Science.gov

Sample records for bnpd 100-m meteorological

  1. 'Quantum valley' receives C100m funding boost

    NASA Astrophysics Data System (ADS)

    Howell, Elizabeth

    2013-05-01

    Mike Lazaridis - who founded the company now known as BlackBerry (previously Research in Motion, or RIM) - has established a new C100m fund in Canada that could push forward the development of quantum computing.

  2. Mechanical determinants of 100-m sprint running performance.

    PubMed

    Morin, Jean-Benoît; Bourdin, Muriel; Edouard, Pascal; Peyrot, Nicolas; Samozino, Pierre; Lacour, Jean-René

    2012-11-01

    Sprint mechanics and field 100-m performances were tested in 13 subjects including 9 non-specialists, 3 French national-level sprinters and a world-class sprinter, to further study the mechanical factors associated with sprint performance. 6-s sprints performed on an instrumented treadmill allowed continuous recording of step kinematics, ground reaction forces (GRF), and belt velocity and computation of mechanical power output and linear force-velocity relationships. An index of the force application technique was computed as the slope of the linear relationship between the decrease in the ratio of horizontal-to-resultant GRF and the increase in velocity. Mechanical power output was positively correlated to mean 100-m speed (P < 0.01), as was the theoretical maximal velocity production capability (P < 0.011), whereas the theoretical maximal force production capability was not. The ability to apply the resultant force backward during acceleration was positively correlated to 100-m performance (r (s) > 0.683; P < 0.018), but the magnitude of resultant force was not (P = 0.16). Step frequency, contact and swing time were significantly correlated to acceleration and 100-m performance (positively for the former, negatively for the two latter, all P < 0.05), whereas aerial time and step length were not (all P > 0.21). Last, anthropometric data of body mass index and lower-limb-to-height ratio showed no significant correlation with 100-m performance. We concluded that the main mechanical determinants of 100-m performance were (1) a "velocity-oriented" force-velocity profile, likely explained by (2) a higher ability to apply the resultant GRF vector with a forward orientation over the acceleration, and (3) a higher step frequency resulting from a shorter contact time.

  3. Testing of 100 mK bolometers for space applications

    NASA Technical Reports Server (NTRS)

    Murray, A. G.; Ade, P. A. R.; Bhatia, R. S.; Griffin, M. J.; Maffei, B.; Nartallo, R.; Beeman, J. W.; Bock, J.; Lange, A.; DelCastillo, H.

    1996-01-01

    Electrical and optical performance data are presented for a prototype 100 mK spider-web bolometer operating under very low photon backgrounds. These data are compared with the bolometer theory and are used to estimate the expected sensitivity of such a detector used for low background space astronomy. The results demonstrate that the sensitivity and speed of response requirements of the bolometer instruments proposed for these missions can be met by 100 mK spider-web bolometers using neutron transmutation doped germanium as the temperature sensitive element.

  4. Testing of 100 mK bolometers for space applications

    NASA Technical Reports Server (NTRS)

    Murray, A. G.; Ade, P. A. R.; Bhatia, R. S.; Griffin, M. J.; Maffei, B.; Nartallo, R.; Beeman, J. W.; Bock, J.; Lange, A.; DelCastillo, H.

    1996-01-01

    Electrical and optical performance data are presented for a prototype 100 mK spider-web bolometer operating under very low photon backgrounds. These data are compared with the bolometer theory and are used to estimate the expected sensitivity of such a detector used for low background space astronomy. The results demonstrate that the sensitivity and speed of response requirements of the bolometer instruments proposed for these missions can be met by 100 mK spider-web bolometers using neutron transmutation doped germanium as the temperature sensitive element.

  5. A 400 Gbps/100 m free-space optical link

    NASA Astrophysics Data System (ADS)

    Lin, Chun-Yu; Lu, Hai-Han; Ho, Chun-Ming; Cheng, Ming-Te; Huang, Sheng-Jhe; Wang, Yun-Chieh; Chi, Jing-Kai

    2017-02-01

    A 400 Gbps/100 m free-space optical (FSO) link with dense-wavelength-division-multiplexing (DWDM)/space-division-multiplexing (SDM) techniques and a doublet lens scheme is proposed. To the best of our knowledge, this is the first time that a link adopting DWDM and SDM techniques and a doublet lens scheme has demonstrated a 400 Gbps/100 m FSO link. The experimental results show that the free-space transmission rate is significantly enhanced by the DWDM and SDM techniques, and the free-space transmission distance is greatly increased by the doublet lens scheme. A 16-channel FSO link with a total transmission rate of 400 Gbps (25 Gbps/λ  ×  16 λ  =  400 Gbps) over a 100 m free-space link is successfully demonstrated. Such a 400 Gbps/100 m DWDM/SDM FSO link provides the advantages of optical wireless communications for high transmission rates and long transmission distances, which is very useful for high-speed and long-haul light-based WiFi (LiFi) applications.

  6. A Kinematics Analysis Of Three Best 100 M Performances Ever

    PubMed Central

    Krzysztof, Maćkała; Mero, Antti

    2013-01-01

    The purpose of this investigation was to compare and determine the relevance of the morphological characteristics and variability of running speed parameters (stride length and stride frequency) between Usain Bolt’s three best 100 m performances. Based on this, an attempt was made to define which factors determine the performance of Usain Bolt’s sprint and, therefore, distinguish him from other sprinters. We analyzed the previous world record of 9.69 s set in the 2008 Beijing Olympics, the current record of 9.58 s set in the 2009 Berlin World Championships in Athletics and the O lympic record of 9.63 s set in 2012 London Olympics Games by Usain Bolt. The application of VirtualDub Programme allowed the acquisition of basic kinematical variables such as step length and step frequency parameters of 100 m sprint from video footage provided by NBC TV station, BBC TV station. This data was compared with other data available on the web and data published by the Scientific Research Project Office responsible on behalf of IAAF and the German Athletics Association (DVL). The main hypothesis was that the step length is the main factor that determines running speed in the 10 and 20 m sections of the entire 100 m distance. Bolt’s anthropometric advantage (body height, leg length and liner body) is not questionable and it is one of the factors that makes him faster than the rest of the finalists from each three competitions. Additionally, Bolt’s 20 cm longer stride shows benefit in the latter part of the race. Despite these factors, he is probably able to strike the ground more forcefully than rest of sprinters, relative to their body mass, therefore, he might maximize his time on the ground and to exert the same force over this period of time. This ability, combined with longer stride allows him to create very high running speed - over 12 m/s (12.05 – 12.34 m/s) in some 10 m sections of his three 100 m performances. These assumption confirmed the application of

  7. Selected Determinants of Acceleration in the 100m Sprint

    PubMed Central

    Maćkała, Krzysztof; Fostiak, Marek; Kowalski, Kacper

    2015-01-01

    The goal of this study was to examine the relationship between kinematics, motor abilities, anthropometric characteristics, and the initial (10 m) and secondary (30 m) acceleration phases of the 100 m sprint among athletes of different sprinting performances. Eleven competitive male sprinters (10.96 s ± 0.36 for 100 with 10.50 s fastest time) and 11 active students (12.20 s ± 0.39 for 100 m with 11.80 s fastest time) volunteered to participate in this study. Sprinting performance (10 m, 30 m, and 100 m from the block start), strength (back squat, back extension), and jumping ability (standing long jump, standing five-jumps, and standing ten-jumps) were tested. An independent t-test for establishing differences between two groups of athletes was used. The Spearman ranking correlation coefficient was computed to verify the association between variables. Additionally, the Ward method of hierarchical cluster analysis was applied. The recorded times of the 10 and 30 m indicated that the strongest correlations were found between a 1-repetition maximum back squat, a standing long jump, standing five jumps, standing ten jumps (r = 0.66, r = 0.72, r = 0.66, and r = 0.72), and speed in the 10 m sprint in competitive athletes. A strong correlation was also found between a 1-repetition maximum back squat and a standing long jump, standing five jumps, and standing ten jumps (r = 0.88, r = 0.87 and r = 0.85), but again only for sprinters. The most important factor for differences in maximum speed development during both the initial and secondary acceleration phase among the two sub-groups was the stride frequency (p<0.01). PMID:25964817

  8. Selected determinants of acceleration in the 100m sprint.

    PubMed

    Maćkała, Krzysztof; Fostiak, Marek; Kowalski, Kacper

    2015-03-29

    The goal of this study was to examine the relationship between kinematics, motor abilities, anthropometric characteristics, and the initial (10 m) and secondary (30 m) acceleration phases of the 100 m sprint among athletes of different sprinting performances. Eleven competitive male sprinters (10.96 s ± 0.36 for 100 with 10.50 s fastest time) and 11 active students (12.20 s ± 0.39 for 100 m with 11.80 s fastest time) volunteered to participate in this study. Sprinting performance (10 m, 30 m, and 100 m from the block start), strength (back squat, back extension), and jumping ability (standing long jump, standing five-jumps, and standing ten-jumps) were tested. An independent t-test for establishing differences between two groups of athletes was used. The Spearman ranking correlation coefficient was computed to verify the association between variables. Additionally, the Ward method of hierarchical cluster analysis was applied. The recorded times of the 10 and 30 m indicated that the strongest correlations were found between a 1-repetition maximum back squat, a standing long jump, standing five jumps, standing ten jumps (r = 0.66, r = 0.72, r = 0.66, and r = 0.72), and speed in the 10 m sprint in competitive athletes. A strong correlation was also found between a 1-repetition maximum back squat and a standing long jump, standing five jumps, and standing ten jumps (r = 0.88, r = 0.87 and r = 0.85), but again only for sprinters. The most important factor for differences in maximum speed development during both the initial and secondary acceleration phase among the two sub-groups was the stride frequency (p<0.01).

  9. Evaluation of muscle fatigue during 100-m front crawl.

    PubMed

    Stirn, Igor; Jarm, Tomaz; Kapus, Venceslav; Strojnik, Vojko

    2011-01-01

    The aim of this study was to evaluate muscle fatigue in upper body muscles during 100-m all-out front crawl. Surface electromyogram (EMG) was collected from the pectoralis major, latissimus dorsi and triceps brachii muscles of 11 experienced swimmers. Blood lactate concentration level increased to 14.1 ± 2.9 mmol l(-1) 5 min after the swim. The velocity, stroke length and stroke rate calculated based on video analysis decreased by 15.0, 5.8 and 7.4%, respectively, during the swim. EMG amplitude of the triceps and the lower part of the latissimus muscles increased, whilst the mean power frequency (MNF) of all muscles significantly decreased by 20-25%. No significant differences in the relative MNF decrease were observed amongst the muscles; however, the differences in the rate of the MNF decrease between the lower part of the latissimus and the triceps brachii muscles were found (P < 0.05). The time of rest between the muscle activation of the two consecutive arm strokes at the end of swimming was extended (P < 0.05). It was concluded that 100-m all-out crawl induced significant fatigue with no evident differences amongst the analysed muscles.

  10. Seasonal and annual variability of the global onshore and offshore wind power resource at 100 m

    NASA Astrophysics Data System (ADS)

    Archer, C. L.; Jacobson, M. Z.

    2010-12-01

    We present the results of numerical simulations of the global wind power potential over land and offshore with a coupled climate-meteorological-air pollution model, GATOR-GCMOM, that dynamically calculates wind power at the 100-m hub height of a modern 5 MW wind turbine at each time step. The model was run at various horizontal resolutions (4x5, 2x2.5, and 1.5x1.5 degrees of latitude and longitude) and with various initial conditions (summer or winter) for at least four years each. The global delivered wind power potential at 100 m at fast-wind locations (≥7 m/s) over land, excluding both polar regions, is found to be 138-150 TW (TW=1012 Watts) on average. This result further supports previous observation-based estimates of 72 TW at 80 m and model-based estimates of 79-126 TW at 100 m. Seasonal variations are however significant, with values as low as 94-102 TW in June-July-August (JJA) to 218-246 TW in December-January-February (DJF), with minima in September and maxima in January in all simulations. Global wind power over land at fast-wind locations during DJF is 1.6-2.5 times greater than that during JJA on average. Furthermore, the average wind power over land in the Northern Hemisphere (NH) is ˜126 TW, over 5 times greater than the Southern Hemisphere (SH) average (˜24 TW). In December, the NH wind power over land is up to 32 times greater than that in the SH. This suggests that the two hemispheres have different wind resources, driven by the different distributions of land and ocean areas. The offshore delivered wind power potential (excluding polar regions) is 15-23 TW at 100 m on average, consistent with previous estimates of 18-21 TW, varying between 16-17 and 19-31 TW from JJA to DJF. Wind power over land and near shore in fast-wind locations (which are 7-8% of the total land excluding polar regions) represents 7-10% of the theoretical global wind power over land plus ocean at all wind speeds of ˜1700 TW. Available wind power over land and near shore

  11. Crop suitability monitoring for improved yield estimations with 100m PROBA-V data

    NASA Astrophysics Data System (ADS)

    Özüm Durgun, Yetkin; Gilliams, Sven; Gobin, Anne; Duveiller, Grégory; Djaby, Bakary; Tychon, Bernard

    2015-04-01

    This study has been realised within the framework of a PhD targeting to advance agricultural monitoring with improved yield estimations using SPOT VEGETATION remotely sensed data. For the first research question, the aim was to improve dry matter productivity (DMP) for C3 and C4 plants by adding a water stress factor. Additionally, the relation between the actual crop yield and DMP was studied. One of the limitations was the lack of crop specific maps which leads to the second research question on 'crop suitability monitoring'. The objective of this work is to create a methodological approach based on the spectral and temporal characteristics of PROBA-V images and ancillary data such as meteorology, soil and topographic data to improve the estimation of annual crop yields. The PROBA-V satellite was launched on 6th May 2013, and was designed to bridge the gap in space-borne vegetation measurements between SPOT-VGT (March 1998 - May 2014) and the upcoming Sentinel-3 satellites scheduled for launch in 2015/2016. PROBA -V has products in four spectral bands: BLUE (centred at 0.463 µm), RED (0.655 µm), NIR (0.845 µm), and SWIR (1.600 µm) with a spatial resolution ranging from 1km to 300m. Due to the construction of the sensor, the central camera can provide a 100m data product with a 5 to 8 days revisiting time. Although the 100m data product is still in test phase a methodology for crop suitability monitoring was developed. The multi-spectral composites, NDVI (Normalised Difference Vegetation Index) (NIR_RED/NIR+RED) and NDII (Normalised Difference Infrared Index) (NIR-SWIR/NIR+SWIR) profiles are used in addition to secondary data such as digital elevation data, precipitation, temperature, soil types and administrative boundaries to improve the accuracy of crop yield estimations. The methodology is evaluated on several FP7 SIGMA test sites for the 2014 - 2015 period. Reference data in the form of vector GIS with boundaries and cover type of agricultural fields are

  12. Motivational Meteorology.

    ERIC Educational Resources Information Center

    Benjamin, Lee

    1993-01-01

    Describes an introductory meteorology course for nonacademic high school students. The course is made hands-on by the use of an educational software program offered by Accu-Weather. The program contains a meteorology database and instructional modules. (PR)

  13. Motivational Meteorology.

    ERIC Educational Resources Information Center

    Benjamin, Lee

    1993-01-01

    Describes an introductory meteorology course for nonacademic high school students. The course is made hands-on by the use of an educational software program offered by Accu-Weather. The program contains a meteorology database and instructional modules. (PR)

  14. Vertical and Horizontal Jump Tests Are Strongly Associated With Competitive Performance in 100-m Dash Events.

    PubMed

    Loturco, Irineu; Pereira, Lucas A; Cal Abad, Cesar C; DʼAngelo, Ricardo A; Fernandes, Victor; Kitamura, Katia; Kobal, Ronaldo; Nakamura, Fabio Y

    2015-07-01

    Fourteen male elite sprinters performed short-distance sprints and jump tests until 18 days before 100-m dash competitions in track and field to determine if these tests are associated with 100-m sprint times. Testing comprised of squat jumps (SJ), countermovement jumps (CMJ), horizontal jumps (HJ), maximum mean propulsive power relative to body mass in loaded jump squats, and a flying start 50-m sprint. Moderate associations were found between speed tests and competitive 100-m times (r = 0.54, r = 0.61, and r = 0.66 for 10-, 30-, and 50-m, respectively, p ≤ 0.05). In addition, the maximum mean propulsive power relative to body mass was very largely correlated with 100-m sprinting performance (r = 0.75, p < 0.01). The correlations of SJ, CMJ, and HJ with actual 100-m sprinting times amounted to -0.82, -0.85, and -0.81, respectively. Because of their practicality, safeness, and relationship with the actual times obtained by top-level athletes in 100-m dash events, it is highly recommended that SJ, CMJ, and HJ be regularly incorporated into elite sprint-testing routines.

  15. 100-mK bolometric receiver for low-background astronomy

    NASA Astrophysics Data System (ADS)

    Tanaka, S. T.; Clapp, Andre; Devlin, Mark J.; Fischer, Marc L.; Hagmann, Chris; Lange, A. E.; Richards, Paul L.

    1993-10-01

    The design and construction of 100 mK composite bolometers for low background submillimeter and millimeter-wave astronomy are discussed. The bolometers are cooled to 100 mK using an adiabatic demagnetization refrigerator. The bolometers consist of a silicon substrate suspended by nylon fibers, a bismuth film absorber, a neutron transmutation doped germanium thermometer with graphite fiber electrical leads, and a brass wire thermal strap. Heated JFET amplifiers located on the 1.5 K cold plate are used to read out the bolometer signals. Electrically measured noise equivalent powers as low as 2 X 10(superscript -17) W/(root)Hz have been achieved.

  16. Meteorology Online.

    ERIC Educational Resources Information Center

    Kahl, Jonathan D. W.

    2001-01-01

    Describes an activity to learn about meteorology and weather using the internet. Discusses the National Weather Service (NWS) internet site www.weather.gov. Students examine maximum and minimum daily temperatures, wind speed, and direction. (SAH)

  17. Meteorology Online.

    ERIC Educational Resources Information Center

    Kahl, Jonathan D. W.

    2001-01-01

    Describes an activity to learn about meteorology and weather using the internet. Discusses the National Weather Service (NWS) internet site www.weather.gov. Students examine maximum and minimum daily temperatures, wind speed, and direction. (SAH)

  18. Adriatic Meteorology

    DTIC Science & Technology

    2003-09-30

    Italian AGIP gas platform Amelia-B, site of one of four automated meteorological stations. The third approach was to fill in between the fixed...effort. A summer 2002 visit was made to AGIP , the Italian national petroleum company that owns the Adriatic gas platforms. Access to the gas...more than 3 weeks late. Four automated meteorological stations were installed on four Italian AGIP gas platforms in the NW Adriatic by 7 February

  19. Does warm-up have a beneficial effect on 100-m freestyle?

    PubMed

    Neiva, Henrique P; Marques, Mario C; Fernandes, Ricardo J; Viana, João L; Barbosa, Tiago M; Marinho, Daniel A

    2014-01-01

    To investigate the effect of warm-up on 100-m swimming performance. Twenty competitive swimmers (with a training frequency of 8.0 ± 1.0 sessions/wk) performed 2 maximal 100-m freestyle trials on separate days, with and without prior warm-up, in a counterbalanced and randomized design. The warm-up distance totaled 1000 m and replicated the swimmers' usual precompetition warm-up strategy. Performance (time), physiological (capillary blood lactate concentrations), psychophysiological (perceived exertion), and biomechanical variables (distance per stroke, stroke frequency, and stroke index) were assessed on both trials. Performance in the 100-m was fastest in the warm-up condition (67.15 ± 5.60 vs 68.10 ± 5.14 s; P = .01), although 3 swimmers swam faster without warm-up. Critical to this was the 1st 50-m lap (32.10 ± 2.59 vs 32.78 ± 2.33 s; P < .01), where the swimmers presented higher distance per stroke (2.06 ± 0.19 vs. 1.98 ± 0.16 m; P = .04) and swimming efficiency compared with the no-warm-up condition (stroke index 3.46 ± 0.53 vs 3.14 ± 0.44 m2 · c1 · s1; P < .01). Notwithstanding this better stroke-kinematic pattern, blood lactate concentrations and perceived exertion were similar between trials. These results suggest that swimmers' usual warm-up routines lead to faster 100-m freestyle swimming performance, a factor that appears to be related to better swimming efficiency in the 1st lap of the race. This study highlights the importance of performing swimming drills (for higher distance per stroke) before a maximal 100-m freestyle effort in similar groups of swimmers.

  20. Efficient Dual Head Nd:YAG 100mJ Oscillator for Remote Sensing

    NASA Technical Reports Server (NTRS)

    Coyle, Donald B.; Stysley, Paul R.; Kay, Richard b.; Poulios, Demetrios

    2007-01-01

    A diode pumped, Nd:YAG laser producing 100 mJ Q-switched pulses and employing a dual-pump head scheme in an unstable resonator configuration is described. Each head contains a side pumped zig-zag slab and four 6-bar QCW 808 nm diodes arrays which are de-rated 23%. Denoting 'z' as the lasing axis, the pump directions were along the x-axis in one head and the y-axis in the other, producing a circularized thermal lens, more typical in laser rod-based cavities. The dual head design's effective thermal lens is now corrected with a proper HR mirror curvature selection. This laser has demonstrated over 100 mJ output with high optical efficiency (24%), good TEM(sub 00) beam quality, and high pointing stability.

  1. Modeling of Women's 100-M Dash World Record: Wind-Aided or Not?

    ERIC Educational Resources Information Center

    Hazelrigg, Conner; Waibel, Bryson; Baker, Blane

    2015-01-01

    On July 16, 1988, Florence Griffith Joyner (FGJ) shattered the women's 100-m dash world record (WR) with a time of 10.49 s, breaking the previous mark by an astonishing 0.27 s. By all accounts FGJ dominated the race that day, securing her place as the premiere female sprinter of that era, and possibly all time. In the aftermath of such an…

  2. Modeling of Women's 100-M Dash World Record: Wind-Aided or Not?

    ERIC Educational Resources Information Center

    Hazelrigg, Conner; Waibel, Bryson; Baker, Blane

    2015-01-01

    On July 16, 1988, Florence Griffith Joyner (FGJ) shattered the women's 100-m dash world record (WR) with a time of 10.49 s, breaking the previous mark by an astonishing 0.27 s. By all accounts FGJ dominated the race that day, securing her place as the premiere female sprinter of that era, and possibly all time. In the aftermath of such an…

  3. Evaluation of the EFCOM SC-100M/120M/125M wireless underwater communicator

    NASA Astrophysics Data System (ADS)

    Middleton, J. R.

    1982-04-01

    In June 1981, the EFCOM SC-100M/120M/125M wireless communications system was evaluated in conjunction with the AGA DIVATOR 324 Full-Face Mask by the Navy Experimental Diving Unit. The purpose was to determine the systems suitability for U.S. Navy use with open-circuit Self-Contained Underwater Breathing Apparatus (SCUBA). The EFCOM system was evaluated for intelligibility, reliability and human engineering.

  4. Auditory scene analysis and sensory memory: the role of the auditory N100m.

    PubMed

    May, P J C; Tiitinen, H

    2004-11-30

    We consider the neural dynamics underlying auditory streaming, the perceptual grouping of transient auditory events, by using neural modeling and magnetoencephalographic (MEG) measurements in humans. We demonstrate that spatial variations in the strength of feedback inhibition leads to differential amplitude modulation (AM) tuning resembling that found in animal models. In our model, neurons respond selectively to stimuli presented at different onset-to-onset interstimulus intervals (ISIs), and their summed activity (corresponding to the MEG signal) exhibits both transient and sustained responses (SRs) at fast ISIs. In MEG measurements utilizing 2-s trains of 50-ms stimuli presented at 0-1950 ms ISIs, we observed the transient N100m and SRs predicted by the model, with a prominent SR emerging for discrete stimuli at ISIs below 200 ms. Our results explain why, at fast stimulus rates, the amplitude of the auditory N100m appears to be strongly attenuated even though auditory cortex continues to respond vigorously to the stimuli. The results suggest that the longer and shorter forms of auditory sensory memory may be reflected in the N100m and the SR, respectively. As the emergence of the SR coincides with the stimuli being perceived as auditory streams, our study suggests that auditory sensory memory as indexed by transient and sustained cortical activity might underlie auditory scene analysis.

  5. Remote Raman Spectroscopic Detection of Inorganic, Organic and Biological Materials to 100 m and More

    NASA Astrophysics Data System (ADS)

    Sharma, Shiv K.; Misra, Anupam K.

    2008-11-01

    We have designed and tested a portable gated-Raman system that is capable of detecting organic and inorganic bulk chemicals over stand-off distances of 100 m and more during day and night time. Utilizing a 532 nm laser pulse (~35 mJ/pulse), Raman spectra of several organic and inorganic compounds have been measured with the portable Raman instrument over a distance of 100 m. Remote Raman spectra, obtained with a very short gate (2 micro second), from a variety of inorganic minerals such as calcite (CaCO3), α-quartz (α-SiO2), barite (BaSO4), and FeSO4.7H2O, and organic compounds such as acetone, methanol, 2-propanol and naphthalene showed all major bands required for unambiguous chemical identification. We also measured the Raman and fluorescence spectra of plant leaves, tomato, and chicken eggshell excited with a 532 nm, 20 Hz pulsed laser and accumulated over 200 laser shots (10-s integration time) at 110 m with good signal-to-noise ratio. The results of these investigations show that remote Raman spectroscopy over a distance of 100 m can be used to identify Raman fingerprints of both inorganic, organic, and some biological compounds on planetary surfaces and could be useful for environmental monitoring.

  6. The Influence of Different Hand Paddle Size on 100-m Front Crawl Kinematics

    PubMed Central

    López-Plaza, Daniel; Alacid, Fernando; López-Miñarro, Pedro A.; Muyor, José M.

    2012-01-01

    The purpose of this study was to determine the influence of different sizes of hand paddles on kinematic parameters during a 100 m freestyle swimming performance in elite swimmers. Nine elite swimmers (19.1 ± 1.9 years) completed three tests of 100 m without paddles, with small paddles (271.27 cm2) and with large paddles (332.67 cm2), respectively. One video camera was used to record the performance during the three trials. The mean swimming velocity, stroke rate and stroke length were measured in the central 10 meters of each 50 m length. The results showed that stroke length tended to increase significantly when wearing hand paddles (p < 0.05) during both the first and second 50 m sections whereas the increase in swimming velocity occurred only in the second 50 m (p < 0.05). Conversely, the stroke rate showed a slight decreasing trend with increasing paddle size. During the 100 m freestyle trial the stroke kinematics were changed significantly as a result of the increase in propelling surface size when hand paddles were worn. PMID:23486988

  7. Data Assimilation of PROBA-V 100 m and 300 m.

    NASA Astrophysics Data System (ADS)

    Gilliams, S. J. B.; Kempeneers, P.

    2015-12-01

    One of the goals of the FP7 SIGMA projects is the extension of remote sensing time series to better monitor agricultural productivity at global scale. Extending these time series can be seen in differnt ways; on the one hand we are looking at the integration of different existing data sets with equal resolution e.g. SPOT-VGT and PROBA-V 1km resolution, or building new time series for Eta and Soil moisture. on the other hand we are also updating methods to extend existing time series with respect to their resolution and revisting frequency. The research presentend here will focus on the latter, focussing on the integration of PROBA-V 100 and 300m. The PROBA-V microsatellite is designed to offer a global coverage of land surfaces at four spectral bands at a spatial resolution of 300 m and 1 km with a daily revisit for latitudes 75°N to 56°S [1]. Due to the specific design, data can also be acquired at 100 m for a reduced swath, providing partial coverage (global coverage only every 5 days). This study proposes a data assimilation method that combines the 100 m data at the reduced swath with PROBA-V 300 m resolution data at the full swath. The resulting product is a synthetic product at 100 m spatial resolution, with a potential revisit time equal to the 300 m products (S10@300). Here, we concentrate on a ten day composite product (K10@100), to mitigate the effect of clouds. The goal of the proposed method is to produce continuous and cloud free time series of PROBA-V data at 100 m spatial resolution. The S10@300 and S10@100 ten day composits serve as input, with respective spatial resolutions of 300 m and 100 m. Whereas the S10@300 is obtained from all sensors onbaord the PROBA-V platform, the S10@100 is the product from the central viewing sensor only. Due to a combination of the reduced swath and potential cloud cover, the S10@100 is typically sparse (gaps). The data assimilation method follows the approach proposed in that is based on a Kalman filter. It is a

  8. Normative Spatiotemporal Parameters During 100-m Sprints in Amputee Sprinters Using Running-Specific Prostheses.

    PubMed

    Hobara, Hiroaki; Potthast, Wolfgang; Müller, Ralf; Kobayashi, Yoshiyuki; Heldoorn, Thijs A; Mochimaru, Masaaki

    2016-02-01

    The aim of this study was to develop a normative sample of step frequency and step length during maximal sprinting in amputee sprinters. We analyzed elite-level 100-m races of 255 amputees and 93 able-bodied sprinters, both men and women, from publicly-available Internet broadcasts. For each sprinter's run, the average forward velocity, step frequency, and step length over the 100-m distance were analyzed by using the official record and number of steps in each race. The average forward velocity was greatest in able-bodied sprinters (10.04 ± 0.17 m/s), followed by bilateral transtibial (8.77 ± 0.27 m/s), unilateral transtibial (8.65 ± 0.30 m/s), and transfemoral amputee sprinters (7.65 ± 0.38 m/s) in men. Differences in velocity among 4 groups were associated with step length (able-bodied vs transtibial amputees) or both step frequency and step length (able-bodied vs transfemoral amputees). Although we also found that the velocity was greatest in able-bodied sprinters (9.10 ± 0.14 m/s), followed by unilateral transtibial (7.08 ± 0.26 m/s), bilateral transtibial (7.06 ± 0.48 m/s), and transfemoral amputee sprinters (5.92 ± 0.33 m/s) in women, the differences in the velocity among the groups were associated with both step frequency and step length. Current results suggest that spatiotemporal parameters during a 100-m race of amputee sprinters is varied by amputation levels and sex.

  9. "Big Data Assimilation" for 30-second-update 100-m-mesh Numerical Weather Prediction

    NASA Astrophysics Data System (ADS)

    Miyoshi, Takemasa; Lien, Guo-Yuan; Kunii, Masaru; Ruiz, Juan; Maejima, Yasumitsu; Otsuka, Shigenori; Kondo, Keiichi; Seko, Hiromu; Satoh, Shinsuke; Ushio, Tomoo; Bessho, Kotaro; Kamide, Kazumi; Tomita, Hirofumi; Nishizawa, Seiya; Yamaura, Tsuyoshi; Ishikawa, Yutaka

    2017-04-01

    A typical lifetime of a single cumulonimbus is within an hour, and radar observations often show rapid changes in only a 5-minute period. For precise prediction of such rapidly-changing local severe storms, we have developed what we call a "Big Data Assimilation" (BDA) system that performs 30-second-update data assimilation cycles at 100-m grid spacing. The concept shares that of NOAA's Warn-on-Forecast (WoF), in which rapidly-updated high-resolution NWP will play a central role in issuing severe-storm warnings even only minutes in advance. The 100-m resolution and 30-second update frequency are a leap above typical recent research settings, and it was possible by the fortunate combination of Japan's most advanced supercomputing and sensing technologies: the 10-petaflops K computer and the Phased Array Weather Radar (PAWR). The X-band PAWR is capable of a dense three-dimensional volume scan at 100-m range resolution with 100 elevation angles and 300 azimuth angles, up to 60-km range within 30 seconds. The PAWR data show temporally-smooth evolution of convective rainstorms. This gives us a hope that we may assume the Gaussian error distribution in 30-second forecasts before strong nonlinear dynamics distort the error distribution for rapidly-changing convective storms. With this in mind, we apply the Local Ensemble Transform Kalman Filter (LETKF) that considers flow-dependent error covariance explicitly under the Gaussian-error assumption. The flow-dependence would be particularly important in rapidly-changing convective weather. Using a 100-member ensemble at 100-m resolution, we have tested the Big Data Assimilation system in real-world cases of sudden local rainstorms, and obtained promising results. However, the real-time application is a big challenge, and currently it takes 10 minutes for a cycle. We explore approaches to accelerating the computations, such as using single-precision arrays in the model computation and developing an efficient I/O middleware for

  10. Influence of a 100-M Simulated In-Water Rescue on Cardiopulmonary Parameters.

    PubMed

    Sousa, Ana; Fernandes, Ricardo J; Rodríguez, Núria; Abraldes, J Arturo

    2017-01-01

    Cardiopulmonary resuscitation (CPR) after a drowning episode is performed under fatigue conditions. However, the characterization of CPR in this context is still unknown. Our purpose was to investigate the effect of a 100-m simulated in-water rescue on CPR and physiological parameters in trained certified lifeguards. Thirty trained certified lifeguards (age 24.6 ± 3.8 yrs; height 178.2 ± 7.4 cm and weight 76.9 ± 10.6 kg) completed two protocols using an adult manikin: (i) 4-min CPR after 4-min baseline conditions (CPR), and (ii) 4-min CPR after a 100-m simulated in-water rescue in the sea (CPR Rescue), both with a compression-ventilation ratio of 30:2. Physiological parameters of the subjects were continuously measured (breath-by-breath) during baseline and CPR conditions, using a telemetric portable gas analyzer (K4b (2) , Cosmed, Rome, Italy) and CPR techniques analyzed using two HD video cameras (Sony, HDR PJ30VE, Japan). The 100-m simulated in-water rescue induced higher values of physiological related parameters all over the 4-min CPR exercise (e.g. Tidal Volume: 1.5 ± 0.4 and 2.4 ± 0.5 L; VO2: 15.9 ± 3.9 and 22.8 ± 3.2 ml.kg(-1).min(-1); R: 0.9 ± 0.1 and 1.2 ± 0.1, for CPR and CPR Rescue, respectively). However, the compression rate was higher in CPR Rescue compared to the CPR in the first (cycle 3: 85 ± 12 vs. 78 ± 9 s) and last three complete cycles (cycle 12: 100 ± 12 and 85 ± 12 s), and, in both conditions, it increased from the first to the last CPR complete cycle. Fatigue induced by the 100-m simulated in-water rescue had a strong physiological expression but a minimal impact on CPR performance. Key words: CPR; fatigue; lifeguards; VO2.

  11. Meteorological satellites

    NASA Technical Reports Server (NTRS)

    Allison, L. J. (Editor); Schnapf, A.; Diesen, B. C., III; Martin, P. S.; Schwalb, A.; Bandeen, W. R.

    1980-01-01

    An overview is presented of the meteorological satellite programs that have been evolving from 1958 to the present, and plans for the future meteorological and environmental satellite systems that are scheduled to be placed into service in the early 1980's are reviewed. The development of the TIROS family of weather satellites, including TIROS, ESSA, ITOS/NOAA, and the present TIROS-N (the third generation operational system) is summarized. The contribution of the Nimbus and ATS technology satellites to the development of the operational-orbiting and geostationary satellites is discussed. Included are descriptions of both the TIROS-N and the DMSP payloads currently under development to assure a continued and orderly growth of these systems into the 1980's.

  12. Modeling of Women's 100-m Dash World Record: Wind-Aided or Not?

    NASA Astrophysics Data System (ADS)

    Hazelrigg, Conner; Waibel, Bryson; Baker, Blane

    2015-11-01

    On July 16, 1988, Florence Griffith Joyner (FGJ) shattered the women's 100-m dash world record (WR) with a time of 10.49 s, breaking the previous mark by an astonishing 0.27 s. By all accounts FGJ dominated the race that day, securing her place as the premiere female sprinter of that era, and possibly all time. In the aftermath of such an extraordinary performance, track officials immediately assumed that her posted time was wind aided—that is, attained under tailwind conditions beyond the legal limit of 2.0 m/s for world records. However, wind-measuring devices at the track site showed zero wind conditions during her WR performance. Before and during FGJ's race, other wind-measuring devices indicated speeds exceeding 4.0 m/s at the site of the triple jump runway, located on the same field as the running track. Video clips of flags placed near the starting line of FGJ's race also revealed tailwind conditions. Using available data from that era, the study here incorporates modeling techniques to compute velocity and position as functions of time for no wind and tailwind conditions. Modeling under no wind conditions produces a 100-m time of 10.70 s, a performance clearly attainable by FGJ during this stage of her sprinting career. Incorporating tailwinds of 4.0 m/s into the computations reduces this time by approximately 0.20 s, in close agreement with FGJ's record-breaking performance. These results strongly suggest that tailwinds of order 4 m/s were present during FGJ's world record race even though wind-measuring devices at the track site did not register these speeds. In spite of such strong evidence to support a wind-aided race on July 16, 1988, FGJ remains one of the top female sprinters in history and would likely hold the WR even today, given that she attained a non-wind-aided 100-m time of 10.61 s on the day following her WR performance.

  13. A Compact Instrument for Remote Raman and Fluorescence Measurements to a Radial Distance of 100 m

    NASA Technical Reports Server (NTRS)

    Sharma, S. K.; Misra, A. K.; Lucey, P. g.; McKay, C. P.

    2005-01-01

    Compact remote spectroscopic instruments that could provide detailed information about mineralogy, organic and biomaterials on a planetary surface over a relatively large area are desirable for NASA s planetary exploration program. Ability to explore a large area on the planetary surfaces as well as in impact craters from a fixed location of a rover or lander will enhance the probability of selecting target rocks of high scientific contents as well as desirable sites in search of organic compounds and biomarkers on Mars and other planetary bodies. We have developed a combined remote inelastic scattering (Raman) and laser-induced fluorescence emission (LIFE) compact instrument capable of providing accurate information about minerals, organic and biogenic materials to a radial distance of 100 m. Here we present the Raman and LIFE (R-LIFE) data set.

  14. Towards a 100mA Superconducting RF Photoinjector for BERLinPro

    SciTech Connect

    Neumann, Axel; Anders, W; Burrill, Andrew; Jankowiak, Andreas; Kamps, T; Knobloch, Jens; Kugeler, Oliver; Lauinger, P; Matveenko, A N; Schmeisser, M; Volker, J; Ciovati, Gianluigi; Kneisel, Peter; Nietubyc, R; Schubert, S G; Smedley, John; Sekutowicz, Jacek; Volkov, V; Will, I; Zaplatin, Evgeny

    2013-09-01

    For BERLinPro, a 100 mA CW-driven SRF energy recovery linac demonstrator facility, HZB needs to develop a photo-injector superconducting cavity which delivers a at least 1mm*mr emittance beam at high average current. To address these challenges of producing a high peak brightness beam at high repetition rate, at first HZB tested a fully superconducting injector with a lead cathode*,followed now by the design of a SC cavity allowing operation up to 4 mA using CW-modified TTF-III couplers and inserting a normal conducting high quantum efficiency cathode using the HZDR-style insert scheme. This talk will present the latest results and an overview of the measurements with the lead cathode cavity and will describe the design and optimization process, the first production results of the current design and an outlook to the further development steps towards the full power version.

  15. On the performance of Usain Bolt in the 100 m sprint

    NASA Astrophysics Data System (ADS)

    Hernández Gómez, J. J.; Marquina, V.; Gómez, R. W.

    2013-09-01

    Many university texts on mechanics consider the effect of air drag force, using the slowing down of a parachute as an example. Very few discuss what happens when the drag force is proportional to both u and u2. In this paper we deal with a real problem to illustrate the effect of both terms on the speed of a runner: a theoretical model of the world-record 100 m sprint of Usain Bolt during the 2009 World Championships in Berlin is developed, assuming a drag force proportional to u and to u2. The resulting equation of motion is solved and fitted to the experimental data obtained from the International Association of Athletics Federations, which recorded Bolt's position with a laser velocity guard device. It is worth noting that our model works only for short sprints.

  16. Sparse interferometric millimeter-wave array for centimeter-level 100-m standoff imaging

    NASA Astrophysics Data System (ADS)

    Suen, Jonathan Y.; Lubin, Philip M.; Solomon, Steven L.; Ginn, Robert P.

    2013-05-01

    We present work on the development of a long range standoff concealed weapons detection system capable of imaging under very heavy clothing at distances exceeding 100 m with a cm resolution. The system is based off a combination of phased array technologies used in radio astronomy and SAR radar by using a coherent, multi-frequency reconstruction algorithm which can run at up to 1000 Hz frame rates and high SNR with a multi-tone transceiver. We show the flexible design space of our system as well as algorithm development, predicted system performance and impairments, and simulated reconstructed images. The system can be used for a variety of purposes including portal applications, crowd scanning and tactical situations. Additional uses include seeing through dust and fog.

  17. A 100mA fractional step-down charge pump with digital control

    NASA Astrophysics Data System (ADS)

    Sadio, Valter A. L.; Parreira, Abílio E. M.; Santos, Marcelino B.

    2009-05-01

    A switched capacitor step-down DC-DC converter (charge pump) is proposed. High efficiency is achieved by combination of fractional conversion ratios (different step-down modes of operation), output voltage sensing and pulse skipping based digital control techniques. Two control techniques were implemented with automatic change between modes and their results are discussed and compared. The power module has 9 switches, implemented with 14 power transistors, and a current limit circuit to mitigate the in-rush current in startup phase. This circuit has been designed in AMS C35B4 (0.35um) CMOS process. The charge pump was designed to provide a maximum load current of 100mA. The peak-to-peak output voltage ripple is less than 30mV with two 3uF flying capacitors and one 20uF output capacitor. Peak and average efficiencies, with maximum load current, are over 80% and 68%, respectively.

  18. Identification and Attribution of Global Wind Speed Trends at 100m

    NASA Astrophysics Data System (ADS)

    McGraw, Zachary; Smith, Ronald; Storelvmo, Trude

    2016-04-01

    Recent studies have found evidence that global climate change significantly alters the strength of large-scale wind patterns. Any enduring trends over large regions are potentially of value to understand due to their implications for the wind energy industry. In this study we identify and evaluate global wind speed trends at the wind turbine hub height (~100m) through the use of CMIP5 models, standard reanalyses (ERA-Interim, NCEP2) and a uniquely high-resolution analysis dataset (Vestas Mesoscale Library). By analyzing how wind speeds change across the globe throughout the period 1900-2100 (with emphasis on the satellite era, 1979-2014), we assess the significance of multi-decadal wind speed trends in the context of natural spatial and temporal variability. Our results show substantial differences in regional trends between different datasets though several regions including the Southern Hemisphere mid-latitudes and the Caribbean show consistently substantial changing wind speeds during the satellite era. Wind speed trends tend to diminish over large time scales and follow spatial patterns that link multi-decadal trends to the evolving behaviors of internal variability modes, especially those of ENSO and the Southern Annular Mode (SAM).

  19. Homologous Deformation of the Effelsberg 100-m Telescope Determined with a Total Station

    NASA Technical Reports Server (NTRS)

    Nothnagel, Axel; Pietzner, Judith; Eling, Christian; Hering, Claudia

    2010-01-01

    Due to gravitation the main reflector of the Effelsberg 100-m telescope of the Max Planck Institute for Radio Astronomy is deformed whenever it is tilted from zenith to arbitrary elevation angles. However, the resulting shape always is a paraboloid again, though with different parameters, a phenomenon which is called homologous deformation. In summer 2008, we have carried out measurements with a total station to determine the magnitude of these deformations in order to evaluate existing assumptions provided by the manufacturer from the telescope's design phase. The measurements are based on a newly developed approach with a Leica TCRP 1201 total station mounted head down near the subreflector. Mini-retro-reflectors are placed at various locations on the paraboloid itself and on the subreflector support structure. The results indicate that the measurement setup is suitable for the purpose and provides the information needed for a determination of elevation dependent delay corrections. The focal length changes only by about 8 mm when the telescope is tilted from 90. to 7.5. elevation angle.

  20. Distinct prognostic values of S100 mRNA expression in breast cancer

    PubMed Central

    Zhang, Shizhen; Wang, Zhen; Liu, Weiwei; Lei, Rui; Shan, Jinlan; Li, Ling; Wang, Xiaochen

    2017-01-01

    S100 family genes encode low molecular weight, acidic-Ca2+ binding proteins implicating in a wide spectrum of biological processes. S100 family contains at least 20 members, most of which are frequently dysregulated in human malignancies including breast cancer. However, the prognostic roles of each individual S100, especially the mRNA level, in breast cancer patients remain elusive. In the current study, we used “The Kaplan-Meier plotter” (KM plotter) database to investigate the prognostic values of S100 mRNA expression in breast cancer. Our results indicated that high mRNA expression of S100A8, S100A9, S100A11 and S100P were found to be significantly correlated to worse outcome, while S100A1 and S100A6 were associated with better prognosis in all breast cancer patients. We further assessed the prognostic value of S100 in different intrinsic subtypes and clinicopathological features of breast cancer. The associated results will elucidate the role of S100 in breast cancer and may further lead the research to explore the S100-targeting reagents for treating breast cancer patients. PMID:28051137

  1. Spatiotemporal Parameters of 100-m Sprint in Different Levels of Sprinters with Unilateral Transtibial Amputation

    PubMed Central

    Hobara, Hiroaki; Hashizume, Satoru; Kobayashi, Yoshiyuki; Mochmaru, Masaaki

    2016-01-01

    The aim of this study was to investigate differences of the spatiotemporal parameters in a 100-m sprint among elite, sub-elite, and non-elite sprinters with a unilateral transtibial amputation. Using publicly available Internet broadcasts, we analyzed 125, 19, and 33 records from 30 elite, 12 sub-elite, and 22 non-elite sprinters, respectively. For each sprinter’s run, the average velocity, step frequency, and step length were calculated using the number of steps in conjunction with the official race time. Average velocity was greatest in elite sprinters (8.71±0.32 m/s), followed by the sub-elite (8.09±0.06 m/s) and non-elite groups (7.72±0.27 m/s). Although there was a significant difference in average step frequency between the three groups, the effect size was small and the relative difference among the three groups was 3.1%. Statistical analysis also revealed that the average step length was longest in elite sprinters, followed by the sub-elite and non-elite groups. These results suggest that the differences in sprint performance between the three groups is mainly due to the average step length rather than step frequency. PMID:27701443

  2. The MPIR 100mK bolometer array for 2mm continuum observations

    NASA Astrophysics Data System (ADS)

    Reichertz, L. A.; Esch, W.; Gemünd, H.-P.; Gromke, J.; Kreysa, E.

    2000-04-01

    We are developing bolometer arrays for continuum detection in millimeter and submillimeter astronomy [1]. For the 2mm atmospheric window, where the transmission is comparatively high, a bolometer temperature of about 100mK is necessary in order to avoid being limited by the system noise. Our new 2mm array is cooled by a 3He/4He-dilution refrigerator with a base temperature of 30mK. The substrate for the 19 channel bolometer array consists of a single-crystal silicon wafer with silicon-nitride membranes. Radiation is collected by a single-mode horn array in front of the wafer and coupled into efficient absorbers in the center of the membranes. Resulting temperature changes of the absorbers are measured with NTD-germanium thermistors. In the first stage of the read out electronics, we use JFETs working at 150K. Cold RF-filters prevent RF interference from entering the bolometer array cavity. The combination of several mesh filters and a short piece of cylindrical waveguide at the end of each horn defines the bandpass for the incoming radiation, which is matched to the 2mm atmospheric window.

  3. A Model for Determining the Effect of the Wind Velocity on 100 m Sprinting Performance

    PubMed Central

    Janjic, Natasa; Kapor, Darko; Doder, Dragan; Petrovic, Aleksandar; Doder, Radoslava

    2017-01-01

    Abstract This paper introduces an equation for determining instantaneous and final velocity of a sprinter in a 100 m run completed with a wind resistance ranging from 0.1 to 4.5 m/s. The validity of the equation was verified using the data of three world class sprinters: Carl Lewis, Maurice Green, and Usain Bolt. For the given constant wind velocity with the values + 0.9 and + 1.1 m/s, the wind contribution to the change of sprinter velocity was the same for the maximum as well as for the final velocity. This study assessed how the effect of the wind velocity influenced the change of sprinting velocity. The analysis led to the conclusion that the official limit of safely neglecting the wind influence could be chosen as 1 m/s instead of 2 m/s, if the velocity were presented using three, instead of two decimal digits. This implies that wind velocity should be rounded off to two decimal places instead of the present practice of one decimal place. In particular, the results indicated that the influence of wind on the change of sprinting velocity in the range of up to 2 m/s and was of order of magnitude of 10-3 m/s. This proves that the IAAF Competition Rules correctly neglect the influence of the wind with regard to such velocities. However, for the wind velocity over 2 m/s, the wind influence is of order 10-2 m/s and cannot be neglected. PMID:28713468

  4. A Model for Determining the Effect of the Wind Velocity on 100 m Sprinting Performance.

    PubMed

    Janjic, Natasa; Kapor, Darko; Doder, Dragan; Petrovic, Aleksandar; Doder, Radoslava

    2017-06-01

    This paper introduces an equation for determining instantaneous and final velocity of a sprinter in a 100 m run completed with a wind resistance ranging from 0.1 to 4.5 m/s. The validity of the equation was verified using the data of three world class sprinters: Carl Lewis, Maurice Green, and Usain Bolt. For the given constant wind velocity with the values + 0.9 and + 1.1 m/s, the wind contribution to the change of sprinter velocity was the same for the maximum as well as for the final velocity. This study assessed how the effect of the wind velocity influenced the change of sprinting velocity. The analysis led to the conclusion that the official limit of safely neglecting the wind influence could be chosen as 1 m/s instead of 2 m/s, if the velocity were presented using three, instead of two decimal digits. This implies that wind velocity should be rounded off to two decimal places instead of the present practice of one decimal place. In particular, the results indicated that the influence of wind on the change of sprinting velocity in the range of up to 2 m/s and was of order of magnitude of 10(-3) m/s. This proves that the IAAF Competition Rules correctly neglect the influence of the wind with regard to such velocities. However, for the wind velocity over 2 m/s, the wind influence is of order 10(-2) m/s and cannot be neglected.

  5. Evaluation of prototype 100mK bolometric detector for Planck Surveyor

    NASA Astrophysics Data System (ADS)

    Sudiwala, R. V.; Maffei, B.; Griffin, M. J.; Haynes, C. V.; Ade, P. A. R.; Bhatia, R. S.; Turner, A. D.; Bock, J. J.; Lange, A. E.; Beeman, J. W.

    2000-04-01

    The High-Frequency Instrument (HFI) for the Planck Surveyor mission will measure anisotropies of the Cosmic Microwave Background (CMB) down to scales of 6 arcmin and to an accuracy of /ΔT/T=2×10-6. Channels ranging in frequency from 100 to 857GHz will use 100mK spider web bolometer detectors with NTD Ge thermistors. The detectors must be photon noise limited and fast enough to preserve signal information at the 1r.p.m. scan rate of the satellite. The prime low-frequency CMB channels at 143 and 217GHz are the most technically demanding owing to the lower background limited NEPs. For the 143GHz channel the requirements are that the time constant /τ<5.7 ms and the NEPbol <1.53×10-17 WHz-1/2 including contribution from amplifier noise. We present here thermal, electrical and optical data on a prototype detector which, although optimised for the 100GHz channel, satisfies most of the requirements of the more demanding 143GHz channel. The measurements are consistent with ideal thermal behaviour of the detector over the appropriate bias and temperature ranges for optimum performance. From optically blanked electrical measurements we determined the dependence of resistance and thermal conductance on temperature over a wide range, 70-200mK. The optical responsivity and NEP were measured under photon background conditions similar to those expected in flight. Measurements of speed of response as a function of bias at different temperatures allowed us to determine the variation of total heat capacity with temperature. Extrapolation of these data show that in principal performance for all the Planck HFI channels can be met.

  6. Airline meteorological requirements

    NASA Technical Reports Server (NTRS)

    Chandler, C. L.; Pappas, J.

    1985-01-01

    A brief review of airline meteorological/flight planning is presented. The effects of variations in meteorological parameters upon flight and operational costs are reviewed. Flight path planning through the use of meteorological information is briefly discussed.

  7. Novel technology for the the Effelsberg 100-m Radio Telescope and MeerKAT

    NASA Astrophysics Data System (ADS)

    Kramer, Michael; Kraus, Alex; Wieching, Gundolf

    2015-08-01

    The 100-m radio telescope of the Max-Planck-Institut für Radioastronomie (MPIfR) is a unique European astronomical facility that combines superb sensitivity and wide frequency coverage (300 MHz - 95 GHz) with distinct versatility, making the telescope not only a cutting edge instrument for front-line research but also a testbed for emerging and future technology.Even more than 40 years old, the telescope has been continuously modernized and is heavily involved in various kinds of astronomical research as stand-alone instrument as well as in several VLBI networks. Currently, a large upgrade of the receiver suite at the telescope is ongoing. Several new, state-of-the-are broad-band receivers have been installed recently or are under constructions. Along with the new receivers, modern digital backends are being designed. We report on the current status of these upgrades by presenting some „highlights" and giving an outlook on the activities planned for the future.The technology developed and tested during these upgrades also finds application in the MeerKAT observatory in South Africa. MeerKAT is a fully funded radio observatory under construction in the Northern Cape of South Africa. When complete, MeerKAT’s 64 13.5-m dishes will form the - by far - most sensitive telescope in the Southern hemisphere, being equivalent to a 110 m dish. Due to the dish design with an offset Gregorian feed it will be 60%more sensitive than large center feed single dishes of comparable size.MPIfR is designing and constructing a 1.75- 3.44 GHz Receiver system for MeerKAT. The receiver will allow observations at a frequency range at currently unavailable sensitivity and spatial resolution in the Southern hemisphere. Combined with its powerful MPIfR Pulsar search backend it is expected to detect more than 1600 normal and 270 millisecond pulsars. In addition MeerKat will open up science that stays for its own but also prepares future observations with SKA and complements future SKA

  8. LANL Meteorology Program

    SciTech Connect

    Dewart, Jean Marie

    2015-02-09

    The goal of the Meteorology Program is to provide all routine meteorology measurements for LANL operational requirements. This report discusses the program, its routine operations, and other services.

  9. Single-transverse-mode near-IR superluminescent diodes with cw output power up to 100 mW

    SciTech Connect

    Andreeva, E V; Il'chenko, S N; Kostin, Yu O; Yakubovich, S D

    2014-10-29

    A series of light-emitting modules based on single-mode quantum-well superluminescent diodes with centre emission wavelengths of about 790, 840, 960 and 1060 nm and a cw output power up to 100 mW in free space is developed. A sufficiently long service life of these devices is demonstrated. (lasers)

  10. 100 M.a. remagnetization as a dating tool for deformation and cleavage in the Central High Atlas (Morocco)

    NASA Astrophysics Data System (ADS)

    Calvin, P.; Casas, A. M.; Villalain, J. J.; Moussaid, B.

    2015-12-01

    The High Atlas is an intracontinental chain developed as a result of the inversion of Mesozoic basins during the Cenozoic. Its structure is characterized by ENE-WSW tight anticlines limited by wide synclines. In the central sector of the chain, a pervasive tectonic foliation affects Jurassic limestones and marls. There is a controversy about the age of this tectonic foliation and its relationship with either a Late Jurassic or Cenozoic compressional events. The Jurassic carbonates of the Central High Atlas (CHA) show a widespread syntectonic remagnetization carried by magnetite and dated at 100 M.a. by comparing the paleomagnetic direction obtained by small circle intersection (SCI) method with the apparent polar wander path in NW Africa coordinates. Once the 100 M.a. paleomagnetic direction is known, the obtained paleomagnetic direction remagnetization in each site can be used to restore the bedding at the time of the acquisition. In each site, the in situ mean direction of remagnetization defines a small circle (SC) in a complete rotation about the strike of the bedding. This SC gives all possible original directions of the magnetization and if all deformation events are coaxial and without vertical rotation (as it is the case in the study area) all the SC contains the 100 M.a. expected direction. Then, the angle between the 100 M.a. and the in situ paleomagnetic direction along the small circle, equals the angle of rotation of each bed to ultimately find their dips (paleodip) at 100 M.a. Since the consistency between folding and cleavage can be examined from their geometrical relationship, and bedding can be restored to its 100 M.a. geometry (paleodips obtained from paleomagnetic analysis), two end-members exist for the different examined folds: (i) cleavage is consistent with present-day bedding orientation and attitude of bedding was acquired after remagnetization (Cenozoic cleavage), (ii) cleavage is consistent with bedding, but dip of bedding was acquired

  11. Meteorological satellite accomplishments

    NASA Technical Reports Server (NTRS)

    Allison, L. J.; Arking, A.; Bandeen, W. R.; Shenk, W. E.; Wexler, R.

    1974-01-01

    The various types of meteorological satellites are enumerated. Vertical sounding, parameter extraction technique, and both macroscale and mesoscale meteorological phenomena are discussed. The heat budget of the earth-atmosphere system is considered, along with ocean surface and hydrology.

  12. Monitoring the biomechanics of a wheelchair sprinter racing the 100 m final at the 2016 Paralympic Games

    NASA Astrophysics Data System (ADS)

    Barbosa, Tiago M.; Coelho, Eduarda

    2017-07-01

    The aim was to run a case study of the biomechanics of a wheelchair sprinter racing the 100 m final at the 2016 Paralympic Games. Stroke kinematics was measured by video analysis in each 20 m split. Race kinetics was estimated by employing an analytical model that encompasses the computation of the rolling friction, drag, energy output and energy input. A maximal average speed of 6.97 m s-1 was reached in the last split. It was estimated that the contributions of the rolling friction and drag force would account for 54% and 46% of the total resistance at maximal speed, respectively. Energy input and output increased over the event. However, we failed to note a steady state or any impairment of the energy input and output in the last few metres of the race. Data suggest that the 100 m is too short an event for the sprinter to be able to achieve his maximal power in such a distance.

  13. The Effects of Different Warm-up Volumes on the 100-m Swimming Performance: A Randomized Crossover Study.

    PubMed

    Neiva, Henrique P; Marques, Mário C; Barbosa, Tiago M; Izquierdo, Mikel; Viana, João L; Teixeira, Ana M; Marinho, Daniel A

    2015-11-01

    The aim of this study was to compare the effect of 3 different warm-up (WU) volumes on 100-m swimming performance. Eleven male swimmers at the national level completed 3 time trials of 100-m freestyle on separate days and after a standard WU, a short WU (SWU), or a long WU (LWU) in a randomized sequence. All of them replicated some usual sets and drills, and the WU totaled 1,200 m, the SWU totaled 600 m, and the LWU totaled 1,800 m. The swimmers were faster after the WU (59.29 seconds; confidence interval [CI] 95%, 57.98-60.61) and after the SWU (59.38 seconds; CI 95%, 57.92-60.84) compared with the LWU (60.18 seconds; CI 95%, 58.53-61.83). The second 50-m lap after the WU was performed with a higher stroke length (effect size [ES] = 0.77), stroke index (ES = 1.26), and propelling efficiency (ES = 0.78) than that after the SWU. Both WU and SWU resulted in higher pretrial values of blood lactate concentrations [La] compared with LWU (ES = 1.58 and 0.74, respectively), and the testosterone:cortisol levels were increased in WU compared with LWU (ES = 0.86). In addition, the trial after WU caused higher [La] (ES ≥ 0.68) and testosterone:cortisol values compared with the LWU (ES = 0.93). These results suggest that an LWU could impair 100-m freestyle performance. The swimmers showed higher efficiency during the race after a 1200-m WU, suggesting a favorable situation. It highlighted the importance of the [La] and hormonal responses to each particular WU, possibly influencing performance and biomechanical responses during a 100-m race.

  14. Model for the determination of instantaneous values of the velocity, instantaneous, and average acceleration for 100-m sprinters.

