Science.gov

Sample records for board crewed spacecraft

  1. An Environmental Impact Assessment of Perfluorocarbon Thermal Working Fluid Use On Board Crewed Spacecraft

    NASA Technical Reports Server (NTRS)

    Perry, Jay L.; Arnold, William a.

    2006-01-01

    The design and operation of crewed spacecraft requires identifying and evaluating chemical compounds that may present reactivity and compatibility risks with the environmental control and life support (ECLS) system. Such risks must be understood so that appropriate design and operational controls, including specifying containment levels, can be instituted or an appropriate substitute material selected. Operational experience acquired during the International Space Station (ISS) program has found that understanding ECLS system and environmental impact presented by thermal control system working fluids is imperative to safely operating any crewed space exploration vehicle. Perfluorocarbon fluids are used as working fluids in thermal control fluid loops on board the ISS. Also, payload hardware developers have identified perfluorocarbon fluids as preferred thermal control working fluids. Interest in using perfluorocarbon fluids as thermal control system working fluids for future crewed space vehicles and outposts is high. Potential hazards associated with perfluorocarbon fluids are discussed with specific attention given to engineering assessment of ECLS system compatibility, compatibility testing results, and spacecraft environmental impact. Considerations for perfluorocarbon fluid use on crewed spacecraft and outposts are summarized.

  2. Spacecraft Crew Cabin Condensation Control

    NASA Technical Reports Server (NTRS)

    Carrillo, Laurie Y.; Rickman, Steven L.; Ungar, Eugene K.

    2013-01-01

    A report discusses a new technique to prevent condensation on the cabin walls of manned spacecraft exposed to the cold environment of space, as such condensation could lead to free water in the cabin. This could facilitate the growth of mold and bacteria, and could lead to oxidation and weakening of the cabin wall. This condensation control technique employs a passive method that uses spacecraft waste heat as the primary wallheating mechanism. A network of heat pipes is bonded to the crew cabin pressure vessel, as well as the pipes to each other, in order to provide for efficient heat transfer to the cabin walls and from one heat pipe to another. When properly sized, the heat-pipe network can maintain the crew cabin walls at a nearly uniform temperature. It can also accept and distribute spacecraft waste heat to maintain the pressure vessel above dew point.

  3. Worldwide Spacecraft Crew Hatch History

    NASA Technical Reports Server (NTRS)

    Johnson, Gary

    2009-01-01

    The JSC Flight Safety Office has developed this compilation of historical information on spacecraft crew hatches to assist the Safety Tech Authority in the evaluation and analysis of worldwide spacecraft crew hatch design and performance. The document is prepared by SAIC s Gary Johnson, former NASA JSC S&MA Associate Director for Technical. Mr. Johnson s previous experience brings expert knowledge to assess the relevancy of data presented. He has experience with six (6) of the NASA spacecraft programs that are covered in this document: Apollo; Skylab; Apollo Soyuz Test Project (ASTP), Space Shuttle, ISS and the Shuttle/Mir Program. Mr. Johnson is also intimately familiar with the JSC Design and Procedures Standard, JPR 8080.5, having been one of its original developers. The observations and findings are presented first by country and organized within each country section by program in chronological order of emergence. A host of reference sources used to augment the personal observations and comments of the author are named within the text and/or listed in the reference section of this document. Careful attention to the selection and inclusion of photos, drawings and diagrams is used to give visual association and clarity to the topic areas examined.

  4. Estimating the Reliability of a Crewed Spacecraft

    NASA Astrophysics Data System (ADS)

    Lutomski, M. G.; Garza, J.

    2012-01-01

    Now that the Space Shuttle Program has been retired, the Russian Soyuz Launcher and Soyuz Spacecraft are the only means for crew transportation to and from the International Space Station (ISS). Are the astronauts and cosmonauts safer on the Soyuz than the Space Shuttle system? How do you estimate the reliability of such a crewed spacecraft? The recent loss of the 44 Progress resupply flight to the ISS has put these questions front and center. The Soyuz launcher has been in operation for over 40 years. There have been only two Loss of Crew (LOC) incidents and two Loss of Mission (LOM) incidents involving crew missions. Given that the most recent crewed Soyuz launcher incident took place in 1983, how do we determine current reliability of such a system? How do all of the failures of unmanned Soyuz family launchers such as the 44P impact the reliability of the currently operational crewed launcher? Does the Soyuz exhibit characteristics that demonstrate reliability growth and how would that be reflected in future estimates of success? In addition NASA has begun development of the Orion or Multi-Purpose Crewed Vehicle as well as started an initiative to purchase Commercial Crew services from private firms. The reliability targets are currently several times higher than the last Shuttle reliability estimate. Can these targets be compared to the reliability of the Soyuz arguably the highest reliable crewed spacecraft and launcher in the world to determine whether they are realistic and achievable? To help answer these questions this paper will explore how to estimate the reliability of the Soyuz launcher/spacecraft system over its mission to give a benchmark for other human spaceflight vehicles and their missions. Specifically this paper will look at estimating the Loss of Mission (LOM) and Loss of Crew (LOC) probability for an ISS crewed Soyuz launcher/spacecraft mission using historical data, reliability growth, and Probabilistic Risk Assessment (PRA) techniques.

  5. Spacecraft crew procedures from paper to computers

    NASA Technical Reports Server (NTRS)

    Oneal, Michael; Manahan, Meera

    1991-01-01

    Described here is a research project that uses human factors and computer systems knowledge to explore and help guide the design and creation of an effective Human-Computer Interface (HCI) for spacecraft crew procedures. By having a computer system behind the user interface, it is possible to have increased procedure automation, related system monitoring, and personalized annotation and help facilities. The research project includes the development of computer-based procedure system HCI prototypes and a testbed for experiments that measure the effectiveness of HCI alternatives in order to make design recommendations. The testbed will include a system for procedure authoring, editing, training, and execution. Progress on developing HCI prototypes for a middeck experiment performed on Space Shuttle Mission STS-34 and for upcoming medical experiments are discussed. The status of the experimental testbed is also discussed.

  6. An Alternative Approach to Human Servicing of Crewed Earth Orbiting Spacecraft

    NASA Technical Reports Server (NTRS)

    Mularski, John R.; Alpert, Brian K.

    2017-01-01

    As crewed spacecraft have grown larger and more complex, they have come to rely on spacewalks, or Extravehicular Activities (EVA), for mission success and crew safety. Typically, these spacecraft maintain all of the hardware and trained personnel needed to perform an EVA on-board at all times. Maintaining this capability requires volume and up-mass for storage of EVA hardware, crew time for ground and on-orbit training, and on-orbit maintenance of EVA hardware. This paper proposes an alternative methodology, utilizing launch on-need hardware and crew to provide EVA capability for space stations in Earth orbit after assembly complete, in the same way that one would call a repairman to fix something at their home. This approach would reduce ground training requirements, save Intravehicular Activity (IVA) crew time in the form of EVA hardware maintenance and on-orbit training, and lead to more efficient EVAs because they would be performed by specialists with detailed knowledge and training stemming from their direct involvement in the development of the EVA. The on-orbit crew would then be available to focus on the immediate response to the failure as well as the day-to-day operations of the spacecraft and payloads. This paper will look at how current unplanned EVAs are conducted, including the time required for preparation, and offer alternatives for future spacecraft. As this methodology relies on the on-time and on-need launch of spacecraft, any space station that utilized this approach would need a robust transportation system including more than one launch vehicle capable of carrying crew. In addition, the fault tolerance of the space station would be an important consideration in how much time was available for EVA preparation after the failure. Each future program would have to weigh the risk of on-time launch against the increase in available crew time for the main objective of the spacecraft.

  7. Next Generation Spacecraft, Crew Exploration Vehicle

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This special bibliography includes research on reusable launch vehicles, aerospace planes, shuttle replacement, crew/cargo transfer vehicle, related X-craft, orbital space plane, and next generation launch technology.

  8. Fire suppression in human-crew spacecraft

    NASA Technical Reports Server (NTRS)

    Friedman, Robert; Dietrich, Daniel L.

    1991-01-01

    Fire extinguishment agents range from water and foam in early-design spacecraft (Halon 1301 in the present Shuttle) to carbon dioxide proposed for the Space Station Freedom. The major challenge to spacecraft fire extinguishment design and operations is from the micro-gravity environment, which minimizes natural convection and profoundly influences combustion and extinguishing agent effectiveness, dispersal, and post-fire cleanup. Discussed here are extinguishment in microgravity, fire-suppression problems anticipated in future spacecraft, and research needs and opportunities.

  9. Design/Development of Spacecraft and Module Crew Compartments

    NASA Technical Reports Server (NTRS)

    Goodman, Jerry R.

    2010-01-01

    This slide presentation reviews the design and development of crew compartments for spacecraft and for modules. The Crew Compartment or Crew Station is defined as the spacecraft interior and all other areas the crewman interfaces inside the cabin, or may potentially interface.It uses examples from all of the human rated spacecraft. It includes information about the process, significant drivers for the design, habitability, definitions of models, mockups, prototypes and trainers, including pictures of each stage in the development from Apollo, pictures of the space shuttle trainers, and International Space Station trainers. It further reviews the size and shape of the Space Shuttle orbiter crew compartment, and the Apollo command module and the lunar module. It also has a chart which reviews the International Space Station (ISS) internal volume by stage. The placement and use of windows is also discussed. Interestingly according to the table presented, the number 1 rated piece of equipment for recreation was viewing windows. The design of crew positions and restraints, crew translation aids and hardware restraints is shown with views of the restraints and handholds used from the Apollo program through the ISS.

