Science.gov

Sample records for bnpd 100-m meteorological

  1. Mechanical determinants of 100-m sprint running performance.

    PubMed

    Morin, Jean-Benoît; Bourdin, Muriel; Edouard, Pascal; Peyrot, Nicolas; Samozino, Pierre; Lacour, Jean-René

    2012-11-01

    Sprint mechanics and field 100-m performances were tested in 13 subjects including 9 non-specialists, 3 French national-level sprinters and a world-class sprinter, to further study the mechanical factors associated with sprint performance. 6-s sprints performed on an instrumented treadmill allowed continuous recording of step kinematics, ground reaction forces (GRF), and belt velocity and computation of mechanical power output and linear force-velocity relationships. An index of the force application technique was computed as the slope of the linear relationship between the decrease in the ratio of horizontal-to-resultant GRF and the increase in velocity. Mechanical power output was positively correlated to mean 100-m speed (P < 0.01), as was the theoretical maximal velocity production capability (P < 0.011), whereas the theoretical maximal force production capability was not. The ability to apply the resultant force backward during acceleration was positively correlated to 100-m performance (r (s) > 0.683; P < 0.018), but the magnitude of resultant force was not (P = 0.16). Step frequency, contact and swing time were significantly correlated to acceleration and 100-m performance (positively for the former, negatively for the two latter, all P < 0.05), whereas aerial time and step length were not (all P > 0.21). Last, anthropometric data of body mass index and lower-limb-to-height ratio showed no significant correlation with 100-m performance. We concluded that the main mechanical determinants of 100-m performance were (1) a "velocity-oriented" force-velocity profile, likely explained by (2) a higher ability to apply the resultant GRF vector with a forward orientation over the acceleration, and (3) a higher step frequency resulting from a shorter contact time.

  2. Testing of 100 mK bolometers for space applications

    NASA Technical Reports Server (NTRS)

    Murray, A. G.; Ade, P. A. R.; Bhatia, R. S.; Griffin, M. J.; Maffei, B.; Nartallo, R.; Beeman, J. W.; Bock, J.; Lange, A.; DelCastillo, H.

    1996-01-01

    Electrical and optical performance data are presented for a prototype 100 mK spider-web bolometer operating under very low photon backgrounds. These data are compared with the bolometer theory and are used to estimate the expected sensitivity of such a detector used for low background space astronomy. The results demonstrate that the sensitivity and speed of response requirements of the bolometer instruments proposed for these missions can be met by 100 mK spider-web bolometers using neutron transmutation doped germanium as the temperature sensitive element.

  3. A 400 Gbps/100 m free-space optical link

    NASA Astrophysics Data System (ADS)

    Lin, Chun-Yu; Lu, Hai-Han; Ho, Chun-Ming; Cheng, Ming-Te; Huang, Sheng-Jhe; Wang, Yun-Chieh; Chi, Jing-Kai

    2017-02-01

    A 400 Gbps/100 m free-space optical (FSO) link with dense-wavelength-division-multiplexing (DWDM)/space-division-multiplexing (SDM) techniques and a doublet lens scheme is proposed. To the best of our knowledge, this is the first time that a link adopting DWDM and SDM techniques and a doublet lens scheme has demonstrated a 400 Gbps/100 m FSO link. The experimental results show that the free-space transmission rate is significantly enhanced by the DWDM and SDM techniques, and the free-space transmission distance is greatly increased by the doublet lens scheme. A 16-channel FSO link with a total transmission rate of 400 Gbps (25 Gbps/λ  ×  16 λ  =  400 Gbps) over a 100 m free-space link is successfully demonstrated. Such a 400 Gbps/100 m DWDM/SDM FSO link provides the advantages of optical wireless communications for high transmission rates and long transmission distances, which is very useful for high-speed and long-haul light-based WiFi (LiFi) applications.

  4. A Kinematics Analysis Of Three Best 100 M Performances Ever

    PubMed Central

    Krzysztof, Maćkała; Mero, Antti

    2013-01-01

    The purpose of this investigation was to compare and determine the relevance of the morphological characteristics and variability of running speed parameters (stride length and stride frequency) between Usain Bolt’s three best 100 m performances. Based on this, an attempt was made to define which factors determine the performance of Usain Bolt’s sprint and, therefore, distinguish him from other sprinters. We analyzed the previous world record of 9.69 s set in the 2008 Beijing Olympics, the current record of 9.58 s set in the 2009 Berlin World Championships in Athletics and the O lympic record of 9.63 s set in 2012 London Olympics Games by Usain Bolt. The application of VirtualDub Programme allowed the acquisition of basic kinematical variables such as step length and step frequency parameters of 100 m sprint from video footage provided by NBC TV station, BBC TV station. This data was compared with other data available on the web and data published by the Scientific Research Project Office responsible on behalf of IAAF and the German Athletics Association (DVL). The main hypothesis was that the step length is the main factor that determines running speed in the 10 and 20 m sections of the entire 100 m distance. Bolt’s anthropometric advantage (body height, leg length and liner body) is not questionable and it is one of the factors that makes him faster than the rest of the finalists from each three competitions. Additionally, Bolt’s 20 cm longer stride shows benefit in the latter part of the race. Despite these factors, he is probably able to strike the ground more forcefully than rest of sprinters, relative to their body mass, therefore, he might maximize his time on the ground and to exert the same force over this period of time. This ability, combined with longer stride allows him to create very high running speed - over 12 m/s (12.05 – 12.34 m/s) in some 10 m sections of his three 100 m performances. These assumption confirmed the application of

  5. Selected determinants of acceleration in the 100m sprint.

    PubMed

    Maćkała, Krzysztof; Fostiak, Marek; Kowalski, Kacper

    2015-03-29

    The goal of this study was to examine the relationship between kinematics, motor abilities, anthropometric characteristics, and the initial (10 m) and secondary (30 m) acceleration phases of the 100 m sprint among athletes of different sprinting performances. Eleven competitive male sprinters (10.96 s ± 0.36 for 100 with 10.50 s fastest time) and 11 active students (12.20 s ± 0.39 for 100 m with 11.80 s fastest time) volunteered to participate in this study. Sprinting performance (10 m, 30 m, and 100 m from the block start), strength (back squat, back extension), and jumping ability (standing long jump, standing five-jumps, and standing ten-jumps) were tested. An independent t-test for establishing differences between two groups of athletes was used. The Spearman ranking correlation coefficient was computed to verify the association between variables. Additionally, the Ward method of hierarchical cluster analysis was applied. The recorded times of the 10 and 30 m indicated that the strongest correlations were found between a 1-repetition maximum back squat, a standing long jump, standing five jumps, standing ten jumps (r = 0.66, r = 0.72, r = 0.66, and r = 0.72), and speed in the 10 m sprint in competitive athletes. A strong correlation was also found between a 1-repetition maximum back squat and a standing long jump, standing five jumps, and standing ten jumps (r = 0.88, r = 0.87 and r = 0.85), but again only for sprinters. The most important factor for differences in maximum speed development during both the initial and secondary acceleration phase among the two sub-groups was the stride frequency (p<0.01).

  6. Selected Determinants of Acceleration in the 100m Sprint

    PubMed Central

    Maćkała, Krzysztof; Fostiak, Marek; Kowalski, Kacper

    2015-01-01

    The goal of this study was to examine the relationship between kinematics, motor abilities, anthropometric characteristics, and the initial (10 m) and secondary (30 m) acceleration phases of the 100 m sprint among athletes of different sprinting performances. Eleven competitive male sprinters (10.96 s ± 0.36 for 100 with 10.50 s fastest time) and 11 active students (12.20 s ± 0.39 for 100 m with 11.80 s fastest time) volunteered to participate in this study. Sprinting performance (10 m, 30 m, and 100 m from the block start), strength (back squat, back extension), and jumping ability (standing long jump, standing five-jumps, and standing ten-jumps) were tested. An independent t-test for establishing differences between two groups of athletes was used. The Spearman ranking correlation coefficient was computed to verify the association between variables. Additionally, the Ward method of hierarchical cluster analysis was applied. The recorded times of the 10 and 30 m indicated that the strongest correlations were found between a 1-repetition maximum back squat, a standing long jump, standing five jumps, standing ten jumps (r = 0.66, r = 0.72, r = 0.66, and r = 0.72), and speed in the 10 m sprint in competitive athletes. A strong correlation was also found between a 1-repetition maximum back squat and a standing long jump, standing five jumps, and standing ten jumps (r = 0.88, r = 0.87 and r = 0.85), but again only for sprinters. The most important factor for differences in maximum speed development during both the initial and secondary acceleration phase among the two sub-groups was the stride frequency (p<0.01). PMID:25964817

  7. Seasonal and annual variability of the global onshore and offshore wind power resource at 100 m

    NASA Astrophysics Data System (ADS)

    Archer, C. L.; Jacobson, M. Z.

    2010-12-01

    We present the results of numerical simulations of the global wind power potential over land and offshore with a coupled climate-meteorological-air pollution model, GATOR-GCMOM, that dynamically calculates wind power at the 100-m hub height of a modern 5 MW wind turbine at each time step. The model was run at various horizontal resolutions (4x5, 2x2.5, and 1.5x1.5 degrees of latitude and longitude) and with various initial conditions (summer or winter) for at least four years each. The global delivered wind power potential at 100 m at fast-wind locations (≥7 m/s) over land, excluding both polar regions, is found to be 138-150 TW (TW=1012 Watts) on average. This result further supports previous observation-based estimates of 72 TW at 80 m and model-based estimates of 79-126 TW at 100 m. Seasonal variations are however significant, with values as low as 94-102 TW in June-July-August (JJA) to 218-246 TW in December-January-February (DJF), with minima in September and maxima in January in all simulations. Global wind power over land at fast-wind locations during DJF is 1.6-2.5 times greater than that during JJA on average. Furthermore, the average wind power over land in the Northern Hemisphere (NH) is ˜126 TW, over 5 times greater than the Southern Hemisphere (SH) average (˜24 TW). In December, the NH wind power over land is up to 32 times greater than that in the SH. This suggests that the two hemispheres have different wind resources, driven by the different distributions of land and ocean areas. The offshore delivered wind power potential (excluding polar regions) is 15-23 TW at 100 m on average, consistent with previous estimates of 18-21 TW, varying between 16-17 and 19-31 TW from JJA to DJF. Wind power over land and near shore in fast-wind locations (which are 7-8% of the total land excluding polar regions) represents 7-10% of the theoretical global wind power over land plus ocean at all wind speeds of ˜1700 TW. Available wind power over land and near shore

  8. Motivational Meteorology.

    ERIC Educational Resources Information Center

    Benjamin, Lee

    1993-01-01

    Describes an introductory meteorology course for nonacademic high school students. The course is made hands-on by the use of an educational software program offered by Accu-Weather. The program contains a meteorology database and instructional modules. (PR)

  9. Vertical and Horizontal Jump Tests Are Strongly Associated With Competitive Performance in 100-m Dash Events.

    PubMed

    Loturco, Irineu; Pereira, Lucas A; Cal Abad, Cesar C; DʼAngelo, Ricardo A; Fernandes, Victor; Kitamura, Katia; Kobal, Ronaldo; Nakamura, Fabio Y

    2015-07-01

    Fourteen male elite sprinters performed short-distance sprints and jump tests until 18 days before 100-m dash competitions in track and field to determine if these tests are associated with 100-m sprint times. Testing comprised of squat jumps (SJ), countermovement jumps (CMJ), horizontal jumps (HJ), maximum mean propulsive power relative to body mass in loaded jump squats, and a flying start 50-m sprint. Moderate associations were found between speed tests and competitive 100-m times (r = 0.54, r = 0.61, and r = 0.66 for 10-, 30-, and 50-m, respectively, p ≤ 0.05). In addition, the maximum mean propulsive power relative to body mass was very largely correlated with 100-m sprinting performance (r = 0.75, p < 0.01). The correlations of SJ, CMJ, and HJ with actual 100-m sprinting times amounted to -0.82, -0.85, and -0.81, respectively. Because of their practicality, safeness, and relationship with the actual times obtained by top-level athletes in 100-m dash events, it is highly recommended that SJ, CMJ, and HJ be regularly incorporated into elite sprint-testing routines.

  10. Meteorology Online.

    ERIC Educational Resources Information Center

    Kahl, Jonathan D. W.

    2001-01-01

    Describes an activity to learn about meteorology and weather using the internet. Discusses the National Weather Service (NWS) internet site www.weather.gov. Students examine maximum and minimum daily temperatures, wind speed, and direction. (SAH)

  11. Efficient Dual Head Nd:YAG 100mJ Oscillator for Remote Sensing

    NASA Technical Reports Server (NTRS)

    Coyle, Donald B.; Stysley, Paul R.; Kay, Richard b.; Poulios, Demetrios

    2007-01-01

    A diode pumped, Nd:YAG laser producing 100 mJ Q-switched pulses and employing a dual-pump head scheme in an unstable resonator configuration is described. Each head contains a side pumped zig-zag slab and four 6-bar QCW 808 nm diodes arrays which are de-rated 23%. Denoting 'z' as the lasing axis, the pump directions were along the x-axis in one head and the y-axis in the other, producing a circularized thermal lens, more typical in laser rod-based cavities. The dual head design's effective thermal lens is now corrected with a proper HR mirror curvature selection. This laser has demonstrated over 100 mJ output with high optical efficiency (24%), good TEM(sub 00) beam quality, and high pointing stability.

  12. Evaluation of the EFCOM SC-100M/120M/125M wireless underwater communicator

    NASA Astrophysics Data System (ADS)

    Middleton, J. R.

    1982-04-01

    In June 1981, the EFCOM SC-100M/120M/125M wireless communications system was evaluated in conjunction with the AGA DIVATOR 324 Full-Face Mask by the Navy Experimental Diving Unit. The purpose was to determine the systems suitability for U.S. Navy use with open-circuit Self-Contained Underwater Breathing Apparatus (SCUBA). The EFCOM system was evaluated for intelligibility, reliability and human engineering.

  13. Modeling of Women's 100-M Dash World Record: Wind-Aided or Not?

    ERIC Educational Resources Information Center

    Hazelrigg, Conner; Waibel, Bryson; Baker, Blane

    2015-01-01

    On July 16, 1988, Florence Griffith Joyner (FGJ) shattered the women's 100-m dash world record (WR) with a time of 10.49 s, breaking the previous mark by an astonishing 0.27 s. By all accounts FGJ dominated the race that day, securing her place as the premiere female sprinter of that era, and possibly all time. In the aftermath of such an…

  14. Auditory scene analysis and sensory memory: the role of the auditory N100m.

    PubMed

    May, P J C; Tiitinen, H

    2004-11-30

    We consider the neural dynamics underlying auditory streaming, the perceptual grouping of transient auditory events, by using neural modeling and magnetoencephalographic (MEG) measurements in humans. We demonstrate that spatial variations in the strength of feedback inhibition leads to differential amplitude modulation (AM) tuning resembling that found in animal models. In our model, neurons respond selectively to stimuli presented at different onset-to-onset interstimulus intervals (ISIs), and their summed activity (corresponding to the MEG signal) exhibits both transient and sustained responses (SRs) at fast ISIs. In MEG measurements utilizing 2-s trains of 50-ms stimuli presented at 0-1950 ms ISIs, we observed the transient N100m and SRs predicted by the model, with a prominent SR emerging for discrete stimuli at ISIs below 200 ms. Our results explain why, at fast stimulus rates, the amplitude of the auditory N100m appears to be strongly attenuated even though auditory cortex continues to respond vigorously to the stimuli. The results suggest that the longer and shorter forms of auditory sensory memory may be reflected in the N100m and the SR, respectively. As the emergence of the SR coincides with the stimuli being perceived as auditory streams, our study suggests that auditory sensory memory as indexed by transient and sustained cortical activity might underlie auditory scene analysis.

  15. Remote Raman Spectroscopic Detection of Inorganic, Organic and Biological Materials to 100 m and More

    NASA Astrophysics Data System (ADS)

    Sharma, Shiv K.; Misra, Anupam K.

    2008-11-01

    We have designed and tested a portable gated-Raman system that is capable of detecting organic and inorganic bulk chemicals over stand-off distances of 100 m and more during day and night time. Utilizing a 532 nm laser pulse (~35 mJ/pulse), Raman spectra of several organic and inorganic compounds have been measured with the portable Raman instrument over a distance of 100 m. Remote Raman spectra, obtained with a very short gate (2 micro second), from a variety of inorganic minerals such as calcite (CaCO3), α-quartz (α-SiO2), barite (BaSO4), and FeSO4.7H2O, and organic compounds such as acetone, methanol, 2-propanol and naphthalene showed all major bands required for unambiguous chemical identification. We also measured the Raman and fluorescence spectra of plant leaves, tomato, and chicken eggshell excited with a 532 nm, 20 Hz pulsed laser and accumulated over 200 laser shots (10-s integration time) at 110 m with good signal-to-noise ratio. The results of these investigations show that remote Raman spectroscopy over a distance of 100 m can be used to identify Raman fingerprints of both inorganic, organic, and some biological compounds on planetary surfaces and could be useful for environmental monitoring.

  16. The Influence of Different Hand Paddle Size on 100-m Front Crawl Kinematics

    PubMed Central

    López-Plaza, Daniel; Alacid, Fernando; López-Miñarro, Pedro A.; Muyor, José M.

    2012-01-01

    The purpose of this study was to determine the influence of different sizes of hand paddles on kinematic parameters during a 100 m freestyle swimming performance in elite swimmers. Nine elite swimmers (19.1 ± 1.9 years) completed three tests of 100 m without paddles, with small paddles (271.27 cm2) and with large paddles (332.67 cm2), respectively. One video camera was used to record the performance during the three trials. The mean swimming velocity, stroke rate and stroke length were measured in the central 10 meters of each 50 m length. The results showed that stroke length tended to increase significantly when wearing hand paddles (p < 0.05) during both the first and second 50 m sections whereas the increase in swimming velocity occurred only in the second 50 m (p < 0.05). Conversely, the stroke rate showed a slight decreasing trend with increasing paddle size. During the 100 m freestyle trial the stroke kinematics were changed significantly as a result of the increase in propelling surface size when hand paddles were worn. PMID:23486988

  17. Data Assimilation of PROBA-V 100 m and 300 m.

    NASA Astrophysics Data System (ADS)

    Gilliams, S. J. B.; Kempeneers, P.

    2015-12-01

    One of the goals of the FP7 SIGMA projects is the extension of remote sensing time series to better monitor agricultural productivity at global scale. Extending these time series can be seen in differnt ways; on the one hand we are looking at the integration of different existing data sets with equal resolution e.g. SPOT-VGT and PROBA-V 1km resolution, or building new time series for Eta and Soil moisture. on the other hand we are also updating methods to extend existing time series with respect to their resolution and revisting frequency. The research presentend here will focus on the latter, focussing on the integration of PROBA-V 100 and 300m. The PROBA-V microsatellite is designed to offer a global coverage of land surfaces at four spectral bands at a spatial resolution of 300 m and 1 km with a daily revisit for latitudes 75°N to 56°S [1]. Due to the specific design, data can also be acquired at 100 m for a reduced swath, providing partial coverage (global coverage only every 5 days). This study proposes a data assimilation method that combines the 100 m data at the reduced swath with PROBA-V 300 m resolution data at the full swath. The resulting product is a synthetic product at 100 m spatial resolution, with a potential revisit time equal to the 300 m products (S10@300). Here, we concentrate on a ten day composite product (K10@100), to mitigate the effect of clouds. The goal of the proposed method is to produce continuous and cloud free time series of PROBA-V data at 100 m spatial resolution. The S10@300 and S10@100 ten day composits serve as input, with respective spatial resolutions of 300 m and 100 m. Whereas the S10@300 is obtained from all sensors onbaord the PROBA-V platform, the S10@100 is the product from the central viewing sensor only. Due to a combination of the reduced swath and potential cloud cover, the S10@100 is typically sparse (gaps). The data assimilation method follows the approach proposed in that is based on a Kalman filter. It is a

  18. Normative Spatiotemporal Parameters During 100-m Sprints in Amputee Sprinters Using Running-Specific Prostheses.

    PubMed

    Hobara, Hiroaki; Potthast, Wolfgang; Müller, Ralf; Kobayashi, Yoshiyuki; Heldoorn, Thijs A; Mochimaru, Masaaki

    2016-02-01

    The aim of this study was to develop a normative sample of step frequency and step length during maximal sprinting in amputee sprinters. We analyzed elite-level 100-m races of 255 amputees and 93 able-bodied sprinters, both men and women, from publicly-available Internet broadcasts. For each sprinter's run, the average forward velocity, step frequency, and step length over the 100-m distance were analyzed by using the official record and number of steps in each race. The average forward velocity was greatest in able-bodied sprinters (10.04 ± 0.17 m/s), followed by bilateral transtibial (8.77 ± 0.27 m/s), unilateral transtibial (8.65 ± 0.30 m/s), and transfemoral amputee sprinters (7.65 ± 0.38 m/s) in men. Differences in velocity among 4 groups were associated with step length (able-bodied vs transtibial amputees) or both step frequency and step length (able-bodied vs transfemoral amputees). Although we also found that the velocity was greatest in able-bodied sprinters (9.10 ± 0.14 m/s), followed by unilateral transtibial (7.08 ± 0.26 m/s), bilateral transtibial (7.06 ± 0.48 m/s), and transfemoral amputee sprinters (5.92 ± 0.33 m/s) in women, the differences in the velocity among the groups were associated with both step frequency and step length. Current results suggest that spatiotemporal parameters during a 100-m race of amputee sprinters is varied by amputation levels and sex.

  19. Meteorological satellites

    NASA Technical Reports Server (NTRS)

    Allison, L. J. (Editor); Schnapf, A.; Diesen, B. C., III; Martin, P. S.; Schwalb, A.; Bandeen, W. R.

    1980-01-01

    An overview is presented of the meteorological satellite programs that have been evolving from 1958 to the present, and plans for the future meteorological and environmental satellite systems that are scheduled to be placed into service in the early 1980's are reviewed. The development of the TIROS family of weather satellites, including TIROS, ESSA, ITOS/NOAA, and the present TIROS-N (the third generation operational system) is summarized. The contribution of the Nimbus and ATS technology satellites to the development of the operational-orbiting and geostationary satellites is discussed. Included are descriptions of both the TIROS-N and the DMSP payloads currently under development to assure a continued and orderly growth of these systems into the 1980's.

  20. Modeling of Women's 100-m Dash World Record: Wind-Aided or Not?

    NASA Astrophysics Data System (ADS)

    Hazelrigg, Conner; Waibel, Bryson; Baker, Blane

    2015-11-01

    On July 16, 1988, Florence Griffith Joyner (FGJ) shattered the women's 100-m dash world record (WR) with a time of 10.49 s, breaking the previous mark by an astonishing 0.27 s. By all accounts FGJ dominated the race that day, securing her place as the premiere female sprinter of that era, and possibly all time. In the aftermath of such an extraordinary performance, track officials immediately assumed that her posted time was wind aided—that is, attained under tailwind conditions beyond the legal limit of 2.0 m/s for world records. However, wind-measuring devices at the track site showed zero wind conditions during her WR performance. Before and during FGJ's race, other wind-measuring devices indicated speeds exceeding 4.0 m/s at the site of the triple jump runway, located on the same field as the running track. Video clips of flags placed near the starting line of FGJ's race also revealed tailwind conditions. Using available data from that era, the study here incorporates modeling techniques to compute velocity and position as functions of time for no wind and tailwind conditions. Modeling under no wind conditions produces a 100-m time of 10.70 s, a performance clearly attainable by FGJ during this stage of her sprinting career. Incorporating tailwinds of 4.0 m/s into the computations reduces this time by approximately 0.20 s, in close agreement with FGJ's record-breaking performance. These results strongly suggest that tailwinds of order 4 m/s were present during FGJ's world record race even though wind-measuring devices at the track site did not register these speeds. In spite of such strong evidence to support a wind-aided race on July 16, 1988, FGJ remains one of the top female sprinters in history and would likely hold the WR even today, given that she attained a non-wind-aided 100-m time of 10.61 s on the day following her WR performance.

  1. A Compact Instrument for Remote Raman and Fluorescence Measurements to a Radial Distance of 100 m

    NASA Technical Reports Server (NTRS)

    Sharma, S. K.; Misra, A. K.; Lucey, P. g.; McKay, C. P.

    2005-01-01

    Compact remote spectroscopic instruments that could provide detailed information about mineralogy, organic and biomaterials on a planetary surface over a relatively large area are desirable for NASA s planetary exploration program. Ability to explore a large area on the planetary surfaces as well as in impact craters from a fixed location of a rover or lander will enhance the probability of selecting target rocks of high scientific contents as well as desirable sites in search of organic compounds and biomarkers on Mars and other planetary bodies. We have developed a combined remote inelastic scattering (Raman) and laser-induced fluorescence emission (LIFE) compact instrument capable of providing accurate information about minerals, organic and biogenic materials to a radial distance of 100 m. Here we present the Raman and LIFE (R-LIFE) data set.

  2. A 100mA fractional step-down charge pump with digital control

    NASA Astrophysics Data System (ADS)

    Sadio, Valter A. L.; Parreira, Abílio E. M.; Santos, Marcelino B.

    2009-05-01

    A switched capacitor step-down DC-DC converter (charge pump) is proposed. High efficiency is achieved by combination of fractional conversion ratios (different step-down modes of operation), output voltage sensing and pulse skipping based digital control techniques. Two control techniques were implemented with automatic change between modes and their results are discussed and compared. The power module has 9 switches, implemented with 14 power transistors, and a current limit circuit to mitigate the in-rush current in startup phase. This circuit has been designed in AMS C35B4 (0.35um) CMOS process. The charge pump was designed to provide a maximum load current of 100mA. The peak-to-peak output voltage ripple is less than 30mV with two 3uF flying capacitors and one 20uF output capacitor. Peak and average efficiencies, with maximum load current, are over 80% and 68%, respectively.

  3. Towards a 100mA Superconducting RF Photoinjector for BERLinPro

    SciTech Connect

    Neumann, Axel; Anders, W; Burrill, Andrew; Jankowiak, Andreas; Kamps, T; Knobloch, Jens; Kugeler, Oliver; Lauinger, P; Matveenko, A N; Schmeisser, M; Volker, J; Ciovati, Gianluigi; Kneisel, Peter; Nietubyc, R; Schubert, S G; Smedley, John; Sekutowicz, Jacek; Volkov, V; Will, I; Zaplatin, Evgeny

    2013-09-01

    For BERLinPro, a 100 mA CW-driven SRF energy recovery linac demonstrator facility, HZB needs to develop a photo-injector superconducting cavity which delivers a at least 1mm*mr emittance beam at high average current. To address these challenges of producing a high peak brightness beam at high repetition rate, at first HZB tested a fully superconducting injector with a lead cathode*,followed now by the design of a SC cavity allowing operation up to 4 mA using CW-modified TTF-III couplers and inserting a normal conducting high quantum efficiency cathode using the HZDR-style insert scheme. This talk will present the latest results and an overview of the measurements with the lead cathode cavity and will describe the design and optimization process, the first production results of the current design and an outlook to the further development steps towards the full power version.

  4. Adriatic Meteorology

    DTIC Science & Technology

    2003-09-30

    positioned at the Croatian coastal town of Zadar (see following image of the launch of a balloon sounding at Zadar ) . This station was set-up but...a-day Zadar soundings between 1 January – 30 June and twice-a-day operational soundings at Zagreb. Figure 1. Start of sounding at Zadar ...Meteorological Service was contracted to double the number of upper air soundings at the Croatian coastal station of Zadar (44.10 N 15.34 E , 79 m/MSL

  5. Distinct prognostic values of S100 mRNA expression in breast cancer

    PubMed Central

    Zhang, Shizhen; Wang, Zhen; Liu, Weiwei; Lei, Rui; Shan, Jinlan; Li, Ling; Wang, Xiaochen

    2017-01-01

    S100 family genes encode low molecular weight, acidic-Ca2+ binding proteins implicating in a wide spectrum of biological processes. S100 family contains at least 20 members, most of which are frequently dysregulated in human malignancies including breast cancer. However, the prognostic roles of each individual S100, especially the mRNA level, in breast cancer patients remain elusive. In the current study, we used “The Kaplan-Meier plotter” (KM plotter) database to investigate the prognostic values of S100 mRNA expression in breast cancer. Our results indicated that high mRNA expression of S100A8, S100A9, S100A11 and S100P were found to be significantly correlated to worse outcome, while S100A1 and S100A6 were associated with better prognosis in all breast cancer patients. We further assessed the prognostic value of S100 in different intrinsic subtypes and clinicopathological features of breast cancer. The associated results will elucidate the role of S100 in breast cancer and may further lead the research to explore the S100-targeting reagents for treating breast cancer patients. PMID:28051137

  6. Homologous Deformation of the Effelsberg 100-m Telescope Determined with a Total Station

    NASA Technical Reports Server (NTRS)

    Nothnagel, Axel; Pietzner, Judith; Eling, Christian; Hering, Claudia

    2010-01-01

    Due to gravitation the main reflector of the Effelsberg 100-m telescope of the Max Planck Institute for Radio Astronomy is deformed whenever it is tilted from zenith to arbitrary elevation angles. However, the resulting shape always is a paraboloid again, though with different parameters, a phenomenon which is called homologous deformation. In summer 2008, we have carried out measurements with a total station to determine the magnitude of these deformations in order to evaluate existing assumptions provided by the manufacturer from the telescope's design phase. The measurements are based on a newly developed approach with a Leica TCRP 1201 total station mounted head down near the subreflector. Mini-retro-reflectors are placed at various locations on the paraboloid itself and on the subreflector support structure. The results indicate that the measurement setup is suitable for the purpose and provides the information needed for a determination of elevation dependent delay corrections. The focal length changes only by about 8 mm when the telescope is tilted from 90. to 7.5. elevation angle.

  7. Identification and Attribution of Global Wind Speed Trends at 100m

    NASA Astrophysics Data System (ADS)

    McGraw, Zachary; Smith, Ronald; Storelvmo, Trude

    2016-04-01

    Recent studies have found evidence that global climate change significantly alters the strength of large-scale wind patterns. Any enduring trends over large regions are potentially of value to understand due to their implications for the wind energy industry. In this study we identify and evaluate global wind speed trends at the wind turbine hub height (~100m) through the use of CMIP5 models, standard reanalyses (ERA-Interim, NCEP2) and a uniquely high-resolution analysis dataset (Vestas Mesoscale Library). By analyzing how wind speeds change across the globe throughout the period 1900-2100 (with emphasis on the satellite era, 1979-2014), we assess the significance of multi-decadal wind speed trends in the context of natural spatial and temporal variability. Our results show substantial differences in regional trends between different datasets though several regions including the Southern Hemisphere mid-latitudes and the Caribbean show consistently substantial changing wind speeds during the satellite era. Wind speed trends tend to diminish over large time scales and follow spatial patterns that link multi-decadal trends to the evolving behaviors of internal variability modes, especially those of ENSO and the Southern Annular Mode (SAM).

  8. Spatiotemporal Parameters of 100-m Sprint in Different Levels of Sprinters with Unilateral Transtibial Amputation

    PubMed Central

    Hobara, Hiroaki; Hashizume, Satoru; Kobayashi, Yoshiyuki; Mochmaru, Masaaki

    2016-01-01

    The aim of this study was to investigate differences of the spatiotemporal parameters in a 100-m sprint among elite, sub-elite, and non-elite sprinters with a unilateral transtibial amputation. Using publicly available Internet broadcasts, we analyzed 125, 19, and 33 records from 30 elite, 12 sub-elite, and 22 non-elite sprinters, respectively. For each sprinter’s run, the average velocity, step frequency, and step length were calculated using the number of steps in conjunction with the official race time. Average velocity was greatest in elite sprinters (8.71±0.32 m/s), followed by the sub-elite (8.09±0.06 m/s) and non-elite groups (7.72±0.27 m/s). Although there was a significant difference in average step frequency between the three groups, the effect size was small and the relative difference among the three groups was 3.1%. Statistical analysis also revealed that the average step length was longest in elite sprinters, followed by the sub-elite and non-elite groups. These results suggest that the differences in sprint performance between the three groups is mainly due to the average step length rather than step frequency. PMID:27701443

  9. Novel technology for the the Effelsberg 100-m Radio Telescope and MeerKAT

    NASA Astrophysics Data System (ADS)

    Kramer, Michael; Kraus, Alex; Wieching, Gundolf

    2015-08-01

    The 100-m radio telescope of the Max-Planck-Institut für Radioastronomie (MPIfR) is a unique European astronomical facility that combines superb sensitivity and wide frequency coverage (300 MHz - 95 GHz) with distinct versatility, making the telescope not only a cutting edge instrument for front-line research but also a testbed for emerging and future technology.Even more than 40 years old, the telescope has been continuously modernized and is heavily involved in various kinds of astronomical research as stand-alone instrument as well as in several VLBI networks. Currently, a large upgrade of the receiver suite at the telescope is ongoing. Several new, state-of-the-are broad-band receivers have been installed recently or are under constructions. Along with the new receivers, modern digital backends are being designed. We report on the current status of these upgrades by presenting some „highlights" and giving an outlook on the activities planned for the future.The technology developed and tested during these upgrades also finds application in the MeerKAT observatory in South Africa. MeerKAT is a fully funded radio observatory under construction in the Northern Cape of South Africa. When complete, MeerKAT’s 64 13.5-m dishes will form the - by far - most sensitive telescope in the Southern hemisphere, being equivalent to a 110 m dish. Due to the dish design with an offset Gregorian feed it will be 60%more sensitive than large center feed single dishes of comparable size.MPIfR is designing and constructing a 1.75- 3.44 GHz Receiver system for MeerKAT. The receiver will allow observations at a frequency range at currently unavailable sensitivity and spatial resolution in the Southern hemisphere. Combined with its powerful MPIfR Pulsar search backend it is expected to detect more than 1600 normal and 270 millisecond pulsars. In addition MeerKat will open up science that stays for its own but also prepares future observations with SKA and complements future SKA

  10. LANL Meteorology Program

    SciTech Connect

    Dewart, Jean Marie

    2015-02-09

    The goal of the Meteorology Program is to provide all routine meteorology measurements for LANL operational requirements. This report discusses the program, its routine operations, and other services.

  11. Single-transverse-mode near-IR superluminescent diodes with cw output power up to 100 mW

    SciTech Connect

    Andreeva, E V; Il'chenko, S N; Kostin, Yu O; Yakubovich, S D

    2014-10-29

    A series of light-emitting modules based on single-mode quantum-well superluminescent diodes with centre emission wavelengths of about 790, 840, 960 and 1060 nm and a cw output power up to 100 mW in free space is developed. A sufficiently long service life of these devices is demonstrated. (lasers)

  12. 100 M.a. remagnetization as a dating tool for deformation and cleavage in the Central High Atlas (Morocco)

    NASA Astrophysics Data System (ADS)

    Calvin, P.; Casas, A. M.; Villalain, J. J.; Moussaid, B.

    2015-12-01

    The High Atlas is an intracontinental chain developed as a result of the inversion of Mesozoic basins during the Cenozoic. Its structure is characterized by ENE-WSW tight anticlines limited by wide synclines. In the central sector of the chain, a pervasive tectonic foliation affects Jurassic limestones and marls. There is a controversy about the age of this tectonic foliation and its relationship with either a Late Jurassic or Cenozoic compressional events. The Jurassic carbonates of the Central High Atlas (CHA) show a widespread syntectonic remagnetization carried by magnetite and dated at 100 M.a. by comparing the paleomagnetic direction obtained by small circle intersection (SCI) method with the apparent polar wander path in NW Africa coordinates. Once the 100 M.a. paleomagnetic direction is known, the obtained paleomagnetic direction remagnetization in each site can be used to restore the bedding at the time of the acquisition. In each site, the in situ mean direction of remagnetization defines a small circle (SC) in a complete rotation about the strike of the bedding. This SC gives all possible original directions of the magnetization and if all deformation events are coaxial and without vertical rotation (as it is the case in the study area) all the SC contains the 100 M.a. expected direction. Then, the angle between the 100 M.a. and the in situ paleomagnetic direction along the small circle, equals the angle of rotation of each bed to ultimately find their dips (paleodip) at 100 M.a. Since the consistency between folding and cleavage can be examined from their geometrical relationship, and bedding can be restored to its 100 M.a. geometry (paleodips obtained from paleomagnetic analysis), two end-members exist for the different examined folds: (i) cleavage is consistent with present-day bedding orientation and attitude of bedding was acquired after remagnetization (Cenozoic cleavage), (ii) cleavage is consistent with bedding, but dip of bedding was acquired

  13. Meteorological satellite accomplishments

    NASA Technical Reports Server (NTRS)

    Allison, L. J.; Arking, A.; Bandeen, W. R.; Shenk, W. E.; Wexler, R.

    1974-01-01

    The various types of meteorological satellites are enumerated. Vertical sounding, parameter extraction technique, and both macroscale and mesoscale meteorological phenomena are discussed. The heat budget of the earth-atmosphere system is considered, along with ocean surface and hydrology.

  14. Long-range high-speed visible light communication system over 100-m outdoor transmission utilizing receiver diversity technology

    NASA Astrophysics Data System (ADS)

    Wang, Yiguang; Huang, Xingxing; Shi, Jianyang; Wang, Yuan-quan; Chi, Nan

    2016-05-01

    Visible light communication (VLC) has no doubt become a promising candidate for future wireless communications due to the increasing trends in the usage of light-emitting diodes (LEDs). In addition to indoor high-speed wireless access and positioning applications, VLC usage in outdoor scenarios, such as vehicle networks and intelligent transportation systems, are also attracting significant interest. However, the complex outdoor environment and ambient noise are the key challenges for long-range high-speed VLC outdoor applications. To improve system performance and transmission distance, we propose to use receiver diversity technology in an outdoor VLC system. Maximal ratio combining-based receiver diversity technology is utilized in two receivers to achieve the maximal signal-to-noise ratio. A 400-Mb/s VLC transmission using a phosphor-based white LED and a 1-Gb/s wavelength division multiplexing VLC transmission using a red-green-blue LED are both successfully achieved over a 100-m outdoor distance with the bit error rate below the 7% forward error correction limit of 3.8×10-3. To the best of our knowledge, this is the highest data rate at 100-m outdoor VLC transmission ever achieved. The experimental results clearly prove the benefit and feasibility of receiver diversity technology for long-range high-speed outdoor VLC systems.

  15. Swimming Stroke Mechanical Efficiency and Physiological Responses of 100-m Backstroke with and without the use of paddles

    PubMed Central

    Messinis, Spilios; Beidaris, Nikos; Messinis, Spyros; Soultanakis, Helen; Botonis, Petros; Platanou, Theodoros

    2014-01-01

    The use of swimming aids during training contributes to greater swimming efficiency by the improvement of the swimming specific power of the athlete. The purpose of this study was to compare the swimming stroke technical characteristics and the physiological responses of swimming 100-m backstroke, with and without the use of paddles at maximum and sub-maximum intensities at the same swimming speed. Eight swimmers competing at the national level participated in this study. The measurements took place at 4 different sessions. At every session, each participant swam individually one 100-m backstroke swimming trial with or without paddles at the same speed and two levels of intensity (100% and 85% of maximum speed). The results revealed lower stroke length, greater stroke number and gliding length without the use of swimming paddles at both intensities. Blood lactate concentration (10.03±2.96 vs. 5.85±2.23 mmol/l) and Rating of Perceived Exertion (17.43±2.07 vs. 12±2.82) were greater without the use of swimming paddles only at 100% of maximum speed. Thus, swimming backstroke with paddles compared to unaided swimming, at a similar speed, showed a greater efficiency at maximal but not at sub-maximal intensity. PMID:25031685

  16. How 100-m event analyses improve our understanding of world-class men's and women's sprint performance.

    PubMed

    Slawinski, J; Termoz, N; Rabita, G; Guilhem, G; Dorel, S; Morin, J-B; Samozino, P

    2017-01-01

    This study aimed to compare the force (F)-velocity (v)-power (P)-time (t) relationships of female and male world-class sprinters. A total of 100 distance-time curves (50 women and 50 men) were computed from international 100-m finals, to determine the acceleration and deceleration phases of each race: (a) mechanical variables describing the velocity, force, and power output; and (b) F-P-v relationships and associated maximal power output, theoretical force and velocity produced by each athlete (Pmax , F0 , and V0 ). The results showed that the maximal sprint velocity (Vmax ) and mean power output (W/kg) developed over the entire 100 m strongly influenced 100-m performance (r > -0.80; P ≤ 0.001). With the exception of mean force (N/kg) developed during the acceleration phase or during the entire 100 m, all of the mechanicals variables observed over the race were greater in men. Shorter acceleration and longer deceleration in women may explain both their lower Vmax and their greater decrease in velocity, and in turn their lower performance level, which can be explained by their higher V0 and its correlation with performance. This highlights the importance of the capability to keep applying horizontal force to the ground at high velocities.

  17. Contralateral white noise attenuates 40-Hz auditory steady-state fields but not N100m in auditory evoked fields.

    PubMed

    Kawase, Tetsuaki; Maki, Atsuko; Kanno, Akitake; Nakasato, Nobukazu; Sato, Mika; Kobayashi, Toshimitsu

    2012-01-16

    The different response characteristics of the different auditory cortical responses under conventional central masking conditions were examined by comparing the effects of contralateral white noise on the cortical component of 40-Hz auditory steady state fields (ASSFs) and the N100 m component in auditory evoked fields (AEFs) for tone bursts using a helmet-shaped magnetoencephalography system in 8 healthy volunteers (7 males, mean age 32.6 years). The ASSFs were elicited by monaural 1000 Hz amplitude modulation tones at 80 dB SPL, with the amplitude modulated at 39 Hz. The AEFs were elicited by monaural 1000 Hz tone bursts of 60 ms duration (rise and fall times of 10 ms, plateau time of 40 ms) at 80 dB SPL. The results indicated that continuous white noise at 70 dB SPL presented to the contralateral ear did not suppress the N100 m response in either hemisphere, but significantly reduced the amplitude of the 40-Hz ASSF in both hemispheres with asymmetry in that suppression of the 40-Hz ASSF was greater in the right hemisphere. Different effects of contralateral white noise on these two responses may reflect different functional auditory processes in the cortices.

  18. Meteorological Monitoring Program

    SciTech Connect

    Hancock, H.A. Jr.; Parker, M.J.; Addis, R.P.

    1994-09-01

    The purpose of this technical report is to provide a comprehensive, detailed overview of the meteorological monitoring program at the Savannah River Site (SRS) near Aiken, South Carolina. The principle function of the program is to provide current, accurate meteorological data as input for calculating the transport and diffusion of any unplanned release of an atmospheric pollutant. The report is recommended for meteorologists, technicians, or any personnel who require an in-depth understanding of the meteorological monitoring program.

  19. Height profile of some air quality markers in the urban atmosphere surrounding a 100 m tower building

    NASA Astrophysics Data System (ADS)

    Rubino, Federico Maria; Floridia, Lucia; Tavazzani, Manuela; Fustinoni, Silvia; Giampiccolo, Rosario; Colombi, Antonio

    Air quality inside buildings, whether naturally or mechanically ventilated, is strongly dependent on that of ambient external air in the surrounding atmosphere. This paper describes results obtained in the assessment of urban air quality influence in the neighbouring of a tall, multistorey building with mechanical ventilation on its indoor air quality. Within the study, which lasted for more than 30 d of continuous monitoring, the concentrations of carbon monoxide (CO), of total and grossly speciated classes of airborne organic vapours and of PM 10 airborne particulate were measured both outdoors, at ground and at various heights between street level and the top of the tower building (approximately 100 m) and inside the building. The daily variation of airborne pollutants in the urban atmosphere in the neighbouring of the tower building was traced as the contribution of both time-dependent pollutant production from urban outdoor sources (mainly vehicular traffic) and of the variation of meteoclimatic conditions influencing pollutant diffusion from street level upwards. In particular, a steady concentration decrease with increasing height of the concentration of automotive-related pollutants, such as of PM 10 airborne particulate, of a mixture of volatile aromatic compounds (TAAC) and of CO could be measured in the immediate neghbouring of the tower building (values of 40 μg m -3 of PM 10 airborne particulate decreasing to 32 μg m -3 at 80 m; of 5 mg of benzene equivalents m -3 at ground level with a 30% decrease at 100 m height; of 3 mg m -3 of CO decreasing to 2.2 mg m -3 at 100 m). The acquired information was employed to advice the building management on the improvement of indoor air quality attainable by moving the air feed grid of the HVAC system to a higher level from ground. An example is reported, which shows the improvement of the indoor air quality in a three-storey peripheral building of the same complex subject to scheduled refurbishing, obtained by

  20. Single-Dish Radio Polarimetry in the F-GAMMA Program with the Effelsberg 100-m Radio Telescope

    NASA Astrophysics Data System (ADS)

    Beuchert, Tobias; Kadler, Matthias; Wilms, Jörn; Angelakis, Emmanouil; Fuhrmann, Lars; Myserlis, Ioannis; Nestoras, Ioannis; Kraus, Alex; Bach, Uwe; Ros, Eduardo; Grossberger, Christoph; Schulz, Robert

    2013-12-01

    Studying the variability of polarized AGN jet emission in the radio band is crucial for understanding the dynamics of moving shocks as well as the structure of the underlying magnetic field. The 100-m Effelsberg Telescope is a high-quality instrument for studying the long-term variability of both total and polarized intensity as well as the electric-vector position angle. Since 2007, the F-GAMMA program has been monitoring the linear polarized emission of roughly 60 blazars at 11 frequencies between 2.7 and 43 GHz. Here, we describe the calibration of the polarimetric data at 5 and 10 GHz and the resulting F-GAMMA full-Stokes light curves for the exemplary case of the radio galaxy 3C 111.

  1. VO2 Kinetics in All-out Arm Stroke, Leg Kick and Whole Stroke Front Crawl 100-m Swimming.

    PubMed

    Rodríguez, F A; Lätt, E; Jürimäe, J; Maestu, J; Purge, P; Rämson, R; Haljaste, K; Keskinen, K L; Jürimäe, T

    2016-03-01

    The VO2 response to extreme-intensity exercise and its relationship with sports performance are largely unexplored. This study investigated the pulmonary VO2 kinetics during all-out 100-m front crawl whole stroke swimming (S), arm stroke (A) and leg kick (L). 26 male and 10 female competitive swimmers performed an all-out S trial followed by A and L of equal duration in random order. Breath-by-breath VO2 was measured using a snorkel attached to a portable gas analyzer. Mean (±SD) primary component parameters and peak blood lactate (Lapeak) during S, A, and L were, respectively: time delay (s), 14.2 ± 4.7, 14.3 ± 4.5, 15.6 ± 5.1; amplitude (ml·kg(-1)·min(-1)), 46.8 ± 6.1, 37.3 ± 6.9, 41.0 ± 4.7; time constant (τ, s): 9.2 ± 3.2, 12.4 ± 4.7, 10.1 ± 3.2; Lapeak (mmol·l(-1)), 6.8 ± 3.1, 6.3 ± 2.5, 7.9 ± 2.8. During A and L respectively, 80% and 87% of amplitude in S was reached, whereas A+L were 68% greater than in S. 100-m performance was associated to shorter cardiodynamic phase and greater VO2 amplitude and Lapeak (accounting up to 61% of performance variance), but not to τ. We conclude that (i) VO2 gain was proportional to exercise intensity and muscle mass involved, (ii) kicking is metabolically less efficient, and (iii) the main limiting factor of peak VO2 appears to be O2 delivery and not muscle extraction.

  2. 2. SOUTH FACE OF METEOROLOGICAL SHED (BLDG. 756) WITH METEOROLOGICAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. SOUTH FACE OF METEOROLOGICAL SHED (BLDG. 756) WITH METEOROLOGICAL DATA ACQUISITION TERMINAL (MDAT) INSIDE BUILDING - Vandenberg Air Force Base, Space Launch Complex 3, Meteorological Shed & Tower, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  3. Observations of free-free and anomalous microwave emission from LDN 1622 with the 100 m Green Bank Telescope

    NASA Astrophysics Data System (ADS)

    Harper, S. E.; Dickinson, C.; Cleary, K.

    2015-11-01

    LDN 1622 has previously been identified as a possible strong source of dust-correlated anomalous microwave emission (AME). Previous observations were limited by resolution meaning that the radio emission could not be compared with current generation high-resolution infrared data from Herschel, Spitzer or Wide-field Infrared Sky Explorer. This paper presents arcminute resolution mapping observations of LDN 1622 at 4.85 and 13.7 GHz using the 100 m Robert C. Byrd Green Bank Telescope. The 4.85 GHz map reveals a corona of free-free emission enclosing LDN 1622 that traces the photodissociation region of the cloud. The brightest peaks of the 4.85 GHz map are found to be within ≈10 per cent agreement with the expected free-free predicted by Southern H-Alpha Sky Survey Atlas H α data of LDN 1622. At 13.7 GHz, the AME flux density was found to be 7.0 ± 1.4 mJy and evidence is presented for a rising spectrum between 13.7 and 31 GHz. The spinning dust model of AME is found to naturally account for the flux seen at 13.7 GHz. Correlations between the diffuse 13.7 GHz emission and the diffuse mid-infrared emission are used to further demonstrate that the emission originating from LDN 1622 at 13.7 GHz is described by the spinning dust model.

  4. Generalist dinoflagellate endosymbionts and host genotype diversity detected from mesophotic (67-100 m depths) coral Leptoseris

    PubMed Central

    Chan, Yvonne L; Pochon, Xavier; Fisher, Marla A; Wagner, Daniel; Concepcion, Gregory T; Kahng, Samuel E; Toonen, Robert J; Gates, Ruth D

    2009-01-01

    Background Mesophotic corals (light-dependent corals in the deepest half of the photic zone at depths of 30 - 150 m) provide a unique opportunity to study the limits of the interactions between corals and endosymbiotic dinoflagellates in the genus Symbiodinium. We sampled Leptoseris spp. in Hawaii via manned submersibles across a depth range of 67 - 100 m. Both the host and Symbiodinium communities were genotyped, using a non-coding region of the mitochondrial ND5 intron (NAD5) and the nuclear ribosomal internal transcribed spacer region 2 (ITS2), respectively. Results Coral colonies harbored endosymbiotic communities dominated by previously identified shallow water Symbiodinium ITS2 types (C1_ AF333515, C1c_ AY239364, C27_ AY239379, and C1b_ AY239363) and exhibited genetic variability at mitochondrial NAD5. Conclusion This is one of the first studies to examine genetic diversity in corals and their endosymbiotic dinoflagellates sampled at the limits of the depth and light gradients for hermatypic corals. The results reveal that these corals associate with generalist endosymbiont types commonly found in shallow water corals and implies that the composition of the Symbiodinium community (based on ITS2) alone is not responsible for the dominance and broad depth distribution of Leptoseris spp. The level of genetic diversity detected in the coral NAD5 suggests that there is undescribed taxonomic diversity in the genus Leptoseris from Hawaii. PMID:19747389

  5. Performance and energy costs associated with scaling infrared heater arrays for warming field plots from 1 to 100 m

    SciTech Connect

    Kimball B. A.; Lewin K.; Conley, M. M.

    2012-04-01

    To study the likely effects of global warming on open-field vegetation, hexagonal arrays of infrared heaters are currently being used for low-stature (<1 m) plants in small ({le}3 m) plots. To address larger ecosystem scales, herein we show that excellent uniformity of the warming can be achieved using nested hexagonal and rectangular arrays. Energy costs depend on the overall efficiency (useable infrared energy on the plot per electrical energy in), which varies with the radiometric efficiency (infrared radiation out per electrical energy in) of the individual heaters and with the geometric efficiency (fraction of thermal radiation that falls on useable plot area) associated with the arrangement of the heaters in an array. Overall efficiency would be about 26% at 4 ms{sup -1} wind speed for a single hexagonal array over a 3-m-diameter plot and 67% for a 199-hexagon honeycomb array over a 100-m-diameter plot, thereby resulting in an economy of scale.

  6. Wave Meteorology and Soaring

    NASA Technical Reports Server (NTRS)

    Wiley, Scott

    2008-01-01

    This viewgraph document reviews some mountain wave turbulence and operational hazards while soaring. Maps, photographs, and satellite images of the meteorological phenomena are included. Additionally, photographs of aircraft that sustained mountain wave damage are provided.

  7. Lasting Impressions in Meteorology.

    ERIC Educational Resources Information Center

    Herold, James M.

    1992-01-01

    Describes activities integrating science and art education in which students examine slides of impressionist paintings or photographs of meteorological phenomena to determine the weather conditions depicted and to make and defend weather predictions. Includes a reproducible worksheet. (MDH)

  8. Climate and meteorology

    SciTech Connect

    Hoitink, D.J.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the significant activities conducted in 1994 to monitor the meteorology and climatology of the site. Meteorological measurements are taken to support Hanford Site emergency preparedness and response, Hanford Site operations, and atmospheric dispersion calculations. Climatological data are collected to help plan weather-dependent activities and are used as a resource to assess the environmental effects of Hanford Site operations.

  9. Meteorology for public

    NASA Astrophysics Data System (ADS)

    Špoler Čanić, Kornelija; Rasol, Dubravka; Milković, Janja

    2013-04-01

    The Meteorological and Hydrological Service in Croatia (MHSC) is, as a public service, open to and concentrated on public. The organization of visits to the MHSC for groups started in 1986. The GLOBE program in Croatia started in 1995 and after that interest for the group tours at the MHSC has increased. The majority of visitors are school and kindergarten children, students and groups of teachers. For each group tour we try to prepare the content that is suitable for the age and interest of a group. Majority of groups prefer to visit the meteorological station where they can see meteorological instruments and learn how they work. It is organized as a little workshop, where visitors can ask questions and discuss with a guide not only about the meteorological measurements but also about weather and climate phenomena they are interested in. Undoubtedly the highlight of a visit is the forecaster's room where visitors can talk to the forecasters (whom they can also see giving a weather forecast on the national TV station) and learn how weather forecasts are made. Sometimes we offer to visitors to make some meteorological experiments but that is still not in a regular program of the group tours due to the lack of performing space. Therefore we give them the instructions for making instruments and simulations of meteorological phenomena from household items. Visits guides are meteorologists with profound experience in the popularization of science.

  10. Applied Meteorology Unit (AMU)

    NASA Technical Reports Server (NTRS)

    Bauman, William; Crawford, Winifred; Barrett, Joe; Watson, Leela; Wheeler, Mark

    2010-01-01

    This report summarizes the Applied Meteorology Unit (AMU) activities for the first quarter of Fiscal Year 2010 (October - December 2009). A detailed project schedule is included in the Appendix. Included tasks are: (1) Peak Wind Tool for User Launch Commit Criteria (LCC), (2) Objective Lightning Probability Tool, Phase III, (3) Peak Wind Tool for General Forecasting, Phase II, (4) Upgrade Summer Severe Weather Tool in Meteorological Interactive Data Display System (MIDDS), (5) Advanced Regional Prediction System (ARPS) Data Analysis System (ADAS) Update and Maintainability, (5) Verify 12-km resolution North American Model (MesoNAM) Performance, and (5) Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) Graphical User Interface.

  11. [Evaluation of heart impact in the 100 m extreme intensity sport using near-infrared non-invasive muscle oxygen detecting device and sports heart rate detection technology].

    PubMed

    Wang, Pei-Yong; Long, Fei-Xiao; Fu, Lan-Ying; Li, Yue; Ding, Hai-Shu; Qu, An-Lian; Zhou, Xiao-Ping

    2010-02-01

    Using continuous two wavelength near-infrared technology to detect the variation in the consistency of oxygen hemoglobin in the muscle and the sports heart rate wireless real time collection technology, we devised the real time muscle tissue oxygenation and instantaneous heart rate experiment scheme and implemented it for the process of the 100 m run with two parameters given simultaneously. The experiment shows that the concentration of the oxygen hemoglobin in the muscle tissue continues decreasing after the end of the 100 m run, and the time interval between the moment when the concentration of the oxygen hemoglobin attains the minimum value and the moment when the athletes finish the 100 m run is (6.65 +/- 1.10) sec; while the heart rate continues increasing after the end of the 100 m run, and the time interval between the moment when the heart rate attains the maximum value and the moment when the athletes finish the 100 m run is (8.00 +/- 1.57) sec. The results show that the two wavelength near-infrared tissue oxygenation detection technology and the sports heart rate real time collection equipment can accurately measure the sports tissue oxygenation and the heart rate in the extreme intensity sport, and reveal the process of muscle oxygen transportation and consumption and its dynamic character with the heart rate in the extreme intensity sport.

  12. Acute changes in selected serum enzyme and metabolite concentrations in 12- to 14-yr.-old athletes after an all-out 100-m swimming sprint.

    PubMed

    Fu, Frank H; You, Chun-Ying; Kong, Zhao-Wei

    2002-12-01

    The purpose of this study was to investigate the acute effects of an all-out 100-m swimming sprint on changes in serum enzyme and calcium ion concentrations in young (12 to 14 years) male and female swimmers. Changes in serum enzyme concentrations of creatine kinase (CK), lactate dehydrogenase (LDH), glutamic pyruvate transaminase (GPT), glutamic oxaloacetate transaminase (GOT), serum glucose (GL), and calcium ion ((Ca2+) concentrations were measured in 23 elite swimmers (13 boys and 10 girls) before and after a 100-m freestyle all-out sprint. Analysis showed (1) there were significant sex differences in serum CK concentration at baseline (Pretest); (2) significant sex differences in serum CK and LDH concentrations after the 100-m spring; (3) no significant differences in Ca2+ concentration after the 100-m spring; and (4) significant increase in Serum GOT and blood glucose concentrations after the 100-m sprint, suggesting that these might both be useful indicators of anaerobic exercise stress in young swimmers.

  13. Meteorology: Project Earth Science.

    ERIC Educational Resources Information Center

    Smith, P. Sean; Ford, Brent A.

    This document on meteorology is one of a four-volume series of Project Earth Science that includes exemplary hands-on science and reading materials for use in the classroom. This book is divided into three sections: activities, readings, and appendix. The activities are constructed around three basic concept divisions. First, students investigate…

  14. FRAM I Meteorology Report,

    DTIC Science & Technology

    1980-05-01

    kilometer south of the initial -- - 7 -FM 3. April camp. Change of weather regime to light and variable winds, generally northerly. 2 Meteorological... sunshot at the main part of the camp. South FRAM" dire ction to ’main camp PRIL ambient nto’s. Distance from UW hut BID to NPI hut at the main seismic

  15. Computer Exercises in Meteorology.

    ERIC Educational Resources Information Center

    Trapasso, L. Michael; Conner, Glen; Stallins, Keith

    Beginning with Western Kentucky University's (Bowling Green) fall 1999 semester, exercises required for the geography and meteorology course used computers for learning. This course enrolls about 250 students per year, most of whom choose it to fulfill a general education requirement. Of the 185 geography majors, it is required for those who…

  16. Survey: National Meteorological Center

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The National Meteorological Center (NMC) is comprised of three operational divisions (Development, Automation, and Forecast) and an Administrative Division. The Development Division develops and implements mathematical models for forecasting the weather. The Automation Division provides the software and processing services to accommodate the models used in daily forecasts. The Forecasting Division applies a combination of numerical and manual techniques to produce analyses and prognoses up to 120 hr into the future. This guidance material is combined with severe storm information from the National Hurricane Center and the National Severe Storms Forecasting Center to develop locally tailored forecasts by the Weather Service Forecast Offices and, in turn, by the local Weather Service Offices. A very general flow of this information is shown. A more detailed illustration of data flow into, within, and from the NMC is given. The interrelations are depicted between the various meteorological organizations and activities.

  17. Vega balloon meteorological measurements

    NASA Technical Reports Server (NTRS)

    Crisp, D.; Ingersoll, A. P.; Hildebrand, C. E.; Preston, R. A.

    1990-01-01

    The Vega balloons obtained in situ measurements of pressure, temperature, vertical winds, cloud density, ambient illumination, and the frequency of lightning during their flights in the Venus middle cloud layer. The Vega measurements were used to develop a comprehensive description of the meteorology of the Venus middle cloud layer. The Vega measurements provide the following picture: large horizontal temperature gradients near the equator, vigorous convection, and weather conditions that can change dramatically on time scales as short as one hour.

  18. Applied Meteorology Unit (AMU)

    NASA Technical Reports Server (NTRS)

    Bauman, William; Lambert, Winifred; Wheeler, Mark; Barrett, Joe; Watson, Leela

    2007-01-01

    This report summarizes the Applied Meteorology Unit (AMU) activities for the second quarter of Fiscal Year 2007 (January - March 2007). Tasks reported on are: Obiective Lightning Probability Tool, Peak Wind Tool for General Forecasting, Situational Lightning Climatologies for Central Florida, Anvil Threat Corridor Forecast Tool in AWIPS, Volume Averaqed Heiqht lnteq rated Radar Reflectivity (VAHIRR), Tower Data Skew-t Tool, and Weather Research and Forecastini (WRF) Model Sensitivity Study

  19. The acute effects of static stretching on the sprint performance of collegiate men in the 60- and 100-m dash after a dynamic warm-up.

    PubMed

    Kistler, Brandon M; Walsh, Mark S; Horn, Thelma S; Cox, Ronald H

    2010-09-01

    Previous research has shown that static stretching has an inhibitory effect on sprinting performances up to 50 m. The purpose of this study was to see what would happen to these effects at longer distances such as those seen in competition. This study used a within-subjects design to investigate the effects of passive static stretching vs. no stretching on the 60- and 100-m sprint performance of college track athletes after a dynamic warm-up. Eighteen male subjects completed both the static stretching and the no stretching conditions in counterbalanced order across 2 days of testing. On each day, all subjects first completed a generalized dynamic warm-up routine that included a self-paced 800-m run, followed by a series of dynamic movements, sprint, and hurdle drills. At the end of this generalized warm-up, athletes were assigned to either a static stretching or a no-stretching condition. They then immediately performed 2 100-m trials with timing gates set up at 20, 40, 60, and 100 m. Results revealed a significant slowing in performance with static stretching (p < 0.039) in the second 20 (20-40) m of the sprint trials. After the first 40 m, static stretching exhibited no additional inhibition of performance in a 100-m sprint. However, although there was no additional time loss, athletes never gained back the time that was originally lost in the first portion of the trials. Therefore, in strict terms of performance, it seems harmful to include static stretching in the warm-up protocol of collegiate male sprinters in distances up to 100 m.