    PubMed

    JanjiĆ, NataŠa J; Kapor, Darko V; Doder, Dragan V; Doder, Radoslava Z; SaviĆ, Biljana V

    2014-12-01

    Temporal patterns of running velocity is of profound interest for coaches and researchers involved in sprint racing. In this study, we applied a nonhomogeneous differential equation for the motion with resistance force proportional to the velocity for the determination of the instantaneous velocity and instantaneous and average acceleration in the sprinter discipline at 100 m. Results obtained for the instantaneous velocity in this study using the presented model indicate good agreement with values measured directly, which is a good verification of the proposed procedure. To perform a comprehensive analysis of the applicability of the results obtained, the harmonic canon of running for the 100-m sprint discipline was formed. Using the data obtained by the measurement of split times for segments of 100-m run of the sprinters K. Lewis (1988), M. Green (2001), and U. Bolt (2009), the method described yielded results that enable comparative analysis of the kinematical parameters for each sprinter. Further treatment allowed the derivation of the ideal harmonic velocity canon of running, which can be helpful to any coach in evaluating the results achieved at particular distances in this and other disciplines. The method described can be applied for the analysis of any race.

  15. Assimilating every-30-second 100-m-mesh radar observations for convective weather: implications to non-Gaussian PDF

    NASA Astrophysics Data System (ADS)

    Miyoshi, T.; Teramura, T.; Ruiz, J.; Kondo, K.; Lien, G. Y.

    2016-12-01

    Convective weather is known to be highly nonlinear and chaotic, and it is hard to predict their location and timing precisely. Our Big Data Assimilation (BDA) effort has been exploring to use dense and frequent observations to avoid non-Gaussian probability density function (PDF) and to apply an ensemble Kalman filter under the Gaussian error assumption. The phased array weather radar (PAWR) can observe a dense three-dimensional volume scan with 100-m range resolution and 100 elevation angles in only 30 seconds. The BDA system assimilates the PAWR reflectivity and Doppler velocity observations every 30 seconds into 100 ensemble members of storm-scale numerical weather prediction (NWP) model at 100-m grid spacing. The 30-second-update, 100-m-mesh BDA system has been quite successful in multiple case studies of local severe rainfall events. However, with 1000 ensemble members, the reduced-resolution BDA system at 1-km grid spacing showed significant non-Gaussian PDF with every-30-second updates. With a 10240-member ensemble Kalman filter with a global NWP model at 112-km grid spacing, we found roughly 1000 members satisfactory to capture the non-Gaussian error structures. With these in mind, we explore how the density of observations in space and time affects the non-Gaussianity in an ensemble Kalman filter with a simple toy model. In this presentation, we will present the most up-to-date results of the BDA research, as well as the investigation with the toy model on the non-Gaussianity with dense and frequent observations.

  16. The clinical application of the 100mL water swallow test in head and neck cancer.

    PubMed

    Patterson, Joanne M; Hildreth, Anthony; McColl, Elaine; Carding, Paul N; Hamilton, David; Wilson, Janet A

    2011-03-01

    Water swallow tests have been used as to screen patients with neurological dysphagia who are at risk of aspiration. This study examines the clinical utility of the 100mL water swallow test (WST) in head and neck cancer, by measuring its sensitivity and specificity for identifying aspiration and for monitoring swallow performance up to one year following (chemo)radiotherapy. Patients referred for (chemo)radiotherapy were assessed on the WST (n=173) pre-treatment and 3, 6 and 12months post-treatment. Patients failed the test if they coughed or had a wet voice quality post swallow or were unable to finish the task. A Flexible Endoscopic Evaluation of Swallowing was conducted at the same time points, to test for the presence of aspiration. The WST was timed and the number of swallows required was recorded. Sensitivity of the WST for predicting aspiration was >67%, specificity >46%. There was marked deterioration from pre- to 3months post-treatment for the time taken to drink 100mL (p=0.005), but this improved over the first year (p=0.001). Disease characteristics, patient demographics, radiotherapy dose, or treatment volume were not predictors of this improvement. The 100mL WST is a quick and simple assessment for identifying patients with aspiration, post (chemo)radiotherapy. This test is a useful adjunct to a clinical examination, helping to highlight patients who require an instrumental assessment such as videofluoroscopy. Furthermore, quantitative measures can be derived from this test, which can be used as a measure of swallow performance over time. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. How 100-m event analyses improve our understanding of world-class men's and women's sprint performance.

    PubMed

    Slawinski, J; Termoz, N; Rabita, G; Guilhem, G; Dorel, S; Morin, J-B; Samozino, P

    2017-01-01

    This study aimed to compare the force (F)-velocity (v)-power (P)-time (t) relationships of female and male world-class sprinters. A total of 100 distance-time curves (50 women and 50 men) were computed from international 100-m finals, to determine the acceleration and deceleration phases of each race: (a) mechanical variables describing the velocity, force, and power output; and (b) F-P-v relationships and associated maximal power output, theoretical force and velocity produced by each athlete (Pmax , F0 , and V0 ). The results showed that the maximal sprint velocity (Vmax ) and mean power output (W/kg) developed over the entire 100 m strongly influenced 100-m performance (r > -0.80; P ≤ 0.001). With the exception of mean force (N/kg) developed during the acceleration phase or during the entire 100 m, all of the mechanicals variables observed over the race were greater in men. Shorter acceleration and longer deceleration in women may explain both their lower Vmax and their greater decrease in velocity, and in turn their lower performance level, which can be explained by their higher V0 and its correlation with performance. This highlights the importance of the capability to keep applying horizontal force to the ground at high velocities.

  18. Swimming Stroke Mechanical Efficiency and Physiological Responses of 100-m Backstroke with and without the use of paddles

    PubMed Central

    Messinis, Spilios; Beidaris, Nikos; Messinis, Spyros; Soultanakis, Helen; Botonis, Petros; Platanou, Theodoros

    2014-01-01

    The use of swimming aids during training contributes to greater swimming efficiency by the improvement of the swimming specific power of the athlete. The purpose of this study was to compare the swimming stroke technical characteristics and the physiological responses of swimming 100-m backstroke, with and without the use of paddles at maximum and sub-maximum intensities at the same swimming speed. Eight swimmers competing at the national level participated in this study. The measurements took place at 4 different sessions. At every session, each participant swam individually one 100-m backstroke swimming trial with or without paddles at the same speed and two levels of intensity (100% and 85% of maximum speed). The results revealed lower stroke length, greater stroke number and gliding length without the use of swimming paddles at both intensities. Blood lactate concentration (10.03±2.96 vs. 5.85±2.23 mmol/l) and Rating of Perceived Exertion (17.43±2.07 vs. 12±2.82) were greater without the use of swimming paddles only at 100% of maximum speed. Thus, swimming backstroke with paddles compared to unaided swimming, at a similar speed, showed a greater efficiency at maximal but not at sub-maximal intensity. PMID:25031685

  19. Long-range high-speed visible light communication system over 100-m outdoor transmission utilizing receiver diversity technology

    NASA Astrophysics Data System (ADS)

    Wang, Yiguang; Huang, Xingxing; Shi, Jianyang; Wang, Yuan-quan; Chi, Nan

    2016-05-01

    Visible light communication (VLC) has no doubt become a promising candidate for future wireless communications due to the increasing trends in the usage of light-emitting diodes (LEDs). In addition to indoor high-speed wireless access and positioning applications, VLC usage in outdoor scenarios, such as vehicle networks and intelligent transportation systems, are also attracting significant interest. However, the complex outdoor environment and ambient noise are the key challenges for long-range high-speed VLC outdoor applications. To improve system performance and transmission distance, we propose to use receiver diversity technology in an outdoor VLC system. Maximal ratio combining-based receiver diversity technology is utilized in two receivers to achieve the maximal signal-to-noise ratio. A 400-Mb/s VLC transmission using a phosphor-based white LED and a 1-Gb/s wavelength division multiplexing VLC transmission using a red-green-blue LED are both successfully achieved over a 100-m outdoor distance with the bit error rate below the 7% forward error correction limit of 3.8×10-3. To the best of our knowledge, this is the highest data rate at 100-m outdoor VLC transmission ever achieved. The experimental results clearly prove the benefit and feasibility of receiver diversity technology for long-range high-speed outdoor VLC systems.

  20. Contralateral white noise attenuates 40-Hz auditory steady-state fields but not N100m in auditory evoked fields.

    PubMed

    Kawase, Tetsuaki; Maki, Atsuko; Kanno, Akitake; Nakasato, Nobukazu; Sato, Mika; Kobayashi, Toshimitsu

    2012-01-16

    The different response characteristics of the different auditory cortical responses under conventional central masking conditions were examined by comparing the effects of contralateral white noise on the cortical component of 40-Hz auditory steady state fields (ASSFs) and the N100 m component in auditory evoked fields (AEFs) for tone bursts using a helmet-shaped magnetoencephalography system in 8 healthy volunteers (7 males, mean age 32.6 years). The ASSFs were elicited by monaural 1000 Hz amplitude modulation tones at 80 dB SPL, with the amplitude modulated at 39 Hz. The AEFs were elicited by monaural 1000 Hz tone bursts of 60 ms duration (rise and fall times of 10 ms, plateau time of 40 ms) at 80 dB SPL. The results indicated that continuous white noise at 70 dB SPL presented to the contralateral ear did not suppress the N100 m response in either hemisphere, but significantly reduced the amplitude of the 40-Hz ASSF in both hemispheres with asymmetry in that suppression of the 40-Hz ASSF was greater in the right hemisphere. Different effects of contralateral white noise on these two responses may reflect different functional auditory processes in the cortices.

  1. Meteorological Monitoring Program

    SciTech Connect

    Hancock, H.A. Jr.; Parker, M.J.; Addis, R.P.

    1994-09-01

    The purpose of this technical report is to provide a comprehensive, detailed overview of the meteorological monitoring program at the Savannah River Site (SRS) near Aiken, South Carolina. The principle function of the program is to provide current, accurate meteorological data as input for calculating the transport and diffusion of any unplanned release of an atmospheric pollutant. The report is recommended for meteorologists, technicians, or any personnel who require an in-depth understanding of the meteorological monitoring program.

  2. cw, 325nm, 100mW semiconductor laser system as potential substitute for HeCd gas lasers

    NASA Astrophysics Data System (ADS)

    Schmitt, T.; Able, A.; Häring, R.; Sumpf, B.; Erbert, G.; Tränkle, G.; Lison, F.; Kaenders, W. G.

    2008-02-01

    In the last decades, diode laser systems conquered the spectral range step-by-step from conventional gas lasers, wherever they can match or outperform in optical specifications. Although highly anticipated in the ultraviolet wavelength range, for instance in high-resolution lithography, biological and medical fluorescence applications or holography, cw single frequency operation of sufficient power has been a challenge for diode or other solid state laser systems. Currently this scope is still dominated by the HeCd gas laser, emitting at 325 nm with powers of up to 100 mW. In this paper we present a diode laser system emitting at 325 nm offering the same output power by efficient second harmonic generation (SHG) of a master oscillator power amplifier (MOPA) at 650 nm. For the master oscillator a ridge waveguide diode is anti-reflection coated and used in an external cavity diode laser (ECDL) with grating feedback in Littrow configuration. This setup features a MHz line width (coherence length of 100m), a coarse tuning range from 649 nm to 657 nm and a mode hope free tuning of 20 GHz. In a second step, we use a tapered amplifier to boost the output from the ECDL to a level of 400 mW, for powering an efficient second harmonic generation process in an enhancement cavity. Faraday isolators on both ends of the amplifier stage prevent back reflection and stabilize the single mode operation of the system. Together with astigmatism compensation this yields to a high spatial quality (M2<1.5) of the amplified beam. The frequency doubling is achieved by using a four mirror bow-tie enhancement resonator fitted with a Beta-Barium Borate (BBO) crystal. The cavity length is actively locked to the laser frequency using the Pound-Drever-Hall method. With this set-up, stable and reliable laser operation is achieved. After a few minutes warm-up time, fixed frequency and tunable UV output power of more than 100 mW could be generated, opening this important wavelength range for future

  3. Height profile of some air quality markers in the urban atmosphere surrounding a 100 m tower building

    NASA Astrophysics Data System (ADS)

    Rubino, Federico Maria; Floridia, Lucia; Tavazzani, Manuela; Fustinoni, Silvia; Giampiccolo, Rosario; Colombi, Antonio

    Air quality inside buildings, whether naturally or mechanically ventilated, is strongly dependent on that of ambient external air in the surrounding atmosphere. This paper describes results obtained in the assessment of urban air quality influence in the neighbouring of a tall, multistorey building with mechanical ventilation on its indoor air quality. Within the study, which lasted for more than 30 d of continuous monitoring, the concentrations of carbon monoxide (CO), of total and grossly speciated classes of airborne organic vapours and of PM 10 airborne particulate were measured both outdoors, at ground and at various heights between street level and the top of the tower building (approximately 100 m) and inside the building. The daily variation of airborne pollutants in the urban atmosphere in the neighbouring of the tower building was traced as the contribution of both time-dependent pollutant production from urban outdoor sources (mainly vehicular traffic) and of the variation of meteoclimatic conditions influencing pollutant diffusion from street level upwards. In particular, a steady concentration decrease with increasing height of the concentration of automotive-related pollutants, such as of PM 10 airborne particulate, of a mixture of volatile aromatic compounds (TAAC) and of CO could be measured in the immediate neghbouring of the tower building (values of 40 μg m -3 of PM 10 airborne particulate decreasing to 32 μg m -3 at 80 m; of 5 mg of benzene equivalents m -3 at ground level with a 30% decrease at 100 m height; of 3 mg m -3 of CO decreasing to 2.2 mg m -3 at 100 m). The acquired information was employed to advice the building management on the improvement of indoor air quality attainable by moving the air feed grid of the HVAC system to a higher level from ground. An example is reported, which shows the improvement of the indoor air quality in a three-storey peripheral building of the same complex subject to scheduled refurbishing, obtained by

  4. Fire and forest meteorology

    Treesearch

    SA Ferguson; T.J. Brown; M. Flannigan

    2005-01-01

    The American Meteorological Society symposia series on Fire and Forest Meteorology provides biennial forums for atmospheric and fire scientists to introduce and discuss the latest and most relevant research on weather, climate and fire. This special issue highlights significant work that was presented at the Fifth Symposium in Orlando, Florida during 16-20 November...

  5. Systems and Meteorology.

    NASA Astrophysics Data System (ADS)

    Hills, Rodney; Beer, Tom

    1981-09-01

    Meteorological services are expected to function as forecasting agencies, but much of the existing data collection network appears to exist in order to provide a data base for scientific studies. A better definition of the goals of a meteorological service should result in greater management and administrative efficiency, and we offer suggestions as to the means of achieving this within a systems analytic framework

  6. Single-Dish Radio Polarimetry in the F-GAMMA Program with the Effelsberg 100-m Radio Telescope

    NASA Astrophysics Data System (ADS)

    Beuchert, Tobias; Kadler, Matthias; Wilms, Jörn; Angelakis, Emmanouil; Fuhrmann, Lars; Myserlis, Ioannis; Nestoras, Ioannis; Kraus, Alex; Bach, Uwe; Ros, Eduardo; Grossberger, Christoph; Schulz, Robert

    2013-12-01

    Studying the variability of polarized AGN jet emission in the radio band is crucial for understanding the dynamics of moving shocks as well as the structure of the underlying magnetic field. The 100-m Effelsberg Telescope is a high-quality instrument for studying the long-term variability of both total and polarized intensity as well as the electric-vector position angle. Since 2007, the F-GAMMA program has been monitoring the linear polarized emission of roughly 60 blazars at 11 frequencies between 2.7 and 43 GHz. Here, we describe the calibration of the polarimetric data at 5 and 10 GHz and the resulting F-GAMMA full-Stokes light curves for the exemplary case of the radio galaxy 3C 111.

  7. VO2 Kinetics in All-out Arm Stroke, Leg Kick and Whole Stroke Front Crawl 100-m Swimming.

    PubMed

    Rodríguez, F A; Lätt, E; Jürimäe, J; Maestu, J; Purge, P; Rämson, R; Haljaste, K; Keskinen, K L; Jürimäe, T

    2016-03-01

    The VO2 response to extreme-intensity exercise and its relationship with sports performance are largely unexplored. This study investigated the pulmonary VO2 kinetics during all-out 100-m front crawl whole stroke swimming (S), arm stroke (A) and leg kick (L). 26 male and 10 female competitive swimmers performed an all-out S trial followed by A and L of equal duration in random order. Breath-by-breath VO2 was measured using a snorkel attached to a portable gas analyzer. Mean (±SD) primary component parameters and peak blood lactate (Lapeak) during S, A, and L were, respectively: time delay (s), 14.2 ± 4.7, 14.3 ± 4.5, 15.6 ± 5.1; amplitude (ml·kg(-1)·min(-1)), 46.8 ± 6.1, 37.3 ± 6.9, 41.0 ± 4.7; time constant (τ, s): 9.2 ± 3.2, 12.4 ± 4.7, 10.1 ± 3.2; Lapeak (mmol·l(-1)), 6.8 ± 3.1, 6.3 ± 2.5, 7.9 ± 2.8. During A and L respectively, 80% and 87% of amplitude in S was reached, whereas A+L were 68% greater than in S. 100-m performance was associated to shorter cardiodynamic phase and greater VO2 amplitude and Lapeak (accounting up to 61% of performance variance), but not to τ. We conclude that (i) VO2 gain was proportional to exercise intensity and muscle mass involved, (ii) kicking is metabolically less efficient, and (iii) the main limiting factor of peak VO2 appears to be O2 delivery and not muscle extraction.

  8. Effect of Different Training Methods on Stride Parameters in Speed Maintenance Phase of 100m Sprint Runningmel.

    PubMed

    Cetin, Emel; Hindistan, Ibrahim Ethem; Ozkaya, Yasar Gul

    2017-04-27

    This study examined the effects of two different training methods relevant to sloping surface on stride parameters in speed maintenance phase of 100 m sprint running. Twenty recreationally active students were assigned into one of three groups: combined training (Com), horizontal training (H), and control (C) group. Com group performed uphill and downhill training on a sloping surface with an angle of 4°, while H group trained on a horizontal surface, 3 days a week for 8 weeks. Speed maintenance and deceleration phases were divided into distances with 10m intervals, and running time (t), running velocity (RV), step frequency (SF) and step length (SL) were measured at pre-, and post-exercise period. After 8-weeks of training program, t was shortened by 3.97% in Com group, and 2.37% in H group. RV also increased for totally 100m of running distance by 4,13% and 2,35% in Com, and H groups, respectively. At the speed maintenance phase, although t and maximal RV (RVmax) found to be statistically unaltered during overall phase, t was found to be decreased, and RVmax was preceded by 10m in distance in both training groups. SL was increased at 60-70m, and SF was decreased at 70-80m in H group. SL was increased with concomitant decrease in SF at 80-90m in Com group. Both training groups were maintained the RVmax with a great percentage at the speed maintenance phase. In conclusion, although both training methods resulted an increase in running time and RV, Com training method was more prominently effective method in improving RV, and this improvement was originated from the positive changes in SL during the speed maintaining phase.

  9. 2. SOUTH FACE OF METEOROLOGICAL SHED (BLDG. 756) WITH METEOROLOGICAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. SOUTH FACE OF METEOROLOGICAL SHED (BLDG. 756) WITH METEOROLOGICAL DATA ACQUISITION TERMINAL (MDAT) INSIDE BUILDING - Vandenberg Air Force Base, Space Launch Complex 3, Meteorological Shed & Tower, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  10. Generalist dinoflagellate endosymbionts and host genotype diversity detected from mesophotic (67-100 m depths) coral Leptoseris

    PubMed Central

    Chan, Yvonne L; Pochon, Xavier; Fisher, Marla A; Wagner, Daniel; Concepcion, Gregory T; Kahng, Samuel E; Toonen, Robert J; Gates, Ruth D

    2009-01-01

    Background Mesophotic corals (light-dependent corals in the deepest half of the photic zone at depths of 30 - 150 m) provide a unique opportunity to study the limits of the interactions between corals and endosymbiotic dinoflagellates in the genus Symbiodinium. We sampled Leptoseris spp. in Hawaii via manned submersibles across a depth range of 67 - 100 m. Both the host and Symbiodinium communities were genotyped, using a non-coding region of the mitochondrial ND5 intron (NAD5) and the nuclear ribosomal internal transcribed spacer region 2 (ITS2), respectively. Results Coral colonies harbored endosymbiotic communities dominated by previously identified shallow water Symbiodinium ITS2 types (C1_ AF333515, C1c_ AY239364, C27_ AY239379, and C1b_ AY239363) and exhibited genetic variability at mitochondrial NAD5. Conclusion This is one of the first studies to examine genetic diversity in corals and their endosymbiotic dinoflagellates sampled at the limits of the depth and light gradients for hermatypic corals. The results reveal that these corals associate with generalist endosymbiont types commonly found in shallow water corals and implies that the composition of the Symbiodinium community (based on ITS2) alone is not responsible for the dominance and broad depth distribution of Leptoseris spp. The level of genetic diversity detected in the coral NAD5 suggests that there is undescribed taxonomic diversity in the genus Leptoseris from Hawaii. PMID:19747389

  11. Performance and energy costs associated with scaling infrared heater arrays for warming field plots from 1 to 100 m

    NASA Astrophysics Data System (ADS)

    Kimball, Bruce A.; Conley, Matthew M.; Lewin, Keith F.

    2012-04-01

    To study the likely effects of global warming on open-field vegetation, hexagonal arrays of infrared heaters are currently being used for low-stature (<1 m) plants in small (≤3 m) plots. To address larger ecosystem scales, herein we show that excellent uniformity of the warming can be achieved using nested hexagonal and rectangular arrays. Energy costs depend on the overall efficiency (useable infrared energy on the plot per electrical energy in), which varies with the radiometric efficiency (infrared radiation out per electrical energy in) of the individual heaters and with the geometric efficiency (fraction of thermal radiation that falls on useable plot area) associated with the arrangement of the heaters in an array. Overall efficiency would be about 26% at 4 m s-1 wind speed for a single hexagonal array over a 3-m-diameter plot and 67% for a 199-hexagon honeycomb array over a 100-m-diameter plot, thereby resulting in an economy of scale.

  12. Performance and energy costs associated with scaling infrared heater arrays for warming field plots from 1 to 100 m

    SciTech Connect

    Kimball B. A.; Lewin K.; Conley, M. M.

    2012-04-01

    To study the likely effects of global warming on open-field vegetation, hexagonal arrays of infrared heaters are currently being used for low-stature (<1 m) plants in small ({le}3 m) plots. To address larger ecosystem scales, herein we show that excellent uniformity of the warming can be achieved using nested hexagonal and rectangular arrays. Energy costs depend on the overall efficiency (useable infrared energy on the plot per electrical energy in), which varies with the radiometric efficiency (infrared radiation out per electrical energy in) of the individual heaters and with the geometric efficiency (fraction of thermal radiation that falls on useable plot area) associated with the arrangement of the heaters in an array. Overall efficiency would be about 26% at 4 ms{sup -1} wind speed for a single hexagonal array over a 3-m-diameter plot and 67% for a 199-hexagon honeycomb array over a 100-m-diameter plot, thereby resulting in an economy of scale.

  13. System for rapid detection and mapping of gas plumes on 100 m scales: examination of some technical and economic issues

    NASA Astrophysics Data System (ADS)

    Fischer, Marc L.; Drescher, Anushka C.; Gadgil, Ashok J.; Yost, Michael G.

    1995-05-01

    We consider the design of a system combining computed tomography and Fourier Transform Infrared Spectroscopy (CT/FTIR) to detect and map the concentration of multicontaminant gas plumes in ambient air over a 100 m square area. Several factors affecting the accuracy of the reconstructed map and the detection limits that can be achieved in the field are discussed. The estimated cost and capabilities of the system are compared with those of a more conventional gas monitoring system that might operate over a similar spatial extent. The paper includes a description of a proposed system that is designed to produce a map of multiple gaseous contaminants with a resolution of 12 m X 12 m in a time of approximately 10 minutes by sequentially measuring the contaminant concentrations along 48 intersecting beam paths and then reconstructing the map using a CT algorithm adapted to detect Gaussian plumes. The optical elements consist of an FTIR mounted on a steerable telescope platform, a second remote steerable mirror platform, and 32 fixed retro-reflectors.

  14. Generalist dinoflagellate endosymbionts and host genotype diversity detected from mesophotic (67-100 m depths) coral Leptoseris.

    PubMed

    Chan, Yvonne L; Pochon, Xavier; Fisher, Marla A; Wagner, Daniel; Concepcion, Gregory T; Kahng, Samuel E; Toonen, Robert J; Gates, Ruth D

    2009-09-11

    Mesophotic corals (light-dependent corals in the deepest half of the photic zone at depths of 30-150 m) provide a unique opportunity to study the limits of the interactions between corals and endosymbiotic dinoflagellates in the genus Symbiodinium. We sampled Leptoseris spp. in Hawaii via manned submersibles across a depth range of 67-100 m. Both the host and Symbiodinium communities were genotyped, using a non-coding region of the mitochondrial ND5 intron (NAD5) and the nuclear ribosomal internal transcribed spacer region 2 (ITS2), respectively. Coral colonies harbored endosymbiotic communities dominated by previously identified shallow water Symbiodinium ITS2 types (C1_ AF333515, C1c_ AY239364, C27_ AY239379, and C1b_ AY239363) and exhibited genetic variability at mitochondrial NAD5. This is one of the first studies to examine genetic diversity in corals and their endosymbiotic dinoflagellates sampled at the limits of the depth and light gradients for hermatypic corals. The results reveal that these corals associate with generalist endosymbiont types commonly found in shallow water corals and implies that the composition of the Symbiodinium community (based on ITS2) alone is not responsible for the dominance and broad depth distribution of Leptoseris spp. The level of genetic diversity detected in the coral NAD5 suggests that there is undescribed taxonomic diversity in the genus Leptoseris from Hawaii.

  15. Observations of free-free and anomalous microwave emission from LDN 1622 with the 100 m Green Bank Telescope

    NASA Astrophysics Data System (ADS)

    Harper, S. E.; Dickinson, C.; Cleary, K.

    2015-11-01

    LDN 1622 has previously been identified as a possible strong source of dust-correlated anomalous microwave emission (AME). Previous observations were limited by resolution meaning that the radio emission could not be compared with current generation high-resolution infrared data from Herschel, Spitzer or Wide-field Infrared Sky Explorer. This paper presents arcminute resolution mapping observations of LDN 1622 at 4.85 and 13.7 GHz using the 100 m Robert C. Byrd Green Bank Telescope. The 4.85 GHz map reveals a corona of free-free emission enclosing LDN 1622 that traces the photodissociation region of the cloud. The brightest peaks of the 4.85 GHz map are found to be within ≈10 per cent agreement with the expected free-free predicted by Southern H-Alpha Sky Survey Atlas H α data of LDN 1622. At 13.7 GHz, the AME flux density was found to be 7.0 ± 1.4 mJy and evidence is presented for a rising spectrum between 13.7 and 31 GHz. The spinning dust model of AME is found to naturally account for the flux seen at 13.7 GHz. Correlations between the diffuse 13.7 GHz emission and the diffuse mid-infrared emission are used to further demonstrate that the emission originating from LDN 1622 at 13.7 GHz is described by the spinning dust model.

  16. Daytime rapid detection of minerals and organics from 50 and 100 m distances using a remote Raman system

    NASA Astrophysics Data System (ADS)

    Misra, Anupam K.; Sharma, Shiv K.; Lucey, Paul G.; Lentz, Rachel C. F.; Chio, Chi Hong

    2007-09-01

    We have developed a remote Raman system, using an 8-in telescope and a 532-nm pulse laser (20 Hz and 20 mJ/pulse), which is capable of operating in daylight. From distances of 50 and 100 m and with an integration time of just 1 second (equivalent to 20 laser pulses at 20 Hz), good quality Raman spectra with high signal-to-noise ratios were readily obtained. The Raman system was also tested using only single-laser-pulse excitation (8 ns pulse width) with an integration time of 2 μs. The spectra obtained from single-laser-pulse excitation also show clear Raman features and can be used for rapid, unambiguous identification of various chemical substances. We successfully identified a number of substances, including organic chemicals (acetone, naphthalene, nitro-methane, nitro-benzene and cyclohexane); inorganic chemicals and minerals (nitric acids, sulfuric acid, potassium perchlorate, gypsum, ammonium nitrate, epsomite, melanterite, calcite and sulfur); and amino acids. The remote Raman system has a range of applications, such as environmental monitoring (e.g., detection of hazardous chemicals and chemical spills from a safe distance in real time) or homeland security (e.g., rapid identification of chemicals on a conveyor belt or from a fast-moving object).

  17. First Arcas Meteorological Rocket

    NASA Image and Video Library

    1959-07-31

    First Arcas meteorological rocket, shown at Wallops prior to flight test, July 31, 1959. Photograph published in A New Dimension Wallops Island Flight Test Range: The First Fifteen Years by Joseph Shortal. A NASA publication. Page 696.

  18. Wave Meteorology and Soaring

    NASA Technical Reports Server (NTRS)

    Wiley, Scott

    2008-01-01

    This viewgraph document reviews some mountain wave turbulence and operational hazards while soaring. Maps, photographs, and satellite images of the meteorological phenomena are included. Additionally, photographs of aircraft that sustained mountain wave damage are provided.

  19. Lasting Impressions in Meteorology.

    ERIC Educational Resources Information Center

    Herold, James M.

    1992-01-01

    Describes activities integrating science and art education in which students examine slides of impressionist paintings or photographs of meteorological phenomena to determine the weather conditions depicted and to make and defend weather predictions. Includes a reproducible worksheet. (MDH)

  20. Climate and meteorology

    SciTech Connect

    Hoitink, D.J.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the significant activities conducted in 1994 to monitor the meteorology and climatology of the site. Meteorological measurements are taken to support Hanford Site emergency preparedness and response, Hanford Site operations, and atmospheric dispersion calculations. Climatological data are collected to help plan weather-dependent activities and are used as a resource to assess the environmental effects of Hanford Site operations.

  1. Meteorology for public

    NASA Astrophysics Data System (ADS)

    Špoler Čanić, Kornelija; Rasol, Dubravka; Milković, Janja

    2013-04-01

    The Meteorological and Hydrological Service in Croatia (MHSC) is, as a public service, open to and concentrated on public. The organization of visits to the MHSC for groups started in 1986. The GLOBE program in Croatia started in 1995 and after that interest for the group tours at the MHSC has increased. The majority of visitors are school and kindergarten children, students and groups of teachers. For each group tour we try to prepare the content that is suitable for the age and interest of a group. Majority of groups prefer to visit the meteorological station where they can see meteorological instruments and learn how they work. It is organized as a little workshop, where visitors can ask questions and discuss with a guide not only about the meteorological measurements but also about weather and climate phenomena they are interested in. Undoubtedly the highlight of a visit is the forecaster's room where visitors can talk to the forecasters (whom they can also see giving a weather forecast on the national TV station) and learn how weather forecasts are made. Sometimes we offer to visitors to make some meteorological experiments but that is still not in a regular program of the group tours due to the lack of performing space. Therefore we give them the instructions for making instruments and simulations of meteorological phenomena from household items. Visits guides are meteorologists with profound experience in the popularization of science.

  2. Synergetic Use of Sentinel-1 and Sentinel-2 Data for Soil Moisture Mapping at 100 m Resolution

    PubMed Central

    Gao, Qi; Zribi, Mehrez

    2017-01-01

    The recent deployment of ESA’s Sentinel operational satellites has established a new paradigm for remote sensing applications. In this context, Sentinel-1 radar images have made it possible to retrieve surface soil moisture with a high spatial and temporal resolution. This paper presents two methodologies for the retrieval of soil moisture from remotely-sensed SAR images, with a spatial resolution of 100 m. These algorithms are based on the interpretation of Sentinel-1 data recorded in the VV polarization, which is combined with Sentinel-2 optical data for the analysis of vegetation effects over a site in Urgell (Catalunya, Spain). The first algorithm has already been applied to observations in West Africa by Zribi et al., 2008, using low spatial resolution ERS scatterometer data, and is based on change detection approach. In the present study, this approach is applied to Sentinel-1 data and optimizes the inversion process by taking advantage of the high repeat frequency of the Sentinel observations. The second algorithm relies on a new method, based on the difference between backscattered Sentinel-1 radar signals observed on two consecutive days, expressed as a function of NDVI optical index. Both methods are applied to almost 1.5 years of satellite data (July 2015–November 2016), and are validated using field data acquired at a study site. This leads to an RMS error in volumetric moisture of approximately 0.087 m3/m3 and 0.059 m3/m3 for the first and second methods, respectively. No site calibrations are needed with these techniques, and they can be applied to any vegetation-covered area for which time series of SAR data have been recorded. PMID:28846601

  3. The Calibration and error analysis of Shallow water (less than 100m) Multibeam Echo-Sounding System

    NASA Astrophysics Data System (ADS)

    Lin, M.

    2016-12-01

    Multibeam echo-sounders(MBES) have been developed to gather bathymetric and acoustic data for more efficient and more exact mapping of the oceans. This gain in efficiency does not come without drawbacks. Indeed, the finer the resolution of remote sensing instruments, the harder they are to calibrate. This is the case for multibeam echo-sounding systems (MBES). We are no longer dealing with sounding lines where the bathymetry must be interpolated between them to engender consistent representations of the seafloor. We now need to match together strips (swaths) of totally ensonified seabed. As a consequence, misalignment and time lag problems emerge as artifacts in the bathymetry from adjacent or overlapping swaths, particularly when operating in shallow water. More importantly, one must still verify that bathymetric data meet the accuracy requirements. This paper aims to summarize the system integration involved with MBES and identify the various source of error pertaining to shallow water survey (100m and less). A systematic method for the calibration of shallow water MBES is proposed and presented as a set of field procedures. The procedures aim at detecting, quantifying and correcting systematic instrumental and installation errors. Hence, calibrating for variations of the speed of sound in the water column, which is natural in origin, is not addressed in this document. The data which used in calibration will reference International Hydrographic Organization(IHO) and other related standards to compare. This paper aims to set a model in the specific area which can calibrate the error due to instruments. We will construct a procedure in patch test and figure out all the possibilities may make sounding data with error then calculate the error value to compensate. In general, the problems which have to be solved is the patch test's 4 correction in the Hypack system 1.Roll 2.GPS Latency 3.Pitch 4.Yaw. Cause These 4 correction affect each others, we run each survey line

  4. Applied Meteorology Unit (AMU)

    NASA Technical Reports Server (NTRS)

    Bauman, William; Crawford, Winifred; Barrett, Joe; Watson, Leela; Wheeler, Mark

    2010-01-01

    This report summarizes the Applied Meteorology Unit (AMU) activities for the first quarter of Fiscal Year 2010 (October - December 2009). A detailed project schedule is included in the Appendix. Included tasks are: (1) Peak Wind Tool for User Launch Commit Criteria (LCC), (2) Objective Lightning Probability Tool, Phase III, (3) Peak Wind Tool for General Forecasting, Phase II, (4) Upgrade Summer Severe Weather Tool in Meteorological Interactive Data Display System (MIDDS), (5) Advanced Regional Prediction System (ARPS) Data Analysis System (ADAS) Update and Maintainability, (5) Verify 12-km resolution North American Model (MesoNAM) Performance, and (5) Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) Graphical User Interface.

  5. Transport and Meteorological Analysis

    NASA Technical Reports Server (NTRS)

    Pfister, Leonhard; Selkirk, Henry B.; Legg, Marion J.

    2002-01-01

    The objectives of this work are twofold. First, to provide real-time meteorological satellite guidance to airborne field missions for NASA's Upper Atmosphere Research Program, the Global Tropospheric Experiment, and the Atmospheric Effects of Aviation Project. Extensive meteorological satellite datasets were provided for use by the mission scientist and by the science team. These same data were then archived for postdeployment data analysis by the science team. Second, to provide scientific analysis of the data from the airborne field missions supported. The results of these analyses were made public through peer-reviewed publications.

  6. Computer Exercises in Meteorology.

    ERIC Educational Resources Information Center

    Trapasso, L. Michael; Conner, Glen; Stallins, Keith

    Beginning with Western Kentucky University's (Bowling Green) fall 1999 semester, exercises required for the geography and meteorology course used computers for learning. This course enrolls about 250 students per year, most of whom choose it to fulfill a general education requirement. Of the 185 geography majors, it is required for those who…

  7. Meteorology: Project Earth Science.

    ERIC Educational Resources Information Center

    Smith, P. Sean; Ford, Brent A.

    This document on meteorology is one of a four-volume series of Project Earth Science that includes exemplary hands-on science and reading materials for use in the classroom. This book is divided into three sections: activities, readings, and appendix. The activities are constructed around three basic concept divisions. First, students investigate…

  8. FRAM I Meteorology Report,

    DTIC Science & Technology

    1980-05-01

    kilometer south of the initial -- - 7 -FM 3. April camp. Change of weather regime to light and variable winds, generally northerly. 2 Meteorological... sunshot at the main part of the camp. South FRAM" dire ction to ’main camp PRIL ambient nto’s. Distance from UW hut BID to NPI hut at the main seismic

  9. Acute changes in selected serum enzyme and metabolite concentrations in 12- to 14-yr.-old athletes after an all-out 100-m swimming sprint.

    PubMed

    Fu, Frank H; You, Chun-Ying; Kong, Zhao-Wei

    2002-12-01

    The purpose of this study was to investigate the acute effects of an all-out 100-m swimming sprint on changes in serum enzyme and calcium ion concentrations in young (12 to 14 years) male and female swimmers. Changes in serum enzyme concentrations of creatine kinase (CK), lactate dehydrogenase (LDH), glutamic pyruvate transaminase (GPT), glutamic oxaloacetate transaminase (GOT), serum glucose (GL), and calcium ion ((Ca2+) concentrations were measured in 23 elite swimmers (13 boys and 10 girls) before and after a 100-m freestyle all-out sprint. Analysis showed (1) there were significant sex differences in serum CK concentration at baseline (Pretest); (2) significant sex differences in serum CK and LDH concentrations after the 100-m spring; (3) no significant differences in Ca2+ concentration after the 100-m spring; and (4) significant increase in Serum GOT and blood glucose concentrations after the 100-m sprint, suggesting that these might both be useful indicators of anaerobic exercise stress in young swimmers.

  10. [Evaluation of heart impact in the 100 m extreme intensity sport using near-infrared non-invasive muscle oxygen detecting device and sports heart rate detection technology].

    PubMed

    Wang, Pei-Yong; Long, Fei-Xiao; Fu, Lan-Ying; Li, Yue; Ding, Hai-Shu; Qu, An-Lian; Zhou, Xiao-Ping

    2010-02-01

    Using continuous two wavelength near-infrared technology to detect the variation in the consistency of oxygen hemoglobin in the muscle and the sports heart rate wireless real time collection technology, we devised the real time muscle tissue oxygenation and instantaneous heart rate experiment scheme and implemented it for the process of the 100 m run with two parameters given simultaneously. The experiment shows that the concentration of the oxygen hemoglobin in the muscle tissue continues decreasing after the end of the 100 m run, and the time interval between the moment when the concentration of the oxygen hemoglobin attains the minimum value and the moment when the athletes finish the 100 m run is (6.65 +/- 1.10) sec; while the heart rate continues increasing after the end of the 100 m run, and the time interval between the moment when the heart rate attains the maximum value and the moment when the athletes finish the 100 m run is (8.00 +/- 1.57) sec. The results show that the two wavelength near-infrared tissue oxygenation detection technology and the sports heart rate real time collection equipment can accurately measure the sports tissue oxygenation and the heart rate in the extreme intensity sport, and reveal the process of muscle oxygen transportation and consumption and its dynamic character with the heart rate in the extreme intensity sport.

  11. Meteorological Support in Scientific Ballooning

    NASA Technical Reports Server (NTRS)

    Schwantes, Chris; Mullenax, Robert

    2017-01-01

    The weather affects every portion of a scientific balloon mission, from payload integration to launch, float, and impact and recovery. Forecasting for these missions is very specialized and unique in many aspects. CSBF Meteorology incorporates data from NWSNCEP, as well as several international meteorological organizations, and NCAR. This presentation will detail the tools used and specifics on how CSBF Meteorology produces its forecasts.

  12. Meteorological Support in Scientific Ballooning

    NASA Technical Reports Server (NTRS)

    Schwantes, Chris; Mullenax, Robert

    2016-01-01

    The weather affects every portion of a scientific balloon mission, from payload integration to launch, float, and impact and recovery. Forecasting for these missions is very specialized and unique in many aspects. CSBF Meteorology incorporates data from NWSNCEP, as well as several international meteorological organizations, and NCAR. This presentation will detail the tools used and specifics on how CSBF Meteorology produces its forecasts.

  13. Survey: National Meteorological Center

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The National Meteorological Center (NMC) is comprised of three operational divisions (Development, Automation, and Forecast) and an Administrative Division. The Development Division develops and implements mathematical models for forecasting the weather. The Automation Division provides the software and processing services to accommodate the models used in daily forecasts. The Forecasting Division applies a combination of numerical and manual techniques to produce analyses and prognoses up to 120 hr into the future. This guidance material is combined with severe storm information from the National Hurricane Center and the National Severe Storms Forecasting Center to develop locally tailored forecasts by the Weather Service Forecast Offices and, in turn, by the local Weather Service Offices. A very general flow of this information is shown. A more detailed illustration of data flow into, within, and from the NMC is given. The interrelations are depicted between the various meteorological organizations and activities.

  14. Applied Meteorology Unit (AMU)

    NASA Technical Reports Server (NTRS)

    Bauman, William; Lambert, Winifred; Wheeler, Mark; Barrett, Joe; Watson, Leela

    2007-01-01

    This report summarizes the Applied Meteorology Unit (AMU) activities for the second quarter of Fiscal Year 2007 (January - March 2007). Tasks reported on are: Obiective Lightning Probability Tool, Peak Wind Tool for General Forecasting, Situational Lightning Climatologies for Central Florida, Anvil Threat Corridor Forecast Tool in AWIPS, Volume Averaqed Heiqht lnteq rated Radar Reflectivity (VAHIRR), Tower Data Skew-t Tool, and Weather Research and Forecastini (WRF) Model Sensitivity Study

  15. Vega balloon meteorological measurements

    NASA Technical Reports Server (NTRS)

    Crisp, D.; Ingersoll, A. P.; Hildebrand, C. E.; Preston, R. A.

    1990-01-01

    The Vega balloons obtained in situ measurements of pressure, temperature, vertical winds, cloud density, ambient illumination, and the frequency of lightning during their flights in the Venus middle cloud layer. The Vega measurements were used to develop a comprehensive description of the meteorology of the Venus middle cloud layer. The Vega measurements provide the following picture: large horizontal temperature gradients near the equator, vigorous convection, and weather conditions that can change dramatically on time scales as short as one hour.

  16. Women in Meteorology.

    NASA Astrophysics Data System (ADS)

    Lemone, Margaret A.; Waukau, Patricia L.

    1982-11-01

    The names of 927 women who are or have been active in meteorology or closely related fields have been obtained from various sources. Of these women, at least 500 are presently active. An estimated 4-5% of the total number of Ph.D.s in meteorology are awarded to women. About 10% of those receiving B.S. and M.S. degrees are women.The work patterns, accomplishments, and salaries of employed women meteorologists have been summarized from 330 responses to questionnaires, as functions of age, family status, part- or full-time working status, and employing institutions. It was found that women meteorologists holding Ph.D.s are more likely than their male counterparts to be employed by universities. As increasing number of women were employed in operational meteorology, although few of them were married and fewer still responsible for children. Several women were employed by private industry and some had advanced into managerial positions, although at the present time, such positions remain out of the reach of most women.The subjective and objective effects of several gender-related factors have been summarized from the comments and responses to the questionnaires. The primary obstacles to advancement were found to be part-time work and the responsibility for children. Part-time work was found to have a clearly negative effect on salary increase as a function of age. prejudicated discrimination and rules negatively affecting women remain important, especially to the older women, and affirmative action programs are generally seen as beneficial.Surprisingly, in contrast to the experience of women in other fields of science, women Ph.D.s in meteorology earn salaries comparable of their employment in government or large corporations and universities where there are strong affirmative action programs and above-average salaries. Based on the responses to the questionnaire, the small size of the meteorological community is also a factor, enabling women to become recognized

  17. The acute effects of static stretching on the sprint performance of collegiate men in the 60- and 100-m dash after a dynamic warm-up.

    PubMed

    Kistler, Brandon M; Walsh, Mark S; Horn, Thelma S; Cox, Ronald H

    2010-09-01

    Previous research has shown that static stretching has an inhibitory effect on sprinting performances up to 50 m. The purpose of this study was to see what would happen to these effects at longer distances such as those seen in competition. This study used a within-subjects design to investigate the effects of passive static stretching vs. no stretching on the 60- and 100-m sprint performance of college track athletes after a dynamic warm-up. Eighteen male subjects completed both the static stretching and the no stretching conditions in counterbalanced order across 2 days of testing. On each day, all subjects first completed a generalized dynamic warm-up routine that included a self-paced 800-m run, followed by a series of dynamic movements, sprint, and hurdle drills. At the end of this generalized warm-up, athletes were assigned to either a static stretching or a no-stretching condition. They then immediately performed 2 100-m trials with timing gates set up at 20, 40, 60, and 100 m. Results revealed a significant slowing in performance with static stretching (p < 0.039) in the second 20 (20-40) m of the sprint trials. After the first 40 m, static stretching exhibited no additional inhibition of performance in a 100-m sprint. However, although there was no additional time loss, athletes never gained back the time that was originally lost in the first portion of the trials. Therefore, in strict terms of performance, it seems harmful to include static stretching in the warm-up protocol of collegiate male sprinters in distances up to 100 m.

  18. Applied Meteorology Unit (AMU)

    NASA Technical Reports Server (NTRS)

    Bauman, William H., Jr.; Crawford, Winifred; Short, David; Barrett, Joe; Watson, Leela

    2008-01-01

    This report summarizes the Applied Meteorology Unit (AMU) activities for the second quarter of Fiscal Year 2008 (January - March 2008). Projects described are: (1) Peak Wind Tool for User Launch Commit Criteria (LCC), (2) Peak Wind Tool for General Forecasting, (3) Situational Lightning Climatologies for Central Florida. Phase III, (4) Volume Averaged Height Integrated Radar Reflectivity (VAHIRR), (5) Impact of Local Sensors, (6) Radar Scan Strategies for the PAFB WSR-74C Replacement and (7) WRF Wind Sensitivity Study at Edwards Air Force Base.

  19. Mapping the Martian Meteorology

    NASA Technical Reports Server (NTRS)

    Allison, Michael; Ross, J. D.; Soloman, N.

    1999-01-01

    The Mars-adapted version of the NASA/GISS general circulation model (GCM) has been applied to the hourly/daily simulation of the planet's meteorology over several seasonal orbits. The current running version of the model includes a diurnal solar cycle, CO2 sublimation, and a mature parameterization of upper level wave drag with a vertical domain extending from the surface up to the 6 micro b level. The benchmark simulations provide a four-dimensional archive for the comparative evaluation of various schemes for the retrieval of winds from anticipated polar orbiter measurements of temperatures by the Pressure Modulator Infrared Radiometer.

  20. Mapping the Martian Meteorology

    NASA Technical Reports Server (NTRS)

    Allison, M.; Ross, J. D.; Solomon, N.

    1999-01-01

    The Mars-adapted version of the NASA/GISS general circulation model (GCM) has been applied to the hourly/daily simulation of the planet's meteorology over several seasonal orbits. The current running version of the model includes a diurnal solar cycle, CO2 sublimation, and a mature parameterization of upper level wave drag with a vertical domain extending from the surface up to the 6microb level. The benchmark simulations provide a four-dimensional archive for the comparative evaluation of various schemes for the retrieval of winds from anticipated polar orbiter measurements of temperatures by the Pressure Modulator Infrared Radiometer. Additional information is contained in the original extended abstract.

  1. Defense Meteorological Satellite Program

    NASA Astrophysics Data System (ADS)

    Klein, William D.; Mandt, Gregory A.; Gagliardo, John

    The Defense Meteorological Satellite Program (DMSP) is described, with particular attention given to the DMSP space segment; the command, control, and communications segment; and the user segment. DMSP performs its mission with space-based remote and in situ sensors, reliable spacecraft, and ground systems, which contribute to the efficient use of increasingly scarce military resources. Presently, the DMSP space segment consists of two Block 5D-2 satellites in 833 kilometer circular sun-synchronous polar orbits. In the future, DMSP will develop smaller, more easily deployable tactical terminals to complement the larger Mark IV class terminals.

  2. Agricultural Meteorology in China.

    NASA Astrophysics Data System (ADS)

    Rosenberg, Norman J.

    1982-03-01

    During nearly five weeks in China (May-June 1981), the author visited scientific institutions and experiment stations engaged in agricultural meterology and climatology research and teaching. The facilities, studies, and research programs at each institution are described and the scientific work in these fields is evaluated. Agricultural meteorology and climatology are faced with some unique problems and opportunities in China and progress in these fields may be of critical importance to that nation in coming years. The author includes culinary notes and comments on protocol in China.

  3. Arctic hydrology and meteorology

    SciTech Connect

    Kane, D.L.

    1990-01-01

    During 1990, we have continued our meteorological and hydrologic data collection in support of our process-oriented research. The six years of data collected to data is unique in its scope and continuity in a North Hemisphere Arctic setting. This valuable data base has allowed us to further our understanding of the interconnections and interactions between the atmosphere/hydrosphere/biosphere/lithosphere. The increased understanding of the heat and mass transfer processes has allowed us to increase our model-oriented research efforts.

  4. An Automatic Meteorological Station

    DTIC Science & Technology

    1991-11-01

    the measurement site. Not only the transmission depends on meteorological conditions, but also the thermal behaviour of materials. Solar heating for... pannel in the power supply box. 0 0 FUSE 0 0 0 0 220-MAINS 0 PIR S-NETr AMRP CM1 1 0 0/1 o 0 0 0 220-T+RH PRECIP WIND.DIR T+RH WIND.SP.Q Fa.4.1 Lay-u co...ectr pannel in pow mipply box TNOMW The codes on the cables consist of two parts. The first parn indicates the sga flow, the second part describes

  5. Mapping the Martian Meteorology

    NASA Technical Reports Server (NTRS)

    Allison, Michael; Ross, J. D.; Soloman, N.

    1999-01-01

    The Mars-adapted version of the NASA/GISS general circulation model (GCM) has been applied to the hourly/daily simulation of the planet's meteorology over several seasonal orbits. The current running version of the model includes a diurnal solar cycle, CO2 sublimation, and a mature parameterization of upper level wave drag with a vertical domain extending from the surface up to the 6 micro b level. The benchmark simulations provide a four-dimensional archive for the comparative evaluation of various schemes for the retrieval of winds from anticipated polar orbiter measurements of temperatures by the Pressure Modulator Infrared Radiometer.

  6. Mapping the Martian Meteorology

    NASA Technical Reports Server (NTRS)

    Allison, M.; Ross, J. D.; Solomon, N.

    1999-01-01

    The Mars-adapted version of the NASA/GISS general circulation model (GCM) has been applied to the hourly/daily simulation of the planet's meteorology over several seasonal orbits. The current running version of the model includes a diurnal solar cycle, CO2 sublimation, and a mature parameterization of upper level wave drag with a vertical domain extending from the surface up to the 6microb level. The benchmark simulations provide a four-dimensional archive for the comparative evaluation of various schemes for the retrieval of winds from anticipated polar orbiter measurements of temperatures by the Pressure Modulator Infrared Radiometer. Additional information is contained in the original extended abstract.

  7. The meteorology of Jupiter

    NASA Technical Reports Server (NTRS)

    Ingersoll, A. P.

    1976-01-01

    From the point of view of meteorology the most important differences between Jupiter and the earth are related to the fact that Jupiter has an appreciable internal energy source and probably lacks a solid surface. The composition and vertical structure of the Jovian atmosphere is considered along with the composition of Jovian cloud particles, turbulence in Jupiter's atmosphere, data on the horizontal structure and motions of the atmosphere, and questions related to the longevity of Jupiter's clouds. Attention is given to the barotropic characteristics of Jupiter's atmosphere, the radiation balance in the atmosphere of the earth and of Jupiter, and studies of the Great Red Spot.

  8. Applied Meteorology Unit (AMU)

    NASA Technical Reports Server (NTRS)

    Bauman, William; Crawford, Winifred; Watson, Leela; Wheeler, Mark

    2011-01-01

    The AMU Team began four new tasks in this quarter: (1) began work to improve the AMU-developed tool that provides the launch weather officers information on peak wind speeds that helps them assess their launch commit criteria; (2) began updating lightning climatologies for airfields around central Florida. These climatologies help National Weather Service and Air Force forecasters determine the probability of lightning occurrence at these sites; (3) began a study for the 30th Weather Squadron at Vandenberg Air Force Base in California to determine if precursors can be found in weather observations to help the forecasters determine when they will get strong wind gusts in their northern towers; and (4) began work to update the AMU-developed severe weather tool with more data and possibly improve its performance using a new statistical technique. Include is a section of summaries and detail reporting on the quarterly tasks: (1) Peak Wind Tool for user Meteorological Interactive Data Display System (LCC), Phase IV, (2) Situational Lightning climatologies for Central Florida, Phase V, (3) Vandenberg AFB North Base Wind Study and (4) Upgrade Summer Severe Weather Tool Meteorological Interactive Data Display System (MIDDS).

  9. Meteorological Sensor Calibration Facility

    NASA Technical Reports Server (NTRS)

    Schmidlin, F. J.

    1988-01-01

    The meteorological sensor calibration facility is designed to test and assess radiosonde measurement quality through actual flights in the atmosphere. United States radiosonde temperature measurements are deficient in that they require correction for errors introduced by long- and short-wave radiation. The effect of not applying corrections results in a large bias between day time and night time measurements. This day/night bias has serious implications for users of radiosonde data, of which NASA is one. The derivation of corrections for the U.S. radiosonde is quite important. Determination of corrections depends on solving the heat transfer equation of the thermistor using laboratory measurements of the emissivity and absorptivity of the thermistor coating. The U.S. radiosonde observations from the World Meteorological Organization International Radiosonde Intercomparison were used as the data base to test whether the day/night height bias can be removed. Twenty-five noon time and 26 night time observations were used. Corrected temperatures were used to calculate new geopotentials. Day/night bias in the geopotentials decreased significantly when corrections were introduced. Some testing of thermal lag attendant with the standard carbon hygristor took place. Two radiosondes with small bead thermistors imbedded in the hygristor were flown. Detailed analysis was not accomplished; however, cursory examination of the data showed that the hygristor is at a higher temperature than the external thermistor indicates.

  10. Meteorological Instruction Software

    NASA Technical Reports Server (NTRS)

    1990-01-01

    At Florida State University and the Naval Postgraduate School, meteorology students have the opportunity to apply theoretical studies to current weather phenomena, even prepare forecasts and see how their predictions stand up utilizing GEMPAK. GEMPAK can display data quickly in both conventional and non-traditional ways, allowing students to view multiple perspectives of the complex three-dimensional atmospheric structure. With GEMPAK, mathematical equations come alive as students do homework and laboratory assignments on the weather events happening around them. Since GEMPAK provides data on a 'today' basis, each homework assignment is new. At the Naval Postgraduate School, students are now using electronically-managed environmental data in the classroom. The School's Departments of Meteorology and Oceanography have developed the Interactive Digital Environment Analysis (IDEA) Laboratory. GEMPAK is the IDEA Lab's general purpose display package; the IDEA image processing package is a modified version of NASA's Device Management System. Bringing the graphic and image processing packages together is NASA's product, the Transportable Application Executive (TAE).

  11. SEARCH FOR GAMMA RAYS ABOVE 100 TeV FROM THE CRAB NEBULA WITH THE TIBET AIR SHOWER ARRAY AND THE 100 m{sup 2} MUON DETECTOR

    SciTech Connect

    Amenomori, M.; Bi, X. J.; Chen, W. Y.; Ding, L. K.; Feng, Zhaoyang; Gou, Q. B.; Guo, Y. Q.; He, H. H.; Hu, H. B.; Huang, J.; Chen, D.; Chen, T. L.; Danzengluobu; Hu, Haibing; Cui, S. W.; He, Z. T.; Feng, C. F.; Feng, Z. Y.; Hibino, K.; Hotta, N.; Collaboration: Tibet ASγ Collaboration; and others

    2015-11-10

    A 100 m{sup 2} muon detector (MD) was successfully constructed under the existing Tibet air shower (AS) array in the late fall of 2007. The sensitivity of the Tibet AS array to cosmic gamma rays can be improved by selecting muon-poor events with the MD. Our MC simulation of the MD response reasonably agrees with the experimental data in terms of the charge distribution for one-muon events and the background rejection power. Using the data collected by the Tibet AS array and the 100 m{sup 2} MD taken from 2008 March to 2010 February, we search for continuous gamma-ray emission from the Crab Nebula above ∼100 TeV. No significant excess is found, and the most stringent upper limit is obtained above 140 TeV.

  12. Search for 100 TeV gamma rays from the Crab Nebula with the Tibet Air Shower Array and the 100 m2 muon detector

    NASA Astrophysics Data System (ADS)

    Sako, Takashi

    2016-07-01

    The 100 m ^{2} muon detector (MD) was constructed under the Tibet air shower (AS) array in the late autumn of 2007. By selecting muon-poor events with the MD, the sensitivity of the Tibet AS array to cosmic gamma rays can be improved. Our MC simulation of the MD response is in reasonable agreement with the experimental data, with regard to the charge distribution for one-muon events and the background rejection power. Using the data taken from 2008 March to 2010 February by the Tibet AS array and the 100 m ^{2} MD, we search for continuous 100 TeV gamma-ray emission from the Crab Nebula. No significant excess is detected, and the world's best upper limit is obtained above 140 TeV.

  13. Search for Gamma Rays above 100 TeV from the Crab Nebula with the Tibet Air Shower Array and the 100 m2 muon Detector

    NASA Astrophysics Data System (ADS)

    Amenomori, M.; Bi, X. J.; Chen, D.; Chen, T. L.; Chen, W. Y.; Cui, S. W.; Danzengluobu; Ding, L. K.; Feng, C. F.; Feng, Zhaoyang; Feng, Z. Y.; Gou, Q. B.; Guo, Y. Q.; He, H. H.; He, Z. T.; Hibino, K.; Hotta, N.; Hu, Haibing; Hu, H. B.; Huang, J.; Jia, H. Y.; Jiang, L.; Kajino, F.; Kasahara, K.; Katayose, Y.; Kato, C.; Kawata, K.; Kozai, M.; Labaciren; Le, G. M.; Li, A. F.; Li, H. J.; Li, W. J.; Liu, C.; Liu, J. S.; Liu, M. Y.; Lu, H.; Meng, X. R.; Miyazaki, T.; Mizutani, K.; Munakata, K.; Nakajima, T.; Nakamura, Y.; Nanjo, H.; Nishizawa, M.; Niwa, T.; Ohnishi, M.; Ohta, I.; Ozawa, S.; Qian, X. L.; Qu, X. B.; Saito, T.; Saito, T. Y.; Sakata, M.; Sako, T. K.; Shao, J.; Shibata, M.; Shiomi, A.; Shirai, T.; Sugimoto, H.; Takita, M.; Tan, Y. H.; Tateyama, N.; Torii, S.; Tsuchiya, H.; Udo, S.; Wang, H.; Wu, H. R.; Xue, L.; Yamamoto, Y.; Yamauchi, K.; Yang, Z.; Yasue, S.; Yuan, A. F.; Yuda, T.; Zhai, L. M.; Zhang, H. M.; Zhang, J. L.; Zhang, X. Y.; Zhang, Y.; Zhang, Yi; Zhang, Ying; Zhaxisangzhu; Zhou, X. X.; Tibet ASγ Collaboration

    2015-11-01

    A 100 m2 muon detector (MD) was successfully constructed under the existing Tibet air shower (AS) array in the late fall of 2007. The sensitivity of the Tibet AS array to cosmic gamma rays can be improved by selecting muon-poor events with the MD. Our MC simulation of the MD response reasonably agrees with the experimental data in terms of the charge distribution for one-muon events and the background rejection power. Using the data collected by the Tibet AS array and the 100 m2 MD taken from 2008 March to 2010 February, we search for continuous gamma-ray emission from the Crab Nebula above ˜100 TeV. No significant excess is found, and the most stringent upper limit is obtained above 140 TeV.