  10. Handling Qualities Implications for Crewed Spacecraft Operations

    NASA Technical Reports Server (NTRS)

    Bailey, Randall E.; Jackson, E. Bruce; Arthur, J. J.

    2012-01-01

    Abstract Handling qualities embody those qualities or characteristics of an aircraft that govern the ease and precision with which a pilot is able to perform the tasks required in support of an aircraft role. These same qualities are as critical, if not more so, in the operation of spacecraft. A research, development, test, and evaluation process was put into effect to identify, understand, and interpret the engineering and human factors principles which govern the pilot-vehicle dynamic system as they pertain to space exploration missions and tasks. Toward this objective, piloted simulations were conducted at the NASA Langley Research Center and Ames Research Center for earth-orbit proximity operations and docking and lunar landing. These works provide broad guidelines for the design of spacecraft to exhibit excellent handling characteristics. In particular, this work demonstrates how handling qualities include much more than just stability and control characteristics of a spacecraft or aircraft. Handling qualities are affected by all aspects of the pilot-vehicle dynamic system, including the motion, visual and aural cues of the vehicle response as the pilot performs the required operation or task. A holistic approach to spacecraft design, including the use of manual control, automatic control, and pilot intervention/supervision is described. The handling qualities implications of design decisions are demonstrated using these pilot-in-the-loop evaluations of docking operations and lunar landings.

  11. STS-112 crew boarding Atlantis for TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- In the White Room at Launch Pad 39B, STS-112 Commander Jeffrey Ashby receives assistance with his spacesuit during a simulated launch countdown, part of Terminal Countdown Demonstration Test activities, a dress rehearsal for launch. Launch of STS-112 aboard Space Shuttle Atlantis is scheduled for Oct. 2, between 2 and 6 p.m. EDT. STS-112 is the 15th assembly mission to the International Space Station. Atlantis will be carrying the S1 Integrated Truss Structure, the first star board truss segment, which will be attached to the central truss segment, S0, and the Crew and Equipment Translation Aid (CETA) Cart A. The CETA is the first of two human-powered carts that will ride along the ISS railway, providing mobile work platforms for future spacewalking astronauts.

  12. Spacecraft crew procedures from paper to computers

    NASA Technical Reports Server (NTRS)

    Oneal, Michael; Manahan, Meera

    1993-01-01

    Large volumes of paper are launched with each Space Shuttle Mission that contain step-by-step instructions for various activities that are to be performed by the crew during the mission. These instructions include normal operational procedures and malfunction or contingency procedures and are collectively known as the Flight Data File (FDF). An example of nominal procedures would be those used in the deployment of a satellite from the Space Shuttle; a malfunction procedure would describe actions to be taken if a specific problem developed during the deployment. A new FDF and associated system is being created for Space Station Freedom. The system will be called the Space Station Flight Data File (SFDF). NASA has determined that the SFDF will be computer-based rather than paper-based. Various aspects of the SFDF are discussed.

  13. Trade Spaces in Crewed Spacecraft Atmosphere Revitalization System Development

    NASA Technical Reports Server (NTRS)

    Perry, Jay L.; Bagdigian, Robert M.; Carrasquillo, Robyn L.

    2010-01-01

    Developing the technological response to realizing an efficient atmosphere revitalization system for future crewed spacecraft and space habitats requires identifying and describing functional trade spaces. Mission concepts and requirements dictate the necessary functions; however, the combination and sequence of those functions possess significant flexibility. Us-ing a closed loop environmental control and life support (ECLS) system architecture as a starting basis, a functional unit operations approach is developed to identify trade spaces. Generalized technological responses to each trade space are discussed. Key performance parameters that apply to functional areas are described.

  14. Vulnerability of manned spacecraft to crew loss from orbital debris penetration

    NASA Technical Reports Server (NTRS)

    Williamsen, J. E.

    1994-01-01

    Orbital debris growth threatens the survival of spacecraft systems from impact-induced failures. Whereas the probability of debris impact and spacecraft penetration may currently be calculated, another parameter of great interest to safety engineers is the probability that debris penetration will cause actual spacecraft or crew loss. Quantifying the likelihood of crew loss following a penetration allows spacecraft designers to identify those design features and crew operational protocols that offer the highest improvement in crew safety for available resources. Within this study, a manned spacecraft crew survivability (MSCSurv) computer model is developed that quantifies the conditional probability of losing one or more crew members, P(sub loss/pen), following the remote likelihood of an orbital debris penetration into an eight module space station. Contributions to P(sub loss/pen) are quantified from three significant penetration-induced hazards: pressure wall rupture (explosive decompression), fragment-induced injury, and 'slow' depressurization. Sensitivity analyses are performed using alternate assumptions for hazard-generating functions, crew vulnerability thresholds, and selected spacecraft design and crew operations parameters. These results are then used to recommend modifications to the spacecraft design and expected crew operations that quantitatively increase crew safety from orbital debris impacts.

  15. STS-98 crew prepares to board bus at SLF

    NASA Technical Reports Server (NTRS)

    2001-01-01

    STS-98 Mission Commander Kenneth Cockrell waves to his family at the Shuttle Landing Facility after the crew's arrival Sunday to complete preparations for launch. In the background, Mission Specialist Robert Curbeam (left) and Pilot Mark Polansky are also caught waving. The crew is preparing to board a bus for transport to the Operations and Checkout Building where the crew quarters at KSC is located. Crew members Thomas Jones and Marsha Ivins, both mission specialists, are not in plain view. STS-98 is the seventh construction flight to the International Space Station, carrying as payload the U.S. Lab Destiny, a key element in the construction of the ISS. Launch of STS-98 is scheduled for Feb. 7 at 6:11 p.m. EST.

  16. STS-112 crew boarding Atlantis for TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- In the White Room at Launch Pad 39B, STS-112 Mission Specialist Piers Sellers, Ph.D., prepares to enter Space Shuttle Atlantis during a simulated launch countdown, part of Terminal Countdown Demonstration Test activities, a dress rehearsal for launch. Launch of STS-112 aboard Space Shuttle Atlantis is scheduled for Oct. 2, between 2 and 6 p.m. EDT. STS-112 is the 15th assembly mission to the International Space Station. Atlantis will be carrying the S1 Integrated Truss Structure, the first starboard truss segment, which will be attached to the central truss segment, S0, and the Crew and Equipment Translation Aid (CETA) Cart A. The CETA is the first of two human-powered carts that will ride along the ISS railway, providing mobile work platforms for future spacewalking astronauts.

  17. STS-112 crew boarding Atlantis for TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- In the White Room at Launch Pad 39B, STS-112 Mission Specialist Fyodor Yurchikhin, Ph.D., a cosmonaut with the Russian Space Agency, receives assistance with his spacesuit during a simulated launch countdown, part of Terminal Countdown Demonstration Test activities, a dress rehearsal for launch. Launch of STS-112 aboard Space Shuttle Atlantis is scheduled for Oct. 2, between 2 and 6 p.m. EDT. STS-112 is the 15th assembly mission to the International Space Station. Atlantis will be carrying the S1 Integrated Truss Structure, the first starboard truss segment, which will be attached to the central truss segment, S0, and the Crew and Equipment Translation Aid (CETA) Cart A. The CETA is the first of two human-powered carts that will ride along the ISS railway, providing mobile work platforms for future spacewalking astronauts.

  18. STS-112 crew boarding Atlantis for TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- In the White Room at Launch Pad 39B, STS-112 Mission Specialist Sandra Magnus, Ph.D., receives assistance with her spacesuit during a simulated launch countdown, part of Terminal Countdown Demonstration Test activities, a dress rehearsal for launch. Launch of STS-112 aboard Space Shuttle Atlantis is scheduled for Oct. 2, between 2 and 6 p.m. EDT. STS-112 is the 15th assembly mission to the International Space Station. Atlantis will be carrying the S1 Integrated Truss Structure, the first starboard truss segment, which will be attached to the central truss segment, S0, and the Crew and Equipment Translation Aid (CETA) Cart A. The CETA is the first of two human-powered carts that will ride along the ISS railway, providing mobile work platforms for future spacewalking astronauts.

  19. STS-112 crew boarding Atlantis for TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- In the White Room at Launch Pad 39B, STS-112 Pilot Pamela Melroy adjusts her spacesuit during a simulated launch countdown, part of Terminal Countdown Demonstration Test activities, a dress rehearsal for launch. Launch of STS-112 aboard Space Shuttle Atlantis is scheduled for Oct. 2, between 2 and 6 p.m. EDT. STS-112 is the 15th assembly mission to the International Space Station. Atlantis will be carrying the S1 Integrated Truss Structure, the first starboard truss segment, which will be attached to the central truss segment, S0, and the Crew and Equipment Translation Aid (CETA) Cart A. The CETA is the first of two human-powered carts that will ride along the ISS railway, providing mobile work platforms for future spacewalking astronauts.

  20. Cabin Noise Studies for the Orion Spacecraft Crew Module

    NASA Technical Reports Server (NTRS)

    Dandaroy, Indranil; Chu, S. Reynold; Larson, Lauren; Allen, Christopher S.