  20. Women in Meteorology.

    NASA Astrophysics Data System (ADS)

    Lemone, Margaret A.; Waukau, Patricia L.

    1982-11-01

    The names of 927 women who are or have been active in meteorology or closely related fields have been obtained from various sources. Of these women, at least 500 are presently active. An estimated 4-5% of the total number of Ph.D.s in meteorology are awarded to women. About 10% of those receiving B.S. and M.S. degrees are women.The work patterns, accomplishments, and salaries of employed women meteorologists have been summarized from 330 responses to questionnaires, as functions of age, family status, part- or full-time working status, and employing institutions. It was found that women meteorologists holding Ph.D.s are more likely than their male counterparts to be employed by universities. As increasing number of women were employed in operational meteorology, although few of them were married and fewer still responsible for children. Several women were employed by private industry and some had advanced into managerial positions, although at the present time, such positions remain out of the reach of most women.The subjective and objective effects of several gender-related factors have been summarized from the comments and responses to the questionnaires. The primary obstacles to advancement were found to be part-time work and the responsibility for children. Part-time work was found to have a clearly negative effect on salary increase as a function of age. prejudicated discrimination and rules negatively affecting women remain important, especially to the older women, and affirmative action programs are generally seen as beneficial.Surprisingly, in contrast to the experience of women in other fields of science, women Ph.D.s in meteorology earn salaries comparable of their employment in government or large corporations and universities where there are strong affirmative action programs and above-average salaries. Based on the responses to the questionnaire, the small size of the meteorological community is also a factor, enabling women to become recognized

  1. Arctic hydrology and meteorology

    SciTech Connect

    Kane, D.L.

    1990-01-01

    During 1990, we have continued our meteorological and hydrologic data collection in support of our process-oriented research. The six years of data collected to data is unique in its scope and continuity in a North Hemisphere Arctic setting. This valuable data base has allowed us to further our understanding of the interconnections and interactions between the atmosphere/hydrosphere/biosphere/lithosphere. The increased understanding of the heat and mass transfer processes has allowed us to increase our model-oriented research efforts.

  2. The meteorology of Jupiter

    NASA Technical Reports Server (NTRS)

    Ingersoll, A. P.

    1976-01-01

    From the point of view of meteorology the most important differences between Jupiter and the earth are related to the fact that Jupiter has an appreciable internal energy source and probably lacks a solid surface. The composition and vertical structure of the Jovian atmosphere is considered along with the composition of Jovian cloud particles, turbulence in Jupiter's atmosphere, data on the horizontal structure and motions of the atmosphere, and questions related to the longevity of Jupiter's clouds. Attention is given to the barotropic characteristics of Jupiter's atmosphere, the radiation balance in the atmosphere of the earth and of Jupiter, and studies of the Great Red Spot.

  3. Mapping the Martian Meteorology

    NASA Technical Reports Server (NTRS)

    Allison, M.; Ross, J. D.; Solomon, N.

    1999-01-01

    The Mars-adapted version of the NASA/GISS general circulation model (GCM) has been applied to the hourly/daily simulation of the planet's meteorology over several seasonal orbits. The current running version of the model includes a diurnal solar cycle, CO2 sublimation, and a mature parameterization of upper level wave drag with a vertical domain extending from the surface up to the 6microb level. The benchmark simulations provide a four-dimensional archive for the comparative evaluation of various schemes for the retrieval of winds from anticipated polar orbiter measurements of temperatures by the Pressure Modulator Infrared Radiometer. Additional information is contained in the original extended abstract.

  4. Mapping the Martian Meteorology

    NASA Technical Reports Server (NTRS)

    Allison, Michael; Ross, J. D.; Soloman, N.

    1999-01-01

    The Mars-adapted version of the NASA/GISS general circulation model (GCM) has been applied to the hourly/daily simulation of the planet's meteorology over several seasonal orbits. The current running version of the model includes a diurnal solar cycle, CO2 sublimation, and a mature parameterization of upper level wave drag with a vertical domain extending from the surface up to the 6 micro b level. The benchmark simulations provide a four-dimensional archive for the comparative evaluation of various schemes for the retrieval of winds from anticipated polar orbiter measurements of temperatures by the Pressure Modulator Infrared Radiometer.

  5. Applied Meteorology Unit (AMU)

    NASA Technical Reports Server (NTRS)

    Bauman, William H., Jr.; Crawford, Winifred; Short, David; Barrett, Joe; Watson, Leela

    2008-01-01

    This report summarizes the Applied Meteorology Unit (AMU) activities for the second quarter of Fiscal Year 2008 (January - March 2008). Projects described are: (1) Peak Wind Tool for User Launch Commit Criteria (LCC), (2) Peak Wind Tool for General Forecasting, (3) Situational Lightning Climatologies for Central Florida. Phase III, (4) Volume Averaged Height Integrated Radar Reflectivity (VAHIRR), (5) Impact of Local Sensors, (6) Radar Scan Strategies for the PAFB WSR-74C Replacement and (7) WRF Wind Sensitivity Study at Edwards Air Force Base.

  6. An Automatic Meteorological Station

    DTIC Science & Technology

    1991-11-01

    the measurement site. Not only the transmission depends on meteorological conditions, but also the thermal behaviour of materials. Solar heating for... pannel in the power supply box. 0 0 FUSE 0 0 0 0 220-MAINS 0 PIR S-NETr AMRP CM1 1 0 0/1 o 0 0 0 220-T+RH PRECIP WIND.DIR T+RH WIND.SP.Q Fa.4.1 Lay-u co...ectr pannel in pow mipply box TNOMW The codes on the cables consist of two parts. The first parn indicates the sga flow, the second part describes

  7. Agricultural Meteorology in China.

    NASA Astrophysics Data System (ADS)

    Rosenberg, Norman J.

    1982-03-01

    During nearly five weeks in China (May-June 1981), the author visited scientific institutions and experiment stations engaged in agricultural meterology and climatology research and teaching. The facilities, studies, and research programs at each institution are described and the scientific work in these fields is evaluated. Agricultural meteorology and climatology are faced with some unique problems and opportunities in China and progress in these fields may be of critical importance to that nation in coming years. The author includes culinary notes and comments on protocol in China.

  8. SEARCH FOR GAMMA RAYS ABOVE 100 TeV FROM THE CRAB NEBULA WITH THE TIBET AIR SHOWER ARRAY AND THE 100 m{sup 2} MUON DETECTOR

    SciTech Connect

    Amenomori, M.; Bi, X. J.; Chen, W. Y.; Ding, L. K.; Feng, Zhaoyang; Gou, Q. B.; Guo, Y. Q.; He, H. H.; Hu, H. B.; Huang, J.; Chen, D.; Chen, T. L.; Danzengluobu; Hu, Haibing; Cui, S. W.; He, Z. T.; Feng, C. F.; Feng, Z. Y.; Hibino, K.; Hotta, N.; Collaboration: Tibet ASγ Collaboration; and others

    2015-11-10

    A 100 m{sup 2} muon detector (MD) was successfully constructed under the existing Tibet air shower (AS) array in the late fall of 2007. The sensitivity of the Tibet AS array to cosmic gamma rays can be improved by selecting muon-poor events with the MD. Our MC simulation of the MD response reasonably agrees with the experimental data in terms of the charge distribution for one-muon events and the background rejection power. Using the data collected by the Tibet AS array and the 100 m{sup 2} MD taken from 2008 March to 2010 February, we search for continuous gamma-ray emission from the Crab Nebula above ∼100 TeV. No significant excess is found, and the most stringent upper limit is obtained above 140 TeV.

  9. Search for 100 TeV gamma rays from the Crab Nebula with the Tibet Air Shower Array and the 100 m2 muon detector

    NASA Astrophysics Data System (ADS)

    Sako, Takashi

    2016-07-01

    The 100 m ^{2} muon detector (MD) was constructed under the Tibet air shower (AS) array in the late autumn of 2007. By selecting muon-poor events with the MD, the sensitivity of the Tibet AS array to cosmic gamma rays can be improved. Our MC simulation of the MD response is in reasonable agreement with the experimental data, with regard to the charge distribution for one-muon events and the background rejection power. Using the data taken from 2008 March to 2010 February by the Tibet AS array and the 100 m ^{2} MD, we search for continuous 100 TeV gamma-ray emission from the Crab Nebula. No significant excess is detected, and the world's best upper limit is obtained above 140 TeV.

  10. Search for Gamma Rays above 100 TeV from the Crab Nebula with the Tibet Air Shower Array and the 100 m2 muon Detector

    NASA Astrophysics Data System (ADS)

    Amenomori, M.; Bi, X. J.; Chen, D.; Chen, T. L.; Chen, W. Y.; Cui, S. W.; Danzengluobu; Ding, L. K.; Feng, C. F.; Feng, Zhaoyang; Feng, Z. Y.; Gou, Q. B.; Guo, Y. Q.; He, H. H.; He, Z. T.; Hibino, K.; Hotta, N.; Hu, Haibing; Hu, H. B.; Huang, J.; Jia, H. Y.; Jiang, L.; Kajino, F.; Kasahara, K.; Katayose, Y.; Kato, C.; Kawata, K.; Kozai, M.; Labaciren; Le, G. M.; Li, A. F.; Li, H. J.; Li, W. J.; Liu, C.; Liu, J. S.; Liu, M. Y.; Lu, H.; Meng, X. R.; Miyazaki, T.; Mizutani, K.; Munakata, K.; Nakajima, T.; Nakamura, Y.; Nanjo, H.; Nishizawa, M.; Niwa, T.; Ohnishi, M.; Ohta, I.; Ozawa, S.; Qian, X. L.; Qu, X. B.; Saito, T.; Saito, T. Y.; Sakata, M.; Sako, T. K.; Shao, J.; Shibata, M.; Shiomi, A.; Shirai, T.; Sugimoto, H.; Takita, M.; Tan, Y. H.; Tateyama, N.; Torii, S.; Tsuchiya, H.; Udo, S.; Wang, H.; Wu, H. R.; Xue, L.; Yamamoto, Y.; Yamauchi, K.; Yang, Z.; Yasue, S.; Yuan, A. F.; Yuda, T.; Zhai, L. M.; Zhang, H. M.; Zhang, J. L.; Zhang, X. Y.; Zhang, Y.; Zhang, Yi; Zhang, Ying; Zhaxisangzhu; Zhou, X. X.; Tibet ASγ Collaboration

    2015-11-01

    A 100 m2 muon detector (MD) was successfully constructed under the existing Tibet air shower (AS) array in the late fall of 2007. The sensitivity of the Tibet AS array to cosmic gamma rays can be improved by selecting muon-poor events with the MD. Our MC simulation of the MD response reasonably agrees with the experimental data in terms of the charge distribution for one-muon events and the background rejection power. Using the data collected by the Tibet AS array and the 100 m2 MD taken from 2008 March to 2010 February, we search for continuous gamma-ray emission from the Crab Nebula above ˜100 TeV. No significant excess is found, and the most stringent upper limit is obtained above 140 TeV.

  11. KEY COMPARISON: Final report on regional key comparison SIM.M.FF-K4: Volume of liquids at 20 L and 100 mL

    NASA Astrophysics Data System (ADS)

    Arias, Roberto; Maldonado, Manuel; Wright, John; Wallace, Tanisha; Rodríguez, Sandra; Pinzón, Orlando; Morales, Abed; Vega, Maria; Santo, Claudia; Kornblit, Fernando; Malta, Dalni

    2010-01-01

    At its meeting in October 2006 in Querétaro, Mexico, the Interamerican Metrology System (SIM) Technical Committee for Fluid Flow (TCFF) approved a Regional Key Comparison for Volume of Liquids at 20 L and 100 mL, to be piloted by the national metrology institute of Mexico (CENAM). The objective of this comparison was to demonstrate the degree of equivalence of the volume measurement standards held at national measurement institutes (NMIs) and to provide supporting evidence for the Calibration and Measurement Capabilities (CMCs) claimed by the participating laboratories in the Americas. During the comparison, one of the pycnometers suffered irreversible damage, and degrees of equivalence for volume at 100 mL were calculated using the results obtained with one single pycnometer (TS 03.04.04). Conclusions are as follows: The transfer standards for SIM.M.FF-K4 exhibited global good performance all the way along, both in terms of stability and repeatability. Degrees of equivalence have been produced for volumes at 20 L and at 100 mL. The best estimation of the measurands, as reported by the participants, shows a general agreement better than +/-0.0070% for volume of liquids at 100 mL and 20 L. It is advisable to review the uncertainty analysis of some participants. New CMC entries for some NMIs should take into account the information presented in this Report. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  12. KEY COMPARISON: Results of the key comparison CCM.FF-K4 for volume of liquids at 20 L and 100 mL

    NASA Astrophysics Data System (ADS)

    Arias, Roberto; Maldonado, Manuel; Wright, John; Jacques, Claude; Lachance, Christian; Lau, Peter; Többen, Helmut; Cignolo, Giorgio; Lorefice, Salvatore; Man, John; Aibe, Valter Y.

    2006-01-01

    A key comparison was performed in order to compare national measurement systems to determine volume of liquids, particularly at fixed volumes of 20 L and 100 mL. The participants were CENAM (Mexico), NIST (United States of America), NRC/MC (Canada), SP (Sweden), PTB (Germany), INRIM (former IMGC, Italy), NMIA (Australia) and INMETRO (Brazil). CENAM acted as pilot laboratory. The measurements were carried out from December 2003 to March 2005. The chosen values of volume (20 L and 100 mL) are both representatives of the Calibration and Measurement Capabilities (CMCs) declared by most of the participating national metrology institutes. The transfer standards (TSs) were three stainless steel pipettes for volume at 20 L and six commercially available glass pycnometers for volume at 100 mL. Prior to the beginning of the key comparison, the 20 L TSs were tested by CENAM, SP and NMIA The results of the test phase showed excellent values for both repeatability and reproducibility. During the CCM.FF-K4, the results of most of the laboratories showed good agreement with the reference values. The best estimation of the measurands, as reported by the participants showed a general agreement better than ±0.0025% for volume of liquids at 100 mL and 20 L. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  13. Meteorological Instruction Software

    NASA Technical Reports Server (NTRS)

    1990-01-01

    At Florida State University and the Naval Postgraduate School, meteorology students have the opportunity to apply theoretical studies to current weather phenomena, even prepare forecasts and see how their predictions stand up utilizing GEMPAK. GEMPAK can display data quickly in both conventional and non-traditional ways, allowing students to view multiple perspectives of the complex three-dimensional atmospheric structure. With GEMPAK, mathematical equations come alive as students do homework and laboratory assignments on the weather events happening around them. Since GEMPAK provides data on a 'today' basis, each homework assignment is new. At the Naval Postgraduate School, students are now using electronically-managed environmental data in the classroom. The School's Departments of Meteorology and Oceanography have developed the Interactive Digital Environment Analysis (IDEA) Laboratory. GEMPAK is the IDEA Lab's general purpose display package; the IDEA image processing package is a modified version of NASA's Device Management System. Bringing the graphic and image processing packages together is NASA's product, the Transportable Application Executive (TAE).

  14. Applied Meteorology Unit (AMU)

    NASA Technical Reports Server (NTRS)

    Bauman, William; Crawford, Winifred; Watson, Leela; Wheeler, Mark

    2011-01-01

    The AMU Team began four new tasks in this quarter: (1) began work to improve the AMU-developed tool that provides the launch weather officers information on peak wind speeds that helps them assess their launch commit criteria; (2) began updating lightning climatologies for airfields around central Florida. These climatologies help National Weather Service and Air Force forecasters determine the probability of lightning occurrence at these sites; (3) began a study for the 30th Weather Squadron at Vandenberg Air Force Base in California to determine if precursors can be found in weather observations to help the forecasters determine when they will get strong wind gusts in their northern towers; and (4) began work to update the AMU-developed severe weather tool with more data and possibly improve its performance using a new statistical technique. Include is a section of summaries and detail reporting on the quarterly tasks: (1) Peak Wind Tool for user Meteorological Interactive Data Display System (LCC), Phase IV, (2) Situational Lightning climatologies for Central Florida, Phase V, (3) Vandenberg AFB North Base Wind Study and (4) Upgrade Summer Severe Weather Tool Meteorological Interactive Data Display System (MIDDS).

  15. Close to 100 Gbps discrete multitone transmission over 100m of multimode fiber using a single transverse mode 850nm VCSEL

    NASA Astrophysics Data System (ADS)

    Wu, Bo; Zhou, Xian; Ma, Yanan; Luo, Jun; Zhong, Kangping; Qiu, Shaofeng; Feng, Zhiyong; Luo, Yazhi; Agustin, Mikel; Ledentsov, Nikolay; Kropp, Joerg; Shchukin, Vitaly; Ledentsov, Nikolay N.; Eddie, Iain; Chao, Lu

    2016-03-01

    Discrete Multitone Transmission (DMT) transmission over standard multimode fiber (MMF) using high-speed single (SM) and multimode (MM) Vertical-Cavity Surface-Emitting Lasers (VCSELs) is studied. Transmission speed in the range of 72Gbps to 82Gbps over 300m -100m distances of OM4 fiber is realized, respectively, at Bit-Error-Ratio (BER) <5e-3 and the received optical power of only -5dBm. Such BER condition requires only 7% overhead for the conversion to error-free operation using single Bose-Chaudhuri-Hocquenghem forward error correction (BCH-FEC) coding and decoding. SM VCSEL is demonstrated to provide a much higher data transmission capacity over MMF. For 100m MMF transmission SM VCSEL allows 82Gbps as compared to MM VCSEL resulting in only 34Gbps at the same power (-5dBm). Furthermore, MM VCSEL link at 0dBm is still restricted at 100m distance by 63Gbps while SM VCSEL can exceed 100Gbps at such power levels. We believe that with further improvement in SM VCSELs and fiber coupling >100Gbps data transmission over >300m MMF distances at the BER levels matching the industry standards will become possible.

  16. Martian Meteorological Lander

    NASA Astrophysics Data System (ADS)

    Vorontsov, V.; Pichkhadze, K.; Polyakov, A.

    2002-01-01

    Martian meteorological lander (MML) is dedicated for landing onto the Mars surface with the purpose to carry on the monitoring of Mars atmosphere condition at a landing point during one Martian year. MML is supposed to become the basic element of a global net of meteorological mini stations and will permit to observe the dynamics of Martian atmosphere parameters changes during a long time duration. The main scientific tasks of MML are as follows: -study of vertical structure of Mars atmosphere during MML descending; -meteorological observations on Mars surface during one Martian year. One of the essential factor influencing to the lander design is descent trajectory design. During the preliminary phase of development five (5) options of MML were considered. In our opinion, these variants provide the accomplishment of the above-mentioned tasks with a high effectiveness. Joined into the first group, variants with parachute system and with Inflatable Air Brakes+Inflatable Airbag are similar in arranging of pre-landing braking stage and completely analogous in landing by means of airbags. The usage of additional Inflatable Braking Unit (IBU) in the second variant does not affect the procedure of braking - decreasing of velocity by the moment of touching the surface due to decreasing of ballistic parameter Px. A distinctive feature of MML development variants of other three concepts is the presence of Inflatable Braking Unit (IBU) in their configurations (IBU is rigidly joined with landing module up to the moment of its touching the surface). Besides, in variant with the tore-shaped IBU it acts as a shock- absorbing unit. In two options, Inflatable Braking Shock-Absorbing Unit (IBSAU) (or IBU) releases the surface module after its landing at the moment of IBSAU (or IBU) elastic recoil. Variants of this concept are equal in terms of mass (approximately 15 kg). For variants of concepts with IBU the landing velocity is up to50-70 m/s. Stations of last three options are

  17. Antarctic Meteorology and Climatology

    NASA Astrophysics Data System (ADS)

    King, J. C.; Turner, J.

    1997-07-01

    This book is a comprehensive survey of the climatology and meteorology of Antarctica. The first section of the book reviews the methods by which we can observe the Antarctic atmosphere and presents a synthesis of climatological measurements. In the second section, the authors consider the processes that maintain the observed climate, from large-scale atmospheric circulation to small-scale processes. The final section reviews our current knowledge of the variability of Antarctic climate and the possible effects of "greenhouse" warming. The authors stress links among the Antarctic atmosphere, other elements of the Antarctic climate system (oceans, sea ice and ice sheets), and the global climate system. This volume will be of greatest interest to meteorologists and climatologists with a specialized interest in Antarctica, but it will also appeal to researchers in Antarctic glaciology, oceanography and biology. Graduates and undergraduates studying physical geography, and the earth, atmospheric and environmental sciences will find much useful background material in the book.

  18. Meteorology as an infratechnology

    NASA Astrophysics Data System (ADS)

    Williams, G. A.; Smith, L. A.

    2003-04-01

    From an economists perspective, meteorology is an underpinning or infratechnology in the sense that in general it does not of its own accord lead to actual products. Its value added comes from the application of its results to the activities of other forms of economic and technological activity. This contribution discusses both the potential applications of meteorology as an ininfratechnology, and quantifying its socio-economic impact. Large economic and social benefits are both likely in theory and can be identified in practice. Case studies of particular weather dependent industries or particular episodes are suggested, based on the methodology developed by NIST to analyze the social impact of technological innovation in US industries (see www.nist.gov/director/planning/strategicplanning.htm ). Infratechnologies can provide economic benefits in the support of markets. Incomplete information is a major cause of market failure because it inhibits the proper design of contracts. The performance of markets in general can be influenced by strategies adopted by different firms within a market to regulate the performance of others especially suppliers or purchasers. This contribution will focus on benefits to society from mechanisms which enhance and enforce mitigating actions. When the market mechanism fails, who might social benefits be gained, for example, by widening the scope of authorities to ensure that those who could have taken mitigating action, given prior warning, cover the costs. This goes beyond the design and implementation of civil responses to severe weather warnings to include the design of legislative recourse in the event of negligence given prior knowledge, or the modification of insurance contracts. The aim here, for example, would be to avoid the loss of an oil tanker in heavy seas at a location where a high probability of heavy seas had been forecast for some time.

  19. Defense Meteorological Satellite Program (DMSP)

    NASA Technical Reports Server (NTRS)

    Rivers, J. W., Jr.; Arnold, C. P., Jr.

    1982-01-01

    The Defense Meteorological Satellite Program is a total satellite system composed of spacecraft with meteorological sensors, an Earth-based command and control network, user stations, launch vehicle and support; with a communication network linking the various segments together. The various system segments are described.

  20. Radiocommunications for meteorological satellite systems

    NASA Technical Reports Server (NTRS)

    Walton, B. A.

    1975-01-01

    A general overview is presented of the spectrum utilization and frequency requirements of present and planned meteorological satellite programs. The sensors, and TIROS operational systems are discussed along with the Nimbus and Synchronous Meteorological Satellites. STORMSAT, SEASAT, and the Spacelab are briefly described.

  1. Geosynchronous Meteorological Satellite Data Seminar

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A seminar was organized by NASA to acquaint the meteorological community with data now available, and data scheduled to be available in the future, from geosynchronous meteorological satellites. The twenty-four papers were presented in three half-day sessions in addition to tours of the Image Display and LANDSAT Processing Facilities during the afternoon of the second day.

  2. SIM.M.FF-S7: Final report on SIM/ANDIMET supplementary comparison for volume of liquids at 100 mL and 100 μL

    NASA Astrophysics Data System (ADS)

    Trujillo, S.; Maldonado, J. M.; Vega, M. C.; Santalla, E.; Sica, A.; Cantero, D.; Salazar, M.; Morales, A.; Solano, P.; Rodríguez, L. D.

    2016-01-01

    A SIM/ANDIMET comparison for liquid volume using two 100 mL pycnometers and two 100 μL piston pipettes was performed between January 2012 and October 2013. The National Metrology Institute (NMI) of Bolivia was the coordinating laboratory and the Mexican NMI provided technical assistance. The participating labs were IBMETRO (Bolivia), INM (Colombia), INEN (Ecuador), INDECOPI (Peru), LACOMET (Costa Rica), LATU (Uruguay), INTN (Paraguay), and CENAM (Mexico). Based on measurements made by CENAM at the beginning and end of the comparison, the transfer standards were stable during the comparison within 0.0001 mL for the 100 mL pycnometers and 0.03 μL for the 100 μL pipettes. For 100 mL, six of the eight participants agreed within ± 0.003 % and had standardized degrees of equivalence (EN) less than 1. Two participants (INEN and INM) had EN values greater than 1. For the 100 μL pipettes, the results were corrected for the influence of altitude and seven of the eight participants agreed within ± 0.3 %. Results from INEN and some from INM and IBMETRO had EN values greater than 1 for the 100 μL pipettes. Uncertainties recommended by Guideline DKD-R 8-1 for micropipettes were included. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  3. Arctic hydrology and meteorology

    SciTech Connect

    Kane, D.L.

    1989-01-01

    To date, five years of hydrologic and meteorologic data have been collected at Imnavait Creek near Toolik Lake, Alaska. This is the most complete set of field data of this type collected in the Arctic of North America. These data have been used in process-oriented research to increase our understanding of atmosphere/hydrosphere/biosphere/lithosphere interactions. Basically, we are monitoring heat and mass transfer between various spheres to quantify rates. These could be rates of mass movement such as hillslope flow or rates of heat transfer for active layer thawing or combined heat and mass processes such as evapotranspiration. We have utilized a conceptual model to predict hydrologic processes. To test the success of this model, we are comparing our predicted rates of runoff and snowmelt to measured valves. We have also used a surface energy model to simulate active layer temperatures. The final step in this modeling effort to date was to predict what impact climatic warming would have on active layer thicknesses and how this will influence the hydrology of our research watershed by examining several streambeds.

  4. Four-planet meteorology

    NASA Technical Reports Server (NTRS)

    1979-01-01

    All planets with atmospheres have common characteristics which are helpful in understanding weather and climate on earth. Of the terrestrial planets, Mars displays the most earth-like characteristics. The feedback mechanism of the Martian Great Dust Storms may control climate on a global scale and shows some parallels to the water cycle on the earth. Venus, on the other hand, has atmosphere motions and characteristics far different from those of earth but appears to be valuable for comparative meteorology and it seems to be a simple weather machine due to absence of axial tilt. A completely gaseous Jupiter also can help because its atmosphere, driven by internal heat, flows round-and-round, showing the same general patterns for years at a time. Results of studying extraterrestrial atmospheres are most important for understanding earth's multi-year weather cycles such as the droughts in the American West every 22 years or effects of the Little Ice Age (1450-1915) on agriculture in the North Hemisphere.

  5. Meteorological satellites: Past, present, and future

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Past developments, accomplishments and future potential of meteorological satellites are discussed. Meteorological satellite design is described in detail. Space platforms and their meteorological applications are discussed. User needs are also discussed.

  6. Meteorological Processors and Accessory Programs

    EPA Pesticide Factsheets

    Surface and upper air data, provided by NWS, are important inputs for air quality models. Before these data are used in some of the EPA dispersion models, meteorological processors are used to manipulate the data.

  7. Air Modeling - Observational Meteorological Data

    EPA Pesticide Factsheets

    Observed meteorological data for use in air quality modeling consist of physical parameters that are measured directly by instrumentation, and include temperature, dew point, wind direction, wind speed, cloud cover, cloud layer(s), ceiling height,

  8. Mathematics and Meteorology: Perfect Partners.

    ERIC Educational Resources Information Center

    Bomeli, Cynthia L.

    1991-01-01

    The integration of science and mathematics in the middle school using the topic of meteorology is discussed. Seven selected activities for this approach are suggested. Lists of materials and resources for use in this teaching approach are appended. (CW)

  9. BOREAS Derived Surface Meteorological Data

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Twine, Tracy; Rinker, Donald; Knapp, David

    2000-01-01

    In 1995, the BOREAS science teams identified the need for a continuous surface meteorological and radiation data set to support flux and surface process modeling efforts. This data set contains actual, substituted, and interpolated 15-minute meteorological and radiation data compiled from several surface measurements sites over the BOREAS SSA and NSA. Temporally, the data cover 01-Jan-1994 to 31-Dec-1996. The data are stored in tabular ASCII files, and are classified as AFM-Staff data.

  10. Meteorological measurements from satellite platforms

    NASA Technical Reports Server (NTRS)

    Suomi, V. E.

    1972-01-01

    Quantitative exploitation of meteorological data from geosynchronous satellites is starting to move from the laboratory to operational practice. Investigations of the data applications portion of the total meteorological satellite system include: (1) tropospheric wind shear and the related severe storm circulations; (2) kinematic properties of the tropical atmosphere as derived from cloud motion vectors; (3) application of a geostationary satellite rake system to measurements of rainfall; and (4) pointing error analysis of geosynchronous satellites.

  11. Acute Response of Well-Trained Sprinters to a 100-m Race: Higher Sprinting Velocity Achieved With Increased Step Rate Compared With Speed Training.

    PubMed

    Otsuka, Mitsuo; Kawahara, Taisuke; Isaka, Tadao

    2016-03-01

    This study aimed to clarify the contribution of differences in step length and step rate to sprinting velocity in an athletic race compared with speed training. Nineteen well-trained male and female sprinters volunteered to participate in this study. Sprinting motions were recorded for each sprinter during both 100-m races and speed training (60-, 80-, and 100-m dash from a block start) for 14 days before the race. Repeated-measures analysis of covariance was used to compare the step characteristics and sprinting velocity between race and speed training, adjusted for covariates including race-training differences in the coefficients of restitution of the all-weather track, wind speed, air temperature, and sex. The average sprinting velocity to the 50-m mark was significantly greater in the race than in speed training (8.26 ± 0.22 m·s vs. 8.00 ± 0.70 m·s, p < 0.01). Although no significant difference was seen in the average step length to the 50-m mark between the race and speed training (1.81 ± 0.09 m vs. 1.80 ± 0.09 m, p = 0.065), the average step rate was significantly greater in the race than in speed training (4.56 ± 0.17 Hz vs. 4.46 ± 0.13 Hz, p < 0.01). These findings suggest that sprinters achieve higher sprinting velocity and can run with higher exercise intensity and more rapid motion during a race than during speed training, even if speed training was performed at perceived high intensity.

  12. Total body 100-mGy X-irradiation does not induce Alzheimer's disease-like pathogenesis or memory impairment in mice

    PubMed Central

    Wang, Bing; Tanaka, Kaoru; Ji, Bin; Ono, Maiko; Fang, Yaqun; Ninomiya, Yasuharu; Maruyama, Kouichi; Izumi-Nakajima, Nakako; Begum, Nasrin; Higuchi, Makoto; Fujimori, Akira; Uehara, Yoshihiko; Nakajima, Tetsuo; Suhara, Tetsuya; Ono, Tetsuya; Nenoi, Mitsuru

    2014-01-01

    The cause and progression of Alzheimer's disease (AD) are poorly understood. Possible cognitive and behavioral consequences induced by low-dose radiation are important because humans are exposed to ionizing radiation from various sources. Early transcriptional response in murine brain to low-dose X-rays (100 mGy) has been reported, suggesting alterations of molecular networks and pathways associated with cognitive functions, advanced aging and AD. To investigate acute and late transcriptional, pathological and cognitive consequences of low-dose radiation, we applied an acute dose of 100-mGy total body irradiation (TBI) with X-rays to C57BL/6J Jms mice. We collected hippocampi and analyzed expression of 84 AD-related genes. Mouse learning ability and memory were assessed with the Morris water maze test. We performed in vivo PET scans with 11C-PIB, a radiolabeled ligand for amyloid imaging, to detect fibrillary amyloid beta peptide (Aβ) accumulation, and examined characteristic AD pathologies with immunohistochemical staining of amyloid precursor protein (APP), Aβ, tau and phosphorylated tau (p-tau). mRNA studies showed significant downregulation of only two of 84 AD-related genes, Apbb1 and Lrp1, at 4 h after irradiation, and of only one gene, Il1α, at 1 year after irradiation. Spatial learning ability and memory were not significantly affected at 1 or 2 years after irradiation. No induction of amyloid fibrillogenesis or changes in APP, Aβ, tau, or p-tau expression was detected at 4 months or 2 years after irradiation. TBI induced early or late transcriptional alteration in only a few AD-related genes but did not significantly affect spatial learning, memory or AD-like pathological change in mice. PMID:23908553

  13. Total body 100-mGy X-irradiation does not induce Alzheimer's disease-like pathogenesis or memory impairment in mice.

    PubMed

    Wang, Bing; Tanaka, Kaoru; Ji, Bin; Ono, Maiko; Fang, Yaqun; Ninomiya, Yasuharu; Maruyama, Kouichi; Izumi-Nakajima, Nakako; Begum, Nasrin; Higuchi, Makoto; Fujimori, Akira; Uehara, Yoshihiko; Nakajima, Tetsuo; Suhara, Tetsuya; Ono, Tetsuya; Nenoi, Mitsuru

    2014-01-01

    The cause and progression of Alzheimer's disease (AD) are poorly understood. Possible cognitive and behavioral consequences induced by low-dose radiation are important because humans are exposed to ionizing radiation from various sources. Early transcriptional response in murine brain to low-dose X-rays (100 mGy) has been reported, suggesting alterations of molecular networks and pathways associated with cognitive functions, advanced aging and AD. To investigate acute and late transcriptional, pathological and cognitive consequences of low-dose radiation, we applied an acute dose of 100-mGy total body irradiation (TBI) with X-rays to C57BL/6J Jms mice. We collected hippocampi and analyzed expression of 84 AD-related genes. Mouse learning ability and memory were assessed with the Morris water maze test. We performed in vivo PET scans with (11)C-PIB, a radiolabeled ligand for amyloid imaging, to detect fibrillary amyloid beta peptide (Aβ) accumulation, and examined characteristic AD pathologies with immunohistochemical staining of amyloid precursor protein (APP), Aβ, tau and phosphorylated tau (p-tau). mRNA studies showed significant downregulation of only two of 84 AD-related genes, Apbb1 and Lrp1, at 4 h after irradiation, and of only one gene, Il1α, at 1 year after irradiation. Spatial learning ability and memory were not significantly affected at 1 or 2 years after irradiation. No induction of amyloid fibrillogenesis or changes in APP, Aβ, tau, or p-tau expression was detected at 4 months or 2 years after irradiation. TBI induced early or late transcriptional alteration in only a few AD-related genes but did not significantly affect spatial learning, memory or AD-like pathological change in mice.

  14. Space Shuttle interactive meteorological data system study

    NASA Technical Reports Server (NTRS)

    Young, J. T.; Fox, R. J.; Benson, J. M.; Rueden, J. P.; Oehlkers, R. A.

    1985-01-01

    Although focused toward the operational meteorological support review and definition of an operational meteorological interactive data display systems (MIDDS) requirements for the Space Meteorology Support Group at NASA/Johnson Space Center, the total operational meteorological support requirements and a systems concept for the MIDDS network integration of NASA and Air Force elements to support the National Space Transportation System are also addressed.

  15. Comparison of separations of fatty acids from fish products using a 30-m Supelcowax-10 and a 100-m SP-2560 column.

    PubMed

    Santercole, Viviana; Delmonte, Pierluigi; Kramer, John K G

    2012-03-01

    Commercial fish oils and foods containing fish may contain trans and/or isomerized fatty acids (FA) produced during processing or as part of prepared foods. The current American Oil Chemists' Society (AOCS) official method for marine oils (method Ce 1i-07) is based on separation by use of poly(ethylene glycol) (PEG) columns, for example Supelcowax-10 or equivalent, which do not resolve most unsaturated FA geometric isomers. Highly polar 100-m cyanopropyl siloxane (CPS) columns, for example SP-2560 and CP Sil 88 are recommended for separation of geometric FA isomers. Complementary separations were achieved by use of two different elution temperature programs with the same CPS column. This study is the first direct comparison of the separations achieved by use of 30-m Supelcowax-10 and 100-m SP-2560 columns for fatty acid methyl esters (FAME) prepared from the same fish oil and fish muscle sample. To simplify the identification of the FA in these fish samples, FA were fractionated on the basis of the number and type of double bonds by silver-ion solid-phase extraction (Ag⁺-SPE) before GC analysis. The results showed that a combination of the three GC separations was necessary to resolve and identify most of the unsaturated FA, FA isomers, and other components of fish products, for example phytanic and phytenic acids. Equivalent chain length (ECL) values of most FAME in fish were calculated from the separations achieved by use of both GC columns; the values obtained were shown to be consistent with previously reported values for the Supelcowax-10 column. ECL values were also calculated for the FA separated on the SP-2560 column. The calculated ECL values were equally valid under isothermal and temperature-programmed elution GC conditions, and were valuable for confirmation of the identity of several unsaturated FAME in the fish samples. When analyzing commercially prepared fish foods, deodorized marine oils, or foods fortified with marine oils it is strongly

  16. Final report on COOMET supplementary comparison of inductance at 10 mH and 100 mH at 1 kHz (COOMET.EM-S14)

    NASA Astrophysics Data System (ADS)

    Velychko, O.; Shevkun, S.

    2016-01-01

    An inter-comparison of 10 mH and 100 mH inductance standards has taken place within the framework of COOMET. The inter-comparison, piloted by State Enterprise 'Ukrmetrteststandard'-UMTS (Ukraine), has involved four laboratories, including one who is a member of another regional metrological organization - EURAMET (GUM, Poland). The results presented in this report show that there are significant differences between some laboratory representations of the henry. However, the agreement demonstrated by the inter-comparison provides confidence in maintaining traceability for the henry. KEY WORDS FOR SEARCH Inter-comparison, inductance standard, traceability, regional metrological organization Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCEM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  17. Amplification of broad-band chirped pulses up to the 100-mJ level using alexandrite-pumped neodymium-doped glasses

    SciTech Connect

    Gamache, C.; Husson, D.; Seznec, S.; Descamps, D.; Migus, A. |

    1996-08-01

    In this work, the authors are concerned by the amplification of broad-band energetic pulses in laser-pumped Nd:glasses, with obvious applications to ultrashort pulse technology, but also to a front end for the envisioned Megajoules Nd:glass laser facility devoted to inertial confinement fusion (ICF) studies and ignition demonstration. An alexandrite laser is used to longitudinally end-pump mixed Nd:glass rods in a multipass arrangement in order to amplify chirped pulses in the 50--100-mJ range at a 1-Hz repetition rate. This system has a broad-band capability of up to 8--10 nm output bandwidth. The authors have developed a model, which in the specific case of amplification of chirped-pulse, takes into account the exact configuration of the rods, their spectral properties, and the longitudinal pumping geometry. An agreement between experiment and theory is obtained by assuming a pump quantum efficiency of the order of 60%.

  18. Uniform transport performance of a 100 m-class multifilament MgB2 wire fabricated by an internal Mg diffusion process

    NASA Astrophysics Data System (ADS)

    Wang, Dongliang; Xu, Da; Zhang, Xianping; Yao, Chao; Yuan, Pusheng; Ma, Yanwei; Oguro, Hidetoshi; Awaji, Satoshi; Watanabe, Kazuo

    2016-06-01

    A 100 m long six-filament MgB2 wire was successfully fabricated using an internal magnesium diffusion (IMD) process. We investigated the transport properties and the uniformity of this long multifilament IMD wire. The MgB2 layer and the sub-filament region are regular, and the J c values have a fairly homogenous distribution throughout the wire, suggesting that there were no obvious defects along the length of the wire. The uniformity problem of long multifilament IMD MgB2 wires can be mitigated by optimizing the starting composite parameters, multifilament geometry, fabricating process and annealing conditions. A layer J c as high as 1.2 × 105 A cm-2 at 4.2 K and 8 T was obtained, which was comparable with the highest reported value for a short multifilament IMD wire. The transport layer J c, non-barrier J c and J e values are independent of the wire diameter. In addition, the analysis of the stress-strain characteristics and the n value of the IMD wire is also presented. These results indicate that the long multifilament IMD-processed MgB2 superconducting wire is suitable for practical applications.

  19. PULMONARY ARTERIAL DISEASE ASSOCIATED WITH RIGHT-SIDED CARDIAC HYPERTROPHY AND CONGESTIVE HEART FAILURE IN ZOO MAMMALS HOUSED AT 2,100 M ABOVE SEA LEVEL.

    PubMed

    Juan-Sallés, Carles; Martínez, Liliana Sofía; Rosas-Rosas, Arely G; Parás, Alberto; Martínez, Osvaldo; Hernández, Alejandra; Garner, Michael M

    2015-12-01

    Subacute and chronic mountain sickness of humans and the related brisket disease of cattle are characterized by right-sided congestive heart failure in individuals living at high altitudes as a result of sustained hypoxic pulmonary hypertension. Adaptations to high altitude and disease resistance vary among species, breeds, and individuals. The authors conducted a retrospective survey of right-sided cardiac hypertrophy associated with pulmonary arterial hypertrophy or arteriosclerosis in zoo mammals housed at Africam Safari (Puebla, México), which is located at 2,100 m above sea level. Seventeen animals with detailed pathology records matched the study criterion. Included were 10 maras (Dolichotis patagonum), 2 cotton-top tamarins (Saguinus oedipus oedipus), 2 capybaras (Hydrochaeris hydrochaeris), and 1 case each of Bennet's wallaby (Macropus rufogriseus), nilgai antelope (Boselaphus tragocamelus), and scimitar-horned oryx (Oryx dammah). All had right-sided cardiac hypertrophy and a variety of arterial lesions restricted to the pulmonary circulation and causing arterial thickening with narrowing of the arterial lumen. Arterial lesions most often consisted of medial hypertrophy or hyperplasia of small and medium-sized pulmonary arteries. All maras also had single or multiple elevated plaques in the pulmonary arterial trunk consisting of fibrosis, accompanied by chondroid metaplasia in some cases. Both antelopes were juvenile and died with right-sided congestive heart failure associated with severe pulmonary arterial lesions. To the authors' knowledge, this is the first description of cardiac and pulmonary arterial disease in zoo mammals housed at high altitudes.

  20. Surface meteorology and Solar Energy

    NASA Technical Reports Server (NTRS)

    Stackhouse, Paul W. (Principal Investigator)

    The Release 5.1 Surface meteorology and Solar Energy (SSE) data contains parameters formulated for assessing and designing renewable energy systems. Parameters fall under 11 categories including: Solar cooking, solar thermal applications, solar geometry, tilted solar panels, energy storage systems, surplus product storage systems, cloud information, temperature, wind, other meteorological factors, and supporting information. This latest release contains new parameters based on recommendations by the renewable energy industry and it is more accurate than previous releases. On-line plotting capabilities allow quick evaluation of potential renewable energy projects for any region of the world. The SSE data set is formulated from NASA satellite- and reanalysis-derived insolation and meteorological data for the 10-year period July 1983 through June 1993. Results are provided for 1 degree latitude by 1 degree longitude grid cells over the globe. Average daily and monthly measurements for 1195 World Radiation Data Centre ground sites are also available. [Mission Objectives] The SSE project contains insolation and meteorology data intended to aid in the development of renewable energy systems. Collaboration between SSE and technology industries such as the Hybrid Optimization Model for Electric Renewables ( HOMER ) may aid in designing electric power systems that employ some combination of wind turbines, photovoltaic panels, or diesel generators to produce electricity. [Temporal_Coverage: Start_Date=1983-07-01; Stop_Date=1993-06-30] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180].

  1. Human muscle net K(+) release during exercise is unaffected by elevated anaerobic metabolism, but reduced after prolonged acclimatization to 4,100 m.

    PubMed

    Nordsborg, Nikolai B; Calbet, José A L; Sander, Mikael; van Hall, Gerrit; Juel, Carsten; Saltin, Bengt; Lundby, Carsten

    2010-07-01

    It was investigated whether skeletal muscle K(+) release is linked to the degree of anaerobic energy production. Six subjects performed an incremental bicycle exercise test in normoxic and hypoxic conditions prior to and after 2 and 8 wk of acclimatization to 4,100 m. The highest workload completed by all subjects in all trials was 260 W. With acute hypoxic exposure prior to acclimatization, venous plasma [K(+)] was lower (P < 0.05) in normoxia (4.9 +/- 0.1 mM) than hypoxia (5.2 +/- 0.2 mM) at 260 W, but similar at exhaustion, which occurred at 400 +/- 9 W and 307 +/- 7 W (P < 0.05), respectively. At the same absolute exercise intensity, leg net K(+) release was unaffected by hypoxic exposure independent of acclimatization. After 8 wk of acclimatization, no difference existed in venous plasma [K(+)] between the normoxic and hypoxic trial, either at submaximal intensities or at exhaustion (360 +/- 14 W vs. 313 +/- 8 W; P < 0.05). At the same absolute exercise intensity, leg net K(+) release was less (P < 0.001) than prior to acclimatization and reached negative values in both hypoxic and normoxic conditions after acclimatization. Moreover, the reduction in plasma volume during exercise relative to rest was less (P < 0.01) in normoxic than hypoxic conditions, irrespective of the degree of acclimatization (at 260 W prior to acclimatization: -4.9 +/- 0.8% in normoxia and -10.0 +/- 0.4% in hypoxia). It is concluded that leg net K(+) release is unrelated to anaerobic energy production and that acclimatization reduces leg net K(+) release during exercise.

  2. Corporate/commuter airlines meteorological requirements

    NASA Technical Reports Server (NTRS)

    Olcott, J. W.

    1985-01-01

    The meteorological information requirements of corporate and commuter airlines are reviewed. The skill level and needs of this class of aviator were assessed. An overview of the methodology by which meteorological data is communicated to these users is presented.

  3. Pulmonary gas exchange at maximal exercise in Danish lowlanders during 8 wk of acclimatization to 4,100 m and in high-altitude Aymara natives.

    PubMed

    Lundby, Carsten; Calbet, Jose A L; van Hall, Gerrit; Saltin, Bengt; Sander, Mikael

    2004-11-01

    We aimed to test effects of altitude acclimatization on pulmonary gas exchange at maximal exercise. Six lowlanders were studied at sea level, in acute hypoxia (AH), and after 2 and 8 wk of acclimatization to 4,100 m (2W and 8W) and compared with Aymara high-altitude natives residing at this altitude. As expected, alveolar Po2 was reduced during AH but increased gradually during acclimatization (61 +/- 0.7, 69 +/- 0.9, and 72 +/- 1.4 mmHg in AH, 2W, and 8W, respectively), reaching values significantly higher than in Aymaras (67 +/- 0.6 mmHg). Arterial Po2 (PaO2) also decreased during exercise in AH but increased significantly with acclimatization (51 +/- 1.1, 58 +/- 1.7, and 62 +/- 1.6 mmHg in AH, 2W, and 8W, respectively). PaO2 in lowlanders reached levels that were not different from those in high-altitude natives (66 +/- 1.2 mmHg). Arterial O2 saturation (SaO2) decreased during maximum exercise compared with rest in AH and after 2W and 8W: 73.3 +/- 1.4, 76.9 +/- 1.7, and 79.3 +/- 1.6%, respectively. After 8W, SaO2 in lowlanders was not significantly different from that in Aymaras (82.7 +/- 1%). An improved pulmonary gas exchange with acclimatization was evidenced by a decreased ventilatory equivalent of O2 after 8W: 59 +/- 4, 58 +/- 4, and 52 +/- 4 l x min x l O2(-1), respectively. The ventilatory equivalent of O2 reached levels not different from that of Aymaras (51 +/- 3 l x min x l O2(-1)). However, increases in exercise alveolar Po2 and PaO2 with acclimatization had no net effect on alveolar-arterial Po2 difference in lowlanders (10 +/- 1.3, 11 +/- 1.5, and 10 +/- 2.1 mmHg in AH, 2W, and 8W, respectively), which remained significantly higher than in Aymaras (1 +/- 1.4 mmHg). In conclusion, lowlanders substantially improve pulmonary gas exchange with acclimatization, but even acclimatization for 8 wk is insufficient to achieve levels reached by high-altitude natives.

  4. Technology and Meteorology. An Action Research Paper.

    ERIC Educational Resources Information Center

    Taggart, Raymond F.

    Meteorology, the science of weather and weather conditions, has traditionally been taught via textbook and rote demonstration. This study was intended to determine to what degree utilizing technology in the study of meteorology improves students' attitudes towards science and to measure to what extent technology in meteorology increases…

  5. Syllabi for Instruction in Agricultural Meteorology.

    ERIC Educational Resources Information Center

    De Villiers, G. D. B.; And Others

    A working group of the Commission for Agricultural Meteorology has prepared this report to fill a need for detailed syllabi for instruction in agricultural meteorology required by different levels of personnel. Agrometeorological personnel are classified in three categories: (1) professional meteorological personnel (graduates with basic training…

  6. Metrology for meteorology and climate

    NASA Astrophysics Data System (ADS)

    Merlone, Andrea; Bellagarda, Simone; Bertiglia, Fabio; Coppa, Graziano; Lopardo, Giuseppina; Roggero, Guido; Sanna, Francesca

    2014-05-01

    For a few years now, a fruitful collaboration has been growing between the metrology and meteorology communities. The main need expressed by top level Institutions was for the availability of robust data for environmental and meteorological studies and for the benefit of the present and future generations of climatologists. This was translated by the metrology community into two key objectives centred on traceability and uncertainty. Essential Climate Variables (ECVs) are continuously recorded by a multitude of different sensors on satellites, balloon radiosondes, aircraft, surface weather stations, buoys, and deep sea devices; all of them working in different operating environments and affected by different influence quantities. This complex system, as a whole, requires dedicated calibration techniques and methods to guarantee fully documented traceability and measurements uncertainty evaluation, thus ensuring complete comparability of measurement results. The inclusion of measurement uncertainty in historical and future data series represents a fundamental step towards greater public confidence in evaluations of climate change. EURAMET, the European association of national institute of metrology is funding several joint research projects on those topics and is launching a task group of experts, formed by both metrologists and members of environmental, meteorological Institutions and climatologists. One of those projects, "MeteoMet" (www.meteomet.org), started in 2011 and re-funded in 2014, stands out since it hits both targets: improve the traceability of an increasing number of ECVs and promote the involvement of stakeholders in support of their needs. This mission leads to a novel vision: a permanent cooperation between metrology and meteorology based on new and existing institutions and infrastructures.

  7. Quality Control of Meteorological Observations

    NASA Technical Reports Server (NTRS)

    Collins, William; Dee, Dick; Rukhovets, Leonid

    1999-01-01

    For the first time, a problem of the meteorological observation quality control (QC) was formulated by L.S. Gandin at the Main Geophysical Observatory in the 70's. Later in 1988 L.S. Gandin began adapting his ideas in complex quality control (CQC) to the operational environment at the National Centers for Environmental Prediction. The CQC was first applied by L.S.Gandin and his colleagues to detection and correction of errors in rawinsonde heights and temperatures using a complex of hydrostatic residuals.Later, a full complex of residuals, vertical and horizontal optimal interpolations and baseline checks were added for the checking and correction of a wide range of meteorological variables. some other of Gandin's ideas were applied and substantially developed at other meteorological centers. A new statistical QC was recently implemented in the Goddard Data Assimilation System. The central component of any quality control is a buddy check which is a test of individual suspect observations against available nearby non-suspect observations. A novel feature of this test is that the error variances which are used for QC decision are re-estimated on-line. As a result, the allowed tolerances for suspect observations can depend on local atmospheric conditions. The system is then better able to accept extreme values observed in deep cyclones, jet streams and so on. The basic statements of this adaptive buddy check are described. Some results of the on-line QC including moisture QC are presented.

  8. Automated emergency meteorological response system

    SciTech Connect

    Pepper, D W

    1980-01-01

    A sophisticated emergency response system was developed to aid in the evaluation of accidental releases of hazardous materials from the Savannah River Plant to the environment. A minicomputer system collects and archives data from both onsite meteorological towers and the National Weather Service. In the event of an accidental release, the computer rapidly calculates the trajectory and dispersion of pollutants in the atmosphere. Computer codes have been developed which provide a graphic display of predicted concentration profiles downwind from the source, as functions of time and distance.

  9. Applications of ISES for meteorology

    NASA Technical Reports Server (NTRS)

    Try, Paul D.

    1990-01-01

    The results are summarized from an initial assessment of the potential real-time meteorological requirements for the data from Eos systems. Eos research scientists associated with facility instruments, investigator instruments, and interdisciplinary groups with data related to meteorological support were contacted, along with those from the normal operational user and technique development groups. Two types of activities indicated the greatest need for real-time Eos data: technology transfer groups (e.g., NOAA's Forecasting System Laboratory and the DOD development laboratories), and field testing groups with airborne operations. A special concern was expressed by several non-U.S. participants who desire a direct downlink to be sure of rapid receipt of the data for their area of interest. Several potential experiments or demonstrations are recommended for ISES which include support for hurricane/typhoon forecasting, space shuttle reentry, severe weather forecasting (using microphysical cloud classification techniques), field testing, and quick reaction of instrumented aircraft to measure such events as polar stratospheric clouds and volcanic eruptions.

  10. Proceedings of the International Meteorological Satellite Workshop

    NASA Technical Reports Server (NTRS)

    1962-01-01

    International Meteorological Satellite Workshop, November 13-22, 1961, presented the results of the meteorological satellite program of the United States and the possibilities for the future, so that-- the weather services of other nations may acquire a working knowledge of meteorological satellite data for assistance in their future analysis programs both in research and in daily synoptic application and guidance in their national observational support efforts; the world meteorological community may become more familiar with the TIROS program.; and the present activity may be put in proper perspective relative to future operational programs.

  11. A 25-Gb/s 100-m multi-mode fiber optical link based on 1.3μm lens-integrated surface-emitting laser and CMOS receiver

    NASA Astrophysics Data System (ADS)

    Takemoto, Takashi; Yamashita, Hiroki; Matsuoka, Yasunobu; Adachi, Koichiro; Lee, Yong

    2014-02-01

    A 1.3-μm wavelength optical link, which consists of a lens-integrated laser diode and a CMOS optical receiver, was developed. It achieves 25-Gb/s error-free 100-m multi-mode fiber transmission with sensitivity of -6.3-dBm OMA.

  12. Teaching a Course on Meteorological Instruments.

    ERIC Educational Resources Information Center

    Kohler, Fred

    A meteorological instruments course that provided undergraduate geography students the opportunity to use and/or observe meteorological equipment while also preparing for possible internships with the National Weather Service is evaluated and suggestions for improving it in the future are offered. The paper first provides a general course…

  13. Meteorological needs of the aviation community

    NASA Technical Reports Server (NTRS)

    Luers, J. K.

    1977-01-01

    A study was conducted to determine the important meteorological needs of the aviation community and to recommend research in those areas judged most beneficial. The study was valuable in that it provided a comprehensive list of suspected meteorological deficiencies and ideas for research programs relative to these deficiencies. The list and ideas were generated from contacts with various pilots, air traffic controllers, and meteorologists.

  14. Aviation meteorology: Today and the future

    NASA Technical Reports Server (NTRS)

    Rowe, B. W.

    1978-01-01

    A representative of the Air Weather Service, USAF addressed the workshop and gave an assessment of the present state of aviation meteorology and a prognosis of the future. Three categories of meteorological support to aviation systems are considered and discussed; (1) terminal weather; (2) the winds for flight planning; and (3) en route flight hazards.

  15. Wintertime meteorology of the Grand Canyon region

    SciTech Connect

    Whiteman, C.D.

    1992-09-01

    The Grand Canyon region of the American Southwest is an interesting region meteorologically, but because of its isolated location, the lack of major population centers in the region, and the high cost of meteorological field experiments, it has historically received little observational attention. In recent years, however, attention has been directed to episodes of visibility degradation in many of the US National parks, and two recent field studies focused on this visibility problem have greatly increased the meteorological data available for the Grand Canyon region. The most recent and comprehensive of these studies is the Navajo Generating Station Winter Visibility Study of 1989--90. This study investigated the sources of visibility degradation in Grand Canyon National Park and the meteorological mechanisms leading to low visibility episodes. In this paper we present analyses of this rich data set to gain a better understanding of the key wintertime meteorological features of the Grand Canyon region.

  16. Fine-resolution mapping of micro-meteorological features in regions with heterogeneous landscapes

    NASA Astrophysics Data System (ADS)

    Esau, Igor; Varentsov, Mikhail

    2014-05-01

    Human socioeconomic activity and wild life conservation tasks frequently require meteorological information at fine (about 100 m) spatial resolution. For instance, this information is needed for assessment of wind load, wind gustiness, air quality and urban comfort in high latitudes where the atmospheric convection is limited. Neither sparse observational network nor operational meteorological models are able to directly provide this information to end-users. Methods of geo-statistical weighted interpolation (kriging) have been already successfully applied to reconstruct fine-resolution maps in geophysics. In this study, we applied a kriging with external drive to micro-meteorological reconstructions. As kriging is a statistical interpolation method, its application requires information from a more or less uniformly distributed network of observational stations. This condition is rarely satisfied. We propose use of a turbulence-resolving large-eddy simulation model (LES) to: (i) obtain variograms for each station; (ii) correct extrapolation of the data outside the domain covered with observations. The proposed fine-resolution method with external drive from the LES is demonstrated for the surface air temperature distribution (resolution 50 m) in the central valley of Bergen.

  17. Meteorology of the Beaufort Sea

    NASA Astrophysics Data System (ADS)

    Overland, James E.

    2009-01-01

    The unique meteorology of the Beaufort Sea region is dominated by the presence of sea ice and a seasonal swing from a large heat loss in winter to a gain in summer. The primary determinant of this seasonal climate shift is the annual cycle of insolation from a maximum of 500 W/m2 near the summer solstice to darkness in winter, as the Beaufort Sea lies north of Alaska and northwestern Canada beyond 72°N. Even though the Sun angle is low in summer, the length of daylight provides as much energy to the surface as anywhere on the planet. As summer progresses, relative absorption of insolation at the surface increases as the albedo decreases due to snow and ice melt and increased open water area. This annual cycle results in a change from a winter continental-like air mass similar to the adjacent land areas to a summertime marine air mass characterized by low cloud and fogs. In winter the region is also influenced by the polar atmospheric vortex with strong westerly winds centered in the stratosphere, whose presence is felt at the surface. Recent sea ice losses are changing the climatology of the region, with extended periods of increased temperatures through the autumn months.

  18. Phantosmia as a meteorological forecaster

    NASA Astrophysics Data System (ADS)

    Aiello, S. R.; Hirsch, A. R.

    2013-09-01

    In normosmics, olfactory ability has been found to vary with ambient humidity, barometric pressure, and season. While hallucinated sensations of phantom pain associated with changes in weather have been described, a linkage to chemosensory hallucinations has heretofore not been reported. A 64-year-old white male with Parkinson's disease presents with 5 years of phantosmia of a smoky burnt wood which changed to onion-gas and then to a noxious skunk-onion excrement odor. Absent upon waking it increases over the day and persists for hours. When severe, there appears a phantom taste with the same qualities as the odor. It is exacerbated by factors that manipulate intranasal pressure, such as coughing. When eating or sniffing, the actual flavors replace the phantosmia. Since onset, he noted the intensity and frequency of the phantosmia forecasted the weather. Two to 3 h before a storm, the phantosmia intensifies from a level 0 to a 7-10, which persists through the entire thunderstorm. Twenty years prior, he reported the ability to forecast the weather, based on pain in a torn meniscus, which vanished after surgical repair. Extensive olfactory testing demonstrates underlying hyposmia. Possible mechanisms for such chemosensory-meteorological linkage includes: air pressure induced synesthesia, disinhibition of spontaneous olfactory discharge, exacerbation of ectopic discharge, affect mediated somatic sensory amplification, and misattribution error with expectation and recall bias. This is the first reported case of weather-induced exacerbation of phantosmia. Further investigation of the connection between chemosensory complaints and ambient weather is warranted.

  19. Description of the RDCDS Meteorological Component

    SciTech Connect

    Pekour, Mikhail S.; Berg, Larry K.

    2007-10-01

    This report provides a detailed description of the Rapidly Deployable Chemical Defense System (RDCDS) Meteorological Component. The Meteorological Component includes four surface meteorological stations, miniSODAR, laptop computers, and communications equipment. This report describes the equipment that is used, explains the operation of the network, and gives instructions for setting up the Component and replacing defective parts. A detailed description of operation and use of the individual sensors, including the data loggers is not covered in the current document, and the interested reader should refer to the manufacturer’s documentation.

  20. BOREAS AFM-6 Surface Meteorological Data

    NASA Technical Reports Server (NTRS)

    Wilczak, James; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-6 team from the National Oceanic and Atmospheric Adminsitration/Environment Technology Laboratory (NOAA/ETL) collected surface meteorological data from 21 May to 20 Sep 1994 near the Southern Study Area-Old Jack Pine (SSA-OJP) tower site. The data are in tabular ASCII files. The surface meteorological data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  1. Meteorological Data Analysis Using MapReduce

    PubMed Central

    Fang, Wei; Sheng, V. S.; Wen, XueZhi; Pan, Wubin

    2014-01-01

    In the atmospheric science, the scale of meteorological data is massive and growing rapidly. K-means is a fast and available cluster algorithm which has been used in many fields. However, for the large-scale meteorological data, the traditional K-means algorithm is not capable enough to satisfy the actual application needs efficiently. This paper proposes an improved MK-means algorithm (MK-means) based on MapReduce according to characteristics of large meteorological datasets. The experimental results show that MK-means has more computing ability and scalability. PMID:24790576

  2. BOREAS AES READAC Surface Meteorological Data

    NASA Technical Reports Server (NTRS)

    Atkinson, G. Barrie; Funk, Barry; Hall, Forrest G. (Editor); Knapp, David E. (Editor)

    2000-01-01

    Canadian AES personnel collected and processed data related to surface atmospheric meteorological conditions over the BOREAS region. This data set contains 15-minute meteorological data from one READAC meteorology station in Hudson Bay, Saskatchewan. Parameters include day, time, type of report, sky condition, visibility, mean sea level pressure, temperature, dewpoint, wind, altimeter, opacity, minimum and maximum visibility, station pressure, minimum and maximum air temperature, a wind group, precipitation, and precipitation in the last hour. The data were collected non-continuously from 24-May-1994 to 20-Sep-1994. The data are provided in tabular ASCII files, and are classified as AFM-Staff data.