  14. KEY COMPARISON: Final report on regional key comparison SIM.M.FF-K4: Volume of liquids at 20 L and 100 mL

    NASA Astrophysics Data System (ADS)

    Arias, Roberto; Maldonado, Manuel; Wright, John; Wallace, Tanisha; Rodríguez, Sandra; Pinzón, Orlando; Morales, Abed; Vega, Maria; Santo, Claudia; Kornblit, Fernando; Malta, Dalni

    2010-01-01

    At its meeting in October 2006 in Querétaro, Mexico, the Interamerican Metrology System (SIM) Technical Committee for Fluid Flow (TCFF) approved a Regional Key Comparison for Volume of Liquids at 20 L and 100 mL, to be piloted by the national metrology institute of Mexico (CENAM). The objective of this comparison was to demonstrate the degree of equivalence of the volume measurement standards held at national measurement institutes (NMIs) and to provide supporting evidence for the Calibration and Measurement Capabilities (CMCs) claimed by the participating laboratories in the Americas. During the comparison, one of the pycnometers suffered irreversible damage, and degrees of equivalence for volume at 100 mL were calculated using the results obtained with one single pycnometer (TS 03.04.04). Conclusions are as follows: The transfer standards for SIM.M.FF-K4 exhibited global good performance all the way along, both in terms of stability and repeatability. Degrees of equivalence have been produced for volumes at 20 L and at 100 mL. The best estimation of the measurands, as reported by the participants, shows a general agreement better than +/-0.0070% for volume of liquids at 100 mL and 20 L. It is advisable to review the uncertainty analysis of some participants. New CMC entries for some NMIs should take into account the information presented in this Report. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  15. KEY COMPARISON: Results of the key comparison CCM.FF-K4 for volume of liquids at 20 L and 100 mL

    NASA Astrophysics Data System (ADS)

    Arias, Roberto; Maldonado, Manuel; Wright, John; Jacques, Claude; Lachance, Christian; Lau, Peter; Többen, Helmut; Cignolo, Giorgio; Lorefice, Salvatore; Man, John; Aibe, Valter Y.

    2006-01-01

    A key comparison was performed in order to compare national measurement systems to determine volume of liquids, particularly at fixed volumes of 20 L and 100 mL. The participants were CENAM (Mexico), NIST (United States of America), NRC/MC (Canada), SP (Sweden), PTB (Germany), INRIM (former IMGC, Italy), NMIA (Australia) and INMETRO (Brazil). CENAM acted as pilot laboratory. The measurements were carried out from December 2003 to March 2005. The chosen values of volume (20 L and 100 mL) are both representatives of the Calibration and Measurement Capabilities (CMCs) declared by most of the participating national metrology institutes. The transfer standards (TSs) were three stainless steel pipettes for volume at 20 L and six commercially available glass pycnometers for volume at 100 mL. Prior to the beginning of the key comparison, the 20 L TSs were tested by CENAM, SP and NMIA The results of the test phase showed excellent values for both repeatability and reproducibility. During the CCM.FF-K4, the results of most of the laboratories showed good agreement with the reference values. The best estimation of the measurands, as reported by the participants showed a general agreement better than ±0.0025% for volume of liquids at 100 mL and 20 L. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  16. Airborne Meteorological and Turbulence Instrumentation

    DTIC Science & Technology

    2016-06-07

    SEP 1999 2. REPORT TYPE 3. DATES COVERED 00-00-1999 to 00-00-1999 4. TITLE AND SUBTITLE Airborne Meteorological and Turbulence Instrumentation...by ANSI Std Z39-18 Airborne Meteorological and Turbulence Instrumentation Carl A. Friehe Departments of Mechanical Engineering and Earth System... meteorological and turbulence instrumentation for the Navy CIRPAS Twin Otter research aircraft to be used in the ONR Sea of Japan/East Sea experiment in Winter

  17. Close to 100 Gbps discrete multitone transmission over 100m of multimode fiber using a single transverse mode 850nm VCSEL

    NASA Astrophysics Data System (ADS)

    Wu, Bo; Zhou, Xian; Ma, Yanan; Luo, Jun; Zhong, Kangping; Qiu, Shaofeng; Feng, Zhiyong; Luo, Yazhi; Agustin, Mikel; Ledentsov, Nikolay; Kropp, Joerg; Shchukin, Vitaly; Ledentsov, Nikolay N.; Eddie, Iain; Chao, Lu

    2016-03-01

    Discrete Multitone Transmission (DMT) transmission over standard multimode fiber (MMF) using high-speed single (SM) and multimode (MM) Vertical-Cavity Surface-Emitting Lasers (VCSELs) is studied. Transmission speed in the range of 72Gbps to 82Gbps over 300m -100m distances of OM4 fiber is realized, respectively, at Bit-Error-Ratio (BER) <5e-3 and the received optical power of only -5dBm. Such BER condition requires only 7% overhead for the conversion to error-free operation using single Bose-Chaudhuri-Hocquenghem forward error correction (BCH-FEC) coding and decoding. SM VCSEL is demonstrated to provide a much higher data transmission capacity over MMF. For 100m MMF transmission SM VCSEL allows 82Gbps as compared to MM VCSEL resulting in only 34Gbps at the same power (-5dBm). Furthermore, MM VCSEL link at 0dBm is still restricted at 100m distance by 63Gbps while SM VCSEL can exceed 100Gbps at such power levels. We believe that with further improvement in SM VCSELs and fiber coupling >100Gbps data transmission over >300m MMF distances at the BER levels matching the industry standards will become possible.

  18. 100-mW high-power three-section tunable distributed Bragg reflector laser diodes with a real refractive-index-guided self-aligned structure

    NASA Astrophysics Data System (ADS)

    Takayama, Toru; Mochida, Atsunori; Orita, Kenji; Tamura, Satoshi; Ohnishi, Toshikazu; Yuri, Masaaki; Shimizu, Hirokazu

    2002-05-01

    High-power (>100mW) 820 nm-band distributed Bragg reflector (DBR) laser diodes (LDs) with stable fundamental transverse mode operation and continuous wavelength tuning characteristics have been developed. To obtain high-power LDs with a stable fundamental transverse mode in 820 nm wavelength range, an AlGaAs narrow stripe (2.0 micrometers ) real refractive-index-guided self-aligned (RISA) structure is utilized. In the RISA structure, the index step between inside and outside the stripe region ((Delta) n) can be precisely controlled in the order of 10-3). To maintain a stable fundamental transverse mode up to an output power over 100 mW, (Delta) n is designed to be 4x10-3. Higher-order transverse modes are effectively suppressed by a narrow stripe geometry. Further, to achieve continuous wavelength tuning capability, the three-section LD structure, which consists of the active (700micrometers ), phase control (300micrometers ), and DBR(500micrometers ) sections, is incorporated. Our DBR LDs show a maximum output power over 200mW with a stable fundamental transverse mode, and wavelength tuning characteristics ((Delta) (lambda) ~2nm) under 100 mW CW operation.

  19. Martian Meteorological Lander

    NASA Astrophysics Data System (ADS)

    Vorontsov, V.; Pichkhadze, K.; Polyakov, A.

    2002-01-01

    Martian meteorological lander (MML) is dedicated for landing onto the Mars surface with the purpose to carry on the monitoring of Mars atmosphere condition at a landing point during one Martian year. MML is supposed to become the basic element of a global net of meteorological mini stations and will permit to observe the dynamics of Martian atmosphere parameters changes during a long time duration. The main scientific tasks of MML are as follows: -study of vertical structure of Mars atmosphere during MML descending; -meteorological observations on Mars surface during one Martian year. One of the essential factor influencing to the lander design is descent trajectory design. During the preliminary phase of development five (5) options of MML were considered. In our opinion, these variants provide the accomplishment of the above-mentioned tasks with a high effectiveness. Joined into the first group, variants with parachute system and with Inflatable Air Brakes+Inflatable Airbag are similar in arranging of pre-landing braking stage and completely analogous in landing by means of airbags. The usage of additional Inflatable Braking Unit (IBU) in the second variant does not affect the procedure of braking - decreasing of velocity by the moment of touching the surface due to decreasing of ballistic parameter Px. A distinctive feature of MML development variants of other three concepts is the presence of Inflatable Braking Unit (IBU) in their configurations (IBU is rigidly joined with landing module up to the moment of its touching the surface). Besides, in variant with the tore-shaped IBU it acts as a shock- absorbing unit. In two options, Inflatable Braking Shock-Absorbing Unit (IBSAU) (or IBU) releases the surface module after its landing at the moment of IBSAU (or IBU) elastic recoil. Variants of this concept are equal in terms of mass (approximately 15 kg). For variants of concepts with IBU the landing velocity is up to50-70 m/s. Stations of last three options are

  20. Antarctic Meteorology and Climatology

    NASA Astrophysics Data System (ADS)

    King, J. C.; Turner, J.

    1997-07-01

    This book is a comprehensive survey of the climatology and meteorology of Antarctica. The first section of the book reviews the methods by which we can observe the Antarctic atmosphere and presents a synthesis of climatological measurements. In the second section, the authors consider the processes that maintain the observed climate, from large-scale atmospheric circulation to small-scale processes. The final section reviews our current knowledge of the variability of Antarctic climate and the possible effects of "greenhouse" warming. The authors stress links among the Antarctic atmosphere, other elements of the Antarctic climate system (oceans, sea ice and ice sheets), and the global climate system. This volume will be of greatest interest to meteorologists and climatologists with a specialized interest in Antarctica, but it will also appeal to researchers in Antarctic glaciology, oceanography and biology. Graduates and undergraduates studying physical geography, and the earth, atmospheric and environmental sciences will find much useful background material in the book.

  1. Meteorological radar calibration

    NASA Technical Reports Server (NTRS)

    Hodge, D. B.

    1978-01-01

    A meteorological radar calibration technique is developed. It is found that the integrated, range corrected, received power saturates under intense rain conditions in a manner analogous to that encountered for the radiometric path temperature. Furthermore, it is found that this saturation condition establishes a bound which may be used to determine an absolution radar calibration for the case of radars operating at attenuating wavelengths. In the case of less intense rainfall or for radars at nonattenuating wavelengths, the relationship for direct calibration in terms of an independent measurement of radiometric path temperature is developed. This approach offers the advantage that the calibration is in terms of an independent measurement of the rainfall through the same elevated region as that viewed by the radar.

  2. Japanese Advanced Meteorological Imager

    NASA Astrophysics Data System (ADS)

    Puschell, Jeffery J.; Lowe, Howard A.; Jeter, James W.; Kus, Steven M.; Osgood, Roderic; Hurt, W. Todd; Gilman, David; Rogers, David L.; Hoelter, Roger L.; Kamel, Ahmed

    2005-01-01

    The Japanese Advanced Meteorological Imager (JAMI) was developed by Raytheon and delivered to Space Systems/Loral as the Imager Subsystem for Japan's MTSAT-1R satellite. Due to Japan's urgent need to replace MTSAT-1, which was destroyed in a launch failure in 1999, JAMI was developed on an expeditious 39-month schedule. Raytheon's success in responding to the needs of MTSAT-1R and delivering an excellent operational geosynchronous Earth orbit (GEO) imager was enabled by an elegant instrument architecture and use of newer but proven technology that simplified design, assembly and test of the Imager while simultaneously supplying superior performance. JAMI breaks through limitations of earlier three-axis stabilized GEO instruments with significant improvements in many areas, including spatial sampling, radiometric sensitivity, calibration and performance around local midnight.

  3. Meteorology as an infratechnology

    NASA Astrophysics Data System (ADS)

    Williams, G. A.; Smith, L. A.

    2003-04-01

    From an economists perspective, meteorology is an underpinning or infratechnology in the sense that in general it does not of its own accord lead to actual products. Its value added comes from the application of its results to the activities of other forms of economic and technological activity. This contribution discusses both the potential applications of meteorology as an ininfratechnology, and quantifying its socio-economic impact. Large economic and social benefits are both likely in theory and can be identified in practice. Case studies of particular weather dependent industries or particular episodes are suggested, based on the methodology developed by NIST to analyze the social impact of technological innovation in US industries (see www.nist.gov/director/planning/strategicplanning.htm ). Infratechnologies can provide economic benefits in the support of markets. Incomplete information is a major cause of market failure because it inhibits the proper design of contracts. The performance of markets in general can be influenced by strategies adopted by different firms within a market to regulate the performance of others especially suppliers or purchasers. This contribution will focus on benefits to society from mechanisms which enhance and enforce mitigating actions. When the market mechanism fails, who might social benefits be gained, for example, by widening the scope of authorities to ensure that those who could have taken mitigating action, given prior warning, cover the costs. This goes beyond the design and implementation of civil responses to severe weather warnings to include the design of legislative recourse in the event of negligence given prior knowledge, or the modification of insurance contracts. The aim here, for example, would be to avoid the loss of an oil tanker in heavy seas at a location where a high probability of heavy seas had been forecast for some time.

  4. CITE 3 meteorological highlights

    NASA Technical Reports Server (NTRS)

    Shipham, Mark C.; Bachmeier, A. Scott; Anderson, Bruce E.

    1993-01-01

    Meteorological highlights from the third NASA Global Tropospheric Experiment Chemical Instrumentation Test and Evaluation (GTE/CITE 3) are presented. During August and September 1989, research flights were conducted from Wallops Island, Virginia, and Natal, Brazil, and included airborne sampling of air masses over adjacent regions of the Atlantic Ocean. Isentropic backward trajectory calculations, wind vector/streamline fields, rawinsonde data, and GOES and METEOSAT satellite imagery are utilized to examine the meteorological conditions for each flight and to determine the transport paths of the sampled air masses. Some aspects of the chemical signatures of the sampled air are also discussed. During the series of flights based at Wallops Island, Virginia, the flow into the experiment area was governed primarily by the position of the North Atlantic subtropical anticyclone. The large-scale tropospheric circulation switched from primarily a marine flow during flights 1-4, to a predominantly offshore mid-latitude continental flow during flights 5-10. During these later flights, the regional influences of large eastern U.S. cities along with vertical mixing by typical summertime convective activity strongly influenced the chemical characteristics of the sampled air. During the series of flights based at Natal, Brazil, the dominant synoptic feature was the South Atlantic subtropical anticyclone which generally transported air across the tropical Atlantic toward eastern Brazil. Pronounced subsidence and a well-defined trade wind inversion often characterized the lower and middle troposphere over the Natal region. Some high-altitude recirculation of air from South America was observed, as was cross-equatorial transport which had come from northern Africa. Biomass burning plumes were observed on segments of all of the flights, the source region being the central and southern savannah regions of Africa.

  5. Radiocommunications for meteorological satellite systems

    NASA Technical Reports Server (NTRS)

    Walton, B. A.

    1975-01-01

    A general overview is presented of the spectrum utilization and frequency requirements of present and planned meteorological satellite programs. The sensors, and TIROS operational systems are discussed along with the Nimbus and Synchronous Meteorological Satellites. STORMSAT, SEASAT, and the Spacelab are briefly described.

  6. Defense Meteorological Satellite Program (DMSP)

    NASA Technical Reports Server (NTRS)

    Rivers, J. W., Jr.; Arnold, C. P., Jr.

    1982-01-01

    The Defense Meteorological Satellite Program is a total satellite system composed of spacecraft with meteorological sensors, an Earth-based command and control network, user stations, launch vehicle and support; with a communication network linking the various segments together. The various system segments are described.

  7. Geosynchronous Meteorological Satellite Data Seminar

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A seminar was organized by NASA to acquaint the meteorological community with data now available, and data scheduled to be available in the future, from geosynchronous meteorological satellites. The twenty-four papers were presented in three half-day sessions in addition to tours of the Image Display and LANDSAT Processing Facilities during the afternoon of the second day.

  8. Multi-point meteorological observation for Cross-country skiing

    NASA Astrophysics Data System (ADS)

    Ikeda, K.; Tadashi, O.; Kawarabayashi, S.; Iwadate, N.; Kobayashi, Y.; Watanabe, K.; Imai, M.; Watanabe, K.; Naruse, N.; Takahashi, Y.

    2016-12-01

    To select the glide wax in the cross-country skiing competition is important, because it can work as a reduction of the friction between skiing and snow surface. Inherently, we need to select the wax judged from meteorological conditions, such as temperature, humidity, snow surface temperature, and wind speed in the whole course, however, the wax has been decided on the basis of meteorological conditions in one representative place so far. This study aims to develop a meteorological multi-point observation system using wireless network to select the suitable wax for cross-country skiing on the basis of quantitative analysis. The observation points in this study are temperature and illumination sensors connected to a wireless module. These sensors was put within 0.1m apart from the snow surface. We made 40 sets of the above sensors, and set on the actual cross-country skiing course (Hokkaido) in interval of 50-100m. Observed meteorological data were recorded by PC through the sending by wireless communication (XBee pro). We have succeeded in multi-point meteorological observation for the actual of cross-country skiing course. To escape the effect of sunlight for the air temperature, we cunducted to measure in the case of cloudy. As the results, the positional dependence of the air temperature was in the range of less than 2 degrees Celcius. This value is equivalent to the standard deviation of our sensors. Moreover, we observed in the case of occationally cloudy, air temperature by each point was more than 4 degrees Celcius. This indicates that the local difference of temperature can originate from the existence of cloud from the analysis of the data of illumination sensors. In conclusion, we have observed the local difference of temperature to occur under the influence of cloud on the corse of cross-country skiing , which can affect to select the wax.

  9. SIM.M.FF-S7: Final report on SIM/ANDIMET supplementary comparison for volume of liquids at 100 mL and 100 μL

    NASA Astrophysics Data System (ADS)

    Trujillo, S.; Maldonado, J. M.; Vega, M. C.; Santalla, E.; Sica, A.; Cantero, D.; Salazar, M.; Morales, A.; Solano, P.; Rodríguez, L. D.

    2016-01-01

    A SIM/ANDIMET comparison for liquid volume using two 100 mL pycnometers and two 100 μL piston pipettes was performed between January 2012 and October 2013. The National Metrology Institute (NMI) of Bolivia was the coordinating laboratory and the Mexican NMI provided technical assistance. The participating labs were IBMETRO (Bolivia), INM (Colombia), INEN (Ecuador), INDECOPI (Peru), LACOMET (Costa Rica), LATU (Uruguay), INTN (Paraguay), and CENAM (Mexico). Based on measurements made by CENAM at the beginning and end of the comparison, the transfer standards were stable during the comparison within 0.0001 mL for the 100 mL pycnometers and 0.03 μL for the 100 μL pipettes. For 100 mL, six of the eight participants agreed within ± 0.003 % and had standardized degrees of equivalence (EN) less than 1. Two participants (INEN and INM) had EN values greater than 1. For the 100 μL pipettes, the results were corrected for the influence of altitude and seven of the eight participants agreed within ± 0.3 %. Results from INEN and some from INM and IBMETRO had EN values greater than 1 for the 100 μL pipettes. Uncertainties recommended by Guideline DKD-R 8-1 for micropipettes were included. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  10. Effects of 10min vs. 20min passive rest after warm-up on 100m freestyle time-trial performance: A randomized crossover study.

    PubMed

    Neiva, Henrique P; Marques, Mário C; Barbosa, Tiago M; Izquierdo, Mikel; Viana, João L; Marinho, Daniel A

    2017-01-01

    The aim of this study was to compare the effect of 10min vs. 20min passive rest post warm-up on performance in a 100m freestyle time-trial. Randomized crossover. Eleven competitive male swimmers performed two experimental trials on different days, consisting of 100m freestyle time-trials following 10min or 20min passive rest after a standard 1200m warm-up. Performance (time-trial), biomechanical (stroke length, stroke frequency, stroke index, propelling efficiency), physiological (blood lactate concentrations, heart rate, core and tympanic temperature), and psychophysiological (perceived effort) variables were assessed during both trials. Time-trial performance was faster after 10min as opposed to 20min passive rest (58.41±1.99s vs. 59.06±1.86, p<0.01). This was supported by strong effect sizes (d=0.99) and the qualitative indication of "likely" positive effects. Heart rate before the time-trial was also higher after 10min passive rest (89±12bpm vs. 82±13bpm; p<0.01). Furthermore, net core temperature and oxygen uptake values before the time-trial were substantially lower after 20min passive rest. These data suggest that the 10min post warm-up passive rest enhances 100m freestyle performance when compared to a 20min period. An improvement that appears to be mediated by the combined effects of a shorter post warm-up period on core temperature, heart rate and oxygen uptake. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  11. The initial maternal cost of providing 100 mL of human milk for very low birth weight infants in the neonatal intensive care unit.

    PubMed

    Jegier, Briana J; Meier, Paula; Engstrom, Janet L; McBride, Timothy

    2010-04-01

    Human milk (HM) feeding is associated with lower incidence and severity of costly prematurity-specific morbidities compared to formula feeding in very low birth weight (VLBW; <1,500 g) infants. However, the costs of providing HM are not routinely reimbursed by payers and can be a significant barrier for mothers. This study determined the initial maternal cost of providing 100 mL of HM for VLBW infants during the early neonatal intensive care unit (NICU) stay. This secondary analysis examined data from 111 mothers who provided HM for their VLBW infants during the early NICU stay. These data were collected during a multisite, randomized clinical trial where milk output and time spent pumping were recorded for every pumping session (n = 13,273). The cost analysis examined the cost of the breast pump rental, pump kit, and maternal opportunity cost (an estimate of the cost of maternal time). Mean daily milk output and time spent pumping were 558.2 mL (SD = 320.7; range = 0-2,024) and 98.7 minutes (SD = 38.6; range = 0-295), respectively. The mean cost of providing 100 mL of HM varied from $2.60 to $6.18 when maternal opportunity cost was included and from $0.95 to $1.55 when it was excluded. The cost per 100 mL of HM declined with every additional day of pumping and was most sensitive to the costs of the breast pump rental and pump kit. These findings indicate that HM is reasonably inexpensive to provide and that the maternal cost of providing milk is mitigated by increasing milk output over the early NICU stay.

  12. Demonstration of a 100mJ OPO/OPA for future lidar applications and LIDT testing of optical components for MERLIN

    NASA Astrophysics Data System (ADS)

    Elsen, F.; Livrozet, M.; Strotkamp, M.; Wüppen, J.; Jungbluth, Bernd; Kasemann, R.; Löhring, J.; Meissner, A.; Meyer, Rudolf; Hoffmann, D.; Poprawe, R.

    2017-02-01

    In the field of atmospheric research, LIDAR is a powerful technology that can measure gas or aerosol concentrations, wind speed or temperature profiles remotely. To conduct such measurements globally, spaceborne systems are advantageous. Pulse energies in the 100 mJ range are required to achieve highly accurate, longitudinal resolved measurements. Measuring concentrations of specific gases, such as CH4 or CO2, requires output wavelengths in the IRB, which can be addressed by optical parametric frequency conversion. An OPO/OPA frequency conversion setup was designed and built as a demonstration module to address the 1.6 μm range. The pump laser is an Nd:YAG-MOPA system, consisting of a stable oscillator and two subsequent Innoslab-based amplifier stages that deliver up to 500 mJ of output pulse energy at 100 Hz repetition frequency. The OPO is inherited from the OPO design for the CH4 lidar instrument on the French-German climate satellite MERLIN. In order to address the 100 mJ regime, the OPO output beam is amplified in a subsequent multistage OPA. With KTP as nonlinear medium, the OPO/OPA delivered more than 100 mJ of output energy at 1645 nm from 450 mJ of the pump energy and a pump pulse duration of 30 ns. This corresponds to a quantum conversion efficiency of about 25 %. Besides demonstrating optical performance for future lidar systems, this laser will be part of a LIDT test facility, which will be used to qualify optical components especially for the MERLIN mission.

  13. [Calculation of underwater decompression schedule for the simulated 100 m Trimix conventional diving and verification of the schedule with animal experiment].

    PubMed

    Li, Yang-yang; Shi, Lu; Zhang, Yan-meng; Xiao, Chan-juan; Liu, Hong-tao

    2015-05-01

    To explore the underwater decompression schedule for 100 m Trimix conventional diving operations and evaluate its safety through a simulated rabbits Trimix conventional diving. According to the Haldane theory, the assumed time units, the classification of tissue compartments, the nitrogen super-saturation safety coefficient and the selection of methods used for the calculation of the simulated 100 m Trimix conventional diving schedule were properly selected, and the calculating method for the dive decompression schedule was thus firmly established. In our experiments, five tissue compartments were selected during the calculation of decompression schedule: 5 min, 10 min, 20 min, 40 min and 75 min, and the nitrogen super-saturation safety coefficient was calculated by 1.6. Eight New Zealand rabbits were performed a simulated 100 m Trimix dive program which was established according to the Haldane theory, and eight rabbits for intact group. The tissues wet/dry ratio and ethology were detected and observed before and after the simulated diving to evaluate the safety of decompression schedule. By using the developed underwater decompression schedule, abnormal ethology changes in rabbits could not be observed after compression and decompression to the surface; and the tissues wet/dry ratio of simulated diving rabbits had no significant changes compared with the intact group (P > 0.05). The decompression schedule calculated by Haldane theory seemed to be safe and reliable, the diving breathing gas concentration did not cause oxygen toxicity and nitrogen narcosis among the dive rabbits, and dive efficiency was greatly improved by using enriched oxygen gas in UPTD safety range during decompression.

  14. Arctic hydrology and meteorology

    SciTech Connect

    Kane, D.L.

    1989-01-01

    To date, five years of hydrologic and meteorologic data have been collected at Imnavait Creek near Toolik Lake, Alaska. This is the most complete set of field data of this type collected in the Arctic of North America. These data have been used in process-oriented research to increase our understanding of atmosphere/hydrosphere/biosphere/lithosphere interactions. Basically, we are monitoring heat and mass transfer between various spheres to quantify rates. These could be rates of mass movement such as hillslope flow or rates of heat transfer for active layer thawing or combined heat and mass processes such as evapotranspiration. We have utilized a conceptual model to predict hydrologic processes. To test the success of this model, we are comparing our predicted rates of runoff and snowmelt to measured valves. We have also used a surface energy model to simulate active layer temperatures. The final step in this modeling effort to date was to predict what impact climatic warming would have on active layer thicknesses and how this will influence the hydrology of our research watershed by examining several streambeds.

  15. Four-planet meteorology

    NASA Technical Reports Server (NTRS)

    1979-01-01

    All planets with atmospheres have common characteristics which are helpful in understanding weather and climate on earth. Of the terrestrial planets, Mars displays the most earth-like characteristics. The feedback mechanism of the Martian Great Dust Storms may control climate on a global scale and shows some parallels to the water cycle on the earth. Venus, on the other hand, has atmosphere motions and characteristics far different from those of earth but appears to be valuable for comparative meteorology and it seems to be a simple weather machine due to absence of axial tilt. A completely gaseous Jupiter also can help because its atmosphere, driven by internal heat, flows round-and-round, showing the same general patterns for years at a time. Results of studying extraterrestrial atmospheres are most important for understanding earth's multi-year weather cycles such as the droughts in the American West every 22 years or effects of the Little Ice Age (1450-1915) on agriculture in the North Hemisphere.

  16. Meteorological satellites: Past, present, and future

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Past developments, accomplishments and future potential of meteorological satellites are discussed. Meteorological satellite design is described in detail. Space platforms and their meteorological applications are discussed. User needs are also discussed.

  17. Mathematics and Meteorology: Perfect Partners.

    ERIC Educational Resources Information Center

    Bomeli, Cynthia L.

    1991-01-01

    The integration of science and mathematics in the middle school using the topic of meteorology is discussed. Seven selected activities for this approach are suggested. Lists of materials and resources for use in this teaching approach are appended. (CW)

  18. Meteorological Processors and Accessory Programs

    EPA Pesticide Factsheets

    Surface and upper air data, provided by NWS, are important inputs for air quality models. Before these data are used in some of the EPA dispersion models, meteorological processors are used to manipulate the data.

  19. Air Modeling - Observational Meteorological Data

    EPA Pesticide Factsheets

    Observed meteorological data for use in air quality modeling consist of physical parameters that are measured directly by instrumentation, and include temperature, dew point, wind direction, wind speed, cloud cover, cloud layer(s), ceiling height,

  20. Mathematics and Meteorology: Perfect Partners.

    ERIC Educational Resources Information Center

    Bomeli, Cynthia L.

    1991-01-01

    The integration of science and mathematics in the middle school using the topic of meteorology is discussed. Seven selected activities for this approach are suggested. Lists of materials and resources for use in this teaching approach are appended. (CW)

  1. Meteorological measurements from satellite platforms

    NASA Technical Reports Server (NTRS)

    Suomi, V. E.

    1972-01-01

    Quantitative exploitation of meteorological data from geosynchronous satellites is starting to move from the laboratory to operational practice. Investigations of the data applications portion of the total meteorological satellite system include: (1) tropospheric wind shear and the related severe storm circulations; (2) kinematic properties of the tropical atmosphere as derived from cloud motion vectors; (3) application of a geostationary satellite rake system to measurements of rainfall; and (4) pointing error analysis of geosynchronous satellites.

  2. BOREAS Derived Surface Meteorological Data

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Twine, Tracy; Rinker, Donald; Knapp, David

    2000-01-01

    In 1995, the BOREAS science teams identified the need for a continuous surface meteorological and radiation data set to support flux and surface process modeling efforts. This data set contains actual, substituted, and interpolated 15-minute meteorological and radiation data compiled from several surface measurements sites over the BOREAS SSA and NSA. Temporally, the data cover 01-Jan-1994 to 31-Dec-1996. The data are stored in tabular ASCII files, and are classified as AFM-Staff data.

  3. Final report on APMP key comparison of volume of liquids at 20 L and 100 mL: APMP.M.FF-K4

    NASA Astrophysics Data System (ADS)

    Man, John; Arias, Roberto; Terao, Yoshiya; Lee, Yong Jae; Ligong, Guo; Tulasombut, Verra; Chan, Tak Kin; Thai, Nguyen Hong; Steyn, Ronel; Sampath, H. L. I. S.

    2011-01-01

    This report presents the results of a key comparison of liquid volume measurement conducted between ten participating institutes during the period July 2006 to August 2008 within the framework of the Asia Pacifica Metrology Program (APMP). The transfer standards comprised one 20 L volume measure and two 100 mL glass pycnometers. These transfer standards had been used in a similar CIPM key comparison CCM.FF-K4 in 2003 to 2005. The pilot institute was the National Measurement Institute, Australia (NMIA), which together with CENAM act as link laboratories to the CCM.FF-K4 comparison. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  4. Total body 100-mGy X-irradiation does not induce Alzheimer's disease-like pathogenesis or memory impairment in mice

    PubMed Central

    Wang, Bing; Tanaka, Kaoru; Ji, Bin; Ono, Maiko; Fang, Yaqun; Ninomiya, Yasuharu; Maruyama, Kouichi; Izumi-Nakajima, Nakako; Begum, Nasrin; Higuchi, Makoto; Fujimori, Akira; Uehara, Yoshihiko; Nakajima, Tetsuo; Suhara, Tetsuya; Ono, Tetsuya; Nenoi, Mitsuru

    2014-01-01

    The cause and progression of Alzheimer's disease (AD) are poorly understood. Possible cognitive and behavioral consequences induced by low-dose radiation are important because humans are exposed to ionizing radiation from various sources. Early transcriptional response in murine brain to low-dose X-rays (100 mGy) has been reported, suggesting alterations of molecular networks and pathways associated with cognitive functions, advanced aging and AD. To investigate acute and late transcriptional, pathological and cognitive consequences of low-dose radiation, we applied an acute dose of 100-mGy total body irradiation (TBI) with X-rays to C57BL/6J Jms mice. We collected hippocampi and analyzed expression of 84 AD-related genes. Mouse learning ability and memory were assessed with the Morris water maze test. We performed in vivo PET scans with 11C-PIB, a radiolabeled ligand for amyloid imaging, to detect fibrillary amyloid beta peptide (Aβ) accumulation, and examined characteristic AD pathologies with immunohistochemical staining of amyloid precursor protein (APP), Aβ, tau and phosphorylated tau (p-tau). mRNA studies showed significant downregulation of only two of 84 AD-related genes, Apbb1 and Lrp1, at 4 h after irradiation, and of only one gene, Il1α, at 1 year after irradiation. Spatial learning ability and memory were not significantly affected at 1 or 2 years after irradiation. No induction of amyloid fibrillogenesis or changes in APP, Aβ, tau, or p-tau expression was detected at 4 months or 2 years after irradiation. TBI induced early or late transcriptional alteration in only a few AD-related genes but did not significantly affect spatial learning, memory or AD-like pathological change in mice. PMID:23908553

  5. Acute Response of Well-Trained Sprinters to a 100-m Race: Higher Sprinting Velocity Achieved With Increased Step Rate Compared With Speed Training.

    PubMed

    Otsuka, Mitsuo; Kawahara, Taisuke; Isaka, Tadao

    2016-03-01

    This study aimed to clarify the contribution of differences in step length and step rate to sprinting velocity in an athletic race compared with speed training. Nineteen well-trained male and female sprinters volunteered to participate in this study. Sprinting motions were recorded for each sprinter during both 100-m races and speed training (60-, 80-, and 100-m dash from a block start) for 14 days before the race. Repeated-measures analysis of covariance was used to compare the step characteristics and sprinting velocity between race and speed training, adjusted for covariates including race-training differences in the coefficients of restitution of the all-weather track, wind speed, air temperature, and sex. The average sprinting velocity to the 50-m mark was significantly greater in the race than in speed training (8.26 ± 0.22 m·s vs. 8.00 ± 0.70 m·s, p < 0.01). Although no significant difference was seen in the average step length to the 50-m mark between the race and speed training (1.81 ± 0.09 m vs. 1.80 ± 0.09 m, p = 0.065), the average step rate was significantly greater in the race than in speed training (4.56 ± 0.17 Hz vs. 4.46 ± 0.13 Hz, p < 0.01). These findings suggest that sprinters achieve higher sprinting velocity and can run with higher exercise intensity and more rapid motion during a race than during speed training, even if speed training was performed at perceived high intensity.

  6. Total body 100-mGy X-irradiation does not induce Alzheimer's disease-like pathogenesis or memory impairment in mice.

    PubMed

    Wang, Bing; Tanaka, Kaoru; Ji, Bin; Ono, Maiko; Fang, Yaqun; Ninomiya, Yasuharu; Maruyama, Kouichi; Izumi-Nakajima, Nakako; Begum, Nasrin; Higuchi, Makoto; Fujimori, Akira; Uehara, Yoshihiko; Nakajima, Tetsuo; Suhara, Tetsuya; Ono, Tetsuya; Nenoi, Mitsuru

    2014-01-01

    The cause and progression of Alzheimer's disease (AD) are poorly understood. Possible cognitive and behavioral consequences induced by low-dose radiation are important because humans are exposed to ionizing radiation from various sources. Early transcriptional response in murine brain to low-dose X-rays (100 mGy) has been reported, suggesting alterations of molecular networks and pathways associated with cognitive functions, advanced aging and AD. To investigate acute and late transcriptional, pathological and cognitive consequences of low-dose radiation, we applied an acute dose of 100-mGy total body irradiation (TBI) with X-rays to C57BL/6J Jms mice. We collected hippocampi and analyzed expression of 84 AD-related genes. Mouse learning ability and memory were assessed with the Morris water maze test. We performed in vivo PET scans with (11)C-PIB, a radiolabeled ligand for amyloid imaging, to detect fibrillary amyloid beta peptide (Aβ) accumulation, and examined characteristic AD pathologies with immunohistochemical staining of amyloid precursor protein (APP), Aβ, tau and phosphorylated tau (p-tau). mRNA studies showed significant downregulation of only two of 84 AD-related genes, Apbb1 and Lrp1, at 4 h after irradiation, and of only one gene, Il1α, at 1 year after irradiation. Spatial learning ability and memory were not significantly affected at 1 or 2 years after irradiation. No induction of amyloid fibrillogenesis or changes in APP, Aβ, tau, or p-tau expression was detected at 4 months or 2 years after irradiation. TBI induced early or late transcriptional alteration in only a few AD-related genes but did not significantly affect spatial learning, memory or AD-like pathological change in mice.

  7. Space Shuttle interactive meteorological data system study

    NASA Technical Reports Server (NTRS)

    Young, J. T.; Fox, R. J.; Benson, J. M.; Rueden, J. P.; Oehlkers, R. A.

    1985-01-01

    Although focused toward the operational meteorological support review and definition of an operational meteorological interactive data display systems (MIDDS) requirements for the Space Meteorology Support Group at NASA/Johnson Space Center, the total operational meteorological support requirements and a systems concept for the MIDDS network integration of NASA and Air Force elements to support the National Space Transportation System are also addressed.

  8. Comparison of separations of fatty acids from fish products using a 30-m Supelcowax-10 and a 100-m SP-2560 column.

    PubMed

    Santercole, Viviana; Delmonte, Pierluigi; Kramer, John K G

    2012-03-01

    Commercial fish oils and foods containing fish may contain trans and/or isomerized fatty acids (FA) produced during processing or as part of prepared foods. The current American Oil Chemists' Society (AOCS) official method for marine oils (method Ce 1i-07) is based on separation by use of poly(ethylene glycol) (PEG) columns, for example Supelcowax-10 or equivalent, which do not resolve most unsaturated FA geometric isomers. Highly polar 100-m cyanopropyl siloxane (CPS) columns, for example SP-2560 and CP Sil 88 are recommended for separation of geometric FA isomers. Complementary separations were achieved by use of two different elution temperature programs with the same CPS column. This study is the first direct comparison of the separations achieved by use of 30-m Supelcowax-10 and 100-m SP-2560 columns for fatty acid methyl esters (FAME) prepared from the same fish oil and fish muscle sample. To simplify the identification of the FA in these fish samples, FA were fractionated on the basis of the number and type of double bonds by silver-ion solid-phase extraction (Ag⁺-SPE) before GC analysis. The results showed that a combination of the three GC separations was necessary to resolve and identify most of the unsaturated FA, FA isomers, and other components of fish products, for example phytanic and phytenic acids. Equivalent chain length (ECL) values of most FAME in fish were calculated from the separations achieved by use of both GC columns; the values obtained were shown to be consistent with previously reported values for the Supelcowax-10 column. ECL values were also calculated for the FA separated on the SP-2560 column. The calculated ECL values were equally valid under isothermal and temperature-programmed elution GC conditions, and were valuable for confirmation of the identity of several unsaturated FAME in the fish samples. When analyzing commercially prepared fish foods, deodorized marine oils, or foods fortified with marine oils it is strongly

  9. Meteorology section considers new name

    NASA Astrophysics Data System (ADS)

    Winston, Jay S.

    The AGU Meteorology Section business meeting was held at the Jack Tar Hotel, December 9, during the AGU Fall Meeting in San Francisco. The principal item discussed at the half-hour meeting was the proposal made by several members that consideration be given to renaming the section ‘Atmospheric Science.’ The members present felt the proposed name would better serve the strong physical, chemical, and electrical constituencies now in the Meteorology Section. There was also some indication that those now in the SPR: Aeronomy Section would be interested in joining a revamped Atmospheric Science Section.

  10. Uniform transport performance of a 100 m-class multifilament MgB2 wire fabricated by an internal Mg diffusion process

    NASA Astrophysics Data System (ADS)

    Wang, Dongliang; Xu, Da; Zhang, Xianping; Yao, Chao; Yuan, Pusheng; Ma, Yanwei; Oguro, Hidetoshi; Awaji, Satoshi; Watanabe, Kazuo

    2016-06-01

    A 100 m long six-filament MgB2 wire was successfully fabricated using an internal magnesium diffusion (IMD) process. We investigated the transport properties and the uniformity of this long multifilament IMD wire. The MgB2 layer and the sub-filament region are regular, and the J c values have a fairly homogenous distribution throughout the wire, suggesting that there were no obvious defects along the length of the wire. The uniformity problem of long multifilament IMD MgB2 wires can be mitigated by optimizing the starting composite parameters, multifilament geometry, fabricating process and annealing conditions. A layer J c as high as 1.2 × 105 A cm-2 at 4.2 K and 8 T was obtained, which was comparable with the highest reported value for a short multifilament IMD wire. The transport layer J c, non-barrier J c and J e values are independent of the wire diameter. In addition, the analysis of the stress-strain characteristics and the n value of the IMD wire is also presented. These results indicate that the long multifilament IMD-processed MgB2 superconducting wire is suitable for practical applications.

  11. Amplification of broad-band chirped pulses up to the 100-mJ level using alexandrite-pumped neodymium-doped glasses

    SciTech Connect

    Gamache, C.; Husson, D.; Seznec, S.; Descamps, D.; Migus, A. |

    1996-08-01

    In this work, the authors are concerned by the amplification of broad-band energetic pulses in laser-pumped Nd:glasses, with obvious applications to ultrashort pulse technology, but also to a front end for the envisioned Megajoules Nd:glass laser facility devoted to inertial confinement fusion (ICF) studies and ignition demonstration. An alexandrite laser is used to longitudinally end-pump mixed Nd:glass rods in a multipass arrangement in order to amplify chirped pulses in the 50--100-mJ range at a 1-Hz repetition rate. This system has a broad-band capability of up to 8--10 nm output bandwidth. The authors have developed a model, which in the specific case of amplification of chirped-pulse, takes into account the exact configuration of the rods, their spectral properties, and the longitudinal pumping geometry. An agreement between experiment and theory is obtained by assuming a pump quantum efficiency of the order of 60%.

  12. Final report on COOMET supplementary comparison of inductance at 10 mH and 100 mH at 1 kHz (COOMET.EM-S14)

    NASA Astrophysics Data System (ADS)

    Velychko, O.; Shevkun, S.

    2016-01-01

    An inter-comparison of 10 mH and 100 mH inductance standards has taken place within the framework of COOMET. The inter-comparison, piloted by State Enterprise 'Ukrmetrteststandard'-UMTS (Ukraine), has involved four laboratories, including one who is a member of another regional metrological organization - EURAMET (GUM, Poland). The results presented in this report show that there are significant differences between some laboratory representations of the henry. However, the agreement demonstrated by the inter-comparison provides confidence in maintaining traceability for the henry. KEY WORDS FOR SEARCH Inter-comparison, inductance standard, traceability, regional metrological organization Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCEM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  13. PULMONARY ARTERIAL DISEASE ASSOCIATED WITH RIGHT-SIDED CARDIAC HYPERTROPHY AND CONGESTIVE HEART FAILURE IN ZOO MAMMALS HOUSED AT 2,100 M ABOVE SEA LEVEL.

    PubMed

    Juan-Sallés, Carles; Martínez, Liliana Sofía; Rosas-Rosas, Arely G; Parás, Alberto; Martínez, Osvaldo; Hernández, Alejandra; Garner, Michael M

    2015-12-01

    Subacute and chronic mountain sickness of humans and the related brisket disease of cattle are characterized by right-sided congestive heart failure in individuals living at high altitudes as a result of sustained hypoxic pulmonary hypertension. Adaptations to high altitude and disease resistance vary among species, breeds, and individuals. The authors conducted a retrospective survey of right-sided cardiac hypertrophy associated with pulmonary arterial hypertrophy or arteriosclerosis in zoo mammals housed at Africam Safari (Puebla, México), which is located at 2,100 m above sea level. Seventeen animals with detailed pathology records matched the study criterion. Included were 10 maras (Dolichotis patagonum), 2 cotton-top tamarins (Saguinus oedipus oedipus), 2 capybaras (Hydrochaeris hydrochaeris), and 1 case each of Bennet's wallaby (Macropus rufogriseus), nilgai antelope (Boselaphus tragocamelus), and scimitar-horned oryx (Oryx dammah). All had right-sided cardiac hypertrophy and a variety of arterial lesions restricted to the pulmonary circulation and causing arterial thickening with narrowing of the arterial lumen. Arterial lesions most often consisted of medial hypertrophy or hyperplasia of small and medium-sized pulmonary arteries. All maras also had single or multiple elevated plaques in the pulmonary arterial trunk consisting of fibrosis, accompanied by chondroid metaplasia in some cases. Both antelopes were juvenile and died with right-sided congestive heart failure associated with severe pulmonary arterial lesions. To the authors' knowledge, this is the first description of cardiac and pulmonary arterial disease in zoo mammals housed at high altitudes.

  14. Prediction of worst case concentrations due to landfill emissions in absence of historical emissions in absence of historical meteorological data

    SciTech Connect

    Kura, B.; Lea, W.R.

    1995-08-01

    Planning for a new landfill site in a given locality requires a detailed environmental impact analysis to evaluate qualitative and quantitative impacts on the surrounding environment. Among several environmental parameters of interest, air quality is of the utmost concern due to landfill gas emissions. Methane and carbon dioxide are the two principal gases in the landfill gas with small percentage of ammonia, and other VOC gases. This paper presents a methodology for estimating the worst case methane concentrations assuming sample meteorological conditions. As an example, a municipal solid waste (MSW) landfill of size 100 m x 100 m was considered with different fill heights (10 m, 50 m and 100 m). The isopleths (lines of equal concentration) for methane are plotted using the dispersion model. Also, the curves for methane concentration versus downwind distance are provided for various fill heights.

  15. Surface meteorology and Solar Energy

    NASA Technical Reports Server (NTRS)

    Stackhouse, Paul W. (Principal Investigator)

    The Release 5.1 Surface meteorology and Solar Energy (SSE) data contains parameters formulated for assessing and designing renewable energy systems. Parameters fall under 11 categories including: Solar cooking, solar thermal applications, solar geometry, tilted solar panels, energy storage systems, surplus product storage systems, cloud information, temperature, wind, other meteorological factors, and supporting information. This latest release contains new parameters based on recommendations by the renewable energy industry and it is more accurate than previous releases. On-line plotting capabilities allow quick evaluation of potential renewable energy projects for any region of the world. The SSE data set is formulated from NASA satellite- and reanalysis-derived insolation and meteorological data for the 10-year period July 1983 through June 1993. Results are provided for 1 degree latitude by 1 degree longitude grid cells over the globe. Average daily and monthly measurements for 1195 World Radiation Data Centre ground sites are also available. [Mission Objectives] The SSE project contains insolation and meteorology data intended to aid in the development of renewable energy systems. Collaboration between SSE and technology industries such as the Hybrid Optimization Model for Electric Renewables ( HOMER ) may aid in designing electric power systems that employ some combination of wind turbines, photovoltaic panels, or diesel generators to produce electricity. [Temporal_Coverage: Start_Date=1983-07-01; Stop_Date=1993-06-30] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180].

  16. Surface meteorology and Solar Energy

    NASA Technical Reports Server (NTRS)

    Stackhouse, Paul W. (Principal Investigator)

    The Release 5.1 Surface meteorology and Solar Energy (SSE) data contains parameters formulated for assessing and designing renewable energy systems. Parameters fall under 11 categories including: Solar cooking, solar thermal applications, solar geometry, tilted solar panels, energy storage systems, surplus product storage systems, cloud information, temperature, wind, other meteorological factors, and supporting information. This latest release contains new parameters based on recommendations by the renewable energy industry and it is more accurate than previous releases. On-line plotting capabilities allow quick evaluation of potential renewable energy projects for any region of the world. The SSE data set is formulated from NASA satellite- and reanalysis-derived insolation and meteorological data for the 10-year period July 1983 through June 1993. Results are provided for 1 degree latitude by 1 degree longitude grid cells over the globe. Average daily and monthly measurements for 1195 World Radiation Data Centre ground sites are also available. [Mission Objectives] The SSE project contains insolation and meteorology data intended to aid in the development of renewable energy systems. Collaboration between SSE and technology industries such as the Hybrid Optimization Model for Electric Renewables ( HOMER ) may aid in designing electric power systems that employ some combination of wind turbines, photovoltaic panels, or diesel generators to produce electricity. [Temporal_Coverage: Start_Date=1983-07-01; Stop_Date=1993-06-30] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180].

  17. Magnetic Nickel iron Electroformed Trap (MagNET): a master/replica fabrication strategy for ultra-high throughput (>100 mL h(-1)) immunomagnetic sorting.

    PubMed

    Ko, Jina; Yelleswarapu, Venkata; Singh, Anup; Shah, Nishal; Issadore, David

    2016-08-02

    Microfluidic devices can sort immunomagnetically labeled cells with sensitivity and specificity much greater than that of conventional methods, primarily because the size of microfluidic channels and micro-scale magnets can be matched to that of individual cells. However, these small feature sizes come at the expense of limited throughput (ϕ < 5 mL h(-1)) and susceptibility to clogging, which have hindered current microfluidic technology from processing relevant volumes of clinical samples, e.g. V > 10 mL whole blood. Here, we report a new approach to micromagnetic sorting that can achieve highly specific cell separation in unprocessed complex samples at a throughput (ϕ > 100 mL h(-1)) 100× greater than that of conventional microfluidics. To achieve this goal, we have devised a new approach to micromagnetic sorting, the magnetic nickel iron electroformed trap (MagNET), which enables high flow rates by having millions of micromagnetic traps operate in parallel. Our design rotates the conventional microfluidic approach by 90° to form magnetic traps at the edges of pores instead of in channels, enabling millions of the magnetic traps to be incorporated into a centimeter sized device. Unlike previous work, where magnetic structures were defined using conventional microfabrication, we take inspiration from soft lithography and create a master from which many replica electroformed magnetic micropore devices can be economically manufactured. These free-standing 12 μm thick permalloy (Ni80Fe20) films contain micropores of arbitrary shape and position, allowing the device to be tailored for maximal capture efficiency and throughput. We demonstrate MagNET's capabilities by fabricating devices with both circular and rectangular pores and use these devices to rapidly (ϕ = 180 mL h(-1)) and specifically sort rare tumor cells from white blood cells.

  18. Magnetic Nickel iron Electroformed Trap (MagNET): a master/replica fabrication strategy for ultra-high throughput (>100 mL h−1) immunomagnetic sorting†

    PubMed Central

    Ko, Jina; Yelleswarapu, Venkata; Singh, Anup; Shah, Nishal

    2016-01-01

    Microfluidic devices can sort immunomagnetically labeled cells with sensitivity and specificity much greater than that of conventional methods, primarily because the size of microfluidic channels and micro-scale magnets can be matched to that of individual cells. However, these small feature sizes come at the expense of limited throughput (ϕ < 5 mL h−1) and susceptibility to clogging, which have hindered current microfluidic technology from processing relevant volumes of clinical samples, e.g. V > 10 mL whole blood. Here, we report a new approach to micromagnetic sorting that can achieve highly specific cell separation in unprocessed complex samples at a throughput (ϕ > 100 mL h−1) 100× greater than that of conventional microfluidics. To achieve this goal, we have devised a new approach to micromagnetic sorting, the magnetic nickel iron electroformed trap (MagNET), which enables high flow rates by having millions of micromagnetic traps operate in parallel. Our design rotates the conventional microfluidic approach by 90° to form magnetic traps at the edges of pores instead of in channels, enabling millions of the magnetic traps to be incorporated into a centimeter sized device. Unlike previous work, where magnetic structures were defined using conventional microfabrication, we take inspiration from soft lithography and create a master from which many replica electroformed magnetic micropore devices can be economically manufactured. These free-standing 12 µm thick permalloy (Ni80Fe20) films contain micropores of arbitrary shape and position, allowing the device to be tailored for maximal capture efficiency and throughput. We demonstrate MagNET's capabilities by fabricating devices with both circular and rectangular pores and use these devices to rapidly (ϕ = 180 mL h−1) and specifically sort rare tumor cells from white blood cells. PMID:27170379

  19. A transition-edge-sensor-based instrument for the measurement of individual He2* excimers in a superfluid 4He bath at 100 mK

    NASA Astrophysics Data System (ADS)

    Carter, Faustin Wirkus

    This dissertation is an account of the first calorimetric detection of individual He*2 excimers within a bath of superfluid 4He. When superfluid helium is subject to ionizing radiation, diatomic He molecules are created in both the singlet and triplet states. The singlet He molecules decay within nanoseconds, but due to a forbidden spin-flip the triplet molecules have a relatively long lifetime of 13 seconds in superfluid He. When He* 2 molecules decay, they emit a ~15 eV photon. Nearly all matter is opaque to these vacuum-UV photons, although they do propagate through liquid helium. The triplet state excimers propagate ballistically through the superfluid until they quench upon a surface; this process deposits a large amount of energy into the surface. The prospect of detecting both excimer states is the motivation for building a detector immersed directly in the superfluid bath. The detector used in this work is a single superconducting titanium transition edge sensor (TES). The TES is mounted inside a hermetically sealed chamber at the baseplate of a dilution refrigerator. The chamber contains superfluid helium at 100 mK. Excimers are created during the relaxation of high-energy electrons, which are introduced into the superfluid bath either in situ via a sharp tungsten tip held above the field-emission voltage, or by using an external gamma-ray source to ionize He atoms. These excimers either propagate through the LHe bath and quench on a surface, or decay and emit vacuum-ultraviolet photons that can be collected by the detector. This dissertation discusses the design, construction, and calibration of the TES-based excimer detecting instrument. It also presents the first spectra resulting from the direct detection of individual singlet and triplet helium excimers.

  20. Human muscle net K(+) release during exercise is unaffected by elevated anaerobic metabolism, but reduced after prolonged acclimatization to 4,100 m.

    PubMed

    Nordsborg, Nikolai B; Calbet, José A L; Sander, Mikael; van Hall, Gerrit; Juel, Carsten; Saltin, Bengt; Lundby, Carsten

    2010-07-01

    It was investigated whether skeletal muscle K(+) release is linked to the degree of anaerobic energy production. Six subjects performed an incremental bicycle exercise test in normoxic and hypoxic conditions prior to and after 2 and 8 wk of acclimatization to 4,100 m. The highest workload completed by all subjects in all trials was 260 W. With acute hypoxic exposure prior to acclimatization, venous plasma [K(+)] was lower (P < 0.05) in normoxia (4.9 +/- 0.1 mM) than hypoxia (5.2 +/- 0.2 mM) at 260 W, but similar at exhaustion, which occurred at 400 +/- 9 W and 307 +/- 7 W (P < 0.05), respectively. At the same absolute exercise intensity, leg net K(+) release was unaffected by hypoxic exposure independent of acclimatization. After 8 wk of acclimatization, no difference existed in venous plasma [K(+)] between the normoxic and hypoxic trial, either at submaximal intensities or at exhaustion (360 +/- 14 W vs. 313 +/- 8 W; P < 0.05). At the same absolute exercise intensity, leg net K(+) release was less (P < 0.001) than prior to acclimatization and reached negative values in both hypoxic and normoxic conditions after acclimatization. Moreover, the reduction in plasma volume during exercise relative to rest was less (P < 0.01) in normoxic than hypoxic conditions, irrespective of the degree of acclimatization (at 260 W prior to acclimatization: -4.9 +/- 0.8% in normoxia and -10.0 +/- 0.4% in hypoxia). It is concluded that leg net K(+) release is unrelated to anaerobic energy production and that acclimatization reduces leg net K(+) release during exercise.

  1. Corporate/commuter airlines meteorological requirements

    NASA Technical Reports Server (NTRS)

    Olcott, J. W.

    1985-01-01

    The meteorological information requirements of corporate and commuter airlines are reviewed. The skill level and needs of this class of aviator were assessed. An overview of the methodology by which meteorological data is communicated to these users is presented.

  2. Syllabi for Instruction in Agricultural Meteorology.

    ERIC Educational Resources Information Center

    De Villiers, G. D. B.; And Others

    A working group of the Commission for Agricultural Meteorology has prepared this report to fill a need for detailed syllabi for instruction in agricultural meteorology required by different levels of personnel. Agrometeorological personnel are classified in three categories: (1) professional meteorological personnel (graduates with basic training…

  3. Technology and Meteorology. An Action Research Paper.

    ERIC Educational Resources Information Center

    Taggart, Raymond F.

    Meteorology, the science of weather and weather conditions, has traditionally been taught via textbook and rote demonstration. This study was intended to determine to what degree utilizing technology in the study of meteorology improves students' attitudes towards science and to measure to what extent technology in meteorology increases…

  4. Meteorological Satellites and Their Data

    NASA Technical Reports Server (NTRS)

    Vaughn, W.

    1982-01-01

    This paper presents an overview of the meteorological satellite programs that have been evolving from 1958 to the present and reviews plans for the future meteorological and environmental satellite systems that are scheduled to be placed into service in the early 1980's. The development of the TIROS family of weather satellites, including TIROS, ESSA, ITOS/NOAA, and the present TIROS-N (the third-generation operational system) is summarized. The contribution of the Nimbus and ATS technology satellites to the development of the operational polar-orbiting and geostationary satellites is discussed. Included are descriptions of both the TIROS-N and the DMSP payloads currently under development to assure a continued and orderly growth of these systems into the 1980's.

  5. Metrology for meteorology and climate

    NASA Astrophysics Data System (ADS)

    Merlone, Andrea; Bellagarda, Simone; Bertiglia, Fabio; Coppa, Graziano; Lopardo, Giuseppina; Roggero, Guido; Sanna, Francesca

    2014-05-01

    For a few years now, a fruitful collaboration has been growing between the metrology and meteorology communities. The main need expressed by top level Institutions was for the availability of robust data for environmental and meteorological studies and for the benefit of the present and future generations of climatologists. This was translated by the metrology community into two key objectives centred on traceability and uncertainty. Essential Climate Variables (ECVs) are continuously recorded by a multitude of different sensors on satellites, balloon radiosondes, aircraft, surface weather stations, buoys, and deep sea devices; all of them working in different operating environments and affected by different influence quantities. This complex system, as a whole, requires dedicated calibration techniques and methods to guarantee fully documented traceability and measurements uncertainty evaluation, thus ensuring complete comparability of measurement results. The inclusion of measurement uncertainty in historical and future data series represents a fundamental step towards greater public confidence in evaluations of climate change. EURAMET, the European association of national institute of metrology is funding several joint research projects on those topics and is launching a task group of experts, formed by both metrologists and members of environmental, meteorological Institutions and climatologists. One of those projects, "MeteoMet" (www.meteomet.org), started in 2011 and re-funded in 2014, stands out since it hits both targets: improve the traceability of an increasing number of ECVs and promote the involvement of stakeholders in support of their needs. This mission leads to a novel vision: a permanent cooperation between metrology and meteorology based on new and existing institutions and infrastructures.

  6. Quality Control of Meteorological Observations

    NASA Technical Reports Server (NTRS)

    Collins, William; Dee, Dick; Rukhovets, Leonid

    1999-01-01

    For the first time, a problem of the meteorological observation quality control (QC) was formulated by L.S. Gandin at the Main Geophysical Observatory in the 70's. Later in 1988 L.S. Gandin began adapting his ideas in complex quality control (CQC) to the operational environment at the National Centers for Environmental Prediction. The CQC was first applied by L.S.Gandin and his colleagues to detection and correction of errors in rawinsonde heights and temperatures using a complex of hydrostatic residuals.Later, a full complex of residuals, vertical and horizontal optimal interpolations and baseline checks were added for the checking and correction of a wide range of meteorological variables. some other of Gandin's ideas were applied and substantially developed at other meteorological centers. A new statistical QC was recently implemented in the Goddard Data Assimilation System. The central component of any quality control is a buddy check which is a test of individual suspect observations against available nearby non-suspect observations. A novel feature of this test is that the error variances which are used for QC decision are re-estimated on-line. As a result, the allowed tolerances for suspect observations can depend on local atmospheric conditions. The system is then better able to accept extreme values observed in deep cyclones, jet streams and so on. The basic statements of this adaptive buddy check are described. Some results of the on-line QC including moisture QC are presented.

  7. Quality Control of Meteorological Observations

    NASA Technical Reports Server (NTRS)

    Collins, William; Dee, Dick; Rukhovets, Leonid

    1999-01-01

    For the first time, a problem of the meteorological observation quality control (QC) was formulated by L.S. Gandin at the Main Geophysical Observatory in the 70's. Later in 1988 L.S. Gandin began adapting his ideas in complex quality control (CQC) to the operational environment at the National Centers for Environmental Prediction. The CQC was first applied by L.S.Gandin and his colleagues to detection and correction of errors in rawinsonde heights and temperatures using a complex of hydrostatic residuals.Later, a full complex of residuals, vertical and horizontal optimal interpolations and baseline checks were added for the checking and correction of a wide range of meteorological variables. some other of Gandin's ideas were applied and substantially developed at other meteorological centers. A new statistical QC was recently implemented in the Goddard Data Assimilation System. The central component of any quality control is a buddy check which is a test of individual suspect observations against available nearby non-suspect observations. A novel feature of this test is that the error variances which are used for QC decision are re-estimated on-line. As a result, the allowed tolerances for suspect observations can depend on local atmospheric conditions. The system is then better able to accept extreme values observed in deep cyclones, jet streams and so on. The basic statements of this adaptive buddy check are described. Some results of the on-line QC including moisture QC are presented.