    2010-01-01

    Controlling cabin acoustic noise levels in the Crew Module (CM) of the Orion spacecraft is critical for adequate speech intelligibility, to avoid fatigue and to prevent any possibility of temporary and permanent hearing loss. A vibroacoustic model of the Orion CM cabin has been developed using Statistical Energy Analysis (SEA) to assess compliance with acoustic Constellation Human Systems Integration Requirements (HSIR) for the on-orbit mission phase. Cabin noise in the Orion CM needs to be analyzed at the vehicle-level to assess the cumulative acoustic effect of various Orion systems at the crewmember's ear. The SEA model includes all major structural and acoustic subsystems inside the CM including the Environmental Control and Life Support System (ECLSS), which is the primary noise contributor in the cabin during the on-orbit phase. The ECLSS noise sources used to excite the vehicle acoustic model were derived using a combination of established empirical predictions and fan development acoustic testing. Baseline noise predictions were compared against acoustic HSIR requirements. Key noise offenders and paths were identified and ranked using noise transfer path analysis. Parametric studies were conducted with various acoustic treatment packages in the cabin to reduce the noise levels and define vehicle-level mass impacts. An acoustic test mockup of the CM cabin has also been developed and noise treatment optimization tests were conducted to validate the results of the analyses.

  1. Commercial Crew Program and the Safety Technical Review Board

    NASA Technical Reports Server (NTRS)

    Mullen, Macy

    2016-01-01

    The Commercial Crew Program (CCP) is unique to any other program office at NASA. After the agency suffered devastating budget cuts and the Shuttle Program retired, the U.S. gave up its human spaceflight capabilities. Since 2011 the U.S. has been dependent on Russia to transport American astronauts and cargo to the International Space Station (ISS) and back. NASA adapted and formed CCP, which gives private, domestic, aerospace companies unprecedented reign over America's next ride to space. The program began back in 2010 with 5 companies and is now in the final phase of certification with 2 commercial partners. The Commercial Crew Program is made up of 7 divisions, each working rigorously with the commercial providers to complete the certification phase. One of these 7 divisions is Systems Engineering and Integration (SE&I) which is partly comprised of the Safety Technical Review Board (STRB). The STRB is primarily concerned with mitigating improbable, but catastrophic hazards. It does this by identifying, managing, and tracking these hazards in reports. With the STRB being in SE&I, it significantly contributes to the overall certification of the partners' vehicles. After the partners receive agency certification approval, they will have the capability to provide the U.S. with a reliable, safe, and cost-effective means of human spaceflight and cargo transport to the ISS and back.

  2. Spacecraft

    NASA Technical Reports Server (NTRS)

    Feoktistov, K. P.

    1974-01-01

    The task of building a spacecraft is compared to the construction of an artificial cybernetic system able to acquire and process information. Typical features for future spacecraft are outlined and the assignment of duties in spacecraft control between automatic devices and the crew is analyzed.

  3. Spacecraft on-board SAR processing technology

    NASA Technical Reports Server (NTRS)

    Liu, K. Y.; Arens, W. E.

    1987-01-01

    This paper provides an assessment of the on-board SAR processing technology for Eos-type missions. The proposed Eos SAR sensor and flight data system are introduced, and the SAR processing requirements are described. The SAR on-board SAR processor architecture selection is discussed, and a baseline processor architecture using a frequency-domain processor for range correlation and a modular fault-tolerant VLSI time-domain parallel array for azimuth correlation are described. The mass storage and VLSI technologies needed for implementing the proposed SAR processing are assessed. It is shown that acceptable processor power and mass characteristics should be feasible for Eos-type applications. A proposed development strategy for the on-board SAR processor is presented.

  4. Occupational Exposure to Ionizing Radiation for Crews of Suborbital Spacecraft: Questions and Answers

    DTIC Science & Technology

    2013-12-01

    Crewmembers, Ionizing Radiation, Galactic Cosmic Radiation, Solar Cosmic Radiation, Cancer Risk, Hereditary Risks, Radiation Exposure Limits Document is...higher altitudes. The dose to non-pregnant crewmembers could also have exceeded the recommended limit . A solar radiation alert system, developed by...Occupational Exposure to Ionizing Radiation for Crews of Suborbital Spacecraft : Questions & Answers Kyle Copeland Civil Aerospace Medical Institute

  5. Apollo 11 Facts Project [Spacecraft Retrieval and the Crew in the Anti-Contamination Chamber

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Footage shows the launch of the Apollo 11 spacecraft and the retrieval of the module after reentering Earth's atmosphere and landing in the ocean (reentry and landing scenes not included). President Richard Nixon is seen greeting the crew of Apollo 11 while they are in the anti-contamination chamber.

  6. Evaluation of textiles proposed for spacecraft crew apparel

    NASA Technical Reports Server (NTRS)

    Duncan, W. C.

    1976-01-01

    Textiles proposed for spacecraft wearing apparel were tested for possible primary irritancy and allergenicity using guinea pigs and human subjects. The materials submitted for testing were: (1) blue, loosely knit fabric of a copolymer of chlorotrifluoroethylene and ethylene (CTFE), (2) a white fabric, 100% cotton double knit, treated with fire retardant Tetrakis (hydroxymethyl) phosphonium hydroxide/ammonia, and (3) a gold colored polyimide fabric. There were no adverse reactions to any of the fabrics.

  7. Particulate Matter Filtration Design Considerations for Crewed Spacecraft Life Support Systems

    NASA Technical Reports Server (NTRS)

    Agui, Juan H.; Vijayakumar, R.; Perry, Jay L.

    2016-01-01

    Particulate matter filtration is a key component of crewed spacecraft cabin ventilation and life support system (LSS) architectures. The basic particulate matter filtration functional requirements as they relate to an exploration vehicle LSS architecture are presented. Particulate matter filtration concepts are reviewed and design considerations are discussed. A concept for a particulate matter filtration architecture suitable for exploration missions is presented. The conceptual architecture considers the results from developmental work and incorporates best practice design considerations.

  8. Overview of Potable Water Systems on Spacecraft Vehicles and Applications for the Crew Exploration Vehicle (CEV)

    NASA Technical Reports Server (NTRS)

    Peterson, Laurie J.; Callahan, Michael R.

    2007-01-01

    Providing water necessary to maintain life support has been accomplished in spacecraft vehicles for over forty years. This paper will investigate how previous U.S. space vehicles provided potable water. The water source for the spacecraft, biocide used to preserve the water on-orbit, water stowage methodology, materials, pumping mechanisms, on-orbit water requirements, and water temperature requirements will be discussed. Where available, the hardware used to provide the water and the general function of that hardware will also be detailed. The Crew Exploration Vehicle (CEV or Orion) water systems will be generically discussed to provide a glimpse of how similar they are to water systems in previous vehicles. Conclusions on strategies that could be used for CEV based on previous spacecraft water systems will be made in the form of questions and recommendations.

  9. Advanced On-Board Processor (AOP). [for future spacecraft applications

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Advanced On-board Processor the (AOP) uses large scale integration throughout and is the most advanced space qualified computer of its class in existence today. It was designed to satisfy most spacecraft requirements which are anticipated over the next several years. The AOP design utilizes custom metallized multigate arrays (CMMA) which have been designed specifically for this computer. This approach provides the most efficient use of circuits, reduces volume, weight, assembly costs and provides for a significant increase in reliability by the significant reduction in conventional circuit interconnections. The required 69 CMMA packages are assembled on a single multilayer printed circuit board which together with associated connectors constitutes the complete AOP. This approach also reduces conventional interconnections thus further reducing weight, volume and assembly costs.

  10. Mathematical crew motion disturbance models for spacecraft control system design. M.S. Thesis - George Washington Univ.

    NASA Technical Reports Server (NTRS)

    Conway, B. A.

    1974-01-01

    Several techniques for modeling the disturbances to a spacecraft's attitude caused by moving crew members are presented. These disturbances can be the largest moments acting on a manned spacecraft, and knowledge of their effect is important in the sizing, design, and analysis/simulation of spacecraft attitude control systems. The modeling techniques are identified as two principal types: deterministic and stochastic. Three techniques of each type are presented. The deterministic models include point-mass motion derivatives and a discussion on dynamic models of moving crew members. The stochastic techniques are highlighted by a Fourier transform method and the representation of long-term crew disturbance activities as outputs from appropriately designed filters. A z-transform technique is developed to obtain a difference-equation form of stochastic models for use on digital computers. An appendix derives spacecraft equations of motion which can be used with many of the models discussed.

  11. The Fate of Trace Contaminants in a Crewed Spacecraft Cabin Environment

    NASA Technical Reports Server (NTRS)

    Perry, Jay L.; Kayatin, Matthew J.

    2016-01-01

    Trace chemical contaminants produced via equipment offgassing, human metabolic sources, and vehicle operations are removed from the cabin atmosphere by active contamination control equipment and incidental removal by other air quality control equipment. The fate of representative trace contaminants commonly observed in spacecraft cabin atmospheres is explored. Removal mechanisms are described and predictive mass balance techniques are reviewed. Results from the predictive techniques are compared to cabin air quality analysis results. Considerations are discussed for an integrated trace contaminant control architecture suitable for long duration crewed space exploration missions.

  12. Reconfigurable modular computer networks for spacecraft on-board processing

    NASA Technical Reports Server (NTRS)

    Rennels, D. A.