  3. BOREAS AES MARSII Surface Meteorological Data

    NASA Technical Reports Server (NTRS)

    Atkinson, G. Barrie; Funk, Barry; Hall, Forrest G. (Editor); Knapp, David E. (Editor)

    2000-01-01

    Canadian AES personnel collected several data sets related to surface and atmospheric meteorological conditions over the BOREAS region. This data set contains 15-minute meteorological data from six MARSII meteorology stations in the BOREAS region in Canada. Parameters include site, time, temperature, dewpoint, visibility, wind speed, wind gust, wind direction, two cloud groups, precipitation, and station pressure. Temporally, the data cover the period of May to September 1994. Geo-graphically, the stations are spread across the provinces of Saskatchewan and Manitoba. The data are provided in tabular ASCII files, and are classified as AFM-Staff data.

  4. BOREAS TE-21 Daily Surface Meteorological Data

    NASA Technical Reports Server (NTRS)

    Kimball, John; Hall, Forrest G. (Editor); Papagno, Andrea (Editor)

    2000-01-01

    The Boreal Ecosystem-Atmospheric Study (BOREAS) TE-21 (Terrestrial Ecology) team collected data sets in support of its efforts to characterize and interpret information on the meteorology of boreal forest areas. Daily meteorological data were derived from half-hourly BOREAS tower flux (TF) and Automatic Meteorological Station (AMS) mesonet measurements collected in the Southern and Northern Study Areas (SSA and NSA) for the period of 01 Jan 1994 until 31 Dec 1994. The data were stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  5. Meteorological data analysis using MapReduce.

    PubMed

    Fang, Wei; Sheng, V S; Wen, XueZhi; Pan, Wubin

    2014-01-01

    In the atmospheric science, the scale of meteorological data is massive and growing rapidly. K-means is a fast and available cluster algorithm which has been used in many fields. However, for the large-scale meteorological data, the traditional K-means algorithm is not capable enough to satisfy the actual application needs efficiently. This paper proposes an improved MK-means algorithm (MK-means) based on MapReduce according to characteristics of large meteorological datasets. The experimental results show that MK-means has more computing ability and scalability.

  6. PREVIMER : Meteorological inputs and outputs

    NASA Astrophysics Data System (ADS)

    Ravenel, H.; Lecornu, F.; Kerléguer, L.

    2009-09-01

    PREVIMER is a pre-operational system aiming to provide a wide range of users, from private individuals to professionals, with short-term forecasts about the coastal environment along the French coastlines bordering the English Channel, the Atlantic Ocean, and the Mediterranean Sea. Observation data and digital modelling tools first provide 48-hour (probably 96-hour by summer 2009) forecasts of sea states, currents, sea water levels and temperatures. The follow-up of an increasing number of biological parameters will, in time, complete this overview of coastal environment. Working in partnership with the French Naval Hydrographic and Oceanographic Service (Service Hydrographique et Océanographique de la Marine, SHOM), the French National Weather Service (Météo-France), the French public science and technology research institute (Institut de Recherche pour le Développement, IRD), the European Institute of Marine Studies (Institut Universitaire Européen de la Mer, IUEM) and many others, IFREMER (the French public institute fo marine research) is supplying the technologies needed to ensure this pertinent information, available daily on Internet at http://www.previmer.org, and stored at the Operational Coastal Oceanographic Data Centre. Since 2006, PREVIMER publishes the results of demonstrators assigned to limited geographic areas and to specific applications. This system remains experimental. The following topics are covered : Hydrodynamic circulation, sea states, follow-up of passive tracers, conservative or non-conservative (specifically of microbiological origin), biogeochemical state, primary production. Lastly, PREVIMER provides researchers and R&D departments with modelling tools and access to the database, in which the observation data and the modelling results are stored, to undertake environmental studies on new sites. The communication will focus on meteorological inputs to and outputs from PREVIMER. It will draw the lessons from almost 3 years during

  7. Phantosmia as a meteorological forecaster.

    PubMed

    Aiello, S R; Hirsch, A R

    2013-09-01

    In normosmics, olfactory ability has been found to vary with ambient humidity, barometric pressure, and season. While hallucinated sensations of phantom pain associated with changes in weather have been described, a linkage to chemosensory hallucinations has heretofore not been reported. A 64-year-old white male with Parkinson's disease presents with 5 years of phantosmia of a smoky burnt wood which changed to onion-gas and then to a noxious skunk-onion excrement odor. Absent upon waking it increases over the day and persists for hours. When severe, there appears a phantom taste with the same qualities as the odor. It is exacerbated by factors that manipulate intranasal pressure, such as coughing. When eating or sniffing, the actual flavors replace the phantosmia. Since onset, he noted the intensity and frequency of the phantosmia forecasted the weather. Two to 3 h before a storm, the phantosmia intensifies from a level 0 to a 7-10, which persists through the entire thunderstorm. Twenty years prior, he reported the ability to forecast the weather, based on pain in a torn meniscus, which vanished after surgical repair. Extensive olfactory testing demonstrates underlying hyposmia. Possible mechanisms for such chemosensory-meteorological linkage includes: air pressure induced synesthesia, disinhibition of spontaneous olfactory discharge, exacerbation of ectopic discharge, affect mediated somatic sensory amplification, and misattribution error with expectation and recall bias. This is the first reported case of weather-induced exacerbation of phantosmia. Further investigation of the connection between chemosensory complaints and ambient weather is warranted.

  8. Communicating meteorology through popular music

    NASA Astrophysics Data System (ADS)

    Brown, Sally; Aplin, Karen; Jenkins, Katie; Mander, Sarah; Walsh, Claire; Williams, Paul

    2015-04-01

    Previous studies of weather-inspired classical music showed that all forms of music (as well as visual arts and literature) reflect the significance of the environment in society. Here we quantify the extent to which weather has inspired popular musicians, and how weather is represented in English-language pop music. Our work is in press at Weather. Over 750 songs have been identified which were found to refer to meteorological phenomena, mainly in their lyrics, but also in the title of the song, name of the band or songwriter and occasionally in the song's music or sound effects. Over one third of the songs analysed referred to either sun or rain, out of a possible 20 weather categories. It was found that artists use weather to describe emotion, for example, to mirror the changes in a relationship. In this context, rain was broadly seen negatively, and might be used to signify the end of a relationship. Rain could also be perceived in a positive way, such as in songs from more agricultural communities. Wind was the next most common weather phenomenon, but did not represent emotions as much as sun or rain. However, it was the most frequently represented weather type in the music itself, such as in instrumental effects, or non-verbally in choruses. From the limited evidence available, we found that artists were often inspired by a single weather event in writing lyrics, whereas the outcomes were less clearly identifiable from longer periods of good or bad weather. Some artists were influenced more by their environment than others, but they were often inspired to write many songs about their surroundings as part of every-day life, rather than weather in particular. Popular singers and songwriters can therefore emotionally connect their listeners to the environment; this could be exploited to communicate environmental science to a broad audience.

  9. Understanding meteorology for pollution transport over Bhutan

    NASA Astrophysics Data System (ADS)

    Ghimire, Shreta; Adhikary, Bhupesh; Praveen, Ps; Panday, Arnico

    2016-04-01

    The country of Bhutan spans over complex terrain in the Eastern Himalayan region. Several studies in the past have reported about transport of air pollution into the Himalayas from Indo-Gangetic plains. However, there is a lack of studies focusing over eastern Himalaya and particularly over Bhutan. Understanding air pollutant flows over this region requires good understanding of weather and atmospheric circulation pattern. We have used decadal data from ground based meteorological stations made available from the Department of Hydro-Meteorological Service (DHMS), Government of Bhutan to study rainfall and temperature patterns over different elevation. We also present preliminary results from few automatic weather stations that are analyzed for diurnal and seasonal variability. Weather Research and Forecast (WRF) model was run to understand meteorological flows over the region. Preliminary results from WRF model will also be presented. Keywords: Bhutan, Meteorology, Air Pollution, Eastern Himalayas.

  10. CloudSat and CALIPSO Help Meteorology

    NASA Video Gallery

    The study of meteorology presents significant challenges to scientists. One of the most challenging aspects is the inherent complexity of weather coupled with its high rate of change. In the case o...

  11. ISS Update: Spaceflight Meteorology Group, Part 1

    NASA Video Gallery

    NASA Public Affairs Officer Dan Huot talks to Frank Brody, chief of the Spaceflight Meteorology Group (SMG) at Johnson Space Center, about SMG support for the upcoming landing of the Expedition 31 ...

  12. ISS Update: Spaceflight Meteorology Group, Part 2

    NASA Video Gallery

    NASA Public Affairs Officer Dan Huot talks to Frank Brody, chief of the Spaceflight Meteorology Group (SMG) at Johnson Space Center, about SMG support for the upcoming landing of the Expedition 31 ...

  13. Meteorological radar facility. Part 1: System design

    NASA Technical Reports Server (NTRS)

    Brassaw, L. L., Jr.; Hamren, S. D.; Mullins, W. H.; Schweitzer, B. P.

    1976-01-01

    A compilation of information regarding systems design of space shuttles used in meteorological radar probes is presented. Necessary radar equipment is delineated, while space system elements, calibration techniques, antenna systems and other subsystems are reviewed.

  14. Surface Meteorological Instruments for TWP (SMET) Handbook

    SciTech Connect

    Ritsche, MT

    2009-01-01

    The TWP Surface Meteorology station (SMET) uses mainly conventional in situ sensors to obtain 1-minute statistics of surface wind speed, wind direction, air temperature, relative humidity, barometric pressure and rainfall amount.

  15. Meteorological Monitoring And Warning Computer Network

    NASA Technical Reports Server (NTRS)

    Evans, Randolph J.; Dianic, Allan V.; Moore, Lien N.

    1996-01-01

    Meteorological monitoring system (MMS) computer network tracks weather conditions and issues warnings when weather hazards are about to occur. Receives data from such meteorological instruments as wind sensors on towers and lightning detectors, and compares data with weather restrictions specified for outdoor activities. If weather violates restriction, network generates audible and visible alarms to alert people involved in activity. Also displays weather and toxic diffusion data and disseminates weather forecasts, advisories, and warnings to workstations.

  16. Standardization of Meteorological Data from FINO Offshore Platforms

    NASA Astrophysics Data System (ADS)

    Leiding, Tina; Bastigkeit, Ilona; Bégué, Friederike; Gates, Lydia; Herklotz, Kai; Müller, Stefan; Neumann, Thomas; Schwenk, Patrick; Senet, Christian; Tinz, Birger; Wilts, Friedrich

    2015-04-01

    In order to investigate conditions for offshore wind power generation in the German coastal waters, three research platforms were constructed in the North Sea (FINO1 and 3) and the Baltic Sea (FINO2). Measurement masts at each offshore platform are equipped with a range of meteorological sensors at heights of 30 to 100 m above sea level. Standardized analysis and interpretation of the data is necessary to compare the results of the different platforms and will improve the knowledge of the marine ambient conditions at the three locations. International Electrotechnical Commission Standards (IEC) cannot always be applied as some requirements are not applicable to offshore masts e.g. due to the wake of the structure. In the FINO-Wind project, therefore, a standardization method is developed. Recorded measurement data are checked automatically on the basis of a comprehensive quality control. The routine starts with a formal check, followed by climatological, temporal, repetition, and consistency checks. After successful completion of each sequence, the data are assigned standardized quality flags. By default, 10-minute data are processed. A special focus is on mast effects on the wind data of the three masts due to the different shapes of the construction (square or triangular shapes and different boom structures). These effects are investigated in comparison with wind tunnel measurements, LiDAR, Computational Fluid Dynamics calculations, and a 'uniform ambient flow mast correction' method. An adjustment for such effects will be applied to all wind data. The comparison of sensor equipment, its installation and orientation as well as of the mast constructions will lead to suggestions on how wind measurements at offshore platforms mast can be improved. The research project FINO-Wind is funded under the 'Wind Energy' initiative of the German Federal Ministry for the Economic Affairs and Energy for the period 2013 to 2015. For further information see www.dwd.de/fino-wind.

  17. Meteorology of Jupiter's Equatorial Hot Spots and Plumes from Cassini

    NASA Technical Reports Server (NTRS)

    Choi, David Sanghun; Showman, Adam P.; Vasavada, Ashwin R.; Simon-Miller, Amy A.

    2013-01-01

    We present an updated analysis of Jupiter's equatorial meteorology from Cassini observations. For two months preceding the spacecraft's closest approach, the Imaging Science Subsystem (ISS) onboard regularly imaged the atmosphere. We created time-lapse movies from this period in order to analyze the dynamics of equatorial hot spots and their interactions with adjacent latitudes. Hot spots are relatively cloud-free regions that emit strongly at 5 lm; improved knowledge of these features is crucial for fully understanding Galileo probe measurements taken during its descent through one. Hot spots are quasistable, rectangular dark areas on visible-wavelength images, with defined eastern edges that sharply contrast with surrounding clouds, but diffuse western edges serving as nebulous boundaries with adjacent equatorial plumes. Hot spots exhibit significant variations in size and shape over timescales of days and weeks. Some of these changes correspond with passing vortex systems from adjacent latitudes interacting with hot spots. Strong anticyclonic gyres present to the south and southeast of the dark areas appear to circulate into hot spots. Impressive, bright white plumes occupy spaces in between hot spots. Compact cirrus-like 'scooter' clouds flow rapidly through the plumes before disappearing within the dark areas. These clouds travel at 150-200 m/s, much faster than the 100 m/s hot spot and plume drift speed. This raises the possibility that the scooter clouds may be more illustrative of the actual jet stream speed at these latitudes. Most previously published zonal wind profiles represent the drift speed of the hot spots at their latitude from pattern matching of the entire longitudinal image strip. If a downward branch of an equatorially-trapped Rossby wave controls the overall appearance of hot spots, however, the westward phase velocity of the wave leads to underestimates of the true jet stream speed.

  18. BOREAS AFM-07 SRC Surface Meteorological Data

    NASA Technical Reports Server (NTRS)

    Osborne, Heather; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Young, Kim; Wittrock, Virginia; Shewchuck, Stan; Smith, David E. (Technical Monitor)

    2000-01-01

    The Saskatchewan Research Council (SRC) collected surface meteorological and radiation data from December 1993 until December 1996. The data set comprises Suite A (meteorological and energy balance measurements) and Suite B (diffuse solar and longwave measurements) components. Suite A measurements were taken at each of ten sites, and Suite B measurements were made at five of the Suite A sites. The data cover an approximate area of 500 km (North-South) by 1000 km (East-West) (a large portion of northern Manitoba and northern Saskatchewan). The measurement network was designed to provide researchers with a sufficient record of near-surface meteorological and radiation measurements. The data are provided in tabular ASCII files, and were collected by Aircraft Flux and Meteorology (AFM)-7. The surface meteorological and radiation data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  19. Meteorological variability and infectious disease in Central Africa: a review of meteorological data quality.

    PubMed

    Heaney, Alexandra; Little, Eliza; Ng, Sophia; Shaman, Jeffrey

    2016-10-01

    Central African countries may bear high climate change-related infectious disease burdens because of preexisting high rates of disease, poor healthcare infrastructure, land use changes, and high environmental change vulnerabilities. However, making connections between climate and infectious diseases in this region is hampered by the paucity of high-quality meteorological data. This review analyzes the sources and quality of meteorological data used to study the interactions between weather and infectious diseases in Central African countries. Results show that 23% of studies used meteorological data that mismatched with the disease spatial scale of interest. Use of inappropriate weather data was most frequently identified in analyses using meteorological station data or gridded data products. These findings have implications for the interpretation of existing analyses and provide guidance for the use of climate data in future analyses of the connections between meteorology and infectious diseases in Central Africa.

  20. Modern meteorological computing resources - The Maryland experience

    NASA Technical Reports Server (NTRS)

    Huffman, George J.

    1988-01-01

    The Department of Meteorology at the University of Maryland is developing one of the first computer systems in meteorology to take advantage of the new networked computer architecture that has been made possible by recent advances in computer and communication technology. Elements of the department's system include scientific workstations, local mainframe computers, remote mainframe computers, local-area networks,'long-haul' computer-to-computer communications, and 'receive-only' communications. Some background is provided, together with highlights of some lessons that were learned in carrying out the design. In agreement with work in the Unidata Project, this work shows that the networked computer architecture discussed here presents a new style of resources for solving problems that arise in meteorological research and education.

  1. Student Activities in Meteorology (SAM), June 1994

    SciTech Connect

    Meier, B.L.; Passarelli, E.

    1994-06-01

    In an effort to inspire student interest in science and technology, scientists from the Forecast Systems Laboratory, a laboratory within the National Oceanic and Atmospheric Administration's (NOAA) Environmental Research Laboratories, and classroom teachers from the Boulder Valley School District collaborated to produce a series of classroom science activities on meteorology and atmospheric science. We call this series 'Student Activities in Meteorology,' or SAM. The goal is to provide activities that are interesting to students, and at the same time convenient and easy to use for teachers. The activity topics chosen are to incorporate trend setting scientific research and cutting edge technology. Several of the activities focus on the meteorological concerns of the Denver metropolitan area because many of NOAA's research labs are located in Boulder, where much of the research and testing for the region is performed. We believe that these activities are versatile and can be easily integrated into current science, environmental studies, health, social studies, and math curricula.

  2. Artificial stereo presentation of meteorological data fields

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.; Desjardins, M.; Negri, A. J.

    1981-01-01

    The innate capability to perceive three-dimensional stereo imagery has been exploited to present multidimensional meteorological data fields. Variations on an artificial stereo technique first discussed by Pichel et al. (1973) are used to display single and multispectral images in a vivid and easily assimilated manner. Examples of visible/infrared artificial stereo are given for Hurricane Allen and for severe thunderstorms on 10 April 1979. Three-dimensional output from a mesoscale model also is presented. The images may be viewed through the glasses inserted in the February 1981 issue of the Bulletin of the American Meteorological Society, with the red lens over the right eye. The images have been produced on the interactive Atmospheric and Oceanographic Information Processing System (AOIPS) at Goddard Space Flight Center. Stereo presentation is an important aid in understanding meteorological phenomena for operational weather forecasting, research case studies, and model simulations.

  3. Meteorological aspects of siting large wind turbines

    SciTech Connect

    Hiester, T.R.; Pennell, W.T.

    1981-01-01

    This report, which focuses on the meteorological aspects of siting large wind turbines (turbines with a rated output exceeding 100 kW), has four main goals. The first is to outline the elements of a siting strategy that will identify the most favorable wind energy sites in a region and that will provide sufficient wind data to make responsible economic evaluations of the site wind resource possible. The second is to critique and summarize siting techniques that were studied in the Department of Energy (DOE) Wind Energy Program. The third goal is to educate utility technical personnel, engineering consultants, and meteorological consultants (who may have not yet undertaken wind energy consulting) on meteorological phenomena relevant to wind turbine siting in order to enhance dialogues between these groups. The fourth goal is to minimize the chances of failure of early siting programs due to insufficient understanding of wind behavior.

  4. BOREAS AES Campbell Scientific Surface Meteorological Data

    NASA Technical Reports Server (NTRS)

    Atkinson, G. Barrie; Funk, Barrie; Knapp. David E. (Editor); Hall, Forrest G. (Editor)

    2000-01-01

    Canadian AES personnel collected data related to surface and atmospheric meteorological conditions over the BOREAS region. This data set contains 15-minute meteorological data from 14 automated meteorology stations located across the BOREAS region. Included in this data are parameters of date, time, mean sea level pressure, station pressure, temperature, dew point, wind speed, resultant wind speed, resultant wind direction, peak wind, precipitation, maximum temperature in the last hour, minimum temperature in the last hour, pressure tendency, liquid precipitation in the last hour, relative humidity, precipitation from a weighing gauge, and snow depth. Temporally, the data cover the period of August 1993 to December 1996. The data are provided in tabular ASCII files, and are classified as AFM-Staff data.

  5. Surface Meteorological Observation System (SMOS) Handbook

    SciTech Connect

    Ritsche, MT

    2008-03-01

    The Surface Meteorological Observation System (SMOS) mostly uses conventional in situ sensors to obtain 1-minute, 30-minute, and 1440-minute (daily) averages of surface wind speed, wind direction, air temperature, relative humidity (RH), barometric pressure, and precipitation at the Central Facility and many of the extended facilities of the Southern Great Plains (SGP) climate research site. The SMOSs are not calibrated as systems. The sensors and the data logger (which includes the analog-to-digital converter, or A/D) are calibrated separately. All systems are installed using components that have a current calibration. SMOSs have not been installed at extended facilities located within about 10 km of existing surface meteorological stations, such as those of the Oklahoma Mesonet. The Surface Meteorological Observation Systems are used to create climatology for each particular location, and to verify the output of numerical weather forecast and other model output. They are also used to “ground-truth” other remote sensing equipment.

  6. Meteorological and Environmental Inputs to Aviation Systems

    NASA Technical Reports Server (NTRS)

    Camp, Dennis W. (Editor); Frost, Walter (Editor)

    1988-01-01

    Reports on aviation meteorology, most of them informal, are presented by representatives of the National Weather Service, the Bracknell (England) Meteorological Office, the NOAA Wave Propagation Lab., the Fleet Numerical Oceanography Center, and the Aircraft Owners and Pilots Association. Additional presentations are included on aircraft/lidar turbulence comparison, lightning detection and locating systems, objective detection and forecasting of clear air turbulence, comparative verification between the Generalized Exponential Markov (GEM) Model and official aviation terminal forecasts, the evaluation of the Prototype Regional Observation and Forecast System (PROFS) mesoscale weather products, and the FAA/MIT Lincoln Lab. Doppler Weather Radar Program.

  7. Meteorological Support at the Savanna River Site

    SciTech Connect

    Addis, Robert P.

    2005-10-14

    The Department of Energy (DOE) operates many nuclear facilities on large complexes across the United States in support of national defense. The operation of these many and varied facilities and processes require meteorological support for many purposes, including: for routine operations, to respond to severe weather events, such as lightning, tornadoes and hurricanes, to support the emergency response functions in the event of a release of materials to the environment, for engineering baseline and safety documentation, as well as hazards assessments etc. This paper describes a program of meteorological support to the Savannah River Site, a DOE complex located in South Carolina.

  8. Meteorological Input to General Aviation Pilot Training

    NASA Technical Reports Server (NTRS)

    Colomy, J. R.

    1979-01-01

    The meteorological education of general aviation pilots is discussed in terms of the definitions and concepts of learning and good educational procedures. The effectiveness of the metoeorological program in the training of general aviations pilots is questioned. It is suggested that flight instructors provide real experience during low ceilings and visibilities, and that every pilot receiving an instrument rating should experience real instrument flight.

  9. Overview of meteorological inputs to NASP

    NASA Technical Reports Server (NTRS)

    Dziuk, J. C.

    1985-01-01

    An overview of meteorological systems for forecasting flight conditions is presented. The types of equipment used to gather the information used to prepare pilot briefings and in flight advisories is described. Possible improvements to the systems are classified as short term or long term.

  10. How To...Activities in Meteorology.

    ERIC Educational Resources Information Center

    Nimmer, Donald N.; Sagness, Richard L.

    This series of experiments seeks to provide laboratory exercises which demonstrate concepts in Earth Science, particularly meteorology. Materials used in the experiments are easily obtainable. Examples of experiments include: (1) making a thermometer; (2) air/space relationship; (3) weight of air; (4) barometers; (5) particulates; (6) evaporation;…

  11. Fiber optics in meteorological instrumentation suites

    NASA Astrophysics Data System (ADS)

    Holton, Carvel E.; Parker, Matthew J.

    1999-12-01

    Standard meteorological sensors and sensor suites used for weather and environmental monitoring are currently based primarily on electronic instrumentation that is frequently susceptible to destruction and/or interruption from natural (e.g. lightning) and man-made sources of Electromagnetic Interference (EMI). The cost of replacement or shielding of these systems is high in terms of frequency of replacement and the incipient capital cost. Sensors based on optical fibers have been developed in sufficient variety as to allow the development of full meteorological instrumentation suitess based on individual or multiplexed optical fiber sensors. Examples of sensing functions which can be implemented using optical fibers include: wine speed (cup anemometers & Doppler lidars), wind direction (vanes & lidars), temperature, humidity, barometric pressure, accumulated precipitation and precipitation rate (fiber lidar). Suites of such sensors are capable of using little or no electronics in the environmentally exposed regions, substantially reducing system EMI susceptibility and adding functional capability. The current presentation seeks to explore options available in such meteorological suites and examine the issues in their design and deployment. Performance data on several newer fiber sensors suitable to meteorological use will be presented and discussed.

  12. A meteorologically driven maize stress indicator model

    NASA Technical Reports Server (NTRS)

    Taylor, T. W.; Ravet, F. W. (Principal Investigator)

    1981-01-01

    A maize soil moisture and temperature stress model is described which was developed to serve as a meteorological data filter to alert commodity analysts to potential stress conditions in the major maize-producing areas of the world. The model also identifies optimum climatic conditions and planting/harvest problems associated with poor tractability.

  13. Guidelines for curricula in agricultural meteorology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural meteorology as an accepted term is only about 80 years old. The first half of this period saw its development in the western world, Japan, India, and China and this was made possible through the evolving possibilities for quantification of the physical aspects of the production environm...

  14. Integrating meteorology into research on migration.

    PubMed

    Shamoun-Baranes, Judy; Bouten, Willem; van Loon, E Emiel

    2010-09-01

    Atmospheric dynamics strongly influence the migration of flying organisms. They affect, among others, the onset, duration and cost of migration, migratory routes, stop-over decisions, and flight speeds en-route. Animals move through a heterogeneous environment and have to react to atmospheric dynamics at different spatial and temporal scales. Integrating meteorology into research on migration is not only challenging but it is also important, especially when trying to understand the variability of the various aspects of migratory behavior observed in nature. In this article, we give an overview of some different modeling approaches and we show how these have been incorporated into migration research. We provide a more detailed description of the development and application of two dynamic, individual-based models, one for waders and one for soaring migrants, as examples of how and why to integrate meteorology into research on migration. We use these models to help understand underlying mechanisms of individual response to atmospheric conditions en-route and to explain emergent patterns. This type of models can be used to study the impact of variability in atmospheric dynamics on migration along a migratory trajectory, between seasons and between years. We conclude by providing some basic guidelines to help researchers towards finding the right modeling approach and the meteorological data needed to integrate meteorology into their own research.

  15. ARM Surface Meteorology Systems Instrument Handbook

    SciTech Connect

    Ritsche, MT

    2011-03-08

    The ARM Surface Meteorology Systems consist mainly of conventional in situ sensors that obtain a defined “core” set of measurements. The core set of measurements is: Barometric Pressure (kPa), Temperature (°C), Relative Humidity (%), Arithmetic-Averaged Wind Speed (m/s), Vector-Averaged Wind Speed (m/s), and Vector-Averaged Wind Direction (deg).

  16. Atmospheric Science: It's More than Meteorology.

    ERIC Educational Resources Information Center

    Smith, David R.; Krockover, Gerald H.

    1988-01-01

    Indicates that atmospheric science is not just forcasting the weather. Gives an overview of current topics in meteorology including ozone depletion, acid precipitation, winter cyclones, severe local storms, the greenhouse effect, wind shear and microbursts. Outlines the Atmospheric Sciences Education Program at Purdue University to produce…

  17. Meteorological influences on mass accountability of aerially applied sprays

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The deposition and drift of aerially applied crop protection materials is influenced by a number of factors including equpment setup and operational parameters, spray material characteristics, and meteorological effects. This work examines the meteorological influences that effect the ultimate fate...

  18. Meteorological Station, showing east and south sides; view to northwest ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Meteorological Station, showing east and south sides; view to northwest - Fort McKinley, Meteorological Station, East side of Weymouth Way, approximately 225 feet south of Cove Side Drive, Great Diamond Island, Portland, Cumberland County, ME

  19. Meteorological Station, general view in setting showing west and north ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Meteorological Station, general view in setting showing west and north sides; view to southeast - Fort McKinley, Meteorological Station, East side of Weymouth Way, approximately 225 feet south of Cove Side Drive, Great Diamond Island, Portland, Cumberland County, ME

  20. 1. SOUTHWEST CORNER OF METEOROLOGICAL SHED (BLDG. 756) SOUTH FACE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. SOUTHWEST CORNER OF METEOROLOGICAL SHED (BLDG. 756) SOUTH FACE OF SLC-3W MOBILE SERVICE TOWER IN BACKGROUND. - Vandenberg Air Force Base, Space Launch Complex 3, Meteorological Shed & Tower, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  1. Integrated Meteorology and Chemistry Modeling: Evaluation and Research Needs

    EPA Science Inventory

    Over the past decade several online integrated atmospheric chemical-transport and meteorology modeling systems with varying levels of interactions among different atmospheric processes have been developed. A variety of approaches to meteorology-chemistry integration with differe...

  2. The Influence of Meteorological Conditions on Air Pollution

    ERIC Educational Resources Information Center

    Campbell, N. A.; Gipps, J.

    1975-01-01

    Explains the distribution of air pollutants as related to such meteorological conditions as temperature inversions, ground inversion, and wind velocity. Uses a power station to illustrate the effect of some of the meteorological conditions mentioned. (GS)

  3. Surface Meteorological Station - Forks, WA (FKS) - Raw Data

    SciTech Connect

    Coleman, Tim

    2016-10-25

    A variety of instruments are used to measure various quantities related to meteorology, precipitation, and radiation near the Earth’s surface. Typically, a standard suite of instruments is deployed to monitor meteorological state variables.

  4. Surface Meteorological Station - ESRL Short Tower, Troutdale - Raw Data

    SciTech Connect

    Coleman, Tim

    2016-10-25

    A diversity of instruments are used to measure various quantities related to meteorology, precipitation, and radiation near the Earth’s surface. Typically, a standard suite of instruments is deployed to monitor meteorological state variables.

  5. Surface Meteorological Station - Astoria, OR (AST) - Raw Data

    SciTech Connect

    Coleman, Tim

    2016-10-25

    A variety of instruments are used to measure various quantities related to meteorology, precipitation, and radiation near the Earth’s surface. Typically, a standard suite of instruments is deployed to monitor meteorological state variables.

  6. Surface Meteorological Station - North Bend, OR (OTH) - Raw Data

    SciTech Connect

    Coleman, Tim

    2016-10-25

    A variety of instruments are used to measure various quantities related to meteorology, precipitation, and radiation near the Earth’s surface. Typically, a standard suite of instruments is deployed to monitor meteorological state variables.

  7. Surface Meteorological Station - ESRL Short Tower, Wasco Airport - Raw Data

    SciTech Connect

    Coleman, Tim

    2016-10-25

    A diversity of instruments are used to measure various quantities related to meteorology, precipitation, and radiation near the Earth’s surface. Typically, a standard suite of instruments is deployed to monitor meteorological state variables.

  8. Temporal disaggregation of daily meteorological grid data

    NASA Astrophysics Data System (ADS)

    Vormoor, K.; Skaugen, T.

    2012-04-01

    For operational flood forecasting, the Norwegian Water Resources and Energy Administration (NVE) applies the conceptual HBV rainfall-runoff model for 117 catchments. The hydrological models are calibrated and run using an extensive meteorological grid data set providing daily temperature and precipitation data back to 1957 for entire Norway at 1x1 km grid resolution (seNorge grids). The daily temporal resolution is dictated by the resolution of historical meteorological data. However, since meteorological forecasts and runoff observations are also available at a much finer than a daily time-resolution (e.g. 6 hourly), and many hydrological extreme events happens at a temporal scale of less than daily, it is important to try to establish a historical dataset of meteorological input at a finer corresponding temporal resolution. We present a simple approach for the temporal disaggregation of the daily meteorological seNorge grids into 6-hour values by consulting a HIRLAM hindcast grid data series with an hourly time resolution and a 10x10 km grid resolution. The temporal patterns of the hindcast series are used to disaggregate the daily interpolated observations from the seNorge grids. In this way, we produce a historical grid dataset from 1958-2010 with 6-hourly temperature and precipitation for entire Norway on a 1x1 km grid resolution. For validation and to see if additional information is gained, the disaggregated data is compared with observed values from selected meteorological stations. In addition, the disaggregated data is evaluated against daily data, simply split into four fractions. The validation results indicate that additional information is indeed gained and point out the benefit of disaggregated data compared to daily data split into four. With regard to temperature, the disaggregated values show very low deviations (MAE, RMSE), and are highly correlated with observed values. Regarding precipitation, the disaggregated data shows cumulative

  9. Meteorological Services Annual Data Report for 2014

    SciTech Connect

    Heiser, John; Smith, Scott

    2015-01-21

    This document presents the meteorological data collected at Brookhaven National Laboratory (BNL) by Meteorological Services (Met Services) for the calendar year 2014. The purpose is to publicize the data sets available to emergency personnel, researchers and facility operations. Met services has been collecting data at BNL since 1949. Data from 1994 to the present is available in digital format. Data is presented in monthly plots of one-minute data. This allows the reader the ability to peruse the data for trends or anomalies that may be of interest to them. Full data sets are available to BNL personnel and to a limited degree outside researchers. The full data sets allow plotting the data on expanded time scales to obtain greater details (e.g., daily solar variability, inversions, etc.).

  10. Meteorological services annual data report for 2015

    SciTech Connect

    Heiser, John; Smith, Scott

    2016-01-25

    This document presents the meteorological data collected at Brookhaven National Laboratory (BNL) by Meteorological Services (Met Services) for the calendar year 2015. The purpose is to publicize the data sets available to emergency personnel, researchers and facility operations. Met services has been collecting data at BNL since 1949. Data from 1994 to the present is available in digital format. Data is presented in monthly plots of one-minute data. This allows the reader the ability to peruse the data for trends or anomalies that may be of interest to them. Full data sets are available to BNL personnel and to a limited degree outside researchers. The full data sets allow plotting the data on expanded time scales to obtain greater details (e.g., daily solar variability, inversions, etc.).

  11. The Meteorology Instrument on Viking Lander 1

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Those Martian weather reports, received here daily from more than 200 million miles away, start right here at Viking l's meteorology instrument. Mounted atop the extended boom, the meteorology sensors face away from the spacecraft. They stand about four feet above the surface and measure atmospheric pressure, temperature, wind velocity and wind direction. The cable parallel to the boom is connected inside the spacecraft body with the electronics for operating the sensors, reading the data and preparing it for transmission to Earth. A second Mars weather station will begin operation next month when Viking 2 lands somewhere in the planet's northern latitude Viking 2 arrives at Mars and goes into orbit tomorrow (August 7).

  12. Meteorological services annual data report for 2012

    SciTech Connect

    Heiser J.; Smith, S.

    2013-02-01

    This document presents the meteorological data collected at Brookhaven National Laboratory (BNL) by Meteorological Services (Met Services) for the calendar year 2012. The purpose is to publicize the data sets available to emergency personnel, researchers and facility operations. Met services has been collecting data at BNL since 1949. Data from 1994 to the present is available in digital format. Data is presented in monthly plots of one-minute data. This allows the reader the ability to peruse the data for trends or anomalies that may be of interest to them. Full data sets are available to BNL personnel and to a limited degree outside researchers. The full data sets allow plotting the data on expanded time scales to obtain greater details (e.g., daily solar variability, inversions, etc.).

  13. Grid-based Meteorological and Crisis Applications

    NASA Astrophysics Data System (ADS)

    Hluchy, Ladislav; Bartok, Juraj; Tran, Viet; Lucny, Andrej; Gazak, Martin

    2010-05-01

    We present several applications from domain of meteorology and crisis management we developed and/or plan to develop. Particularly, we present IMS Model Suite - a complex software system designed to address the needs of accurate forecast of weather and hazardous weather phenomena, environmental pollution assessment, prediction of consequences of nuclear accident and radiological emergency. We discuss requirements on computational means and our experiences how to meet them by grid computing. The process of a pollution assessment and prediction of the consequences in case of radiological emergence results in complex data-flows and work-flows among databases, models and simulation tools (geographical databases, meteorological and dispersion models, etc.). A pollution assessment and prediction requires running of 3D meteorological model (4 nests with resolution from 50 km to 1.8 km centered on nuclear power plant site, 38 vertical levels) as well as running of the dispersion model performing the simulation of the release transport and deposition of the pollutant with respect to the numeric weather prediction data, released material description, topography, land use description and user defined simulation scenario. Several post-processing options can be selected according to particular situation (e.g. doses calculation). Another example is a forecasting of fog as one of the meteorological phenomena hazardous to the aviation as well as road traffic. It requires complicated physical model and high resolution meteorological modeling due to its dependence on local conditions (precise topography, shorelines and land use classes). An installed fog modeling system requires a 4 time nested parallelized 3D meteorological model with 1.8 km horizontal resolution and 42 levels vertically (approx. 1 million points in 3D space) to be run four times daily. The 3D model outputs and multitude of local measurements are utilized by SPMD-parallelized 1D fog model run every hour. The fog

  14. Integrating Current Meteorological Research Through Club Fundraising

    NASA Astrophysics Data System (ADS)

    Gill, S. S.; Kauffman, C. M.

    2003-12-01

    Earth science programs whose focus is primarily an undergraduate education do not often have the funding to take students to very many conferences which could expose the student to new research as well as possible graduate programs and employment opportunities. Conferences also give the more enthusiastic and hardworking students a venue in which to present their research to the meteorological community. In addition, the California University services largely lower income counties, which make student attendance at conferences even more difficult even though the student in SW PA may be individually motivated. This issue is compounded by the fact that the Meteorology Concentration within the Earth Science department at Cal U is composed of only two full-time Professors, which limits the amount of research students can be exposed to within a classroom setting. New research ideas presented at conferences are thus an important mechanism for broadening what could be an isolated program. One way in which the meteorology program has circumvented the funding problem to a certain extent is through an active student club. With nearly 60 majors (3/4 of which are active in club activities, the meteorology club is able to execute a variety of fundraising activities. Money that is raised can then request from student services matching funds. Further money is given to clubs, which are very active not only in fundraising, but using that money for academic related activities. For the last 3 years the club budget has been in the neighborhood of \\$4500. The money has then been used to partially finance student registration and accommodation costs making conference attendance much more affordable. Normally 8-16 students attend conferences that they would otherwise not be able to attend without great expense. There are times when more than 16 students wish to attend, but travel arrangements prohibit more than 16. Moreover club money is also use to supplement student costs on a summer

  15. Polarization Diversity in Radar Meteorology: Early Developments

    DTIC Science & Technology

    1990-01-01

    polarized light , and an examination of par- meteors resulted from experimental backscattering studies ticles of various forms. of ice models by Harper... randomly oriented , oblate and prolate water ment of polarimetry in radar meteorology. and ice spheroids at 1.25, 3.2 and 10-cm wavelengths. Among the...measure of the "round- sity from horizontally oriented oblate particles contained ness" of the scatterers. Since their antenna was unable tO

  16. Naval Meteorology and Oceanography Command exhibit

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Designed to entertain while educating, StenniSphere at the John C. Stennis Space Center in Hancock County, Miss., includes informative displays and exhibits from NASA and other agencies located at Stennis, such as this one from the Naval Meteorology and Oceanography Command. Visitors can 'travel' three-dimensionally under the sea and check on the weather back home in the Weather Center. StenniSphere is open free of charge from 9 a.m. to 5 p.m. daily.

  17. Naval Meteorology and Oceanography Command exhibit entrance

    NASA Technical Reports Server (NTRS)

    2000-01-01

    StenniSphere at NASA's John C. Stennis Space Center in Hancock County, Miss., invites visitors to discover why America comes to Stennis Space Center before going into space. Designed to entertain while educating, StenniSphere includes informative displays and exhibits from NASA and other agencies located at Stennis, such as this one from the Naval Meteorology and Oceanography Command. Visitors can 'travel' three-dimensionally under the sea and check on the weather back home in the Weather Center.

  18. Meteorological Factors Affecting Evaporation Duct Height Climatologies.

    DTIC Science & Technology

    1980-07-01

    part of the regions. 25 REFERENCES Bean, B. R. and E. J. Dutton, 1967: Radio meteorology. NBS monograph 92. National Bureau of Standards, Washington...lower boundary. Radio Sci., 13, 3, p. 489. Hitney, H. V., 1975: Propagation modeling in the evaporation duct. NELC TR-1947. Naval Electronics...Laboratory Center, San Diego, CA 92152. Jeske, H., 1971. The state of radar range propagation over sea. Tropospheric radio wave propagation, part II. NATO

  19. Meteorological support for anticipatory water management

    NASA Astrophysics Data System (ADS)

    Kok, C. J.; Wichers Schreur, B. G. J.; Vogelezang, D. H. P.

    2011-05-01

    Living with water is second nature to the inhabitants of the Netherlands. Managing water both as a resource and as a threat is a vital concern to the country. The responsibility for regional water management lies with the Dutch Regional Water Authorities. Their basic philosophy of a balance of safety and economic interests requires a sophisticated control and decision support system, with high quality meteorological inputs. The Royal Netherlands Meteorological Institute KNMI in conjunction with the Dutch Association of Regional Water Authorities has developed a warning system for extreme precipitation in support of anticipatory water management. Radar observations, short range deterministic forecasts and medium range ensemble predictions of precipitation are combined with risk profiles of individual water control boards in an automatic system, that warns of possible conditions outside normal control. This article describes the current operational system and presents examples of its application. A first evaluation of the possible value of this system, that essentially decouples meteorology and hydrology, is discussed, based on a first evaluation of the reliability of the precipitation forecasts. Finally, the article presents the current development of an extended system that uses combined probabilities of precipitation with wind, surge and river level forecasts to more accurately define risk conditions.

  20. Mesoscale meteorological measurements characterizing complex flows

    SciTech Connect

    Hubbe, J.M.; Allwine, K.J.

    1993-09-01

    Meteorological measurements are an integral and essential component of any emergency response system for addressing accidental releases from nuclear facilities. An important element of the US Department of Energy`s (DOE`s) Atmospheric Studies in Complex Terrain (ASCOT) program is the refinement and use of state-of-the-art meteorological instrumentation. ASCOT is currently making use of ground-based remote wind sensing instruments such as doppler acoustic sounders (sodars). These instruments are capable of continuously and reliably measuring winds up to several hundred meters above the ground, unattended. Two sodars are currently measuring the winds, as part of ASCOT`s Front Range Study, in the vicinity of DOE`s Rocky Flats Plant (RFP) near Boulder, Colorado. A brief description of ASCOT`s ongoing Front Range Study is given followed by a case study analysis that demonstrates the utility of the meteorological measurement equipment and the complexity of flow phenomena that are experienced near RFP. These complex flow phenomena can significantly influence the transport of the released material and consequently need to be identified for accurate assessments of the consequences of a release.

  1. Tropospheric Airborne Meteorological Data Reporting (TAMDAR) Overview

    NASA Technical Reports Server (NTRS)

    Daniels, Taumi S.; Moninger, William R.; Mamrosh, Richard D.

    2008-01-01

    This paper is an overview of the Tropospheric Airborne Meteorological Data Reporting (TAMDAR) project, giving some history on the project, various applications of the atmospheric data, and future ideas and plans. As part of NASA's Aviation Safety and Security Program, the TAMDAR project developed a small low-cost sensor that collects useful meteorological data and makes them available in near real time to improve weather forecasts. This activity has been a joint effort with FAA, NOAA, universities, and industry. A tri-agency team collaborated by developing a concept of operations, determining the sensor specifications, and evaluating sensor performance as reported by Moosakhanian et. al. (2006). Under contract with Georgia Tech Research Institute, NASA worked with AirDat of Raleigh, NC to develop the sensor. The sensor is capable of measuring temperature, relative humidity, pressure, and icing. It can compute pressure altitude, indicated and true air speed, ice accretion rate, wind speed and direction, peak and average turbulence, and eddy dissipation rate. The overall development process, sensor capabilities, and performance based on ground and flight tests is reported by Daniels (2002), Daniels et. al. (2004) and by Tsoucalas et. al. (2006). An in-service evaluation of the sensor was performed called the Great Lakes Fleet Experiment (GLFE), first reported by Moninger et. al. (2004) and Mamrosh et. al. (2005). In this experiment, a Mesaba Airlines fleet was equipped to collect meteorological data over the Great Lakes region during normal revenue-producing flights.

  2. Variability of plant nitrogen and water use in a 100-m transect of a subdesertic depression of the Ebro valley (Spain) characterized by leaf δ13C and δ15N

    NASA Astrophysics Data System (ADS)

    Peñuelas, Josep; Filella, Iolanda; Terradas, Jaume

    1999-04-01

    We studied carbon and nitrogen isotopic composition ( δ13C and δ15N) in sunlit leaves of four dominant species ( Rosmarinus officinalis L., Stipa parviflora L., Juniperus thurifera L. and Pinus halepensis L.) in a characteristic gradient of water and nitrogen availability produced by relief and micrometeorology in a subdesertic valley of central-NE Spain. Minimum values of δ13C were found at the foothills, and higher values were found both in the valley and on the top of the hill where water availability was lower. However, different species (functional groups) presented different δ13C values in the same valley. The lowest values of δ15N were found on the top of the hill and the highest ones in the valley, where N losses would thus be higher. In general, when growing together, trees showed 2 % higher values for δ13C as well as for δ15N than shrubs and grasses. The specific responses show that they use different available water and nitrogen resources within small catchments. For this ecosystem type, C and N isotope analyses are sensitive enough to resolve fine spatial and functional patterns even over a very short distance (100 m), where topography generates great gradients in microclimate, hydrology, soil physical conditions, vegetation and biogeochemistry.

  3. Enhanced therapeutic anti-inflammatory effect of betamethasone upon topical administration with low frequency, low intensity (20 kHz, 100 mW/cm2) ultrasound exposure on carrageenan-induced arthritis in mice model

    PubMed Central

    Cohen, Gadi; Natsheh, Hiba; Sunny, Youhan; Bawiec, Christopher R.; Touitou, Elka; Lerman, Melissa A.; Lazarovici, Philip; Lewin, Peter A.

    2015-01-01

    The purpose of this work was to investigate whether low frequency, low intensity (LFLI, 20 kHz, <100 mW/cm2, spatial-peak, temporal-peak) ultrasound (US), delivered by a light-weight (<100g), tether-free, fully wearable, battery powered applicator is capable of reducing inflammation in a mouse model of Rheumatoid Arthritis (RA). The therapeutic, acute, anti-inflammatory effect was estimated by the relative swelling induced in mice hind limb paws. In an independent, indirect approach, the inflammation was bio-imaged by measuring glycolytic activity with near infrared labeled 2-deoxy-glucose (2DG). The outcome of the experiments indicated that the combination of US exposure with topical application of 0.1% w/w betamethasone gel, exhibited statistically significant (p<0.05) enhanced anti-inflammatory properties in comparison with the drug or US treatment alone. The present study underscores the potential benefits of LFLI US assisted drug delivery. However, the proof of concept presented indicates the need for additional experiments to systematically evaluate and optimize the potential of, and the conditions for, safe, LFLI ultrasound promoted non-invasive drug delivery. PMID:26003010

  4. EUMETCast: The Meteorological Data Dissemination Service

    NASA Astrophysics Data System (ADS)

    Gaertner, V. K.; Koenig, M.

    2006-05-01

    EUMETCast is EUMETSAT's broadcast system for environmental data. It utilises telecommunications satellites and the services of telecommunication providers to distribute data files using Digital Video Broadcast (DVB) standards to a wide audience located within the combined geographical coverage zones of the individual telecommunication satellites used to transmit the data. The telecommunication zones are now covering Europe, Africa, South America and parts of Asia and North America. This service has been established to provide the meteorological communities with satellite data and other meteorological products in near real-time for operational, but also research, education and training purposes. The following EUMETSAT services are currently available via EUMETCast: - Second Generation Meteosat - High Rate SEVIRI Image Data (every 15 minutes) - First Generation Meteosat - Indian Ocean Data Coverage (IODC) (every 30 minutes) - Other Geostationary Data from NOAA (GOES E/W) and JMA (MTSAT), (every 3 hours) - Data Collection and Retransmission (DCP) and Meteorological Data Dissemination (MDD) - Basic Meteorological Data (BMD) (Ku-band Europe only) - Meteorological Products (including some Satellite Application Facility products) - EUMETSAT Advanced Retransmission Service (EARS) (Ku-band Europe only) - DWDSAT (Ku-band Europe only) - VEGETATION data (C-band Africa only) Progressively during 2006 users will find an increasing amount of polar satellite data and products available on EUMETCast. As part of the extension of the EUMETCast Advanced Retransmission Service (EARS), ERS scatterometer data and NOAA satellite AVHRR data have already been introduced in early 2006. The ERS- SCAT demonstration service is a forerunner for the future pilot EARS-ASCAT service and the pilot EARS- AVHRR service will continue to expand during 2006 with the inclusion of data from additional AVHRR stations in the EARS network. The EUMETCast System will be also be used to provide dissemination of

  5. Impact of mesoscale meteorological processes on anomalous radar propagation conditions over the northern Adriatic area

    NASA Astrophysics Data System (ADS)

    Telišman Prtenjak, Maja; Horvat, Igor; Tomažić, Igor; Kvakić, Marko; Viher, Mladen; Grisogono, Branko

    2015-09-01

    The impact of mesoscale structures on the occurrence of anomalous propagation (AP) conditions for radio waves, including ducts, superrefractive, and subrefractive conditions, was studied. The chosen meteorological situations are the bora wind and the sporadic sea/land breeze (SB/LB) during three selected cases over a large portion of the northern Adriatic. For this purpose, we used available radio soundings and numerical mesoscale model simulations (of real cases and their sensitivity tests) at a horizontal resolution of 1.5 km and 81 vertical levels. The model simulated the occurrences of AP conditions satisfactorily, although their intensities and frequency were underestimated at times. Certain difficulties appeared in reproducing the vertical profile of the modified refractive index, which is mainly dependent on the accuracy of the modeled humidity. The spatial distributions of summer AP conditions reveal that the surface layer above the sea (roughly between 30 and 100 m asl) is often covered by superrefractive conditions and ducts. The SB is highly associated with the formations of AP conditions: (i) in the first 100 m asl, where trapping and superrefractive conditions form because of the advection of cold and moist air, and (ii) inside the transition layer between the SB body and the elevated return flow in the form of subrefractive conditions. When deep convection occurs, all three types of AP conditions are caused by the downdraft beneath the cumulonimbus cloud base in its mature phase that creates smaller but marked pools of cold and dry air. The bora wind usually creates a pattern of AP conditions associated with the hydraulic jump and influences distribution of AP conditions over the sea surface.

  6. Influence of meteorological parameters on air quality

    NASA Astrophysics Data System (ADS)

    Gioda, Adriana; Ventura, Luciana; Lima, Igor; Luna, Aderval

    2013-04-01

    The physical characterization representative of ambient air particle concentrations is becoming a topic of great interest for urban air quality monitoring and human exposure assessment. Human exposure to particulate matter of less than 2.5 µm in diameter (PM2.5) can result in a variety of adverse health impacts, including reduced lung function and premature mortality. Numerous studies have shown that fine airborne inhalable particulate matter particles (PM2.5) are more dangerous to human health than coarse particles, e.g. PM10. This study investigates meteorological parameter impacts on PM2.5 concentrations in the atmosphere of Rio de Janeiro, Brazil. Samples were collected during 24 h every six days using a high-volume sampler from six sites in the metropolitan area of Rio de Janeiro from January to December 2011. The particles mass was determined by Gravimetry. Meteorological parameters were obtained from automatic stations near the sampling sites. The average PM2.5 concentrations ranged from 9 to 32 µg/m3 for all sites, exceeding the suggested annual limit of WHO (10 µg/m3). The relationship between the effects of temperature, relative humidity, wind speed and direction and particle concentration was examined using a Principal Component Analysis (PCA) for the different sites and seasons. The results for each sampling point and season presented different principal component numbers, varying from 2 to 4, and extremely different relationships with the parameters. This clearly shows that changes in meteorological conditions exert a marked influence on air quality.

  7. A new microtelesensor chip for meteorology

    SciTech Connect

    Manges, W.W.; Smith, S.F.; Britton, C.L.

    1997-03-04

    A new technology exploiting commercial, micro-sensors developed for atomic force microscopy offers breakthrough capability in high accuracy wireless sensors for meteorological measurements. Historically sensors used in air-borne and buoy-based platforms required compromises in performance to achieve the low-weight and low power requirements of the mobile platforms. Recent innovations in microelectromechanical systems (MEMS) provided opportunities to reduce size, weight, and power requirements but each sensor required a specially fabricated device with inherent calibration, repeatability, and traceability problems. This new approach allows identical sensors to be fabricated on the same semiconductor substrate as the conditioning electronics and the telemetry components. Exploiting semiconductor fabrication technology offers the potential to reduce fabrication costs to a few dollars per component. Sensing humidity, temperature and pressure have been demonstrated with plans for meteorological deployment scheduled for later in 1997. Cost, reliability, size, power consumption, and accuracy are key factors in the deployment of advanced meteorological sensor arrays. ORNL is actively integrating the sensing technologies, electronic processing, and telemetry that build a family of sensors with multiple-input capabilities. One of the key elements in ORNL`s sensor technology is coated microcantilever arrays, which form a powerful universal platform for multiple physical and chemical measurements. Telemetry is also being developed to add robust spread-spectrum data transmission capabilities to the necessary signal processing electronics. In collaboration with the NOAA Atmospheric Turbulence and Diffusion Lab, a chip-level temperature/humidity module with onboard telemetry is slated for demonstration later in 1997. Future additions would include sensors for atmospheric pressure, wind velocity, turbulence measurement, and radiometry.

  8. Defense meteorological satellite measurements of total ozone

    NASA Technical Reports Server (NTRS)

    Lovill, J. E.; Ellis, J. S.; Luther, F. M.; Sullivan, T. J.; Weichel, R. L.

    1982-01-01

    A multichannel filter radiometer (MFR) on Defense Meteorological Satellites (DMS) that measured total ozone on a global-scale from March 1977 - February 1980 is described. The total ozone data measured by the MFR were compared with total ozone data taken by surfaced-based Dobson spectrophotometers. When comparisons were made for five months, the Dobson spectrophotometer measured 2-5% more total ozone than the MFR. Comparisons between the Dobson spectrophotometer and the MFR showed a reduced RMS difference as the comparisons were made at closer proximity. A Northern Hemisphere total ozone distribution obtained from MFR data is presented.

  9. Arctic hydrology and meteorology. Annual report

    SciTech Connect

    Kane, D.L.

    1990-12-31

    During 1990, we have continued our meteorological and hydrologic data collection in support of our process-oriented research. The six years of data collected to data is unique in its scope and continuity in a North Hemisphere Arctic setting. This valuable data base has allowed us to further our understanding of the interconnections and interactions between the atmosphere/hydrosphere/biosphere/lithosphere. The increased understanding of the heat and mass transfer processes has allowed us to increase our model-oriented research efforts.

  10. Summary of Research 1995, Department of Meteorology

    DTIC Science & Technology

    1996-08-01

    of the meteorological conditions associated with the November 1991 San Joaquin Valley dust storm , an event which led to a multiple vehicle collision...November 1991 case. PUBLICATION: Pauley, P.M., Baker, N.L., and Barker, E.H., "An Observational Study of the "Interstate-5" Dust Storm Case," to appear...34Interstate-5" Dust Storm Case," Ninth Extratropical Cyclone Workshop, Asilomar Conference Center, Pacific Grove, CA, 3-7 December 1995. DOD KEY

  11. Meteorology impact on ATC system design

    NASA Technical Reports Server (NTRS)

    Vandemark, F. E.

    1981-01-01

    The impact of meteorology on air traffic control (ATC) system design for designs, and for cost benefit evaluations is discussed. The myriad of choices for implementation is a problem of great magnitude, given the economic climate of today. Cost versus benefit requires greater emphasis. Expanding and improving weather data acquisition, increasing the speed of weather data transmission and automating those actions that lend themselves to standardization for automated data processing are outlined. Three programs are mentioned: (1) automated weather observations, (2) weather radar and improvements to the national airspace system as related to the handling of weather data; and (3) products.

  12. Satellite remote sensing of meteorological parameters

    NASA Technical Reports Server (NTRS)

    Chahine, M. T.

    1983-01-01

    Recent advances in remote atmospheric sensing are briefly reviewed, with particular attention given to vertical temperature and humidity profiles, cloud structure, and wind. Present capabilities and projections of future improvements in accuracy and resolution are given for the Microwave Sounding Unit, High Resolution Infrared Sounder, Defence Meteorological Satellite Project, and VISSR Atmospheric Sounder. It is noted that future sounding systems will require (1) high spectral resolution; (2) multispectral observations of the atmosphere and the surface in order to correct for most of the geophysical processes contaminating the outgoing radiance; and (3) a control algorithm capable of using information from multispectral channels to identify those parameters that have errors larger than a specified value.

  13. ARM mobile facility surface meteorology (MET) handbook.

    SciTech Connect

    Ritsche, M. T.; Environmental Science Division

    2006-04-01

    The Atmospheric Radiation Measurement (ARM) Mobile Facility Surface Meteorology station (MET) uses mainly conventional in situ sensors to obtain 1-min statistics of surface wind speed, wind direction, air temperature, relative humidity (RH), barometric pressure, and rainrate. Additional sensors may be added to or removed from the base set of sensors depending upon the deployment location, climate regime, or programmatic needs. In addition, sensor types may change depending upon the climate regime of the deployment. These changes/additions are noted in Section 3.

  14. DOE candidate site meteorological measurement program

    SciTech Connect

    Renne, D. S.; Sandusky, W. F.

    1980-01-01

    In March 1976, DOE issued an RFP to acquire, on a competitive basis, a group of candidate sites, proposed by utilities interested in the field testing program. A total of 17 candidate sites were selected from the 64 proposals submitted in response to the RFP. From these sites, five have been chosen thus far to receive turbines for field testing. This paper discusses the meteorological measurement activities at these sites and provides details of the measurement program as it exists in late 1979. In addition, the paper briefly discusses the directions this program will take in the near future, and the options interested electric service organizations have for participating in the program.

  15. Conformal map transformations for meteorological modelers

    NASA Astrophysics Data System (ADS)

    Taylor, Albion D.

    1997-02-01

    This paper describes a utility function library which meteorological computer modelers can incorporate in their programs to provide the mathematical transformations of conformai maps that their models may need. In addition to coordinate transformations, routines supply projection-dependent terms of the governing equations, wind component conversions, and rotation axis orientation components. The routines seamlessly handle the transitions from Polar Stereographic through Lambert Conformai to Mercator projections. Initialization routines allow concurrent handling of multiple projections, and allow a simple method of defining computational model grids to the software.

  16. The solar eclipse: a natural meteorological experiment.

    PubMed

    Harrison, R Giles; Hanna, Edward

    2016-09-28

    A solar eclipse provides a well-characterized reduction in solar radiation, of calculable amount and duration. This captivating natural astronomical phenomenon is ideally suited to science outreach activities, but the predictability of the change in solar radiation also provides unusual conditions for assessing the atmospheric response to a known stimulus. Modern automatic observing networks used for weather forecasting and atmospheric research have dense spatial coverage, so the quantitative meteorological responses to an eclipse can now be evaluated with excellent space and time resolution. Numerical models representing the atmosphere at high spatial resolution can also be used to predict eclipse-related changes and interpret the observations. Combining the models with measurements yields the elements of a controlled atmospheric experiment on a regional scale (10-1000 km), which is almost impossible to achieve by other means. This modern approach to 'eclipse meteorology' as identified here can ultimately improve weather prediction models and be used to plan for transient reductions in renewable electricity generation. During the 20 March 2015 eclipse, UK electrical energy demand increased by about 3 GWh (11 TJ) or about 4%, alongside reductions in the wind and photovoltaic electrical energy generation of 1.5 GWh (5.5 TJ).This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'.

  17. Geostationary Meteorological Satellite-5 (GMS-5)

    NASA Technical Reports Server (NTRS)

    Horii, M.

    1991-01-01

    The Geostationary Meteorological Satellite (GMS-5), which is being developed by the National Space Development Agency of Japan (NASDA), is the fifth geostationary, spin stabilized, weather satellite. Its purposes are to observe cataclysmic events such as hurricanes, typhoons, and regional weather phenomena; to relay meteorological data from surface collection points to the Data Processing Center in Japan; and to transmit processing imaging data for facsimile reproduction. The satellite will be launched from the Tanegashima Space Center (TaSC) in Japan by a type H-II launch vehicle. The Deep Space Network (DSN) will support the transfer and drift orbit mission phases. The coverage will consist of the 26-m antennas as prime and the 34-m antenna at Madrid as backup support for launch through drift orbit. Maximum support will consist of two 8-hour tracks per station for a seven day period, plus 23 days of contingency support from all complexes. Information is given in tabular form for DSN support, frequency assignments, telemetry, command and tracking station responsibility.

  18. Pre- and post-processing of hydro-meteorological ensembles for the Norwegian flood forecasting system in 145 basins.

    NASA Astrophysics Data System (ADS)

    Jahr Hegdahl, Trine; Steinsland, Ingelin; Merete Tallaksen, Lena; Engeland, Kolbjørn

    2016-04-01

    (-0.6°C/100m). The streamflow ensembles are post-processed to improve sharpness and generate calibrated forecasts. The skill of combinations of pre- and post-processed hydro-meteorological ensembles are further analyzed focusing on high streamflow and floods.

  19. Compendium of Training Facilities for Meteorology and Operational Hydrology

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Information is provided on training courses available in about 96 countries in applied meteorology (including agrometeorology, air pollution meteorology, cloud physics, weather modification, and satellite meteorology) and hydrology. The location is given as well as the nature and language of instruction. Course duration, starting dates, entrance qualifications, and tuition fees are listed. A condensed syllabus is provided. Information on accomodation, and the number of students admitted to the courses is included.

  20. Satellite Meteorology Education & Training Resources from COMET

    NASA Astrophysics Data System (ADS)

    Abshire, W. E.; Dills, P. N.; Weingroff, M.; Lee, T. F.