  8. Automated emergency meteorological response system

    SciTech Connect

    Pepper, D W

    1980-01-01

    A sophisticated emergency response system was developed to aid in the evaluation of accidental releases of hazardous materials from the Savannah River Plant to the environment. A minicomputer system collects and archives data from both onsite meteorological towers and the National Weather Service. In the event of an accidental release, the computer rapidly calculates the trajectory and dispersion of pollutants in the atmosphere. Computer codes have been developed which provide a graphic display of predicted concentration profiles downwind from the source, as functions of time and distance.

  9. Diurnal Ensemble Surface Meteorology Statistics

    EPA Pesticide Factsheets

    Excel file containing diurnal ensemble statistics of 2-m temperature, 2-m mixing ratio and 10-m wind speed. This Excel file contains figures for Figure 2 in the paper and worksheets containing all statistics for the 14 members of the ensemble and a base simulation.This dataset is associated with the following publication:Gilliam , R., C. Hogrefe , J. Godowitch, S. Napelenok , R. Mathur , and S.T. Rao. Impact of inherent meteorology uncertainty on air quality model predictions. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES. American Geophysical Union, Washington, DC, USA, 120(23): 12,259–12,280, (2015).

  10. Meteorological Variables Associated with Stroke

    PubMed Central

    2014-01-01

    To elucidate relationships between meteorological variables and incidence of stroke, we studied patients diagnosed with stroke after presenting to the emergency department (May 1, 2010–August 8, 2011). Patient demographics and medical data were reviewed retrospectively with regional meteorological data. Across 467 days, 134 stroke events were recorded on 114 days. On stroke days, maximum temperature (max T) and atmospheric pressure (AP) combined were a significant predictor of stroke (max T odds ratio (OR) = 1.014, 95% confidence interval (CI) = 1.003–1.026, and P = 0.04; AP: OR = 1.033, 95% CI = 0.997–1.071, and P = 0.02). When the patient could identify the hour of the stroke, average temperature (avg T) was significantly higher than nonstroke hours (18.2°C versus 16.16°C, P = 0.04). Daily fluctuations in AP and avg T also had significant effects on stroke incidence (AP: OR = 0.629, 95% CI = 0.512–0.773, and P = 0.0001; avg T OR = 1.1399, 95% CI = 1.218–606, and P = 0.0001). Patient age, stroke history, body mass index, ethnicity, and sex were further contributors to stroke risk. Temperature, atmospheric pressure, and certain physiological conditions likely play roles in weather-related stroke susceptibility. The mechanisms driving these associations are not fully understood. PMID:27379326

  11. Applications of ISES for meteorology

    NASA Technical Reports Server (NTRS)

    Try, Paul D.

    1990-01-01

    The results are summarized from an initial assessment of the potential real-time meteorological requirements for the data from Eos systems. Eos research scientists associated with facility instruments, investigator instruments, and interdisciplinary groups with data related to meteorological support were contacted, along with those from the normal operational user and technique development groups. Two types of activities indicated the greatest need for real-time Eos data: technology transfer groups (e.g., NOAA's Forecasting System Laboratory and the DOD development laboratories), and field testing groups with airborne operations. A special concern was expressed by several non-U.S. participants who desire a direct downlink to be sure of rapid receipt of the data for their area of interest. Several potential experiments or demonstrations are recommended for ISES which include support for hurricane/typhoon forecasting, space shuttle reentry, severe weather forecasting (using microphysical cloud classification techniques), field testing, and quick reaction of instrumented aircraft to measure such events as polar stratospheric clouds and volcanic eruptions.

  12. Meteorological Error Budget Using Open Source Data

    DTIC Science & Technology

    2016-09-01

    ARL-TR-7831 ● SEP 2016 US Army Research Laboratory Meteorological Error Budget Using Open- Source Data by J Cogan, J Smith, P...needed. Do not return it to the originator. ARL-TR-7831 ● SEP 2016 US Army Research Laboratory Meteorological Error Budget Using...DD-MM-YYYY) September 2016 2. REPORT TYPE Technical Report 3. DATES COVERED (From - To) 07/2015–08/2016 4. TITLE AND SUBTITLE Meteorological

  13. Computer-Aided Visualization in Meteorology

    DTIC Science & Technology

    2007-01-01

    isobars ) connecting the same values. The actual displays rely heavily on color, which we could not reproduce here. barbs). Meteorological charts of this...presence of a meteorologically significant feature. However, this subtle patterning of isobars can be obscured to a large extent by their visually...experienced forecasters’ eye movements as they inspected meteorological visualizations. They found that interpolat- ing between isobars was about twice

  14. Proceedings of the International Meteorological Satellite Workshop

    NASA Technical Reports Server (NTRS)

    1962-01-01

    International Meteorological Satellite Workshop, November 13-22, 1961, presented the results of the meteorological satellite program of the United States and the possibilities for the future, so that-- the weather services of other nations may acquire a working knowledge of meteorological satellite data for assistance in their future analysis programs both in research and in daily synoptic application and guidance in their national observational support efforts; the world meteorological community may become more familiar with the TIROS program.; and the present activity may be put in proper perspective relative to future operational programs.

  15. A 25-Gb/s 100-m multi-mode fiber optical link based on 1.3μm lens-integrated surface-emitting laser and CMOS receiver

    NASA Astrophysics Data System (ADS)

    Takemoto, Takashi; Yamashita, Hiroki; Matsuoka, Yasunobu; Adachi, Koichiro; Lee, Yong

    2014-02-01

    A 1.3-μm wavelength optical link, which consists of a lens-integrated laser diode and a CMOS optical receiver, was developed. It achieves 25-Gb/s error-free 100-m multi-mode fiber transmission with sensitivity of -6.3-dBm OMA.

  16. Meteorological annual report for 1996

    SciTech Connect

    Hunter, C.H.; Tatum, C.P.

    1997-08-01

    An analysis of meteorological data collected at the Savannah River Site (SRS) in 1996 shows that overall weather conditions for the year were characterized by below normal temperatures and near normal precipitation. The average temperature for the year, 62.2{degrees}F, was the lowest observed at SRS for the 33 years in which temperature data are available (1964-96). Temperature extremes for 1996 ranged from a minimum of 10{degrees}F on February 5 to a maximum of 100{degrees}F on July 2. Monthly rainfall was near or slightly below average each month except March and August which had considerably above average rainfall. The maximum 24-hour rainfall was 2.47 inches on July 5. Daily rainfall in excess of 2 inches occurred on July 5 and August 25. These rainfall events were associated with slow moving cold fronts. Approximately one inch of, snow was recorded in the SRS area on February 4. The annual average wind speed, based on data collected at the Central Climatology meteorology tower, was about 10% higher than the average for a previous 5-year period (1987-91). The 1996 data also showed a slightly higher frequency of west to southwest winds and a slightly lower frequency of northeast winds than was observed in the earlier 5-year period. A winter storm that formed over Alabama and moved northeastward through east Tennessee March 18-19 produced the most notable period of sustained strong winds. Daily and 15-minute average wind speeds of 16 miles per hour (mph) and 26.6 mph, respectively, were recorded at Central Climatology. The average relative humidity for the year was 69% and the average daily minimum relative humidity, which typically occurs during the afternoon, was 45%. Tropical Storm Josephine moved through eastern portions of Georgia and South Carolina on October 8 producing a total rainfall at SRS of about 1.8 inches.

  17. Stochastic multifractal forecasts: from theory to applications in radar meteorology

    NASA Astrophysics Data System (ADS)

    da Silva Rocha Paz, Igor; Tchiguirinskaia, Ioulia; Schertzer, Daniel

    2017-04-01

    Radar meteorology has been very inspiring for the development of multifractals. It has enabled to work on a 3D+1 field with many challenging applications, including predictability and stochastic forecasts, especially nowcasts that are particularly demanding in computation speed. Multifractals are indeed parsimonious stochastic models that require only a few physically meaningful parameters, e.g. Universal Multifractal (UM) parameters, because they are based on non-trivial symmetries of nonlinear equations. We first recall the physical principles of multifractal predictability and predictions, which are so closely related that the latter correspond to the most optimal predictions in the multifractal framework. Indeed, these predictions are based on the fundamental duality of a relatively slow decay of large scale structures and an injection of new born small scale structures. Overall, this triggers a mulfitractal inverse cascade of unpredictability. With the help of high resolution rainfall radar data (≈ 100 m), we detail and illustrate the corresponding stochastic algorithm in the framework of (causal) UM Fractionally Integrated Flux models (UM-FIF), where the rainfall field is obtained with the help of a fractional integration of a conservative multifractal flux, whose average is strictly scale invariant (like the energy flux in a dynamic cascade). Whereas, the introduction of small structures is rather straightforward, the deconvolution of the past of the field is more subtle, but nevertheless achievable, to obtain the past of the flux. Then, one needs to only fractionally integrate a multiplicative combination of past and future fluxes to obtain a nowcast realisation.

  18. Teaching a Course on Meteorological Instruments.

    ERIC Educational Resources Information Center

    Kohler, Fred

    A meteorological instruments course that provided undergraduate geography students the opportunity to use and/or observe meteorological equipment while also preparing for possible internships with the National Weather Service is evaluated and suggestions for improving it in the future are offered. The paper first provides a general course…

  19. Meteorological needs of the aviation community

    NASA Technical Reports Server (NTRS)

    Luers, J. K.

    1977-01-01

    A study was conducted to determine the important meteorological needs of the aviation community and to recommend research in those areas judged most beneficial. The study was valuable in that it provided a comprehensive list of suspected meteorological deficiencies and ideas for research programs relative to these deficiencies. The list and ideas were generated from contacts with various pilots, air traffic controllers, and meteorologists.

  20. Wintertime meteorology of the Grand Canyon region

    SciTech Connect

    Whiteman, C.D.

    1992-09-01

    The Grand Canyon region of the American Southwest is an interesting region meteorologically, but because of its isolated location, the lack of major population centers in the region, and the high cost of meteorological field experiments, it has historically received little observational attention. In recent years, however, attention has been directed to episodes of visibility degradation in many of the US National parks, and two recent field studies focused on this visibility problem have greatly increased the meteorological data available for the Grand Canyon region. The most recent and comprehensive of these studies is the Navajo Generating Station Winter Visibility Study of 1989--90. This study investigated the sources of visibility degradation in Grand Canyon National Park and the meteorological mechanisms leading to low visibility episodes. In this paper we present analyses of this rich data set to gain a better understanding of the key wintertime meteorological features of the Grand Canyon region.

  1. Wintertime meteorology of the Grand Canyon region

    SciTech Connect

    Whiteman, C.D.

    1992-09-01

    The Grand Canyon region of the American Southwest is an interesting region meteorologically, but because of its isolated location, the lack of major population centers in the region, and the high cost of meteorological field experiments, it has historically received little observational attention. In recent years, however, attention has been directed to episodes of visibility degradation in many of the US National parks, and two recent field studies focused on this visibility problem have greatly increased the meteorological data available for the Grand Canyon region. The most recent and comprehensive of these studies is the Navajo Generating Station Winter Visibility Study of 1989--90. This study investigated the sources of visibility degradation in Grand Canyon National Park and the meteorological mechanisms leading to low visibility episodes. In this paper we present analyses of this rich data set to gain a better understanding of the key wintertime meteorological features of the Grand Canyon region.

  2. Meteorology of the Beaufort Sea

    NASA Astrophysics Data System (ADS)

    Overland, James E.

    2009-01-01

    The unique meteorology of the Beaufort Sea region is dominated by the presence of sea ice and a seasonal swing from a large heat loss in winter to a gain in summer. The primary determinant of this seasonal climate shift is the annual cycle of insolation from a maximum of 500 W/m2 near the summer solstice to darkness in winter, as the Beaufort Sea lies north of Alaska and northwestern Canada beyond 72°N. Even though the Sun angle is low in summer, the length of daylight provides as much energy to the surface as anywhere on the planet. As summer progresses, relative absorption of insolation at the surface increases as the albedo decreases due to snow and ice melt and increased open water area. This annual cycle results in a change from a winter continental-like air mass similar to the adjacent land areas to a summertime marine air mass characterized by low cloud and fogs. In winter the region is also influenced by the polar atmospheric vortex with strong westerly winds centered in the stratosphere, whose presence is felt at the surface. Recent sea ice losses are changing the climatology of the region, with extended periods of increased temperatures through the autumn months.

  3. Phantosmia as a meteorological forecaster

    NASA Astrophysics Data System (ADS)

    Aiello, S. R.; Hirsch, A. R.

    2013-09-01

    In normosmics, olfactory ability has been found to vary with ambient humidity, barometric pressure, and season. While hallucinated sensations of phantom pain associated with changes in weather have been described, a linkage to chemosensory hallucinations has heretofore not been reported. A 64-year-old white male with Parkinson's disease presents with 5 years of phantosmia of a smoky burnt wood which changed to onion-gas and then to a noxious skunk-onion excrement odor. Absent upon waking it increases over the day and persists for hours. When severe, there appears a phantom taste with the same qualities as the odor. It is exacerbated by factors that manipulate intranasal pressure, such as coughing. When eating or sniffing, the actual flavors replace the phantosmia. Since onset, he noted the intensity and frequency of the phantosmia forecasted the weather. Two to 3 h before a storm, the phantosmia intensifies from a level 0 to a 7-10, which persists through the entire thunderstorm. Twenty years prior, he reported the ability to forecast the weather, based on pain in a torn meniscus, which vanished after surgical repair. Extensive olfactory testing demonstrates underlying hyposmia. Possible mechanisms for such chemosensory-meteorological linkage includes: air pressure induced synesthesia, disinhibition of spontaneous olfactory discharge, exacerbation of ectopic discharge, affect mediated somatic sensory amplification, and misattribution error with expectation and recall bias. This is the first reported case of weather-induced exacerbation of phantosmia. Further investigation of the connection between chemosensory complaints and ambient weather is warranted.

  4. Compression of spectral meteorological imagery

    NASA Technical Reports Server (NTRS)

    Miettinen, Kristo

    1993-01-01

    Data compression is essential to current low-earth-orbit spectral sensors with global coverage, e.g., meteorological sensors. Such sensors routinely produce in excess of 30 Gb of data per orbit (over 4 Mb/s for about 110 min) while typically limited to less than 10 Gb of downlink capacity per orbit (15 minutes at 10 Mb/s). Astro-Space Division develops spaceborne compression systems for compression ratios from as little as three to as much as twenty-to-one for high-fidelity reconstructions. Current hardware production and development at Astro-Space Division focuses on discrete cosine transform (DCT) systems implemented with the GE PFFT chip, a 32x32 2D-DCT engine. Spectral relations in the data are exploited through block mean extraction followed by orthonormal transformation. The transformation produces blocks with spatial correlation that are suitable for further compression with any block-oriented spatial compression system, e.g., Astro-Space Division's Laplacian modeler and analytic encoder of DCT coefficients.

  5. Fine-resolution mapping of micro-meteorological features in regions with heterogeneous landscapes

    NASA Astrophysics Data System (ADS)

    Esau, Igor; Varentsov, Mikhail

    2014-05-01

    Human socioeconomic activity and wild life conservation tasks frequently require meteorological information at fine (about 100 m) spatial resolution. For instance, this information is needed for assessment of wind load, wind gustiness, air quality and urban comfort in high latitudes where the atmospheric convection is limited. Neither sparse observational network nor operational meteorological models are able to directly provide this information to end-users. Methods of geo-statistical weighted interpolation (kriging) have been already successfully applied to reconstruct fine-resolution maps in geophysics. In this study, we applied a kriging with external drive to micro-meteorological reconstructions. As kriging is a statistical interpolation method, its application requires information from a more or less uniformly distributed network of observational stations. This condition is rarely satisfied. We propose use of a turbulence-resolving large-eddy simulation model (LES) to: (i) obtain variograms for each station; (ii) correct extrapolation of the data outside the domain covered with observations. The proposed fine-resolution method with external drive from the LES is demonstrated for the surface air temperature distribution (resolution 50 m) in the central valley of Bergen.

  6. Meteorological data analysis using MapReduce.

    PubMed

    Fang, Wei; Sheng, V S; Wen, XueZhi; Pan, Wubin

    2014-01-01

    In the atmospheric science, the scale of meteorological data is massive and growing rapidly. K-means is a fast and available cluster algorithm which has been used in many fields. However, for the large-scale meteorological data, the traditional K-means algorithm is not capable enough to satisfy the actual application needs efficiently. This paper proposes an improved MK-means algorithm (MK-means) based on MapReduce according to characteristics of large meteorological datasets. The experimental results show that MK-means has more computing ability and scalability.

  7. BOREAS AES READAC Surface Meteorological Data

    NASA Technical Reports Server (NTRS)

    Atkinson, G. Barrie; Funk, Barry; Hall, Forrest G. (Editor); Knapp, David E. (Editor)

    2000-01-01

    Canadian AES personnel collected and processed data related to surface atmospheric meteorological conditions over the BOREAS region. This data set contains 15-minute meteorological data from one READAC meteorology station in Hudson Bay, Saskatchewan. Parameters include day, time, type of report, sky condition, visibility, mean sea level pressure, temperature, dewpoint, wind, altimeter, opacity, minimum and maximum visibility, station pressure, minimum and maximum air temperature, a wind group, precipitation, and precipitation in the last hour. The data were collected non-continuously from 24-May-1994 to 20-Sep-1994. The data are provided in tabular ASCII files, and are classified as AFM-Staff data.

  8. Meteorological Data Analysis Using MapReduce

    PubMed Central

    Fang, Wei; Sheng, V. S.; Wen, XueZhi; Pan, Wubin

    2014-01-01

    In the atmospheric science, the scale of meteorological data is massive and growing rapidly. K-means is a fast and available cluster algorithm which has been used in many fields. However, for the large-scale meteorological data, the traditional K-means algorithm is not capable enough to satisfy the actual application needs efficiently. This paper proposes an improved MK-means algorithm (MK-means) based on MapReduce according to characteristics of large meteorological datasets. The experimental results show that MK-means has more computing ability and scalability. PMID:24790576

  9. BOREAS AFM-6 Surface Meteorological Data

    NASA Technical Reports Server (NTRS)

    Wilczak, James; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-6 team from the National Oceanic and Atmospheric Adminsitration/Environment Technology Laboratory (NOAA/ETL) collected surface meteorological data from 21 May to 20 Sep 1994 near the Southern Study Area-Old Jack Pine (SSA-OJP) tower site. The data are in tabular ASCII files. The surface meteorological data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  10. Description of the RDCDS Meteorological Component

    SciTech Connect

    Pekour, Mikhail S.; Berg, Larry K.

    2007-10-01

    This report provides a detailed description of the Rapidly Deployable Chemical Defense System (RDCDS) Meteorological Component. The Meteorological Component includes four surface meteorological stations, miniSODAR, laptop computers, and communications equipment. This report describes the equipment that is used, explains the operation of the network, and gives instructions for setting up the Component and replacing defective parts. A detailed description of operation and use of the individual sensors, including the data loggers is not covered in the current document, and the interested reader should refer to the manufacturer’s documentation.

  11. BOREAS TE-21 Daily Surface Meteorological Data

    NASA Technical Reports Server (NTRS)

    Kimball, John; Hall, Forrest G. (Editor); Papagno, Andrea (Editor)

    2000-01-01

    The Boreal Ecosystem-Atmospheric Study (BOREAS) TE-21 (Terrestrial Ecology) team collected data sets in support of its efforts to characterize and interpret information on the meteorology of boreal forest areas. Daily meteorological data were derived from half-hourly BOREAS tower flux (TF) and Automatic Meteorological Station (AMS) mesonet measurements collected in the Southern and Northern Study Areas (SSA and NSA) for the period of 01 Jan 1994 until 31 Dec 1994. The data were stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  12. BOREAS AES MARSII Surface Meteorological Data

    NASA Technical Reports Server (NTRS)

    Atkinson, G. Barrie; Funk, Barry; Hall, Forrest G. (Editor); Knapp, David E. (Editor)

    2000-01-01

    Canadian AES personnel collected several data sets related to surface and atmospheric meteorological conditions over the BOREAS region. This data set contains 15-minute meteorological data from six MARSII meteorology stations in the BOREAS region in Canada. Parameters include site, time, temperature, dewpoint, visibility, wind speed, wind gust, wind direction, two cloud groups, precipitation, and station pressure. Temporally, the data cover the period of May to September 1994. Geo-graphically, the stations are spread across the provinces of Saskatchewan and Manitoba. The data are provided in tabular ASCII files, and are classified as AFM-Staff data.

  13. Stereoscopic observations from meteorological satellites

    NASA Astrophysics Data System (ADS)

    Hasler, A. F.; Mack, R.; Negri, A.

    The capability of making stereoscopic observations of clouds from meteorological satellites is a new basic analysis tool with a broad spectrum of applications. Stereoscopic observations from satellites were first made using the early vidicon tube weather satellites (e.g., Ondrejka and Conover [1]). However, the only high quality meteorological stereoscopy from low orbit has been done from Apollo and Skylab, (e.g., Shenk et al. [2] and Black [3], [4]). Stereoscopy from geosynchronous satellites was proposed by Shenk [5] and Bristor and Pichel [6] in 1974 which allowed Minzner et al. [7] to demonstrate the first quantitative cloud height analysis. In 1978 Bryson [8] and desJardins [9] independently developed digital processing techniques to remap stereo images which made possible precision height measurement and spectacular display of stereograms (Hasler et al. [10], and Hasler [11]). In 1980 the Japanese Geosynchronous Satellite (GMS) and the U.S. GOES-West satellite were synchronized to obtain stereo over the central Pacific as described by Fujita and Dodge [12] and in this paper. Recently the authors have remapped images from a Low Earth Orbiter (LEO) to the coordinate system of a Geosynchronous Earth Orbiter (GEO) and obtained stereoscopic cloud height measurements which promise to have quality comparable to previous all GEO stereo. It has also been determined that the north-south imaging scan rate of some GEOs can be slowed or reversed. Therefore the feasibility of obtaining stereoscopic observations world wide from combinations of operational GEO and LEO satellites has been demonstrated. Stereoscopy from satellites has many advantages over infrared techniques for the observation of cloud structure because it depends only on basic geometric relationships. Digital remapping of GEO and LEO satellite images is imperative for precision stereo height measurement and high quality displays because of the curvature of the earth and the large angular separation of the

  14. Meteorological Annual Report for 1997

    SciTech Connect

    Hunter, C.H.

    1998-12-17

    An analysis of meteorological data collected at the Savannah River Site (SRS) in 1997 shows that overall weather conditions for the year were relatively cool and wet. The average temperature for 1997 was 63.7 degree F which is about 1 degree F below the annual average for the 30-year period 1968-97. June 1997 had the lowest average temperature of any June in the 34 years for which temperature records are available at SRS ; moreover, the average temperature for the summer months (June, July, and August) was the third lowest for any summer on record. Conversely, the average temperature for March 1997 was the highest for any March in the 34-year record. Temperature extremes for 1997 ranged from a minimum of 18.6 degree F on January 18 to a maximum of 99.1 degree F on August 15.Wet weather during the last three months of the year was due to the development of a strong El Nino event (NOAA, 1998). Total rainfall for December 1997, 10.19 inches, was the highest for a December in the 46 year period of record for precipitation. Monthly rainfall was above average each month except March, May, and August. The greatest 24-hour rainfall during the year was 2.82 inches on December 24. Daily rainfall in excess of 2 inches occurred on April 28, June 28, and September 25. No snow was recorded.The annual average wind speed at the Central Climatology meteorology tower near N Area was 5.8 mph which is very nearly equal to the average wind speed at that station for the 7-year period 1991-97. The 1997 data also showed a slightly higher frequency of west to northwest winds and a slightly lower frequency of northeast winds than was observed in the 5-year period 1992-96. A winter storm which developed over the Mid-Atlantic States March 30-31 produced the most notable period of sustained strong winds. Daily and 15-minute average wind speeds of 15.3 miles per hour (mph) and 25.1 mph, respectively, were recorded at Central Climatology.Monthly average relative humidity for the year was lowest

  15. Phantosmia as a meteorological forecaster.

    PubMed

    Aiello, S R; Hirsch, A R

    2013-09-01

    In normosmics, olfactory ability has been found to vary with ambient humidity, barometric pressure, and season. While hallucinated sensations of phantom pain associated with changes in weather have been described, a linkage to chemosensory hallucinations has heretofore not been reported. A 64-year-old white male with Parkinson's disease presents with 5 years of phantosmia of a smoky burnt wood which changed to onion-gas and then to a noxious skunk-onion excrement odor. Absent upon waking it increases over the day and persists for hours. When severe, there appears a phantom taste with the same qualities as the odor. It is exacerbated by factors that manipulate intranasal pressure, such as coughing. When eating or sniffing, the actual flavors replace the phantosmia. Since onset, he noted the intensity and frequency of the phantosmia forecasted the weather. Two to 3 h before a storm, the phantosmia intensifies from a level 0 to a 7-10, which persists through the entire thunderstorm. Twenty years prior, he reported the ability to forecast the weather, based on pain in a torn meniscus, which vanished after surgical repair. Extensive olfactory testing demonstrates underlying hyposmia. Possible mechanisms for such chemosensory-meteorological linkage includes: air pressure induced synesthesia, disinhibition of spontaneous olfactory discharge, exacerbation of ectopic discharge, affect mediated somatic sensory amplification, and misattribution error with expectation and recall bias. This is the first reported case of weather-induced exacerbation of phantosmia. Further investigation of the connection between chemosensory complaints and ambient weather is warranted.

  16. PREVIMER : Meteorological inputs and outputs

    NASA Astrophysics Data System (ADS)

    Ravenel, H.; Lecornu, F.; Kerléguer, L.

    2009-09-01

    PREVIMER is a pre-operational system aiming to provide a wide range of users, from private individuals to professionals, with short-term forecasts about the coastal environment along the French coastlines bordering the English Channel, the Atlantic Ocean, and the Mediterranean Sea. Observation data and digital modelling tools first provide 48-hour (probably 96-hour by summer 2009) forecasts of sea states, currents, sea water levels and temperatures. The follow-up of an increasing number of biological parameters will, in time, complete this overview of coastal environment. Working in partnership with the French Naval Hydrographic and Oceanographic Service (Service Hydrographique et Océanographique de la Marine, SHOM), the French National Weather Service (Météo-France), the French public science and technology research institute (Institut de Recherche pour le Développement, IRD), the European Institute of Marine Studies (Institut Universitaire Européen de la Mer, IUEM) and many others, IFREMER (the French public institute fo marine research) is supplying the technologies needed to ensure this pertinent information, available daily on Internet at http://www.previmer.org, and stored at the Operational Coastal Oceanographic Data Centre. Since 2006, PREVIMER publishes the results of demonstrators assigned to limited geographic areas and to specific applications. This system remains experimental. The following topics are covered : Hydrodynamic circulation, sea states, follow-up of passive tracers, conservative or non-conservative (specifically of microbiological origin), biogeochemical state, primary production. Lastly, PREVIMER provides researchers and R&D departments with modelling tools and access to the database, in which the observation data and the modelling results are stored, to undertake environmental studies on new sites. The communication will focus on meteorological inputs to and outputs from PREVIMER. It will draw the lessons from almost 3 years during

  17. Communicating meteorology through popular music

    NASA Astrophysics Data System (ADS)

    Brown, Sally; Aplin, Karen; Jenkins, Katie; Mander, Sarah; Walsh, Claire; Williams, Paul

    2015-04-01

    Previous studies of weather-inspired classical music showed that all forms of music (as well as visual arts and literature) reflect the significance of the environment in society. Here we quantify the extent to which weather has inspired popular musicians, and how weather is represented in English-language pop music. Our work is in press at Weather. Over 750 songs have been identified which were found to refer to meteorological phenomena, mainly in their lyrics, but also in the title of the song, name of the band or songwriter and occasionally in the song's music or sound effects. Over one third of the songs analysed referred to either sun or rain, out of a possible 20 weather categories. It was found that artists use weather to describe emotion, for example, to mirror the changes in a relationship. In this context, rain was broadly seen negatively, and might be used to signify the end of a relationship. Rain could also be perceived in a positive way, such as in songs from more agricultural communities. Wind was the next most common weather phenomenon, but did not represent emotions as much as sun or rain. However, it was the most frequently represented weather type in the music itself, such as in instrumental effects, or non-verbally in choruses. From the limited evidence available, we found that artists were often inspired by a single weather event in writing lyrics, whereas the outcomes were less clearly identifiable from longer periods of good or bad weather. Some artists were influenced more by their environment than others, but they were often inspired to write many songs about their surroundings as part of every-day life, rather than weather in particular. Popular singers and songwriters can therefore emotionally connect their listeners to the environment; this could be exploited to communicate environmental science to a broad audience.

  18. Atmospheric Model Evaluation Tool for meteorological and air quality simulations

    EPA Pesticide Factsheets

    The Atmospheric Model Evaluation Tool compares model predictions to observed data from various meteorological and air quality observation networks to help evaluate meteorological and air quality simulations.

  19. Meteorological radar facility. Part 1: System design

    NASA Technical Reports Server (NTRS)

    Brassaw, L. L., Jr.; Hamren, S. D.; Mullins, W. H.; Schweitzer, B. P.

    1976-01-01

    A compilation of information regarding systems design of space shuttles used in meteorological radar probes is presented. Necessary radar equipment is delineated, while space system elements, calibration techniques, antenna systems and other subsystems are reviewed.

  20. Understanding meteorology for pollution transport over Bhutan

    NASA Astrophysics Data System (ADS)

    Ghimire, Shreta; Adhikary, Bhupesh; Praveen, Ps; Panday, Arnico

    2016-04-01

    The country of Bhutan spans over complex terrain in the Eastern Himalayan region. Several studies in the past have reported about transport of air pollution into the Himalayas from Indo-Gangetic plains. However, there is a lack of studies focusing over eastern Himalaya and particularly over Bhutan. Understanding air pollutant flows over this region requires good understanding of weather and atmospheric circulation pattern. We have used decadal data from ground based meteorological stations made available from the Department of Hydro-Meteorological Service (DHMS), Government of Bhutan to study rainfall and temperature patterns over different elevation. We also present preliminary results from few automatic weather stations that are analyzed for diurnal and seasonal variability. Weather Research and Forecast (WRF) model was run to understand meteorological flows over the region. Preliminary results from WRF model will also be presented. Keywords: Bhutan, Meteorology, Air Pollution, Eastern Himalayas.

  1. CloudSat and CALIPSO Help Meteorology

    NASA Image and Video Library

    The study of meteorology presents significant challenges to scientists. One of the most challenging aspects is the inherent complexity of weather coupled with its high rate of change. In the case o...

  2. ISS Update: Spaceflight Meteorology Group, Part 2

    NASA Image and Video Library

    NASA Public Affairs Officer Dan Huot talks to Frank Brody, chief of the Spaceflight Meteorology Group (SMG) at Johnson Space Center, about SMG support for the upcoming landing of the Expedition 31 ...

  3. ISS Update: Spaceflight Meteorology Group, Part 1

    NASA Image and Video Library

    NASA Public Affairs Officer Dan Huot talks to Frank Brody, chief of the Spaceflight Meteorology Group (SMG) at Johnson Space Center, about SMG support for the upcoming landing of the Expedition 31 ...

  4. Interim report on the meteorological database

    SciTech Connect

    Stage, S.A.; Ramsdell, J.V.; Simonen, C.A.; Burk, K.W.

    1993-01-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project is estimating radiation doses that individuals may have received from operations at Hanford from 1944 to the present. An independent Technical Steering Panel (TSP) directs the project, which is being conducted by the Battelle, Pacific Northwest Laboratories in Richland, Washington. The goals of HEDR, as approved by the TSP, include dose estimates and determination of confidence ranges for these estimates. This letter report describes the current status of the meteorological database. The report defines the meteorological data available for use in climate model calculations, describes the data collection procedures and the preparation and control of the meteorological database. This report also provides an initial assessment of the data quality. The available meteorological data are adequate for atmospheric calculations. Initial checks of the data indicate the data entry accuracy meets the data quality objectives.

  5. Surface Meteorological Instruments for TWP (SMET) Handbook

    SciTech Connect

    Ritsche, MT

    2009-01-01

    The TWP Surface Meteorology station (SMET) uses mainly conventional in situ sensors to obtain 1-minute statistics of surface wind speed, wind direction, air temperature, relative humidity, barometric pressure and rainfall amount.

  6. Meteorological Monitoring And Warning Computer Network

    NASA Technical Reports Server (NTRS)

    Evans, Randolph J.; Dianic, Allan V.; Moore, Lien N.

    1996-01-01

    Meteorological monitoring system (MMS) computer network tracks weather conditions and issues warnings when weather hazards are about to occur. Receives data from such meteorological instruments as wind sensors on towers and lightning detectors, and compares data with weather restrictions specified for outdoor activities. If weather violates restriction, network generates audible and visible alarms to alert people involved in activity. Also displays weather and toxic diffusion data and disseminates weather forecasts, advisories, and warnings to workstations.

  7. Meteorological Monitoring And Warning Computer Network

    NASA Technical Reports Server (NTRS)

    Evans, Randolph J.; Dianic, Allan V.; Moore, Lien N.

    1996-01-01

    Meteorological monitoring system (MMS) computer network tracks weather conditions and issues warnings when weather hazards are about to occur. Receives data from such meteorological instruments as wind sensors on towers and lightning detectors, and compares data with weather restrictions specified for outdoor activities. If weather violates restriction, network generates audible and visible alarms to alert people involved in activity. Also displays weather and toxic diffusion data and disseminates weather forecasts, advisories, and warnings to workstations.

  8. Meteorological database for the United States

    SciTech Connect

    Apte, M.G.; Nero, A.V.; Revzan, K.L.

    1996-04-01

    A meteorological database has been developed to aid in the prediction of indoor radon concentrations in the United States. The database contains predicted typical monthly meteorological statistics at the county level derived from hourly meteorological data from 208 (234 for precipitation) geographically distinct monitoring stations. Interpolation and extrapolation techniques were used to predict statistics for counties not containing a meteorological monitoring site. The LBNL database includes statistics for meteorological variables including dry-bulb temperature, dew-point temperature, barometric pressure, wind speed, wind direction, hours of precipitation, precipitation, and derived infiltration degree-days. The database consists of individual files of derived statistics for each weather variable and is potentially useful for indoor radon modeling as well as for other purposes. Each file contains data values for all 12 months and an aggregation of the 12 months up to a yearly statistic for all county centroids. A test was conducted to assess the quality of interpolated values. Examples showing the use of the database for mapping infiltration degree-days and an application of the database to a statistical correlation analysis attempting to find meteorological factors influencing indoor radon levels in the United States is discussed.

  9. 50-GHz repetition-rate, 280-fs pulse generation at 100-mW average power from a mode-locked laser diode externally compressed in a pedestal-free pulse compressor

    NASA Astrophysics Data System (ADS)

    Tamura, Kohichi R.; Sato, Kenji

    2002-07-01

    280-fs pedestal-free pulses are generated at average output powers exceeding 100 mW at a repetition rate of 50 GHz by compression of the output of a mode-locked laser diode (MLLD) by use of a pedestal-free pulse compressor (PFPC). The MLLD consists of a monolithically integrated chirped distributed Bragg reflector, a gain section, and an electroabsorption modulator. The PFPC is composed of a dispersion-flattened dispersion-decreasing fiber and a dispersion-flattened dispersion-imbalanced nonlinear optical loop mirror. Frequency modulation for linewidth broadening is used to overcome the power limitation imposed by stimulated Brillouin scattering.

  10. Meteorology of Jupiter's Equatorial Hot Spots and Plumes from Cassini

    NASA Technical Reports Server (NTRS)

    Choi, David Sanghun; Showman, Adam P.; Vasavada, Ashwin R.; Simon-Miller, Amy A.

    2013-01-01

    We present an updated analysis of Jupiter's equatorial meteorology from Cassini observations. For two months preceding the spacecraft's closest approach, the Imaging Science Subsystem (ISS) onboard regularly imaged the atmosphere. We created time-lapse movies from this period in order to analyze the dynamics of equatorial hot spots and their interactions with adjacent latitudes. Hot spots are relatively cloud-free regions that emit strongly at 5 lm; improved knowledge of these features is crucial for fully understanding Galileo probe measurements taken during its descent through one. Hot spots are quasistable, rectangular dark areas on visible-wavelength images, with defined eastern edges that sharply contrast with surrounding clouds, but diffuse western edges serving as nebulous boundaries with adjacent equatorial plumes. Hot spots exhibit significant variations in size and shape over timescales of days and weeks. Some of these changes correspond with passing vortex systems from adjacent latitudes interacting with hot spots. Strong anticyclonic gyres present to the south and southeast of the dark areas appear to circulate into hot spots. Impressive, bright white plumes occupy spaces in between hot spots. Compact cirrus-like 'scooter' clouds flow rapidly through the plumes before disappearing within the dark areas. These clouds travel at 150-200 m/s, much faster than the 100 m/s hot spot and plume drift speed. This raises the possibility that the scooter clouds may be more illustrative of the actual jet stream speed at these latitudes. Most previously published zonal wind profiles represent the drift speed of the hot spots at their latitude from pattern matching of the entire longitudinal image strip. If a downward branch of an equatorially-trapped Rossby wave controls the overall appearance of hot spots, however, the westward phase velocity of the wave leads to underestimates of the true jet stream speed.

  11. Standardization of Meteorological Data from FINO Offshore Platforms

    NASA Astrophysics Data System (ADS)

    Leiding, Tina; Bastigkeit, Ilona; Bégué, Friederike; Gates, Lydia; Herklotz, Kai; Müller, Stefan; Neumann, Thomas; Schwenk, Patrick; Senet, Christian; Tinz, Birger; Wilts, Friedrich

    2015-04-01

    In order to investigate conditions for offshore wind power generation in the German coastal waters, three research platforms were constructed in the North Sea (FINO1 and 3) and the Baltic Sea (FINO2). Measurement masts at each offshore platform are equipped with a range of meteorological sensors at heights of 30 to 100 m above sea level. Standardized analysis and interpretation of the data is necessary to compare the results of the different platforms and will improve the knowledge of the marine ambient conditions at the three locations. International Electrotechnical Commission Standards (IEC) cannot always be applied as some requirements are not applicable to offshore masts e.g. due to the wake of the structure. In the FINO-Wind project, therefore, a standardization method is developed. Recorded measurement data are checked automatically on the basis of a comprehensive quality control. The routine starts with a formal check, followed by climatological, temporal, repetition, and consistency checks. After successful completion of each sequence, the data are assigned standardized quality flags. By default, 10-minute data are processed. A special focus is on mast effects on the wind data of the three masts due to the different shapes of the construction (square or triangular shapes and different boom structures). These effects are investigated in comparison with wind tunnel measurements, LiDAR, Computational Fluid Dynamics calculations, and a 'uniform ambient flow mast correction' method. An adjustment for such effects will be applied to all wind data. The comparison of sensor equipment, its installation and orientation as well as of the mast constructions will lead to suggestions on how wind measurements at offshore platforms mast can be improved. The research project FINO-Wind is funded under the 'Wind Energy' initiative of the German Federal Ministry for the Economic Affairs and Energy for the period 2013 to 2015. For further information see www.dwd.de/fino-wind.

  12. BOREAS AFM-07 SRC Surface Meteorological Data

    NASA Technical Reports Server (NTRS)

    Osborne, Heather; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Young, Kim; Wittrock, Virginia; Shewchuck, Stan; Smith, David E. (Technical Monitor)

    2000-01-01

    The Saskatchewan Research Council (SRC) collected surface meteorological and radiation data from December 1993 until December 1996. The data set comprises Suite A (meteorological and energy balance measurements) and Suite B (diffuse solar and longwave measurements) components. Suite A measurements were taken at each of ten sites, and Suite B measurements were made at five of the Suite A sites. The data cover an approximate area of 500 km (North-South) by 1000 km (East-West) (a large portion of northern Manitoba and northern Saskatchewan). The measurement network was designed to provide researchers with a sufficient record of near-surface meteorological and radiation measurements. The data are provided in tabular ASCII files, and were collected by Aircraft Flux and Meteorology (AFM)-7. The surface meteorological and radiation data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  13. Meteorological variability and infectious disease in Central Africa: a review of meteorological data quality.

    PubMed

    Heaney, Alexandra; Little, Eliza; Ng, Sophia; Shaman, Jeffrey

    2016-10-01

    Central African countries may bear high climate change-related infectious disease burdens because of preexisting high rates of disease, poor healthcare infrastructure, land use changes, and high environmental change vulnerabilities. However, making connections between climate and infectious diseases in this region is hampered by the paucity of high-quality meteorological data. This review analyzes the sources and quality of meteorological data used to study the interactions between weather and infectious diseases in Central African countries. Results show that 23% of studies used meteorological data that mismatched with the disease spatial scale of interest. Use of inappropriate weather data was most frequently identified in analyses using meteorological station data or gridded data products. These findings have implications for the interpretation of existing analyses and provide guidance for the use of climate data in future analyses of the connections between meteorology and infectious diseases in Central Africa. © 2016 New York Academy of Sciences.

  14. BOREAS AES Campbell Scientific Surface Meteorological Data

    NASA Technical Reports Server (NTRS)

    Atkinson, G. Barrie; Funk, Barrie; Knapp. David E. (Editor); Hall, Forrest G. (Editor)

    2000-01-01

    Canadian AES personnel collected data related to surface and atmospheric meteorological conditions over the BOREAS region. This data set contains 15-minute meteorological data from 14 automated meteorology stations located across the BOREAS region. Included in this data are parameters of date, time, mean sea level pressure, station pressure, temperature, dew point, wind speed, resultant wind speed, resultant wind direction, peak wind, precipitation, maximum temperature in the last hour, minimum temperature in the last hour, pressure tendency, liquid precipitation in the last hour, relative humidity, precipitation from a weighing gauge, and snow depth. Temporally, the data cover the period of August 1993 to December 1996. The data are provided in tabular ASCII files, and are classified as AFM-Staff data.

  15. Student Activities in Meteorology (SAM), June 1994

    SciTech Connect

    Meier, B.L.; Passarelli, E.

    1994-06-01

    In an effort to inspire student interest in science and technology, scientists from the Forecast Systems Laboratory, a laboratory within the National Oceanic and Atmospheric Administration's (NOAA) Environmental Research Laboratories, and classroom teachers from the Boulder Valley School District collaborated to produce a series of classroom science activities on meteorology and atmospheric science. We call this series 'Student Activities in Meteorology,' or SAM. The goal is to provide activities that are interesting to students, and at the same time convenient and easy to use for teachers. The activity topics chosen are to incorporate trend setting scientific research and cutting edge technology. Several of the activities focus on the meteorological concerns of the Denver metropolitan area because many of NOAA's research labs are located in Boulder, where much of the research and testing for the region is performed. We believe that these activities are versatile and can be easily integrated into current science, environmental studies, health, social studies, and math curricula.

  16. Modern meteorological computing resources - The Maryland experience

    NASA Technical Reports Server (NTRS)

    Huffman, George J.

    1988-01-01

    The Department of Meteorology at the University of Maryland is developing one of the first computer systems in meteorology to take advantage of the new networked computer architecture that has been made possible by recent advances in computer and communication technology. Elements of the department's system include scientific workstations, local mainframe computers, remote mainframe computers, local-area networks,'long-haul' computer-to-computer communications, and 'receive-only' communications. Some background is provided, together with highlights of some lessons that were learned in carrying out the design. In agreement with work in the Unidata Project, this work shows that the networked computer architecture discussed here presents a new style of resources for solving problems that arise in meteorological research and education.

  17. Meteorological analysis for Fenton Hill, 1979

    SciTech Connect

    Barr, S.; Wilson, S.K.

    1981-01-01

    Three years of meteorological data have been collected at the Fenton Hill site to establish a local climatic baseline, transport and diffusion climatology, and an initial site for an eventual Valles Caldera meteorological network. Tower-based wind and temperature data at 15 m above ground were supplemented during 1979 with precipitation, humidity and pressure measurements, and a limited program of upper winds. Preliminary analysis of the data has been made to identify major topographic and meteorological driving forces affecting the local climatic variations on diurnal and seasonal time scales. The site is quite high and exposed enough tht external influences such as gradient wind flow and thunderstorms tend to dominate over purely local driving forces in determining climate. Locally generated wind circulations are identifiable at night but tend to be weak and sporadic. The presence of topographic obstacles on the 10- to 100-km scale is observed in the winds.

  18. Particle size concentration and meteorological parameter dynamics

    NASA Astrophysics Data System (ADS)

    Duggleby, Andrew; Regens, James; Ball, Kenneth

    2007-11-01

    A proper orthogonal decomposition of particle size concentration and meteorological parameter dynamics is performed on data collected from 12:45 pm CDT on 18 July 2004 until 1:00 pm CDT on 22 July 2004 using an Aerodynamic Particle Sizer spectrometer and a modular weather station. The sampling station was located at 60 feet above ground level on the roof of the College of Health Building on the University of Oklahoma Health Sciences Center campus in Oklahoma City, and it sampled data every 15 minutes. The effect of the meteorological conditions of temperature, humidity, pressure, wind speed, and wind direction on particle concentration dynamics is examined. Most of the dynamical fluctuations occur at particle sizes below 1 micron, temperature and humidity have the most effect on the dynamics, and the wind speed and direction have a smaller effect. Discussions will include the potential effects of rush-hour traffic and diurnal meteorological patterns on the particle size distributions.

  19. Artificial stereo presentation of meteorological data fields

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.; Desjardins, M.; Negri, A. J.

    1981-01-01

    The innate capability to perceive three-dimensional stereo imagery has been exploited to present multidimensional meteorological data fields. Variations on an artificial stereo technique first discussed by Pichel et al. (1973) are used to display single and multispectral images in a vivid and easily assimilated manner. Examples of visible/infrared artificial stereo are given for Hurricane Allen and for severe thunderstorms on 10 April 1979. Three-dimensional output from a mesoscale model also is presented. The images may be viewed through the glasses inserted in the February 1981 issue of the Bulletin of the American Meteorological Society, with the red lens over the right eye. The images have been produced on the interactive Atmospheric and Oceanographic Information Processing System (AOIPS) at Goddard Space Flight Center. Stereo presentation is an important aid in understanding meteorological phenomena for operational weather forecasting, research case studies, and model simulations.

  20. Meteorological aspects of siting large wind turbines

    SciTech Connect

    Hiester, T.R.; Pennell, W.T.

    1981-01-01

    This report, which focuses on the meteorological aspects of siting large wind turbines (turbines with a rated output exceeding 100 kW), has four main goals. The first is to outline the elements of a siting strategy that will identify the most favorable wind energy sites in a region and that will provide sufficient wind data to make responsible economic evaluations of the site wind resource possible. The second is to critique and summarize siting techniques that were studied in the Department of Energy (DOE) Wind Energy Program. The third goal is to educate utility technical personnel, engineering consultants, and meteorological consultants (who may have not yet undertaken wind energy consulting) on meteorological phenomena relevant to wind turbine siting in order to enhance dialogues between these groups. The fourth goal is to minimize the chances of failure of early siting programs due to insufficient understanding of wind behavior.

  1. Surface Meteorological Observation System (SMOS) Handbook

    SciTech Connect

    Ritsche, MT

    2008-03-01

    The Surface Meteorological Observation System (SMOS) mostly uses conventional in situ sensors to obtain 1-minute, 30-minute, and 1440-minute (daily) averages of surface wind speed, wind direction, air temperature, relative humidity (RH), barometric pressure, and precipitation at the Central Facility and many of the extended facilities of the Southern Great Plains (SGP) climate research site. The SMOSs are not calibrated as systems. The sensors and the data logger (which includes the analog-to-digital converter, or A/D) are calibrated separately. All systems are installed using components that have a current calibration. SMOSs have not been installed at extended facilities located within about 10 km of existing surface meteorological stations, such as those of the Oklahoma Mesonet. The Surface Meteorological Observation Systems are used to create climatology for each particular location, and to verify the output of numerical weather forecast and other model output. They are also used to “ground-truth” other remote sensing equipment.

  2. Association of meteorological factors with suicide.

    PubMed

    Deisenhammer, E A; Kemmler, G; Parson, P

    2003-12-01

    To identify weather factors associated with an increased risk of suicide. In a number of prior studies an influence of meteorological conditions on the incidence of suicide or attempted suicide has been suggested. Official data on the suicide cases of the state of Tyrol, Austria, assessed over a period of 6 years (n = 702) were correlated with a number of meteorological factors assessed at eight weather stations. The risk of committing suicide was significantly higher on days with high temperatures, low relative humidity or a thunderstorm and on days following a thunderstorm. The multiple logistic regression analysis left "temperature" and "thunderstorm on the preceding day" as significant factors, even after adjustment for sociodemographic and geographical variables. Within the interaction of psychological and environmental influences in the development of suicidal ideation and behaviour, specific meteorological conditions may additionally contribute to the risk of suicide in predisposed individuals.

  3. Meteorological and Environmental Inputs to Aviation Systems

    NASA Technical Reports Server (NTRS)

    Camp, Dennis W. (Editor); Frost, Walter (Editor)

    1988-01-01

    Reports on aviation meteorology, most of them informal, are presented by representatives of the National Weather Service, the Bracknell (England) Meteorological Office, the NOAA Wave Propagation Lab., the Fleet Numerical Oceanography Center, and the Aircraft Owners and Pilots Association. Additional presentations are included on aircraft/lidar turbulence comparison, lightning detection and locating systems, objective detection and forecasting of clear air turbulence, comparative verification between the Generalized Exponential Markov (GEM) Model and official aviation terminal forecasts, the evaluation of the Prototype Regional Observation and Forecast System (PROFS) mesoscale weather products, and the FAA/MIT Lincoln Lab. Doppler Weather Radar Program.

  4. Mars meteorology - Three seasons at the surface

    NASA Technical Reports Server (NTRS)

    Ryan, J. A.; Walcek, C.; Henry, R. M.; Hess, S. L.; Leovy, C. B.; Tillman, J. E.

    1978-01-01

    We summarize some meteorological results from Viking for northern summer, autumn and winter. Little Sol-to-Sol meteorological change was observed during summer, except for secular pressure change. However, a regular sequence of weather disturbances, interpreted as baroclinic waves, appeared primarily at VL-2 during autumn and winter. The number of Rossby waves present at a given instant is calculated to be 4 and 6 for these seasons. The extreme regularity and low wave number make these systems closely resemble the baroclinic waves of rotating annulus experiments.

  5. Meteorological satellites in support of weather modification

    NASA Technical Reports Server (NTRS)

    Reynolds, D. W.; Vonder Haar, T. H.; Grant, L. O.

    1978-01-01

    During the past several years, many weather modification programs have been incorporating meteorological satellite data into both the operations and the analysis phase of these projects. This has occurred because of the advancement of the satellite as a mesoscale measurement platform, both temporally and spatially, and as the availability of high quality data has increased. This paper surveys the applications of meteorological satellite data to both summer and winter weather modification programs. A description of the types of observations needed by the programs is given, and an assessment of how accurately satellites can determine these necessary parameters is made.

  6. Meteorological Support at the Savanna River Site

    SciTech Connect

    Addis, Robert P.

    2005-10-14

    The Department of Energy (DOE) operates many nuclear facilities on large complexes across the United States in support of national defense. The operation of these many and varied facilities and processes require meteorological support for many purposes, including: for routine operations, to respond to severe weather events, such as lightning, tornadoes and hurricanes, to support the emergency response functions in the event of a release of materials to the environment, for engineering baseline and safety documentation, as well as hazards assessments etc. This paper describes a program of meteorological support to the Savannah River Site, a DOE complex located in South Carolina.

  7. How To...Activities in Meteorology.

    ERIC Educational Resources Information Center

    Nimmer, Donald N.; Sagness, Richard L.

    This series of experiments seeks to provide laboratory exercises which demonstrate concepts in Earth Science, particularly meteorology. Materials used in the experiments are easily obtainable. Examples of experiments include: (1) making a thermometer; (2) air/space relationship; (3) weight of air; (4) barometers; (5) particulates; (6) evaporation;…

  8. Precipitation as a chemical and meteorological phenomenon

    Treesearch

    Francis J. Berlandi; Donald G. Muldoon; Harvey S. Rosenblum; Lloyd L. Schulman

    1976-01-01

    Sequential rain and snow sampling has been performed at Burlington and Concord, Massachusetts. The samples have been collected during 1974 and 1975 in one-quarter inch and one inch rain equivalents and chemical analysis performed on the aliquotes. Meteorological data was documented at the time of collection.

  9. Integrating meteorology into research on migration.

    PubMed

    Shamoun-Baranes, Judy; Bouten, Willem; van Loon, E Emiel

    2010-09-01

    Atmospheric dynamics strongly influence the migration of flying organisms. They affect, among others, the onset, duration and cost of migration, migratory routes, stop-over decisions, and flight speeds en-route. Animals move through a heterogeneous environment and have to react to atmospheric dynamics at different spatial and temporal scales. Integrating meteorology into research on migration is not only challenging but it is also important, especially when trying to understand the variability of the various aspects of migratory behavior observed in nature. In this article, we give an overview of some different modeling approaches and we show how these have been incorporated into migration research. We provide a more detailed description of the development and application of two dynamic, individual-based models, one for waders and one for soaring migrants, as examples of how and why to integrate meteorology into research on migration. We use these models to help understand underlying mechanisms of individual response to atmospheric conditions en-route and to explain emergent patterns. This type of models can be used to study the impact of variability in atmospheric dynamics on migration along a migratory trajectory, between seasons and between years. We conclude by providing some basic guidelines to help researchers towards finding the right modeling approach and the meteorological data needed to integrate meteorology into their own research. © The Author 2010. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved.

  10. Atmospheric Science: It's More than Meteorology.

    ERIC Educational Resources Information Center

    Smith, David R.; Krockover, Gerald H.

    1988-01-01

    Indicates that atmospheric science is not just forcasting the weather. Gives an overview of current topics in meteorology including ozone depletion, acid precipitation, winter cyclones, severe local storms, the greenhouse effect, wind shear and microbursts. Outlines the Atmospheric Sciences Education Program at Purdue University to produce…

  11. Guidelines for curricula in agricultural meteorology

    USDA-ARS?s Scientific Manuscript database

    Agricultural meteorology as an accepted term is only about 80 years old. The first half of this period saw its development in the western world, Japan, India, and China and this was made possible through the evolving possibilities for quantification of the physical aspects of the production environm...

  12. Integrating Meteorology into Research on Migration

    PubMed Central

    Shamoun-Baranes, Judy; Bouten, Willem; van Loon, E. Emiel

    2010-01-01

    Atmospheric dynamics strongly influence the migration of flying organisms. They affect, among others, the onset, duration and cost of migration, migratory routes, stop-over decisions, and flight speeds en-route. Animals move through a heterogeneous environment and have to react to atmospheric dynamics at different spatial and temporal scales. Integrating meteorology into research on migration is not only challenging but it is also important, especially when trying to understand the variability of the various aspects of migratory behavior observed in nature. In this article, we give an overview of some different modeling approaches and we show how these have been incorporated into migration research. We provide a more detailed description of the development and application of two dynamic, individual-based models, one for waders and one for soaring migrants, as examples of how and why to integrate meteorology into research on migration. We use these models to help understand underlying mechanisms of individual response to atmospheric conditions en-route and to explain emergent patterns. This type of models can be used to study the impact of variability in atmospheric dynamics on migration along a migratory trajectory, between seasons and between years. We conclude by providing some basic guidelines to help researchers towards finding the right modeling approach and the meteorological data needed to integrate meteorology into their own research. PMID:20811515

  13. Summary of Research 1995, Department of Meteorology

    DTIC Science & Technology

    1996-08-01

    NPS-09-96-008 Naval Postgraduate School Monterey, California 93943-5138 S UMMA R Y O) F RESEAR CH 1995. Department of Meteorology Robert L. Haney...operations. iv Table of Contents F aculty L isting...I D epartm ent Sum m ary

  14. Meteorological conditions for extreme crop yield seasons

    NASA Astrophysics Data System (ADS)

    van der Wiel, Karin; Selten, Frank; Bintanja, Richard

    2017-04-01

    Year-to-year variability in crop yield causes large variability in yearly total crop production. This variability in production causes uncertainty in farmers' income and destabilisation of food supply and food security world wide. We use a large model ensemble generated using the global climate model EC-Earth to characterise the meteorological conditions of highest impact on crop yields and production. We use a new approach of investigating high impact events: selecting by impact rather than by the extremeness of a chosen meteorological variable. This direct selection approach allows for compound extreme events (events caused by multiple, statistically related variables) to be included in the analysis and guarantees the events of highest societal importance are the focus of the study. We discuss the meteorological conditions that lead to the seasons of extreme crop production. We show that these are not necessarily extreme seasons in meteorological or climatic terms, since crop yield may vary due to relatively small deviations in, for example, temperature or precipitation at a significant periods in the growing season.

  15. Meteorology experiments - The Viking Mars Lander.

    NASA Technical Reports Server (NTRS)

    Hess, S. L.; Henry, R. M.; Kuettner, J.; Leovy, C. B.; Ryan, J. A.

    1972-01-01

    The purposes, procedures, and nature of the planned meteorology experiment of Viking, 1976 are described. The elements to be measured are pressure, temperature, wind speed, wind direction, and water vapor content of the atmosphere. The interactions with other Viking experiments are outlined and candidate sensors are described.

  16. Atmospheric Science: It's More than Meteorology.

    ERIC Educational Resources Information Center

    Smith, David R.; Krockover, Gerald H.

    1988-01-01

    Indicates that atmospheric science is not just forcasting the weather. Gives an overview of current topics in meteorology including ozone depletion, acid precipitation, winter cyclones, severe local storms, the greenhouse effect, wind shear and microbursts. Outlines the Atmospheric Sciences Education Program at Purdue University to produce…

  17. Meteorological Input to General Aviation Pilot Training

    NASA Technical Reports Server (NTRS)

    Colomy, J. R.

    1979-01-01

    The meteorological education of general aviation pilots is discussed in terms of the definitions and concepts of learning and good educational procedures. The effectiveness of the metoeorological program in the training of general aviations pilots is questioned. It is suggested that flight instructors provide real experience during low ceilings and visibilities, and that every pilot receiving an instrument rating should experience real instrument flight.

  18. Fiber optics in meteorological instrumentation suites

    NASA Astrophysics Data System (ADS)

    Holton, Carvel E.; Parker, Matthew J.

    1999-12-01

    Standard meteorological sensors and sensor suites used for weather and environmental monitoring are currently based primarily on electronic instrumentation that is frequently susceptible to destruction and/or interruption from natural (e.g. lightning) and man-made sources of Electromagnetic Interference (EMI). The cost of replacement or shielding of these systems is high in terms of frequency of replacement and the incipient capital cost. Sensors based on optical fibers have been developed in sufficient variety as to allow the development of full meteorological instrumentation suitess based on individual or multiplexed optical fiber sensors. Examples of sensing functions which can be implemented using optical fibers include: wine speed (cup anemometers & Doppler lidars), wind direction (vanes & lidars), temperature, humidity, barometric pressure, accumulated precipitation and precipitation rate (fiber lidar). Suites of such sensors are capable of using little or no electronics in the environmentally exposed regions, substantially reducing system EMI susceptibility and adding functional capability. The current presentation seeks to explore options available in such meteorological suites and examine the issues in their design and deployment. Performance data on several newer fiber sensors suitable to meteorological use will be presented and discussed.

