2}.The luminescence properties of the nanoporous at room temperature were analyzed via photoluminescence spectroscopy. Photoluminescence PL spectra exhibit a broad emission band in the range of 360-700 nm photon energy. The PL spectrum has a blue shift in varied anodization current density; the blue shift incremented as the existing of anodization although the intensity decreased. The current blue shift is owning to alteration of silicon nanocrystal structure at themore » superficies. The superficial morphology of the PS layers consists of unified and orderly distribution of nanocrystalline Si structures, have high porosity around (93.75%) and high thickness 39.52 µm.« less

  14. Reactive oxygen species generation in aqueous solutions containing GdVO4:Eu3+ nanoparticles and their complexes with methylene blue

    NASA Astrophysics Data System (ADS)

    Hubenko, Kateryna; Yefimova, Svetlana; Tkacheva, Tatyana; Maksimchuk, Pavel; Borovoy, Igor; Klochkov, Vladimir; Kavok, Nataliya; Opolonin, Oleksander; Malyukin, Yuri

    2018-04-01

    It this letter, we report the study of free radicals and reactive oxygen species (ROS) generation in water solutions containing gadolinium orthovanadate GdVO4:Eu3+ nanoparticles (VNPs) and their complexes with methylene blue (MB) photosensitizer. The catalytic activity was studied under UV-Vis and X-ray irradiation by three methods (conjugated dienes test, OH· radical, and singlet oxygen detection). It has been shown that the VNPs-MB complexes reveal high efficiency of ROS generation under UV-Vis irradiation associated with both high efficiency of OH· radicals generation by VNPs and singlet oxygen generation by MB due to nonradiative excitation energy transfer from VNPs to MB molecules. Contrary to that under X-ray irradiation, the strong OH . radicals scavenging by VNPs has been observed.

  15. Reactive oxygen species generation in aqueous solutions containing GdVO4:Eu3+ nanoparticles and their complexes with methylene blue.

    PubMed

    Hubenko, Kateryna; Yefimova, Svetlana; Tkacheva, Tatyana; Maksimchuk, Pavel; Borovoy, Igor; Klochkov, Vladimir; Kavok, Nataliya; Opolonin, Oleksander; Malyukin, Yuri

    2018-04-13

    It this letter, we report the study of free radicals and reactive oxygen species (ROS) generation in water solutions containing gadolinium orthovanadate GdVO 4 :Eu 3+ nanoparticles (VNPs) and their complexes with methylene blue (MB) photosensitizer. The catalytic activity was studied under UV-Vis and X-ray irradiation by three methods (conjugated dienes test, OH· radical, and singlet oxygen detection). It has been shown that the VNPs-MB complexes reveal high efficiency of ROS generation under UV-Vis irradiation associated with both high efficiency of OH· radicals generation by VNPs and singlet oxygen generation by MB due to nonradiative excitation energy transfer from VNPs to MB molecules. Contrary to that under X-ray irradiation, the strong OH . radicals scavenging by VNPs has been observed.

  16. Modification of semi-coke powder and its adsorption mechanisms for Cr(VI) and methylene blue

    NASA Astrophysics Data System (ADS)

    Zhang, Linjiang; Liu, Zhuannian; Fan, Yidan; Fan, Aping; Han, Xiaogang

    2018-02-01

    In this paper, the semi-coke powder was modified by three kinds of physical or chemical methods and then modified semi-coke was used as adsorbent for removal of Cr6+ and methylene blue (MB) from aqueous solution. The effects of time, dosage and pH on removal rate were investigated using batch experiments. The process of Cr6+ and MB adsorption onto the modified semi-coke powder follows pseudo second-order kinetics. The analysis of SEM and BET showed the Specific surface area of modified semi-coke are 84.92 m2/g, which is higher than that of raw semi-coke powder.

  17. Zinc sulfide quantum dots for photocatalytic and sensing applications

    NASA Astrophysics Data System (ADS)

    Sergeev, Alexander A.; Leonov, Andrei A.; Zhuikova, Elena I.; Postnova, Irina V.; Voznesenskiy, Sergey S.

    2017-09-01

    Herein, we report the photocatalytic and sensing applications of pure and Mn-doped ZnS quantum dots. The quantum dots were prepared by a chemical precipitation in an aqueous solution in the presence of glutathione as a stabilizing agent. The synthesized quantum dots were used as effective photocatalyst for the degradation of methylene blue dye. Interestingly, fully degradation of methylene blue dye was achieved in 5 min using pure ZnS quantum dots. Further, the synthesized quantum dots were used as efficient sensing element for methane fluorescent sensor. Interfering studies confirmed that the developed sensor possesses very good sensitivity and selectivity towards methane.

  18. Matrix-assisted laser desorption ionization time-of-flight mass spectrometric analysis of degradation products after treatment of methylene blue aqueous solution with three-dimensionally integrated microsolution plasma

    NASA Astrophysics Data System (ADS)

    Shirafuji, Tatsuru; Nomura, Ayano; Hayashi, Yui; Tanaka, Kenji; Goto, Motonobu

    2016-01-01

    Methylene blue can be degraded in three-dimensionally integrated microsolution plasma. The degradation products have been analyzed by matrix-assisted laser desorption ionization time-of-flight (MALDI TOF) mass spectrometry to understand the degradation mechanisms. The results of MALDI TOF mass spectrometry have shown that sulfoxide is formed at the first stage of the oxidation. Then, partial oxidation proceeds on the methyl groups left on the sulfoxide. The sulfoxide is subsequently separated to two benzene derivatives. Finally, weak functional groups are removed from the benzene derivatives.

  19. Preparation of metallic nanoparticles by irradiation in starch aqueous solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nemţanu, Monica R., E-mail: monica.nemtanu@inflpr.ro; Braşoveanu, Mirela, E-mail: monica.nemtanu@inflpr.ro; Iacob, Nicuşor, E-mail: monica.nemtanu@inflpr.ro

    Colloidal silver nanoparticles (AgNPs) were synthesized in a single step by electron beam irradiation reduction of silver ions in aqueous solution containing starch. The nanoparticles were characterized by spectrophotocolorimetry and compared with those obtained by chemical (thermal) reduction method. The results showed that the smaller sizes of AgNPs were prepared with higher yields as the irradiation dose increased. The broadening of particle size distribution occurred by increasing of irradiation dose and dose rate. Chromatic parameters such as b* (yellow-blue coordinate), C* (chroma) and ΔE{sub ab} (total color difference) could characterize the nanoparticles with respect of their concentration. Hue angle h{supmore » o} was correlated to the particle size distribution. Experimental data of the irradiated samples were also subjected to factor analysis using principal component extraction and varimax rotation in order to reveal the relation between dependent variables and independent variables and to reduce their number. The radiation-based method provided silver nanoparticles with higher concentration and narrower size distribution than those produced by chemical reduction method. Therefore, the electron beam irradiation is effective for preparation of silver nanoparticles using starch aqueous solution as dispersion medium.« less

  20. Silica adsorbent prepared from spent diatomaceous earth and its application to removal of dye from aqueous solution.

    PubMed

    Tsai, W T; Hsien, K J; Yang, J M

    2004-07-15

    The objective of this work is to study the activation regeneration of spent diatomaceous earth (SDE) for the preparation of silica adsorbents using thermal regeneration and acid/alkaline activation methods. Under the experimental conditions investigated, it was found that the alkaline activation method carried out by sodium hydroxide under controlled conditions is significantly superior to other heat and activation methods. The porosities of solids thus obtained are over 0.2, indicating that they are basically mesoporous. The optimal porous material thus prepared was used as a mineral adsorbent for methylene blue at 25 degrees C. The adsorption equilibrium revealed that the silica adsorbent can take up over 50 mg/g at relatively low concentrations in aqueous medium from the fittings of Langmuir and Freundlich isotherms with high correlations. On the other hand, the adsorption kinetic of methylene blue under various adsorbent dosages can be well described with a pseudo-second-order reaction model. Copyright 2004 Elsevier Inc.

  1. Cr(OH)3-NPs-CNC hybrid nanocomposite: a sorbent for adsorptive removal of methylene blue and malachite green from solutions.

    PubMed

    Nekouei, Farzin; Nekouei, Shahram; Keshtpour, Farzaneh; Noorizadeh, Hossein; Wang, Shaobin

    2017-11-01

    In this article, Cr(OH) 3 nanoparticle-modified cellulose nanocrystal (CNC) as a novel hybrid nanocomposite (Cr(OH) 3 -NPs-CNC) was prepared by a simple procedure and used as a sorbent for adsorptive removal of methylene blue (MB) and malachite green (MG) from aqueous solution. Different kinetic models were tested, and the pseudo-second-order kinetic model was found more suitable for the MB and MG adsorption processes. The BET and Langmuir models were more suitable for the adsorption processes of MB and MG. Thermodynamic studies suggested that the adsorption of MB and MG onto Cr(OH) 3 -NPs-CNC nanocomposite was a spontaneous and endothermic process. The maximum adsorption capacities for MB and MG were reached 106 and 104 mg/g, respectively, which were almost two times higher than unmodified CNC. The chemical stability and leaching tests of the Cr(OH) 3 -NPs-CNC hybrid nanocomposite showed that only small amounts of chromium were leached into the solution.

  2. Adsorption of Procion Blue MX-R dye from aqueous solutions by lignin chemically modified with aluminium and manganese.

    PubMed

    Adebayo, Matthew A; Prola, Lizie D T; Lima, Eder C; Puchana-Rosero, M J; Cataluña, Renato; Saucier, Caroline; Umpierres, Cibele S; Vaghetti, Julio C P; da Silva, Leandro G; Ruggiero, Reinaldo

    2014-03-15

    A macromolecule, CML, was obtained by purifying and carboxy-methylating the lignin generated from acid hydrolysis of sugarcane bagasse during bioethanol production from biomass. The CMLs complexed with Al(3+) (CML-Al) and Mn(2+) (CML-Mn) were utilised for the removal of a textile dye, Procion Blue MX-R (PB), from aqueous solutions. CML-Al and CML-Mn were characterised using Fourier transform infrared spectroscopy (FTIR), scanning differential calorimetry (SDC), scanning electron microscopy (SEM) and pHPZC. The established optimum pH and contact time were 2.0 and 5h, respectively. The kinetic and equilibrium data fit into the general order kinetic model and Liu isotherm model, respectively. The CML-Al and CML-Mn have respective values of maximum adsorption capacities of 73.52 and 55.16mgg(-1) at 298K. Four cycles of adsorption/desorption experiments were performed attaining regenerations of up to 98.33% (CML-Al) and 98.08% (CML-Mn) from dye-loaded adsorbents, using 50% acetone+50% of 0.05molL(-1) NaOH. The CML-Al removed ca. 93.97% while CML-Mn removed ca. 75.91% of simulated dye house effluents. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Preconcentration of aqueous dyes through phase-transfer liquid-phase microextraction with a room-temperature ionic liquid.

    PubMed

    Chen, Hsiu-Liang; Chang, Shuo-Kai; Lee, Chia-Ying; Chuang, Li-Lin; Wei, Guor-Tzo

    2012-09-12

    In this study, we employed the room-temperature ionic liquid [bmim][PF(6)] as both ion-pair agent and an extractant in the phase-transfer liquid-phase microextraction (PTLPME) of aqueous dyes. In the PTLPME method, a dye solution was added to the extraction solution, comprising a small amount of [bmim][PF(6)] in a relatively large amount of CH(2)Cl(2), which serves as the disperser solvent to an extraction solution. Following extraction, CH(2)Cl(2) was evaporated from the extractant, resulting in the extracted dyes being concentrated in a small volume of the ionic liquid phase to increase the enrichment factor. The enrichment factors of for the dye Methylene Blue, Neutral Red, and Methyl Red were approximately 500, 550 and 400, respectively; their detection limits were 0.014, 0.43, and 0.02 μg L(-1), respectively, with relative standard deviations of 4.72%, 4.20%, and 6.10%, respectively. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Photo-induced degradation of some flavins in aqueous solution

    NASA Astrophysics Data System (ADS)

    Holzer, W.; Shirdel, J.; Zirak, P.; Penzkofer, A.; Hegemann, P.; Deutzmann, R.; Hochmuth, E.

    2005-01-01

    The blue-light induced photo-degradation of FMN, FAD, riboflavin, lumiflavin, and lumichrome in aqueous solution at pH 8 is studied by measurement of absorption coefficient spectral changes due to continuous excitation at 428 nm. The quantum yields of photo-degradation determined are ϕD(riboflavin, pH 8) ≈ 7.8 × 10 -3, ϕD(FMN, pH 5.6) ≈ 7.3 × 10 -3, ϕD(FMN, pH 8) ≈ 4.6 × 10 -3, ϕD(FAD, pH 8) ≈ 3.7 × 10 -4, ϕD(lumichrome, pH 8) ≈ 1.8 × 10 -4, and ϕD(lumiflavin, pH 8) ⩽ 1.1 × 10 -5. In a mass-spectroscopic analysis, the photo-products of FMN dissolved in water (solution pH is 5.6) were identified to be lumichrome and the lumiflavin derivatives dihydroxymethyllumiflavin, formyllumiflavin, and lumiflavin-hydroxy-acetaldehyde. An absorption and emission spectroscopic characterisation of the primary photoproducts of FMN at pH 8 is carried out.

  5. A comparison of mango seed kernel powder, mango leaf powder and Manilkara zapota seed powder for decolorization of methylene blue dye and antimicrobial activity.

    PubMed

    Sundararaman, B; Muthuramu, K L

    2016-11-01

    The waste mango seed generated from mango pulp industry in India is a major problem in handling the waste and hence, conversion of mango seed kernel. Mango seeds were collected and processed for oil extraction. Decolorization of methylene blue was achieved by mango seed kernel powder, mango leaf powder and Manilkara zapota seed powder. Higher efficiency was attained in mango seed kernel powder when compared to mango leaf powder and Manilkara zapota seed powder. A 60 to 95 % of removal efficiency was achieved by varying concentration. Effect of pH, dye concentration, adsorbent dosage and temperature were studied. Mango seed kernel powder is a better option that can be used as an adsorbent for the removal of methylene blue and basic red dye from its aqueous solutions.

  6. The brilliant blue FCF ion-molecular forms in solutions according to the spectrophotometry data

    NASA Astrophysics Data System (ADS)

    Chebotarev, A. N.; Bevziuk, K. V.; Snigur, D. V.; Bazel, Ya. R.

    2017-10-01

    The brilliant blue FCF acid-base properties in aqueous solutions have been studied and its ionization constants have been defined by tristimulus colorimetry and spectrophotometry methods. The scheme of the acid-base dye equilibrium has been proposed and a diagram of the distribution of its ionic-molecular forms has been built. It has been established that the dominant form of the dye was the electroneutral form, which molar absorptivity (ɛ625 = 0.97 × 105) increases with the increase of the dielectric permittivity of the solvent. It has been shown that the replacement of polar solvents by less polar ones is causing a bathochromic shift of the maximum absorption band of the dye, the value of which is correlated with the value of the Hansen parameter. Tautomerization constants have been defined in a number of solvents and associated with the value of the Dimroth-Reichardt parameter.

  7. Photodegradation of gaseous acetaldehyde and methylene blue in aqueous solution with titanium dioxide-loaded activated carbon fiber polymer materials and aquatic plant ecotoxicity tests.

    PubMed

    Kadirova, Zukhra C; Hojamberdiev, Mirabbos; Katsumata, Ken-ichi; Isobe, Toshihiro; Matsushita, Nobuhiro; Nakajima, Akira; Okada, Kiyoshi

    2014-03-01

    TiO2-supported activated carbon felts (TiO2-ACFTs) were prepared by dip coating of felts composed of activated carbon fibers (ACFs) with either polyester fibers (PS-A20) and/or a polyethylene pulp (PE-W15) in a TiO2 aqueous suspension followed by calcination at 250 °C for 1 h. The as-prepared TiO2-ACFTs with 29-35 wt.% TiO2 were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and N2 adsorption. The TiO2-ACFT(PS-A20) samples with 0 and 29 wt.% TiO2 were microporous with specific surface areas (S BET) of 996 and 738 m(2)/g, respectively, whereas the TiO2-ACFT(PE-W15) samples with 0 and 35 wt.% TiO2 were mesoporous with S BET of 826 and 586 m(2)/g, respectively. Adsorption and photocatalytic activity of the as-prepared samples were evaluated by measuring adsorption in the dark and photodegradation of gaseous acetaldehyde (AcH) and methylene blue (MB) in aqueous solution under UV light. The TiO2 loading caused a considerable decrease in the S BET and MB adsorption capacity along with an increase in MB photodegradation and AcH mineralization. Lemna minor was chosen as a representative aquatic plant for ecotoxicity tests measuring detoxification of water obtained from the MB photodegradation reaction with the TiO2-ACFT samples under UV light.

  8. Organo/Zn-Al LDH Nanocomposites for Cationic Dye Removal from Aqueous Media

    NASA Astrophysics Data System (ADS)

    Starukh, G.; Rozovik, O.; Oranska, O.

    2016-04-01

    Cationic dye sorption by Zn-Al-layered double hydroxides (LDHs) modified with anionic surfactants was examined using methylene blue (MB) dye as a compound model in aqueous solutions. The modification of Zn-Al LDHs was performed by reconstruction method using dodecyl sulfate anion (DS) solutions. DS contained Zn-Al LDHs were characterized by XRD, FTIR, thermogravimetric, and SEM analysis. The reconstructed organo/Zn-Al LDHs comprise the crystalline phases (DS-intercalated LDHs, hydrotalcite), and the amorphous phase. The intercalation of DS ions into the interlayer galleries and DS adsorption on the surface of the LDHs occurred causing the MB adsorption on the external and its sorption in the internal surfaces of modified LDHs. The presence of DS greatly increased the affinity of organo/Zn-Al LDHs for MB due to hydrophobic interactions between the surfactants and the dye molecules. The optical properties of sorbed MB were studied.

  9. Flow of Aqueous Humor

    MedlinePlus

    ... National Glaucoma Research Home Flow of Aqueous Humor Flow of Aqueous Humor Most, but not all, forms ... aqueous humor) produced by the eye's ciliary body flows out freely (follow blue arrow). Aqueous humor flows ...

  10. Aromatic proteinaceous surfactants stabilize long-lived gas microbubbles from natural sources

    NASA Technical Reports Server (NTRS)

    Darrigo, J. S.

    1981-01-01

    Three different types of protein-specific chemical tests were performed on long-lived gas microbubbles derived from aqueous solutions of agarose powder and from filtered aqueous extracts of Hawaiian forest soil. The separate protein-specific tests involved use of either 0.3% (w/v) ninhydrin, 100 microM methylene blue dye, or 0.7-1.0 M 2-hydroxy-5-nitrobenzyl bromide. The chemical test results obtained with each of the two natural substances, i.e., agarose powder and Hawaiian forest soil, were very similar and indicate that the biological surfactants which surround and stabilize long-lived gas microbubbles are proteinaceous compounds that contain, and whose surface activity depends upon, aromatic amino acid residues, particularly tryptophan.

  11. Chemical Synthesis of ZnS:Cu Nanosheets

    NASA Astrophysics Data System (ADS)

    Bodo, Bhaskarjyoti; Kalita, P. K.

    2010-10-01

    ZnS thin films are synthesized through chemical bath deposition (CBD) technique from aqueous solution of ZnSO4 and thiourea mixing in equal volume and equimolar ratio. A 1% CuSO4 solution is mixed with the ZnSO4 solution for doping before the final chemical reaction. SEM image shows the formation of mainly nanosheets, teeth and comb like structures. Absorption studies show red shift of enhanced band gap on Cu doping. Photoluminescence of ZnS:Cu reveals the enhancement of blue luminescence at 468 nm and low intensity green emission at 493 nm which is attributed to more Cu2+ lying in the interstices. XRD shows that the prepared ZnS nanophosphors possess cubic zinc blende structures.

  12. Use of metallurgical dust for removal chromium ions from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Pająk, Magdalena; Dzieniszewska, Agnieszka; Kyzioł-Komosińska, Joanna; Chrobok, Michał

    2018-01-01

    The aim of the study was to determine the potential for the application of dust from steel plant as an effective sorbent for removing Cr(III) and Cr(VI) in the form of simple and complex ions - Acid Blue 193 dye from aqueous solutions. Three isotherms models were used to interpret the experimental results namely: Langmuir, Freundlich, and Dubinin-Radushkevich. Estimated equations parameters allowed to determine the binding mechanism. Based on laboratory studies it was found that the dust was characterized by high sorption capacities for Cr ions and dye from the aqueous solution. The sorption capacity of the dust for Cr(III) and Cr(VI) ions depended on the degree of oxidation, pH of solution and kind of anion and changed in series: Cr(III)-Cl pH=5.0> Cr(III)-SO4 pH=5.0> Cr(III)-Cl pH=3.0> Cr(III)-SO4 pH=3.0> Cr(VI) pH=5.0> Cr(VI) pH=3.0. Dust was also characterized by a high maximum sorption capacity of dye at a range of 38.2 - 91.7 mg/g, depending on the dose of dust. Based on the study it was found that dust from a steel plant, containing iron oxides, can be used as low-cost and effective sorbent to remove pollutions containing chromium ions, especially from acidic wastewater.

  13. Methylene blue adsorption on graphene oxide/calcium alginate composites.

    PubMed

    Li, Yanhui; Du, Qiuju; Liu, Tonghao; Sun, Jiankun; Wang, Yonghao; Wu, Shaoling; Wang, Zonghua; Xia, Yanzhi; Xia, Linhua

    2013-06-05

    Graphene oxide has been used as an adsorbent in wastewater treatment. However, the dispersibility in aqueous solution and the biotoxicity to human cells of graphene oxide limits its practical application in environmental protection. In this research, a novel environmental friendly adsorbent, calcium alginate immobilized graphene oxide composites was prepared. The effects of pH, contact time, temperature and dosage on the adsorption properties of methylene blue onto calcium alginate immobilized graphene oxide composites were investigated. The equilibrium adsorption data were described by the Langmuir and Freundlich isotherms. The maximum adsorption capacity obtained from Langmuir isotherm equation was 181.81 mg/g. The pseudo-first order, pseudo-second order, and intraparticle diffusion equation were used to evaluate the kinetic data. Thermodynamic analysis of equilibriums indicated that the adsorption reaction of methylene blue onto calcium alginate immobilized graphene oxide composites was exothermic and spontaneous in nature. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Biosorption of cadmium and lead from aqueous solution by fresh water alga Anabaena sphaerica biomass.

    PubMed

    Abdel-Aty, Azza M; Ammar, Nabila S; Abdel Ghafar, Hany H; Ali, Rizka K

    2013-07-01

    The present work represents the biosorption of Cd(II) and Pb(II) from aqueous solution onto the biomass of the blue green alga Anabaena sphaerica as a function of pH, biosorbent dosage, contact time, and initial metal ion concentrations. Freundlich, Langmuir, and Dubinin-Radushkevich (D-R) models were applied to describe the biosorption isotherm of both metals by A. sphaerica biomass. The biosorption isotherms studies indicated that the biosorption of Cd(II) and Pb(II) follows the Langmuir and Freundlish models. The maximum biosorption capacities (qmax ) were 111.1 and 121.95 mg/g, respectively, at the optimum conditions for each metal. From the D-R isotherm model, the mean free energy was calculated to be 11.7 and 14.3 kJ/mol indicating that the biosorption mechanism of Cd(II) and Pb(II) by A. sphaerica was chemisorption. The FTIR analysis for surface function group of algal biomass revealed the existence of amino, carboxyl, hydroxyl, and carbonyl groups, which are responsible for the biosorption of Cd(II) and Pb(II). The results suggested that the biomass of A. sphaerica is an extremely efficient biosorbent for the removal of Cd(II) and Pb(II) from aqueous solutions.

  15. Biosorption of cadmium and lead from aqueous solution by fresh water alga Anabaena sphaerica biomass

    PubMed Central

    Abdel -Aty, Azza M.; Ammar, Nabila S.; Abdel Ghafar, Hany H.; Ali, Rizka K.

    2012-01-01

    The present work represents the biosorption of Cd(II) and Pb(II) from aqueous solution onto the biomass of the blue green alga Anabaena sphaerica as a function of pH, biosorbent dosage, contact time, and initial metal ion concentrations. Freundlich, Langmuir, and Dubinin–Radushkevich (D–R) models were applied to describe the biosorption isotherm of both metals by A. sphaerica biomass. The biosorption isotherms studies indicated that the biosorption of Cd(II) and Pb(II) follows the Langmuir and Freundlish models. The maximum biosorption capacities (qmax) were 111.1 and 121.95 mg/g, respectively, at the optimum conditions for each metal. From the D–R isotherm model, the mean free energy was calculated to be 11.7 and 14.3 kJ/mol indicating that the biosorption mechanism of Cd(II) and Pb(II) by A. sphaerica was chemisorption. The FTIR analysis for surface function group of algal biomass revealed the existence of amino, carboxyl, hydroxyl, and carbonyl groups, which are responsible for the biosorption of Cd(II) and Pb(II). The results suggested that the biomass of A. sphaerica is an extremely efficient biosorbent for the removal of Cd(II) and Pb(II) from aqueous solutions. PMID:25685442

  16. Heterogeneous photodegradation of methylene blue with iron and tea or coffee polyphenols in aqueous solutions.

    PubMed

    Morikawa, Claudio Kendi; Shinohara, Makoto

    2016-01-01

    Recently, we developed two new Fenton catalysts using iron (Fe) and spent tea leaves or coffee grounds as raw material. In this study, Fe-to-tea or Fe-to-coffee polyphenol complexes were successfully tested as heterogeneous photo-Fenton catalysts. The photodegradation efficiency of methylene blue solutions with Fe-to-polyphenol complexes was higher than that of homogeneous iron salts in the photo-Fenton process. Furthermore, the tested Fe-to-polyphenol complexes could be reused by simply adding H2O2 to the solutions. After three sequential additions of H2O2, the conventional catalysts FeCl2·4H2O and FeCl3 removed only 16.6% and 53.6% of the dye, while the catalysts made using spent coffee grounds and tea leaves removed 94.4% and 96.0% of the dye, respectively. These results showed that the complexes formed between Fe and chlorogenic acid, caffeic acid, gallic acid and catechin, which are the main polyphenols in tea and coffee, can be used to improve the photo-Fenton process.

  17. Fabrication of cellulose nanocrystal from Carex meyeriana Kunth and its application in the adsorption of methylene blue.

    PubMed

    Yang, Xue; Liu, Hui; Han, Fuyi; Jiang, Shuai; Liu, Lifang; Xia, Zhaopeng

    2017-11-01

    Cellulose nanocrystal (CNC) was extracted from Carex meyeriana Kunth (CMK) by a combination of TEMPO oxidation and mechanical homogenization method, and used to remove methylene blue (MB) from aqueous solution. After alkali-oxygen treatment, the aqueous biphasic system (polyethylene glycol/inorganic salt) was applied to further remove lignin from CMK. The characteriazation of CNC, and the effects of H 2 O 2 dosage, CNC dosage, adsorption time, and initial MB concentration on the MB removal capacity of CNC were investigated. The results showed that the removal percentage of MB by CNC was raised with the increase of H 2 O 2 and CNC dosage. The adsorption kinetics of prepared CNC followed the pseudo-second-order model, and the adsorption isotherms fitted well to the Langmuir model with a calculated maximum adsoption capacity of 217.4mg/g, which was higher than those of CNC extracted by acid hydrolysis method, indicating CNC extracted from CMK had promising potentials in the field of MB adsorption. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. White/blue-emitting, water-dispersible CdSe quantum dots prepared by counter ion-induced polymer collapse

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Goh, Jane Betty; Goh, M. Cynthia; Giri, Neeraj Kumar; Paige, Matthew F.

    2015-09-01

    The synthesis and characterization of water-dispersible, luminescent CdSe/ZnS semiconductor quantum dots that exhibit nominal "white" fluorescence emission and have potential applications in solid-state lighting is described. The nanomaterials, prepared through counter ion-induced collapse and UV cross-linking of high-molecular weight polyacrylic acid in the presence of appropriate aqueous inorganic ions, were of ∼2-3 nm diameter and could be prepared in gram quantities. The quantum dots exhibited strong luminescence emission in two bands, the first in the blue-region (band edge) of the optical spectrum and the second, a broad emission in the red-region (attributed to deep trap states) of the optical spectrum. Because of the relative strength of emission of the band edge and deep trap state luminescence, it was possible to achieve visible white luminescence from the quantum dots in aqueous solution and in dried, solid films. The optical spectroscopic properties of the nanomaterials, including ensemble and single-molecule spectroscopy, was performed, with results compared to other white-emitting quantum dot systems described previously in the literature.

  19. A Comparative Study of the Adsorption of Methylene Blue onto Synthesized Nanoscale Zero-Valent Iron-Bamboo and Manganese-Bamboo Composites

    PubMed Central

    Shaibu, Solomon E.; Adekola, Folahan A.; Adegoke, Halimat I.; Ayanda, Olushola S.

    2014-01-01

    In this study, bamboo impregnated with nanoscale zero-valent iron (nZVI) and nanoscale manganese (nMn) were prepared by the aqueous phase borohydride reduction method and characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and PIXE analysis. The synthesized nMn-bamboo and nZVI-bamboo composites were subsequently applied to the sorption of methylene blue (MB) dye from aqueous solution. The adsorption of MB dye was investigated under various experimental conditions such as pH, contact time, initial concentration of MB dye and adsorbent dosage. The results showed that the synthesized nZVI-bamboo composite was more effective than nMn-bamboo composite in terms of higher MB dye adsorption capacity of 322.5 mg/g compared to 263.5 mg/g of nMn-bamboo composite. At a concentration of 140 mg/L MB dye, 0.02 g of nZVI-bamboo and nMn-bamboo composites resulted in 79.6% and 78.3% removal, respectively, at 165 rpm, contact time of 120 min and at a solution pH of 7.6. The equilibrium data was best represented by Freundlich isotherm model and the pseudo-second order kinetic model better explained the kinetic data for both nZVI-bamboo and nMn-bamboo composites. PMID:28788688

  20. Removal of methylene blue from its aqueous solution by froth flotation: hydrophobic silica nanoparticle as a collector

    NASA Astrophysics Data System (ADS)

    Hu, Nan; Liu, Wei; Ding, Linlin; Wu, Zhaoliang; Yin, Hao; Huang, Di; Li, Hongzhen; Jin, Lixue; Zheng, Huijie

    2017-02-01

    Dye pollution has been a severe problem faced by worldwide environmentalists. The use of nanoparticles as adsorbents has attracted widespread interests for effectively removing dyes, while the separation of them from an aqueous solution is a difficult and important subject. For achieving the simultaneous removal of methylene blue (MB) and nanoadsorbents, this work utilized a commercial hydrophobic silica nanoparticle (SNP) (200.0 ± 10.0 nm in average particle size) as a collector and then developed a novel froth flotation technology without using any surfactants. Under the suitable conditions of anhydrous ethanol dosage of 8 mL, pH of 9.0, SNP concentration of 600 mg/L, and flotation column height of 600 mm, the removal efficiencies of MB and SNPs and the volume ratio reached 91.1 ± 4.6%, 93.9 ± 4.7%, and 10.5 ± 0.5, respectively. Subsequently, the recovered MB-adsorbed SNPs in the foamate were separated by free setting due to their high concentration and massive agglomeration. After free setting, MB could be effectively separated from the recovered MB-adsorbed SNPs by using ethanol at pH 2.0 and repeating five cycles of washing-centrifugation. Additionally, the regenerated SNPs could be reused for removing MB up to five times. Overall, this work had a significant meaning for the treatment of dye-contaminated wastewaters.

  1. Preparation of activated carbon from a renewable bio-plant of Euphorbia rigida by H 2SO 4 activation and its adsorption behavior in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Gerçel, Özgül; Özcan, Adnan; Özcan, A. Safa; Gerçel, H. Ferdi

    2007-03-01

    The use of activated carbon obtained from Euphorbia rigida for the removal of a basic textile dye, which is methylene blue, from aqueous solutions at various contact times, pHs and temperatures was investigated. The plant material was chemically modified with H 2SO 4. The surface area of chemically modified activated carbon was 741.2 m 2 g -1. The surface characterization of both plant- and activated carbon was undertaken using FTIR spectroscopic technique. The adsorption process attains equilibrium within 60 min. The experimental data indicated that the adsorption isotherms are well described by the Langmuir equilibrium isotherm equation and the calculated adsorption capacity of activated carbon was 114.45 mg g -1 at 40° C. The adsorption kinetics of methylene blue obeys the pseudo-second-order kinetic model and also followed by the intraparticle diffusion model up to 60 min. The thermodynamic parameters such as Δ G°, Δ H° and Δ S° were calculated to estimate the nature of adsorption. The activation energy of the system was calculated as 55.51 kJ mol -1. According to these results, prepared activated carbon could be used as a low-cost adsorbent to compare with the commercial activated carbon for the removal textile dyes from textile wastewater processes.

  2. [Adsorption behavior of copper ion and methylene blue on citric acid- esterified wheat straw].

    PubMed

    Sun, Jin; Zhong, Ke-Ding; Feng, Min; Liu, Xing-Yan; Gong, Ren-Min

    2008-03-01

    A cationic adsorbent with carboxyl groups derived from citric acid- esterified wheat straw (EWS) was prepared by the method of solid phase preparation, and a batch experiment was conducted to study the adsorption behaviors of Cu (II) and methylene blue (MB) in aqueous solution on the EWS under conditions of different initial pH, adsorbent dosage, adsorbate concentration, and contact time. The results showed that the maximum adsorption of Cu (II) and MB was obtained when the initial solution pH was > or = 4.0. 96% of Cu (II) in 100 mg x L(-1) Cu solution and 99% of MB in 250 mg x L(-1) dye solution could be removed by > or = 2.0 g x L(-1) of EWS. The adsorption of Cu (II) and MB fitted the Langmuir sorption isothermal model. The maximum removal capacity (Qm) of EWS was 79.37 mg x g(-1) for Cu (II) and 312.50 mg x g(-1) for MB, and the adsorption equilibrium of Cu (II) and MB was reached within 75 min and 5 h, respectively. The adsorption processes of Cu (II) and MB could be described by pseudo-first order and pseudo-second order kinetic functions, respectively.

  3. High surface area mesoporous activated carbon-alginate beads for efficient removal of methylene blue.

    PubMed

    Nasrullah, Asma; Bhat, A H; Naeem, Abdul; Isa, Mohamed Hasnain; Danish, Mohammed

    2018-02-01

    High surface area mesoporous activated carbon-alginate (AC-alginate) beads were successfully synthesized by entrapping activated carbon powder derived from Mangosteen fruit peel into calcium-alginate beads for methylene blue (MB) removal from aqueous solution. The structure and surface characteristics of AC-alginate beads were analyzed using Fourier transform infra-red (FTIR) spectroscopy, scanning electron microscopy (SEM) and surface area analysis (S BET ), while thermal properties were tested using thermogravimetric analysis (TGA). The effect of AC-alginate dose, pH of solution, contact time, initial concentration of MB solution and temperature on MB removal was elucidated. The results showed that the maximum adsorption capacity of 230mg/g was achieved for 100mg/L of MB solution at pH 9.5 and temperature 25°C. Furthermore, the adsorption of MB on AC-alginate beads followed well pseudo-second order equation and equilibrium adsorption data were better fitted by the Freundlich isotherm model. The findings reveal the feasibility of AC-alginate beads composite to be used as a potential and low cost adsorbent for removal of cationic dyes. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Effect of clay in controlling the non-fluorescence H-dimeric states of a cationic dye Nile Blue Chloride (NBC) in hybrid Langmuir-Blodgett (LB) film

    NASA Astrophysics Data System (ADS)

    Debnath, Chandan; Shil, Ashis; Hussain, S. A.; Bhattacharjee, D.

    2018-01-01

    Present communication reports the effect of amphiphilic matrices and nano-clay platelets on the aggregation properties of a water soluble cationic fluorescent dye Nile Blue Chloride (NBC) in Langmuir-Blodgett (LB) films. In-situ Brewster Angle Microscopic (BAM) studies showed distinct domain structures of complex and hybrid Langmuir monolayer at the air-water interface. UV-vis absorption spectra showed non-fluorescent H-dimeric band in concentrated aqueous solution of NBC and in complex LB film of NBC with stearic acid. By changing various parameters, a great control over H-dimeric states has been achieved in clay incorporated hybrid LB films. These films can act as efficient fluorescence probe.

  5. Optimization of methylene blue removal by stable emulsified liquid membrane using Plackett–Burman and Box–Behnken designs of experiments

    PubMed Central

    Djenouhat, Meriem; Bendebane, Farida; Bahloul, Lynda; Samar, Mohamed E. H.

    2018-01-01

    The stability of an emulsified liquid membrane composed of Span80 as a surfactant, D2EHPA as an extractant and sulfuric acid as an internal phase was first studied according to different diluents and many operating parameters using the Plackett–Burman design of experiments. Then the removal of methylene blue from an aqueous solution has been carried out using this emulsified liquid membrane at its stability conditions. The effects of operating parameters were analysed from the Box–Behnken design of experiments. The optimization of the extraction has been realized applying the response surface methodology and the results showed that the dye extraction yielding 98.72% was achieved at optimized conditions. PMID:29515841

  6. Degradation of Acid Blue 25 in aqueous media using 1700kHz ultrasonic irradiation: ultrasound/Fe(II) and ultrasound/H(2)O(2) combinations.

    PubMed

    Ghodbane, Houria; Hamdaoui, Oualid

    2009-06-01

    In this work, the sonolytic degradation of an anthraquinonic dye, C.I. Acid Blue 25 (AB25), in aqueous phase using high frequency ultrasound waves (1700kHz) for an acoustic power of 14W was investigated. The sonochemical efficiency of the reactor was evaluated by potassium iodide dosimeter, Fricke reaction and hydrogen peroxide production yield. The three investigated methods clearly show the production of oxidizing species during sonication and well reflect the sonochemical effects of high frequency ultrasonic irradiation. The effect of operational conditions such as the initial AB25 concentration, solution temperature and pH on the degradation of AB25 was studied. Additionally, the influence of addition of salts on the degradation of dye was examined. The rate of AB25 degradation was dependent on initial dye concentration, pH and temperature. Addition of salts increased the degradation of dye. Experiments conducted using distilled and natural waters demonstrated that the degradation was more efficient in the natural water compared to distilled water. To increase the efficiency of AB25 degradation, experiments combining ultrasound with Fe(II) or H(2)O(2) were conducted. Fe(II) induced the dissociation of ultrasonically produced hydrogen peroxide, leading to additional OH radicals which enhance the degradation of dye. The combination of ultrasound with hydrogen peroxide looks to be a promising option to increase the generation of free radicals. The concentration of hydrogen peroxide plays a crucial role in deciding the extent of enhancement obtained for the combined process. The results of the present work indicate that ultrasound/H(2)O(2) and ultrasound/Fe(II) processes are efficient for the degradation of AB25 in aqueous solutions by high frequency ultrasonic irradiation.

  7. Intermolecular Interactions of Pyridine in Liquid Phase and Aqueous Solution Studied by Soft X-ray Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Nagasaka, Masanari; Yuzawa, Hayato; Kosugi, Nobuhiro

    2018-05-01

    Intermolecular interactions of pyridine in liquid and in aqueous solution are studied by using soft X-ray absorption spectroscopy (XAS) at the C, N, and O K-edges. XAS of liquid pyridine shows that the N 1s→π* peak is blue shifted and the C 1s→π* peak of the meta and para sites is red shifted, respectively, as compared with XAS of pyridine gas. These shifts in liquid are smaller than those in clusters, indicating that the intermolecular interaction of liquid pyridine is weaker than that of pyridine cluster, as supported by the combination of quantum chemical calculations of the core excitation and molecular dynamics simulations of the liquid structure. On the other hand, XAS spectra of aqueous pyridine solutions (C5H5N)x(H2O)1-x measured at different molar fractions show that in the pyridine rich region, x>0.7, the C and N 1s→π* peak energies are not so different from pure liquid pyridine (x=1.0). In this region, antiparallel displaced structures of pyridine molecules are dominant as in pure pyridine liquid. In the O K-edge XAS, the pre-edge peaks sensitive to the hydrogen bond (HB) network of water molecules show the red shift of -0.15 eV from that of bulk water, indicating that small water clusters with no large-scale HB network are formed in the gap space of structured pyridine molecules. In the water rich region, 0.7>x, the N 1s→π* peaks and the O 1s pre-edge peaks are blue shifted, and the C 1s→π* peaks of the meta and para sites are red-shifted by increasing molar fraction of water. The HB network of bulk water is dominant, but quantum chemical calculations indicate that small pyridine clusters with the HB interaction between the H atom in water and the N atom in pyridine are still existent even in very dilute pyridine solutions.

  8. Solar light induced and TiO2 assisted degradation of textile dye reactive blue 4.

    PubMed

    Neppolian, B; Choi, H C; Sakthivel, S; Arabindoo, B; Murugesan, V

    2002-03-01

    Aqueous solutions of reactive blue 4 textile dye are totally mineralised when irradiated with TiO2 photocatalyst. A solution containing 4 x 10(-4) M dye was completely degraded in 24 h irradiation time. The intensity of the solar light was measured using Lux meter. The results showed that the dye molecules were completely degraded to CO2, SO4(2-), NO3-, NH4+ and H2O under solar irradiation. The addition of hydrogen peroxide and potassium persulphate influenced the photodegradation efficiency. The rapidity of photodegradation of dye intermediates were observed in the presence of hydrogen peroxide than in its absence. The auxiliary chemicals such as sodium carbonate and sodium chloride substantially affected the photodegradation efficiency. High performance liquid chromatography and chemical oxygen demand were used to study the mineralisation and degradation of the dye respectively. It is concluded that solar light induced degradation of textile dye in wastewater is a viable technique for wastewater treatment.

  9. Dye-Enhanced Self-Electrophoretic Propulsion of Light-Driven TiO2-Au Janus Micromotors

    NASA Astrophysics Data System (ADS)

    Wu, Yefei; Dong, Renfeng; Zhang, Qilu; Ren, Biye

    2017-07-01

    Light-driven synthetic micro-/nanomotors have attracted considerable attention in recent years due to their unique performances and potential applications. We herein demonstrate the dye-enhanced self-electrophoretic propulsion of light-driven TiO2-Au Janus micromotors in aqueous dye solutions. Compared to the velocities of these micromotors in pure water, 1.7, 1.5, and 1.4 times accelerated motions were observed for them in aqueous solutions of methyl blue (10-5 g L-1), cresol red (10-4 g L-1), and methyl orange (10-4 g L-1), respectively. We determined that the micromotor speed changes depending on the type of dyes, due to variations in their photodegradation rates. In addition, following the deposition of a paramagnetic Ni layer between the Au and TiO2 layers, the micromotor can be precisely navigated under an external magnetic field. Such magnetic micromotors not only facilitate the recycling of micromotors, but also allow reusability in the context of dye detection and degradation. In general, such photocatalytic micro-/nanomotors provide considerable potential for the rapid detection and "on-the-fly" degradation of dye pollutants in aqueous environments.

  10. Polyurethane foam loaded with SDS for the adsorption of cationic dyes from aqueous medium: Multivariate optimization of the loading process.

    PubMed

    Robaina, Nicolle F; Soriano, Silvio; Cassella, Ricardo J

    2009-08-15

    This paper reports the development of a new procedure for the adsorption of four cationic dyes (Rhodamine B, Methylene Blue, Crystal Violet and Malachite Green) from aqueous medium employing polyurethane foam (PUF) loaded with sodium dodecylsulfate (SDS) as solid phase. PUF loading process was based on the stirring of 200mg PUF cylinders with acidic solutions containing SDS. The conditions for loading were optimized by response surface methodology (RSM) using a Doehlert design with three variables that were SDS and HCl concentrations and stirring time. Results obtained in the optimization process showed that the stirring time is not a relevant parameter in the PUF loading, evidencing that the transport of SDS from solution to PUF surface is fast. On the other hand, both SDS and HCl concentrations were important parameters causing significant variation in the efficiency of the resulting solid phase for the removal of dyes from solution. At optimized conditions, SDS and HCl concentrations were 4.0 x 10(-4) and 0.90 mol L(-1), respectively. The influence of stirring time was evaluated by univariate methodology. A 20 min stirring time was established in order to make the PUF loading process fast and robust without losing efficiency. The procedure was tested for the removal of the four cationic dyes from aqueous solutions and removal efficiencies always better than 90% were achieved for the two concentrations tested (2.0 x 10(-5) and 1.0 x 10(-4)mol L(-1)).

  11. Good use of fruit wastes: eco-friendly synthesis of silver nanoparticles, characterization, BSA protein binding studies.

    PubMed

    Sreekanth, T V M; Ravikumar, Sambandam; Lee, Yong Rok

    2016-06-01

    A simple and eco-friendly methodology for the green synthesis of silver nanoparticles (AgNPs) using a mango seed extract was evaluated. The AgNPs were characterized by ultraviolet-visible spectrophotometry, Fourier transform infrared spectroscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction. The interaction between the green synthesized AgNPs and bovine serum albumin (BSA) in an aqueous solution at physiological pH was examined by fluorescence spectroscopy. The results confirmed that the AgNPs quenched the fluorophore of BSA by forming a ground state complex in aqueous solution. This fluorescence quenching data were also used to determine the binding sites and binding constants at different temperatures. The calculated thermodynamic parameters (ΔG°, ΔH° and ΔS°) suggest that the binding process occurs spontaneously through the involvement of electrostatic interactions. The synchronous fluorescence spectra showed a blue shift, indicating increasing hydrophobicity. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  12. Design, synthesis, characterization and cation sensing behavior of amino-naphthoquinone receptor: Selective colorimetric sensing of Cu(II) ion in nearly aqueous solution with mimicking logic gate operation

    NASA Astrophysics Data System (ADS)

    Parthiban, C.; Elango, Kuppanagounder P.

    2017-03-01

    An amino-naphthoquione receptor (R1) has been rationally designed, synthesized and characterized using 1H and 13C NMR, LCMS and single crystal X-ray diffraction studies. The receptor exhibits an instantaneous colour change from yellow to blue selectively with Cu(II) ions in water-DMF (98:2% v/v) medium. The results of UV-Vis and fluorescence spectral studies indicates that the mechanism of sensing involves formation of a 1:1 complex between R1 and Cu(II) ion. The proposed mechanism has been confirmed through product analysis using FT-IR, UV-Vis, EPR and HRMS studies in addition to magnetic moment and elemental analysis measurements. The formed [Cu(R1)Cl2] possess a square planar geometry. The binding constant for the interaction of Cu(II) ion with the present unsubstituted quinone is found to be relatively higher than that with quinones containing electron withdrawing chlorine atom and electron releasing methyl group reported in literature. The detection limit of Cu(II) ion in aqueous solution by R1 is observed to be 8.7 nM. The detection of Cu(II) ion by R1 in aqueous solution produces remarkable changes in the electronic and fluorescence spectra, which is applied to construct logic gate at molecular level.

  13. Microplate technique for determining accumulation of metals by algae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassett, J.M.; Jennett, J.C.; Smith, J.E.

    1981-05-01

    A microplate technique was developed to determine the conditions under which pure cultures of algae removed heavy metals from aqueous solutions. Variables investigated included algal species and strain, culture age (11 and 44 days), metal (mercury, lead, cadmium, and zinc), pH, effects of different buffer solutions, and time of exposure. Plastic, U-bottomed microtiter plates were used in conjunction with heavy metal radionuclides to determine concentration factors for metal-alga combinations. The technique developed was rapid, statistically reliable, and economical of materials and cells. All species of algae studied removed mercury from solution. Green algae proved better at accumulating cadmium than didmore » blue-green algae. No alga studied removed zinc, perhaps because cells were maintained in the dark during the labeling period. Chlamydomonas sp. proved superior in ability to remove lead from solution.« less

  14. New multifunctional materials obtained by the intercalation of anionic dyes into layered zinc hydroxide nitrate followed by dispersion into poly(vinyl alcohol) (PVA).

    PubMed

    Marangoni, Rafael; Ramos, Luiz Pereira; Wypych, Fernando

    2009-02-15

    Different anionic blue and orange dyes have been immobilized on a zinc hydroxide nitrate (Zn(5)(OH)(8)(NO(3))(2)nH(2)O--Zn-OH-NO(3)) by anion exchange with interlayer and/or outer surface nitrate ions of the layered matrix. Orange G (OG) was totally intercalated, orange II (OII) was partially intercalated, while Niagara blue 3B (NB) and Evans blue (EV) were only adsorbed at the outer surface. Several composite films of poly(vinyl alcohol)--PVA were prepared by casting through the dispersion of the hybrid material (Zn-OH-OG) into a PVA aqueous solution and evaporation of water in a vacuum oven. The obtained composite films were transparent, colored, and capable of absorbing UV radiation. Improved mechanical properties were also obtained in relation to the nonfilled PVA films. These results demonstrate the onset of a new range of potential applications for layered hydroxide salts in the preparation of polymer composite multifunctional materials.

  15. Adsorption of Direct Blue 53 dye from aqueous solutions by multi-walled carbon nanotubes and activated carbon.

    PubMed

    Prola, Lizie D T; Machado, Fernando M; Bergmann, Carlos P; de Souza, Felipe E; Gally, Caline R; Lima, Eder C; Adebayo, Matthew A; Dias, Silvio L P; Calvete, Tatiana

    2013-11-30

    Multi-walled carbon nanotubes (MWCNT) and powder activated carbon (PAC) were used as adsorbents for adsorption of Direct Blue 53 dye (DB-53) from aqueous solutions. The adsorbents were characterised using Raman spectroscopy, N2 adsorption/desorption isotherms, and scanning and transmission electron microscopy. The effects of initial pH, contact time and temperature on adsorption capacity of the adsorbents were investigated. At pH 2.0, optimum adsorption of the dye was achieved by both adsorbents. Equilibrium contact times of 3 and 4 h were achieved by MWCNT and PAC adsorbents, respectively. The general order kinetic model provided the best fit of the experimental data compared to pseudo-first order and pseudo-second order kinetic adsorption models. For DB-53 dye, the equilibrium data (298-323 K) were best fitted to the Sips isotherm model. The maximum sorption capacity for adsorption of the dye occurred at 323 K, with the values of 409.4 and 135.2 mg g(-1) for MWCNT and PAC, respectively. Studies of adsorption/desorption were conducted and the results showed that DB-53 loaded MWCNT could be regenerated (97.85%) using a mixture 50% acetone + 50% of 3 mol L(-1) NaOH. Simulated dye house effluents were used to evaluate the application of the adsorbents for effluent treatment (removal of 99.87% and 97.00% for MWCNT and PAC, respectively, were recorded). Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Analysis of the Spectroscopic Aspects of Cationic Dye Basic Orange 21.

    PubMed

    Eizig, Zehavit; Major, Dan T; Kasdan, Harvey L; Afrimzon, Elena; Zurgil, Naomi; Sobolev, Maria; Deutsch, Mordechai

    2015-09-24

    Spectroscopic properties of cationic dye basic orange 21 (BO21) in solutions, in solids, and within leukocytes were examined. Results obtained with solutions indicate that influence of variables such as pH, viscosity, salt composition, and various proteins on the absorption spectrum of BO21 is negligible. However, in the presence of heparin, a blue shift (484-465 nm) is observed, which is attributed to the aggregation of BO21 on the polyanion. Applying density functional theory demonstrates that in aqueous solutions (a) the formation of BO21 oligomers is thermodynamically favorable, they are oriented in an antiparallel dipolar arrangement, and their binding energies are lower than those of parallel dipolar arrangements, (b) association between BO21 aggregates and heparin is highly favorable, and (c) the blue shift is due to the mixing of π → π* transitions caused by BO21 molecule stacking. However, when embedded in basophils, the absorption spectra of intracellular BO21 is extremely red-shifted, with two peaks (at 505 and 550 nm) found to be attributed to BO21 and the BO21-heparin complex, respectively, which are intracellularly hosted in nonaqueous environments. Initial evidence of the ability to differentiate between leukocyte types by BO21 is presented.

  17. Photophysical properties, photodegradation characteristics, and lasing action for coumarin dye C540A in polymeric media

    NASA Astrophysics Data System (ADS)

    Jones, Guilford, II; Huang, Zhennian; Pacheco, Dennis P., Jr.; Russell, Jeffrey A.

    2004-07-01

    Tunable solid-state dye lasers operating in the blue-green spectral region are attractive for a variety of applications. An important consideration in assessing the viability of this technology is the service life of the gain medium, which is presently limited by dye photodegradation. In this study, solid polymeric samples consisting of the coumarin dye C540A in modified PMMA were subjected to controlled photodegradation tests. The excitation laser was a flashlamp-pumped dye laser operating at 440 nm with a pulse duration of 1 μs. A complementary set of data was obtained for dye in solution phase for comparison purposes. Photophysical properties of C540A in water solution of polymethacrylic acid (PMAA) have been investigated with a view to assess the suitability of the sequestering polymer (PMAA) as an effective additive to facilitate use of a water medium for highly efficient blue-green dye lasers. Lasing action of C540A in aqueous PMAA has been realized using flashlamp-pumped laser system, yielding excellent laser efficiencies superior to that achieved in ethanolic solutions with the same dye. Laser characterization of dye in media included measurement of laser threshold, slope efficiency, pulse duration and output wavelength.

  18. Platinum blue as an alternative to uranyl acetate for staining in transmission electron microscopy.

    PubMed

    Inaga, Sumire; Katsumoto, Tetsuo; Tanaka, Keiichi; Kameie, Toshio; Nakane, Hironobu; Naguro, Tomonori

    2007-04-01

    This paper introduces an aqueous solution of platinum blue (Pt-blue) as an alternative to uranyl acetate (UA) for staining in transmission electron microscopy (TEM). Pt-blue was prepared from a reaction of cis-dichlorodiamine-platinum (II) (cis-platin) with thymidine. When Pt-blue was dried on a microgrid and observed by TEM it showed a uniform appearance with tiny particles less than 1 nm in diameter. The effect of Pt-blue as an electron stain was then examined not only for positive staining of conventional ultrathin resin sections and counterstaining of post-embedding immuno-electron microscopy but also for negative staining. In ultrathin sections of the rat liver and renal glomerulus, Pt-blue provided good contrast images, especially in double staining combined with a lead stain (Pb). Almost all cell organelles were clearly observed with high contrast in these sections. Glycogen granules in the hepatic parenchymal cells were particularly electron dense in Pt-blue stained sections compared with those treated with UA. In longitudinal and transverse sections of budding influenza A viruses, a specific arrangement of rod-like structures, which correspond to the ribonucleoprotein complexes, was clearly shown in each virion stained with Pt-blue and Pb. When post-embedding immunoelectron microscopy was performed in ultrathin sections of HeLa cells embedded in Lowicryl K4M, the localization of Ki-67 protein was sufficiently detected even after Pt-blue and Pb staining. The present study also revealed that Pt-blue could be used for the negative staining of E. coli, allowing the visualization of a flagellum. These findings indicate that Pt-blue is a useful, safe, and easily obtainable electron stain that is an alternative to UA for TEM preparations.

  19. Porous synthetic hectorite clay-alginate composite beads for effective adsorption of methylene blue dye from aqueous solution.

    PubMed

    Pawar, Radheshyam R; Lalhmunsiama; Gupta, Prabuddha; Sawant, Sandesh Y; Shahmoradi, B; Lee, Seung-Mok

    2018-07-15

    The present study deals with the preparation and characterization of mesoporous synthetic hectorite (MSH) clay which further encapsulated with Na-alginate for the preparation of mesoporous synthetic hectorite-alginate beads (MSH-AB) where Ca 2+ act as a cross-linking agent. The detail characterization of MSH and MSH-AB were carried out by various physicochemical techniques. The thermogravimetric analysis study showed better thermal stability results for MSH-AB. The textural properties results of MSH and MSH-AB showed the high surface area 468, 205m 2 /g, and the pore volume of 0.34, 0.29cm 3 /g respectively. The applicability of powder MSH and MSH-AB in wet (W) and dry (D) forms were assessed for the removal of cationic dye, methylene blue (MB) by optimizing various batch adsorption parameters. The Langmuir monolayer adsorption capacity obtained for MSH-AB-W showed significant high adsorption efficacy (i.e., 785.45mgMB/g) compared to the MSH-AB-D (357.14mgMB/g) and powder MSH materials (196.00mgMB/g). The adsorption isotherm studies showed that the Langmuir isotherm model was best suitable for MSH, whereas the Freundlich model was utilised to describe the adsorption behavior of organized hydrogel composite beads. The pseudo-second-order kinetics model was observed best for MB sorption onto MSH, whereas pseudo-first order useful to describe the kinetic behavior of MSH-AB. The regeneration experimental results revealed that MSH-AB-W could be recycled more than six cycles with high MB removal efficiency. Furthermore, the adsorption property of the MSH-AB-W was examined for the binary mixture of MB with other dye solutions such as Methyl Red (MR), Methyl Orange (MO), Alizarine Yellow (AY), and Remazol Brilliant Blue (RBB) to evaluate the selective adsorption efficiency. The MSH composite beads were found potentially suitable as an efficient, selective and recyclable adsorbent for the removal of MB from the aqueous solutions. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Facilitative capture of As(V), Pb(II) and methylene blue from aqueous solutions with MgO hybrid sponge-like carbonaceous composite derived from sugarcane leafy trash.