    2012-12-01

    The COMET® Program (www.comet.ucar.edu) receives funding from NOAA NESDIS as well as EUMETSAT and the Meteorological Service of Canada to support education and training in satellite meteorology. These partnerships enable COMET to create educational materials of global interest on geostationary and polar-orbiting remote sensing platforms. These materials focus on the capabilities and applications of current and next-generation satellites and their relevance to operational forecasters and other user communities. By partnering with experts from the Naval Research Laboratory, NOAA-NESDIS and its Cooperative Institutes, Meteorological Service of Canada, EUMETSAT, and other user communities, COMET stimulates greater use of satellite data observations and products. This presentation provides an overview of COMET's recent satellite education efforts in the area of polar orbiting satellites. COMET has a new module on Suomi NPP, which describes the satellite system and discusses the improvements that it is bringing to forecasting, numerical weather prediction, and environmental monitoring. COMET has also published an updated version of its module on the VIIRS instrument. "Imaging with VIIRS: A Convergence of Technologies and Experience, 2nd Edition" covers the instrument's enhanced capabilities by examining the systems that contributed to its development. Special attention is paid to the Day/Night Visible channel as VIIRS is the first instrument on a civilian satellite to image atmospheric and terrestrial features with and without moonlight. An upcoming module will exclusively focus on nighttime imaging with the VIIRS Day/Night Band (DNB). "Applications of the VIIRS Day-Night Band" will introduce the capabilities of DNB imagery to a wide audience ranging from forecasters and emergency managers to wildfire fighters and oceanographers. DNB products will be compared to traditional satellite products made from infrared data, including the "fog" product. Users will learn how DNB

  1. Advanced Meteorological Temperature Sounder (AMTS) study

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The results of a system definition study (theoretical) for an Advanced Meteorological Temperature Sounder (AMTS) is described. From the data the atmospheric temperature and humidity profiles can be determined over the entire earth's surface with a spatial resolution of 45 km. x 45 km; amounts and type of cloud cover as well as surface temperatures of the earth are also determined. The major purpose of the study was to determine the feasibility of cooling twenty-eight detectors to the 80-90 Kelvin region by means of a radiative cooler. Other related considerations were achieving high signal-to-noise ratios, maximizing optical throughput through the grating spectrometer, and reducing preamplifier noise. A detailed optical design of an f/5 Ebert-Fastie spectrometer was carried out to verify that image quality is adequate; field lenses near the spectrometer focal plane were designed to image the grating onto the smallest size detectors for each channel.

  2. ARM Surface Meteorology Systems Instrument Handbook

    SciTech Connect

    Ritsche, MT

    2011-03-08

    The ARM Surface Meteorology Systems consist mainly of conventional in situ sensors that obtain a defined “core” set of measurements. The core set of measurements is: Barometric Pressure (kPa), Temperature (°C), Relative Humidity (%), Arithmetic-Averaged Wind Speed (m/s), Vector-Averaged Wind Speed (m/s), and Vector-Averaged Wind Direction (deg). The sensors that collect the core variables are mounted at the standard heights defined for each variable: • Winds: 10 meters • Temperature and Relative Humidity: 2 meters • Barometric Pressure: 1 meter. Depending upon the geographical location, different models and types of sensors may be used to measure the core variables due to the conditions experienced at those locations. Most sites have additional sensors that measure other variables that are unique to that site or are well suited for the climate of the location but not at others.

  3. Meteorological radar facility (MRF) slot conductance investigations

    NASA Technical Reports Server (NTRS)

    Ratkevich, A. E.

    1977-01-01

    A preliminary meteorological radar facility (MRF) array design was completed in support of the slot conductance measurement program. Three different slot measurement techniques were evaluated. The selection of the probe comparison measurement technique was selected as the principal experimental method with the impedance measurement technique chosen to measure a few higher conductance slots to be used as reference slots. The impedance of 43 slots in 0.9 x 0.4 inch standard waveguide and of 40 slots in 0.835 x 0.4 inch waveguide was measured. Also, impedance measurements were made of a few slots using image planes to simulate mutual coupling effects. The measured and theoretical conductance, susceptance, and radiation phase data are presented in graphic form as a function of slot displacement for constant slot length, and of slot length for constant slot displacement. It is concluded that the proposed MRF array design approach is a feasible one.

  4. Simulations of cm-wavelength Sunyaev-Zel'dovich galaxy cluster and point source blind sky surveys and predictions for the RT32/OCRA-f and the Hevelius 100-m radio telescope

    SciTech Connect

    Lew, Bartosz; Kus, Andrzej; Birkinshaw, Mark; Wilkinson, Peter E-mail: Mark.Birkinshaw@bristol.ac.uk E-mail: ajk@astro.uni.torun.pl

    2015-02-01

    We investigate the effectiveness of blind surveys for radio sources and galaxy cluster thermal Sunyaev-Zel'dovich effects (TSZEs) using the four-pair, beam-switched OCRA-f radiometer on the 32-m radio telescope in Poland. The predictions are based on mock maps that include the cosmic microwave background, TSZEs from hydrodynamical simulations of large scale structure formation, and unresolved radio sources. We validate the mock maps against observational data, and examine the limitations imposed by simplified physics. We estimate the effects of source clustering towards galaxy clusters from NVSS source counts around Planck-selected cluster candidates, and include appropriate correlations in our mock maps. The study allows us to quantify the effects of halo line-of-sight alignments, source confusion, and telescope angular resolution on the detections of TSZEs. We perform a similar analysis for the planned 100-m Hevelius radio telescope (RTH) equipped with a 49-beam radio camera and operating at frequencies up to 22 GHz.We find that RT32/OCRA-f will be suitable for small-field blind radio source surveys, and will detect 33{sup +17}{sub −11} new radio sources brighter than 0.87 mJy at 30 GHz in a 1 deg{sup 2} field at > 5σ CL during a one-year, non-continuous, observing campaign, taking account of Polish weather conditions. It is unlikely that any galaxy cluster will be detected at 3σ CL in such a survey. A 60-deg{sup 2} survey, with field coverage of 2{sup 2} beams per pixel, at 15 GHz with the RTH, would find <1.5 galaxy clusters per year brighter than 60 μJy (at 3σ CL), and would detect about 3.4 × 10{sup 4} point sources brighter than 1 mJy at 5σ CL, with confusion causing flux density errors ∼< 2% (20%) in 68% (95%) of the detected sources.A primary goal of the planned RTH will be a wide-area (π sr) radio source survey at 15 GHz. This survey will detect nearly 3 × 10{sup 5} radio sources at 5σ CL down to 1.3 mJy, and tens of galaxy clusters

  5. Effects of meteorological conditions on spore plumes

    NASA Astrophysics Data System (ADS)

    Burch, M.; Levetin, E.

    2002-05-01

    Fungal spores are an ever-present component of the atmosphere, and have long been known to trigger asthma and hay fever symptoms in sensitive individuals. The atmosphere around Tulsa has been monitored for airborne spores and pollen with Burkard spore traps at several sampling stations. This study involved the examination of the hourly spore concentrations on days that had average daily concentrations near 50,000 spores/m3 or greater. Hourly concentrations of Cladosporium, Alternaria, Epicoccum, Curvularia, Pithomyces, Drechslera, smut spores, ascospores, basidiospores, other, and total spores were determined on 4 days at three sites and then correlated with hourly meteorological data including temperature, rainfall, wind speed, dew point, air pressure, and wind direction. On each of these days there was a spore plume, a phenomenon in which spore concentrations increased dramatically over a very short period of time. Spore plumes generally occurred near midday, and concentrations were seen to increase from lows around 20,000 total spores/m3 to highs over 170,000 total spores/m3 in 2 h. Multiple regression analysis of the data indicated that increases in temperature, dew point, and air pressure correlated with the increase in spore concentrations, but no single weather variable predicted the appearance of a spore plume. The proper combination of changes in these meteorological parameters that result in a spore plume may be due to the changing weather conditions associated with thunderstorms, as on 3 of the 4 days when spore plumes occurred there were thunderstorms later that evening. The occurrence of spore plumes may have clinical significance, because other studies have shown that sensitization to certain spore types can occur during exposure to high spore concentrations.

  6. Uncertainty in Dispersion Forecasting Using Meteorological Ensembles

    SciTech Connect

    Leach, M J; Chin, H-N

    2000-03-23

    A approach for quantifying meteorological uncertainty is via development of an ensemble of forecasts from slightly perturbed initial conditions (Sivillo et al., 1997) to predict the time evolution of the probability density function of atmospheric variables (Mullen and Baurnhefner, 1994). We create an ensemble of forecasts by varying the initial (and boundary) conditions for the COAMPS meteorological model. The variations in the initial conditions must be consistent with analysis error. Optimally, the range of initial conditions would encompass the ''true'' atmospheric state, but which is never actually known. Our method for creating varying initial conditions is to use different global data sets to derive the necessary data. We use two models from the National Weather Service (the AVN and ETA models) and one from the Navy (the NOGAPS model). In addition to those data sets we perturb the data from those models, using a normally distributed random number at each grid point in the COAMPS model. We perturb the (u,v) wind components, the temperature and the moisture. The size of the perturbation is determined by the variability within that variable field. The forecasts are run for 48 hours. We then use the output from the COAMPS model to drive a Lagrangian dispersion model (LODI) for simulated releases. The results from a simulated release from hour 33 are shown in Figure 1. The center of the domain is Oakland airport and the basic on-shore wind is from the southwest. In three of the simulations, the plume goes over the top of the hills to the northeast, and in the other three the plume hugs the coastline and goes around those hills The two solutions reflect a dependence on the Froude number, a ratio of the Kinetic energy to Potential energy. Higher Kinetic energy flow (Higher Froude number) flow goes over the top of the mountain, while lower Kinetic energy flow goes around the hills.

  7. Green River air quality model development: meteorological and tracer data, July/August 1982 field study in Brush Valley, Colorado

    SciTech Connect

    Whiteman, C.D.; Lee, R.N.; Orgill, M.M.; Zak, B.D.

    1984-06-01

    Meteorological and atmospheric tracer studies were conducted during a 3-week period in July and August of 1982 in the Brush Creek Valley of northwestern Colorado. The objective of the field experiments was to obtain data to evaluate a model, called VALMET, developed at PNL to predict dispersion of air pollutants released from an elevated stack located within a deep mountain valley in the post-sunrise temperature inversion breakup period. Three tracer experiments were conducted in the valley during the 2-week period. In these experiments, sulfur hexafluoride (SF/sub 6/) was released from a height of approximately 100 m, beginning before sunrise and continuing until the nocturnal down-valley winds reversed several hours after sunrise. Dispersion of the sulfur hexafluoride after release was evaluated by measuring SF/sub 6/ concentrations in ambient air samples taken from sampling devices operated within the valley up to about 8 km down valley from the source. An instrumented research aircraft was also used to measure concentrations in and above the valley. Tracer samples were collected using a network of radio-controlled bag sampling stations, two manually operated gas chromatographs, a continuous SF/sub 6/ monitor, and a vertical SF/sub 6/ profiler. In addition, basic meteorological data were collected during the tracer experiments. Frequent profiles of vertical wind and temperature structure were obtained with tethered balloons operated at the release site and at a site 7.7 km down the valley from the release site. 10 references, 63 figures, 50 tables.

  8. The Practice of English Teaching in the Meteorological Correspondence Education

    ERIC Educational Resources Information Center

    Miao, Shaohui

    2010-01-01

    The correspondence education is the important part of the national education, and its education objects give priority to working staffs. The objects of the meteorological correspondence education are working staffs in the meteorological departments, and most of these students have engaged in the operation work for a long time, keeping at a…

  9. Meteorological-physical Limitations of Icing in the Atmosphere

    NASA Technical Reports Server (NTRS)

    Findeisen, W

    1939-01-01

    The icing hazard can, in most cases, be avoided by correct execution of the flights according to meteorological viewpoints and by meteorologically correct navigation (horizontal and, above all, vertical). The zones of icing hazard are usually narrowly confined. Their location can be ascertained with, in most cases, sufficient accuracy before take-off.

  10. Meteorological Station, interior with collapsed roof showing remnant wooden equipment ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Meteorological Station, interior with collapsed roof showing remnant wooden equipment switch box on east wall; view southeast - Fort McKinley, Meteorological Station, East side of Weymouth Way, approximately 225 feet south of Cove Side Drive, Great Diamond Island, Portland, Cumberland County, ME

  11. Formative Evaluation of a Web-Based Course in Meteorology.

    ERIC Educational Resources Information Center

    Phelps, Julia; Reynolds, Ross

    1999-01-01

    Describes the formative-evaluation process for the EuroMET (European Meteorological Education and Training) project, Web-Based university courses in meteorology that were created to address the education and training needs of professional meteorologists and students throughout Europe. Usability and interactive and multimedia elements are…

  12. Compendium of Lecture Notes for Training Class III Meteorological Personnel.

    ERIC Educational Resources Information Center

    Retallack, B. J.

    This compendium of lecture notes provides a course of study for persons who may be involved in a variety of specialized meteorological tasks. The course is considered to be advanced and assumes students have had introductory experiences in meteorology and earth science (covered in a similar compendium). The material is presented in seven units…

  13. 10 CFR 960.5-2-3 - Meteorology.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Meteorology. 960.5-2-3 Section 960.5-2-3 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Preclosure Guidelines Preclosure Radiological Safety § 960.5-2-3 Meteorology. (a)...

  14. 10 CFR 960.5-2-3 - Meteorology.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Meteorology. 960.5-2-3 Section 960.5-2-3 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Preclosure Guidelines Preclosure Radiological Safety § 960.5-2-3 Meteorology. (a)...

  15. 10 CFR 960.5-2-3 - Meteorology.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Meteorology. 960.5-2-3 Section 960.5-2-3 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Preclosure Guidelines Preclosure Radiological Safety § 960.5-2-3 Meteorology. (a)...

  16. 10 CFR 960.5-2-3 - Meteorology.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Meteorology. 960.5-2-3 Section 960.5-2-3 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Preclosure Guidelines Preclosure Radiological Safety § 960.5-2-3 Meteorology. (a)...

  17. 10 CFR 960.5-2-3 - Meteorology.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Meteorology. 960.5-2-3 Section 960.5-2-3 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Preclosure Guidelines Preclosure Radiological Safety § 960.5-2-3 Meteorology. (a)...

  18. Brookhaven National Laboratory meteorological services instrument calibration plan and procedures

    SciTech Connect

    Heiser .

    2013-02-16

    This document describes the Meteorological Services (Met Services) Calibration and Maintenance Schedule and Procedures, The purpose is to establish the frequency and mechanism for the calibration and maintenance of the network of meteorological instrumentation operated by Met Services. The goal is to maintain the network in a manner that will result in accurate, precise and reliable readings from the instrumentation.

  19. The data collection component of the Hanford Meteorology Monitoring Program

    SciTech Connect

    Glantz, C.S.; Islam, M.M.

    1988-09-01

    An intensive program of meteorological monitoring is in place at the US Department of Energy's Hanford Site. The Hanford Meteorology Monitoring Program involves the measurement, observation, and storage of various meteorological data; continuous monitoring of regional weather conditions by a staff of professional meteorologists; and around-the-clock forecasting of weather conditions for the Hanford Site. The objective of this report is to document the data collection component of the program. In this report, each meteorological monitoring site is discussed in detail. Each site's location and instrumentation are described and photographs are presented. The methods for processing and communicating data to the Hanford Meteorology Station are also discussed. Finally, the procedures followed to maintain and calibrate these instruments are presented. 2 refs., 83 figs., 15 tabs.

  20. An Operational Environmental Meteorology Forecasting system for Eastern China

    NASA Astrophysics Data System (ADS)

    Zhou, Guangqiang; Xu, Jianming; Xie, Ying; Wu, Jianbin; Yu, Zhongqi; Chang, Luyu

    2015-04-01

    Since 2012 an operational environmental meteorology forecasting system was setup to provide daily forecasts of environmental meteorology pollutants for the Eastern China region. Initialized with 0.5 degree GFS meteorological fields, the system uses the WRF-Chem model to provide daily 96-hour forecasts. Model forecasts for meteorological fields and pollutants concentrations (e.g. PM2.5 and O3) as well as haze conditions are displayed through an open platform. Verifications of the model results in terms of statistical and graphical products are also displayed at the website. Currently, the modeling system provides strong support for the daily AQI forecasting of Shanghai, and it also provides guidance products for other meteorological agencies in the Eastern China region. Here the modeling system design will be presented, together with long-term verification results for PM2.5 and O3forecasts.

  1. Applications of Meteorological Tower Data at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Altino, Karen M.; Barbre, Robert E., Jr.

    2009-01-01

    Members of the National Aeronautics and Space Administration (NASA) design and operation communities rely on meteorological information collected at Kennedy Space Center (KSC), located near Cape Canaveral, Florida, to correctly apply the ambient environment to various tasks. The Natural Environments Branch/EV44, located at Marshall Space Flight Center (MSFC) in Huntsville, Alabama, is responsible for providing its NASA customers with meteorological data using various climatological data sources including balloons, surface stations, aircraft, hindcast models, and meteorological towers. Of the many resources available within the KSC region, meteorological towers are preferred for near-surface applications because they record data at regular, frequent intervals over an extensive period of record at a single location. This paper discusses the uses of data measured at several different meteorological towers for a common period of record and how the data can be applied to various engineering decisions for the new Constellation Program Ares and Orion space vehicles.

  2. PROMET - The Journal of Meteorological Education issued by DWD

    NASA Astrophysics Data System (ADS)

    Rapp, J.

    2009-09-01

    Promet is published by the German Meteorological Service (DWD) since 1971 to improve meteorologists and weather forecasters skills. The journal comprises mainly contributions to topics like biometeorology, the NAO, or meteorology and insurance business. The science-based articles should illustrate the special issue in an understandable and transparent way. In addition, the journal contains portraits of other national meteorological services and university departments, book reviews, list of university degrees, and other individual papers. Promet is published only in German language, but included English titles and abstracts. The journal is peer-reviewed by renowned external scientists. It is distributed free of charge by DWD to the own meteorological staff. On the other hand, DMG (the German Meteorological Society) hand it out to all members of the society. The current issues deal with "Modern procedures of weather forecasting in DWD” and "E-Learning in Meteorology”.

  3. Autonomous Aerial Sensors for Wind Power Meteorology

    NASA Astrophysics Data System (ADS)

    Giebel, Gregor; Schmidt Paulsen, Uwe; Reuder, Joachim; La Cour-Harbo, Anders; Thomsen, Carsten; Bange, Jens; Buschmann, Marco

    2010-05-01

    This poster describes a new approach for measurements in wind power meteorology using small unmanned flying platforms. During a week of flying a lighter-than-air vehicle, two small electrically powered aeroplanes and a larger helicopter at the Risø test station at Høvsøre, we will compare wind speed measurements with fixed mast and LIDAR measurements, investigate optimal flight patterns for each measurement task, and measure other interesting meteorological features like the air-sea boundary in the vicinity of the wind farm. In order to prepare the measurement campaign, a workshop is held, soliciting input from various communities. Large-scale wind farms, especially offshore, need an optimisation between installed wind power density and the losses in the wind farm due to wake effects between the turbines. While the wake structure behind single wind turbines onshore is fairly well understood, there are different problems offshore, thought to be due mainly to the low turbulence. Good measurements of the wake and wake structure are not easy to come by, as the use of a met mast is static and expensive, while the use of remote sensing instruments either needs significant access to the turbine to mount an instrument, or is complicated to use on a ship due to the ship's own movement. In any case, a good LIDAR or SODAR will cost many tens of thousands of euros. Another current problem in wind energy is the coming generation of wind turbines in the 10-12 MW class, with tip heights of over 200 m. Very few measurement masts exist to verify our knowledge of atmospheric physics - all that is known is that the boundary layer description we used so far is not valid any more. Here, automated Unmanned Aerial Vehicles (UAVs) could be used as either an extension of current high masts or to build a network of very high ‘masts' in a region of complex terrain or coastal flow conditions. In comparison to a multitude of high masts, UAVs could be quite cost-effective. In order to test

  4. Study of spacecraft direct readout meteorological systems

    NASA Technical Reports Server (NTRS)

    Bartlett, R.; Elam, W.; Hoedemaker, R.

    1973-01-01

    Characteristics are defined of the next generation direct readout meteorological satellite system with particular application to Tiros N. Both space and ground systems are included. The recommended space system is composed of four geosynchronous satellites and two low altitude satellites in sun-synchronous orbit. The goesynchronous satellites transmit to direct readout ground stations via a shared S-band link, relayed FOFAX satellite cloud cover pictures (visible and infrared) and weather charts (WEFAX). Basic sensor data is transmitted to regional Data Utilization Stations via the same S-band link. Basic sensor data consists of 0.5 n.m. sub-point resolution data in the 0.55 - 0.7 micron spectral region, and 4.0 n.m. resolution data in the 10.5 - 12.6 micron spectral region. The two low altitude satellites in sun-synchronous orbit provide data to direct readout ground stations via a 137 MHz link, a 400 Mhz link, and an S-band link.

  5. Arctic hydrology and meteorology. Annual report

    SciTech Connect

    Kane, D.L.

    1989-12-31

    To date, five years of hydrologic and meteorologic data have been collected at Imnavait Creek near Toolik Lake, Alaska. This is the most complete set of field data of this type collected in the Arctic of North America. These data have been used in process-oriented research to increase our understanding of atmosphere/hydrosphere/biosphere/lithosphere interactions. Basically, we are monitoring heat and mass transfer between various spheres to quantify rates. These could be rates of mass movement such as hillslope flow or rates of heat transfer for active layer thawing or combined heat and mass processes such as evapotranspiration. We have utilized a conceptual model to predict hydrologic processes. To test the success of this model, we are comparing our predicted rates of runoff and snowmelt to measured valves. We have also used a surface energy model to simulate active layer temperatures. The final step in this modeling effort to date was to predict what impact climatic warming would have on active layer thicknesses and how this will influence the hydrology of our research watershed by examining several streambeds.

  6. Savannah River Site Annual Meteorology Report 2003

    SciTech Connect

    HUNTER, CHARLESH.

    2004-04-30

    Summaries of meteorological observations collected at the Savannah River Site (SRS) in 2003 reveal a year that was unusually cool and wet. The annual rainfall of 61.2 inches was the third highest of all the years in a period of record that began in 1952. Higher amounts were recorded only in 1964 (73.5 in) and 1971 (68.2 in). Rainfall of 0.01 inch or more occurred on 119 days during the year. Furthermore, the annual average temperature of 62.2 degrees Fahrenheit was the coldest of any year in an available record that dates to 1964. Cool and wet conditions were most pronounced in the spring and summer months. Unusually cold weather also occurred in January and December. The coldest temperature for the year was 12.5 degrees Fahrenheit (Jan 24) and the warmest temperature was 92.4 degrees Fahrenheit (Aug 27). There were no significant occurrences of severe weather (ice/snow, tornado, sustained high wind) during the year. The heavy rain that occurred on April 7 (3.5 inches) was due to an active stationary front over the area and strong southwesterly wind aloft. The remnants of Tropical Storm Bill produced 2.36 inches of rain on July 1. Hurricane Isabelle, which struck the North Carolina coast mid September, did not have a significant affect on the SRS. A thunderstorm on May 3 produced a surface (4-meter) wind gust of 41.7 miles per hour.

  7. Sea-air boundary meteorological sensor

    NASA Astrophysics Data System (ADS)

    Barbosa, Jose G.

    2015-05-01

    The atmospheric environment can significantly affect radio frequency and optical propagation. In the RF spectrum refraction and ducting can degrade or enhance communications and radar coverage. Platforms in or beneath refractive boundaries can exploit the benefits or suffer the effects of the atmospheric boundary layers. Evaporative ducts and surface-base ducts are of most concern for ocean surface platforms and evaporative ducts are almost always present along the sea-air interface. The atmospheric environment also degrades electro-optical systems resolution and visibility. The atmospheric environment has been proven not to be uniform and under heterogeneous conditions substantial propagation errors may be present for large distances from homogeneous models. An accurate and portable atmospheric sensor to profile the vertical index of refraction is needed for mission planning, post analysis, and in-situ performance assessment. The meteorological instrument used in conjunction with a radio frequency and electro-optical propagation prediction tactical decision aid tool would give military platforms, in real time, the ability to make assessments on communication systems propagation ranges, radar detection and vulnerability ranges, satellite communications vulnerability, laser range finder performance, and imaging system performance predictions. Raman lidar has been shown to be capable of measuring the required atmospheric parameters needed to profile the atmospheric environment. The atmospheric profile could then be used as input to a tactical decision aid tool to make propagation predictions.

  8. The solar eclipse: a natural meteorological experiment

    PubMed Central

    2016-01-01

    A solar eclipse provides a well-characterized reduction in solar radiation, of calculable amount and duration. This captivating natural astronomical phenomenon is ideally suited to science outreach activities, but the predictability of the change in solar radiation also provides unusual conditions for assessing the atmospheric response to a known stimulus. Modern automatic observing networks used for weather forecasting and atmospheric research have dense spatial coverage, so the quantitative meteorological responses to an eclipse can now be evaluated with excellent space and time resolution. Numerical models representing the atmosphere at high spatial resolution can also be used to predict eclipse-related changes and interpret the observations. Combining the models with measurements yields the elements of a controlled atmospheric experiment on a regional scale (10–1000 km), which is almost impossible to achieve by other means. This modern approach to ‘eclipse meteorology’ as identified here can ultimately improve weather prediction models and be used to plan for transient reductions in renewable electricity generation. During the 20 March 2015 eclipse, UK electrical energy demand increased by about 3 GWh (11 TJ) or about 4%, alongside reductions in the wind and photovoltaic electrical energy generation of 1.5 GWh (5.5 TJ). This article is part of the themed issue ‘Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse’. PMID:27550768

  9. BOREAS HYD-3 Subcanopy Meteorological Measurements

    NASA Technical Reports Server (NTRS)

    Hardy, Janet P.; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Davis, Robert E.; Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Hydrology (HYD)-3 team collected several data sets related to the hydrology of forested areas. This data set includes measurements of wind speed and direction; air temperature; relative humidity; and canopy, trunk, and snow surface temperatures within three forest types. The data were collected in the southern study area/Old Jack Pine (SSA-OJP) (1994), and SSA-OBS (Old Black Spruce), and SSA-OA (Old Aspen) (1996). Measurements were taken for three days in 1994 and four days at each site in 1996. These measurements were intended to be short term to allow the relationship between subcanopy measurements and those collected above the forest canopy to be determined. The subcanopy estimates of wind speed were used in a snow melt model to help predict the timing of snow ablation. The data are available in tabular ASCII files. The subcanopy meteorological measurement data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  10. Noctilucent Clouds and Corresponding Meteorological Conditions

    NASA Technical Reports Server (NTRS)

    Schmidlin, F. J.; Goldberg, R. A.

    2000-01-01

    Temperature measurements obtained using the passive falling sphere technique in 1991, 1993, and again in 1999 are being used to study the relationship between the neutral atmosphere and Noctilucent Clouds (NLC) The earlier NLC studies provided useful information on the behavior of the neutral atmosphere. The recent study program, the Distribution and Role of Particles in the Polar Summer Mesosphere (DROPPS) produced additional significant information of the neutral atmosphere and Noctilucent Cloud (NLC) association. Temperature lapse rates from seven rocket observations that were generally monatonic indicated changes at the mesopause during the NLC event of 5 July. Between 5 July, 2313 UTC and 6 July 0209 UTC, the temperature lapse rate between about 85 and 92 km was different and the altitude of the minimum temperature changed by 5 km. Furthermore, change in wind direction and speed, although not yet fully analyzed, may be associated with the change of the temperature structure, possibly due to advection. Comparisons are made between the meteorological conditions during the NLC events of 1991, 1993, and 1999.

  11. On the early history of the Finnish Meteorological Institute

    NASA Astrophysics Data System (ADS)

    Nevanlinna, H.

    2014-03-01

    This article is a review of the foundation (in 1838) and later developments of the Helsinki (Finland) magnetic and meteorological observatory, today the Finnish Meteorological Institute (FMI). The main focus of the study is in the early history of the FMI up to the beginning of the 20th century. The first director of the observatory was Physics Professor Johan Jakob Nervander (1805-1848). He was a famous person of the Finnish scientific, academic and cultural community in the early decades of the 19th century. Finland was an autonomously part of the Russian Empire from 1809 to 1917, but the observatory remained organizationally under the University of Helsinki, independent of Russian scientific institutions, and funded by the Finnish Government. Throughout the late-19th century the Meteorological Institute was responsible of nationwide meteorological, hydrological and marine observations and research. The observatory was transferred to the Finnish Society of Sciences and Letters under the name the Central Meteorological Institute in 1881. The focus of the work carried out in the Institute was changed gradually towards meteorology. Magnetic measurements were still continued but in a lower level of importance. The culmination of Finnish geophysical achievements in the 19th century was the participation to the International Polar Year programme in 1882-1883 by setting up a full-scale meteorological and magnetic observatory in Sodankylä, Lapland.

  12. European meteorological data: contribution to research, development, and policy support

    NASA Astrophysics Data System (ADS)

    Biavetti, Irene; Karetsos, Sotiris; Ceglar, Andrej; Toreti, Andrea; Panagos, Panos

    2014-08-01

    The Joint Research Centre of the European Commission has developed Interpolated Meteorological Datasets available on a regular 25x25km grid both to the scientific community and the general public. Among others, the Interpolated Meteorological Datasets include daily maximum/minimum temperature, cumulated daily precipitation, evapotranspiration and wind speed. These datasets can be accessed through a web interface after a simple registration procedure. The Interpolated Meteorological Datasets also serve the Crop Growth Monitoring System (CGMS) at European level. The temporal coverage of the datasets is more than 30 years and the spatial coverage includes EU Member States, neighboring European countries, and the Mediterranean countries. The meteorological data are highly relevant for the development, implementation and assessment of a number of European Union (EU) policy areas: agriculture, soil protection, environment, agriculture, food security, energy, climate change. An online user survey has been carried out in order to assess the impact of the Interpolated Meteorological Datasets on research developments. More than 70% of the users have used the meteorological datasets for research purposes and more than 50% of the users have used those sources as main input for their models. The usefulness of the data scored more than 70% and it is interesting to note that around 25% of the users have published their scientific outputs based on the Interpolated Meteorological Datasets. Finally, the user feedback focuses mostly on improving the data distribution process as well as the visibility of the web platform.

  13. Saskatchewan Forest Fire Control Centre Surface Meteorological Data

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Funk, Barry; Strub, Richard

    2000-01-01

    The Saskatchewan Forest Fire Control Centre (SFFCC) provided surface meteorological data to BOREAS from its archive. This data set contains hourly surface meteorological data from 18 of the Meteorological stations located across Saskatchewan. Included in these data are parameters of date, time, temperature, relative humidity, wind direction, wind speed, and precipitation. Temporally, the data cover the period of May through September of 1994 and 1995. The data are provided in comma-delimited ASCII files, and are classified as AFM-Staff data. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  14. Evolutionary Forecast Engines for Solar Meteorology

    NASA Astrophysics Data System (ADS)

    Coimbra, C. F.

    2012-12-01

    A detailed comparison of non-stationary regression and stochastic learning methods based on k-Nearest Neighbor (kNN), Artificial Neural Networks (ANN) and Genetic Algorithm (GA) approaches is carried out in order to develop high-fidelity solar forecast engines for several time horizons of interest. A hybrid GA/ANN method emerges as the most robust stochastic learning candidate. The GA/ANN approach In general the following decisions need to be made when creating an ANN-based solar forecast model: the ANN architecture: number of layers, numbers of neurons per layer; the preprocessing scheme; the fraction and distribution between training and testing data, and the meteorological and radiometric inputs. ANNs are very well suited to handle multivariate forecasting models due to their overall flexibility and nonlinear pattern recognition abilities. However, the forecasting skill of ANNs depends on a new set of parameters to be optimized within the context of the forecast model, which is the selection of input variables that most directly impact the fidelity of the forecasts. In a data rich scenario where irradiation, meteorological, and cloud cover data are available, it is not always evident which variables to include in the model a priori. New variables can also arise from data preprocessing such as smoothing or spectral decomposition. One way to avoid time-consuming trial-and-error approaches that have limited chance to result in optimal ANN topology and input selection is to couple the ANN with some optimization algorithm that scans the solution space and "evolves" the ANN structure. Genetic Algorithms (GAs) are well suited for this task. Results and Discussion The models built upon the historical data of 2009 and 2010 are applied to the 2011 data without modifications or retraining. We consider 3 solar variability seasons or periods, which are subsets of the total error evaluation data set. The 3 periods are defined based on the solar variability study as: - a high

  15. Meteorological phenomena in Western classical orchestral music

    NASA Astrophysics Data System (ADS)

    Williams, P. D.; Aplin, K. L.

    2012-12-01

    The creative output of composers, writers, and artists is often influenced by their surroundings. To give a literary example, it has been claimed recently that some of the characters in Oliver Twist and A Christmas Carol were based on real-life people who lived near Charles Dickens in London. Of course, an important part of what we see and hear is not only the people with whom we interact, but also our geophysical surroundings. Of all the geophysical phenomena to influence us, the weather is arguably the most significant, because we are exposed to it directly and daily. The weather was a great source of inspiration for Monet, Constable, and Turner, who are known for their scientifically accurate paintings of the skies. But to what extent does weather inspire composers? The authors of this presentation, who are atmospheric scientists by day but amateur classical musicians by night, have been contemplating this question. We have built a systematic musical database, which has allowed us to catalogue and analyze the frequencies with which weather is depicted in a sample of classical orchestral music. The depictions vary from explicit mimicry using traditional and specialized orchestral instruments, through to subtle suggestions. We have found that composers are generally influenced by their own environment in the type of weather they choose to represent. As befits the national stereotype, British composers seem disproportionately keen to depict the UK's variable weather patterns and stormy coastline. Reference: Aplin KL and Williams PD (2011) Meteorological phenomena in Western classical orchestral music. Weather, 66(11), pp 300-306. doi:10.1002/wea.765

  16. EVALUATION OF METEOROLOGICAL ALERT CHAIN IN CASTILLA Y LEÓN (SPAIN): How can the meteorological risk managers help researchers?

    NASA Astrophysics Data System (ADS)

    López, Laura; Guerrero-Higueras, Ángel Manuel; Sánchez, José Luis; Matía, Pedro; Ortiz de Galisteo, José Pablo; Rodríguez, Vicente; Lorente, José Manuel; Merino, Andrés; Hermida, Lucía; García-Ortega, Eduardo; Fernández-Manso, Oscar

    2013-04-01

    Evaluating the meteorological alert chain, or, how information is transmitted from the meteorological forecasters to the final users, passing through risk managers, is a useful tool that benefits all the links of the chain, especially the meteorology researchers and forecasters. In fact, the risk managers can help significantly to improve meteorological forecasts in different ways. Firstly, by pointing out the most appropriate type of meteorological format, and its characteristics when representing the meteorological information, consequently improving the interpretation of the already-existing forecasts. Secondly, by pointing out the specific predictive needs in their workplaces related to the type of significant meteorological parameters, temporal or spatial range necessary, meteorological products "custom-made" for each type of risk manager, etc. In order to carry out an evaluation of the alert chain in Castilla y León, we opted for the creation of a Panel of Experts made up of personnel specialized in risk management (Responsible for Protection Civil, Responsible for Alert Services and Hydrological Planning of Hydrographical Confederations, Responsible for highway maintenance, and management of fires, fundamentally). In creating this panel, a total of twenty online questions were evaluated, and the majority of the questions were multiple choice or open-ended. Some of the results show how the risk managers think that it would be interesting, or very interesting, to carry out environmental educational campaigns about the meteorological risks in Castilla y León. Another result is the elevated importance that the risk managers provide to the observation data in real-time (real-time of wind, lightning, relative humidity, combined indices of risk of avalanches, snowslides, index of fires due to convective activity, etc.) Acknowledgements The authors would like to thank the Junta de Castilla y León for its financial support through the project LE220A11-2.

  17. Astronomical, physical, and meteorological parameters for planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Allison, Michael; Travis, Larry D.

    1986-01-01

    A newly compiled table of astronomical, physical, and meteorological parameters for planetary atmospheres is presented. Formulae and explanatory notes for their application and a complete listing of sources are also given.

  18. Meteorological data collection via ERTS-A data retransmission facilities

    NASA Technical Reports Server (NTRS)

    Vockeroth, R. E. (Principal Investigator); Robinson, C. E.

    1974-01-01

    The author has identified the following significant results. Two meteorological data acquisition systems were built to support hydrometeorological programs related to flow forecasting. Data errors were detected in the stream level formation; these errors were caused by sensor difficulties.

  19. Compendium of meteorology scientific issues of 1950 still outstanding

    NASA Technical Reports Server (NTRS)

    Vaughan, W. W.

    1986-01-01

    The Compendium of Meteorology was published in 1951 by the American Meteorological Society. A review was made of the Compendium of Meteorology to identify the studies and future needs which the authors expressed in their papers. The needs as seen by the authors are organized into sections and papers following the format of the Compendium of Meteorology. In some cases the needs they identified are as valid today as they were in 1951. In other cases one will easily be able to identify examples where significant progress has been made. It is left to the individual scientists and scientific program managers to assess whether significant progress has been made over the past thirty-five years on these outstanding scientific issues.

  20. A FEDERATED PARTNERSHIP FOR URBAN METEOROLOGICAL AND AIR QUALITY MODELING

    EPA Science Inventory

    Recently, applications of urban meteorological and air quality models have been performed at resolutions on the order of km grid sizes. This necessitated development and incorporation of high resolution landcover data and additional boundary layer parameters that serve to descri...

  1. Lightning Discharges to Aircraft and Associated Meteorological Conditions

    NASA Technical Reports Server (NTRS)

    Harrison, L P

    1946-01-01

    A summary is given of information on atmospheric electrical discharges to aircraft and associated meteorological conditions. Information is given that is designed to give a fairly comprehensive view of the underlying principles of meteorology and atmospheric electricity. Of special interest to pilots are lists of procedures of flight conduct and aircraft maintenance recommended foe avoiding or minimizing the hazards of disruptive electrical discharges and other severe conditions near thunderstorms.

  2. Possible relationships between solar activity and meteorological phenomena

    NASA Technical Reports Server (NTRS)

    Bandeen, W. R. (Editor); Maran, S. P. (Editor)

    1975-01-01

    A symposium was conducted in which the following questions were discussed: (1) the evidence concerning possible relationships between solar activity and meteorological phenomena; (2) plausible physical mechanisms to explain these relationships; and (3) kinds of critical measurements needed to determine the nature of solar/meteorological relationships and/or the mechanisms to explain them, and which of these measurements can be accomplished best from space.

  3. Minicomputer Capabilities Related to Meteorological Aspects of Emergency Response

    SciTech Connect

    Rarnsdell, J. V.; Athey, G. F.; Ballinger, M. Y.

    1982-02-01

    The purpose of this report is to provide the NRC staff involved in reviewing licensee emergency response plans with background information on the capabilities of minicomputer systems that are related to the collection and dissemination of meteorological infonmation. The treatment of meteorological information by organizations with existing emergency response capabilities is described, and the capabilities, reliability and availability of minicomputers and minicomputer systems are discussed.

  4. Tsunamis and meteorological tsunamis: similarities and differences

    NASA Astrophysics Data System (ADS)

    Rabinovich, A. B.; Monserrat, S.

    2003-04-01

    Destructive seiche oscillations occasionally generated in certain bays and inlets are mainly associated with two natural forcing phenomena: Seismic activity (tsunamis), and atmospheric disturbances (meteotsunamis). Despite their different origin, both types are modified and amplified by topography in a similar way and produce similar catastrophic effects in coastal areas. Due to these similarities, it is often difficult to distinguish between these two phenomena without knowing the exact source characteristics. Recognition and separation of these phenomena is important for the revision/improvement of existing tsunami catalogues but also to better understand the generation mechanism and mitigate their possible catastrophic effects. To investigate this problem and to compare seismic and meteorological tsunamis, we assembled a number of cases when both phenomena had been recorded at the same place. In particular, our findings included Alicante (Mediterranean coast of Spain), Malokurilsk and Krabovaya bays (Shikotan Island, Russia), and Tofino, Winter Harbour, Bamfield, Port Hardy, and Victoria (British Columbia, Canada). We also used the results of the LAST-97 hydrophysical experiment when eight bottom pressure stations were deployed on the shelf and in the inlets of Menorca Island (Western Meditterranean, Spain) and three precise microbarographs were working on the coast. Our analysis is based on the assumption that both tsunamis and meteotsunamis are formed by the combined effects of external forcing and topography. So, for different events recorded at the same site, the similarities are related to topography and the differences to the forcing. On the contrary, for the same event recorded at different stations, similarities are mainly associated with the forcing and the differences with specific local topographic features. Analysis of the spectral distributions and comparison with background noise enabled us to reconstruct the topographic transfer functions for all

  5. Comparative analysis of meteorological performance of coupled chemistry-meteorology models in the context of AQMEII phase 2

    EPA Science Inventory

    Air pollution simulations critically depend on the quality of the underlying meteorology. In phase 2 of the Air Quality Model Evaluation International Initiative (AQMEII-2), thirteen modeling groups from Europe and four groups from North America operating eight different regional...

  6. The relationship of meteorological patterns with changes in floristic richness along a large elevational gradient in a seasonally dry region of southern Mexico.

    PubMed

    Salas-Morales, Silvia H; Meave, Jorge A; Trejo, Irma

    2015-12-01

    Globally, climate is a fundamental driver of plant species' geographical distributions, yet we still lack a good understanding of climatic variation on tropical mountains and its consequences for elevational floristic patterns. In a seasonally dry region of southern Mexico, we analysed meteorological patterns along a large elevational gradient (0-3670 m a.s.l.) and examined their relationship with changes in floristic richness. Meteorological patterns were characterised using two data sources. First, climatic information was extracted from cartography and records from a few existing meteorological stations. Additionally, air temperature and humidity were recorded hourly during 1 year with data loggers, at sites representing 200-m elevation increments. Floristic information was extracted from a database containing 10,124 records of plant collections, and organized in 200-m elevational belts. Climatic charts distinguished three climate types along the gradient, all with marked rainfall seasonality, but these bore little correspondence with the information obtained with the data loggers. Mean annual air temperature decreased with increasing elevation (lapse rate of 0.542 °C 100 m(-1)). Thermal oscillation was minimum around 1400 m and increased towards both extremes of the gradient. Relative humidity opposed this pattern, with maxima between 800 and 1800 m, decreasing towards the highest elevations. An analysis of temperature frequency distributions revealed meteorological features undetectable from the annual or monthly means of this variable; despite an overall gradual transition of the proportions of time recorded at different temperatures, some changes did not conform to this pattern. The first discontinuity occurred between 1000-1200 m, where dominant temperatures shifted abruptly; also noticeable was an abrupt increase of the proportion of time elapsed at 0.1-10 °C between 2400 and 2600 m. Air temperature appears to be the most influential climatic factor

  7. The relationship of meteorological patterns with changes in floristic richness along a large elevational gradient in a seasonally dry region of southern Mexico

    NASA Astrophysics Data System (ADS)

    Salas-Morales, Silvia H.; Meave, Jorge A.; Trejo, Irma

    2015-12-01

    Globally, climate is a fundamental driver of plant species' geographical distributions, yet we still lack a good understanding of climatic variation on tropical mountains and its consequences for elevational floristic patterns. In a seasonally dry region of southern Mexico, we analysed meteorological patterns along a large elevational gradient (0-3670 m a.s.l.) and examined their relationship with changes in floristic richness. Meteorological patterns were characterised using two data sources. First, climatic information was extracted from cartography and records from a few existing meteorological stations. Additionally, air temperature and humidity were recorded hourly during 1 year with data loggers, at sites representing 200-m elevation increments. Floristic information was extracted from a database containing 10,124 records of plant collections, and organized in 200-m elevational belts. Climatic charts distinguished three climate types along the gradient, all with marked rainfall seasonality, but these bore little correspondence with the information obtained with the data loggers. Mean annual air temperature decreased with increasing elevation (lapse rate of 0.542 °C 100 m-1). Thermal oscillation was minimum around 1400 m and increased towards both extremes of the gradient. Relative humidity opposed this pattern, with maxima between 800 and 1800 m, decreasing towards the highest elevations. An analysis of temperature frequency distributions revealed meteorological features undetectable from the annual or monthly means of this variable; despite an overall gradual transition of the proportions of time recorded at different temperatures, some changes did not conform to this pattern. The first discontinuity occurred between 1000-1200 m, where dominant temperatures shifted abruptly; also noticeable was an abrupt increase of the proportion of time elapsed at 0.1-10 °C between 2400 and 2600 m. Air temperature appears to be the most influential climatic factor

  8. 47 CFR 27.1135 - Protection of non-Federal Government Meteorological-Satellite operations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Meteorological-Satellite operations. 27.1135 Section 27.1135 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... Operations § 27.1135 Protection of non-Federal Government Meteorological-Satellite operations. AWS licensees... to meteorological-satellite earth receivers operating in the Meteorological-Satellite Service in...

  9. Coupling between meteorological factors and ambient aerosol load

    NASA Astrophysics Data System (ADS)

    Tandon, Ankit; Yadav, Sudesh; Attri, Arun K.

    2010-03-01

    The coarser (CPM) and respirable (RPM) fractions of aerosol loads collected in a time sequence, during the onset of winter season in Delhi region, were subjected to Principal Component Analysis (15 elemental variables, 39 samples); the absolute mass contributed by each identified source to the CPM and RPM was quantified by using Absolute Principal Component Score (APCS) and Positive Matrix Factorization (PMF) method. Interestingly, the mass contributed by the local crustal source (material) to both fractions manifested undulating periodic behavior, a dominating harmonic corresponding to 24-h period was detected by using Discrete Fourier Transform (DFT). The corresponding harmonics, of varying strengths, were also detected in the recorded meteorological factors: Planetary Boundary Layer (PBL), Surface Level Temperature (T), Surface Level Relative Humidity (RH) and Wind Speed (WS). The analysis of the respective harmonic strength within the CPM, RPM, and meteorological factors suggested that the undulation observed in both size fractions of aerosol load from the local crust was affected by the meteorological factors. The large proportion of undulating loads (CPM and RPM), explained by the dominating harmonic, was fully accounted for by the empirical relation involving the discrete coupling parameters, and the recorded meteorological factors: PBL, T, RH and WS. The analysis suggests that the magnitude and the direction ('positive' load increase and 'negative' the reverse) of coupled meteorological factors'(s) effect on ambient CPM, RPM load is determined by the phase difference between the harmonic explaining the aerosol fraction's load and the corresponding harmonic present in the respective meteorological factor. The absolute mass contributions arising from the identified sources (APCS and PMF) allowed us to calculate the baseline ambient concentrations of undulating CPM and RPM loads, in the region of this study, affected by meteorological factors only.

  10. Monthly Report of the Meteorological Satellite Center: June 2001

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The CD-ROM concerning the June 2001 Monthly Report of the Meteorological Satellite Center (MSC) contains the observation data derived from the Geostationary Meteorological Satellite (GMS) of Japan and the Polar Orbital Meteorological Satellites operated by NOAA. The CD-ROM contains the following observation data: Full Disk Earth's Cloud Image; Cloud Image of Japan and its vicinity; Cloud Amount; Sea Surface Temperature; Cloud Motion Wind; Water Vapor Motion Wind; Equivalent Blackbody Temperature; OLR (Out-going Longwave Radiation), Solar Radiation; Snow and Ice Index; Orbit Data; Attitude Data; VISSR Image Data Catalog (Cartridge Magnetic Tape (CMT), Micro Film); TOVS (TIROS Operational Vertical Sounder) Vertical Profile of Temperature and Precipitable Water; and TOVS Total Ozone Amount.

  11. MOM: A meteorological data checking expert system in CLIPS

    NASA Technical Reports Server (NTRS)

    Odonnell, Richard

    1990-01-01

    Meteorologists have long faced the problem of verifying the data they use. Experience shows that there is a sizable number of errors in the data reported by meteorological observers. This is unacceptable for computer forecast models, which depend on accurate data for accurate results. Most errors that occur in meteorological data are obvious to the meteorologist, but time constraints prevent hand-checking. For this reason, it is necessary to have a 'front end' to the computer model to ensure the accuracy of input. Various approaches to automatic data quality control have been developed by several groups. MOM is a rule-based system implemented in CLIPS and utilizing 'consistency checks' and 'range checks'. The system is generic in the sense that it knows some meteorological principles, regardless of specific station characteristics. Specific constraints kept as CLIPS facts in a separate file provide for system flexibility. Preliminary results show that the expert system has detected some inconsistencies not noticed by a local expert.

  12. Tenth AMS Conference on Satellite Meteorology and Oceanography

    NASA Technical Reports Server (NTRS)

    Ferraro, R.; Colton, M.; Deblonde, G.; Jedlovec, G.; Lee, T.

    2000-01-01

    The American Meteorological Society held its Tenth Conference on Satellite Meteorology and Oceanography in conjunction with the 80th Annual Meeting in Long Beach, California. For the second consecutive conference, a format that consisted of primarily posters, complemented by invited theme oriented oral presentations, and panel discussions on various aspects on satellite remote sensing were utilized. Joint sessions were held with the Second Conference on Artificial Intelligence, the Eleventh Conference on Middle Atmosphere, and the Eleventh symposium on Global Change Studies. In total, there were 23 oral presentations, 170 poster presentations, and four panel discussions. Over 450 people representing a wide spectrum of the society attended one or more of the sessions in the five-day meeting. The program for the Tenth Conference on Satellite Meteorology and Oceanography can viewed in the October 1999 issue of the Bulletin.

  13. Some problems in coupling solar activity to meteorological phenomena

    NASA Technical Reports Server (NTRS)

    Dessler, A. J.

    1975-01-01

    The development of a theory of coupling of solar activity to meteorological phenomena is hindered by the difficulties of devising a mechanism that can modify the behavior of the troposphere while employing only a negligible amount of energy compared with the energy necessary to drive the normal meteorological system, and determining how such a mechanism can effectively couple some relevant magnetospheric process into the troposphere in such a way as to influence the weather. A clue to the nature of the interaction between the weather and solar activity might be provided by the fact that most solar activity undergoes a definite 11-yr cycle, and meteorological phenomena undergo either no closely correlated variation, an 11-yr variation, or a 22-yr variation.

  14. Some problems in coupling solar activity to meteorological phenomena

    NASA Technical Reports Server (NTRS)

    Dessler, A. J.

    1974-01-01

    The development of a theory of coupling of solar activity to meteorological phenomena has to date foundered on the two difficulties of (1) devising a mechanism that can modify the behavior of the troposphere while employing only a negligible amount of energy compared with the energy necessary to drive the normal meteorological system; and (2) determining how such a mechanism can effectively couple some relevant magnetospheric process into the troposphere in such a way as to influence the weather. A clue to the nature of the interaction between the weather and solar activity might be provided by the fact that most solar activity undergoes a definite 11-year cycle, while meteorological phenomena undergo either no closely correlated variation, or an 11-year variation, or a 22-year variation.

  15. Technical Work Plan For: Meteorological Monitoring Data Analysis

    SciTech Connect

    R. Green

    2006-02-06

    The meteorological monitoring and analysis program has five objectives. (1) Acquire qualified meteorological data from YMP meteorological monitoring network using appropriate controls on measuring and test equipment. Because this activity is monitoring (i.e., recording naturally occurring events) pre-test predictions are not applicable. All work will be completed in accordance with U.S. Department of Energy (DOE) Office of Repository Development (ORD) administrative procedures and Bechtel SAIC Co., LLC (BSC) line procedures. The meteorological monitoring program includes measuring and test equipment calibrations, operational checks, preventive and corrective maintenance, and data collection. (2) Process the raw monitoring data collected in the field and submit technically reviewed, traceable data to the Technical Data Management System (TDMS) and the Records Processing Center. (3) Develop analyses or calculations to provide information to data requesters and provide data sets as requested. (4) Provide precipitation amounts to Site Operations to support requirements to perform inspections in the Stormwater Pollution Prevention Plan (implemented in LP-OM-050Q-BSC) following storm events of greater than 0.5 inches. The program also provides meteorological data during extreme weather conditions (e.g., high winds, rainstorms, etc.) to support decisions regarding worker safety. (5) Collect samples of precipitation for chemical and isotopic analysis by the United States Geological Survey (USGS). The BSC ES&H Environmental Compliance organization is responsible for performing this work. Data from calendar-year periods are submitted to the TDMS to provide YMP users with qualified meteorological data for scientific modeling and analyses, engineering designs of surface facilities, performance assessment analyses, and operational safety issues.

  16. Cal Tech's Program in Meteorology: 1933-1948.

    NASA Astrophysics Data System (ADS)

    Lewis, J. M.

    1994-01-01

    The California Institute of Technology (Cal Tech) established a course of study in meteorology in 1933. It was intimately tied to the upsurge of activity in commercial and military aviation that occurred in the period between the world wars. The tragic crash of the airship U.S.S. Akron provided the stimulus for including meteorology as a subprogram in the aeronautics department at Cal Tech. Thoodore von K´rm´n, head of the department and director of the school's Guggenheim Aeronautics Laboratory, masterminded the design of the program and geared it toward the solution of practical problems using the principles of dynamic meteorology. One of his doctoral students, Irving Krick, was groomed to develop the program.Robert Millikan, head of the institute, fostered an approach to science that encouraged the faculty to consuit and work with industry. In this environment, Krick established links with aviation, motion picture studios, and public utilities that would set the stage for the research thrust in meteorology. The program was primarily designed for training at the master' degree level, and a significant number of the graduates became entrepreneurs in meteorology. Based on letters of reminiscence and oral histories from some of these consulting meteorologists, it has been concluded that the Millikan/von K´rm´n philosophy of science played an important part in directing the meteorologists into the private sector.Following World War II, Lee DuBridge replaced Millikan as head of the institute. DuBridge's efforts were directed toward making the small elite school scientifically competitive in the changed conditions of a postwar world. In this climate, the merging of private business with academic work fell into disfavor. Without champions such as Millikan and von K´rm´n,the meteorology program was unable to survive.

  17. Making OGC standards work - interoperability testing between meteorological web services

    NASA Astrophysics Data System (ADS)

    Siemen, Stephan; Little, Chris; Voidrot, Marie-Françoise

    2015-04-01

    The Meteorology and Oceanography Domain Working Group (Met Ocean DWG) is a community orientated working group of the Open Geospatial Consortium (OGC). The group does not directly revise OGC standards, but rather enables collaboration and communication between groups with meteorological and oceanographic interests. The Met Ocean DWG maintains a list of topics of interest to the meteorological and oceanographic communities for discussion, prioritises activities, defining feedback to the OGC Standards Working Groups (SWG), and performing interoperability experiments. One of the activities of the MetOcean DWG is the definition of Best Practices documents for common OGC standards, such as WMS and WCS. This is necessary since meteorological data has additional complexities in time, elevation and multi models runs including ensembles. To guarantee interoperability in practice it is important to test each other systems and ensure standards are implemented correctly, but also make recommendations to the DWG on the establishment of Best Practices guides. The European Working Group on Operational meteorological Workstations (EGOWS) was founded in 1990 as an informal forum for people working in the development field of operational meteorological workstations. The annual EGOWS meeting offers an excellent platform for exchanging information and furthering co-operation among the experts from NMS's, ECMWF and other institutes in the work with OGC standards. The presentation will give an update of the testing, which was being done during the June 2014 EGOWS meeting in Oslo and what has happen since. The presenter will also give an overview of the online resources to follow the tests and how interested parties can contribute to future interoperability tests.

  18. Surface and Tower Meteorological Instrumentation at NSA Handbook - January 2006

    SciTech Connect

    MT Ritsche

    2006-01-30

    The Surface and Tower Meteorological Instrumentation at Atqasuk (METTWR2H) uses mainly conventional in situ sensors to measure wind speed, wind direction, air temperature, dew point and humidity mounted on a 10-m tower. It also obtains barometric pressure, visibility, and precipitation data from sensors at or near the base of the tower. In addition, a Chilled Mirror Hygrometer is located at 1 m for comparison purposes. Temperature and relative humidity probes are mounted at 2 m and 5 m on the tower. For more information, see the Surface and Tower Meteorological Instrumentation at Atqasuk Handbook.

  19. High-resolution satellite imagery for mesoscale meteorological studies

    NASA Technical Reports Server (NTRS)

    Johnson, David B.; Flament, Pierre; Bernstein, Robert L.

    1994-01-01

    In this article high-resolution satellite imagery from a variety of meteorological and environmental satellites is compared. Digital datasets from Geostationary Operational Environmental Satellite (GOES), National Oceanic and Atmospheric Administration (NOAA), Defense Meteorological Satellite Program (DMSP), Landsat, and Satellite Pour l'Observation de la Terre (SPOT) satellites were archived as part of the 1990 Hawaiian Rainband Project (HaRP) and form the basis of the comparisons. During HaRP, GOES geostationary satellite coverage was marginal, so the main emphasis is on the polar-orbiting satellites.

  20. Atmospheric measurements on Mars - The Viking meteorology experiment

    NASA Technical Reports Server (NTRS)

    Chamberlain, T. E.; Cole, H. L.; Dutton, R. G.; Greene, G. C.; Tillman, J. E.

    1976-01-01

    The Viking meteorology experiment is one of nine experiments to be carried out on the surface of Mars by each of two Viking Landers positioned at different latitudes and longitudes in the Northern Hemisphere. The meteorology experiment will measure pressure, temperature, wind speed, and wind direction at 1.5-hr intervals throughout the Martian day. The duration of each measurement period, the interval between data samples for a measurement period, and the time at which the measurement period is started will be varied throughout the mission. The scientific investigation and the sensors and electronics used for making the atmospheric measurement are discussed.

  1. A review of the meteorological parameters which affect aerial application

    NASA Technical Reports Server (NTRS)

    Christensen, L. S.; Frost, W.

    1979-01-01

    The ambient wind field and temperature gradient were found to be the most important parameters. Investigation results indicated that the majority of meteorological parameters affecting dispersion were interdependent and the exact mechanism by which these factors influence the particle dispersion was largely unknown. The types and approximately ranges of instrumented capabilities for a systematic study of the significant meteorological parameters influencing aerial applications were defined. Current mathematical dispersion models were also briefly reviewed. Unfortunately, a rigorous dispersion model which could be applied to aerial application was not available.

  2. Abstraction the public from scientific - applied meteorological-climatologic data

    NASA Astrophysics Data System (ADS)

    Trajanoska, L.

    2010-09-01

    Mathematical and meteorological statistic processing of meteorological-climatologic data, which includes assessment of the exactness, level of confidence of the average and extreme values, frequencies (probabilities) of the occurrence of each meteorological phenomenon and element e.t.c. helps to describe the impacts climate may have on different social and economic activities (transportation, heat& power generation), as well as on human health. Having in mind the new technology and the commercial world, during the work with meteorological-climatologic data we have meet many different challenges. Priority in all of this is the quality of the meteorological-climatologic set of data. First, we need compatible modern, sophisticated measurement and informatics solution for data. Results of this measurement through applied processing and analyze is the second branch which is very important also. Should we all (country) need that? Today we have many unpleasant events connected with meteorology, many questions which are not answered and all of this has too long lasting. We must give the answers and solve the real and basic issue. In this paper the data issue will be presented. We have too much of data but so little of real and quality applied of them, Why? There is a data for: -public applied -for jurisdiction needs -for getting fast decision-solutions (meteorological-dangerous phenomenon's) -for getting decisions for long-lasting plans -for explore in different sphere of human living So, it is very important for what kind of data we are talking. Does the data we are talking are with public or scientific-applied character? So,we have two groups. The first group which work with the data direct from the measurement place and instrument. They are store a quality data base and are on extra help to the journalists, medical workers, human civil engineers, electromechanical engineers, agro meteorological and forestry engineer e.g. The second group do work with all scientific

  3. 946 nm Diode Pumped Laser Produces 100mJ

    NASA Technical Reports Server (NTRS)

    Axenson, Theresa J.; Barnes, Norman P.; Reichle, Donald J., Jr.

    2000-01-01

    An innovative approach to obtaining high energy at 946 nm has yielded 101 mJ of laser energy with an optical-to-optical slope efficiency of 24.5%. A single gain module resonator was evaluated, yielding a maximum output energy of 50 mJ. In order to obtain higher energy a second gain module was incorporated into the resonator. This innovative approach produced un-surprised output energy of 101 mJ. This is of utmost importance since it demonstrates that the laser output energy scales directly with the number of gain modules. Therefore, higher energies can be realized by simply increasing the number of gain modules within the laser oscillator. The laser resonator incorporates two gain modules into a folded "M-shaped" resonator, allowing a quadruple pass gain within each rod. Each of these modules consists of a diode (stack of 30 microlensed 100 Watt diode array bars, each with its own fiber lens) end-pumping a Nd:YAG laser rod. The diode output is collected by a lens duct, which focuses the energy into a 2 mm diameter flat to flat octagonal pump area of the laser crystal. Special coatings have been developed to mitigate energy storage problems, including parasitic lasing and amplified spontaneous emission (ASE), and encourage the resonator to operate at the lower gain transition at 946 nm.

  4. Ultra low wind resistance enclosure for a 100-m telescope

    NASA Astrophysics Data System (ADS)

    Ditto, Thomas D.; Ritter, Joseph M.

    2008-07-01

    We discuss a transmission primary objective grating (POG) telescope that is nearly flat to the ground with its secondary components buried below ground in a protected environment that enjoys a controlled atmosphere. Temperature gradients can be held steady by sealing this enclosure. End-to-end ray paths need not be interrupted by spiders or other structural support elements. Unlike mirror and lens telescopes, this layout is intrinsically off-axis. Light diffracted from a POG at a grazing angle can be collected a few meters below the POG, and the substructures do not require a deep excavation, as would be required for buried on-axis mirrors such as a zenith tube. The POG principle can take advantage of the rotation of the earth to acquire spectra sequentially, so active tilt and rotate axes are not necessary during observations. The POG aperture is extensible as a ribbon optic to kilometer scale at a linear increase in cost, as compared to other choices where infrastructure grows as the cube of the telescope size. The principle of operation was proven in miniature during bench tests that show high resolution spectra can be obtained at angular resolutions equal to seeing. Mathematical models of the underlying relationships show that flux collection increases with increased angles of grazing exodus even as efficiency decreases. Zemax models show a 30° field-of-view and the capacity to take spectra of all sources within that very wide field-of-view. The method lends itself to large apertures, because it is tolerant of POG surface unevenness.