  19. THE ATMOSPHERIC MODEL EVALUATION (AMET): METEOROLOGY MODULE

    EPA Science Inventory

    An Atmospheric Model Evaluation Tool (AMET), composed of meteorological and air quality components, is being developed to examine the error and uncertainty in the model simulations. AMET matches observations with the corresponding model-estimated values in space and time, and the...

  20. Identifying Meteorological Regimes Using Satellite Data

    NASA Astrophysics Data System (ADS)

    Gordon, N. D.; Norris, J. R.; Weaver, C. P.; Klein, S. A.

    2003-12-01

    We use a k-means clustering algorithm to group meteorological regimes with similar cloud properties retrieved from the Geostationary Operational Environmental Satellite (GOES8). We attempt to link each cluster, dictated by cloud properties, to a dynamic regime associated with cool season extratropical cyclones. Meteorological data is then averaged over the times associated with each cloud cluster to ensure that the cloud regimes are physically consistent. The analysis is restricted to a single Global Climate Model-sized box over the Southern Great Plains (SGP) site of the Atmospheric Radiation Measurement (ARM) program during the months of Jan-Mar, Nov-Dec of 2000. The ARM Continuous Forcing (ACF) Data Set is used to describe the meteorology of the single column over the ARM SGP site for each cluster and the Rapid Update Cycle (RUC) 40-km, isobaric Numerical Weather Prediction Analysis provides a representative picture of the mesoscale meteorology. We compare simulated cloudiness from a Single-Column Model (SCM) forced by ACF data to determine the sources for GCM parameterization deficiencies in predicting specific cloud types.

  1. Overview of meteorological inputs to NASP

    NASA Technical Reports Server (NTRS)

    Dziuk, J. C.

    1985-01-01

    An overview of meteorological systems for forecasting flight conditions is presented. The types of equipment used to gather the information used to prepare pilot briefings and in flight advisories is described. Possible improvements to the systems are classified as short term or long term.

  2. A meteorologically driven maize stress indicator model

    NASA Technical Reports Server (NTRS)

    Taylor, T. W.; Ravet, F. W. (Principal Investigator)

    1981-01-01

    A maize soil moisture and temperature stress model is described which was developed to serve as a meteorological data filter to alert commodity analysts to potential stress conditions in the major maize-producing areas of the world. The model also identifies optimum climatic conditions and planting/harvest problems associated with poor tractability.

  3. ARM Surface Meteorology Systems Instrument Handbook

    SciTech Connect

    Ritsche, MT

    2011-03-08

    The ARM Surface Meteorology Systems consist mainly of conventional in situ sensors that obtain a defined “core” set of measurements. The core set of measurements is: Barometric Pressure (kPa), Temperature (°C), Relative Humidity (%), Arithmetic-Averaged Wind Speed (m/s), Vector-Averaged Wind Speed (m/s), and Vector-Averaged Wind Direction (deg).

  4. Meteorological influences on mass accountability of aerially applied sprays

    USDA-ARS?s Scientific Manuscript database

    The deposition and drift of aerially applied crop protection materials is influenced by a number of factors including equpment setup and operational parameters, spray material characteristics, and meteorological effects. This work examines the meteorological influences that effect the ultimate fate...

  5. Meteorological Station, general view in setting showing west and north ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Meteorological Station, general view in setting showing west and north sides; view to southeast - Fort McKinley, Meteorological Station, East side of Weymouth Way, approximately 225 feet south of Cove Side Drive, Great Diamond Island, Portland, Cumberland County, ME

  6. Meteorological Station, showing east and south sides; view to northwest ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Meteorological Station, showing east and south sides; view to northwest - Fort McKinley, Meteorological Station, East side of Weymouth Way, approximately 225 feet south of Cove Side Drive, Great Diamond Island, Portland, Cumberland County, ME

  7. 1. SOUTHWEST CORNER OF METEOROLOGICAL SHED (BLDG. 756) SOUTH FACE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. SOUTHWEST CORNER OF METEOROLOGICAL SHED (BLDG. 756) SOUTH FACE OF SLC-3W MOBILE SERVICE TOWER IN BACKGROUND. - Vandenberg Air Force Base, Space Launch Complex 3, Meteorological Shed & Tower, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  8. Surface Meteorological Station - ESRL Short Tower, Troutdale - Raw Data

    SciTech Connect

    Coleman, Tim

    2016-10-25

    A diversity of instruments are used to measure various quantities related to meteorology, precipitation, and radiation near the Earth’s surface. Typically, a standard suite of instruments is deployed to monitor meteorological state variables.

  9. Surface Meteorological Station - Forks, WA (FKS) - Raw Data

    DOE Data Explorer

    Coleman, Tim

    2016-10-25

    A variety of instruments are used to measure various quantities related to meteorology, precipitation, and radiation near the Earth’s surface. Typically, a standard suite of instruments is deployed to monitor meteorological state variables.

  10. Surface Meteorological Station - ESRL Short Tower, Wasco Airport - Raw Data

    DOE Data Explorer

    Coleman, Tim

    2016-10-25

    A diversity of instruments are used to measure various quantities related to meteorology, precipitation, and radiation near the Earth’s surface. Typically, a standard suite of instruments is deployed to monitor meteorological state variables.

  11. Surface Meteorological Station - Astoria, OR (AST) - Raw Data

    SciTech Connect

    Coleman, Tim

    2016-10-25

    A variety of instruments are used to measure various quantities related to meteorology, precipitation, and radiation near the Earth’s surface. Typically, a standard suite of instruments is deployed to monitor meteorological state variables.

  12. Surface Meteorological Station - North Bend, OR (OTH) - Raw Data

    SciTech Connect

    Coleman, Tim

    2016-10-25

    A variety of instruments are used to measure various quantities related to meteorology, precipitation, and radiation near the Earth’s surface. Typically, a standard suite of instruments is deployed to monitor meteorological state variables.

  13. The Influence of Meteorological Conditions on Air Pollution

    ERIC Educational Resources Information Center

    Campbell, N. A.; Gipps, J.

    1975-01-01

    Explains the distribution of air pollutants as related to such meteorological conditions as temperature inversions, ground inversion, and wind velocity. Uses a power station to illustrate the effect of some of the meteorological conditions mentioned. (GS)

  14. The Influence of Meteorological Conditions on Air Pollution

    ERIC Educational Resources Information Center

    Campbell, N. A.; Gipps, J.

    1975-01-01

    Explains the distribution of air pollutants as related to such meteorological conditions as temperature inversions, ground inversion, and wind velocity. Uses a power station to illustrate the effect of some of the meteorological conditions mentioned. (GS)

  15. Integrated Meteorology and Chemistry Modeling: Evaluation and Research Needs

    EPA Science Inventory

    Over the past decade several online integrated atmospheric chemical-transport and meteorology modeling systems with varying levels of interactions among different atmospheric processes have been developed. A variety of approaches to meteorology-chemistry integration with differe...

  16. Integrated Meteorology and Chemistry Modeling: Evaluation and Research Needs

    EPA Science Inventory

    Over the past decade several online integrated atmospheric chemical-transport and meteorology modeling systems with varying levels of interactions among different atmospheric processes have been developed. A variety of approaches to meteorology-chemistry integration with differe...

  17. Temporal disaggregation of daily meteorological grid data

    NASA Astrophysics Data System (ADS)

    Vormoor, K.; Skaugen, T.

    2012-04-01

    For operational flood forecasting, the Norwegian Water Resources and Energy Administration (NVE) applies the conceptual HBV rainfall-runoff model for 117 catchments. The hydrological models are calibrated and run using an extensive meteorological grid data set providing daily temperature and precipitation data back to 1957 for entire Norway at 1x1 km grid resolution (seNorge grids). The daily temporal resolution is dictated by the resolution of historical meteorological data. However, since meteorological forecasts and runoff observations are also available at a much finer than a daily time-resolution (e.g. 6 hourly), and many hydrological extreme events happens at a temporal scale of less than daily, it is important to try to establish a historical dataset of meteorological input at a finer corresponding temporal resolution. We present a simple approach for the temporal disaggregation of the daily meteorological seNorge grids into 6-hour values by consulting a HIRLAM hindcast grid data series with an hourly time resolution and a 10x10 km grid resolution. The temporal patterns of the hindcast series are used to disaggregate the daily interpolated observations from the seNorge grids. In this way, we produce a historical grid dataset from 1958-2010 with 6-hourly temperature and precipitation for entire Norway on a 1x1 km grid resolution. For validation and to see if additional information is gained, the disaggregated data is compared with observed values from selected meteorological stations. In addition, the disaggregated data is evaluated against daily data, simply split into four fractions. The validation results indicate that additional information is indeed gained and point out the benefit of disaggregated data compared to daily data split into four. With regard to temperature, the disaggregated values show very low deviations (MAE, RMSE), and are highly correlated with observed values. Regarding precipitation, the disaggregated data shows cumulative

  18. Modeling the Effects of Meteorological Conditions on the Neutron Flux

    DTIC Science & Technology

    2017-05-22

    a statistical model that predicts environmental neutron background as a function of five meteorological variables: inverse barometric pressure...hour, a 20% variation, over five months of data collection with large variation between days. Meteorological data were collected with two commercially...the effects of the meteorological variables on neutron flux while accounting for the correlation among errors at previous time intervals. The dominant

  19. Meteorological services annual data report for 2015

    SciTech Connect

    Heiser, John; Smith, Scott

    2016-01-25

    This document presents the meteorological data collected at Brookhaven National Laboratory (BNL) by Meteorological Services (Met Services) for the calendar year 2015. The purpose is to publicize the data sets available to emergency personnel, researchers and facility operations. Met services has been collecting data at BNL since 1949. Data from 1994 to the present is available in digital format. Data is presented in monthly plots of one-minute data. This allows the reader the ability to peruse the data for trends or anomalies that may be of interest to them. Full data sets are available to BNL personnel and to a limited degree outside researchers. The full data sets allow plotting the data on expanded time scales to obtain greater details (e.g., daily solar variability, inversions, etc.).

  20. Meteorological services annual data report for 2012

    SciTech Connect

    Heiser J.; Smith, S.

    2013-02-01

    This document presents the meteorological data collected at Brookhaven National Laboratory (BNL) by Meteorological Services (Met Services) for the calendar year 2012. The purpose is to publicize the data sets available to emergency personnel, researchers and facility operations. Met services has been collecting data at BNL since 1949. Data from 1994 to the present is available in digital format. Data is presented in monthly plots of one-minute data. This allows the reader the ability to peruse the data for trends or anomalies that may be of interest to them. Full data sets are available to BNL personnel and to a limited degree outside researchers. The full data sets allow plotting the data on expanded time scales to obtain greater details (e.g., daily solar variability, inversions, etc.).

  1. Grid-based Meteorological and Crisis Applications

    NASA Astrophysics Data System (ADS)

    Hluchy, Ladislav; Bartok, Juraj; Tran, Viet; Lucny, Andrej; Gazak, Martin

    2010-05-01

    We present several applications from domain of meteorology and crisis management we developed and/or plan to develop. Particularly, we present IMS Model Suite - a complex software system designed to address the needs of accurate forecast of weather and hazardous weather phenomena, environmental pollution assessment, prediction of consequences of nuclear accident and radiological emergency. We discuss requirements on computational means and our experiences how to meet them by grid computing. The process of a pollution assessment and prediction of the consequences in case of radiological emergence results in complex data-flows and work-flows among databases, models and simulation tools (geographical databases, meteorological and dispersion models, etc.). A pollution assessment and prediction requires running of 3D meteorological model (4 nests with resolution from 50 km to 1.8 km centered on nuclear power plant site, 38 vertical levels) as well as running of the dispersion model performing the simulation of the release transport and deposition of the pollutant with respect to the numeric weather prediction data, released material description, topography, land use description and user defined simulation scenario. Several post-processing options can be selected according to particular situation (e.g. doses calculation). Another example is a forecasting of fog as one of the meteorological phenomena hazardous to the aviation as well as road traffic. It requires complicated physical model and high resolution meteorological modeling due to its dependence on local conditions (precise topography, shorelines and land use classes). An installed fog modeling system requires a 4 time nested parallelized 3D meteorological model with 1.8 km horizontal resolution and 42 levels vertically (approx. 1 million points in 3D space) to be run four times daily. The 3D model outputs and multitude of local measurements are utilized by SPMD-parallelized 1D fog model run every hour. The fog

  2. Uncertainty in dispersion forecasts using meteorological ensembles

    SciTech Connect

    Chin, H N; Leach, M J

    1999-07-12

    The usefulness of dispersion forecasts depends on proper interpretation of results. Understanding the uncertainty in model predictions and the range of possible outcomes is critical for determining the optimal course of action in response to terrorist attacks. One of the objectives for the Modeling and Prediction initiative is creating tools for emergency planning for special events such as the upcoming the Olympics. Meteorological forecasts hours to days in advance are used to estimate the dispersion at the time of the event. However, there is uncertainty in any meteorological forecast, arising from both errors in the data (both initial conditions and boundary conditions) and from errors in the model. We use ensemble forecasts to estimate the uncertainty in the forecasts and the range of possible outcomes.

  3. Meteorological Services Annual Data Report for 2014

    SciTech Connect

    Heiser, John; Smith, Scott

    2015-01-21

    This document presents the meteorological data collected at Brookhaven National Laboratory (BNL) by Meteorological Services (Met Services) for the calendar year 2014. The purpose is to publicize the data sets available to emergency personnel, researchers and facility operations. Met services has been collecting data at BNL since 1949. Data from 1994 to the present is available in digital format. Data is presented in monthly plots of one-minute data. This allows the reader the ability to peruse the data for trends or anomalies that may be of interest to them. Full data sets are available to BNL personnel and to a limited degree outside researchers. The full data sets allow plotting the data on expanded time scales to obtain greater details (e.g., daily solar variability, inversions, etc.).

  4. Naval Meteorology and Oceanography Command exhibit

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Designed to entertain while educating, StenniSphere at the John C. Stennis Space Center in Hancock County, Miss., includes informative displays and exhibits from NASA and other agencies located at Stennis, such as this one from the Naval Meteorology and Oceanography Command. Visitors can 'travel' three-dimensionally under the sea and check on the weather back home in the Weather Center. StenniSphere is open free of charge from 9 a.m. to 5 p.m. daily.

  5. Naval Meteorology and Oceanography Command exhibit entrance

    NASA Technical Reports Server (NTRS)

    2000-01-01

    StenniSphere at NASA's John C. Stennis Space Center in Hancock County, Miss., invites visitors to discover why America comes to Stennis Space Center before going into space. Designed to entertain while educating, StenniSphere includes informative displays and exhibits from NASA and other agencies located at Stennis, such as this one from the Naval Meteorology and Oceanography Command. Visitors can 'travel' three-dimensionally under the sea and check on the weather back home in the Weather Center.

  6. Polarization Diversity in Radar Meteorology: Early Developments

    DTIC Science & Technology

    1990-01-01

    polarized light , and an examination of par- meteors resulted from experimental backscattering studies ticles of various forms. of ice models by Harper... randomly oriented , oblate and prolate water ment of polarimetry in radar meteorology. and ice spheroids at 1.25, 3.2 and 10-cm wavelengths. Among the...measure of the "round- sity from horizontally oriented oblate particles contained ness" of the scatterers. Since their antenna was unable tO

  7. Meteorological Factors Affecting Evaporation Duct Height Climatologies.

    DTIC Science & Technology

    1980-07-01

    part of the regions. 25 REFERENCES Bean, B. R. and E. J. Dutton, 1967: Radio meteorology. NBS monograph 92. National Bureau of Standards, Washington...lower boundary. Radio Sci., 13, 3, p. 489. Hitney, H. V., 1975: Propagation modeling in the evaporation duct. NELC TR-1947. Naval Electronics...Laboratory Center, San Diego, CA 92152. Jeske, H., 1971. The state of radar range propagation over sea. Tropospheric radio wave propagation, part II. NATO

  8. Integrating Current Meteorological Research Through Club Fundraising

    NASA Astrophysics Data System (ADS)

    Gill, S. S.; Kauffman, C. M.

    2003-12-01

    Earth science programs whose focus is primarily an undergraduate education do not often have the funding to take students to very many conferences which could expose the student to new research as well as possible graduate programs and employment opportunities. Conferences also give the more enthusiastic and hardworking students a venue in which to present their research to the meteorological community. In addition, the California University services largely lower income counties, which make student attendance at conferences even more difficult even though the student in SW PA may be individually motivated. This issue is compounded by the fact that the Meteorology Concentration within the Earth Science department at Cal U is composed of only two full-time Professors, which limits the amount of research students can be exposed to within a classroom setting. New research ideas presented at conferences are thus an important mechanism for broadening what could be an isolated program. One way in which the meteorology program has circumvented the funding problem to a certain extent is through an active student club. With nearly 60 majors (3/4 of which are active in club activities, the meteorology club is able to execute a variety of fundraising activities. Money that is raised can then request from student services matching funds. Further money is given to clubs, which are very active not only in fundraising, but using that money for academic related activities. For the last 3 years the club budget has been in the neighborhood of \\$4500. The money has then been used to partially finance student registration and accommodation costs making conference attendance much more affordable. Normally 8-16 students attend conferences that they would otherwise not be able to attend without great expense. There are times when more than 16 students wish to attend, but travel arrangements prohibit more than 16. Moreover club money is also use to supplement student costs on a summer

  9. Tropospheric Airborne Meteorological Data Reporting (TAMDAR) Overview

    NASA Technical Reports Server (NTRS)

    Daniels, Taumi S.; Moninger, William R.; Mamrosh, Richard D.

    2008-01-01

    This paper is an overview of the Tropospheric Airborne Meteorological Data Reporting (TAMDAR) project, giving some history on the project, various applications of the atmospheric data, and future ideas and plans. As part of NASA's Aviation Safety and Security Program, the TAMDAR project developed a small low-cost sensor that collects useful meteorological data and makes them available in near real time to improve weather forecasts. This activity has been a joint effort with FAA, NOAA, universities, and industry. A tri-agency team collaborated by developing a concept of operations, determining the sensor specifications, and evaluating sensor performance as reported by Moosakhanian et. al. (2006). Under contract with Georgia Tech Research Institute, NASA worked with AirDat of Raleigh, NC to develop the sensor. The sensor is capable of measuring temperature, relative humidity, pressure, and icing. It can compute pressure altitude, indicated and true air speed, ice accretion rate, wind speed and direction, peak and average turbulence, and eddy dissipation rate. The overall development process, sensor capabilities, and performance based on ground and flight tests is reported by Daniels (2002), Daniels et. al. (2004) and by Tsoucalas et. al. (2006). An in-service evaluation of the sensor was performed called the Great Lakes Fleet Experiment (GLFE), first reported by Moninger et. al. (2004) and Mamrosh et. al. (2005). In this experiment, a Mesaba Airlines fleet was equipped to collect meteorological data over the Great Lakes region during normal revenue-producing flights.

  10. Meteorological support for anticipatory water management

    NASA Astrophysics Data System (ADS)

    Kok, C. J.; Wichers Schreur, B. G. J.; Vogelezang, D. H. P.

    2011-05-01

    Living with water is second nature to the inhabitants of the Netherlands. Managing water both as a resource and as a threat is a vital concern to the country. The responsibility for regional water management lies with the Dutch Regional Water Authorities. Their basic philosophy of a balance of safety and economic interests requires a sophisticated control and decision support system, with high quality meteorological inputs. The Royal Netherlands Meteorological Institute KNMI in conjunction with the Dutch Association of Regional Water Authorities has developed a warning system for extreme precipitation in support of anticipatory water management. Radar observations, short range deterministic forecasts and medium range ensemble predictions of precipitation are combined with risk profiles of individual water control boards in an automatic system, that warns of possible conditions outside normal control. This article describes the current operational system and presents examples of its application. A first evaluation of the possible value of this system, that essentially decouples meteorology and hydrology, is discussed, based on a first evaluation of the reliability of the precipitation forecasts. Finally, the article presents the current development of an extended system that uses combined probabilities of precipitation with wind, surge and river level forecasts to more accurately define risk conditions.

  11. Mesoscale meteorological measurements characterizing complex flows

    SciTech Connect

    Hubbe, J.M.; Allwine, K.J.

    1993-09-01

    Meteorological measurements are an integral and essential component of any emergency response system for addressing accidental releases from nuclear facilities. An important element of the US Department of Energy`s (DOE`s) Atmospheric Studies in Complex Terrain (ASCOT) program is the refinement and use of state-of-the-art meteorological instrumentation. ASCOT is currently making use of ground-based remote wind sensing instruments such as doppler acoustic sounders (sodars). These instruments are capable of continuously and reliably measuring winds up to several hundred meters above the ground, unattended. Two sodars are currently measuring the winds, as part of ASCOT`s Front Range Study, in the vicinity of DOE`s Rocky Flats Plant (RFP) near Boulder, Colorado. A brief description of ASCOT`s ongoing Front Range Study is given followed by a case study analysis that demonstrates the utility of the meteorological measurement equipment and the complexity of flow phenomena that are experienced near RFP. These complex flow phenomena can significantly influence the transport of the released material and consequently need to be identified for accurate assessments of the consequences of a release.

  12. Modeling meteorological forcing of snowcover in forests

    NASA Astrophysics Data System (ADS)

    Hellstrom, Robert Ake

    2000-11-01

    The architectural properties of a forest are known to modify significantly meteorological forcing of snowcover. Current numerical snow models utilize a wide range of vegetation representations that limit their application to particular biomes or for basic research on specialized problems. Most do not explicitly represent the combined effects of the canopy on processes of mass and energy transfer beneath the canopy. This project develops forest canopy sub-models that estimate the below-canopy solar and longwave irradiance, wind speed, and accumulation of precipitation, based on meteorological measurements above the canopy and parameters of forest architecture. The wind and solar radiation sub-model predictions were independently compared with meteorological observations at deciduous and coniferous sites in the snowbelt region of northern Michigan. The solar radiation and wind models required adjustments to match sub-canopy measurements. The primary experiment compared the simulations and measurements of snow depth for eight modified versions of the Utah Energy Balance (UEB) snow model during the 1998-99 snowcover season at the two forest sites and a near-by open site. Independent inclusion of each sub-model and a new stability scheme in the UEB model revealed significant sensitivity of modeled snow depth to stability and each of the four processes estimated by the sub-models. The original UEB model uses a simple forest canopy parameterization that does not consider precipitation interception. Comparison of the original and modified UEB models significantly improved simulations of snow depth at the open and coniferous sites, but performance was slightly worse for a leafless deciduous site. Unlike the modified model, the analysis suggests that the original model produces inconsistent results, which reduces its potential for application to different biomes. Results suggest that opposing processes of energy and mass exchange tend to moderate meteorological forcing

  13. EUMETCast: The Meteorological Data Dissemination Service

    NASA Astrophysics Data System (ADS)

    Gaertner, V. K.; Koenig, M.

    2006-05-01

    EUMETCast is EUMETSAT's broadcast system for environmental data. It utilises telecommunications satellites and the services of telecommunication providers to distribute data files using Digital Video Broadcast (DVB) standards to a wide audience located within the combined geographical coverage zones of the individual telecommunication satellites used to transmit the data. The telecommunication zones are now covering Europe, Africa, South America and parts of Asia and North America. This service has been established to provide the meteorological communities with satellite data and other meteorological products in near real-time for operational, but also research, education and training purposes. The following EUMETSAT services are currently available via EUMETCast: - Second Generation Meteosat - High Rate SEVIRI Image Data (every 15 minutes) - First Generation Meteosat - Indian Ocean Data Coverage (IODC) (every 30 minutes) - Other Geostationary Data from NOAA (GOES E/W) and JMA (MTSAT), (every 3 hours) - Data Collection and Retransmission (DCP) and Meteorological Data Dissemination (MDD) - Basic Meteorological Data (BMD) (Ku-band Europe only) - Meteorological Products (including some Satellite Application Facility products) - EUMETSAT Advanced Retransmission Service (EARS) (Ku-band Europe only) - DWDSAT (Ku-band Europe only) - VEGETATION data (C-band Africa only) Progressively during 2006 users will find an increasing amount of polar satellite data and products available on EUMETCast. As part of the extension of the EUMETCast Advanced Retransmission Service (EARS), ERS scatterometer data and NOAA satellite AVHRR data have already been introduced in early 2006. The ERS- SCAT demonstration service is a forerunner for the future pilot EARS-ASCAT service and the pilot EARS- AVHRR service will continue to expand during 2006 with the inclusion of data from additional AVHRR stations in the EARS network. The EUMETCast System will be also be used to provide dissemination of

  14. Variability of plant nitrogen and water use in a 100-m transect of a subdesertic depression of the Ebro valley (Spain) characterized by leaf δ13C and δ15N

    NASA Astrophysics Data System (ADS)

    Peñuelas, Josep; Filella, Iolanda; Terradas, Jaume

    1999-04-01

    We studied carbon and nitrogen isotopic composition ( δ13C and δ15N) in sunlit leaves of four dominant species ( Rosmarinus officinalis L., Stipa parviflora L., Juniperus thurifera L. and Pinus halepensis L.) in a characteristic gradient of water and nitrogen availability produced by relief and micrometeorology in a subdesertic valley of central-NE Spain. Minimum values of δ13C were found at the foothills, and higher values were found both in the valley and on the top of the hill where water availability was lower. However, different species (functional groups) presented different δ13C values in the same valley. The lowest values of δ15N were found on the top of the hill and the highest ones in the valley, where N losses would thus be higher. In general, when growing together, trees showed 2 % higher values for δ13C as well as for δ15N than shrubs and grasses. The specific responses show that they use different available water and nitrogen resources within small catchments. For this ecosystem type, C and N isotope analyses are sensitive enough to resolve fine spatial and functional patterns even over a very short distance (100 m), where topography generates great gradients in microclimate, hydrology, soil physical conditions, vegetation and biogeochemistry.

  15. Enhanced therapeutic anti-inflammatory effect of betamethasone upon topical administration with low frequency, low intensity (20 kHz, 100 mW/cm2) ultrasound exposure on carrageenan-induced arthritis in mice model

    PubMed Central

    Cohen, Gadi; Natsheh, Hiba; Sunny, Youhan; Bawiec, Christopher R.; Touitou, Elka; Lerman, Melissa A.; Lazarovici, Philip; Lewin, Peter A.

    2015-01-01

    The purpose of this work was to investigate whether low frequency, low intensity (LFLI, 20 kHz, <100 mW/cm2, spatial-peak, temporal-peak) ultrasound (US), delivered by a light-weight (<100g), tether-free, fully wearable, battery powered applicator is capable of reducing inflammation in a mouse model of Rheumatoid Arthritis (RA). The therapeutic, acute, anti-inflammatory effect was estimated by the relative swelling induced in mice hind limb paws. In an independent, indirect approach, the inflammation was bio-imaged by measuring glycolytic activity with near infrared labeled 2-deoxy-glucose (2DG). The outcome of the experiments indicated that the combination of US exposure with topical application of 0.1% w/w betamethasone gel, exhibited statistically significant (p<0.05) enhanced anti-inflammatory properties in comparison with the drug or US treatment alone. The present study underscores the potential benefits of LFLI US assisted drug delivery. However, the proof of concept presented indicates the need for additional experiments to systematically evaluate and optimize the potential of, and the conditions for, safe, LFLI ultrasound promoted non-invasive drug delivery. PMID:26003010

  16. A new microtelesensor chip for meteorology

    SciTech Connect

    Manges, W.W.; Smith, S.F.; Britton, C.L.

    1997-03-04

    A new technology exploiting commercial, micro-sensors developed for atomic force microscopy offers breakthrough capability in high accuracy wireless sensors for meteorological measurements. Historically sensors used in air-borne and buoy-based platforms required compromises in performance to achieve the low-weight and low power requirements of the mobile platforms. Recent innovations in microelectromechanical systems (MEMS) provided opportunities to reduce size, weight, and power requirements but each sensor required a specially fabricated device with inherent calibration, repeatability, and traceability problems. This new approach allows identical sensors to be fabricated on the same semiconductor substrate as the conditioning electronics and the telemetry components. Exploiting semiconductor fabrication technology offers the potential to reduce fabrication costs to a few dollars per component. Sensing humidity, temperature and pressure have been demonstrated with plans for meteorological deployment scheduled for later in 1997. Cost, reliability, size, power consumption, and accuracy are key factors in the deployment of advanced meteorological sensor arrays. ORNL is actively integrating the sensing technologies, electronic processing, and telemetry that build a family of sensors with multiple-input capabilities. One of the key elements in ORNL`s sensor technology is coated microcantilever arrays, which form a powerful universal platform for multiple physical and chemical measurements. Telemetry is also being developed to add robust spread-spectrum data transmission capabilities to the necessary signal processing electronics. In collaboration with the NOAA Atmospheric Turbulence and Diffusion Lab, a chip-level temperature/humidity module with onboard telemetry is slated for demonstration later in 1997. Future additions would include sensors for atmospheric pressure, wind velocity, turbulence measurement, and radiometry.

  17. Influence of meteorological parameters on air quality

    NASA Astrophysics Data System (ADS)

    Gioda, Adriana; Ventura, Luciana; Lima, Igor; Luna, Aderval

    2013-04-01

    The physical characterization representative of ambient air particle concentrations is becoming a topic of great interest for urban air quality monitoring and human exposure assessment. Human exposure to particulate matter of less than 2.5 µm in diameter (PM2.5) can result in a variety of adverse health impacts, including reduced lung function and premature mortality. Numerous studies have shown that fine airborne inhalable particulate matter particles (PM2.5) are more dangerous to human health than coarse particles, e.g. PM10. This study investigates meteorological parameter impacts on PM2.5 concentrations in the atmosphere of Rio de Janeiro, Brazil. Samples were collected during 24 h every six days using a high-volume sampler from six sites in the metropolitan area of Rio de Janeiro from January to December 2011. The particles mass was determined by Gravimetry. Meteorological parameters were obtained from automatic stations near the sampling sites. The average PM2.5 concentrations ranged from 9 to 32 µg/m3 for all sites, exceeding the suggested annual limit of WHO (10 µg/m3). The relationship between the effects of temperature, relative humidity, wind speed and direction and particle concentration was examined using a Principal Component Analysis (PCA) for the different sites and seasons. The results for each sampling point and season presented different principal component numbers, varying from 2 to 4, and extremely different relationships with the parameters. This clearly shows that changes in meteorological conditions exert a marked influence on air quality.

  18. Impact of mesoscale meteorological processes on anomalous radar propagation conditions over the northern Adriatic area

    NASA Astrophysics Data System (ADS)

    Telišman Prtenjak, Maja; Horvat, Igor; Tomažić, Igor; Kvakić, Marko; Viher, Mladen; Grisogono, Branko

    2015-09-01

    The impact of mesoscale structures on the occurrence of anomalous propagation (AP) conditions for radio waves, including ducts, superrefractive, and subrefractive conditions, was studied. The chosen meteorological situations are the bora wind and the sporadic sea/land breeze (SB/LB) during three selected cases over a large portion of the northern Adriatic. For this purpose, we used available radio soundings and numerical mesoscale model simulations (of real cases and their sensitivity tests) at a horizontal resolution of 1.5 km and 81 vertical levels. The model simulated the occurrences of AP conditions satisfactorily, although their intensities and frequency were underestimated at times. Certain difficulties appeared in reproducing the vertical profile of the modified refractive index, which is mainly dependent on the accuracy of the modeled humidity. The spatial distributions of summer AP conditions reveal that the surface layer above the sea (roughly between 30 and 100 m asl) is often covered by superrefractive conditions and ducts. The SB is highly associated with the formations of AP conditions: (i) in the first 100 m asl, where trapping and superrefractive conditions form because of the advection of cold and moist air, and (ii) inside the transition layer between the SB body and the elevated return flow in the form of subrefractive conditions. When deep convection occurs, all three types of AP conditions are caused by the downdraft beneath the cumulonimbus cloud base in its mature phase that creates smaller but marked pools of cold and dry air. The bora wind usually creates a pattern of AP conditions associated with the hydraulic jump and influences distribution of AP conditions over the sea surface.

  19. Arctic hydrology and meteorology. Annual report

    SciTech Connect

    Kane, D.L.

    1990-12-31

    During 1990, we have continued our meteorological and hydrologic data collection in support of our process-oriented research. The six years of data collected to data is unique in its scope and continuity in a North Hemisphere Arctic setting. This valuable data base has allowed us to further our understanding of the interconnections and interactions between the atmosphere/hydrosphere/biosphere/lithosphere. The increased understanding of the heat and mass transfer processes has allowed us to increase our model-oriented research efforts.

  20. Defense meteorological satellite measurements of total ozone

    NASA Technical Reports Server (NTRS)

    Lovill, J. E.; Ellis, J. S.; Luther, F. M.; Sullivan, T. J.; Weichel, R. L.

    1982-01-01

    A multichannel filter radiometer (MFR) on Defense Meteorological Satellites (DMS) that measured total ozone on a global-scale from March 1977 - February 1980 is described. The total ozone data measured by the MFR were compared with total ozone data taken by surfaced-based Dobson spectrophotometers. When comparisons were made for five months, the Dobson spectrophotometer measured 2-5% more total ozone than the MFR. Comparisons between the Dobson spectrophotometer and the MFR showed a reduced RMS difference as the comparisons were made at closer proximity. A Northern Hemisphere total ozone distribution obtained from MFR data is presented.

  1. Satellite remote sensing of meteorological parameters

    NASA Technical Reports Server (NTRS)

    Chahine, M. T.

    1983-01-01

    Recent advances in remote atmospheric sensing are briefly reviewed, with particular attention given to vertical temperature and humidity profiles, cloud structure, and wind. Present capabilities and projections of future improvements in accuracy and resolution are given for the Microwave Sounding Unit, High Resolution Infrared Sounder, Defence Meteorological Satellite Project, and VISSR Atmospheric Sounder. It is noted that future sounding systems will require (1) high spectral resolution; (2) multispectral observations of the atmosphere and the surface in order to correct for most of the geophysical processes contaminating the outgoing radiance; and (3) a control algorithm capable of using information from multispectral channels to identify those parameters that have errors larger than a specified value.

  2. DOE candidate site meteorological measurement program

    SciTech Connect

    Renne, D. S.; Sandusky, W. F.

    1980-01-01

    In March 1976, DOE issued an RFP to acquire, on a competitive basis, a group of candidate sites, proposed by utilities interested in the field testing program. A total of 17 candidate sites were selected from the 64 proposals submitted in response to the RFP. From these sites, five have been chosen thus far to receive turbines for field testing. This paper discusses the meteorological measurement activities at these sites and provides details of the measurement program as it exists in late 1979. In addition, the paper briefly discusses the directions this program will take in the near future, and the options interested electric service organizations have for participating in the program.

  3. ARM mobile facility surface meteorology (MET) handbook.

    SciTech Connect

    Ritsche, M. T.; Environmental Science Division

    2006-04-01

    The Atmospheric Radiation Measurement (ARM) Mobile Facility Surface Meteorology station (MET) uses mainly conventional in situ sensors to obtain 1-min statistics of surface wind speed, wind direction, air temperature, relative humidity (RH), barometric pressure, and rainrate. Additional sensors may be added to or removed from the base set of sensors depending upon the deployment location, climate regime, or programmatic needs. In addition, sensor types may change depending upon the climate regime of the deployment. These changes/additions are noted in Section 3.

  4. Conformal map transformations for meteorological modelers

    NASA Astrophysics Data System (ADS)

    Taylor, Albion D.

    1997-02-01

    This paper describes a utility function library which meteorological computer modelers can incorporate in their programs to provide the mathematical transformations of conformai maps that their models may need. In addition to coordinate transformations, routines supply projection-dependent terms of the governing equations, wind component conversions, and rotation axis orientation components. The routines seamlessly handle the transitions from Polar Stereographic through Lambert Conformai to Mercator projections. Initialization routines allow concurrent handling of multiple projections, and allow a simple method of defining computational model grids to the software.

  5. Meteorologic parameters and migraine headache: ED study.

    PubMed

    Yilmaz, Mustafa; Gurger, Mehtap; Atescelik, Metin; Yildiz, Mustafa; Gurbuz, Sukru

    2015-03-01

    Migraine is common in society and is one of the primary causes of chronic headache with episodes. In this study, we aimed to determine the role of meteorologic parameters and moon phase on triggering migraine attacks and effects on the number of patients presenting to the emergency department with migraine headaches. Patients admitted to the emergency department due to a migraine headache during a 1-year period were studied retrospectively. Correlation between moon phases, pressure, temperature, humidity, wind speed values of meteorologic observation, and recording station located in the same city and daily number of patients was analyzed. A total of 3491 patients, of whom 72% (n = 2518) were women, were enrolled. The average daily number of patients was 9.6 ± 4 (3-24). A statistically significant correlation was found between the number of daily patients and daily maximum temperature (P = .005), mean temperature (P = .013), minimum temperature (P = .041), and daily temperature change (P = .003). In addition, a negative correlation was found between the daily number of patients presenting to the emergency department and daily relative humidity (in percentage; P = .031). No significant relationship was found between moon phases and the number of patients. We have determined that the number of patients admitted to the emergency department with migraine headache has increased with high temperature and low humidity and that there is no relationship between the number of patients and moon phases. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. The solar eclipse: a natural meteorological experiment.

    PubMed

    Harrison, R Giles; Hanna, Edward

    2016-09-28

    A solar eclipse provides a well-characterized reduction in solar radiation, of calculable amount and duration. This captivating natural astronomical phenomenon is ideally suited to science outreach activities, but the predictability of the change in solar radiation also provides unusual conditions for assessing the atmospheric response to a known stimulus. Modern automatic observing networks used for weather forecasting and atmospheric research have dense spatial coverage, so the quantitative meteorological responses to an eclipse can now be evaluated with excellent space and time resolution. Numerical models representing the atmosphere at high spatial resolution can also be used to predict eclipse-related changes and interpret the observations. Combining the models with measurements yields the elements of a controlled atmospheric experiment on a regional scale (10-1000 km), which is almost impossible to achieve by other means. This modern approach to 'eclipse meteorology' as identified here can ultimately improve weather prediction models and be used to plan for transient reductions in renewable electricity generation. During the 20 March 2015 eclipse, UK electrical energy demand increased by about 3 GWh (11 TJ) or about 4%, alongside reductions in the wind and photovoltaic electrical energy generation of 1.5 GWh (5.5 TJ).This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'.

  7. Geostationary Meteorological Satellite-5 (GMS-5)

    NASA Technical Reports Server (NTRS)

    Horii, M.

    1991-01-01

    The Geostationary Meteorological Satellite (GMS-5), which is being developed by the National Space Development Agency of Japan (NASDA), is the fifth geostationary, spin stabilized, weather satellite. Its purposes are to observe cataclysmic events such as hurricanes, typhoons, and regional weather phenomena; to relay meteorological data from surface collection points to the Data Processing Center in Japan; and to transmit processing imaging data for facsimile reproduction. The satellite will be launched from the Tanegashima Space Center (TaSC) in Japan by a type H-II launch vehicle. The Deep Space Network (DSN) will support the transfer and drift orbit mission phases. The coverage will consist of the 26-m antennas as prime and the 34-m antenna at Madrid as backup support for launch through drift orbit. Maximum support will consist of two 8-hour tracks per station for a seven day period, plus 23 days of contingency support from all complexes. Information is given in tabular form for DSN support, frequency assignments, telemetry, command and tracking station responsibility.

  8. Viking-1 meteorological measurements - First impressions

    NASA Technical Reports Server (NTRS)

    Hess, S. L.; Henry, R. M.; Leovy, C. B.; Tillman, J. E.; Ryan, J. A.

    1976-01-01

    A preliminary evaluation is given of in situ meteorological measurements made by Viking 1 on Mars. The data reported show that: (1) the atmosphere has approximate volume mixing ratios of 1.5% argon, 3% nitrogen, and 95% carbon dioxide; (2) the diurnal temperature range is large and regular, with a sunrise minimum of about 188 K and a midafternoon maximum near 244 K; (3) air and ground temperatures coincide quite closely during the night, but ground temperature exceeds air temperature near midday by as much as 25 C; (4) the winds exhibit a marked diurnal cycle; and (5) a large diurnal pressure variation with an afternoon minimum and an early-morning maximum parallels the wind pattern. The variations are explained in terms of familiar meteorological processes. It is suggested that latent heat is unlikely to play an important role on Mars because no evidence has been observed for traveling synoptic-scale disturbances such as those that occur in the terrestrial tropics.

  9. AERCOARE: An overwater meteorological preprocessor for AERMOD.

    PubMed

    Wong, Herman; Elleman, Rob; Wolvovsky, Eric; Richmond, Ken; Paumier, James

    2016-11-01

    AERCOARE is a meteorological data preprocessor for the American Meteorological Society and U.S Environmental Protection Agency (EPA) Regulatory Model (AERMOD). AERCOARE includes algorithms developed during the Coupled-Ocean Atmosphere Response Experiment (COARE) to predict surface energy fluxes and stability from routine overwater measurements. The COARE algorithm is described and the implementation in AERCOARE is presented. Model performance for the combined AERCOARE-AERMOD modeling approach was evaluated against tracer measurements from four overwater field studies. Relatively better model performance was found when lateral turbulence measurements were available and when several key input variables to AERMOD were constrained. Namely, requiring the mixed layer height to be greater than 25 m and not allowing the Monin Obukhov length to be less than 5 m improved model performance in low wind speed stable conditions. Several options for low wind speed dispersion in AERMOD also affected the model performance results. Model performance for the combined AERCOARE-AERMOD modeling approach was found to be comparable to the current EPA regulatory Offshore Coastal Model (OCD) for the same tracer studies. AERCOARE-AERMOD predictions were also compared to simulations using the California Puff-Advection Model (CALPUFF) that also includes the COARE algorithm. Many model performance measures were found to be similar, but CALPUFF had significantly less scatter and better performance for one of the four field studies. For many offshore regulatory applications, the combined AERCOARE-AERMOD modeling approach was found to be a viable alternative to OCD the currently recommended model.

  10. Meteorological aspects of elves and jets

    NASA Astrophysics Data System (ADS)

    Chen, A. B.; Tsai, L.; Lee, L.; Chou, J.; Su, H.; Hsu, R.; Wu, C.; Lin, P.; Mende, S. B.; Frey, H. U.; Takahashi, Y.; Lee, L.

    2008-12-01

    Evidence for ocean-atmosphere-ionosphere coupling is revealed in recent studies of ISUAL transient luminous events (TLEs) [Chen et al., 2008]. The results suggest that the meteorological systems below the stratosphere, primarily driven by sea surface temperature and solar radiation, play essential roles in inducing TLEs between the cloud top and the lower ionosphere. Through analyzing the ISUAL-recorded TLEs since July 2004, we realize that different types of TLEs are likely associated with different meteorological systems. For example, the elves are mainly located above Intertropical Convergence Zone (ITCZ) and South Pacific Convergence Zone (SPCZ); elves also are strongly correlated with the atmospheric updraft and the precipitation. The fall/winter elves distribute along storm tracks poleward of 30 degrees north or south, implying their association with extratropical cyclones. Numerous blue jets and gigantic jets are recorded around tropical cyclones by ISUAL. Several recent examples indicate that blue jets and lightning often occur in rapid successions in the strong convective regions associated with the spiral rainbands of typhoons or hurricanes. Illustrative data and some of the probable mechanisms will be presented in the conference.

  11. American Meteorological Society Embraces Space Weather

    NASA Astrophysics Data System (ADS)

    McCoy, Robert; Fisher, Genene

    2011-02-01

    Eight years ago, the American Meteorological Society (AMS) tentatively reached out to the space weather community by scheduling a day-and-a-half Space Weather Symposium (SWS) at its Annual Meeting. That symposium included briefings from operational and research agencies involved with space weather as well as a variety of talks targeting areas of interest common to meteorology and space weather. Topics included data assimilation, connections between the lower and upper atmosphere, new space weather sensors and models, and the economic and social impacts of space weather. That highly successful symposium led to a follow-on SWS every year at the AMS Annual Meeting. These meetings, combined with the release of an AMS policy statement on space weather (see http://www.ametsoc.org/policy/2008spaceweather_amsstatement.html and Fisher [2008]) and related studies in the AMS Policy Program, led the AMS Council to vote on making the space weather discipline a regular part of the society by creating a new Space Weather Committee for the Scientific and Technological Activities Commission (STAC) (http://www.ametsoc.org/stacpges/CommitteeDisplay/CommitteeDisplay.aspx?CC=SW). This is AMS's first new STAC committee in 20 years.

  12. Pre- and post-processing of hydro-meteorological ensembles for the Norwegian flood forecasting system in 145 basins.

    NASA Astrophysics Data System (ADS)

    Jahr Hegdahl, Trine; Steinsland, Ingelin; Merete Tallaksen, Lena; Engeland, Kolbjørn

    2016-04-01

    (-0.6°C/100m). The streamflow ensembles are post-processed to improve sharpness and generate calibrated forecasts. The skill of combinations of pre- and post-processed hydro-meteorological ensembles are further analyzed focusing on high streamflow and floods.

  13. Relationship Between Final Performance and Block Times with the Traditional and the New Starting Platforms with A Back Plate in International Swimming Championship 50-M and 100-M Freestyle Events

    PubMed Central

    Garcia-Hermoso, Antonio; Escalante, Yolanda; Arellano, Raul; Navarro, Fernando; Domínguez, Ana M.; Saavedra, Jose M.

    2013-01-01

    The purpose of this study was to investigate the association between block time and final performance for each sex in 50-m and 100-m individual freestyle, distinguishing between classification (1st to 3rd, 4th to 8th, 9th to 16th) and type of starting platform (old and new) in international competitions. Twenty-six international competitions covering a 13-year period (2000-2012) were analysed retrospectively. The data corresponded to a total of 1657 swimmers’ competition histories. A two-way ANOVA (sex x classification) was performed for each event and starting platform with the Bonferroni post-hoc test, and another two-way ANOVA for sex and starting platform (sex x starting platform). Pearson’s simple correlation coefficient was used to determine correlations between the block time and the final performance. Finally, a simple linear regression analysis was done between the final time and the block time for each sex and platform. The men had shorter starting block times than the women in both events and from both platforms. For 50-m event, medalists had shorter block times than semi- finalists with the old starting platforms. Block times were directly related to performance with the old starting platforms. With the new starting platforms, however, the relationship was inverse, notably in the women’s 50-m event. The block time was related for final performance in the men’s 50- m event with the old starting platform, but with the new platform it was critical only for the women’s 50-m event. Key Points The men had shorter block times than the women in both events and with both platforms. For both distances, the swimmers had shorter block times in their starts from the new starting platform with a back plate than with the old platform. For the 50-m event with the old starting platform, the medalists had shorter block times than the semi-finalists. The new starting platform block time was only determinant in the women’s 50-m event. In order to improve

  14. Relationship between final performance and block times with the traditional and the new starting platforms with a back plate in international swimming championship 50-m and 100-m freestyle events.

    PubMed

    Garcia-Hermoso, Antonio; Escalante, Yolanda; Arellano, Raul; Navarro, Fernando; Domínguez, Ana M; Saavedra, Jose M

    2013-01-01

    The purpose of this study was to investigate the association between block time and final performance for each sex in 50-m and 100-m individual freestyle, distinguishing between classification (1st to 3rd, 4th to 8th, 9th to 16th) and type of starting platform (old and new) in international competitions. Twenty-six international competitions covering a 13-year period (2000-2012) were analysed retrospectively. The data corresponded to a total of 1657 swimmers' competition histories. A two-way ANOVA (sex x classification) was performed for each event and starting platform with the Bonferroni post-hoc test, and another two-way ANOVA for sex and starting platform (sex x starting platform). Pearson's simple correlation coefficient was used to determine correlations between the block time and the final performance. Finally, a simple linear regression analysis was done between the final time and the block time for each sex and platform. The men had shorter starting block times than the women in both events and from both platforms. For 50-m event, medalists had shorter block times than semi- finalists with the old starting platforms. Block times were directly related to performance with the old starting platforms. With the new starting platforms, however, the relationship was inverse, notably in the women's 50-m event. The block time was related for final performance in the men's 50- m event with the old starting platform, but with the new platform it was critical only for the women's 50-m event. Key PointsThe men had shorter block times than the women in both events and with both platforms.For both distances, the swimmers had shorter block times in their starts from the new starting platform with a back plate than with the old platform.For the 50-m event with the old starting platform, the medalists had shorter block times than the semi-finalists.The new starting platform block time was only determinant in the women's 50-m event.In order to improve performance, specific

  15. Compendium of Training Facilities for Meteorology and Operational Hydrology

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Information is provided on training courses available in about 96 countries in applied meteorology (including agrometeorology, air pollution meteorology, cloud physics, weather modification, and satellite meteorology) and hydrology. The location is given as well as the nature and language of instruction. Course duration, starting dates, entrance qualifications, and tuition fees are listed. A condensed syllabus is provided. Information on accomodation, and the number of students admitted to the courses is included.

  16. Satellite Meteorology Education & Training Resources from COMET

    NASA Astrophysics Data System (ADS)

    Abshire, W. E.; Dills, P. N.; Weingroff, M.; Lee, T. F.

    2012-12-01

    The COMET® Program (www.comet.ucar.edu) receives funding from NOAA NESDIS as well as EUMETSAT and the Meteorological Service of Canada to support education and training in satellite meteorology. These partnerships enable COMET to create educational materials of global interest on geostationary and polar-orbiting remote sensing platforms. These materials focus on the capabilities and applications of current and next-generation satellites and their relevance to operational forecasters and other user communities. By partnering with experts from the Naval Research Laboratory, NOAA-NESDIS and its Cooperative Institutes, Meteorological Service of Canada, EUMETSAT, and other user communities, COMET stimulates greater use of satellite data observations and products. This presentation provides an overview of COMET's recent satellite education efforts in the area of polar orbiting satellites. COMET has a new module on Suomi NPP, which describes the satellite system and discusses the improvements that it is bringing to forecasting, numerical weather prediction, and environmental monitoring. COMET has also published an updated version of its module on the VIIRS instrument. "Imaging with VIIRS: A Convergence of Technologies and Experience, 2nd Edition" covers the instrument's enhanced capabilities by examining the systems that contributed to its development. Special attention is paid to the Day/Night Visible channel as VIIRS is the first instrument on a civilian satellite to image atmospheric and terrestrial features with and without moonlight. An upcoming module will exclusively focus on nighttime imaging with the VIIRS Day/Night Band (DNB). "Applications of the VIIRS Day-Night Band" will introduce the capabilities of DNB imagery to a wide audience ranging from forecasters and emergency managers to wildfire fighters and oceanographers. DNB products will be compared to traditional satellite products made from infrared data, including the "fog" product. Users will learn how DNB

  17. Urban meteorological modelling for nuclear emergency preparedness.

    PubMed

    Baklanov, Alexander; Sørensen, Jens Havskov; Hoe, Steen Cordt; Amstrup, Bjarne

    2006-01-01

    The main objectives of the current EU project "Integrated Systems for Forecasting Urban Meteorology, Air Pollution and Population Exposure" (FUMAPEX) are the improvement of meteorological forecasts for urban areas, the connection of numerical weather prediction (NWP) models to urban air pollution and population dose models, the building of improved urban air quality information and forecasting systems, and their application in cities in various European climates. In addition to the forecast of the worst air-pollution episodes in large cities, the potential use of improved weather forecasts for nuclear emergency management in urban areas, in case of hazardous releases from nuclear accidents or terror acts, is considered. Such use of NWP data is tested for the Copenhagen metropolitan area and the Øresund region. The Danish Meteorological Institute (DMI) is running an experimental version of the HIRLAM NWP model over Zealand including the Copenhagen metropolitan area with a horizontal resolution of 1.4km, thus approaching the city-scale. This involves 1-km resolution physiographic data with implications for the urban surface parameters, e.g. surface fluxes, roughness length and albedo. For the city of Copenhagen, the enhanced high-resolution NWP forecasting will be provided to demonstrate the improved dispersion forecasting capabilities of the Danish nuclear emergency preparedness decision-support system, the Accident Reporting and Guidance Operational System (ARGOS), used by the Danish Emergency Management Agency (DEMA). Recently, ARGOS has been extended with a capability of real-time calculation of regional-scale atmospheric dispersion of radioactive material from accidental releases. This is effectuated through on-line interfacing with the Danish Emergency Response Model of the Atmosphere (DERMA), which is run at DMI. For local-scale modelling of atmospheric dispersion, ARGOS utilises the Local-Scale Model Chain (LSMC), which makes use of high-resolution DMI

  18. Ecology-meteorology workshops. Final report

    SciTech Connect

    Not Available

    1982-03-01

    Three ecology-meteorology workshops were held at the University of Michigan Biological Station in summers 1975, 1976, and 1977. The purpose of the workshops was to identify and focus attention on the common areas of research that require the cooperative efforts of ecologists and meteorologists. It was felt that these two respected groups of scientists have been quite isolated from each other, each underestimating the contribution and complexity of the other discipline. Yet the complex environments they investigate are strikingly interactive. To fully understand these relationships, it was intended to promote more communication between the two disciplines through the format of workshops in a secluded environment free from outside distractions conductive to easy communication.

  19. Advanced Meteorological Temperature Sounder (AMTS) study

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The results of a system definition study (theoretical) for an Advanced Meteorological Temperature Sounder (AMTS) is described. From the data the atmospheric temperature and humidity profiles can be determined over the entire earth's surface with a spatial resolution of 45 km. x 45 km; amounts and type of cloud cover as well as surface temperatures of the earth are also determined. The major purpose of the study was to determine the feasibility of cooling twenty-eight detectors to the 80-90 Kelvin region by means of a radiative cooler. Other related considerations were achieving high signal-to-noise ratios, maximizing optical throughput through the grating spectrometer, and reducing preamplifier noise. A detailed optical design of an f/5 Ebert-Fastie spectrometer was carried out to verify that image quality is adequate; field lenses near the spectrometer focal plane were designed to image the grating onto the smallest size detectors for each channel.

  20. An introduction to dynamic meteorology, third edition

    SciTech Connect

    Holton, J.R.

    1992-01-01

    About 13 years have elapsed since Holton's widely respected second edition of An Introduction to Dynamic Meteorology was published. During that time, a number of significant andvances have been made in understanding atmospheric phenomena, ranging from the introduction of the [bold Q]-vector formalism for diagnosing vertical motions in extratropical weather systems to the role of sea surface temperature anomalies in low-frequency variability. Holton's new edition reflects the advances made in these areas and others, while providing a systematic treatment of the fundamentals of atmospheric motion. The third edition contains about 50% new material, including many new figures, while much of the previous material has been revised and reorganized. The reader is expected to have a sound understanding of the basic principles of classical physics ad elementary vector calculus. The text balances theory and observations, which are reinforced with several problems at the end of each chapter.

  1. ARM Surface Meteorology Systems Instrument Handbook

    SciTech Connect

    Ritsche, MT

    2011-03-08

    The ARM Surface Meteorology Systems consist mainly of conventional in situ sensors that obtain a defined “core” set of measurements. The core set of measurements is: Barometric Pressure (kPa), Temperature (°C), Relative Humidity (%), Arithmetic-Averaged Wind Speed (m/s), Vector-Averaged Wind Speed (m/s), and Vector-Averaged Wind Direction (deg). The sensors that collect the core variables are mounted at the standard heights defined for each variable: • Winds: 10 meters • Temperature and Relative Humidity: 2 meters • Barometric Pressure: 1 meter. Depending upon the geographical location, different models and types of sensors may be used to measure the core variables due to the conditions experienced at those locations. Most sites have additional sensors that measure other variables that are unique to that site or are well suited for the climate of the location but not at others.

  2. Meteorological radar facility (MRF) slot conductance investigations

    NASA Technical Reports Server (NTRS)

    Ratkevich, A. E.

    1977-01-01

    A preliminary meteorological radar facility (MRF) array design was completed in support of the slot conductance measurement program. Three different slot measurement techniques were evaluated. The selection of the probe comparison measurement technique was selected as the principal experimental method with the impedance measurement technique chosen to measure a few higher conductance slots to be used as reference slots. The impedance of 43 slots in 0.9 x 0.4 inch standard waveguide and of 40 slots in 0.835 x 0.4 inch waveguide was measured. Also, impedance measurements were made of a few slots using image planes to simulate mutual coupling effects. The measured and theoretical conductance, susceptance, and radiation phase data are presented in graphic form as a function of slot displacement for constant slot length, and of slot length for constant slot displacement. It is concluded that the proposed MRF array design approach is a feasible one.

  3. Effects of meteorological conditions on spore plumes.

    PubMed

    Burch, M; Levetin, E

    2002-08-01

    Fungal spores are an ever-present component of the atmosphere, and have long been known to trigger asthma and hay fever symptoms in sensitive individuals. The atmosphere around Tulsa has been monitored for airborne spores and pollen with Burkard spore traps at several sampling stations. This study involved the examination of the hourly spore concentrations on days that had average daily concentrations near 50,000 spores/m(3) or greater. Hourly concentrations of Cladosporium, Alternaria, Epicoccum, Curvularia, Pithomyces, Drechslera, smut spores, ascospores, basidiospores, other, and total spores were determined on 4 days at three sites and then correlated with hourly meteorological data including temperature, rainfall, wind speed, dew point, air pressure, and wind direction. On each of these days there was a spore plume, a phenomenon in which spore concentrations increased dramatically over a very short period of time. Spore plumes generally occurred near midday, and concentrations were seen to increase from lows around 20,000 total spores/m(3) to highs over 170,000 total spores/m(3) in 2 h. Multiple regression analysis of the data indicated that increases in temperature, dew point, and air pressure correlated with the increase in spore concentrations, but no single weather variable predicted the appearance of a spore plume. The proper combination of changes in these meteorological parameters that result in a spore plume may be due to the changing weather conditions associated with thunderstorms, as on 3 of the 4 days when spore plumes occurred there were thunderstorms later that evening. The occurrence of spore plumes may have clinical significance, because other studies have shown that sensitization to certain spore types can occur during exposure to high spore concentrations.

  4. Uncertainty in Dispersion Forecasting Using Meteorological Ensembles

    SciTech Connect

    Leach, M J; Chin, H-N

    2000-03-23

    A approach for quantifying meteorological uncertainty is via development of an ensemble of forecasts from slightly perturbed initial conditions (Sivillo et al., 1997) to predict the time evolution of the probability density function of atmospheric variables (Mullen and Baurnhefner, 1994). We create an ensemble of forecasts by varying the initial (and boundary) conditions for the COAMPS meteorological model. The variations in the initial conditions must be consistent with analysis error. Optimally, the range of initial conditions would encompass the ''true'' atmospheric state, but which is never actually known. Our method for creating varying initial conditions is to use different global data sets to derive the necessary data. We use two models from the National Weather Service (the AVN and ETA models) and one from the Navy (the NOGAPS model). In addition to those data sets we perturb the data from those models, using a normally distributed random number at each grid point in the COAMPS model. We perturb the (u,v) wind components, the temperature and the moisture. The size of the perturbation is determined by the variability within that variable field. The forecasts are run for 48 hours. We then use the output from the COAMPS model to drive a Lagrangian dispersion model (LODI) for simulated releases. The results from a simulated release from hour 33 are shown in Figure 1. The center of the domain is Oakland airport and the basic on-shore wind is from the southwest. In three of the simulations, the plume goes over the top of the hills to the northeast, and in the other three the plume hugs the coastline and goes around those hills The two solutions reflect a dependence on the Froude number, a ratio of the Kinetic energy to Potential energy. Higher Kinetic energy flow (Higher Froude number) flow goes over the top of the mountain, while lower Kinetic energy flow goes around the hills.

  5. A Mars Micro-Meteorological Station Mission

    NASA Technical Reports Server (NTRS)

    Merrihew, Steven C.; Haberle, Robert; Lemke, Lawrence G.