    PubMed

    Li, Ronghua; Liang, Wen; Wang, Jim J; Gaston, Lewis A; Huang, Di; Huang, Hui; Lei, Shuang; Awasthi, Mukesh Kumar; Zhou, Baoyue; Xiao, Ran; Zhang, Zengqiang

    2018-04-15

    Enhancing the contaminant adsorption capacity is a key factor affecting utilization of carbon-based adsorbents in wastewater treatment and encouraging development of biomass thermo-disposal. In this study, a novel MgO hybrid sponge-like carbonaceous composite (HSC) derived from sugarcane leafy trash was prepared through an integrated adsorption-pyrolysis method. The resulted HSC composite was characterized and employed as adsorbent for the removal of negatively charged arsenate (As(V)), positively charged Pb(II), and the organic pollutant methylene blue (MB) from aqueous solutions in batch experiments. The effects of solution pH, contact time, initial concentration, temperature, and ionic strength on As(V), Pb(II) and MB adsorption were investigated. HSC was composed of nano-size MgO flakes and nanotube-like carbon sponge. Hybridization significantly improved As(V), Pb(II) and methylene blue (MB) adsorption when compared with the material without hybridization. The maximum As(V), Pb(II) and MB adsorption capacities obtained from Langmuir model were 157 mg/g, 103 mg/g and 297 mg/g, respectively. As(V) adsorption onto HSC was best fit by the pseudo-second-order model, and Pb(II) and MB with the intraparticle diffusion model. Increased temperature and ionic strength decreased Pb(II) and MB adsorption onto HSC more than As(V). Further FT-IR, XRD and XPS analysis demonstrated that the removal of As(V) by HSC was mainly dominated by surface deposition of MgHAsO 4 and Mg(H 2 AsO 4 ) 2 crystals on the HSC composite, while carbon π-π* transition and carbon π-electron played key roles in Pb(II) and MB adsorption. The interaction of Pb(II) with carbon matrix carboxylate was also evident. Overall, MgO hybridization improves the preparation of the nanotube-like carbon sponge composite and provides a potential agricultual residue-based adsorbent for As(V), Pb(II) and MB removal. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Extraction of anionic dye from aqueous solutions by emulsion liquid membrane.

    PubMed

    Dâas, Attef; Hamdaoui, Oualid

    2010-06-15

    In this work, the extraction of Congo red (CR), an anionic disazo direct dye, from aqueous solutions by emulsion liquid membrane (ELM) was investigated. The important operational parameters governing emulsion stability and extraction behavior of dye were studied. The extraction of CR was influenced by a number of variables such as surfactant concentration, stirring speed, acid concentration in the feed solution and volume ratios of internal phase to organic phase and of emulsion to feed solution. Under most favorable conditions, practically all the CR molecules present in the feed phase were extracted even in the presence of salt (NaCl). At the optimum experimental conditions, total removal of antharaquinonic dye Acid Blue 25 was attained after only 10 min. Influence of sodium carbonate concentration as internal receiving phase on the stripping efficiency of CR was examined. The best sodium carbonate concentration in the internal phase that conducted to excellent stripping efficiency (>99%) and emulsion stability was 0.1N. The membrane recovery was total and the permeation of CR was not decreased up to seven runs. ELM process is a promising alternative to conventional methods and should increase awareness of the potential for recovery of anionic dyes. Copyright 2010 Elsevier B.V. All rights reserved.

  2. Photocatalytic degradation of methylene blue and inactivation of gram-negative bacteria by TiO2 nanoparticles in aqueous suspension

    USDA-ARS?s Scientific Manuscript database

    The photocatalytic degradation of methylene blue (MB) and inactivation of Gram-negative bacteria E. coli K12 and P. aeruginosa by TiO2 nanoparticles in aqueous suspension were studied. TiO2 resulted in significant reduction in MB absorption and a shift of MB absorption peak from 664 nm to 658 nm aft...

  3. Decolorizing of azo dye Reactive red 24 aqueous solution using exfoliated graphite and H2O2 under ultrasound irradiation.

    PubMed

    Li, Mei; Li, Ji-Tai; Sun, Han-Wen

    2008-07-01

    At its natural pH (6.95), the decolorization of Reactive red 24 in ultrasound, ultrasound/H2O2, exfoliated graphite, ultrasound/exfoliated graphite, exfoliated graphite/H2O2 and ultrasound/exfoliated graphite/H2O2 systems were compared. An enhancement was observed for the decolorization in ultrasound/exfoliated graphite/H2O2 system. The effect of solution pH, H2O2 and exfoliated graphite dosages, and temperature on the decolorization of Reactive red 24 was investigated. The sonochemical treatment in combination with exfoliated graphite/H2O2 showed a synergistic effect for the decolorization of Reactive red 24. The results indicated that under proper conditions, there was a possibility to remove Reactive red 24 very efficient from aqueous solution. The decolorization of other azo dyes (Reactive red 2, Methyl orange, Acid red 1, Acid red 73, Acid red 249, Acid orange 7, Acid blue 113, Acid brown 75, Acid green 20, Acid yellow 42, Acid mordant brown 33, Acid mordant yellow 10 and Direct green 1) was also investigated, at their natural pH.

  4. A Simplified Model of Local Structure in Aqueous Proline Amino Acid Revealed by First-Principles Molecular Dynamics Simulations

    PubMed Central

    Troitzsch, Raphael Z.; Tulip, Paul R.; Crain, Jason; Martyna, Glenn J.

    2008-01-01

    Aqueous proline solutions are deceptively simple as they can take on complex roles such as protein chaperones, cryoprotectants, and hydrotropic agents in biological processes. Here, a molecular level picture of proline/water mixtures is developed. Car-Parrinello ab initio molecular dynamics (CPAIMD) simulations of aqueous proline amino acid at the B-LYP level of theory, performed using IBM's Blue Gene/L supercomputer and massively parallel software, reveal hydrogen-bonding propensities that are at odds with the predictions of the CHARMM22 empirical force field but are in better agreement with results of recent neutron diffraction experiments. In general, the CPAIMD (B-LYP) simulations predict a simplified structural model of proline/water mixtures consisting of fewer distinct local motifs. Comparisons of simulation results to experiment are made by direct evaluation of the neutron static structure factor S(Q) from CPAIMD (B-LYP) trajectories as well as to the results of the empirical potential structure refinement reverse Monte Carlo procedure applied to the neutron data. PMID:18790850

  5. A simplified model of local structure in aqueous proline amino acid revealed by first-principles molecular dynamics simulations.

    PubMed

    Troitzsch, Raphael Z; Tulip, Paul R; Crain, Jason; Martyna, Glenn J

    2008-12-01

    Aqueous proline solutions are deceptively simple as they can take on complex roles such as protein chaperones, cryoprotectants, and hydrotropic agents in biological processes. Here, a molecular level picture of proline/water mixtures is developed. Car-Parrinello ab initio molecular dynamics (CPAIMD) simulations of aqueous proline amino acid at the B-LYP level of theory, performed using IBM's Blue Gene/L supercomputer and massively parallel software, reveal hydrogen-bonding propensities that are at odds with the predictions of the CHARMM22 empirical force field but are in better agreement with results of recent neutron diffraction experiments. In general, the CPAIMD (B-LYP) simulations predict a simplified structural model of proline/water mixtures consisting of fewer distinct local motifs. Comparisons of simulation results to experiment are made by direct evaluation of the neutron static structure factor S(Q) from CPAIMD (B-LYP) trajectories as well as to the results of the empirical potential structure refinement reverse Monte Carlo procedure applied to the neutron data.

  6. Graphene oxide (rGO)-metal oxide (TiO2/Fe3O4) based nanocomposites for the removal of methylene blue

    NASA Astrophysics Data System (ADS)

    Banerjee, Soma; Benjwal, Poonam; Singh, Milan; Kar, Kamal K.

    2018-05-01

    Herein, ternary nanocomposites based on titanium dioxide, ferric oxide and reduced graphene oxide (GO) have been developed for photocatalytic degradation of methylene blue. The nanocomposites are prepared by simple sol-gel and wet assembly methods with varying weight ratio of each components to obtain efficient photocatalytic degradation. Due to the synergistic effect among the three components, a swift removal of methylene blue becomes possible under visible and UV light. The rGO-Fe3O4-TiO2 nanocomposite having composition 1:1:2 has achieved maximum degradation of methylene blue from the aqueous solution. About 99% of the dye has been removed within 6 min under UV irradiation, while in presence of visible light, 94% has been degraded from the wastewater. The enhancement of photocatalytic activity in this ternary system is attributed to the efficient separation of charge carriers from TiO2 to rGO under the exposure of light and the initiation of photo-Fenton reaction due to the incorporated Fe3O4 nanoparticles in presence of H2O2, which provides highly reactive hydroxyl ions that mineralize the pollutants. All these results indicate that these ternary nanocomposites possess great potential for both UV and visible light driven methylene blue destruction from the wastewater.

  7. Method for long-term preservation of thin-layer polyacrylamide gels by producing a gelatine coating.

    PubMed

    Hofmann, K

    1991-02-01

    Thin-layer polyacrylamide gels can be preserved and stored for unlimited periods by covering them with a gelatine coating. The method is inexpensive and simple. After air-drying, the gel is immersed in an aqueous 10% solution of highly viscous gelatine between 55 and 60 degrees C. The coated gel is dried by hanging it in air. The method was checked successfully with gels of different thicknesses (0.15-0.50 mm) and after using different staining methods, e.g., with silver, Coomassie Brilliant Blue and pseudoperoxidase.

  8. Treatment of methylene blue containing wastewater by a cost-effective micro-scale biochar/polysulfone mixed matrix hollow fiber membrane: Performance and mechanism studies.

    PubMed

    He, Jinsong; Cui, Anan; Deng, Shihuai; Chen, J Paul

    2018-02-15

    Dye containing wastewater has increasingly become an important contamination due to operation of various industries such as textile industry. In this study, a micro-scale biochar particles/polysulfone mixed matrix hollow fiber membrane (MMM) was applied for the removal of methylene blue from water. The static and dynamic adsorption performance was investigated. We found that the MMM exhibited a high removal efficiency of methylene blue under a wide pH range of 4-10. The adsorption process on biochar and MMM obeyed the intraparticle surface diffusion model and Langmuir isotherm model. At neutral pH, the maximum adsorption capacity was 544.459 mg/g for biochar and 165.808 mg/g for MMM. Better regeneration with a desorption rate above 92% was achieved by 1-M NaCl in 90% ethanol aqueous solution. Furthermore, the MMM displayed good performance in treating methylene blue containing wastewater through a continuous filtration mode. More importantly, the MMM showed an excellent reusability for methylene blue removal; it was able to achieve 81% of the permeate yield of the fresh MMM after three regeneration cycles. Finally, the adsorption mechanism studies indicated that the removal of methylene blue was associated with electrostatic interaction, hydrogen bonding and hydrophobic interaction. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Nanostructure CdS/ZnO heterojunction configuration for photocatalytic degradation of Methylene blue

    NASA Astrophysics Data System (ADS)

    Velanganni, S.; Pravinraj, S.; Immanuel, P.; Thiruneelakandan, R.

    2018-04-01

    In the present manuscript, thin films of Zinc Oxide (ZnO) have been deposited on a FTO substrate using a simple successive ionic layer adsorption and reaction (SILAR) and chemical bath deposition (CBD) method. Cadmium Sulphide (CdS) nanoparticles are sensitized over ZnO thin films using SILAR method. The synthesized nanostructured CdS/ZnO heterojunction thin films was characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), High resolution transmission electron microscopy (HR-TEM), X-ray photoelectron spectroscopy (XPS), UV-Vis spectroscopy and Raman spectroscopy techniques. The band gap of CdS nanoparticles over ZnO nanostructure was found to be about 3.20 eV. The photocatalytic activities of the deposited CdS/ZnO thin films were evaluated by the degradation of methylene blue (MB) in an aqueous solution under sun light irradiation.

  10. Evaluation of different electrochemical methods on the oxidation and degradation of Reactive Blue 4 in aqueous solution.

    PubMed

    Carneiro, Patricia A; Osugi, Marly E; Fugivara, Cecílio S; Boralle, Nivaldo; Furlan, Maysa; B Zanoni, Maria Valnice

    2005-04-01

    The oxidation of a reactive dye, Reactive Blue 4, RB4, (C.I. 61205), widely used in the textile industries to color natural fibers, was studied by electrochemical techniques. The oxidation on glassy carbon electrode and reticulated vitreous carbon electrode occurs in only one step at 2.0 < pH < 12 involving a two-electron transfer to the amine group leading to the imide derivative. Dye solution was not decolorized effectively in this electrolysis process. Nevertheless, the oxidation of this dye on Ti/SnO2/SbO(x) (3% mol)/RuO2 (1% mol) electrode showed 100% of decolorization and 60% of total organic carbon removal in Na2SO4 0.2 M at pH 2.2 and potential of +2.4V. Experiments on degradation photoelectrocatalytic were also carried out for RB4 degradation in Na2SO4 0.1 M, pH 12, using a Ti/TiO2 photoanode biased at +1.0 V and UV light. After 1h of electrolysis the results indicated total color removal and 37% of mineralization.

  11. Naked eye screening of 11 phenolic compounds and colorimetric determination using polydiacetylene vesicles with α-cyclodextrin

    NASA Astrophysics Data System (ADS)

    Anekthirakun, Pimpimon; Sukwattanasinitt, Mongkol; Tuntulani, Thawatchai; Imyim, Apichat

    2013-07-01

    The colorimetric response (CR) of poly(10,12-pentacosadiynoic acid) vesicles (PPCDA) induced by α-cyclodextrin (α-CD) in an aqueous solution has been studied. Various parameters affecting the CR, such as response time and concentration were investigated. The blue color of 0.01 mM PPCDA solution became pinkish red with the addition of α-CD at the concentration higher than 3 mM. The inhibition of the color transition from blue to red was investigated using 11 phenolic compounds. The color transition could be inhibited and observed by naked eye in the presence of 4 phenolic compounds, i.e. 4-nitrophenol (4-NP) and 4-bromophenol (4-BP) and 4-chlorophenol (4-CP) and 3-nitrophenol (3-NP). A colorimetric method for the determination of these compounds was validated and applied for surface water analysis. The linear range from the plot of CR against phenolic compounds concentration was in the order of 0.5-2.0 mM with R2 more than 0.99. The recoveries were 90-95% with good precision (1-4%RSD, n = 10).

  12. In-situ preparation of Fe{sub 2}O{sub 3} hierarchical arrays on stainless steel substrate for high efficient catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Zeheng, E-mail: zehengyang@hfut.edu.cn; Wang, Kun; Shao, Zongming

    Hierarchical array catalysts with micro/nano structures on substrates not only possess high reactivity from large surface area and suitable interface, but intensify mass transfer through shortening the diffusion paths of both reactants and products for high catalytic efficiency. Herein, we first demonstrate fabrication of Fe{sub 2}O{sub 3} hierarchical arrays grown on stainless-steel substrates via in-situ hydrothermal chemical oxidation followed by heat treatment in N{sub 2} atmosphere. As a Fenton-like catalyst, Fe{sub 2}O{sub 3} hierarchical arrays exhibit excellent catalytic activity and life cycle performance for methylene blue (MB) dye degradation in aqueous solution in the presence of H{sub 2}O{sub 2}. Themore » Fe{sub 2}O{sub 3} catalyst with unique hierarchical structures and efficient transport channels, effectively activates H{sub 2}O{sub 2} to generate large quantity of • OH radicals and highly promotes reaction kinetics between MB and • OH radicals. Immobilization of hierarchical array catalysts on stainless-steel can prevent particles agglomeration, facilitate the recovery and reuse of the catalysts, which is expected promising applications in wastewater remediation. - Graphical abstract: The in-situ synthesis of Fe{sub 2}O{sub 3} hierarchical arrays on stainless-steel substrates was reported for the first time, which exhibit excellent catalytic activity performance for methylene blue (MB) dye degradation in aqueous solution in the presence of H{sub 2}O{sub 2}. - Highlights: • Fe{sub 2}O{sub 3} hierarchical arrays was prepared by in-situ hydrothermal chemical oxidation. • F{sup −} ions play an important role in the formation of the Fe{sub 2}O{sub 3} hierarchical arrays. • Fe{sub 2}O{sub 3} hierarchical arrays show high catalytic activity to methylene blue degradation.« less

  13. Ultrasensitive colorimetric detection of heparin based on self-assembly of gold nanoparticles on graphene oxide.

    PubMed

    Fu, Xiuli; Chen, Lingxin; Li, Jinhua

    2012-08-21

    A novel colorimetric method was developed for ultrasensitive detection of heparin based on self-assembly of gold nanoparticles (AuNPs) onto the surface of graphene oxide (GO). Polycationic protamine was used as a medium for inducing the self-assembly of citrate-capped AuNPs on GO through electrostatic interaction, resulting in a shift in the surface plasmon resonance (SPR) absorption of AuNPs and exhibiting a blue color. Addition of polyanionic heparin disturbed the self-assemble of AuNPs due to its strong affinity to protamine. With the increase of heparin concentration, the amounts of self-assembly AuNPs decreased and the color changed from blue to red in solution. Therefore, a "blue-to-red" colorimetric sensing strategy based on self-assembly of AuNPs could be established for heparin detection. Compared with the commonly reported aggregation-based methods ("red-to-blue"), the color change from blue to red was more eye-sensitive, especially in low concentration of target. Moreover, stronger interaction between protamine and heparin led to distinguish heparin from its analogues as well as various potentially coexistent physiological species. The strategy was simply achieved by the self-assembly nature of AuNPs and the application of two types of polyionic media, showing it to be label-free, simple, rapid and visual. This method could selectively detect heparin with a detection limit of 3.0 ng mL(-1) in standard aqueous solution and good linearity was obtained over the range 0.06-0.36 μg mL(-1) (R = 0.9936). It was successfully applied to determination of heparin in fetal bovine serum samples as low as 1.7 ng mL(-1) with a linear range of 0-0.8 μg mL(-1).

  14. Thin layer chitosan-coated cellulose filter paper as substrate for immobilization of catalytic cobalt nanoparticles.

    PubMed

    Kamal, Tahseen; Khan, Sher Bahadar; Haider, Sajjad; Alghamdi, Yousef Gamaan; Asiri, Abdullah M

    2017-11-01

    A facile approach utilizing synthesis of cobalt nanoparticles in green polymers of chitosan (CS) coating layer on high surface area cellulose microfibers of filter paper (CFP) is described for the catalytic reduction of nitrophenol and an organic dye using NaBH 4 . Simple steps of CFP coating with 1wt% CS aqueous solution followed by Co 2+ ions adsorption from 0.2M CoCl 2 aqueous solution were carried out to prepare pre-catalytic strips. The Co 2+ loaded pre-catalytic strips of CS-CFP were treated with 0.19M NaBH 4 aqueous solution to convert the ions into nanoparticles. Successful Co nanoparticles formation was assessed by various characterization techniques of FESEM, EDX and XRD analyzes. TGA analyses were carried out on CFP, CS-CFP, and Co-CS-CFP for the determination of the amount of Co particles formed on the CS-FP, and to track their thermal properties. Furthermore, we demonstrated that the Co-CS-CFP showed an excellent catalytic activity and reusability in the reduction reactions a nitroaromatic compound of 2,6-dintirophenol (2,6-DNP) and brilliant cresyl blue (BCB) dye by NaBH 4 . The Co-CS-CFP catalyzed the reduction reactions of 2,6-DNP and BCB by NaBH 4 with psuedo-first order rate constants of 0.0451 and 0.1987min -1 , respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Removal of copper(II) ions from aqueous solutions by Azolla rongpong: batch and continuous study.

    PubMed

    Nedumaran, B; Velan, M

    2008-01-01

    Batch and packed bed continuous biosorption studies were conducted to investigate the kinetics and isotherms of Cu(II) ions on the biomass of blue green alga Azolla rongpong. It is observed that the biosorption capacity of algae depends on initial pH and dosage. The biosorption capacity increases with increasing concentration and follows Freundlich isotherm model well with k and n values 0.06223 and 0.949 respectively. The optimum pH of 3.5 with an algae dosage of 1 g/L was observed. The results indicate that with the advantage of high metal biosorption capacity and recovery of Cu(II) ions, A. rongpong can be used as an efficient and economic biosorbent for the removal and recovery of toxic heavy metals from aqueous wastes even at higher concentration.

  16. Solution-processed transparent blue organic light-emitting diodes with graphene as the top cathode

    PubMed Central

    Chang, Jung-Hung; Lin, Wei-Hsiang; Wang, Po-Chuan; Taur, Jieh-I; Ku, Ting-An; Chen, Wei-Ting; Yan, Shiang-Jiuan; Wu, Chih-I

    2015-01-01

    Graphene thin films have great potential to function as transparent electrodes in organic electronic devices, due to their excellent conductivity and high transparency. Recently, organic light-emitting diodes (OLEDs)have been successfully demonstrated to possess high luminous efficiencies with p-doped graphene anodes. However, reliable methods to fabricate n-doped graphene cathodes have been lacking, which would limit the application of graphene in flexible electronics. In this paper, we demonstrate fully solution-processed OLEDs with n-type doped multilayer graphene as the top electrode. The work function and sheet resistance of graphene are modified by an aqueous process which can also transfer graphene on organic devices as the top electrodes. With n-doped graphene layers used as the top cathode, all-solution processed transparent OLEDs can be fabricated without any vacuum process. PMID:25892370

  17. Removal of 4-nitrophenol from aqueous solution by adsorption onto activated carbon prepared from Acacia glauca sawdust.

    PubMed

    Dhorabe, Prashant T; Lataye, Dilip H; Ingole, Ramakant S

    2016-01-01

    The present paper deals with a complete batch adsorption study of 4-nitrophenol (4NP) from aqueous solution onto activated carbon prepared from Acacia glauca sawdust (AGAC). The surface area of the adsorbent determined by methylene blue method is found to be 311.20 m(2)/g. The optimum dose of adsorbent was found to be 2 g/l with 4NP uptake of 25.93 mg/g. The equilibrium time was found to be 30 minutes with the percentage removal of 96.40 at the initial concentration of 50 ppm. The maximum removal of 98.94% was found to be at pH of 6. The equilibrium and kinetic study revealed that the Radke-Prausnitz isotherm and pseudo second order kinetics model fitted the respective data well. In the thermodynamic study, the negative value of Gibbs free energy change (-26.38 kJ/mol at 30°C) and enthalpy change (-6.12 kJ/mol) showed the spontaneous and exothermic nature of the adsorption process.

  18. Synthesis of oxocarbon-encapsulated gold nanoparticles with blue-shifted localized surface plasmon resonance by pulsed laser ablation in water with CO2 absorbers

    NASA Astrophysics Data System (ADS)

    Del Rosso, T.; Rey, N. A.; Rosado, T.; Landi, S.; Larrude, D. G.; Romani, E. C.; Freire Junior, F. L.; Quinteiro, S. M.; Cremona, M.; Aucelio, R. Q.; Margheri, G.; Pandoli, O.

    2016-06-01

    Colloidal suspensions of oxocarbon-encapsulated gold nanoparticles have been synthesized in a one-step procedure by pulsed-laser ablation (PLA) at 532 nm of a solid gold target placed in aqueous solution containing CO2 absorbers, but without any stabilizing agent. Multi-wavelength surface enhanced Raman spectroscopy allows the identification of adsorbed amorphous carbon and graphite, Au-carbonyl, Au coordinated CO2-derived bicarbonates/carbonates and hydroxyl groups around the AuNPs core. Scanning electron microscopy, energy dispersive x-ray analysis and high resolution transmission electron microscopy highlight the organic shell structure around the crystalline metal core. The stability of the colloidal solution of nanocomposites (NCs) seems to be driven by solvation forces and is achieved only in neutral or basic pH using monovalent hydroxide counter-ions (NaOH, KOH). The NCs are characterized by a blue shift of the localized surface plasmon resonance (LSPR) band typical of metal-ligand stabilization by terminal π-back bonding, attributed to a core charging effect caused by Au-carbonyls. Total organic carbon measurements detect the final content of organic carbon in the colloidal solution of NCs that is about six times higher than the value of the water solution used to perform PLA. The colloidal dispersions of NCs are stable for months and are applied as analytical probes in amino glycoside antibiotic LSPR based sensing.

  19. Synthesis of oxocarbon-encapsulated gold nanoparticles with blue-shifted localized surface plasmon resonance by pulsed laser ablation in water with CO2 absorbers.

    PubMed

    Del Rosso, T; Rey, N A; Rosado, T; Landi, S; Larrude, D G; Romani, E C; Junior, F L Freire; Quinteiro, S M; Cremona, M; Aucelio, R Q; Margheri, G; Pandoli, O

    2016-06-24

    Colloidal suspensions of oxocarbon-encapsulated gold nanoparticles have been synthesized in a one-step procedure by pulsed-laser ablation (PLA) at 532 nm of a solid gold target placed in aqueous solution containing CO2 absorbers, but without any stabilizing agent. Multi-wavelength surface enhanced Raman spectroscopy allows the identification of adsorbed amorphous carbon and graphite, Au-carbonyl, Au coordinated CO2-derived bicarbonates/carbonates and hydroxyl groups around the AuNPs core. Scanning electron microscopy, energy dispersive x-ray analysis and high resolution transmission electron microscopy highlight the organic shell structure around the crystalline metal core. The stability of the colloidal solution of nanocomposites (NCs) seems to be driven by solvation forces and is achieved only in neutral or basic pH using monovalent hydroxide counter-ions (NaOH, KOH). The NCs are characterized by a blue shift of the localized surface plasmon resonance (LSPR) band typical of metal-ligand stabilization by terminal π-back bonding, attributed to a core charging effect caused by Au-carbonyls. Total organic carbon measurements detect the final content of organic carbon in the colloidal solution of NCs that is about six times higher than the value of the water solution used to perform PLA. The colloidal dispersions of NCs are stable for months and are applied as analytical probes in amino glycoside antibiotic LSPR based sensing.

  20. Eco-friendly synthesis of cuprous oxide (Cu2O) nanoparticles and improvement of their solar photocatalytic activities

    NASA Astrophysics Data System (ADS)

    Kerour, A.; Boudjadar, S.; Bourzami, R.; Allouche, B.

    2018-07-01

    In this work, we have synthesized cuprous oxide (Cu2O) nanoparticles with octahedral and spherical like shapes by an ecofriendly, simple and coast effective method, by using the aqueous extract of Aloe vera and copper sulfate as solvent and precursor respectively. The effect of Aloe vera aqueous extract concentration on the morphological, structural and optical properties of as synthesized nanoparticles was studied by Scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform (FT-IR) spectroscopy and UV-visible diffuse reflectance. The SEM images showing octahedral and spherical agglomeration of nanoparticles. The cubic structure of Cu2O was confirmed by XRD analysis, the crystallites size depends to the concentration of Aloe vera aqueous extract with an average size ranged between 24 and 61 nm. The FT-IR vibration measurements valid the presence of pure Cu2O in the samples. The UV-visible spectra show that the prepared cuprous oxide (Cu2O) has a gap energy estimated from 2.5 to 2.62 eV. The photocatalytic activities of the as-prepared material were highly improvement by the fast degradation of methylene blue in aqueous solution at room temperature under solar simulator irradiation.

  1. Characterizing the discoloration of methylene blue in Fe0/H2O systems.

    PubMed

    Noubactep, C

    2009-07-15

    Methylene blue (MB) was used as a model molecule to characterize the aqueous reactivity of metallic iron in Fe(0)/H(2)O systems. Likely discoloration mechanisms under used experimental conditions are: (i) adsorption onto Fe(0) and Fe(0) corrosion products (CP), (ii) co-precipitation with in situ generated iron CP, (iii) reduction to colorless leukomethylene blue (LMB). MB mineralization (oxidation to CO(2)) is not expected. The kinetics of MB discoloration by Fe(0), Fe(2)O(3), Fe(3)O(4), MnO(2), and granular activated carbon were investigated in assay tubes under mechanically non-disturbed conditions. The evolution of MB discoloration was monitored spectrophotometrically. The effect of availability of CP, Fe(0) source, shaking rate, initial pH value, and chemical properties of the solution were studied. The results present evidence supporting co-precipitation of MB with in situ generated iron CP as main discoloration mechanism. Under high shaking intensities (>150 min(-1)), increased CP generation yields a brownish solution which disturbed MB determination, showing that a too high shear stress induced the suspension of in situ generated corrosion products. The present study clearly demonstrates that comparing results from various sources is difficult even when the results are achieved under seemingly similar conditions. The appeal for an unified experimental procedure for the investigation of processes in Fe(0)/H(2)O systems is reiterated.

  2. Magnetic α-Fe2O3/MCM-41 nanocomposites: preparation, characterization, and catalytic activity for methylene blue degradation.

    PubMed

    Ursachi, Irina; Stancu, Alexandru; Vasile, Aurelia

    2012-07-01

    Catalysts based on nanosized magnetic iron oxide stabilized inside the pore system of ordered mesoporous silica MCM-41 have been prepared. The obtained materials were characterized by powder X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), vibrating sample magnetometer (VSM), and N(2) adsorption-desorption isotherm. XRD analysis showed that the obtained materials consist from the pure hematite crystalline phase (α-Fe(2)O(3)) dispersed within ordered mesoporous silica MCM-41. Magnetic measurements show that the obtained nanocomposites exhibit at room temperature weak ferromagnetic behavior with slender hysteresis. The catalytic activity of the magnetic α-Fe(2)O(3)/MCM-41 nanocomposites was evaluated by the degradation of methylene blue (MB) aqueous solution. For this purpose, an ultrasound-assisted Fenton-like process was used. The effect of solution pH on degradation of MB was investigated. The results indicated that US-H(2)O(2)-α-Fe(2)O(3)/MCM-41 nanocomposite system is effective for the degradation of MB, suggesting its great potential in removal of dyes from wastewater. It was found that the degradation rate of MB increases with decrease in the pH value of the solution. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Synthesis of zeolite/nickel ferrite/sodium alginate bionanocomposite via a co-precipitation technique for efficient removal of water-soluble methylene blue dye.

    PubMed

    Bayat, Mahsa; Javanbakht, Vahid; Esmaili, Javad

    2018-05-05

    In this study, we sought to synthesize magnetic nanocomposite of zeolite/nickel ferrite through co-precipitation method and modify its surface by sodium alginate to enhance its methylene blue adsorption capacity and to prevent its oxidation. Nanocomposite characteristics were investigated by SEM, VSM, XRD and FTIR analyses. The results indicate that nanocomposite synthesis and modification has been completely successful. Adsorption thermodynamics, kinetics, and isotherms were examined and parameters were optimized by Minitab software using experimental design method, response surface methodology and Box-Behnken design. The highest capacity of methylene blue adsorption from the aqueous solution obtained at optimal pH of 5, the initial dye concentration of 10 mg/L and an adsorbent amount of 0.03 g was about 54.05 mg/g. Analyzing kinetic data of adsorption experiments confirmed that adsorption process complies with the pseudo-second-order kinetic model. Assessing equilibrium isotherm data at different temperatures showed that these data are in good agreement with Langmuir isotherm model. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. New uses for calcium chloride solution as a mounting medium.

    PubMed

    Herr, J M

    1992-01-01

    Fresh cross sections of stems (Psilotum nudum, Coleus blumei, and Pelargonium peltatum) and roots (Setcreasea purpurea) 120 microns thick were fixed in FPA50 (formalin: propionic acid: 50% ethanol, 5:5:90, v/v) for 24 hr and stored in 70% ethanol. The sections were transferred to water and then to 1% phloroglucin in 20% calcium chloride solution plus either hydrochloric, nitric, or lactic acid in the following ratios of phloroglucin-CaCl2 solution:acid: 25:4, 20:2, or 15:5. The sections were mounted on slides either in one of the three mixtures or in fresh 20% calcium chloride solution. A rapid reaction of the acid-phloroglucin with lignin produced a deep red color in tracheary elements and an orange-red color in sclerenchyma. Fixed and stored leaf pieces from Nymphaea odorata were autoclaved in lactic acid, washed in two changes of 95% ethanol, transferred to water, and treated with the three acid-phloroglucin-calcium chloride mixtures. The abundant astrosclereids stained an orange-red color similar to that of sclerenchyma in the sections. In addition, a new method is reported for specifically staining lignified tissues. When sections or leaf pieces are stained in aqueous 0.05% toluidine blue O, then placed in 20% calcium chloride solution, all tissues destain except those with lignified or partially lignified cell walls. Thus, toluidine blue O applied as described becomes a reliable specific test for lignin comparable to the acid-phloroglucin test.

  5. Magnetic removal of dyes from aqueous solution using multi-walled carbon nanotubes filled with Fe2O3 particles.

    PubMed

    Qu, Song; Huang, Fei; Yu, Shaoning; Chen, Gang; Kong, Jilie

    2008-12-30

    The Fe2O3 nanoparticles have been introduced into the multi-walled carbon nanotubes (MWCNTs) via wet chemical method. The resulting products are characterized by TEM, EDX, XRD and VSM. The magnetic MWCNTs have been employed as adsorbent for the magnetic separation of dye contaminants from water. The adsorption test of dyes (Methylene Blue and Neutral Red) demonstrates that it only takes 60min to attain equilibrium and the adsorption capacities for Methylene Blue and Neutral Red in the concentration range studied are 42.3 and 77.5mg/g, respectively. The magnetic MWCNTs can be easily manipulated in magnetic field for desired separation, leading to the removal of dyes from polluted water. The integration of MWCNTs with Fe2O3 nanoparticles has great potential application to remove organic dyes from polluted water.

  6. Exploring the Origin of Blue and Ultraviolet Fluorescence in Graphene Oxide.

    PubMed

    Kozawa, Daichi; Miyauchi, Yuhei; Mouri, Shinichiro; Matsuda, Kazunari

    2013-06-20

    We studied the fluorescence (FL) properties of highly exfoliated graphene oxide (GO) in aqueous solution using continuous-wave and time-resolved FL spectroscopy. The FL spectra of highly exfoliated GO showed two distinct peaks at ∼440 (blue) and ∼300 nm [ultraviolet (UV)]. The FL of GO in the UV region at ∼300 nm was observed for the first time. The average FL lifetimes of the emission peaks at ∼440 and ∼300 nm are 8-13 and 6-8 ns, respectively. The experimentally observed peak wavelengths of pH-dependent FL, FL excitation spectra, and the FL lifetimes are nearly coincident with those of aromatic compounds bound with oxygen functional groups, which suggests that the FL comes from sp(2) fragments consisting of small numbers of aromatic rings with oxygen functional groups acting as FL centers in the GO.

  7. Preparation of Chitosan Coated Magnetic Hydroxyapatite Nanoparticles and Application for Adsorption of Reactive Blue 19 and Ni2+ Ions

    PubMed Central

    Nguyen, Van Cuong; Pho, Quoc Hue

    2014-01-01

    An adsorbent called chitosan coated magnetic hydroxyapatite nanoparticles (CS-MHAP) was prepared with the purpose of improvement for the removal of Ni2+ ions and textile dye by coprecipitation. Structure and properties of CS-MHAP were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and vibrating sample magnetometer (VSM). Weight percent of chitosan was investigated by thermal gravimetric analysis (TGA). The prepared CS-MHAP presents a significant improvement on the removal efficiency of Ni2+ ions and reactive blue 19 dye (RB19) in comparison with chitosan and magnetic hydroxyapatite nanoparticles. Moreover, the adsorption capacities were affected by several parameters such as contact time, initial concentration, adsorbent dosage, and initial pH. Interestingly, the prepared adsorbent could be easily recycled from an aqueous solution by an external magnet and reused for adsorption with high removal efficiency. PMID:24592158

  8. Multicolor tuning of manganese-doped ZnS colloidal nanocrystals.

    PubMed

    Quan, Zewei; Yang, Dongmei; Li, Chunxia; Kong, Deyan; Yang, Piaoping; Cheng, Ziyong; Lin, Jun

    2009-09-01

    In this paper, we report a facile route which is based on tuning doping concentration of Mn(2+) ions in ZnS nanocrystals, to achieve deliberate color modulation from blue to orange-yellow under single-wavelength excitation. X-ray diffraction (XRD), transmission electron microscopy (TEM), as well as photoluminescence (PL) spectra were employed to characterize the obtained samples. In this process, the relative emission intensities of both ZnS host (blue) and Mn(2+) dopant (orange-yellow) are sensitive to the Mn(2+) doping concentration, due to the energy transfer from ZnS host to Mn(2+) dopant. As a result of fine-tuning of these two emission components, white emission can be realized for Mn(2+)-doped ZnS nanocrystals. Furthermore, the as-synthesized doped nanocrystals possess extremely narrow size distribution and can be readily transferred into aqueous solution for the next potential applications.

  9. Luminescent carbon quantum dots with high quantum yield as a single white converter for white light emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, X. T.; Zhang, Y.; Liu, X. G., E-mail: liuxuguang@tyut.edu.cn

    Carbon quantum dots (CQDs) with high quantum yield (51.4%) were synthesized by a one-step hydrothermal method using thiosalicylic acid and ethylenediamine as precursor. The CQDs have the average diameter of 2.3 nm and possess excitation-independent emission wavelength in the range from 320 to 440 nm excitation. Under an ultraviolet (UV) excitation, the CQDs aqueous solutions emit bright blue fluorescence directly and exhibit broad emission with a high spectral component ratio of 67.4% (blue to red intensity to total intensity). We applied the CQDs as a single white-light converter for white light emitting diodes (WLEDs) using a UV-LED chip as the excitation lightmore » source. The resulted WLED shows superior performance with corresponding color temperature of 5227 K and the color coordinates of (0.34, 0.38) belonging to the white gamut.« less

  10. P25-graphene hydrogels: room-temperature synthesis and application for removal of methylene blue from aqueous solution.

    PubMed

    Hou, Chengyi; Zhang, Qinghong; Li, Yaogang; Wang, Hongzhi

    2012-02-29

    Herein we report a room-temperature synthesis of chemically bonded TiO2 (P25)-graphene composite hydrogels and their use as high performance visible light photocatalysts. The three-dimensional (3D) TiO2-carbon composite exhibits a significant enhancement in the reaction rate in the decontamination of methylene blue, compared to the bare P25. The 3D P25-graphene hydrogel is much easier to prepare and apply as a macroscopic device, compared to the 2D P25-graphene sheets. This work could provide new insights into the room-temperature synthesis of graphene-based materials. As a kind of the novel 3D graphene-based composite, the obtained high performance P25-graphene gel could be widely used in the environmental protection issues. Copyright © 2012. Published by Elsevier B.V.

  11. Adsorption characteristics of methylene blue onto agricultural wastes lotus leaf in bath and column modes.

    PubMed

    Han, Xiuli; Wang, Wei; Ma, Xiaojian

    2011-01-01

    The adsorption potential of lotus leaf to remove methylene blue (MB) from aqueous solution was investigated in batch and fixed-bed column experiments. Langmuir, Freundlich, Temkin and Koble-Corrigan isotherm models were employed to discuss the adsorption behavior. The results of analysis indicated that the equilibrium data were perfectly represented by Temkin isotherm and the Langmuir saturation adsorption capacity of lotus leaf was found to be 239.6 mg g(-1) at 303 K. In fixed-bed column experiments, the effects of flow rate, influent concentration and bed height on the breakthrough characteristics of adsorption were discussed. The Thomas and the bed-depth/service time (BDST) models were applied to the column experimental data to determine the characteristic parameters of the column adsorption. The two models were found to be suitable to describe the dynamic behavior of MB adsorbed onto the lotus leaf powder column.

  12. Silver-induced reconstruction of an adeninate-based metal-organic framework for encapsulation of luminescent adenine-stabilized silver clusters.

    PubMed

    Jonckheere, Dries; Coutino-Gonzalez, Eduardo; Baekelant, Wouter; Bueken, Bart; Reinsch, Helge; Stassen, Ivo; Fenwick, Oliver; Richard, Fanny; Samorì, Paolo; Ameloot, Rob; Hofkens, Johan; Roeffaers, Maarten B J; De Vos, Dirk E

    2016-05-21

    Bright luminescent silver-adenine species were successfully stabilized in the pores of the MOF-69A (zinc biphenyldicarboxylate) metal-organic framework, starting from the intrinsically blue luminescent bio-MOF-1 (zinc adeninate 4,4'-biphenyldicarboxylate). Bio-MOF-1 is transformed to the MOF-69A framework by selectively leaching structural adenine linkers from the original framework using silver nitrate solutions in aqueous ethanol. Simultaneously, bright blue-green luminescent silver-adenine clusters are formed inside the pores of the recrystallized MOF-69A matrix in high local concentrations. The structural transition and concurrent changes in optical properties were characterized using a range of structural, physicochemical and spectroscopic techniques (steady-state and time-resolved luminescence, quantum yield determination, fluorescence microscopy). The presented results open new avenues for exploring the use of MOFs containing luminescent silver clusters for solid-state lighting and sensor applications.

  13. Methylene blue adsorption by algal biomass based materials: biosorbents characterization and process behaviour.

    PubMed

    Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R

    2007-08-17

    Dead algal biomass is a natural material that serves as a basis for developing a new family of sorbent materials potentially suitable for many industrial applications. In this work an algal industrial waste from agar extraction process, algae Gelidium and a composite material obtained by immobilization of the algal waste with polyacrylonitrile (PAN) were physical characterized and used as biosorbents for dyes removal using methylene blue as model. The apparent and real densities and the porosity of biosorbents particles were determined by mercury porosimetry and helium picnometry. The methylene blue adsorption in the liquid phase was the method chosen to calculate the specific surface area of biosorbent particles as it seems to reproduce better the surface area accessible to metal ions in the biosorption process than the N2 adsorption-desorption dry method. The porous texture of the biosorbents particles was also studied. Equilibrium isotherms are well described by the Langmuir equation, giving maximum uptake capacities of 171, 104 and 74 mg g(-1), respectively for algae, algal waste and composite material. Kinetic experiments at different initial methylene blue concentrations were performed to evaluate the equilibrium time and the importance of the driving force to overcome mass transfer resistances. The pseudo-first-order and pseudo-second-order kinetic models adequately describe the kinetic data. The biosorbents used in this work proved to be promising materials for removing methylene blue from aqueous solutions.

  14. Enhanced photocatalytic performance of BiVO4 in aqueous AgNO3 solution under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Huang, Chien-Kai; Wu, Tsunghsueh; Huang, Chang-Wei; Lai, Chi-Yung; Wu, Mei-Yao; Lin, Yang-Wei

    2017-03-01

    Monoclinic-phase bismuth vanadate (BiVO4) with a 2.468 eV band gap exhibited enhanced synergic photodegradation activity toward methylene blue (MB) when combined with silver ions (Ag+) in an aqueous solution under visible light irradiation. The mass ratio of AgNO3 to BiVO4 and the calcination temperature were discovered to considerably affect the degradation activity of BiVO4/Ag+. Superior photocatalytic performance was obtained when BiVO4 was mixed with 0.01%(w/v) AgNO3 solution, and complete degradation of MB was achieved after 25 min visible light irradiation, outperforming BiVO4 or AgNO3 solution alone. The enhanced photodegradation was investigated using systematic luminescence measurements, electrochemical impedance spectroscopy, and scavenger addition, after which a photocatalytic mechanism for MB degradation under visible light irradiation was identified that involved oxygen radicals and holes. This study also discovered the two dominating processes involved in enhancing the electron-hole separation efficiency and reducing their recombination rate, namely photoreduction of Ag+ and the formation of a BiVO4/Ag heterojunction. The synergic effect between BiVO4 and Ag+ was discovered to be unique. BiVO4/Ag+ was successfully used to degrade two other dyes and disinfect Escherichia Coli. A unique fluorescent technique using BiVO4 and a R6G solution to detect Ag+ ions in water was discovered.

  15. New Fluorescent and Colorimetric Chemosensor for Detection of Cyanide with High Selectivity and Sensitivity in Aqueous Media.

    PubMed

    Zali-Boeini, Hassan; Zareh Jonaghani, Mohammad

    2017-05-01

    A fluorescent and colorimetric chemosensor for detection of cyanide ion based on a styryl quinoline derivative has been designed and synthesized. The chemosensor (E)-2-(4-mercaptostyryl)quinolin-8-ol L showed high selectivity for detection of cyanide over other anions such as F¯, Cl¯, Br¯, I¯, NO 3 ¯, SCN¯, N 3 ¯, ClO 4 ¯, H 2 PO 4 ¯, AcO¯, HCO 3 ¯, SO 4 2 ¯ and HSO 4 ¯in aqueous solution. The chemosensor L displayed an immediate visible and fluorescence changes from nearly colorless to orange and greenish-blue to brick-red upon addition of cyanide ion respectively. It is more likely, these distinct changes can be attributed to hydrogen bonding interaction between phenol group and cyanide anion leading to a 1:1 binding stoichiometry following with deprotonation of phenol group. The detection limit for chemosensor L toward CN¯ was 2.73× 10 -8  M. Thus, the chemosensor can be used efficiently and selectively for detection and monitoring of small amounts of cyanide ion in aqueous media.

  16. Enhancing the surface properties of the immobilized Degussa P-25 TiO2 for the efficient photocatalytic removal of methylene blue from aqueous solution

    NASA Astrophysics Data System (ADS)

    Nawi, M. A.; Zain, Salmiah Md.

    2012-06-01

    A method has been developed for enhancing the surface properties of immobilized Degussa P-25 TiO2 nanoparticles on glass plate supports with excellent photocatalytic activity. The immobilization technique utilized a dip-coating method involving a coating solution containing Degussa P-25 TiO2 particles, epoxidized natural rubber (ENR-50) and poly vinyl chloride (PVC) in a mixture of toluene and dichloromethane. The optimum ratio of ENR/PVC blend was found to be 1:2. Immobilization process of the composite appeared to reduce the specific surface area by at least half of the pristine P-25 TiO2 particles. However, a systematic removal of ENR-50 additive via a 5 h photocatalytic process enabled the immobilized photocatalyst (P-25TiO2/ENR/PVC/5 h) to regenerate the surface area to within 86% of the pristine P-25 TiO2 particles, produce bigger pore volume and smaller particle size. The enhanced surface properties of the immobilized P-25/ENR/PVC/5 h photocatalyst system generated a photocatalytic performance as good as the slurry method of the P-25 TiO2 nanoparticles for the photocatalytic degradation of MB dye in aqueous solution. The immobilized P-25TiO2/ENR/PVC/5 h catalyst plate was also found to be highly reusable up to at least 10 runs without losing its photocatalytic efficiency. Above all, the system could avoid tedious filtration step of the treated water as normally observed with the aqueous slurry system.

  17. (1)H NMR metabolomic profiling of the blue crab (Callinectes sapidus) from the Adriatic Sea (SE Italy): A comparison with warty crab (Eriphia verrucosa), and edible crab (Cancer pagurus).

    PubMed

    Zotti, Maurizio; De Pascali, Sandra Angelica; Del Coco, Laura; Migoni, Danilo; Carrozzo, Leonardo; Mancinelli, Giorgio; Fanizzi, Francesco Paolo

    2016-04-01

    The metabolomic profile of blue crab (Callinectes sapidus) captured in the Acquatina lagoon (SE Italy) was compared to an autochthonous (Eriphia verrucosa) and to a commercial crab species (Cancer pagurus). Both lipid and aqueous extracts of raw claw muscle were analyzed by (1)H NMR spectroscopy and MVA (multivariate data analysis). Aqueous extracts were characterized by a higher inter-specific discriminating power compared to lipid fractions. Specifically, higher levels of glutamate, alanine and glycine characterized the aqueous extract of C. sapidus, while homarine, lactate, betaine and taurine characterized E. verrucosa and C. pagurus. On the other hand, only the signals of monounsaturated fatty acids distinguished the lipid profiles of the three crab species. These results support the commercial exploitation and the integration of the blue crab in human diet of European countries as an healthy and valuable seafood. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Ultrasound-enhanced mass transfer in Halal compared with non-Halal chicken.

    PubMed

    Leal-Ramos, Martha Y; Alarcon-Rojo, Alma D; Mason, Timothy J; Paniwnyk, Larysa; Alarjah, Mohammed

    2011-01-15

    Halal foods are often perceived as wholesome products that are specially selected and processed to achieve the highest standards of quality. In this study, dye penetration from an aqueous solution of methylene blue (1 mol L(-1)) was used as a model for the marination process of Halal and non-Halal chicken breast. The effect of dye penetration was evaluated by three techniques: (1) the mass of methylene blue solution in the samples was quantified by mass gain, (2) the amount of dye absorbed was determined by spectroscopy and (3) the penetration distance of dye inside the samples was measured. For non-Halal meat, ultrasound increased the amount of dye inside the samples by 6 and 13% after 15 and 30 min respectively. The effect on Halal meat was much more pronounced, with an increase in dye uptake of over 60% being observed for both time periods. Dye penetration is an indication of meat permeability and so can be used as an estimate of marinading of meat. Thus the use of high-power ultrasound has potential in poultry-processing methods, in particular that of Halal chicken marination. Copyright © 2010 Society of Chemical Industry.

  19. Removal of methylene blue from aqueous solution by a solvothermal-synthesized graphene/magnetite composite.

    PubMed

    Ai, Lunhong; Zhang, Chunying; Chen, Zhonglan

    2011-09-15

    In this study, we have demonstrated a facile one-step solvothermal method for the synthesis of the graphene nanosheet (GNS)/magnetite (Fe(3)O(4)) composite. During the solvothermal treatment, in situ conversion of FeCl(3) to Fe(3)O(4) and simultaneous reduction of graphene oxide (GO) into graphene in ethylene glycol solution were achieved. Electron microscopy study suggests the Fe(3)O(4) spheres with a size of about 200 nm are uniformly distributed and firmly anchored on the wrinkled graphene layers with a high density. The resulting GNS/Fe(3)O(4) composite shows extraordinary adsorption capacity and fast adsorption rates for removal of organic dye, methylene blue (MB), in water. The adsorption kinetics, isotherms and thermodynamics were investigated in detail to reveal that the kinetics and equilibrium adsorptions are well-described by pseudo-second-order kinetic and Langmuir isotherm model, respectively. The thermodynamic parameters reveal that the adsorption process is spontaneous and endothermic in nature. This study shows that the as-prepared GNS/Fe(3)O(4) composite could be utilized as an efficient, magnetically separable adsorbent for the environmental cleanup. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. New SnO2/MgAl-layered double hydroxide composites as photocatalysts for cationic dyes bleaching.

    PubMed

    Dvininov, E; Ignat, M; Barvinschi, P; Smithers, M A; Popovici, E

    2010-05-15

    A new type of nanocomposite containing SnO(2) has been obtained by wet impregnation of dehydrated Mg/Al-hydrotalcite-type compounds with ethanolic solutions of SnCl(4).2H(2)O. Tin chloride hydrolysis was achieved using NaOH or NH(4)OH aqueous solutions, at pH around 9, followed by the conversion into corresponding hydroxides through calcinations. The powder X-ray diffraction (PXRD) and UV-Vis diffuse reflectance (UV-DR) methods confirmed the structure of as-synthesized solids. The chemical composition and morphology of the synthesized materials were investigated by energy dispersive X-ray analysis (EDX), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The as-synthesized materials were used for photocatalytic studies showing a good activity for methylene blue decolourization, which varies with SnO(2) content and used as a hydrolysing agent. The proposed mechanism is based on the shifting of flat band potential of SnO(2) due to the interaction with Mg/Al-LDH, this being energetically favourable to the formation of hydroxyl radicals responsible for methylene blue degradation. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  1. Fast microwave-assisted green synthesis of xanthan gum grafted acrylic acid for enhanced methylene blue dye removal from aqueous solution.

    PubMed

    Makhado, Edwin; Pandey, Sadanand; Nomngongo, Philiswa N; Ramontja, James

    2017-11-15

    In the present project, graft polymerization was employed to synthesis a novel adsorbent using acrylic acid (AA) and xanthan gum (XG) for cationic methylene dye (MB + ) removal from aqueous solution. The XG was rapidly grafted with acrylic acid (CH 2 =CHCOOH) under microwave heating. Fourier-transform infrared spectroscopy (FTIR), Proton Nuclear magnetic resonance spectroscopy ( 1 H NMR), scanning electron microscopy (SEM), X-ray diffraction (XRD) and Thermal gravimetric analysis (TGA) techniques were used to verify the adsorbent formed under optimized reaction conditions. Optimum reaction conditions [AA (0.4M), APS (0.05M), XG (2gL -1 ), MW power (100%), MW time (80s)] offer maximum %G and %GE of 484 and 78.3, respectively. The removal ratio of adsorbent to MB + reached to 92.8% at 100mgL -1 . Equilibrium and kinetic adsorptions of dyes were better explained by the Langmuir isotherm and pseudo second-order kinetic model respectively. The results demonstrate xanthan gum grafted polyacrylic acid (mw XG-g-PAA) absorbent had the universality for removal of dyes through the chemical adsorption mechanism. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Adsorption isotherms and kinetics of activated carbons produced from coals of different ranks.

    PubMed

    Purevsuren, B; Lin, Chin-Jung; Davaajav, Y; Ariunaa, A; Batbileg, S; Avid, B; Jargalmaa, S; Huang, Yu; Liou, Sofia Ya-Hsuan

    2015-01-01

    Activated carbons (ACs) from six coals, ranging from low-rank lignite brown coal to high-rank stone coal, were utilized as adsorbents to remove basic methylene blue (MB) from an aqueous solution. The surface properties of the obtained ACs were characterized via thermal analysis, N2 isothermal sorption, scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and Boehm titration. As coal rank decreased, an increase in the heterogeneity of the pore structures and abundance of oxygen-containing functional groups increased MB coverage on its surface. The equilibrium data fitted well with the Langmuir model, and adsorption capacity of MB ranged from 51.8 to 344.8 mg g⁻¹. Good correlation coefficients were obtained using the intra-particle diffusion model, indicating that the adsorption of MB onto ACs is diffusion controlled. The values of the effective diffusion coefficient ranged from 0.61 × 10⁻¹⁰ to 7.1 × 10⁻¹⁰ m² s⁻¹, indicating that ACs from lower-rank coals have higher effective diffusivities. Among all the ACs obtained from selected coals, the AC from low-rank lignite brown coal was the most effective in removing MB from an aqueous solution.

  3. Absorption and emission spectroscopic characterization of BLUF protein Slr1694 from Synechocystis sp. PCC6803 with roseoflavin cofactor.

    PubMed

    Zirak, P; Penzkofer, A; Mathes, T; Hegemann, P

    2009-11-09

    The wild-type BLUF protein Slr1694 from Synechocystis sp. PCC6803 (BLUF=blue-light sensor using FAD) has flavin adenosine dinucleotide (FAD) as natural cofactor. This light sensor causes positive phototaxis of the marine cyanobacterium. In this study the FAD cofactor of the wild-type Slr1694 was replaced by roseoflavin (RoF) and the roseoflavin derivatives RoFMN and RoFAD during heterologous expression in a riboflavin auxotrophic E. coli strain. An absorption and emission spectroscopic characterization of the cofactor-exchanged-Slr1694 (RoSlr) was carried out both under dark conditions and under illuminated conditions. The behaviour of RoF embedded in RoSlr in aqueous solution at pH 8 is compared with the behaviour of RoF in aqueous solution. The fluorescence of RoF and RoSlr is quenched by photo-induced twisted intra-molecular charge transfer at room temperature with stronger effect for RoF. The fluorescence quenching is diminished at liquid nitrogen temperature. Light exposure of RoSlr causes irreversible conversion of the protein embedded roseoflavins to 8-methylamino-flavins, 8-dimethylamino-lumichrome and 8-methylamino-lumichrome.

  4. Enhanced sonocatalytic degradation of organic dyes from aqueous solutions by novel synthesis of mesoporous Fe3O4-graphene/ZnO@SiO2 nanocomposites.

    PubMed

    Areerob, Yonrapach; Cho, Ju Yong; Jang, Won Kweon; Oh, Won-Chun

    2018-03-01

    Fe 3 O 4 -graphene/ZnO@mesoporous-SiO 2 (MGZ@SiO 2 ) nanocomposites was synthesized via a simple one pot hydrothermal method. The as-obtained samples were investigated using various techniques, as follows: scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and specific surface area (BET) vibrating sample magnetometer (VSM), among others. The sonocatalytic activities of the catalysts were tested according to the oxidation for the removal of methylene blue (MB), methyl orange (MO), and rhodamine B (RhB) under ultrasonic irradiation. The optimal conditions including the irradiation time, pH, dye concentration, catalyst dosage, and ultrasonic intensity are 60min, 11, 50mg/L, 1.00g/L, and 40W/m 2 , respectively. The MGZ@SiO 2 showed the higher enhanced sonocatalytic degradation from among the three dyes; furthermore, the sonocatalytic-degradation mechanism is discussed. This study shows that the MGZ@SiO 2 can be applied asa novel-design catalyst for the removal of organic pollutants from aqueous solutions. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Aqueous electrolytes for redox flow battery systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Tianbiao; Li, Bin; Wei, Xiaoliang

    An aqueous redox flow battery system includes an aqueous catholyte and an aqueous anolyte. The aqueous catholyte may comprise (i) an optionally substituted thiourea or a nitroxyl radical compound and (ii) a catholyte aqueous supporting solution. The aqueous anolyte may comprise (i) metal cations or a viologen compound and (ii) an anolyte aqueous supporting solution. The catholyte aqueous supporting solution and the anolyte aqueous supporting solution independently may comprise (i) a proton source, (ii) a halide source, or (iii) a proton source and a halide source.