  5. From GNSS and meteorological data to NRT 4D water vapour distribution - GNSS meteorology activities at WUELS

    NASA Astrophysics Data System (ADS)

    Bosy, Jaroslaw; Kaplon, Jan; Rohm, Witold; Sierny, Jan; Wilgan, Karina; Hadas, Tomasz; Hordyniec, Pawel

    2014-05-01

    The GNSS and Meteo group at Wroclaw University of Environmental and Life Sciences (WUELS), Poland is continuously working on GNSS meteorology since 2010. Currently group maintain real-time (RT) service collecting GNSS and meteorological data and near real-time (NRT) services for estimation of Zenith Troposphere Delay (ZTD), Zenith Hydrostatic Delay (ZHD), Integrated Water Vapour (IWV) and GNSS tomography over the territory of Poland. Data are obtained with high resolution from EUREF Permanent Network (EPN) stations and Ground Base Augmentation System (GBAS) called ASG-EUPOS (www.asgeupos.pl). The GNSS data are available from 124 reference stations located in Poland and neighbour countries, with the average 70km distance between stations. The ground meteorological observations in the area of Poland and neighbour countries are available from: ASG-EUPOS stations included in EUREF Permanent Network (EPN), airport meteorological stations (METAR messages stations) and stations managed by national Institute of Meteorology and Water Management (SYNOP messages stations). The first part of the paper presents the methodology of ASG-EUPOS GNSS data processing for NRT ZTD and ZTD horizontal gradients estimation in double-differenced mode (under Bernese GNSS Software V5.0) as well as new results from PPP mode (under Bernese GNSS Software V5.2) and their validation with respect to Rapid and Final troposphere products. The second part is describing the quality assessment of meteorological parameters interpolation methods for determination of ZHD at GNSS sites performed on GNSS stations equipped with meteorological sensors. The third part concerns on the comparisons of ZTD from GNSS data and meteorological parameters from SYNOP stations with data from COAMPS numerical weather prediction system (NWP) and IWV calculation. The fourth part presents the development of GNSS tomography model TOMO2. The last part describes methods of above products validation and visualization over the

  6. Consistent height transformations between geodetic and meteorologic reference systems

    NASA Astrophysics Data System (ADS)

    Hobiger, T.; Boehm, J.; Boy, J.; Foster, J. H.; Gegout, P.; Haas, R.; Ichikawa, R.; MacMillan, D. S.; Ming, S.; Niell, A. E.; Nievinski, F. G.; Nordman, M.; Salstein, D. A.; Santos, M. C.; Schindelegger, M.; van Dam, T. M.; Vedel, H.; Wickert, J.; Zus, F.

    2012-12-01

    Numerical weather models (NWMs) contain valuable information that is relevant for removing the environmental signal from geodetic data. Currently no clear documentation exists regarding how to deal with the coordinate systems when carrying out the calculations in a geodetic reference frame. A "conventional" transformation model (available also as source code) would enable geodesists to handle such data easily and allow them to use data from different meteorologic data-sets. In addition, geodetic products such as GNSS derived zenith total delays are being assimilated into NWMs. Thus, the transformations that convert the meteorological data into a geodetic reference frame should also support the use of geodetic data in meteorological models. The IAG Intercomission Committee on Theory - Special Study Group 12 "Coordinate systems in numerical weather models" has been set-up to 1) deal with the differences between geodetic and meteorologic reference systems and 2) provide consistent models for transforming between the two systems. We present the first product from this effort: a conventional height transformation that transforms between ellipsoidal heights and the various height systems used in NWMs. We will discuss the choice of the gravity model, which is crucial for such a transformation, and we will present the final model that the study group believes best describes the transformation in an unambiguous and bi-directional sense.

  7. A meteorologically driven grain sorghum stress indicator model

    NASA Technical Reports Server (NTRS)

    Taylor, T. W.; Ravet, F. W. (Principal Investigator)

    1981-01-01

    A grain sorghum soil moisture and temperature stress model is described. It was developed to serve as a meteorological data filter to alert commodity analysts to potential stress conditions and crop phenology in selected grain sorghum production areas. The model also identifies optimum conditions on a daily basis and planting/harvest problems associated with poor tractability.

  8. Meteorological factors and dengue fever transmission in South Taiwan

    NASA Astrophysics Data System (ADS)

    Chien, Lung-Chang; Lin, Yuan-Chien; Cheng, Ming-Hung; Yu, Hwa-Lung

    2013-04-01

    The variations in meteorological conditions induced by climate change causes the diffusion pattern of infectious disease and serious epidemic situation. The objective of this study is to investigate the impact of meteorological variables to the temporal variation of dengue fever epidemic in weekly basis in south Taiwan. Several extreme and average index of meteorological variables, i.e. temperature and humidity, were used for this analysis, including averaged, maximum and minimum temperature, and average rainfall, maximum 1-hr rainfall, and maximum 24-hr rainfall. This study applies the distributed lag nonlinear model (DLNM) to reveal the significant meteorological variables and their temporal lag effects to the dengue fever epidemic by analyzing the dengue fever records from 1998-2011. Results show that the weekly minimum temperature (minT) and 1-hr maximum rainfall (maxR) are significantly important to the dengue fever spread. Among them, once minT is higher than 20°C, the relative risk of dengue fever of nine-fourteen week later will be significantly elevated. On the other hand, the incidences of maxR higher than 80mm can also increase the relative risk of dengue fever occurrences around nine-fourteen weeks afterwards.

  9. Design of extensible meteorological data acquisition system based on FPGA

    NASA Astrophysics Data System (ADS)

    Zhang, Wen; Liu, Yin-hua; Zhang, Hui-jun; Li, Xiao-hui

    2015-02-01

    In order to compensate the tropospheric refraction error generated in the process of satellite navigation and positioning. Temperature, humidity and air pressure had to be used in concerned models to calculate the value of this error. While FPGA XC6SLX16 was used as the core processor, the integrated silicon pressure sensor MPX4115A and digital temperature-humidity sensor SHT75 are used as the basic meteorological parameter detection devices. The core processer was used to control the real-time sampling of ADC AD7608 and to acquire the serial output data of SHT75. The data was stored in the BRAM of XC6SLX16 and used to generate standard meteorological parameters in NEMA format. The whole design was based on Altium hardware platform and ISE software platform. The system was described in the VHDL language and schematic diagram to realize the correct detection of temperature, humidity, air pressure. The 8-channel synchronous sampling characteristics of AD7608 and programmable external resources of FPGA laid the foundation for the increasing of analog or digital meteorological element signal. The designed meteorological data acquisition system featured low cost, high performance, multiple expansions.

  10. Evaluation of meteorological and epidemiological characteristics of fatal pulmonary embolism

    NASA Astrophysics Data System (ADS)

    Törő, Klára; Pongrácz, Rita; Bartholy, Judit; Váradi-T, Aletta; Marcsa, Boglárka; Szilágyi, Brigitta; Lovas, Attila; Dunay, György; Sótonyi, Péter

    2016-03-01

    The objective of the present study was to identify risk factors among epidemiological factors and meteorological conditions in connection with fatal pulmonary embolism. Information was collected from forensic autopsy records in sudden unexpected death cases where pulmonary embolism was the exact cause of death between 2001 and 2010 in Budapest. Meteorological parameters were detected during the investigated period. Gender, age, manner of death, cause of death, place of death, post-mortem pathomorphological changes and daily meteorological conditions (i.e. daily mean temperature and atmospheric pressure) were examined. We detected that the number of registered pulmonary embolism (No 467, 211 male) follows power law in time regardless of the manner of death. We first described that the number of registered fatal pulmonary embolism up to the nth day can be expressed as Y( n) = α ṡ n β where Y denotes the number of fatal pulmonary embolisms up to the nth day and α > 0 and β > 1 are model parameters. We found that there is a definite link between the cold temperature and the increasing incidence of fatal pulmonary embolism. Cold temperature and the change of air pressure appear to be predisposing factors for fatal pulmonary embolism. Meteorological parameters should have provided additional information about the predisposing factors of thromboembolism.

  11. Workshop on Satellite Meteorology. Part 1; Satellite and Their Data

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The Workshop on Satellite Meteorology is co-sponsored by the Cooperative Institute for Research in the Atmosphere (CIRA) at Colorado State University and the American Meteorlogical Society's Committee on Meteorological Aspects of Aerospace Systems. The workshop covers uses of satellite data in atmospheric science. It provides state-of-the-art information to those in Universities, research groups, and other users. One area of primary focus is to provide source material to university personnel for developing and augmenting courses in satellite meteorology and the atmospheric sciences. The items in the program include information on meteorological satellites and data sources, uses of satellite imagery for all scales of weather analysis and forecasting, uses of sounding data and other radiance information and research opportunities on interactive systems. Each session is presented by a group of experts in the field and includes an open discussion of the state-of-the-art and promising areas for future development. This pre-print volume is one of three parts on the workshop. The three parts are: PART I. Satellites and Their Data; PART II. Satellite Image Analysis and Interpretation; PART III. Satellite Soundings and Their Uses.

  12. Simulation of meteorological satellite (METSAT) data using LANDSAT data

    NASA Technical Reports Server (NTRS)

    Austin, W. W.; Ryland, W. E.

    1983-01-01

    The information content which can be expected from the advanced very high resolution radiometer system, AVHRR, on the NOAA-6 satellite was assessed, and systematic techniques of data interpretation for use with meteorological satellite data were defined. In-house data from LANDSAT 2 and 3 were used to simulate the spatial, spectral, and sampling methods of the NOAA-6 satellite data.

  13. The impact of meteorology on ozone in Houston

    SciTech Connect

    Eder, B.K.; Davis, J.M.; Nychka, D.

    1997-12-31

    This paper compares the results from both a one-stage hierarchical clustering technique (average linkage) and a two-stage technique (average linkage then k-means) as part of an objective meteorological Classification scheme designed to better elucidate ozone`s dependence on meteorology in the Houston, Texas, area. When applied to twelve years of meteorological data (1981-1992), each technique identified seven statistically distinct meteorological regimes, the majority of which exhibited significantly different daily 1-hour maximum ozone (O{sub 3}) concentrations. While both clustering approaches proved successful, the two-stage approach did appear superior in terms of better segregation of the mean O{sub 3}, concentrations. Both approaches indicated that the largest mean daily one-hour maximum concentrations are associated with migrating anticyclones and not with the quasi-permanent Bermuda High that often dominates the southeastern United States during the summer. As a result, maximum ozone concentrations are just as likely during the months of April, May, September and October as they are during the summer months. These findings support and help explain the unique O{sub 3}, climatology experienced by the Houston area.

  14. Modern colour display and processing system for meteorological radars

    NASA Astrophysics Data System (ADS)

    Cunningham, N. A.

    1981-02-01

    The paper describes a color display and data processing system for use on conventional weather radars. It also discusses aspects of the meteorological echo characteristics, the implications on data processing equipment, and the implementation adopted in the Plessey Colourscan equipment to meet the requirements for quantitative analysis and storm warning applications.

  15. Impact of inherent meteorology uncertainty on air quality ...

    EPA Pesticide Factsheets

    It is well established that there are a number of different classifications and sources of uncertainties in environmental modeling systems. Air quality models rely on two key inputs, namely, meteorology and emissions. When using air quality models for decision making, it is important to understand how uncertainties in these inputs affect the simulated concentrations. Ensembles are one method to explore how uncertainty in meteorology affects air pollution concentrations. Most studies explore this uncertainty by running different meteorological models or the same model with different physics options and in some cases combinations of different meteorological and air quality models. While these have been shown to be useful techniques in some cases, we present a technique that leverages the initial condition perturbations of a weather forecast ensemble, namely, the Short-Range Ensemble Forecast system to drive the four-dimensional data assimilation in the Weather Research and Forecasting (WRF)-Community Multiscale Air Quality (CMAQ) model with a key focus being the response of ozone chemistry and transport. Results confirm that a sizable spread in WRF solutions, including common weather variables of temperature, wind, boundary layer depth, clouds, and radiation, can cause a relatively large range of ozone-mixing ratios. Pollutant transport can be altered by hundreds of kilometers over several days. Ozone-mixing ratios of the ensemble can vary as much as 10–20 ppb

  16. Meteorological and constituent data for January and February 1981

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Balloon data consisting of a plot showing the mixing ratio of ozone partial pressure in micromillibors and temperature in degrees centigrade versus pressure altitude in millibars is presented. An accompanying tabulation of meteorological and constituent data is also presented. The total overburden was aquired by Dobson Spectrophotometer 72.

  17. Meteorology--An Interdisciplinary Base for Science Learning.

    ERIC Educational Resources Information Center

    Howell, David C.

    1980-01-01

    Described is a freshman science program at Deerfield Academy (Deerfield, Mass.) in meteorology, designed as the first part of a three-year unified science sequence. Merits of the course, in which particular emphasis is placed on observation skills and making predictions, are enumerated. (CS)

  18. Applied Meteorology Unit (AMU) Quarterly Report First Quarter FY-04

    NASA Technical Reports Server (NTRS)

    Bauman, William; Wheeler, Mark; Labert, Winifred; Jonathan Case; Short, David

    2004-01-01

    This report summarizes the Applied Meteorology Unit (AMU) activities for the First Quarter of Fiscal Year 2004 (October - December 2003). Tasks reviewed are: (1) Objective Lightning Probability Forecast, (2) Mesonet Temperature and Wind Climatology, (3) Severe Weather Forecast Decision Aid and (4) Anvil Transparency Relationship to Radar Reflectivity

  19. Weather or Not To Teach Junior High Meteorology.

    ERIC Educational Resources Information Center

    Knorr, Thomas P.

    1984-01-01

    Presents a technique for teaching meteorology allowing students to observe and analyze consecutive weather maps and relate local conditions; a model illustrating the three-dimensional nature of the atmosphere is employed. Instructional methods based on studies of daily weather maps to trace systems sweeping across the United States are discussed.…

  20. Techniques for Improved Retrospective Fine-scale Meteorology

    EPA Science Inventory

    Pleim-Xiu Land-Surface model (PX LSM) was developed for retrospective meteorological simulations to drive chemical transport models. One of the key features of the PX LSM is the indirect soil moisture and temperature nudging. The idea is to provide a three hourly 2-m temperature ...

  1. Meteorological support for space operations: Review and recommendations

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The current meteorological support provided to NASA by NOAA, Air Weather Service, and other contractors is reviewed and suggestions are offered for its improvement. These recommendations include improvement in NASA's internal management organizational structure that would accommodate continued improvement in operational weather support, installation of new observing systems, improvement in analysis and forecasting procedures, and the establishment of an Applied Research and Forecasting Facility.

  2. Modelling the meteorological forest fire niche in heterogeneous pyrologic conditions.

    PubMed

    De Angelis, Antonella; Ricotta, Carlo; Conedera, Marco; Pezzatti, Gianni Boris

    2015-01-01

    Fire regimes are strongly related to weather conditions that directly and indirectly influence fire ignition and propagation. Identifying the most important meteorological fire drivers is thus fundamental for daily fire risk forecasting. In this context, several fire weather indices have been developed focussing mainly on fire-related local weather conditions and fuel characteristics. The specificity of the conditions for which fire danger indices are developed makes its direct transfer and applicability problematic in different areas or with other fuel types. In this paper we used the low-to-intermediate fire-prone region of Canton Ticino as a case study to develop a new daily fire danger index by implementing a niche modelling approach (Maxent). In order to identify the most suitable weather conditions for fires, different combinations of input variables were tested (meteorological variables, existing fire danger indices or a combination of both). Our findings demonstrate that such combinations of input variables increase the predictive power of the resulting index and surprisingly even using meteorological variables only allows similar or better performances than using the complex Canadian Fire Weather Index (FWI). Furthermore, the niche modelling approach based on Maxent resulted in slightly improved model performance and in a reduced number of selected variables with respect to the classical logistic approach. Factors influencing final model robustness were the number of fire events considered and the specificity of the meteorological conditions leading to fire ignition.

  3. Impact of inherent meteorology uncertainty on air quality model predictions

    EPA Science Inventory

    It is well established that there are a number of different classifications and sources of uncertainties in environmental modeling systems. Air quality models rely on two key inputs, namely, meteorology and emissions. When using air quality models for decision making, it is impor...

  4. Modelling the Meteorological Forest Fire Niche in Heterogeneous Pyrologic Conditions

    PubMed Central

    De Angelis, Antonella; Ricotta, Carlo; Conedera, Marco; Pezzatti, Gianni Boris

    2015-01-01

    Fire regimes are strongly related to weather conditions that directly and indirectly influence fire ignition and propagation. Identifying the most important meteorological fire drivers is thus fundamental for daily fire risk forecasting. In this context, several fire weather indices have been developed focussing mainly on fire-related local weather conditions and fuel characteristics. The specificity of the conditions for which fire danger indices are developed makes its direct transfer and applicability problematic in different areas or with other fuel types. In this paper we used the low-to-intermediate fire-prone region of Canton Ticino as a case study to develop a new daily fire danger index by implementing a niche modelling approach (Maxent). In order to identify the most suitable weather conditions for fires, different combinations of input variables were tested (meteorological variables, existing fire danger indices or a combination of both). Our findings demonstrate that such combinations of input variables increase the predictive power of the resulting index and surprisingly even using meteorological variables only allows similar or better performances than using the complex Canadian Fire Weather Index (FWI). Furthermore, the niche modelling approach based on Maxent resulted in slightly improved model performance and in a reduced number of selected variables with respect to the classical logistic approach. Factors influencing final model robustness were the number of fire events considered and the specificity of the meteorological conditions leading to fire ignition. PMID:25679957

  5. Meteorological and Chemical Urban Scale Modelling for Shanghai Metropolitan Area

    NASA Astrophysics Data System (ADS)

    Mahura, Alexander; Nuterman, Roman; Gonzalez-Aparicio, Iratxe; Amstrup, Bjarne; Yang, Xiaohua; Baklanov, Alexander

    2016-04-01

    Urban air pollution is a serious problem in megacities and major industrial agglomerations of China. Therefore, air quality information is important for public. In particular, the Shanghai metropolitan area is well known as megacity having severe air pollution episodes. The Enviro-HIRLAM (Environment - HIgh Resolution Limited Area Model) is applied for on-line integrated meteorology and atmospheric composition forecasting for the Shanghai region of China. The model setup includes the urban Building Effects Parameterization module, describing different types of urban districts with its own morphological and aerodynamical characteristics. The model is running in downscaling chain from regional-to-urban scales for selected periods in summer and winter having both elevated pollution levels as well as unfavorable meteorological conditions. For these periods, the effects of urbanization are analyzed for spatio-temporal variability of atmospheric and chemical/aerosols patterns. The formation and development of meteorological (air and surface temperature, relative humidity, wind speed, cloud cover, boundary layer height) and chemical/aerosol patterns (concentration and deposition) due to influence of the metropolitan area is evaluated. The impact of Shanghai region on regional-to-urban scales as well as relationship between air pollution and meteorology are estimated.

  6. Beginning of modern meteorological measurements in Fiume (Rijeka).

    PubMed

    Alebic-Juretic, Ana

    2013-01-01

    When reporting on extreme weather conditions in the city of Rijeka (former Fiume), it is often specified " ... since the beginning of measurements in 1948". In reality the modern meteorological measurements in Fiume had started already in 1868, when the Austrian Imperial Academy of Science established the meteorological station. The station was operating at the Naval Academy, under the supervision of prof. dr. Emil Stahlberger, the first university professor of physics in Fiume (Rijeka). The following year the station was equipped with mareograph (marigraph/tide gauge). Based on three years measurements, prof. Stahlberger published the first book on tides in the Rijeka bay (Ueber die Ebbe und Flut in der Rhede von Fiume). After his sudden death, Prof. Peter Salcher, his succesor at the Physics chair at the Naval academy, took charge of the Meteorological station. In 1884. He published the book entitled Climate in Rijeka and Opatija (Das Klima von Fiume und Abbazia). The meteorological data in the book are presented in the very same way as it is done today, and therefore these data can be used for comparative purposes regarding climate variations/ changes.

  7. Meteorological Conditions Favouring Development of Urban Air Pollution Episodes

    NASA Astrophysics Data System (ADS)

    Baklanov, Alexander; Kukkonen, Jaakko; Finardi, Sandro; Beekmann, Matthias; Sokhi, Ranjeet; Mahura, Alexander; Ginsburg, Alexander; Mažeikis, Adomas

    2013-04-01

    The causes of urban air pollution episodes are complex and depend on various factors including emissions, meteorological parameters, topography, atmospheric chemical processes and solar radiation. The relative importance of such factors is dependent on the geographical region, its surrounding emission source areas and the related climatic characteristics, as well as the season of the year. The key pollutants are PM10, PM2.5, O3 and NO2, as these cause the worst air quality problems in European cities. The main aim of this study realised within the MEGAPOLI project was to describe and quantify the influence of meteorological patterns on urban air pollution especially high-level concentrations air pollution episodes in megacities. Several European urban agglomerations and megacities, including the Po Valley, Helsinki, London, Paris, Moscow, Vilnius, were considered in the study. The study also carried out analysis of meteorological patterns leading to urban air pollution episodes considered by the development of suitable indicators linking particular meteorological conditions/ parameters to increased air pollution levels in the urban areas. These indicators constitute a useful tool for regulators in suggesting effective policies and mitigation measures. Finally, a combination of modelling and analysis of observations data can allow both the quality assurance of the new parameterisations as well as the verification of input emissions.

  8. The ClearfLo project - Understanding London's meteorology and composition

    NASA Astrophysics Data System (ADS)

    Belcher, Stephen; Bohnenstengel, Sylvia

    2014-05-01

    ClearfLo is a large multi-institutional project funded by the UK Natural Environment Research Council (NERC). ClearfLo established integrated measurements of meteorology, gaseous and particulate composition/loading of London's (UK) urban atmosphere in 2011 and 2012 to understand the processes underlying poor air quality. A new and unique long-term measurement infrastructure was established in London at street level, urban background and elevated sites and contrasted against rural locations to determine the urban increment in meteorology and pollution. This approach enables understanding the seasonal variations in the meteorology and composition together with the controlling processes. In addition two intensive observation periods (IOPs) provide more detail in winter 2012 and during the Olympics in summer 2012 focusing upon the vertical structure and evolution of the urban boundary layer, chemical controls on nitrogen dioxide and ozone production, in particular the role of volatile organic compounds, and processes controlling the evolution, size, distribution and composition of particulate matter. In this talk we present early analysis of the meteorology and air quality measurements within ClearfLo. In particular we show measurements that indicate the dominant regimes of London's boundary layer.

  9. Probabilistic aspects of meteorological and ozone regional ensemble forecasts

    SciTech Connect

    Monache, L D; Hacker, J; Zhou, Y; Deng, X; Stull, R

    2006-03-20

    This study investigates whether probabilistic ozone forecasts from an ensemble can be made with skill; i.e., high verification resolution and reliability. Twenty-eight ozone forecasts were generated over the Lower Fraser Valley, British Columbia, Canada, for the 5-day period 11-15 August 2004, and compared with 1-hour averaged measurements of ozone concentrations at five stations. The forecasts were obtained by driving the CMAQ model with four meteorological forecasts and seven emission scenarios: a control run, {+-} 50% NO{sub x}, {+-} 50% VOC, and {+-} 50% NO{sub x} combined with VOC. Probabilistic forecast quality is verified using relative operating characteristic curves, Talagrand diagrams, and a new reliability index. Results show that both meteorology and emission perturbations are needed to have a skillful probabilistic forecast system--the meteorology perturbation is important to capture the ozone temporal and spatial distribution, and the emission perturbation is needed to span the range of ozone-concentration magnitudes. Emission perturbations are more important than meteorology perturbations for capturing the likelihood of high ozone concentrations. Perturbations involving NO{sub x} resulted in a more skillful probabilistic forecast for the episode analyzed, and therefore the 50% perturbation values appears to span much of the emission uncertainty for this case. All of the ensembles analyzed show a high ozone concentration bias in the Talagrand diagrams, even when the biases from the unperturbed emissions forecasts are removed from all ensemble members. This result indicates nonlinearity in the ensemble, which arises from both ozone chemistry and its interaction with input from particular meteorological models.

  10. Probabilistic aspects of meteorological and ozone regional ensemble forecasts

    NASA Astrophysics Data System (ADS)

    Delle Monache, Luca; Hacker, Joshua P.; Zhou, Yongmei; Deng, Xingxiu; Stull, Roland B.

    2006-12-01

    This study investigates whether probabilistic ozone forecasts from an ensemble can be made with skill: i.e., high verification resolution and reliability. Twenty-eight ozone forecasts were generated over the Lower Fraser Valley, British Columbia, Canada, for the 5-day period 11-15 August 2004 and compared with 1-hour averaged measurements of ozone concentrations at five stations. The forecasts were obtained by driving the Community Multiscale Air Quality Model (CMAQ) model with four meteorological forecasts and seven emission scenarios: a control run, ±50% NOx, ±50% volatile organic compounds (VOC), and ±50% NOx combined with VOC. Probabilistic forecast quality is verified using relative operating characteristic curves, Talagrand diagrams, and a new reliability index. Results show that both meteorology and emission perturbations are needed to have a skillful probabilistic forecast system: the meteorology perturbation is important to capture the ozone temporal and spatial distribution and the emission perturbation is needed to span the range of ozone concentration magnitudes. Emission perturbations are more important than meteorology perturbations for capturing the likelihood of high ozone concentrations. Perturbations involving NOx resulted in a more skillful probabilistic forecast for the episode analyzed, and therefore the 50% perturbation values appear to span much of the emission uncertainty for this case. All of the ensembles analyzed show a high ozone concentration bias in the Talagrand diagrams, even when the biases from the unperturbed emissions forecasts are removed from all ensemble members. This result indicates nonlinearity in the ensemble, which arises from both ozone chemistry and its interaction with input from particular meteorological models.

  11. Sodar as an indicator of air quality meteorology

    SciTech Connect

    Gera, B.S.; Saxena, N.; Pandey, H.D.; Kamyotra, J.S.

    1996-12-31

    Sodar is one of the known remote sensing tools to monitor the Atmospheric Boundary Layer (ABL) thermal structure dynamics in real time and space. It is capable of providing the live facsimile representation of the varying air quality meteorological conditions viz. ABL mixing depth, prevailing stability (stable, unstable or neutral), presence of elevated inversions, capping fog layers, the onset and dissipation of free convection, fumigation period, transition from stable to unstable ABL conditions and vice-versa. Meteorological conditions associated with presence of low-lying capping inversion and prolonged fumigation period are some of the chief meteorological factors which lead to increased level of air pollution and therefore are referred to as environmental hazard for air quality. A knowledge about these air quality related meteorological factors forms inputs for nowcasting and short range forecasting of the air quality. A detailed statistical study of these aspects on annual/seasonal basis is useful in the Environmental Impact Assessment for current appraisal of situation in respect of the existing industrial towns and at the planning stage for site selection for an industrial township in the offing, in stack designing, for fixation of industrial operational hours and emission control at source (if required) during prevalence of adverse environmental conditions leading to air pollution hazard. In view of the above, sodar observational data of one year pertaining to few industrial towns in India have been analyzed to examine the statistical occurrence of environmental hazards for air quality, persistence of inversion depths, variations in mixing depths, fumigation periods, etc. with respect to climatological conditions and topographical variations. Details of the results and some examples of correlation of sodar derived air quality meteorological information and observed air pollution concentration have been discussed in the paper.

  12. A regional GPS Meteorology Application: The Basilicata Experiment

    NASA Astrophysics Data System (ADS)

    Pacione, R.; Rutigliano, P.; Vespe, F.; Faccani, C.; Visconti, G.

    2003-04-01

    During the last years at the Matera Space Geodesy Center (ASI/CGS) space geodesy activities related to atmospheric applications have grown up. In particular, studies on the troposphere for meteorological applications using GPS signal, started in 1999, have been developed in the framework of national and international context (MAGIC EC project, COST 716 Action). Presently, at CGS, the data of 35 European stations are analysed on hourly basis to produce tropospheric Total Zenith path Delay (ZTD), results being continuously available on: geodaf.mt.asi.it. To carry on the fruitful research on the use of GPS derived tropospheric parameters for meteorological applications and climate research and the experiences of assimilation of GPS PWV into the MM5 non hydrostatic modeling, the Italian Space Agency, Università de L'Aquila and Parco Scientifico e Tecnologico d'Abruzzo (PSTdA) decided to start a new dedicated project, installing 10 new permanent GPS stations in Basilicata region. These stations are fully co-located with pre-existent meteorological stations equipped with state-of-the-art surface sensors managed by ALSIA (Regional Agency for the Development of Agriculture) that will provide the ground meteorological data (surface pressure, primarily) useful for optimal exploitation of GPS data for meteorological application. In the final configuration, all the stations will provide near real time data on hourly basis to derive ZTD to be assimilated by (PSTdA) Of course the GPS data coming from these regional network could be also useful for many other applications: geodynamic studies, hazard management, earthquakes research and so on. At present, the installation of the new GPS stations is in the final phases and the whole system is planned to become full operative in the next future. In this work, the design and the operational characteristics of the network as well as the outline of the analysing procedure are reported, together with the preliminary results of the

  13. A gap analysis of meteorological requirements for commercial space operators

    NASA Astrophysics Data System (ADS)

    Stapleton, Nicholas James

    Commercial space companies will soon be the primary method of launching people and supplies into orbit. Among the critical aspects of space launches are the meteorological concerns. Laws and regulations pertaining to meteorological considerations have been created to ensure the safety of the space industry and those living around spaceports; but, are they adequate? Perhaps the commercial space industry can turn to the commercial aviation industry to help answer that question. Throughout its history, the aviation industry has dealt with lessons learned from mishaps due to failures in understanding the significance of weather impacts on operations. Using lessons from the aviation industry, the commercial space industry can preempt such accidents and maintain viability as an industry. Using Lanicci's Strategic Planning Model, this study identified the weather needs of the commercial space industry by conducting three gap analyses. First, a comparative analysis was done between laws and regulations in commercial aviation and those in the commercial space industry pertaining to meteorological support, finding a "legislative gap" between the two industries, as no legal guarantee is in place to ensure weather products remain available to the commercial space industry. A second analysis was conducted between the meteorological services provided for the commercial aviation industry and commercial space industry, finding a gap at facilities not located at an established launch facility or airport. At such facilities, many weather observational technologies would not be present, and would need to be purchased by the company operating the spaceport facility. A third analysis was conducted between the meteorological products and regulations that are currently in existence, and those needed for safe operations within the commercial space industry, finding gaps in predicting lightning, electric field charge, and space weather. Recommendations to address these deficiencies have

  14. Generation of high-resolution wind fields from the dense meteorological station network WegenerNet in South-Eastern Austria

    NASA Astrophysics Data System (ADS)

    Schlager, Christoph; Kirchengast, Gottfried; Fuchsberger, Jürgen

    2016-04-01

    To investigate weather and climate on a local scale as well as for evaluating regional climate models (RCMs) the Wegener Center at the University of Graz established the long-term field experiment WegenerNet Feldbach region, a dense grid of 153 meteorological stations. The observations of these stations are managed by an automatic WegenerNet Processing system. This system includes a quality check of collected observations and a Data Product Generator (DPG), among other subsystems. Products already implemented in the DPG are gridded weather and climate products, generated from the main parameters temperature, precipitation and relative humidity (Kirchengast et. al., Bull. Amer. Meteor. Soc., 95, 227-242, 2014). Missing elements are gridded wind fields from wind observations. Wind is considered as one of the most difficult meteorological variables to model and depends on many different parameters such as topography and surface roughness. Therefore a simple interpolation can only be performed in case of uniform characteristics of landscape. The presentation introduces our method of generation of wind fields from near real-time observations of the WegenerNet. Purpose of this work is to provide a database with 3D wind fields in a high spatial and time resolution as addition to the existing products, for evaluating convection permitting climate models as well as investigating weather and climate on a local scale. Core of the application is the diagnostic California Meteorological Model (CALMET). This model computes 3D wind fields based on meteorological observational data, a digital elevation model and land use categories. The application generates the required input files from meteorological stations of the WegenerNet Feldbach region and triggers the start of the CALMET model with these input files. In a next step the modeled wind fields are stored automatically every 30 minutes with a spatial resolution of 100 x 100 m in the WegenerNet database. To verify the

  15. The Experience Of The Meteorological Support By The National Institute Of Meteorology During The XV Pan-american Games

    NASA Astrophysics Data System (ADS)

    Seabra, M.; Gonçalves, P.; Braga, A.; Raposo, R.; Ito, E.; Gadelha, A.; Dallantonia, A.

    2008-05-01

    The XV Pan-American Games were organized in Rio de Janeiro city during 13 to 29 July, 2007 with a participation of 5.662 athletes of 42 countries . The Ministry of Sports requested INMET to provide meteorological support to the games, with the exception of the water sports only, which fell under the responsibility of the Brazilian Navy. The meteorological activities should follow the same pattern experienced during the Olympic Games of Sydney in Australia in the year of 2000, and of Athens in Greece in 2004, with a forecast center entirely dedicated to the event. NMET developed a website with detailed information oriented to the athletes and organizing committee and to the general public. The homepage had 3 different option of idioms (Portuguese, English and Spanish). After choosing the idiom, the user could consult the meteorological data, to each competition place, and to the Pan- American Village, every 15 minutes, containing weather forecast bulletin, daily synoptic analysis, the last 10 satellite image and meteograms. Besides observed data verified "in situ" INMET supplied forecast generated by High Resolution Model (MBAR) with 7km grid resolution especially set up for the games. INMET installed 7 automatic meteorological stations near the competition places, which supplied temperature , relative humidity , atmospheric pressure, wind (direction and intensity), radiation and precipitation every 15 minutes. Those information were relayed by satellite to INMET headquarters located in Brasília and soon after they were published in the website. To help the Brazilian Olympic Committee - COB, the athletes, their technical commission and the public in general, meteorological bulletins were emitted daily. The forecast was done together with the Navy and also with INMET's 6th District located in Rio de Janeiro, and responsible for the forecast statewide. This forecast was then placed at the INMET's website. Both the 3 days weather forecast and Meteorological Alert were

  16. Quality Assurance Guidance for the Collection of Meteorological Data Using Passive Radiometers

    EPA Science Inventory

    This document augments the February 2000 guidance entitled Meteorological Monitoring Guidance for Regulatory Modeling Applications and the March 2008 guidance entitled Quality Assurance Handbook for Air Pollution Measurement Systems Volume IV: Meteorological Measurements Version ...

  17. Meteorological Processes Affecting Air Quality – Research and Model Development Needs

    EPA Science Inventory

    Meteorology modeling is an important component of air quality modeling systems that defines the physical and dynamical environment for atmospheric chemistry. The meteorology models used for air quality applications are based on numerical weather prediction models that were devel...

  18. EVALUATING THE USE OF OUTPUTS FROM COMPREHENSIVE METEOROLOGICAL MODELS IN AIR QUALITY MODELING APPLICATIONS

    EPA Science Inventory

    Currently used dispersion models, such as the AMS/EPA Regulatory Model (AERMOD), process routinely available meteorological observations to construct model inputs. Thus, model estimates of concentrations depend on the availability and quality of Meteorological observations, as we...

  19. Impact of High Resolution Land-Use Data in Meteorology and Air Quality Modeling Systems

    EPA Science Inventory

    Accurate land use information is important in meteorology for land surface exchanges, in emission modeling for emission spatial allocation, and in air quality modeling for chemical surface fluxes. Currently, meteorology, emission, and air quality models often use outdated USGS Gl...

  20. 4. SOUTHWEST CORNER OF METEOROLOGICAL TOWER; SOUTH FACE OF SLC3W ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. SOUTHWEST CORNER OF METEOROLOGICAL TOWER; SOUTH FACE OF SLC-3W MST IN BACKGROUND - Vandenberg Air Force Base, Space Launch Complex 3, Meteorological Shed & Tower, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  1. 76 FR 54526 - 26th Meeting: RTCA Special Committee 206: Aeronautical Information and Meteorological Data Link

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-01

    ... Meteorological Data Link AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Special Committee 206: Aeronautical Information and Meteorological Data Link Services meeting. SUMMARY: The FAA is... Information and Meteorological Data Link Services. DATES: The meeting will be held September 19-23, 2011...

  2. 76 FR 72240 - Twenty-Seventh Meeting: RTCA Special Committee 206: Aeronautical Information and Meteorological...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-22

    ... Information and Meteorological Data Link Services AGENCY: Federal Aviation Administration (FAA), U.S... Information and Meteorological Data Link Services. SUMMARY: The FAA is issuing this notice to advise the public of a meeting of RTCA Special Committee 206: Aeronautical Information and Meteorological Data...

  3. 77 FR 30584 - Thirtieth Meeting: RTCA Special Committee 206, Aeronautical Information and Meteorological Data...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-23

    ... and Meteorological Data Link Services AGENCY: Federal Aviation Administration (FAA), U.S. Department... Information and Meteorological Data Link Services. SUMMARY: The FAA is issuing this notice to advise the... Meteorological Data Link Services. DATES: The meeting will be held June 11-15, 2012, from 8:30 a.m.-4:00...

  4. 78 FR 20167 - 33rd Meeting: RTCA Special Committee 206, Aeronautical Information and Meteorological Data Link...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-03

    ... Meteorological Data Link Services AGENCY: Federal Aviation Administration (FAA), U.S. Department of... Meteorological Data Link Services. SUMMARY: The FAA is issuing this notice to advise the public of the thirty-first meeting of the RTCA Special Committee 206, Aeronautical Information and Meteorological Data...

  5. 77 FR 20688 - 29th Meeting: RTCA Special Committee 206, Aeronautical Information and Meteorological Data Link...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-05

    ... Meteorological Data Link Services AGENCY: Federal Aviation Administration (FAA), U.S. Department of... Meteorological Data Link Services. SUMMARY: The FAA is issuing this notice to advise the public of the twenty-ninth meeting of RTCA Special Committee 206, Aeronautical Information and Meteorological Data...

  6. 78 FR 5242 - 32nd Meeting: RTCA Special Committee 206, Aeronautical Information and Meteorological Data Link...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-24

    ... Meteorological Data Link Services AGENCY: Federal Aviation Administration (FAA), U.S. Department of... Meteorological Data Link Services. SUMMARY: The FAA is issuing this notice to advise the public of the thirty-second meeting of the RTCA Special Committee 206, Aeronautical Information and Meteorological Data...

  7. 47 CFR 27.1135 - Protection of non-Federal Government Meteorological-Satellite operations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Meteorological-Satellite operations. 27.1135 Section 27.1135 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... Government Meteorological-Satellite operations. AWS licensees operating fixed stations in the 1710-1755 MHz band, if notified that such stations are causing interference to meteorological-satellite...

  8. Teaching Guidelines for the Observance of World Meteorological Day (23 March).

    ERIC Educational Resources Information Center

    International Understanding at School, 1986

    1986-01-01

    Discusses the establishment and goals of the World Meteorological Organization and the World Meteorological Day (WMD). Includes teaching objectives for upper elementary and lower secondary school teachers and provides activities which integrate the study of meteorology with language, history, geography, mathematics, science, physical education,…

  9. 47 CFR 27.1135 - Protection of non-Federal Government Meteorological-Satellite operations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Meteorological-Satellite operations. 27.1135 Section 27.1135 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... Government Meteorological-Satellite operations. AWS licensees operating fixed stations in the 1710-1755 MHz band, if notified that such stations are causing interference to meteorological-satellite...

  10. 47 CFR 27.1135 - Protection of non-Federal Government Meteorological-Satellite operations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Meteorological-Satellite operations. 27.1135 Section 27.1135 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... Government Meteorological-Satellite operations. AWS licensees operating fixed stations in the 1710-1755 MHz band, if notified that such stations are causing interference to meteorological-satellite...

  11. 47 CFR 27.1135 - Protection of non-Federal Government Meteorological-Satellite operations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Meteorological-Satellite operations. 27.1135 Section 27.1135 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... non-Federal Government Meteorological-Satellite operations. AWS licensees operating fixed stations in...-satellite earth receivers operating in the Meteorological-Satellite Service in the 1675-1710 MHz band,...

  12. a Meteorological Risk Assessment Method for Power Lines Based on GIS and Multi-Sensor Integration

    NASA Astrophysics Data System (ADS)

    Lin, Zhiyong; Xu, Zhimin

    2016-06-01

    Power lines, exposed in the natural environment, are vulnerable to various kinds of meteorological factors. Traditional research mainly deals with the influence of a single meteorological condition on the power line, which lacks of comprehensive effects evaluation and analysis of the multiple meteorological factors. In this paper, we use multiple meteorological monitoring data obtained by multi-sensors to implement the meteorological risk assessment and early warning of power lines. Firstly, we generate meteorological raster map from discrete meteorological monitoring data using spatial interpolation. Secondly, the expert scoring based analytic hierarchy process is used to compute the power line risk index of all kinds of meteorological conditions and establish the mathematical model of meteorological risk. By adopting this model in raster calculator of ArcGIS, we will have a raster map showing overall meteorological risks for power line. Finally, by overlaying the power line buffer layer to that raster map, we will get to know the exact risk index around a certain part of power line, which will provide significant guidance for power line risk management. In the experiment, based on five kinds of observation data gathered from meteorological stations in Guizhou Province of China, including wind, lightning, rain, ice, temperature, we carry on the meteorological risk analysis for the real power lines, and experimental results have proved the feasibility and validity of our proposed method.

  13. Refinement of background environmental monitoring measurements using meteorological frequency distribution

    SciTech Connect

    Schwartz, P.E. )

    1991-01-01

    Since the Radiological Environmental Monitoring Program's inception in 1969, the direct radiation monitoring network around the Oyster Creek nuclear generating station has incorporated both monthly and quarterly thermoluminescent dosimetry (TLD). In 1988, the environmental controls department of GPU Nuclear decided to eliminate the monthly TLD network for scientific and economic reasons. The most obvious scientific basis on which to designate TLD stations is by meteorology. It would be the plume path that dictates off-site direct radiation contribution from the plant and not simply distance from the site. Through meteorological and statistical analysis of existing TLD results, the appropriate basis for designating TLD stations has been accomplished that will provide the most accurate and comprehensive data on environmental measurement of releases from Oyster Creek.

  14. An airborne meteorological data collection system using satellite relay (ASDAR)

    NASA Technical Reports Server (NTRS)

    Bagwell, J. W.; Lindow, B. G.

    1978-01-01

    The National Aeronautics and Space Administration (NASA) has developed an airborne data acquisition and communication system for the National Oceanic and Atmospheric Administration (NOAA). This system known as ASDAR, the Aircraft to Satellite Data Relay, consists of a microprocessor based controller, time clock, transmitter and antenna. Together they acquire meteorological and position information from existing aircraft systems on B-747 aircraft, convert and format these, and transmit them to the ground via the GOES meteorological satellite series. The development and application of the ASDAR system is described with emphasis on unique features. Performance to date is exceptional, providing horizon-to-horizon coverage of aircraft flights. The data collected is of high quality and is considered a valuable addition to the data base from which NOAA generates its weather forecasts.

  15. Meteorological conditions of the Danube flood in year 1895

    NASA Astrophysics Data System (ADS)

    Melo, Marian; Gera, Martin

    2015-04-01

    The flood in year 1895 belongs to the highest floods on the Danube River and its tributaries. The aim of this contribution is to clarify meteorological causes of this flood. Analysis is based on air temperature and precipitation measurements of some meteorological stations from the Central and southeastern Europe and data from NOAA 20th Century Reanalysis of daily composites. Moreover we bring knowledge gained by studies of materials regarding the historical flood on the Danube River and its tributaries in 1895 as reflected in local contemporary press (Preßburger Zeitung and Wiener Zeitung) in the period from late February till the end of April 1895. This work was supported by the Slovak Research and Development Agency under Contract No. APVV-0303-11 and No. APVV-0015-10.

  16. Effects of Meteorological Conditions on Reactions to Noise Exposure

    NASA Technical Reports Server (NTRS)

    Shepherd, Kevin P. (Technical Monitor); Fields, James M.

    2004-01-01

    More than 80,000 residents' responses to transportation noise at different times of year provide the best, but imprecise, statistical estimates of the effects of season and meteorological conditions on community response to noise. Annoyance with noise is found to be slightly statistically significantly higher in the summer than in the winter in a seven-year study in the Netherlands. Analyses of 41 other surveys drawn from diverse countries, climates, and times of year find noise annoyance is increased by temperature, and may be increased by more sunshine, less precipitation, and reduced wind speeds. Meteorological conditions on the day of the interview or the immediately preceding days do not appear to have any more effect on reactions than do the conditions over the immediately preceding weeks or months.

  17. Analysis of meteorological and radiological data for selected fallout episodes

    SciTech Connect

    Quinn, V.E. )

    1990-11-01

    The Weather Service Nuclear Support Office has analyzed the meteorological and radiological data collected for the following atmospheric nuclear tests: TRINITY; EASY of the Tumbler-Snapper series; ANNIE, NANCY, BADGER, SIMON, and HARRY of the Upshot-Knothole series; BEE and ZUCCHINI of the Teapot series; BOLTZMANN and SMOKY of the Plumbbob series; and SMALL BOY of the Dominic II series. These tests were chosen as having the greatest impact on nearby downwind populated locations, contributing approximately 80% of the collective estimated exposure. This report describes the methods of analysis used in deriving fallout-pattern contours and estimated fallout arrival times. Inconsistencies in the radiological data and their resolution are discussed. The methods of estimating fallout arrival times from the meteorological data are described. Comparisons of fallout patterns resulting from these analyses with earlier analyses show insignificant differences in the areas covered or people exposed.

  18. Meteorological and air pollution modeling for an urban airport

    NASA Technical Reports Server (NTRS)

    Swan, P. R.; Lee, I. Y.

    1980-01-01

    Results are presented of numerical experiments modeling meteorology, multiple pollutant sources, and nonlinear photochemical reactions for the case of an airport in a large urban area with complex terrain. A planetary boundary-layer model which predicts the mixing depth and generates wind, moisture, and temperature fields was used; it utilizes only surface and synoptic boundary conditions as input data. A version of the Hecht-Seinfeld-Dodge chemical kinetics model is integrated with a new, rapid numerical technique; both the San Francisco Bay Area Air Quality Management District source inventory and the San Jose Airport aircraft inventory are utilized. The air quality model results are presented in contour plots; the combined results illustrate that the highly nonlinear interactions which are present require that the chemistry and meteorology be considered simultaneously to make a valid assessment of the effects of individual sources on regional air quality.

  19. Planetary meteorology - A new perspective on the earth's weather

    NASA Technical Reports Server (NTRS)

    Joels, K.

    1976-01-01

    Meteorological observations of other planets which may contribute to an understanding of the meteorological processes on the earth are discussed. The high solar input and extremely low rotation rate of Venus simplify the analysis of the interaction of solar energy with the atmosphere. The dust present in the atmosphere of Mars may provide a useful model for studying the effects of anthropogenic aerosols in the atmosphere of earth. Observations of Mars may also be expected to yield information on the evolution of severe storms and on atmospheric tides. The belts and zones in the Jovian atmosphere bear some similarities to cyclones on earth, although they are produced differently; careful modeling of Jupiter's atmosphere may cast light on terrestrial cyclonic activity.

  20. Modeling Current Transfer from PV Modules Based on Meteorological Data

    SciTech Connect

    Hacke, Peter; Smith, Ryan; Kurtz, Sarah; Jordan, Dirk; Wohlgemuth, John

    2016-11-21

    Current transferred from the active cell circuit to ground in modules undergoing potential-induced degradation (PID) stress is analyzed with respect to meteorological data. Duration and coulombs transferred as a function of whether the module is wet (from dew or rain) or the extent of uncondensed surface humidity are quantified based on meteorological indicators. With this, functions predicting the mode and rate of coulomb transfer are developed for use in estimating the relative PID stress associated with temperature, moisture, and system voltage in any climate. Current transfer in a framed crystalline silicon module is relatively high when there is no condensed water on the module, whereas current transfer in a thin-film module held by edge clips is not, and displays a greater fraction of coulombs transferred when wet compared to the framed module in the natural environment.

  1. Active layer dynamics and arctic hydrology and meteorology. Final report

    SciTech Connect

    Not Available

    1993-10-01

    Man`s impact on the environment is increasing with time. To be able to evaluate anthropogenic impacts on an ecosystems, it is necessary first to understand all facets of how the ecosystems works: what the main processes (physical, biological, chemical) are, at what rates they proceed, and how they can be manipulated. Arctic ecosystems are dominated by physical processes of energy exchange. This project has concentrated on a strong program of hydrologic and meteorologic data collection, to better understand dominant physical processes. Field research focused on determining the natural annual and diurnal variability of meteorologic and hydrologic variables, especially those which may indicate trends in climatic change. Comprehensive compute models are being developed to simulate physical processes occurring under the present conditions and to simulate processes under the influence of climatic change.

  2. Extreme Meteorological Parameters During Space Shuttle Pad Exposure Periods

    NASA Technical Reports Server (NTRS)

    Roberts, Barry C.; Overbey, B. Glenn

    2004-01-01

    During the 113 missions of the Space Transportation System (STS), the Space Shuttle fleet has been exposed to the elements on the launch pad for a total of 4195 days. This paper provides a summary of the historical record of the meteorological extremes encountered by the Space Shuttle fleet during the pad exposure period. Parameters included are temperature, dew point, relative humidity, wind speed, sea level pressure and precipitation. All the data presented are archived by the Marshall Space Flight Center Environments Group, and were obtained from a combination of surface observations and meteorological towers at Kennedy Space Center (KSC), Florida. Data are provided from the first launch of the STS in 1981 through the launch of STS-107 in 2003.

  3. [Relationships between horqin meadow NDVI and meteorological factors].

    PubMed

    Qu, Cui-ping; Guan, De-xin; Wang, An-zhi; Jin, Chang-jie; Wu, Jia-bing; Wang, Ji-jun; Ni, Pan; Yuan, Feng-hui

    2009-01-01

    Based on the 2000-2006 MODIS 8-day composite NDVI and day-by-day meteorological data, the seasonal and inter-annual variations of Horqin meadow NDVI as well as the relationships between the NDVI and relevant meteorological factors were studied. The results showed that as for the seasonal variation, Horqin meadow NDVI was more related to water vapor pressure than to precipitation. Cumulated temperature and cumulated precipitation together affected the inter-annual turning-green period significantly, and the precipitation in growth season (June and July), compared with that in whole year, had more obvious effects on the annual maximal NDVI. The analysis of time lag effect indicated that water vapor pressure had a persistent (about 12 days) prominent effect on the NDVI. The time lag effect of mean air temperature was 11-15 days, and the cumulated dual effect of the temperature and precipitation was 36-52 days.

  4. Spherical Harmonics Functions Modelling of Meteorological Parameters in PWV Estimation

    NASA Astrophysics Data System (ADS)

    Deniz, Ilke; Mekik, Cetin; Gurbuz, Gokhan

    2016-08-01

    Aim of this study is to derive temperature, pressure and humidity observations using spherical harmonics modelling and to interpolate for the derivation of precipitable water vapor (PWV) of TUSAGA-Active stations in the test area encompassing 38.0°-42.0° northern latitudes and 28.0°-34.0° eastern longitudes of Turkey. In conclusion, the meteorological parameters computed by using GNSS observations for the study area have been modelled with a precision of ±1.74 K in temperature, ±0.95 hPa in pressure and ±14.88 % in humidity. Considering studies on the interpolation of meteorological parameters, the precision of temperature and pressure models provide adequate solutions. This study funded by the Scientific and Technological Research Council of Turkey (TUBITAK) (The Estimation of Atmospheric Water Vapour with GPS Project, Project No: 112Y350).

  5. An Overview of the Applied Meteorology Unit (AMU)

    NASA Technical Reports Server (NTRS)

    Merceret, Francis; Bauman, William; Lambert, Winifred; Short, David; Barrett, Joe; Watson, Leela

    2007-01-01

    The Applied Meteorology Unit (AMU) acts as a bridge between research and operations by transitioning technology to improve weather support to the Shuttle and American space program. It is a NASA entity operated under a tri-agency agreement by NASA, the US Air Force, and the National Weather Service (NWS). The AMU contract is managed by NASA, operated by ENSCO, Inc. personnel, and is collocated with Range Weather Operations at Cape Canaveral Air Force Station. The AMU is tasked by its customers in the 45th Weather Squadron, Spaceflight Meteorology Group, and the NWS in Melbourne, FL with projects whose results help improve the weather forecast for launch, landing, and ground operations. This presentation describes the history behind the formation of the AMU, its working relationships and goals, how it is tasked by its customers, and examples of completed tasks.

  6. Weather patterns and Legionnaires' disease: a meteorological study.

    PubMed

    Ricketts, K D; Charlett, A; Gelb, D; Lane, C; Lee, J V; Joseph, C A

    2009-07-01

    This study examined the impact of meteorological conditions on sporadic, community-acquired cases of Legionnaires' disease in England and Wales (2003-2006), with reference to the 2006 increase in cases. A case-crossover methodology compared each case with self-controlled data using a conditional logistic regression analysis. Effect modification by quarter and year was explored. In total, 674 cases were entered into the dataset and two meteorological variables were selected for study based on preliminary analyses: relative humidity during a case's incubation period, and temperature during the 10-14 weeks preceding onset. For the quarter July-September there was strong evidence to suggest a year, humidity and temperature interaction (Wald chi2=30.59, 3 d.f., P<0.0001). These findings have implications for future case numbers and resource requirements.

  7. Meteorological effects on long-range outdoor sound propagation

    NASA Technical Reports Server (NTRS)

    Klug, Helmut

    1990-01-01

    Measurements of sound propagation over distances up to 1000 m were carried out with an impulse sound source offering reproducible, short time signals. Temperature and wind speed at several heights were monitored simultaneously; the meteorological data are used to determine the sound speed gradients according to the Monin-Obukhov similarity theory. The sound speed profile is compared to a corresponding prediction, gained through the measured travel time difference between direct and ground reflected pulse (which depends on the sound speed gradient). Positive sound speed gradients cause bending of the sound rays towards the ground yielding enhanced sound pressure levels. The measured meteorological effects on sound propagation are discussed and illustrated by ray tracing methods.

  8. A Study of Meteorological Conditions Associated With Noctilucent Clouds

    NASA Technical Reports Server (NTRS)

    Schmidlin, F. J.; Goldberg, R. A.

    2000-01-01

    Temperature measurements were obtained in the upper stratosphere and mesosphere between 50 and 95 km with passive inflatable falling spheres launched on small meteorological rockets as part of the DROPPS (Distribution and Role of Particles in the Polar Summer Mesosphere) program. Temperatures of the neutral atmosphere have been combined with similar measurements obtained during 1991 and 1993. Temperatures were found to change monatonically with altitude except during the Nocticulent Clouds (NLC) occurrences during DROPPS. The temperature lapse rate changed between 5 July 1999, 2313 UTC and 6 July 1999, 0209 UTC; this included a lowering of the altitude of minimum temperature by about 5 km. Furthermore, winds backed from a northeasterly direction to a northwesterly direction. Whether the change in temperature observed is a result of advection related to the changes of the wind field due to advection. Comparisons will also concentrate on the meteorological conditions during the NLC event during DROPPS and earlier 1991 and 1993 NLC'S.

  9. Technical Work Plan For: Meteorological Monitoring and Data Analysis

    SciTech Connect

    C.T. Bastian

    2003-03-28

    The meteorological monitoring and analysis program has three overall objectives. First, the program will acquire qualified meteorological data from monitoring activities in the Environmental Safety and Health (ES&H) network, including appropriate controls on measuring and test equipment. All work will be completed in accordance with U.S. Department of Energy (DOE) Office of Repository Development (ORD) administrative procedures and Bechtel SAIC Co., LLC (BSC) line procedures. The continuously operating monitoring program includes measuring and test equipment calibrations, operational checks, preventive and corrective maintenance, and data collection. Second, the program will process the raw monitoring data collected in the field and submit technically reviewed, traceable data to the Technical Data Management System (TDMS) and the Records Processing Center. Third, reports containing analyses or calculations could be created to provide information to data requesters.

  10. New Space Weather Activities in the World Meteorological Organization

    NASA Astrophysics Data System (ADS)

    Bogdan, Thomas J.; Onsager, Terrance G.

    2010-10-01

    A new era of enhanced international cooperation in space weather operations has begun with the recent initiation of space weather activities within the World Meteorological Organization (WMO), an agency of the United Nations (U.N.) with a membership of 189 states and territories. These activities aim to standardize and enhance space weather observations and data exchange, coordinate end products and services, and foster dialogue between the research and operational communities. The WMO's role is to foster collaboration among the meteorological and hydrological (and now space weather) service providers and to promote the establishment of networks for making and exchanging geophysical observations and the standardization of data and metadata. It also contributes to policy making and has a lead role in efforts to monitor and protect the environment.

  11. Synchronous meteorological satellite system description document, volume 3

    NASA Technical Reports Server (NTRS)

    Pipkin, F. B.

    1971-01-01

    The structural design, analysis, and mechanical integration of the synchronous meteorological satellite system are presented. The subjects discussed are: (1) spacecraft configuration, (2) structural design, (3) static load tests, (4) fixed base sinusoidal vibration survey, (5) flight configuration sinusoidal vibration tests, (6) spacecraft acoustic test, and (7) separation and shock test. Descriptions of the auxiliary propulsion subsystem, the apogee boost motor, communications system, and thermal control subsystem are included.

  12. Aviation meteorology research and development: A status report

    NASA Technical Reports Server (NTRS)

    Enders, J.

    1980-01-01

    The dynamic and rapid growth of technology in the area of aviation meteorology research and development are described with emphasis on the measurement of hazardous weather phenomena. Aspects of both onboard instrumentation and ground based facilities are evaluated in terms of their effectiveness of in avoiding hazards due to atmospheric electricity and lightning. Methods of alleviating terminal are hazards such as fog, low visibility and ceilings are also described.

  13. User needs and the future of operational meteorological satellites

    NASA Technical Reports Server (NTRS)

    Miller, D. B.; Silverman, J. R.

    1982-01-01

    Meteorological satellites and their capabilities are described. Future satellite configurations and instrumentation are discussed in the light of future user needs. In addition to the continuation of existing baseline products and services, the goals for improvement of the geosynchronous system through the 1990's will be: increasing spacial resolution in the visible and infrared channels; increasing vertical mean layer temperature resolution; adding the ability to image the solar disk; and upgrading the ground systems. Other improvements are discussed.

  14. Dynamical behaviors of multifractal strengths in meteorological factors

    NASA Astrophysics Data System (ADS)

    You, Cheol-Hwan; Seo, Seong Kyu; Chang, Ki-Ho; Jeong, Jin-Yim; Na, Sungjoon; Kim, Kyungsik

    2017-02-01

    In this paper, we study the multifractal properties of cloud observation time-series data in Daegwanryung, Korea, containing two meteorological factors, the effective radius of a cloud droplet and the average particle size of a raindrop. We simulate and analyze the generalized Hurst exponent, the Renyi exponent, the spectrum, and the multifractal strength by using the multifractal detrended fluctuation analysis method. The result obtained may have a useful and effective influences on determining the observation location.

  15. Superior Ambulance Call Out Rate Forecasting Using Meteorological Data

    NASA Astrophysics Data System (ADS)

    Mahmood, M. A.; Thornes, J. E.; Bloss, W.; Pope, F.

    2015-12-01

    Ambulances are an integral part of a country's infrastructure ensuring its citizens and visitors are kept healthy. The impact of weather, climate and climate change on ambulance services around the world has received increasing attention in recent years but most studies have been area specific and there is a need to establish basic relationships between ambulance data (both response and illness data) and meteorological parameters. In this presentation, the effects of temperature and relative humidity on ambulance call out rates for different medical categories will be investigated. We use call out data obtained from the London Ambulance Service (LAS) and meteorological data from a central London meteorological station. A time-series analysis was utilized to understand the relation between temperature, relative humidity, air pollutants and different call out categories. There are statistically significant relationships between mean temperature and ambulance callout rate for most of the categories investigated. Most categories show a negative dependence on temperature, i.e. call outs increase with decreasing temperature but some categories showed a positive dependence such as alcohol related call outs. Relative humidity is significant for some categories but in general is much less important than temperature. Significant time lag effects were observed for most of the categories related to infectious illnesses, which are transferrable through human contact. These findings support the opinion that ambulance attendance callouts records are an effective and well-timed source of data and can be used for health early warning systems. Furthermore the presented results can much improve our understanding of the relationships between meteorological conditions and human health thereby allowing for better prediction of ambulance use through the application of long and short-term weather forecasts.

  16. Objective Quality Control of Artillery Computer Meteorological Messages.

    DTIC Science & Technology

    1980-04-01

    Deputy Assistant Commandant for Combat Developments, Fort Sill, Oklahoma, April 1975. 3. DTM 11-7440-241-10, Chapter 7, DIVARTY Meteorological Function...to Cloud Base Height Measurements," ECOM-5812, February 1977. 49. Rubio, Roberto, " Lidar Detection of Subvisible Reentry Vehicle Erosive Atmospheric...Ruben, "Evaluation of the Passive Remote Crosswind Sensor," ASL-TR-0032, May 1979. 104. Barber, T.L., and R. Rodgriquez, "Transit Time Lidar

  17. [Meteorology and the human body: two hundred years of history].

    PubMed

    Forrai, Judit

    2010-07-04

    Modern meteorology was started in the 18th century, with the establishment of observer networks through countries. Since then, temperature, pressure and purity of air, quantity of powder have been measured and the effects of changes on the human body have been studied. New theories have been set relating to the atmospheric properties of microorganisms. Changes of pathogens in the context of climatic changes have been also studied.

  18. Applied Meteorology Unit (AMU) Quarterly Report Fourth Quarter FY-04

    NASA Technical Reports Server (NTRS)

    Bauman, William; Wheeler, Mark; Lambert, Winifred; Case, Jonathan; Short, David

    2004-01-01

    This report summarizes the Applied Meteorology Unit (A MU) activities for the fourth quarter of Fiscal Year 2004 (July -Sept 2004). Tasks covered are: (1) Objective Lightning Probability Forecast: Phase I, (2) Severe Weather Forecast Decision Aid, (3) Hail Index, (4) Shuttle Ascent Camera Cloud Obstruction Forecast, (5) Advanced Regional Prediction System (ARPS) Optimization and Training Extension and (5) User Control Interface for ARPS Data Analysis System (ADAS) Data Ingest.