    1978-01-01

    The core electronics subsystems on unmanned spacecraft, which have been sent over the last 20 years to investigate the moon, Mars, Venus, and Mercury, have progressed through an evolution from simple fixed controllers and analog computers in the 1960's to general-purpose digital computers in current designs. This evolution is now moving in the direction of distributed computer networks. Current Voyager spacecraft already use three on-board computers. One is used to store commands and provide overall spacecraft management. Another is used for instrument control and telemetry collection, and the third computer is used for attitude control and scientific instrument pointing. An examination of the control logic in the instruments shows that, for many, it is cost-effective to replace the sequencing logic with a microcomputer. The Unified Data System architecture considered consists of a set of standard microcomputers connected by several redundant buses. A typical self-checking computer module will contain 23 RAMs, two microprocessors, one memory interface, three bus interfaces, and one core building block.

  13. Challenge of lightning detection with LAC on board Akatsuki spacecraft

    NASA Astrophysics Data System (ADS)

    Takahashi, Yukihiro; Sato, Mitsutero; Imai, Masataka; Yair, Yoav; Fischer, Georg; Aplin, Karen

    2016-04-01

    Even after extensive investigations with spacecraft and ground-based observations, there is still no consensus on the existence of lightning in Venus. It has been reported that the magnetometer on board Venus Express detected whistler mode waves whose source could be lightning discharge occurring well below the spacecraft. On the other hand, with an infrared sensor, VIRTIS of Venus Express, does not show the positive indication of lightning flashes. In order to identify the optical flashes caused by electrical discharge in the atmosphere of Venus, at least, with an optical intensity of 1/10 of the average lightning in the Earth, we built a high-speed optical detector, LAC (Lightning and Airglow Camera), on board Akatsuki spacecraft. The unique performance of the LAC compared to other instruments is the high-speed sampling rate at 32 us interval for all 32 pixels, enabling us to distinguish the optical lightning flash from other pulsing noises. Though, unfortunately, the first attempt of the insertion of Akatsuki into the orbit around Venus failed in December 2010, the second one carried out in December 7 in 2015 was quite successful. We checked out the condition of the LAC on January 5, 2016, and it is healthy as in 2010. Due to some elongated orbit than that planned originally, we have umbra for ~30 min to observe the lightning flash in the night side of Venus every ~10 days, starting on April 2016. Here we would report the instrumental status of LAC and the preliminary results of the first attempt to observe optical lightning emissions.

  14. On-board fault management for autonomous spacecraft

    NASA Technical Reports Server (NTRS)

    Fesq, Lorraine M.; Stephan, Amy; Doyle, Susan C.; Martin, Eric; Sellers, Suzanne

    1991-01-01

    The dynamic nature of the Cargo Transfer Vehicle's (CTV) mission and the high level of autonomy required mandate a complete fault management system capable of operating under uncertain conditions. Such a fault management system must take into account the current mission phase and the environment (including the target vehicle), as well as the CTV's state of health. This level of capability is beyond the scope of current on-board fault management systems. This presentation will discuss work in progress at TRW to apply artificial intelligence to the problem of on-board fault management. The goal of this work is to develop fault management systems. This presentation will discuss work in progress at TRW to apply artificial intelligence to the problem of on-board fault management. The goal of this work is to develop fault management systems that can meet the needs of spacecraft that have long-range autonomy requirements. We have implemented a model-based approach to fault detection and isolation that does not require explicit characterization of failures prior to launch. It is thus able to detect failures that were not considered in the failure and effects analysis. We have applied this technique to several different subsystems and tested our approach against both simulations and an electrical power system hardware testbed. We present findings from simulation and hardware tests which demonstrate the ability of our model-based system to detect and isolate failures, and describe our work in porting the Ada version of this system to a flight-qualified processor. We also discuss current research aimed at expanding our system to monitor the entire spacecraft.

  15. A Human Factors Evaluation of a Methodology for Pressurized Crew Module Acceptability for Zero-Gravity Ingress of Spacecraft

    NASA Technical Reports Server (NTRS)

    Sanchez, Merri J.

    2000-01-01

    This project aimed to develop a methodology for evaluating performance and acceptability characteristics of the pressurized crew module volume suitability for zero-gravity (g) ingress of a spacecraft and to evaluate the operational acceptability of the NASA crew return vehicle (CRV) for zero-g ingress of astronaut crew, volume for crew tasks, and general crew module and seat layout. No standard or methodology has been established for evaluating volume acceptability in human spaceflight vehicles. Volume affects astronauts'ability to ingress and egress the vehicle, and to maneuver in and perform critical operational tasks inside the vehicle. Much research has been conducted on aircraft ingress, egress, and rescue in order to establish military and civil aircraft standards. However, due to the extremely limited number of human-rated spacecraft, this topic has been un-addressed. The NASA CRV was used for this study. The prototype vehicle can return a 7-member crew from the International Space Station in an emergency. The vehicle's internal arrangement must be designed to facilitate rapid zero-g ingress, zero-g maneuverability, ease of one-g egress and rescue, and ease of operational tasks in multiple acceleration environments. A full-scale crew module mockup was built and outfitted with representative adjustable seats, crew equipment, and a volumetrically equivalent hatch. Human factors testing was conducted in three acceleration environments using ground-based facilities and the KC-135 aircraft. Performance and acceptability measurements were collected. Data analysis was conducted using analysis of variance and nonparametric techniques.

  16. Crew Factors in Flight Operations XII: A Survey of Sleep Quantity and Quality in On-Board Crew Rest Facilities

    NASA Technical Reports Server (NTRS)

    Rosekind, Mark R.; Gregory, Kevin B.; Co, Elizabeth L.; Miller, Donna L.; Dinges, David F.

    2000-01-01

    Many aircraft operated on long-haul commercial airline flights are equipped with on-board crew rest facilities, or bunks, to allow crewmembers to rest during the flight. The primary objectives of this study were to gather data on how the bunks were used, the quantity and quality of sleep obtained by flight crewmembers in the facilities, and the factors that affected their sleep. A retrospective survey comprising 54 questions of varied format addressed demographics, home sleep habits, and bunk sleep habits. Crewmembers from three airlines with long-haul fleets carrying augmented crews consisting of B747-100/200, B747-400, and MD-11 aircraft equipped with bunks returned a total of 1404 completed surveys (a 37% response rate). Crewmembers from the three carriers were comparable demographically, although one carrier had older, more experienced flight crewmembers. Each group, on average, rated themselves as "good" or "very good" sleepers at home, and all groups obtained about the same average amount of sleep each night. Most were able to sleep in the bunks, and about two thirds indicated that these rest opportunities benefited their subsequent flight deck alertness and performance. Comfort, environment, and physiology (e.g., being ready for sleep) were identified as factors that most promoted sleep. Factors cited as interfering with sleep included random noise, thoughts, heat, and the need to use the bathroom. These factors, in turn, suggest potential improvements to bunk facilities and their use. Ratings of the three aircraft types suggested differences among facilities. Bunks in the MD-11 were rated significantly better than either of the B747 types, and the B747-400 bunks received better ratings than did the older, B747-100/200 facilities.

  17. On-board emergent scheduling of autonomous spacecraft payload operations

    NASA Technical Reports Server (NTRS)

    Lindley, Craig A.

    1994-01-01

    This paper describes a behavioral competency level concerned with emergent scheduling of spacecraft payload operations. The level is part of a multi-level subsumption architecture model for autonomous spacecraft, and it functions as an action selection system for processing a spacecraft commands that can be considered as 'plans-as-communication'. Several versions of the selection mechanism are described, and their robustness is qualitatively compared.

  18. Experimental study on trace chemical contaminant generation rates of human metabolism in spacecraft crew module

    NASA Astrophysics Data System (ADS)

    Lihua, Guo; Xinxing, He; Guoxin, Xu; Xin, Qi

    2012-12-01

    Trace chemical contaminants generated by human metabolism is a major source of contamination in spacecraft crew module. In this research, types and generation rates of pollutants from human metabolism were determined in the Chinese diets. Expired air, skin gas, and sweat of 20 subjects were analyzed at different exercise states in a simulated module. The exercise states were designed according to the basic activities in the orbit of astronauts. Qualitative and quantitative analyses of contaminants generated by human metabolic were performed with gas chromatography/mass spectrometry, gas chromatography and UV spectrophotometer. Sixteen chemical compounds from metabolic sources were found. With the increase in physical load, the concentrations of chemical compounds from human skin and expired air correspondingly increased. The species and the offgassing rates of pollutants from human metabolism are different among the Chinese, Americans and the Russians due to differences in ethnicity and dietary customs. This research provides data to aid in the design, development and operation of China's long duration space mission.

  19. The Evolution of On-Board Emergency Training for the International Space Station Crew

    NASA Technical Reports Server (NTRS)

    LaBuff, Skyler

    2015-01-01

    The crew of the International Space Station (ISS) receives extensive ground-training in order to safely and effectively respond to any potential emergency event while on-orbit, but few people realize that their training is not concluded when they launch into space. The evolution of the emergency On- Board Training events (OBTs) has recently moved from paper "scripts" to an intranet-based software simulation that allows for the crew, as well as the flight control teams in Mission Control Centers across the world, to share in an improved and more realistic training event. This emergency OBT simulator ensures that the participants experience the training event as it unfolds, completely unaware of the type, location, or severity of the simulated emergency until the scenario begins. The crew interfaces with the simulation software via iPads that they keep with them as they translate through the ISS modules, receiving prompts and information as they proceed through the response. Personnel in the control centers bring up the simulation via an intranet browser at their console workstations, and can view additional telemetry signatures in simulated ground displays in order to assist the crew and communicate vital information to them as applicable. The Chief Training Officers and emergency instructors set the simulation in motion, choosing the type of emergency (rapid depressurization, fire, or toxic atmosphere) and specific initial conditions to emphasize the desired training objectives. Project development, testing, and implementation was a collaborative effort between ISS emergency instructors, Chief Training Officers, Flight Directors, and the Crew Office using commercial off the shelf (COTS) hardware along with simulation software created in-house. Due to the success of the Emergency OBT simulator, the already-developed software has been leveraged and repurposed to develop a new emulator used during fire response ground-training to deliver data that the crew receives

  20. The high energy multicharged particle exposure of the microbial ecology evaluation device on board the Apollo 16 spacecraft

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Henke, R. P.