    1995-01-01

    The Mars Micro-Meteorological Station (Micro-Met) Mission is designed to provide the global surface pressure measurements required to help characterize the martian general circulation and climate system. Measurements of surface pressure distributed both spatially and temporally, coupled with simultaneous measurements from orbit, will enable the determination of the general circulation, structure and driving factors of the martian atmosphere as well as the seasonal CO2 cycle. The influence of these atmospheric factors will in turn provide insight into the overall martian climate system. With the science objective defined as the long term (at least one Mars year) globally distributed measurement of surface atmospheric pressure, a straightforward, near term and low cost network mission has been designed. The Micro-Met mission utilizes a unique silicon micro-machined pressure sensor coupled with a robust and lightweight surface station to deliver to Mars 16 Micro-Met stations via a Med-Lite launch vehicle. The battery powered Micro-Met surface stations are designed to autonomously measure, record and transmit the science data via a UHF relay satellite. Entry, descent and landing is provided by an aeroshell with a new lightweight ceramic thermal protection system, a parachute and an impact absorbing structure. The robust lander is capable of surviving the landing loads imposed by the high altitude landing sites required in a global network. By trading the ability to make many measurements at a single site for the ability to make a single measurement at several sites, the Micro-Met mission design satisfies the requirement for truly global meteorological science.

  6. Effects of meteorological conditions on spore plumes

    NASA Astrophysics Data System (ADS)

    Burch, M.; Levetin, E.

    2002-05-01

    Fungal spores are an ever-present component of the atmosphere, and have long been known to trigger asthma and hay fever symptoms in sensitive individuals. The atmosphere around Tulsa has been monitored for airborne spores and pollen with Burkard spore traps at several sampling stations. This study involved the examination of the hourly spore concentrations on days that had average daily concentrations near 50,000 spores/m3 or greater. Hourly concentrations of Cladosporium, Alternaria, Epicoccum, Curvularia, Pithomyces, Drechslera, smut spores, ascospores, basidiospores, other, and total spores were determined on 4 days at three sites and then correlated with hourly meteorological data including temperature, rainfall, wind speed, dew point, air pressure, and wind direction. On each of these days there was a spore plume, a phenomenon in which spore concentrations increased dramatically over a very short period of time. Spore plumes generally occurred near midday, and concentrations were seen to increase from lows around 20,000 total spores/m3 to highs over 170,000 total spores/m3 in 2 h. Multiple regression analysis of the data indicated that increases in temperature, dew point, and air pressure correlated with the increase in spore concentrations, but no single weather variable predicted the appearance of a spore plume. The proper combination of changes in these meteorological parameters that result in a spore plume may be due to the changing weather conditions associated with thunderstorms, as on 3 of the 4 days when spore plumes occurred there were thunderstorms later that evening. The occurrence of spore plumes may have clinical significance, because other studies have shown that sensitization to certain spore types can occur during exposure to high spore concentrations.

  7. A Mars Micro-Meteorological Station Mission

    NASA Technical Reports Server (NTRS)

    Merrihew, Steven C.; Haberle, Robert; Lemke, Lawrence G.

    1995-01-01

    The Mars Micro-Meteorological Station (Micro-Met) Mission is designed to provide the global surface pressure measurements required to help characterize the martian general circulation and climate system. Measurements of surface pressure distributed both spatially and temporally, coupled with simultaneous measurements from orbit, will enable the determination of the general circulation, structure and driving factors of the martian atmosphere as well as the seasonal CO2 cycle. The influence of these atmospheric factors will in turn provide insight into the overall martian climate system. With the science objective defined as the long term (at least one Mars year) globally distributed measurement of surface atmospheric pressure, a straightforward, near term and low cost network mission has been designed. The Micro-Met mission utilizes a unique silicon micro-machined pressure sensor coupled with a robust and lightweight surface station to deliver to Mars 16 Micro-Met stations via a Med-Lite launch vehicle. The battery powered Micro-Met surface stations are designed to autonomously measure, record and transmit the science data via a UHF relay satellite. Entry, descent and landing is provided by an aeroshell with a new lightweight ceramic thermal protection system, a parachute and an impact absorbing structure. The robust lander is capable of surviving the landing loads imposed by the high altitude landing sites required in a global network. By trading the ability to make many measurements at a single site for the ability to make a single measurement at several sites, the Micro-Met mission design satisfies the requirement for truly global meteorological science.

  8. Simulations of cm-wavelength Sunyaev-Zel'dovich galaxy cluster and point source blind sky surveys and predictions for the RT32/OCRA-f and the Hevelius 100-m radio telescope

    SciTech Connect

    Lew, Bartosz; Kus, Andrzej; Birkinshaw, Mark; Wilkinson, Peter E-mail: Mark.Birkinshaw@bristol.ac.uk E-mail: ajk@astro.uni.torun.pl

    2015-02-01

    We investigate the effectiveness of blind surveys for radio sources and galaxy cluster thermal Sunyaev-Zel'dovich effects (TSZEs) using the four-pair, beam-switched OCRA-f radiometer on the 32-m radio telescope in Poland. The predictions are based on mock maps that include the cosmic microwave background, TSZEs from hydrodynamical simulations of large scale structure formation, and unresolved radio sources. We validate the mock maps against observational data, and examine the limitations imposed by simplified physics. We estimate the effects of source clustering towards galaxy clusters from NVSS source counts around Planck-selected cluster candidates, and include appropriate correlations in our mock maps. The study allows us to quantify the effects of halo line-of-sight alignments, source confusion, and telescope angular resolution on the detections of TSZEs. We perform a similar analysis for the planned 100-m Hevelius radio telescope (RTH) equipped with a 49-beam radio camera and operating at frequencies up to 22 GHz.We find that RT32/OCRA-f will be suitable for small-field blind radio source surveys, and will detect 33{sup +17}{sub −11} new radio sources brighter than 0.87 mJy at 30 GHz in a 1 deg{sup 2} field at > 5σ CL during a one-year, non-continuous, observing campaign, taking account of Polish weather conditions. It is unlikely that any galaxy cluster will be detected at 3σ CL in such a survey. A 60-deg{sup 2} survey, with field coverage of 2{sup 2} beams per pixel, at 15 GHz with the RTH, would find <1.5 galaxy clusters per year brighter than 60 μJy (at 3σ CL), and would detect about 3.4 × 10{sup 4} point sources brighter than 1 mJy at 5σ CL, with confusion causing flux density errors ∼< 2% (20%) in 68% (95%) of the detected sources.A primary goal of the planned RTH will be a wide-area (π sr) radio source survey at 15 GHz. This survey will detect nearly 3 × 10{sup 5} radio sources at 5σ CL down to 1.3 mJy, and tens of galaxy clusters

  9. Meteorological and Wave Measurements for Improving Meteorological and Air Quality Modeling

    NASA Astrophysics Data System (ADS)

    Hare, J.; MacDonald, C.; Ray, A.; Fairall, C. W.; Pezoa, S.; Gibson, B.; Huang, C. H.

    2010-12-01

    A unique collaboration between corporate, government, and university researchers have teamed up to develop a marine environmental observations program on an offshore platform in the Gulf of Mexico. The meteorological and oceanographic sensors have been deployed for an extended period (12-24 months) on a Chevron service platform (90.5W, 29N) to collect boundary layer and sea surface data sufficient to improve dispersion modeling in and around the Gulf of Mexico. This task has recently been provided significant import, given the large industrial presence in the Gulf, the large regional population, and the recognized need for precise and accurate dispersion forecasts. Observations include marine boundary layer winds, height, and temperature, sea surface temperature and current, wave height, downwelling solar and infrared radiation, air-sea momentum and heat fluxes, and mean meteorological parameters. We will present a summary of the instrument deployment, show the initial time series of the observations, and provide context for the experimental outcomes.

  10. Green River air quality model development: meteorological and tracer data, July/August 1982 field study in Brush Valley, Colorado

    SciTech Connect

    Whiteman, C.D.; Lee, R.N.; Orgill, M.M.; Zak, B.D.

    1984-06-01

    Meteorological and atmospheric tracer studies were conducted during a 3-week period in July and August of 1982 in the Brush Creek Valley of northwestern Colorado. The objective of the field experiments was to obtain data to evaluate a model, called VALMET, developed at PNL to predict dispersion of air pollutants released from an elevated stack located within a deep mountain valley in the post-sunrise temperature inversion breakup period. Three tracer experiments were conducted in the valley during the 2-week period. In these experiments, sulfur hexafluoride (SF/sub 6/) was released from a height of approximately 100 m, beginning before sunrise and continuing until the nocturnal down-valley winds reversed several hours after sunrise. Dispersion of the sulfur hexafluoride after release was evaluated by measuring SF/sub 6/ concentrations in ambient air samples taken from sampling devices operated within the valley up to about 8 km down valley from the source. An instrumented research aircraft was also used to measure concentrations in and above the valley. Tracer samples were collected using a network of radio-controlled bag sampling stations, two manually operated gas chromatographs, a continuous SF/sub 6/ monitor, and a vertical SF/sub 6/ profiler. In addition, basic meteorological data were collected during the tracer experiments. Frequent profiles of vertical wind and temperature structure were obtained with tethered balloons operated at the release site and at a site 7.7 km down the valley from the release site. 10 references, 63 figures, 50 tables.

  11. Meteorological Station, interior with collapsed roof showing remnant wooden equipment ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Meteorological Station, interior with collapsed roof showing remnant wooden equipment switch box on east wall; view southeast - Fort McKinley, Meteorological Station, East side of Weymouth Way, approximately 225 feet south of Cove Side Drive, Great Diamond Island, Portland, Cumberland County, ME

  12. Formative Evaluation of a Web-Based Course in Meteorology.

    ERIC Educational Resources Information Center

    Phelps, Julia; Reynolds, Ross

    1999-01-01

    Describes the formative-evaluation process for the EuroMET (European Meteorological Education and Training) project, Web-Based university courses in meteorology that were created to address the education and training needs of professional meteorologists and students throughout Europe. Usability and interactive and multimedia elements are…

  13. 10 CFR 960.5-2-3 - Meteorology.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Meteorology. 960.5-2-3 Section 960.5-2-3 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Preclosure Guidelines Preclosure Radiological Safety § 960.5-2-3 Meteorology. (a) Qualifying...

  14. Meteorological conditions affecting the Freeman Lake (Idaho) fire

    Treesearch

    George M. Jemison

    1932-01-01

    Measurements of meteorological conditions prevailing during the rapid spread of forest fires are greatly needed so that when their recurrence seems probable, fire-weather forecasters may issue warnings of the danger. Such determinations also can be used by forest protective agencies which operate meteorological stations to guide their own action in the distribution of...

  15. 10 CFR 960.5-2-3 - Meteorology.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Meteorology. 960.5-2-3 Section 960.5-2-3 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Preclosure Guidelines Preclosure Radiological Safety § 960.5-2-3 Meteorology. (a) Qualifying...

  16. Compendium of Lecture Notes for Training Class III Meteorological Personnel.

    ERIC Educational Resources Information Center

    Retallack, B. J.

    This compendium of lecture notes provides a course of study for persons who may be involved in a variety of specialized meteorological tasks. The course is considered to be advanced and assumes students have had introductory experiences in meteorology and earth science (covered in a similar compendium). The material is presented in seven units…

  17. 10 CFR 960.5-2-3 - Meteorology.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Meteorology. 960.5-2-3 Section 960.5-2-3 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Preclosure Guidelines Preclosure Radiological Safety § 960.5-2-3 Meteorology. (a) Qualifying...

  18. 10 CFR 960.5-2-3 - Meteorology.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Meteorology. 960.5-2-3 Section 960.5-2-3 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Preclosure Guidelines Preclosure Radiological Safety § 960.5-2-3 Meteorology. (a) Qualifying...

  19. 10 CFR 960.5-2-3 - Meteorology.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Meteorology. 960.5-2-3 Section 960.5-2-3 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Preclosure Guidelines Preclosure Radiological Safety § 960.5-2-3 Meteorology. (a) Qualifying...

  20. Formative Evaluation of a Web-Based Course in Meteorology.

    ERIC Educational Resources Information Center

    Phelps, Julia; Reynolds, Ross

    1999-01-01

    Describes the formative-evaluation process for the EuroMET (European Meteorological Education and Training) project, Web-Based university courses in meteorology that were created to address the education and training needs of professional meteorologists and students throughout Europe. Usability and interactive and multimedia elements are…

  1. Compendium of Lecture Notes for Training Class III Meteorological Personnel.

    ERIC Educational Resources Information Center

    Retallack, B. J.

    This compendium of lecture notes provides a course of study for persons who may be involved in a variety of specialized meteorological tasks. The course is considered to be advanced and assumes students have had introductory experiences in meteorology and earth science (covered in a similar compendium). The material is presented in seven units…

  2. Meteorological-physical Limitations of Icing in the Atmosphere

    NASA Technical Reports Server (NTRS)

    Findeisen, W

    1939-01-01

    The icing hazard can, in most cases, be avoided by correct execution of the flights according to meteorological viewpoints and by meteorologically correct navigation (horizontal and, above all, vertical). The zones of icing hazard are usually narrowly confined. Their location can be ascertained with, in most cases, sufficient accuracy before take-off.

  3. The Practice of English Teaching in the Meteorological Correspondence Education

    ERIC Educational Resources Information Center

    Miao, Shaohui

    2010-01-01

    The correspondence education is the important part of the national education, and its education objects give priority to working staffs. The objects of the meteorological correspondence education are working staffs in the meteorological departments, and most of these students have engaged in the operation work for a long time, keeping at a…

  4. Brookhaven National Laboratory meteorological services instrument calibration plan and procedures

    SciTech Connect

    Heiser .

    2013-02-16

    This document describes the Meteorological Services (Met Services) Calibration and Maintenance Schedule and Procedures, The purpose is to establish the frequency and mechanism for the calibration and maintenance of the network of meteorological instrumentation operated by Met Services. The goal is to maintain the network in a manner that will result in accurate, precise and reliable readings from the instrumentation.

  5. Applications of Meteorological Tower Data at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Altino, Karen M.; Barbre, Robert E., Jr.

    2009-01-01

    Members of the National Aeronautics and Space Administration (NASA) design and operation communities rely on meteorological information collected at Kennedy Space Center (KSC), located near Cape Canaveral, Florida, to correctly apply the ambient environment to various tasks. The Natural Environments Branch/EV44, located at Marshall Space Flight Center (MSFC) in Huntsville, Alabama, is responsible for providing its NASA customers with meteorological data using various climatological data sources including balloons, surface stations, aircraft, hindcast models, and meteorological towers. Of the many resources available within the KSC region, meteorological towers are preferred for near-surface applications because they record data at regular, frequent intervals over an extensive period of record at a single location. This paper discusses the uses of data measured at several different meteorological towers for a common period of record and how the data can be applied to various engineering decisions for the new Constellation Program Ares and Orion space vehicles.

  6. Development of worst case meteorology criteria. Final report

    SciTech Connect

    Nokes, W.A.; Benson, P.E.

    1985-11-01

    A meteorological severity index (MSI) representing the relationship between meteorological parameters that contribute to worst-case carbon monoxide concentrations near roadways is described. The MSI is based on sensitivity studies of the California Lines Source Dispersion Model, CALINE4. Meteorological data collected at several monitoring sites throughout California are described. Probabilistic analysis of the monitoring data (stratified by geography and time-of-day) is combined with the MSI to develop worst-case meteorology inputs for estimating 1-hour CO levels using CALINE4. Guidelines are presented to help CALINE4 users develop or estimate an appropriate persistence factor for a project location. The probabilistic method described in the report can be used to establish new worst-case meteorology criteria in the event of changes in the number of exceedances allowed by the National Ambient Air Quality Standards. The variety of locations studied in California should make results of the study usable by other states.

  7. An Operational Environmental Meteorology Forecasting system for Eastern China

    NASA Astrophysics Data System (ADS)

    Zhou, Guangqiang; Xu, Jianming; Xie, Ying; Wu, Jianbin; Yu, Zhongqi; Chang, Luyu

    2015-04-01

    Since 2012 an operational environmental meteorology forecasting system was setup to provide daily forecasts of environmental meteorology pollutants for the Eastern China region. Initialized with 0.5 degree GFS meteorological fields, the system uses the WRF-Chem model to provide daily 96-hour forecasts. Model forecasts for meteorological fields and pollutants concentrations (e.g. PM2.5 and O3) as well as haze conditions are displayed through an open platform. Verifications of the model results in terms of statistical and graphical products are also displayed at the website. Currently, the modeling system provides strong support for the daily AQI forecasting of Shanghai, and it also provides guidance products for other meteorological agencies in the Eastern China region. Here the modeling system design will be presented, together with long-term verification results for PM2.5 and O3forecasts.

  8. The data collection component of the Hanford Meteorology Monitoring Program

    SciTech Connect

    Glantz, C.S.; Islam, M.M.

    1988-09-01

    An intensive program of meteorological monitoring is in place at the US Department of Energy's Hanford Site. The Hanford Meteorology Monitoring Program involves the measurement, observation, and storage of various meteorological data; continuous monitoring of regional weather conditions by a staff of professional meteorologists; and around-the-clock forecasting of weather conditions for the Hanford Site. The objective of this report is to document the data collection component of the program. In this report, each meteorological monitoring site is discussed in detail. Each site's location and instrumentation are described and photographs are presented. The methods for processing and communicating data to the Hanford Meteorology Station are also discussed. Finally, the procedures followed to maintain and calibrate these instruments are presented. 2 refs., 83 figs., 15 tabs.

  9. PROMET - The Journal of Meteorological Education issued by DWD

    NASA Astrophysics Data System (ADS)

    Rapp, J.

    2009-09-01

    Promet is published by the German Meteorological Service (DWD) since 1971 to improve meteorologists and weather forecasters skills. The journal comprises mainly contributions to topics like biometeorology, the NAO, or meteorology and insurance business. The science-based articles should illustrate the special issue in an understandable and transparent way. In addition, the journal contains portraits of other national meteorological services and university departments, book reviews, list of university degrees, and other individual papers. Promet is published only in German language, but included English titles and abstracts. The journal is peer-reviewed by renowned external scientists. It is distributed free of charge by DWD to the own meteorological staff. On the other hand, DMG (the German Meteorological Society) hand it out to all members of the society. The current issues deal with "Modern procedures of weather forecasting in DWD” and "E-Learning in Meteorology”.

  10. Autonomous Aerial Sensors for Wind Power Meteorology

    NASA Astrophysics Data System (ADS)

    Giebel, Gregor; Schmidt Paulsen, Uwe; Reuder, Joachim; La Cour-Harbo, Anders; Thomsen, Carsten; Bange, Jens; Buschmann, Marco

    2010-05-01

    This poster describes a new approach for measurements in wind power meteorology using small unmanned flying platforms. During a week of flying a lighter-than-air vehicle, two small electrically powered aeroplanes and a larger helicopter at the Risø test station at Høvsøre, we will compare wind speed measurements with fixed mast and LIDAR measurements, investigate optimal flight patterns for each measurement task, and measure other interesting meteorological features like the air-sea boundary in the vicinity of the wind farm. In order to prepare the measurement campaign, a workshop is held, soliciting input from various communities. Large-scale wind farms, especially offshore, need an optimisation between installed wind power density and the losses in the wind farm due to wake effects between the turbines. While the wake structure behind single wind turbines onshore is fairly well understood, there are different problems offshore, thought to be due mainly to the low turbulence. Good measurements of the wake and wake structure are not easy to come by, as the use of a met mast is static and expensive, while the use of remote sensing instruments either needs significant access to the turbine to mount an instrument, or is complicated to use on a ship due to the ship's own movement. In any case, a good LIDAR or SODAR will cost many tens of thousands of euros. Another current problem in wind energy is the coming generation of wind turbines in the 10-12 MW class, with tip heights of over 200 m. Very few measurement masts exist to verify our knowledge of atmospheric physics - all that is known is that the boundary layer description we used so far is not valid any more. Here, automated Unmanned Aerial Vehicles (UAVs) could be used as either an extension of current high masts or to build a network of very high ‘masts' in a region of complex terrain or coastal flow conditions. In comparison to a multitude of high masts, UAVs could be quite cost-effective. In order to test

  11. Meteorological Modeling of a Houston Ozone Episode

    NASA Astrophysics Data System (ADS)

    Nielsen-Gammon, J. W.

    2002-12-01

    The State of Texas requires accurate meteorological simulations of a Houston-Galveston ozone episode to drive their photochemical model for regulatory purposes. The episode of greatest interest occurred during TexAQS-2000, so there is an unusually large amount of data available for driving and validating the simulation. The key meteorological process to simulate is the sea breeze. In the Houston area, this sea breeze takes two forms, both of which typically occur on a summertime day. The first form is the sea breeze front, which forms along the coast of the Gulf of Mexico and Galveston Bay if the midday winds are light or offshore and travels inland during the afternoon and early evening. The second form is an inertia-gravity wave response of unusually large amplitude and horizontal scale, due to Houston's proximity to 30 N. It manifests itself as a steady rotation of the wind, superimposed on the background flow, with an amplitude of 2-3 m/s. The MM5 (v3.4) model characteristics were tailored to simulate this phenomenon. Over 20 vertical levels were located in the lowest 300 mb. The soil moisture availability was adjusted according to rainfall prior to and during the event so that the model simulated a reasonably accurate land-sea and urban-rural temperature contrast. A planetary boundary layer scheme was chosen to produce lower atmospheric structures similar to those observed in special soundings. To further increase the agreement between the model and observed fields, data from five profilers and one Doppler lidar were assimilated into the simulation. Assimilation parameters were chosen to provide a large impact on the large-scale, slowly-varying winds while allowing the smaller-scale sea breeze front and other such phenomena to evolve according to the internal dynamics of the model. The assimilation was essential for compelling the model to capture a nighttime low-level jet that was present during part of the episode and which the unassimilated model runs were

  12. The solar eclipse: a natural meteorological experiment

    PubMed Central

    2016-01-01

    A solar eclipse provides a well-characterized reduction in solar radiation, of calculable amount and duration. This captivating natural astronomical phenomenon is ideally suited to science outreach activities, but the predictability of the change in solar radiation also provides unusual conditions for assessing the atmospheric response to a known stimulus. Modern automatic observing networks used for weather forecasting and atmospheric research have dense spatial coverage, so the quantitative meteorological responses to an eclipse can now be evaluated with excellent space and time resolution. Numerical models representing the atmosphere at high spatial resolution can also be used to predict eclipse-related changes and interpret the observations. Combining the models with measurements yields the elements of a controlled atmospheric experiment on a regional scale (10–1000 km), which is almost impossible to achieve by other means. This modern approach to ‘eclipse meteorology’ as identified here can ultimately improve weather prediction models and be used to plan for transient reductions in renewable electricity generation. During the 20 March 2015 eclipse, UK electrical energy demand increased by about 3 GWh (11 TJ) or about 4%, alongside reductions in the wind and photovoltaic electrical energy generation of 1.5 GWh (5.5 TJ). This article is part of the themed issue ‘Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse’. PMID:27550768

  13. Sea-air boundary meteorological sensor

    NASA Astrophysics Data System (ADS)

    Barbosa, Jose G.

    2015-05-01

    The atmospheric environment can significantly affect radio frequency and optical propagation. In the RF spectrum refraction and ducting can degrade or enhance communications and radar coverage. Platforms in or beneath refractive boundaries can exploit the benefits or suffer the effects of the atmospheric boundary layers. Evaporative ducts and surface-base ducts are of most concern for ocean surface platforms and evaporative ducts are almost always present along the sea-air interface. The atmospheric environment also degrades electro-optical systems resolution and visibility. The atmospheric environment has been proven not to be uniform and under heterogeneous conditions substantial propagation errors may be present for large distances from homogeneous models. An accurate and portable atmospheric sensor to profile the vertical index of refraction is needed for mission planning, post analysis, and in-situ performance assessment. The meteorological instrument used in conjunction with a radio frequency and electro-optical propagation prediction tactical decision aid tool would give military platforms, in real time, the ability to make assessments on communication systems propagation ranges, radar detection and vulnerability ranges, satellite communications vulnerability, laser range finder performance, and imaging system performance predictions. Raman lidar has been shown to be capable of measuring the required atmospheric parameters needed to profile the atmospheric environment. The atmospheric profile could then be used as input to a tactical decision aid tool to make propagation predictions.

  14. Noctilucent Clouds and Corresponding Meteorological Conditions

    NASA Technical Reports Server (NTRS)

    Schmidlin, F. J.; Goldberg, R. A.

    2000-01-01

    Temperature measurements obtained using the passive falling sphere technique in 1991, 1993, and again in 1999 are being used to study the relationship between the neutral atmosphere and Noctilucent Clouds (NLC) The earlier NLC studies provided useful information on the behavior of the neutral atmosphere. The recent study program, the Distribution and Role of Particles in the Polar Summer Mesosphere (DROPPS) produced additional significant information of the neutral atmosphere and Noctilucent Cloud (NLC) association. Temperature lapse rates from seven rocket observations that were generally monatonic indicated changes at the mesopause during the NLC event of 5 July. Between 5 July, 2313 UTC and 6 July 0209 UTC, the temperature lapse rate between about 85 and 92 km was different and the altitude of the minimum temperature changed by 5 km. Furthermore, change in wind direction and speed, although not yet fully analyzed, may be associated with the change of the temperature structure, possibly due to advection. Comparisons are made between the meteorological conditions during the NLC events of 1991, 1993, and 1999.

  15. Challenges in Arid-Land Meteorology

    NASA Astrophysics Data System (ADS)

    Warner, T. T.

    2005-12-01

    A fundamental challenge in desert meteorology involves quantifying the various components of the water cycle for the coupled land-atmospheric system. Important issues include defining the fraction of precipitated water that actually reaches the ground, and, of the water that does reach the surface, how much is partitioned among evaporation, runoff to reservoirs, retention near the surface in substrates for use by vegetation, and percolation to the water table. Because monsoon rainfall is often a significant source of water in the hydrologic cycle in arid lands, understanding its inter-annual variability and improving its predictability are challenges. In addition, there are questions about how continued anthropogenic modification of the landscape will influence local weather processes and climate, in terms of changes due to agricultural conversion (including reversion away from agriculture as water tables drop), the urban conversion of prairie grassland and desert vegetation to asphalt and trees, and the trans-basin diversion of water. Predicting the elevation from the surface and the transport of natural and anthropogenic aerosols is also important in terms of their affect on the local and global radiation budget and climate, downwind effects on human health, and local and remote cloud processes. Lastly, large substrate and vegetation heterogeneities, frequently very complex orography, and extreme diurnal cycles present challenges in understanding and modeling land-atmosphere interaction and boundary-layer processes.

  16. Study of spacecraft direct readout meteorological systems

    NASA Technical Reports Server (NTRS)

    Bartlett, R.; Elam, W.; Hoedemaker, R.

    1973-01-01

    Characteristics are defined of the next generation direct readout meteorological satellite system with particular application to Tiros N. Both space and ground systems are included. The recommended space system is composed of four geosynchronous satellites and two low altitude satellites in sun-synchronous orbit. The goesynchronous satellites transmit to direct readout ground stations via a shared S-band link, relayed FOFAX satellite cloud cover pictures (visible and infrared) and weather charts (WEFAX). Basic sensor data is transmitted to regional Data Utilization Stations via the same S-band link. Basic sensor data consists of 0.5 n.m. sub-point resolution data in the 0.55 - 0.7 micron spectral region, and 4.0 n.m. resolution data in the 10.5 - 12.6 micron spectral region. The two low altitude satellites in sun-synchronous orbit provide data to direct readout ground stations via a 137 MHz link, a 400 Mhz link, and an S-band link.

  17. Arctic hydrology and meteorology. Annual report

    SciTech Connect

    Kane, D.L.

    1989-12-31

    To date, five years of hydrologic and meteorologic data have been collected at Imnavait Creek near Toolik Lake, Alaska. This is the most complete set of field data of this type collected in the Arctic of North America. These data have been used in process-oriented research to increase our understanding of atmosphere/hydrosphere/biosphere/lithosphere interactions. Basically, we are monitoring heat and mass transfer between various spheres to quantify rates. These could be rates of mass movement such as hillslope flow or rates of heat transfer for active layer thawing or combined heat and mass processes such as evapotranspiration. We have utilized a conceptual model to predict hydrologic processes. To test the success of this model, we are comparing our predicted rates of runoff and snowmelt to measured valves. We have also used a surface energy model to simulate active layer temperatures. The final step in this modeling effort to date was to predict what impact climatic warming would have on active layer thicknesses and how this will influence the hydrology of our research watershed by examining several streambeds.

  18. Savannah River Site Annual Meteorology Report 2003

    SciTech Connect

    HUNTER, CHARLESH.

    2004-04-30

    Summaries of meteorological observations collected at the Savannah River Site (SRS) in 2003 reveal a year that was unusually cool and wet. The annual rainfall of 61.2 inches was the third highest of all the years in a period of record that began in 1952. Higher amounts were recorded only in 1964 (73.5 in) and 1971 (68.2 in). Rainfall of 0.01 inch or more occurred on 119 days during the year. Furthermore, the annual average temperature of 62.2 degrees Fahrenheit was the coldest of any year in an available record that dates to 1964. Cool and wet conditions were most pronounced in the spring and summer months. Unusually cold weather also occurred in January and December. The coldest temperature for the year was 12.5 degrees Fahrenheit (Jan 24) and the warmest temperature was 92.4 degrees Fahrenheit (Aug 27). There were no significant occurrences of severe weather (ice/snow, tornado, sustained high wind) during the year. The heavy rain that occurred on April 7 (3.5 inches) was due to an active stationary front over the area and strong southwesterly wind aloft. The remnants of Tropical Storm Bill produced 2.36 inches of rain on July 1. Hurricane Isabelle, which struck the North Carolina coast mid September, did not have a significant affect on the SRS. A thunderstorm on May 3 produced a surface (4-meter) wind gust of 41.7 miles per hour.

  19. BOREAS HYD-3 Subcanopy Meteorological Measurements

    NASA Technical Reports Server (NTRS)

    Hardy, Janet P.; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Davis, Robert E.; Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Hydrology (HYD)-3 team collected several data sets related to the hydrology of forested areas. This data set includes measurements of wind speed and direction; air temperature; relative humidity; and canopy, trunk, and snow surface temperatures within three forest types. The data were collected in the southern study area/Old Jack Pine (SSA-OJP) (1994), and SSA-OBS (Old Black Spruce), and SSA-OA (Old Aspen) (1996). Measurements were taken for three days in 1994 and four days at each site in 1996. These measurements were intended to be short term to allow the relationship between subcanopy measurements and those collected above the forest canopy to be determined. The subcanopy estimates of wind speed were used in a snow melt model to help predict the timing of snow ablation. The data are available in tabular ASCII files. The subcanopy meteorological measurement data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  20. European meteorological data: contribution to research, development, and policy support

    NASA Astrophysics Data System (ADS)

    Biavetti, Irene; Karetsos, Sotiris; Ceglar, Andrej; Toreti, Andrea; Panagos, Panos

    2014-08-01

    The Joint Research Centre of the European Commission has developed Interpolated Meteorological Datasets available on a regular 25x25km grid both to the scientific community and the general public. Among others, the Interpolated Meteorological Datasets include daily maximum/minimum temperature, cumulated daily precipitation, evapotranspiration and wind speed. These datasets can be accessed through a web interface after a simple registration procedure. The Interpolated Meteorological Datasets also serve the Crop Growth Monitoring System (CGMS) at European level. The temporal coverage of the datasets is more than 30 years and the spatial coverage includes EU Member States, neighboring European countries, and the Mediterranean countries. The meteorological data are highly relevant for the development, implementation and assessment of a number of European Union (EU) policy areas: agriculture, soil protection, environment, agriculture, food security, energy, climate change. An online user survey has been carried out in order to assess the impact of the Interpolated Meteorological Datasets on research developments. More than 70% of the users have used the meteorological datasets for research purposes and more than 50% of the users have used those sources as main input for their models. The usefulness of the data scored more than 70% and it is interesting to note that around 25% of the users have published their scientific outputs based on the Interpolated Meteorological Datasets. Finally, the user feedback focuses mostly on improving the data distribution process as well as the visibility of the web platform.

  1. On the early history of the Finnish Meteorological Institute

    NASA Astrophysics Data System (ADS)

    Nevanlinna, H.

    2014-03-01

    This article is a review of the foundation (in 1838) and later developments of the Helsinki (Finland) magnetic and meteorological observatory, today the Finnish Meteorological Institute (FMI). The main focus of the study is in the early history of the FMI up to the beginning of the 20th century. The first director of the observatory was Physics Professor Johan Jakob Nervander (1805-1848). He was a famous person of the Finnish scientific, academic and cultural community in the early decades of the 19th century. Finland was an autonomously part of the Russian Empire from 1809 to 1917, but the observatory remained organizationally under the University of Helsinki, independent of Russian scientific institutions, and funded by the Finnish Government. Throughout the late-19th century the Meteorological Institute was responsible of nationwide meteorological, hydrological and marine observations and research. The observatory was transferred to the Finnish Society of Sciences and Letters under the name the Central Meteorological Institute in 1881. The focus of the work carried out in the Institute was changed gradually towards meteorology. Magnetic measurements were still continued but in a lower level of importance. The culmination of Finnish geophysical achievements in the 19th century was the participation to the International Polar Year programme in 1882-1883 by setting up a full-scale meteorological and magnetic observatory in Sodankylä, Lapland.

  2. An overview of a regional meteorology warning system

    NASA Astrophysics Data System (ADS)

    Gaztelumendi, S.; Egaña, J.; Otxoa-de-Alda, K.; Hernandez, R.; Aranda, J.; Anitua, P.

    2012-08-01

    In this work we present a regional meteorology warning system, particularly the operational weather warning system used by the Basque Meteorology Agency (Euskalmet) for Basque Country. System considers different meteorological phenomena capable of generate warnings, and is based on combined thresholds criteria depending on particular weather event and area of territory where is applied. In this work we describe the most significant aspects related with the warning event definition and the warning bulletin. Conclusions from comparison with the former system (prior to 2009) and feedback from different users are presented.

  3. Saskatchewan Forest Fire Control Centre Surface Meteorological Data

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Funk, Barry; Strub, Richard

    2000-01-01

    The Saskatchewan Forest Fire Control Centre (SFFCC) provided surface meteorological data to BOREAS from its archive. This data set contains hourly surface meteorological data from 18 of the Meteorological stations located across Saskatchewan. Included in these data are parameters of date, time, temperature, relative humidity, wind direction, wind speed, and precipitation. Temporally, the data cover the period of May through September of 1994 and 1995. The data are provided in comma-delimited ASCII files, and are classified as AFM-Staff data. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  4. Evolutionary Forecast Engines for Solar Meteorology

    NASA Astrophysics Data System (ADS)

    Coimbra, C. F.

    2012-12-01

    A detailed comparison of non-stationary regression and stochastic learning methods based on k-Nearest Neighbor (kNN), Artificial Neural Networks (ANN) and Genetic Algorithm (GA) approaches is carried out in order to develop high-fidelity solar forecast engines for several time horizons of interest. A hybrid GA/ANN method emerges as the most robust stochastic learning candidate. The GA/ANN approach In general the following decisions need to be made when creating an ANN-based solar forecast model: the ANN architecture: number of layers, numbers of neurons per layer; the preprocessing scheme; the fraction and distribution between training and testing data, and the meteorological and radiometric inputs. ANNs are very well suited to handle multivariate forecasting models due to their overall flexibility and nonlinear pattern recognition abilities. However, the forecasting skill of ANNs depends on a new set of parameters to be optimized within the context of the forecast model, which is the selection of input variables that most directly impact the fidelity of the forecasts. In a data rich scenario where irradiation, meteorological, and cloud cover data are available, it is not always evident which variables to include in the model a priori. New variables can also arise from data preprocessing such as smoothing or spectral decomposition. One way to avoid time-consuming trial-and-error approaches that have limited chance to result in optimal ANN topology and input selection is to couple the ANN with some optimization algorithm that scans the solution space and "evolves" the ANN structure. Genetic Algorithms (GAs) are well suited for this task. Results and Discussion The models built upon the historical data of 2009 and 2010 are applied to the 2011 data without modifications or retraining. We consider 3 solar variability seasons or periods, which are subsets of the total error evaluation data set. The 3 periods are defined based on the solar variability study as: - a high

  5. Meteorological phenomena in Western classical orchestral music

    NASA Astrophysics Data System (ADS)

    Williams, P. D.; Aplin, K. L.

    2012-12-01

    The creative output of composers, writers, and artists is often influenced by their surroundings. To give a literary example, it has been claimed recently that some of the characters in Oliver Twist and A Christmas Carol were based on real-life people who lived near Charles Dickens in London. Of course, an important part of what we see and hear is not only the people with whom we interact, but also our geophysical surroundings. Of all the geophysical phenomena to influence us, the weather is arguably the most significant, because we are exposed to it directly and daily. The weather was a great source of inspiration for Monet, Constable, and Turner, who are known for their scientifically accurate paintings of the skies. But to what extent does weather inspire composers? The authors of this presentation, who are atmospheric scientists by day but amateur classical musicians by night, have been contemplating this question. We have built a systematic musical database, which has allowed us to catalogue and analyze the frequencies with which weather is depicted in a sample of classical orchestral music. The depictions vary from explicit mimicry using traditional and specialized orchestral instruments, through to subtle suggestions. We have found that composers are generally influenced by their own environment in the type of weather they choose to represent. As befits the national stereotype, British composers seem disproportionately keen to depict the UK's variable weather patterns and stormy coastline. Reference: Aplin KL and Williams PD (2011) Meteorological phenomena in Western classical orchestral music. Weather, 66(11), pp 300-306. doi:10.1002/wea.765

  6. EVALUATION OF METEOROLOGICAL ALERT CHAIN IN CASTILLA Y LEÓN (SPAIN): How can the meteorological risk managers help researchers?

    NASA Astrophysics Data System (ADS)

    López, Laura; Guerrero-Higueras, Ángel Manuel; Sánchez, José Luis; Matía, Pedro; Ortiz de Galisteo, José Pablo; Rodríguez, Vicente; Lorente, José Manuel; Merino, Andrés; Hermida, Lucía; García-Ortega, Eduardo; Fernández-Manso, Oscar

    2013-04-01

    Evaluating the meteorological alert chain, or, how information is transmitted from the meteorological forecasters to the final users, passing through risk managers, is a useful tool that benefits all the links of the chain, especially the meteorology researchers and forecasters. In fact, the risk managers can help significantly to improve meteorological forecasts in different ways. Firstly, by pointing out the most appropriate type of meteorological format, and its characteristics when representing the meteorological information, consequently improving the interpretation of the already-existing forecasts. Secondly, by pointing out the specific predictive needs in their workplaces related to the type of significant meteorological parameters, temporal or spatial range necessary, meteorological products "custom-made" for each type of risk manager, etc. In order to carry out an evaluation of the alert chain in Castilla y León, we opted for the creation of a Panel of Experts made up of personnel specialized in risk management (Responsible for Protection Civil, Responsible for Alert Services and Hydrological Planning of Hydrographical Confederations, Responsible for highway maintenance, and management of fires, fundamentally). In creating this panel, a total of twenty online questions were evaluated, and the majority of the questions were multiple choice or open-ended. Some of the results show how the risk managers think that it would be interesting, or very interesting, to carry out environmental educational campaigns about the meteorological risks in Castilla y León. Another result is the elevated importance that the risk managers provide to the observation data in real-time (real-time of wind, lightning, relative humidity, combined indices of risk of avalanches, snowslides, index of fires due to convective activity, etc.) Acknowledgements The authors would like to thank the Junta de Castilla y León for its financial support through the project LE220A11-2.

  7. A FEDERATED PARTNERSHIP FOR URBAN METEOROLOGICAL AND AIR QUALITY MODELING

    EPA Science Inventory

    Recently, applications of urban meteorological and air quality models have been performed at resolutions on the order of km grid sizes. This necessitated development and incorporation of high resolution landcover data and additional boundary layer parameters that serve to descri...

  8. Compendium of meteorology scientific issues of 1950 still outstanding

    NASA Technical Reports Server (NTRS)

    Vaughan, W. W.

    1986-01-01

    The Compendium of Meteorology was published in 1951 by the American Meteorological Society. A review was made of the Compendium of Meteorology to identify the studies and future needs which the authors expressed in their papers. The needs as seen by the authors are organized into sections and papers following the format of the Compendium of Meteorology. In some cases the needs they identified are as valid today as they were in 1951. In other cases one will easily be able to identify examples where significant progress has been made. It is left to the individual scientists and scientific program managers to assess whether significant progress has been made over the past thirty-five years on these outstanding scientific issues.

  9. A pseudo random-access synchronous meteorological satellite system

    NASA Technical Reports Server (NTRS)

    Darcey, R. J.; Martel, R. J.

    1971-01-01

    Communications satellite system uses pseudo-random time frequency multiplexing technique for extracting real-time meteorological data from great number of isolated weather stations /data collection platforms/ situated randomly throughout the world.

  10. The Genesis of Meteorology at the University of Chicago.

    NASA Astrophysics Data System (ADS)

    Allen, Douglas R.

    2001-09-01

    The genesis of meteorology at the University of Chicago is reviewed in commemoration of the 60th anniversary of the founding of the Institute of Meteorology. The Institute of Meteorology was founded in October 1940 under the leadership of Carl Rossby and Horace Byers. Although previous attempts failed due to lack of resources, the imminent need for meteorologists in aviation and long-range weather forecasting, particularly for the nation's military needs, provided sufficient motivation for the program, and a $15,000 donation by Sewell Avery provided the necessary funds to get the program started. This article adds to Byers' 1975 account of the founding of the Institute by documenting the exchange of letters in 1939 between C. Rossby, Karl T. Compton (president of Massachusetts Institute of Technology), Arthur H. Compton (professor of Physics at Chicago), and Henry Gale (dean of Physical Sciences at Chicago) regarding the possibility of establishing a meteorology program at Chicago.

  11. Astronomical, physical, and meteorological parameters for planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Allison, Michael; Travis, Larry D.

    1986-01-01

    A newly compiled table of astronomical, physical, and meteorological parameters for planetary atmospheres is presented. Formulae and explanatory notes for their application and a complete listing of sources are also given.

  12. Meteorological data collection via ERTS-A data retransmission facilities

    NASA Technical Reports Server (NTRS)

    Vockeroth, R. E. (Principal Investigator); Robinson, C. E.

    1974-01-01

    The author has identified the following significant results. Two meteorological data acquisition systems were built to support hydrometeorological programs related to flow forecasting. Data errors were detected in the stream level formation; these errors were caused by sensor difficulties.

  13. Multivariate assessment of meteorological influences on inhalable particle source impacts

    SciTech Connect

    Thurston, G.D.; Spengler, J.D.

    1985-01-01

    This paper identifies the sources of fine and coarse inhalable particles at a site in metropolitan Boston and investigates their respective relationships to meteorological conditions. In the work, Principal Component Analysis (PCA) is applied to: (1) particle mass elemental data; (2) coarse-particle mass elemental data, and (3) meteorological measurements (primarily collected at nearby Logan International Airport). In addition to local surface observations, air-mass-trajectory information concerning each sampling day is included in the meteorological data set, allowing the consideration of air mass transport as one factor in particle impacts. As part of these PCA analyses, four different objective component selection criteria are examined and compared. The screen test of eigenvalues is found to result in the most interpretable components for the specific air pollution and meteorological data sets considered in the work.

  14. A FEDERATED PARTNERSHIP FOR URBAN METEOROLOGICAL AND AIR QUALITY MODELING

    EPA Science Inventory

    Recently, applications of urban meteorological and air quality models have been performed at resolutions on the order of km grid sizes. This necessitated development and incorporation of high resolution landcover data and additional boundary layer parameters that serve to descri...

  15. Spatial data standards meet meteorological data - pushing the boundaries

    NASA Astrophysics Data System (ADS)

    Wagemann, Julia; Siemen, Stephan; Lamy-Thepaut, Sylvie

    2017-04-01

    The data archive of the European Centre for Medium-Range Weather Forecasts (ECMWF) holds around 120 PB of data and is world's largest archive of meteorological data. This information is of great value for many Earth Science disciplines, but the complexity of the data (up to five dimensions and different time axis domains) and its native data format GRIB, while being an efficient archive format, limits the overall data uptake especially from users outside the MetOcean domain. ECMWF's MARS WebAPI is a very efficient and flexible system for expert users to access and retrieve meteorological data, though challenging for users outside the MetOcean domain. With the help of web-based standards for data access and processing, ECMWF wants to make more than 1 PB of meteorological and climate data easier accessible to users across different Earth Science disciplines. As climate data provider for the H2020 project EarthServer-2, ECMWF explores the feasibility to give on-demand access to it's MARS archive via the OGC standard interface Web Coverage Service (WCS). Despite the potential a WCS for climate and meteorological data offers, the standards-based modelling of meteorological and climate data entails many challenges and reveals the boundaries of the current Web Coverage Service 2.0 standard. Challenges range from valid semantic data models for meteorological data to optimal and efficient data structures for a scalable web service. The presentation reviews the applicability of the current Web Coverage Service 2.0 standard to meteorological and climate data and discusses challenges that are necessary to overcome in order to achieve real interoperability and to ensure the conformant sharing and exchange of meteorological data.

  16. A GIS Procedure to Monitor PWV During Severe Meteorological Events

    NASA Astrophysics Data System (ADS)

    Ferrando, I.; Federici, B.; Sguerso, D.

    2016-12-01

    As widely known, the observation of GNSS signal's delay can improve the knowledge of meteorological phenomena. The local Precipitable Water Vapour (PWV), which can be easily derived from Zenith Total Delay (ZTD), Pressure (P) and Temperature (T) (Bevis et al., 1994), is not a satisfactory parameter to evaluate the occurrence of severe meteorological events. Hence, a GIS procedure, called G4M (GNSS for Meteorology), has been conceived to produce 2D PWV maps with high spatial and temporal resolution (1 km and 6 minutes respectively). The input data are GNSS, P and T observations not necessarily co-located coming from existing infrastructures, combined with a simplified physical model, owned by the research group.On spite of the low density and the different configurations of GNSS, P and T networks, the procedure is capable to detect severe meteorological events with reliable results. The procedure has already been applied in a wide and orographically complex area covering approximately the north-west of Italy and the French-Italian border region, to study two severe meteorological events occurred in Genoa (Italy) and other meteorological alert cases. The P, T and PWV 2D maps obtained by the procedure have been compared with the ones coming from meteorological re-analysis models, used as reference to obtain statistics on the goodness of the procedure in representing these fields. Additionally, the spatial variability of PWV was taken into account as indicator for representing potential critical situations; this index seems promising in highlighting remarkable features that precede intense precipitations. The strength and originality of the procedure lie into the employment of existing infrastructures, the independence from meteorological models, the high adaptability to different networks configurations, and the ability to produce high-resolution 2D PWV maps even from sparse input data. In the next future, the procedure could also be set up for near real

  17. Possible relationships between solar activity and meteorological phenomena

    NASA Technical Reports Server (NTRS)

    Bandeen, W. R. (Editor); Maran, S. P. (Editor)

    1975-01-01

    A symposium was conducted in which the following questions were discussed: (1) the evidence concerning possible relationships between solar activity and meteorological phenomena; (2) plausible physical mechanisms to explain these relationships; and (3) kinds of critical measurements needed to determine the nature of solar/meteorological relationships and/or the mechanisms to explain them, and which of these measurements can be accomplished best from space.

  18. Lightning Discharges to Aircraft and Associated Meteorological Conditions

    NASA Technical Reports Server (NTRS)

    Harrison, L P

    1946-01-01

    A summary is given of information on atmospheric electrical discharges to aircraft and associated meteorological conditions. Information is given that is designed to give a fairly comprehensive view of the underlying principles of meteorology and atmospheric electricity. Of special interest to pilots are lists of procedures of flight conduct and aircraft maintenance recommended foe avoiding or minimizing the hazards of disruptive electrical discharges and other severe conditions near thunderstorms.

  19. Theoretical modelling and meteorological analysis for the AASE mission

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark R.; Newman, Paul A.; Rosenfield, Joan E.; Stolarski, Richard S.

    1990-01-01

    Providing real time constituent data analysis and potential vorticity computations in support of the Airborne Arctic Stratospheric Experiment (AASE) is discussed. National Meteorological Center (NMC) meteorological data and potential vorticity computations derived from NMC data are projected onto aircraft coordinates and provided to the investigators in real time. Balloon and satellite constituent data are composited into modified Lagrangian mean coordinates. Various measurements are intercompared, trends deduced and reconstructions of constituent fields performed.

  20. Minicomputer Capabilities Related to Meteorological Aspects of Emergency Response

    SciTech Connect

    Rarnsdell, J. V.; Athey, G. F.; Ballinger, M. Y.

    1982-02-01

    The purpose of this report is to provide the NRC staff involved in reviewing licensee emergency response plans with background information on the capabilities of minicomputer systems that are related to the collection and dissemination of meteorological infonmation. The treatment of meteorological information by organizations with existing emergency response capabilities is described, and the capabilities, reliability and availability of minicomputers and minicomputer systems are discussed.

  1. Tsunamis and meteorological tsunamis: similarities and differences

    NASA Astrophysics Data System (ADS)

    Rabinovich, A. B.; Monserrat, S.

    2003-04-01

    Destructive seiche oscillations occasionally generated in certain bays and inlets are mainly associated with two natural forcing phenomena: Seismic activity (tsunamis), and atmospheric disturbances (meteotsunamis). Despite their different origin, both types are modified and amplified by topography in a similar way and produce similar catastrophic effects in coastal areas. Due to these similarities, it is often difficult to distinguish between these two phenomena without knowing the exact source characteristics. Recognition and separation of these phenomena is important for the revision/improvement of existing tsunami catalogues but also to better understand the generation mechanism and mitigate their possible catastrophic effects. To investigate this problem and to compare seismic and meteorological tsunamis, we assembled a number of cases when both phenomena had been recorded at the same place. In particular, our findings included Alicante (Mediterranean coast of Spain), Malokurilsk and Krabovaya bays (Shikotan Island, Russia), and Tofino, Winter Harbour, Bamfield, Port Hardy, and Victoria (British Columbia, Canada). We also used the results of the LAST-97 hydrophysical experiment when eight bottom pressure stations were deployed on the shelf and in the inlets of Menorca Island (Western Meditterranean, Spain) and three precise microbarographs were working on the coast. Our analysis is based on the assumption that both tsunamis and meteotsunamis are formed by the combined effects of external forcing and topography. So, for different events recorded at the same site, the similarities are related to topography and the differences to the forcing. On the contrary, for the same event recorded at different stations, similarities are mainly associated with the forcing and the differences with specific local topographic features. Analysis of the spectral distributions and comparison with background noise enabled us to reconstruct the topographic transfer functions for all

  2. Comparative analysis of meteorological performance of coupled chemistry-meteorology models in the context of AQMEII phase 2

    EPA Science Inventory

    Air pollution simulations critically depend on the quality of the underlying meteorology. In phase 2 of the Air Quality Model Evaluation International Initiative (AQMEII-2), thirteen modeling groups from Europe and four groups from North America operating eight different regional...

  3. Comparative analysis of meteorological performance of coupled chemistry-meteorology models in the context of AQMEII phase 2

    EPA Science Inventory

    Air pollution simulations critically depend on the quality of the underlying meteorology. In phase 2 of the Air Quality Model Evaluation International Initiative (AQMEII-2), thirteen modeling groups from Europe and four groups from North America operating eight different regional...

  4. Development of meteorological scenarios for air quality planning using multivariate statistical analysis of meteorological and air quality data

    SciTech Connect

    Munger, R.B.

    1981-01-01

    The concept of meteorological scenarios for air quality planning is presented as a means for reducing the number of air quality simulations required to assess the range of impacts associated with proposed projects, control strategies, or transportation and land use plans. Past studies of meteorological scenarios related to air quality are reviewed. Alternative techniques for identifying meteorological scenarios are compared and evaluated for their ability to characterize meteorological scenarios in a manner appropriate for input to regional air quality models. Two multivariate statistical techniques, cluster analysis and factor analysis, are applied to a data base comprising ozone air quality data and surface wind vector data for the Los Angeles area for the 1974, 1975, and 1976 smog seasons. The aerometric data base includes several parameters developed using the dosage-area and dosage-moment concepts. The scenario identification conducted in the Los Angeles area. Of those techniques evaluated, factor analysis emerges as the most promising technique for the objective characterization of the spatial and temporal variation of meteorological scenarios. The optimal approach for a meteorological scenarios analysis appears to be a hybrid technique involving stratification of the days by absolute air quality parameters and then utilization of factor analysis to provide the relative spatial and temporal variations.

  5. The relationship of meteorological patterns with changes in floristic richness along a large elevational gradient in a seasonally dry region of southern Mexico.

    PubMed

    Salas-Morales, Silvia H; Meave, Jorge A; Trejo, Irma

    2015-12-01

    Globally, climate is a fundamental driver of plant species' geographical distributions, yet we still lack a good understanding of climatic variation on tropical mountains and its consequences for elevational floristic patterns. In a seasonally dry region of southern Mexico, we analysed meteorological patterns along a large elevational gradient (0-3670 m a.s.l.) and examined their relationship with changes in floristic richness. Meteorological patterns were characterised using two data sources. First, climatic information was extracted from cartography and records from a few existing meteorological stations. Additionally, air temperature and humidity were recorded hourly during 1 year with data loggers, at sites representing 200-m elevation increments. Floristic information was extracted from a database containing 10,124 records of plant collections, and organized in 200-m elevational belts. Climatic charts distinguished three climate types along the gradient, all with marked rainfall seasonality, but these bore little correspondence with the information obtained with the data loggers. Mean annual air temperature decreased with increasing elevation (lapse rate of 0.542 °C 100 m(-1)). Thermal oscillation was minimum around 1400 m and increased towards both extremes of the gradient. Relative humidity opposed this pattern, with maxima between 800 and 1800 m, decreasing towards the highest elevations. An analysis of temperature frequency distributions revealed meteorological features undetectable from the annual or monthly means of this variable; despite an overall gradual transition of the proportions of time recorded at different temperatures, some changes did not conform to this pattern. The first discontinuity occurred between 1000-1200 m, where dominant temperatures shifted abruptly; also noticeable was an abrupt increase of the proportion of time elapsed at 0.1-10 °C between 2400 and 2600 m. Air temperature appears to be the most influential climatic factor

  6. The relationship of meteorological patterns with changes in floristic richness along a large elevational gradient in a seasonally dry region of southern Mexico

    NASA Astrophysics Data System (ADS)

    Salas-Morales, Silvia H.; Meave, Jorge A.; Trejo, Irma

    2015-12-01

    Globally, climate is a fundamental driver of plant species' geographical distributions, yet we still lack a good understanding of climatic variation on tropical mountains and its consequences for elevational floristic patterns. In a seasonally dry region of southern Mexico, we analysed meteorological patterns along a large elevational gradient (0-3670 m a.s.l.) and examined their relationship with changes in floristic richness. Meteorological patterns were characterised using two data sources. First, climatic information was extracted from cartography and records from a few existing meteorological stations. Additionally, air temperature and humidity were recorded hourly during 1 year with data loggers, at sites representing 200-m elevation increments. Floristic information was extracted from a database containing 10,124 records of plant collections, and organized in 200-m elevational belts. Climatic charts distinguished three climate types along the gradient, all with marked rainfall seasonality, but these bore little correspondence with the information obtained with the data loggers. Mean annual air temperature decreased with increasing elevation (lapse rate of 0.542 °C 100 m-1). Thermal oscillation was minimum around 1400 m and increased towards both extremes of the gradient. Relative humidity opposed this pattern, with maxima between 800 and 1800 m, decreasing towards the highest elevations. An analysis of temperature frequency distributions revealed meteorological features undetectable from the annual or monthly means of this variable; despite an overall gradual transition of the proportions of time recorded at different temperatures, some changes did not conform to this pattern. The first discontinuity occurred between 1000-1200 m, where dominant temperatures shifted abruptly; also noticeable was an abrupt increase of the proportion of time elapsed at 0.1-10 °C between 2400 and 2600 m. Air temperature appears to be the most influential climatic factor

  7. Coupling between meteorological factors and ambient aerosol load

    NASA Astrophysics Data System (ADS)

    Tandon, Ankit; Yadav, Sudesh; Attri, Arun K.

    2010-03-01

    The coarser (CPM) and respirable (RPM) fractions of aerosol loads collected in a time sequence, during the onset of winter season in Delhi region, were subjected to Principal Component Analysis (15 elemental variables, 39 samples); the absolute mass contributed by each identified source to the CPM and RPM was quantified by using Absolute Principal Component Score (APCS) and Positive Matrix Factorization (PMF) method. Interestingly, the mass contributed by the local crustal source (material) to both fractions manifested undulating periodic behavior, a dominating harmonic corresponding to 24-h period was detected by using Discrete Fourier Transform (DFT). The corresponding harmonics, of varying strengths, were also detected in the recorded meteorological factors: Planetary Boundary Layer (PBL), Surface Level Temperature (T), Surface Level Relative Humidity (RH) and Wind Speed (WS). The analysis of the respective harmonic strength within the CPM, RPM, and meteorological factors suggested that the undulation observed in both size fractions of aerosol load from the local crust was affected by the meteorological factors. The large proportion of undulating loads (CPM and RPM), explained by the dominating harmonic, was fully accounted for by the empirical relation involving the discrete coupling parameters, and the recorded meteorological factors: PBL, T, RH and WS. The analysis suggests that the magnitude and the direction ('positive' load increase and 'negative' the reverse) of coupled meteorological factors'(s) effect on ambient CPM, RPM load is determined by the phase difference between the harmonic explaining the aerosol fraction's load and the corresponding harmonic present in the respective meteorological factor. The absolute mass contributions arising from the identified sources (APCS and PMF) allowed us to calculate the baseline ambient concentrations of undulating CPM and RPM loads, in the region of this study, affected by meteorological factors only.

  8. CO2 transport uncertainties from the uncertainties in meteorological fields

    NASA Astrophysics Data System (ADS)

    Liu, Junjie; Fung, Inez; Kalnay, Eugenia; Kang, Ji-Sun

    2011-06-01

    Inference of surface CO2 fluxes from atmospheric CO2 observations requires information about large-scale transport and turbulent mixing in the atmosphere, so transport errors and the statistics of the transport errors have significant impact on surface CO2 flux estimation. In this paper, we assimilate raw meteorological observations every 6 hours into a general circulation model with a prognostic carbon cycle (CAM3.5) using the Local Ensemble Transform Kalman Filter (LETKF) to produce an ensemble of meteorological analyses that represent the best approximation to the atmospheric circulation and its uncertainty. We quantify CO2 transport uncertainties resulting from the uncertainties in meteorological fields by running CO2 ensemble forecasts within the LETKF-CAM3.5 system forced by prescribed surface fluxes. We show that CO2 transport uncertainties are largest over the tropical land and the areas with large fossil fuel emissions, and are between 1.2 and 3.5 ppm at the surface and between 0.8 and 1.8 ppm in the column-integrated CO2 (with OCO-2-like averaging kernel) over these regions. We further show that the current practice of using a single meteorological field to transport CO2 has weaker vertical mixing and stronger CO2 vertical gradient when compared to the mean of the ensemble CO2 forecasts initialized by the ensemble meteorological fields, especially over land areas. The magnitude of the difference at the surface can be up to 1.5 ppm.

  9. Obtaining meteorological data from historical newspapers: La Integridad

    NASA Astrophysics Data System (ADS)

    Ramírez-González, Ignacio A.; Añel, Juan A.; Saenz, Guadalupe; Gimeno, Luis; de la Torre, Laura; Polychroniadou, Eleni; Vidal-Mina, Renán

    2017-04-01

    The meteorological data recovery from old documentary sources is of huge significance for meteorological and weather research of our planet. In this work we present the meteorological series from the end of XIX century and the beginning of the XX at the A Guarda's Observatory, pioneer in Galicia in this kind of measurements and located in that time at "Colexio Xesuita Apóstol Santiago". The data series was obtained from meteorological notes of the catholic newspaper "La Integridad" published in that dates in Tui(Galicia). It was revised in total for this study more than 1000 newspapers from this publication and it was manually retrieved about 60000 individual measurements. Recovered variables include temperature, pressure, wind, relative humidity, vapor pressure, evaporation, precipitation and overview weather observations. This enables us to get a general picture of weather for this period of time in the studied region, to validate and to complete others independent data sources and study climate change. Also we prove the reliability of meteorological forecasts published from time to time in the same journal using sea level pressure fields from historical datasets provided by the MetOffice.