  19. Vertical distribution of CO2 in the atmospheric boundary layer: Characteristics and impact of meteorological variables

    NASA Astrophysics Data System (ADS)

    Li, Yanli; Deng, Junjun; Mu, Chao; Xing, Zhenyu; Du, Ke

    2014-07-01

    Knowledge of vertical CO2 distribution is important for development of CO2 transport models and calibration/validation of satellite-borne measurements. In this study, vertical profiles of CO2 concentration within 0-1000 m were measured using a tethered balloon at a suburban site in Xiamen, which is undergoing fast urbanization. The characteristics of CO2 vertical distribution were investigated under both stable and convective boundary-layer conditions. The correlation of ground level CO2 concentrations and those at high altitudes decreased with altitude and show significant correlation in the first 300 m with R = 0.78 at 100 m, R = 0.52 at 200 m, R = 0.40 at 300 m (P < 0.01). The correlation keeps almost constant for 300-800 m, and there is no obvious correlation at 800 m, indicating that the impact of ground level CO2 was restricted within the 300 m above the ground. When comparing the vertical profiles obtained at different times during a 24 h period, it was found that CO2 concentration exhibited more obvious diurnal pattern at surface level than at high altitude because of the variation of sources and sinks of CO2 at ground level. Most profiles demonstrated declining trends of CO2 concentration with increasing altitude. The vertical profiles of CO2 were fitted to obtain an empirical equation for estimating CO2 vertical concentration in the lower atmosphere (0-1000 m): y = -75.04 + 1.17 × 109e-x/28.01, R2 = 0.59 (P < 0.05). However, for some cases opposite patterns were observed that the CO2 concentration profiles showed a turning point at a certain altitude or little variation with altitude under certain meteorological conditions. The atmospheric boundary layer depth and atmospheric stability are two major factors controlling the vertical structure of CO2 profile. The results would improve our understanding of the spatial and temporal variation of CO2 in urban environment, which would facilitate using 3-D transport model to study the impacts of CO2 on urban

  20. Intercomparison of mesoscale meteorological models for precipitation forecasting

    NASA Astrophysics Data System (ADS)

    Richard, E.; Cosma, S.; Benoit, R.; Binder, P.; Buzzi, A.; Kaufmann, P.

    In the framework of the RAPHAEL EU project, a series of past heavy precipitation events has been simulated with different meteorological models. Rainfall hindcasts and forecasts have been produced by four models in use at various meteorological services or research centres of Italy, Canada, France and Switzerland. The paper is focused on the comparison of the computed precipitation fields with the available surface observations. The comparison is carried out for three meteorological situations which lead to severe flashflood over the Toce-Ticino catchment in Italy (6599 km2) or the Ammer catchment (709 km2) in Germany. The results show that all four models reproduced the occurrence of these heavy precipitation events. The accuracy of the computed precipitation appears to be more case-dependent than model-dependent. The sensitivity of the computed rainfall to the boundary conditions (hindcast v. forecast) was found to be rather weak, indicating that a flood forecasting system based upon a numerical meteo-hydrological simulation could be feasible in an operational context.

  1. Synoptic and meteorological drivers of extreme ozone concentrations over Europe

    NASA Astrophysics Data System (ADS)

    Otero, Noelia Felipe; Sillmann, Jana; Schnell, Jordan L.; Rust, Henning W.; Butler, Tim

    2016-04-01

    The present work assesses the relationship between local and synoptic meteorological conditions and surface ozone concentration over Europe in spring and summer months, during the period 1998-2012 using a new interpolated data set of observed surface ozone concentrations over the European domain. Along with local meteorological conditions, the influence of large-scale atmospheric circulation on surface ozone is addressed through a set of airflow indices computed with a novel implementation of a grid-by-grid weather type classification across Europe. Drivers of surface ozone over the full distribution of maximum daily 8-hour average values are investigated, along with drivers of the extreme high percentiles and exceedances or air quality guideline thresholds. Three different regression techniques are applied: multiple linear regression to assess the drivers of maximum daily ozone, logistic regression to assess the probability of threshold exceedances and quantile regression to estimate the meteorological influence on extreme values, as represented by the 95th percentile. The relative importance of the input parameters (predictors) is assessed by a backward stepwise regression procedure that allows the identification of the most important predictors in each model. Spatial patterns of model performance exhibit distinct variations between regions. The inclusion of the ozone persistence is particularly relevant over Southern Europe. In general, the best model performance is found over Central Europe, where the maximum temperature plays an important role as a driver of maximum daily ozone as well as its extreme values, especially during warmer months.

  2. Synoptic and meteorological drivers of extreme ozone concentrations over Europe

    NASA Astrophysics Data System (ADS)

    Otero, N.; Sillmann, J.; Schnell, J. L.; Rust, H. W.; Butler, T.

    2016-02-01

    The present work assesses the relationship between local and synoptic meteorological conditions and surface ozone concentration over Europe in spring and summer months, during the period 1998-2012 using a new interpolated data set of observed surface ozone concentrations over the European domain. Along with local meteorological conditions, the influence of large-scale atmospheric circulation on surface ozone is addressed through a set of airflow indices computed with a novel implementation of a grid-by-grid weather type classification across Europe. Drivers of surface ozone over the full distribution of maximum daily 8 h average values are investigated, along with drivers of the extreme high percentiles and exceedances or air quality guideline thresholds. Three different regression techniques are applied: multiple linear regression to assess the drivers of maximum daily ozone, logistic regression to assess the probability of threshold exceedances and quantile regression to estimate the meteorological influence on extreme values, as represented by the 95th percentile. The relative importance of the input parameters (predictors) is assessed by a backward stepwise regression procedure that allows the identification of the most important predictors in each model. Spatial patterns of model performance exhibit distinct variations between regions. The inclusion of the ozone persistence is particularly relevant over southern Europe. In general, the best model performance is found over central Europe, where the maximum temperature plays an important role as a driver of maximum daily ozone as well as its extreme values, especially during warmer months.

  3. Meteorological causes of Harmattan dust in West Africa

    NASA Astrophysics Data System (ADS)

    Schwanghart, Wolfgang; Schütt, Brigitta

    2008-03-01

    We investigated the temporal dynamics of dust entrainment in the Bodélé Depression, Central Sahara, to better understand the intra-annual variability of aerosol emission in the world's largest dust source. The linkages between dust entrainment and large-scale meteorological factors were examined by correlating several meteorological variables in the Mediterranean and Africa north of the equator with the aerosol concentrations in the Bodélé Depression separately for winter and summer. The methodological tools applied are NCEP/NCAR reanalysis data and the aerosol index of the Total Ozone Mapping Spectrometer (TOMS-AI), available for 15 years from 1978 to 1993. We found that dust mobilisation during the Harmattan season is highly dependent on air pressure variability in the Mediterranean area. High pressure to the north of the Bodélé intensifies the NE trade winds, leading to an increased entrainment of dust in the Bodélé Depression. In summer, dust mobilization cannot be explained by the large scale meteorological conditions. This highlights the importance of local to regional wind systems linked to the northernmost position of the intertropical convection zone (ITCZ) during this time.

  4. Compendium of meteorological space programs, satellites, and experiments

    NASA Technical Reports Server (NTRS)

    Dubach, Leland L.; Ng, Carolyn

    1988-01-01

    This compendium includes plans and events known to the authors through January 1987. Compilation of the information began in 1967. This document is intended: (1) as a historical record of all satellites and instrumentation that has been useful for meteorological research or operational uses; and (2) as a working document to be used to assist meteorologists in identifying meteorological satellites, locating data from these satellites, and understanding experiment operation which is related to satellite data that may be of interest to them. A summary of all known launched satellites for all countries and their experiments, which were concerned with meteorological operations or research, are included. Programs covered include AEM, Apollo, ATS, Bhaskara, Cosmos, Discoverer, DMSP, DOD, DODGE, EOLE, ERBE, ESSA, Explorer, Gemini, GMS, GOES/SMS, INSAT, IRS, LANDSAT, Mercury, Meteor 1 and 2, Meteosat, Molniya, MOS, Nimbus, NOAA (1-5)/ITOS, NOAA (6,7,D)/TIROS-N, NOAA (8-10, H-J)/ATN, Salyut, Seasat, Shuttle 1, Shuttle 2: Spacelab, Skylab, Soyuz, TIROS, TOPEX, Vanguard, Voskhod, Vostok, and Zond.

  5. Applied Meteorology Unit - Operational Contributions to Spaceport Canaveral

    NASA Technical Reports Server (NTRS)

    Bauman, William H., III; Roeder, William P.; Lafosse, Richard A.; Sharp, David W.; Merceret, Francis J.

    2004-01-01

    The Applied Meteorology Unit (AMU) provides technology development, evaluation and transition services to improve operational weather support to the Space Shuttle and the National Space Program. It is established under a Memorandum of Understanding among NASA, the Air Force and the National .Weather Service (NWS). The AMU is funded and managed by NASA and operated by ENSCO, Inc. through a competitively awarded NASA contract. The primary customers are the 45th Weather Squadron (45WS) at Cape Canaveral Air Force Station (CCAFS), FL; the Spaceflight Meteorology Group (SMG) at Johnson Space Center (JSC) in Houston, TX; and the NWS office in Melbourne, FL (NWS MLB). This paper will briefly review the AMU's history and describe the three processes through which its work is assigned. Since its inception in 1991 the AMU has completed 72 projects, all of which are listed at the end of this paper. At least one project that highlights each of the three tasking processes will be briefly reviewed. Some of the projects that have been especially beneficial to the space program will also be discussed in more detail, as will projects that developed significant new techniques or science in applied meteorology.

  6. Seeking key meteorological parameters to better understand Hector

    NASA Astrophysics Data System (ADS)

    Gentile, S.; Ferretti, R.

    2016-02-01

    Twelve Hector events, a storm which develops in northern Australia, are analyzed with the aim of identifying the main meteorological parameters involved in the storm's convective development. Based on Crook's ideal study (Crook, 2001), wind speed and direction, wind shear, water vapor, convective available potential energy and type of convection are the parameters used for this analysis. Both the European Centre for Medium-Range Weather Forecasts (ECMWF) analysis and high-resolution simulations from the Fifth-Generation Mesoscale Model (MM5) are used. The MM5 simulations are used to connect the mean vertical velocity to the total condensate at the maximum stage and to study the dynamics of the storms. The ECMWF analyses are used to evaluate the initial conditions and the environmental fields contributing to Hector's development. The analysis suggests that the strength of convection, defined in terms of vertical velocity, largely contributes to the vertical distribution of hydrometeors. The role of total condensate and mean lifting versus low-level moisture, convective available potential energy, surface wind and direction is analyzed for shear and no-shear conditions to evaluate the differences between type A and B for real events. Results confirm the tendency suggested by Crook's analysis. However, Crook's hypothesis of low-level moisture as the only parameter that differentiates between type A and B can only be applied if the events develop in the same meteorological conditions. Crook's tests also helped to assess how the meteorological parameters contribute to Hector's development in terms of percentage.

  7. Seeking for key meteorological parameters to better understand Hector

    NASA Astrophysics Data System (ADS)

    Gentile, S.; Ferretti, R.

    2015-06-01

    Twelve Hector events, a storm developing in the northern Australia, are analyzed to the aim of identifying the main meteorological parameters involved in the convective development. Based on Crook's ideal study tep{Crook} wind speed and direction, wind shear, water vapor, Convective Available Potential Energy and type of convection are the parameters used for this analysis. Both European Centre for Medium-Range Weather Forecasts (ECMWF) analysis and high resolution simulations from the Fifth-Generation Mesoscale Model (MM5) are used. The MM5 simulations are used to connect the mean vertical velocity to the total condensate at the maximum stage and to study the dynamics of the storms. The ECMWF analysis are used to evaluate the initial conditions and the environmental fields contributing to Hector development. The analysis suggests that the strength of convection is largely contributing to the vertical distribution of hydrometeors. The role of total condensate and mean lifting vs. low level moisture, Convective Available Potential Energy, surface wind and direction is analyzed for shear and no-shear conditions to evaluate the differences between type A and B for real events. Results confirm the tendency suggested by Crook's analysis. On the other hand, Crook's hypothesis of low level moisture as the only parameter that differentiates between type A and B can be applied only if the events develop in the same meteorological conditions. Crook's tests also helped to asses how the the meteorological parameters contribute to Hector development in terms of percentage.

  8. Meteorological Necessities for the Stratospheric Observatory for Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Houtas, Franzeska

    2011-01-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is joint program with NASA and DLR (German Aerospace Center) of a highly modified Boeing 747-SP. The purpose of this modification is to include a 2.5 m infrared telescope in a rear bulkhead of the airplane, with a retractable door open to the atmosphere. The NASA Dryden Flight Research Center (DFRC) is responsible for verifying that the aerodynamics, acoustics, and flying qualities of the modified aircraft stay within safe limits. Flight testing includes determining meteorological limitations of the aircraft, which is done by setting strict temporary operating limits and verifying through data analysis, what conditions are acceptable. Line operations are calibration tests of various telescope instruments that are done on the ground prior to flights. The method in determining limitations for this type of operation is similar to that of flight testing, but the meteorological limitations are different. Of great concern are the particulates near the surface that could cause damage to the telescope, as well as condensation forming on the mirror. Another meteorological involvement for this program is the process of obtaining Reduced Vertical Separation Minimums (RVSM) Certification from the FAA. This heavily involves obtaining atmospheric data pertinent to the flight, analyzing data to actual conditions for validity, and computing necessary results for comparison to aircraft instrumentation.

  9. Improved meteorology from an updated WRF/CMAQ modeling ...

    EPA Pesticide Factsheets

    Realistic vegetation characteristics and phenology from the Moderate Resolution Imaging Spectroradiometer (MODIS) products improve the simulation for the meteorology and air quality modeling system WRF/CMAQ (Weather Research and Forecasting model and Community Multiscale Air Quality model) that employs the Pleim-Xiu land surface model (PX LSM). Recently, PX LSM WRF/CMAQ has been updated in vegetation, soil, and boundary layer processes resulting in improved 2 m temperature (T) and mixing ratio (Q), 10 m wind speed, and surface ozone simulations across the domain compared to the previous version for a period around August 2006. Yearlong meteorology simulations with the updated system demonstrate that MODIS input helps reduce bias of the 2 m Q estimation during the growing season from April to September. Improvements follow the green-up in the southeast from April and move toward the west and north through August. From October to March, MODIS input does not have much influence on the system because vegetation is not as active. The greatest effects of MODIS input include more accurate phenology, better representation of leaf area index (LAI) for various forest ecosystems and agricultural areas, and realistically sparse vegetation coverage in the western drylands. Despite the improved meteorology, MODIS input causes higher bias for the surface O3 simulation in April, August, and October in areas where MODIS LAI is much less than the base LAI. Thus, improvement

  10. Role of Surface Characteristics in Urban Meteorology and Air Quality

    NASA Astrophysics Data System (ADS)

    Sailor, David Jean

    Urbanization results in a landscape with significantly modified surface characteristics. The lower values of reflectivity to solar radiation, surface moisture availability, and vegetative cover, along with the higher values of anthropogenic heat release and surface roughness combine to result in higher air temperatures in urban areas relative to their rural counterparts. Through their role in the surface energy balance and surface exchange processes, these surface characteristics are capable of modifying the local meteorology. The impacts on wind speeds, air temperatures, and mixing heights are of particular importance, as they have significant implications in terms of urban energy use and air quality. This research presents several major improvements to the meteorological modeling methodology for highly heterogeneous terrain. A land-use data base is implemented to provide accurate specification of surface characteristic variability in simulations of the Los Angeles Basin. Several vegetation parameterizations are developed and implemented, and a method for including anthropogenic heat release into the model physics is presented. These modeling advancements are then used in a series of three-dimensional simulations which were developed to investigate the potential meteorological impact of several mitigation strategies. Results indicate that application of moderate tree-planting and urban-lightening programs in Los Angeles may produce summertime air temperature reductions on the order of 4^circ C with a concomitant reduction in air pollution. The analysis also reveals several mechanisms whereby the application of these mitigation strategies may potentially increase pollutant concentrations. The pollution and energy use consequences are discussed in detail.

  11. IIth AMS Conference on Satellite Meteorology and Oceanography.

    NASA Astrophysics Data System (ADS)

    Velden, Christopher; Digirolamo, Larry; Glackin, Mary; Hawkins, Jeffrey; Jedlovec, Gary; Lee, Thomas; Petty, Grant; Plante, Robert; Reale, Anthony; Zapotocny, John

    2002-11-01

    The American Meteorological Society (AMS) held its 11th Conference on Satellite Meteorology and Oceanography at the Monona Terrace Convention Center in Madison, Wisconsin, during 15-18 October 2001. The purpose of the conference, typically held every 18 months, is to promote a forum for AMS membership, international scientists, and student members to present and discuss the latest advances in satellite remote sensing for meteorological and oceanographical applications. This year, surrounded by inspirational designs by famed architect Frank Lloyd Wright, the meeting focused on several broad topics related to remote sensing from space, including environmental applications of land and oceanic remote sensing, climatology and long-term satellite data studies, operational applications, radiances and retrievals, and new technology and methods. A vision of an increasing convergence of satellite systems emerged that included operational and research satellite programs and interdisciplinary user groups.The conference also hosted NASA's Electronic Theater, which was presented to groups of middle and high school students totaling over 5500. It was truly a successful public outreach event. The conference banquet was held on the final evening, where a short tribute to satellite pioneer Verner Suomi was given by Joanne Simpson. Suomi was responsible for establishing the Space Science and Engineering Center at the University of Wisconsin in Madison.

  12. Role of surface characteristics in urban meteorology and air quality

    SciTech Connect

    Sailor, David Jean

    1993-08-01

    Urbanization results in a landscape with significantly modified surface characteristics. The lower values of reflectivity to solar radiation, surface moisture availability, and vegetative cover, along with the higher values of anthropogenic heat release and surface roughness combine to result higher air temperatures in urban areas relative to their rural counterparts. Through their role in the surface energy balance and surface exchange processes, these surface characteristics are capable of modifying the local meteorology. The impacts on wind speeds, air temperatures, and mixing heights are of particular importance, as they have significant implications in terms of urban energy use and air quality. This research presents several major improvements to the meteorological modeling methodology for highly heterogeneous terrain. A land-use data-base is implemented to provide accurate specification of surface characteristic variability in simulations of the Los Angeles Basin. Several vegetation parameterizations are developed and implemented, and a method for including anthropogenic heat release into the model physics is presented. These modeling advancements are then used in a series of three-dimensional simulations which were developed to investigate the potential meteorological impact of several mitigation strategies. Results indicate that application of moderate tree-planting and urban-lightening programs in Los Angeles may produce summertime air temperature reductions on the order of 4°C with a concomitant reduction in air pollution. The analysis also reveals several mechanisms whereby the application of these mitigation strategies may potentially increase pollutant concentrations. The pollution and energy use consequences are discussed in detail.

  13. Data Publication in the Meteorological Sciences: the OJIMS project

    NASA Astrophysics Data System (ADS)

    Callaghan, Sarah; Hewer, Fiona; Pepler, Sam; Hardaker, Paul; Gadian, Alan

    2010-05-01

    Historically speaking, scientific publication has mainly focussed on the analysis, interpretation and conclusions drawn from a given dataset, as these are the information that can be easily published in hard copy text format with the aid of diagrams. Examining the raw data that forms the dataset is often difficult to do, as datasets are usually stored in digital media, in a variety of (often proprietary or non-standard) formats. This means that the peer-review process is generally only applied to the methodology and final conclusions of a piece of work, and not the underlying data itself. Yet for the conclusions to stand, the data must be of good quality, and the peer-review process must be used to judge the data quality. Data publication, involving the peer-review of datasets, would be of benefit to many sectors of the academic community. For the data scientists, who often spend considerable time and effort ensuring that their data and metadata is complete, valid and stored in an accredited data repository, this would provide academic credit in the form of extra publications and citations. Data publication would benefit the wider community, allowing discovery and reuse of useful datasets, ensuring their curation and providing the best possible value for money. Overlay journals are a technology which is already being used to facilitate peer review and publication on-line. The Overlay Journal Infrastructure for Meteorological Sciences (OJIMS) Project aimed to develop the mechanisms that could support both a new (overlay) Journal of Meteorological Data and an Open-Access Repository for documents related to the meteorological sciences. The OJIMS project was conducted by a partnership between the UK's Royal Meteorological Society (RMetS) and two members of the National Centre for Atmospheric Science (NCAS), the British Atmospheric Data Centre (BADC) and the University of Leeds. Conference delegates at the NCAS Conference in Bristol of 8-10 December 2008 were invited to

  14. Numerical simulation of a meteorological regime of Pontic region

    NASA Astrophysics Data System (ADS)

    Toropov, P.; Silvestrova, K.

    2012-04-01

    The Black Sea Coast of Caucasus is one of priority in sense of meteorological researches. It is caused both strategic and economic importance of coast, and current development of an infrastructure for the winter Olympic Games «Sochi-2014». During the winter period at the Black Sea Coast of Caucasus often there are the synoptic conditions leading to occurrence of the dangerous phenomena of weather: «northeast», ice-storms, strong rains, etc. The Department of Meteorology (Moscow State University) throughout 8 years spends regular measurements on the basis of Southern Department of Institute of Oenology of the Russian Academy of Sciences in July and February. They include automatically measurements with the time resolution of 5 minutes in three points characterizing landscape or region (coast, steppe plain, top of the Markothsky ridge), measurements of flux of solar radiation, measurements an atmospheric precipitation in 8 points, which remoteness from each other - 2-3 km. The saved up material has allowed to reveal some features of a meteorological mode of coast. But an overall objective of measurements - an estimation of quality of the numerical forecast by means of «meso scale» models (for example - model WRF). The first of numerical experiments by WRF model were leaded in 2007 year and were devoted reproduction of a meteorological mode of the Black Sea coast. The second phase of experiments has been directed on reproduction the storm phenomena (Novorossiysk nord-ost). For estimation of the modeling data was choused area witch limited by coordinates 44,1 - 44,75 (latitude) and 37,6 - 39 (longitude). Estimations are spent for the basic meteorological parameters - for pressure, temperature, speed of a wind. As earlier it was marked, 8 meteorological stations are located in this territory. Their values are accepted for the standard. Errors are calculated for February 2005, 2006, 2008, 2011 years, because in these periods was marked a strong winds. As the

  15. Meteorologically Driven Simulations of Dengue Epidemics in San Juan, PR

    PubMed Central

    Morin, Cory W.; Monaghan, Andrew J.; Hayden, Mary H.; Barrera, Roberto; Ernst, Kacey

    2015-01-01

    Meteorological factors influence dengue virus ecology by modulating vector mosquito population dynamics, viral replication, and transmission. Dynamic modeling techniques can be used to examine how interactions among meteorological variables, vectors and the dengue virus influence transmission. We developed a dengue fever simulation model by coupling a dynamic simulation model for Aedes aegypti, the primary mosquito vector for dengue, with a basic epidemiological Susceptible-Exposed-Infectious-Recovered (SEIR) model. Employing a Monte Carlo approach, we simulated dengue transmission during the period of 2010–2013 in San Juan, PR, where dengue fever is endemic. The results of 9600 simulations using varied model parameters were evaluated by statistical comparison (r2) with surveillance data of dengue cases reported to the Centers for Disease Control and Prevention. To identify the most influential parameters associated with dengue virus transmission for each period the top 1% of best-fit model simulations were retained and compared. Using the top simulations, dengue cases were simulated well for 2010 (r2 = 0.90, p = 0.03), 2011 (r2 = 0.83, p = 0.05), and 2012 (r2 = 0.94, p = 0.01); however, simulations were weaker for 2013 (r2 = 0.25, p = 0.25) and the entire four-year period (r2 = 0.44, p = 0.002). Analysis of parameter values from retained simulations revealed that rain dependent container habitats were more prevalent in best-fitting simulations during the wetter 2010 and 2011 years, while human managed (i.e. manually filled) container habitats were more prevalent in best-fitting simulations during the drier 2012 and 2013 years. The simulations further indicate that rainfall strongly modulates the timing of dengue (e.g., epidemics occurred earlier during rainy years) while temperature modulates the annual number of dengue fever cases. Our results suggest that meteorological factors have a time-variable influence on dengue transmission relative to other important

  16. National Verification System of National Meteorological Center , China

    NASA Astrophysics Data System (ADS)

    Zhang, Jinyan; Wei, Qing; Qi, Dan

    2016-04-01

    Product Quality Verification Division for official weather forecasting of China was founded in April, 2011. It is affiliated to Forecast System Laboratory (FSL), National Meteorological Center (NMC), China. There are three employees in this department. I'm one of the employees and I am in charge of Product Quality Verification Division in NMC, China. After five years of construction, an integrated realtime National Verification System of NMC, China has been established. At present, its primary roles include: 1) to verify official weather forecasting quality of NMC, China; 2) to verify the official city weather forecasting quality of Provincial Meteorological Bureau; 3) to evaluate forecasting quality for each forecasters in NMC, China. To verify official weather forecasting quality of NMC, China, we have developed : • Grid QPF Verification module ( including upascale) • Grid temperature, humidity and wind forecast verification module • Severe convective weather forecast verification module • Typhoon forecast verification module • Disaster forecast verification • Disaster warning verification module • Medium and extend period forecast verification module • Objective elements forecast verification module • Ensemble precipitation probabilistic forecast verification module To verify the official city weather forecasting quality of Provincial Meteorological Bureau, we have developed : • City elements forecast verification module • Public heavy rain forecast verification module • City air quality forecast verification module. To evaluate forecasting quality for each forecasters in NMC, China, we have developed : • Off-duty forecaster QPF practice evaluation module • QPF evaluation module for forecasters • Severe convective weather forecast evaluation module • Typhoon track forecast evaluation module for forecasters • Disaster warning evaluation module for forecasters • Medium and extend period forecast evaluation module The further

  17. Meteorologically Driven Simulations of Dengue Epidemics in San Juan, PR.

    PubMed

    Morin, Cory W; Monaghan, Andrew J; Hayden, Mary H; Barrera, Roberto; Ernst, Kacey

    2015-08-01

    Meteorological factors influence dengue virus ecology by modulating vector mosquito population dynamics, viral replication, and transmission. Dynamic modeling techniques can be used to examine how interactions among meteorological variables, vectors and the dengue virus influence transmission. We developed a dengue fever simulation model by coupling a dynamic simulation model for Aedes aegypti, the primary mosquito vector for dengue, with a basic epidemiological Susceptible-Exposed-Infectious-Recovered (SEIR) model. Employing a Monte Carlo approach, we simulated dengue transmission during the period of 2010-2013 in San Juan, PR, where dengue fever is endemic. The results of 9600 simulations using varied model parameters were evaluated by statistical comparison (r2) with surveillance data of dengue cases reported to the Centers for Disease Control and Prevention. To identify the most influential parameters associated with dengue virus transmission for each period the top 1% of best-fit model simulations were retained and compared. Using the top simulations, dengue cases were simulated well for 2010 (r2 = 0.90, p = 0.03), 2011 (r2 = 0.83, p = 0.05), and 2012 (r2 = 0.94, p = 0.01); however, simulations were weaker for 2013 (r2 = 0.25, p = 0.25) and the entire four-year period (r2 = 0.44, p = 0.002). Analysis of parameter values from retained simulations revealed that rain dependent container habitats were more prevalent in best-fitting simulations during the wetter 2010 and 2011 years, while human managed (i.e. manually filled) container habitats were more prevalent in best-fitting simulations during the drier 2012 and 2013 years. The simulations further indicate that rainfall strongly modulates the timing of dengue (e.g., epidemics occurred earlier during rainy years) while temperature modulates the annual number of dengue fever cases. Our results suggest that meteorological factors have a time-variable influence on dengue transmission relative to other important

  18. Assimilation of Stratospheric Meteorological and Constituent Observations: A Review

    NASA Technical Reports Server (NTRS)

    Rood, Richard B.; Pawson, Steven

    2004-01-01

    This talk reviews the assimilation of meteorological and constituent observations of the stratosphere. The first efforts to assimilate observations into stratospheric models were during the early 1980s, and a number of research studies followed during the next decade. Since the launch of the Upper Atmospheric Research Satellite (UARS) in 1991, model-assimilated data sets of the stratospheric meteorological state have been routinely available. These assimilated data sets were critical in bringing together observations from the different instruments on UARS as well as linking UARS observations to measurements from other platforms. Using trajectory-mapping techniques, meteorological assimilation analyses are, now, widely used in the analysis of constituent observations and have increased the level of quantitative study of stratospheric chemistry and transport. During the 1990s the use of winds and temperatures from assimilated data sets became standard for offline chemistry and transport modeling. variability in middle latitudes. The transport experiments, however, reveal a set of shortcomings that become obvious as systematic errors are integrated over time. Generally, the tropics are not well represented, mixing between the tropics and middle latitudes is overestimated, and the residual circulation is not accurate. These shortcomings reveal underlying fundamental challenges related to bias and noise. Current studies using model simulation and data assimilation in controlled experimentation are highlighting the issues that must be addressed if assimilated data sets are to be convincingly used to study interannual variability and decadal change. observations. The primary focus has been on stratospheric ozone, but there are efforts that investigate a suite of reactive chemical constituents. Recent progress in ozone assimilation shows the potential of assimilation to contribute to the validation of ozone observations and, ultimately, the retrieval of ozone profiles from

  19. Update of ECTOM - European catalogue of training opportunities in meteorology

    NASA Astrophysics Data System (ADS)

    Halenka, Tomas; Belda, Michal

    2016-04-01

    After Bologna Declaration (1999) the process of integration of education at university level was started in most European countries with the aim to unify the system and structure of the tertiary education with the option for possibility of transnational mobility of students across the Europe. The goal was to achieve the compatibility between the systems and levels in individual countries to help this mobility. To support the effort it is useful to provide the information about the possibility of education in different countries in centralised form, with uniform shape and content, but validated on a national level. For meteorology and climatology this could be reasonably done on the floor of European Meteorological Society, ideally with contribution of individual National Meteorological Societies and their guidance. Brief history of the original ECTOM I and previous attempts to start ECTOM II is given. Further need of update of the content is discussed with emphasis to several aspects. There are several reasons for such an update of ECTOM 1. First, there are many more new EMS members which could contribute to the catalogue. Second, corrected, new, more precise and expanding information will be available in addition to existing record, particularly in sense of some changes in education systems of EC countries and associated countries approaching the EC following the main goals included in Bologna Declaration. Third, contemporary technology to organize the real database with the possibility of easier navigation and searching of the appropriate information and feasibility to keep them up to date permanently through the WWW interface should be adopted. In this presentation, the engine of ECTOM II database will be shown together with practical information how to find and submit information on access to education or training possibilities. Finally, as we have started with filling the database using freely available information from the web, practical examples of use will

  20. What are the hydro-meteorological controls on flood characteristics?

    NASA Astrophysics Data System (ADS)

    Nied, Manuela; Schröter, Kai; Lüdtke, Stefan; Nguyen, Viet Dung; Merz, Bruno

    2017-02-01

    Flood events can be expressed by a variety of characteristics such as flood magnitude and extent, event duration or incurred loss. Flood estimation and management may benefit from understanding how the different flood characteristics relate to the hydrological catchment conditions preceding the event and to the meteorological conditions throughout the event. In this study, we therefore propose a methodology to investigate the hydro-meteorological controls on different flood characteristics, based on the simulation of the complete flood risk chain from the flood triggering precipitation event, through runoff generation in the catchment, flood routing and possible inundation in the river system and floodplains to flood loss. Conditional cumulative distribution functions and regression tree analysis delineate the seasonal varying flood processes and indicate that the effect of the hydrological pre-conditions, i.e. soil moisture patterns, and of the meteorological conditions, i.e. weather patterns, depends on the considered flood characteristic. The methodology is exemplified for the Elbe catchment. In this catchment, the length of the build-up period, the event duration and the number of gauges undergoing at least a 10-year flood are governed by weather patterns. The affected length and the number of gauges undergoing at least a 2-year flood are however governed by soil moisture patterns. In case of flood severity and loss, the controlling factor is less pronounced. Severity is slightly governed by soil moisture patterns whereas loss is slightly governed by weather patterns. The study highlights that flood magnitude and extent arise from different flood generation processes and concludes that soil moisture patterns as well as weather patterns are not only beneficial to inform on possible flood occurrence but also on the involved flood processes and resulting flood characteristics.

  1. Micro-sensors for in-situ meteorological measurements

    NASA Technical Reports Server (NTRS)

    Crisp, David; Kaiser, William J.; Vanzandt, Thomas R.; Tillman, James E.

    1993-01-01

    Improved in-situ meteorological measurements are needed for monitoring the weather and climate of the terrestrial and Martian atmospheres. We have initiated a program to assess the feasibility and utility of micro-sensors for precise in-situ meteorological measurements in these environments. Sensors are being developed for measuring pressure, temperature, wind velocity, humidity, and aerosol amounts. Silicon micro-machining and large scale integration technologies are being used to make sensors that are small, rugged, lightweight, and require very little power. Our long-term goal is to develop very accurate miniaturized sensors that can be incorporated into complete instrument packages or 'micro weather stations,' and deployed on a variety of platforms. If conventional commercially available silicon production techniques can be used to fabricate these sensor packages, it will eventually be possible to mass-produce them at low cost. For studies of the Earth's troposphere and stratosphere, they could be deployed on aircraft, dropsondes, radiosondes, or autonomous surface stations at remote sites. Improved sensor accuracy and reduced sensor cost are the primary challenges for these applications. For studies of the Martian atmosphere, these sensor packages could be incorporated into the small entry probes and surface landers that are being planned for the Mars Environmental SURvey (MESUR) Mission. That decade-long program will deploy a global network of small stations on the Martian surface for monitoring meteorological and geological processes. Low mass, low power, durability, large dynamic range and calibration stability are the principal challenges for this application. Our progress on each of these sensor types is presented.

  2. Meteorological Observations for Renewable Energy Applications at Site 300

    SciTech Connect

    Wharton, S; Alai, M; Myers, K

    2011-10-26

    In early October 2010, two Laser and Detection Ranging (LIDAR) units (LIDAR-96 and LIDAR-97), a 3 m tall flux tower, and a 3 m tall meteorological tower were installed in the northern section of Site 300 (Figure 1) as a first step in development of a renewable energy testbed facility. This section of the SMS project is aimed at supporting that effort with continuous maintenance of atmospheric monitoring instruments capable of measuring vertical profiles of wind speed and wind direction at heights encountered by future wind power turbines. In addition, fluxes of energy are monitored to estimate atmospheric mixing and its effects on wind flow properties at turbine rotor disk heights. Together, these measurements are critical for providing an accurate wind resource characterization and for validating LLNL atmospheric prediction codes for future renewable energy projects at Site 300. Accurate, high-resolution meteorological measurements of wind flow in the planetary boundary layer (PBL) and surface-atmosphere energy exchange are required for understanding the properties and quality of available wind power at Site 300. Wind speeds at heights found in a typical wind turbine rotor disk ({approx} 40-140 m) are driven by the synergistic impacts of atmospheric stability, orography, and land-surface characteristics on the mean wind flow in the PBL and related turbulence structures. This section of the report details the maintenance and labor required in FY11 to optimize the meteorological instruments and ensure high accuracy of their measurements. A detailed look at the observations from FY11 is also presented. This portion of the project met the following milestones: Milestone 1: successful maintenance and data collection of LIDAR and flux tower instruments; Milestone 2: successful installation of solar power for the LIDAR units; and Milestone 3: successful implementation of remote data transmission for the LIDAR units.

  3. Synchronous meteorological satellite system description document, volume 4. [ground station

    NASA Technical Reports Server (NTRS)

    Lahzun, J.

    1972-01-01

    The command and data acquisition (CDA) station for the Synchronous Meteorological Satellite (SMS) program, located on the Eastern shore of Virginia, is described in terms of facility layout, ground support instrumentation, and capabilities. Data systems and equipment are described in detailed block diagrams. The major subsystems are identified and information on equipment specifications, frequency ranges, and data processing format is given. Automatic picture transmission, data utilization stations, data collection platforms, and the various communication links from the CDA station to the SMS spacecraft are discussed.

  4. Study to determine cloud motion from meteorological satellite data

    NASA Technical Reports Server (NTRS)

    Clark, B. B.

    1972-01-01

    Processing techniques were tested for deducing cloud motion vectors from overlapped portions of pairs of pictures made from meteorological satellites. This was accomplished by programming and testing techniques for estimating pattern motion by means of cross correlation analysis with emphasis placed upon identifying and reducing errors resulting from various factors. Techniques were then selected and incorporated into a cloud motion determination program which included a routine which would select and prepare sample array pairs from the preprocessed test data. The program was then subjected to limited testing with data samples selected from the Nimbus 4 THIR data provided by the 11.5 micron channel.

  5. Map of isotachs - statistical approach and meteorological information transfer

    SciTech Connect

    Menezes, A.A.; da Silva, J.I.; Coutinho, C.E.O.

    1985-09-01

    This report gives a statistical treatment of available wind data from airports in Brazil and provides a map of isotachs for extreme yearly wind velocities. A comparison between the statistical models of Frechet and Gumbel is carried out, leading to the adoption of the latter. The low density of meteorological stations used in this approach restricts the knowledge of wind activity. This fact was accounted for in the analytical method for spatial transfer of climatic data. Recommendations are given on how to enlarge the amount of available data.

  6. A graphics package for meteorological data, version 1.5

    NASA Technical Reports Server (NTRS)

    Moorthi, Shrinivas; Suarez, Max; Phillips, Bill; Schemm, Jae-Kyung; Schubert, Siegfried

    1989-01-01

    A plotting package has been developed to simplify the task of plotting meteorological data. The calling sequences and examples of high level yet flexible routines which allow contouring, vectors and shading of cylindrical, polar, orthographic and Mollweide (egg) projections are given. Routines are also included for contouring pressure-latitude and pressure-longitude fields with linear or log scales in pressure (interpolation to fixed grid interval is done automatically). Also included is a fairly general line plotting routine. The present version (1.5) produces plots on WMS laser printers and uses graphics primitives from WOLFPLOT.

  7. FSO and radio link attenuation: meteorological models verified by experiment

    NASA Astrophysics Data System (ADS)

    Brazda, Vladimir; Fiser, Ondrej; Svoboda, Jaroslav

    2011-09-01

    Institute of Atmospheric Physics of Czech Academy measures atmospheric attenuation on 60 m experimental FSO link on 830 and 1550 nm for more than three years. Visibility sensors and two 3D sonic anemometers on both transmitting and receiving site, rain gauge and many sensors enabling the refractivity index computation are spaced along the optical link. Meteorological visibility, wind turbulent energy, sonic temperature, structure index and rain rate are correlated with measured attenuation. FSO link attenuation dependence on the above mentioned parameters is analyzed. The paper shows also basic statistical behavior of the long-term FSO signal level and also the simulation of hybrid link techniques.

  8. BOREAS TE-5 Surface Meteorological and Radiation Data

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Ehleriinger, Jim; Brooks, J. Renee; Flanagan, Larry

    2000-01-01

    The BOREAS TE-5 team collected measurements in the NSA and SSA on gas exchange, gas composition, and tree growth. Measurements of meteorological data, including air and soil temperature, RH, and PPFD, were 30-minute intervals during the 1994 IFCs at various sites in the BOREAS NSA and SSA. The data are provided in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  9. Applied Meteorology Unit (AMU) Quarterly Report Third Quarter FY-08

    NASA Technical Reports Server (NTRS)

    Bauman, William; Crawford, Winifred; Barrett, Joe; Watson, Leela; Dreher, Joseph

    2008-01-01

    This report summarizes the Applied Meteorology Unit (AMU) activities for the third quarter of Fiscal Year 2008 (April - June 2008). Tasks reported on are: Peak Wind Tool for User Launch Commit Criteria (LCC), Anvil Forecast Tool in AWIPS Phase II, Completion of the Edward Air Force Base (EAFB) Statistical Guidance Wind Tool, Volume Averaged Height Integ rated Radar Reflectivity (VAHIRR), Impact of Local Sensors, Radar Scan Strategies for the PAFB WSR-74C Replacement, VAHIRR Cost Benefit Analysis, and WRF Wind Sensitivity Study at Edwards Air Force Base

  10. Applied Meteorology Unit (AMU) Quarterly Report. First Quarter FY-05

    NASA Technical Reports Server (NTRS)

    Bauman, William; Wheeler, Mark; Lambert, Winifred; Case, Jonathan; Short, David

    2005-01-01

    This report summarizes the Applied Meteorology Unit (AMU) activities for the first quarter of Fiscal Year 2005 (October - December 2005). Tasks reviewed include: (1) Objective Lightning Probability Forecast: Phase I, (2) Severe Weather Forecast Decision Aid, (3) Hail Index, (4) Stable Low Cloud Evaluation, (5) Shuttle Ascent Camera Cloud Obstruction Forecast, (6) Range Standardization and Automation (RSA) and Legacy Wind Sensor Evaluation, (7) Advanced Regional Prediction System (ARPS) Optimization and Training Extension, and (8) User Control Interface for ARPS Data Analysis System (ADAS) Data Ingest

  11. Applied Meteorology Unit (AMU) Quarterly Report - Fourth Quarter FY-09

    NASA Technical Reports Server (NTRS)

    Bauman, William; Crawford, Winifred; Barrett, Joe; Watson, Leela; Wheeler, Mark

    2009-01-01

    This report summarizes the Applied Meteorology Unit (AMU) activities for the fourth quarter of Fiscal Year 2009 (July - September 2009). Tasks reports include: (1) Peak Wind Tool for User Launch Commit Criteria (LCC), (2) Objective Lightning Probability Tool. Phase III, (3) Peak Wind Tool for General Forecasting. Phase II, (4) Update and Maintain Advanced Regional Prediction System (ARPS) Data Analysis System (ADAS), (5) Verify MesoNAM Performance (6) develop a Graphical User Interface to update selected parameters for the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLlT)

  12. Operational problems experienced by single pilots in instrument meteorological conditions

    NASA Technical Reports Server (NTRS)

    Weislogel, S.

    1981-01-01

    The development and implementation of a search strategy to extract pertinent reports from the Aviation Safety Reporting System-2 (ASRS-2) database are described. For any particular occurence to be pertinent to the study, it must have satisfied the following conditions: the aircraft must be of the type usually flown by a single pilot; operation on an IFR flight plan in instrument meteorological conditions; pilot experienced an operational problem. The occurances consist of reports by the pilot about his own performance, by the pilot about the system performance, or by an air traffic controller about a pilot's performance.

  13. ARM Mobile Facility Surface Meteorology Handbook - October 2008

    SciTech Connect

    MT Ritsche

    2008-10-30

    The ARM Mobile Facility Surface Meteorology station (AMF MET) uses mainly conventional in situ sensors to obtain 1-minute statistics of surface wind speed, wind direction, air temperature, relative humidity, barometric pressure, and rain-rate. Additional sensors may be added to or removed from the base set of sensors depending upon the deployment location, climate regime or programmatic needs. Additionally, sensor types may change depending upon the climate regime of the deployment. These changes/additions are noted in the Deployment Locations and History section.

  14. The determination of surface albedo from meteorological satellites

    NASA Technical Reports Server (NTRS)

    Johnson, W. T.

    1977-01-01

    A surface albedo was determined from visible data collected by the NOAA-4 polar orbiting meteorological satellite. To filter out the major cause of atmospheric reflectivity, namely clouds, techniques were developed and applied to the data resulting in a map of global surface albedo. Neglecting spurious surface albedos for regions with persistent cloud cover, sun glint effects, insufficient reflected light and, at this time, some unresolved influences, the surface albedos retrieved from satellite data closely matched those of a global surface albedo map produced from surface and aircraft measurements and from characteristic albedos for land type and land use.

  15. Tropospheric Airborne Meteorological Data Reporting (TAMDAR) Sensor Development

    NASA Technical Reports Server (NTRS)

    Daniels, Taumi S.

    2002-01-01

    In response to recommendations from the National Aviation Weather Program Council, the National Aeronautics and Space Administration (NASA) is working with industry to develop an electronic pilot reporting capability for small aircraft. This paper describes the Tropospheric Airborne Meteorological Data Reporting (TAMDAR) sensor development effort. NASA is working with industry to develop a sensor capable of measuring temperature, relative humidity, magnetic heading, pressure, icing, and average turbulence energy dissipation. Users of the data include National Centers for Environmental Prediction (NCEP) forecast modelers, air traffic controllers, flight service stations, airline operation centers, and pilots. Preliminary results from flight tests are presented.

  16. Meteorological conditions during the summer 1986 CITE 2 flight series

    NASA Technical Reports Server (NTRS)

    Shipham, Mark C.; Cahoon, Donald R.; Bachmeier, A. Scott

    1990-01-01

    An overview of meteorological conditions during the NASA Global Tropospheric Experiment/Chemical Instrumentation Testing and Evaluation (GTE/CITE 2) summer 1986 flight series is presented. Computer-generated isentropic trajectories are used to trace the history of air masses encountered along each aircraft flight path. The synoptic-scale wind fields are depicted based on Montgomery stream function analyses. Time series of aircraft-measured temperature, dew point, ozone, and altitude are shown to depict air mass variability. Observed differences between maritime tropical and maritime polar air masses are discussed.

  17. How some nonmeteorological professionals view meteorology and weather forecasting.

    NASA Technical Reports Server (NTRS)

    Scoggins, J. R.; Vaughan, W. W.

    1971-01-01

    The results of a questionnaire designed to gather information on how nonmeteorological scientists and engineers view meteorology and weather forecasting are summarized in this paper. The respondents were from two organizations, Texas A & M University and NASA's Marshall Space Flight Center, the first representing the academic community and the latter the engineering community. While there were some differences between the groups, in most cases answers expressed in the opinionnaire by the two groups were essentially identical. The results revealed the following: Approximately three-fourths of the respondents use meteorological data and/or weather forecasts in their profession; the meaning of probability forecasts is very unclear with only 13% indicating the correct answer; television is the main source of weather information; approximately half of the respondents had never heard of the Global Atmospheric Research Program; and the opinion was almost unanimous that satellites had contributed significantly to weather observations and/or forecasts. Also, the results indicated a number of other ?problem' areas where some improvements are desired.

  18. Effects of valley meteorology on forest pesticide spraying

    SciTech Connect

    Whiteman, C.D.

    1990-04-01

    Pacific Northwest Laboratory conducted this study for the Missoula Technology and Development Center of the US Department of Agriculture's Forest Service. The purpose of the study was to summarize recent research on valley meteorology during the morning transition period and to qualitatively evaluate the effects of the evolution of valley temperature inversions and wind systems on the aerial spraying of pesticides in National Forest areas of the western United States. Aerial spraying of pesticides and herbicides in forests of the western United States is usually accomplished in the morning hour after first light, during the period known to meteorologists as the morning transition period.'' This document describes the key physical processes that occur during the morning transition period on undisturbed days and the qualitative effects of these processes on the conduct of aerial spraying operations. Since the timing of valley meteorological events may be strongly influenced by conditions that are external to the valley, such as strong upper-level winds or the influence of clouds on the receipt of solar energy in the valley, some remarks are made on the qualitative influence of these processes. Section 4 of this report suggests ways to quantify some of the physical processes to provide useful guidance for the planning and conduct of spraying operations. 12 refs., 9 figs.

  19. Analysis of Meteorological Satellite location and data collection system concepts

    NASA Technical Reports Server (NTRS)

    Wallace, R. G.; Reed, D. L.

    1981-01-01

    A satellite system that employs a spaceborne RF interferometer to determine the location and velocity of data collection platforms attached to meteorological balloons is proposed. This meteorological advanced location and data collection system (MALDCS) is intended to fly aboard a low polar orbiting satellite. The flight instrument configuration includes antennas supported on long deployable booms. The platform location and velocity estimation errors introduced by the dynamic and thermal behavior of the antenna booms and the effects of the presence of the booms on the performance of the spacecraft's attitude control system, and the control system design considerations critical to stable operations are examined. The physical parameters of the Astromast type of deployable boom were used in the dynamic and thermal boom analysis, and the TIROS N system was assumed for the attitude control analysis. Velocity estimation error versus boom length was determined. There was an optimum, minimum error, antenna separation distance. A description of the proposed MALDCS system and a discussion of ambiguity resolution are included.

  20. Meteorological variables and bacillary dysentery cases in Changsha City, China.

    PubMed

    Gao, Lu; Zhang, Ying; Ding, Guoyong; Liu, Qiyong; Zhou, Maigeng; Li, Xiujun; Jiang, Baofa

    2014-04-01

    This study aimed to investigate the association between meteorological-related risk factors and bacillary dysentery in a subtropical inland Chinese area: Changsha City. The cross-correlation analysis and the Autoregressive Integrated Moving Average with Exogenous Variables (ARIMAX) model were used to quantify the relationship between meteorological factors and the incidence of bacillary dysentery. Monthly mean temperature, mean relative humidity, mean air pressure, mean maximum temperature, and mean minimum temperature were significantly correlated with the number of bacillary dysentery cases with a 1-month lagged effect. The ARIMAX models suggested that a 1°C rise in mean temperature, mean maximum temperature, and mean minimum temperature might lead to 14.8%, 12.9%, and 15.5% increases in the incidence of bacillary dysentery disease, respectively. Temperature could be used as a forecast factor for the increase of bacillary dysentery in Changsha. More public health actions should be taken to prevent the increase of bacillary dysentery disease with consideration of local climate conditions, especially temperature.

  1. Tropospheric Airborne Meteorological Data Reporting (TAMDAR) Sensor Development

    NASA Technical Reports Server (NTRS)

    Daniels, Taumi S.; Tsoucalas, George; Anderson, Mark; Mulally, Daniel; Moninger, William; Mamrosh, Richard

    2004-01-01

    One of the recommendations of the National Aviation Weather Program Council was to expand and institutionalize the generation, dissemination, and use of automated pilot reports (PIREPS) to the full spectrum of the aviation community, including general aviation. In response to this and other similar recommendations, NASA initiated cooperative research into the development of an electronic pilot reporting capability (Daniels 2002). The ultimate goal is to develop a small low-cost sensor, collect useful meteorological observations below 25,000 ft., downlink the data in near real time, and use the data to improve weather forecasts. Primary users of the data include pilots, who are one targeted audience for the improved weather information that will result from the TAMDAR data. The weather data will be disseminated and used to improve aviation safety by providing pilots with enhanced weather situational awareness. In addition, the data will be used to improve the accuracy and timeliness of weather forecasts. Other users include air traffic controllers, flight service stations, and airline weather centers. Additionally, the meteorological data collected by TAMDAR is expected to have a significant positive impact on forecast accuracy for ground based applications.

  2. Linking Meteorology, Air Quality Models and Observations to ...

    EPA Pesticide Factsheets

    Epidemiologic studies are critical in establishing the association between exposure to air pollutants and adverse health effects. Results of epidemiologic studies are used by U.S. EPA in developing air quality standards to protect the public from the health effects of air pollutants. A major challenge in environmental epidemiology is adequate exposure characterization. Numerous health studies have used measurements from a few central-site ambient monitors to characterize air pollution exposures. Relying solely on central-site ambient monitors does not account for the spatial-heterogeneity of ambient air pollution patterns, the temporal variability in ambient concentrations, nor the influence of infiltration and indoor sources. Central-site monitoring becomes even more problematic for certain air pollutants that exhibit significant spatial heterogeneity. Statistical interpolation techniques and passive monitoring methods can provide additional spatial resolution in ambient concentration estimates. In addition, spatio-temporal models, which integrate GIS data and other factors, such as meteorology, have also been developed to produce more resolved estimates of ambient concentrations. Models, such as the Community Multi-Scale Air Quality (CMAQ) model, estimate ambient concentrations by combining information on meteorology, source emissions, and chemical-fate and transport. Hybrid modeling approaches, which integrate regional scale models with local scale dispersion

  3. Daily total global solar radiation modeling from several meteorological data

    NASA Astrophysics Data System (ADS)

    Bilgili, Mehmet; Ozgoren, Muammer

    2011-05-01

    This paper investigates the modeling of the daily total global solar radiation in Adana city of Turkey using multi-linear regression (MLR), multi-nonlinear regression (MNLR) and feed-forward artificial neural network (ANN) methods. Several daily meteorological data, i.e., measured sunshine duration, air temperature and wind speed and date of the year, i.e., monthly and daily, were used as independent variables to the MLR, MNLR and ANN models. In order to determine the relationship between the total global solar radiation and other meteorological data, and also to obtain the best independent variables, the MLR and MNLR analyses were performed with the "Stepwise" method in the Statistical Packages for the Social Sciences (SPSS) program. Thus, various models consisting of the combination of the independent variables were constructed and the best input structure was investigated. The performances of all models in the training and testing data sets were compared with the measured daily global solar radiation values. The obtained results indicated that the ANN method was better than the other methods in modeling daily total global solar radiation. For the ANN model, mean absolute error (MAE), mean absolute percentage error (MAPE), correlation coefficient ( R) and coefficient of determination ( R 2) for the training/testing data set were found to be 0.89/1.00 MJ/m2 day, 7.88/9.23%, 0.9824/0.9751, and 0.9651/0.9508, respectively.

  4. Comparison of Savannah River Site`s meteorological databases

    SciTech Connect

    Weber, A.H.

    1993-07-01

    A five-year meteorological database from the 61-meter, H-Area tower for the period 1987--1991 was compared to an earlier database for the period 1982--1986. The amount of invalid data for the newer 87--91 database was one third that for the earlier database. The data recovery percentage for the last four years of the 87-91 database was well above 90%. Considerable effort was necessary to fill in for missing data periods for the newer database for the H-Area tower. Therefore, additional databases that have been prepared for the remaining SRS meteorological towers have had missing and erroneous data flagged, but not replaced. The F-Area tower`s database was used for cross-comparison purposes because of its proximity to H Area. The primary purpose of this report is to compare the H-Tower databases for 82-86 and 87-91. Statistical methods enable the use of probability statements to be made concerning the hypothesis of no differences between the distributions of the two time periods, assuming each database is a random sample from its respective distribution. This assumption is required for the statistical tests to be valid. A number of statistical comparisons can be made between the two data sets, even though the 82-86 database exist only as distributions of frequency and mean speed.

  5. Meteorological Variables and Bacillary Dysentery Cases in Changsha City, China

    PubMed Central

    Gao, Lu; Zhang, Ying; Ding, Guoyong; Liu, Qiyong; Zhou, Maigeng; Li, Xiujun; Jiang, Baofa

    2014-01-01

    This study aimed to investigate the association between meteorological-related risk factors and bacillary dysentery in a subtropical inland Chinese area: Changsha City. The cross-correlation analysis and the Autoregressive Integrated Moving Average with Exogenous Variables (ARIMAX) model were used to quantify the relationship between meteorological factors and the incidence of bacillary dysentery. Monthly mean temperature, mean relative humidity, mean air pressure, mean maximum temperature, and mean minimum temperature were significantly correlated with the number of bacillary dysentery cases with a 1-month lagged effect. The ARIMAX models suggested that a 1°C rise in mean temperature, mean maximum temperature, and mean minimum temperature might lead to 14.8%, 12.9%, and 15.5% increases in the incidence of bacillary dysentery disease, respectively. Temperature could be used as a forecast factor for the increase of bacillary dysentery in Changsha. More public health actions should be taken to prevent the increase of bacillary dysentery disease with consideration of local climate conditions, especially temperature. PMID:24591435

  6. Meteorological determinants of growing season onset in grasslands

    NASA Astrophysics Data System (ADS)

    Orescanin, B.; Denning, A.; Baker, I. T.

    2011-12-01

    The exchange of the trace gases between the land and atmosphere is highly influenced by vegetation. Therefore, the representation of phenological properties in global carbon models plays a key role in understanding and predicting the global carbon cycle. Phenological parameters such as Leaf Area Index (LAI) and fraction of photosynthetically active radiation absorbed (fPAR) are often calculated or estimated based on remote sensing measurements, which can be biased by clouds, aerosols, or snow. Alternatively, we can prognose vegetation phenology through the use of models that predict vegetation status based on meteorological conditions. Here our goal is to provide better understanding of carbon dynamics as a function of phenological parameters and their dependence on meteorological forcing. We evaluate phenological characteristics and their influence on carbon dynamics at several grassland sites. Modeled carbon flux, as a function of both diagnosed (from satellite) and prognosed phenological state are confronted with data from flux towers. Remotely-sensed phenology has a tendency to expand the growing season, and does not reflect the rapid response of vegetation in rain-green biomes as well as the prognostic phenology model does. These differences in phenology are reflected in modeled fluxes of energy, moisture, and carbon.

  7. Meteorological determinants of growing season onset in grassland

    NASA Astrophysics Data System (ADS)

    Orescanin, B.; Denning, S.; Baker, I. T.; Hanan, N. P.

    2012-12-01

    The exchange of the trace gases between the land and atmosphere is highly influenced by vegetation. Therefore, the representation of phenological properties in global carbon models plays a key role in understanding and predicting the global carbon cycle. Phenological parameters such as Leaf Area Index (LAI) and fraction of photosynthetically active radiation absorbed (fPAR) are often calculated or estimated based on remote sensing measurements, which can be biased by clouds, aerosols, or snow. Alternatively, we can prognose vegetation phenology through the use of models that predict vegetation status based on meteorological conditions. Here our goal is to provide better understanding of carbon dynamics as a function of phenological parameters and their dependence on meteorological forcing and also in the future we plan to estimate these parameters using data assimilation methodology. We evaluate phenological characteristics and their influence on carbon dynamics at Kruger National Park grassland site. Modeled carbon flux, as a function of prognosed phenological state is confronted with data from flux tower. By re-evaluating and better adjusting specific contributors to the growth season index (GSI) equation, we develop better understanding for prognostic phenology. These differences in phenology are reflected in modeled fluxes of energy, moisture, and carbon.

  8. Meteorological tsunamis along the East Coast of the United States

    NASA Astrophysics Data System (ADS)

    Rabinovich, A.

    2012-12-01

    Tsunami-like intense sea level oscillations are common along the East Coast of the United States. They are generated by various types of atmospheric disturbances, including hurricanes, frontal passages, tornados, trains of atmospheric gravity waves, pressure jumps, squalls, and gales, that each set up a local, time-limited barotropic response in the affected body of water. These meteorologically induced waves have the same temporal and spatial scales as their seismically generated counterparts and inflict comparable destructions. Observed around the globe, these devastating waves are known locally as "abiki" in Nagaski Bay (Japan), "rissaga" in Spain, "šćiga" along the Croation Coast bordering the Adriatic Sea, "milghuba" in Malta, and "marrobbio" in Italy. Collectively, they may be considered as "meteorological tsunamis" or "meteotsunamis." The updated NOAA tide gauge network with 1 min sampling enabled us to examine resonant amplifications of specific events observed in 2007-2012 and physical properties of meteotsunamis impacting the United States East Coast in general. Of particular interest and focus was the "derecho" event of June 29 - July 2, 2012.

  9. Meteorological risks as drivers of innovation for agroecosystem management

    NASA Astrophysics Data System (ADS)

    Gobin, Anne; Van de Vyver, Hans; Zamani, Sepideh; Curnel, Yannick; Planchon, Viviane; Verspecht, Ann; Van Huylenbroeck, Guido

    2015-04-01

    Devastating weather-related events recorded in recent years have captured the interest of the general public in Belgium. The MERINOVA project research hypothesis is that meteorological risks act as drivers of environmental innovation in agro-ecosystem management which is being tested using a "chain of risk" approach. The major objectives are to (1) assess the probability of extreme meteorological events by means of probability density functions; (2) analyse the extreme events impact of on agro-ecosystems using process-based bio-physical modelling methods; (3) identify the most vulnerable agro-ecosystems using fuzzy multi-criteria and spatial analysis; (4) uncover innovative risk management and adaptation options using actor-network theory and economic modelling; and, (5) communicate to research, policy and practitioner communities using web-based techniques. Generalized Extreme Value (GEV) theory was used to model annual rainfall maxima based on location-, scale- and shape-parameters that determine the centre of the distribution, the deviation of the location-parameter and the upper tail decay, respectively. Likewise the distributions of consecutive rainy days, rainfall deficits and extreme 24-hour rainfall were modelled. Spatial interpolation of GEV-derived return levels resulted in maps of extreme precipitation, precipitation deficits and wet periods. The degree of temporal overlap between extreme weather conditions and sensitive periods in the agro-ecosystem was determined using a bio-physically based modelling framework that couples phenological models, a soil water balance, crop growth and environmental models. 20-year return values were derived for frost, heat stress, drought, waterlogging and field access during different sensitive stages for different arable crops. Extreme yield values were detected from detrended long term arable yields and relationships were found with soil moisture conditions, heat stress or other meteorological variables during the

  10. Hydro-meteorological evaluation of downscaled global ensemble rainfall forecasts

    NASA Astrophysics Data System (ADS)

    Gaborit, Étienne; Anctil, François; Fortin, Vincent; Pelletier, Geneviève

    2013-04-01

    Ensemble rainfall forecasts are of high interest for decision making, as they provide an explicit and dynamic assessment of the uncertainty in the forecast (Ruiz et al. 2009). However, for hydrological forecasting, their low resolution currently limits their use to large watersheds (Maraun et al. 2010). In order to bridge this gap, various implementations of the statistic-stochastic multi-fractal downscaling technique presented by Perica and Foufoula-Georgiou (1996) were compared, bringing Environment Canada's global ensemble rainfall forecasts from a 100 by 70-km resolution down to 6 by 4-km, while increasing each pixel's rainfall variance and preserving its original mean. For comparison purposes, simpler methods were also implemented such as the bi-linear interpolation, which disaggregates global forecasts without modifying their variance. The downscaled meteorological products were evaluated using different scores and diagrams, from both a meteorological and a hydrological view points. The meteorological evaluation was conducted comparing the forecasted rainfall depths against nine days of observed values taken from Québec City rain gauge database. These 9 days present strong precipitation events occurring during the summer of 2009. For the hydrologic evaluation, the hydrological models SWMM5 and (a modified version of) GR4J were implemented on a small 6 km2 urban catchment located in the Québec City region. Ensemble hydrologic forecasts with a time step of 3 hours were then performed over a 3-months period of the summer of 2010 using the original and downscaled ensemble rainfall forecasts. The most important conclusions of this work are that the overall quality of the forecasts was preserved during the disaggregation procedure and that the disaggregated products using this variance-enhancing method were of similar quality than bi-linear interpolation products. However, variance and dispersion of the different members were, of course, much improved for the

  11. Introduction of Micro-meteorology Monitoring System for Test-bed Region in Korea

    NASA Astrophysics Data System (ADS)

    Cho, C.; Byon, J.; Kahng, K.; Park, Y.; Jung, H.