  6. Base-driven sunlight oxidation of silver nanoprisms for label-free visual colorimetric detection of hexahydro-1,3,5-trinitro-1,3,5-triazine explosive.

    PubMed

    He, Yi; Wang, Li

    2017-05-05

    Here we report a label-free method for visual colorimetric detection of hexahydro-1,3,5-trinitro-1,3,5-triazine (HTT) explosive based on base-driven sunlight oxidation of silver nanoprisms (AgNPRs). Under natural sunlight illumination, the surface plasmon of AgNPRs is excited, which populates O 2 antibonding orbitals to generate negative-ion state (O 2 - ). The resultant O 2 - with a strong oxidation activity can etch AgNPRs to smaller nanodisks with the aid of NaOH aqueous solution, leading to a blue shift of the absorption peak and color change from blue to pink. However, when HTT is introduced, the resultant O 2 - will be consumed by the nitrite and formaldehyde that are produced from the alkaline hydrolysis of HTT. Under this condition, the etching of AgNPRs does not occur, and the detection solution remains blue. This assay can sensitively detect as low as 1nM HTT, a level which is three orders of magnitude lower than that of gold nanoparticle-based colorimetric assays (2.6μM), and shows linearity in the range of 0.003-3.3μM. The lowest detectable concentration with the naked eye is 0.1μM. Additionally, the present assay exhibits good selectivity, and can be applied in the detection of HTT in natural water and soil samples with recoveries ranging from 90% to 100%. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. A blue corrinoid from partial degradation of vitamin B12 in aqueous bicarbonate: spectra, structure, and interaction with proteins of B12 transport.

    PubMed

    Fedosov, Sergey N; Ruetz, Markus; Gruber, Karl; Fedosova, Natalya U; Kräutler, Bernhard

    2011-09-20

    Cobalamin (Cbl) is a complex cofactor produced only by bacteria but used by all animals and humans. Cyanocobalamin (vitamin B(12), CNCbl) is one commonly isolated form of cobalamin. B(12) belongs to a large group of corrinoids, which are characterized by a distinct red color conferred by the system of conjugated double bonds of the corrin ring retaining a Co(III) ion. A unique blue Cbl derivative was produced by hydrolysis of CNCbl in a weakly alkaline aqueous solution of bicarbonate. This corrinoid was purified and isolated as dark blue crystals. Its spectroscopic analysis and X-ray crystallography revealed B-ring opening with formation of 7,8-seco-cyanocobalamin (7,8-sCNCbl). The unprecedented structural change was caused by cleavage of the peripheral C-C bond between saturated carbons 7 and 8 of the corrin macrocycle accompanied by formation of a C═C bond at C7 and a carbonyl group at C8. Additionally, the C-amide was hydrolyzed to a carboxylic acid. The extended conjugation of the π-system caused a considerable red shift of the absorbance spectrum. Formation and degradation of 7,8-sCNCbl were analyzed qualitatively. Its interaction with the proteins of mammalian Cbl transport revealed both a slow binding kinetics and a low overall affinity. The binding data were compared to those of other monocarboxylic derivatives and agreed with the earlier proposed scheme for two-step ligand recognition. The obtained results are consistent with the structural models of 7,8-sCNCbl and the transport proteins intrinsic factor and transcobalamin. Potential applications of the novel derivative for drug conjugation are discussed. © 2011 American Chemical Society

  8. Computation of adsorption parameters for the removal of dye from wastewater by microwave assisted sawdust: Theoretical and experimental analysis.

    PubMed

    S, Suganya; P, Senthil Kumar; A, Saravanan; P, Sundar Rajan; C, Ravikumar

    2017-03-01

    In this research, the microwave assistance has been employed for the preparation of novel material from agro/natural bio-waste i.e. sawdust, for the effective removal of methylene blue (MB) dye from aqueous solution. The characterization of the newly prepared microwave assisted sawdust (MASD) material was performed by using FTIR, SEM and XRD analyses. In order to obtain the maximum removal of MB dye from wastewater, the adsorption experimental parameters such as initial dye concentration, contact time, solution pH and adsorbent dosage were optimized by trial and error approach. The obtained experimental results were applied to the different theoretical models to predict the system behaviour. The optimum conditions for the maximum removal MB dye from aqueous solution for an initial MB dye concentration of 25mg/L was calculated as: adsorbent dose of 3g/L, contact time of 90min, solution pH of 7.0 and at the temperature of 30°C. Freundlich and pseudo-second order models was best obeyed with the studied experimental data. Langmuir maximum monolayer adsorption capacity of MASD for MB dye removal was calculated as 58.14mg of MB dye/g of MASD. Adsorption diffusion model stated that the present adsorption system was controlled by intraparticle diffusion model. The obtained results proposed that, novel MASD was considered to be an effective and low-cost adsorbent material for the removal of dye from wastewater. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. pH-sensitive wax emulsion copolymerization with acrylamide hydrogel using gamma irradiation for dye removal

    NASA Astrophysics Data System (ADS)

    Ghobashy, Mohamed Mohamady; Elhady, Mohamed., A.

    2017-05-01

    Emulsion polymerization is an efficient method for the production of new wax-hydrogel matrices of cetyl alcohol: stearic acid wax and acrylamide hydrogel using triethylamine (TEA) as an emulsifier. A cross-linking reaction occurred when a mixture of wax-hydrogel solution was irradiated with gamma rays at a dose of 20 kGy. The gelation percentage of the matrices (CtOH-StA/PAAm) was 86%, which indicates that a sufficiently high conversion occurred in these new wax-hydrogel matrices. The ability of PAAm and CtOH-StA/PAAm as an adsorbent for dye removal was investigated. The removal of three reactive dyes, namely Remazol Red (RR), Amido Black (AB), and Toluidine Blue (TB), from aqueous solutions depends on the pH of the dye solution. Removal efficiency was investigated by UV spectrophotometry, and the results showed the affinity of the wax hydrogel to adsorb TB was 98% after 320 min. Fourier transform infrared-attenuated total reflectance spectra confirmed the cross-linking process involved between the chains of wax and hydrogel; furthermore, scanning electron microscopy images showed that the wax and hydrogel were completely miscible to form a single matrix. Swelling measurements showed the high affinity of adsorbed dyes from aqueous solutions at different pH values to the wax-hydrogel network; the highest swelling values of 13.05 and 8.24 (g/g) were observed at pH 10 and 6, respectively

  10. Production of granular activated carbon from waste Rosa canina sp. seeds and its adsorption characteristics for dye.

    PubMed

    Gürses, A; Doğar, C; Karaca, S; Açikyildiz, M; Bayrak, R

    2006-04-17

    An activated carbon was developed from Rosa canina sp. seeds, characterized and used for the removal of methylene blue (basic dye) from aqueous solutions. Adsorption studies were carried out at 20 degrees C and various initial dye concentrations (20, 40, 60, 80, and 100 mg/L) for different times (15, 30, 60, and 120 min). The adsorption isotherm was obtained from data. The results indicate that the adsorption isotherm of methylene blue is typically S-shaped. The shape of isotherm is believed to reflect three distinct modes of adsorption. In region 1, the adsorption of methylene blue is carried out mainly by ion exchange. In region 2 by polarizations of pi-electrons established at cyclic parts of the previously adsorbed methylene blue molecules is occurred. However, it is not observed any change at the sign of the surface charge although zeta potential value is decreased with increase of amount adsorbed. In region 3, the slope of the isotherm is reduced, because adsorption now must overcome electrostatic repulsion between oncoming ions and the similarly charged solid. Adsorption in this fashion is usually complete when the surface is covered with a monolayer of methylene blue. To reveal the adsorptive characteristics of the produced active carbon, porosity and BET surface area measurements were made. Structural analysis was performed using SEM-EDS. The produced active carbon has the specific surface area of 799.2 m2 g-1 and the iodine number of 495 mg/g.

  11. Adsorption properties and photocatalytic activity of TiO2/activated carbon fiber composite

    NASA Astrophysics Data System (ADS)

    Yao, Shuhua; Song, Shuangping; Shi, Zhongliang

    2014-06-01

    Photocatalysts of titanium dioxide (TiO2) and TiO2/activated carbon fiber (TiO2/ACF) composite were prepared by sol-gel method, followed by calcining the pure TiO2 sols and the TiO2/ACF sols at 500°C for 2 h in a N2 atmosphere, respectively. These photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and N2 adsorption-desorption isotherms measurement. Batch experiments were conducted to study the adsorption property of TiO2/ACF composite using methylene blue as adsorbate. The adsorption data obtained from different batch experiments were analyzed using pseudo-second-order kinetic model, the experimental data can be adequately described by the pseudo-second-order equation. The photodecomposition behavior of TiO2/ACF was investigated in aqueous solution using methylene blue as target pollutant. It was found that methylene blue could be removed rapidly from water by TiO2/ACF, the photocatalytic decomposition was obviously improved when the photocatalyst was used. Kinetics analysis revealed that the photocatalytic decomposition reaction can be described well by a first-order rate equation.

  12. Cresyl Violet Adsorption on Sonicated Graphite Oxide.

    PubMed

    Coello-Fiallos, D; Cazzanelli, E; Tavolaro, A; Tavolaro, P; Arias, M; Caputi, L S

    2018-04-01

    We present a study of adsorption of Cresyl Violet (CV) in aqueous solution on sonicated Graphite Oxide (sGO). For comparison, we also show adsorption results of Methylene Blue (MB) and Acridine Orange (AO) performed in the same conditions. The adsorbent was synthesized by the Tour's method followed by washing in water and ethanol and sonication, without any reduction, and studied by Raman, IR, UV-Vis, SEM and TEM techniques. Our results show that adsorption fits the pseudosecond order model for the three dyes, and that the adsorption quantity for CV is 125.0 mg g-1, while for MB and AO is 123.3 and 94.6 mg g-1 respectively.

  13. MoS2 embedded TiO2 nanoparticles for concurrent role of adsorption and photocatalysis

    NASA Astrophysics Data System (ADS)

    Pal, Arnab; Jana, Tushar K.; Chatterjee, Kuntal

    2018-04-01

    In this work, MoS2 embedded TiO2 nanoparticles, synthesized through hydrothermal process, was successfully employed to remove organic pollutant dye like methylene blue(MB) through adsorption and as well as through photocatalysis under visible light irradiation. The system was characterized by structural and morphological study. The adsorption and photocatalytic study of MB were evaluated with different concentrations of dye in aqueous solution. This work brings the MoS2-TiO2 nanostructure as excellent adsorbent as well as efficient photocatalyst materials which can be used for organic dye removal towards waste-water treatment.

  14. Convenient synthesis of twin-Christmas tree-like PbWO4 microcrystals and their photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Zhang, Jin; Peng, Li-Li; Tang, Ying; Wu, Huijie

    2017-06-01

    Novel twin-Christmas tree-like PbWO4 microcrystals have been prepared via a convenient aqueous solution route at room temperature under the assistance of β-cyclodextrin (β-CD). The product was characterized by XRD, EDX, SEM, TEM, UV-vis and PL and BET techniques. It was found that β-CD plays an important role in the forming of twin-Christmas tree-like PbWO4 microcrystals. A five-step growth mechanism was proposed to explain the formation of such twin-Christmas tree-like structures. The photocatalytic performance of PbWO4 microcrystals was evaluated by measuring the decomposition rate of methylene blue (MB) and malachite green (MG) solution under the UV irradiation, and the photocatalytic results indicated that as-prepared PbWO4 microcrystals exhibit good and versatile photocatalytic activity as well as excellent recyclability.

  15. Magnetic graphene oxide for adsorption of organic dyes from aqueous solution

    NASA Astrophysics Data System (ADS)

    Drashya, Lal, Shyam; Hooda, Sunita

    2018-05-01

    Graphene oxide (GO), a 2-D carbon nanomaterial, large surface area, oxygen-containing groups (like: hydroxyl, epoxy and carboxyl) and excellent water dispersibility due to it is good adsorbent dye removal from pollutant water1. But it's difficult to separate GO from water after adsorption. Therefore, Iron oxide was introduced in Graphene oxide by decorating method to make separation more efficient2. We present herein a one step process to prepare Magnetic Graphene oxide (MGO). The Fourier transform infrared spectrometer (FT-IR), X-ray diffraction (XRD) and Raman Spectroscopy characterized the chemical structure of the MGO composite. The adsorption of dyes onto MGO was studied in relation to initial concentration of Dyes, contact time, adsorbent dose, temperature and pH value of solution. We have studied adsorption capacity of different dyes (Methylene blue and crystal violet) by MGO.

  16. Polymer-coated nanoparticles: Carrier platforms for hydrophobic water- and air-sensitive metallo-organic compounds.

    PubMed

    Valdeperez, Daniel; Wang, Tianqiang; Eußner, Jens P; Weinert, Bastian; Hao, Jianyuan; Parak, Wolfgang J; Dehnen, Stefanie; Pelaz, Beatriz

    2017-03-01

    Many of the relevant compounds for anticancer therapy are metal-based compounds (metallodrugs), being platinum-based drugs such as cisplatin, carboplatin (Paraplatin ® ), and oxaliplatin (Eloxatin ® ) the most widely used. Despite this, their application is limited by issues such as cell-acquired platinum resistance and manifold side effects following systemic delivery. Thus, the development of new metal-based compounds is highly needed. The catalytic properties of a variety of metal-based compounds are nowadays very well known, which opens new opportunities to take advantage of them inside living cells or organisms. However, many of these compounds are hydrophobic and thus not soluble in aqueous solution, as they lack stability against water or oxygen presence. Thus, versatile platforms capable of enhancing the features of these compounds in aqueous solutions are of importance in the development of new drugs. Surface engineered nanoparticles may render metallodrugs with good colloidal stability in water and in complex media containing high salt concentration and/or proteins. Herein, polymer coated nanoparticles are proposed as a platform to link insoluble and water/oxygen sensitive drugs. The linkage of insoluble and oxygen sensitive tin clusters to nanoparticles is presented, aiming to enhance both, the solubility and the stability of these compounds in water, which may be an alternative approach in the development of metal-based drugs. The formation of the cluster-nanoparticle system was confirmed via inductively coupled plasma mass spectrometry experiments. The catalytic activity and the stability of the cluster in water were studied through the reduction of methylene blue. Results demonstrate that in fact the tin clusters could be transferred into aqueous solution and retained their catalytic activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. On the constituents of aqueous polyselenide electrolytes: A combined theoretical and Raman spectroscopic study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldbach, A.; Johnson, J.; Meisel, D.

    1999-05-12

    The speciation of aqueous polyselenide solutions at high pH values has been investigated by Raman and Uv/vis absorption spectroscopy. Complementary, ab initio molecular orbital calculations at the HF/6-31+G{sup *} level of theory have been carried out on the vibrational frequencies of polyselenide dianions Se{sub x}{sup 2{minus}} (x = 2--4), polyselenide radical anions Se{sub x}{sup {minus}} (x = 2, 3), and protonated polyselenides HSe{sub x}{sup {minus}} (x = 1--3) in order to substantiate the assignment of the experimental Raman spectra. Although the optical spectra suggest the successive formation of Se{sub 2}{sup 2{minus}}, Se{sub 3}{sup 2{minus}}, and Se{sub 4}{sup 2{minus}} with progressivemore » oxidation of the solutions, only two characteristic Raman bands are observed at 269 and 324 cm{sup {minus}1}. A sequence of overtones of the 269 cm{sup {minus}1} band is observed after excitation with blue light. Likewise strong overtones of the 324 cm{sup {minus}1} band appear after excitation with green light. The 269 cm{sup {minus}1} features is assigned to Se{sub 4}{sup 2{minus}} while the 324 cm{sup {minus}1} band is attributed to the radical anion Se{sub 2}{sup {minus}}. The occurrence of polyselenide radicals in aqueous solution is without precedent, and the formation of Se{sub 2}{sup {minus}} is ascribed to a photolytic process in the electrolyte. The only protonated species observed in this study is HSe{sup {minus}}, which is characterized by a Raman band at 2,303 cm{sup {minus}1}.« less

  18. How to make hypericin water-soluble.

    PubMed

    Kubin, A; Loew, H G; Burner, U; Jessner, G; Kolbabek, H; Wierrani, F

    2008-04-01

    Hypericin, isolated from Hypericum perforatum, is an effective photodynamic substance as demonstrated by various studies. Practical forms of applications of hypericin solutions for systemic use and introduction into body cavities are, however, lacking. We developed an aqueous solution of hypericin non-covalently bound to polyvinylpyrrolidone (PVP). PVP is a poly-N-vinylamide of various degrees of polymerization and forms of intermolecular crosslinks suitable for diagnostic and therapeutic applications. We used PVP (molecular weights of PVP between 10 kD and 40 kD) as a complex forming agent to prepare hypericin for photodynamic therapy and diagnostics. In pure water, hypericin forms aggregates which are non-soluble and non-fluorescent. The hypericin-PVP complex binds more than 1000 mg of hypericin in presence of 100 g PVP or less and is soluble in 1 liter of pure water. Aqueous complex solutions of hypericin-PVP display a characteristic absorption spectrum and fluorescence emission band around 600 nm wavelength. Varying concentrations of hypericin do not cause a blue- or red-shift in the absorption maximum at 595 nm. Excitation at 200 nm to 500 nm leads to emission at 590 nm; a property conducive to diagnostic investigations both in vitro and in vivo. Furthermore, hypericin-PVP exhibits high photostability in the presence of oxygen and broad band light which ensures reproducible photodynamic therapy and diagnosis. Hypericin forms liquid molecular chromophore complexes in water when bound to PVP thus allowing investigations in biological media.

  19. Citric acid modified kenaf core fibres for removal of methylene blue from aqueous solution.

    PubMed

    Sajab, Mohd Shaiful; Chia, Chin Hua; Zakaria, Sarani; Jani, Saad Mohd; Ayob, Mohd Khan; Chee, Kah Leong; Khiew, Poi Sim; Chiu, Wee Siong

    2011-08-01

    Chemically modified kenaf core fibres were prepared via esterification in the presence of citric acid (CA). The adsorption kinetics and isotherm studies were carried out under different conditions to examine the adsorption efficiency of CA-treated kenaf core fibres towards methylene blue (MB). The adsorption capacity of the kenaf core fibres increased significantly after the citric acid treatment. The values of the correlation coefficients indicated that the Langmuir isotherm fitted the experimental data better than the Freundlich isotherm. The maximum adsorption capacity of the CA-treated kenaf core fibres was found to be 131.6mg/g at 60°C. Kinetic models, pseudo-first-order, pseudo-second-order and intraparticle diffusion, were employed to describe the adsorption mechanism. The kinetic data were found to fit pseudo-second-order model equation as compared to pseudo-first-order model. The adsorption of MB onto the CA-treated kenaf core fibres was spontaneous and endothermic. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Effect of CO₂ flow rate on the Pinang frond-based activated carbon for methylene blue removal.

    PubMed

    Herawan, S G; Ahmad, M A; Putra, A; Yusof, A A

    2013-01-01

    Activated carbons are regularly used the treatment of dye wastewater. They can be produced from various organics materials having high level of carbon content. In this study, a novel Pinang frond activated carbon (PFAC) was produced at various CO₂ flow rates in the range of 150-600 mL/min at activation temperature of 800°C for 3 hours. The optimum PFAC sample is found on CO₂ flow rate of 300 mL/min which gives the highest BET surface area and pore volume of 958 m²/g and 0.5469 mL/g, respectively. This sample shows well-developed pore structure with high fixed carbon content of 79.74%. The removal of methylene blue (MB) by 95.8% for initial MB concentration of 50 mg/L and 72.6% for 500 mg/L is achieved via this sample. The PFAC is thus identified to be a suitable adsorbent for removing MB from aqueous solution.

  1. Toxicity of textile dyes and their degradation by the enzyme horseradish peroxidase (HRP).

    PubMed

    Ulson de Souza, Selene Maria Arruda Guelli; Forgiarini, Eliane; Ulson de Souza, Antônio Augusto

    2007-08-25

    The enzyme peroxidase is known for its capacity to remove phenolic compounds and aromatic amines from aqueous solutions and also to decolorize textile effluents. This study evaluates the potential of the enzyme horseradish peroxidase (HRP) in the decolorization of textile dyes and effluents. Some factors such as pH and the amount of H(2)O(2) and the enzyme were evaluated in order to determine the optimum conditions for the enzyme performance. For the dyes tested, the results indicated that the decolorization of the dye Remazol Turquoise Blue G 133% was approximately 59%, and 94% for the Lanaset Blue 2R; for the textile effluent, the decolorization was 52%. The tests for toxicity towards Daphnia magna showed that there was a reduction in toxicity after the enzymatic treatment. However, the toxicity of the textile effluent showed no change towards Artemia salina after the enzyme treatment. This study verifies the viability of the use of the enzyme horseradish peroxidase in the biodegradation of textile dyes.

  2. Separation of acid blue 25 from aqueous solution using water lettuce and agro-wastes by batch adsorption studies

    NASA Astrophysics Data System (ADS)

    Kooh, Muhammad Raziq Rahimi; Dahri, Muhammad Khairud; Lim, Linda B. L.; Lim, Lee Hoon; Chan, Chin Mei

    2018-05-01

    Three plant-based materials, namely water lettuce (WL), tarap peel (TP) and cempedak peel (CP), were used to investigate their potentials as adsorbents using acid blue 25 (AB25) dye as a model for acidic dye. The adsorbents were characterised using Fourier transform infrared spectroscopy, X-ray fluorescence and scanning electron microscope. Batch experiments involving parameters such as pH, temperature, contact time, and initial dye concentration were done to investigate the optimal conditions for the adsorption of AB25 onto the adsorbents. Thermodynamics study showed that the uptake of AB25 by the three adsorbents was feasible and endothermic in nature. Both the Langmuir and Freundlich isotherm models can be used to describe the adsorption process of AB25 onto WL and CP while pseudo-second-order fitted the kinetics data, suggesting that chemisorptions were majorly involved. The use of 0.1 M of NaOH showed the best results in regenerating of the WL, TP and CP's adsorption ability after AB25 treatment.

  3. Application of anaerobic granular sludge for competitive biosorption of methylene blue and Pb(II): Fluorescence and response surface methodology.

    PubMed

    Shi, Li; Wei, Dong; Ngo, Huu Hao; Guo, Wenshan; Du, Bin; Wei, Qin

    2015-10-01

    This study assessed the biosorption of anaerobic granular sludge (AGS) and its capacity as a biosorbent to remove Pb(II) and methylene blue (MB) from multi-components aqueous solution. It emerged that the biosorption data fitted well to the pseudo-second-order and Langmuir adsorption isotherm models in both single and binary systems. In competitive biosorption systems, Pb(II) and MB will suppress each other's biosorption capacity. Spectroscopic analysis, including Fourier transform infrared spectroscopy (FTIR) and fluorescence spectroscopy were integrated to explain this interaction. Hydroxyl and amine groups in AGS were the key functional groups for sorption. Three-dimensional excitation-emission matrix (3D-EEM) implied that two main protein-like substances were identified and quenched when Pb(II) or MB were present. Response surface methodology (RSM) confirmed that the removal efficiency of Pb(II) and MB reached its peak when the concentration ratios of Pb(II) and MB achieved a constant value of 1. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. SOLVENT EXTRACTION PROCESS

    DOEpatents

    Jonke, A.A.

    1957-10-01

    In improved solvent extraction process is described for the extraction of metal values from highly dilute aqueous solutions. The process comprises contacting an aqueous solution with an organic substantially water-immiscible solvent, whereby metal values are taken up by a solvent extract phase; scrubbing the solvent extract phase with an aqueous scrubbing solution; separating an aqueous solution from the scrubbed solvent extract phase; and contacting the scrubbed solvent phase with an aqueous medium whereby the extracted metal values are removed from the solvent phase and taken up by said medium to form a strip solution containing said metal values, the aqueous scrubbing solution being a mixture of strip solution and an aqueous solution which contains mineral acids anions and is free of the metal values. The process is particularly effective for purifying uranium, where one starts with impure aqueous uranyl nitrate, extracts with tributyl phosphate dissolved in carbon tetrachloride, scrubs with aqueous nitric acid and employs water to strip the uranium from the scrubbed organic phase.

  5. Ultrafast adsorption and selective desorption of aqueous aromatic dyes by graphene sheets modified by graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Ying, Yulong; He, Peng; Ding, Guqiao; Peng, Xinsheng

    2016-06-01

    Graphene modified by graphene quantum dots (GQDs) has been employed to remove toxic organic dyes. An excellent removal capacity (497 mg g-1) and record-breaking adsorption rate (475 mg g-1 min-1 at 20 °C) were demonstrated for Rhodamine B. The enhancement in performance by nearly a factor of three compared to that of graphene was ascribed to the greatly increased accessible surface area of graphene in aqueous solution as well as the increase in surface charges with the modification with GQDs. Besides, this unique adsorption behavior of the modified graphene was expanded to other typical toxic aqueous aromatic dyes such as Evans Blue, Methyl Orange, Malachite Green and Rose Bengal. What is more, a unique desorption behavior of dyes was first observed when employing different solvents, which enabled the GQD-modified graphene to be exploited for selective extraction of dyes and recycling of the adsorbent. The adsorption and desorption mechanism were further investigated. Combining high removal capacity, rapid adsorption kinetics, good recyclability and unique selective desorption, GQD-modified graphene has potential applications in both water purification and separation of aromatic dyes.

  6. Green synthesis of silver nanoparticles by waste tea extract and degradation of organic dye in the absence and presence of H2O2

    NASA Astrophysics Data System (ADS)

    Qing, Weixia; Chen, Kui; Wang, Yong; Liu, Xiuhua; Lu, Minghua

    2017-11-01

    The silver nanoparticles (AgNPs) had been successfully synthesized by using an aqueous extract of waste tea as a stabilizing and reducing agent. The green synthesized AgNPs were characterized by ultraviolet visible (UV-vis) spectroscopy, Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), X-ray powder diffraction (XRD) and zeta potential. The work focused on the degradation of methylene blue (MB) and ethyl violet (EV) in aqueous solution with AgNPs as catalyst in the absence and presence of H2O2. The AgNPs exhibit fast, efficient and stable catalytic activity in the degradation of cationic organic dyes, but it is no catalytic degradation of anionic organic dyes at room temperature. The kinetics of dyes degradation with AgNPs follows the pseudo-second-order model. Meanwhile, the AgNPs also show better antimicrobial activity against pathogenic bacteria. The formed highly catalytic active AgNPs can be used as catalyst in industries and water purification.

  7. PROCESS OF REMOVING PLUTONIUM VALUES FROM SOLUTION WITH GROUP IVB METAL PHOSPHO-SILICATE COMPOSITIONS

    DOEpatents

    Russell, E.R.; Adamson, A.W.; Schubert, J.; Boyd, G.E.

    1957-10-29

    A process for separating plutonium values from aqueous solutions which contain the plutonium in minute concentrations is described. These values can be removed from an aqueous solution by taking an aqueous solution containing a salt of zirconium, titanium, hafnium or thorium, adding an aqueous solution of silicate and phosphoric acid anions to the metal salt solution, and separating, washing and drying the precipitate which forms when the two solutions are mixed. The aqueous plutonium containing solution is then acidified and passed over the above described precipi-tate causing the plutonium values to be adsorbed by the precipitate.

  8. Three-dimensional printed acrylonitrile butadiene styrene framework coated with Cu-BTC metal-organic frameworks for the removal of methylene blue.

    PubMed

    Wang, Zongyuan; Wang, Jiajun; Li, Minyue; Sun, Kaihang; Liu, Chang-jun

    2014-08-04

    Three-dimensional (3D) printing was applied for the fabrication of acrylonitrile butadiene styrene (ABS) framework. Functionalization of the ABS framework was then performed by coating of porous Cu-BTC (BTC = benzene tricarboxylic acid) metal-organic frameworks on it using a step-by-step in-situ growth. The size of the Cu-BTC particles on ABS was ranged from 200 nm to 900 nm. The Cu-BTC/ABS framework can take up most of the space of the tubular reactor that makes the adsorption effective with no need of stirring. Methylene blue (MB) can be readily removed from aqueous solution by this Cu-BTC/ABS framework. The MB removal efficiency for solutions with concentrations of 10 and 5 mg/L was 93.3% and 98.3%, respectively, within 10 min. After MB adsorption, the Cu-BTC/ABS composite can easily be recovered without the need for centrifugation or filtration and the composite is reusable. In addition the ABS framework can be recovered for subsequent reuse. A significant advantage of 3D-printed frameworks is that different frameworks can be easily fabricated to meet the needs of different applications. This is a promising strategy to synthesize new frameworks using MOFs and polymers to develop materials for applications beyond adsorption.

  9. Magnetically Separable Fe3O4/SnO2/Graphene Adsorbent for Waste Water Removal

    NASA Astrophysics Data System (ADS)

    Paramarta, V.; Taufik, A.; Saleh, R.

    2017-05-01

    Our previous study conducted the SnO2 and SnO2/graphene adsorption efficiency in Methylene Blue removal from aqueous solution, however, the difficulty of adsorbent separation from the methylene blue solution limits its efficiency. Therefore, in this work, SnO2 and SnO2/graphene was combined with Fe3O4 to improve the separation process and adsorption performance for removing the organic dyes. Fe3O4/SnO2/grapheme were synthesized by using the co-precipitation method. The graphene content was varied from 1, 3, and 5 weight percent (wt%). The crystalline phase and thermal stability of the samples were characterized by using X- ray Diffraction (XRD) and Thermal Gravimetric Analysis (TGA). The adsorption ability of the samples was investigated by using significant adsorption degradation of MB observed when the graphene in Fe3O4/SnO2 nanocomposite was added. The other parameters such as pH and initial concentration have also been investigated. The reusability was also investigated to study the stability of the samples. The fitting of equilibrium adsorption capacity result indicates that the adsorption mechanism of Fe3O4/SnO2 nanocomposite with graphene tends to follow the Langmuir adsorption isotherm model.

  10. Synthesis of α-MoO{sub 3} nanoplates using organic aliphatic acids and investigation of sunlight enhanced photodegradation of organic dyes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, V. Vinod; Gayathri, K.; Anthony, Savarimuthu Philip, E-mail: philip@biotech.sastra.edu

    Graphical abstract: Thermodynamically stable α-MoO{sub 3} nanoplates and nanorods were synthesized using organic structure controlling agents and demonstrated sun light enhanced photocatalytic degradation of methylene blue (MB) and rhodamine blue (Rh-B) dyes in aqueous solution. - Highlights: • α-MoO{sub 3} hexagonal nanoplates using organic structure controlling agents. • Tunable optical band gap of MoO{sub 3}. • Demonstrated strong sun light mediated enhanced photodegradation of methylene blue and rhodamine blue. • Photodegradation did not use any other external oxidizing agents. - Abstract: Thermodynamically stable α-MoO{sub 3} nanoplates were synthesized using organic aliphatic acids as structure controlling agents and investigated photocatalytic degradationmore » of methylene blue (MB) and rhodamine blue (Rh-B) in presence of sun light. Three different organic aliphatic acids, citric acid (CA), tartaric acid (TA) and ethylene diamine tetra-acetic acid (EDTA), were employed to control morphologies. CA and TA predominantly produced extended hexagonal plates where EDTA gave nanorods as well as nanoplates. PXRD studies confirmed the formation of α-MoO{sub 3} nanoparticles. HR-TEM and FE-SEM reveal the formation of plate morphologies with 20–40 nm thickness, 50–100 nm diameter and 600 nm lengths. The different morphologies of α-MoO{sub 3} nanoparticles lead to the tunable optical band gap between 2.80 and 2.98 eV which was obtained from diffused reflectance spectra (DRS). Interestingly, the synthesized α-MoO{sub 3} nanoplates exhibited strong photocatalytic degradation of MB and Rh-B up to 99% in presence of sun light without using any oxidizing agents.« less

  11. Removal of methylene blue from aqueous solution by wood millet carbon optimization using response surface methodology

    NASA Astrophysics Data System (ADS)

    Ghaedi, Mehrorang; Kokhdan, Syamak Nasiri

    2015-02-01

    The use of cheep, non-toxic, safe and easily available adsorbent are efficient and recommended material and alternative to the current expensive substance for pollutant removal from wastewater. The activated carbon prepared from wood waste of local tree (millet) extensively was applied for quantitative removal of methylene blue (MB), while simply. It was used to re-used after heating and washing with alkaline solution of ethanol. This new adsorbent was characterized by using BET surface area measurement, FT-IR, pH determination at zero point of charge (pHZPC) and Boehm titration method. Response surface methodology (RSM) by at least the number of experiments main and interaction of experimental conditions such as pH of solution, contact time, initial dye concentration and adsorbent dosage was optimized and set as pH 7, contact time 18 min, initial dye concentration 20 ppm and 0.2 g of adsorbent. It was found that variable such as pH and amount of adsorbent as solely or combination effects seriously affect the removal percentage. The fitting experimental data with conventional models reveal the applicability of isotherm models Langmuir model for their well presentation and description and Kinetic real rate of adsorption at most conditions efficiently can be represented pseudo-second order, and intra-particle diffusion. It novel material is good candidate for removal of huge amount of MB (20 ppm) in short time (18 min) by consumption of small amount (0.2 g).

  12. Kinetics of adsorption of dyes from aqueous solution using activated carbon prepared from waste apricot.

    PubMed

    Onal, Yunus

    2006-10-11

    Adsorbent (WA11Zn5) has been prepared from waste apricot by chemical activation with ZnCl(2). Pore properties of the activated carbon such as BET surface area, pore volume, pore size distribution, and pore diameter were characterized by N(2) adsorption and DFT plus software. Adsorption of three dyes, namely, Methylene Blue (MB), Malachite Green (MG), Crystal Violet (CV), onto activated carbon in aqueous solution was studied in a batch system with respect to contact time, temperature. The kinetics of adsorption of MB, MG and CV have been discussed using six kinetic models, i.e., the pseudo-first-order model, the pseudo-second-order model, the Elovich equation, the intraparticle diffusion model, the Bangham equation, the modified Freundlich equation. Kinetic parameters and correlation coefficients were determined. It was shown that the second-order kinetic equation could describe the adsorption kinetics for three dyes. The dyes uptake process was found to be controlled by external mass transfer at earlier stages (before 5 min) and by intraparticle diffusion at later stages (after 5 min). Thermodynamic parameters, such as DeltaG, DeltaH and DeltaS, have been calculated by using the thermodynamic equilibrium coefficient obtained at different temperatures and concentrations. The thermodynamics of dyes-WA11Zn5 system indicates endothermic process.

  13. Additive-induced aggregate changes of two structurally similar dyes in aqueous solutions: A comparative photophysical study.

    PubMed

    Ghanadzadeh Gilani, A; Poormohammadi-Ahandani, Z; Kian, R

    2018-01-15

    Absorption and emission spectral characteristics of the two structurally similar phenothiazine dyes, azure B and toluidine blue, in aqueous solutions of the two sets of molecular additives (ureas and monosaccharides) were studied as a function of the dye and additive concentrations. The absorption spectra of the dyes were also studied in pure tetramethylurea with an aprotic nature. The spectral data were analyzed using DECOM Program. The dimer structure of the interacting molecules in these dyes was discussed using the exciton model. The urea class of additives was found to act as water structure-breakers over the range of studied concentration. The carbohydrate additives were found to act as water structure-breakers at low concentrations. However, the water structure breaking process may be disfavored by the additive-additive interactions at higher concentrations. It can be concluded that at low additive concentrations, the main driving force for breaking the dye association is water-additive interaction, which disrupts the water hydrogen bonds induced by the additives. However, at the high additive concentrations, the different phenomena including additive-additive and additive-dye interactions can change the structure, strength, and aggregative properties of the dyes. Finally, the urea in water induces noticeably fluorescence quenching in emission spectra of both the dyes. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Additive-induced aggregate changes of two structurally similar dyes in aqueous solutions: A comparative photophysical study

    NASA Astrophysics Data System (ADS)

    Ghanadzadeh Gilani, A.; Poormohammadi-Ahandani, Z.; Kian, R.

    2018-01-01

    Absorption and emission spectral characteristics of the two structurally similar phenothiazine dyes, azure B and toluidine blue, in aqueous solutions of the two sets of molecular additives (ureas and monosaccharides) were studied as a function of the dye and additive concentrations. The absorption spectra of the dyes were also studied in pure tetramethylurea with an aprotic nature. The spectral data were analyzed using DECOM Program. The dimer structure of the interacting molecules in these dyes was discussed using the exciton model. The urea class of additives was found to act as water structure-breakers over the range of studied concentration. The carbohydrate additives were found to act as water structure-breakers at low concentrations. However, the water structure breaking process may be disfavored by the additive-additive interactions at higher concentrations. It can be concluded that at low additive concentrations, the main driving force for breaking the dye association is water-additive interaction, which disrupts the water hydrogen bonds induced by the additives. However, at the high additive concentrations, the different phenomena including additive-additive and additive-dye interactions can change the structure, strength, and aggregative properties of the dyes. Finally, the urea in water induces noticeably fluorescence quenching in emission spectra of both the dyes.

  15. Synergistically strengthened 3D micro-scavenger cage adsorbent for selective removal of radioactive cesium

    PubMed Central

    Jang, Sung-Chan; Kang, Sung-Min; Haldorai, Yuvaraj; Giribabu, Krishnan; Lee, Go-Woon; Lee, Young-Chul; Hyun, Moon Seop; Han, Young-Kyu; Roh, Changhyun; Huh, Yun Suk

    2016-01-01

    A novel microporous three-dimensional pomegranate-like micro-scavenger cage (P-MSC) composite has been synthesized by immobilization of iron phyllosilicates clay onto a Prussian blue (PB)/alginate matrix and tested for the removal of radioactive cesium from aqueous solution. Experimental results show that the adsorption capacity increases with increasing the inactive cesium concentration from 1 ppm to 30 ppm, which may be attributed to greater number of adsorption sites and further increase in the inactive cesium concentration has no effect. The P-MSC composite exhibit maximum adsorption capacity of 108.06 mg of inactive cesium per gram of adsorbent. The adsorption isotherm is better fitted to the Freundlich model than the Langmuir model. In addition, kinetics studies show that the adsorption process is consistent with a pseudo second-order model. Furthermore, at equilibrium, the composite has an outstanding adsorption capacity of 99.24% for the radioactive cesium from aqueous solution. This may be ascribed to the fact that the AIP clay played a substantial role in protecting PB release from the P-MSC composite by cross-linking with alginate to improve the mechanical stability. Excellent adsorption capacity, easy separation, and good selectivity make the adsorbent suitable for the removal of radioactive cesium from seawater around nuclear plants and/or after nuclear accidents. PMID:27917913

  16. Synergistically strengthened 3D micro-scavenger cage adsorbent for selective removal of radioactive cesium.

    PubMed

    Jang, Sung-Chan; Kang, Sung-Min; Haldorai, Yuvaraj; Giribabu, Krishnan; Lee, Go-Woon; Lee, Young-Chul; Hyun, Moon Seop; Han, Young-Kyu; Roh, Changhyun; Huh, Yun Suk

    2016-12-05

    A novel microporous three-dimensional pomegranate-like micro-scavenger cage (P-MSC) composite has been synthesized by immobilization of iron phyllosilicates clay onto a Prussian blue (PB)/alginate matrix and tested for the removal of radioactive cesium from aqueous solution. Experimental results show that the adsorption capacity increases with increasing the inactive cesium concentration from 1 ppm to 30 ppm, which may be attributed to greater number of adsorption sites and further increase in the inactive cesium concentration has no effect. The P-MSC composite exhibit maximum adsorption capacity of 108.06 mg of inactive cesium per gram of adsorbent. The adsorption isotherm is better fitted to the Freundlich model than the Langmuir model. In addition, kinetics studies show that the adsorption process is consistent with a pseudo second-order model. Furthermore, at equilibrium, the composite has an outstanding adsorption capacity of 99.24% for the radioactive cesium from aqueous solution. This may be ascribed to the fact that the AIP clay played a substantial role in protecting PB release from the P-MSC composite by cross-linking with alginate to improve the mechanical stability. Excellent adsorption capacity, easy separation, and good selectivity make the adsorbent suitable for the removal of radioactive cesium from seawater around nuclear plants and/or after nuclear accidents.

  17. Synergistically strengthened 3D micro-scavenger cage adsorbent for selective removal of radioactive cesium

    NASA Astrophysics Data System (ADS)

    Jang, Sung-Chan; Kang, Sung-Min; Haldorai, Yuvaraj; Giribabu, Krishnan; Lee, Go-Woon; Lee, Young-Chul; Hyun, Moon Seop; Han, Young-Kyu; Roh, Changhyun; Huh, Yun Suk

    2016-12-01

    A novel microporous three-dimensional pomegranate-like micro-scavenger cage (P-MSC) composite has been synthesized by immobilization of iron phyllosilicates clay onto a Prussian blue (PB)/alginate matrix and tested for the removal of radioactive cesium from aqueous solution. Experimental results show that the adsorption capacity increases with increasing the inactive cesium concentration from 1 ppm to 30 ppm, which may be attributed to greater number of adsorption sites and further increase in the inactive cesium concentration has no effect. The P-MSC composite exhibit maximum adsorption capacity of 108.06 mg of inactive cesium per gram of adsorbent. The adsorption isotherm is better fitted to the Freundlich model than the Langmuir model. In addition, kinetics studies show that the adsorption process is consistent with a pseudo second-order model. Furthermore, at equilibrium, the composite has an outstanding adsorption capacity of 99.24% for the radioactive cesium from aqueous solution. This may be ascribed to the fact that the AIP clay played a substantial role in protecting PB release from the P-MSC composite by cross-linking with alginate to improve the mechanical stability. Excellent adsorption capacity, easy separation, and good selectivity make the adsorbent suitable for the removal of radioactive cesium from seawater around nuclear plants and/or after nuclear accidents.

  18. A general procedure to synthesize highly crystalline metal oxide and mixed oxidenanocrystals in aqueous medium and photocatalytic activity of metal/oxide nanohybrids

    NASA Astrophysics Data System (ADS)

    Nguyen, Thanh-Dinh; Dinh, Cao-Thang; Do, Trong-On

    2011-04-01

    A conventional and general route has been exploited to the high yield synthesis of many kinds of highly crystalline metal oxide and mixed oxidenanocrystals with different morphologies including belt, rod, truncated-octahedron, cubic, sphere, sheet via the hydrothermal reaction of inorganic precursors in aqueous solution in the presence of bifunctional 6-aminohexanoic acid (AHA) molecules as a capping agent. This method is a simple, reproducible and general route for the preparation of a variety of high-crystalline inorganic nanocrystals in scale-up. The shape of inorganic nanocrystals such as CoWO4, La2(MoO4)3 can be controlled by simply adjusting the synthesis conditions including pH solution and reaction temperature. Further, by tuning precursor monomer concentration, the mesocrystal hierarchical aggregated microspheres (e.g., MnWO4, La2(MoO4)3) can be achieved, due to the spontaneous assembly of individual AHA-capped nanoparticles. These obtained AHA-capped nanocrystals are excellent supports for the synthesis of a variety of hybrid metal/oxidenanocrystals in which noble metal particles are uniformly deposited on the surface of each individual nanosupport. The photocatalytic activity of Ag/TiO2 nanobelts as a typical hybrid photocatalyst sample for Methylene Blue degradation was also studied.A conventional and general route has been exploited to the high yield synthesis of many kinds of highly crystalline metal oxide and mixed oxidenanocrystals with different morphologies including belt, rod, truncated-octahedron, cubic, sphere, sheet via the hydrothermal reaction of inorganic precursors in aqueous solution in the presence of bifunctional 6-aminohexanoic acid (AHA) molecules as a capping agent. This method is a simple, reproducible and general route for the preparation of a variety of high-crystalline inorganic nanocrystals in scale-up. The shape of inorganic nanocrystals such as CoWO4, La2(MoO4)3 can be controlled by simply adjusting the synthesis conditions including pH solution and reaction temperature. Further, by tuning precursor monomer concentration, the mesocrystal hierarchical aggregated microspheres (e.g., MnWO4, La2(MoO4)3) can be achieved, due to the spontaneous assembly of individual AHA-capped nanoparticles. These obtained AHA-capped nanocrystals are excellent supports for the synthesis of a variety of hybrid metal/oxidenanocrystals in which noble metal particles are uniformly deposited on the surface of each individual nanosupport. The photocatalytic activity of Ag/TiO2 nanobelts as a typical hybrid photocatalyst sample for Methylene Blue degradation was also studied. Electronic supplementary information (ESI) available: Additional TEM, XRD, XPS, FTIR, UV-vis and photoluminescence results of the nanocrystals. See DOI: 10.1039/c1nr10109a

  19. Dye adsorption into transition metal-doped zinc oxide nanoparticles supported on natural zeolites to solve wastewater issue

    NASA Astrophysics Data System (ADS)

    Indra Pratiwi, Margaretha; Afifah, Nur; Saleh, Rosari

    2017-03-01

    In this work, Fe-doped zinc oxide/natural zeolite (Fe:ZnO/NZ) nanocomposites were prepared using the co-precipitation method with various NZ amounts. The nanocomposites were characterized by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) surface area analysis and thermogravimetric analysis (TGA). The nanocomposites were used to remove methylene blue (MB) dye from an aqueous solution. The effect of various NZ amounts and initial MB concentration were tested. The Pseudo-first-order and pseudo-second-order kinetic models were used to explain the adsorption mechanism. The Langmuir and the Freundlich isotherm models were used to fit the adsorption isotherms of the nanocomposites.

  20. Synthesis and photocatalytic activity of N-doped TiO2 produced in a solid phase reaction

    NASA Astrophysics Data System (ADS)

    Xin, Gang; Pan, Hongfei; Chen, Dan; Zhang, Zhihua; Wen, Bin

    2013-02-01

    N-doped TiO2 was synthesized by calcining a mixture of titanic acid and graphitic carbon nitride (g-C3N4) at temperatures above 500 °C. The final samples were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), electron energy loss spectroscopy (EELS), and UV-vis diffuse reflectance spectra. The photocatalytic activity of N-doped TiO2 was studied by assessing the degradation of methylene blue in an aqueous solution, under visible light and UV light irradiation. It was found that the N-doped TiO2 displayed higher photocatalytic activity than pure TiO2, under both visible and UV light.

  1. Self-Assembly of ZnO Nanoplatelets into Hierarchical Mesocrystals and Their Photocatalytic Property

    NASA Astrophysics Data System (ADS)

    Yang, Yongqiang; Wang, Qinsheng; Liu, Zheng; Jin, Ling; Ou, Bingxian; Han, Pengju; Wang, Qun; Cheng, Xiaobao; Liu, Wenjun; Wen, Yu; Liu, Yuan; Zhao, Weifang

    2018-03-01

    In this work, a simple chemical procedure was developed for the preparation of mesocrystals consisiting of ZnO nanoplateletes. By simple mixing the aqueous solutions Zn(NO3)2, NaOH and ethanol at certain temperatures, the hierarchical mesocrystals with big at both ends but small in the middle were obtained. After being annealed in air at certain temperatures, the same structured ZnO mesocrystals were generated. The morphology, crystalline structure and chemical composition were characterized using SEM, XRD FT-IR and Raman. The photocatalytic properties of the ZnO mesocrystals were also investigated. It was illustrated that the ZnO mesocrystals show decent photocatalytic performance to the photodegradation of methyl blue.

  2. Bistable aggregate of all-trans-astaxanthin in an aqueous solution

    NASA Astrophysics Data System (ADS)

    Mori, Yuso; Yamano, Kuniko; Hashimoto, Hideki

    1996-05-01

    The temperature dependence of the optical absorption spectra for astaxanthin aggregate has been studied between 2 and 32°C. Red-shifted absorption bands as compared to the monomer absorption band are found above 21°C in addition to the blue-shifted band of the aggregate. The spectra suggest that the molecular arrangement in the aggregate is a bistable one consisting of head-to-tail and card-packed arrangements. A diagram describing the bistability together with the monomer state is proposed in the space defined by the free energy and the quantity of Σi = 1 N< θ12 + < σθ12 for the ith molecule in the N-molecule aggregate.

  3. Photo-Fenton Degradation of Organic Dyes Based on a Fe₃O₄ Nanospheres/Biomass Composite Loaded Column.

    PubMed

    Zheng, Kai; Zhang, Jubo; Wang, Yan; Gao, Longxue; Di, Mingyu; Yuan, Fang; Bao, Wenhui; Yang, Tao; Liang, Daxin

    2018-06-01

    In order to deal with pollution of organic dyes, magnetic Fe3O4 nanospheres (NPs) with an average diameter of 202 ± 0.5 nm were synthesized by a solvothermal method at 200 °C, and they can efficiently degrade organic dyes (methylene blue (MB), rhodamine B (RhB) and xylenol orange (XO)) aqueous solutions (20 mg/L) within 1 min. Based on this Fenton reagent, Fe3O4 NPs/biomass composite degradation column was made using sawdust as substrate, and it can efficiently degrade organic dyes continually. More importantly, the composite can be regenerated just by an ultrasonic treatment, and its degradation performance almost remains the same.

  4. The use of synthesized aqueous solutions for determining strontium sorption isotherms

    USGS Publications Warehouse

    Liszewski, M.J.; Bunde, R.L.; Hemming, C.; Rosentreter, J.; Welhan, J.

    1998-01-01

    The use of synthesized aqueous solutions for determining experimentally derived strontium sorption isotherms of sediment was investigated as part of a study accessing strontium chemical transport properties. Batch experimental techniques were used to determine strontium sorption isotherms using synthesized aqueous solutions designed to chemically represent water from a natural aquifer with respect to major ionic character and pH. A strontium sorption isotherm for a sediment derived using a synthesized aqueous solution was found to be most comparable to an isotherm derived using natural water when the synthesized aqueous solution contained similar concentrations of calcium and magnesium. However, it is difficult to match compositions exactly due to the effects of disequilibrium between the solution and the sediment. Strong linear relations between sorbed strontium and solution concentrations of calcium and magnesium confirm that these cations are important co-constituents in these synthesized aqueous solutions. Conversely, weak linear relations between sorbed strontium and solution concentrations of sodium and potassium indicate that these constituents do not affect sorption of strontium. The addition of silica to the synthesized aqueous solution does not appreciably affect the resulting strontium sorption isotherm.

  5. Activity of water in aqueous systems; a frequently neglected property.

    PubMed

    Blandamer, Mike J; Engberts, Jan B F N; Gleeson, Peter T; Reis, Joao Carlos R

    2005-05-01

    In this critical review, the significance of the term 'activity' is examined in the context of the properties of aqueous solutions. The dependence of the activity of water(l) at ambient pressure and 298.15 K on solute molality is examined for aqueous solutions containing neutral solutes, mixtures of neutral solutes and salts. Addition of a solute to water(l) always lowers its thermodynamic activity. For some solutes the stabilisation of water(l) is less than and for others more than in the case where the thermodynamic properties of the aqueous solution are ideal. In one approach this pattern is accounted for in terms of hydrate formation. Alternatively the pattern is analysed in terms of the dependence of practical osmotic coefficients on the composition of the aqueous solution and then in terms of solute-solute interactions. For salt solutions the dependence of the activity of water on salt molalities is compared with that predicted by the Debye-Hückel limiting law. The analysis is extended to consideration of the activities of water in binary aqueous mixtures. The dependence on mole fraction composition of the activity of water in binary aqueous mixtures is examined. Different experimental methods for determining the activity of water in aqueous solutions are critically reviewed. The role of water activity is noted in a biochemical context, with reference to the quality, stability and safety of food and finally with regard to health science.

  6. Preparation and characterization of poly(AA co PVP)/PGS composite and its application for methylene blue adsorption.

    PubMed

    Yang, Cai-xia; Lei, Lei; Zhou, Peng-xin; Zhang, Zhe; Lei, Zi-qiang

    2015-04-01

    Poly (AA co PVP)/PGS (PAPP) composite adsorbent was prepared by radical polymerization from Acrylic acid (AA), Polyvinylpyrrolidone (PVP) and Palygorskite (PGS), using N,N-methylenebisacrylamide (MBA) as cross-linker and potassium persulfate (KPS) as initiator. The PAPP was characterized with Fourier transform infrared (FT-IR), thermogravimetric analysis (TG), scanning electron microscope (SEM) and transmission electron microscopy (TEM). PAPP was used as adsorbent for the removal of methylene blue from aqueous solutions. The influences of pH, adsorption temperature and adsorption time on the adsorption properties of the composite to the dye were also investigated. Meanwhile, the adsorption rate data and adsorption equilibrium date were analyzed based on the pseudo-first-order and pseudo-second-order kinetic model, Langmuir and Freundlich isotherm models, respectively. The results indicating that the kinetic behavior better fit with the pseudo-second-order kinetic model. The maximum equilibrium adsorption capacity (q(m)) is 1815 mg/g at 289 K. The isotherm behavior can be explained by the Langmuir isotherm models. The activation energy was also evaluated for the removal of methylene blue onto PAPP. These results demonstrate that this composite material could be used as a good adsorbent for the removal of cationic dyes from wastewater. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Dimethyl diallyl ammonium chloride and diallylamin Co-polymer modified bio-film derived from palm dates for the adsorption of dyes.

    PubMed

    Jabli, Mahjoub; Saleh, Tawfik A; Sebeia, Nouha; Tka, Najeh; Khiari, Ramzi

    2017-10-31

    For the first time, co-polymer of dimethyl diallyl ammonium chloride and diallylamin (PDDACD) was used to modify the films derived from the waste of palm date fruits, which were then investigated by the purification of colored aqueous solutions. The physico-chemical characteristics were identified using data color, FT-IR spectroscopy, and SEM features. The modified films were evaluated as adsorbents of Methylene Blue (MB), Direct Yellow 50 (DY50), Reactive Blue 198 (RB198) and Naphtol Blue Black (NBB). High retention capacities were achieved in the following order: The equilibrium da DY50 (14 mg g -1 ) < RB198 (16 mg g -1 ) < NBB (63.9 mg g -1 ) < MB (150 mg g -1 ). The kinetic modeling of the data revealed that the adsorption data follows the pseudo second order model. It was fitted to the Langmuir, Freundlich, Temkin, and Dubinin-Redushkevich equations, and the data best fit the Freundlich model indicating that the adsorption might occur in the heterogeneous adsorption sites. These results reveal that PDDACD modified films are valuable materials for the treatment of industrial wastewater. Moreover, the as-prepared adsorbent is economically viable and easily controllable for pollutant adsorption.

  8. Synthesis and Characterization of Modified BiOCl and Their Application in Adsorption of Low-Concentration Dyes from Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Zhao, Qihang; Xing, Yongxing; Liu, Zhiliang; Ouyang, Jing; Du, Chunfang

    2018-03-01

    The synthesis and characterization of BiOCl and Fe3+-grafted BiOCl (Fe/BiOCl) is reported that are developed as efficient adsorbents for the removal of cationic dyes rhodamine B (RhB) and methylene blue (MB) as well as anionic dyes methyl orange (MO) and acid orange (AO) from aqueous solutions with low concentration of 0.01 0.04 mmol/L. Characterizations by various techniques indicate that Fe3+ grafting induced more open porous structure and higher specific surface area. Both BiOCl and Fe/BiOCl with negatively charged surfaces showed excellent adsorption efficiency toward cationic dyes, which could sharply reach 99.6 and nearly 100% within 3 min on BiOCl and 97.0 and 98.0% within 10 min on Fe/BiOCl for removing RhB and MB, respectively. However, Fe/BiOCl showed higher adsorption capacity than BiOCl toward ionic dyes. The influence of initial dye concentration, temperature, and pH value on the adsorption capacity is comprehensively studied. The adsorption process of RhB conforms to Langmuir adsorption isotherm and pseudo-second-order kinetic feature. The excellent adsorption capacities of as-prepared adsorbents toward cationic dyes are rationalized on the basis of electrostatic attraction as well as open porous structure and high specific surface area. In comparison with Fe/BiOCl, BiOCl displays higher selective efficiency toward cationic dyes in mixed dye solutions.

  9. A potential low cost adsorbent for the removal of cationic dyes from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Uddin, Md. Tamez; Rahman, Md. Arifur; Rukanuzzaman, Md.; Islam, Md. Akhtarul

    2017-10-01

    This study was aimed at using mango leaf powder (MLP) as a potential adsorbent for the removal of methylene blue (MB) from aqueous solutions. Characterization of the adsorbent was carried out with scanning electron microscopy, Fourier transform infrared spectroscopy, and nitrogen adsorption-desorption analysis. The pH at the point of zero charge of the adsorbent was determined by titration method and was found a value to be 5.6 ± 0.2. Batch studies were performed to evaluate the influence of various experimental parameters like initial solution pH, contact time, initial concentration of dye and adsorbent dosage on the removal of MB. An adsorption-desorption study was carried out resulting the mechanism of adsorption was carried out by electrostatic force of attraction. The adsorption equilibrium time required for the adsorption of MB on MLP was almost 2 h and 85 ± 5% of the total amount of dye uptake was found to occur in the first rapid phase (30 min). The Langmuir and Freundlich isotherm models were used for modeling the adsorption equilibrium. The experimental equilibrium data could be well interpreted by Langmuir isotherm with maximum adsorption capacity of 156 mg/g. To state the sorption kinetics, the fits of pseudo-first-order and pseudo-second-order kinetic models were investigated. It was obtained that the adsorption process followed the pseudo-second-order rate kinetics. The above findings suggest that MLP can be effectively used for decontamination of dye containing wastewater.