  10. MOM: A meteorological data checking expert system in CLIPS

    NASA Technical Reports Server (NTRS)

    Odonnell, Richard

    1990-01-01

    Meteorologists have long faced the problem of verifying the data they use. Experience shows that there is a sizable number of errors in the data reported by meteorological observers. This is unacceptable for computer forecast models, which depend on accurate data for accurate results. Most errors that occur in meteorological data are obvious to the meteorologist, but time constraints prevent hand-checking. For this reason, it is necessary to have a 'front end' to the computer model to ensure the accuracy of input. Various approaches to automatic data quality control have been developed by several groups. MOM is a rule-based system implemented in CLIPS and utilizing 'consistency checks' and 'range checks'. The system is generic in the sense that it knows some meteorological principles, regardless of specific station characteristics. Specific constraints kept as CLIPS facts in a separate file provide for system flexibility. Preliminary results show that the expert system has detected some inconsistencies not noticed by a local expert.

  11. Tenth AMS Conference on Satellite Meteorology and Oceanography

    NASA Technical Reports Server (NTRS)

    Ferraro, R.; Colton, M.; Deblonde, G.; Jedlovec, G.; Lee, T.

    2000-01-01

    The American Meteorological Society held its Tenth Conference on Satellite Meteorology and Oceanography in conjunction with the 80th Annual Meeting in Long Beach, California. For the second consecutive conference, a format that consisted of primarily posters, complemented by invited theme oriented oral presentations, and panel discussions on various aspects on satellite remote sensing were utilized. Joint sessions were held with the Second Conference on Artificial Intelligence, the Eleventh Conference on Middle Atmosphere, and the Eleventh symposium on Global Change Studies. In total, there were 23 oral presentations, 170 poster presentations, and four panel discussions. Over 450 people representing a wide spectrum of the society attended one or more of the sessions in the five-day meeting. The program for the Tenth Conference on Satellite Meteorology and Oceanography can viewed in the October 1999 issue of the Bulletin.

  12. Large scale meteorological influence during the Geysers 1979 field experiment

    SciTech Connect

    Barr, S.

    1980-01-01

    A series of meteorological field measurements conducted during July 1979 near Cobb Mountain in Northern California reveals evidence of several scales of atmospheric circulation consistent with the climatic pattern of the area. The scales of influence are reflected in the structure of wind and temperature in vertically stratified layers at a given observation site. Large scale synoptic gradient flow dominates the wind field above about twice the height of the topographic ridge. Below that there is a mixture of effects with evidence of a diurnal sea breeze influence and a sublayer of katabatic winds. The July observations demonstrate that weak migratory circulations in the large scale synoptic meteorological pattern have a significant influence on the day-to-day gradient winds and must be accounted for in planning meteorological programs including tracer experiments.

  13. The Meteorological Monitoring program at a former nuclear weapons plant

    SciTech Connect

    Maxwell, D.R.; Bowen, B.M.

    1994-02-01

    The purpose of the Meteorological Monitoring program at Rocky Flats Plant (RFP) is to provide meteorological information for use in assessing the transport, and diffusion, and deposition of effluent actually or potentially released into the atmosphere by plant operations. Achievement of this objective aids in protecting health and safety of the public, employees, and environment, and directly supports Emergency Response programs at RFP. Meteorological information supports the design of environmental monitoring networks for impact assessments, environmental surveillance activities, remediation activities, and emergency responses. As the mission of the plant changes from production of nuclear weapons parts to environmental cleanup and economic development, smaller releases resulting from remediation activities become more likely. These possible releases could result from airborne fugitive dust, evaporation from collection ponds, or grass fires.

  14. Monthly Report of the Meteorological Satellite Center: June 2001

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The CD-ROM concerning the June 2001 Monthly Report of the Meteorological Satellite Center (MSC) contains the observation data derived from the Geostationary Meteorological Satellite (GMS) of Japan and the Polar Orbital Meteorological Satellites operated by NOAA. The CD-ROM contains the following observation data: Full Disk Earth's Cloud Image; Cloud Image of Japan and its vicinity; Cloud Amount; Sea Surface Temperature; Cloud Motion Wind; Water Vapor Motion Wind; Equivalent Blackbody Temperature; OLR (Out-going Longwave Radiation), Solar Radiation; Snow and Ice Index; Orbit Data; Attitude Data; VISSR Image Data Catalog (Cartridge Magnetic Tape (CMT), Micro Film); TOVS (TIROS Operational Vertical Sounder) Vertical Profile of Temperature and Precipitable Water; and TOVS Total Ozone Amount.

  15. Monthly Report of the Meteorological Satellite Center: June 2001

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The CD-ROM concerning the June 2001 Monthly Report of the Meteorological Satellite Center (MSC) contains the observation data derived from the Geostationary Meteorological Satellite (GMS) of Japan and the Polar Orbital Meteorological Satellites operated by NOAA. The CD-ROM contains the following observation data: Full Disk Earth's Cloud Image; Cloud Image of Japan and its vicinity; Cloud Amount; Sea Surface Temperature; Cloud Motion Wind; Water Vapor Motion Wind; Equivalent Blackbody Temperature; OLR (Out-going Longwave Radiation), Solar Radiation; Snow and Ice Index; Orbit Data; Attitude Data; VISSR Image Data Catalog (Cartridge Magnetic Tape (CMT), Micro Film); TOVS (TIROS Operational Vertical Sounder) Vertical Profile of Temperature and Precipitable Water; and TOVS Total Ozone Amount.

  16. Some problems in coupling solar activity to meteorological phenomena

    NASA Technical Reports Server (NTRS)

    Dessler, A. J.

    1975-01-01

    The development of a theory of coupling of solar activity to meteorological phenomena is hindered by the difficulties of devising a mechanism that can modify the behavior of the troposphere while employing only a negligible amount of energy compared with the energy necessary to drive the normal meteorological system, and determining how such a mechanism can effectively couple some relevant magnetospheric process into the troposphere in such a way as to influence the weather. A clue to the nature of the interaction between the weather and solar activity might be provided by the fact that most solar activity undergoes a definite 11-yr cycle, and meteorological phenomena undergo either no closely correlated variation, an 11-yr variation, or a 22-yr variation.

  17. Some problems in coupling solar activity to meteorological phenomena

    NASA Technical Reports Server (NTRS)

    Dessler, A. J.

    1974-01-01

    The development of a theory of coupling of solar activity to meteorological phenomena has to date foundered on the two difficulties of (1) devising a mechanism that can modify the behavior of the troposphere while employing only a negligible amount of energy compared with the energy necessary to drive the normal meteorological system; and (2) determining how such a mechanism can effectively couple some relevant magnetospheric process into the troposphere in such a way as to influence the weather. A clue to the nature of the interaction between the weather and solar activity might be provided by the fact that most solar activity undergoes a definite 11-year cycle, while meteorological phenomena undergo either no closely correlated variation, or an 11-year variation, or a 22-year variation.

  18. Effects of meteorology on concentrations of acid aerosols

    SciTech Connect

    Zelenka, M.P.; Suh, H.H.

    1994-01-01

    Ambient air samples of strong acid aerosol, sulfate, ammonia, and ammonium were collected in Pittsburgh and Uniontown, Pennsylvania during the summer of 1990. High correlations were found for both acid aerosol and sulfate concentrations between Pittsburgh and the semi-rural site in Uniontown. One possible implication is that acid aerosols and their precursors are regionally transported. To test this hypothesis, air samples from the Uniontown site were statistically analyzed for the meteorological relationships that resulted in episodic events of elevated ambient acid aerosol levels. Standard measures of atmospheric conditions in both Pittsburgh and Uniontown were used; they included temperature, pressure, relative humidity, wind speed and direction. Results show that the episodic events of elevated acid aerosol occurred with the same general set of meteorological conditions. The major meteorological variables which correlated with the episodes were the mean wind speed in Pittsburgh and the mean westerly wind component (U) at Uniontown. These two variables accounted for one-third of the variance.

  19. A competitive neural network approach for meteorological situation clustering

    NASA Astrophysics Data System (ADS)

    Turias, Ignacio J.; González, Francisco J.; Martín, M. a. Luz; Galindo, Pedro L.

    A complete competitive scheme is proposed in this work in order to perform a classification analysis of meteorological data in the 'Campo de Gibraltar' region (in the South of Spain) from 1999 to 2002. The main objectives of the study presented here have been the characterization of the meteorological conditions in the area, using a competitive neural network based on Kohonen learning rule. Standard Principal Component Analysis (PCA) and VARIMAX rotation have allowed interpreting the physical meaning of the classes obtained from the competitive scheme. Quantitative (using three quality indices) and qualitative (from the analysis of the data projection) criteria based on Fisher Discriminant Analysis were introduced to verify the results of the clustering. A randomized procedure is developed to assure the best performance of the models and to select the best model in the experiments. The different experiments developed extracted five classes, which were related to typical meteorological conditions in the area.

  20. Comparative analysis of meteorological performance of coupled chemistry-meteorology models in the context of AQMEII phase 2

    NASA Astrophysics Data System (ADS)

    Brunner, Dominik; Savage, Nicholas; Jorba, Oriol; Eder, Brian; Giordano, Lea; Badia, Alba; Balzarini, Alessandra; Baró, Rocío; Bianconi, Roberto; Chemel, Charles; Curci, Gabriele; Forkel, Renate; Jiménez-Guerrero, Pedro; Hirtl, Marcus; Hodzic, Alma; Honzak, Luka; Im, Ulas; Knote, Christoph; Makar, Paul; Manders-Groot, Astrid; van Meijgaard, Erik; Neal, Lucy; Pérez, Juan L.; Pirovano, Guido; San Jose, Roberto; Schröder, Wolfram; Sokhi, Ranjeet S.; Syrakov, Dimiter; Torian, Alfreida; Tuccella, Paolo; Werhahn, Johannes; Wolke, Ralf; Yahya, Khairunnisa; Zabkar, Rahela; Zhang, Yang; Hogrefe, Christian; Galmarini, Stefano

    2015-08-01

    Air pollution simulations critically depend on the quality of the underlying meteorology. In phase 2 of the Air Quality Model Evaluation International Initiative (AQMEII-2), thirteen modeling groups from Europe and four groups from North America operating eight different regional coupled chemistry and meteorology models participated in a coordinated model evaluation exercise. Each group simulated the year 2010 for a domain covering either Europe or North America or both. Here were present an operational analysis of model performance with respect to key meteorological variables relevant for atmospheric chemistry processes and air quality. These parameters include temperature and wind speed at the surface and in the vertical profile, incoming solar radiation at the ground, precipitation, and planetary boundary layer heights. A similar analysis was performed during AQMEII phase 1 (Vautard et al., 2012) for offline air quality models not directly coupled to the meteorological model core as the model systems investigated here. Similar to phase 1, we found significant overpredictions of 10-m wind speeds by most models, more pronounced during night than during daytime. The seasonal evolution of temperature was well captured with monthly mean biases below 2 K over all domains. Solar incoming radiation, precipitation and PBL heights, on the other hand, showed significant spread between models and observations suggesting that major challenges still remain in the simulation of meteorological parameters relevant for air quality and for chemistry-climate interactions at the regional scale.

  1. Making OGC standards work - interoperability testing between meteorological web services

    NASA Astrophysics Data System (ADS)

    Siemen, Stephan; Little, Chris; Voidrot, Marie-Françoise

    2015-04-01

    The Meteorology and Oceanography Domain Working Group (Met Ocean DWG) is a community orientated working group of the Open Geospatial Consortium (OGC). The group does not directly revise OGC standards, but rather enables collaboration and communication between groups with meteorological and oceanographic interests. The Met Ocean DWG maintains a list of topics of interest to the meteorological and oceanographic communities for discussion, prioritises activities, defining feedback to the OGC Standards Working Groups (SWG), and performing interoperability experiments. One of the activities of the MetOcean DWG is the definition of Best Practices documents for common OGC standards, such as WMS and WCS. This is necessary since meteorological data has additional complexities in time, elevation and multi models runs including ensembles. To guarantee interoperability in practice it is important to test each other systems and ensure standards are implemented correctly, but also make recommendations to the DWG on the establishment of Best Practices guides. The European Working Group on Operational meteorological Workstations (EGOWS) was founded in 1990 as an informal forum for people working in the development field of operational meteorological workstations. The annual EGOWS meeting offers an excellent platform for exchanging information and furthering co-operation among the experts from NMS's, ECMWF and other institutes in the work with OGC standards. The presentation will give an update of the testing, which was being done during the June 2014 EGOWS meeting in Oslo and what has happen since. The presenter will also give an overview of the online resources to follow the tests and how interested parties can contribute to future interoperability tests.

  2. Cal Tech's Program in Meteorology: 1933-1948.

    NASA Astrophysics Data System (ADS)

    Lewis, J. M.

    1994-01-01

    The California Institute of Technology (Cal Tech) established a course of study in meteorology in 1933. It was intimately tied to the upsurge of activity in commercial and military aviation that occurred in the period between the world wars. The tragic crash of the airship U.S.S. Akron provided the stimulus for including meteorology as a subprogram in the aeronautics department at Cal Tech. Thoodore von K´rm´n, head of the department and director of the school's Guggenheim Aeronautics Laboratory, masterminded the design of the program and geared it toward the solution of practical problems using the principles of dynamic meteorology. One of his doctoral students, Irving Krick, was groomed to develop the program.Robert Millikan, head of the institute, fostered an approach to science that encouraged the faculty to consuit and work with industry. In this environment, Krick established links with aviation, motion picture studios, and public utilities that would set the stage for the research thrust in meteorology. The program was primarily designed for training at the master' degree level, and a significant number of the graduates became entrepreneurs in meteorology. Based on letters of reminiscence and oral histories from some of these consulting meteorologists, it has been concluded that the Millikan/von K´rm´n philosophy of science played an important part in directing the meteorologists into the private sector.Following World War II, Lee DuBridge replaced Millikan as head of the institute. DuBridge's efforts were directed toward making the small elite school scientifically competitive in the changed conditions of a postwar world. In this climate, the merging of private business with academic work fell into disfavor. Without champions such as Millikan and von K´rm´n,the meteorology program was unable to survive.

  3. Technical Work Plan For: Meteorological Monitoring Data Analysis

    SciTech Connect

    R. Green

    2006-02-06

    The meteorological monitoring and analysis program has five objectives. (1) Acquire qualified meteorological data from YMP meteorological monitoring network using appropriate controls on measuring and test equipment. Because this activity is monitoring (i.e., recording naturally occurring events) pre-test predictions are not applicable. All work will be completed in accordance with U.S. Department of Energy (DOE) Office of Repository Development (ORD) administrative procedures and Bechtel SAIC Co., LLC (BSC) line procedures. The meteorological monitoring program includes measuring and test equipment calibrations, operational checks, preventive and corrective maintenance, and data collection. (2) Process the raw monitoring data collected in the field and submit technically reviewed, traceable data to the Technical Data Management System (TDMS) and the Records Processing Center. (3) Develop analyses or calculations to provide information to data requesters and provide data sets as requested. (4) Provide precipitation amounts to Site Operations to support requirements to perform inspections in the Stormwater Pollution Prevention Plan (implemented in LP-OM-050Q-BSC) following storm events of greater than 0.5 inches. The program also provides meteorological data during extreme weather conditions (e.g., high winds, rainstorms, etc.) to support decisions regarding worker safety. (5) Collect samples of precipitation for chemical and isotopic analysis by the United States Geological Survey (USGS). The BSC ES&H Environmental Compliance organization is responsible for performing this work. Data from calendar-year periods are submitted to the TDMS to provide YMP users with qualified meteorological data for scientific modeling and analyses, engineering designs of surface facilities, performance assessment analyses, and operational safety issues.

  4. Atmospheric measurements on Mars - The Viking meteorology experiment

    NASA Technical Reports Server (NTRS)

    Chamberlain, T. E.; Cole, H. L.; Dutton, R. G.; Greene, G. C.; Tillman, J. E.

    1976-01-01

    The Viking meteorology experiment is one of nine experiments to be carried out on the surface of Mars by each of two Viking Landers positioned at different latitudes and longitudes in the Northern Hemisphere. The meteorology experiment will measure pressure, temperature, wind speed, and wind direction at 1.5-hr intervals throughout the Martian day. The duration of each measurement period, the interval between data samples for a measurement period, and the time at which the measurement period is started will be varied throughout the mission. The scientific investigation and the sensors and electronics used for making the atmospheric measurement are discussed.

  5. Inherent uncertainties in meteorological parameters for wind turbine design

    NASA Technical Reports Server (NTRS)

    Doran, J. C.

    1982-01-01

    Major difficulties associated with meteorological measurments such as the inability to duplicate the experimental conditions from one day to the next are discussed. This lack of consistency is compounded by the stochastic nature of many of the meteorological variables of interest. Moreover, simple relationships derived in one location may be significantly altered by topographical or synoptic differences encountered at another. The effect of such factors is a degree of inherent uncertainty if an attempt is made to describe the atmosphere in terms of universal laws. Some of these uncertainties and their causes are examined, examples are presented and some implications for wind turbine design are suggested.

  6. Atmospheric measurements on Mars - The Viking meteorology experiment

    NASA Technical Reports Server (NTRS)

    Chamberlain, T. E.; Cole, H. L.; Dutton, R. G.; Greene, G. C.; Tillman, J. E.

    1976-01-01

    The Viking meteorology experiment is one of nine experiments to be carried out on the surface of Mars by each of two Viking Landers positioned at different latitudes and longitudes in the Northern Hemisphere. The meteorology experiment will measure pressure, temperature, wind speed, and wind direction at 1.5-hr intervals throughout the Martian day. The duration of each measurement period, the interval between data samples for a measurement period, and the time at which the measurement period is started will be varied throughout the mission. The scientific investigation and the sensors and electronics used for making the atmospheric measurement are discussed.

  7. Preliminary results of a meteorological payload being developed by IITM

    NASA Astrophysics Data System (ADS)

    Vernekar, K. G.; Mohan, B.; Srivastava, S.

    A meteorological rocket payload developed at the Indian Institute of Tropical Meteorology (IITM) using thermistor as a temperature sensor was flight tested on RH-200 rocket at Thumba (08° 32'N, 76° 52'E), India, during February/April 1982 on four occasions. The corrected data obtained with this payload are compared with Russian rocket, M-100, data. The temperature profile obtained with IITM payload is warmer above 45-km, as compared with M-100 temperature profile, on all occasions. Meridional and zonal winds also agree up to 45-km level. Temperature records show a wave pattern varying in amplitude and frequency in the 20 to 45-km range.

  8. Surface and Tower Meteorological Instrumentation at NSA Handbook - January 2006

    SciTech Connect

    MT Ritsche

    2006-01-30

    The Surface and Tower Meteorological Instrumentation at Atqasuk (METTWR2H) uses mainly conventional in situ sensors to measure wind speed, wind direction, air temperature, dew point and humidity mounted on a 10-m tower. It also obtains barometric pressure, visibility, and precipitation data from sensors at or near the base of the tower. In addition, a Chilled Mirror Hygrometer is located at 1 m for comparison purposes. Temperature and relative humidity probes are mounted at 2 m and 5 m on the tower. For more information, see the Surface and Tower Meteorological Instrumentation at Atqasuk Handbook.

  9. A review of the meteorological parameters which affect aerial application

    NASA Technical Reports Server (NTRS)

    Christensen, L. S.; Frost, W.

    1979-01-01

    The ambient wind field and temperature gradient were found to be the most important parameters. Investigation results indicated that the majority of meteorological parameters affecting dispersion were interdependent and the exact mechanism by which these factors influence the particle dispersion was largely unknown. The types and approximately ranges of instrumented capabilities for a systematic study of the significant meteorological parameters influencing aerial applications were defined. Current mathematical dispersion models were also briefly reviewed. Unfortunately, a rigorous dispersion model which could be applied to aerial application was not available.

  10. High-resolution satellite imagery for mesoscale meteorological studies

    NASA Technical Reports Server (NTRS)

    Johnson, David B.; Flament, Pierre; Bernstein, Robert L.

    1994-01-01

    In this article high-resolution satellite imagery from a variety of meteorological and environmental satellites is compared. Digital datasets from Geostationary Operational Environmental Satellite (GOES), National Oceanic and Atmospheric Administration (NOAA), Defense Meteorological Satellite Program (DMSP), Landsat, and Satellite Pour l'Observation de la Terre (SPOT) satellites were archived as part of the 1990 Hawaiian Rainband Project (HaRP) and form the basis of the comparisons. During HaRP, GOES geostationary satellite coverage was marginal, so the main emphasis is on the polar-orbiting satellites.

  11. Barrier island forest ecosystem: role of meteorologic nutrient inputs.

    PubMed

    Art, H W; Bormann, F H; Voigt, G K; Woodwell, G M

    1974-04-05

    The Sunken Forest, located on Fire Island, a barrier island in the Atlantic Ocean off Long Island, New York, is an ecosystem in which most of the basic cation input is in the form of salt spray. This meteorologic input is sufficient to compensate for the lack of certain nutrients in the highly weathered sandy soils. In other ecosystems these nutrients are generally supplied by weathering of soil particles. The compensatory effect of meteorologic input allows for primary production rates in the Sunken Forest similar to those of inland temperate forests.

  12. High-resolution satellite imagery for mesoscale meteorological studies

    NASA Technical Reports Server (NTRS)

    Johnson, David B.; Flament, Pierre; Bernstein, Robert L.

    1994-01-01

    In this article high-resolution satellite imagery from a variety of meteorological and environmental satellites is compared. Digital datasets from Geostationary Operational Environmental Satellite (GOES), National Oceanic and Atmospheric Administration (NOAA), Defense Meteorological Satellite Program (DMSP), Landsat, and Satellite Pour l'Observation de la Terre (SPOT) satellites were archived as part of the 1990 Hawaiian Rainband Project (HaRP) and form the basis of the comparisons. During HaRP, GOES geostationary satellite coverage was marginal, so the main emphasis is on the polar-orbiting satellites.

  13. Abstraction the public from scientific - applied meteorological-climatologic data

    NASA Astrophysics Data System (ADS)

    Trajanoska, L.

    2010-09-01

    Mathematical and meteorological statistic processing of meteorological-climatologic data, which includes assessment of the exactness, level of confidence of the average and extreme values, frequencies (probabilities) of the occurrence of each meteorological phenomenon and element e.t.c. helps to describe the impacts climate may have on different social and economic activities (transportation, heat& power generation), as well as on human health. Having in mind the new technology and the commercial world, during the work with meteorological-climatologic data we have meet many different challenges. Priority in all of this is the quality of the meteorological-climatologic set of data. First, we need compatible modern, sophisticated measurement and informatics solution for data. Results of this measurement through applied processing and analyze is the second branch which is very important also. Should we all (country) need that? Today we have many unpleasant events connected with meteorology, many questions which are not answered and all of this has too long lasting. We must give the answers and solve the real and basic issue. In this paper the data issue will be presented. We have too much of data but so little of real and quality applied of them, Why? There is a data for: -public applied -for jurisdiction needs -for getting fast decision-solutions (meteorological-dangerous phenomenon's) -for getting decisions for long-lasting plans -for explore in different sphere of human living So, it is very important for what kind of data we are talking. Does the data we are talking are with public or scientific-applied character? So,we have two groups. The first group which work with the data direct from the measurement place and instrument. They are store a quality data base and are on extra help to the journalists, medical workers, human civil engineers, electromechanical engineers, agro meteorological and forestry engineer e.g. The second group do work with all scientific

  14. Ultra low wind resistance enclosure for a 100-m telescope

    NASA Astrophysics Data System (ADS)

    Ditto, Thomas D.; Ritter, Joseph M.

    2008-07-01

    We discuss a transmission primary objective grating (POG) telescope that is nearly flat to the ground with its secondary components buried below ground in a protected environment that enjoys a controlled atmosphere. Temperature gradients can be held steady by sealing this enclosure. End-to-end ray paths need not be interrupted by spiders or other structural support elements. Unlike mirror and lens telescopes, this layout is intrinsically off-axis. Light diffracted from a POG at a grazing angle can be collected a few meters below the POG, and the substructures do not require a deep excavation, as would be required for buried on-axis mirrors such as a zenith tube. The POG principle can take advantage of the rotation of the earth to acquire spectra sequentially, so active tilt and rotate axes are not necessary during observations. The POG aperture is extensible as a ribbon optic to kilometer scale at a linear increase in cost, as compared to other choices where infrastructure grows as the cube of the telescope size. The principle of operation was proven in miniature during bench tests that show high resolution spectra can be obtained at angular resolutions equal to seeing. Mathematical models of the underlying relationships show that flux collection increases with increased angles of grazing exodus even as efficiency decreases. Zemax models show a 30° field-of-view and the capacity to take spectra of all sources within that very wide field-of-view. The method lends itself to large apertures, because it is tolerant of POG surface unevenness.

  15. 946 nm Diode Pumped Laser Produces 100mJ

    NASA Technical Reports Server (NTRS)

    Axenson, Theresa J.; Barnes, Norman P.; Reichle, Donald J., Jr.

    2000-01-01

    An innovative approach to obtaining high energy at 946 nm has yielded 101 mJ of laser energy with an optical-to-optical slope efficiency of 24.5%. A single gain module resonator was evaluated, yielding a maximum output energy of 50 mJ. In order to obtain higher energy a second gain module was incorporated into the resonator. This innovative approach produced un-surprised output energy of 101 mJ. This is of utmost importance since it demonstrates that the laser output energy scales directly with the number of gain modules. Therefore, higher energies can be realized by simply increasing the number of gain modules within the laser oscillator. The laser resonator incorporates two gain modules into a folded "M-shaped" resonator, allowing a quadruple pass gain within each rod. Each of these modules consists of a diode (stack of 30 microlensed 100 Watt diode array bars, each with its own fiber lens) end-pumping a Nd:YAG laser rod. The diode output is collected by a lens duct, which focuses the energy into a 2 mm diameter flat to flat octagonal pump area of the laser crystal. Special coatings have been developed to mitigate energy storage problems, including parasitic lasing and amplified spontaneous emission (ASE), and encourage the resonator to operate at the lower gain transition at 946 nm.

  16. From GNSS and meteorological data to NRT 4D water vapour distribution - GNSS meteorology activities at WUELS

    NASA Astrophysics Data System (ADS)

    Bosy, Jaroslaw; Kaplon, Jan; Rohm, Witold; Sierny, Jan; Wilgan, Karina; Hadas, Tomasz; Hordyniec, Pawel

    2014-05-01

    The GNSS and Meteo group at Wroclaw University of Environmental and Life Sciences (WUELS), Poland is continuously working on GNSS meteorology since 2010. Currently group maintain real-time (RT) service collecting GNSS and meteorological data and near real-time (NRT) services for estimation of Zenith Troposphere Delay (ZTD), Zenith Hydrostatic Delay (ZHD), Integrated Water Vapour (IWV) and GNSS tomography over the territory of Poland. Data are obtained with high resolution from EUREF Permanent Network (EPN) stations and Ground Base Augmentation System (GBAS) called ASG-EUPOS (www.asgeupos.pl). The GNSS data are available from 124 reference stations located in Poland and neighbour countries, with the average 70km distance between stations. The ground meteorological observations in the area of Poland and neighbour countries are available from: ASG-EUPOS stations included in EUREF Permanent Network (EPN), airport meteorological stations (METAR messages stations) and stations managed by national Institute of Meteorology and Water Management (SYNOP messages stations). The first part of the paper presents the methodology of ASG-EUPOS GNSS data processing for NRT ZTD and ZTD horizontal gradients estimation in double-differenced mode (under Bernese GNSS Software V5.0) as well as new results from PPP mode (under Bernese GNSS Software V5.2) and their validation with respect to Rapid and Final troposphere products. The second part is describing the quality assessment of meteorological parameters interpolation methods for determination of ZHD at GNSS sites performed on GNSS stations equipped with meteorological sensors. The third part concerns on the comparisons of ZTD from GNSS data and meteorological parameters from SYNOP stations with data from COAMPS numerical weather prediction system (NWP) and IWV calculation. The fourth part presents the development of GNSS tomography model TOMO2. The last part describes methods of above products validation and visualization over the

  17. Consistent height transformations between geodetic and meteorologic reference systems

    NASA Astrophysics Data System (ADS)

    Hobiger, T.; Boehm, J.; Boy, J.; Foster, J. H.; Gegout, P.; Haas, R.; Ichikawa, R.; MacMillan, D. S.; Ming, S.; Niell, A. E.; Nievinski, F. G.; Nordman, M.; Salstein, D. A.; Santos, M. C.; Schindelegger, M.; van Dam, T. M.; Vedel, H.; Wickert, J.; Zus, F.

    2012-12-01

    Numerical weather models (NWMs) contain valuable information that is relevant for removing the environmental signal from geodetic data. Currently no clear documentation exists regarding how to deal with the coordinate systems when carrying out the calculations in a geodetic reference frame. A "conventional" transformation model (available also as source code) would enable geodesists to handle such data easily and allow them to use data from different meteorologic data-sets. In addition, geodetic products such as GNSS derived zenith total delays are being assimilated into NWMs. Thus, the transformations that convert the meteorological data into a geodetic reference frame should also support the use of geodetic data in meteorological models. The IAG Intercomission Committee on Theory - Special Study Group 12 "Coordinate systems in numerical weather models" has been set-up to 1) deal with the differences between geodetic and meteorologic reference systems and 2) provide consistent models for transforming between the two systems. We present the first product from this effort: a conventional height transformation that transforms between ellipsoidal heights and the various height systems used in NWMs. We will discuss the choice of the gravity model, which is crucial for such a transformation, and we will present the final model that the study group believes best describes the transformation in an unambiguous and bi-directional sense.

  18. The Workshop on Applications of Adjoint Models in Dynamic Meteorology.

    NASA Astrophysics Data System (ADS)

    Errico, Ronald M.

    2003-06-01

    The Fifth International Workshop on the Applications of Adjoint Models in Dynamic Meteorology was convened in Mount Bethel, Pennsylvania, 21-26 April 2002. There were 62 participants from 12 countries. Topics included adjoint model development, sensitivity and stability analysis, ensemble forecasting, and several aspects of data assimilation.

  19. Techniques for Improved Retrospective Fine-scale Meteorology

    EPA Science Inventory

    Pleim-Xiu Land-Surface model (PX LSM) was developed for retrospective meteorological simulations to drive chemical transport models. One of the key features of the PX LSM is the indirect soil moisture and temperature nudging. The idea is to provide a three hourly 2-m temperature ...

  20. Weather or Not To Teach Junior High Meteorology.

    ERIC Educational Resources Information Center

    Knorr, Thomas P.

    1984-01-01

    Presents a technique for teaching meteorology allowing students to observe and analyze consecutive weather maps and relate local conditions; a model illustrating the three-dimensional nature of the atmosphere is employed. Instructional methods based on studies of daily weather maps to trace systems sweeping across the United States are discussed.…

  1. Applied Meteorology Unit (AMU) Quarterly Report First Quarter FY-04

    NASA Technical Reports Server (NTRS)

    Bauman, William; Wheeler, Mark; Labert, Winifred; Jonathan Case; Short, David

    2004-01-01

    This report summarizes the Applied Meteorology Unit (AMU) activities for the First Quarter of Fiscal Year 2004 (October - December 2003). Tasks reviewed are: (1) Objective Lightning Probability Forecast, (2) Mesonet Temperature and Wind Climatology, (3) Severe Weather Forecast Decision Aid and (4) Anvil Transparency Relationship to Radar Reflectivity

  2. Meteorology--An Interdisciplinary Base for Science Learning.

    ERIC Educational Resources Information Center

    Howell, David C.

    1980-01-01

    Described is a freshman science program at Deerfield Academy (Deerfield, Mass.) in meteorology, designed as the first part of a three-year unified science sequence. Merits of the course, in which particular emphasis is placed on observation skills and making predictions, are enumerated. (CS)

  3. Impact of inherent meteorology uncertainty on air quality ...

    EPA Pesticide Factsheets

    It is well established that there are a number of different classifications and sources of uncertainties in environmental modeling systems. Air quality models rely on two key inputs, namely, meteorology and emissions. When using air quality models for decision making, it is important to understand how uncertainties in these inputs affect the simulated concentrations. Ensembles are one method to explore how uncertainty in meteorology affects air pollution concentrations. Most studies explore this uncertainty by running different meteorological models or the same model with different physics options and in some cases combinations of different meteorological and air quality models. While these have been shown to be useful techniques in some cases, we present a technique that leverages the initial condition perturbations of a weather forecast ensemble, namely, the Short-Range Ensemble Forecast system to drive the four-dimensional data assimilation in the Weather Research and Forecasting (WRF)-Community Multiscale Air Quality (CMAQ) model with a key focus being the response of ozone chemistry and transport. Results confirm that a sizable spread in WRF solutions, including common weather variables of temperature, wind, boundary layer depth, clouds, and radiation, can cause a relatively large range of ozone-mixing ratios. Pollutant transport can be altered by hundreds of kilometers over several days. Ozone-mixing ratios of the ensemble can vary as much as 10–20 ppb

  4. Meteorological analysis of a 1995 NARSTO-Northeast ozone episode

    SciTech Connect

    Londergan, R.J.; Moore, G.E.; Fernau, M.E.

    1997-12-31

    An analysis of the meteorological processes and transport characteristics for a five-day episode during the 1995 NARSTO-Northeast measurements program is presented. The field program included extensive meteorological measurements to characterize winds and temperatures aloft during selected intensive measurement periods, as well as enhanced air quality measurements to characterize ozone and precursor concentrations at ground level and aloft. Both rawinsonde and radar profiler/RASS systems were used to acquire meteorological measurements aloft, to supplement routine National Weather Service measurements. In the Northeast Corridor, peak ozone episodes are often associated with large, stagnating high pressure systems, characterized by high temperatures, light winds and limited vertical mixing, often with prevailing west to southwest winds. These conditions are also favorable for sea breeze circulation on the vicinity of the coastline. The CALMET diagnostic meteorological model was used to provide an objective analysis of wind and temperature fields, mixing heights and transport conditions for the July 11--15 ozone episode, which represents the longest episode and the highest observed peak ozone concentrations encountered during the summer 1995 measurements program. Back-trajectories depicting transport conditions based on surface-level and elevated winds are presented for selected receptors on the day with maximum observed concentrations.

  5. Meteorological tower design for severe weather and remote locations

    Treesearch

    Kelly Elder; Ilkoo Angutikjuak; Jessica Baker; Matt Belford; Tom Bennett; Karl Birkeland; Daniel Bowker; Doug Chabot; April Cheuvront; Mark Dixon; Dylan Elder; Lee Elder; Shari Gearheard; Greg Giedt; Kim Grant; Sam Green; Ethan Greene; Nick Houfek; Caleb Huntington; Henry Huntington; Thomas Huntington; Daniel Janigian; Crane Johnson; Glen Liston; Rob Maris; Andrea Marsh; Hans-Peter Marshall; Aidan Meiners; Alex Meiners; Theo Meiners; Limakee Palluq; Josh Pope; Esa Qillaq; Joelli Sanguya; Sam Sehnert; Ron Simenhois; Banning Starr; Roger Tyler

    2012-01-01

    We have developed a robust meteorological tower for deployment in locations with extreme conditions and for applications that require relatively maintenance-free structures. The basic design consists of a triangular base with two horizontal rails on each side, and uprights at the triangle vertices for various instrument configurations. The fabrication materials include...

  6. Meteorological and constituent data for January and February 1981

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Balloon data consisting of a plot showing the mixing ratio of ozone partial pressure in micromillibors and temperature in degrees centigrade versus pressure altitude in millibars is presented. An accompanying tabulation of meteorological and constituent data is also presented. The total overburden was aquired by Dobson Spectrophotometer 72.

  7. The impact of meteorology on ozone in Houston

    SciTech Connect

    Eder, B.K.; Davis, J.M.; Nychka, D.

    1997-12-31

    This paper compares the results from both a one-stage hierarchical clustering technique (average linkage) and a two-stage technique (average linkage then k-means) as part of an objective meteorological Classification scheme designed to better elucidate ozone`s dependence on meteorology in the Houston, Texas, area. When applied to twelve years of meteorological data (1981-1992), each technique identified seven statistically distinct meteorological regimes, the majority of which exhibited significantly different daily 1-hour maximum ozone (O{sub 3}) concentrations. While both clustering approaches proved successful, the two-stage approach did appear superior in terms of better segregation of the mean O{sub 3}, concentrations. Both approaches indicated that the largest mean daily one-hour maximum concentrations are associated with migrating anticyclones and not with the quasi-permanent Bermuda High that often dominates the southeastern United States during the summer. As a result, maximum ozone concentrations are just as likely during the months of April, May, September and October as they are during the summer months. These findings support and help explain the unique O{sub 3}, climatology experienced by the Houston area.

  8. Evaluation of meteorological and epidemiological characteristics of fatal pulmonary embolism

    NASA Astrophysics Data System (ADS)

    Törő, Klára; Pongrácz, Rita; Bartholy, Judit; Váradi-T, Aletta; Marcsa, Boglárka; Szilágyi, Brigitta; Lovas, Attila; Dunay, György; Sótonyi, Péter

    2016-03-01

    The objective of the present study was to identify risk factors among epidemiological factors and meteorological conditions in connection with fatal pulmonary embolism. Information was collected from forensic autopsy records in sudden unexpected death cases where pulmonary embolism was the exact cause of death between 2001 and 2010 in Budapest. Meteorological parameters were detected during the investigated period. Gender, age, manner of death, cause of death, place of death, post-mortem pathomorphological changes and daily meteorological conditions (i.e. daily mean temperature and atmospheric pressure) were examined. We detected that the number of registered pulmonary embolism (No 467, 211 male) follows power law in time regardless of the manner of death. We first described that the number of registered fatal pulmonary embolism up to the nth day can be expressed as Y( n) = α ṡ n β where Y denotes the number of fatal pulmonary embolisms up to the nth day and α > 0 and β > 1 are model parameters. We found that there is a definite link between the cold temperature and the increasing incidence of fatal pulmonary embolism. Cold temperature and the change of air pressure appear to be predisposing factors for fatal pulmonary embolism. Meteorological parameters should have provided additional information about the predisposing factors of thromboembolism.

  9. Impact of inherent meteorology uncertainty on air quality model predictions

    EPA Science Inventory

    It is well established that there are a number of different classifications and sources of uncertainties in environmental modeling systems. Air quality models rely on two key inputs, namely, meteorology and emissions. When using air quality models for decision making, it is impor...

  10. Design of extensible meteorological data acquisition system based on FPGA

    NASA Astrophysics Data System (ADS)

    Zhang, Wen; Liu, Yin-hua; Zhang, Hui-jun; Li, Xiao-hui

    2015-02-01

    In order to compensate the tropospheric refraction error generated in the process of satellite navigation and positioning. Temperature, humidity and air pressure had to be used in concerned models to calculate the value of this error. While FPGA XC6SLX16 was used as the core processor, the integrated silicon pressure sensor MPX4115A and digital temperature-humidity sensor SHT75 are used as the basic meteorological parameter detection devices. The core processer was used to control the real-time sampling of ADC AD7608 and to acquire the serial output data of SHT75. The data was stored in the BRAM of XC6SLX16 and used to generate standard meteorological parameters in NEMA format. The whole design was based on Altium hardware platform and ISE software platform. The system was described in the VHDL language and schematic diagram to realize the correct detection of temperature, humidity, air pressure. The 8-channel synchronous sampling characteristics of AD7608 and programmable external resources of FPGA laid the foundation for the increasing of analog or digital meteorological element signal. The designed meteorological data acquisition system featured low cost, high performance, multiple expansions.

  11. Modelling the Meteorological Forest Fire Niche in Heterogeneous Pyrologic Conditions

    PubMed Central

    De Angelis, Antonella; Ricotta, Carlo; Conedera, Marco; Pezzatti, Gianni Boris

    2015-01-01

    Fire regimes are strongly related to weather conditions that directly and indirectly influence fire ignition and propagation. Identifying the most important meteorological fire drivers is thus fundamental for daily fire risk forecasting. In this context, several fire weather indices have been developed focussing mainly on fire-related local weather conditions and fuel characteristics. The specificity of the conditions for which fire danger indices are developed makes its direct transfer and applicability problematic in different areas or with other fuel types. In this paper we used the low-to-intermediate fire-prone region of Canton Ticino as a case study to develop a new daily fire danger index by implementing a niche modelling approach (Maxent). In order to identify the most suitable weather conditions for fires, different combinations of input variables were tested (meteorological variables, existing fire danger indices or a combination of both). Our findings demonstrate that such combinations of input variables increase the predictive power of the resulting index and surprisingly even using meteorological variables only allows similar or better performances than using the complex Canadian Fire Weather Index (FWI). Furthermore, the niche modelling approach based on Maxent resulted in slightly improved model performance and in a reduced number of selected variables with respect to the classical logistic approach. Factors influencing final model robustness were the number of fire events considered and the specificity of the meteorological conditions leading to fire ignition. PMID:25679957

  12. Modern colour display and processing system for meteorological radars

    NASA Astrophysics Data System (ADS)

    Cunningham, N. A.

    1981-02-01

    The paper describes a color display and data processing system for use on conventional weather radars. It also discusses aspects of the meteorological echo characteristics, the implications on data processing equipment, and the implementation adopted in the Plessey Colourscan equipment to meet the requirements for quantitative analysis and storm warning applications.

  13. Modelling the meteorological forest fire niche in heterogeneous pyrologic conditions.

    PubMed

    De Angelis, Antonella; Ricotta, Carlo; Conedera, Marco; Pezzatti, Gianni Boris

    2015-01-01

    Fire regimes are strongly related to weather conditions that directly and indirectly influence fire ignition and propagation. Identifying the most important meteorological fire drivers is thus fundamental for daily fire risk forecasting. In this context, several fire weather indices have been developed focussing mainly on fire-related local weather conditions and fuel characteristics. The specificity of the conditions for which fire danger indices are developed makes its direct transfer and applicability problematic in different areas or with other fuel types. In this paper we used the low-to-intermediate fire-prone region of Canton Ticino as a case study to develop a new daily fire danger index by implementing a niche modelling approach (Maxent). In order to identify the most suitable weather conditions for fires, different combinations of input variables were tested (meteorological variables, existing fire danger indices or a combination of both). Our findings demonstrate that such combinations of input variables increase the predictive power of the resulting index and surprisingly even using meteorological variables only allows similar or better performances than using the complex Canadian Fire Weather Index (FWI). Furthermore, the niche modelling approach based on Maxent resulted in slightly improved model performance and in a reduced number of selected variables with respect to the classical logistic approach. Factors influencing final model robustness were the number of fire events considered and the specificity of the meteorological conditions leading to fire ignition.

  14. Meteorological factors and dengue fever transmission in South Taiwan

    NASA Astrophysics Data System (ADS)

    Chien, Lung-Chang; Lin, Yuan-Chien; Cheng, Ming-Hung; Yu, Hwa-Lung

    2013-04-01

    The variations in meteorological conditions induced by climate change causes the diffusion pattern of infectious disease and serious epidemic situation. The objective of this study is to investigate the impact of meteorological variables to the temporal variation of dengue fever epidemic in weekly basis in south Taiwan. Several extreme and average index of meteorological variables, i.e. temperature and humidity, were used for this analysis, including averaged, maximum and minimum temperature, and average rainfall, maximum 1-hr rainfall, and maximum 24-hr rainfall. This study applies the distributed lag nonlinear model (DLNM) to reveal the significant meteorological variables and their temporal lag effects to the dengue fever epidemic by analyzing the dengue fever records from 1998-2011. Results show that the weekly minimum temperature (minT) and 1-hr maximum rainfall (maxR) are significantly important to the dengue fever spread. Among them, once minT is higher than 20°C, the relative risk of dengue fever of nine-fourteen week later will be significantly elevated. On the other hand, the incidences of maxR higher than 80mm can also increase the relative risk of dengue fever occurrences around nine-fourteen weeks afterwards.

  15. Meteorological support for space operations: Review and recommendations

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The current meteorological support provided to NASA by NOAA, Air Weather Service, and other contractors is reviewed and suggestions are offered for its improvement. These recommendations include improvement in NASA's internal management organizational structure that would accommodate continued improvement in operational weather support, installation of new observing systems, improvement in analysis and forecasting procedures, and the establishment of an Applied Research and Forecasting Facility.

  16. A meteorologically driven grain sorghum stress indicator model

    NASA Technical Reports Server (NTRS)

    Taylor, T. W.; Ravet, F. W. (Principal Investigator)

    1981-01-01

    A grain sorghum soil moisture and temperature stress model is described. It was developed to serve as a meteorological data filter to alert commodity analysts to potential stress conditions and crop phenology in selected grain sorghum production areas. The model also identifies optimum conditions on a daily basis and planting/harvest problems associated with poor tractability.

  17. Impact of inherent meteorology uncertainty on air quality model predictions

    EPA Science Inventory

    It is well established that there are a number of different classifications and sources of uncertainties in environmental modeling systems. Air quality models rely on two key inputs, namely, meteorology and emissions. When using air quality models for decision making, it is impor...

  18. Techniques for Improved Retrospective Fine-scale Meteorology

    EPA Science Inventory

    Pleim-Xiu Land-Surface model (PX LSM) was developed for retrospective meteorological simulations to drive chemical transport models. One of the key features of the PX LSM is the indirect soil moisture and temperature nudging. The idea is to provide a three hourly 2-m temperature ...

  19. Weather or Not To Teach Junior High Meteorology.

    ERIC Educational Resources Information Center

    Knorr, Thomas P.

    1984-01-01

    Presents a technique for teaching meteorology allowing students to observe and analyze consecutive weather maps and relate local conditions; a model illustrating the three-dimensional nature of the atmosphere is employed. Instructional methods based on studies of daily weather maps to trace systems sweeping across the United States are discussed.…

  20. Meteorology--An Interdisciplinary Base for Science Learning.

    ERIC Educational Resources Information Center

    Howell, David C.

    1980-01-01

    Described is a freshman science program at Deerfield Academy (Deerfield, Mass.) in meteorology, designed as the first part of a three-year unified science sequence. Merits of the course, in which particular emphasis is placed on observation skills and making predictions, are enumerated. (CS)

  1. User needs and the future of operational meteorological satellites

    NASA Astrophysics Data System (ADS)

    Miller, D. B.; Silverman, J. R.

    1982-01-01

    Applications of the TIROS-N and GOES satellites are reviewed, and requirements for the next generation of meteorological satellites are discussed. TIROS N spacecraft were a joint effort of the U.S., U.K., and France, and carried instrumentation which provided information on oceanographic and hydrologic processes, agricultural products, meteorology, and digital imaging. The GOES satellites give continuous viewing of weather features and collect and relay meteorological data from remote platforms such as buoys, ships, stations, aircraft, and balloons. The next generation of GOES spacecraft are also intended for GEO, and instruments will provide imaging in the IR and visual with 1-2 and 0.5 km resolution, respectively, multispectral imaging, vertical temperature resolution in the troposphere to 1-5 km, and have solar X ray sensing capabilities, as well as for the atmospheric electron density. Further instrumentation additions and choice of orbits are examined, noting that a careful consideration of the capital return on investment will be required before any decision to fly new meteorological spacecraft.

  2. Evaluation of meteorological and epidemiological characteristics of fatal pulmonary embolism.

    PubMed

    Törő, Klára; Pongrácz, Rita; Bartholy, Judit; Váradi-T, Aletta; Marcsa, Boglárka; Szilágyi, Brigitta; Lovas, Attila; Dunay, György; Sótonyi, Péter

    2016-03-01

    The objective of the present study was to identify risk factors among epidemiological factors and meteorological conditions in connection with fatal pulmonary embolism. Information was collected from forensic autopsy records in sudden unexpected death cases where pulmonary embolism was the exact cause of death between 2001 and 2010 in Budapest. Meteorological parameters were detected during the investigated period. Gender, age, manner of death, cause of death, place of death, post-mortem pathomorphological changes and daily meteorological conditions (i.e. daily mean temperature and atmospheric pressure) were examined. We detected that the number of registered pulmonary embolism (No 467, 211 male) follows power law in time regardless of the manner of death. We first described that the number of registered fatal pulmonary embolism up to the nth day can be expressed as Y(n) = α ⋅ n (β) where Y denotes the number of fatal pulmonary embolisms up to the nth day and α > 0 and β > 1 are model parameters. We found that there is a definite link between the cold temperature and the increasing incidence of fatal pulmonary embolism. Cold temperature and the change of air pressure appear to be predisposing factors for fatal pulmonary embolism. Meteorological parameters should have provided additional information about the predisposing factors of thromboembolism.

  3. Workshop on Satellite Meteorology. Part 1; Satellite and Their Data

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The Workshop on Satellite Meteorology is co-sponsored by the Cooperative Institute for Research in the Atmosphere (CIRA) at Colorado State University and the American Meteorlogical Society's Committee on Meteorological Aspects of Aerospace Systems. The workshop covers uses of satellite data in atmospheric science. It provides state-of-the-art information to those in Universities, research groups, and other users. One area of primary focus is to provide source material to university personnel for developing and augmenting courses in satellite meteorology and the atmospheric sciences. The items in the program include information on meteorological satellites and data sources, uses of satellite imagery for all scales of weather analysis and forecasting, uses of sounding data and other radiance information and research opportunities on interactive systems. Each session is presented by a group of experts in the field and includes an open discussion of the state-of-the-art and promising areas for future development. This pre-print volume is one of three parts on the workshop. The three parts are: PART I. Satellites and Their Data; PART II. Satellite Image Analysis and Interpretation; PART III. Satellite Soundings and Their Uses.

  4. Meteorological Conditions Favouring Development of Urban Air Pollution Episodes

    NASA Astrophysics Data System (ADS)

    Baklanov, Alexander; Kukkonen, Jaakko; Finardi, Sandro; Beekmann, Matthias; Sokhi, Ranjeet; Mahura, Alexander; Ginsburg, Alexander; Mažeikis, Adomas

    2013-04-01

    The causes of urban air pollution episodes are complex and depend on various factors including emissions, meteorological parameters, topography, atmospheric chemical processes and solar radiation. The relative importance of such factors is dependent on the geographical region, its surrounding emission source areas and the related climatic characteristics, as well as the season of the year. The key pollutants are PM10, PM2.5, O3 and NO2, as these cause the worst air quality problems in European cities. The main aim of this study realised within the MEGAPOLI project was to describe and quantify the influence of meteorological patterns on urban air pollution especially high-level concentrations air pollution episodes in megacities. Several European urban agglomerations and megacities, including the Po Valley, Helsinki, London, Paris, Moscow, Vilnius, were considered in the study. The study also carried out analysis of meteorological patterns leading to urban air pollution episodes considered by the development of suitable indicators linking particular meteorological conditions/ parameters to increased air pollution levels in the urban areas. These indicators constitute a useful tool for regulators in suggesting effective policies and mitigation measures. Finally, a combination of modelling and analysis of observations data can allow both the quality assurance of the new parameterisations as well as the verification of input emissions.

  5. The ClearfLo project - Understanding London's meteorology and composition

    NASA Astrophysics Data System (ADS)

    Belcher, Stephen; Bohnenstengel, Sylvia

    2014-05-01

    ClearfLo is a large multi-institutional project funded by the UK Natural Environment Research Council (NERC). ClearfLo established integrated measurements of meteorology, gaseous and particulate composition/loading of London's (UK) urban atmosphere in 2011 and 2012 to understand the processes underlying poor air quality. A new and unique long-term measurement infrastructure was established in London at street level, urban background and elevated sites and contrasted against rural locations to determine the urban increment in meteorology and pollution. This approach enables understanding the seasonal variations in the meteorology and composition together with the controlling processes. In addition two intensive observation periods (IOPs) provide more detail in winter 2012 and during the Olympics in summer 2012 focusing upon the vertical structure and evolution of the urban boundary layer, chemical controls on nitrogen dioxide and ozone production, in particular the role of volatile organic compounds, and processes controlling the evolution, size, distribution and composition of particulate matter. In this talk we present early analysis of the meteorology and air quality measurements within ClearfLo. In particular we show measurements that indicate the dominant regimes of London's boundary layer.

  6. Beginning of modern meteorological measurements in Fiume (Rijeka).

    PubMed

    Alebic-Juretic, Ana

    2013-01-01

    When reporting on extreme weather conditions in the city of Rijeka (former Fiume), it is often specified " ... since the beginning of measurements in 1948". In reality the modern meteorological measurements in Fiume had started already in 1868, when the Austrian Imperial Academy of Science established the meteorological station. The station was operating at the Naval Academy, under the supervision of prof. dr. Emil Stahlberger, the first university professor of physics in Fiume (Rijeka). The following year the station was equipped with mareograph (marigraph/tide gauge). Based on three years measurements, prof. Stahlberger published the first book on tides in the Rijeka bay (Ueber die Ebbe und Flut in der Rhede von Fiume). After his sudden death, Prof. Peter Salcher, his succesor at the Physics chair at the Naval academy, took charge of the Meteorological station. In 1884. He published the book entitled Climate in Rijeka and Opatija (Das Klima von Fiume und Abbazia). The meteorological data in the book are presented in the very same way as it is done today, and therefore these data can be used for comparative purposes regarding climate variations/ changes.

  7. Meteorological and Chemical Urban Scale Modelling for Shanghai Metropolitan Area

    NASA Astrophysics Data System (ADS)

    Mahura, Alexander; Nuterman, Roman; Gonzalez-Aparicio, Iratxe; Amstrup, Bjarne; Yang, Xiaohua; Baklanov, Alexander

    2016-04-01

    Urban air pollution is a serious problem in megacities and major industrial agglomerations of China. Therefore, air quality information is important for public. In particular, the Shanghai metropolitan area is well known as megacity having severe air pollution episodes. The Enviro-HIRLAM (Environment - HIgh Resolution Limited Area Model) is applied for on-line integrated meteorology and atmospheric composition forecasting for the Shanghai region of China. The model setup includes the urban Building Effects Parameterization module, describing different types of urban districts with its own morphological and aerodynamical characteristics. The model is running in downscaling chain from regional-to-urban scales for selected periods in summer and winter having both elevated pollution levels as well as unfavorable meteorological conditions. For these periods, the effects of urbanization are analyzed for spatio-temporal variability of atmospheric and chemical/aerosols patterns. The formation and development of meteorological (air and surface temperature, relative humidity, wind speed, cloud cover, boundary layer height) and chemical/aerosol patterns (concentration and deposition) due to influence of the metropolitan area is evaluated. The impact of Shanghai region on regional-to-urban scales as well as relationship between air pollution and meteorology are estimated.

  8. Simulation of meteorological satellite (METSAT) data using LANDSAT data

    NASA Technical Reports Server (NTRS)

    Austin, W. W.; Ryland, W. E.

    1983-01-01

    The information content which can be expected from the advanced very high resolution radiometer system, AVHRR, on the NOAA-6 satellite was assessed, and systematic techniques of data interpretation for use with meteorological satellite data were defined. In-house data from LANDSAT 2 and 3 were used to simulate the spatial, spectral, and sampling methods of the NOAA-6 satellite data.

  9. Spatial clustering and meteorological drivers of summer ozone in Europe

    NASA Astrophysics Data System (ADS)

    Carro-Calvo, Leopoldo; Ordóñez, Carlos; García-Herrera, Ricardo; Schnell, Jordan L.

    2017-10-01

    We have applied the k-means clustering technique on a maximum daily 8-h running average near-surface ozone (MDA8 O3) gridded dataset over Europe at 1° × 1° resolution for summer 1998-2012. This has resulted in a spatial division of nine regions where ozone presents coherent spatiotemporal patterns. The role of meteorology in the variability of ozone at different time scales has been investigated by using daily meteorological fields from the NCEP-NCAR meteorological reanalysis. In the five regions of central-southern Europe ozone extremes (exceedances of the summer 95th percentile) occur mostly under anticyclonic circulation or weak sea level pressure gradients which trigger elevated temperatures and the recirculation of air masses. In the four northern regions extremes are associated with high-latitude anticyclones that divert the typical westerly flow at those latitudes and cause the advection of aged air masses from the south. The impact of meteorology on the day-to-day variability of ozone has been assessed by means of two different types of multiple linear models. These include as predictors meteorological fields averaged within the regions (;region-based; approach) or synoptic indices indicating the degree of resemblance between the daily meteorological fields over a large domain (25°-70° N, 35° W - 35° E) and their corresponding composites for extreme ozone days (;index-based; approach). With the first approach, a reduced set of variables, always including daily maximum temperature within the region, explains 47-66% of the variability (adjusted R2) in central-southern Europe, while more complex models are needed to explain 27-49% of the variability in the northern regions. The index-based approach yields better results for the regions of northern Europe, with adjusted R2 = 40-57%. Finally, both methodologies have also been applied to reproduce the interannual variability of ozone, with the best models explaining 66-88% of the variance in central

  10. Probabilistic aspects of meteorological and ozone regional ensemble forecasts

    SciTech Connect

    Monache, L D; Hacker, J; Zhou, Y; Deng, X; Stull, R

    2006-03-20

    This study investigates whether probabilistic ozone forecasts from an ensemble can be made with skill; i.e., high verification resolution and reliability. Twenty-eight ozone forecasts were generated over the Lower Fraser Valley, British Columbia, Canada, for the 5-day period 11-15 August 2004, and compared with 1-hour averaged measurements of ozone concentrations at five stations. The forecasts were obtained by driving the CMAQ model with four meteorological forecasts and seven emission scenarios: a control run, {+-} 50% NO{sub x}, {+-} 50% VOC, and {+-} 50% NO{sub x} combined with VOC. Probabilistic forecast quality is verified using relative operating characteristic curves, Talagrand diagrams, and a new reliability index. Results show that both meteorology and emission perturbations are needed to have a skillful probabilistic forecast system--the meteorology perturbation is important to capture the ozone temporal and spatial distribution, and the emission perturbation is needed to span the range of ozone-concentration magnitudes. Emission perturbations are more important than meteorology perturbations for capturing the likelihood of high ozone concentrations. Perturbations involving NO{sub x} resulted in a more skillful probabilistic forecast for the episode analyzed, and therefore the 50% perturbation values appears to span much of the emission uncertainty for this case. All of the ensembles analyzed show a high ozone concentration bias in the Talagrand diagrams, even when the biases from the unperturbed emissions forecasts are removed from all ensemble members. This result indicates nonlinearity in the ensemble, which arises from both ozone chemistry and its interaction with input from particular meteorological models.

  11. Sodar as an indicator of air quality meteorology

    SciTech Connect

    Gera, B.S.; Saxena, N.; Pandey, H.D.; Kamyotra, J.S.

    1996-12-31

    Sodar is one of the known remote sensing tools to monitor the Atmospheric Boundary Layer (ABL) thermal structure dynamics in real time and space. It is capable of providing the live facsimile representation of the varying air quality meteorological conditions viz. ABL mixing depth, prevailing stability (stable, unstable or neutral), presence of elevated inversions, capping fog layers, the onset and dissipation of free convection, fumigation period, transition from stable to unstable ABL conditions and vice-versa. Meteorological conditions associated with presence of low-lying capping inversion and prolonged fumigation period are some of the chief meteorological factors which lead to increased level of air pollution and therefore are referred to as environmental hazard for air quality. A knowledge about these air quality related meteorological factors forms inputs for nowcasting and short range forecasting of the air quality. A detailed statistical study of these aspects on annual/seasonal basis is useful in the Environmental Impact Assessment for current appraisal of situation in respect of the existing industrial towns and at the planning stage for site selection for an industrial township in the offing, in stack designing, for fixation of industrial operational hours and emission control at source (if required) during prevalence of adverse environmental conditions leading to air pollution hazard. In view of the above, sodar observational data of one year pertaining to few industrial towns in India have been analyzed to examine the statistical occurrence of environmental hazards for air quality, persistence of inversion depths, variations in mixing depths, fumigation periods, etc. with respect to climatological conditions and topographical variations. Details of the results and some examples of correlation of sodar derived air quality meteorological information and observed air pollution concentration have been discussed in the paper.