    2013-12-01

    Changbum Cho, Jae-Young Byon, Keumah Kahng, Young-San Park, and Hyun-Sook Jung National Institute of Meteorological Research, Korea Meteorological Administration, Korea National Institute of Meteorological Research established micro-meteorology monitoring system at the Nakdong River of South Korea since 2010 in order to study the micro-meteorological impact due to nationwide major river development project. A total of 37 automatic weather stations are in operation at areas near the dams which were constructed as part of this project. The weather stations mainly measure air temperature, humidity, and wind, with some of the stations measuring radiation and heat fluxes. More than half of the stations are installed on agricultural areas and the rest are installed in an industrial area. The data collected from the stations are used to observe the micrometeorological system and used as an input to numerical models, which compose a meteorological environment impact assessment tool.

  12. Meteorological radar services: a brief discussion and a solution in practice

    NASA Astrophysics Data System (ADS)

    Nicolaides, K. A.

    2014-08-01

    The Department of Meteorology is the organization designated by the Civil Aviation Department and by the National Supervisory Authority of the Republic of Cyprus, as an air navigation service provider, based on the regulations of the Single European Sky. Department of Meteorology holds and maintains also an ISO: 9001/2008, Quality System, for the provision of meteorological and climatological services to aeronautic and maritime community, but also to the general public. In order to fulfill its obligations the Department of Meteorology customs the rather dense meteorological stations network, with long historical data series, installed and maintained by the Department, in parallel with modelling and Numerical Weather Prediction (NWP), along with training and gaining of expertise. Among the available instruments in the community of meteorologists is the meteorological radar, a basic tool for the needs of very short/short range forecasting (nowcasting). The Department of Meteorology installed in the mid 90's a C-band radar over «Throni» location and expanded its horizons in nowcasting, aviation safety and warnings issuance. The radar has undergone several upgrades but today technology has over passed its rather old technology. At the present the Department of Meteorology is in the process of buying Meteorological Radar Services as a result of a public procurement procedure. Two networked X-band meteorological radar will be installed (the project now is in the phase of infrastructure establishment while the hardware is in the process of assemble), and maintained from Space Hellas (the contractor) for a 13 years' time period. The present article must be faced as a review article of the efforts of the Department of Meteorology to support its weather forecasters with data from meteorological radar.

  13. An Assessment of the Level of Mathematics in Introductory Meteorology Textbooks.

    NASA Astrophysics Data System (ADS)

    Ulanski, Stan L.

    1992-10-01

    A review of introductory meteorology textbooks shows a wide difference in the level of mathematical treatment of atmospheric principles-from virtually none to fairly high. Particular deficiencies include lack of equations integrated into the text, problem-solving examples, and paucity of end-of-chapter questions requiring mathematical reasoning. These issues are raised in order to generate discussion among the meteorological community with regard to the degree of interaction between mathematics and meteorology in introductory courses.

  14. Progress in the impact of polluted meteorological conditions on the incidence of asthma

    PubMed Central

    2016-01-01

    It has been revealed by many studies that air pollution is one of the important inducements of asthma exacerbations. In addition, meteorological conditions such as high atmospheric pressure, low temperature, low humidity and large diurnal amplitude can directly induce asthma. Meanwhile, meteorological conditions play an important role in the diffusion, dilution and accumulation of air pollution. This article reviewed research progress in the impact of polluted meteorological conditions on the incidence of asthma. PMID:26904253

  15. Comparison of 1997 and 2015 El-Nino on Meteorological and Atmospheric Parameters

    NASA Astrophysics Data System (ADS)

    Wolfe, Lindsey; Singh, Ramesh

    2016-07-01

    This paper investigates the impact of dramatic 1997-1998 and 2015-2016 El-Nino on meteorological and atmospheric parameters globally using satellite and ground observations. We have considered meteorological parameters (rainfall, air temperature, surface pressure, winds, water vapor) and atmospheric parameters (air temperature, total ozone column). Our detailed analysis shows pronounced changes in some of meteorological and atmospheric parameters in different parts of the world at different time. Further, we have carried out comparison of some of the various meteorological and atmospheric parameters associated with El-Nino of 1997-1998 and 20015-2016, detrimental impact of 2015-2016 El-Nino is observed.

  16. Meteorological Data near Rabbit Ears Pass, Colorado, U.S.A., 1984-2008

    USGS Publications Warehouse

    Halm, Douglas R.; Beaver, Larry D.; Leavesley, George H.; Reddy, Michael M.

    2009-01-01

    In 1983, a snowmelt energy budget study was initiated by the U.S. Geological Survey on a small watershed near Rabbit Ears Pass, Colorado, to better understand snowmelt processes. The study included data collection from hydrological and meteorological instrumentation. Interest in long term, high-altitude meteorological sites has increased recently due to the increased awareness of global climate change. The meteorological data collected near Rabbit Ears Pass may aid researchers involved in global climate change studies. Meteorological data from 1984 to 2008 are presented.

  17. News of Brazilian space activities. [use of satellite data in meteorology and Earth resources programs

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Remote sensing and meteorological observations of satellites are covered. Development of an oceanographic atlas, prediction of droughts, and results of geological surveys using satellite data are discussed.

  18. 'RCHX-1-STORM' first Slovenian meteorological rocket program

    NASA Astrophysics Data System (ADS)

    Kerstein, Aleksander; Matko, Drago; Trauner, Amalija; Britovšek, Zvone

    2004-08-01

    Astronautic and Rocket Society Celje (ARSC) formed a special working team for research and development of a small meteorological hail suppression rocket in the 70th. The hail suppression system was established in former Yugoslavia in the late 60th as an attempt to protect important agricultural regions from one of the summer's most vicious storm. In this time Slovenia was a part of Yugoslavia as one of the federal republic with relative high developed agricultural region production. The Rocket program 'RCHX-STORM' was a second attempt, for Slovenia indigenously developed in the production of meteorological hail suppression rocket. ARSC has designed a family of small sounding rocket that were based on highly promising hybrid propellant propulsion. Hybrid propulsion was selected for this family because it was offering low cost, save production and operation and simple logistics. Conventional sounding rockets use solid propellant motor for their propulsion. The introduction of hybrid motors has enabled a considerable decrease in overall cost. The transportation handling and storage procedures were greatly simplified due to the fact that a hybrid motor was not considered as explosive matter. A hybrid motor may also be designed to stand a severe environment without resorting to conditioning arrangements. The program started in the late 70th when the team ARSC was integrated in the Research and Development Institute in Celje (RDIC). The development program aimed to produce three types of meteorological rockets with diameters 76, 120 and 160 mm. Development of the RCHX-76 engine and rocket vehicle including flight certification has been undertaken by a joint team comprising of the ARCS, RDIC and the company Cestno podjetje Celje (CPC), Road building company Celje. Many new techniques and methods were used in this program such as computer simulation of external and internal ballistics, composite materials for rocket construction, intensive static testing of models and

  19. A Meteorological Overview of the MILAGRO Field Campaigns

    SciTech Connect

    Fast, Jerome D.; de Foy, B.; Rosas, F. A.; Caetano, E.; Carmichael, Gregory; Emmons, L.; McKenna, D.; Mena, M.; Skamarock, W.; Tie, X.; Coulter, Richard L.; Barnard, James C.; Wiedinmyer, Christine; Madronich, Sasha

    2007-05-03

    We describe the large-scale meteorological conditions that affected atmospheric chemistry over Mexico during March 2006 when several field campaigns were conducted in the region. In-situ and remote-sensing instrumentation was deployed to obtain measurements of wind, temperature, and humidity profiles in the boundary layer and free atmosphere at four primary sampling sites in central Mexico. Several models were run operationally during the field campaign to provide forecasts of the local, regional, and synoptic meteorology as well as the predicted location of the Mexico City pollutant plume for aircraft flight planning purposes. Field campaign measurements and large-scale analyses are used to define three regimes that characterize the overall meteorological conditions: the first regime prior to March 14, the second regime between March 14 and 23, and the third regime after March 23. Mostly sunny and dry conditions with periods of cirrus and marine stratus along the coast occurred during the first regime. The beginning of the second regime was characterized by a sharp increase in humidity over the central plateau and the development of late afternoon convection associated with the passage of a weak cold surge on March 14. Over the next several days, the atmosphere over the central plateau became drier so that deep convection gradually diminished. The third regime began with the passage of a strong cold surge that led to humidity, afternoon convection, and precipitation over the central plateau that was higher than during the second regime. The frequency and intensity of fires, as determined by satellite measurements, also diminished significantly after the third cold surge. The synoptic-scale flow patterns that govern the transport of pollutants in the region are described and compared to previous March periods to put the transport into a climatological context. The complex terrain surrounding Mexico City produces local and regional circulations that govern short

  20. From meteorological to hydrological drought using standardised indicators

    NASA Astrophysics Data System (ADS)

    Barker, L. J.; Hannaford, J.; Chiverton, A.; Svensson, C.

    2015-12-01

    Drought monitoring and early warning (M&EW) systems are a crucial component of drought preparedness. M&EW systems typically make use of drought indicators such as the Standardised Precipitation Index (SPI), but such indicators are not widely used in the UK. More generally, such tools have not been well developed for hydrological (i.e. streamflow) drought. To fill these research gaps, this paper characterises meteorological and hydrological droughts, and the propagation from one to the other using the SPI and the related Standardised Streamflow Index (SSI), with the objective of improving understanding of the drought hazard in the UK. SPI and SSI time series were calculated for 121 near-natural catchments in the UK for accumulation periods of 1-24 months. From these time series, drought events were identified and for each event, the duration and severity was calculated. The relationship between meteorological and hydrological drought was examined by cross-correlating the one month SSI with various SPI accumulation periods. Finally, the influence of climate and catchment properties on the drought characteristics and propagation were investigated. Results showed that at short accumulation periods meteorological drought characteristics showed little spatial variability, whilst hydrological drought characteristics showed fewer but longer and more severe droughts in the south and east than in the north and west of the UK. Propagation characteristics showed a similar spatial pattern with catchments underlain by productive aquifers, mostly in the south and east, having longer SPI accumulation periods strongly correlated with the one-month SSI. For catchments in the north and west of the UK, which typically have little catchment storage, standard-period annual average rainfall was strongly correlated to drought and propagation characteristics. However, in the south and east, catchment properties describing storage, such as base flow index, percentage of highly productive

  1. From meteorological to hydrological drought using standardised indicators

    NASA Astrophysics Data System (ADS)

    Barker, Lucy J.; Hannaford, Jamie; Chiverton, Andrew; Svensson, Cecilia

    2016-06-01

    Drought monitoring and early warning (M & EW) systems are a crucial component of drought preparedness. M & EW systems typically make use of drought indicators such as the Standardised Precipitation Index (SPI), but such indicators are not widely used in the UK. More generally, such tools have not been well developed for hydrological (i.e. streamflow) drought. To fill these research gaps, this paper characterises meteorological and hydrological droughts, and the propagation from one to the other, using the SPI and the related Standardised Streamflow Index (SSI), with the objective of improving understanding of the drought hazard in the UK. SPI and SSI time series were calculated for 121 near-natural catchments in the UK for accumulation periods of 1-24 months. From these time series, drought events were identified and for each event, the duration and severity were calculated. The relationship between meteorological and hydrological drought was examined by cross-correlating the 1-month SSI with various SPI accumulation periods. Finally, the influence of climate and catchment properties on the hydrological drought characteristics and propagation was investigated. Results showed that at short accumulation periods meteorological drought characteristics showed little spatial variability, whilst hydrological drought characteristics showed fewer but longer and more severe droughts in the south and east than in the north and west of the UK. Propagation characteristics showed a similar spatial pattern with catchments underlain by productive aquifers, mostly in the south and east, having longer SPI accumulation periods strongly correlated with the 1-month SSI. For catchments in the north and west of the UK, which typically have little catchment storage, standard-period average annual rainfall was strongly correlated with hydrological drought and propagation characteristics. However, in the south and east, catchment properties describing storage (such as base flow

  2. DRIHM: Distributed Research Infrastructure for Hydro-Meteorology

    NASA Astrophysics Data System (ADS)

    Parodi, A.; Rebora, N.; Kranzlmueller, D.; Schiffers, M.; Clematis, A.; Tafferner, A.; Garrote, L. M.; Llasat Botija, M.; Caumont, O.; Richard, E.; Cros, P.; Dimitrijevic, V.; Jagers, B.; Harpham, Q.; Hooper, R. P.

    2012-12-01

    Hydro-Meteorology Research (HMR) is an area of critical scientific importance and of high societal relevance. It plays a key role in guiding predictions relevant to the safety and prosperity of humans and ecosystems from highly urbanized areas, to coastal zones, and to agricultural landscapes. Of special interest and urgency within HMR is the problem of understanding and predicting the impacts of severe hydro-meteorological events, such as flash-floods and landslides in complex orography areas, on humans and the environment, under the incoming climate change effects. At the heart of this challenge lies the ability to have easy access to hydrometeorological data and models, and facilitate the collaboration between meteorologists, hydrologists, and Earth science experts for accelerated scientific advances in this field. To face these problems the DRIHM (Distributed Research Infrastructure for Hydro-Meteorology) project is developing a prototype e-Science environment to facilitate this collaboration and provide end-to-end HMR services (models, datasets and post-processing tools) at the European level, with the ability to expand to global scale (e.g. cooperation with Earth Cube related initiatives). The objectives of DRIHM are to lead the definition of a common long-term strategy, to foster the development of new HMR models and observational archives for the study of severe hydrometeorological events, to promote the execution and analysis of high-end simulations, and to support the dissemination of predictive models as decision analysis tools. DRIHM combines the European expertise in HMR, in Grid and High Performance Computing (HPC). Joint research activities will improve the efficient use of the European e-Infrastructures, notably Grid and HPC, for HMR modelling and observational databases, model evaluation tool sets and access to HMR model results. Networking activities will disseminate DRIHM results at the European and global levels in order to increase the cohesion

  3. Impact of meteorology on fine aerosols at Lucas Heights, Australia

    NASA Astrophysics Data System (ADS)

    Crawford, Jagoda; Chambers, Scott; Cohen, David D.; Williams, Alastair; Griffiths, Alan; Stelcer, Eduard; Dyer, Leisa

    2016-11-01

    Ion Beam Analysis (IBA) techniques were used to assign nine years of PM2.5 observations to seven source types, at Lucas Heights, a topographically complex urban fringe site of Sydney. The highest contributions to total PM2.5 were from motor vehicles (Autos, 26.3%), secondary sulfur (2ndryS, 23.7%), a mixture of industry and aged sea air (IndSaged, 20.6%), and smoke (Smoke, 13.7%). The Autos contribution was highest in winter, whereas 2ndryS was highest in summer, indicating that mitigation measures targeting SO2 release in summer and vehicle exhaust in winter would be most effective in reducing the PM2.5 concentrations at this site. Since concentrations of particulate matter can be significantly affected by local meteorology, generalised additive model (GAM) techniques were employed to investigate relationships between PM2.5 source types and meteorological conditions. The GAM predictors used included: time (seasonal to inter-annual variations), mixing layer depth, temperature, relative humidity, wind speed, wind direction, and atmospheric pressure. Meteorological influences on PM2.5 variability were found to be 58% for soil dust, 46% for Autos, 41% for total PM2.5, and 35% for 2ndryS. Effects were much smaller for other source types. Temperature was found to be an important variable for the determination of total PM2.5, 2ndryS, IndSaged, Soil and Smoke, indicating that future changes in temperature are likely to have an associated change in aerosol concentrations. However, the impact on different source types varied. Temperature had the highest impact on 2ndryS (sometimes more than a factor of 4 increase for temperatures above 25 °C compared to temperatures under 10 °C) and IndSaged, being predominantly secondary aerosols formed in the atmosphere from precursors, whereas wind speed and wind direction were more important for the determination of vehicle exhaust and fresh sea salt concentrations. The marginal effect of relative humidity on 2ndryS increased up to

  4. Raman Lidar for Meteorological Observations, RALMO - Part I: Instrument description

    NASA Astrophysics Data System (ADS)

    Dinoev, T. S.; Simeonov, V. B.; Arshinov, Y. F.; Bobrovnikov, S. M.; Ristori, P.; Calpini, B.; Parlange, M. B.; van den Bergh, H.

    2012-09-01

    A new Raman lidar for unattended, round the clock measurement of vertical water vapor profiles for operational use by the MeteoSwiss has been developed during the past years by the Swiss Federal Institute of Technology- Lausanne. The lidar uses narrow-field-of-view, narrow-band configuration, a UV laser, and four 30 cm in diameter mirrors, fiber-coupled to a grating polychromator. The optical design allows water vapor retrieval from the incomplete overlap region without instrument-specific range-dependent corrections. The daytime vertical range covers the mid-troposphere, whereas the night-time range extends to the tropopause. The near range coverage is extended down to 100 m AGL by the use of an additional fiber in one of the telescopes. This paper describes the system layout and technical realization. Day and night time lidar profiles compared to Vaisala RS-92 and Snow White® profiles and a six-day-continuous observation are presented as an illustration of the lidar measurement capability.

  5. Raman Lidar for Meteorological Observations, RALMO - Part 1: Instrument description

    NASA Astrophysics Data System (ADS)

    Dinoev, T.; Simeonov, V.; Arshinov, Y.; Bobrovnikov, S.; Ristori, P.; Calpini, B.; Parlange, M.; van den Bergh, H.

    2013-05-01

    A new Raman lidar for unattended, round-the-clock measurement of vertical water vapor profiles for operational use by the MeteoSwiss has been developed during the past years by the Swiss Federal Institute of Technology, Lausanne. The lidar uses narrow field-of-view, narrowband configuration, a UV laser, and four 30 cm in diameter mirrors, fiber-coupled to a grating polychromator. The optical design allows water vapor retrieval from the incomplete overlap region without instrument-specific range-dependent corrections. The daytime vertical range covers the mid-troposphere, whereas the nighttime range extends to the tropopause. The near range coverage is extended down to 100 m AGL by the use of an additional fiber in one of the telescopes. This paper describes the system layout and technical realization. Day- and nighttime lidar profiles compared to Vaisala RS92 and Snow White® profiles and a six-day continuous observation are presented as an illustration of the lidar measurement capability.

  6. Modeling the wet bulb globe temperature using standard meteorological measurements.

    PubMed

    Liljegren, James C; Carhart, Richard A; Lawday, Philip; Tschopp, Stephen; Sharp, Robert

    2008-10-01

    The U.S. Army has a need for continuous, accurate estimates of the wet bulb globe temperature to protect soldiers and civilian workers from heat-related injuries, including those involved in the storage and destruction of aging chemical munitions at depots across the United States. At these depots, workers must don protective clothing that increases their risk of heat-related injury. Because of the difficulty in making continuous, accurate measurements of wet bulb globe temperature outdoors, the authors have developed a model of the wet bulb globe temperature that relies only on standard meteorological data available at each storage depot for input. The model is composed of separate submodels of the natural wet bulb and globe temperatures that are based on fundamental principles of heat and mass transfer, has no site-dependent parameters, and achieves an accuracy of better than 1 degree C based on comparisons with wet bulb globe temperature measurements at all depots.

  7. Virtually-Enhanced Fluid Laboratories for Teaching Meteorology

    NASA Astrophysics Data System (ADS)

    Marshall, J.; Illari, L.

    2015-12-01

    The Weather in a Tank (WIAT) project aims to offer instructors a repertoire of rotating tank experiments, and a curriculum in fluid dynamics, to better assist students in learning how to move between phenomena in the real world and basic principles of rotating fluid dynamics which play a central role in determining the climate of the planet. Despite the increasing use of laboratory experiments in teaching meteorology, however, we are aware that many teachers and students do not have access to suitable apparatus and so cannot benefit from them. Here we describe a 'virtually-enhanced' laboratory that we hope could be very effective in getting across a flavor of the experiments and bring them to a wider audience. In the pedagogical spirit of WIAT we focus on how simple underlying principles, illustrated through laboratory experiments, shape the observed structure of the large-scale atmospheric circulation.

  8. Hydrologic Conditions Viewed by the Nimbus Meteorological Satellites

    NASA Technical Reports Server (NTRS)

    Rabchevsky, G. A.

    1971-01-01

    The unexploited value of the Nimbus meteorological sensor data relates to the satellites' ability for global, temporal, repetitive and uniform tonal and spatial coverage of the earth's surface. Examples are presented illustrating how synoptic views of large areas increase interpretive capability and enable focusing on large targets of interest. The effect of resolution of the Nimbus imaging systems on these observations is discussed, together with the assessment of the areal and temporal magnitude of changes observed by these systems. Two case studies are presented exemplifying the satellites' ability for repetitive observations enabling phenomena to be monitored under special conditions. One study deals with changes observed in the Antarctic ice conditions utilizing the Nimbus 2 and 3 television picture data. The other study deals with terrestrial changes in the Mississippi River Valley and the Niger River Valley (Africa), observed primarily in the 0.7 to 1.3 micron spectral band.

  9. Forecasting rain events - Meteorological models or collective intelligence?

    NASA Astrophysics Data System (ADS)

    Arazy, Ofer; Halfon, Noam; Malkinson, Dan

    2015-04-01

    Collective intelligence is shared (or group) intelligence that emerges from the collective efforts of many individuals. Collective intelligence is the aggregate of individual contributions: from simple collective decision making to more sophisticated aggregations such as in crowdsourcing and peer-production systems. In particular, collective intelligence could be used in making predictions about future events, for example by using prediction markets to forecast election results, stock prices, or the outcomes of sport events. To date, there is little research regarding the use of collective intelligence for prediction of weather forecasting. The objective of this study is to investigate the extent to which collective intelligence could be utilized to accurately predict weather events, and in particular rainfall. Our analyses employ metrics of group intelligence, as well as compare the accuracy of groups' predictions against the predictions of the standard model used by the National Meteorological Services. We report on preliminary results from a study conducted over the 2013-2014 and 2014-2015 winters. We have built a web site that allows people to make predictions on precipitation levels on certain locations. During each competition participants were allowed to enter their precipitation forecasts (i.e. 'bets') at three locations and these locations changed between competitions. A precipitation competition was defined as a 48-96 hour period (depending on the expected weather conditions), bets were open 24-48 hours prior to the competition, and during betting period participants were allowed to change their bets with no limitation. In order to explore the effect of transparency, betting mechanisms varied across study's sites: full transparency (participants able to see each other's bets); partial transparency (participants see the group's average bet); and no transparency (no information of others' bets is made available). Several interesting findings emerged from

  10. Sequential estimation and satellite data assimilation in meteorology and oceanography

    NASA Technical Reports Server (NTRS)

    Ghil, M.

    1986-01-01

    The central theme of this review article is the role that dynamics plays in estimating the state of the atmosphere and of the ocean from incomplete and noisy data. Objective analysis and inverse methods represent an attempt at relying mostly on the data and minimizing the role of dynamics in the estimation. Four-dimensional data assimilation tries to balance properly the roles of dynamical and observational information. Sequential estimation is presented as the proper framework for understanding this balance, and the Kalman filter as the ideal, optimal procedure for data assimilation. The optimal filter computes forecast error covariances of a given atmospheric or oceanic model exactly, and hence data assimilation should be closely connected with predictability studies. This connection is described, and consequences drawn for currently active areas of the atmospheric and oceanic sciences, namely, mesoscale meteorology, medium and long-range forecasting, and upper-ocean dynamics.

  11. User's Manual for TMY2s - Typical Meteorological Years

    SciTech Connect

    1995-06-01

    This user's manual describes typical meteorological year (TMY) data sets derived from the 1961-1990 National Solar Radiation Data Base (NSRDB). Because they are based on more recent and accurate data and will make possible more accurate performance and economic analyses of energy systems, these data sets are ecommended for use in place of earlier TMY data sets derived from the 1952-1975 SOLMET/ERSATZ data base. To distinguish between the old and new TMY data sets, the new TMY data sets are referred to as TMY2s. TMY and TMY2 data sets cannot be used interchangeably because of differences in time (solar versus local), formats, elements, and units. Unless they are revised, computer programs designed for TMY data will not work with TMY2 data.

  12. Scrub Typhus Incidence Modeling with Meteorological Factors in South Korea

    PubMed Central

    Kwak, Jaewon; Kim, Soojun; Kim, Gilho; Singh, Vijay P.; Hong, Seungjin; Kim, Hung Soo

    2015-01-01

    Since its recurrence in 1986, scrub typhus has been occurring annually and it is considered as one of the most prevalent diseases in Korea. Scrub typhus is a 3rd grade nationally notifiable disease that has greatly increased in Korea since 2000. The objective of this study is to construct a disease incidence model for prediction and quantification of the incidences of scrub typhus. Using data from 2001 to 2010, the incidence Artificial Neural Network (ANN) model, which considers the time-lag between scrub typhus and minimum temperature, precipitation and average wind speed based on the Granger causality and spectral analysis, is constructed and tested for 2011 to 2012. Results show reliable simulation of scrub typhus incidences with selected predictors, and indicate that the seasonality in meteorological data should be considered. PMID:26132479

  13. Applied Meteorology Unit (AMU) Quarterly Report First Quarter FY-14

    NASA Technical Reports Server (NTRS)

    Bauman, William Henry; Crawford, Winifred C.; Shafer, Jaclyn A.; Watson, Leela R.; Huddleston, Lisa L.; Decker, Ryan K.

    2014-01-01

    NASA's LSP and other programs at Vandenberg Air Force Base (VAFB) use wind forecasts issued by the 30th Operational Support Squadron (30 OSS) to determine if they need to limit activities or protect property such as a launch vehicle due to the occurrence of warning level winds at VAFB in California. The 30 OSS tasked the AMU to provide a wind forecasting capability to improve wind warning forecasts and enhance the safety of their customers' operations. This would allow 30 OSS forecasters to evaluate pressure gradient thresholds between pairs of regional observing stations to help determine the onset and duration of warning category winds. Development of such a tool will require that solid relationships exist between wind speed and the pressure gradient of one or more station pairs. As part of this task, the AMU will also create a statistical climatology of meteorological observations from the VAFB wind towers.

  14. Applied Meteorology Unit (AMU) Quarterly Report - Fourth Quarter FY-10

    NASA Technical Reports Server (NTRS)

    Bauman, William; Crawford, Winifred; Barrett, Joe; Watson, Leela; Wheeler, Mark

    2010-01-01

    Three AMU tasks were completed in this Quarter, each resulting in a forecast tool now being used in operations and a final report documenting how the work was done. AMU personnel completed the following tasks (1) Phase II of the Peak Wind Tool for General Forecasting task by delivering an improved wind forecasting tool to operations and providing training on its use; (2) a graphical user interface (GUI) she updated with new scripts to complete the ADAS Update and Maintainability task, and delivered the scripts to the Spaceflight Meteorology Group on Johnson Space Center, Texas and National Weather Service in Melbourne, Fla.; and (3) the Verify MesoNAM Performance task after we created and delivered a GUI that forecasters will use to determine the performance of the operational MesoNAM weather model forecast.

  15. Cost-719: The Use of Gis In Meteorology and Climatology

    NASA Astrophysics Data System (ADS)

    van der Wel, F. J. M.

    Since the Summer of 2000, 18 European countries participate in the framework of COST-719. Within the Action, 3 major fields of interest can be distinguished: data ac- cess and data availability, spatial interpolation and GIS applications. The Action meets an important need for a coordinated effort to explore the extra value of geographical information systems for processing meteorological, climatological and hydrological data. Tools and standards as defined by e.g. the Open GIS Consortium allow for a uniform approach to integrating geographical and other spatial data sets, making the exchange of data and applications less cumbersome. COST-719 will act partly as a watch dog, keeping an eye on relevant developments in information and communica- tion technology, partly as a research ground for new applications given the state of current technology and finally as an integrator in the field of statistical and physical approaches to spatialisation.

  16. NOAA/National Hurricane and Experimental Meteorological Laboratory

    NASA Technical Reports Server (NTRS)

    1977-01-01

    National Hurricane and Experimental Meteorological Laboratory (NHEML) research programs concentrate on two atmospheric phenomena of the tropical troposphere: hurricanes and cumulus convection, together with the atmospheric environments in which they occur and with which they interact. These programs include basic research in the description of these phenomena and applied research in their prediction and potential beneficial modification. NHEML is partitioned into four working groups. Two important and logical parts of the research programs are the experimental program in hurricane modification (STORMFURY) and the program in cumulus modification (FACE). The ultimate goal of STORMFURY is the reduction of the maximum winds associated with the eyewall of hurricanes; the goal of FACE is to acquire a thorough understanding of cumulus cloud behavior that will enable NHEML to increase precipitation from cumulus clouds. The operational structure of NHEML and related agencies are presented.

  17. Modeling the wet bulb globe temperature using standard meteorological measurements.

    SciTech Connect

    Liljegren, J. C.; Carhart, R. A.; Lawday, P.; Tschopp, S.; Sharp, R.; Decision and Information Sciences

    2008-10-01

    The U.S. Army has a need for continuous, accurate estimates of the wet bulb globe temperature to protect soldiers and civilian workers from heat-related injuries, including those involved in the storage and destruction of aging chemical munitions at depots across the United States. At these depots, workers must don protective clothing that increases their risk of heat-related injury. Because of the difficulty in making continuous, accurate measurements of wet bulb globe temperature outdoors, the authors have developed a model of the wet bulb globe temperature that relies only on standard meteorological data available at each storage depot for input. The model is composed of separate submodels of the natural wet bulb and globe temperatures that are based on fundamental principles of heat and mass transfer, has no site-dependent parameters, and achieves an accuracy of better than 1 C based on comparisons with wet bulb globe temperature measurements at all depots.

  18. Airborne fungal spores of Alternaria, meteorological parameters and predicting variables

    NASA Astrophysics Data System (ADS)

    Filali Ben Sidel, Farah; Bouziane, Hassan; del Mar Trigo, Maria; El Haskouri, Fatima; Bardei, Fadoua; Redouane, Abdelbari; Kadiri, Mohamed; Riadi, Hassane; Kazzaz, Mohamed

    2015-03-01

    Alternaria is frequently found as airborne fungal spores and is recognized as an important cause of respiratory allergies. The aerobiological monitoring of fungal spores was performed using a Burkard volumetric spore traps. To establish predicting variables for daily and weakly spore counts, a stepwise multiple regression between spore concentrations and independent variables (meteorological parameters and lagged values from the series of spore concentrations: previous day or week concentration (Alt t - 1) and mean concentration of the same day or week in other years ( C mean)) was made with data obtained during 2009-2011. Alternaria conidia are present throughout the year in the atmosphere of Tetouan, although they show important seasonal fluctuations. The highest levels of Alternaria spores were recorded during the spring and summer or autumn. Alternaria showed maximum daily values in April, May or October depending on year. When the spore variables of Alternaria, namely C mean and Alt t - 1, and meteorological parameters were included in the equation, the resulting R 2 satisfactorily predict future concentrations for 55.5 to 81.6 % during the main spore season and the pre-peak 2. In the predictive model using weekly values, the adjusted R 2 varied from 0.655 to 0.676. The Wilcoxon test was used to compare the results from the expected values and the pre-peak spore data or weekly values for 2012, indicating that there were no significant differences between series compared. This test showed the C mean, Alt t - 1, frequency of the wind third quadrant, maximum wind speed and minimum relative humidity as the most efficient independent variables to forecast the overall trend of this spore in the air.

  19. Simulating the Phoenix Lander meteorological conditions with a Mars GCM

    NASA Astrophysics Data System (ADS)

    Daerden, F.; Neary, L.; Whiteway, J.; Dickinson, C.; Komguem, L.; McConnell, J. C.; Kaminski, J. W.

    2012-04-01

    An updated version of the GEM-Mars Global Circulation Model [1] is applied for the simulation of the meteorological conditions at the Phoenix lander site for the time period of the surface operations (Ls=76-150). The simulation results for pressure and temperature at the surface are compared to data from the Phoenix Meteorological Station (MET). The vertical profiles of dust and temperature are compared to Phoenix LIDAR measurements and data from orbit (CRISM and MCS on MRO). The simulated conditions in the PBL are compared to those obtained in a dedicated PBL-Aeolian dust model [2] which was successfully applied to drive a detailed microphysical model [3] for the interpretation of clouds and precipitation observed by the LIDAR on Phoenix [4,5]. [1] Moudden, Y. and J.C. McConnell (2005): A new model for multiscale modeling of the Martian atmosphere, GM3, J. Geophys. Res. 110, E04001, doi:10.1029/2004JE002354 [2] Davy, R., P. A. Taylor, W. Weng, and P.-Y. Li (2009), A model of dust in the Martian lower atmosphere, J. Geophys. Res., 114, D04108, doi:10.1029/2008JD010481. [3] Daerden, F., J.A. Whiteway, R. Davy, C. Verhoeven, L. Komguem, C. Dickinson, P. A. Taylor, and N. Larsen (2010), Simulating Observed Boundary Layer Clouds on Mars, Geophys. Res. Lett., 37, L04203, doi:10.1029/2009GL041523 [4] Whiteway, J., M. Daly, A. Carswell, T. Duck, C. Dickinson, L. Komguem, and C. Cook (2008), Lidar on the Phoenix mission to Mars, J. Geophys. Res., 113, E00A08, doi:10.1029/2007JE003002. [5] Whiteway, J., et al. (2009), Mars water ice clouds and precipitation, Science, 325, 68 - 70.

  20. The impact of meteorological parameters on urban air quality

    NASA Astrophysics Data System (ADS)

    Ramsey, Nicole R.; Klein, Petra M.; Moore, Berrien

    2014-04-01

    Previous studies have shown that global climate change will have a significant impact on both regional and urban air quality. As air temperatures continue to rise and mid-latitude cyclone frequencies decrease, the overall air quality is expected to degrade. Climate models are currently predicting an increased frequency of record setting heat and drought for Oklahoma during the summer months. A statistical analysis was thus performed on ozone and meteorological data to evaluate the potential effect of increasing surface temperatures and stagnation patterns on urban air quality in the Oklahoma City Metropolitan area. Compared to the climatological normal, the years 2011 and 2012 were exceptionally warm and dry, and were therefore used as case study years for determining the impact of hot, dry conditions on air quality. These results were then compared to cooler, wetter summers to show how urban air quality is affected by a change in meteorological parameters. It was found that an increase in summertime heat and a decrease in summertime precipitation will lead to a substantial increase in both the minimum and maximum ozone concentrations as well as an increase in the total number of exceedance days. During the hotter, drier years, the number of days with ozone concentrations above the legal regulatory limit increased nearly threefold. The length of time in which humans and crops are exposed to these unsafe levels was also doubled. Furthermore, a significant increase was noted in the overnight minimum ozone concentrations. This in turn can lead to significant, adverse affects on both health and agriculture statewide.

  1. Weekly cycle of aerosol-meteorology interaction over China

    SciTech Connect

    Gong, Daoyi; Ho, Chang-Hoi; Chen, Deliang; Qian, Yun; Choi, Yong-Sang; Kim, Jinwon

    2007-11-21

    Weekly cycles of the concentration of anthropogenic aerosols have been observed in many regions around the world. The phase and the magnitude of these cycles, however, vary greatly depending on region and season. In the present study the authors investigated important features of the weekly cycles of aerosol concentration and the co-variations in meteorological conditions in major urban regions over east China, one of the most polluted areas in the world, in summertime during the period 2001-2005/2006. The PM10 (aerosol particulate matters of diameter < 10μm) concentrations at 29 monitoring stations show significant weekly cycles with the largest values around midweek and smallest values in weekend. Accompanying the PM10 cycle, the meteorological variables also show notable and consistent weekly cycles. The wind speed in lower troposphere is relatively small in the early part of the week, and increases after about Wednesday. At the same time, the air temperature anomalies in low levels are positive, and then become negative in the later part of the week. The authors hypothesized that the changes in the atmospheric circulation may be triggered by the accumulation of PM10 through diabatic heating of lower troposphere. During the early part of a week the anthropogenic aerosols are gradually accumulated in the lower troposphere. Around midweek, the accumulated aerosols could induce radiative heating, likely destabilizing the mid- to lower troposphere and generating anomalously vertical air motion, and thus resulting in stronger winds. The resulting circulation could promote ventilation to reduce aerosol concentrations in the boundary layer during the later part of the week. Corresponding to this cycle in anthropogenic aerosols the frequency of precipitation, particularly the light rain events, tends to be suppressed around mid-weekdays through indirect aerosol effects. This is consistent with the observed anthropogenic weather cycles, i.e., more (less) solar radiation

  2. How errors on meteorological variables impact simulated ecosystem fluxes: a case study for six French sites

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Ciais, P.; Peylin, P.; Viovy, N.; Longdoz, B.; Bonnefond, J. M.; Rambal, S.; Klumpp, K.; Olioso, A.; Cellier, P.; Maignan, F.; Eglin, T.; Calvet, J. C.

    2011-03-01

    We analyze how biases of meteorological drivers impact the calculation of ecosystem CO2, water and energy fluxes by models. To do so, we drive the same ecosystem model by meteorology from gridded products and by ''true" meteorology from local observation at eddy-covariance flux sites. The study is focused on six flux tower sites in France spanning across a 7-14 °C and 600-1040 mm yr-1 climate gradient, with forest, grassland and cropland ecosystems. We evaluate the results of the ORCHIDEE process-based model driven by four different meteorological models against the same model driven by site-observed meteorology. The evaluation is decomposed into characteristic time scales. The main result is that there are significant differences between meteorological models and local tower meteorology. The seasonal cycle of air temperature, humidity and shortwave downward radiation is reproduced correctly by all meteorological models (average R2=0.90). At sites located near the coast and influenced by sea-breeze, or located in altitude, the misfit of meteorological drivers from gridded dataproducts and tower meteorology is the largest. We show that day-to-day variations in weather are not completely well reproduced by meteorological models, with R2 between modeled grid point and measured local meteorology going from 0.35 (REMO model) to 0.70 (SAFRAN model). The bias of meteorological models impacts the flux simulation by ORCHIDEE, and thus would have an effect on regional and global budgets. The forcing error defined by the simulated flux difference resulting from prescribing modeled instead than observed local meteorology drivers to ORCHIDEE is quantified for the six studied sites and different time scales. The magnitude of this forcing error is compared to that of the model error defined as the modeled-minus-observed flux, thus containing uncertain parameterizations, parameter values, and initialization. The forcing error is the largest on a daily time scale, for which it is

  3. Tropospheric corrections to GPS measurements using locally measured meteorological parameters compared with general tropospheric corrections

    NASA Technical Reports Server (NTRS)

    Kirchner, D.; Lentz, C.; Ressler, H.

    1994-01-01

    At the Technical University Graz (TUG), Austria, the Global Positioning System (GPS) has been used for time transfer purposes since the early 80's and from that time on local meteorological parameters have been recorded together with each measurement (satellite track). The paper compares the tropospheric corrections (delays) obtained from models usually employed in GPS receivers and those using locally measured meteorological parameters.

  4. 77 FR 3030 - Twenty-Eighth Meeting: RTCA Special Committee 206: Aeronautical Information and Meteorological...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-20

    ... Information and Meteorological Data Link Services AGENCY: Federal Aviation Administration (FAA), U.S... and Meteorological Data Link Services. SUMMARY: The FAA is issuing this notice to advise the public of... Data Link Services DATES: The meeting will be held February 6-10, 2012, from 8 a.m.-5 p.m....

  5. 78 FR 51808 - 34th Meeting: RTCA Special Committee 206, Aeronautical Information and Meteorological Data Link...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-21

    ... Link Services in the Terminal Area MIT/LL Winds Study to Support ATC Winds SC-214 Briefing TOR Changes... Meteorological Data Link Services AGENCY: Federal Aviation Administration (FAA), U.S. Department of... Meteorological Data Link Services. SUMMARY: The FAA is issuing this notice to advise the public of the...

  6. BOREAS TF-6 SSA-YA Surface Energy Flux and Meteorological Data

    NASA Technical Reports Server (NTRS)

    Bessemoulin, Pierre; Puech, Dominique; Hall, Forrest G. (Editor); Huemmrich, Karl (Editor)

    2000-01-01

    The BOREAS TF-6 team collected surface energy flux and meteorology data at the SSA-YA site. The data characterize the energy flux and meteorological conditions at the site from 18-Jul to 20-Sep-1994. The data set does not contain any trace gas exchange measurements. The data are available in tabular ASCII files.

  7. Meteorological Sensor Array (MSA)-Phase I. Volume 3 (Pre-Field Campaign Sensor Calibration)

    DTIC Science & Technology

    2015-07-01

    ARL-TR-7362 ● JULY 2015 US Army Research Laboratory Meteorological Sensor Array (MSA)–Phase I, Volume 3 (Pre-Field Campaign... Sensor Calibration) by Gail Vaucher and Robert Edmonds Approved for public release; distribution is unlimited...Meteorological Sensor Array (MSA)–Phase I, Volume 3 (Pre-Field Campaign Sensor Calibration) by Gail Vaucher and Robert Edmonds

  8. Geographic Affiliation and Sense of Place: Influences on Incoming Online Students' Geological and Meteorological Content Knowledge

    ERIC Educational Resources Information Center

    Sumrall, Jeanne Lambert; Clary, Renee; Watson, Joshua C.

    2015-01-01

    Knowing an individual's geographic affiliation may be useful in evaluating a student's previous knowledge. To test this hypothesis, students in an online master's program were given presurveys to evaluate their previous knowledge in meteorology and geology, as well as geological and meteorological sense-of-place surveys.

  9. Meteorological Variables and Behavior of Learners with Autism: An Examination of Possible Relationships

    ERIC Educational Resources Information Center

    VanBuskirk, Sabrina E.; Simpson, Richard L.

    2013-01-01

    For this study, we collected classroom behavioral data for three children with autism relative to daily meteorological conditions. Meteorological data, including barometric pressure, humidity, outdoor temperature, and moon illumination, were obtained from the National Weather Service. Relationships between children's individual target behaviors…

  10. Advances in remote sensing and modeling of terrestrial hydro-meteorological processes and extremes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Remote sensing is an indispensable tool for monitoring and detecting the evolution of the Earth’s hydro-meteorological processes. Fast-growing remote sensing observations and technologies have been a primary impetus to advancing our knowledge of hydro-meteorological processes and their extremes ove...

  11. Meteorology, Emissions, and Grid Resolution: Effects on Discrete and Probabilistic Model Performance

    EPA Science Inventory

    In this study, we analyze the impacts of perturbations in meteorology and emissions and variations in grid resolution on air quality forecast simulations. The meteorological perturbations con-sidered in this study introduce a typical variability of ~1°C, 250 - 500 m, 1 m/s, and 1...

  12. A study to define meteorological uses and performance requirements for the Synchronous Earth Observatory Satellite

    NASA Technical Reports Server (NTRS)

    Suomi, V. E.; Krauss, R. J.; Barber, D.; Levanon, N.; Martin, D. W.; Mclellan, D. W.; Sikdar, D. N.; Sromovsky, L. A.; Branch, D.; Heinricy, D.

    1973-01-01

    The potential meteorological uses of the Synchronous Earth Observatory Satellite (SEOS) were studied for detecting and predicting hazards to life, property, or the quality of the environment. Mesoscale meteorological phenonmena, and the observations requirements for SEOS are discussed along with the sensor parameters.

  13. Meteorological fluctuations define long-term crop yield patterns in conventional and organic production systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Periodic variability in meteorological patterns presents significant challenges to crop production consistency and yield stability. Meteorological influences on corn and soybean grain yields were analyzed over an 18-year period at a long-term experiment in Beltsville, Maryland, U.S.A., comparing c...

  14. Proceedings of the Conference on Meteorological Education and Training in Developing Countries in Africa.

    ERIC Educational Resources Information Center

    World Meteorological Organization, Geneva (Switzerland).

    The problems relating to education and training of meteorological personnel in Africa are considered in the papers contained in this conference report. The papers are presented in seven sessions and pertain to the following: introductory lectures; various categories of meteorological personnel to be trained, including applications of meteorology…

  15. Reduction and Analysis of Meteorology Data from the Mars Pathfinder Lander

    NASA Technical Reports Server (NTRS)

    Murphy, James R.; Bridger, Alison F. C.; Haberle, Robert M.

    1998-01-01

    Dr. James Murphy is a member of the Mars Pathfinder Atmospheric Structure Investigation Meteorology (ASI/MET) Science Team. The activities of Dr. Murphy, and his collaborators are summarized in this report, which reviews the activities in support of the analysis of the meteorology data from the Mars Pathfinder Lander.

  16. An evaluation of meteorologic data differences between the Pantex Plant and Amarillo, Texas

    SciTech Connect

    Snyder, S.F.

    1993-06-01

    Meteorologic data from the Pantex Plant and from the nearby National Weather Service (NWS) station at the Amarillo, Texas, International Airport were evaluated to determine if the NWS data adequately represented meteorologic conditions at the Pantex Plant. Annual site environmental dose calculations for the Pantex Plant have previously used the NWS data; information from this data comparison helped determine if future environmental dose calculations should use site-specific Pantex meteorologic data. The meteorologic data evaluated were wind speed, wind direction, and atmospheric stability class. Atmospheric stability class data were compared for years 1990 and 1991 and found to be very similar. Stability class designations were identical and one class different in 63% and 30%, respectively, of the paired hourly data. An unexpected finding was the preponderance of Class D stability, which occurred approximately 62% of the time in both data sets. The overall effect of meteorological differences between the two locations was evaluated by performing environmental dose assessments using the GENII dose assessment computer code. Acute and chronic releases of {sup 3}H and {sup 239}Pu were evaluated. Results using the NWS Amarillo meteorologic data were approximately one-half of those generated using Pantex meteorologic data. The two-fold difference in dose results is within the uncertainty expected from current dose assessment codes; therefore, the two meteorologic databases can be used interchangeably and prior dose calculation results using the NWS Amarillo data are acceptable.

  17. EFFECTS OF METEOROLOGY ON THE TRANSPORT OF DISPERSION OF EMISSIONS FROM THE WTC RECOVERY SITE

    EPA Science Inventory

    Since September 11, 2001, the EPA National Exposure Research Laboratory (NERL) has applied its meteorological measurements and modeling to support WTC recovery projects. The local meteorology is a key factor in both the diurnal and day-to-day changes in the ambient air concent...

  18. 14 CFR 121.561 - Reporting potentially hazardous meteorological conditions and irregularities of ground facilities...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Reporting potentially hazardous meteorological conditions and irregularities of ground facilities or navigation aids. 121.561 Section 121.561... meteorological conditions and irregularities of ground facilities or navigation aids. (a) Whenever he...

  19. 14 CFR 121.561 - Reporting potentially hazardous meteorological conditions and irregularities of ground facilities...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Reporting potentially hazardous meteorological conditions and irregularities of ground facilities or navigation aids. 121.561 Section 121.561... meteorological conditions and irregularities of ground facilities or navigation aids. (a) Whenever he...

  20. 14 CFR 121.561 - Reporting potentially hazardous meteorological conditions and irregularities of ground facilities...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Reporting potentially hazardous meteorological conditions and irregularities of ground facilities or navigation aids. 121.561 Section 121.561... meteorological conditions and irregularities of ground facilities or navigation aids. (a) Whenever he...

  1. 14 CFR 121.561 - Reporting potentially hazardous meteorological conditions and irregularities of ground facilities...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Reporting potentially hazardous meteorological conditions and irregularities of ground facilities or navigation aids. 121.561 Section 121.561... meteorological conditions and irregularities of ground facilities or navigation aids. (a) Whenever he...

  2. 14 CFR 121.561 - Reporting potentially hazardous meteorological conditions and irregularities of ground facilities...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Reporting potentially hazardous meteorological conditions and irregularities of ground facilities or navigation aids. 121.561 Section 121.561... meteorological conditions and irregularities of ground facilities or navigation aids. (a) Whenever he...

  3. 14 CFR 135.67 - Reporting potentially hazardous meteorological conditions and irregularities of ground facilities...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Reporting potentially hazardous meteorological conditions and irregularities of ground facilities or navigation aids. 135.67 Section 135.67... navigation aids. Whenever a pilot encounters a potentially hazardous meteorological condition or...

  4. 14 CFR 135.67 - Reporting potentially hazardous meteorological conditions and irregularities of ground facilities...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Reporting potentially hazardous meteorological conditions and irregularities of ground facilities or navigation aids. 135.67 Section 135.67... navigation aids. Whenever a pilot encounters a potentially hazardous meteorological condition or...

  5. 14 CFR 135.67 - Reporting potentially hazardous meteorological conditions and irregularities of ground facilities...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Reporting potentially hazardous meteorological conditions and irregularities of ground facilities or navigation aids. 135.67 Section 135.67... navigation aids. Whenever a pilot encounters a potentially hazardous meteorological condition or...

  6. 14 CFR 135.67 - Reporting potentially hazardous meteorological conditions and irregularities of ground facilities...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Reporting potentially hazardous meteorological conditions and irregularities of ground facilities or navigation aids. 135.67 Section 135.67... navigation aids. Whenever a pilot encounters a potentially hazardous meteorological condition or...

  7. 14 CFR 135.67 - Reporting potentially hazardous meteorological conditions and irregularities of ground facilities...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Reporting potentially hazardous meteorological conditions and irregularities of ground facilities or navigation aids. 135.67 Section 135.67... navigation aids. Whenever a pilot encounters a potentially hazardous meteorological condition or...

  8. Automated Meteorological Data Reception, Analysis and Prediction Suitable for Personal Computers

    NASA Astrophysics Data System (ADS)

    Teixeira, Luiz

    The advent of personal computers in the early eighties opened an incredible market for software development. Unfortunately, not much was done in meteorology to harvest the increasing power from these inexpensive machines. Developing countries, where computer capabilities are limited, can benefit tremendously from the personal computer technology. Developed countries can also profit from customized meteorological applications, running locally and generating products unavailable from centralized weather services. The general structure, installation requirements, products and users' response related to two portable meteorological applications specifically designed with the above scenarios in mind are the main subjects of this dissertation work. The basic meteorological application was designed to attend to the daily activities of data reception, decoding, analysis and weather chart preparation. The geographic and meteorological application implementation added prognostic capabilities, "lights-out" operation, geography and a sophisticated graphical user interface (GUI) running under the Windows ^{TM} environment and specifically designed to attend the requirements of a states' Department of Transportation.

  9. Global meteorological data facility for real-time field experiments support and guidance

    NASA Technical Reports Server (NTRS)

    Shipham, Mark C.; Shipley, Scott T.; Trepte, Charles R.

    1988-01-01

    A Global Meteorological Data Facility (GMDF) has been constructed to provide economical real-time meteorological support to atmospheric field experiments. After collection and analysis of meteorological data sets at a central station, tailored meteorological products are transmitted to experiment field sites using conventional ground link or satellite communication techniques. The GMDF supported the Global Tropospheric Experiment Amazon Boundary Layer Experiment (GTE-ABLE II) based in Manaus, Brazil, during July and August 1985; an arctic airborne lidar survey mission for the Polar Stratospheric Clouds (PSC) experiment during January 1986; and the Genesis of Atlantic Lows Experiment (GALE) during January, February and March 1986. GMDF structure is similar to the UNIDATA concept, including meteorological data from the Zephyr Weather Transmission Service, a mode AAA GOES downlink, and dedicated processors for image manipulation, transmission and display. The GMDF improved field experiment operations in general, with the greatest benefits arising from the ability to communicate with field personnel in real time.

  10. [Historical overview of medical meteorology - the new horizon in medical prevention].

    PubMed

    Boussoussou, Nora; Boussoussou, Melinda; Nemes, Attila

    2017-02-01

    The aim of this article is to draw attention to the medical meteorology from the perspective of the history of science. Unfortunately medical meteorology is not part of the daily medical practice. The climate change is a new challenge for health care worldwide. It concerns millions of people a higher morbidity and mortality rate. Knowing the effects of the meteorological parameters as risk factors can allow us to create new prevention strategies. These new strategies could help to decrease the negative health effects of the meteorological parameters. Nowadays on the field of the medical prevention the medical meteorology is a new horizon and in the future it could play an important role. Health care professionals have the most important role to fight against the negative effects of the global climate change. Orv. Hetil., 2017, 158(5), 187-191.

  11. Baseline meteorological soundings for parametric environmental investigations at Kennedy Space Center and Vandenberg Air Force Base

    NASA Technical Reports Server (NTRS)

    Susko, M.; Stephens, J. B.

    1976-01-01

    Meteorological soundings representative of the atmospheric environment at the Kennedy Space Center, Florida and Vandenberg Air Force Base, California, are presented. Synthetic meteorological soundings at Kennedy Space Center, including fall, spring, and a sea breeze, and at Vandenberg Air Force Base (sea breeze with low and high level inversion and stationary upper level troughs) are shown. Soundings of frontal passages are listed. The Titan launch soundings at Kennedy Space Center present a wide range of meteorological conditions, both seasonal and time of day variations. The meteorological data input of altitude, wind speed, wind direction, temperature, and pressure may be used as meteorological inputs for the NASA/MSFC Multilayer Diffusion Model or other models to obtain quantitative estimates of effluent concentrations associated with the potential emission of major combustion products in the lower atmosphere to simulate actual launches of space vehicles. The Titan launch soundings are also of value in terms of rocket effluent measurements for analysis purposes.

  12. Large Scale Meteorological Pattern of Extreme Rainfall in Indonesia

    NASA Astrophysics Data System (ADS)

    Kuswanto, Heri; Grotjahn, Richard; Rachmi, Arinda; Suhermi, Novri; Oktania, Erma; Wijaya, Yosep

    2014-05-01

    Extreme Weather Events (EWEs) cause negative impacts socially, economically, and environmentally. Considering these facts, forecasting EWEs is crucial work. Indonesia has been identified as being among the countries most vulnerable to the risk of natural disasters, such as floods, heat waves, and droughts. Current forecasting of extreme events in Indonesia is carried out by interpreting synoptic maps for several fields without taking into account the link between the observed events in the 'target' area with remote conditions. This situation may cause misidentification of the event leading to an inaccurate prediction. Grotjahn and Faure (2008) compute composite maps from extreme events (including heat waves and intense rainfall) to help forecasters identify such events in model output. The composite maps show large scale meteorological patterns (LSMP) that occurred during historical EWEs. Some vital information about the EWEs can be acquired from studying such maps, in addition to providing forecaster guidance. Such maps have robust mid-latitude meteorological patterns (for Sacramento and California Central Valley, USA EWEs). We study the performance of the composite approach for tropical weather condition such as Indonesia. Initially, the composite maps are developed to identify and forecast the extreme weather events in Indramayu district- West Java, the main producer of rice in Indonesia and contributes to about 60% of the national total rice production. Studying extreme weather events happening in Indramayu is important since EWEs there affect national agricultural and fisheries activities. During a recent EWE more than a thousand houses in Indramayu suffered from serious flooding with each home more than one meter underwater. The flood also destroyed a thousand hectares of rice plantings in 5 regencies. Identifying the dates of extreme events is one of the most important steps and has to be carried out carefully. An approach has been applied to identify the

  13. Future meteorological drought: projections of regional climate models for Europe

    NASA Astrophysics Data System (ADS)

    Stagge, James; Tallaksen, Lena; Rizzi, Jonathan

    2015-04-01

    In response to the major European drought events of the last decade, projecting future drought frequency and severity in a non-stationary climate is a major concern for Europe. Prior drought studies have identified regional hotspots in the Mediterranean and Eastern European regions, but have otherwise produced conflicting results with regard to future drought severity. Some of this disagreement is likely related to the relatively coarse resolution of Global Climate Models (GCMs) and regional averaging, which tends to smooth extremes. This study makes use of the most current Regional Climate Models (RCMs) forced with CMIP5 climate projections to quantify the projected change in meteorological drought for Europe during the next century at a fine, gridded scale. Meteorological drought is quantified using the Standardized Precipitation Index (SPI) and the Standardized Precipitation-Evapotranspiration Index (SPEI), which normalize accumulated precipitation and climatic water balance anomaly, respectively, for a specific location and time of year. By comparing projections for these two indices, the importance of precipitation deficits can be contrasted with the importance of evapotranspiration increases related to temperature changes. Climate projections are based on output from CORDEX (the Coordinated Regional Climate Downscaling Experiment), which provides high resolution regional downscaled climate scenarios that have been extensively tested for numerous regions around the globe, including Europe. SPI and SPEI are then calculated on a gridded scale at a spatial resolution of either 0.44 degrees (~50 km) or 0.11 degrees (~12.5km) for the three projected emission pathways (rcp26, rcp45, rcp85). Analysis is divided into two major sections: first validating the models with respect to observed historical trends in meteorological drought from 1970-2005 and then comparing drought severity and frequency during three future time periods (2011-2040, 2041-2070, 2071-2100) to the

  14. Quantification of Uncertainties in Projections of Hydro-meteorological Extremes

    NASA Astrophysics Data System (ADS)

    Meresa, Hadush; Romanowicz, Renata; Lawrence, Deborah

    2016-04-01

    The impact of climate change on hydrological extremes has been widely studied particularly after the publication of the IPCC AR4 report in 2007. The methodology applied to derive hydrological extremes under climate change adopted by most scientists consists of running a cascade of models, starting from assumed emission scenarios applied to a global circulation model (GCM) and ending at hydrological model simulations. Therefore, the projected hydro-meteorological extremes are highly uncertain due to uncertainties inherent in all the links of the modelling chain. In addition, due to the complexity of hydrologic models that use a large number of parameters to characterize hydrologic processes, many challenges arise with respect to quantification of uncertainty. This issue needs to be properly quantified to understand possible confidence ranges in extremes in the future. This paper aims to quantify the uncertainty in the hydrological projection of future extremes in streamflow and precipitation indices in mountainous and lowland catchments in Poland, using a multi-model approach based on climate projections obtained from the ENSMEBLE and EUROCORDEX projects, multiple realizations of catchment scale downscaled rainfalls, two hydrological models (HBV and GR4J) and a number of hydrological model parameters. The time-span of projections covers the 21st century. The potential sources of hydrological projection uncertainties are quantified through a Monte Carlo based simulation approach. We compare the weights based on different goodness-of-fit criteria in their ability to constrain the uncertainty of the extremes. The results of the comparison show a considerable dependence of uncertainty ranges on the type of extremes (low or high flows) and on the criterion used. The predicted distribution of future streamflows considering all sources of uncertainty (climate model, bias correction and hydrological model) is used to derive marginal distributions of uncertainty related to

  15. Russian Meteorological and Geophysical Rockets of New Generation

    NASA Astrophysics Data System (ADS)

    Yushkov, V.; Gvozdev, Yu.; Lykov, A.; Shershakov, V.; Ivanov, V.; Pozin, A.; Afanasenkov, A.; Savenkov, Yu.; Kuznetsov, V.

    2015-09-01

    To study the process in the middle and upper atmosphere, ionosphere and near-Earth space, as well as to monitor the geophysical environment in Russian Federal Service for Hydrology and Environmental Monitoring (ROSHYDROMET) the development of new generation of meteorological and geophysical rockets has been completed. The modern geophysical research rocket system MR-30 was created in Research and Production Association RPA "Typhoon". The basis of the complex MR-30 is a new geophysical sounding rocket MN-300 with solid propellant, Rocket launch takes place at an angle of 70º to 90º from the launcher, which is a farm with a guide rail type required for imparting initial rotation rocket. The Rocket is spin stabilized with a spin rate between 5 and 7 Hz. Launch weight is 1564 kg, and the mass of the payload of 50 to 150 kg. MR-300 is capable of lifting up to 300 km, while the area of dispersion points for booster falling is an ellipse with parameters 37x 60 km. The payload of the rocket MN-300 consists of two sections: a sealed, located below the instrument compartment, and not sealed, under the fairing. Block of scientific equipment is formed on the platform in a modular layout. This makes it possible to solve a wide range of tasks and conduct research and testing technologies using a unique environment of space, as well as to conduct technological experiments testing and research systems and spacecraft equipment. New Russian rocket system MERA (MEteorological Rocket for Atmospheric Research) belongs to so called "dart" technique that provide lifting of small scientific payload up to altitude 100 km and descending with parachute. It was developed at Central Aerological Observatory jointly with State Unitary Enterprise Instrument Design Bureau. The booster provides a very rapid acceleration to about Mach 5. After the burning phase of the buster the dart is separated and continues ballistic flight for about 2 minutes. The dart carries the instrument payload+ parachute

  16. Making large amounts of meteorological data accessible through visualisation

    NASA Astrophysics Data System (ADS)

    Siemen, Stephan; Lamy-Thepaut, Sylvie

    2013-04-01

    The European Centre for Medium-Range Weather Forecasts (ECMWF) is an international organisation providing its member organisations with forecasts in the medium time range of 3 to 15 days. As part of its mission, ECMWF generates an increasing number of forecast data products for its users. To support the work of forecasters and researchers and to let them make best use of ECMWF forecasts, the Centre also provides tools and interfaces to visualise their products. This allows users to make use of and explore forecasts without having to transfer large amounts of raw data. This is especially true for products based on ECMWF's 50 member strong ensemble forecast. Users can choose to explore ECMWF's forecasts from the web or through visualisation tools installed locally or at ECMWF. ECMWF's new in-house developed web service, ecCharts, displays recent numerical forecasts to forecasters in national weather services. The functions that ecCharts provides are beyond standard web charts, in that forecasters can use the service to create bespoke charts on demand and do this themselves as and when they need to using an intuitive web interface. With ecCharts they are able to explore ECMWF's medium-range forecasts in far greater detail than has previously been possible on the web. Beside the interactive user interface built using jQuery the service also offers a machine-to-machine web map service based on the OGC Web Map Service (WMS) standard. The WMS service is primary intended to be used by forecaster workstations to integrate maps generated at ECMWF. The main challenge was to achieve fast response times even though the data volume and processing effort is quite high. PNG is the main format served but SVG is being investigated as a vector alternative. This talk will present examples of complex meteorological maps and graphs which show new possibilities users have gained by using the web as a medium. More advanced possibilities are available directly to users of the

  17. Meteorological Drought Prediction Using a Multi-Model Ensemble Approach

    NASA Astrophysics Data System (ADS)

    Chen, L.; Mo, K. C.; Zhang, Q.; Huang, J.