  10. A facile method to prepare "green" nano-phosphors with a large Stokes-shift and solid-state enhanced photophysical properties based on surface-modified gold nanoclusters.

    PubMed

    Cheng, C H; Huang, H Y; Talite, M J; Chou, W C; Yeh, J M; Yuan, C T

    2017-12-15

    Colloidal nano-materials, such as quantum dots (QDs) have been applied to light-conversion nano-phosphors due to their unique tunable emission. However, most of the QDs involve toxic elements and are synthesized in a hazardous solvent. In addition, conventional QD nano-phosphors with a small Stokes shift suffered from reabsorption losses and aggregation-induced quenching in the solid state. Here, we demonstrate a facile, matrix-free method to prepare eco-friendly nano-phosphors with a large Stokes shift based on aqueous thiolate-stabilized gold nanoclusters (GSH-AuNCs) with simple surface modifications. Our method is just to drop GSH-AuNCs solution on the aluminum foil and then surface-modified AuNCs (Al-GSH-AuNCs) can be spontaneously precipitated out of the aqueous solution. Compared with pristine GSH-AuNCs in solution, the Al-GSH-AuNCs exhibit enhanced solid-state PL quantum yields, lengthened PL lifetime, and spectral blue shift, which can be attributed to the aggregation-induced emission enhancement facilitated by surface modifications. Such surface-treatment induced aggregation of AuNCs can restrict the surface-ligand motion, leading to the enhancement of PL properties in the solid state. In addition, the Al-GSH-AuNCs nano-phosphors with a large Stokes shift can mitigate the aggregation-induced PL quenching and reabsorption losses, which would be potential candidates for "green" nano-phosphors. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. FURTHER STUDIES ON THE INHIBITION OF CYPRIDINA LUMINESCENCE BY LIGHT, WITH SOME OBSERVATIONS ON METHYLENE BLUE

    PubMed Central

    Harvey, E. Newton

    1926-01-01

    1. Eosin, erythrosin, rose bengale, cyanosin, acridine, and methylene blue act photodynamically on the luminescence of a Cypridina luciferin-luciferase solution. In presence of these dyes inhibition of luminescence, which without the dye occurs only in blue-violet light, takes place in green, yellow, orange, or red light, depending on the position of the absorption bands of the dye. 2. Inhibition of Cypridina luminescence without photosensitive dye in blue-violet light, or with photosensitive dye in longer wave-lengths, does not occur in absence of oxygen. Light acts by accelerating the oxidation of luciferin without luminescence. Eosin or methylene blue act by making longer wave-lengths effective, but there is no evidence that these dyes become reduced in the process. 3. The luciferin-oxyluciferin system is similar to the methylene white-methylene blue system in many ways but not exactly similar in respect to photochemical change. Oxidation of the dye is favored in acid solution, reduction in alkaline solution. However, oxidation of luciferin is favored in all pH ranges from 4 to 10 but is much more rapid in alkaline solution, either in light or darkness. There is no evidence that reduction of oxyluciferin is favored in alkaline solution. Clark's observation that oxidation (blueing) of methylene white occurs in complete absence of oxygen has been confirmed for acid solutions. I observed no blueing in light in alkaline solution. PMID:19872301

  12. Artificial neural network-genetic algorithm based optimization for the adsorption of methylene blue and brilliant green from aqueous solution by graphite oxide nanoparticle.

    PubMed

    Ghaedi, M; Zeinali, N; Ghaedi, A M; Teimuori, M; Tashkhourian, J

    2014-05-05

    In this study, graphite oxide (GO) nano according to Hummers method was synthesized and subsequently was used for the removal of methylene blue (MB) and brilliant green (BG). The detail information about the structure and physicochemical properties of GO are investigated by different techniques such as XRD and FTIR analysis. The influence of solution pH, initial dye concentration, contact time and adsorbent dosage was examined in batch mode and optimum conditions was set as pH=7.0, 2 mg of GO and 10 min contact time. Employment of equilibrium isotherm models for description of adsorption capacities of GO explore the good efficiency of Langmuir model for the best presentation of experimental data with maximum adsorption capacity of 476.19 and 416.67 for MB and BG dyes in single solution. The analysis of adsorption rate at various stirring times shows that both dyes adsorption followed a pseudo second-order kinetic model with cooperation with interparticle diffusion model. Subsequently, the adsorption data as new combination of artificial neural network was modeled to evaluate and obtain the real conditions for fast and efficient removal of dyes. A three-layer artificial neural network (ANN) model is applicable for accurate prediction of dyes removal percentage from aqueous solution by GO following conduction of 336 experimental data. The network was trained using the obtained experimental data at optimum pH with different GO amount (0.002-0.008 g) and 5-40 mg/L of both dyes over contact time of 0.5-30 min. The ANN model was able to predict the removal efficiency with Levenberg-Marquardt algorithm (LMA), a linear transfer function (purelin) at output layer and a tangent sigmoid transfer function (tansig) at hidden layer with 10 and 11 neurons for MB and BG dyes, respectively. The minimum mean squared error (MSE) of 0.0012 and coefficient of determination (R(2)) of 0.982 were found for prediction and modeling of MB removal, while the respective value for BG was the MSE and R(2) of 0.001 and 0.981, respectively. The ANN model results show good agreement with experimental data. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Membrane separation for non-aqueous solution

    NASA Astrophysics Data System (ADS)

    Widodo, S.; Khoiruddin; Ariono, D.; Subagjo; Wenten, I. G.

    2018-01-01

    Membrane technology has been widely used in a number of applications competing with conventional technologies in various ways. Despite the enormous applications, they are mainly used for the aqueous system. The use of membrane-based processes in a non-aqueous system is an emerging area. This is because developed membranes are still limited in separations involving aqueous solution which show several drawbacks when implemented in a non-aqueous system. The purpose of this paper is to provide a review of the current application of membrane processes in non-aqueous solutions, such as mineral oil treatment, vegetable oil processing, and organic solvent recovery. Developments of advanced membrane materials for the non-aqueous solutions such as super-hydrophobic and organic solvent resistant membranes are reviewed. In addition, challenges and future outlook of membrane separation for the non-aqueous solution are discussed.

  14. Water-soluble polymers for recovery of metal ions from aqueous streams

    DOEpatents

    Smith, Barbara F.; Robison, Thomas W.

    1998-01-01

    A process of selectively separating a target metal contained in an aqueous solution by contacting the aqueous solution containing a target metal with an aqueous solution including a water-soluble polymer capable of binding with the target metal for sufficient time whereby a water-soluble polymer-target metal complex is formed, and, separating the solution including the water-soluble polymer-target metal complex from the solution is disclosed.

  15. Process for separating and recovering an anionic dye from an aqueous solution

    DOEpatents

    Rogers, Robin; Horwitz, E. Philip; Bond, Andrew H.

    1998-01-01

    A solid/liquid phase process for the separation and recovery of an anionic dye from an aqueous solution is disclosed. The solid phase comprises separation particles having surface-bonded poly(ethylene glycol) groups, whereas the aqueous solution from which the anionic dye molecules are separated contains a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved lyotropic salt. After contact between the aqueous solution and separation particles, the anionic dye is bound to the particles. The bound anionic dye molecules are freed from the separation particles by contacting the anionic dye-bound particles with an aqueous solution that does not contain a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved lyotropic salt to form an aqueous anionic dye solution whose anionic dye concentration is preferably higher than that of the initial dye-containing solution.

  16. Simultaneous Separation of Manganese, Cobalt, and Nickel by the Organic-Aqueous-Aqueous Three-Phase Solvent Extraction

    NASA Astrophysics Data System (ADS)

    Shirayama, Sakae; Uda, Tetsuya

    2016-04-01

    This research outlines an organic-aqueous-aqueous three-phase solvent extraction method and proposes its use in a new metal separation process for the recycling of manganese (Mn), cobalt (Co), and nickel (Ni) from used lithium ion batteries (LIBs). The three-phase system was formed by mixing xylene organic solution, 50 pct polyethylene glycol (PEG) aqueous solution, and 1 mol L-1 sodium sulfate (Na2SO4) aqueous solution. The xylene organic solution contained 2-ethylhexylphosphonic acid (D2EHPA) as an extractant for Mn ion, and the Na2SO4 aqueous solution contained 1 mol L-1 potassium thiocyanate (KSCN) as an extractant for Co ion. Concentrations of the metal ions were varied by dissolving metal sulfates in the Na2SO4 aqueous solution. As a result of the experiments, Mn, Co, and Ni ions were distributed in the xylene organic phase, PEG-rich aqueous phase, and Na2SO4-rich aqueous phase, respectively. The separation was effective when the pH value was around 4. Numerical simulation was also conducted in order to predict the distribution of metal ions after the multi-stage counter-current extractions.

  17. EMERGING TECHNOLOGY BULLETIN: REMOVAL OF PHENOL FROM AQUEOUS SOLUTIONS USING HIGH ENERGY ELECTRON BEAM IRRADIATION

    EPA Science Inventory

    Irradiation of aqueous solutions with high-energy electrons results in the formation of the aqueous electron, hydrogen radical, H-, and the hydroxyl radical, OH-. These reactive transient species initiate chemical reactions capable of destroying organic compounds in aqueous solut...

  18. REMOVAL OF CHLORIDE FROM AQUEOUS SOLUTIONS

    DOEpatents

    Schulz, W.W.

    1959-08-01

    The removal of chlorides from aqueons solutions is described. The process involves contacting the aqueous chloride containing solution with a benzene solution about 0.005 M in phenyl mercuric acetate whereby the chloride anions are taken up by the organic phase and separating the organic phase from the aqueous solutions.

  19. Physicochemical properties and cell-based bioactivity of Pu'erh tea polysaccharide conjugates.

    PubMed

    Chen, Xiao-Qiang; Zhang, Zhi-Fa; Gao, Zhi-Ming; Huang, Yi; Wu, Zheng-Qi

    2017-11-01

    Polysaccharide conjugates were prepared from Pu'erh tea and fractionated by DEAE-cellulose DE-52 column chromatography to yield one unexplored polysaccharide-conjugate fraction termed TPC-P with a molecular weight of 251,200Da. DVS (dynamic vapour sorption) result discovered that the humidity condition of long-term preservation for TPC-P is below 70% RH. Although it contained proteins, TPC-P could not bind to the Coomassie Brilliant Blue dyes G250 and R250. The "shoulder-shaped" ultroviolet absorption peak in TPC-P UV-vis scanning spectum ascribe theabrownins that inevitably adsorbed the polysaccharide conjugate. Zeta potential results demonstrated TPC-P aqueous solution merely presented the negative charge properties of polysaccharides instead of acid-base property of its protein section, and had more stability in greater than pH 5.5. No precipitation or haze occurred in the three TPC-P/EGCG aqueous mixtures during their being stored for 12h. The phase separation was observed in aqueous mixtures of TPC-P and type B gelatin. TPC-P possessed the fine stability as a function of temperature heating and cooling between 0 and 55°C. It is proposed that some properties of the covalent binding protein of TPC-P were "shielded" by its polysaccharide chains. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Process for separating and recovering an anionic dye from an aqueous solution

    DOEpatents

    Rogers, R.; Horwitz, E.P.; Bond, A.H.

    1998-01-13

    A solid/liquid phase process for the separation and recovery of an anionic dye from an aqueous solution is disclosed. The solid phase comprises separation particles having surface-bonded poly(ethylene glycol) groups, whereas the aqueous solution from which the anionic dye molecules are separated contains a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved lyotropic salt. After contact between the aqueous solution and separation particles, the anionic dye is bound to the particles. The bound anionic dye molecules are freed from the separation particles by contacting the anionic dye-bound particles with an aqueous solution that does not contain a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved lyotropic salt to form an aqueous anionic dye solution whose anionic dye concentration is preferably higher than that of the initial dye-containing solution. 7 figs.

  1. Phase-separable aqueous amide solutions as a thermal history indicator.

    PubMed

    Kitsunai, Makoto; Miyajima, Kentaro; Mikami, Yuzuru; Kim, Shokaku; Hirasawa, Akira; Chiba, Kazuhiro

    2008-12-01

    Aqueous solutions of several new amide compounds for use as simple thermal history indicators in the low-temperature transport of food and other products were synthesized. The phase transition temperatures of the aqueous solutions can be freely adjusted by changing the amide-water ratio in solution, the sodium chloride concentration of the water, and the type of amide compound. It is expected that these aqueous solutions can be applied as new thermal history indicators.

  2. Dye-enhanced reflectance and fluorescence confocal microscopy as an optical pathology tool

    NASA Astrophysics Data System (ADS)

    Yaroslavsky, Anna N.; Salomatina, Elena; Novak, John; Amat-Roldan, Ivan; Castano, Ana; Hamblin, Michael

    2006-02-01

    Early detection and precise excision of neoplasms are imperative requirements for successful cancer treatment. In this study we evaluated the use of dye-enhanced confocal microscopy as an optical pathology tool in the ex vivo trial with fresh thick non-melanoma skin cancer excisions and in vivo trial with B16F10 melanoma cancer in mice. For the experiments the tumors were rapidly stained using aqueous solutions of either toluidine blue or methylene blue and imaged using multimodal confocal microscope. Reflectance images were acquired at the wavelengths of 630nm and 650 nm. Fluorescence was excited at 630 nm and 650 nm. Fluorescence emission was registered in the range between 680 nm and 710 nm. The images were compared to the corresponding en face frozen H&E sections. The results of the study indicate confocal images of stained cancerous tissue closely resemble corresponding H&E sections both in vivo and in vitro. This remarkable similarity enables interpretation of confocal images in a manner similar to that of histopathology. The developed technique may provide an efficient real-time optical tool for detecting skin pathology.

  3. Synthesis of ZnO/CuO and TiO{sub 2}/CuO nanocomposites for light and ultrasound assisted degradation of a textile dye in aqueous solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muzakki, Afifah; Shabrany, Hesni; Saleh, Rosari, E-mail: rosari.saleh@gmail.com, E-mail: rosari.saleh@ui.ac.id

    2016-04-19

    ZnO/CuO and TiO2/CuO nanocomposites with different Zn/Cu and Ti/Cu ratios were prepared using sol-gel method. The obtained composite samples were used as catalyst. Methylene blue was used as a model of textile dye to evaluate their photocatalytic, sonocatalytic and photosonocatalytic activities. X-ray diffraction and energy dispersive X- ray analysis confirmed that only monoclinic CuO and hexagonal wurtzite ZnO structures are present in ZnO/CuO nanocomposites, while in TiO2/CuO nanocomposites monoclinic CuO and anatase TiO2 structures were observed. The degradation of methylene blue indicated that the incorporation of CuO in ZnO/CuO and TiO2/CuO nanocomposites exhibited an appreciable higher photocatalytic activity, which wasmore » mainly attributed to the extended photoresponding range and more light energy could be utilized than pure ZnO and TiO2.« less

  4. Effects of optical band gap energy, band tail energy and particle shape on photocatalytic activities of different ZnO nanostructures prepared by a hydrothermal method

    NASA Astrophysics Data System (ADS)

    Klubnuan, Sarunya; Suwanboon, Sumetha; Amornpitoksuk, Pongsaton

    2016-03-01

    The dependence of the crystallite size and the band tail energy on the optical properties, particle shape and oxygen vacancy of different ZnO nanostructures to catalyse photocatalytic degradation was investigated. The ZnO nanoplatelets and mesh-like ZnO lamellae were synthesized from the PEO19-b-PPO3 modified zinc acetate dihydrate using aqueous KOH and CO(NH2)2 solutions, respectively via a hydrothermal method. The band tail energy of the ZnO nanostructures had more influence on the band gap energy than the crystallite size. The photocatalytic degradation of methylene blue increased as a function of the irradiation time, the amount of oxygen vacancy and the intensity of the (0 0 0 2) plane. The ZnO nanoplatelets exhibited a better photocatalytic degradation of methylene blue than the mesh-like ZnO lamellae due to the migration of the photoelectrons and holes to the (0 0 0 1) and (0 0 0 -1) planes, respectively under the internal electric field, that resulted in the enhancement of the photocatalytic activities.

  5. Silver-induced reconstruction of an adeninate-based metal–organic framework for encapsulation of luminescent adenine-stabilized silver clusters† †Electronic supplementary information (ESI) available: Experimental details and additional structural, physicochemical and optical characterisation. See DOI: 10.1039/c6tc00260a Click here for additional data file.

    PubMed Central

    Jonckheere, Dries; Coutino-Gonzalez, Eduardo; Baekelant, Wouter; Bueken, Bart; Reinsch, Helge; Stassen, Ivo; Fenwick, Oliver; Richard, Fanny; Samorì, Paolo; Ameloot, Rob; Hofkens, Johan

    2016-01-01

    Bright luminescent silver-adenine species were successfully stabilized in the pores of the MOF-69A (zinc biphenyldicarboxylate) metal–organic framework, starting from the intrinsically blue luminescent bio-MOF-1 (zinc adeninate 4,4′-biphenyldicarboxylate). Bio-MOF-1 is transformed to the MOF-69A framework by selectively leaching structural adenine linkers from the original framework using silver nitrate solutions in aqueous ethanol. Simultaneously, bright blue-green luminescent silver-adenine clusters are formed inside the pores of the recrystallized MOF-69A matrix in high local concentrations. The structural transition and concurrent changes in optical properties were characterized using a range of structural, physicochemical and spectroscopic techniques (steady-state and time-resolved luminescence, quantum yield determination, fluorescence microscopy). The presented results open new avenues for exploring the use of MOFs containing luminescent silver clusters for solid-state lighting and sensor applications. PMID:28496980

  6. Performance, kinetics, and equilibrium of methylene blue adsorption on biochar derived from eucalyptus saw dust modified with citric, tartaric, and acetic acids.

    PubMed

    Sun, Lei; Chen, Dongmei; Wan, Shungang; Yu, Zebin

    2015-12-01

    Biochar derived from eucalyptus saw dust modified with citric, tartaric, and acetic acids at low temperatures was utilized as adsorbent to remove methylene blue (MB) from aqueous solutions. Fourier transform infrared spectroscopy analysis showed that the carboxyl group was introduced on the biochar surface. Adsorption experiment data indicated that eucalyptus saw dust modified with citric acid showed higher MB adsorption efficiency than that modified with tartaric and acetic acids. Pseudo-second-order kinetics was the most suitable model for describing MB adsorption on biochar compared with pseudo-first-order, Elovich, and intraparticle diffusion models. The calculated values of ΔG(0) and ΔH(0) indicated the spontaneous and endothermic nature of the adsorption process. MB adsorption on biochar followed the Langmuir isotherm. The maximum adsorption capacities for eucalyptus saw dust modified with citric, tartaric, and acetic acids were 178.57, 99.01, and 29.94 mg g(-1), respectively, at 35°C. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. LASERS, ACTIVE MEDIA: The aqueous-polyelectrolyte dye solution as an active laser medium

    NASA Astrophysics Data System (ADS)

    Akimov, A. I.; Saletskii, A. M.

    2000-11-01

    The spectral, luminescent, and lasing properties of aqueous solutions of a cationic dye rhodamine 6G with additions of anion polyelectrolytes — polyacrylic and polymethacrylic acids — are studied. It is found that the energy and spectral properties of lasing of these solutions depend on the ratio of concentrations of polyelectrolyte and molecules. It is also found that the lasing parameters of aqueous-polyelectrolyte dye solutions can be controlled by changing the structure of the molecular system. The variation in the structure of aqueous-polyelectrolyte dye solutions of rhodamine 6G resulted in an almost five-fold increase in the lasing efficiency compared to that in aqueous dye solutions.

  8. Solution-phase electronegativity scale: insight into the chemical behaviors of metal ions in solution.

    PubMed

    Li, Keyan; Li, Min; Xue, Dongfeng

    2012-04-26

    By incorporating the solvent effect into the Born effective radius, we have proposed an electronegativity scale of metal ions in aqueous solution with the most common oxidation states and hydration coordination numbers in terms of the effective ionic electrostatic potential. It is found that the metal ions in aqueous solution are poorer electron acceptors compared to those in the gas phase. This solution-phase electronegativity scale shows its efficiency in predicting some important properties of metal ions in aqueous solution such as the aqueous acidities of the metal ions, the stability constants of metal complexes, and the solubility product constants of the metal hydroxides. We have elaborated that the standard reduction potential and the solution-phase electronegativity are two different quantities for describing the processes of metal ions in aqueous solution to soak up electrons with different final states. This work provides a new insight into the chemical behaviors of the metal ions in aqueous solution, indicating a potential application of this electronegativity scale to the design of solution reactions.

  9. Methylene blue biosorption by pericarp of corn, alfalfa, and agave bagasse wastes.

    PubMed

    Rosas-Castor, José M; Garza-González, María T; García-Reyes, Refugio B; Soto-Regalado, Eduardo; Cerino-Córdova, Felipe J; García-González, Alcione; Loredo-Medrano, José A

    2014-01-01

    The presence of dyes in effluent is a matter of concern due to their toxicologic and aesthetical effects. In this research, locally available agro-industrial wastes (Zea mays pericarp, ZMP; Agave tequilana bagasse, ATB; and Medicago sativa waste, MSW) were used as alternative low-cost adsorbents for the removal of methylene blue (MB) from aqueous solutions. The adsorbents were characterized physically and chemically by Fourier transform infrared, scanning electron microscopy, potentiometric titrations, and N2 physisorption. MB adsorption experiments were carried out in batch systems and experimental data were used to calculate the adsorption isotherm model parameters (Langmuir, Freundlich, and Temkin) and the adsorption kinetic model parameters (pseudo-first- and pseudo-second-order models). MB-loaded biosorbents were desorbed with deionized water, ethanol (10% and 50% v/v), hydrochloric acid (0.01 and 0.05 N), and sodium hydroxide (0.1 N) at room temperature, and the best eluent was used in various adsorption-desorption cycles. The selected agricultural wastes can be considered as promising adsorbents for dye uptake from water since they exhibit considerable MB adsorption capacity (MSW 202.6 mg g(-1), ATB 156.2mg g(-1), and ZMP 110.9mg g(-1)), but it is lower than that reported for activated carbon; however, the biosorbents show higher adsorption rate than powdered activated carbon. Furthermore, the adsorbents can be economically regenerated with HCl solutions and reused for seven adsorption-desorption cycles.

  10. Interactions between soy protein from water-soluble soy extract and polysaccharides in solutions with polydextrose.

    PubMed

    Spada, Jordana C; Marczak, Ligia D F; Tessaro, Isabel C; Cardozo, Nilo S M

    2015-12-10

    This study focuses on the investigation of the interactions between polysaccharides (carrageenan and carboxymethylcellulose--CMC) and soy proteins from the water-soluble soy extract. The influence of pH (2-7) and protein-polysaccharide ratio (5:1-40:1) on the interaction between these polyelectrolytes was investigated in aqueous solutions with 10% of polydextrose and without polydextrose. The studied systems were analyzed in terms of pH-solubility profile of protein, ζ-potential, methylene blue-polysaccharide interactions, differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), and confocal laser scanning microscopy. Although the mixtures of soy extract with both carrageenan and CMC showed dependency on the pH and protein-polysaccharide ratio, they did not present the same behavior. Both polysaccharides modified the pH-solubility profile of the soy protein, shifting the pH range in which the coacervate is formed to a lower pH region with the decrease of the soy extract-polysaccharide ratio. The samples also presented detectable differences regarding to ζ-potential, DSC, FTIR and microscopy analyses. The complex formation was also detected even in a pH range where both biopolymers were net-negatively charged. The changes promoted by the presence of polydextrose were mainly detected by blue-polysaccharide interactions measures and confocal microscopy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shukla, Vaishali; Singh, Man

    Currently, the development of micelles route is thrust area of research in nanoscience for the control particle size and remarkable properties through chemical co-precipitation method. A 0.9 mM aqueous CTAB micellar solution plays a role as capping agent in the homogeneous solution of 0.5 M ZnSO{sub 4} and 0.5 M Na{sub 2}S for synthesis, further precipitates purified with centrifugation in cold ethanol and millipore water to remove unreacted reagents and ionic salt particles. A resultant, white colored luminescent ZnS nanoparticle out with ∼95% yield is reported. The ZnS nanoparticles have been examined by their luminescence properties, optical properties and crystal structure.more » The mean particle size of ZnS nanoparticles is found to be ∼10 nm in various technical results and UV-absorption was 80 nm blue shifts moved from 345 nm (bulk material) to 265 nm, showing a quantum size impact. The X-ray diffraction (XRD) pattern shows the immaculate cubic phase. Photoluminescence (PL) investigates the recombination mechanism with blue emission from shallow electron traps at 490 nm in ZnS nanoparticles. An FTIR spectrum and Thermal gravimetric analysis (TGA) gives confirmation of CTAB – cationic surfactant on surface of ZnS nanoparticle as capping agent as well thermal stability of CTAB capped ZnS nanoparticles with respect to temperature.« less

  12. TiO2/WO3 photoactive bilayers in the UV-Vis light region

    NASA Astrophysics Data System (ADS)

    Vasilaki, E.; Vernardou, D.; Kenanakis, G.; Vamvakaki, M.; Katsarakis, N.

    2017-04-01

    In this work, photoactive bilayered films consisting of anatase TiO2 and monoclinic WO3 were synthesized by a sol-gel route. Titanium isopropoxide and tungsten hexachloride were used as metal precursors and deposition was achieved by spin-coating on Corning glass substrates. The samples were characterized by X-ray diffraction, photoluminescence, UV-Vis, and Raman spectroscopy, as well as field emission scanning electron microscopy. The prepared immobilized catalysts were tested for their photocatalytic performance by the decolorization of methylene blue in aqueous matrices, under UV-Vis light irradiation. The annealing process influenced the crystallinity of the bilayered films, while the concentration of the tungsten precursor solution and the position of the tungsten trioxide layer further affected their photocatalytic performance. In particular, the photocatalytic performance of the bilayered films was optimized at a concentration of 0.1 M of the WO3 precursor solution, when deposited as an overlying layer on TiO2 by two annealing steps ( 76% methylene blue decolorization in 300 min of irradiation versus 59% in the case of a bare TiO2 film). In general, the coupled layer catalysts exhibited superior photoactivity compared to that of bare TiO2 films with WO3 acting as an electron trap, resulting, therefore, in a more efficient electron-hole separation and inhibiting their recombination.

  13. Three-dimensional Printed Acrylonitrile Butadiene Styrene Framework Coated with Cu-BTC Metal-organic Frameworks for the Removal of Methylene Blue

    PubMed Central

    Wang, Zongyuan; Wang, Jiajun; Li, Minyue; Sun, Kaihang; Liu, Chang-jun

    2014-01-01

    Three-dimensional (3D) printing was applied for the fabrication of acrylonitrile butadiene styrene (ABS) framework. Functionalization of the ABS framework was then performed by coating of porous Cu-BTC (BTC = benzene tricarboxylic acid) metal-organic frameworks on it using a step-by-step in-situ growth. The size of the Cu-BTC particles on ABS was ranged from 200 nm to 900 nm. The Cu-BTC/ABS framework can take up most of the space of the tubular reactor that makes the adsorption effective with no need of stirring. Methylene blue (MB) can be readily removed from aqueous solution by this Cu-BTC/ABS framework. The MB removal efficiency for solutions with concentrations of 10 and 5 mg/L was 93.3% and 98.3%, respectively, within 10 min. After MB adsorption, the Cu-BTC/ABS composite can easily be recovered without the need for centrifugation or filtration and the composite is reusable. In addition the ABS framework can be recovered for subsequent reuse. A significant advantage of 3D-printed frameworks is that different frameworks can be easily fabricated to meet the needs of different applications. This is a promising strategy to synthesize new frameworks using MOFs and polymers to develop materials for applications beyond adsorption. PMID:25089616

  14. Method of precipitating uranium from an aqueous solution and/or sediment

    DOEpatents

    Tokunaga, Tetsu K; Kim, Yongman; Wan, Jiamin

    2013-08-20

    A method for precipitating uranium from an aqueous solution and/or sediment comprising uranium and/or vanadium is presented. The method includes precipitating uranium as a uranyl vanadate through mixing an aqueous solution and/or sediment comprising uranium and/or vanadium and a solution comprising a monovalent or divalent cation to form the corresponding cation uranyl vanadate precipitate. The method also provides a pathway for extraction of uranium and vanadium from an aqueous solution and/or sediment.

  15. SEPARATION OF SCANDIUM VALUES FORM IRON VALUES BY SOLVENT EXTRACTION

    DOEpatents

    Kuhlman, C.W. Jr.; Lang, G.P.

    1961-12-19

    A process is given for separating scandium from trivalent iron values. In this process, an aqueous nitric acid solution is contacted with a water- immiscible alkyl phosphate solution, the aqueous solution containing the values to be separated, whereby the scandium is taken up by the alkyl phosphate. The aqueous so1ution is preferably saturated with magnesium nitrate to retain the iron in the aqueous solution. (AEC)

  16. Effect of Fe doping concentration on photocatalytic activity of ZnO nanosheets under natural sunlight

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khokhra, Richa; Kumar, Rajesh, E-mail: rajesh.kumar@juit.ac.in

    2015-05-15

    A facile room temperature, aqueous solution-based chemical method has been adopted for large-scale synthesis of Fe doped ZnO nanosheets. The XRD and SEM results reveal the as-synthesized products well crystalline and accumulated by large amount of interweave nanosheets, respectively. Energy dispersive spectroscopy data confirmed Fe doping of the ZnO nanosheets with a varying Fe concentration. The photoluminescence spectrum reveals a continuous suppression of defect related emissions intensity by increasing the concentration of the Fe ion. A photocatalytic activity using these samples under sunlight irradiation in the mineralization of methylene blue dye was investigated. The photocatalytic activity of Fe doped ZnOmore » nanosheets depends upon the presence of surface oxygen vacancies.« less

  17. Evolution of Spatial pH Distribution in Aqueous Solution induced by Atmospheric Pressure Plasma

    NASA Astrophysics Data System (ADS)

    Takahashi, Shigenori; Mano, Kakeru; Hayashi, Yui; Takada, Noriharu; Kanda, Hideki; Goto, Motonobu

    2016-09-01

    Discharge plasma at gas-liquid interface produces some active species, and then they affect chemical reactions in aqueous solution, where pH of aqueous solution is changed due to redox species. The pH change of aqueous solution is an important factor for chemical reactions. However, spatial pH distribution in a reactor during the discharge has not been clarified yet. Thus, this work focused on spatial pH distribution of aqueous solution when pulsed discharge plasma was generated from a copper electrode in gas phase to aqueous solution in a reactor. Experiments were conducted using positive unipolar pulsed power. The unipolar pulsed voltage at +8.0 kV was applied to the copper electrode and the bottom of the reactor was grounded. The size of the reactor was 80 mm wide, 10 mm deep, and 40 mm high. The electrode was set at distance of 2 mm from the solution surface. Anthocyanins were contained in the aqueous solution as a pH indicator. The change pH solution spread horizontally, and low pH region of 10 mm in depth was formed. After discharge for 10 minutes, the low pH region was diffused toward the bottom of the reactor. After discharge for 60 minutes, the pH of the whole solution decreased.

  18. Hydrogen production by sodium borohydride in NaOH aqueous solution

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Zhang, L. F.; Zhao, Z. G.

    2018-01-01

    The kinetics of hydrolysis reaction of NaBH4 in NaOH aqueous solution is studied. The influence of pH of the NaOH aqueous solution on the rate of hydrogen production and the hydrogen production efficiency are studied for the hydrolysis reaction of NaBH4. The results show that the activation energy of hydrolysis reaction of NaBH4 increased with the increase of the initial pH of NaOH aqueous solution.With the increasing of the initial pH of NaOH aqueous solution, the rate of hydrogen production and hydrogen production efficiency of NaBH4 hydrolysis decrease.

  19. Assessment of Fenton's reagent and ozonation as pre-treatments for increasing the biodegradability of aqueous diethanolamine solutions from an oil refinery gas sweetening process.

    PubMed

    Durán-Moreno, A; García-González, S A; Gutiérrez-Lara, M R; Rigas, F; Ramírez-Zamora, R M

    2011-02-28

    The aim of this work was to evaluate the efficiency of three chemical oxidation processes for increasing the biodegradability of aqueous diethanolamine solutions (aqueous DEA solutions), to be used as pre-treatments before a biological process. The raw aqueous DEA solution, sourced from a sour gas sweetening plant at a Mexican oil refinery, was first characterized by standardized physico-chemical methods. Then experiments were conducted on diluted aqueous DEA solutions to test the effects of Fenton's reagent, ozone and ozone-hydrogen peroxide on the removal of some physicochemical parameters of these solutions. Lastly, biodegradability tests based on Dissolved Organic Carbon Die Away OECD301-A, were carried out on a dilution of the raw aqueous DEA solution and on the treated aqueous DEA solutions, produced by applying the best experimental conditions determined during the aforementioned oxidation tests. Experimental results showed that for aqueous DEA solutions treated with Fenton's reagent, the best degradation rate (70%) was obtained at pH 2.8, with Fe(2+) and H(2)O(2) at doses of 1000 and 10,000 mg/L respectively. In the ozone process, the best degradation (60%) was observed in aqueous DEA solution (100 mg COD/L), using 100 mg O(3)/L at pH 5. In the ozone-hydrogen peroxide process, no COD or DOC removals were observed. The diluted spent diethanolamine solution showed its greatest increase in biodegradability after a reaction period of 28 days when treated with Fenton's reagent, but after only 15 days in the case of ozonation. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Removal of basic dyes from aqueous solutions with a treated spent bleaching earth.

    PubMed

    Mana, Mohamed; Ouali, Mohand-Said; de Menorval, L C

    2007-03-01

    A spent bleaching earth from an edible oil refinery was treated by impregnation with a normal sodium hydroxide solution followed by mild thermal treatment (100 degrees C). The obtained material (TSBE) was washed, dried, and characterized by X-ray diffraction, FTIR, SEM, BET, and thermal analysis. The clay structure was not apparently affected by the treatment and the impregnated organic matter was quantitatively removed. We have investigated the comparative sorption of safranine and methylene blue on this material, the spent bleaching earth (SBE), and the virgin bleaching earth (VBE). The kinetic results fit the pseudo-second-order kinetic model and the Weber and Morris intraparticle diffusion model. The pH had no effect on the sorption efficiency. The sorption isotherms followed the Langmuir model for various sorbent concentrations with good values of the determination coefficient. A linear relationship was found between the calculated maximum removal capacity and the solid/solution ratio. A comparison between the results obtained with this material and those of the literature highlighted the low cost and the good removal capacity of treated spent bleaching earth.

  1. Cryo-irradiation as a terminal method for the sterilization of drug aqueous solutions.

    PubMed

    Maquille, Aubert; Habib Jiwan, Jean-Louis; Tilquin, Bernard

    2008-05-01

    The aim of this study is to evaluate the specificities of the irradiation of drugs in frozen aqueous solution. The structures of the degradation products were determined to gain insight into the radiolysis mechanisms occurring in frozen aqueous solutions. Metoclopramide hydrochloride and metoprolol tartrate were chosen as models. The frozen solutions were irradiated at dry ice temperature by high energy electrons at various doses. The drug purity (chemical potency) and the radiolysis products were quantified by HPLC-DAD. Characterization of the degradation products was performed by LC-APCI-MS-MS. The structures of the radiolysis products detected in irradiated frozen aqueous solutions were compared to those detected in solid-state and aqueous solutions (previous studies). For both metoclopramide and metoprolol, solute loss upon irradiation of frozen aqueous solutions was negligible. Five radiolysis products present in traces were identified in irradiated metoclopramide frozen solutions. Three of them were previously identified in solid-state irradiated metoclopramide crystals. The two others were formed following reactions with the hydroxyl radical (indirect effect). Only one fragmentation product was observed in irradiated metoprolol frozen solutions. For both drugs, radiosterilization of frozen solutions, even at high doses (25 kGy), was found to be possible.

  2. Noble metal superparticles and methods of preparation thereof

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yugang; Hu, Yongxing

    A method comprises heating an aqueous solution of colloidal silver particles. A soluble noble metal halide salt is added to the aqueous solution which undergoes a redox reaction on a surface of the silver particles to form noble metal/silver halide SPs, noble metal halide/silver halide SPs or noble metal oxide/silver halide SPs on the surface of the silver particles. The heat is maintained for a predetermined time to consume the silver particles and release the noble metal/silver halide SPs, the noble metal halide/silver halide SPs or the noble metal oxide/silver halide SPs into the aqueous solution. The aqueous solution ismore » cooled. The noble metal/silver halide SPs, the noble metal halide/silver halide SPs or noble metal oxide/silver halide SPs are separated from the aqueous solution. The method optionally includes adding a soluble halide salt to the aqueous solution.« less

  3. Hydrogen generation systems utilizing sodium silicide and sodium silica gel materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, Andrew P.; Melack, John M.; Lefenfeld, Michael

    Systems, devices, and methods combine reactant materials and aqueous solutions to generate hydrogen. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Multiple inlets of varied placement geometries deliver aqueous solution to the reaction. The reactant materials and aqueous solution are churned to control the state of the reaction. The aqueous solution can be recycled and returned to the reaction. One systemmore » operates over a range of temperatures and pressures and includes a hydrogen separator, a heat removal mechanism, and state of reaction control devices. The systems, devices, and methods of generating hydrogen provide thermally stable solids, near-instant reaction with the aqueous solutions, and a non-toxic liquid by-product.« less

  4. Hydrogen generation systems utilizing sodium silicide and sodium silica gel materials

    DOEpatents

    Wallace, Andrew P.; Melack, John M.; Lefenfeld, Michael

    2015-07-14

    Systems, devices, and methods combine reactant materials and aqueous solutions to generate hydrogen. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Multiple inlets of varied placement geometries deliver aqueous solution to the reaction. The reactant materials and aqueous solution are churned to control the state of the reaction. The aqueous solution can be recycled and returned to the reaction. One system operates over a range of temperatures and pressures and includes a hydrogen separator, a heat removal mechanism, and state of reaction control devices. The systems, devices, and methods of generating hydrogen provide thermally stable solids, near-instant reaction with the aqueous solutions, and a non-toxic liquid by-product.

  5. Photoalignment of a Bisazodioxodibenzothiophene in a Polyvinylpyrrolidone Matrix

    NASA Astrophysics Data System (ADS)

    Chaplanova, J. D.; Larykava, S. N.; Agabekov, V. E.; Mikulich, V. S.; Gracheva, E. A.

    2016-09-01

    Photoalignment of thin films of dipotassium 3,7-bis[1-(4-hydroxy-3-carboxylate)phenylazo]-5,5'-dioxodibenzothiophene (AtA-2) that were prepared by spin-coating of dye solutions in H2O and DMF and aqueous solutions of polyvinylpyrrolidone (PVP) was studied. The UV absorption band of the dye cis-isomer, the position and intensity of which depended on the PVP concentration in the stock solutions, was recorded upon irradiation of films of AtA-2 in a PVP matrix [AtA-2(PVP)] with unfi ltered light from a DRT-1000 lamp in a vacuum or an Ar atmosphere. PVP facilitated trans-cis isomerization of AtA-2 and increased the stability of the cis-isomer with respect to thermal relaxation into the initial trans-isomer. The dichroic ratio (DR) of AtA-2(PVP) films irradiated with linearly polarized light (blue LED with λ = 450 nm, I = 15 mW/cm2) increased by 1.5 times as the PVP concentration in the stock solutions increased from 1.0 to 10.0 mass%. The morphology and roughness of the films depended on the nature of the solvents used to prepare them.

  6. Fluorescent single-walled carbon nanotube aerogels in surfactant-free environments.

    PubMed

    Duque, Juan G; Hamilton, Christopher E; Gupta, Gautam; Crooker, Scott A; Crochet, Jared J; Mohite, Aditya; Htoon, Han; Obrey, Kimberly A DeFriend; Dattelbaum, Andrew M; Doorn, Stephen K

    2011-08-23

    A general challenge in generating functional materials from nanoscale components is integrating them into useful composites that retain or enhance their properties of interest. Development of single walled carbon nanotube (SWNT) materials for optoelectronics and sensing has been especially challenging in that SWNT optical and electronic properties are highly sensitive to environmental interactions, which can be particularly severe in composite matrices. Percolation of SWNTs into aqueous silica gels shows promise as an important route for exploiting their properties, but retention of the aqueous and surfactant environment still impacts and limits optical response, while also limiting the range of conditions in which these materials may be applied. Here, we present for the first time an innovative approach to obtain highly fluorescent solution-free SWNT-silica aerogels, which provides access to novel photophysical properties. Strongly blue-shifted spectral features, revelation of new diameter-dependent gas-phase adsorption phenomena, and significant increase (approximately three times that at room temperature) in photoluminescence intensities at cryogenic temperatures all indicate greatly reduced SWNT-matrix interactions consistent with the SWNTs experiencing a surfactant-free environment. The results demonstrate that this solid-state nanomaterial will play an important role in further revealing the true intrinsic SWNT chemical and photophysical behaviors and represent for the first time a promising new solution- and surfactant-free material for advancing SWNT applications in sensing, photonics, and optoelectronics. © 2011 American Chemical Society

  7. Tunable reaction potentials in open framework nanoparticle battery electrodes for grid-scale energy storage.

    PubMed

    Wessells, Colin D; McDowell, Matthew T; Peddada, Sandeep V; Pasta, Mauro; Huggins, Robert A; Cui, Yi

    2012-02-28

    The electrical energy grid has a growing need for energy storage to address short-term transients, frequency regulation, and load leveling. Though electrochemical energy storage devices such as batteries offer an attractive solution, current commercial battery technology cannot provide adequate power, and cycle life, and energy efficiency at a sufficiently low cost. Copper hexacyanoferrate and nickel hexacyanoferrate, two open framework materials with the Prussian Blue structure, were recently shown to offer ultralong cycle life and high-rate performance when operated as battery electrodes in safe, inexpensive aqueous sodium ion and potassium ion electrolytes. In this report, we demonstrate that the reaction potential of copper-nickel alloy hexacyanoferrate nanoparticles may be tuned by controlling the ratio of copper to nickel in these materials. X-ray diffraction, TEM energy dispersive X-ray spectroscopy, and galvanostatic electrochemical cycling of copper-nickel hexacyanoferrate reveal that copper and nickel form a fully miscible solution at particular sites in the framework without perturbing the structure. This allows copper-nickel hexacyanoferrate to reversibly intercalate sodium and potassium ions for over 2000 cycles with capacity retentions of 100% and 91%, respectively. The ability to precisely tune the reaction potential of copper-nickel hexacyanoferrate without sacrificing cycle life will allow the development of full cells that utilize the entire electrochemical stability window of aqueous sodium and potassium ion electrolytes.

  8. Synthesis of low-cost adsorbent from rice bran for the removal of reactive dye based on the response surface methodology

    NASA Astrophysics Data System (ADS)

    Hong, Gui-Bing; Wang, Yi-Kai

    2017-11-01

    Rice bran is a major by-product of the rice milling industry and is abundant in Taiwan. This study proposed a simple method for modifying rice bran to make it a low-cost adsorbent to remove reactive blue 4 (RB4) from aqueous solutions. The effects of independent variables such as dye concentration (100-500 ppm), adsorbent dosage (20-120 mg) and temperature (30-60 °C) on the dye adsorption capacity of the modified rice bran adsorbent were investigated by using the response surface methodology (RSM). The results showed that the dye maximum adsorption capacity of the modified rice bran adsorbent was 151.3 mg g-1 with respect to a dye concentration of 500 ppm, adsorbent dosage of 65.36 mg, and temperature of 60 °C. The adsorption kinetics data followed the pseudo-second-order kinetic model, and the isotherm data fit the Langmuir isotherm model well. The maximum monolayer adsorption capacity was 178.57-185.19 mg g-1, which was comparable to that of other agricultural waste adsorbents used to remove RB4 from aqueous solutions in the literature. The thermodynamics analysis results indicated that the adsorption of RB4 onto the modified rice bran adsorbent is an endothermic, spontaneous monolayer adsorption that occurs through a physical process.

  9. Modification process optimization, characterization and adsorption property of granular fir-based activated carbon

    NASA Astrophysics Data System (ADS)

    Chen, Congjin; Li, Xin; Tong, Zhangfa; Li, Yue; Li, Mingfei

    2014-10-01

    Granular fir-based activated carbon (GFAC) was modified with H2O2, and orthogonal array experimental design method was used to optimize the process. The properties of the original and modified GFAC were characterized by N2 adsorption-desorption isotherms, Brunauer-Emmett-Teller (BET) equation, Barett-Joyner-Halenda (BJH) equation, field emission scanning electron microscopy (FESEM), and Fourier transform infrared spectroscopy (FT-IR) analysis, etc. When 10.00 g of GFAC with particle size of 0.25-0.85 mm was modified by 150.0 ml of aqueous H2O2 solution, the optimized conditions were found to be as follows: aqueous H2O2 solution concentration 1.0 mol·l-1, modification temperature 30.0 °C, modification time 4.0 h. Modified under the optimized conditions, decolonization of caramel, methylene blue adsorption, phenol adsorption and iodine number of the modified GFAC increased by 500.0%, 59.7%, 32.5%, and 15.1%, respectively. The original and optimally modified GFAC exhibited adsorption isotherms of hybrid Type I-IV isotherms with H4 hysteresis. BET surface area, micropore area, total pore volume, micropore volume, and microporosity of the modified GFAC increased by 7.33%, 11.25%, 3.89%, 14.23%, 9.91%, respectively. Whereas the average pore width decreased by 3.16%. In addition, the amount of surface oxygen groups (such as carbonyl or carboxyl) increased in the modified GFAC.

  10. Removal efficiency of methylene blue using activated carbon from waste banana stem: Study on pH influence

    NASA Astrophysics Data System (ADS)

    Misran, E.; Bani, O.; Situmeang, E. M.; Purba, A. S.

    2018-02-01

    The effort to remove methylene blue in artificial solution had been conducted using adsorption process. The abundant banana stem waste was utilized as activated carbon precursor. This study aimed to analyse the influence of solution pH to removal efficiency of methylene blue using activated carbon from banana stem as adsorbent. Activated carbon from banana stem was obtained by chemical activation using H3PO4 solution. Proximate analysis result showed that the activated carbon has 47.22% of fixed carbon. This value exhibited that banana stem was a potential adsorbent precursor. Methylene blue solutions were prepared at initial concentration of 50 ppm. The influence of solution pH was investigated with the use of 0.2 g adsorbent for 100 mL dye solution. The adsorption was conducted using shaker with at a constant rate of 100 rpm at room temperature for 90 minutes. The results showed that solution pH influenced the adsorption. The activated carbon from banana stem demonstrated satisfying performance since removal efficiencies of methylene blue were higher than 99%.

  11. Conversion of depleted uranium hexafluoride to a solid uranium compound

    DOEpatents

    Rothman, Alan B.; Graczyk, Donald G.; Essling, Alice M.; Horwitz, E. Philip

    2001-01-01

    A process for converting UF.sub.6 to a solid uranium compound such as UO.sub.2 and CaF. The UF.sub.6 vapor form is contacted with an aqueous solution of NH.sub.4 OH at a pH greater than 7 to precipitate at least some solid uranium values as a solid leaving an aqueous solution containing NH.sub.4 OH and NH.sub.4 F and remaining uranium values. The solid uranium values are separated from the aqueous solution of NH.sub.4 OH and NH.sub.4 F and remaining uranium values which is then diluted with additional water precipitating more uranium values as a solid leaving trace quantities of uranium in a dilute aqueous solution. The dilute aqueous solution is contacted with an ion-exchange resin to remove substantially all the uranium values from the dilute aqueous solution. The dilute solution being contacted with Ca(OH).sub.2 to precipitate CaF.sub.2 leaving dilute NH.sub.4 OH.

  12. High-performance magnetic carbon materials in dye removal from aqueous solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Xiaoming, E-mail: dawn1026@163.com; Zhang, Yu; Dai, Yuan

    To obtain a novel adsorbent with excellent adsorption capacity and convenient magnetic separation property, magnetic activated semi-coke was prepared by KOH activation method and further modified by FeCl{sub 3}. The surface morphology, physical structure, chemical properties and textural characteristics of unmodified semi-coke, KOH-modified semi-coke and magnetic activated semi-coke were characterized by scanning electron microscopy, X-ray powder diffraction, N{sub 2} adsorption-desorption measurement, and electronic differential system. The adsorption characteristics of the magnetic activated semi-coke were explored for the removal of methyl orang (MO), methylene blue (MB), congo red (CR), acid fuchsin (AF), and rhodamine B (RB) from aqueous solution. The effectsmore » of adsorption parameters, including adsorbent dosage, pH and contact time, were investigated by comparing the adsorption properties of the magnetic activated semi-coke to RB. The result showed that the magnetic activated semi-coke displayed excellent dispersion, convenient separation and high adsorption capacity. The adsorption experiment data indicated that the pseudosecond order model and the Langmuir model could well explain the adsorption processes of RB on the magnetic activated semi-coke, and the maximum adsorption capacity (q{sub m}) was 526.32 mg/g. The values of thermodynamic parameters (ΔG°, ΔH° and ΔS°) indicated that the adsorption process depended on the temperature of the aqueous phase, and it was spontaneous and exothermic in nature. As the addition of the magnetic activated semi-coke, the color of the solution significantly faded. Subsequently, fast aggregation of the magnetic activated semi-coke from their homogeneous dispersion in the presence of an external magnetic field could be happened. So, the magnetic activated semi-coke displayed excellent dispersion, convenient separation and high adsorption capacity. - Graphical abstract: As the addition of the magnetic activated semi-coke, the color of the solution significantly faded. Subsequently, fast aggregation of the magnetic activated semi-coke from their homogeneous dispersion in the presence of an external magnetic field could be happened. So, the magnetic activated semi-coke displayed excellent dispersion, convenient separation and high adsorption capacity. Display Omitted.« less

  13. SEPARATION OF RUTHENIUM FROM AQUEOUS SOLUTIONS

    DOEpatents

    Beederman, M.; Vogler, S.; Hyman, H.H.

    1959-07-14

    The separation of rathenium from a rathenium containing aqueous solution is described. The separation is accomplished by adding sodium nitrite, silver nitrate and ozone to the ruthenium containing aqueous solution to form ruthenium tetroxide and ihen volatilizing off the ruthenium tetroxide.

  14. SEPARATION OF POLONIUM, PROTACTINIUM OR MIXTURES THEREOF IN AQUEOUS SOLUTION FROM BISMUTH, LEAD, ZIRCONIUM AND/OR COLUMBIUM VALUES

    DOEpatents

    Van Winkle, Q.; Kraus, K.A.

    1959-10-27

    A process is presented for separating polonium, protactinium, or mixtures thereof in aqueous solution from bismuth, zirconium, lead, and niobium values contained in the solution. The method comprises providing hydrochloric acid in the solution in a concentration of at least 5N. contacting the aqueous solution with a substantially waterimmiscible organic solvent such as diisopropyl ketone, and separating the aqueous phase containing the bismuth, zirconium, lead, and niobium from the organic extract phase containing the polonium, protactinium, or mixture thereof.

  15. RECOVERY OF ACTINIDES FROM AQUEOUS NITRIC ACID SOLUTIONS

    DOEpatents

    Ader, M.

    1963-11-19

    A process of recovering actinides is presented. Tetravalent actinides are extracted from rare earths in an aqueous nitric acid solution with a ketone and back-extracted from the ketone into an aqueous medium. The aqueous actinide solution thus obtained, prior to concentration by boiling, is sparged with steam to reduce its ketone to a maximum content of 3 grams per liter. (AEC)

  16. Hydrothermal synthesis of graphene oxide/multiwalled carbon nanotube/Fe3O4 ternary nanocomposite for removal of Cu (II) and methylene blue

    NASA Astrophysics Data System (ADS)

    Long, Zhihang; Zhan, Yingqing; Li, Fei; Wan, Xinyi; He, Yi; Hou, Chunyan; Hu, Hai

    2017-09-01

    In this work, highly activated graphene oxide/multiwalled carbon nanotube/Fe3O4 ternary nanocomposite adsorbent was prepared from a simple hydrothermal route by using ferrous sulfate as precursor. For this purpose, the graphene oxide/multiwalled carbon nanotube architectures were formed through the π-π attractions between them, followed by attaching Fe3O4 nanoparticles onto their surface. The structure and composition of as-prepared ternary nanocomposite were characterized by XRD, FTIR, XPS, SEM, TEM, Raman, TGA, and BET. It was found that the resultant porous graphene oxide/multiwalled carbon nanotube/Fe3O4 ternary nanocomposite with large surface area could effectively prevent the π-π stacking interactions between graphene oxide nanosheets and greatly improve sorption sites on the surfaces. Thus, owing to the unique ternary nanocomposite architecture and synergistic effect among various components, as-prepared ternary nanocomposite exhibited high separation efficiency when they were used to remove the Cu (II) and methylene blue from aqueous solutions. Furthermore, the adsorption isotherms of ternary nanocomposite structures for Cu (II) and methylene blue removal fitted the Langmuir isotherm model. This work demonstrated that the graphene oxide/multiwalled carbon nanotube/Fe3O4 ternary nanocomposite was promising as an efficient adsorbent for heavy metal ions and organic dye removal from wastewater in low concentration.

  17. Distribution and Spectroscopy of Green Fluorescent Protein and Acyl-CoA: Cholesterol Acytransferase in Sf21 Insect Cells

    NASA Technical Reports Server (NTRS)

    Richmond, R. C.; Mahtani, H.; Lu, X.; Chang, T. Y.; Malak, H.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Acyl-CoA: cholesterol acyltransferase (ACAT) is thought to significantly participate in the pathway of cholesterol esterification that underlies the pathology of artherosclerosis. This enzyme is a membrane protein known to be preferentially bound within the endoplasmic reticulum of mammalian cells, from which location it esterifies cholesterol derived from low density lipoprotein. Cultures of insect cells were separately infected with baculovirus containing the gene for green fluroescent protein (GFP) and with baculovirus containing tandem genes for GFP and ACAT. These infected cultures expressed GFP and the fusion protein GCAT, respectively, with maximum expression occurring on the fourth day after infection. Extraction of GFP- and of GCAT-expressing cells with urea and detergent resulted in recovery of fluorescent protein in aqueous solution. Fluorescence spectra at neutral pH were identical for both GFP and GCAT extracts in aqueous solution, indicating unperturbed tertiary structure for the GFP moiety within GCAT. In a cholesterol esterification assay, GCAT demonstrated ACAT activity, but with less efficiency compared to native ACAT. It was hypothesized that the membrane protein ACAT would lead to differences in localization of GCAT compared to GFP within the respective expressing insect cells. The GFP marker directly and also within the fusion protein GCAT was accordingly used as the intracellular probe that was fluorescently analyzed by the new biophotonics technique of hyperspectral imaging. In that technique, fluorescence imaging was obtained from two dimensional arrays of cells, and regions of interest from within those images were then retrospectively analyzed for the emission spectra that comprises the image. Results of hyperspectral imaging of insect cells on day 4 postinfection showed that GCAT was preferentially localized to the cytoplasm of these cells compared to GFP. Furthermore, the emission spectra obtained for the localized GCAT displayed a peak blue shift from 518nm obtained in neutral aqueous solution to 505nm obtained in localized regions within the cells. This blue shift indicates change in the fluorescence coupling of the GFP moiety of GCAT. It is hypothesized that change in tertiary environment of GCAT, coincident with intracellular deposition of GCAT, follows from intracellular trafficking of GCAT leading to membrane interactions with the ACAT moiety, and/or self-assembly of GCAT, that alters the chromophore environment of the GFP moiety of GCAT. These findings introduce a new technique of biophotonic imaging to studies of intracellular protein trafficking and interactions. This technique of hyperspectral imaging could contribute to advancing the emergent field of proteomics. Because of the noninvasive nature of this technique, kinetic processes associated with intracellular protein trafficking, and interactions of proteins within cellular domains, can be considered for investigation within a single cell as well as a cell population.

  18. A novel synthesis of SrCO3-SrTiO3 nanocomposites with high photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Márquez-Herrera, A.; Ovando-Medina, Víctor M.; Castillo-Reyes, Blanca E.; Meléndez-Lira, M.; Zapata-Torres, M.; Saldaña, N.

    2014-12-01

    The results of the production and characterization of SrCO3-SrTiO3 nanocomposites as a promising candidate for efficient photocatalysts are reported. The production is based on a novelty route employing the solvothermal method with strontium chloride and titanium (IV) butoxide as the precursor solutions. The effect on the properties of the nanocomposites due to changes in the content of SrCO3 and SrTiO3 is reported. The as-prepared materials were tested in the photodegradation of methylene blue dye in aqueous solutions under the solar light. The reported route allows the production of SrCO3-SrTiO3 nanocomposites with particle sizes ranging between 18 and 29 nm. The SrCO3-SrTiO3 nanocomposites obtained with 19 % of SrCO3 phase and 81 % of SrTiO3 (M10) can achieve 94 and 97 % of dye photodegradation after 30 and 120 min, respectively.

  19. Transient bleaching of small PbS colloids. Influence of surface properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nenadovic, M.T.; Comor, M.I.; Vasic, V.