    1973-01-01

    The high energy multicharged cosmic-ray-particle exposure of the Microbial Ecology Evaluation Device package on board the Apollo 16 spacecraft was monitored using cellulose nitrate, Lexan polycarbonate, nuclear emulsion, and silver chloride crystal nuclear-track detectors. The results of the analysis of these detectors include the measured particle fluences, the linear energy transfer spectra, and the integral atomic number spectrum of stopping particle density. The linear energy transfer spectrum is used to compute the fractional cell loss in human kidney (T1) cells caused by heavy particles. Because the Microbial Ecology Evaluation Device was better shielded, the high-energy multicharged particle exposure was less than that measured on the crew passive dosimeters.

  1. Re-scheduling as a tool for the power management on board a spacecraft

    NASA Technical Reports Server (NTRS)

    Albasheer, Omar; Momoh, James A.

    1995-01-01

    The scheduling of events on board a spacecraft is based on forecast energy levels. The real time values of energy may not coincide with the forecast values; consequently, a dynamic revising to the allocation of power is needed. The re-scheduling is also needed for other reasons on board a spacecraft like the addition of new event which must be scheduled, or a failure of an event due to many different contingencies. This need of rescheduling is very important to the survivability of the spacecraft. In this presentation, a re-scheduling tool will be presented as a part of an overall scheme for the power management on board a spacecraft from the allocation of energy point of view. The overall scheme is based on the optimal use of energy available on board a spacecraft using expert systems combined with linear optimization techniques. The system will be able to schedule maximum number of events utilizing most energy available. The outcome is more events scheduled to share the operation cost of that spacecraft. The system will also be able to re-schedule in case of a contingency with minimal time and minimal disturbance of the original schedule. The end product is a fully integrated planning system capable of producing the right decisions in short time with less human error. The overall system will be presented with the re-scheduling algorithm discussed in detail, then the tests and results will be presented for validations.

  2. Evaluation of the use of on-board spacecraft energy storage for electric propulsion missions

    NASA Technical Reports Server (NTRS)

    Poeschel, R. L.; Palmer, F. M.

    1983-01-01

    On-board spacecraft energy storage represents an under utilized resource for some types of missions that also benefit from using relatively high specific impulse capability of electric propulsion. This resource can provide an appreciable fraction of the power required for operating the electric propulsion subsystem in some missions. The most probable mission requirement for utilization of this energy is that of geostationary satellites which have secondary batteries for operating at high power levels during eclipse. The study summarized in this report selected four examples of missions that could benefit from use of electric propulsion and on-board energy storage. Engineering analyses were performed to evaluate the mass saved and economic benefit expected when electric propulsion and on-board batteries perform some propulsion maneuvers that would conventionally be provided by chemical propulsion. For a given payload mass in geosynchronous orbit, use of electric propulsion in this manner typically provides a 10% reduction in spacecraft mass.

  3. Apollo 11 Crew Boards U.S.S. Hornet Aircraft Carrier

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named 'Eagle'', carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. Shown here are the three astronauts (L-R) Aldrin, Armstrong, and Collins leaving the recovery helicopter aboard the U.S.S. Hornet after their splashdown in the Pacific Ocean. Wearing biological isolation garments donned before leaving the spacecraft, the three went directly into the Mobile Quarantine Facility (MQF) on the aircraft carrier. The MQF served as their home for 21 days following the mission. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  4. Water immersion facility general description, spacecraft design division, crew station branch

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The Water Immersion Facility provides an accurate, safe, neutral buoyancy simulation of zero gravity conditions for development of equipment and procedures, and the training of crews. A detailed description is given of some of the following systems: (1) water tank and support equipment; (2) communications systems; (3) environmental control and liquid cooled garment system (EcS/LCG); (4) closed circuit television system; and (5) medical support system.

  5. [Experimental study on ergonomical color matching design of virtual crew cabin layout in manned spacecraft].

    PubMed

    Zhou, Q X; Qu, Z S; Wang, C H; Jiang, G H

    2001-12-01

    Objective. To approach general principles of color matching for crew module layout and to provide its ergonomical evaluation with basic data. Method. First, according to some ergonomic rules a virtual reality experimental system was set up, then 64 subjects of different ages and with some background of spaceflight were offered a color matching example according to their own choice in advance. Finally, all the hues, saturations, and lightnesses of the selected colors and their total number were statistically analyzed by SPSS 8.0 software. Result. After choosing the colors for items (standard cabinets, floor, handrails, supports and etc.) in the crew cabin, the mean kinds of color hue matching in the cockpit was 5. In addition, above half of subjects endorsed the example colors but its saturation and lightness were a little higher than those of the example every time. Although its distribution was discrete, there still was a common agreement on color matching (about 50%). Conclusion. When the color matching of crew module in long time flight was ergonomically designed, generally, cool and warm hues should be taken into consideration, and their total number need be controlled to be under 5 so as to satisfy human psychological characters.

  6. Effort to recover SOHO spacecraft continue as investigation board focuses on most likely causes

    NASA Astrophysics Data System (ADS)

    1998-07-01

    Meanwhile, the ESA/NASA investigation board concentrates its inquiry on three errors that appear to have led to the interruption of communications with SOHO on June 25. Officials remain hopeful that, based on ESA's successful recovery of the Olympus spacecraft after four weeks under similar conditions in 1991, recovery of SOHO may be possible. The SOHO Mission Interruption Joint ESA/NASA Investigation Board has determined that the first two errors were contained in preprogrammed command sequences executed on ground system computers, while the last error was a decision to send a command to the spacecraft in response to unexpected telemetry readings. The spacecraft is controlled by the Flight Operations Team, based at NASA's Goddard Space Flight Center, Greenbelt, MD. The first error was in a preprogrammed command sequence that lacked a command to enable an on-board software function designed to activate a gyro needed for control in Emergency Sun Reacquisition (ESR) mode. ESR mode is entered by the spacecraft in the event of anomalies. The second error, which was in a different preprogrammed command sequence, resulted in incorrect readings from one of the spacecraft's three gyroscopes, which in turn triggered an ESR. At the current stage of the investigation, the board believes that the two anomalous command sequences, in combination with a decision to send a command to SOHO to turn off a gyro in response to unexpected telemetry values, caused the spacecraft to enter a series of ESRs, and ultimately led to the loss of control. The efforts of the investigation board are now directed at identifying the circumstances that led to the errors, and at developing a recovery plan should efforts to regain contact with the spacecraft succeed. ESA and NASA engineers believe the spacecraft is currently spinning with its solar panels nearly edge-on towards the Sun, and thus not generating any power. Since the spacecraft is spinning around a fixed axis, as the spacecraft progresses

  7. Spacecraft drag-free technology development: On-board estimation and control synthesis

    NASA Technical Reports Server (NTRS)

    Key, R. W.; Mettler, E.; Milman, M. H.; Schaechter, D. B.

    1982-01-01

    Estimation and control methods for a Drag-Free spacecraft are discussed. The functional and analytical synthesis of on-board estimators and controllers for an integrated attitude and translation control system is represented. The framework for detail definition and design of the baseline drag-free system is created. The techniques for solution of self-gravity and electrostatic charging problems are applicable generally, as is the control system development.

  8. Astronaut Gordon Cooper smiles for recovery crew

    NASA Technical Reports Server (NTRS)

    1963-01-01

    Astronaut L. Gordon Cooper Jr., has a smile for the recovery crew of the U.S.S. Kearsarge, after he is on board from a successful 22 orbit mission of the earth in his spacecraft 'Faith 7'. Cooper is still sitting in his capsule, with his helmet off.

  9. On-board Attitude Determination System (OADS). [for advanced spacecraft missions

    NASA Technical Reports Server (NTRS)

    Carney, P.; Milillo, M.; Tate, V.; Wilson, J.; Yong, K.

    1978-01-01

    The requirements, capabilities and system design for an on-board attitude determination system (OADS) to be flown on advanced spacecraft missions were determined. Based upon the OADS requirements and system performance evaluation, a preliminary on-board attitude determination system is proposed. The proposed OADS system consists of one NASA Standard IRU (DRIRU-2) as the primary attitude determination sensor, two improved NASA Standard star tracker (SST) for periodic update of attitude information, a GPS receiver to provide on-board space vehicle position and velocity vector information, and a multiple microcomputer system for data processing and attitude determination functions. The functional block diagram of the proposed OADS system is shown. The computational requirements are evaluated based upon this proposed OADS system.

  10. Electrostatic Discharge Effects Caused by Plasma Spacecraft Charging of the NASA Orion Crew and Service Modules

    NASA Astrophysics Data System (ADS)

    Scully, B.; Norgard, J.; Neergaard Parker, L.; Lallement, L.; McDonald, T.; Neufeld, B.; Pothier, N.