    2013-12-01

    In the United States, drought is among the costliest natural hazards, with an annual average of 6 billion dollars in damage. Drought prediction from monthly to seasonal time scales is of critical importance to disaster mitigation, agricultural planning, and multi-purpose reservoir management. Started in December 2012, NOAA Climate Prediction Center (CPC) has been providing operational Standardized Precipitation Index (SPI) Outlooks using the National Multi-Model Ensemble (NMME) forecasts, to support CPC's monthly drought outlooks and briefing activities. The current NMME system consists of six model forecasts from U.S. and Canada modeling centers, including the CFSv2, CM2.1, GEOS-5, CCSM3.0, CanCM3, and CanCM4 models. In this study, we conduct an assessment of the meteorological drought predictability using the retrospective NMME forecasts for the period from 1982 to 2010. Before predicting SPI, monthly-mean precipitation (P) forecasts from each model were bias corrected and spatially downscaled (BCSD) to regional grids of 0.5-degree resolution over the contiguous United States based on the probability distribution functions derived from the hindcasts. The corrected P forecasts were then appended to the CPC Unified Precipitation Analysis to form a P time series for computing 3-month and 6-month SPIs. The ensemble SPI forecasts are the equally weighted mean of the six model forecasts. Two performance measures, the anomaly correlation and root-mean-square errors against the observations, are used to evaluate forecast skill. For P forecasts, errors vary among models and skill generally is low after the second month. All model P forecasts have higher skill in winter and lower skill in summer. In wintertime, BCSD improves both P and SPI forecast skill. Most improvements are over the western mountainous regions and along the Great Lake. Overall, SPI predictive skill is regionally and seasonally dependent. The six-month SPI forecasts are skillful out to four months. For

  18. Recent Controlled Meteorological Balloon experiments in Queen Maud Land, Antarctica

    NASA Astrophysics Data System (ADS)

    Hole, L. R.; Voss, P. B.; Vihma, T. P.

    2013-12-01

    Controlled Meteorological (CMET) balloons are unique in that their altitude can be changed at any time during flight. They are remotely controlled via the Iridium network and use GPS for positioning. Over the past seven years, they have been operated at altitudes from sea-level to six kilometers and have flown for periods as long as five days. Campaigns have been carried out from the Amazon via Mexico City to polar regions. CMET balloons can perform repeated soundings in order to probe evolving thermal and chemical structure, measure wind shear, and track atmospheric layers. Typical ascent/descent rate is 1 m/s and the data sampling rate is 10 sec. The standard CMET balloon consists of zero-pressure balloon (~300-500 liters at sea level) which itself contains a much smaller (~100 liter) super-pressure balloon. Transferring helium between the super-pressure balloon and the zero-pressure balloon regulates the volume (and density) of the system, leading to controlled ascent and descent. Due to the rarity of meteorological observations from the Antarctic, especially from inland and over the sea, CMET balloons have potential to provide strongly needed data for evaluation of numerical weather prediction and climate models. Here, we present data from a CMET campaign carried out at the Finnish Aboa station in Antarctica (73° 03' S, 13° 25' W) in January 2013. The campaign was unique in that three CMET balloons were shipped to the station and launched by the local team. After the launch, they were controlled by scientists located in MA, USA and Norway. One balloon, Bravo, cruised for more than 100 hours over the coastal slopes of Queen Maud Land and nearby sea ice with a total trajectory length of over 3000 km (Fig. 1). It also passed nearby the UK Halley station. The altitude was generally kept at about 3000-3500 masl, but 8 controlled soundings down to 400-500 masl were carried out. The balloon data were compared with the Weather Research and Forecasting model (WRF

  19. Data Fusion Of Mars Global Surveyor Meteorological Datasets

    NASA Astrophysics Data System (ADS)

    Houben, H.; Bergstrom, R. W.; Hollingsworth, J.

    Planetary exploration has reached a new level with the Mars Global Surveyor (MGS) in general, and the Thermal Emission Spectrometer (TES) in particular. For the first time there is enough data to specify the full state of a planetary atmosphere-- temperature, horizontal and vertical wind, geopotential height, and surface pressure as functions of latitude, longitude, altitude, and time. In fact, the number of new in- dependent observations per day--approximately 150,000 TES nadir spectra alone--is comparable to or greater than the dimensionality of a practical global Mars general cir- culation model (GCM). These data are supplemented by occasional TES limb scans which probe the upper atmosphere, Mars Horizon Sensor Assembly (MHSA) mea- sures of broadband emission which sample other times of day, and Radio Science occultations that give high resolution density profiles helping to constrain the surface pressure. Using a four-dimensional variational data assimilation approach, it is there- fore possible to solve an over-determined system for the daily meteorology. A logical approach to maximize the atmospheric science return from these datasets has several stages. 1) We have successfully assimilated TES-retrieved temperature profiles over the full MGS mapping year, validating our specially constructed GCM and our strat- egy of assimilating diabatic forcing (i.e., treating the model as a weak constraint). 2) We have developed a forward radiation code that allows the direct assimilation of observed radiance (and the inclusion of limb scan and MHSA data, along with oc- cultation profiles, in the analysis). We are therefore at the exciting stage of validating the results of these different experiments by comparing their measurements with the best-determined global Martian meteorology for the time and place of observation. Early results show good agreement (standard deviation 5 K; bias < 1 K) between TES nadir scans and the occultation results. 3) Future efforts will

  20. Diagnostic Comparison of Meteorological Analyses during the 2002 Antarctic Winter

    NASA Technical Reports Server (NTRS)

    Manney, Gloria L.; Allen, Douglas R.; Kruger, Kirstin; Naujokat, Barbara; Santee, Michelle L.; Sabutis, Joseph L.; Pawson, Steven; Swinbank, Richard; Randall, Cora E.; Simmons, Adrian J.; Long, Craig

    2005-01-01

    Several meteorological datasets, including U.K. Met Office (MetO), European Centre for Medium-Range Weather Forecasts (ECMWF), National Centers for Environmental Prediction (NCEP), and NASA's Goddard Earth Observation System (GEOS-4) analyses, are being used in studies of the 2002 Southern Hemisphere (SH) stratospheric winter and Antarctic major warming. Diagnostics are compared to assess how these studies may be affected by the meteorological data used. While the overall structure and evolution of temperatures, winds, and wave diagnostics in the different analyses provide a consistent picture of the large-scale dynamics of the SH 2002 winter, several significant differences may affect detailed studies. The NCEP-NCAR reanalysis (REAN) and NCEP-Department of Energy (DOE) reanalysis-2 (REAN-2) datasets are not recommended for detailed studies, especially those related to polar processing, because of lower-stratospheric temperature biases that result in underestimates of polar processing potential, and because their winds and wave diagnostics show increasing differences from other analyses between similar to 30 and 10 hPa (their top level). Southern Hemisphere polar stratospheric temperatures in the ECMWF 40-Yr Re-analysis (ERA-40) show unrealistic vertical structure, so this long-term reanalysis is also unsuited for quantitative studies. The NCEP/Climate Prediction Center (CPC) objective analyses give an inferior representation of the upper-stratospheric vortex. Polar vortex transport barriers are similar in all analyses, but there is large variation in the amount, patterns, and timing of mixing, even among the operational assimilated datasets (ECMWF, MetO, and GEOS-4). The higher-resolution GEOS-4 and ECMWF assimilations provide significantly better representation of filamentation and small-scale structure than the other analyses, even when fields gridded at reduced resolution are studied. The choice of which analysis to use is most critical for detailed transport

  1. The Chinese FY-1 Meteorological Satellite Application in Observation on Oceanic Environment

    NASA Astrophysics Data System (ADS)

    Weimin, S.

    meteorological satellite is stated in this paper. exploration of the ocean resources has been a very important question of global strategy in the world. The exploration of the ocean resources includes following items: Making full use of oceanic resources and space, protecting oceanic environment. to observe the ocean is by using of satellite. In 1978, US successfully launched the first ocean observation satellite in the world --- Sea Satellite. It develops ancient oceanography in to advanced space-oceanography. FY-1 B and FY- IC respectively. High quality data were acquired at home and abroad. FY-1 is Chinese meteorological satellite, but with 0.43 ~ 0.48 μm ,0.48 ~ 0.53 μm and 0.53 ~ 0.58 μm three ocean color channels, actually it is a multipurpose remote sensing satellite of meteorology and oceanography. FY-1 satellite's capability of observation on ocean partly, thus the application field is expanded and the value is increased. With the addition of oceanic channels on FY-1, the design of the satellite is changed from the original with meteorological observation as its main purpose into remote sensing satellite possessing capability of observing meteorology and ocean as well. Thus, the social and economic benefit of FY-1 is increased. the social and economic benefit of the development of the satellite is the key technique in the system design of the satellite. technically feasible but also save the funds in researching and manufacturing of the satellite, quicken the tempo of researching and manufacturing satellite. the scanning radiometer for FY-1 is conducted an aviation experiment over Chinese ocean. This experiment was of vital importance to the addition of oceanic observation channel on FY-1. FY-1 oceanic channels design to be correct. detecting ocean color. This is the unique character of Chinese FY-1 meteorological satellite. meteorological remote sensing channel on FY-1 to form detecting capability of three visible channels: red, yellow and blue

  2. The Meteorology and Chemistry of High Nitric-Acid Episodes at the South Pole

    NASA Astrophysics Data System (ADS)

    Neff, William; Davis, Douglas

    2016-04-01

    (cloudy, windy, and warmer with deeper boundary layers) or southeast, along the continent above the Ross Sea (clear skies, light winds, colder with shallow boundary layers). The latter situation sets the stage for higher NO concentrations. Following the breakup of the ozone hole, 300 hPa winds favor directions from the Weddell Sea, typically providing warming events. With the surface warming, we found limited katabatic influence for the period of late November-January period as the inversion strength decreased to near zero, on average. As a consequence we found that synoptic and mesoscale weather patterns dominated surface boundary layer flow characteristics during the summer months. We found that year-to-year changes in the large scale circulation accounted for some of the differences in the average concentrations of NO during the four field programs: However, the same seasonal meteorological changes may affect the concentration of surface nitrate as a result of changes in transport, deposition, recycling, and/or stratospheric-tropospheric exchanges of nitrate precursors. Past work implicated the pivotal role of the boundary layer depth (BLD) on NO concentrations. However, direct measurements were only available in 2003. To overcome this limitation, we used multiple-linear-regression with routine observations of wind speed, direction, temperature and static stability in 2003 to develop a regression equation for BLD to apply to other years. This application confirmed the general inverse BLD dependence of NO concentrations: When NO was binned in 100 pptv bins, regression with 1/BLD yielded r2 from 0.87 to 0.98 for each of the four years. Looking at the regression slopes based on our BLD calculations, we found for deeper boundary layers (~100m) there was little difference in average NO from year to year whereas when confined to shallow boundary layers (~25m) concentrations varied by factors of 4 or 5 suggesting major differences in source terms for NO from year to year.

  3. Maximum vehicle cabin temperatures under different meteorological conditions

    NASA Astrophysics Data System (ADS)

    Grundstein, Andrew; Meentemeyer, Vernon; Dowd, John

    2009-05-01

    A variety of studies have documented the dangerously high temperatures that may occur within the passenger compartment (cabin) of cars under clear sky conditions, even at relatively low ambient air temperatures. Our study, however, is the first to examine cabin temperatures under variable weather conditions. It uses a unique maximum vehicle cabin temperature dataset in conjunction with directly comparable ambient air temperature, solar radiation, and cloud cover data collected from April through August 2007 in Athens, GA. Maximum cabin temperatures, ranging from 41-76°C, varied considerably depending on the weather conditions and the time of year. Clear days had the highest cabin temperatures, with average values of 68°C in the summer and 61°C in the spring. Cloudy days in both the spring and summer were on average approximately 10°C cooler. Our findings indicate that even on cloudy days with lower ambient air temperatures, vehicle cabin temperatures may reach deadly levels. Additionally, two predictive models of maximum daily vehicle cabin temperatures were developed using commonly available meteorological data. One model uses maximum ambient air temperature and average daily solar radiation while the other uses cloud cover percentage as a surrogate for solar radiation. From these models, two maximum vehicle cabin temperature indices were developed to assess the level of danger. The models and indices may be useful for forecasting hazardous conditions, promoting public awareness, and to estimate past cabin temperatures for use in forensic analyses.

  4. Tropospheric Delay Analysis Based on Some Chinese Cities' Meteorologic Conditions

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Chen, X. H.; Sun, J. Z.; Han, B. B.; Zhang, Q.

    2014-03-01

    With the increase of the users' precision in satellite orientation and navigation, the influence of the tropospheric delay has become increasingly vital, which needs to be corrected. The paper contrastively analyzes some main mapping functions' models of the tropospheric delay theory. It discusses the distributions of the hydrostatic/wet mapping functions of Niell Mapping Function (NMF), Vienna Mapping Function 1 (VMF1), and Global Mapping Function (GMF). And it analyzes tropospheric delay based on the meteorologic conditions in some Chinese cities. It could be concluded from the results that the hydrostatic VMF1 and GMF are in yearly periodic cosine distributions and approximately identical, whereas the hydrostatic NMF is roughly larger than the formers. The wet VMF1, which is influenced greatly by the atmosphere, displays close to cosine functions. Besides, VMF1 and GMF roughly display minimum in summer and maximum in winter, respectively. While the elevation angle is 10 degrees, the Slant Propagation Delays (SPDs) of the chosen stations are all in yearly periodic cosine distributions, and they decrease with the increase of the latitude. The SPD reaches maximum in summer and minimum in winter, and the difference is about 2 m.

  5. Meteorological conditions during the formation of ice on aircraft

    NASA Technical Reports Server (NTRS)

    Samuels, L T

    1932-01-01

    These are the results of a number of records recently secured from autographic meteorological instruments mounted on airplanes at times when ice formed. Ice is found to collect on an airplane only when the airplane is in some form of visible moisture, such as cloud, fog, mist, rain. etc., and the air temperature is within certain critical limits. Described here are the characteristics of clear ice and rime ice and the specific types of hazards they present to airplanes and lighter than air vehicles. The weather records are classified according to the two general types of formation (clear ice and rime) together with the respective temperatures, relative humidities, clouds, and elevations above ground at which formations occurred. This classification includes 108 cases where rime formed, 43 cases in which clear ice formed, and 4 cases when both rime and clear ice formed during the same flight. It is evident from the above figures that there was a preponderance of rime by the ratio of 2.5 to 1, while in only a few cases both types of ice formation occurred during the same flight.

  6. Operational early warning platform for extreme meteorological events

    NASA Astrophysics Data System (ADS)

    Mühr, Bernhard; Kunz, Michael

    2015-04-01

    Operational early warning platform for extreme meteorological events Most natural disasters are related to extreme weather events (e.g. typhoons); weather conditions, however, are also highly relevant for humanitarian and disaster relief operations during and after other natural disaster like earthquakes. The internet service "Wettergefahren-Frühwarnung" (WF) provides various information on extreme weather events, especially when these events are associated with a high potential for large damage. The main focus of the platform is on Central Europe, but major events are also monitored worldwide on a daily routine. WF provides high-resolution forecast maps for many weather parameters which allow detailed and reliable predictions about weather conditions during the next days in the affected areas. The WF service became operational in February 2004 and is part of the Center for Disaster Management and Risk Reduction Technology (CEDIM) since 2007. At the end of 2011, CEDIM embarked a new type of interdisciplinary disaster research termed as forensic disaster analysis (FDA) in near real time. In case of an imminent extreme weather event WF plays an important role in CEDIM's FDA group. It provides early and precise information which are always available and updated several times during a day and gives advice and assists with articles and reports on extreme events.

  7. Experimental Forecasts of Wildfire Pollution at the Canadian Meteorological Centre

    NASA Astrophysics Data System (ADS)

    Pavlovic, Radenko; Beaulieu, Paul-Andre; Chen, Jack; Landry, Hugo; Cousineau, Sophie; Moran, Michael

    2016-04-01

    Environment and Climate Change Canada's Canadian Meteorological Centre Operations division (CMCO) has been running an experimental North American air quality forecast system with near-real-time wildfire emissions since 2014. This system, named FireWork, also takes anthropogenic and other natural emission sources into account. FireWork 48-hour forecasts are provided to CMCO forecasters and external partners in Canada and the U.S. twice daily during the wildfire season. This system has proven to be very useful in capturing short- and long-range smoke transport from wildfires over North America. Several upgrades to the FireWork system have been made since 2014 to accommodate the needs of operational AQ forecasters and to improve system performance. In this talk we will present performance statistics and some case studies for the 2014 and 2015 wildfire seasons. We will also describe current limitations of the FireWork system and ongoing and future work planned for this air quality forecast system.

  8. Maximum vehicle cabin temperatures under different meteorological conditions.

    PubMed

    Grundstein, Andrew; Meentemeyer, Vernon; Dowd, John

    2009-05-01

    A variety of studies have documented the dangerously high temperatures that may occur within the passenger compartment (cabin) of cars under clear sky conditions, even at relatively low ambient air temperatures. Our study, however, is the first to examine cabin temperatures under variable weather conditions. It uses a unique maximum vehicle cabin temperature dataset in conjunction with directly comparable ambient air temperature, solar radiation, and cloud cover data collected from April through August 2007 in Athens, GA. Maximum cabin temperatures, ranging from 41-76 degrees C, varied considerably depending on the weather conditions and the time of year. Clear days had the highest cabin temperatures, with average values of 68 degrees C in the summer and 61 degrees C in the spring. Cloudy days in both the spring and summer were on average approximately 10 degrees C cooler. Our findings indicate that even on cloudy days with lower ambient air temperatures, vehicle cabin temperatures may reach deadly levels. Additionally, two predictive models of maximum daily vehicle cabin temperatures were developed using commonly available meteorological data. One model uses maximum ambient air temperature and average daily solar radiation while the other uses cloud cover percentage as a surrogate for solar radiation. From these models, two maximum vehicle cabin temperature indices were developed to assess the level of danger. The models and indices may be useful for forecasting hazardous conditions, promoting public awareness, and to estimate past cabin temperatures for use in forensic analyses.

  9. Cloudiness over the Amazon rainforest: Meteorology and thermodynamics

    NASA Astrophysics Data System (ADS)

    Collow, Allison B. Marquardt; Miller, Mark A.; Trabachino, Lynne C.

    2016-07-01

    Comprehensive meteorological observations collected during GOAmazon2014/15 using the Atmospheric Radiation Measurement Mobile Facility no. 1 and assimilated observations from the Modern-Era Retrospective Analysis for Research and Applications, Version 2 are used to document the seasonal cycle of cloudiness, thermodynamics, and precipitation above the Amazon rainforest. The reversal of synoptic-scale vertical motions modulates the transition between the wet and dry seasons. Ascending moist air during the wet season originates near the surface of the Atlantic Ocean and is advected into the Amazon rainforest, where it experiences convergence and, ultimately, precipitates. The dry season is characterized by weaker winds and synoptic-scale subsidence with little or no moisture convergence accompanying moisture advection. This combination results in the drying of the midtroposphere during June through October as indicated by a decrease in liquid water path, integrated water, and the vertical profile of water vapor mixing ratio. The vertical profile of cloud fraction exhibits a relatively consistent decline in cloud fraction from the lifting condensation level (LCL) to the freezing level where a minimum is observed, unlike many other tropical regions. Coefficients of determination between the LCL and cloud fractional coverage suggest a relatively robust relationship between the LCL and cloudiness beneath 5 km during the dry season (R2 = 0.42) but a weak relationship during the wet season (0.12).

  10. Quantifying global dust devil occurrence from meteorological analyses

    PubMed Central

    Jemmett-Smith, Bradley C; Marsham, John H; Knippertz, Peter; Gilkeson, Carl A

    2015-01-01

    Dust devils and nonrotating dusty plumes are effective uplift mechanisms for fine particles, but their contribution to the global dust budget is uncertain. By applying known bulk thermodynamic criteria to European Centre for Medium-Range Weather Forecasts (ECMWF) operational analyses, we provide the first global hourly climatology of potential dust devil and dusty plume (PDDP) occurrence. In agreement with observations, activity is highest from late morning into the afternoon. Combining PDDP frequencies with dust source maps and typical emission values gives the best estimate of global contributions of 3.4% (uncertainty 0.9–31%), 1 order of magnitude lower than the only estimate previously published. Total global hours of dust uplift by dry convection are ∼0.002% of the dust-lifting winds resolved by ECMWF, consistent with dry convection making a small contribution to global uplift. Reducing uncertainty requires better knowledge of factors controlling PDDP occurrence, source regions, and dust fluxes induced by dry convection. Key Points Global potential dust devil occurrence quantified from meteorological analyses Climatology shows realistic diurnal cycle and geographical distribution Best estimate of global contribution of 3.4% is 10 times smaller than the previous estimate PMID:26681815

  11. Hydrological and Meteorological Disturbances in Rio Grande Riparian Ecosystems

    NASA Astrophysics Data System (ADS)

    Thibault, J. R.; Cleverly, J. R.; Dahm, C.

    2012-12-01

    Invasive species and ecohydrological disturbances are imperiling native riparian ecosystems. Adaptable, resilient exotic competitors including tamarisk have colonized many waterways in the western US. Alteration of the natural flow regime due to water diversions is expected to be exacerbated by climate change in this region, confounding restoration efforts. Climate change may also increase the likelihood of other disturbances, including extreme weather events (drought, floods, temperatures). We investigate how hydrological and meteorological variability impact water use by tamarisk communities that have overtaken native riparian vegetation. We have collected more than a decade of complete growing season eddy covariance evapotranspiration (ET) and water table (WT) elevation data at two sites along the Rio Grande corridor of central New Mexico, USA. Conditions have ranged from extreme drought to exceedingly wet years with extensive overbank flooding, and from record setting warm to cold temperatures. Severe to extreme droughts persisted throughout 2002 and 2003. Abundant snowpacks and wetter conditions led to extensive flooding early in the 2005 and 2008 growing seasons. Along with a return to intense drought conditions, extreme temperatures struck New Mexico in 2011. A deep freeze in early February followed by an extraordinarily late, extended hard freeze at the onset of the growing season was then succeeded by the warmest summer in the state's 117 year record. We present how water use by the replacement communities responds to droughts, flooding, and extreme temperatures, all of which are expected to increase in frequency, and speculate how these disturbances will affect native riparian ecosystems.

  12. Turbulence Structure in the Wake Region of a Meteorological Tower

    NASA Astrophysics Data System (ADS)

    Barthlott, Christian; Fiedler, Franz

    A meteorological tower significantly modifies the air flow, the mean windspeed and wind direction as well as the turbulencestructure of the air. Suchchanges can be noticed in particular in the wake region of the tower.Measurementson the 200 m tower ofForschungszentrum Karlsruhewere carried outusing Solent sonic anemometers in the lee of the towerand cup anemometers on both sides.In the wake region, spectral energydensity is increased in the high-frequency range. Superposition of this disturbance spectrum on the undisturbedspectrum yields a `knee' in the resulting spectrum. In the case of low turbulence intensity with stable stratification,a plateau with a constant energy content is observed in front of the knee.This effect is caused by the new production of turbulence energy from the mean flow as well as by an energy transfer fromlarger to smaller vortices. Power spectra in strongly stable conditionsshow a more rapid decrease of intensity in the region where the inertialsubrange is expected.The relevant scales of wake turbulence are derived from the maximum of the disturbance spectrum.Locations of the high-frequency peak do not depend on atmospheric stability,but are controlled mainly by mean wind speed.Apart from the reduction of the mean wind speed, the spectra and cospectra exhibit a strong anisotropy for such cases.The results demonstrate the significant influence of a tower on turbulence spectra in the wake region.

  13. Fleet Numerical Meteorology and Oceanography Center support for GODAE

    NASA Astrophysics Data System (ADS)

    Dimitriou, D.; Sharfstein, P.; Ignaszewski, M.; Clancy, M.

    2003-04-01

    The U.S. Navy's Fleet Numerical Meteorology and Oceanography Center (FNMOC; see http://www.fnmoc.navy.mil/), located in Monterey, CA, is the lead activity within the U.S. Department of Defense (DoD) for numerical weather prediction and coupled air-sea modeling. FNMOC fulfills this role through means of a suite of sophisticated global and regional meteorological and oceanographic (METOC) models, extending from the top of the atmosphere to the bottom of the ocean, which is supported by one of the world's most complete real-time METOC databases. Fleet Numerical operates around-the-clock, 365 days per year and distributes METOC products to military and civilian users around the world, both ashore and afloat, through a variety of means, including a rapidly growing and innovative use of Web technology. FNMOC's customers include all branches of the Department of Defense (DoD), other government organizations such as the National Weather Service, private companies such as the Weather Channel, a number of colleges and universities, and the general public. FNMOC acquires and processes over 6 million METOC observations per day—creating one of the world's most comprehensive real-time databases of meteorological and oceanographic observations for assimilation into its models. FNMOC employs three primary models, the Navy Operational Global Atmospheric Prediction System (NOGAPS), the Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS), and the WaveWatch III model (WW3), along with a number of specialized models and related applications. NOGAPS is a global weather model, driving nearly all other FNMOC models and applications in some fashion. COAMPS is a high-resolution regional model that has proved to be particularly valuable for forecasting weather and ocean conditions in highly complex coastal areas. WW3 is a state-of-the-art ocean wave model that is employed both globally and regionally in support of a wide variety of naval operations. Specialized models support and

  14. Meteorological constraints on oceanic halocarbons above the Peruvian Upwelling

    NASA Astrophysics Data System (ADS)

    Fuhlbrügge, S.; Quack, B.; Atlas, E.; Fiehn, A.; Hepach, H.; Krüger, K.

    2015-07-01

    Halogenated very short lived substances (VSLS) are naturally produced in the ocean and emitted to the atmosphere. Recently, oceanic upwelling regions in the tropical East Atlantic were identified as strong sources of brominated halocarbons to the atmosphere. During a cruise of R/V METEOR in December 2012 the oceanic sources and emissions of various halogenated trace gases and their mixing ratios in the marine atmospheric boundary layer (MABL) were investigated above the Peruvian Upwelling for the first time. This study presents novel observations of the three VSLS bromoform, dibromomethane and methyl iodide together with high resolution meteorological measurements and Lagrangian transport modelling. Although relatively low oceanic emissions were observed, except for methyl iodide, surface atmospheric abundances were elevated. Radiosonde launches during the cruise revealed a low, stable MABL and a distinct trade inversion above acting both as strong barriers for convection and trace gas transport in this region. Significant correlations between observed atmospheric VSLS abundances, sea surface temperature, relative humidity and MABL height were found. We used a simple source-loss estimate to identify the contribution of oceanic emissions to observed atmospheric concentrations which revealed that the observed marine VSLS abundances were dominated by horizontal advection below the trade inversion. The observed VSLS variations can be explained by the low emissions and their accumulation under different MABL and trade inversion conditions. This study confirms the importance of oceanic upwelling and trade wind systems on creating effective transport barriers in the lower atmosphere controlling the distribution of VSLS abundances above ocean upwelling regions.

  15. Anthropogenic climate change affects meteorological drought risk in Europe

    NASA Astrophysics Data System (ADS)

    Gudmundsson, L.; Seneviratne, S. I.

    2016-04-01

    Drought constitutes a significant natural hazard in Europe, impacting societies and ecosystems across the continent. Climate model simulations with increasing greenhouse gas concentrations project increased drought risk in southern Europe, and on the other hand decreased drought risk in the north. Observed changes in water balance components and drought indicators resemble the projected pattern. However, assessments of possible causes of the reported regional changes have so far been inconclusive. Here we investigate whether anthropogenic emissions have altered past and present meteorological (precipitation) drought risk. For doing so we first estimate the magnitude of 20 year return period drought years that would occur without anthropogenic effects on the climate. Subsequently we quantify to which degree the occurrence probability, i.e. the risk, of these years has changed if anthropogenic climate change is accounted for. Both an observational and a climate model-based assessment suggest that it is >95% likely that human emissions have increased the probability of drought years in the Mediterranean, whereas it is >95% likely that the probability of dry years has decreased in northern Europe. In central Europe the evidence is inconclusive. The results highlight that anthropogenic climate change has already increased drought risk in southern Europe, stressing the need to develop efficient mitigation measures.

  16. Modeling Air Pollution in Beijing: Emission Reduction vs. Meteorological Influence

    NASA Astrophysics Data System (ADS)

    Risse, Eicke-Alexander; Hao, Nan; Trautmann, Thomas

    2016-08-01

    This case study uses the Chemical Transport Model WRF-Chem to simulate and measure the efficiency of temporal large-scale emission reductions under different meteorological conditions. The Nov. 2014 Asian Pacific Economic Cooperation (APEC) summit provides a unique opportunity for this study due to the extraordinarily good and well-measured air quality which is believed to be induced by intense emission- reduction measures by the Chinese government. Four cases are simulated to inter-compare between favorable und unfavorablemeteorological conditions (in terms of air quality) as well as reduced and non-reduced emissions. Key variables of the simulation results are evaluated against AERONET measurements of Aerosol Optical Depth (AOD) and air-quality measurements by the Chinese Ministry of Environment (CME). The inter-comparison is then performed on time- and volume-averaged total concentrations of the key variables Nitrogenous Oxide (NOx) and Particulate Matter (PM2.5 and PM10).The simulation settings and some important facts about the model are shown in table 1.

  17. The Meteorology of Storms that Produce Narrow Bipolar Events

    NASA Technical Reports Server (NTRS)

    Lang, Timothy J.; McCaul, Eugene W.; Cummer, Steven A.

    2013-01-01

    Narrow Bipolar Events (NBEs) are compact intracloud discharges that produce the most powerful lightning-related radio frequency signals that have been observed. However, their luminosity is below the threshold for detectability from current and past spaceborne optical sensors. NBEs have been loosely associated with convective intensity, but their occurrence tends to be highly localized in time and space within a thunderstorm, and there remain many questions about whether and to what extent they are significantly related to meteorological processes within thunderstorms. Using the North Alabama Lightning Mapping Array (NALMA), the National Lightning Detection Network, and available Doppler and polarimetric radar data, case studies will be presented for storm events that produced large numbers of NBEs (10s-100s) during their lifetimes. NBEs are documented via a method that identifies high peak power (>40-50 dBW) initial VHF sources within a specific altitude band in the upper levels of thunderstorms. The production of NBEs, including spatial and temporal variability, will be compared to the radar-inferred kinematic and microphysical structure and evolution of thunderstorms, as well as their NALMA- and NLDN-inferred electrical characteristics. The results should provide new insights into the relationships between NBEs and thunderstorm processes.

  18. Iqaluit Calibration/Validation Supersite for Meteorological Satellites

    NASA Astrophysics Data System (ADS)

    Mariani, Z.; Dehghan, A.; Gascon, G.; Joe, P.; Strawbridge, K.; Burrows, W.; Melo, S.

    2016-08-01

    It is foreseen that the changing climate in the Arctic will result in increased activities, such as marine navigation, resource exploitation, aviation, fishing, and recreation, requiring reliable and relevant weather information. However, processes governing weather systems in the Arctic are not well understood. There is a recognized lack of meteorological observations to characterize the atmosphere and the cryosphere for operational forecasting and to support process studies, satellite and model calibration/validation (cal/val), and for verification. Environment and Climate Change Canada (ECCC) is enhancing the observing capacity of selected sites, including Iqaluit (64oN, 69oW), which is uniquely situated in close proximity to frequent overpasses by polar-orbiting satellites such as ADM-Aeolus, A-Train, GPM, and EarthCARE. Iqaluit's suite of instruments will provide near-real time observations of altitude resolved wind speed and direction, aerosol size and shape, cloud intensity and height, sensible heat flux, turbulence, fog, and precipitation amount/type. Initial results demonstrate their ability to detect fog, blowing snow and very light precipitation (diamond dust).

  19. Meteorological annual report for 1995 at the Savannah River Site

    SciTech Connect

    Hunter, C.H.; Tatum, C.P.

    1996-12-01

    The Environmental Technology Section (ETS) of the Savannah River Technology Center (SRTC) collects, archives, and analyzes basic meteorological data supporting a variety of activities at SRS. These activities include the design, construction, and operation of nuclear and non-nuclear facilities, emergency response, environmental compliance, resource management, and environmental research. This report contains tabular and graphical summaries of data collected during 1995 for temperature, precipitation, relative humidity, wind, barometric pressure, and solar radiation. Most of these data were collected at the central Climatology Facility. Summaries of temperature and relative humidity were generated with data from the lowest level of measurement at the Central Climatology Site tower (13 feet above ground). (Relative humidity is calculated from measurements of dew-point temperature.) Wind speed summaries were generated with data from the second measurement level (58 feet above ground). Wind speed measurements from this level are believed to best represent open, well-exposed areas of the Site. Precipitation summaries were based on data from the Building 773-A site since quality control algorithms for the central Climatology Facility rain gauge data were not finalized at the time this report was prepared. This report also contains seasonal and annual summaries of joint occurrence frequencies for selected wind speed categories by 22.5 degree wind direction sector (i.e., wind roses). Wind rose summaries are provided for the 200-foot level of the Central Climatology tower and for each of the eight 200-foot area towers.

  20. The cross wavelet analysis of dengue fever variability influenced by meteorological conditions

    NASA Astrophysics Data System (ADS)

    Lin, Yuan-Chien; Yu, Hwa-Lung; Lee, Chieh-Han

    2015-04-01

    The multiyear variation of meteorological conditions induced by climate change causes the changing diffusion pattern of infectious disease and serious epidemic situation. Among them, dengue fever is one of the most serious vector-borne diseases distributed in tropical and sub-tropical regions. Dengue virus is transmitted by several species of mosquito and causing lots amount of human deaths every year around the world. The objective of this study is to investigate the impact of meteorological variables to the temporal variation of dengue fever epidemic in southern Taiwan. Several extreme and average indices of meteorological variables, i.e. temperature and humidity, were used for this analysis, including averaged, maximum and minimum temperature, and average rainfall, maximum 1-hr rainfall, and maximum 24-hr rainfall. This study plans to identify and quantify the nonlinear relationship of meteorological variables and dengue fever epidemic, finding the non-stationary time-frequency relationship and phase lag effects of those time series from 1998-2011 by using cross wavelet method. Results show that meteorological variables all have a significant time-frequency correlation region to dengue fever epidemic in frequency about one year (52 weeks). The associated phases can range from 0 to 90 degrees (0-13 weeks lag from meteorological factors to dengue incidences). Keywords: dengue fever, cross wavelet analysis, meteorological factor

  1. The propagation from meteorological to hydrological drought and its potential influence factors

    NASA Astrophysics Data System (ADS)

    Huang, Shengzhi; Li, Pei; Huang, Qiang; Leng, Guoyong; Hou, Beibei; Ma, Lan

    2017-04-01

    It is important to investigate the propagation from meteorological to hydrological drought and its potential influence factors, which helps to reveal drought propagation process, thereby being helpful for drought mitigation. In this study, Standardized Precipitation Index (SPI) and Standardized Streamflow Index (SSI) were adopted to characterize meteorological and hydrological droughts, respectively. The propagation time from meteorological to hydrological drought was investigated. The cross wavelet analysis was utilized to examine the correlations between hydrological and meteorological droughts in the Wei River Basin (WRB), a typical arid and semi-arid region in China. Moreover, the potential influence factors on the propagation were explored from the perspectives of large-scale atmospheric circulation anomaly and underlying surface characteristics. Results indicated: (1) the propagation time from meteorological to hydrological drought has noticeably seasonal characteristics, that in spring and summer is short, whilst that in autumn and winter is long; (2) hydrological and meteorological droughts are primarily characterized by statistically positive linkages on both long and short time scales; (3) El Niño Southern Oscillation (ENSO) and Arctic Oscillation (AO) are strongly correlated with actual evaporation, thus strongly impacting the propagation time from meteorological to hydrological drought. Additionally, the propagation time has roughly positive associations with the parameter w of the Fu's equation from the Budyko framework.

  2. Important literature on the use of adjoint, variational methods and the Kalman filter in meteorology

    NASA Astrophysics Data System (ADS)

    Courtier, Philippe; Derber, John; Errico, Ron; Louis, Jean-Francois; Vukićević, Tomislava

    1993-10-01

    The use of adjoint equations is proving to be invaluable in many areas of meteorological research. Unlike a forecast model which describes the evolution of meteorological fields forward in time, the adjoint equations describe the evolution of sensitivity (to initial, boundary and parametric conditions) backward in time. Essentially, by utilizing this sensitivity information, many types of problems can be solved more efficiently than in the past, including variational data assimilation, parameter fitting, optimal instability and sensitivity analysis in general. For this reason, the adjoints of various models and their applications have been appearing more and more frequently in meteorological research. This paper is a bibliography in chronological order of published works in meteorology dealing with adjoints which have appeared prior to this issue of Tellus. Also included are meteorological works regarding variational methods (even without adjoints) and Kalman filtering in data assimilation, plus some references outside meteorology. These additional works are included here because the main thrust for adjoint application within meteorology is currently concentrated in the development of next-generation data assimilation systems.

  3. Analysis of relationship between meteorological and agricultural drought using standardized precipitation index and vegetation health index

    NASA Astrophysics Data System (ADS)

    Ma’rufah, U.; Hidayat, R.; Prasasti, I.

    2017-01-01

    Agricultural drought is closely related to meteorological drought in which the agricultural drought is an impact of meteorological drought. This study aim to understand the duration, spatial extent, severity and lag time of meteorological and agricultural drought during El Niño years. The data used in this study are monthly data of CHIPRS and MODIS. Meteorological drought and agricultural drought are intensified in the El Niño years. The duration of meteorological drought is different in each region but generally occurs during June to November. Agricultural drought mostly occurs from August to November. Spatially, meteorological drought and agricultural drought in 2015 has wider extent and higher severity (SPI <-2 and VHI <10) than in 2002. Agricultural drought generally intensified in areas that have monsoonal rainfall type such as Java, Bali, Nusa Tenggara, Lampung, southern part of Kalimantan, and southern part of Sulawesi. We found that VHI is significantly correlated with SPI-3 reach 58% of the total area of Indonesia. It means rainfall deficit during three months has a significant impact on agricultural drought in Indonesia. In general, SPI-3 and VHI clearly explain the relationship between meteorological drought and agricultural drought in Indonesia.

  4. Exploring the link between meteorological drought and streamflow to inform water resource management

    NASA Astrophysics Data System (ADS)

    Lennard, Amy; Macdonald, Neil; Hooke, Janet

    2015-04-01

    Drought indicators are an under-used metric in UK drought management. Standardised drought indicators offer a potential monitoring and management tool for operational water resource management. However, the use of these metrics needs further investigation. This work uses statistical analysis of the climatological drought signal based on meteorological drought indicators and observed streamflow data to explore the link between meteorological drought and hydrological drought to inform water resource management for a single water resource region. The region, covering 21,000 km2 of the English Midlands and central Wales, includes a variety of landscapes and climatological conditions. Analysis of the links between meteorological drought and hydrological drought performed using streamflow data from 'natural' catchments indicates a close positive relationship between meteorological drought indicators and streamflow, enhancing confidence in the application of drought indicators for monitoring and management. However, many of the catchments in the region are subject to modification through impoundments, abstractions and discharge. Therefore, it is beneficial to explore how climatological drought signal propagates into managed hydrological systems. Using a longitudinal study of catchments and sub-catchments that include natural and modified river reaches the relationship between meteorological and hydrological drought is explored. Initial statistical analysis of meteorological drought indicators and streamflow data from modified catchments shows a significantly weakened statistical relationship and reveals how anthropogenic activities may alter hydrological drought characteristics in modified catchments. Exploring how meteorological drought indicators link to streamflow across the water supply region helps build an understanding of their utility for operational water resource management.

  5. Training programme for the dissemination of climatological and meteorological applications using GIS technology

    NASA Astrophysics Data System (ADS)

    de Filippis, T.; di Vecchia, A.; Maracchi, G.; Sorani, F.

    2006-06-01

    IBIMET-CNR is involved in making different research projects and in managing operational programmes on national and international level and has acquired a relevant training competence to sustain partner countries and improve their methodological and operational skills by using innovative tools, such as Geographical Information Systems focused on the development of meteorological and climatological applications. Training activities are mainly addressed to National Meteorological and Hydrological Services of Partner-Countries and/or to other Specialized Centers in the frame of Cooperation Programmes promoted by the Italian Ministry of Foreign Affairs mainly in favour of the Less Developing Countries (LDC) of World Meteorological Organisation (WMO) Regional Association I (Africa). The Institute, as a branch of the WMO-Regional Meteorological Training Centre for Region VI (Europe), organizes also international training courses of high-level in Meteorology, Climatology and Remote Sensing applied to environment and agriculture fields. Moreover, considering the increasing evolution of the GIS functions for meteorological information users, IBIMET has promoted in 2005 the EU COST Action 719 Summer School on "GIS applications in meteorology and climatology''. The paper offers an overview of the main institute training programmes organised to share the results of research activities and operational projects, through the exploitation of innovative technologies and tools like GIS.

  6. The Amazon Boundary-Layer Experiment (ABLE 2B) - A meteorological perspective

    NASA Technical Reports Server (NTRS)

    Garstang, Michael; Greco, Steven; Scala, John; Swap, Robert; Ulanski, Stanley; Fitzjarrald, David; Martin, David; Browell, Edward; Shipman, Mark; Connors, Vickie

    1990-01-01

    The Amazon Boundary-Layer Experiments (ABLE) 2A and 2B, which were performed near Manaus, Brazil in July-August, 1985, and April-May, 1987 are discussed. The experiments were performed to study the sources, sinks, concentrations, and transports of trace gases and aerosols in rain forest soils, wetlands, and vegetation. Consideration is given the design and preliminary results of the experiment, focusing on the relationships between meteorological scales of motion and the flux, transports, and reactions of chemical species and aerosols embedded in the atmospheric fluid. Meteorological results are presented and the role of the meteorological results in the atmospheric chemistry experiment is examined.

  7. Self-Powered, Wireless, Remote Meteorologic Monitoring Based on Triboelectric Nanogenerator Operated by Scavenging Wind Energy.

    PubMed

    Zhang, Hulin; Wang, Jie; Xie, Yuhang; Yao, Guang; Yan, Zhuocheng; Huang, Long; Chen, Sihong; Pan, Taisong; Wang, Liping; Su, Yuanjie; Yang, Weiqing; Lin, Yuan

    2016-12-07

    Meteorologic monitoring plays a key role on weather forecast and disaster warning and deeply relies on various sensor networks. It is an optimal choice that grabbing the environmental energy around sensors for driving sensor network. Here, we demonstrate a self-powered, wireless, remote meteorologic monitoring system based on an innovative TENG. The TENG has been proved capable of scavenging wind energy and can be employed for self-powered, wireless meteorologic sounding. This work not only promotes the development of renewable energy harvesting, but also exploits and enriches promising applications based on TENGs for self-powered, wireless, remote sensing.

  8. Meteorology Assessment of Historic Rainfall for Los Alamos During September 2013

    SciTech Connect

    Bruggeman, David Alan; Dewart, Jean Marie

    2016-02-12

    DOE Order 420.1, Facility Safety, requires that site natural phenomena hazards be evaluated every 10 years to support the design of nuclear facilities. The evaluation requires calculating return period rainfall to determine roof loading requirements and flooding potential based on our on-site rainfall measurements. The return period rainfall calculations are done based on statistical techniques and not site-specific meteorology. This and future studies analyze the meteorological factors that produce the significant rainfall events. These studies provide the meteorology context of the return period rainfall events.

  9. Meteorological Sensor Array (MSA)-Phase I. Volume 2 (Data Management Tool: Proof of Concept)

    DTIC Science & Technology

    2014-10-01

    Meteorological Sensor Array ( MSA )–Phase I, Volume 2 (Data Management Tool: “Proof of Concept”) by Sandra Harrison and Gail Vaucher ARL...Missile Range, NM 88002-5501 ARL-TR-7133 October 2014 Meteorological Sensor Array ( MSA )–Phase I, Volume 2 (Data Management Tool: “Proof...2014–September 30, 2014 4. TITLE AND SUBTITLE Meteorological Sensor Array ( MSA )–Phase I, Volume 2 (Data Management Tool: “Proof of Concept”) 5a

  10. Meteorological risks and impacts on crop production systems in Belgium

    NASA Astrophysics Data System (ADS)

    Gobin, Anne

    2013-04-01

    Extreme weather events such as droughts, heat stress, rain storms and floods can have devastating effects on cropping systems. The perspective of rising risk-exposure is exacerbated further by projected increases of extreme events with climate change. More limits to aid received for agricultural damage and an overall reduction of direct income support to farmers further impacts farmers' resilience. Based on insurance claims, potatoes and rapeseed are the most vulnerable crops, followed by cereals and sugar beets. Damages due to adverse meteorological events are strongly dependent on crop type, crop stage and soil type. Current knowledge gaps exist in the response of arable crops to the occurrence of extreme events. The degree of temporal overlap between extreme weather events and the sensitive periods of the farming calendar requires a modelling approach to capture the mixture of non-linear interactions between the crop and its environment. The regional crop model REGCROP (Gobin, 2010) enabled to examine the likely frequency and magnitude of drought, heat stress and waterlogging in relation to the cropping season and crop sensitive stages of six arable crops: winter wheat, winter barley, winter rapeseed, potato, sugar beet and maize. Since crop development is driven by thermal time, crops matured earlier during the warmer 1988-2008 period than during the 1947-1987 period. Drought and heat stress, in particular during the sensitive crop stages, occur at different times in the cropping season and significantly differ between two climatic periods, 1947-1987 and 1988-2008. Soil moisture deficit increases towards harvesting, such that earlier maturing winter crops may avoid drought stress that occurs in late spring and summer. This is reflected in a decrease both in magnitude and frequency of soil moisture deficit around the sensitive stages during the 1988-2008 period when atmospheric drought may be compensated for with soil moisture. The risk of drought spells during

  11. A weather generator for hydro-meteorological hazard applications

    NASA Astrophysics Data System (ADS)

    Breinl, Korbinian; Turkington, Thea; Stowasser, Markus

    2014-05-01

    A new multi-site weather generator is proposed here. Multi-site weather generators are designed to simulate the space-time variation of precipitation and temperature at more than one location. A semi-parametric multi-site precipitation generator was recently proposed by Breinl et. al. (Breinl, K., Turkington, T. and Stowasser, M. 2013. Stochastic generation of multi-site daily precipitation for applications in risk management. Journal of Hydrology, 498: 23-35). A univariate Markov process was used to model precipitation occurrence at five sites in two study areas, with precipitation amounts simulated by resampling observations and then sampling and reshuffling from a parametric precipitation distribution (Breinl et. al., 2013). In this work, the precipitation model by Breinl et. al. (2013) is implemented in a weather generator for daily precipitation and temperature. The daily precipitation generator is extended for a considerably larger network of 19 sites in the Salzach catchment (Austria) and further improved to reduce the duplication of historical observations in the simulation output. Temperature is modelled using an autoregressive-moving average model (ARMA), simulating mean daily temperature at three of the 19 sites. Extreme values have also been considered, as they are often important for hydro-meteorological hazard applications. In the proposed weather generator, power transformations reduce the bias of generated extreme temperatures. The parametric models for precipitation are comprised of Weibull distributions for low precipitation amounts and Generalised Pareto distributions to more accurately capture moderate and extreme precipitation. With its abilities to reproduce the spatial variability of precipitation as well as unobserved extremes, the proposed weather generator is particularly recommended for flood hazard and risk assessment.

  12. Martian Meteorological Measurements Using Ground-Based Telescopes

    NASA Astrophysics Data System (ADS)

    Simpson, A.; Bailey, J.; Walter, M.; Crisp, D.

    2005-12-01

    An important component of the continuing Mars research program is the accurate determination of atmospheric and meteorological parameters, and analysis of how these parameters vary spatially and temporally. Ground-based observations are particularly useful in this regard, as they allow simultaneous global coverage and use of high-resolution spectroscopy to complement orbital measurements. Aside from the perils of atmospheric turbulence (correctable to some degree using adaptive optics), infrared observations of planetary atmospheres face another challenge -- correcting for the presence of telluric spectral lines. Based on atmospheric simulations using the SMART radiative transfer modelling tool1, we present evidence that the current technique of mitigating the effect of Earth's atmosphere by observing a nearby star of known spectral type (the ``standard star" method) can generate significant errors. Indeed, our simulations of measurements of the Martian 2-micron carbon dioxide band at a resolving power of 1000 produced variation between ``standard reduced" spectra and original modelled spectra of up to 50%2. Furthermore, we outline our proposed computational technique of iterative reduction by progressing modelled parameters towards observed values (which negates the ``standard star" issue), to be validated on data obtained from IRTF/Gemini South observations in October/November 2005, and present results to date. 1Meadows, V.S., Crisp, D., 1996, Ground-based near-infrared observations of the Venus nightside: The thermal structure and water abundance near the surface, JGR 101:E2, 4595 2Bailey, J. A., Simpson, A. J., Crisp, D., 2005, Correcting Infrared Spectra for Atmospheric Absorption, in preparation

  13. Hydro-meteorological and micro-climatic impacts of urbanization

    NASA Astrophysics Data System (ADS)

    Li, D.; Bou-Zeid, E.; Baeck, M. L.; Jessup, S.; Smith, J. A.

    2012-12-01

    Urbanization is one of the important drivers of micro and regional climate change. However, urban modeling still faces significant challenges mainly due to difficulties in representing small-scale physical processes occurring in urban canopies and in parameterizing the highly heterogeneous urban surfaces at regional scales. The Weather Research and Forecasting (WRF) model can be a powerful tool in overcoming these challenges due to its nesting and large-eddy simulation capabilities. In this study, we use the WRF model to study the impact of urbanization on urban hydrology (particularly rainfall) and the urban microclimate (i.e., the urban heat island) along the Baltimore-Washington Corridor. Two periods are simulated using WRF, one includes a heavy rainfall event and the other includes a heat wave event. The simulation results are compared to a variety of measurements, including radar rainfall estimates; vertical profiles of wind, water vapor and potential temperature; surface meteorological observations; and remotely-observed land surface temperature. The findings indicate that changing urban surface representations in the WRF model leads to significant changes in the rainfall pattern and amount, due to the modification of the surface energy budgets and the canopy effect. The sensitivity of urban rainfall modeling to urban surface models is comparable to the sensitivity to the microphysics schemes. The urban canopy model (UCM) is critical for capturing the surface energy partitioning and the land surface temperature. We also observe that the default single-layer urban canopy model (UCM) in WRF overestimates the surface temperatures along Washington-Baltimore Corridor when compared to the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite observations. To improve the model performance, a new urban canopy model, calibrated using field observations, with two surface types for the roofs (conventional roof and green roof) and three for the ground (asphalt

  14. Meteorological tsunamis along the U.S. coastline

    NASA Astrophysics Data System (ADS)

    Vilibic, I.; Monserrat, S.; Amores, A.; Dadic, V.; Fine, I.; Horvath, K.; Ivankovic, D.; Marcos, M.; Mihanovic, H.; Pasquet, S.; Rabinovich, A. B.; Sepic, J.; Strelec Mahovic, N.; Whitmore, P.

    2012-04-01

    Meteotsunamis, or meteorological tsunamis, are atmospherically induced ocean waves in the tsunami frequency band that are found to affect coasts in a destructive way in a number of places in the World Ocean, including the U.S. coastline. The Boothbay Harbor, Maine, in October 2008 and Daytona Beach, Florida, in July 1992 were hit by several meters high waves appearing from "nowhere", and a preliminary assessment pointed to the atmosphere as a possible source for the events. As a need for in-depth analyses and proper qualification of these and other events emerged, National Oceanographic and Atmospheric Administration (NOAA) decided to fund the research, currently carried out within the TMEWS project (Towards a MEteotsunami Warning System along the U.S. coastline). The project structure, planned research activities and first results will be presented here. The first objective of the project is creation of a list of potential meteotsunami events, from catalogues, news and high-resolution sea level data, and their proper assessment with regards to the source, generation and dynamics. The assessment will be based on the research of the various types of ocean (tide gauges, buoys), atmospheric (ground stations, buoys, vertical soundings, reanalyses) and remote sensing (satellites) data and products, supported by the atmospheric and ocean modelling efforts. Based on the earned knowledge, the basis for a meteotsunami warning system, i.e. observational systems and communication needs for early detection of a meteotsunami, will be defined. Finally, meteotsunami warning protocols, procedures and decision matrix will be developed, and tested on historical meteotsunami events. These deliverables are expected also to boost meteotsunami research in other parts of the World Ocean, and to contribute to the creation of an efficient meteotsunami warning systems in different regions of interest, such as Mediterranean Sea, western Japan, Western Australia or other.

  15. Meteorological and aerosol effects on marine cloud microphysical properties

    NASA Astrophysics Data System (ADS)

    Sanchez, K. J.; Russell, L. M.; Modini, R. L.; Frossard, A. A.; Ahlm, L.; Corrigan, C. E.; Roberts, G. C.; Hawkins, L. N.; Schroder, J. C.; Bertram, A. K.; Zhao, R.; Lee, A. K. Y.; Lin, J. J.; Nenes, A.; Wang, Z.; Wonaschütz, A.; Sorooshian, A.; Noone, K. J.; Jonsson, H.; Toom, D.; Macdonald, A. M.; Leaitch, W. R.; Seinfeld, J. H.

    2016-04-01

    Meteorology and microphysics affect cloud formation, cloud droplet distributions, and shortwave reflectance. The Eastern Pacific Emitted Aerosol Cloud Experiment and the Stratocumulus Observations of Los-Angeles Emissions Derived Aerosol-Droplets studies provided measurements in six case studies of cloud thermodynamic properties, initial particle number distribution and composition, and cloud drop distribution. In this study, we use simulations from a chemical and microphysical aerosol-cloud parcel (ACP) model with explicit kinetic drop activation to reproduce observed cloud droplet distributions of the case studies. Four cases had subadiabatic lapse rates, resulting in fewer activated droplets, lower liquid water content, and higher cloud base height than an adiabatic lapse rate. A weighted ensemble of simulations that reflect measured variation in updraft velocity and cloud base height was used to reproduce observed droplet distributions. Simulations show that organic hygroscopicity in internally mixed cases causes small effects on cloud reflectivity (CR) (<0.01), except for cargo ship and smoke plumes, which increased CR by 0.02 and 0.07, respectively, owing to their high organic mass fraction. Organic hygroscopicity had larger effects on droplet concentrations for cases with higher aerosol concentrations near the critical diameter (namely, polluted cases with a modal peak near 0.1 µm). Differences in simulated droplet spectral widths (k) caused larger differences in CR than organic hygroscopicity in cases with organic mass fractions of 60% or less for the cases shown. Finally, simulations from a numerical parameterization of cloud droplet activation suitable for general circulation models compared well with the ACP model, except under high organic mass fraction.

  16. Meteorology Of The Clark Atlanta University Local Energy Balance Module

    NASA Astrophysics Data System (ADS)

    Mandock, R. L.; Mills, I.; Paxton, J. N.

    2005-05-01

    The Earth System Science Program (ESSP) at Clark Atlanta University has developed an instructional module to study energy balance at the air/land and air/sea interfaces. A graphical user interface (GUI) has been developed which is used to model each of the components (net radiation, sensible and latent heat fluxes, ground heat flux, storage, anthropomorphic, and residual) necessary to understand the partitioning of energy at the air/land and air/water interfaces. The energy balance diagram consists of sky elements (sun, moon, clouds), a line representing the air/land or water/land interface, and arrows which indicate magnitude and direction of each of the energy fluxes. The storage component is represented as a box when present. The energy balance model has been applied to numerous (33 at present) scenarios which vary by (1) climate or microclimate, (2) day and night, (2) cloudiness and sunshine, (3) windy and calm, (4) land or water surface, and (5) freezing and non-freezing temperatures. The model is available in 2 levels of rigor: (1) an elementary level (Level I), and (2) and advanced level (Level II). In the Level I model only fixed arrow lengths (e.g., zero, 1/4, 1/2, 3/4, 1) are available to express flux magnitude. This allows a qualitative illustration of the energy balance components. The Level II model requires the student to calculate arrow magnitudes and directions from diffusion, evaporation, radiative transfer, and energy storage equations. The module incorporates not only the energy balance model, but also a protocol by which meteorological observations from the ESSP's rooftop laboratory, the AEMN (Georgia Automated Environmental Monitoring Network), and other online resources. The completed module is designed to serve two audiences: (1) undergraduate introductory science classes and grades 8-12, and (2) upper-division science and engineering classes.

  17. Influence of meteorological conditions on RSV infection in Portugal

    NASA Astrophysics Data System (ADS)

    Oliveira-Santos, M.; Santos, J. A.; Soares, J.; Dias, A.; Quaresma, M.

    2016-12-01

    Acute viral bronchiolitis is a common cause for infant hospital admissions. Of all etiological agents, respiratory syncytial virus (RSV) is commonly the most frequent. The present study assesses relationships between atmospheric factors and RSV infections in under 3-year-old patients admitted to the Inpatient Paediatric Service of Vila Real (North of Portugal). For this purpose, (1) clinical files of children admitted with a diagnosis of acute bronchiolitis from September 2005 to December 2015 (>10 years) were scrutinised and (2) local daily temperature/precipitation series, as well as six weather types controlling meteorological conditions in Portugal, were used. Fifty-five percent of all 770 admitted children were effectively infected with a given virus, whilst 48 % (367) were RSV+, i.e. 87 % of virus-infected children were RSV+. The bulk of incidence is verified in the first year of age (82 %, 302), slightly higher in males. RSV outbreaks are typically from December to March, but important inter-annual variability is found in both magnitude and shape. Although no clear connections were found between monthly temperatures/precipitation and RSV outbreaks apart from seasonality, a linkage to wintertime cold spells is apparent on a daily basis. Anomalously low minimum temperatures from the day of admittance back to 10 days before are observed. This relationship is supported by anomalously high occurrences of the E and AA weather types over the same period, which usually trigger dry and cold weather. These findings highlight some predictability in the RSV occurrences, revealing potential for modelling and risk assessments.

  18. DRIHM: Distributed Research Infrastructure for HydroMeteorology

    NASA Astrophysics Data System (ADS)

    Parodi, A.

    2012-04-01

    Predicting weather and climate and its impacts on the environment, including hazards such as floods and landslides, is still one of the main challenges of the 21st century with significant societal and economic implications. At the heart of this challenge lies the ability to have easy access to hydrometeorological data and models, and facilitate the collaboration between meteorologists, hydrologists, and Earth science experts for accelerated scientific advances in hydrometeorological research (HMR). to face these problems the DRIHM (Distributed Research Infrastructure for Hydro-Meteorology) project intends to develop a prototype e-Science environment to facilitate this collaboration and provide end-to-end HMR services (models, datasets and post-processing tools) at the European level, with the ability to expand to global scale. The objectives of DRIHM are to lead the definition of a common long-term strategy, to foster the development of new HMR models and observational archives for the study of severe hydrometeorological events, to promote the execution and analysis of high-end simulations, and to support the dissemination of predictive models as decision analysis tools. DRIHM combines the European expertise in HMR, in Grid and High Performance Computing (HPC). Joint research activities will improve the efficient use of the European e-Infrastructures, notably Grid and HPC, for HMR modelling and observational databases, model evaluation tool sets and access to HMR model results. Networking activities will disseminate DRIHM results at the European and global levels in order to increase the cohesion of European and possibly worldwide HMR communities and increase the awareness of ICT potential for HMR. Service activities will deploy the end-to-end DRIHM services and tools in support of HMR networks and virtual organizations on top of the existing European e-Infrastructures.

  19. Martian Arctic Dust Devil and Phoenix Meteorology Mast

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Surface Stereo Imager on NASA's Phoenix Mars Lander caught this dust devil in action west-southwest of the lander at 11:16 a.m. local Mars time on Sol 104, or the 104th Martian day of the mission, Sept. 9, 2008.

    Dust devils have not been detected in any Phoenix images from earlier in the mission, but at least six were observed in a dozen images taken on Sol 104.

    Dust devils are whirlwinds that often occur when the Sun heats the surface of Mars, or some areas on Earth. The warmed surface heats the layer of atmosphere closest to it, and the warm air rises in a whirling motion, stirring dust up from the surface like a miniature tornado.

    The vertical post near the left edge of this image is the mast of the Meteorological Station on Phoenix. The dust devil visible at the horizon just to the right of the mast is estimated to be 600 to 700 meters (about 2,000 to 2,300 feet) from Phoenix, and 4 to 5 meters (10 to 13 feet) in diameter. It is much smaller than dust devils that have been observed by NASA's Mars Exploration Rover Spirit much closer to the equator. It is closer in size to dust devils seen from orbit in the Phoenix landing region, though still smaller than those.

    The image has been enhanced to make the dust devil easier to see.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  20. Determining the Completeness of the Nimbus Meteorological Data Archive

    NASA Technical Reports Server (NTRS)

    Johnson, James; Moses, John; Kempler, Steven; Zamkoff, Emily; Al-Jazrawi, Atheer; Gerasimov, Irina; Trivedi, Bhagirath

    2011-01-01

    NASA launched the Nimbus series of meteorological satellites in the 1960s and 70s. These satellites carried instruments for making observations of the Earth in the visible, infrared, ultraviolet, and microwave wavelengths. The original data archive consisted of a combination of digital data written to 7-track computer tapes and on various film media. Many of these data sets are now being migrated from the old media to the GES DISC modern online archive. The process involves recovering the digital data files from tape as well as scanning images of the data from film strips. Some of the challenges of archiving the Nimbus data include the lack of any metadata from these old data sets. Metadata standards and self-describing data files did not exist at that time, and files were written on now obsolete hardware systems and outdated file formats. This requires creating metadata by reading the contents of the old data files. Some digital data files were corrupted over time, or were possibly improperly copied at the time of creation. Thus there are data gaps in the collections. The film strips were stored in boxes and are now being scanned as JPEG-2000 images. The only information describing these images is what was written on them when they were originally created, and sometimes this information is incomplete or missing. We have the ability to cross-reference the scanned images against the digital data files to determine which of these best represents the data set from the various missions, or to see how complete the data sets are. In this presentation we compared data files and scanned images from the Nimbus-2 High-Resolution Infrared Radiometer (HRIR) for September 1966 to determine whether the data and images are properly archived with correct metadata.