    1990-08-09

    Small PbS colloids with a particle diameter of 40 {angstrom} were prepared in aqueous solution, and their absorption spectra exhibit several maxima. Injection of electrons into these particles was achieved by using the pulse radiolysis technique. Excess electrons trapped on the surface lead to a blue shift in the absorption edge of colloids. The appearance of this shift depends critically on the method of colloid preparation. PbS and CdS colloids prepared at pH < 6 have long-lived bleaching, which disappears after several seconds. On the other hand, absorption bleaching does not appear after the addition of hydroxide ions to colloidalmore » solutions (pH > 8). The existence of a hydroxide ion on the particle surface most likely removes surface defects on which electrons are trapped. PbS colloids prepared in the presence of 3-mercapto-1,2-propanediol have an unstructured absorption spectrum, which is due to a wide particle size distribution (10-50 {angstrom}).« less

  20. Effect of pH on ionic liquid mediated synthesis of gold nanoparticle using elaiseguineensis (palm oil) kernel extract

    NASA Astrophysics Data System (ADS)

    Irfan, Muhammad; Ahmad, Tausif; Moniruzzaman, Muhammad; Abdullah, Bawadi

    2017-05-01

    This study was conducted for microwave assisted synthesis of stable gold nanoparticles (AuNPs) by reduction of chloroauric acid with Elaeis Guineensis (palm oil) kernel (POK) extract which was prepared in aqueous solution of ionic liquid, [EMIM][OAc], 1-Ethyl-3-methylimidazolium acetate. Effect of initial pH of reaction mixture (3.5 - 8.5) was observed on SPR absorbance, maximum wavelength (λmax ) and size distribution of AuNPs. Change of pH of reaction mixture from acidic to basic region resulted in appearance of strong SPR absorption peaks and blue shifting of λmax from 533 nm to 522 nm. TEM analysis revealed the formation of predominantly spherical AuNPs with mean diameter of 8.51 nm. Presence of reducing moieties such as flavonoids, phenolic and carboxylic groups in POK extract was confirmed by FTIR analysis. Colloidal solution of AuNPs was remained stable at room temperature and insignificant difference in zeta value was recorded within experimental tenure of 4 months.

  1. Blue and UV fluorescence of biological fluids and carbon nanodots

    NASA Astrophysics Data System (ADS)

    Kuznetsov, A.; Frorip, A.; Ots-Rosenberg, M.; Sünter, A.

    2013-11-01

    Comparative optical study of biofluids (serum, urine, hemodialysate) and carbon nanodots (CND) aqueous solutions has been done. Biofluids were collected from chronic kidney diseases patients (CKD Pts) as well as from normal controls (NCs). Sugar derived CND and oxidized graphene solutions were prepared and used. Fluorescence and excitation spectra have mainly been measured and compared for two sets of subjects. For both family of subjects typical fluorescence with parameters λexсmax/ λemmax = 320+/-5/420+/-5 nm is observed and has many analogeous properties. New effective method of additional similarity identification with use of aluminum salts Al2 (SO4)3, Al (N03)3 and AlCl3 is proposed. Aluminum ions induce the fluorescence band at 380 nm in all substances investigated. Plenty of similar features (12) in optical properties create a united platform for further investigation of the topic - the nature of endogenous near UV and visible fluorescence in biofluids and CND.

  2. Multi-electron oxygen reduction by a hybrid visible-light-photocatalyst consisting of metal-oxide semiconductor and self-assembled biomimetic complex.

    PubMed

    Naya, Shin-ichi; Niwa, Tadahiro; Negishi, Ryo; Kobayashi, Hisayoshi; Tada, Hiroaki

    2014-12-08

    Adsorption experiments and density functional theory (DFT) simulations indicated that Cu(acac)2 is chemisorbed on the monoclinic sheelite (ms)-BiVO4 surface to form an O2-bridged binuclear complex (OBBC/BiVO4) like hemocyanin. Multi-electron reduction of O2 is induced by the visible-light irradiation of the OBBC/BiVO4 in the same manner as a blue Cu enzyme. The drastic enhancement of the O2 reduction renders ms-BiVO4 to work as a good visible-light photocatalyst without any sacrificial reagents. As a model reaction, we show that this biomimetic hybrid photocatalyst exhibits a high level of activity for the aerobic oxidation of amines to aldehydes in aqueous solution and imines in THF solution at 25 °C giving selectivities above 99% under visible-light irradiation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. ENGINEERING BULLETIN: AIR STRIPPING OF AQUEOUS SOLUTIONS

    EPA Science Inventory

    Air striding is a means to transfer contaminants from aqueous solutions to air. ontaminants are not destroyed by air stripping but are physically separated from the aqueous solutions. ontaminant vapors are transferred into the air stream and, if necessary, can be treated by incin...

  4. Metal separations using aqueous biphasic partitioning systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaiko, D.J.; Zaslavsky, B.; Rollins, A.N.

    1996-05-01

    Aqueous biphasic extraction (ABE) processes offer the potential for low-cost, highly selective separations. This countercurrent extraction technique involves selective partitioning of either dissolved solutes or ultrafine particulates between two immiscible aqueous phases. The extraction systems that the authors have studied are generated by combining an aqueous salt solution with an aqueous polymer solution. They have examined a wide range of applications for ABE, including the treatment of solid and liquid nuclear wastes, decontamination of soils, and processing of mineral ores. They have also conducted fundamental studies of solution microstructure using small angle neutron scattering (SANS). In this report they reviewmore » the physicochemical fundamentals of aqueous biphase formation and discuss the development and scaleup of ABE processes for environmental remediation.« less

  5. Pleural tissue hyaluronan produced by postmortem ventilation in rabbits.

    PubMed

    Wang, P M; Lai-Fook, S J

    2000-01-01

    We developed a method that used Alcian blue bound to hyaluronan to measure pleural hyaluronan in rabbits postmortem. Rabbits were killed, then ventilated with 21% O2--5% CO2--74% N2 for 3 h. The pleural liquid was removed by suction and 5 ml Alcian blue stock solution (0.33 mg/ml, 3.3 pH) was injected into each chest cavity. After 10 min, the Alcian blue solution was removed and the unbound Alcian blue solution (supernatant) separated by centrifugation and filtration. The supernatant transmissibility (T) was measured spectrophotometrically at 613 nm. Supernatant Alcian blue concentration (Cab) was obtained from a calibration curve of T versus dilutions of stock solution Cab. Alcian blue bound to pleural tissue hyaluronan was obtained by subtracting supernatant Cab from stock solution Cab. Pleural tissue hyaluronan was obtained from a calibration curve of hyaluronan versus Alcian blue bound to hyaluronan. Compared with control rabbits, pleural tissue hyaluronan (0.21 +/- 0.04 mg/kg) increased twofold, whereas pleural liquid volume decreased by 30% after 3 h of ventilation. Pleural effusions present 3 h postmortem without ventilation did not change pleural tissue hyaluronan from control values. Thus ventilation-induced pleural liquid shear stress, not increased filtration, was the stimulus for the increased hyaluronan produced from pleural mesothelial cells.

  6. Raman spectroscopic study of the conformation of dicarboxylic acid salts in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Fukushima, Kunio; Watanabe, Toshiaki; Umemura, Matome

    1986-08-01

    It is already known that the molecules of long chain monocarboxylic acid salts have a tendency to form micelles in aqueous solutions, the molecular chain taking the all- trans zigzag structure. However it is considered difficult for dicarboxylic acid salts to adopt the same structure as the monocarboxylic acid salts as they have two carboxyl groups, one on each end of the molecular chain. Therefore, a special structure is expected to exist for dicarboxylic acid salts in aqueous solution. In order to examine this, Raman spectra of suberic acid salt and azelaic acid salt in aqueous solution were measured and the normal vibrational calculation carried out, showing that dicarboxylic acid salts have a helical structure in aqueous solution.

  7. SOLVENT EXTRACTION PROCESS FOR SEPARATING ACTINIDE AND LANTHANIDE METAL VALUES

    DOEpatents

    Hildebrandt, R.A.; Hyman, H.H.; Vogler, S.

    1962-08-14

    A process of countercurrently extracting an aqueous mineral acid feed solution for the separation of actinides from lanthanides dissolved therern is described. The feed solution is made acid-defrcient with alkali metal hydroxide prior to.contact with acid extractant; during extraction, however, acid is transferred from organic to aqueous solution and the aqueous solution gradually becomes acid. The acid-deficient phase ' of the process promotes the extraction of the actinides, while the latter acid phase'' of the process improves retention of the lanthanides in the aqueous solution. This provides for an improved separation. (AEC)

  8. Measurements of thermodynamic and optical properties of selected aqueous organic and organic-inorganic mixtures of atmospheric relevance.

    PubMed

    Lienhard, Daniel M; Bones, David L; Zuend, Andreas; Krieger, Ulrich K; Reid, Jonathan P; Peter, Thomas

    2012-10-11

    Atmospheric aerosol particles can exhibit liquid solution concentrations supersaturated with respect to the dissolved organic and inorganic species and supercooled with respect to ice. In this study, thermodynamic and optical properties of sub- and supersaturated aqueous solutions of atmospheric interest are presented. The density, refractive index, water activity, ice melting temperatures, and homogeneous ice freezing temperatures of binary aqueous solutions containing L(+)-tartaric acid, tannic acid, and levoglucosan and ternary aqueous solutions containing levoglucosan and one of the salts NH(4)HSO(4), (NH(4))(2)SO(4), and NH(4)NO(3) have been measured in the supersaturated concentration range for the first time. In addition, the density and refractive index of binary aqueous citric acid and raffinose solutions and the glass transition temperatures of binary aqueous L(+)-tartaric acid and levoglucosan solutions have been measured. The data presented here are derived from experiments on single levitated microdroplets and bulk solutions and should find application in thermodynamic and atmospheric aerosol models as well as in food science applications.

  9. Aqueous Plasma Pharmacy: Preparation Methods, Chemistry, and Therapeutic Applications

    PubMed Central

    Joslin, Jessica M.; McCall, James R.; Bzdek, Justin P.; Johnson, Derek C.; Hybertson, Brooks M.

    2017-01-01

    Plasma pharmacy is a subset of the broader field of plasma medicine. Although not strictly defined, the term aqueous plasma pharmacy (APP) is used to refer to the generation and distribution of reactive plasma-generated species in an aqueous solution followed by subsequent administration for therapeutic benefits. APP attempts to harness the therapeutic effects of plasma-generated oxidant species within aqueous solution in various applications, such as disinfectant solutions, cell proliferation related to wound healing, and cancer treatment. The subsequent use of plasma-generated solutions in the APP approach facilitates the delivery of reactive plasma species to internal locations within the body. Although significant efforts in the field of plasma medicine have concentrated on employing direct plasma plume exposure to cells or tissues, here we focus specifically on plasma discharge in aqueous solution to render the solution biologically active for subsequent application. Methods of plasma discharge in solution are reviewed, along with aqueous plasma chemistry and the applications for APP. The future of the field also is discussed regarding necessary research efforts that will enable commercialization for clinical deployment. PMID:28428835

  10. Photoproduction of hydroxyl radicals in aqueous solution with algae under high-pressure mercury lamp.

    PubMed

    Liu, Xianli; Wu, Feng; Deng, Nansheng

    2004-01-01

    Photoproduction of hydroxyl radicals (*OH) could be induced in aqueous solution with algae (Nitzschia hantzschiana, etc.) and (or not) Fe3+ under high-pressure mercury lamp with an exposure time of 4 h. *OH was determined by HPLC using benzene as a probe. The photoproduction of *OH increased with increasing algae concentration. Fe3+ could enhance the photoproduction of *OH in aqueous solution with algae. The results showed that the photoproduction of *OH in algal solution with Fe3+ was greater than that in algal solution without Fe3+. The light intensity and pH affected the photoproduction of *OH in aqueous solution with algae with/without Fe3+. The photoproduction of *OH in aqueous solution with algae and Fe3+ under 250 W was greater than that under 125 W HPML. The photoproduction of *OH in algal solution (pH ranged from 4.0 to 7.0) with (or not) Fe3+ at pH 4 was the greatest.

  11. Germanium films by polymer-assisted deposition

    DOEpatents

    Jia, Quanxi; Burrell, Anthony K.; Bauer, Eve; Ronning, Filip; McCleskey, Thomas Mark; Zou, Guifu

    2013-01-15

    Highly ordered Ge films are prepared directly on single crystal Si substrates by applying an aqueous coating solution having Ge-bound polymer onto the substrate and then heating in a hydrogen-containing atmosphere. A coating solution was prepared by mixing water, a germanium compound, ethylenediaminetetraacetic acid, and polyethyleneimine to form a first aqueous solution and then subjecting the first aqueous solution to ultrafiltration.

  12. Facile and scalable synthesis of magnetite/carbon adsorbents by recycling discarded fruit peels and their potential usage in water treatment.

    PubMed

    Ma, Ji; Sun, Shuangshuang; Chen, Kezheng

    2017-06-01

    In this study, apple, banana and orange peels were used as precursor compounds for the mass production of magnetite/carbon adsorbents. A so-called "soak-calcination" procedure was employed by firstly soaking these waste fruit peels in FeCl 3 aqueous solutions and secondly calcining these precursors in the nitrogen atmosphere to yield final magnetite/carbon composites. This approach is quite simple and effective to synthesize carbon-based adsorbents on an industrial scale. The as-produced adsorbents feature the merits of appropriate ferromagnetism (>4emug -1 ), high adsorption capacity (several hundreds of milligrams per gram for adsorption of methyl blue, Congo red, rhodamine B and Cr 6+ ions), and good regenerability (>85%). Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Room-temperature processing of CdSe quantum dots with tunable sizes

    NASA Astrophysics Data System (ADS)

    Joo, So-Yeong; Jeong, Da-Woon; Lee, Chan-Gi; Kim, Bum-Sung; Park, Hyun-Su; Kim, Woo-Byoung

    2017-06-01

    In this work, CdSe quantum dots (QDs) with tunable sizes have been fabricated via photo-induced chemical etching at room temperature, and the related reaction mechanism was investigated. The surface of QDs was oxidized by the holes generated through photon irradiation of oxygen species, and the obtained oxide layer was dissolved in an aqueous solution of 3-amino-1-propanol (APOL) with an APOL:H2O volume ratio of 5:1. The generated electrons promoted QD surface interactions with amino groups, which ultimately passivated surface defects. The absorption and photoluminescence emission peaks of the produced QDs were clearly blue-shifted about 26 nm with increasing time, and the resulting quantum yield for an 8 h etched sample was increased from 20% to 26%, as compared to the initial sample.

  14. Exploring the Photoreduction of Au(III) Complexes in the Gas-Phase

    NASA Astrophysics Data System (ADS)

    Marcum, Jesse C.; Kaufman, Sydney H.; Weber, J. Mathias

    2010-06-01

    We have used photodissociation spectroscopy to probe the electronic structure and photoreduction of Au(III) in gas-phase complexes containing Cl- and OH-. The gas-phase electronic spectrum of [AuCl_4]- closely resembles the aqueous solution spectrum, showing a lack of strong solvatochromic shifts. Substitution of Cl- ligands with OH- results in a strong blue shift, in agreement with ligand-field theory. Upon excitation, [AuCl_4]- can dissociate by loss of either one or two neutral Cl atoms, resulting in the reduction of gold from Au(III) to Au(II) and Au(I) respectively. The hydroxide substituted complex, [AuCl_2(OH)_2]-, demonstrates similar behavior but the only observable fragment channel is the loss of two neutral OH ligands, leading only to Au(I).

  15. Instrument-Free and Autonomous Generation of H2O2 from Mg-ZnO/Au Hybrids for Disinfection and Organic Pollutant Degradations

    NASA Astrophysics Data System (ADS)

    Park, Seon Yeong; Jung, Yeon Wook; Hwang, Si Hyun; Jang, Gun Hyuk; Seo, Hyunseon; Kim, Yu-Chan; Ok, Myoung-Ryul

    2018-03-01

    We proposed a new hybrid system that autonomously generates H2O2 without any instrument or external energy source, such as light. Electrons formed during spontaneous degradation process of Mg were conveyed to ZnO/Au oxygen-reduction-reaction nanocatalysts, and these transferred electrons converted O2 molecules in aqueous solution into H2O2. Autonomously released H2O2 from Mg-ZnO/Au hybrids effectively killed 97% of Escherichia coli cells within 1 h. Moreover, Mg-ZnO/Au nanohybrids could gradually degrade methylene blue over time with Fe2+. We believe our approach utilizing degradable metals and catalytic metal oxides in mesoporous-film form can be a promising method in the field of environment remediation.

  16. Instrument-Free and Autonomous Generation of H2O2 from Mg-ZnO/Au Hybrids for Disinfection and Organic Pollutant Degradations

    NASA Astrophysics Data System (ADS)

    Park, Seon Yeong; Jung, Yeon Wook; Hwang, Si Hyun; Jang, Gun Hyuk; Seo, Hyunseon; Kim, Yu-Chan; Ok, Myoung-Ryul

    2018-05-01

    We proposed a new hybrid system that autonomously generates H2O2 without any instrument or external energy source, such as light. Electrons formed during spontaneous degradation process of Mg were conveyed to ZnO/Au oxygen-reduction-reaction nanocatalysts, and these transferred electrons converted O2 molecules in aqueous solution into H2O2. Autonomously released H2O2 from Mg-ZnO/Au hybrids effectively killed 97% of Escherichia coli cells within 1 h. Moreover, Mg-ZnO/Au nanohybrids could gradually degrade methylene blue over time with Fe2+. We believe our approach utilizing degradable metals and catalytic metal oxides in mesoporous-film form can be a promising method in the field of environment remediation.

  17. A new diketopyrrolopyrrole-based probe for sensitive and selective detection of sulfite in aqueous solution

    NASA Astrophysics Data System (ADS)

    Yang, Xiaofeng; Cui, Yu; Li, Yexin; Zheng, Luyi; Xie, Lijun; Ning, Rui; Liu, Zheng; Lu, Junling; Zhang, Gege; Liu, Chunxiang; Zhang, Guangyou

    2015-02-01

    A new probe was synthesized by incorporating an α,β -unsaturated ketone to a diketopyrrolopyrrole fluorophore. The probe had exhibited a selective and sensitive response to the sulfite against other thirteen anions and biothiols (Cys, Hcy and GSH), through the nucleophilic addition of sulfite to the alkene of probe with the detection limit of 0.1 μM in HEPES (10 mM, pH 7.4) THF/H2O (1:1, v/v). Meanwhile, it could be easily observed that the probe for sulfite changed from pink to colorless by the naked eye, and from pink to blue under UV lamp after the sulfite was added for 20 min. The NMR and Mass spectral analysis demonstrated the expected addition of sulfite to the Cdbnd C bonds.

  18. Production and characterization of activated carbon from wood wastes

    NASA Astrophysics Data System (ADS)

    Ramirez, A. P.; Giraldo, S.; Ulloa, M.; Flórez, E.; Y Acelas, N.

    2017-12-01

    Cedarwood (Cedrela Angustifolia) and teak (Tectona Grandis) woods are typically used for furniture manufacture because they have high durability, are light and easy to work. During these manufacturing process, large amount of these wastes is generated causing disposal environmental problems. In this paper, the residual wastes (sawdust) of Cedar (C) and Teak (T) are transformed into an activated material. The chemical composition of both biomass (C and T) was determinate by TGA (Thermogravimetric Analysis). Activated materials were characterized in surface area following the BET (Brunauer, Emmett and Teller) method, morphology using SEM (Scanning Electron Microscopy) and to know their functional groups a FTIR (Fourier Transform Infrared Spectroscopy) analysis was done. Their adsorption capacity was evaluated by removal of Methylene Blue (MB) and Congo Red (CR) from aqueous solutions.

  19. BLUES function method in computational physics

    NASA Astrophysics Data System (ADS)

    Indekeu, Joseph O.; Müller-Nedebock, Kristian K.

    2018-04-01

    We introduce a computational method in physics that goes ‘beyond linear use of equation superposition’ (BLUES). A BLUES function is defined as a solution of a nonlinear differential equation (DE) with a delta source that is at the same time a Green’s function for a related linear DE. For an arbitrary source, the BLUES function can be used to construct an exact solution to the nonlinear DE with a different, but related source. Alternatively, the BLUES function can be used to construct an approximate piecewise analytical solution to the nonlinear DE with an arbitrary source. For this alternative use the related linear DE need not be known. The method is illustrated in a few examples using analytical calculations and numerical computations. Areas for further applications are suggested.

  20. Improved methylene blue two-phase titration method for determining cationic surfactant concentration in high-salinity brine.

    PubMed

    Cui, Leyu; Puerto, Maura; López-Salinas, José L; Biswal, Sibani L; Hirasaki, George J

    2014-11-18

    The methylene blue (MB) two-phase titration method is a rapid and efficient method for determining the concentrations of anionic surfactants. The point at which the aqueous and chloroform phases appear equally blue is called Epton's end point. However, many inorganic anions, e.g., Cl(-), NO3(-), Br(-), and I(-), can form ion pairs with MB(+) and interfere with Epton's end point, resulting in the failure of the MB two-phase titration in high-salinity brine. Here we present a method to extend the MB two-phase titration method for determining the concentration of various cationic surfactants in both deionized water and high-salinity brine (22% total dissolved solid). A colorless end point, at which the blue color is completely transferred from the aqueous phase to the chloroform phase, is proposed as titration end point. Light absorbance at the characteristic wavelength of MB is measured using a spectrophotometer. When the absorbance falls below a threshold value of 0.04, the aqueous phase is considered colorless, indicating that the end point has been reached. By using this improved method, the overall error for the titration of a permanent cationic surfactant, e.g., dodecyltrimethylammonium bromide, in deionized (DI) water and high-salinity brine is 1.274% and 1.322% with limits of detection (LOD) of 0.149 and 0.215 mM, respectively. Compared to the traditional acid-base titration method, the error of this improved method for a switchable cationic surfactant, e.g., tertiary amine surfactant (Ethomeen C12), is 2.22% in DI water and 0.106% with LOD of 0.369 and 0.439 mM, respectively.

  1. Tested Demonstrations. Color, Solubility, and Complex Ion Equilibria of Nickel (II) Species in Aqueous Solution.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.; And Others

    1980-01-01

    Presents three different procedures in which reagents are added in a specified order to a large beaker containing an aqueous solution of nickel sulfate. Complex ions of nickel (II) are prepared by using aqueous solutions of ammonia, ethylenediamine, dimethylglyoxime, and cyanide ion. (CS)

  2. Process for recovering chaotropic anions from an aqueous solution also containing other ions

    DOEpatents

    Rogers, Robin; Horwitz, E. Philip; Bond, Andrew H.

    1999-01-01

    A solid/liquid process for the separation and recovery of chaotropic anions from an aqueous solution is disclosed. The solid support comprises separation particles having surface-bonded poly(ethylene glycol) groups, whereas the aqueous solution from which the chaotropic anions are separated contains a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved salt (lyotrope). A solid/liquid phase admixture of separation particles containing bound chaotropic anions in such an aqueous solution is also contemplated, as is a chromatography apparatus containing that solid/liquid phase admixture.

  3. Process for recovering chaotropic anions from an aqueous solution also containing other ions

    DOEpatents

    Rogers, R.; Horwitz, E.P.; Bond, A.H.

    1999-03-30

    A solid/liquid process for the separation and recovery of chaotropic anions from an aqueous solution is disclosed. The solid support comprises separation particles having surface-bonded poly(ethylene glycol) groups, whereas the aqueous solution from which the chaotropic anions are separated contains a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved salt (lyotrope). A solid/liquid phase admixture of separation particles containing bound chaotropic anions in such an aqueous solution is also contemplated, as is a chromatography apparatus containing that solid/liquid phase admixture. 19 figs.

  4. Multi-level Quantum Mechanics and Molecular Mechanics Study of Ring Opening Process of Guanine Damage by Hydroxyl Radical in Aqueous Solution.

    PubMed

    Liu, Peng; Wang, Qiong; Niu, Meixing; Wang, Dunyou

    2017-08-10

    Combining multi-level quantum mechanics theories and molecular mechanics with an explicit water model, we investigated the ring opening process of guanine damage by hydroxyl radical in aqueous solution. The detailed, atomic-level ring-opening mechanism along the reaction pathway was revealed in aqueous solution at the CCSD(T)/MM levels of theory. The potentials of mean force in aqueous solution were calculated at both the DFT/MM and CCSD(T)/MM levels of the theory. Our study found that the aqueous solution has a significant effect on this reaction in solution. In particular, by comparing the geometries of the stationary points between in gas phase and in aqueous solution, we found that the aqueous solution has a tremendous impact on the torsion angles much more than on the bond lengths and bending angles. Our calculated free-energy barrier height 31.6 kcal/mol at the CCSD(T)/MM level of theory agrees well with the one obtained based on gas-phase reaction profile and free energies of solvation. In addition, the reaction path in gas phase was also mapped using multi-level quantum mechanics theories, which shows a reaction barrier at 19.2 kcal/mol at the CCSD(T) level of theory, agreeing very well with a recent ab initio calculation result at 20.8 kcal/mol.

  5. Method for Non-Invasive Determination of Chemical Properties of Aqueous Solutions

    NASA Technical Reports Server (NTRS)

    Jones, Alan (Inventor); Thomas, Nathan A. (Inventor); Todd, Paul W. (Inventor)

    2016-01-01

    A method for non-invasively determining a chemical property of an aqueous solution is provided. The method provides the steps of providing a colored solute having a light absorbance spectrum and transmitting light through the colored solute at two different wavelengths. The method further provides the steps of measuring light absorbance of the colored solute at the two different transmitted light wavelengths, and comparing the light absorbance of the colored solute at the two different wavelengths to determine a chemical property of an aqueous solution.

  6. "Antimicrobial and antiproliferative activity of essential oil, aqueous and ethanolic extracts of Ocimum micranthum Willd leaves".

    PubMed

    Caamal-Herrera, Isabel O; Carrillo-Cocom, Leydi M; Escalante-Réndiz, Diana Y; Aráiz-Hernández, Diana; Azamar-Barrios, José A

    2018-02-08

    Ocimum micranthum Willd is a plant used in traditional medicine practiced in the region of the Yucatan peninsula. In particular, it is used for the treatment of cutaneous infections and wound healing, however there are currently no existing scientific studies that support these applications. The aim of the present study was to evaluate the antimicrobial and the in vitro proliferative activity (on healthy mammalian cell lines) of the essential oil and extracts (aqueous and ethanolic) of this plant. The minimal inhibitory concentration (MIC) of essential oil and aqueous and ethanolic extracts of Ocimum micranthum leaves against Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa and Candida albicans was determined using the microdilution technique. The in vitro proliferative activity of human fibroblast (hFB) and Chinese hamster ovary (CHO-K1) cells treated with these extracts was evaluated using the MTT test. The hFB cell line was also evaluated using Trypan Blue assay. Candida albicans was more susceptible to the ethanolic extract and the aqueous extract (MIC value of 5 μL/mL and 80 μL/mL respectively). In the case of Staphylococcus aureus, Bacillus subtilis, and Pseudomonas aeruginosa, the MIC of the aqueous and ethanolic extract was 125 μL/mL. The aqueous extract showed a significant (p < 0.05) antiproliferative effect on hFB cells at a concentration of 4%, with cell proliferation percentage values of 73.56% and 20.59% by MTT method and Trypan Blue assay, respectively; the same effect was observed for the ethanolic extract at concentration from 0.06% to 0.25% using MTT method and at a concentration from 0.125% to 0.25% using Trypan Blue assay. In CHO-K1 cells an antiproliferative effect was observed at a concentration of 8% of aqueous extract and from 0.06% to 0.25% of ethanolic extract using the MTT method. These assays showed that low concentrations of essential oil and extracts of Ocimum micranthum leaves are sufficient to cause an antiproliferative effect on the hFB cell line but do not produce an antimicrobial effect against the microorganisms evaluated. More studies are necessary to improve understanding of the mechanism of action of the compounds implicated in the bioactivities shown by the crude extracts.

  7. Preparation of CuO/ZnO nanocomposite and its application as a cysteine/homocysteine colorimetric and fluorescence detector.

    PubMed

    Šimšíková, Michaela; Čechal, Jan; Zorkovská, Anna; Antalík, Marián; Šikola, Tomáš

    2014-11-01

    Cysteine and homocysteine play a crucial role in many biological functions but abnormal levels of these amino acids may lead to various forms of pathogenesis. Therefore, selective and easy-to-use methods for the detection of cysteine and homocysteine are essential for the early diagnosis of developing diseases. In this paper we report on a rapid, straightforward and highly selective method for the detection of cysteine (Cys) and homocysteine (Hcy) which uses a CuO/ZnO nanocomposite as a dual colorimetric and fluorometric assay. The presence of Cys and Hcy in a solution of these nanorods (NRs) induces a change in its color from light blue to dark grey which is visible to the naked eye. This is accompanied by a blue shift in the absorption spectra from 725 nm to 650 nm and a decrease in the intensity of CuO/ZnO nanocomposite emission. These changes are ascribed to the reduction of Cu(II) to Cu(0), and the oxidation of cysteine (homocysteine) and subsequent formation of the disulfide bond. This novel assay method does not respond to any other amino-acid which is present in living organisms; therefore the selective determination of cysteine (homocysteine) with a lower analyte limit of 40 μM (4.8 μg mL(-1)) can be carried out in aqueous solutions without the need for any sophisticated instrumentation, fluorophore molecules or complicated procedures. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Characteristics of regenerated nanocellulosic fibers from cellulose dissolution in aqueous solutions for wood fiber/polypropylene composites

    Treesearch

    Sangyeob Lee; Hui Pan; Chung Y. Hse; Alfred R. Gunasekaran; Todd F. Shupe

    2014-01-01

    The effects of aqueous solutions were evaluated on the properties of regenerated cellulosic nanofibers prepared from pure cellulose fibers in various formulations of aqueous solutions. Thermoplastic composites were prepared with reinforcement of the regenerated cellulosic nanofibers. The regenerated cellulosic fibers from cellulosic woody biomass were obtained from...

  9. URANIUM SEPARATION PROCESS

    DOEpatents

    McVey, W.H.; Reas, W.H.

    1959-03-10

    The separation of uranium from an aqueous solution containing a water soluble uranyl salt is described. The process involves adding an alkali thiocyanate to the aqueous solution, contacting the resulting solution with methyl isobutyl ketons and separating the resulting aqueous and organic phase. The uranium is extracted in the organic phase as UO/sub 2/(SCN)/sub/.

  10. SEPARATION OF RUTHENIUM FROM AQUEOUS SOLUTIONS

    DOEpatents

    Callis, C.F.; Moore, R.L.

    1959-09-01

    >The separation of ruthenium from aqueous solutions containing uranium plutonium, ruthenium, and fission products is described. The separation is accomplished by providing a nitric acid solution of plutonium, uranium, ruthenium, and fission products, oxidizing plutonium to the hexavalent state with sodium dichromate, contacting the solution with a water-immiscible organic solvent, such as hexone, to extract plutonyl, uranyl, ruthenium, and fission products, reducing with sodium ferrite the plutonyl in the solvent phase to trivalent plutonium, reextracting from the solvent phase the trivalent plutonium, ruthenium, and some fission products with an aqueous solution containing a salting out agent, introducing ozone into the aqueous acid solution to oxidize plutonium to the hexavalent state and ruthenium to ruthenium tetraoxide, and volatizing off the ruthenium tetraoxide.

  11. SE-72/AS-72 generator system based on Se extraction/ As reextraction

    DOEpatents

    Fassbender, Michael Ernst; Ballard, Beau D

    2013-09-10

    The preparation of a .sup.72Se/.sup.72As radioisotope generator involves forming an acidic aqueous solution of an irradiated alkali bromide target such as a NaBr target, oxidizing soluble bromide in the solution to elemental bromine, removing the elemental bromine, evaporating the resulting solution to a residue, removing hydrogen chloride from the residue, forming an acidic aqueous solution of the residue, adding a chelator that selectively forms a chelation complex with selenium, and extracting the chelation complex from the acidic aqueous solution into an organic phase. As the .sup.72Se generates .sup.72As in the organic phase, the .sup.72As may be extracted repeatedly from the organic phase with an aqueous acid solution.

  12. Sorption of hydrophilic dyes on anodic aluminium oxide films and application to pH sensing.

    PubMed

    Silina, Yuliya E; Kuchmenko, Tatyana A; Volmer, Dietrich A

    2015-02-07

    The sorption of selected hydrophilic pH-sensitive dyes (bromophenol blue, bromothymol blue, bromocresol purple, alizarin red, methyl orange, congo red, rhodamine 6G) on films of anodized aluminium oxide (AAO) was investigated in this study. Depth and pore structure of the AAO channels were adjusted by changing electrolysis time and current density during treatment of aluminium foil in oxalic acid, sulfosalycilic acid and sulfuric acid at concentration levels between 0.2 and 0.6 M. The dyes were immobilized on the AAO surface by direct saturation of the films in dye solutions. It was shown by scanning electron microscopy and X-ray spectral analysis that the dyes penetrated into the AAO channels by more than 1.5 μm, even at static saturation conditions. The anionic dyes linked to the porous AAO surface exhibited differential shifts of the UV absorption bands in their acidic/basic forms. By combining several dyes, the films have an application range between pH = 0.5-9 in aqueous media. The dye-modified AAO film was a simple, portable, inexpensive and reusable pH sensor with very fast response time and clear colour transitions.

  13. Effect of Precursors on the Synthesis of CuO Nanoparticles Under Microwave for Photocatalytic Activity Towards Methylene Blue and Rhodamine B Dyes.

    PubMed

    Sanjini, N S; Winston, B; Velmathi, S

    2017-01-01

    Copper oxide nanoparticles have been successfully synthesized by microwave assisted precipitation method. Different precursors like copper chloride, copper nitrate and copper sulphate were used for synthesis of CuO nanoparticles with different shape, size and catalytic activity. Sodium hydroxide acts as a capping agent and ethanol as solvent for the synthesis. The XRD study was conducted to confirm the single phase monoclinic structure of as-synthesized and annealed CuO nano particles. The morphology of the as-synthesized and annealed CuO samples was analyzed by high resolution field emission scanning electron microscope. Fourier transform infrared spectroscopy was done for all the synthesized CuO nanoparticles for functional group characterization. The wide band gap and photocatalytic activity were studied by UV-Visible spectroscopy. The photocatalytic degradation of Methylene blue (MB) and Rhodamine B (RhB) dyes in aqueous solution were investigated under UV light (254 nm). In all the cases annealed samples showed good catalytic activity compared to as-synthesized CuO nanoparticles. The CuO nanoparticles from CuCl2 precursor act as excellent photocatalyst for both MB and RhB compared to CuNO₃ and CuSO₄.

  14. Characterization and activity of visible-light-driven TiO 2 photocatalyst codoped with lanthanum and iodine

    NASA Astrophysics Data System (ADS)

    Li, Ling; Zhuang, Huisheng; Bu, Dan

    2011-08-01

    The novel visible-light-activated La/I/TiO 2 nanocomposition photocatalyst was successfully synthesized using precipitation-dipping method, and characterized by X-ray powder diffraction (XRD), the Brunauer-Emmett-Teller (BET) method, transmission electron microscopy (TEM), thermogravimetry-differential scanning calorimetry (TG-DSC) and UV-vis diffuse reflectance spectroscopy (UV-vis DRS). The photocatalytic activity of La/I/TiO 2 was evaluated by studying photodegradation of reactive blue 19 as a probe reaction under simulated sunlight irradiation. Photocatalytic experiment results showed that the maximum specific photocatalytic activity of the La/I/TiO 2 photocatalyst appeared when the molar ratio of La/Ti was 2.0 at%, calcined at 350 °C for 2 h, due to the sample with good crystallization, high BET surface area and small crystal size. Under simulated sunlight irradiation, the degradation of reactive blue 19 aqueous solution reached 98.6% in 80 min, which showed La/I/TiO 2 photocatalyst to be much higher photocatalytic activity compared to standard Degussa P25 photocatalyst. The higher visible light activity is due to the codoping of lanthanum and iodine.

  15. Optimization of the ultrasonic assisted removal of methylene blue by gold nanoparticles loaded on activated carbon using experimental design methodology.

    PubMed

    Roosta, M; Ghaedi, M; Daneshfar, A; Sahraei, R; Asghari, A

    2014-01-01

    The present study was focused on the removal of methylene blue (MB) from aqueous solution by ultrasound-assisted adsorption onto the gold nanoparticles loaded on activated carbon (Au-NP-AC). This nanomaterial was characterized using different techniques such as SEM, XRD, and BET. The effects of variables such as pH, initial dye concentration, adsorbent dosage (g), temperature and sonication time (min) on MB removal were studied and using central composite design (CCD) and the optimum experimental conditions were found with desirability function (DF) combined response surface methodology (RSM). Fitting the experimental equilibrium data to various isotherm models such as Langmuir, Freundlich, Tempkin and Dubinin-Radushkevich models show the suitability and applicability of the Langmuir model. Analysis of experimental adsorption data to various kinetic models such as pseudo-first and second order, Elovich and intraparticle diffusion models show the applicability of the second-order equation model. The small amount of proposed adsorbent (0.01 g) is applicable for successful removal of MB (RE>95%) in short time (1.6 min) with high adsorption capacity (104-185 mg g(-1)). Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Novel polystyrene microspheres functionalized by imidazolium and the electrocatalytic activity towards H2O2 of its Prussian blue composite

    NASA Astrophysics Data System (ADS)

    Mao, Hui; Song, Jinling; Zhang, Qian; Liu, Daliang; Gong, Naiqi; Li, Ying; Wu, Qiong; Verpoort, Francis; Song, Xi-Ming

    2013-05-01

    Copolymerization of styrene (St) and 1-vinyl-3-ethylimidazolium bromide (VEIB), novel poly(St-co-VEIB) microspheres were generated. Owing to the presence of imidazolium groups, such microspheres having an average diameter of 125 nm, behave electropositively when dispersed in aqueous solution. Furthermore, due to the presence of imidazolium groups, having a capacity of ion-exchange and weak reducibility on the surface of the PS microspheres, [Fe(CN)6]3- was absorbed on the surface of poly(St-co-VEIB) microspheres, and simultaneously, Fe3+ was reduced to Fe2+. Thus, in situ growth of Prussian blue (PB) nanoparticles could occur on the surface of poly(St-co-VEIB) microspheres without the addition of any other reducing agent. This methodology, utilizing the ion-exchange and weak reducibility properties of the imidazolium groups on the surface of micro-/nanostructures is a novel general method for assembling hierarchical nanostructured materials. Finally, the electrochemical property of the strawberry-like PS/PB composite microspheres was also investigated by applying a glassy carbon electrode. A good repeatability of the cyclic voltammetry responses, having a good linearity and sensitivity, for the electrocatalytic reduction of H2O2 was obtained.

  17. Biosensor based on Prussian blue nanocubes/reduced graphene oxide nanocomposite for detection of organophosphorus pesticides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Lin; Zhang, Aidong; Du, Dan

    2012-07-13

    We demonstrate a facile procedure to efficiently prepare Prussian blue nanocubes/reduced graphene oxide (PBNCs/rGO) nanocomposite by directly mixing Fe3+ and [Fe(CN)6]3 in the presence of GO in polyethyleneimine aqueous solution, resulting in a novel acetylcholinesterase (AChE) biosensor for detection of organophosphorus pesticides (OPs). The obtained nanocomposite was characterized by X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and energy dispersive X-ray (EDX) microanalysis. It was clearly observed that the nanosheet has been decorated with cubic PB nanoparticles and nearly all the nanoparticles are distributed uniformly only on the surface of the reduced GO. No isolated PB nanoparticles were observed, indicatingmore » the strong interaction between PB nanocubes and the reduced GO and the formation of PBNCs/rGO nanocomposite. The obtained PBNCs/rGO based AChE biosensor make the peak potential shift negatively to 220 mV. The AChE biosensor shows rapid response and high sensitivity for detection of monocrotophos. These results suggest that the PBNCs/rGO hybrids nanocomposite exhibited high electrocatalytic activity towards the oxidation of thiocholine, which lead to the sensitive detection of OP pesticides.« less

  18. A novel conversion of the groundwater treatment sludge to magnetic particles for the adsorption of methylene blue.

    PubMed

    Zhu, Suiyi; Fang, Shuai; Huo, Mingxin; Yu, Yang; Chen, Yu; Yang, Xia; Geng, Zhi; Wang, Yi; Bian, Dejun; Huo, Hongliang

    2015-07-15

    Iron sludge, produced from filtration and backwash of groundwater treatment plant, has long been considered as a waste for landfill. In this study, iron sludge was reused to synthesize Fe3O4 magnetic particles (MPs) by using a novel solvothermal process. Iron sludge contained abundant amounts of silicon, iron, and aluminum and did not exhibit magnetic properties. After treatment for 4h, the amorphous Fe in iron sludge was transformed into magnetite Fe3O4, which could be easily separated from aqueous solution with a magnet. The prepared particles demonstrated the intrinsic properties of soft magnetic materials and could aggregate into a size of 1 μm. MPs treated for 10h exhibited excellent magnetic properties and a saturation magnetization value of 9 emu/g. The obtained particles presented the optimal adsorption of methylene blue under mild conditions, and the maximum adsorption capacity was 99.4 mg/g, which was higher than that of granular active carbon. The simple solvothermal method can be used to prepare Fe3O4 MPs from iron sludge, and the products could be applied to treatment of dyeing wastewater. Copyright © 2015. Published by Elsevier B.V.

  19. Methods and systems for utilizing carbide lime or slag

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devenney, Martin; Fernandez, Miguel; Chen, Irvin

    Provided herein are methods comprising a) treating a slag solid or carbide lime suspension with an ammonium salt in water to produce an aqueous solution comprising calcium salt, ammonium salt, and solids; b) contacting the aqueous solution with carbon dioxide from an industrial process under one or more precipitation conditions to produce a precipitation material comprising calcium carbonate and a supernatant aqueous solution wherein the precipitation material and the supernatant aqueous solution comprise residual ammonium salt; and c) removing and optionally recovering ammonia and/or ammonium salt using one or more steps of (i) recovering a gas exhaust stream comprising ammoniamore » during the treating and/or the contacting step; (ii) recovering the residual ammonium salt from the supernatant aqueous solution; and (iii) removing and optionally recovering the residual ammonium salt from the precipitation material.« less

  20. Unique role of ionic liquid [bmin][BF 4] during curcumin-surfactant association and micellization of cationic, anionic and non-ionic surfactant solutions

    NASA Astrophysics Data System (ADS)

    Patra, Digambara; Barakat, Christelle

    2011-09-01

    Hydrophilic ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroburate, modified the properties of aqueous surfactant solutions associated with curcumin. Because of potential pharmaceutical applications as an antioxidant, anti-inflammatory and anti-carcinogenic agent, curcumin has received ample attention as potential drug. The interaction of curcumin with various charged aqueous surfactant solutions showed it exists in deprotonated enol form in surfactant solutions. The nitro and hydroxyl groups of o-nitrophenol interact with the carbonyl and hydroxyl groups of the enol form of curcumin by forming ground state complex through hydrogen bonds and offered interesting information about the nature of the interactions between the aqueous surfactant solutions and curcumin depending on charge of head group of the surfactant. IL[bmin][BF 4] encouraged early formation of micelle in case of cationic and anionic aqueous surfactant solutions, but slightly prolonged micelle formation in the case of neutral aqueous surfactant solution. However, for curcumin IL [bmin][BF 4] favored strong association (7-fold increase) with neutral surfactant solution, marginally supported association with anionic surfactant solution and discouraged (˜2-fold decrease) association with cationic surfactant solution.

  1. Methylene blue microbubbles as a model dual-modality contrast agent for ultrasound and activatable photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Jeon, Mansik; Song, Wentao; Huynh, Elizabeth; Kim, Jungho; Kim, Jeesu; Helfield, Brandon L.; Leung, Ben Y. C.; Goertz, David E.; Zheng, Gang; Oh, Jungtaek; Lovell, Jonathan F.; Kim, Chulhong

    2014-01-01

    Ultrasound and photoacoustic imaging are highly complementary modalities since both use ultrasonic detection for operation. Increasingly, photoacoustic and ultrasound have been integrated in terms of hardware instrumentation. To generate a broadly accessible dual-modality contrast agent, we generated microbubbles (a standard ultrasound contrast agent) in a solution of methylene blue (a standard photoacoustic dye). This MB2 solution was formed effectively and was optimized as a dual-modality contrast solution. As microbubble concentration increased (with methylene blue concentration constant), photoacoustic signal was attenuated in the MB2 solution. When methylene blue concentration increased (with microbubble concentration held constant), no ultrasonic interference was observed. Using an MB2 solution that strongly attenuated all photoacoustic signal, high powered ultrasound could be used to burst the microbubbles and dramatically enhance photoacoustic contrast (>800-fold increase), providing a new method for spatiotemporal control of photoacoustic signal generation.

  2. Methylene blue microbubbles as a model dual-modality contrast agent for ultrasound and activatable photoacoustic imaging.

    PubMed

    Jeon, Mansik; Song, Wentao; Huynh, Elizabeth; Kim, Jungho; Kim, Jeesu; Helfield, Brandon L; Leung, Ben Y C; Goertz, David E; Zheng, Gang; Oh, Jungtaek; Lovell, Jonathan F; Kim, Chulhong

    2014-01-01

    Ultrasound and photoacoustic imaging are highly complementary modalities since both use ultrasonic detection for operation. Increasingly, photoacoustic and ultrasound have been integrated in terms of hardware instrumentation. To generate a broadly accessible dual-modality contrast agent, we generated microbubbles (a standard ultrasound contrast agent) in a solution of methylene blue (a standard photoacoustic dye). This MB2 solution was formed effectively and was optimized as a dual-modality contrast solution. As microbubble concentration increased (with methylene blue concentration constant), photoacoustic signal was attenuated in the MB2 solution. When methylene blue concentration increased (with microbubble concentration held constant), no ultrasonic interference was observed. Using an MB2 solution that strongly attenuated all photoacoustic signal, high powered ultrasound could be used to burst the microbubbles and dramatically enhance photoacoustic contrast (>800-fold increase), providing a new method for spatiotemporal control of photoacoustic signal generation.

  3. Treatment of infectious skin defects or ulcers with electrolyzed strong acid aqueous solution.

    PubMed

    Sekiya, S; Ohmori, K; Harii, K

    1997-01-01

    A chronic ulcer with an infection such as methicillin-resistant Staphylococcus aureus is hard to heal. Plastic and reconstructive surgeons often encounter such chronic ulcers that are resistant to surgical or various conservative treatments. We applied conservative treatment using an electrolyzed strong acid aqueous solution and obtained satisfactory results. The lesion was washed with the solution or soaked in a bowl of the solution for approximately 20 min twice a day. Fresh electrolyzed strong acid aqueous solution is unstable and should be stored in a cool, dark site in a sealed bottle. It should be used within a week after it has been produced. Here we report on 15 cases of infectious ulcers that were treated by electrolyzed strong acid aqueous solution. Of these cases, 7 patients were healed, 3 were granulated, and in 5, infection subsided. In most cases the lesion became less reddish and less edematous. Discharge or foul odor from the lesion was decreased. Electrolyzed strong acid aqueous solution was especially effective for treating a chronic refractory ulcer combined with diabetes melitus or peripheral circulatory insufficiency. This clinically applied therapy of electrolyzed strong acid aqueous solution was found to be effective so that this new therapeutic technique for ulcer treatment can now be conveniently utilized.

  4. Preparing polymeric matrix composites using an aqueous slurry technique

    NASA Technical Reports Server (NTRS)

    Johnston, Norman J. (Inventor); Towell, Timothy W. (Inventor)

    1993-01-01

    An aqueous process was developed to prepare a consolidated composite laminate from an aqueous slurry. An aqueous poly(amic acid) surfactant solution was prepared by dissolving a poly(amic acid) powder in an aqueous ammonia solution. A polymeric powder was added to this solution to form a slurry. The slurry was deposited on carbon fiber to form a prepreg which was dried and stacked to form a composite laminate. The composite laminate was consolidated using pressure and was heated to form the polymeric matrix. The resulting composite laminate exhibited high fracture toughness and excellent consolidation.

  5. Insights into water-mediated ion clustering in aqueous CaSO4 solutions: pre-nucleation cluster characteristics studied by ab initio calculations and molecular dynamics simulations.

    PubMed

    Li, Hui-Ji; Yan, Dan; Cai, Hou-Qin; Yi, Hai-Bo; Min, Xiao-Bo; Xia, Fei-Fei

    2017-05-10

    The molecular structure of growth units building crystals is a fundamental issue in the crystallization processes from aqueous solutions. In this work, a systematic investigation of pre-nucleation clusters and their hydration characteristics in aqueous CaSO 4 solutions was performed using ab initio calculations and molecular dynamics (MD) simulations. The results of ab initio calculations and MD simulations indicate that the dominant species in aqueous CaSO 4 solutions are monodentate ion-associated structures. Compared with charged ion clusters, neutral clusters are more likely to be present in an aqueous CaSO 4 solution. Neutral (CaSO 4 ) m clusters are probably the growth units involved in the pre-nucleation or crystallization processes. Meanwhile, hydration behavior around ion associated species in aqueous CaSO 4 solutions plays an important role in related phase/polymorphism selections. Upon ion clustering, the residence of some water molecules around Ca 2+ in ion-associated species is weakened while that of some bridging waters is enhanced due to dual interaction by Ca 2+ and SO 4 2- . Some phase/polymorphism selections can be achieved in aqueous CaSO 4 solutions by controlling the hydration around pre-nucleation clusters. Moreover, the association trend between calcium and sulfate is found to be relatively strong, which hints at the low solubility of calcium sulfate in water.

  6. Mixed titanium, silicon, and aluminum oxide nanostructures as novel adsorbent for removal of rhodamine 6G and methylene blue as cationic dyes from aqueous solution.

    PubMed

    Pal, Umapada; Sandoval, Alberto; Madrid, Sergio Isaac Uribe; Corro, Grisel; Sharma, Vivek; Mohanty, Paritosh

    2016-11-01

    Mixed oxide nanoparticles containing Ti, Si, and Al of 8-15 nm size range were synthesized using a combined sol-gel - hydrothermal method. Effects of composition on the structure, morphology, and optical properties of the nanoparticles were studied using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), microRaman spectroscopy, and diffuse reflectance spectroscopy (DRS). Dye removal abilities of the nanoparticles from aqueous solutions were tested for different cationic dyes. While all the mixed oxide nanoparticles revealed high and fast adsorption of cationic dyes, the particles containing Ti and Si turned out to be the best. The adsorption kinetics and equilibrium adsorption behavior of the adsorbate - adsorbent systems could be well described by pseudo-second-order kinetics and Langmuir isotherm model, respectively. Estimated thermodynamic parameters revealed the adsorption process is spontaneous, driven mainly by the electrostatic force between the cationic dye molecules and negative charge at nanoparticle surface. Highest dye adsorption capacity (162.96 mg MB/g) of the mixed oxide nanostructures containing Ti and Si is associated to their high specific surface area, and the presence of surface Si-O(δ-) groups, in addition to the hydroxyl groups of amorphous titania. Mixed oxide nanoparticles containing 75% Ti and 25% Si seen to be the most efficient adsorbents for removing cationic dye molecules from wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Evaluation of fast green FCF dye for non-lethal detection of integumental injuries in juvenile chinook salmon oncorhynchus tshawytscha

    USGS Publications Warehouse

    Elliott, D.G.; Conway, C.M.; Applegate, L.M.J.

    2009-01-01

    A rapid staining procedure for detection of recent skin and fin injuries was tested in juvenile Chinook salmon Oncorhynchus tshawytscha. Immersion of anesthetized fish for 1 min in aerated aqueous solutions of the synthetic food dye fast green FCF (Food Green 3) at concentrations of 0.1 to 0.5% produced consistent and visible staining of integumental injuries. A 0.1% fast green concentration was satisfactory for visual evaluation of injuries, whereas a 0.5% concentration was preferable for digital photography. A rinsing procedure comprised of two 30 s rinses in fresh water was most effective for removal of excess stain after exposure of fish. Survival studies in fresh water and seawater and histopathological analyses indicated that short exposures to aqueous solutions of fast green were non-toxic to juvenile Chinook salmon. In comparisons of the gross and microscopic appearance of fish exposed to fast green at various times after injury, the dye was observed only in areas of the body where epidermal disruption was present as determined by scanning electron microscopy. No dye was observed in areas where epidermal integrity had been restored. Further comparisons showed that fast green exposure produced more consistent and intense staining of skin injury sites than a previously published procedure using trypan blue. Because of its relatively low cost, ease of use and the rapid and specific staining of integumental injuries, fast green may find widespread application in fish health and surface injury evaluations. ?? Inter-Research 2009.

  8. Controlling silk fibroin particle features for drug delivery

    PubMed Central

    Lammel, Andreas; Hu, Xiao; Park, Sang-Hyug; Kaplan, David L.; Scheibel, Thomas

    2010-01-01

    Silk proteins are a promising material for drug delivery due to their aqueous processability, biocompatibility, and biodegradability. A simple aqueous preparation method for silk fibroin particles with controllable size, secondary structure and zeta potential is reported. The particles were produced by salting out a silk fibroin solution with potassium phosphate. The effect of ionic strength and pH of potassium phosphate solution on the yield and morphology of the particles was determined. Secondary structure and zeta potential of the silk particles could be controlled by pH. Particles produced by salting out with 1.25 M potassium phosphate pH 6 showed a dominating silk II (crystalline) structure whereas particles produced at pH 9 were mainly composed of silk I (less crystalline). The results show that silk I rich particles possess chemical and physical stability and secondary structure which remained unchanged during post treatments even upon exposure to 100% ethanol or methanol. A model is presented to explain the process of particle formation based on intra- and intermolecular interactions of the silk domains, influenced by pH and kosmotrope salts. The reported silk fibroin particles can be loaded with small molecule model drugs, such as alcian blue, rhodamine B, and crystal violet, by simple absorption based on electrostatic interactions. In vitro release of these compounds from the silk particles depends on charge – charge interactions between the compounds and the silk. With crystal violet we demonstrated that the release kinetics are dependent on the secondary structure of the particles. PMID:20219241

  9. [Analysis of parameters of serum concentration and pharmacokinetic of liposome and aqueous solution of toatal ginsenoside of ginseng stems and leaves in rats].

    PubMed

    Zha, Lin; Zhao, Yan; Zhu, Hong-Yan; Cai, En-Bo; Liu, Shuang-Li; Yang, He; Zhao, Ying; Gao, Yu-Gang; Zhang, Lian-Xue

    2017-05-01

    The experiment was aimed to investigate the difference of plasma concentration and pharmacokinetic parameters between liposome and aqueous solution of toatal ginsenoside of ginseng stems and leaves in rats, such as ginsenosides Rg₁, Re, Rf, Rb₁, Rg₂, Rc, Rb₂, Rb₃, Rd. After intravenous injection of liposome and aqueous solution in rats, the blood was taken from the femoral vein to detect the plasma concentration of the above 9 ginsenoside monomers in different time points by using HPLC. The concentration-time curve was obtained and 3p97 pharmacokinetic software was used to get the pharmacokinetic parameters. After the intravenous injection of ginsenosides to rats, nine ginsenosides were detected in plasma. In general, among these ginsenosides, the peak time of the aqueous solution was between 0.05 to 0.083 3 h, and the serum concentration peak of liposome usually appeared after 0.5 h. After software fitting, the aqueous solution of ginsenoside monomers Rg₁, Re, Rf, Rg₂, Rc, Rd, Rb₃ was two-compartment model, and the liposomes were one-compartment model; aqueous solution and liposome of ginsenoside monomers Rb₁ were three-compartment model; aqueous solution of ginsenoside monomers Rb₂ was three-compartment model, and its liposome was one-compartment model. Area under the drug time curve (AUC) of these 9 kinds of saponin liposomes was larger than that of aqueous solution, and the retention time of the liposomes was longer than that of the aqueous solution; the removal rate was slower than that of the aqueous solution, and the half-life was longer than that of the water solution. The results from the experiment showed that by intravenous administration, the pharmacokinetic parameters of two formulations were significantly different from each other; the liposomes could not only remain the drug for a longer time in vivo, but also reduce the elimination rate and increase the treatment efficacy. As compared with the traditional dosage forms, the total ginsenoside of ginseng stems and leaves can improve the sustained release of the drug, which is of great significance for the research and development of new dosage forms of ginsenosides in the future. Copyright© by the Chinese Pharmaceutical Association.

  10. Thermodynamic properties of potassium chloride aqueous solutions

    NASA Astrophysics Data System (ADS)

    Zezin, Denis; Driesner, Thomas

    2017-04-01

    Potassium chloride is a ubiquitous salt in natural fluids, being the second most abundant dissolved salt in many geological aqueous solutions after sodium chloride. It is a simple solute and strong electrolyte easily dissociating in water, however the thermodynamic properties of KCl aqueous solutions were never correlated with sufficient accuracy for a wide range of physicochemical conditions. In this communication we propose a set of parameters for a Pitzer-type model which allows calculation of all necessary thermodynamic properties of KCl solution, namely excess Gibbs free energy and derived activity coefficient, apparent molar enthalpy, heat capacity and volume, as well as osmotic coefficient and activity of water in solutions. The system KCl-water is one of the best studied aqueous systems containing electrolytes. Although extensive experimental data were collected for thermodynamic properties of these solutions over the years, the accurate volumetric data became available only recently, thus making possible a complete thermodynamic formulation including a pressure dependence of excess Gibbs free energy and derived properties of the KCl-water liquids. Our proposed model is intended for calculation of major thermodynamic properties of KCl aqueous solutions at temperatures ranging from freezing point of a solution to 623 K, pressures ranging from saturated water vapor up to 150 MPa, and concentrations up to the salt saturation. This parameterized model will be further implemented in geochemical software packages and can facilitate the calculation of aqueous equilibrium for reactive transport codes.