    2016-05-01

    Spacecraft in Earth orbit and beyond operate in a dynamic plasma environment composed of free electrons and ion species. This plasma environment varies in density and energy level as a function of both altitude and latitude, with highly energetic behaviour noted in polar orbits and in the Van Allen radiation belts. In its various mission profiles, the NASA/Orion space vehicle will be operating in Earth orbit and beyond. This paper briefly examines the expected plasma environment for the NASA/Orion vehicle, and explores various structural, electrical and electronic design features that act to mitigate electrostatic discharge effects that may occur throughout expected mission profiles.

  11. On-board autonomous attitude maneuver planning for planetary spacecraft using genetic algorithms

    NASA Technical Reports Server (NTRS)

    Kornfeld, Richard P.

    2003-01-01

    A key enabling technology that leads to greater spacecraft autonomy is the capability to autonomously and optimally slew the spacecraft from and to different attitudes while operating under a number of celestial and dynamic constraints. The task of finding an attitude trajectory that meets all the constraints is a formidable one, in particular for orbiting or fly-by spacecraft where the constraints and initial and final conditions are of time-varying nature. This paper presents an approach for attitude path planning that makes full use of a priori constraint knowledge and is computationally tractable enough to be executed on-board a spacecraft. The approach is based on incorporating the constraints into a cost function and using a Genetic Algorithm to iteratively search for and optimize the solution. This results in a directed random search that explores a large part of the solution space while maintaining the knowledge of good solutions from iteration to iteration. A solution obtained this way may be used 'as is' or as an initial solution to initialize additional deterministic optimization algorithms. A number of example simulations are presented including the case examples of a generic Europa Orbiter spacecraft in cruise as well as in orbit around Europa. The search times are typically on the order of minutes, thus demonstrating the viability of the presented approach. The results are applicable to all future deep space missions where greater spacecraft autonomy is required. In addition, onboard autonomous attitude planning greatly facilitates navigation and science observation planning, benefiting thus all missions to planet Earth as well.

  12. Applying Rules of the Code of Conduct to the First Crews on Board the International Space Station

    NASA Astrophysics Data System (ADS)

    Catalano, Sgrosso G.

    2002-01-01

    Three years after the launch of the first Russian module Zarya, the Space Station is now operational, being made up of a central block, to which the various pressurised modules where the astronauts live and work during their stay on board are connected, of a first linking and docking node, "Unity", of the first of the four research labs, the American module"Destiny", and of the Russian module "Zvezda" with control and living functions. During these first years of the Station, the astronauts live in the service module Zvezda. The fourth crew has been positioned in the Station, carrying out maintenance and control operations of the Station itself, scientific experiments and space walks. The paper intends to analyse the rules of the code of conduct, agreed upon by all Partners, in accordance with art. 11 of the IGA. Together with the standards of conduct, applicable to all crew members, the paper will focus on the exercise of the Commander's authority, the chain of command on orbit and the relationship with the Flight Director on ground. In order to transport goods and experiments, some Multi-Purpose Logistic Modules have already been used (Leonardo, Donatello, Raffaello), transported to the Space Shuttle Station at times together with the new Station crew. Attention will be placed on the flight rules which should be issued, in such cases, in order to regulate the relationship between the ISS Commander, the ETOV (Earth to Orbit Vehicle) Commander and the Rescue Vehicle Commander. Jurisdiction over the astronauts, during the time spent in activities outside the vehicle - which are becoming more and more frequent in order to control the functionality and docking of the modules - is a new question to be solved. Finally, the paper will cover the questions concerning jurisdiction, responsibility and relationship with the crew in view of the transportation and subsequent presence in the Station of "space tourists".

  13. Exposure of aircraft crew to cosmic radiation: on-board intercomparison of various dosemeters.

    PubMed

    Bottollier-Depois, J-F; Trompier, F; Clairand, I; Spurny, F; Bartlett, D; Beck, P; Lewis, B; Lindborg, L; O'Sullivan, D; Roos, H; Tommasino, L

    2004-01-01

    Owing to their professional activity, flight crews may receive a dose of some millisieverts within a year; airline passengers may also be concerned. The effective dose is to be estimated using various experimental and calculation tools. The European project DOSMAX (Dosimetry of Aircrew Exposure during Solar Maximum) was initiated in 2000 extending to 2004 to complete studies over the current solar cycle during the solar maximum phase. To compare various dosemeters in real conditions simultaneously in the same radiation field, an intercomparison was organised aboard a Paris-Tokyo round-trip flight. Both passive and active detectors were used. Good agreement was observed for instruments determining the different components of the radiation field; the mean ambient dose equivalent for the round trip was 129 +/- 10 microSv. The agreement of values obtained for the total dose obtained by measurements and by calculations is very satisfying.

  14. Improved spacecraft radio science using an on-board atomic clock: Application to gravitational wave searches

    SciTech Connect

    Tinto, Massimo; Dick, George J.; Prestage, John D.; Armstrong, J. W.

    2009-05-15

    Recent advances in space-qualified atomic clocks (low-mass, low power-consumption, frequency stability comparable to that of ground-based clocks) can enable interplanetary spacecraft radio science experiments at unprecedented Doppler sensitivities. The addition of an on-board digital receiver would allow the up- and down-link Doppler frequencies to be measured separately. Such separate, high-quality measurements allow optimal data combinations that suppress the currently leading noise sources: phase scintillation noise from the Earth's atmosphere and Doppler noise caused by mechanical vibrations of the ground antenna. Here we provide a general expression for the optimal combination of ground and on-board Doppler data and compute the sensitivity such a system would have to low-frequency gravitational waves (GWs). Assuming a plasma scintillation noise calibration comparable to that already demonstrated with the multilink CASSINI radio system, the space-clock/digital-receiver instrumentation enhancements would give GW strain sensitivity of 3.7x10{sup -14} Hz{sup -1/2} for randomly polarized, monochromatic GW signals isotropically distributed over the celestial sphere, over a two-decade ({approx}0.0001-0.01 Hz) region of the low-frequency band. This is about an order of magnitude better than currently achieved with traditional two-way coherent Doppler experiments. The utility of optimally combining simultaneous up- and down-link observations is not limited to GW searches. The Doppler tracking technique discussed here could be performed at minimal incremental cost to improve also other radio science experiments (i.e., tests of relativistic gravity, planetary and satellite gravity field measurements, atmospheric and ring occultations) on future interplanetary missions.

  15. Plasma wave observation using waveform capture in the Lunar Radar Sounder on board the SELENE spacecraft

    NASA Astrophysics Data System (ADS)

    Kasahara, Yoshiya; Goto, Yoshitaka; Hashimoto, Kozo; Imachi, Tomohiko; Kumamoto, Atsushi; Ono, Takayuki; Matsumoto, Hiroshi

    2008-04-01

    The waveform capture (WFC) instrument is one of the subsystems of the Lunar Radar Sounder (LRS) on board the SELENE spacecraft. By taking advantage of a moon orbiter, the WFC is expected to measure plasma waves and radio emissions that are generated around the moon and/or that originated from the sun and from the earth and other planets. It is a high-performance and multifunctional software receiver in which most functions are realized by the onboard software implemented in a digital signal processor (DSP). The WFC consists of a fast-sweep frequency analyzer (WFC-H) covering the frequency range from 1 kHz to 1 MHz and a waveform receiver (WFC-L) in the frequency range from 10 Hz to 100 kHz. By introducing the hybrid IC called PDC in the WFC-H, we created a spectral analyzer with a very high time and frequency resolution. In addition, new techniques such as digital filtering, automatic filter selection, and data compression are implemented for data processing of the WFC-L to extract the important data adequately under the severe restriction of total amount of telemetry data. Because of the flexibility of the instruments, various kinds of observation modes can be achieved, and we expect the WFC to generate many interesting data.

  16. Crew Station Aspects of Manned Spacecraft. Degree awared by University of Illinois at Urbana-Champaign, 1972

    NASA Technical Reports Server (NTRS)

    Goodman, Jerry Ronald

    2006-01-01

    This thesis presents a frame work for a crew station handbook and includes samples of the broader areas which such a handbook should cover. The completed sections of this thesis serve as extensive treatments of the topics covered. The content of the individual sections of Chapters I and II varied with my experience and knowledge.

  17. Overview of Umbilical Extravehicular Activity (EVA) Interfaces in Life Support Systems on Spacecraft Vehicles and Applications for the Crew Exploration Vehicle (CEV)

    NASA Technical Reports Server (NTRS)

    Peterson, Laurie J.; Jordan, Nicole C.; Barido, Richard A.

    2007-01-01

    Extravehicular Activities (EVAs) for manned spacecraft vehicles have been performed for contingencies and nominal operations numerous times throughout history. This paper will investigate how previous U.S. manned spacecraft vehicles provided life support to crewmembers performing the EVA. Specifically defined are umbilical interfaces with respect to crewmember cooling, drinking water, air (or oxygen), humidity control, and carbon dioxide removal. As historical data is available, the need for planned versus contingency EVAs in previous vehicles as well as details for a nominal EVA day versus a contingency EVA day will be discussed. The hardware used to provide the cooling, drinking water, air (or oxygen), humidity control, and carbon dioxide removal, and the general functions of that hardware, will also be detailed, as information is available. The Crew Exploration Vehicle (CEV or Orion) EVA interfaces will be generically discussed to provide a glimpse of how similar they are to the EVA interfaces in previous vehicles. Conclusions on strategies that should be used for CEV based on previous spacecraft EVA interfaces will be made in the form of questions and recommendations.