  12. A gap analysis of meteorological requirements for commercial space operators

    NASA Astrophysics Data System (ADS)

    Stapleton, Nicholas James

    Commercial space companies will soon be the primary method of launching people and supplies into orbit. Among the critical aspects of space launches are the meteorological concerns. Laws and regulations pertaining to meteorological considerations have been created to ensure the safety of the space industry and those living around spaceports; but, are they adequate? Perhaps the commercial space industry can turn to the commercial aviation industry to help answer that question. Throughout its history, the aviation industry has dealt with lessons learned from mishaps due to failures in understanding the significance of weather impacts on operations. Using lessons from the aviation industry, the commercial space industry can preempt such accidents and maintain viability as an industry. Using Lanicci's Strategic Planning Model, this study identified the weather needs of the commercial space industry by conducting three gap analyses. First, a comparative analysis was done between laws and regulations in commercial aviation and those in the commercial space industry pertaining to meteorological support, finding a "legislative gap" between the two industries, as no legal guarantee is in place to ensure weather products remain available to the commercial space industry. A second analysis was conducted between the meteorological services provided for the commercial aviation industry and commercial space industry, finding a gap at facilities not located at an established launch facility or airport. At such facilities, many weather observational technologies would not be present, and would need to be purchased by the company operating the spaceport facility. A third analysis was conducted between the meteorological products and regulations that are currently in existence, and those needed for safe operations within the commercial space industry, finding gaps in predicting lightning, electric field charge, and space weather. Recommendations to address these deficiencies have

  13. A regional GPS Meteorology Application: The Basilicata Experiment

    NASA Astrophysics Data System (ADS)

    Pacione, R.; Rutigliano, P.; Vespe, F.; Faccani, C.; Visconti, G.

    2003-04-01

    During the last years at the Matera Space Geodesy Center (ASI/CGS) space geodesy activities related to atmospheric applications have grown up. In particular, studies on the troposphere for meteorological applications using GPS signal, started in 1999, have been developed in the framework of national and international context (MAGIC EC project, COST 716 Action). Presently, at CGS, the data of 35 European stations are analysed on hourly basis to produce tropospheric Total Zenith path Delay (ZTD), results being continuously available on: geodaf.mt.asi.it. To carry on the fruitful research on the use of GPS derived tropospheric parameters for meteorological applications and climate research and the experiences of assimilation of GPS PWV into the MM5 non hydrostatic modeling, the Italian Space Agency, Università de L'Aquila and Parco Scientifico e Tecnologico d'Abruzzo (PSTdA) decided to start a new dedicated project, installing 10 new permanent GPS stations in Basilicata region. These stations are fully co-located with pre-existent meteorological stations equipped with state-of-the-art surface sensors managed by ALSIA (Regional Agency for the Development of Agriculture) that will provide the ground meteorological data (surface pressure, primarily) useful for optimal exploitation of GPS data for meteorological application. In the final configuration, all the stations will provide near real time data on hourly basis to derive ZTD to be assimilated by (PSTdA) Of course the GPS data coming from these regional network could be also useful for many other applications: geodynamic studies, hazard management, earthquakes research and so on. At present, the installation of the new GPS stations is in the final phases and the whole system is planned to become full operative in the next future. In this work, the design and the operational characteristics of the network as well as the outline of the analysing procedure are reported, together with the preliminary results of the

  14. Probabilistic aspects of meteorological and ozone regional ensemble forecasts

    NASA Astrophysics Data System (ADS)

    Delle Monache, Luca; Hacker, Joshua P.; Zhou, Yongmei; Deng, Xingxiu; Stull, Roland B.

    2006-12-01

    This study investigates whether probabilistic ozone forecasts from an ensemble can be made with skill: i.e., high verification resolution and reliability. Twenty-eight ozone forecasts were generated over the Lower Fraser Valley, British Columbia, Canada, for the 5-day period 11-15 August 2004 and compared with 1-hour averaged measurements of ozone concentrations at five stations. The forecasts were obtained by driving the Community Multiscale Air Quality Model (CMAQ) model with four meteorological forecasts and seven emission scenarios: a control run, ±50% NOx, ±50% volatile organic compounds (VOC), and ±50% NOx combined with VOC. Probabilistic forecast quality is verified using relative operating characteristic curves, Talagrand diagrams, and a new reliability index. Results show that both meteorology and emission perturbations are needed to have a skillful probabilistic forecast system: the meteorology perturbation is important to capture the ozone temporal and spatial distribution and the emission perturbation is needed to span the range of ozone concentration magnitudes. Emission perturbations are more important than meteorology perturbations for capturing the likelihood of high ozone concentrations. Perturbations involving NOx resulted in a more skillful probabilistic forecast for the episode analyzed, and therefore the 50% perturbation values appear to span much of the emission uncertainty for this case. All of the ensembles analyzed show a high ozone concentration bias in the Talagrand diagrams, even when the biases from the unperturbed emissions forecasts are removed from all ensemble members. This result indicates nonlinearity in the ensemble, which arises from both ozone chemistry and its interaction with input from particular meteorological models.

  15. The Experience Of The Meteorological Support By The National Institute Of Meteorology During The XV Pan-american Games

    NASA Astrophysics Data System (ADS)

    Seabra, M.; Gonçalves, P.; Braga, A.; Raposo, R.; Ito, E.; Gadelha, A.; Dallantonia, A.

    2008-05-01

    The XV Pan-American Games were organized in Rio de Janeiro city during 13 to 29 July, 2007 with a participation of 5.662 athletes of 42 countries . The Ministry of Sports requested INMET to provide meteorological support to the games, with the exception of the water sports only, which fell under the responsibility of the Brazilian Navy. The meteorological activities should follow the same pattern experienced during the Olympic Games of Sydney in Australia in the year of 2000, and of Athens in Greece in 2004, with a forecast center entirely dedicated to the event. NMET developed a website with detailed information oriented to the athletes and organizing committee and to the general public. The homepage had 3 different option of idioms (Portuguese, English and Spanish). After choosing the idiom, the user could consult the meteorological data, to each competition place, and to the Pan- American Village, every 15 minutes, containing weather forecast bulletin, daily synoptic analysis, the last 10 satellite image and meteograms. Besides observed data verified "in situ" INMET supplied forecast generated by High Resolution Model (MBAR) with 7km grid resolution especially set up for the games. INMET installed 7 automatic meteorological stations near the competition places, which supplied temperature , relative humidity , atmospheric pressure, wind (direction and intensity), radiation and precipitation every 15 minutes. Those information were relayed by satellite to INMET headquarters located in Brasília and soon after they were published in the website. To help the Brazilian Olympic Committee - COB, the athletes, their technical commission and the public in general, meteorological bulletins were emitted daily. The forecast was done together with the Navy and also with INMET's 6th District located in Rio de Janeiro, and responsible for the forecast statewide. This forecast was then placed at the INMET's website. Both the 3 days weather forecast and Meteorological Alert were

  16. Generation of high-resolution wind fields from the dense meteorological station network WegenerNet in South-Eastern Austria

    NASA Astrophysics Data System (ADS)

    Schlager, Christoph; Kirchengast, Gottfried; Fuchsberger, Jürgen

    2016-04-01

    To investigate weather and climate on a local scale as well as for evaluating regional climate models (RCMs) the Wegener Center at the University of Graz established the long-term field experiment WegenerNet Feldbach region, a dense grid of 153 meteorological stations. The observations of these stations are managed by an automatic WegenerNet Processing system. This system includes a quality check of collected observations and a Data Product Generator (DPG), among other subsystems. Products already implemented in the DPG are gridded weather and climate products, generated from the main parameters temperature, precipitation and relative humidity (Kirchengast et. al., Bull. Amer. Meteor. Soc., 95, 227-242, 2014). Missing elements are gridded wind fields from wind observations. Wind is considered as one of the most difficult meteorological variables to model and depends on many different parameters such as topography and surface roughness. Therefore a simple interpolation can only be performed in case of uniform characteristics of landscape. The presentation introduces our method of generation of wind fields from near real-time observations of the WegenerNet. Purpose of this work is to provide a database with 3D wind fields in a high spatial and time resolution as addition to the existing products, for evaluating convection permitting climate models as well as investigating weather and climate on a local scale. Core of the application is the diagnostic California Meteorological Model (CALMET). This model computes 3D wind fields based on meteorological observational data, a digital elevation model and land use categories. The application generates the required input files from meteorological stations of the WegenerNet Feldbach region and triggers the start of the CALMET model with these input files. In a next step the modeled wind fields are stored automatically every 30 minutes with a spatial resolution of 100 x 100 m in the WegenerNet database. To verify the

  17. Development of a Method for Selecting Optimum Sites for the Automatic Mountain Meteorology Observation Station (AMOS) to Improve Predictability of Forest Fires in Inaccessible Area

    NASA Astrophysics Data System (ADS)

    Yoon, S.; Won, M.; Jang, K.; Lim, J.

    2016-12-01

    As there has been a recent increase in the case of forest fires in North Korea descending southward through the De-Militarized Zone (DMZ), ensuring proper response to such events has been a challenge. Therefore, in order to respond and manage these forest fires appropriately, an improvement in the forest fire predictability through integration of mountain weather information observed at the most optimal site is necessary. This study is a proactive case in which a spatial analysis and an on-site assessment method were developed for selecting an optimum site for a mountain weather observation in national forest. For spatial analysis, the class 1 and 2 forest fire danger areas for the past 10 years, accessibility maximum 100m, Automatic Weather Station (AWS) redundancy within 2.5km, and mountain terrains higher than 200m were analyzed. A final overlay analysis was performed to select the candidates for the field assessment. The sites selected through spatial analysis were quantitatively evaluated based on the optimal meteorological environment, forest and hiking trail accessibility, AWS redundancy, and supply of wireless communication and solar powered electricity. The sites with total score of 70 and higher were accepted as adequate. At the final selected sites, an AMOS was established, and integration of mountain and Korea Meteorological Administration (KMA) weather data improved the forest fire predictability in South Korea by 10%. Given these study results, we expect that establishing an automatic mountain meteorology observation station at the optimal sites in inaccessible area and integrating mountain weather data will improve the predictability of forest fires.

  18. 4. SOUTHWEST CORNER OF METEOROLOGICAL TOWER; SOUTH FACE OF SLC3W ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. SOUTHWEST CORNER OF METEOROLOGICAL TOWER; SOUTH FACE OF SLC-3W MST IN BACKGROUND - Vandenberg Air Force Base, Space Launch Complex 3, Meteorological Shed & Tower, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  19. Quality Assurance Guidance for the Collection of Meteorological Data Using Passive Radiometers

    EPA Science Inventory

    This document augments the February 2000 guidance entitled Meteorological Monitoring Guidance for Regulatory Modeling Applications and the March 2008 guidance entitled Quality Assurance Handbook for Air Pollution Measurement Systems Volume IV: Meteorological Measurements Version ...

  20. Quality Assurance Guidance for the Collection of Meteorological Data Using Passive Radiometers

    EPA Science Inventory

    This document augments the February 2000 guidance entitled Meteorological Monitoring Guidance for Regulatory Modeling Applications and the March 2008 guidance entitled Quality Assurance Handbook for Air Pollution Measurement Systems Volume IV: Meteorological Measurements Version ...

  1. EVALUATING THE USE OF OUTPUTS FROM COMPREHENSIVE METEOROLOGICAL MODELS IN AIR QUALITY MODELING APPLICATIONS

    EPA Science Inventory

    Currently used dispersion models, such as the AMS/EPA Regulatory Model (AERMOD), process routinely available meteorological observations to construct model inputs. Thus, model estimates of concentrations depend on the availability and quality of Meteorological observations, as we...

  2. Impact of High Resolution Land-Use Data in Meteorology and Air Quality Modeling Systems

    EPA Science Inventory

    Accurate land use information is important in meteorology for land surface exchanges, in emission modeling for emission spatial allocation, and in air quality modeling for chemical surface fluxes. Currently, meteorology, emission, and air quality models often use outdated USGS Gl...

  3. Impact of High Resolution Land-Use Data in Meteorology and Air Quality Modeling Systems

    EPA Science Inventory

    Accurate land use information is important in meteorology for land surface exchanges, in emission modeling for emission spatial allocation, and in air quality modeling for chemical surface fluxes. Currently, meteorology, emission, and air quality models often use outdated USGS Gl...

  4. Meteorological Processes Affecting Air Quality – Research and Model Development Needs

    EPA Science Inventory

    Meteorology modeling is an important component of air quality modeling systems that defines the physical and dynamical environment for atmospheric chemistry. The meteorology models used for air quality applications are based on numerical weather prediction models that were devel...

  5. Meteorological Processes Affecting Air Quality – Research and Model Development Needs

    EPA Science Inventory

    Meteorology modeling is an important component of air quality modeling systems that defines the physical and dynamical environment for atmospheric chemistry. The meteorology models used for air quality applications are based on numerical weather prediction models that were devel...

  6. EVALUATING THE USE OF OUTPUTS FROM COMPREHENSIVE METEOROLOGICAL MODELS IN AIR QUALITY MODELING APPLICATIONS

    EPA Science Inventory

    Currently used dispersion models, such as the AMS/EPA Regulatory Model (AERMOD), process routinely available meteorological observations to construct model inputs. Thus, model estimates of concentrations depend on the availability and quality of Meteorological observations, as we...

  7. Feedbacks between Air-Quality, Meteorology, and the Forest Environment

    NASA Astrophysics Data System (ADS)

    Makar, Paul; Akingunola, Ayodeji; Stroud, Craig; Zhang, Junhua; Gong, Wanmin; Moran, Michael; Zheng, Qiong; Brook, Jeffrey; Sills, David

    2017-04-01

    The outcome of air quality forecasts depend in part on how the local environment surrounding the emissions regions influences chemical reaction rates and transport from those regions to the larger spatial scales. Forested areas alter atmospheric chemistry through reducing photolysis rates and vertical diffusivities within the forest canopy. The emitted pollutants, and their reaction products, are in turn capable of altering meteorology, through the well-known direct and indirect effects of particulate matter on radiative transfer. The combination of these factors was examined using version 2 of the Global Environmental Multiscale - Modelling Air-quality and CHemistry (GEM-MACH) on-line air pollution model. The model configuration used for this study included 12 aerosol size bins, eight aerosol species, homogeneous core Mie scattering, the Milbrandt-Yao two-moment cloud microphysics scheme with cloud condensation nuclei generated from model aerosols using the scheme of Abdul-Razzak and Ghan, and a new parameterization for forest canopy shading and turbulence. The model was nested to 2.5km resolution for a domain encompassing the lower Great Lakes, for simulations of a period in August of 2015 during the Pan American Games, held in Toronto, Canada. Four scenarios were carried out: (1) a "Base Case" scenario (the original model, in which coupling between chemistry and weather is not permitted; instead, the meteorological model's internal climatologies for aerosol optical and cloud condensation properties are used for direct and indirect effect calculations); (2) a "Feedback" scenario (the aerosol properties were derived from the internally simulated chemistry, and coupled to the meteorological model's radiative transfer and cloud formation modules); (3) a "Forest" scenario (canopy shading and turbulence were added to the Base Case); (4) a "Combined" scenario (including both direct and indirect effect coupling between meteorology and chemistry, as well as the forest

  8. A century of meteorological observations at Fort Valley Experimental Forest: A cooperative observer program success story

    Treesearch

    Daniel P. Huebner; Susan D. Olberding; Byron Peterson; Dino DeSimone

    2008-01-01

    Meteorological observations at Fort Valley Experimental Forest began with its establishment as early silvicultural research made heavy use of meteorological data. The Fort Valley weather data represent the longest climatological record for northern Arizona with records dating back to 1909. Importance of long-term meteorological records and access to the weather record...

  9. Teaching Guidelines for the Observance of World Meteorological Day (23 March).

    ERIC Educational Resources Information Center

    International Understanding at School, 1986

    1986-01-01

    Discusses the establishment and goals of the World Meteorological Organization and the World Meteorological Day (WMD). Includes teaching objectives for upper elementary and lower secondary school teachers and provides activities which integrate the study of meteorology with language, history, geography, mathematics, science, physical education,…

  10. A Method for Evaluation of Model-Generated Vertical Profiles of Meteorological Variables

    DTIC Science & Technology

    2016-03-01

    Meteorological Variables by J L Cogan Approved for public release; distribution unlimited. NOTICES Disclaimers The...of Model Generated Vertical Profiles of Meteorological Variables by J L Cogan Computational and Information Sciences Directorate, ARL...Evaluation of Model Generated Vertical Profiles of Meteorological Variables 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER

  11. a Meteorological Risk Assessment Method for Power Lines Based on GIS and Multi-Sensor Integration

    NASA Astrophysics Data System (ADS)

    Lin, Zhiyong; Xu, Zhimin

    2016-06-01

    Power lines, exposed in the natural environment, are vulnerable to various kinds of meteorological factors. Traditional research mainly deals with the influence of a single meteorological condition on the power line, which lacks of comprehensive effects evaluation and analysis of the multiple meteorological factors. In this paper, we use multiple meteorological monitoring data obtained by multi-sensors to implement the meteorological risk assessment and early warning of power lines. Firstly, we generate meteorological raster map from discrete meteorological monitoring data using spatial interpolation. Secondly, the expert scoring based analytic hierarchy process is used to compute the power line risk index of all kinds of meteorological conditions and establish the mathematical model of meteorological risk. By adopting this model in raster calculator of ArcGIS, we will have a raster map showing overall meteorological risks for power line. Finally, by overlaying the power line buffer layer to that raster map, we will get to know the exact risk index around a certain part of power line, which will provide significant guidance for power line risk management. In the experiment, based on five kinds of observation data gathered from meteorological stations in Guizhou Province of China, including wind, lightning, rain, ice, temperature, we carry on the meteorological risk analysis for the real power lines, and experimental results have proved the feasibility and validity of our proposed method.

  12. A Generalized Method for Vertical Profiles of Mean Layer Values of Meteorological Variables

    DTIC Science & Technology

    2015-09-01

    first decade of this century, numerical weather prediction (NWP) models were first used in an artillery meteorological (MET) system to produce MET... Meteorological Variables by James Cogan Approved for public release; distribution is unlimited. NOTICES Disclaimers...Method for Vertical Profiles of Mean Layer Values of Meteorological Variables by James Cogan Computational and Information Sciences Directorate

  13. Teaching Guidelines for the Observance of World Meteorological Day (23 March).

    ERIC Educational Resources Information Center

    International Understanding at School, 1986

    1986-01-01

    Discusses the establishment and goals of the World Meteorological Organization and the World Meteorological Day (WMD). Includes teaching objectives for upper elementary and lower secondary school teachers and provides activities which integrate the study of meteorology with language, history, geography, mathematics, science, physical education,…

  14. 77 FR 30584 - Thirtieth Meeting: RTCA Special Committee 206, Aeronautical Information and Meteorological Data...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-23

    ... and Meteorological Data Link Services AGENCY: Federal Aviation Administration (FAA), U.S. Department... Information and Meteorological Data Link Services. SUMMARY: The FAA is issuing this notice to advise the... Meteorological Data Link Services. DATES: The meeting will be held June 11-15, 2012, from 8:30 a.m.-4:00...

  15. 78 FR 20167 - 33rd Meeting: RTCA Special Committee 206, Aeronautical Information and Meteorological Data Link...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-03

    ... Meteorological Data Link Services AGENCY: Federal Aviation Administration (FAA), U.S. Department of... Meteorological Data Link Services. SUMMARY: The FAA is issuing this notice to advise the public of the thirty-first meeting of the RTCA Special Committee 206, Aeronautical Information and Meteorological Data...

  16. 78 FR 5242 - 32nd Meeting: RTCA Special Committee 206, Aeronautical Information and Meteorological Data Link...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-24

    ... Meteorological Data Link Services AGENCY: Federal Aviation Administration (FAA), U.S. Department of... Meteorological Data Link Services. SUMMARY: The FAA is issuing this notice to advise the public of the thirty-second meeting of the RTCA Special Committee 206, Aeronautical Information and Meteorological Data...

  17. 76 FR 34123 - 25th Meeting: RTCA Special Committee 206: Aeronautical Information and Meteorological Data Link

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-10

    ... Meteorological Data Link AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Special Committee 206: Aeronautical Information and Meteorological Data Link Services meeting. SUMMARY: The FAA is... Information and Meteorological Data Link Services DATES: The meeting will be held June 27-July 1, 2011 from 9...

  18. Active layer dynamics and arctic hydrology and meteorology. Final report

    SciTech Connect

    Not Available

    1993-10-01

    Man`s impact on the environment is increasing with time. To be able to evaluate anthropogenic impacts on an ecosystems, it is necessary first to understand all facets of how the ecosystems works: what the main processes (physical, biological, chemical) are, at what rates they proceed, and how they can be manipulated. Arctic ecosystems are dominated by physical processes of energy exchange. This project has concentrated on a strong program of hydrologic and meteorologic data collection, to better understand dominant physical processes. Field research focused on determining the natural annual and diurnal variability of meteorologic and hydrologic variables, especially those which may indicate trends in climatic change. Comprehensive compute models are being developed to simulate physical processes occurring under the present conditions and to simulate processes under the influence of climatic change.

  19. [Relationships between horqin meadow NDVI and meteorological factors].

    PubMed

    Qu, Cui-ping; Guan, De-xin; Wang, An-zhi; Jin, Chang-jie; Wu, Jia-bing; Wang, Ji-jun; Ni, Pan; Yuan, Feng-hui

    2009-01-01

    Based on the 2000-2006 MODIS 8-day composite NDVI and day-by-day meteorological data, the seasonal and inter-annual variations of Horqin meadow NDVI as well as the relationships between the NDVI and relevant meteorological factors were studied. The results showed that as for the seasonal variation, Horqin meadow NDVI was more related to water vapor pressure than to precipitation. Cumulated temperature and cumulated precipitation together affected the inter-annual turning-green period significantly, and the precipitation in growth season (June and July), compared with that in whole year, had more obvious effects on the annual maximal NDVI. The analysis of time lag effect indicated that water vapor pressure had a persistent (about 12 days) prominent effect on the NDVI. The time lag effect of mean air temperature was 11-15 days, and the cumulated dual effect of the temperature and precipitation was 36-52 days.

  20. Effects of Meteorological Conditions on Reactions to Noise Exposure

    NASA Technical Reports Server (NTRS)

    Shepherd, Kevin P. (Technical Monitor); Fields, James M.

    2004-01-01

    More than 80,000 residents' responses to transportation noise at different times of year provide the best, but imprecise, statistical estimates of the effects of season and meteorological conditions on community response to noise. Annoyance with noise is found to be slightly statistically significantly higher in the summer than in the winter in a seven-year study in the Netherlands. Analyses of 41 other surveys drawn from diverse countries, climates, and times of year find noise annoyance is increased by temperature, and may be increased by more sunshine, less precipitation, and reduced wind speeds. Meteorological conditions on the day of the interview or the immediately preceding days do not appear to have any more effect on reactions than do the conditions over the immediately preceding weeks or months.

  1. An Overview of the Applied Meteorology Unit (AMU)

    NASA Technical Reports Server (NTRS)

    Merceret, Francis; Bauman, William; Lambert, Winifred; Short, David; Barrett, Joe; Watson, Leela

    2007-01-01

    The Applied Meteorology Unit (AMU) acts as a bridge between research and operations by transitioning technology to improve weather support to the Shuttle and American space program. It is a NASA entity operated under a tri-agency agreement by NASA, the US Air Force, and the National Weather Service (NWS). The AMU contract is managed by NASA, operated by ENSCO, Inc. personnel, and is collocated with Range Weather Operations at Cape Canaveral Air Force Station. The AMU is tasked by its customers in the 45th Weather Squadron, Spaceflight Meteorology Group, and the NWS in Melbourne, FL with projects whose results help improve the weather forecast for launch, landing, and ground operations. This presentation describes the history behind the formation of the AMU, its working relationships and goals, how it is tasked by its customers, and examples of completed tasks.

  2. Meteorological effects on long-range outdoor sound propagation

    NASA Technical Reports Server (NTRS)

    Klug, Helmut

    1990-01-01

    Measurements of sound propagation over distances up to 1000 m were carried out with an impulse sound source offering reproducible, short time signals. Temperature and wind speed at several heights were monitored simultaneously; the meteorological data are used to determine the sound speed gradients according to the Monin-Obukhov similarity theory. The sound speed profile is compared to a corresponding prediction, gained through the measured travel time difference between direct and ground reflected pulse (which depends on the sound speed gradient). Positive sound speed gradients cause bending of the sound rays towards the ground yielding enhanced sound pressure levels. The measured meteorological effects on sound propagation are discussed and illustrated by ray tracing methods.

  3. Meteorological and air pollution modeling for an urban airport

    NASA Technical Reports Server (NTRS)

    Swan, P. R.; Lee, I. Y.

    1980-01-01

    Results are presented of numerical experiments modeling meteorology, multiple pollutant sources, and nonlinear photochemical reactions for the case of an airport in a large urban area with complex terrain. A planetary boundary-layer model which predicts the mixing depth and generates wind, moisture, and temperature fields was used; it utilizes only surface and synoptic boundary conditions as input data. A version of the Hecht-Seinfeld-Dodge chemical kinetics model is integrated with a new, rapid numerical technique; both the San Francisco Bay Area Air Quality Management District source inventory and the San Jose Airport aircraft inventory are utilized. The air quality model results are presented in contour plots; the combined results illustrate that the highly nonlinear interactions which are present require that the chemistry and meteorology be considered simultaneously to make a valid assessment of the effects of individual sources on regional air quality.

  4. A Study of Meteorological Conditions Associated With Noctilucent Clouds

    NASA Technical Reports Server (NTRS)

    Schmidlin, F. J.; Goldberg, R. A.

    2000-01-01

    Temperature measurements were obtained in the upper stratosphere and mesosphere between 50 and 95 km with passive inflatable falling spheres launched on small meteorological rockets as part of the DROPPS (Distribution and Role of Particles in the Polar Summer Mesosphere) program. Temperatures of the neutral atmosphere have been combined with similar measurements obtained during 1991 and 1993. Temperatures were found to change monatonically with altitude except during the Nocticulent Clouds (NLC) occurrences during DROPPS. The temperature lapse rate changed between 5 July 1999, 2313 UTC and 6 July 1999, 0209 UTC; this included a lowering of the altitude of minimum temperature by about 5 km. Furthermore, winds backed from a northeasterly direction to a northwesterly direction. Whether the change in temperature observed is a result of advection related to the changes of the wind field due to advection. Comparisons will also concentrate on the meteorological conditions during the NLC event during DROPPS and earlier 1991 and 1993 NLC'S.

  5. Extreme Meteorological Parameters During Space Shuttle Pad Exposure Periods

    NASA Technical Reports Server (NTRS)

    Roberts, Barry C.; Overbey, B. Glenn

    2004-01-01

    During the 113 missions of the Space Transportation System (STS), the Space Shuttle fleet has been exposed to the elements on the launch pad for a total of 4195 days. This paper provides a summary of the historical record of the meteorological extremes encountered by the Space Shuttle fleet during the pad exposure period. Parameters included are temperature, dew point, relative humidity, wind speed, sea level pressure and precipitation. All the data presented are archived by the Marshall Space Flight Center Environments Group, and were obtained from a combination of surface observations and meteorological towers at Kennedy Space Center (KSC), Florida. Data are provided from the first launch of the STS in 1981 through the launch of STS-107 in 2003.

  6. Meteorological conditions of the Danube flood in year 1895

    NASA Astrophysics Data System (ADS)

    Melo, Marian; Gera, Martin

    2015-04-01

    The flood in year 1895 belongs to the highest floods on the Danube River and its tributaries. The aim of this contribution is to clarify meteorological causes of this flood. Analysis is based on air temperature and precipitation measurements of some meteorological stations from the Central and southeastern Europe and data from NOAA 20th Century Reanalysis of daily composites. Moreover we bring knowledge gained by studies of materials regarding the historical flood on the Danube River and its tributaries in 1895 as reflected in local contemporary press (Preßburger Zeitung and Wiener Zeitung) in the period from late February till the end of April 1895. This work was supported by the Slovak Research and Development Agency under Contract No. APVV-0303-11 and No. APVV-0015-10.

  7. Spherical Harmonics Functions Modelling of Meteorological Parameters in PWV Estimation

    NASA Astrophysics Data System (ADS)

    Deniz, Ilke; Mekik, Cetin; Gurbuz, Gokhan

    2016-08-01

    Aim of this study is to derive temperature, pressure and humidity observations using spherical harmonics modelling and to interpolate for the derivation of precipitable water vapor (PWV) of TUSAGA-Active stations in the test area encompassing 38.0°-42.0° northern latitudes and 28.0°-34.0° eastern longitudes of Turkey. In conclusion, the meteorological parameters computed by using GNSS observations for the study area have been modelled with a precision of ±1.74 K in temperature, ±0.95 hPa in pressure and ±14.88 % in humidity. Considering studies on the interpolation of meteorological parameters, the precision of temperature and pressure models provide adequate solutions. This study funded by the Scientific and Technological Research Council of Turkey (TUBITAK) (The Estimation of Atmospheric Water Vapour with GPS Project, Project No: 112Y350).

  8. Commercialisation in the provision of meteorological services in New Zealand

    NASA Astrophysics Data System (ADS)

    Steiner, J. Thomas; Martin, John R.; Gordon, Neil D.; Grant, Malcolm A.

    1997-09-01

    There have been significant reforms in New Zealand of government management in general and of the science and transport sectors in particular. The impact of the reforms on the provision of meteorological services is discussed as an example of the application of the general reform thrust to a specialist technical area. The eventual outcome was the establishment of Meteorological Service of New Zealand Ltd (MetService) as a commercial company, trading in the weather forecasting market but remaining under Crown ownership. At the same time the National Institute of Water and Atmosphere (NIWA) was established. It includes the climatic responsibilities and much of the scientific research component of the former NZMS. It too operates commercially and is Crown owned. Unlike MetService, NIWA is not required to return a dividend to its owners. The procedures leading to the establishment of these new organisations, their mode of operation and their initial successful performance are described.

  9. An airborne meteorological data collection system using satellite relay (ASDAR)

    NASA Technical Reports Server (NTRS)

    Bagwell, J. W.; Lindow, B. G.

    1978-01-01

    The National Aeronautics and Space Administration (NASA) has developed an airborne data acquisition and communication system for the National Oceanic and Atmospheric Administration (NOAA). This system known as ASDAR, the Aircraft to Satellite Data Relay, consists of a microprocessor based controller, time clock, transmitter and antenna. Together they acquire meteorological and position information from existing aircraft systems on B-747 aircraft, convert and format these, and transmit them to the ground via the GOES meteorological satellite series. The development and application of the ASDAR system is described with emphasis on unique features. Performance to date is exceptional, providing horizon-to-horizon coverage of aircraft flights. The data collected is of high quality and is considered a valuable addition to the data base from which NOAA generates its weather forecasts.

  10. Weather patterns and Legionnaires' disease: a meteorological study.

    PubMed

    Ricketts, K D; Charlett, A; Gelb, D; Lane, C; Lee, J V; Joseph, C A

    2009-07-01

    This study examined the impact of meteorological conditions on sporadic, community-acquired cases of Legionnaires' disease in England and Wales (2003-2006), with reference to the 2006 increase in cases. A case-crossover methodology compared each case with self-controlled data using a conditional logistic regression analysis. Effect modification by quarter and year was explored. In total, 674 cases were entered into the dataset and two meteorological variables were selected for study based on preliminary analyses: relative humidity during a case's incubation period, and temperature during the 10-14 weeks preceding onset. For the quarter July-September there was strong evidence to suggest a year, humidity and temperature interaction (Wald chi2=30.59, 3 d.f., P<0.0001). These findings have implications for future case numbers and resource requirements.

  11. Refinement of background environmental monitoring measurements using meteorological frequency distribution

    SciTech Connect

    Schwartz, P.E. )

    1991-01-01

    Since the Radiological Environmental Monitoring Program's inception in 1969, the direct radiation monitoring network around the Oyster Creek nuclear generating station has incorporated both monthly and quarterly thermoluminescent dosimetry (TLD). In 1988, the environmental controls department of GPU Nuclear decided to eliminate the monthly TLD network for scientific and economic reasons. The most obvious scientific basis on which to designate TLD stations is by meteorology. It would be the plume path that dictates off-site direct radiation contribution from the plant and not simply distance from the site. Through meteorological and statistical analysis of existing TLD results, the appropriate basis for designating TLD stations has been accomplished that will provide the most accurate and comprehensive data on environmental measurement of releases from Oyster Creek.

  12. Analysis of meteorological and radiological data for selected fallout episodes

    SciTech Connect

    Quinn, V.E. )

    1990-11-01

    The Weather Service Nuclear Support Office has analyzed the meteorological and radiological data collected for the following atmospheric nuclear tests: TRINITY; EASY of the Tumbler-Snapper series; ANNIE, NANCY, BADGER, SIMON, and HARRY of the Upshot-Knothole series; BEE and ZUCCHINI of the Teapot series; BOLTZMANN and SMOKY of the Plumbbob series; and SMALL BOY of the Dominic II series. These tests were chosen as having the greatest impact on nearby downwind populated locations, contributing approximately 80% of the collective estimated exposure. This report describes the methods of analysis used in deriving fallout-pattern contours and estimated fallout arrival times. Inconsistencies in the radiological data and their resolution are discussed. The methods of estimating fallout arrival times from the meteorological data are described. Comparisons of fallout patterns resulting from these analyses with earlier analyses show insignificant differences in the areas covered or people exposed.

  13. Modeling Current Transfer from PV Modules Based on Meteorological Data

    SciTech Connect

    Hacke, Peter; Smith, Ryan; Kurtz, Sarah; Jordan, Dirk; Wohlgemuth, John

    2016-11-21

    Current transferred from the active cell circuit to ground in modules undergoing potential-induced degradation (PID) stress is analyzed with respect to meteorological data. Duration and coulombs transferred as a function of whether the module is wet (from dew or rain) or the extent of uncondensed surface humidity are quantified based on meteorological indicators. With this, functions predicting the mode and rate of coulomb transfer are developed for use in estimating the relative PID stress associated with temperature, moisture, and system voltage in any climate. Current transfer in a framed crystalline silicon module is relatively high when there is no condensed water on the module, whereas current transfer in a thin-film module held by edge clips is not, and displays a greater fraction of coulombs transferred when wet compared to the framed module in the natural environment.

  14. Relationship between particle matter and meteorological data in Canada

    NASA Astrophysics Data System (ADS)

    Bahrami, Azad; Memarian Fard, Mahsa; Bahrami, Ala

    2017-04-01

    The fine particulate matter (PM2.5) has a strong influence on the hydrological cycle, cloud formation, visibility, global climate, and human health. The meteorological conditions have important effects on PM2.5 mass concentration. Canada's National Air Pollution Surveillance (NAPS) network measures air pollutants at urban, suburban and rural locations in Canada. In this study, the point monthly relationships between meteorological data provided by Environment of Canada and PM2.5 mass concentration from January 1st, 2010 to December 31st, 2015 of fifteen speciation stations in Canada were analyzed. The correlation analysis results between PM2.5 concentrations and precipitation as well as surface pressure demonstrated a negative correlation. It should be noted that the correlation between temperature and special humidity with PM2.5 in cold seasons and warm seasons were negative and positive respectively. Moreover, the weak correlation between wind speed and PM2.5 were obtained.

  15. [Meteorological observations concerning haemorrhages after tonsillectomy (author's transl)].

    PubMed

    Dubs, R; Primault, B

    1975-09-01

    Based on the observation of 929 patients who had to be subjected to tonsillectomy within a period of twelve months, the authors concluded that the vast majority of post operative haemorrhages occurred during the beginning of a good weather period (clearing from the west), not quite so often during a "Föhn"-period (warm winds from the south). This contrasts somewhat with the observations of other authors who found a connection between haemorrhages and the beginning of a period of bad weather (close and stuffy, increasing humidity, high clouds). The dependence of postoperative haemorrhages on meteorological influences would perhaps give a reason for the hitherto medically unexplainable 40 per cent bleedings. Based on these observations it would be desirable for the meteorologic stations (or the media) to inform the doctors and hospitals about the weather phases.

  16. Technical Work Plan For: Meteorological Monitoring and Data Analysis

    SciTech Connect

    C.T. Bastian

    2003-03-28

    The meteorological monitoring and analysis program has three overall objectives. First, the program will acquire qualified meteorological data from monitoring activities in the Environmental Safety and Health (ES&H) network, including appropriate controls on measuring and test equipment. All work will be completed in accordance with U.S. Department of Energy (DOE) Office of Repository Development (ORD) administrative procedures and Bechtel SAIC Co., LLC (BSC) line procedures. The continuously operating monitoring program includes measuring and test equipment calibrations, operational checks, preventive and corrective maintenance, and data collection. Second, the program will process the raw monitoring data collected in the field and submit technically reviewed, traceable data to the Technical Data Management System (TDMS) and the Records Processing Center. Third, reports containing analyses or calculations could be created to provide information to data requesters.

  17. New Space Weather Activities in the World Meteorological Organization

    NASA Astrophysics Data System (ADS)

    Bogdan, Thomas J.; Onsager, Terrance G.

    2010-10-01

    A new era of enhanced international cooperation in space weather operations has begun with the recent initiation of space weather activities within the World Meteorological Organization (WMO), an agency of the United Nations (U.N.) with a membership of 189 states and territories. These activities aim to standardize and enhance space weather observations and data exchange, coordinate end products and services, and foster dialogue between the research and operational communities. The WMO's role is to foster collaboration among the meteorological and hydrological (and now space weather) service providers and to promote the establishment of networks for making and exchanging geophysical observations and the standardization of data and metadata. It also contributes to policy making and has a lead role in efforts to monitor and protect the environment.

  18. [Meteorology and the human body: two hundred years of history].

    PubMed

    Forrai, Judit

    2010-07-04

    Modern meteorology was started in the 18th century, with the establishment of observer networks through countries. Since then, temperature, pressure and purity of air, quantity of powder have been measured and the effects of changes on the human body have been studied. New theories have been set relating to the atmospheric properties of microorganisms. Changes of pathogens in the context of climatic changes have been also studied.

  19. Aerosol Observing System Surface Meteorology (AOSMET) Instrument Handbook

    SciTech Connect

    Kyrouac, J

    2016-04-01

    The U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility Aerosol Observing System (AOS) surface meteorology instrument is an ancillary sensor that provides temperature, relative humidity, pressure, wind speed and direction, and precipitation data relevant to the AOS. It consists of a Vaisala WXT520 Weather Transmitter mounted on top of the AOS aerosol inlet, at a height of approximately 10 meters.

  20. Superior Ambulance Call Out Rate Forecasting Using Meteorological Data

    NASA Astrophysics Data System (ADS)

    Mahmood, M. A.; Thornes, J. E.; Bloss, W.; Pope, F.

    2015-12-01

    Ambulances are an integral part of a country's infrastructure ensuring its citizens and visitors are kept healthy. The impact of weather, climate and climate change on ambulance services around the world has received increasing attention in recent years but most studies have been area specific and there is a need to establish basic relationships between ambulance data (both response and illness data) and meteorological parameters. In this presentation, the effects of temperature and relative humidity on ambulance call out rates for different medical categories will be investigated. We use call out data obtained from the London Ambulance Service (LAS) and meteorological data from a central London meteorological station. A time-series analysis was utilized to understand the relation between temperature, relative humidity, air pollutants and different call out categories. There are statistically significant relationships between mean temperature and ambulance callout rate for most of the categories investigated. Most categories show a negative dependence on temperature, i.e. call outs increase with decreasing temperature but some categories showed a positive dependence such as alcohol related call outs. Relative humidity is significant for some categories but in general is much less important than temperature. Significant time lag effects were observed for most of the categories related to infectious illnesses, which are transferrable through human contact. These findings support the opinion that ambulance attendance callouts records are an effective and well-timed source of data and can be used for health early warning systems. Furthermore the presented results can much improve our understanding of the relationships between meteorological conditions and human health thereby allowing for better prediction of ambulance use through the application of long and short-term weather forecasts.

  1. Applied Meteorology Unit (AMU) Quarterly Report Fourth Quarter FY-04

    NASA Technical Reports Server (NTRS)

    Bauman, William; Wheeler, Mark; Lambert, Winifred; Case, Jonathan; Short, David

    2004-01-01

    This report summarizes the Applied Meteorology Unit (A MU) activities for the fourth quarter of Fiscal Year 2004 (July -Sept 2004). Tasks covered are: (1) Objective Lightning Probability Forecast: Phase I, (2) Severe Weather Forecast Decision Aid, (3) Hail Index, (4) Shuttle Ascent Camera Cloud Obstruction Forecast, (5) Advanced Regional Prediction System (ARPS) Optimization and Training Extension and (5) User Control Interface for ARPS Data Analysis System (ADAS) Data Ingest.

  2. User needs and the future of operational meteorological satellites

    NASA Technical Reports Server (NTRS)

    Miller, D. B.; Silverman, J. R.

    1982-01-01

    Meteorological satellites and their capabilities are described. Future satellite configurations and instrumentation are discussed in the light of future user needs. In addition to the continuation of existing baseline products and services, the goals for improvement of the geosynchronous system through the 1990's will be: increasing spacial resolution in the visible and infrared channels; increasing vertical mean layer temperature resolution; adding the ability to image the solar disk; and upgrading the ground systems. Other improvements are discussed.

  3. Aviation meteorology research and development: A status report

    NASA Technical Reports Server (NTRS)

    Enders, J.

    1980-01-01

    The dynamic and rapid growth of technology in the area of aviation meteorology research and development are described with emphasis on the measurement of hazardous weather phenomena. Aspects of both onboard instrumentation and ground based facilities are evaluated in terms of their effectiveness of in avoiding hazards due to atmospheric electricity and lightning. Methods of alleviating terminal are hazards such as fog, low visibility and ceilings are also described.

  4. Dynamical behaviors of multifractal strengths in meteorological factors

    NASA Astrophysics Data System (ADS)

    You, Cheol-Hwan; Seo, Seong Kyu; Chang, Ki-Ho; Jeong, Jin-Yim; Na, Sungjoon; Kim, Kyungsik

    2017-02-01

    In this paper, we study the multifractal properties of cloud observation time-series data in Daegwanryung, Korea, containing two meteorological factors, the effective radius of a cloud droplet and the average particle size of a raindrop. We simulate and analyze the generalized Hurst exponent, the Renyi exponent, the spectrum, and the multifractal strength by using the multifractal detrended fluctuation analysis method. The result obtained may have a useful and effective influences on determining the observation location.

  5. Web services for open meteorological data in British Columbia

    NASA Astrophysics Data System (ADS)

    Hiebert, J.; Anslow, F. S.

    2012-12-01

    Until recently, British Columbia suffered from a dearth of publicly and easily accessible (open) meteorological data. While Environment Canada (EC) maintains approximately 250 active in situ weather stations, the remaining meteorological and climate data -- which represent the majority of observations made in the province -- have been gathered by the provincial government within several disparate, ministry-specific networks. Those observations have traditionally been either inaccessible to non-government employees or only available on a network-by-network basis by contacting network managers and requesting custom data queries. Under a collaborative agreement between several provincial ministries, private industry and the Pacific Climate Impacts Consortium (PCIC) and with support from EC, the entire province's meteorological archive has been collected into a single database at PCIC and made publicly accessible via web services and open data protocols. In this paper, we describe our web services, built on open-source software, which provide users access to the full catalogue of BC's meteorological observations through a simple user interface. Our geographic web services provide users access to station locations using Open Geospatial Consortium's Web Mapping Service and Web Feature Service protocols. We use OpenDAP to provide users download access to over a century of weather observations through a variety of open formats such as NetCDF, HDF, ASCII, and others. The goals of these web services are twofold. We primarily aim to provide planners, scientists and researchers with timely and comprehensive climate data as conveniently and efficiently as possible. A natural consequence of this is to enable the flexibility to expand the volume and types of data served and to facilitate more sophisticated analysis regarding past and future climate.

  6. Meteorological field measurements at potential and actual wind turbine sites

    SciTech Connect

    Renne, D.S.; Sandusky, W.F.; Hadley, D.L.

    1982-09-01

    An overview of experiences gained in a meteorological measurement program conducted at a number of locations around the United States for the purpose of site evaluation for wind energy utilization is provided. The evolution of the measurement program from its inception in 1976 to the present day is discussed. Some of the major accomplishments and areas for improvement are outlined. Some conclusions on research using data from this program are presented.

  7. Estimating Wet Bulb Globe Temperature Using Standard Meteorological Measurements

    SciTech Connect

    Hunter, C.H.

    1999-11-18

    The heat stress management program at the Department of Energy''s Savannah River Site (SRS) requires implementation of protective controls on outdoor work based on observed values of wet bulb globe temperature (WBGT). To ensure continued compliance with heat stress program requirements, a computer algorithm was developed which calculates an estimate of WBGT using standard meteorological measurements. In addition, scripts were developed to generate a calculation every 15 minutes and post the results to an Intranet web site.

  8. Synchronous meteorological satellite system description document, volume 3

    NASA Technical Reports Server (NTRS)

    Pipkin, F. B.

    1971-01-01

    The structural design, analysis, and mechanical integration of the synchronous meteorological satellite system are presented. The subjects discussed are: (1) spacecraft configuration, (2) structural design, (3) static load tests, (4) fixed base sinusoidal vibration survey, (5) flight configuration sinusoidal vibration tests, (6) spacecraft acoustic test, and (7) separation and shock test. Descriptions of the auxiliary propulsion subsystem, the apogee boost motor, communications system, and thermal control subsystem are included.

  9. Design and characterization of the Japanese Advanced Meteorological Imager (JAMI)

    NASA Astrophysics Data System (ADS)

    Puschell, Jeffery J.; Lowe, Howard A.; Jeter, James W.; Kus, Steven M.; Osgood, Roderic; Hurt, W. Todd; Gilman, David; Rogers, David L.; Hoelter, Roger L.; Kamel, Ahmed

    2003-11-01

    The Japanese Advanced Meteorological Imager (JAMI) was developed by Raytheon and delivered to Space Systems/Loral as the Imager Subsystem for the Japanese MTSAT-1R system. Detailed characterization tests show JAMI meets all MTSAT-1R requirements with margin. JAMI introduces the next generation of operational weather imagers in geosynchronous Earth orbit (GEO) and provides much improved spatial sampling, radiometric sensitivity, Earth coverage and 24-hour observation capability compared with current GEO imagers.

  10. Bulletin of Hydrological and Meteorological Service (Selected Articles),

    DTIC Science & Technology

    1982-04-02

    individual meteorological elements. I. Temperature We shall begin the treatment of wind temperature recorded on the Hel Peninsula with an analysis of the... temperature was recorded in 1934 at all the stations. Table 3 illustrates the annual temperature amplitudes. The numbers contained in it stress the...July and August that are free of frost.* In addition, Gdynia recorded no /t temperature below 0" in June and September. Table 5. The average number

  11. IIth AMS Conference on Satellite Meteorology and Oceanography.

    NASA Astrophysics Data System (ADS)

    Velden, Christopher; Digirolamo, Larry; Glackin, Mary; Hawkins, Jeffrey; Jedlovec, Gary; Lee, Thomas; Petty, Grant; Plante, Robert; Reale, Anthony; Zapotocny, John

    2002-11-01

    The American Meteorological Society (AMS) held its 11th Conference on Satellite Meteorology and Oceanography at the Monona Terrace Convention Center in Madison, Wisconsin, during 15-18 October 2001. The purpose of the conference, typically held every 18 months, is to promote a forum for AMS membership, international scientists, and student members to present and discuss the latest advances in satellite remote sensing for meteorological and oceanographical applications. This year, surrounded by inspirational designs by famed architect Frank Lloyd Wright, the meeting focused on several broad topics related to remote sensing from space, including environmental applications of land and oceanic remote sensing, climatology and long-term satellite data studies, operational applications, radiances and retrievals, and new technology and methods. A vision of an increasing convergence of satellite systems emerged that included operational and research satellite programs and interdisciplinary user groups.The conference also hosted NASA's Electronic Theater, which was presented to groups of middle and high school students totaling over 5500. It was truly a successful public outreach event. The conference banquet was held on the final evening, where a short tribute to satellite pioneer Verner Suomi was given by Joanne Simpson. Suomi was responsible for establishing the Space Science and Engineering Center at the University of Wisconsin in Madison.

  12. Intercomparison of mesoscale meteorological models for precipitation forecasting

    NASA Astrophysics Data System (ADS)

    Richard, E.; Cosma, S.; Benoit, R.; Binder, P.; Buzzi, A.; Kaufmann, P.

    In the framework of the RAPHAEL EU project, a series of past heavy precipitation events has been simulated with different meteorological models. Rainfall hindcasts and forecasts have been produced by four models in use at various meteorological services or research centres of Italy, Canada, France and Switzerland. The paper is focused on the comparison of the computed precipitation fields with the available surface observations. The comparison is carried out for three meteorological situations which lead to severe flashflood over the Toce-Ticino catchment in Italy (6599 km2) or the Ammer catchment (709 km2) in Germany. The results show that all four models reproduced the occurrence of these heavy precipitation events. The accuracy of the computed precipitation appears to be more case-dependent than model-dependent. The sensitivity of the computed rainfall to the boundary conditions (hindcast v. forecast) was found to be rather weak, indicating that a flood forecasting system based upon a numerical meteo-hydrological simulation could be feasible in an operational context.

  13. Applied Meteorology Unit - Operational Contributions to Spaceport Canaveral

    NASA Technical Reports Server (NTRS)

    Bauman, William H., III; Roeder, William P.; Lafosse, Richard A.; Sharp, David W.; Merceret, Francis J.

    2004-01-01

    The Applied Meteorology Unit (AMU) provides technology development, evaluation and transition services to improve operational weather support to the Space Shuttle and the National Space Program. It is established under a Memorandum of Understanding among NASA, the Air Force and the National .Weather Service (NWS). The AMU is funded and managed by NASA and operated by ENSCO, Inc. through a competitively awarded NASA contract. The primary customers are the 45th Weather Squadron (45WS) at Cape Canaveral Air Force Station (CCAFS), FL; the Spaceflight Meteorology Group (SMG) at Johnson Space Center (JSC) in Houston, TX; and the NWS office in Melbourne, FL (NWS MLB). This paper will briefly review the AMU's history and describe the three processes through which its work is assigned. Since its inception in 1991 the AMU has completed 72 projects, all of which are listed at the end of this paper. At least one project that highlights each of the three tasking processes will be briefly reviewed. Some of the projects that have been especially beneficial to the space program will also be discussed in more detail, as will projects that developed significant new techniques or science in applied meteorology.

  14. Compendium of meteorological space programs, satellites, and experiments

    NASA Technical Reports Server (NTRS)

    Dubach, Leland L.; Ng, Carolyn

    1988-01-01

    This compendium includes plans and events known to the authors through January 1987. Compilation of the information began in 1967. This document is intended: (1) as a historical record of all satellites and instrumentation that has been useful for meteorological research or operational uses; and (2) as a working document to be used to assist meteorologists in identifying meteorological satellites, locating data from these satellites, and understanding experiment operation which is related to satellite data that may be of interest to them. A summary of all known launched satellites for all countries and their experiments, which were concerned with meteorological operations or research, are included. Programs covered include AEM, Apollo, ATS, Bhaskara, Cosmos, Discoverer, DMSP, DOD, DODGE, EOLE, ERBE, ESSA, Explorer, Gemini, GMS, GOES/SMS, INSAT, IRS, LANDSAT, Mercury, Meteor 1 and 2, Meteosat, Molniya, MOS, Nimbus, NOAA (1-5)/ITOS, NOAA (6,7,D)/TIROS-N, NOAA (8-10, H-J)/ATN, Salyut, Seasat, Shuttle 1, Shuttle 2: Spacelab, Skylab, Soyuz, TIROS, TOPEX, Vanguard, Voskhod, Vostok, and Zond.

  15. Role of surface characteristics in urban meteorology and air quality

    SciTech Connect

    Sailor, David Jean

    1993-08-01

    Urbanization results in a landscape with significantly modified surface characteristics. The lower values of reflectivity to solar radiation, surface moisture availability, and vegetative cover, along with the higher values of anthropogenic heat release and surface roughness combine to result higher air temperatures in urban areas relative to their rural counterparts. Through their role in the surface energy balance and surface exchange processes, these surface characteristics are capable of modifying the local meteorology. The impacts on wind speeds, air temperatures, and mixing heights are of particular importance, as they have significant implications in terms of urban energy use and air quality. This research presents several major improvements to the meteorological modeling methodology for highly heterogeneous terrain. A land-use data-base is implemented to provide accurate specification of surface characteristic variability in simulations of the Los Angeles Basin. Several vegetation parameterizations are developed and implemented, and a method for including anthropogenic heat release into the model physics is presented. These modeling advancements are then used in a series of three-dimensional simulations which were developed to investigate the potential meteorological impact of several mitigation strategies. Results indicate that application of moderate tree-planting and urban-lightening programs in Los Angeles may produce summertime air temperature reductions on the order of 4°C with a concomitant reduction in air pollution. The analysis also reveals several mechanisms whereby the application of these mitigation strategies may potentially increase pollutant concentrations. The pollution and energy use consequences are discussed in detail.

  16. Investigating the Propagation of Meteorological Model Uncertainty for Tracer Modeling

    NASA Astrophysics Data System (ADS)

    Lopez-Coto, I.; Ghosh, S.; Karion, A.; Martin, C.; Mueller, K. L.; Prasad, K.; Whetstone, J. R.

    2016-12-01

    The North-East Corridor project aims to use a top-down inversion method to quantify sources of Greenhouse Gas (GHG) emissions in the urban areas of Washington DC and Baltimore at approximately 1km2 resolutions. The aim of this project is to help establish reliable measurement methods for quantifying and validating GHG emissions independently of the inventory methods typically used to guide mitigation efforts. Since inversion methods depend strongly on atmospheric transport modeling, analyzing the uncertainties on the meteorological fields and their propagation through the sensitivities of observations to surface fluxes (footprints) is a fundamental step. To this end, six configurations of the Weather Research and Forecasting Model (WRF-ARW) version 3.8 were used to generate an ensemble of meteorological simulations. Specifically, we used 4 planetary boundary layer parameterizations (YSU, MYNN2, BOULAC, QNSE), 2 sources of initial and boundary conditions (NARR and HRRR) and 1 configuration including the building energy parameterization (BEP) urban canopy model. The simulations were compared with more than 150 meteorological surface stations, a wind profiler and radiosondes for a month (February) in 2016 to account for the uncertainties and the ensemble spread for wind speed, direction and mixing height. In addition, we used the Stochastic Time-Inverted Lagrangian Transport model (STILT) to derive the sensitivity of 12 hypothetical observations to surface emissions (footprints) with each WRF configuration. The footprints and integrated sensitivities were compared and the resulting uncertainties estimated.

  17. Seeking key meteorological parameters to better understand Hector

    NASA Astrophysics Data System (ADS)

    Gentile, S.; Ferretti, R.

    2016-02-01

    Twelve Hector events, a storm which develops in northern Australia, are analyzed with the aim of identifying the main meteorological parameters involved in the storm's convective development. Based on Crook's ideal study (Crook, 2001), wind speed and direction, wind shear, water vapor, convective available potential energy and type of convection are the parameters used for this analysis. Both the European Centre for Medium-Range Weather Forecasts (ECMWF) analysis and high-resolution simulations from the Fifth-Generation Mesoscale Model (MM5) are used. The MM5 simulations are used to connect the mean vertical velocity to the total condensate at the maximum stage and to study the dynamics of the storms. The ECMWF analyses are used to evaluate the initial conditions and the environmental fields contributing to Hector's development. The analysis suggests that the strength of convection, defined in terms of vertical velocity, largely contributes to the vertical distribution of hydrometeors. The role of total condensate and mean lifting versus low-level moisture, convective available potential energy, surface wind and direction is analyzed for shear and no-shear conditions to evaluate the differences between type A and B for real events. Results confirm the tendency suggested by Crook's analysis. However, Crook's hypothesis of low-level moisture as the only parameter that differentiates between type A and B can only be applied if the events develop in the same meteorological conditions. Crook's tests also helped to assess how the meteorological parameters contribute to Hector's development in terms of percentage.

  18. Meteorological Necessities for the Stratospheric Observatory for Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Houtas, Franzeska

    2011-01-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is joint program with NASA and DLR (German Aerospace Center) of a highly modified Boeing 747-SP. The purpose of this modification is to include a 2.5 m infrared telescope in a rear bulkhead of the airplane, with a retractable door open to the atmosphere. The NASA Dryden Flight Research Center (DFRC) is responsible for verifying that the aerodynamics, acoustics, and flying qualities of the modified aircraft stay within safe limits. Flight testing includes determining meteorological limitations of the aircraft, which is done by setting strict temporary operating limits and verifying through data analysis, what conditions are acceptable. Line operations are calibration tests of various telescope instruments that are done on the ground prior to flights. The method in determining limitations for this type of operation is similar to that of flight testing, but the meteorological limitations are different. Of great concern are the particulates near the surface that could cause damage to the telescope, as well as condensation forming on the mirror. Another meteorological involvement for this program is the process of obtaining Reduced Vertical Separation Minimums (RVSM) Certification from the FAA. This heavily involves obtaining atmospheric data pertinent to the flight, analyzing data to actual conditions for validity, and computing necessary results for comparison to aircraft instrumentation.

  19. Synoptic and meteorological drivers of extreme ozone concentrations over Europe

    NASA Astrophysics Data System (ADS)

    Otero, N.; Sillmann, J.; Schnell, J. L.; Rust, H. W.; Butler, T.

    2016-02-01

    The present work assesses the relationship between local and synoptic meteorological conditions and surface ozone concentration over Europe in spring and summer months, during the period 1998-2012 using a new interpolated data set of observed surface ozone concentrations over the European domain. Along with local meteorological conditions, the influence of large-scale atmospheric circulation on surface ozone is addressed through a set of airflow indices computed with a novel implementation of a grid-by-grid weather type classification across Europe. Drivers of surface ozone over the full distribution of maximum daily 8 h average values are investigated, along with drivers of the extreme high percentiles and exceedances or air quality guideline thresholds. Three different regression techniques are applied: multiple linear regression to assess the drivers of maximum daily ozone, logistic regression to assess the probability of threshold exceedances and quantile regression to estimate the meteorological influence on extreme values, as represented by the 95th percentile. The relative importance of the input parameters (predictors) is assessed by a backward stepwise regression procedure that allows the identification of the most important predictors in each model. Spatial patterns of model performance exhibit distinct variations between regions. The inclusion of the ozone persistence is particularly relevant over southern Europe. In general, the best model performance is found over central Europe, where the maximum temperature plays an important role as a driver of maximum daily ozone as well as its extreme values, especially during warmer months.

  20. Synoptic and meteorological drivers of extreme ozone concentrations over Europe

    NASA Astrophysics Data System (ADS)

    Otero, Noelia Felipe; Sillmann, Jana; Schnell, Jordan L.; Rust, Henning W.; Butler, Tim

    2016-04-01

    The present work assesses the relationship between local and synoptic meteorological conditions and surface ozone concentration over Europe in spring and summer months, during the period 1998-2012 using a new interpolated data set of observed surface ozone concentrations over the European domain. Along with local meteorological conditions, the influence of large-scale atmospheric circulation on surface ozone is addressed through a set of airflow indices computed with a novel implementation of a grid-by-grid weather type classification across Europe. Drivers of surface ozone over the full distribution of maximum daily 8-hour average values are investigated, along with drivers of the extreme high percentiles and exceedances or air quality guideline thresholds. Three different regression techniques are applied: multiple linear regression to assess the drivers of maximum daily ozone, logistic regression to assess the probability of threshold exceedances and quantile regression to estimate the meteorological influence on extreme values, as represented by the 95th percentile. The relative importance of the input parameters (predictors) is assessed by a backward stepwise regression procedure that allows the identification of the most important predictors in each model. Spatial patterns of model performance exhibit distinct variations between regions. The inclusion of the ozone persistence is particularly relevant over Southern Europe. In general, the best model performance is found over Central Europe, where the maximum temperature plays an important role as a driver of maximum daily ozone as well as its extreme values, especially during warmer months.