  11. Fractional Factorial Design Study on the Performance of GAC-Enhanced Electrocoagulation Process Involved in Color Removal from Dye Solutions.

    PubMed

    Secula, Marius Sebastian; Cretescu, Igor; Cagnon, Benoit; Manea, Liliana Rozemarie; Stan, Corneliu Sergiu; Breaban, Iuliana Gabriela

    2013-07-10

    The aim of this study was to determine the effects of main factors and interactions on the color removal performance from dye solutions using the electrocoagulation process enhanced by adsorption on Granular Activated Carbon (GAC). In this study, a mathematical approach was conducted using a two-level fractional factorial design ( FFD ) for a given dye solution. Three textile dyes: Acid Blue 74, Basic Red 1, and Reactive Black 5 were used. Experimental factors used and their respective levels were: current density (2.73 or 27.32 A/m²), initial pH of aqueous dye solution (3 or 9), electrocoagulation time (20 or 180 min), GAC dose (0.1 or 0.5 g/L), support electrolyte (2 or 50 mM), initial dye concentration (0.05 or 0.25 g/L) and current type (Direct Current- DC or Alternative Pulsed Current- APC ). GAC-enhanced electrocoagulation performance was analyzed statistically in terms of removal efficiency, electrical energy, and electrode material consumptions, using modeling polynomial equations. The statistical significance of GAC dose level on the performance of GAC enhanced electrocoagulation and the experimental conditions that favor the process operation of electrocoagulation in APC regime were determined. The local optimal experimental conditions were established using a multi-objective desirability function method.

  12. Fractional Factorial Design Study on the Performance of GAC-Enhanced Electrocoagulation Process Involved in Color Removal from Dye Solutions

    PubMed Central

    Secula, Marius Sebastian; Cretescu, Igor; Cagnon, Benoit; Manea, Liliana Rozemarie; Stan, Corneliu Sergiu; Breaban, Iuliana Gabriela

    2013-01-01

    The aim of this study was to determine the effects of main factors and interactions on the color removal performance from dye solutions using the electrocoagulation process enhanced by adsorption on Granular Activated Carbon (GAC). In this study, a mathematical approach was conducted using a two-level fractional factorial design (FFD) for a given dye solution. Three textile dyes: Acid Blue 74, Basic Red 1, and Reactive Black 5 were used. Experimental factors used and their respective levels were: current density (2.73 or 27.32 A/m2), initial pH of aqueous dye solution (3 or 9), electrocoagulation time (20 or 180 min), GAC dose (0.1 or 0.5 g/L), support electrolyte (2 or 50 mM), initial dye concentration (0.05 or 0.25 g/L) and current type (Direct Current—DC or Alternative Pulsed Current—APC). GAC-enhanced electrocoagulation performance was analyzed statistically in terms of removal efficiency, electrical energy, and electrode material consumptions, using modeling polynomial equations. The statistical significance of GAC dose level on the performance of GAC enhanced electrocoagulation and the experimental conditions that favor the process operation of electrocoagulation in APC regime were determined. The local optimal experimental conditions were established using a multi-objective desirability function method. PMID:28811405

  13. Absorption and luminescence spectroscopy of mass-selected flavin adenine dinucleotide mono-anions

    NASA Astrophysics Data System (ADS)

    Giacomozzi, L.; Kjær, C.; Langeland Knudsen, J.; Andersen, L. H.; Brøndsted Nielsen, S.; Stockett, M. H.

    2018-06-01

    We report the absorption profile of isolated Flavin Adenine Dinucleotide (FAD) mono-anions recorded using photo-induced dissociation action spectroscopy. In this charge state, one of the phosphoric acid groups is deprotonated and the chromophore itself is in its neutral oxidized state. These measurements cover the first four optical transitions of FAD with excitation energies from 2.3 to 6.0 eV (210-550 nm). The S0 → S2 transition is strongly blue shifted relative to aqueous solution, supporting the view that this transition has a significant charge-transfer character. The remaining bands are close to their solution-phase positions. This confirms that the large discrepancy between quantum chemical calculations of vertical transition energies and solution-phase band maxima cannot be explained by solvent effects. We also report the luminescence spectrum of FAD mono-anions in vacuo. The gas-phase Stokes shift for S1 is 3000 cm-1, which is considerably larger than any previously reported for other molecular ions and consistent with a significant displacement of the ground and excited state potential energy surfaces. Consideration of the vibronic structure is thus essential for simulating the absorption and luminescence spectra of flavins.

  14. Extracting alcohols from aqueous solutions. [USDOE patent application

    DOEpatents

    Compere, A.L.; Googin, J.M.; Griffith, W.L.

    1981-12-02

    The objective is to provide an efficient process for extracting alcohols in aqueous solutions into hydrocarbon fuel mixtures, such as gasoline, diesel fuel and fuel oil. This is done by contacting an aqueous fermentation liquor with a hydrocarbon or hydrocarbon mixture containing carbon compounds having 5-18 carbon atoms, which may include gasoline, diesel fuel or fuel oil. The hydrocarbon-aqueous alcohol solution is then mixed with one or more of a group of polyoxyalkylene polymers to extract the alcohol into the hydrocarbon fuel-polyoxyalkylene polymer mixture.

  15. Exploratory studies on some electrochemical cell systems

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Srikumar; Guha, D.

    Exploratory studies were conducted on cell systems with different metal anodes, and iodine and sulphur mixed with graphite powder in a polymer matrix as cathodes, using different electrolytes in non-aqueous and aqueous media as ionic charge carriers. The electrical conductance of the electrolyte solutions in aqueous and non-aqueous solvents, the open circuit voltage (OCV) and short circuit current (SCC) for the different cell systems were measured. To date, the non-aqueous solvents used in our studies were dimethylformamide, formamide, dioxan, and nitrobenzene, and the electrolytes used were potassium iodide, caustic potash, cetyltrimethylammonium bromide (CTAB), sodium lauryl sulphate (SLS) and calcium chloride. These electrolytes were used in both non-aqueous and aqueous media. In general, aqueous electrolyte solutions gave a better performance than non-aqueous electrolyte solutions. Of the aqueous electrolytes, the highest conductance was shown by potassium chloride solution in water (conductance=0.0334 mho). However, the best OCV and SCC were shown by aluminium as anode and iodine as cathode with a saturated solution of caustic potash in water. The OCV was 1.85 V and the SCC was 290 mA cm -2. The highest conductance among the non-aqueous systems was shown by caustic potash in formamide. (Conductance=0.013 mho.) The best OCV and SCC, however, were shown by a zinc anode and iodine cathode with saturated potassium chloride in formamide, having an OCV of 1.55 V and an SCC of 150 mA cm -2. Further studies are in progress to obtain detailed performance data and recharging characteristics of some of the more promising systems reported here.

  16. A coumarin based Schiff base probe for selective fluorescence detection of Al3 + and its application in live cell imaging

    NASA Astrophysics Data System (ADS)

    Sen, Bhaskar; Sheet, Sanjoy Kumar; Thounaojam, Romita; Jamatia, Ramen; Pal, Amarta Kumar; Aguan, Kripamoy; Khatua, Snehadrinarayan

    2017-02-01

    A new coumarin based Schiff base compound, CSB-1 has been synthesized to detect metal ion based on the chelation enhanced fluorescence (CHEF). The cation binding properties of CSB-1 was thoroughly examined in UV-vis and fluorescence spectroscopy. In fluorescence spectroscopy the compound showed high selectivity toward Al3 + ion and the Al3 + can be quantified in mixed aqueous buffer solution (MeOH: 0.01 M HEPES Buffer; 9:1; v/v) at pH 7.4 as well as in BSA media. The fluorescence intensity of CSB-1 was enhanced by 24 fold after addition of only five equivalents of Al3 +. The fluorescence titration of CSB-1 with Al3 + in mixed aqueous buffer afforded a binding constant, Ka = (1.06 ± 0.2) × 104 M- 1. The colour change from light yellow to colourless and the appearance of blue fluorescence, which can be observed by the naked eye, provides a real-time method for Al3 + sensing. Further the live cell imaging study indicated that the detection of intracellular Al3 + ions are also readily possible in living cell.

  17. SEPARATION OF PLUTONIUM FROM AQUEOUS SOLUTIONS BY ION-EXCHANGE

    DOEpatents

    Schubert, J.

    1958-06-01

    A process is described for the separation of plutonium from an aqueous solution of a plutonium salt, which comprises adding to the solution an acid of the group consisting of sulfuric acid, phosphoric acid, and oxalic acid, and mixtures thereof to provide an acid concentration between 0.0001 and 1 M, contacting the resultant solution with a synthetic organic anion exchange resin, and separating the aqueous phase and the resin which contains the plutonium.

  18. A study on lithium/air secondary batteries-Stability of the NASICON-type lithium ion conducting solid electrolyte in alkaline aqueous solutions

    NASA Astrophysics Data System (ADS)

    Shimonishi, Yuta; Zhang, Tao; Imanishi, Nobuyuki; Im, Dongmin; Lee, Dong Joon; Hirano, Atsushi; Takeda, Yasuo; Yamamoto, Osamu; Sammes, Nigel

    The stability of the high lithium ion conducting glass ceramics, Li 1+ x+ yTi 2- xAl xSi yP 3- yO 12 (LTAP) in alkaline aqueous solutions with and without LiCl has been examined. A significant conductivity decrease of the LTAP plate immersed in 0.057 M LiOH aqueous solution at 50 °C for 3 weeks was observed. However, no conductivity change of the LTAP plate immersed in LiCl saturated LiOH aqueous solutions at 50 °C for 3 weeks was observed. The pH value of the LiCl-LiOH-H 2O solution with saturated LiCl was in a range of 7-9. The molarity of LiOH and LiCl in the LiOH and LiCl saturated aqueous solution were estimated to be 5.12 and 11.57 M, respectively, by analysis of Li + and OH -. The high concentration of LiOH and the low pH value of 8.14 in this solution suggested that the dissociation of LiOH into Li + and OH - is too low in the solution with a high concentration of Li +. These results suggest that the water stable LTAP could be used as a protect layer of the lithium metal anode in the lithium/air cell with LiCl saturated aqueous solution as the electrolyte, because the content of OH - ions in the LiCl saturated aqueous solution does not increase via the cell reaction of Li + 1/2O 2 + H 2O → 2LiOH, and LTAP is stable under a deep discharge state.

  19. Hydrogen generation systems and methods utilizing sodium silicide and sodium silica gel materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, Andrew P.; Melack, John M.; Lefenfeld, Michael

    Systems, devices, and methods combine thermally stable reactant materials and aqueous solutions to generate hydrogen and a non-toxic liquid by-product. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Springs and other pressurization mechanisms pressurize and deliver an aqueous solution to the reaction. A check valve and other pressure regulation mechanisms regulate the pressure of the aqueous solution delivered to the reactantmore » fuel material in the reactor based upon characteristics of the pressurization mechanisms and can regulate the pressure of the delivered aqueous solution as a steady decay associated with the pressurization force. The pressure regulation mechanism can also prevent hydrogen gas from deflecting the pressure regulation mechanism.« less

  20. Environment-Friendly Post-Treatment of PEDOT-Tos Films by Aqueous Vitamin C Solutions for Tuning of Thermoelectric Properties

    NASA Astrophysics Data System (ADS)

    Khan, Ezaz Hasan; Thota, Sammaiah; Wang, Yiwen; Li, Lian; Wilusz, Eugene; Osgood, Richard; Kumar, Jayant

    2018-04-01

    Aqueous vitamin C solution has been used as an environment-friendly reducing agent for tuning the thermoelectric properties of p-toluenesulfonate-doped poly(3,4-ethylenedioxythiophene) (PEDOT-Tos) films. The de-doping of the PEDOT-Tos films by aqueous vitamin C solutions led to a decrease in the electrical conductivity of the films. The measured ultraviolet-visible-near-infrared and x-ray photoelectron spectra clearly indicated the reduction in the oxidation level from 37 to 23% when the PEDOT-Tos films were treated with 5% (w/v) aqueous vitamin C solutions. An increase in the Seebeck coefficient was measured, resulting in an increase in the figure-of-merit (ZT). A 42% increase in ZT was determined for the 5% aqueous vitamin C solution-treated PEDOT-Tos films with respect to that of the untreated films.

  1. Hydrogen generation systems and methods utilizing sodium silicide and sodium silica gel materials

    DOEpatents

    Wallace, Andrew P.; Melack, John M.; Lefenfeld, Michael

    2015-08-11

    Systems, devices, and methods combine thermally stable reactant materials and aqueous solutions to generate hydrogen and a non-toxic liquid by-product. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Springs and other pressurization mechanisms pressurize and deliver an aqueous solution to the reaction. A check valve and other pressure regulation mechanisms regulate the pressure of the aqueous solution delivered to the reactant fuel material in the reactor based upon characteristics of the pressurization mechanisms and can regulate the pressure of the delivered aqueous solution as a steady decay associated with the pressurization force. The pressure regulation mechanism can also prevent hydrogen gas from deflecting the pressure regulation mechanism.

  2. Application of Molecular Dynamics Simulations in Molecular Property Prediction II: Diffusion Coefficient

    PubMed Central

    Wang, Junmei; Hou, Tingjun

    2011-01-01

    In this work, we have evaluated how well the General AMBER force field (GAFF) performs in studying the dynamic properties of liquids. Diffusion coefficients (D) have been predicted for 17 solvents, 5 organic compounds in aqueous solutions, 4 proteins in aqueous solutions, and 9 organic compounds in non-aqueous solutions. An efficient sampling strategy has been proposed and tested in the calculation of the diffusion coefficients of solutes in solutions. There are two major findings of this study. First of all, the diffusion coefficients of organic solutes in aqueous solution can be well predicted: the average unsigned error (AUE) and the root-mean-square error (RMSE) are 0.137 and 0.171 ×10−5 cm−2s−1, respectively. Second, although the absolute values of D cannot be predicted, good correlations have been achieved for 8 organic solvents with experimental data (R2 = 0.784), 4 proteins in aqueous solutions (R2 = 0.996) and 9 organic compounds in non-aqueous solutions (R2 = 0.834). The temperature dependent behaviors of three solvents, namely, TIP3P water, dimethyl sulfoxide (DMSO) and cyclohexane have been studied. The major MD settings, such as the sizes of simulation boxes and with/without wrapping the coordinates of MD snapshots into the primary simulation boxes have been explored. We have concluded that our sampling strategy that averaging the mean square displacement (MSD) collected in multiple short-MD simulations is efficient in predicting diffusion coefficients of solutes at infinite dilution. PMID:21953689

  3. Adsorption-regeneration by heterogeneous Fenton process using modified carbon and clay materials for removal of indigo blue.

    PubMed

    Almazán-Sánchez, Perla Tatiana; Solache-Ríos, Marcos J; Linares-Hernández, Ivonne; Martínez-Miranda, Verónica

    2016-01-01

    Indigo blue dye is mainly used in dyeing of denim clothes and its presence in water bodies could have adverse effects on the aquatic system; for this reason, the objective of this study was to promote the removal of indigo blue dye from aqueous solutions by iron and copper electrochemically modified clay and activated carbon and the saturated materials were regenerated by a Fenton-like process. Montmorillonite clay was modified at pH 2 and 7; activated carbon at pH 2 and pH of the system. The elemental X-ray dispersive spectroscopy analysis showed that the optimum pH for modification of montmorillonite with iron and copper was 7 and for activated carbon was 2. The dye used in this work was characterized by infrared. Unmodified and modified clay samples showed the highest removal efficiencies of the dye (90-100%) in the pH interval from 2 to 10 whereas the removal efficiencies decrease as pH increases for samples modified at pH 2. Unmodified clay and copper-modified activated carbon at pH 2 were the most efficient activated materials for the removal of the dye. The adsorption kinetics data of all materials were best adjusted to the pseudo-second-order model, indicating a chemisorption mechanism and the adsorption isotherms data showed that the materials have a heterogeneous surface. The iron-modified clay could be regenerated by a photo-Fenton-like process through four adsorption-regeneration cycles, with 90% removal efficiency.

  4. Activated carbons from waste of oil-palm kernel shells, sawdust and tannery leather scraps and application to chromium(VI), phenol, and methylene blue dye adsorption.

    PubMed

    Montoya-Suarez, Sergio; Colpas-Castillo, Fredy; Meza-Fuentes, Edgardo; Rodríguez-Ruiz, Johana; Fernandez-Maestre, Roberto

    2016-01-01

    Phenol, chromium, and dyes are continuously dumped into water bodies; the adsorption of these contaminants on activated carbon is a low-cost alternative for water remediation. We synthesized activated carbons from industrial waste of palm oil seed husks (kernel shells), sawdust, and tannery leather scraps. These materials were heated for 24 h at 600, 700 or 800°C, activated at 900°C with CO2 and characterized by proximate analysis and measurement of specific surface area (Brunauer-Emmett-Teller (BET) and Langmuir), and microporosity (t-plot). Isotherms showed micropores and mesopores in activated carbons. Palm seed activated carbon showed the highest fixed carbon content (96%), and Langmuir specific surface areas up to 1,268 m2/g, higher than those from sawdust (581 m2/g) and leather scraps (400 m2/g). The carbons were applied to adsorption of Cr(VI), phenol, and methylene blue dye from aqueous solutions. Phenol adsorption on activated carbons was 78-82 mg/g; on palm seed activated carbons, Cr(VI) adsorption at pH 7 was 0.35-0.37 mg/g, and methylene blue adsorption was 40-110 mg/g, higher than those from sawdust and leather scraps. Activated carbons from palm seed are promising materials to remove contaminants from the environment and represent an alternative application for vegetal wastes instead of dumping into landfills.

  5. Electrophotolysis oxidation system for measurement of organic concentration in water

    NASA Technical Reports Server (NTRS)

    Winkler, H. E. (Inventor)

    1981-01-01

    Methods and apparatus for determining organic carbon in aqueous solution are described. The method comprises subjecting the aqueous solution to electrolysis, for generating oxygen from water, and simultaneously to ultraviolet radiation, for oxidation of substantially all organic carbon to carbon dioxide. The carbon dioxide is measured and the value is related to the concentration of organic carbon in the aqueous solution.

  6. RECOVERY AND SEPARATION OF LITHIUM VALUES FROM SALVAGE SOLUTIONS

    DOEpatents

    Hansford, D.L.; Raabe, E.W.

    1963-08-20

    Lithium values can be recovered from an aqueous basic solution by reacting the values with a phosphate salt soluble in the solution, forming an aqueous slurry of the resultant aqueous insoluble lithium phosphate, contacting the slurry with an organic cation exchange resin in the acid form until the slurry has been clarified, and thereafter recovering lithium values from the resin. (AEC)

  7. Prediction of the glass transition in aqueous solutions of simple amides by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Kreck, Cara A.; Mandumpal, Jestin B.; Mancera, Ricardo L.

    2011-01-01

    Some simple amides in aqueous solution are used in the cryopreservation of biological tissues as they are believed to promote the vitrification of water, inhibiting its crystallisation and the ensuing damage from ice formation. Molecular dynamics annealing simulations reveal a broadening in the glass transition of aqueous acetamide and N-methylacetamide solutions, suggesting a thermodynamic stabilisation of the glassy state, which may be responsible for their increased tendency of vitrification and their cryoprotective ability. By contrast, aqueous formamide solutions do not exhibit broadening of the glass transition; instead, it is shifted to lower temperatures, which explains their lack of vitrification properties.

  8. Study of thermodynamic and acoustic behaviour of nicotinic acid in binary aqueous mixtures of D-lactose

    NASA Astrophysics Data System (ADS)

    Sharma, Ravi; Thakur, R. C.

    2017-07-01

    In the present study, the thermodynamic properties such as partial molar volumes, partial molar expansibilities, partial molar compressibilities, partial molar heat capacities and isobaric thermal expansion coefficient of different solutions of nicotinic acid in binary aqueous mixtures of D-lactose have been determined at different temperatures (298.15, 303.15, 308.15, 313.15) K. Masson's equation is used to interpret the data in terms of solute-solute and solute-solvent interactions. In the present study it has been found that nicotinic acid behaves as structure maker in aqueous and binary aqueous mixtures of D-lactose.

  9. Ultrafast fluorescence quenching dynamics of Atto655 in the presence of N-acetyltyrosine and N-acetyltryptophan in aqueous solution: proton-coupled electron transfer versus electron transfer.

    PubMed

    Zhang, Ying; Yuan, Shuwei; Lu, Rong; Yu, Anchi

    2013-06-20

    We studied the ultrafast fluorescence quenching dynamics of Atto655 in the presence of N-acetyltyrosine (AcTyr) and N-acetyltryptophan (AcTrp) in aqueous solution with femtosecond transient absorption spectroscopy. We found that the charge-transfer rate between Atto655 and AcTyr is about 240 times smaller than that between Atto655 and AcTrp. The pH value and D2O dependences of the excited-state decay kinetics of Atto655 in the presence of AcTyr and AcTrp reveal that the quenching of Atto655 fluorescence by AcTyr in aqueous solution is via a proton-coupled electron-transfer (PCET) process and that the quenching of Atto655 fluorescence by AcTrp in aqueous solution is via an electron-transfer process. With the version of the semiclassical Marcus ET theory, we derived that the electronic coupling constant for the PCET reaction between Atto655 and AcTyr in aqueous solution is 8.3 cm(-1), indicating that the PCET reaction between Atto655 and AcTyr in aqueous solution is nonadiabatic.

  10. Method and apparatus for synthesizing anhydrous HNO.sub.3

    DOEpatents

    Coon, Clifford L.; Harrar, Jackson E.; Pearson, Richard K.; McGuire, Raymond R.

    1984-01-01

    A method and apparatus for electrochemically synthesizing anhydrous HNO.sub.3 from an aqueous solution of HNO.sub.3 includes oxidizing a solution of N.sub.2 O.sub.4 /aqueous HNO.sub.3 at an anode, while maintaining a controlled potential between the N.sub.2 O.sub.4 /aqueous HNO.sub.3 solution and the anode. A potential of about 1.80V vs. SCE is preferred. Anhydrous or aqueous HNO.sub.3 may be disposed at the cathode within the electrochemical cell. Aqueous HNO.sub.3 having a water content of up to about 12% by weight is utilized to synthesize anhydrous HNO.sub.3.

  11. Method and apparatus for synthesizing anhydrous HNO/sub 3/. [Patent application

    DOEpatents

    Coon, C.L.; Harrar, J.E.; Pearson, R.K.; McGuire, R.R.

    1982-07-20

    A method and apparatus for electrochemically synthesizing anhydrous HNO/sub 3/ from an aqueous solution of HNO/sub 3/- includes oxidizing a solution of N/sub 2/O/sub 4//aqueous HNO/sub 3/ at an anode, while maintaining a controlled potential between the N/sub 2/O/sub 4//aqueous HNO/sub 3/ solution and the anode. A potential of about 1.80V vs. SCE is preferred. Anhydrous or aqueous HNO/sub 3/ may be disposed at the cathode within the electrochemical cell. Aqueous HNO/sub 3/ having a water content of up to about 12% by weight is utilized to synthesize anhydrous HNO/sub 3/.

  12. Glass transition of aqueous solutions involving annealing-induced ice recrystallization resolves liquid-liquid transition puzzle of water

    PubMed Central

    Zhao, Li-Shan; Cao, Ze-Xian; Wang, Qiang

    2015-01-01

    Liquid-liquid transition of water is an important concept in condensed-matter physics. Recently, it was claimed to have been confirmed in aqueous solutions based on annealing-induced upshift of glass-liquid transition temperature, . Here we report a universal water-content, , dependence of for aqueous solutions. Solutions with vitrify/devitrify at a constant temperature, , referring to freeze-concentrated phase with left behind ice crystallization. Those solutions with totally vitrify at under conventional cooling/heating process though, of the samples annealed at temperatures   to effectively evoke ice recrystallization is stabilized at . Experiments on aqueous glycerol and 1,2,4-butanetriol solutions in literature were repeated, and the same samples subject to other annealing treatments equally reproduce the result. The upshift of by annealing is attributable to freeze-concentrated phase of solutions instead of ‘liquid II phase of water’. Our work also provides a reliable method to determine hydration formula and to scrutinize solute-solvent interaction in solution. PMID:26503911

  13. Physico-chemical properties of aqueous drug solutions: From the basic thermodynamics to the advanced experimental and simulation results.

    PubMed

    Bellich, Barbara; Gamini, Amelia; Brady, John W; Cesàro, Attilio

    2018-04-05

    The physical chemical properties of aqueous solutions of model compounds are illustrated in relation to hydration and solubility issues by using three perspectives: thermodynamic, spectroscopic and molecular dynamics simulations. The thermodynamic survey of the fundamental backgrounds of concentration dependence and experimental solubility results show some peculiar behavior of aqueous solutions with several types of similar solutes. Secondly, the use of a variety of experimental spectroscopic devices, operating under different experimental conditions of dimension and frequency, has produced a large amount of structural and dynamic data on aqueous solutions showing the richness of the information produced, depending on where and how the experiment is carried out. Finally, the use of molecular dynamics computational work is presented to highlight how the different types of solute functional groups and surface topologies organize adjacent water molecules differently. The highly valuable contribution of computer simulation studies in providing molecular explanations for experimental deductions, either of a thermodynamic or spectroscopic nature, is shown to have changed the current knowledge of many aqueous solution processes. While this paper is intended to provide a collective view on the latest literature results, still the presentation aims at a tutorial explanation of the potentials of the three methodologies in the field of aqueous solutions of pharmaceutical molecules. Copyright © 2018. Published by Elsevier B.V.

  14. Assorted interactions of amino acids prevailing in aqueous vitamin C solutions probed by physicochemical and ab-initio contrivances

    NASA Astrophysics Data System (ADS)

    Das, Koyeli; Roy, Milan Chandra; Rajbanshi, Biplab; Roy, Mahendra Nath

    2017-11-01

    Qualitative and quantitative analysis of molecular interaction prevailing in tyrosine and tryptophan in aqueous solution of vitamin C have been probed by thermophysical properties. The apparent molar volume (ϕV), viscosity B-coefficient, molal refraction (RM) of tyrosine and tryptophan have been studied in aqueous vitamin C solutions at diverse temperatures via Masson equation which deduced solute-solvent and solute-solute interactions, respectively. Spectroscopic study along with physicochemical and computational techniques provides lots of interesting and highly significant insights of the model biological systems. The overall results established strong solute-solvent interactions between studied amino acids and vitamin C mixture in the ternary solutions.

  15. Optimisation of the Photonic Efficiency of TiO2 Decorated on MWCNTs for Methylene Blue Photodegradation.

    PubMed

    Abdullahi, Nura; Saion, Elias; Shaari, Abdul Halim; Al-Hada, Naif Mohammed; Keiteb, Aysar

    2015-01-01

    MWCNTs/TiO2 nanocomposite was prepared by oxidising MWCNT in H2SO4/HNO3 then decorating it with TiO2-p25 nanopowder. The composites were characterised using XRD, TEM, FT-IR PL and UV-vis spectroscopy. The TEM images have shown TiO2 nanoparticles immobilised onto the sidewalls of the MWCNTs. The UV-vis spectrum confirms that the nanocomposites can significantly absorb more light in the visible regions compared with the commercial TiO2 (P25). The catalytic activity of these nanocomposites was determined by photooxidation of MB aqueous solution in the presence of visible light. The MWCNTs/TiO2 (1:3) mass ratio showed maximum degradation efficiency. However, its activity was more favourable in alkaline and a neutral pH than an acidic medium.

  16. Transparent sunlight conversion film based on carboxymethyl cellulose and carbon dots.

    PubMed

    You, Yaqin; Zhang, Haoran; Liu, Yingliang; Lei, Bingfu

    2016-10-20

    Transparent sunlight conversion film based on carboxymethyl cellulose (CMC) and carbon dots (CDs) has been developed for the first time through dispersion of CDs in CMC aqueous solution. Due to the hydrogen bonds interaction, CMC can effectively absorb the CDs, whose surfaces are functionalized by lots of polar groups. The results from atomic force microscopy (AFM), scanning electron microscopy (SEM) confirm that the composite film possesses a homogeneous and compact structure. Besides, the CMC matrix neither competes for absorbing excitation light nor absorbs the emissions of CDs, which reserves the inherent optical properties of the individual CDs. The composite films can efficiently convert ultraviolet light to blue light. What's more, the film is transparent and possesses excellent mechanical properties, expected to apply in the field of agricultural planting for sunlight conversion. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Synthesis, characterization, and photocatalytic properties of Ni12P5 hollow microspheres

    NASA Astrophysics Data System (ADS)

    Liu, Shuling; Han, Xiaoli; Zhang, Hongzhe; Liu, Hui

    2017-05-01

    Ni12P5 hollow microspheres were prepared by a simple mixed cetyltrimethyl ammonium bromide/sodium dodecyl sulfate surfactant-assisted hydrothermal route. The as-prepared Ni12P5 microstructures were characterized by X-ray powder diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM). It was interesting to find that cetyltrimethyl ammonium bromide/sodium dodecyl sulfate could form a micro-reactor by the mixed micelles in the aqueous solution, which served as a soft template for Ni12P5 hollow microspheres with a diameter of 2 6 μm. Moreover, the as-prepared Ni12P5 hollow microspheres exhibited a good photocatalytic degradation activity for some organic dyes (such as Rhodamine B, Methylene Blue, Pyronine B, and Safranine T), and the degradation ratio could achieve more than 80%.

  18. URANIUM DECONTAMINATION WITH RESPECT TO ZIRCONIUM

    DOEpatents

    Vogler, S.; Beederman, M.

    1961-05-01

    A process is given for separating uranium values from a nitric acid aqueous solution containing uranyl values, zirconium values and tetravalent plutonium values. The process comprises contacting said solution with a substantially water-immiscible liquid organic solvent containing alkyl phosphate, separating an organic extract phase containing the uranium, zirconium, and tetravalent plutonium values from an aqueous raffinate, contacting said organic extract phase with an aqueous solution 2M to 7M in nitric acid and also containing an oxalate ion-containing substance, and separating a uranium- containing organic raffinate from aqueous zirconium- and plutonium-containing extract phase.

  19. Competitive removal of hazardous dyes from aqueous solution by MIL-68(Al): Derivative spectrophotometric method and response surface methodology approach

    NASA Astrophysics Data System (ADS)

    Tehrani, Mahnaz Saghanejhad; Zare-Dorabei, Rouholah

    2016-05-01

    MIL-68(Al) as a metal-organic framework (MOF) was synthesized and characterized by different techniques such as SEM, BET, FTIR, and XRD analysis. This material was then applied for simulations removal of malachite green (MG) and methylene blue (MB) dyes from aqueous solutions using second order derivative spectrophotometric method (SODS) which was applied to resolve the overlap between the spectra of these dyes. The dependency of dyes removal efficiency in binary solutions was examined and optimized toward various parameters including initial dye concentration, pH of the solution, adsorbent dosage and ultrasonic contact time using central composite design (CCD) under response surface methodology (RSM) approach. The optimized experimental conditions were set as pH 7.78, contact time 5 min, initial MB concentration 22 mg L- 1, initial MG concentration 12 mg L- 1 and adsorbent dosage 0.0055 g. The equilibrium data was fitted to isotherm models such as Langmuir, Freundlich and Tempkin and the results revealed the suitability of the Langmuir model. The maximum adsorption capacity of 666.67 and 153.85 mg g- 1 was obtained for MB and MG removal respectively. Kinetics data fitting to pseudo-first order, pseudo-second order and Elovich models confirmed the applicability of pseudo-second order kinetic model for description of the mechanism and adsorption rate. Dye-loaded MIL-68(Al) can be easily regenerated using methanol and applied for three frequent sorption/desorption cycles with high performance. The impact of ionic strength on removal percentage of both dyes in binary mixture was studied by using NaCl and KCl soluble salts at different concentrations. According to our findings, only small dosage of the proposed MOF is considerably capable to remove large amounts of dyes at room temperature and in very short time that is a big advantage of MIL-68(Al) as a promising adsorbent for adsorptive removal processes.

  20. PROCESS OF SEPARATING URANIUM FROM AQUEOUS SOLUTION BY SOLVENT EXTRACTION

    DOEpatents

    Warf, J.C.

    1958-08-19

    A process is described for separating uranium values from aqueous uranyl nitrate solutions. The process consists in contacting the uramium bearing solution with an organic solvent, tributyl phosphate, preferably diluted with a less viscous organic liquida whereby the uranyl nitrate is extracted into the organic solvent phase. The uranvl nitrate may be recovered from the solvent phase bv back extracting with an aqueous mediuin.

  1. In Situ Cross-Linking of Polyvinyl Alcohol Films

    NASA Technical Reports Server (NTRS)

    Philipp, W. H.; Shu, L. C.; May, C. E.

    1984-01-01

    Films or impregnated matrices readily made from aqueous polyvinyl alcohol solution. Controlled thickness films made by casting precise quantities of aqueous polymer solution on smooth surface, allowing water to evaporate and then removing film. Composite separators formed in similar fashion by impregnating cloth matrix with polyvinyl alcohol solution and drying composite. Insoluble thin hydrophilic membranes made from aqueous systems, and use of undesirable organic solvents not required.

  2. Sediment Ecosystem Assessment Protocol (SEAP): An Accurate and Integrated Weight-of-Evidence Based System

    DTIC Science & Technology

    2011-01-01

    polychaete Neanthes arenaceodentata from exposures to copper in aqueous solutions ...involved 96 h exposures in aqueous solutions , followed by a 1-2 hour (depending on size) feeding period on Artemia (brine shrimp) nauplii in clean seawater...EC50) based on post- exposure feeding of the polychaete Neanthes arenaceodentata from exposures to copper in aqueous solutions . Metric (µg/L) Worm age

  3. Synthesis and Characterization of Functional Mesostructures Using Colloidal Crystal Templating

    DTIC Science & Technology

    2004-01-01

    fluorescent probes in aqueous polymer solutions . Khoury and co-workers measured the diffusion coefficient of several fluorescein-labeled proteins in...diffraction naq refractive index of the aqueous solution phase xvii ni refractive index of component i ngel refractive index of the hydrogel...phase Tg glass transition temperature α angle of diffraction φaq volume fraction of the aqueous solution phase φi volume fraction of

  4. Degradation of bromophenol blue molecule during argon plasma jet irradiation

    NASA Astrophysics Data System (ADS)

    Matinzadeh, Ziba; Shahgoli, Farhad; Abbasi, Hamed; Ghoranneviss, Mahmood; Salem, Mohammad Kazem

    2017-06-01

    The aim of this paper is to study degradation of a bromophenol blue molecule (C19H10Br4O5S) using direct irradiation of cold atmospheric argon plasma jet. The pH of the bromophenol blue solution has been measured as well as its absorbance spectra and conductivity before and after the irradiation of non-thermal plasma jet in various time durations. The results indicated that the lengths of conjugated systems in the molecular structure of bromophenol blue decreased, and that the bromophenol blue solution was decolorized as a result of the decomposition of bromophenol blue. This result shows that non-thermal plasma jet irradiation is capable of decomposing, and can also be used for water purification.

  5. SOLVENT EXTRACTION OF THORIUM VALUES FROM AQUEOUS SOLUTIONS

    DOEpatents

    Warf, J.C.

    1959-04-21

    The separation of thorium values from rare earth metals contained ln aqueous solutions by means of extraction with a water immiscible alkyl phosphate diluted with a hydrocarbon such as hexane is described. While the extraction according to this invention may be carried out from any aqueous salt solution, it is preferred to use solutions containing free mineral acid. Hydrochloric acid and in particular nitric acid are sultable in a concentration ranging from 0.1 to 7 normal. The higher acid concentration results in higher extraction values.

  6. Influence of pH, temperature, and concentration on stabilization of aqueous hornet silk solution and fabrication of salt-free materials.

    PubMed

    Kameda, Tsunenori

    2015-01-01

    We found that an aqueous solution of silk from cocoons produced by hornet larvae (hornet silk) can be obtained when the solution is adjusted to basic conditions of pH > 9.2. It is known that native hornet cocoons can be dissolved in concentrated aqueous solution of salts, such as lithium bromide (LiBr) and calcium chloride (CaCl2). Upon the removal of these salts from solution by dialysis, solidification, gelation, or sedimentation of hornet silk is known to occur. In the present study, under basic conditions, however, no such solidification occurred, even after salt removal. In this study, ammonia was used for alkalization of solution because it is volatilized during the casting process and pure hornet silk materials can be obtained after drying. The effects of the concentrations of hornet silk and ammonia, as well as dialysis temperature, on preventing gelation during dialysis were investigated. Dialysis conditions that limit the degradation of hornet silk by hydrolysis in alkali solution were identified. Moreover, casting conditions to prepare flexible and transparent hornet silk film from aqueous ammonia solution were optimized. Molecular structural analysis of hornet silk in aqueous ammonia solution and cast film indicated the formation of α-helix conformations. © 2014 Wiley Periodicals, Inc.

  7. Aspheric Solute Ions Modulate Gold Nanoparticle Interactions in an Aqueous Solution: An Optimal Way to Reversibly Concentrate Functionalized Nanoparticles

    PubMed Central

    Villarreal, Oscar D; Chen, Liao Y; Whetten, Robert L; Demeler, Borries

    2015-01-01

    Nanometer-sized gold particles (AuNPs) are of peculiar interest because their behaviors in an aqueous solution are sensitive to changes in environmental factors including the size and shape of the solute ions. In order to determine these important characteristics, we performed all-atom molecular dynamics simulations on the icosahedral Au144 nanoparticles each coated with a homogeneous set of 60 thiolates (4-mercapto-benzoate, pMBA) in eight aqueous solutions having ions of varying sizes and shapes (Na+, K+, tetramethylamonium cation TMA+, trisamonium cation TRS+, Cl−, and OH−). For each solution, we computed the reversible work (potential of mean of force) to bring two nanoparticles together as a function of their separation distance. We found that the behavior of pMBA protected Au144 nanoparticles can be readily modulated by tuning their aqueous environmental factors (pH and solute ion combinations). We examined the atomistic details on how the sizes and shapes of solute ions quantitatively factor in the definitive characteristics of nanoparticle-environment and nanoparticle-nanoparticle interactions. We predict that tuning the concentrations of non-spherical composite ions such as TRS+ in an aqueous solution of AuNPs be an effective means to modulate the aggregation propensity desired in biomedical and other applications of small charged nanoparticles. PMID:26581232

  8. Aspheric Solute Ions Modulate Gold Nanoparticle Interactions in an Aqueous Solution: An Optimal Way To Reversibly Concentrate Functionalized Nanoparticles.

    PubMed

    Villarreal, Oscar D; Chen, Liao Y; Whetten, Robert L; Demeler, Borries

    2015-12-17

    Nanometer-sized gold particles (AuNPs) are of peculiar interest because their behaviors in an aqueous solution are sensitive to changes in environmental factors including the size and shape of the solute ions. In order to determine these important characteristics, we performed all-atom molecular dynamics simulations on the icosahedral Au144 nanoparticles each coated with a homogeneous set of 60 thiolates (4-mercaptobenzoate, pMBA) in eight aqueous solutions having ions of varying sizes and shapes (Na(+), K(+), tetramethylamonium cation TMA(+), tris-ammonium cation TRS(+), Cl(-), and OH(-)). For each solution, we computed the reversible work (potential of mean of force) to bring two nanoparticles together as a function of their separation distance. We found that the behavior of pMBA protected Au144 nanoparticles can be readily modulated by tuning their aqueous environmental factors (pH and solute ion combinations). We examined the atomistic details on how the sizes and shapes of solute ions quantitatively factor in the definitive characteristics of nanoparticle-environment and nanoparticle-nanoparticle interactions. We predict that tuning the concentrations of nonspherical composite ions such as TRS(+) in an aqueous solution of AuNPs be an effective means to modulate the aggregation propensity desired in biomedical and other applications of small charged nanoparticles.

  9. Mapping the formation areas of giant molybdenum blue clusters: a spectroscopic study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Botar, Bogdan; Ellern, Arkady; Kogerler, Paul

    2012-05-18

    The self-assembly of soluble molybdenum blue species from simple molybdate solutions has primarily been associated with giant mixed-valent wheel-shaped cluster anions, derived from the {MoV/VI154/176} archetypes, and a {MoV/VI368} lemon-shaped cluster. The combined use of Raman spectroscopy and kinetic precipitation as self-assembly monitoring techniques and single-crystal X-ray diffraction is key to mapping the realm of molybdenum blue species by establishing spherical {MoV/VI102}-type Keplerates as an important giant molybdenum blue-type species. We additionally rationalize the empirical effect of reducing agent concentration on the formation of all three relevant skeletal types: wheel, lemon and spheres. Whereas both wheels and the lemon-shaped {MoV/VI368}more » cluster are obtained from weakly reduced molybdenum blue solutions, considerably higher reduced solutions lead to {MoV/VI102}-type Keplerates.« less

  10. Modified resins for solid-phase extraction

    DOEpatents

    Fritz, James S.; Sun, Jeffrey J.

    1993-07-27

    A process of treating aqueous solutions to remove organic solute contaminants by contacting an aqueous solution containing polar organic solute contaminants with a functionalized polystyrene-divinyl benzene adsorbent resin, with the functionalization of said resin being accomplished by organic hydrophilic groups such as hydroxymethyl, acetyl and cyanomethyl.

  11. Modified resins for solid-phase extraction

    DOEpatents

    Fritz, James S.; Sun, Jeffrey J.

    1991-12-10

    A process of treating aqueous solutions to remove organic solute contaminants by contacting an aqueous solution containing polar organic solute contaminants with a functionalized polystyrene-divinyl benzene adsorbent resin, with the functionalization of said resin being accomplished by organic hydrophilic groups such as hydroxymethyl, acetyl and cyanomethyl.

  12. URANIUM RECOVERY PROCESS

    DOEpatents

    Hyman, H.H.; Dreher, J.L.

    1959-07-01

    The recovery of uranium from the acidic aqueous metal waste solutions resulting from the bismuth phosphate carrier precipitation of plutonium from solutions of neutron irradiated uranium is described. The waste solutions consist of phosphoric acid, sulfuric acid, and uranium as a uranyl salt, together with salts of the fission products normally associated with neutron irradiated uranium. Generally, the process of the invention involves the partial neutralization of the waste solution with sodium hydroxide, followed by conversion of the solution to a pH 11 by mixing therewith sufficient sodium carbonate. The resultant carbonate-complexed waste is contacted with a titanated silica gel and the adsorbent separated from the aqueous medium. The aqueous solution is then mixed with sufficient acetic acid to bring the pH of the aqueous medium to between 4 and 5, whereby sodium uranyl acetate is precipitated. The precipitate is dissolved in nitric acid and the resulting solution preferably provided with salting out agents. Uranyl nitrate is recovered from the solution by extraction with an ether such as diethyl ether.

  13. Diffusion of aqueous solutions of ionic, zwitterionic, and polar solutes

    NASA Astrophysics Data System (ADS)

    Teng, Xiaojing; Huang, Qi; Dharmawardhana, Chamila Chathuranga; Ichiye, Toshiko

    2018-06-01

    The properties of aqueous solutions of ionic, zwitterionic, and polar solutes are of interest to many fields. For instance, one of the many anomalous properties of aqueous solutions is the behavior of water diffusion in different monovalent salt solutions. In addition, solutes can affect the stabilities of macromolecules such as proteins in aqueous solution. Here, the diffusivities of aqueous solutions of sodium chloride, potassium chloride, tri-methylamine oxide (TMAO), urea, and TMAO-urea are examined in molecular dynamics simulations. The decrease in the diffusivity of water with the concentration of simple ions and urea can be described by a simple model in which the water molecules hydrogen bonded to the solutes are considered to diffuse at the same rate as the solutes, while the remainder of the water molecules are considered to be bulk and diffuse at almost the same rate as pure water. On the other hand, the decrease in the diffusivity of water with the concentration of TMAO is apparently affected by a decrease in the diffusion rate of the bulk water molecules in addition to the decrease due to the water molecules hydrogen bonded to TMAO. In other words, TMAO enhances the viscosity of water, while urea barely affects it. Overall, this separation of water molecules into those that are hydrogen bonded to solute and those that are bulk can provide a useful means of understanding the short- and long-range effects of solutes on water.

  14. Method and apparatus for measuring volatile compounds in an aqueous solution

    DOEpatents

    Gilmore, Tyler J [Pasco, WA; Cantrell, Kirk J [West Richland, WA

    2002-07-16

    The present invention is an improvement to the method and apparatus for measuring volatile compounds in an aqueous solution. The apparatus is a chamber with sides and two ends, where the first end is closed. The chamber contains a solution volume of the aqueous solution and a gas that is trapped within the first end of the chamber above the solution volume. The gas defines a head space within the chamber above the solution volume. The chamber may also be a cup with the second end. open and facing down and submerged in the aqueous solution so that the gas defines the head space within the cup above the solution volume. The cup can also be entirely submerged in the aqueous solution. The second end of the. chamber may be closed such that the chamber can be used while resting on a flat surface such as a bench. The improvement is a sparger for mixing the gas with the solution volume. The sparger can be a rotating element such as a propeller on a shaft or a cavitating impeller. The sparger can also be a pump and nozzle where the pump is a liquid pump and the nozzle is a liquid spray nozzle open, to the head space for spraying the solution volume into the head space of gas. The pump could also be a gas pump and the nozzle a gas nozzle submerged in the solution volume for spraying the head space gas into the solution volume.

  15. Comparison of cytotoxicity in vitro and irritation in vivo for aqueous and oily solutions of surfactants.

    PubMed

    Czajkowska-Kośnik, Anna; Wolska, Eliza; Chorążewicz, Juliusz; Sznitowska, Małgorzata

    2015-01-01

    The in vivo model on rabbit eyes and the in vitro cytotoxicity on fibroblasts were used to compare irritation effect of aqueous and oily (Miglyol 812) solutions of surfactants. Tween 20, Tween 80 and Cremophor EL were tested in different concentrations (0.1, 1 or 5%) and the in vitro test demonstrated that surfactants in oil are less cytotoxic than in aqueous solutions. In the in vivo study, the aqueous solutions of surfactants were characterized as non-irritant while small changes in conjunctiva were observed after application the oily solutions of surfactants and the preparations were classified as slightly irritant, however this effect was similar when Miglyol was applied alone. In conclusion, it is reported that the MTT assay does not correlate well with the Draize scores.

  16. Dielectric study of aqueous solutions of sodium dodecyl sulfate in the frequency span 20 Hz to 2 MHz

    NASA Astrophysics Data System (ADS)

    Kadve, A. M.; Vankar, H. P.; Rana, V. A.

    2017-05-01

    Dielectric measurements were carried out for aqueous solutions of Sodium Dodecyl Sulfate (SDS) in the frequency span of 20 Hz to 2 MHz at 300.15 K temperature using precision LCR meter. Also the refractive indices were measured for the solutions at 300.15 K temperature using Abbe's refractometer. The measurements were done for ten different concentrations of SDS in distilled water. Determined values of complex permittivity as a function of frequency were used to evaluate other parameters like loss tangent and electric modulus for the liquid samples. The permittivity at optical frequency were also calculated from the measured refractive indices for the aqueous solutions. The effect of concentration variation of SDS in the aqueous solutions on the determined parameters is discussed.

  17. Effective adsorption and collection of cesium from aqueous solution using graphene oxide grown on porous alumina

    NASA Astrophysics Data System (ADS)

    Entani, Shiro; Honda, Mitsunori; Shimoyama, Iwao; Li, Songtian; Naramoto, Hiroshi; Yaita, Tsuyoshi; Sakai, Seiji

    2018-04-01

    Graphene oxide (GO) with a large surface area was synthesized by the direct growth of GO on porous alumina using chemical vapor deposition to study the Cs adsorption mechanism in aqueous solutions. Electronic structure analysis employing in situ near-edge X-ray absorption fine structure spectroscopy and X-ray photoelectron spectroscopy measurements clarifies the Cs atoms bond via oxygen functional groups on GO in the aqueous solution. The Cs adsorption capacity was found to be as high as 650-850 mg g-1, which indicates that the GO/porous alumina acts as an effective adsorbent with high adsorption efficiency for radioactive nuclides in aqueous solutions.

  18. RECOVERY OF PROTACTINIUM FROM AQUEOUS SOLUTIONS

    DOEpatents

    Elson, R.E.

    1959-07-14

    The recovery of fluoride complexed protactinium from aqueous acidic solutions by solvent extraction is described. Generally the prccess of the invention com rises mixing an aqueous solution containing protactinium in a complexed form with an organic solvent which is specific for protactinium, such as diisopropyl carbinol, then decomposing the protactinium complex by adjusting the acidity of the aqueous solution to between 0-3 to 0-9 M in hydrogen ion concentration, and introducing a source of aluminum ions in sufficient quantity to establish a concentration of 0.5 to 1.2 M aluminum ion, whereupon decomposition of the protactinium fluoride complex takes place and the protactinium ion is taken up by the organic solvent phase.

  19. Process for recovering pertechnetate ions from an aqueous solution also containing other ions

    DOEpatents

    Rogers, Robin; Horwitz, E. Philip; Bond, Andrew H.

    1997-01-01

    A solid/liquid process for the separation and recovery of TcO.sub.4.sup.-1 ions from an aqueous solution is disclosed. The solid support comprises separation particles having surface-bonded poly(ethylene glycol) groups; whereas the aqueous solution from which the TcO.sub.4.sup.-1 ions are separated contains a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved salt. A solid/liquid phase admixture of separation particles containing bound TcO.sub.4.sup.-1 ions in such an aqueous solution that is free from MoO.sub.4.sup.-2 ions is also contemplated, as is a chromatography apparatus containing that solid/liquid phase admixture.

  20. Growth, structural, optical, piezoelectric and etching analysis of L-lysine p-nitrophenolate monohydrate single crystals

    NASA Astrophysics Data System (ADS)

    Alexandar, A.; Lakshmanan, A.; Sakthy Priya, S.; Surendran, P.; Rameshkumar, P.

    2017-09-01

    Nonlinear optical single crystals of L-lysine p-nitrophenolate monohydrate (LLPNP) were grown in aqueous solution by the slow evaporation solution technique (SEST). The grown crystals were subjected to powder X-ray diffraction analysis, (PXRD) and it was found that the title compound was crystallized in the orthorhombic crystal system with noncentrosymmetric space group of P212121. The vibrational frequencies of various functional groups present in the crystal were analyzed using the FTIR spectrum with a wavenumber range between 450 cm-1 and 4000 cm-1. The microhardness analysis of the sample revealed that the crystal belongs to the soft material category. Piezoelectric analysis was performed to measure the value of the piezoelectric (d33) coefficient. Blue light emission of the material was confirmed using the photoluminescence spectrum. Thermal stability of the grown crystal was analyzed using a melting point apparatus and it was found that the LLPNP is stable upto 175∘C. Etching analysis was performed at various durations, in order to identify the surface properties of the LLPNP crystal.

  1. Nanoscale Reaction Vessels Designed for Synthesis of Copper-Drug Complexes Suitable for Preclinical Development

    PubMed Central

    Wehbe, Mohamed; Anantha, Malathi; Backstrom, Ian; Leung, Ada; Chen, Kent; Malhotra, Armaan; Edwards, Katarina; Bally, Marcel B.

    2016-01-01

    The development of copper-drug complexes (CDCs) is hindered due to their very poor aqueous solubility. Diethyldithiocarbamate (DDC) is the primary metabolite of disulfiram, an approved drug for alcoholism that is being repurposed for cancer. The anticancer activity of DDC is dependent on complexation with copper to form copper bis-diethyldithiocarbamate (Cu(DDC)2), a highly insoluble complex that has not been possible to develop for indications requiring parenteral administration. We have resolved this issue by synthesizing Cu(DDC)2 inside liposomes. DDC crosses the liposomal lipid bilayer, reacting with the entrapped copper; a reaction that can be observed through a colour change as the solution goes from a light blue to dark brown. This method is successfully applied to other CDCs including the anti-parasitic drug clioquinol, the natural product quercetin and the novel targeted agent CX-5461. Our method provides a simple, transformative solution enabling, for the first time, the development of CDCs as viable candidate anticancer drugs; drugs that would represent a brand new class of therapeutics for cancer patients. PMID:27055237

  2. The novel measuring method for screening and assessing chromium content in clothes and shoes materials

    NASA Astrophysics Data System (ADS)

    Salerno-Kochan, R.

    2017-10-01

    The aim of this paper is to propose the bioindicative measuring method for screening and assessing the safety of textile and leather materials in relation to chemical threats. This method is based on toxicological assay in which Tetrahymena pyriformis, unicellular organism belonging to protozoans, is used as a test organism. For the realization of the research goal the sensitivity threshold of test organisms to chromium(VI) solutions was identified. The changes in cell development of test organisms in chromium solutions were registered by colorimetric measurements in the presence of alamarBlue® cell viability reagent. Empirical data enabled to fit logistic curves on the base of which the level of chromium toxicity was estimated. In the second step, harmfulness of aqueous extracts obtained from textile and leather samples containing chromium in relation to test organisms was evaluated. The performed research confirmed the high efficiency of the proposed method in screening and assessing chromium content in clothes and shoes materials and showed possibilities of using it in safety assessment of products with regard to chemical risks.

  3. Nanoscale Reaction Vessels Designed for Synthesis of Copper-Drug Complexes Suitable for Preclinical Development.

    PubMed

    Wehbe, Mohamed; Anantha, Malathi; Backstrom, Ian; Leung, Ada; Chen, Kent; Malhotra, Armaan; Edwards, Katarina; Bally, Marcel B

    2016-01-01

    The development of copper-drug complexes (CDCs) is hindered due to their very poor aqueous solubility. Diethyldithiocarbamate (DDC) is the primary metabolite of disulfiram, an approved drug for alcoholism that is being repurposed for cancer. The anticancer activity of DDC is dependent on complexation with copper to form copper bis-diethyldithiocarbamate (Cu(DDC)2), a highly insoluble complex that has not been possible to develop for indications requiring parenteral administration. We have resolved this issue by synthesizing Cu(DDC)2 inside liposomes. DDC crosses the liposomal lipid bilayer, reacting with the entrapped copper; a reaction that can be observed through a colour change as the solution goes from a light blue to dark brown. This method is successfully applied to other CDCs including the anti-parasitic drug clioquinol, the natural product quercetin and the novel targeted agent CX-5461. Our method provides a simple, transformative solution enabling, for the first time, the development of CDCs as viable candidate anticancer drugs; drugs that would represent a brand new class of therapeutics for cancer patients.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yudoyono, Gatut, E-mail: gyudoyono@physics.its.ac.id; Zharvan, Vicran; Ichzan, Nur

    Titanium dioxide (titania) nanoparticle were synthesized by coprecipitation process of titanium trichloride (TiCl{sub 3}) in aqueous medium, with NH{sub 4}OH as pH regulator. The pH solution was varied during the synthesis process between pH 3-8.4, and all samples were calcined temperature at 400°C for 3 hours. Characteristics and properties of the TiO{sub 2} powder were investigated using X-ray diffraction (XRD), Scanning Electron Microscopy (SEM). XRD results show that the single-phase rutile formed when the pH is less than 5, anatase single phase formed began pH 8, and the pH of the solution between 5-8 formed mixed phase rutile-anatase-brookite, rutile-brookite ormore » anatase-brookite. Methylene Blue (MB) photodegradation test were performed in order to evaluate photocatalytic activity. Nanoparticles TiO{sub 2} rutile, anatase phase, and mixed phase rutile-brookite, anatase-brookite used to test the photocatalytic activity by measuring the absorbance spectrum photodegradation using UV-Vis spectrometer. The test results showed that the mixture phase of rutile-brookite provide the greatest photodegradation than other phases.« less

  5. Method for selectively reducing plutonium values by a photochemical process

    DOEpatents

    Friedman, Horace A.; Toth, Louis M.; Bell, Jimmy T.

    1978-01-01

    The rate of reduction of Pu(IV) to Pu(III) in nitric acid solution containing a reducing agent is enhanced by exposing the solution to 200-500 nm electromagnetic radiation. Pu values are recovered from an organic extractant solution containing Pu(IV) values and U(VI) values by the method of contacting the extractant solution with an aqueous nitric acid solution in the presence of a reducing agent and exposing the aqueous solution to electromagnetic radiation having a wavelength of 200-500 nm. Under these conditions, Pu values preferentially distribute to the aqueous phase and U values preferentially distribute to the organic phase.

  6. Thermodynamic characteristics of protolytic equilibria of L-serine in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Kochergina, L. A.; Volkov, A. V.; Khokhlova, E. A.; Krutova, O. N.

    2011-05-01

    The heat effects of the reaction of aqueous solution of L-serine with aqueous solutions of HNO3 and KOH were determined by calorimetry at temperatures of 288.15, 298.15, and 308.15 K, and ionic strength values of 0.2, 0.5, and 1.0 (background electrolyte, KNO3). Standard thermodynamic characteristics (Δr H o, Δr G o, Δr S o, Δ C {/p o}) of the acid-base reactions in aqueous solutions of L-serine were calculated. The effect of the concentration of background electrolyte and temperature on the heats of dissociation of amino acid was considered. The combustion energy of L-serine by bomb calorimetry in the medium of oxygen was determined. The standard combustion and formation enthalpies of crystalline L-serine were calculated. The heats of dissolution of crystalline L-serine in water and solutions of potassium hydroxide at 298.15 K were measured by direct calorimetry. The standard enthalpies of formation of L-serine and products of its dissociation in aqueous solution were calculated.