  18. Putting Integrated Systems Health Management Capabilities to Work: Development of an Advanced Caution and Warning System for Next-Generation Crewed Spacecraft Missions

    NASA Technical Reports Server (NTRS)

    Mccann, Robert S.; Spirkovska, Lilly; Smith, Irene

    2013-01-01

    Integrated System Health Management (ISHM) technologies have advanced to the point where they can provide significant automated assistance with real-time fault detection, diagnosis, guided troubleshooting, and failure consequence assessment. To exploit these capabilities in actual operational environments, however, ISHM information must be integrated into operational concepts and associated information displays in ways that enable human operators to process and understand the ISHM system information rapidly and effectively. In this paper, we explore these design issues in the context of an advanced caution and warning system (ACAWS) for next-generation crewed spacecraft missions. User interface concepts for depicting failure diagnoses, failure effects, redundancy loss, "what-if" failure analysis scenarios, and resolution of ambiguity groups are discussed and illustrated.

  19. Designing Spacecraft and Mission Operations Plans to Meet Flight Crew Radiation Dose Requirements: Why is this an "Epic Challenge" for Long-Term Manned Interplanetary Flight

    NASA Technical Reports Server (NTRS)

    Koontz, Steven

    2012-01-01

    Outline of presentation: (1) Radiation Shielding Concepts and Performance - Galactic Cosmic Rays (GCRs) (1a) Some general considerations (1b) Galactic Cosmic Rays (2)GCR Shielding I: What material should I use and how much do I need? (2a) GCR shielding materials design and verification (2b) Spacecraft materials point dose cosmic ray shielding performance - hydrogen content and atomic number (2c) Accelerator point dose materials testing (2d) Material ranking and selection guidelines (2e) Development directions and return on investment (point dose metric) (2f) Secondary particle showers in the human body (2f-1) limited return of investment for low-Z, high-hydrogen content materials (3) GCR shielding II: How much will it cost? (3a) Spacecraft design and verification for mission radiation dose to the crew (3b) Habitat volume, shielding areal density, total weight, and launch cost for two habitat volumes (3c) It's All about the Money - Historical NASA budgets and budget limits (4) So, what can I do about all this? (4a) Program Design Architecture Trade Space (4b) The Vehicle Design Trade Space (4c) Some Near Term Recommendations

  20. Application of numerical Fourier transformation on measurements made on board rotating spacecraft

    NASA Astrophysics Data System (ADS)

    Grabowski, R.; Boesch, B.; Wolf, H.

    Use of a Fast Fourier Transform algorithm to perform digital evaluation of signals from spacecraft featuring spin modulation and nutational effects is described. The case of a rotating spacecraft without nutation is modeled, with account taken of demodulation performed simultaneously with respect to amplitude and phase. Applying the demodulation technique twice removes the nutational effects. Assumptions are made that the spectral functions do not vary as fast as the spin modulation, and the signal variance independent of spacecraft rotation occurs at a rate significantly less than the spin rate. A demodulation example is given for a signal received from a probe on the Porcupine 2 rocket.

  1. 19 CFR 4.39 - Stores and equipment of vessels and crews' effects; unlading or lading and retention on board.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Stores and equipment of vessels and crews' effects... TRADES Landing and Delivery of Cargo § 4.39 Stores and equipment of vessels and crews' effects; unlading... Act of 1930, port directors may permit narcotic drugs, except smoking opium, in reasonable...

  2. Penile ulceration caused by a foreign body reaction in a crew member on board a cruise ship.

    PubMed

    Garcia-Castaneda, Jenny; Harb-De la Rosa, Alfredo

    2015-01-01

    A crew member had a foreign body implanted subcutaneously on his dorsum penis stealthily 6 years earlier by a fellow crew member without any medical training. He presented to the ship's medical centre after a week of pain, erythema and oedema over the foreign body, which was eventually removed by the patient, leaving behind a penile ulceration. He was treated conservatively initially with intravenous and then with oral antibiotics until complete secondary wound closure was achieved.

  3. Gemini 10 prime crew during post flight press conference

    NASA Technical Reports Server (NTRS)

    1966-01-01

    At podium during Gemini 10 press conference are (l-r) Dr. Robert C. Seamans, Astronauts John Young and Michael Collins and Dr. Robert R. Gilruth (39895); Wide angle view of the Manned Spacecraft Center (MSC) News Center during the Gemini 10 prime crew post flight press conference (38786); Astronaut Young draws diagram on chalk board of tethered extravehicular activity accomplished during Gemini 10 flight (39897).

  4. The Solar Spectral Irradiance Measured on Board the International Space Station and the Picard Spacecraft

    NASA Astrophysics Data System (ADS)

    Thuillier, G. O.; Bolsee, D.; Schmidtke, G.; Schmutz, W. K.

    2011-12-01

    On board the International Space Station, the spectrometers SOL-ACES and SOLSPEC measure the solar spectrum irradiance from 17 to 150 nm and 170 to 2900 nm, respectively. On board PICARD launched on 15 June 2010, the PREMOS instrument consists in a radiometer and several sunphotometers operated at several fixed wavelengths. We shall present spectra at different solar activity levels as well as their quoted accuracy. Comparison with similar data from other missions presently running in space will be shown incorporating the PREMOS measurements. Some special solar events will be also presented and interpreted.

  5. The In-Orbit Battery Reconditioning Experience On Board the Orion 1 Spacecraft

    NASA Technical Reports Server (NTRS)

    Hoover, S. A.; Daughtridge, S.; Johnson, P. J.; King, S. T.

    1997-01-01

    The Orion 1 spacecraft is a three-axis stabilized geostationary earth orbiting commercial communications satellite which was launched on November 29, 1994 aboard an Atlas II launch vehicle. The power subsystem is a dual bus, dual battery semi-regulated system with one 78 Ampere-hour nickel-hydrogen battery per bus. The batteries were built and tested by Eagle Picher Industries, Inc., of Joplin, MO and were integrated into the spacecraft by its manufacturer, Matra Marconi Space UK Ltd. This paper presents the results obtained during the first four in-orbit reconditioning cycles and compares the battery performance to ground test data. In addition, the on-station battery management strategy and implementation constraints are described. Battery performance has been nominal throughout each reconditioning cycle and subsequent eclipse season.

  6. The Solar Oblateness Measured On Board The PICARD Spacecraft, and The Solar Disk Sextant Instrument

    NASA Astrophysics Data System (ADS)

    Thuillier, G. O.; Hauchecorne, A.; Sofia, S.; Girard, T.; Hochedez, J.; Irbah, A.; Marcovici, J.; Meissonnier, M.; Meftah, M.; Sofia, U. J.

    2011-12-01

    The PICARD Spacecraft was launched on 15 June 2010. It carries four instruments. One of them, SODISM is an imaging telescope with a 2K x 2K CCD detector, dedicated to the measurement of the solar diameter and the limb shape. Although the data processing is still in a validation phase, we can already present some preliminary results concerning the solar oblateness. These measurements are obtained during a special operation in which the spacecraft turns around the Sun direction. The rotation, made by 300 angular increments, allows us to determine the instrument optical distortion and the solar oblateness. The method used to extract this information will be described. We shall present the preliminary results as a function of wavelength, and compare them with measurements obtained with the SDS instrument, and with the predictions from theoretical modeling.

  7. Antenna Measurements: Test & Analysis of the Radiated Emissions/Immunity of the NASA/Orion Spacecraft Dart Parachute Simulator & Prototype Capsule - The Crew Exploration Vehicle

    NASA Technical Reports Server (NTRS)

    Norgard, John D.

    2012-01-01

    For future NASA Manned Space Exploration of the Moon and Mars, a blunt body capsule, called the Orion Crew Exploration Vehicle (CEV), composed of a Crew Module (CM) and a Service Module (SM), with a parachute decent assembly is planned for reentry back to Earth. A Capsule Parachute Assembly System (CPAS) is being developed for preliminary prototype parachute drop tests at the Yuma Proving Ground (YPG) to simulate high-speed reentry to Earth from beyond Low-Earth-Orbit (LEO) and to provide measurements of position, velocity, acceleration, attitude, temperature, pressure, humidity, and parachute loads. The primary and secondary (backup) avionics systems on CPAS also provide mission critical firing events to deploy, reef, and release the parachutes in three stages (extraction, drogues, mains) using mortars and pressure cartridge assemblies. In addition, a Mid-Air Delivery System (MDS) is used to separate the capsule from the sled that is used to eject the capsule from the back of the drop plane. Also, high-speed and high-definition cameras in a Video Camera System (VCS) are used to film the drop plane extraction and parachute landing events. Intentional and unintentional radiation emitted from and received by antennas and electronic devices on/in the CEV capsule, the MDS sled, and the VCS system are being tested for radiated emissions/immunity (susceptibility) (RE/RS). To verify Electromagnetic Compatibility (EMC) of the Orion capsule, Electromagnetic Interference (EMI) measurements are being made inside a semi-anechoic chamber at NASA/JSC on the components of the CPAS system. Measurements are made at 1m from the components-under-test (CUT). In addition, EMI measurements of the integrated CEV system are being made inside a hanger at YPG. These measurements are made in a complete circle, at 30? angles or less, around the Orion Capsule, the spacecraft system under-test (SUT). Near-field B-Dot probe measurements on the surface of the Orion capsule are being extrapolated

  8. Commercial Crew Program CCiCap Partners

    NASA Video Gallery

    NASA's Commercial Crew Program and its newest Commercial Crew Integrated Capability (CCiCap) partners are embracing the American spirit as they advance their integrated rocket and spacecraft design...