  7. Dissecting ion-specific dielectric spectra of sodium-halide solutions into solvation water and ionic contributions.

    PubMed

    Rinne, Klaus F; Gekle, Stephan; Netz, Roland R

    2014-12-07

    Using extensive equilibrium molecular dynamics simulations we determine the dielectric spectra of aqueous solutions of NaF, NaCl, NaBr, and NaI. The ion-specific and concentration-dependent shifts of the static dielectric constants and the dielectric relaxation times match experimental results very well, which serves as a validation of the classical and non-polarizable ionic force fields used. The purely ionic contribution to the dielectric response is negligible, but determines the conductivity of the salt solutions. The ion-water cross correlation contribution is negative and reduces the total dielectric response by about 5%-10% for 1 M solutions. The dominating water dielectric response is decomposed into different water solvation shells and ion-pair configurations, by this the spectral blue shift and the dielectric decrement of salt solutions with increasing salt concentration is demonstrated to be primarily caused by first-solvation shell water. With rising salt concentration the simulated spectra show more pronounced deviations from a single-Debye form and can be well described by a Cole-Cole fit, in quantitative agreement with experiments. Our spectral decomposition into ionic and different water solvation shell contributions does not render the individual contributions more Debye-like, this suggests the non-Debye-like character of the dielectric spectra of salt solutions not to be due to the superposition of different elementary relaxation processes with different relaxation times. Rather, the non-Debye-like character is likely to be an inherent spectral signature of solvation water around ions.

  8. Recovery of alkali metal constituents from catalytic coal conversion residues

    DOEpatents

    Soung, W.Y.

    In a coal gasification operation (32) or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by contacting them with water or an aqueous solution to remove water-soluble alkali metal constituents and produce an aqueous solution enriched in said constituents. The aqueous solution thus produced is then contacted with carbon dioxide to precipitate silicon constituents, the pH of the resultant solution is increased, preferably to a value in the range between about 12.5 and about 15.0, and the solution of increased pH is evaporated to increase the alkali metal concentration. The concentrated aqueous solution is then recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.

  9. Efficient ensemble system based on the copper binding motif for highly sensitive and selective detection of cyanide ions in 100% aqueous solutions by fluorescent and colorimetric changes.

    PubMed

    Jung, Kwan Ho; Lee, Keun-Hyeung

    2015-09-15

    A peptide-based ensemble for the detection of cyanide ions in 100% aqueous solutions was designed on the basis of the copper binding motif. 7-Nitro-2,1,3-benzoxadiazole-labeled tripeptide (NBD-SSH, NBD-SerSerHis) formed the ensemble with Cu(2+), leading to a change in the color of the solution from yellow to orange and a complete decrease of fluorescence emission. The ensemble (NBD-SSH-Cu(2+)) sensitively and selectively detected a low concentration of cyanide ions in 100% aqueous solutions by a colorimetric change as well as a fluorescent change. The addition of cyanide ions instantly removed Cu(2+) from the ensemble (NBD-SSH-Cu(2+)) in 100% aqueous solutions, resulting in a color change of the solution from orange to yellow and a "turn-on" fluorescent response. The detection limits for cyanide ions were lower than the maximum allowable level of cyanide ions in drinking water set by the World Health Organization. The peptide-based ensemble system is expected to be a potential and practical way for the detection of submicromolar concentrations of cyanide ions in 100% aqueous solutions.

  10. Process for extracting technetium from alkaline solutions

    DOEpatents

    Moyer, Bruce A.; Sachleben, Richard A.; Bonnesen, Peter V.

    1995-01-01

    A process for extracting technetium values from an aqueous alkaline solution containing at least one alkali metal hydroxide and at least one alkali metal nitrate, the at least one alkali metal nitrate having a concentration of from about 0.1 to 6 molar. The solution is contacted with a solvent consisting of a crown ether in a diluent for a period of time sufficient to selectively extract the technetium values from the aqueous alkaline solution. The solvent containing the technetium values is separated from the aqueous alkaline solution and the technetium values are stripped from the solvent.

  11. Bidentate organophosphorus solvent extraction process for actinide recovery and partition

    DOEpatents

    Schulz, Wallace W.

    1976-01-01

    A liquid-liquid extraction process for the recovery and partitioning of actinide values from acidic nuclear waste aqueous solutions, the actinide values including trivalent, tetravalent and hexavalent oxidation states is provided and includes the steps of contacting the aqueous solution with a bidentate organophosphorous extractant to extract essentially all of the actinide values into the organic phase. Thereafter the respective actinide fractions are selectively partitioned into separate aqueous solutions by contact with dilute nitric or nitric-hydrofluoric acid solutions. The hexavalent uranium is finally removed from the organic phase by contact with a dilute sodium carbonate solution.

  12. Adsorption of Cu(II) from aqueous solution on sulfuric acid treated palygorskite

    NASA Astrophysics Data System (ADS)

    Niu, Yan-Ning; Yuan, Yuan; Gao, Wei-Xin; Qian, Sheng; Sun, Wen

    2018-03-01

    The absorption behavior of Cu2+ from aqueous solution on sulfuric acid treated palygorskite were investigated, the results showed that palygorskite had high absorption ability for Cu2+ from aqueous solution. Effects of the shaking time, pH and the copper ion concentration on the removal rate were discussed. The absorption behavior of Cu2+ could be well imitated by the Langmuir isothermal equation.

  13. Water purification using organic salts

    DOEpatents

    Currier, Robert P.

    2004-11-23

    Water purification using organic salts. Feed water is mixed with at least one organic salt at a temperature sufficiently low to form organic salt hydrate crystals and brine. The crystals are separated from the brine, rinsed, and melted to form an aqueous solution of organic salt. Some of the water is removed from the aqueous organic salt solution. The purified water is collected, and the remaining more concentrated aqueous organic salt solution is reused.

  14. Structural and spectroscopic studies of a rare non-oxido V(v) complex crystallized from aqueous solution

    DOE PAGES

    Leggett, Christina J.; Parker, Bernard F.; Teat, Simon J.; ...

    2016-01-14

    A “bare” V 5+ complex with glutaroimide-dioxime (H 3L), a ligand for uranium recovery from seawater, was synthesized from aqueous solution as Na[V(L) 2]2H 2O and the structure determined by x-ray diffraction. It is the first non-oxo V(v) complex that has been directly synthesized in and crystallized from aqueous solution.

  15. Measurement of Surface Forces

    DTIC Science & Technology

    1990-11-16

    creating an electrical double-layer whenever a bare mica surface is in contact with an aqueous solution . The mica/electrolyte double-layer...between mica in aqueous solutions containing 10-5 to I M KNO 3 (From Reference 44. Copyright 0 1985 Royal Swedish Academy. Reprinted with permission of...can be observed in aqueous KNO 3 solutions at close separations and at high ion concentrations. For example, if the force curves in Figure 8 (top) for

  16. Structural and spectroscopic studies of a rare non-oxido V(v) complex crystallized from aqueous solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leggett, Christina J.; Parker, Bernard F.; Teat, Simon J.

    A “bare” V 5+ complex with glutaroimide-dioxime (H 3L), a ligand for uranium recovery from seawater, was synthesized from aqueous solution as Na[V(L) 2]2H 2O and the structure determined by x-ray diffraction. It is the first non-oxo V(v) complex that has been directly synthesized in and crystallized from aqueous solution.

  17. Sorption of 4-carboxyquinoline derivatives from aqueous acetonitrile solutions on the surface of porous graphitized carbon

    NASA Astrophysics Data System (ADS)

    Savchenkova, A. S.; Buryak, A. K.; Kurbatova, S. V.

    2015-09-01

    The sorption of 4-carboxyquinoline derivatives from aqueous acetonitrile solutions on porous graphitized carbon was studied. The effect of the structure of analyte molecules and the eluent composition on the characteristics of retention under the conditions of RP HPLC was analyzed. The effect of pH of the eluent on the shift of equilibrium in aqueous acetonitrile solutions was investigated.

  18. ADSORPTION PROCEDURE IN PREPARING U$sup 23$$sup 3$

    DOEpatents

    Stoughton, R.W.

    1958-10-14

    A process is presented for the separation of protoactinium and thorium from an aqueous nitric acid solution containing these metals. It comprises contacting the solution with a cation exchange phenol-formaldehyde resin containing sulfonic acid groups, and eluting the adsorbed thorium from the resin by means of aqueous nitric acid. Thereafter the adsorbed protoactinium is eluted from the resin by means of an aqueous solution of ammonium fluoride.

  19. Sonocatalytic degradation of methylene blue by a novel graphene quantum dots anchored CdSe nanocatalyst.

    PubMed

    Sajjadi, Saeed; Khataee, Alireza; Kamali, Mehdi

    2017-11-01

    Cadmium selenide/graphene quantum dots (CdSe/GQDs) nanocatalyst with small band gap energy and a large specific surface area was produced via a facile three-step sonochemical-hydrothermal process. The features of the as-prepared CdSe, GQDs and CdSe/GQDs samples were characterized by photoluminescence spectroscopy (PL), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), X-ray diffraction (XRD), Fourier transformed infrared (FT-IR), diffuse-reflectance spectrophotometer (DRS), and Brunauer-Emmett-Teller (BET) analysis. The sonocatalytic activity of the synthesized CdSe/GQDs was effectively accelerated compared with that of pure CdSe nanoparticles in degradation of methylene blue (MB). The influence of the CdSe/GQDs dosage (0.25-1.25g/L), initial MB concentration (20-30mg/L), initial solution pH (3-12), and ultrasonic output power (200-600W/L) were examined on the sonocatalytic treatment of MB aqueous solutions. The degradation efficiency (DE%) of 99% attained at 1g/L of CdSe/GQDs, 20mg/L of MB, pH of 9, and an output power of 200W/L at 90min of ultrasonic irradiation. Furthermore, DE% increased with addition of K 2 S 2 O 8 and H 2 O 2 as the enhancers via producing more free radicals. However, addition of sulfate, carbonate, and chloride as radical sweeper decreased DE%. Furthermore, well-reusability of the CdSe/GQDs sonocatalyst was demonstrated for 5 successive runs and some of the sonocatalytic generated intermediates were indicated by GC-MS analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Better detection of Demodex mites by Löffler's alkaline methylene blue staining in patients with blepharitis.

    PubMed

    Kiuchi, Katsuji

    2018-01-01

    To determine whether the Löffler's alkaline methylene blue staining method is better than no staining in detecting Demodex mites in the eyelashes of patients with blepharitis. Eyelashes were collected from 22 patients with blepharitis. The mean age of the patients was 82.5±6.2 years (± SD) with a range from 71 to 93 years. Eyelashes were epilated by forceps and placed individually on microscope slides. The number of Demodex mites was determined by conventional optical microscopy before and immediately after the addition of the methylene blue staining solution. The mean Demodex count before the addition of the methylene blue solution was 2.9±2.9, and it was 4.4±3.9 after the addition of the methylene blue solution ( P <0.01, Wilcoxon test). The methylene blue staining method is a simple and useful method in detecting the presence and quantifying the number of Demodex mites. We recommend the methylene blue staining method not only for the diagnosis of the presence of Demodex mites but also to evaluate the therapeutic effects of medications to eliminate the mite infestation.

  1. Better detection of Demodex mites by Löffler’s alkaline methylene blue staining in patients with blepharitis

    PubMed Central

    Kiuchi, Katsuji

    2018-01-01

    Purpose To determine whether the Löffler’s alkaline methylene blue staining method is better than no staining in detecting Demodex mites in the eyelashes of patients with blepharitis. Materials and methods Eyelashes were collected from 22 patients with blepharitis. The mean age of the patients was 82.5±6.2 years (± SD) with a range from 71 to 93 years. Eyelashes were epilated by forceps and placed individually on microscope slides. The number of Demodex mites was determined by conventional optical microscopy before and immediately after the addition of the methylene blue staining solution. Results The mean Demodex count before the addition of the methylene blue solution was 2.9±2.9, and it was 4.4±3.9 after the addition of the methylene blue solution (P<0.01, Wilcoxon test). Conclusion The methylene blue staining method is a simple and useful method in detecting the presence and quantifying the number of Demodex mites. We recommend the methylene blue staining method not only for the diagnosis of the presence of Demodex mites but also to evaluate the therapeutic effects of medications to eliminate the mite infestation. PMID:29713140

  2. KDP Aqueous Solution-in-Oil Microemulsion for Ultra-Precision Chemical-Mechanical Polishing of KDP Crystal

    PubMed Central

    Dong, Hui; Wang, Lili; Gao, Wei; Li, Xiaoyuan; Wang, Chao; Ji, Fang; Pan, Jinlong; Wang, Baorui

    2017-01-01

    A novel functional KH2PO4 (KDP) aqueous solution-in-oil (KDP aq/O) microemulsion system for KDP crystal ultra-precision chemical-mechanical polishing (CMP) was prepared. The system, which consisted of decanol, Triton X-100, and KH2PO4 aqueous solution, was available at room temperature. The functional KDP aq/O microemulsion system was systematically studied and applied as polishing solution to KDP CMP technology. In this study, a controlled deliquescent mechanism was proposed for KDP polishing with the KDP aq/O microemulsion. KDP aqueous solution, the chemical etchant in the polishing process, was caged into the micelles in the microemulsion, leading to a limitation of the reaction between the KDP crystal and KDP aqueous solution only if the microemulsion was deformed under the effect of the external force. Based on the interface reaction dynamics, KDP aqueous solutions with different concentrations (cKDP) were applied to replace water in the traditional water-in-oil (W/O) microemulsion. The practicability of the controlled deliquescent mechanism was proved by the decreasing material removal rate (MRR) with the increasing of the cKDP. As a result, the corrosion pits on the KDP surface were avoided to some degree. Moreover, the roughnesses of KDP with KDP aq/O microemulsion (cKDP was changed from 10 mM to 100 mM) as polishing solutions were smaller than that with the W/O microemulsion. The smallest surface root-mean-square roughness of 1.5 nm was obtained at a 30 mmol/L KDP aq solution, because of the most appropriate deliquescent rate and MRR. PMID:28772632

  3. KDP Aqueous Solution-in-Oil Microemulsion for Ultra-Precision Chemical-Mechanical Polishing of KDP Crystal.

    PubMed

    Dong, Hui; Wang, Lili; Gao, Wei; Li, Xiaoyuan; Wang, Chao; Ji, Fang; Pan, Jinlong; Wang, Baorui

    2017-03-09

    A novel functional KH₂PO₄ (KDP) aqueous solution-in-oil (KDP aq/O) microemulsion system for KDP crystal ultra-precision chemical-mechanical polishing (CMP) was prepared. The system, which consisted of decanol, Triton X-100, and KH₂PO₄ aqueous solution, was available at room temperature. The functional KDP aq/O microemulsion system was systematically studied and applied as polishing solution to KDP CMP technology. In this study, a controlled deliquescent mechanism was proposed for KDP polishing with the KDP aq/O microemulsion. KDP aqueous solution, the chemical etchant in the polishing process, was caged into the micelles in the microemulsion, leading to a limitation of the reaction between the KDP crystal and KDP aqueous solution only if the microemulsion was deformed under the effect of the external force. Based on the interface reaction dynamics, KDP aqueous solutions with different concentrations ( c KDP ) were applied to replace water in the traditional water-in-oil (W/O) microemulsion. The practicability of the controlled deliquescent mechanism was proved by the decreasing material removal rate (MRR) with the increasing of the c KDP . As a result, the corrosion pits on the KDP surface were avoided to some degree. Moreover, the roughnesses of KDP with KDP aq/O microemulsion ( c KDP was changed from 10 mM to 100 mM) as polishing solutions were smaller than that with the W/O microemulsion. The smallest surface root-mean-square roughness of 1.5 nm was obtained at a 30 mmol/L KDP aq solution, because of the most appropriate deliquescent rate and MRR.

  4. Aqueous solutions of acidic ionic liquids for enhanced stability of polyoxometalate-carbon supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Hu, Chenchen; Zhao, Enbo; Nitta, Naoki; Magasinski, Alexandre; Berdichevsky, Gene; Yushin, Gleb

    2016-09-01

    Nanocomposites based on polyoxometalates (POMs) nanoconfined in microporous carbons have been synthesized and used as electrodes for supercapacitors. The addition of the pseudocapacitance from highly reversible redox reaction of POMs to the electric double-layer capacitance of carbon lead to an increase in specific capacitance of ∼90% at 1 mV s-1. However, high solubility of POM in traditional aqueous electrolytes leads to rapid capacity fading. Here we demonstrate that the use of aqueous solutions of protic ionic liquids (P-IL) as electrolyte instead of aqueous sulfuric acid solutions offers an opportunity to significantly improve POM cycling stability. Virtually no degradation in capacitance was observed in POM-based positive electrode after 10,000 cycles in an asymmetric capacitor with P-IL aqueous electrolyte. As such, POM-based carbon composites may now present a viable solution for enhancing energy density of electrical double layer capacitors (EDLC) based on pure carbon electrodes.

  5. Ceramic porous material and method of making same

    DOEpatents

    Liu, Jun; Kim, Anthony Y.; Virden, Jud W.

    1997-01-01

    The invention is a mesoporous ceramic membrane having substantially uniform pore size. Additionally, the invention includes aqueous and non-aqueous processing routes to making the mesoporous ceramic membranes. According to one aspect of the present invention, inserting a substrate into a reaction chamber at pressure results in reaction products collecting on the substrate and forming a membrane thereon. According to another aspect of the present invention, a second aqueous solution that is sufficiently immiscible in the aqueous solution provides an interface between the two solutions whereon the mesoporous membrane is formed. According to a further aspect of the present invention, a porous substrate is placed at the interface between the two solutions permitting formation of a membrane on the surface or within the pores of the porous substrate. According to yet another aspect of the present invention, mesoporous ceramic materials are formed using a non-aqueous solvent and water-sensitive precursors.

  6. Ceramic porous material and method of making same

    DOEpatents

    Liu, J.; Kim, A.Y.; Virden, J.W.

    1997-07-08

    The invention is a mesoporous ceramic membrane having substantially uniform pore size. Additionally, the invention includes aqueous and non-aqueous processing routes to making the mesoporous ceramic membranes. According to one aspect of the present invention, inserting a substrate into a reaction chamber at pressure results in reaction products collecting on the substrate and forming a membrane thereon. According to another aspect of the present invention, a second aqueous solution that is sufficiently immiscible in the aqueous solution provides an interface between the two solutions whereon the mesoporous membrane is formed. According to a further aspect of the present invention, a porous substrate is placed at the interface between the two solutions permitting formation of a membrane on the surface or within the pores of the porous substrate. According to yet another aspect of the present invention, mesoporous ceramic materials are formed using a non-aqueous solvent and water-sensitive precursors. 21 figs.

  7. Antiscalant properties of Spergularia rubra and Parietaria officinalis aqueous solutions

    NASA Astrophysics Data System (ADS)

    Cheap-Charpentier, Hélène; Gelus, Dominique; Pécoul, Nathalie; Perrot, Hubert; Lédion, Jean; Horner, Olivier; Sadoun, Jonathan; Cachet, Xavier; Litaudon, Marc; Roussi, Fanny

    2016-06-01

    The formation of calcium carbonate in water has important implications in industry. Chemical antiscalant is usually used to control scale depositions. Plant extracts have been recently used as new green antiscalant agents, as they can be easily prepared and are environmentally friendly. In this study, stock aqueous solutions of Spergularia rubra and Parietaria officinalis, two plants used in traditional medicine to treat or prevent urolithiasis, were obtained by infusion. The antiscaling properties of these extracts towards CaCO3 formation were tested by using chronoamperometry and Fast Controlled Precipitation methods. The aqueous solution of S. rubra was further fractionated to isolate compounds of lower polarity. Their efficiency towards CaCO3 precipitation was characterized by Fast Controlled Precipitation method. The inhibiting efficiency of this fractionated solution was greater than that of the stock aqueous solution.

  8. SEPARATION PROCESS FOR TRANSURANIC ELEMENT AND COMPOUNDS THEREOF

    DOEpatents

    Magnusson, L.B.

    1958-04-01

    A process is described for the separation of neptunium, from aqueous solutions of neptunium, plutonium, uraniunn, and fission prcducts. This separation from an acidic aqueous solution of a tetravalent neptuniunn can be made by contacting the solution with a certain type of chelating,; agent, preferably dissolved in an organic solvent, to form a neptunium chelate compound. When the organic solvent is present, the neptunium chelate compound is extracted; otherwise, it precipitates from the aqueous solution and is separated by any suitable means. The chelating agent is a fluorinated BETA -diketone. such as trifluoroacetyl acetone.

  9. Radiolysis of aqueous solutions of thiamine

    NASA Astrophysics Data System (ADS)

    Chijate, C.; Albarran, G.; Negron-Mendoza, A.

    1998-06-01

    The results of the radiolysis of aqueous solutions of thiamine (vitamin B 1) are presented. The yields for decomposition of thiamine and the product of radiolytic products were determined. The G values decrease as the dose increases. Some radiolytic products were identified. Decomposition of thiamine was slightly dependent on the presence of oxygen and on the pH of the solution. At pH 4.4 with a concentration of 2.5 × 10 -4 mol L -1 of thiamine in an oxygen free aqueous solution, the G 0 value for decomposition is 5.0.

  10. ION EXCHANGE PROCESS FOR THE RECOVERY AND PURIFICATION OF MATERIALS

    DOEpatents

    Long, R.S.; Bailes, R.H.

    1958-04-15

    A process for the recovery of certain metallic ions from aqueous solutions by ion exchange techniques is described. It is applicable to elements such as vanadium, chromium, nnanganese, and the like, which are capable of forming lower valent cations soluble in aqueous solutions and which also form ldgher valent anions soluble in aqueous acidic solutions. For example, small amounts of vanadium occurring in phosphoric acid prepared from phosphate rock may be recovered by reducing the vanadium to a trivalent cation adsorbing; the vanadium in a cationic exchange resin, then treating the resin with a suitable oxidizing agent to convert the adsorbed vanadium to a higher valent state, and finally eluting; the vanadium as an anion from the resin by means of an aqueous acidic solution.

  11. Removal of copper ions from aqueous solutions by a steel-making by-product.

    PubMed

    López, F A; Martín, M I; Pérez, C; López-Delgado, A; Alguacil, F J

    2003-09-01

    A study is made of the use of a steel-making by-product (rolling mill scale) as a material for removing Cu(2+) ions from aqueous solutions. The influence of contact time, initial copper ion concentration and temperature on removal capability is considered. The removal of Cu(2+) ions from an aqueous solution involves two processes: on the one hand, the adsorption of Cu(2+) ions on the surface of mill scale due to the iron oxides present in the latter; and on the other hand, the cementation of Cu(2+) onto metallic iron contained in the mill scale. Rolling mill scale is seen to be an effective material for the removal of copper ions from aqueous solutions.

  12. Process for recovering pertechnetate ions from an aqueous solution also containing other ions

    DOEpatents

    Rogers, R.; Horwitz, E.P.; Bond, A.H.

    1997-02-18

    A solid/liquid process for the separation and recovery of TcO{sub 4}{sup {minus}1} ions from an aqueous solution is disclosed. The solid support comprises separation particles having surface-bonded poly(ethylene glycol) groups; whereas the aqueous solution from which the TcO{sub 4}{sup {minus}1} ions are separated contains a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved salt. A solid/liquid phase admixture of separation particles containing bound TcO{sub 4}{sup {minus}1} ions in such an aqueous solution that is free from MoO{sub 4}{sup {minus}2} ions is also contemplated, as is a chromatography apparatus containing that solid/liquid phase admixture. 15 figs.

  13. Supercooling of aqueous dimethylsulfoxide solution at normal and high pressures: Evidence for the coexistence of phase-separated aqueous dimethylsulfoxide solutions of different water structures.

    PubMed

    Kanno, H; Kajiwara, K; Miyata, K

    2010-05-21

    Supercooling behavior of aqueous dimethylsulfoxide (DMSO) solution was investigated as a function of DMSO concentration and at high pressures. A linear relationship was observed for T(H) (homogeneous ice nucleation temperature) and T(m) (melting temperature) for the supercooling of aqueous DMSO solution at normal pressure. Analysis of the DTA (differential thermal analysis) traces for homogeneous ice crystallization in the bottom region of the T(H) curve for a DMSO solution of R=20 (R: moles of water/moles of DMSO) at high pressures supported the contention that the second critical point (SCP) of liquid water should exist at P(c2)= approximately 200 MPa and at T(c2)<-100 degrees C (P(c2): pressure of SCP, T(c2): temperature of SCP). The presence of two T(H) peaks for DMSO solutions (R=15, 12, and 10) suggests that phase separation occurs in aqueous DMSO solution (R

  14. Supercooling of aqueous dimethylsulfoxide solution at normal and high pressures: Evidence for the coexistence of phase-separated aqueous dimethylsulfoxide solutions of different water structures

    NASA Astrophysics Data System (ADS)

    Kanno, H.; Kajiwara, K.; Miyata, K.

    2010-05-01

    Supercooling behavior of aqueous dimethylsulfoxide (DMSO) solution was investigated as a function of DMSO concentration and at high pressures. A linear relationship was observed for TH (homogeneous ice nucleation temperature) and Tm (melting temperature) for the supercooling of aqueous DMSO solution at normal pressure. Analysis of the DTA (differential thermal analysis) traces for homogeneous ice crystallization in the bottom region of the TH curve for a DMSO solution of R =20 (R: moles of water/moles of DMSO) at high pressures supported the contention that the second critical point (SCP) of liquid water should exist at Pc2=˜200 MPa and at Tc2<-100 °C (Pc2: pressure of SCP, Tc2: temperature of SCP). The presence of two TH peaks for DMSO solutions (R =15, 12, and 10) suggests that phase separation occurs in aqueous DMSO solution (R ≤15) at high pressures and low temperatures (<-90 °C). The pressure dependence of the two TH curves for DMSO solutions of R =10 and 12 indicates that the two phase-separated components in the DMSO solution of R =10 have different liquid water structures [LDL-like and HDL-like structures (LDL: low-density liquid water, HDL: high-density liquid water)] in the pressure range of 120-230 MPa.

  15. Enthalpic parameters of interaction between diglycylglycine and polyatomic alcohols in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Mezhevoi, I. N.; Badelin, V. G.

    2015-12-01

    Integral enthalpies of solution Δsol H m of diglycylglycine in aqueous solutions of glycerol, ethylene glycol, and 1,2-propylene glycol are measured via solution calorimetry. The experimental data are used to calculate the standard enthalpies of solution (Δsol H°) and transfer (Δtr H°) of the tripeptide from water to aqueous solutions of polyatomic alcohols. The enthalpic pairwise coefficients h xy of interactions between the tripeptide and polyatomic alcohol molecules are calculated using the McMillan-Mayer solution theory and are found to have positive values. The findings are discussed using the theory of estimating various types of interactions in ternary systems and the effect the structural features of interacting biomolecules have on the thermochemical parameters of diglycylglycine dissolution.

  16. PROCESS FOR SEPARATING PLUTONIUM BY REPEATED PRECIPITATION WITH AMPHOTERIC HYDROXIDE CARRIERS

    DOEpatents

    Faris, B.F.

    1960-04-01

    A multiple carrier precipitation method is described for separating and recovering plutonium from an aqueous solution. The hydroxide of an amphoteric metal is precipitated in an aqueous plutonium-containing solution. This precipitate, which carries plutonium, is then separated from the supernatant liquid and dissolved in an aqueous hydroxide solution, forming a second plutonium- containing solution. lons of an amphoteric metal which forms an insoluble hydroxide under the conditions existing in this second solution are added to the second solution. The precipitate which forms and which carries plutonium is separated from the supernatant liquid. Amphoteric metals which may be employed are aluminum, bibmuth, copper, cobalt, iron, lanthanum, nickel, and zirconium.

  17. Mechanistic roles of soil humus and minerals in the sorption of nonionic organic compounds from aqueous and organic solutions

    USGS Publications Warehouse

    Chiou, C.T.; Shoup, T.D.; Porter, P.E.

    1985-01-01

    Mechanistic roles of soil humus and soil minerals and their contributions to soil sorption of nonionic organic compounds from aqueous and organic solutions are illustrated. Parathion and lindane are used as model solutes on two soils that differ greatly in their humic and mineral contents. In aqueous systems, observed sorptive characteristics suggest that solute partitioning into the soil-humic phase is the primary mechanism of soil uptake. By contrast, data obtained from organic solutions on dehydrated soil partitioning into humic phase and adsorption by soil minerals is influenced by the soil-moisture content and by the solvent medium from which the solute is sorbed. ?? 1985.

  18. Biosynthesis of palladium nanoparticles by using Moringa oleifera flower extract and their catalytic and biological properties.

    PubMed

    Anand, K; Tiloke, C; Phulukdaree, A; Ranjan, B; Chuturgoon, A; Singh, S; Gengan, R M

    2016-12-01

    The biosynthesis of nanostructured biopalladium nanoparticles (PdNPs) from an aqueous solution of crystalline palladium acetate is reported. For the synthesised PdNPs in solution, an agroforest biomass waste petal of Moringa oleifera derived bis-phthalate was used as natural reducing and biocapping agents. Continuous absorption in the UV region and subsequent brown colour change confirmed the formation of PdNPs. A strong surface plasmon peak for PdNPs occurred at 460nm. PdNPs were characterized by SEM with EDX, FTIR, TEM and DLS. The chemical composition of the aqueous extract was determined by GC-MS coupled with FTIR and 1 NMR. The catalytic degradation effect by PdNPs on industrial organic toxic effluents p-nitrophenol (PNP) and methylene blue dye was monitored by UV Spectroscopy. On the other hand PdNPs catalysed the base mediated suzuki coupling reaction for biphenyl synthesis, in water. Moreover, PdNPs were found to be reusable catalysts. Toxicity studies of PdNPs showed that the death of brine shrimp to be <50%. Therefore, PdNPs displayed potential for further anticancer studies via tumour cell lines. The in vitro cytotoxicity evaluation of the extract capped nanoparticles was carried out using human lung carcinoma cells (A549) and peripheral lymphocytes normal cells by MTT cell viability assay. Also, PdNPs showed antibacterial activity against Enterococcus faecalis among the different tested strains, including Bacillus cereus, Staphylococcus aureus, Esherichia coli and Candida albicans, Candida utilis. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Application of magnetic ionomer for development of very fast and highly efficient uptake of triazo dye Direct Blue 71 form different water samples.

    PubMed

    Khani, Rouhollah; Sobhani, Sara; Beyki, Mostafa Hossein; Miri, Simin

    2018-04-15

    This research focuses on removing Direct Blue 71 (DB 71) from aqueous solution in an efficient and very fast route by ionic liquid mediated γ-Fe 2 O 3 magnetic ionomer. 2-hydroxyethylammonium sulphonate immobilized on γ-Fe 2 O 3 nanoparticles (γ-Fe 2 O 3 -2-HEAS) was used for this purpose. The influence of shaking time, medium pH, the concentration of sorbent and NaNO 3 on removal was evaluated to greatly influence removal extent. The optimal removal conditions were determined by response surface methodology based on the four-variable central composite design to obtain maximum removal efficiency and determine the significance and interaction effect of the variables on the removal of target triazo dye. The results have shown that an amount of 98.2% as % removal under the optimum conditions. The adsorption kinetics and isotherms were well fitted to a pseudo-second order model and Freundlich model, respectively. Based on these models, the maximum dye adsorption capacity (Q m ) of 47.60mgg -1 was obtained. Finally, the proposed nano-adsorbent was applied satisfactorily for removal of target triazo dye from different water samples. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Elimination of reactive blue 4 from aqueous solutions using 3-aminopropyl triethoxysilane modified chitosan beads.

    PubMed

    Vakili, Mohammadtaghi; Rafatullah, Mohd; Salamatinia, Babak; Ibrahim, Mahamad Hakimi; Abdullah, Ahmad Zuhairi

    2015-11-05

    The adsorption behavior of chitosan (CS) beads modified with 3-aminopropyl triethoxysilane (APTES) for the removal of reactive blue 4 (RB4) in batch studies has been investigated. The effects of modification conditions, such as the APTES concentration, temperature and reaction time on RB4 removal, were studied. The adsorbent prepared at a concentration of 2 wt% APTES for 8h at 50 °C was the most effective one for RB4 adsorption. The adsorption capacity of modified CS beads (433.77 mg/g) was 1.37 times higher than that of unmodified CS beads (317.23 mg/g). The isotherm data are adequately described by a Freundlich model, and the kinetic study revealed that the pseudo-second-order rate model was in better agreement with the experimental data. The negative values of the thermodynamic parameters, including ΔG° (-2.28 and -4.70 kJ/mol at 30 ± 2 °C), ΔH° (-172.18 and -43.82 kJ/mol) and ΔS° (-560.71 and -129.08 J/mol K) for CS beads and APTES modified beads, respectively, suggest that RB4 adsorption is a spontaneous and exothermic process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Gold-plasmon enhanced photocatalytic performance of anatase titania nanotubes under visible-light irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Bingyang; He, Dawei, E-mail: dwhe@bjtu.edu.cn; Wang, Wenshuo

    2016-02-15

    Highlights: • APTMS/(TNTs-Au) was synthesized using a deposition-precipitation process. • APTMS/(TNTs-Au) showed superior visible light activity for the degradation of methylene blue. • The electromagnetic field distribution at the interface between TNTs and Au NPs were estimated by the 3D finite-difference time domain simulation. • The working mechanism of the photocatalytic activity of APTMS/(TNTs-Au) was illustrated. - Abstract: [3-Aminopropyl]trimethoxysilane-modified titania nanotubes decorated with Au nanoparticles (APTMS/(TNTs-Au)) nanocomposites were synthesized using a deposition-precipitation process. The results showed that Au nanoparticles (NPs) in the metallic state were firmly adhered to the surface of the anatase TNTs. APTMS/(TNTs-Au) exhibited great photocatalytic activities whichmore » were evaluated from the degradation rate of methylene blue aqueous solution under visible light irradiation. 3D finite-difference time domain simulation was performed to estimate the electromagnetic field distribution at the interface between TNTs and Au NPs. The visible photocatalytic activity of APTMS/(TNTs-Au) was largely attributed to the surface plasmon absorption of metallic Au NPs, which generated and transferred hot electrons to the CB of TNTs. In addition, the hot electrons on the surface of TNTs also suppressed the radiative electron–hole recombination and consequently enhanced the photocatalytic activity.« less

  2. Biosorption of textile dye reactive blue 221 by capia pepper (Capsicum annuum L.) seeds.

    PubMed

    Gürel, Levent

    2017-04-01

    Peppers are very important foodstuffs in the world for direct and indirect consumption, so they are extensively used. The seeds of these peppers are waste materials that are disposed of from houses and factories. To evaluate the performance of this biomass in the treatment of wastewaters, a study was conducted to remove a textile dye, reactive blue 221, which is commercially used in textile mills. Raw seed materials were used without any pre-treatment. The effects of contact time, initial concentration of dye, pH and dose of biosorbent were studied to determine the optimum conditions for this biomass on color removal from wastewaters. The optimum pH value for dye biosorption was found to be 2.0. At an initial dye concentration of 217 mg L -1 , treatment efficiency and biosorption capacity were 96.7% and 95.35 mg g -1 , respectively. A maximum biosorption capacity of 142.86 mg g -1 was also obtained. Equilibrium biosorption of dye by capia seeds was well described by the Langmuir isotherm with a correlation coefficient above 99%. The biosorption process was also successfully explained with the pseudo-second order kinetic model. This biomass was found to be effective in terms of textile dye removal from aqueous solutions.

  3. Controllable preparation of flower-like brookite TiO{sub 2} nanostructures via one-step hydrothermal method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, Yunling; College of Science, Civil Aviation University of China, Tianjin 300300; Tan, Xin

    Highlights: • Flower-like brookite TiO{sub 2} structures were prepared by hydrothermal method. • PVP not only acted as a dispersant but also stabilized the layered structure. • The resulted brookite TiO{sub 2} showed high photocatalytic activity under UV irradiation. - Abstract: Flower-like brookite TiO{sub 2} nanostructures were controllable prepared by a one-step hydrothermal method by changing experimental conditions, such as hydrothermal temperature, reaction time and the amount of polyvinylpyrrolidone. The photocatalytic activities of the samples were investigated by degradation of methylene blue (MB) in aqueous solution under UV light irradiation. It was found that the formation of brookite TiO{sub 2}more » nanostructures with various morphologies could be well controlled by the adjustment of hydrothermal temperature, reaction time and the amount of surfactant, and the morphology of the products changed from spindle-like structures to flower-like structures with the increase of hydrothermal temperature, reaction time and the amount of surfactant. The photocatalytic tests indicate that the flower-like brookite TiO{sub 2} nanostructures shows high photocatalytic activity in degradation of methylene blue (MB) under UV light irradiation. The formation mechanism of flower-like brookite TiO{sub 2} nanostructures was also discussed in detail based on the above investigations.« less

  4. Removal of basic dye (methylene blue) from wastewaters utilizing beer brewery waste.

    PubMed

    Tsai, Wen-Tien; Hsu, Hsin-Chieh; Su, Ting-Yi; Lin, Keng-Yu; Lin, Chien-Ming

    2008-06-15

    In the work, the beer brewery waste has been shown to be a low-cost adsorbent for the removal of basic dye from the aqueous solution as compared to its precursor (i.e., diatomite) based on its physical and chemical characterizations including surface area, pore volume, scanning electron microscopy (SEM), and non-mineral elemental analyses. The pore properties of this waste were significantly larger than those of its raw material, reflecting that the trapped organic matrices contained in the waste probably provided additional adsorption sites and/or adsorption area. The results of preliminary adsorption kinetics showed that the diatomite waste could be directly used as a potential adsorbent for removal of methylene blue on the basis of its adsorption-biosorption mechanisms. The adsorption parameters thus obtained from the pseudo-second-order model were in accordance with their pore properties. From the results of adsorption isotherm at 298 K and the applicability examinations in treating industrial wastewater containing basic dye, it was further found that the adsorption capacities of diatomite waste were superior to those of diatomite, which were also in good agreement with their corresponding physical properties. From the results mentioned above, it is feasible to utilize the food-processing waste for removing dye from the industrial dying wastewater.

  5. Absorption and fluorescence spectroscopic characterisation of the circadian blue-light photoreceptor cryptochrome from Drosophila melanogaster (dCry)

    NASA Astrophysics Data System (ADS)

    Shirdel, J.; Zirak, P.; Penzkofer, A.; Breitkreuz, H.; Wolf, E.

    2008-09-01

    The absorption and fluorescence behaviour of the circadian blue-light photoreceptor cryptochrome from Drosophila melanogaster (dCry) in a pH 8 aqueous buffer solution is studied. The flavin adenine dinucleotide (FAD) cofactor of dCry is identified to be present in its oxidized form (FAD ox), and the 5,10-methenyltetrahydrofolate (MTHF) cofactor is found to be hydrolyzed and oxidized to 10-formyldihydrofolate (10-FDHF). The absorption and the fluorescence behaviour of dCry is investigated in the dark-adapted (receptor) state, the light-adapted (signalling) state, and under long-time violet light exposure. Photo-excitation of FAD ox in dCry causes a reductive electron transfer to the formation of anionic FAD semiquinone (FAD rad - ), and photo-excitation of the generated FAD rad - causes an oxidative electron transfer to the back formation of FAD ox. In light adapted dCry a photo-induced equilibrium between FAD ox and FAD rad - exists. The photo-cycle dynamics of signalling state formation and recovery is discussed. Quantum yields of photo-induced signalling state formation of about 0.2 and of photo-induced back-conversion of about 0.2 are determined. A recovery of FAD rad - to FAD ox in the dark with a time constant of 1.6 min at room temperature is found.

  6. Adsorption of methylene blue on an agro-waste oiltea shell with and without fungal treatment

    NASA Astrophysics Data System (ADS)

    Liu, Jiayang; Li, Enzhong; You, Xiaojuan; Hu, Changwei; Huang, Qingguo

    2016-12-01

    A lignocellulosic waste oiltea shell (OTS) was evaluated as an inexpensive sorbent to remove methylene blue (MB) from aqueous solution. Fungal treatment of OTS increased the MB adsorption by modifying the physicochemical properties of OTS and simultaneously produced laccase as a beneficial co-product. Without fungal treatment, the maximum amount of adsorption (qm) of MB by OTS was 64.4 mg/g, whereas the treatment with fungus Pycnoporus sp. and Trametes versicolor increased qm up to 72.5 mg/g and 85.7 mg/g, respectively. This is because of the improved surface area and pore sizes as well as altered chemical compositions. The equilibrium sorption data for OTS both with and without treatment fitted to the Langmuir model, and the sorption rate data well fitted to the pseudo second-order kinetic model. The changes in free energy (ΔG°) and separation factor (RL) indicated that the sorption was spontaneous and favorable. Scanning electron microscopy and Fourier transform infrared spectroscopy showed the changes in the surface morphology and functional groups of OTS after fungal treatment. The agro-waste OTS could be utilized as a low-cost adsorbent for efficient dye removal, and fungal treatment can serve as a mild and clean technique to increase the adsorptive capacity of OTS.

  7. How Does a Hydrophobic Macromolecule Respond to Mixed Osmolyte Environment?

    PubMed

    Tah, Indrajit; Mondal, Jagannath

    2016-10-04

    The role of the protecting osmolyte Trimethyl N-oxide (TMAO) in counteracting the denaturing effect of urea on a protein is quite well established. However, the mechanistic role of osmolytes on the hydrophobic interaction underlying protein folding is a topic of contention and is emerging as a key area of biophysical interest. Although recent experiment and computer simulation have established that individual aqueous solution of TMAO and urea respectively stabilizes and destabilizes the collapsed conformation of a hydrophobic polymer, it remains to be explored how a mixed aqueous solution of protecting and denaturing osmolytes influences the conformations of the polymer. In order to bridge the gap, we have simulated the conformational behavior of both a model hydrophobic polymer and a synthetic polymer polystyrene in an aqueous mixture of TMAO and urea. Intriguingly, our free energy based simulations on both the systems show that even though a pure aqueous solution of TMAO stabilizes the collapsed or globular conformation of the hydrophobic polymer, addition of TMAO to an aqueous solution of urea further destabilizes the collapsed conformation of the hydrophobic polymer. We also observe that the extent of destabilization in a mixed osmolyte solution is relatively higher than that in pure aqueous urea solution. The reinforcement of the denaturation effect of the hydrophobic macromolecule in a mixed osmolyte solution is in stark contrast to the well-known counteracting role of TMAO in proteins under denaturing condition of urea. In both model and realistic systems, our results show that in a mixed aqueous solution, greater number of cosolutes preferentially bind to the extended conformation of the polymer relative to that in the collapsed conformation, thereby complying with Tanford-Wyman preferential solvation theory disfavoring the collapsed conformation. The results are robust across a range of osmolyte concentrations and multiple cosolute forcefields. Our findings unequivocally imply that the action of mixed osmolyte solution on hydrophobic polymer is significantly distinct from that of proteins.

  8. Simple introduction of carboxyl head group with alkyl spacer onto multiwalled carbon nanotubes by solution plasma process

    NASA Astrophysics Data System (ADS)

    Nemoto, Shimpei; Ueno, Tomonaga; Watthanaphanit, Anyarat; Hieda, Junko; Bratescu, Maria Antoaneta; Saito, Nagahiro

    2017-09-01

    A simple method of fabricating carboxyl-terminated multiwalled carbon nanotubes (MWCNTs) with alkyl spacers was developed to improve the dispersion quality of MWCNTs in aqueous solutions using solution plasma (SP) in a 6-aminocaproic acid solution. The formation of SP in the solution led to better dispersion of MWCNTs in aqueous solutions. Fourier transform infrared spectroscopy (FT-IR) results indicate that a carboxyl group with an alkyl spacer can be introduced by SP treatment in the 6-aminocaproic acid solution. Sedimentation tests show that the SP-treated MWCNTs in the 6-aminocaproic acid solution retained their good dispersion quality in aqueous solutions of pHs 5, 6, and 9. The alkyl spacer plays an important role in the preservation of dispersion states particularly at pH 6.

  9. Hydrophilic Inorganic Macro-Ions in Solution: Unprecedented Self-Assembly Emerging from Historical "Blue Waters"

    ERIC Educational Resources Information Center

    Liu, Tianbo; Diemann, Ekkehard; Muller, Achim

    2007-01-01

    For more than 200 years, the beautiful "molybdenum blue solutions" have been a puzzle for chemists because they could not determine the molecular structures of the solutes while experiments showing the Tyndall effect proved the presence of "giant species". This problem was finally solved in Bielefeld. As a result of this discovery, novel inorganic…

  10. Aqueous penetration and biological activity of moxifloxacin 0.5% ophthalmic solution and gatifloxacin 0.3% solution in cataract surgery patients.

    PubMed

    Kim, Dianne H; Stark, Walter J; O'Brien, Terrence P; Dick, James D

    2005-11-01

    To measure the achievable perioperative aqueous concentration of the commercially available topically administered fourth generation fluoroquinolones, moxifloxacin 0.5% ophthalmic solution, and gatifloxacin 0.3% ophthalmic solution, and to correlate this concentration with the agents' biological efficacy in the aqueous humor of patients undergoing routine cataract surgery. Prospective, randomized, parallel, double-masked, clinical trial. Fifty patients undergoing cataract extraction. Patients (n = 25) were given perioperative topical moxifloxacin 0.5% or topical gatifloxacin 0.3% (n = 25). One drop of antibiotic was administered every 10 minutes for 4 doses beginning 1 hour prior to surgery. Aqueous humor was sampled via paracentesis and antibiotic concentrations were determined using validated high performance liquid chromatography (HPLC) procedures. Dilution analyses were performed to determine the biological efficacy of the agents in the aqueous against Staphylococcus epidermidis, the most common cause of postcataract endophthalmitis. Aqueous humor antibiotic concentrations were measured using HPLC and microdilution bioassay techniques. Biological activity was measured as minimal inhibitory dilution and minimal bactericidal dilution. Aqueous humor concentrations for moxifloxacin via HPLC analysis were 1.80 (+/-1.21) microg/ml, whereas those for gatifloxacin were 0.48 (+/-0.34) microg/ml. This 3.8-fold difference in aqueous humor antibiotic concentrations was statistically significant (P = 0.00003). Similarly, the biological dilution analysis of the aqueous humor samples showed that moxifloxacin attained an estimated activity of 2.1 microg/ml, whereas the gatifloxacin activity was approximately 0.4 mug/ml, which represented a 4.9-fold difference. This study demonstrated that after topically administered perioperative antibiotics with cataract surgery, moxifloxacin 0.5% ophthalmic solution achieved a statistically significantly higher concentration in aqueous humor compared with gatifloxacin (P = 0.00003). Results from the broth dilution analysis showed that moxifloxacin 0.5% was biologically more active against S. epidermidis than gatifloxacin 0.3% in aqueous humor after topical application. There were no adverse events reported, and incision wounds healed quickly and as expected.

  11. Electromarking solution

    DOEpatents

    Bullock, Jonathan S.; Harper, William L.; Peck, Charles G.

    1976-06-22

    This invention is directed to an aqueous halogen-free electromarking solution which possesses the capacity for marking a broad spectrum of metals and alloys selected from different classes. The aqueous solution comprises basically the nitrate salt of an amphoteric metal, a chelating agent, and a corrosion-inhibiting agent.

  12. SEPARATION OF TECHNETIUM FROM AQUEOUS SOLUTIONS BY COPRECIPITATION WITH MAGNETITE

    DOEpatents

    Rimshaw, S.J.

    1961-10-24

    A method of separating technetium in the 4+ oxidation state from an aqueous basic solution containing products of uranium fission is described. The method consists of contacting the solution with finely divided magnetite and recovering a technetium-bearing precipitate. (AEC)

  13. Ice growth from supercooled aqueous solutions of benzene, naphthalene, and phenanthrene.

    PubMed

    Liyana-Arachchi, Thilanga P; Valsaraj, Kalliat T; Hung, Francisco R

    2012-08-23

    Classical molecular dynamics (MD) were performed to investigate the growth of ice from supercooled aqueous solutions of benzene, naphthalene, or phenanthrene. The main objective of this study is to explore the fate of those aromatic molecules after freezing of the supercooled aqueous solutions, i.e., if these molecules become trapped inside the ice lattice or if they are displaced to the QLL or to the interface with air. Ice growth from supercooled aqueous solutions of benzene, naphthalene, or phenanthrene result in the formation of quasi-liquid layers (QLLs) at the air/ice interface that are thicker than those observed when pure supercooled water freezes. Naphthalene and phenanthrene molecules in the supercooled aqueous solutions are displaced to the air/ice interface during the freezing process at both 270 and 260 K; no incorporation of these aromatics into the ice lattice is observed throughout the freezing process. Similar trends were observed during freezing of supercooled aqueous solutions of benzene at 270 K. In contrast, a fraction of the benzene molecules become trapped inside the ice lattice during the freezing process at 260 K, with the rest of the benzene molecules being displaced to the air/ice interface. These results suggest that the size of the aromatic molecule in the supercooled aqueous solution is an important parameter in determining whether these molecules become trapped inside the ice crystals. Finally, we also report potential of mean force (PMF) calculations aimed at studying the adsorption of gas-phase benzene and phenanthrene on atmospheric air/ice interfaces. Our PMF calculations indicate the presence of deep free energy minima for both benzene and phenanthrene at the air/ice interface, with these molecules adopting a flat orientation at the air/ice interface.

  14. Polymer-assisted aqueous deposition of metal oxide films

    DOEpatents

    Li, DeQuan [Los Alamos, NM; Jia, Quanxi [Los Alamos, NM

    2003-07-08

    An organic solvent-free process for deposition of metal oxide thin films is presented. The process includes aqueous solutions of necessary metal precursors and an aqueous solution of a water-soluble polymer. After a coating operation, the resultant coating is fired at high temperatures to yield optical quality metal oxide thin films.

  15. Recovering oil by injecting aqueous alkali, cosurfactant and gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reisberg, J.; Bielmowicz, L. J.; Thigpen, D. R.

    1985-01-15

    A process of recovering oil from a subterranean reservoir in which the oil is acidic but forms monovalent cation soaps of only relatively low interfacial activity when reacted with aqueous alkaline solutions, comprises displacing the oil toward a production location with a mixture of gas and cosurfactant-containing aqueous alkaline solution.

  16. Membrane Treatment of Aqueous Film Forming Foam (AFFF) Wastes for Recovery of Its Active Ingredients

    DTIC Science & Technology

    1980-10-01

    T ME1MBRANE TREATMENT OF AQUEOUS FILM FORMING FOAM~ (AFFF) WASTES FOR RECOVERY OFI Fts ACTIVE INGREDIENTS FINAL REPORT October 1980 by Edward S. K...OF THIS PAGEOPMn Date AVntr* d)__ ---- Ultrafiltration (UF) and Reverse Osmosis (RO) treatment of Aqueous Film Forming Foam (AFFF) solutions was...of Aqueous Film Forming Foam (AFFF) solutions was investigated to determine the feasibility of employing membrane processes to separate and recover

  17. Functionalized graphene oxide quantum dot-PVA hydrogel: a colorimetric sensor for Fe2+, Co2+ and Cu2+ ions

    NASA Astrophysics Data System (ADS)

    Baruah, Upama; Chowdhury, Devasish

    2016-04-01

    Functionalized graphene oxide quantum dots (GOQDs)-poly(vinyl alcohol) (PVA) hybrid hydrogels were prepared using a simple, facile and cost-effective strategy. GOQDs bearing different surface functional groups were introduced as the cross-linking agent into the PVA matrix thereby resulting in gelation. The four different types of hybrid hydrogels were prepared using graphene oxide, reduced graphene oxide, ester functionalized graphene oxide and amine functionalized GOQDs as cross-linking agents. It was observed that the hybrid hydrogel prepared with amine functionalized GOQDs was the most stable. The potential applicability of using this solid sensing platform has been subsequently explored in an easy, simple, effective and sensitive method for optical detection of M2+ (Fe2+, Co2+ and Cu2+) in aqueous media involving colorimetric detection. Amine functionalized GOQDs-PVA hybrid hydrogel when put into the corresponding solution of Fe2+, Co2+ and Cu2+ renders brown, orange and blue coloration respectively of the solution detecting the presence of Fe2+, Co2+ and Cu2+ ions in the solution. The minimum detection limit observed was 1 × 10-7 M using UV-visible spectroscopy. Further, the applicability of the sensing material was also tested for a mixture of co-existing ions in solution to demonstrate the practical applicability of the system. Insight into the probable mechanistic pathway involved in the detection process is also being discussed.

  18. Method for producing oxygen from lunar materials

    NASA Technical Reports Server (NTRS)

    Sullivan, Thomas A. (Inventor)

    1993-01-01

    This invention is related to producing oxygen from lunar or Martian materials, particularly from lunar ilmenite in situ. The process includes producing a slurry of the minerals and hot sulfuric acid, the acid and minerals reacting to form sulfates of the metal. Water is added to the slurry to dissolve the minerals into an aqueous solution, the first aqueous solution is separated from unreacted minerals from the slurry, and the aqueous solution is electrolyzed to produce the metal and oxygen.

  19. A fluorescent sensor for selective detection of cyanide using mesoporous graphitic carbon(IV) nitride.

    PubMed

    Lee, Eun Zoo; Lee, Sun Uk; Heo, Nam-Su; Stucky, Galen D; Jun, Young-Si; Hong, Won Hi

    2012-04-25

    A turn-on fluorescence sensor, Cu(2+)-c-mpg-C(3)N(4), was developed for detection of CN(-) in aqueous solution by simply mixing cubic mesoporous graphitic carbon nitride (c-mpg-C(3)N(4)) and aqueous solution of Cu(NO(3))(2). The highly sensitive detection of CN(-) with a detection limit of 80 nM is not only possible in aqueous solution but also in human blood serum.

  20. Stiffness-independent highly efficient on-chip extraction of cell-laden hydrogel microcapsules from oil emulsion into aqueous solution by dielectrophoresis

    PubMed Central

    Huang, Haishui; Sun, Mingrui; Heisler-Taylor, Tyler; Kiourti, Asimina; Volakis, John; Lafyatis, Gregory

    2015-01-01

    A dielectrophoresis (DEP)-based method is reported to achieve highly efficient on-chip extraction of cell-laden microcapsules of any stiffness from oil into aqueous solution. The hydrogel microcapsules can be extracted into the aqueous solution by DEP and interfacial tension (IFT) forces with no trapped oil while the encapsulated cells are free from the electrical damages due to the Faraday cage effect. PMID:26297051

  1. SALICYLATE PROCESS FOR THORIUM SEPARATION FROM RARE EARTHS

    DOEpatents

    Cowan, G.A.

    1959-08-25

    The separation of thorium from rare earths is accomplished by forming an aqueous solution of salts of thorium and rare earths and sufficient acetate buffer to provide a pH of between 2 and 5, adding an ammonium salicylate to the aqueous buffered solution, contacting the resultant solution with a substantially water-immiscible organic solvent mixture of an ether and an ester, and separating the solvent extract phase containing thorium salicylate from the aqueous phase containing the rare earths.

  2. Stability of GO Modified by Different Dispersants in Cement Paste and Its Related Mechanism.

    PubMed

    Long, Wu-Jian; Fang, Changle; Wei, Jingjie; Li, Haodao

    2018-05-18

    Graphene oxide (GO) is a potential material to be used as a nano-reinforcement in cement matrix. However, a prerequisite for GO to fulfill its function in the cement matrix is homogeneous dispersion. In this study, the effects of three different dispersing agents (DAs), including polycarboxylate-based high range water reducer (P-HRWR), naphthalene-based high range water reducer (N-HRWR), and air entraining agent (AEA) on the dispersion of GO in aqueous solution, simulated concrete pore solution (SCPS), and suspension of cement pastes were sequentially investigated. Results showed that the dispersion effect of GO in aqueous solutions was improved with different DAs. However, the homogeneous dispersion of GO in aqueous solution re-agglomerated in SCPS and suspension of cement pastes. It was concluded that as the cement content and pH of aqueous solutions increased, GOs re-agglomerated and precipitated in an alkaline solution. A possible mechanism was proposed in this study and it was believed that electrostatic interactions and steric hindrance provided by the P-HRWR further made GOs stable in aqueous solutions. The ions and pH of cement pastes increased with the increasing amount of cement, which caused the separation of P-HRWR from GOs. Therefore, GOs were re-agglomerated and absorbed on the surface of the cement particles, resulting in GOs sedimentation.

  3. Adsorption of arsenic from aqueous solution using magnetic graphene oxide

    NASA Astrophysics Data System (ADS)

    Sherlala, A. I. A.; Raman, A. A.; Bello, M. M.

    2017-06-01

    A binary of graphene oxide (GO) and iron oxide (IO) was prepared and used for the removal of arsenic from aqueous solution. The synthesized compound was characterized using XRD analysis. The prepared composite was used for the adsorption of arsenic from aqueous solution. Central Composite Design was used to design the adsorption experiments and to investigate the effects of operational parameters (initial concentration of arsenic, adsorbent dosage, pH and time) on the adsorption capacity and efficiency. The adsorbent shows a high adsorption capacity for the arsenic. The adsorption efficiency ranges between 33.2 % and 99.95 %. The most significant factors affecting the adsorption capacity were found to be the initial concentration of arsenic and the adsorbent dosage. The initial pH of the solution slightly affects the adsorption capacity, with the maximum adsorption capacity occurring around pH 6 - 7. Thus, the developed adsorbent has a potential for effective removal of arsenic from aqueous solution.

  4. Defining microchannels and valves on a hydrophobic paper by low-cost inkjet printing of aqueous or weak organic solutions.

    PubMed

    Cai, Longfei; Zhong, Minghua; Li, Huolin; Xu, Chunxiu; Yuan, Biyu

    2015-07-01

    We describe a simple and cost-effective strategy for rapid fabrication of microfluidic paper-based analytical devices and valves by inkjet printing. NaOH aqueous solution was printed onto a hydrophobic filter paper, which was previously obtained by soaking in a trimethoxyoctadecylsilane-heptane solution, allowing selective wet etching of hydrophobic cellulose to create hydrophilic-hydrophobic contrast with a relatively good resolution. Hexadecyltrimethylammonium bromide (CTMAB)-ethanol solution was printed onto hydrophobic paper to fabricate temperature-controlled valves. At low temperature, CTMAB deposited on the paper is insoluble in aqueous fluid, thus the paper remains hydrophobic. At high temperature, CTMAB becomes soluble so the CTMAB-deposited channel becomes hydrophilic, allowing the wicking of aqueous solution through the valve. We believe that this strategy will be very attractive for the development of simple micro analytical devices for point-of-care applications, including diagnostic testing, food safety control, and environmental monitoring.

  5. Adsorptive removal of antibiotics from aqueous solution using carbon materials.

    PubMed

    Yu, Fei; Li, Yong; Han, Sheng; Ma, Jie

    2016-06-01

    Antibiotics, an important type of environmental contamination, have attracted many researchers to the study of their removal from aqueous solutions. Adsorption technology is a fast, efficient, and economical physicochemical method that is extensively used in wastewater treatment. From original activated carbon and carbon nanotubes to the latest graphene-based materials, carbon-based materials have been widely used as highly effective adsorbents for contaminant removal from aqueous solution because of their large specific surface area, high porosity, and high reaction activity. In this article, adsorption removal methods for four major types of antibiotic (tetracyclines, sulfonamides, macrolides, and quinolones) are reviewed. We also provide an overview of the application development of carbon materials as adsorbents for antibiotic removal from aqueous solution. The most promising works are discussed, and the main challenges in preparing high-performance adsorbents and the development tendency of adsorbents are also analyzed. This work provides theoretical guidance for subsequent research in the design and modification of carbon materials for applications in the adsorption removal of antibiotics from aqueous solution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Removal of chromium(III) from aqueous waste solution by liquid-liquid extraction in a circular microchannel.

    PubMed

    Luo, Jian Hong; Li, Jun; Guo, Lei; Zhu, Xin Hua; Dai, Shuang; Li, Xing

    2017-11-01

    A new circular microchannel device has been proposed for the removal of chromium(III) from aqueous waste solution by using kerosene as a diluent and (2-ethylhexyl) 2-ethylhexyl phosphonate as an extractant. The proposed device has several advantages such as a flexible and easily adaptable design, easy maintenance, and cheap setup without the requirement of microfabrication. To study the extraction efficiency and advantages of the circular microchannel device in the removal of chromium(III), the effects of various operating conditions such as the inner diameter of the channel, the total flow velocity, the phase ratio, the initial pH of aqueous waste solution, the reaction temperature and the initial concentration of extractant on the extraction efficiency are investigated and the optimal process conditions are obtained. The results show that chromium(III) in aqueous waste solution can be effectively removed with (2-ethylhexyl) 2-ethylhexyl phosphonate in the circular microchannel. Under optimized conditions, an extraction efficiency of chromium(III) of more than 99% can be attained and the aqueous waste solution can be discharged directly, which can meet the Chinese national emission standards.

  7. Thermodynamic and structure-property study of liquid-vapor equilibrium for aroma compounds.

    PubMed

    Tromelin, Anne; Andriot, Isabelle; Kopjar, Mirela; Guichard, Elisabeth

    2010-04-14

    Thermodynamic parameters (T, DeltaH degrees , DeltaS degrees , K) were collected from the literature and/or calculated for five esters, four ketones, two aldehydes, and three alcohols, pure compounds and compounds in aqueous solution. Examination of correlations between these parameters and the range values of DeltaH degrees and DeltaS degrees puts forward the key roles of enthalpy for vaporization of pure compounds and of entropy in liquid-vapor equilibrium of compounds in aqueous solution. A structure-property relationship (SPR) study was performed using molecular descriptors on aroma compounds to better understand their vaporization behavior. In addition to the role of polarity for vapor-liquid equilibrium of compounds in aqueous solution, the structure-property study points out the role of chain length and branching, illustrated by the correlation between the connectivity index CHI-V-1 and the difference between T and log K for vaporization of pure compounds and compounds in aqueous solution. Moreover, examination of the esters' enthalpy values allowed a probable conformation adopted by ethyl octanoate in aqueous solution to be proposed.

  8. Surface tensions of inorganic multicomponent aqueous electrolyte solutions and melts.

    PubMed

    Dutcher, Cari S; Wexler, Anthony S; Clegg, Simon L

    2010-11-25

    A semiempirical model is presented that predicts surface tensions (σ) of aqueous electrolyte solutions and their mixtures, for concentrations ranging from infinitely dilute solution to molten salt. The model requires, at most, only two temperature-dependent terms to represent surface tensions of either pure aqueous solutions, or aqueous or molten mixtures, over the entire composition range. A relationship was found for the coefficients of the equation σ = c(1) + c(2)T (where T (K) is temperature) for molten salts in terms of ion valency and radius, melting temperature, and salt molar volume. Hypothetical liquid surface tensions can thus be estimated for electrolytes for which there are no data, or which do not exist in molten form. Surface tensions of molten (single) salts, when extrapolated to normal temperatures, were found to be consistent with data for aqueous solutions. This allowed surface tensions of very concentrated, supersaturated, aqueous solutions to be estimated. The model has been applied to the following single electrolytes over the entire concentration range, using data for aqueous solutions over the temperature range 233-523 K, and extrapolated surface tensions of molten salts and pure liquid electrolytes: HCl, HNO(3), H(2)SO(4), NaCl, NaNO(3), Na(2)SO(4), NaHSO(4), Na(2)CO(3), NaHCO(3), NaOH, NH(4)Cl, NH(4)NO(3), (NH(4))(2)SO(4), NH(4)HCO(3), NH(4)OH, KCl, KNO(3), K(2)SO(4), K(2)CO(3), KHCO(3), KOH, CaCl(2), Ca(NO(3))(2), MgCl(2), Mg(NO(3))(2), and MgSO(4). The average absolute percentage error between calculated and experimental surface tensions is 0.80% (for 2389 data points). The model extrapolates smoothly to temperatures as low as 150 K. Also, the model successfully predicts surface tensions of ternary aqueous mixtures; the effect of salt-salt interactions in these calculations was explored.

  9. A napthelene-pyrazol conjugate: Al(III) ion-selective blue shifting chemosensor applicable as biomarker in aqueous solution.

    PubMed

    Mukherjee, Manjira; Pal, Siddhartha; Lohar, Somenath; Sen, Buddhadeb; Sen, Supriti; Banerjee, Samya; Banerjee, Snehasis; Chattopadhyay, Pabitra

    2014-10-07

    A newly synthesized and crystalographically characterized napthelene–pyrazol conjugate, 1-[(5-phenyl-1H-pyrazole-3-ylimino)-methyl]-naphthalen-2-ol (HL) behaves as an Al(III) ion-selective chemosensor through internal charge transfer (ICT)-chelation-enhanced fluorescence (CHEF) processes in 100 mM HEPES buffer (water–DMSO 5:1, v/v) at biological pH with almost no interference of other competitive ions. This mechanism is readily studied from electronic, fluorimetric and (1)H NMR titration. The probe (HL) behaved as a highly selective fluorescent sensor for Al(III) ions as low as 31.78 nM within a very short response time (15–20 s). The sensor (HL), which has no cytotoxicity, is also efficient in detecting the distribution of Al(III) ions in HeLa cells via image development under fluorescence microscope.

  10. Ability of a montmorillonitic clay to interact with cationic and anionic dyes in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Pleşa Chicinaş, R.; Bedelean, H.; Stefan, R.; Măicăneanu, A.

    2018-02-01

    A montmorillonitic clay in raw and treated forms (size-fractionated, organoclay, Al pillared) was evaluated as adsorbent for cationic (toluidine blue - TB and malachite green - MG) and anionic (Congo red - CR) dyes. A thorough characterization using XRD, SEM-EDS, N2 adsorption, and FTIR of the considered samples was realized, all highlighting the structural changes after various treatments. UV-VIS analysis demonstrated the interaction between dyes and the adsorbent surface. The investigation of the effects of various experimental parameters using a batch adsorption technique showed that ON has a high adsorption potential for cationic dyes (33 and 39 mg/g in case of TB and MG, respectively). The kinetic study indicated that the adsorption process followed the pseudo-second-order model, while Freundlich isotherm showed a favorable adsorption. The calculated values of Gibbs free energy suggested also that the adsorption is spontaneous and is more favorable at higher temperatures.

  11. Adsorption of Polycyclic aromatic hydrocarbons (fluoranthene and anthracenemethanol) by functional graphene oxide and removal by pH and temperature-sensitive coagulation.

    PubMed

    Zhang, Caili; Wu, Lin; Cai, Dongqing; Zhang, Caiyun; Wang, Ning; Zhang, Jing; Wu, Zhengyan

    2013-06-12

    A new kind of functional graphene oxide with fine stability in water was fabricated by mixing graphene oxide (GO) and brilliant blue (BB) with a certain weight ratio. The adsorption performance of this mixture of BB and GO (BBGO) to polycyclic aromatic hydrocarbons (anthracenemethanol (AC) and fluoranthene (FL)) was investigated, and the results indicated BBGO possessed adsorption capacity of 1.676 mmol/g and removal efficiency of 72.7% as to AC and adsorption capacity of 2.212 mmol/g and removal efficiency of 93.2% as to FL. After adsorption, pH and temperature-sensitive coagulation (PTC) method was used to remove the AC/BBGO or FL/BBGO complex and proved to be an effective approach to flocculate the AC/BBGO or FL/BBGO complex into large flocs, which tended to be removed from the aqueous solution.

  12. Changing the adsorption capacity of coal-based honeycomb monoliths for pollutant removal from liquid streams by controlling their porosity

    NASA Astrophysics Data System (ADS)

    Gatica, José M.; Harti, Sanae; Vidal, Hilario

    2010-09-01

    Coal-based honeycomb monoliths extruded using methods developed for ceramic materials have been used to retain methylene blue and p-nitrophenol from aqueous solutions. The influence of the filters' thermal treatment on their textural properties and performance as adsorbents was examined. Characterization by N 2 physisorption, mercury porosimetry and scanning electron microscopy along with adsorption tests under dynamic conditions suggest that, depending on the pollutant and its initial concentration, it can be more convenient to previously submit the monoliths to a simple carbonization or to an additional activation, with or without preoxidation, as a consequence of their different resulting pore structures. Infrared spectroscopy indicates that their different adsorption behaviour seems not to be related to differences in their surface chemical groups. In addition, axial crushing tests show that the monoliths have an acceptable mechanical resistance for the application investigated.

  13. High Piezo-photocatalytic Efficiency of CuS/ZnO Nanowires Using Both Solar and Mechanical Energy for Degrading Organic Dye.

    PubMed

    Hong, Deyi; Zang, Weili; Guo, Xiao; Fu, Yongming; He, Haoxuan; Sun, Jing; Xing, Lili; Liu, Baodan; Xue, Xinyu

    2016-08-24

    High piezo-photocatalytic efficiency of degrading organic pollutants has been realized from CuS/ZnO nanowires using both solar and mechanical energy. CuS/ZnO heterostructured nanowire arrays are compactly/vertically aligned on stainless steel mesh by a simple two-step wet-chemical method. The mesh-supported nanocomposites can facilitate an efficient light harvesting due to the large surface area and can also be easily removed from the treated solution. Under both solar and ultrasonic irradiation, CuS/ZnO nanowires can rapidly degrade methylene blue (MB) in aqueous solution, and the recyclability is investigated. In this process, the ultrasonic assistance can greatly enhance the photocatalytic activity. Such a performance can be attributed to the coupling of the built-in electric field of heterostructures and the piezoelectric field of ZnO nanowires. The built-in electric field of the heterostructure can effectively separate the photogenerated electrons/holes and facilitate the carrier transportation. The CuS component can improve the visible light utilization. The piezoelectric field created by ZnO nanowires can further separate the photogenerated electrons/holes through driving them to migrate along opposite directions. The present results demonstrate a new water-pollution solution in green technologies for the environmental remediation at the industrial level.

  14. REMOVAL OF CESIUM BY SORPTION FROM AQUEOUS SOLUTIONS

    DOEpatents

    Ames, L.L.

    1962-01-16

    ABS>A process is given for selectively removing cesium from acid aqueous solutions containing cesium in microquantities and other cations in macroquantities by absorption on clinoptilolite. The cesium can be eluted from the clinoptilolite with a solution of ammonia, potassium hydroxide, or rubidium hydroxide. (AEC)

  15. EXTRACTION METHOD FOR SEPARATING URANIUM, PLUTONIUM, AND FISSION PRODUCTS FROM COMPOSITIONS CONTAINING SAME

    DOEpatents

    Seaborg, G.T.

    1957-10-29

    Methods for separating plutonium from the fission products present in masses of neutron irradiated uranium are reported. The neutron irradiated uranium is first dissolved in an aqueous solution of nitric acid. The plutonium in this solution is present as plutonous nitrate. The aqueous solution is then agitated with an organic solvent, which is not miscible with water, such as diethyl ether. The ether extracts 90% of the uraryl nitrate leaving, substantially all of the plutonium in the aqueous phase. The aqueous solution of plutonous nitrate is then oxidized to the hexavalent state, and agitated with diethyl ether again. In the ether phase there is then obtained 90% of plutonium as a solution of plutonyl nitrate. The ether solution of plutonyl nitrate is then agitated with water containing a reducing agent such as sulfur dioxide, and the plutonium dissolves in the water and is reduced to the plutonous state. The uranyl nitrate remains in the ether. The plutonous nitrate in the water may be recovered by precipitation.

  16. The relative viscosity of NaNO 3 and NaNO 2 aqueous solutions

    DOE PAGES

    Reynolds, Jacob G.; Mauss, Billie M.; Daniel, Richard C.

    2018-05-09

    In aqueous solution, both nitrate and nitrite are planar, monovalent, and have the same elements but different sizes and charge densities. Comparing the viscosity of NaNO 2 and NaNO 3 aqueous solutions provides an opportunity to determine the relative importance of anion size versus strength of anion interaction with water. The viscosity of aqueous NaNO 2 and NaNO 3 were measured over a temperature and concentration range relevant to nuclear waste processing. The viscosity of NaNO 2 solutions was consistently larger than NaNO 3 under all conditions, even though nitrate is larger than nitrite. This was interpreted in terms ofmore » quantum mechanical charge field molecular dynamics calculations that indicate that nitrite forms more and stronger hydrogen bonds with water per oxygen atom than nitrate. Furthermore, these hydrogen bonds inhibit rotational motion required for fluid flow, thus increasing the nitrite solution viscosity relative to that of an equivalent nitrate solution.« less

  17. The relative viscosity of NaNO 3 and NaNO 2 aqueous solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reynolds, Jacob G.; Mauss, Billie M.; Daniel, Richard C.

    In aqueous solution, both nitrate and nitrite are planar, monovalent, and have the same elements but different sizes and charge densities. Comparing the viscosity of NaNO 2 and NaNO 3 aqueous solutions provides an opportunity to determine the relative importance of anion size versus strength of anion interaction with water. The viscosity of aqueous NaNO 2 and NaNO 3 were measured over a temperature and concentration range relevant to nuclear waste processing. The viscosity of NaNO 2 solutions was consistently larger than NaNO 3 under all conditions, even though nitrate is larger than nitrite. This was interpreted in terms ofmore » quantum mechanical charge field molecular dynamics calculations that indicate that nitrite forms more and stronger hydrogen bonds with water per oxygen atom than nitrate. Furthermore, these hydrogen bonds inhibit rotational motion required for fluid flow, thus increasing the nitrite solution viscosity relative to that of an equivalent nitrate solution.« less

  18. Recovery of alkali metal constituents from catalytic coal conversion residues

    DOEpatents

    Soung, Wen Y.

    1984-01-01

    In a coal gasification operation (32) or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by contacting them (46, 53, 61, 69) with water or an aqueous solution to remove water-soluble alkali metal constituents and produce an aqueous solution enriched in said constituents. The aqueous solution thus produced is then contacted with carbon dioxide (63) to precipitate silicon constituents, the pH of the resultant solution is increased (81), preferably to a value in the range between about 12.5 and about 15.0, and the solution of increased pH is evaporated (84) to increase the alkali metal concentration. The concentrated aqueous solution is then recycled to the conversion process (86, 18, 17) where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.

  19. Freeze-thawing behaviour of highly concentrated aqueous alkali chloride-glucose systems.

    PubMed

    Kajiwara, K; Motegi, A; Murase, N

    2001-01-01

    The freeze-thawing behaviour of highly concentrated aqueous alkali chloride-glucose systems was investigated by differential scanning calorimetry (DSC). In the aqueous NaCl-glucose solution system, single or double glass transitions followed by the corresponding devitrification exotherms were observed during rewarming. In the aqueous KCl-glucose solution system, on the other hand, a single glass transition followed by an exotherm was observed during rewarming. The presence of double glass transitions observed for a certain composition of the aqueous NaCl-glucose solution was taken as an evidence for the liquid-liquid immiscibility at low temperatures. Two kinds of crystallisation accompanied by exotherms during rewarming were identified by X-ray diffraction as ice and ice/NaCl x 2H(2)O, or ice/KCl eutectic component.

  20. Exploring Solute-Solvent Interactions of -Amino Acids in Aqueous [] Arrangements by Volumetric, Viscometric, Refractometric, and Acoustic Approach

    NASA Astrophysics Data System (ADS)

    Roy, Mahendra Nath; Roy, Milan Chandra; Basak, Saptarshi

    2014-05-01

    Qualitative and quantitative analysis of molecular interaction prevailing in glycine, l-alanine, l-valine, and aqueous solution of ionic liquid (IL) [1-ethylpyridinium tetrafluoroborate (] have been investigated by thermophysical properties. The apparent molar volume (), viscosity -coefficient, molal refraction (), and adiabatic compressibility ( of glycine, l-alanine, and l-valine have been studied in 0.001 mol , 0.003 mol , and 0.005 mol aqueous 1-ethylpyridinium tetrafluoroborate [] solutions at 298.15 K from the values of densities , viscosities (), refractive index (, and speed of sound , respectively. The extent of interaction, i.e., the solute-solvent interaction is expressed in terms of the limiting apparent molar volume (, viscosity -coefficient, and limiting apparent molar adiabatic compressibility (. The limiting apparent molar volumes (, experimental slopes ( derived from the Masson equation, and viscosity - and -coefficients using the Jones-Dole equation have been interpreted in terms of ion-ion and ion-solvent interactions, respectively. Molal refractions ( have been calculated with the help of the Lorentz-Lorenz equation. The role of the solvent (aqueous IL solution) and the contribution of solute-solute and solute-solvent interactions to the solution complexes have also been analyzed through the derived properties.

  1. Selected specific rates of reactions of transients from water in aqueous solution. Hydrated electron, supplemental data. [Reactions with transients from water, with inorganic solutes, and with solutes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, A.B.

    1975-06-01

    A compilation of rates of reactions of hydrated electrons with other transients and with organic and inorganic solutes in aqueous solution appeared in NSRDS-NBS 43, and covered the literature up to early 1971. This supplement includes additional rates which have been published through July 1973.

  2. Options for refractive index and viscosity matching to study variable density flows

    NASA Astrophysics Data System (ADS)

    Clément, Simon A.; Guillemain, Anaïs; McCleney, Amy B.; Bardet, Philippe M.

    2018-02-01

    Variable density flows are often studied by mixing two miscible aqueous solutions of different densities. To perform optical diagnostics in such environments, the refractive index of the fluids must be matched, which can be achieved by carefully choosing the two solutes and the concentration of the solutions. To separate the effects of buoyancy forces and viscosity variations, it is desirable to match the viscosity of the two solutions in addition to their refractive index. In this manuscript, several pairs of index matched fluids are compared in terms of viscosity matching, monetary cost, and practical use. Two fluid pairs are studied in detail, with two aqueous solutions (binary solutions of water and a salt or alcohol) mixed into a ternary solution. In each case: an aqueous solution of isopropanol mixed with an aqueous solution of sodium chloride (NaCl) and an aqueous solution of glycerol mixed with an aqueous solution of sodium sulfate (Na_2SO_4). The first fluid pair allows reaching high-density differences at low cost, but brings a large difference in dynamic viscosity. The second allows matching dynamic viscosity and refractive index simultaneously, at reasonable cost. For each of these four solutes, the density, kinematic viscosity, and refractive index are measured versus concentration and temperature, as well as wavelength for the refractive index. To investigate non-linear effects when two index-matched, binary solutions are mixed, the ternary solutions formed are also analyzed. Results show that density and refractive index follow a linear variation with concentration. However, the viscosity of the isopropanol and NaCl pair deviates from the linear law and has to be considered. Empirical correlations and their coefficients are given to create index-matched fluids at a chosen temperature and wavelength. Finally, the effectiveness of the refractive index matching is illustrated with particle image velocimetry measurements performed for a buoyant jet in a linearly stratified environment. The creation of the index-matched solutions and linear stratification in a large-scale experimental facility are detailed, as well as the practical challenges to obtain precise refractive index matching.

  3. Method for loading resin beds

    DOEpatents

    Notz, Karl J.; Rainey, Robert H.; Greene, Charles W.; Shockley, William E.

    1978-01-01

    An improved method of preparing nuclear reactor fuel by carbonizing a uranium loaded cation exchange resin provided by contacting a H.sup.+ loaded resin with a uranyl nitrate solution deficient in nitrate, comprises providing the nitrate deficient solution by a method comprising the steps of reacting in a reaction zone maintained between about 145.degree.-200.degree. C, a first aqueous component comprising a uranyl nitrate solution having a boiling point of at least 145.degree. C with a second aqueous component to provide a gaseous phase containing HNO.sub.3 and a reaction product comprising an aqueous uranyl nitrate solution deficient in nitrate.

  4. Solar Metal Sulfate-Ammonia Based Thermochemical Water Splitting Cycle for Hydrogen Production

    NASA Technical Reports Server (NTRS)

    T-Raissi, Ali (Inventor); Muradov, Nazim (Inventor); Huang, Cunping (Inventor)

    2014-01-01

    Two classes of hybrid/thermochemical water splitting processes for the production of hydrogen and oxygen have been proposed based on (1) metal sulfate-ammonia cycles (2) metal pyrosulfate-ammonia cycles. Methods and systems for a metal sulfate MSO.sub.4--NH3 cycle for producing H2 and O2 from a closed system including feeding an aqueous (NH3)(4)SO3 solution into a photoctalytic reactor to oxidize the aqueous (NH3)(4)SO3 into aqueous (NH3)(2)SO4 and reduce water to hydrogen, mixing the resulting aqueous (NH3)(2)SO4 with metal oxide (e.g. ZnO) to form a slurry, heating the slurry of aqueous (NH4)(2)SO4 and ZnO(s) in the low temperature reactor to produce a gaseous mixture of NH3 and H2O and solid ZnSO4(s), heating solid ZnSO4 at a high temperature reactor to produce a gaseous mixture of SO2 and O2 and solid product ZnO, mixing the gaseous mixture of SO2 and O2 with an NH3 and H2O stream in an absorber to form aqueous (NH4)(2)SO3 solution and separate O2 for aqueous solution, recycling the resultant solution back to the photoreactor and sending ZnO to mix with aqueous (NH4)(2)SO4 solution to close the water splitting cycle wherein gaseous H2 and O2 are the only products output from the closed ZnSO4--NH3 cycle.

  5. SEPARATION OF HAFNIUM FROM ZIRCONIUM

    DOEpatents

    Overholser, L.B.; Barton, C.J. Sr.; Ramsey, J.W.

    1960-05-31

    The separation of hafnium impurities from zirconium can be accomplished by means of organic solvent extraction. The hafnium-containing zirconium feed material is dissolved in an aqueous chloride solution and the resulting solution is contacted with an organic hexone phase, with at least one of the phases containing thiocyanate. The hafnium is extracted into the organic phase while zirconium remains in the aqueous phase. Further recovery of zirconium is effected by stripping the onganic phase with a hydrochloric acid solution and commingling the resulting strip solution with the aqueous feed solution. Hexone is recovered and recycled by means of scrubbing the onganic phase with a sulfuric acid solution to remove the hafnium, and thiocyanate is recovered and recycled by means of neutralizing the effluent streams to obtain ammonium thiocyanate.

  6. RECOVERY OF PROTACTINIUM

    DOEpatents

    Kraus, K.A.; Moore, G.E.

    1959-02-01

    A process is presented for the separation of protactinium values from an aqueous solution containing Pa and Th values comprising establishing in the solution a HCl concentration of from 4 to 11 molar, contacting the resulting solution with an anion-exchange adsorbent, such as a polystyrene divinyl benzene polymer with quatenary amines as the active exchange group, to effect the adsorption of Pa values upon the adsorbent while leaving Th values in the solution, and then washlng the separated Pa bearing adsorbent with an aqueous solution of HCl of less than 4M to exclusively elute Pa values from the adsorbent. If hexavalent U values are contained in the original solution thcy are adsorbed on the resin together with Pa. A separation is offected chromatographically by percolating the resin with aqueous HCl.

  7. Structural properties and adsorption capacity of holocellulose aerogels synthesized from an alkali hydroxide-urea solution

    NASA Astrophysics Data System (ADS)

    Kwon, Gu-Joong; Kim, Dae-Young; Hwang, Jae-Hyun; Kang, Joo-Hyon

    2014-05-01

    A tulip tree was used to synthesize a holocellulose aerogel from an aqueous alkali hydroxide-urea solution with the substitution of an organic solvent followed by freeze-drying. For comparison, the synthesized holocellulose aerogels were divided into two groups according to the source of the hydrogel, an upper suspended layer and a bottom concentrated layer of the centrifuged solution of cellulose and NaOH/urea solvents. We investigated the effects of the temperature of the pre-cooled NaOH/urea solution ( i.e., dissolution temperature) on the pore structure and the adsorption capacity of the holocellulose aerogel. A nano-fibrillar network structure of the holocellulose aerogel was observed, with little morphological difference in pore structure for different dissolution temperatures. Both micropores and mesopores were observed in the holocellulose aerogel. The specific surface area of the holocellulose aerogel was generally greater at lower dissolution temperatures. In a series of adsorption tests using methylene blue, the holocellulose aerogel showed the greatest adsorption capacity at the lowest dissolution temperature tested (-2°C). However, the dissolution temperature generally had little effect on the adsorption capacity. The holocellulose aerogel produced from the upper suspended layer of the centrifuged hydrogel solution showed a greater porosity and adsorption capacity than the one produced from the bottom concentrated layer. Overall, the aerogel made by utilizing a delignified tulip tree display a high surface area and a high adsorption property, indicating its possible application in eco-friendly adsorption materials.

  8. Fluorimetric detection of Sn(2+) ion in aqueous medium using Salicylaldehyde based nanoparticles and application to natural samples analysis.

    PubMed

    Patil, Kishor S; Mahajan, Prasad G; Patil, Shivajirao R

    2017-01-05

    The fluorescent 2-[(E)-(2-phenylhydrazinylidene)methyl]phenol nanoparticles (PHPNPs) were prepared by a simple reprecipitation method. The prepared PHPNPs examined by Dynamic Light Scattering show narrower particle size distribution having an average particle size of 93.3nm. The Scanning Electron Microphotograph shows distinct spherical shaped morphology of nanoparticles. The blue shift in UV-absorption and fluorescence spectra of PHPNPs with respect to corresponding spectra of PHP in acetone solution indicates H- aggregates and Aggregation Induced Enhanced Emission (AIEE) for nanoparticles. The nanoparticles show selective tendency towards the recognition of Sn(2+) ions by enhancing the fluorescence intensity preference to Cu(2+), Fe(3+), Fe(2+), Ni(2+), NH4(+), Ca(2+), Pb(2+), Hg(2+) and Zn(2+) ions, which actually seem to quench the fluorescence of nanoparticles. The studies on Langmuir adsorption plot, fluorescence lifetime of PHPNPs, DLS-Zeta sizer, UV-visible and fluorescence titration with and without Sn(2+) helped to propose a suitable mechanism of fluorescence enhancement of nanoparticles by Sn(2+) and their binding ability during complexation. The fluorescence enhancement effect of PHPNPs induced by Sn(2+) is further used to develop an analytical method for detection of Sn(2+) from aqueous medium in environmental samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Fluorimetric detection of Sn2 + ion in aqueous medium using Salicylaldehyde based nanoparticles and application to natural samples analysis

    NASA Astrophysics Data System (ADS)

    Patil, Kishor S.; Mahajan, Prasad G.; Patil, Shivajirao R.

    2017-01-01

    The fluorescent 2-[(E)-(2-phenylhydrazinylidene)methyl]phenol nanoparticles (PHPNPs) were prepared by a simple reprecipitation method. The prepared PHPNPs examined by Dynamic Light Scattering show narrower particle size distribution having an average particle size of 93.3 nm. The Scanning Electron Microphotograph shows distinct spherical shaped morphology of nanoparticles. The blue shift in UV-absorption and fluorescence spectra of PHPNPs with respect to corresponding spectra of PHP in acetone solution indicates H- aggregates and Aggregation Induced Enhanced Emission (AIEE) for nanoparticles. The nanoparticles show selective tendency towards the recognition of Sn2 + ions by enhancing the fluorescence intensity preference to Cu2 +, Fe3 +, Fe2 +, Ni2 +, NH4+, Ca2 +, Pb2 +, Hg2 + and Zn2 + ions, which actually seem to quench the fluorescence of nanoparticles. The studies on Langmuir adsorption plot, fluorescence lifetime of PHPNPs, DLS-Zeta sizer, UV-visible and fluorescence titration with and without Sn2 + helped to propose a suitable mechanism of fluorescence enhancement of nanoparticles by Sn2 + and their binding ability during complexation. The fluorescence enhancement effect of PHPNPs induced by Sn2 + is further used to develop an analytical method for detection of Sn2 + from aqueous medium in environmental samples.

  10. Solar/UV-induced photocatalytic degradation of three commercial textile dyes.

    PubMed

    Neppolian, B; Choi, H C; Sakthivel, S; Arabindoo, Banumathi; Murugesan, V

    2002-01-28

    The photocatalytic degradation of three commercial textile dyes with different structure has been investigated using TiO(2) (Degussa P25) photocatalyst in aqueous solution under solar irradiation. Experiments were conducted to optimise various parameters viz. amount of catalyst, concentration of dye, pH and solar light intensity. Degradation of all the dyes were examined by using chemical oxygen demand (COD) method. The degradation efficiency of the three dyes is as follows: Reactive Yellow 17(RY17) > Reactive Red 2(RR2) > Reactive Blue 4 (RB4), respectively. The experimental results indicate that TiO(2) (Degussa P25) is the best catalyst in comparison with other commercial photocatalysts such as, TiO(2) (Merck), ZnO, ZrO(2), WO(3) and CdS. Though the UV irradiation can efficiently degrade the dyes, naturally abundant solar irradiation is also very effective in the mineralisation of dyes. The comparison between thin-film coating and aqueous slurry method reveals that slurry method is more efficient than coating but the problems of leaching and the requirement of separation can be avoided by using coating technique. These observations indicate that all the three dyes could be degraded completely at different time intervals. Hence, it may be a viable technique for the safe disposal of textile wastewater into the water streams.

  11. Cytotoxic effects of residual chemicals from polymeric biomaterials for artificial soft intraocular lenses.

    PubMed

    Chirila, T V; Walker, L N; Constable, I J; Thompson, D E; Barrett, G D

    1991-03-01

    Development of improved hydrogels for soft intraocular lenses, based on 2-hydroxyethyl methacrylate monomer, requires the use of various other monomers and polymerization additives which have potential ocular toxicity. Three monomers, 2-hydroxyethyl methacrylate, methyl methacrylate, and 2-ethoxyethyl methacrylate, as well as two common inhibitors, hydroquinone and 4-methoxyphenol, were subjected to in vitro cytotoxicity assays as aqueous solutions at different concentrations. A new polymerization initiator, 2,2'-azo-bis-(2,4-dimethyl valeronitrile), was thermally decomposed in water at different concentrations and the products were also assayed for cytotoxicity. Assays were based on incubation with human choroidal fibroblasts. Cell death was evaluated by trypan blue dye exclusion, DNA synthesis inhibition, and lactate dehydrogenase tests. While methyl methacrylate and 2-ethoxyethyl methacrylate were found nontoxic, the other chemicals displayed high cytotoxicity. However, when extracts of synthesized poly(2-hydroxyethyl methacrylate) specimens, differentially treated after polymerization, were subjected to the same assays it was found that toxicity from residual 2-hydroxyethyl methacrylate monomer was lost during steam sterilization and storage in water because of the removal of the monomer through aqueous washing. The lack of toxicity in these specimens suggests that residual contents of inhibitor and initiator are too low to cause toxic effects on choroidal fibroblasts. It is concluded that hydrogels have low cytotoxic effects in vitro.

  12. Singlet Oxygen in Aqueous Solution: A Lecture Demonstration

    ERIC Educational Resources Information Center

    Shakhashiri, Bassam Z.; Williams, Lloyd G.

    1976-01-01

    Describes a demonstration that illustrates the red chemiluminescence due to singlet molecular oxygen that can be observed when aqueous solutions of hypochlorite ion and hydrogen peroxide are mixed. (MLH)

  13. Thermodynamic studies of aqueous and CCl4 solutions of 15-crown-5 at 298.15 K: an application of McMillan-Mayer and Kirkwood-Buff theories of solutions.

    PubMed

    Dagade, Dilip H; Shetake, Poonam K; Patil, Kesharsingh J

    2007-07-05

    The density and osmotic coefficient data for solutions of 15-crown-5 (15C5) in water and in CCl4 solvent systems at 298.15 K have been reported using techniques of densitometry and vapor pressure osmometry in the concentration range of 0.01-2 mol kg-1. The data are used to obtain apparent molar and partial molar volumes, activity coefficients of the components as a function of 15C5 concentration. Using the literature heat of dilution data for aqueous system, it has become possible to calculate entropy of mixing (DeltaS(mix)), excess entropy of solution (DeltaS(E)), and partial molar entropies of the components at different concentrations. The results of all these are compared to those obtained for aqueous 18-crown-6 solutions reported earlier. It has been observed that the partial molar volume of 15C5 goes through a minimum and that of water goes through a maximum at approximately 1.2 mol kg(-1) in aqueous solutions whereas the opposite is true in CCl4 medium but at approximately 0.5 mol kg(-1). The osmotic and activity coefficients of 15C5 and excess free energy change for solution exhibit distinct differences in the two solvent systems studied. These results have been explained in terms of hydrophobic hydration and interactions in aqueous solution while weak solvophobic association of 15C5 molecules in CCl4 solutions is proposed. The data are further subjected to analysis by applying McMillan-Mayer and Kirkwood-Buff theories of solutions. The analysis shows that osmotic second virial coefficient value for 15C5 is marginally less than that of 18C6 indicating that reduction in ring flexibility does not affect the energetics of the interactions much in aqueous solution while the same gets influenced much in nonpolar solvent CCl4.

  14. Stiffness-Independent Highly Efficient On-Chip Extraction of Cell-Laden Hydrogel Microcapsules from Oil Emulsion into Aqueous Solution by Dielectrophoresis.

    PubMed

    Huang, Haishui; Sun, Mingrui; Heisler-Taylor, Tyler; Kiourti, Asimina; Volakis, John; Lafyatis, Gregory; He, Xiaoming

    2015-10-28

    A dielectrophoresis (DEP)-based method achieves highly efficient on-chip extraction of cell-laden microcapsules of any stiffness from oil into aqueous solution. The hydrogel microcapsules can be extracted into the aqueous solution by DEP and interfacial tension forces with no trapped oil, while the encapsulated cells are free from electrical damage due to the Faraday cage effect. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. SOLVENT EXTRACTION PROCESS FOR PLUTONIUM

    DOEpatents

    Seaborg, G.T.

    1959-04-14

    The separation of plutonium from aqueous inorganic acid solutions by the use of a water immiscible organic extractant liquid is described. The plutonium must be in the oxidized state, and the solvents covered by the patent include nitromethane, nitroethane, nitropropane, and nitrobenzene. The use of a salting out agents such as ammonium nitrate in the case of an aqueous nitric acid solution is advantageous. After contacting the aqueous solution with the organic extractant, the resulting extract and raffinate phases are separated. The plutonium may be recovered by any suitable method.

  16. Aqueous solution-chemical derived Nisbnd Al2O3 solar selective absorbing coatings. 2. Wetting agents and spreading of aqueous solutions on aluminum substrate

    NASA Astrophysics Data System (ADS)

    Li, Zhenxiang; Zhao, Jianxi

    2013-03-01

    Wettability of aluminum substrate by the aqueous solutions containing ethoxylated alcohol nonionic surfactants C12En- or Triton X-series was studied using dynamic contact angle measurements. The efficiency of wetting was found to strongly depend on the length of polyoxyethylene (POE) chain of C12En- or Triton X surfactants. For C12E4 that has a very short POE chain, it hardly made the aqueous solution spreading over aluminum. The others with a long POE chain were indeed very efficient in promoting the solution spreading. Moreover, all the spreading process could be completed within 10 s. The single-layer Nisbnd Al2O3 coatings were fabricated from the precursor solutions containing C12En- or Triton X surfactants and the reflectance spectra were measured by a UV/vis spectrophotometer equipped with an integrating sphere. The results indicated that the precursor solution with a long POE chain surfactant as wetting agent favored to fabricate a uniform film on the aluminum substrate and therefore to get a high solar absorptance.

  17. Reaction behaviors of decomposition of monocrotophos in aqueous solution by UV and UV/O processes.

    PubMed

    Ku, Y; Wang, W; Shen, Y S

    2000-02-01

    The decomposition of monocrotophos (cis-3-dimethoxyphosphinyloxy-N-methyl-crotonamide) in aqueous solution by UV and UV/O(3) processes was studied. The experiments were carried out under various solution pH values to investigate the decomposition efficiencies of the reactant and organic intermediates in order to determine the completeness of decomposition. The photolytic decomposition rate of monocrotophos was increased with increasing solution pH because the solution pH affects the distribution and light absorbance of monocrotophos species. The combination of O(3) with UV light apparently promoted the decomposition and mineralization of monocrotophos in aqueous solution. For the UV/O(3) process, the breakage of the >C=C< bond of monocrotophos by ozone molecules was found to occur first, followed by mineralization by hydroxyl radicals to generate CO(3)(2-), PO4(3-), and NO(3)(-) anions in sequence. The quasi-global kinetics based on a simplified consecutive-parallel reaction scheme was developed to describe the temporal behavior of monocrotophos decomposition in aqueous solution by the UV/O(3) process.

  18. Process for the extraction of technetium from uranium

    DOEpatents

    Gong, Cynthia-May S.; Poineau, Frederic; Czerwinski, Kenneth R.

    2010-12-21

    A spent fuel reprocessing method contacts an aqueous solution containing Technetium(V) and uranyl with an acidic solution comprising hydroxylamine hydrochloride or acetohydroxamic acid to reduce Tc(V) to Tc(II, and then extracts the uranyl with an organic phase, leaving technetium(II) in aqueous solution.

  19. ADSORPTION OF CERIUM VALUES FROM AQUEOUS SOLUTIONS

    DOEpatents

    Roberts, F.P.

    1963-08-13

    Cerium can be removed from aqueous nitric acid (2 to 13 M) solutions by passing the latter over a PbO/sub 2/-containing anion exchange resin. The cerium is taken up by the resin, while any lanthanides, yttrium, and strontium present remain in the solution. (AEC)

  20. Method for separating water soluble organics from a process stream by aqueous biphasic extraction

    DOEpatents

    Chaiko, David J.; Mego, William A.

    1999-01-01

    A method for separating water-miscible organic species from a process stream by aqueous biphasic extraction is provided. An aqueous biphase system is generated by contacting a process stream comprised of water, salt, and organic species with an aqueous polymer solution. The organic species transfer from the salt-rich phase to the polymer-rich phase, and the phases are separated. Next, the polymer is recovered from the loaded polymer phase by selectively extracting the polymer into an organic phase at an elevated temperature, while the organic species remain in a substantially salt-free aqueous solution. Alternatively, the polymer is recovered from the loaded polymer by a temperature induced phase separation (cloud point extraction), whereby the polymer and the organic species separate into two distinct solutions. The method for separating water-miscible organic species is applicable to the treatment of industrial wastewater streams, including the extraction and recovery of complexed metal ions from salt solutions, organic contaminants from mineral processing streams, and colorants from spent dye baths.

  1. Thermodynamic Parameters of the Dissolution of 4-Hydroxy-L-Proline and L-Phenylalanine in Mixed Aqueous Solvents at 298 K

    NASA Astrophysics Data System (ADS)

    Smirnov, V. I.; Badelin, V. G.

    2018-01-01

    The enthalpies of solution of 4-hydroxy-L-proline and L-phenylalanine in binary mixed aqueous solvents containing acetonitrile (AN), 1,4-dioxane (1,4-DO), or acetone (AC) at mole fractions of 0 to 0.25 are determined at T = 298.15 K via isothermal calorimetry. The standard enthalpies of solution (Δsol H°) and transfer (Δtr H°) of 4-hydroxy-L-proline and L-phenylalanine from water to mixed aqueous solvents are calculated using the experimental calorimetric data, as are the enthalpy coefficients of paired interactions ( h xy ) between the molecules of the investigated amino acids and the organic solvents. The effects the mixed aqueous solvent composition and the structure of the organic solvent molecules have on the enthalpies of solution and transfer for the investigated amino acids are considered. The correlation between the enthalpy of solution of the amino acids and the electron-donating properties of the organic solvents in the mixed aqueous solvent systems is established.

  2. Use of solid phase extraction (SPE) to evaluate in vitro skin permeation of aescin.

    PubMed

    Montenegro, L; Carbone, C; Giannone, I; Puglisi, G

    2007-05-01

    The aim of this work was to evaluate the feasibility of assessing aescin in vitro permeation through human skin by determining the amount of aescin permeated using conventional HPLC procedures after extraction of skin permeation samples by means of solid phase extraction (SPE). Aescin in vitro skin permeation was assessed from aqueous solutions and gels using both Franz-type diffusion cells and flow-through diffusion cells. The SPE method used was highly accurate (mean accuracy 99.66%), highly reproducible (intra-day and inter-day variations lower than 2.3% and 2.2%, respectively) and aescin recovery from normal saline was greater than 99%. The use of Franz-type diffusion cells did not allow us to determine aescin flux values through excised human skin, therefore aescin skin permeation parameters could be calculated only using flow-through diffusion cells. Plotting the cumulative amount of aescin permeated as a function of time, linear relationships were obtained from both aqueous solution and gel using flow-through diffusion cells. Aescin flux values through excised human skin from aqueous gel were significantly lower than those observed from aqueous solution (p < 0.05). Calculating aescin percutaneous absorption parameters we evidenced that aescin partition coefficient was lower from the aqueous gel with respect to the aqueous solution. Therefore, the SPE method used in this study was suitable to determine aescin in vitro skin permeation parameters from aqueous solutions and gels using a conventional HPLC method for the analysis of the skin permeation samples.

  3. 21 CFR 163.112 - Breakfast cocoa.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... oxide, used as such, or in aqueous solution; (2) Neutralizing agents. Phosphoric acid, citric acid and L-tartaric acid, used as such, or in aqueous solution; (3) Spices, natural and artificial flavorings, and...

  4. 21 CFR 163.112 - Breakfast cocoa.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... oxide, used as such, or in aqueous solution; (2) Neutralizing agents. Phosphoric acid, citric acid and L-tartaric acid, used as such, or in aqueous solution; (3) Spices, natural and artificial flavorings, and...

  5. 21 CFR 163.112 - Breakfast cocoa.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... oxide, used as such, or in aqueous solution; (2) Neutralizing agents. Phosphoric acid, citric acid and L-tartaric acid, used as such, or in aqueous solution; (3) Spices, natural and artificial flavorings, and...

  6. Method for gettering organic, inorganic and elemental iodine in aqueous solutions

    DOEpatents

    Beahm, Edward C.; Shockley, William E.

    1990-07-03

    A process for the removal of iodine from aqueous solutions, particularly the trapping of radioactive iodine to mitigate damage resulting from accidents or spills associated with nuclear reactors, by exposing the solution to well dispersed silver carbonate which reacts with the iodine and iodides, thereby gettering iodine and iodine compounds from solution. The iodine is not only removed from solution but also from the contiguous vapor.

  7. Method for gettering organic, inorganic and elemental iodine in aqueous solutions

    DOEpatents

    Beahm, Edward C.; Shockley, William E.

    1990-01-01

    A process for the removal of iodine from aqueous solutions, particularly the trapping of radioactive iodine to mitigate damage resulting from accidents or spills associated with nuclear reactors, by exposing the solution to well dispersed silver carbonate which reacts with the iodine and iodides, thereby gettering iodine and iodine compounds from solution. The iodine is not only removed from solution but also from the contiguous vapor.

  8. Crystal growth in fused solvent systems

    NASA Technical Reports Server (NTRS)

    Ulrich, D. R.; Noone, M. J.; Spear, K. E.; White, W. B.; Henry, E. C.

    1973-01-01

    Research is reported on the growth of electronic ceramic single crystals from solution for the future growth of crystals in a microgravity environment. Work included growth from fused or glass solvents and aqueous solutions. Topics discussed include: crystal identification and selection; aqueous solution growth of triglycine sulphate (TGS); and characterization of TGS.

  9. MODELING SMALL-SCALE SPILLS OF AQUEOUS SOLUTIONS IN THE INDOOR ENVIRONMENT

    EPA Science Inventory

    A mass transfer model is proposed to estimate the rates of chemical emissions from aqueous solutions spilled on hard surfaces inside buildings. The model is presented in two forms: a set of four ordinary differential equations and a simplified exact solution. The latter can be ...

  10. Rheological characterization of solutions and thin films made from amylose-hexadecylammonium chloride inclusion complexes and polyvinyl alcohol

    USDA-ARS?s Scientific Manuscript database

    The rheological properties of aqueous solutions and films made from blends of polyvinyl alcohol (PVOH) and amylose-hexadecylammonium chloride inclusion complexes (Hex-Am) were investigated to better understand the polymer interactions and processing parameters. Aqueous solutions of Hex-Am displayed ...

  11. Study on Latent Heat of Fusion of Ice in Aqueous Solutions

    NASA Astrophysics Data System (ADS)

    Kumano, Hiroyuki; Asaoka, Tatsunori; Saito, Akio; Okawa, Seiji

    In this study, latent heat of fusion of ice in aqueous solutions was measured to understand latent heat of fusion of ice slurries. Propylene glycol, ethylene glycol, ethanol, NaCl and NaNO3 solutions were examined as the aqueous solutions. In the measurement, pure ice was put into the solution, and the temperature variation of the solution due to the melting of the ice was measured. Then, the effective latent heat of fusion was calculated from energy balance equation. When ice melts in solution, the concentration of the solution varies due to the melting of the ice, and dilution heat must be considered. Therefore, the latent heat of fusion of ice in aqueous solutions was predicted by considering the effects of dilution and freezing-point depression. The latent heat of fusion was also measured by differential scanning calorimetry(DSC) to compare the results obtained from the experiments with that obtained by DSC. As the result, it was found that the effective latent heat of fusion of ice decreased with the increase of the concentration of solution, and the effective latent heat of fusion was calculated from latent heat of fusion of pure ice and the effects of freezing-point depression and the dilution heat.

  12. Adsorption behaviour of methylene blue onto Jordanian diatomite: a kinetic study.

    PubMed

    Al-Ghouti, Mohammad A; Khraisheh, Majeda A M; Ahmad, Mohammad N M; Allen, Stephen

    2009-06-15

    The effect of initial concentration, particle size, mass of the adsorbent, pH and agitation speed on adsorption behaviour of methylene blue (MB) onto Jordanian diatomite has been investigated. The maximum adsorption capacity, q, increased from 75 to 105 mg/g when pH of the dye solution increased from 4 to 11. It is clear that the ionisable charge sites on the diatomite surface increased when pH increased from 4 to 11. When the solution pH was above the pH(ZPC), the diatomite surface had a negative charge, while at low pH (pH<5.4) it has a positive charge. The adsorption capacity increased from 88.6 to 143.3mg/g as the initial MB concentrations increased from 89.6 to 225.2mg/dm(3). The experimental results were also applied to the pseudo-first and -second order kinetic models. It is noticed that the whole experimental data of MB adsorption onto diatomite did not follow the pseudo-first order model and had low correlation coefficients (R(2)<0.3). The calculated adsorption capacity, q(e,cal), values obtained from pseudo-first order kinetic model did not give acceptable values, q(e,exp.) The maximum uptake capacity seems to be independent of the particle size of the diatomite when the particle size distribution is less than 250-500 microm. While at larger particle size 250-500 microm, the maximum uptake capacity was dependent on the particle size. It would imply that the MB adsorption is limited by the external surface and that intraparticle diffusion is reduced. The effect of the agitation speeds on the removal of MB from aqueous solution using the diatomite is quite low. The MB removal increased from 43 to 100% when mass of the diatomite increased from 0.3 to 1.7 g.

  13. Enhanced adsorptive and photocatalytic achievements in removal of methylene blue by incorporating tungstophosphoric acid-TiO2 into MCM-41.

    PubMed

    Zanjanchi, M A; Golmojdeh, H; Arvand, M

    2009-09-30

    The use of titania-dispersed materials in photocatalytic processes has been proposed as an alternative to the conventional bare TiO(2), in order to modify the surface area and activity of the catalyst. A homogeneously dispersed Keggin unit into TiO(2) was synthesized using tungstophosphoric acid (TPA) and titanium tetraisopropoxide. This compound was then loaded into MCM-41 by dispersing it in a suspension containing the mesoporous phase. Two other titanium-containing MCM-41 catalysts, Ti-MCM-41 and TiO(2)/MCM-41 were also prepared using isomorphous substitution synthesis method and impregnation method, respectively, for the sake of comparison. The prepared photocatalysts were characterized by X-ray diffraction (XRD), nitrogen physisorption (BET) and chemical analysis. The catalysts were used to study degradation of methylene blue (MB) in aqueous solution. XRD result shows a pure anatase crystalline phase for TPA-containing TiO(2) indicating that there is good molecular distribution of tungstophosphoric acid into TiO(2) structure. Supported TPA-TiO(2) into MCM-41 shows both TPA-TiO(2) and MCM-41 characteristic X-ray reflections in the high-angle and low-angle parts of the XRD patterns, respectively. The experimental results show that adsorption is a major constituent in the elimination of MB from the dye solutions by the TPA-containing materials. Exploitation of both adsorption and photocatalytic processes speeds up the removal of the dye using the TPA-TiO(2)-loaded MCM-41 photocatalyst. The elimination of MB is completed within 15 min for a 30 mg l(-1) MB solution containing a catalyst dose of 100mg/100ml. The efficiencies of the other photocatalysts such as commercial TiO(2), Ti-MCM-41, TiO(2)/MCM-41 and TPA-TiO(2) for adsorption and degradation of MB were also studied and compared with that of the prepared catalyst.

  14. Direct Detection of Aqueous CO2 by Infrared Waveguide Spectroscopy with an Amorphous Fluoropolymer Coating Rod.

    PubMed

    Hotta, Hiroki; Miki, Yuko; Kawaguchi, Yukiko; Tsunoda, Kin-Ichi; Nakaoka, Atsuko; Ko, Sho; Kimoto, Takashi

    2017-01-01

    Infrared waveguide spectroscopy using a sapphire rod coated with an amorphous fluoropolymer (Cytop, Asahi Glass Co., ltd, Japan) has been developed in order to directly observe CO 2 in aqueous solutions. Since the amorphous fluoropolymer has a relatively high gas-permeability and hydrophobic feature, the aqueous CO 2 transmits into the amorphous fluoropolymer coating film, but water cannot penetrate into the film. Good linearity of calibration curves for CO 2 in the gas and the aqueous solution were obtained.

  15. POLONIUM SEPARATION PROCESS

    DOEpatents

    Karraker, D.G.

    1959-07-14

    A liquid-liquid extraction process is presented for the recovery of polonium from lead and bismuth. According to the invention an acidic aqueous chloride phase containing the polonium, lead, and bismuth values is contacted with a tributyl phosphate ether phase. The polonium preferentially enters the organic phase which is then separated and washed with an aqueous hydrochloric solution to remove any lead or bismuth which may also have been extracted. The now highly purified polonium in the organic phase may be transferred to an aqueous solution by extraction with aqueous nitric acid.

  16. Microbial solubilization of phosphate

    DOEpatents

    Rogers, R.D.; Wolfram, J.H.

    1993-10-26

    A process is provided for solubilizing phosphate from phosphate containing ore by treatment with microorganisms which comprises forming an aqueous mixture of phosphate ore, microorganisms operable for solubilizing phosphate from the phosphate ore and maintaining the aqueous mixture for a period of time and under conditions operable to effect the microbial solubilization process. An aqueous solution containing soluble phosphorus can be separated from the reacted mixture by precipitation, solvent extraction, selective membrane, exchange resin or gravity methods to recover phosphate from the aqueous solution. 6 figures.

  17. Microbial solubilization of phosphate

    DOEpatents

    Rogers, Robert D.; Wolfram, James H.

    1993-01-01

    A process is provided for solubilizing phosphate from phosphate containing ore by treatment with microorganisms which comprises forming an aqueous mixture of phosphate ore, microorganisms operable for solubilizing phosphate from the phosphate ore and maintaining the aqueous mixture for a period of time and under conditions operable to effect the microbial solubilization process. An aqueous solution containing soluble phosphorous can be separated from the reacted mixture by precipitation, solvent extraction, selective membrane, exchange resin or gravity methods to recover phosphate from the aqueous solution.

  18. Relation between the adsorbed quantity and the immersion enthalpy in catechol aqueous solutions on activated carbons.

    PubMed

    Moreno-Piraján, Juan Carlos; Blanco, Diego; Giraldo, Liliana

    2012-01-01

    An activated carbon, Carbochem(TM)-PS230, was modified by chemical and thermal treatment in flow of H(2), in order to evaluate the influence of the activated carbon chemical characteristics in the adsorption of the catechol. The catechol adsorption in aqueous solution was studied along with the effect of the pH solution in the adsorption process of modified activated carbons and the variation of immersion enthalpy of activated carbons in the aqueous solutions of catechol. The interaction solid-solution is characterized by adsorption isotherms analysis, at 298 K and pH 7, 9 and 11 in order to evaluate the adsorption value above and below that of the catechol pK(a). The adsorption capacity of carbons increases when the solution pH decreases. The retained amount increases slightly in the reduced carbon to maximum adsorption pH and diminishes in the oxidized carbon. Similar conclusions are obtained from the immersion enthalpies, whose values increase with the solute quantity retained. In granular activated carbon (CAG), the immersion enthalpies obtained are between 21.5 and 45.7 J·g(-1) for catechol aqueous solutions in a range of 20 at 1500 mg·L(-1).

  19. Relation Between the Adsorbed Quantity and the Immersion Enthalpy in Catechol Aqueous Solutions on Activated Carbons

    PubMed Central

    Moreno-Piraján, Juan Carlos; Blanco, Diego; Giraldo, Liliana

    2012-01-01

    An activated carbon, CarbochemTM—PS230, was modified by chemical and thermal treatment in flow of H2, in order to evaluate the influence of the activated carbon chemical characteristics in the adsorption of the catechol. The catechol adsorption in aqueous solution was studied along with the effect of the pH solution in the adsorption process of modified activated carbons and the variation of immersion enthalpy of activated carbons in the aqueous solutions of catechol. The interaction solid-solution is characterized by adsorption isotherms analysis, at 298 K and pH 7, 9 and 11 in order to evaluate the adsorption value above and below that of the catechol pKa. The adsorption capacity of carbons increases when the solution pH decreases. The retained amount increases slightly in the reduced carbon to maximum adsorption pH and diminishes in the oxidized carbon. Similar conclusions are obtained from the immersion enthalpies, whose values increase with the solute quantity retained. In granular activated carbon (CAG), the immersion enthalpies obtained are between 21.5 and 45.7 J·g−1 for catechol aqueous solutions in a range of 20 at 1500 mg·L−1. PMID:22312237

  20. 75 FR 30844 - General Mills, Inc.; Withdrawal of Food Additive Petition

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-02

    ... for the reduction of pathogens and other microorganisms in aqueous sugar solutions and potable water... reduction of pathogens and other microorganisms in aqueous sugar solutions and potable water intended for...

Top