  9. RELEC mission: Relativistic electron precipitation and TLE study on-board small spacecraft

    NASA Astrophysics Data System (ADS)

    Panasyuk, M. I.; Svertilov, S. I.; Bogomolov, V. V.; Garipov, G. K.; Balan, E. A.; Barinova, V. O.; Bogomolov, A. V.; Golovanov, I. A.; Iyudin, A. F.; Kalegaev, V. V.; Khrenov, B. A.; Klimov, P. A.; Kovtyukh, A. S.; Kuznetsova, E. A.; Morozenko, V. S.; Morozov, O. V.; Myagkova, I. N.; Osedlo, V. I.; Petrov, V. L.; Prokhorov, A. V.; Rozhkov, G. V.; Saleev, K. Yu.; Sigaeva, E. A.; Veden'kin, N. N.; Yashin, I. V.; Klimov, S. I.; Grechko, T. V.; Grushin, V. A.; Vavilov, D. I.; Korepanov, V. E.; Belyaev, S. V.; Demidov, A. N.; Ferencz, Cs.; Bodnár, L.; Szegedi, P.; Rothkaehl, H.; Moravski, M.; Park, I. H.; Lee, J.; Kim, J.; Jeon, J.; Jeong, S.; Park, A. H.; Papkov, A. P.; Krasnopejev, S. V.; Khartov, V. V.; Kudrjashov, V. A.; Bortnikov, S. V.; Mzhelskii, P. V.

    2016-02-01

    The main goal of the Vernov mission is the study of magnetospheric relativistic electron precipitation and its possible influence on the upper atmosphere as well as the observation of Transient Luminous Events (TLE) and Terrestrial Gamma Flashes (TGF) across a broad range of the electromagnetic spectrum. The RELEC (Relativistic Electrons) instrument complex onboard the Vernov spacecraft includes two identical X- and gamma-ray detectors of high temporal resolution and sensitivity (DRGE-1 and DRGE-2), three axis position detectors for high-energy electrons and protons (DRGE-3), a UV TLE imager (MTEL), a UV detector (DUV), a low frequency analyser (LFA), a radio frequency analyser (RFA), and AN electronics module responsible for control and data collection (BE).

  10. Expedition Seven Crew Members

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This crew portrait of Expedition Seven, Cosmonaut Yuri I. Malenchenko, Expedition Seven mission commander (left), and Astronaut Edward T. Lu, Expedition Seven NASA ISS science officer and flight engineer (right) was taken while in training at the Gagarin Cosmonaut Training Center in Star City, Russia. Destined for the International Space Station (ISS), the two-man crew launched from the Baikonur Cosmodrome, Kazakhstan on April 26, 2003. aboard a Soyez TMA-1 spacecraft.

  11. Artificial Neural Networks Applications: from Aircraft Design Optimization to Orbiting Spacecraft On-board Environment Monitoring

    NASA Technical Reports Server (NTRS)

    Jules, Kenol; Lin, Paul P.

    2002-01-01

    This paper reviews some of the recent applications of artificial neural networks taken from various works performed by the authors over the last four years at the NASA Glenn Research Center. This paper focuses mainly on two areas. First, artificial neural networks application in design and optimization of aircraft/engine propulsion systems to shorten the overall design cycle. Out of that specific application, a generic design tool was developed, which can be used for most design optimization process. Second, artificial neural networks application in monitoring the microgravity quality onboard the International Space Station, using on-board accelerometers for data acquisition. These two different applications are reviewed in this paper to show the broad applicability of artificial intelligence in various disciplines. The intent of this paper is not to give in-depth details of these two applications, but to show the need to combine different artificial intelligence techniques or algorithms in order to design an optimized or versatile system.

  12. Performance Evaluation of Engineered Structured Sorbents for Atmosphere Revitalization Systems On Board Crewed Space Vehicles and Habitats

    NASA Technical Reports Server (NTRS)

    Howard, David F.; Perry, Jay L.; Knox, James C.; Junaedi, Christian; Roychoudhury, Subir

    2011-01-01

    Engineered structured (ES) sorbents are being developed to meet the technical challenges of future crewed space exploration missions. ES sorbents offer the inherent performance and safety attributes of zeolite and other physical adsorbents but with greater structural integrity and process control to improve durability and efficiency over packed beds. ES sorbent techniques that are explored include thermally linked and pressure-swing adsorption beds for water-save dehumidification and sorbent-coated metal meshes for residual drying, trace contaminant control, and carbon dioxide control. Results from sub-scale performance evaluations of a thermally linked pressure-swing adsorbent bed and an integrated sub-scale ES sorbent system are discussed.

  13. Survey and future directions of fault-tolerant distributed computing on board spacecraft

    NASA Astrophysics Data System (ADS)

    Fayyaz, Muhammad; Vladimirova, Tanya

    2016-12-01

    Current and future space missions demand highly reliable on-board computing systems, which are capable of carrying out high-performance data processing. At present, no single computing scheme satisfies both, the highly reliable operation requirement and the high-performance computing requirement. The aim of this paper is to review existing systems and offer a new approach to addressing the problem. In the first part of the paper, a detailed survey of fault-tolerant distributed computing systems for space applications is presented. Fault types and assessment criteria for fault-tolerant systems are introduced. Redundancy schemes for distributed systems are analyzed. A review of the state-of-the-art on fault-tolerant distributed systems is presented and limitations of current approaches are discussed. In the second part of the paper, a new fault-tolerant distributed computing platform with wireless links among the computing nodes is proposed. Novel algorithms, enabling important aspects of the architecture, such as time slot priority adaptive fault-tolerant channel access and fault-tolerant distributed computing using task migration are introduced.

  14. Changes in Plastid and Mitochondria Protein Expression in Arabidopsis Thaliana Callus on Board Chinese Spacecraft SZ-8

    NASA Astrophysics Data System (ADS)

    Zhang, Yue; Zheng, Hui Qiong

    2015-11-01

    Microgravity represents an adverse abiotic environment, which causes rearrangements in cellular organelles and changes in the energy metabolism of cells. Plastids and mitochondria are two subcellular energy organelles that are responsible for major metabolic processes, including photosynthesis, oxidative phosphorylation, ß-oxidation, and the tricarboxylic acid cycle. In our previous study performed on board the Chinese spacecraft SZ-8, we evaluated the global changes exerted by microgravity on the proteome of Arabidopsis thaliana cell cultures by comparing the microgravity-exposed samples with the controls either under 1 g centrifugation in space or 1 g ground conditions. Here, we report additional data from this space experiment that highlights the plastid and mitochondria proteins that responded to space flight conditions. We observed that 43 plastidial proteins and 50 mitochondrial proteins changed their abundances under microgravity in space. The major changes in both plastids and mitochondria involved proteins that functions in a suite of redox antioxidant and metabolic pathways. These results suggested that these antioxidant and metabolic changes in plastids and mitochondria could be important components of the adaptive strategy in plants subjected to microgravity in space.

  15. Dynamic Modeling of Ascent Abort Scenarios for Crewed Launches

    NASA Technical Reports Server (NTRS)

    Bigler, Mark; Boyer, Roger L.

    2015-01-01

    For the last 30 years, the United States' human space program has been focused on low Earth orbit exploration and operations with the Space Shuttle and International Space Station programs. After over 40 years, the U.S. is again working to return humans beyond Earth orbit. To do so, NASA is developing a new launch vehicle and spacecraft to provide this capability. The launch vehicle is referred to as the Space Launch System (SLS) and the spacecraft is called Orion. The new launch system is being developed with an abort system that will enable the crew to escape launch failures that would otherwise be catastrophic as well as probabilistic design requirements set for probability of loss of crew (LOC) and loss of mission (LOM). In order to optimize the risk associated with designing this new launch system, as well as verifying the associated requirements, NASA has developed a comprehensive Probabilistic Risk Assessment (PRA) of the integrated ascent phase of the mission that includes the launch vehicle, spacecraft and ground launch facilities. Given the dynamic nature of rocket launches and the potential for things to go wrong, developing a PRA to assess the risk can be a very challenging effort. Prior to launch and after the crew has boarded the spacecraft, the risk exposure time can be on the order of three hours. During this time, events may initiate from either the spacecraft, the launch vehicle, or the ground systems, thus requiring an emergency egress from the spacecraft to a safe ground location or a pad abort via the spacecraft's launch abort system. Following launch, again either the spacecraft or the launch vehicle can initiate the need for the crew to abort the mission and return home. Obviously, there are thousands of scenarios whose outcome depends on when the abort is initiated during ascent and how the abort is performed. This includes modeling the risk associated with explosions and benign system failures that require aborting a spacecraft under very

  16. Introduction of the Space Shuttle Columbia Accident, Investigation Details, Findings and Crew Survival Investigation Report

    NASA Technical Reports Server (NTRS)

    Chandler, Michael

    2010-01-01

    As the Space Shuttle Program comes to an end, it is important that the lessons learned from the Columbia accident be captured and understood by those who will be developing future aerospace programs and supporting current programs. Aeromedical lessons learned from the Accident were presented at AsMA in 2005. This Panel will update that information, closeout the lessons learned, provide additional information on the accident and provide suggestions for the future. To set the stage, an overview of the accident is required. The Space Shuttle Columbia was returning to Earth with a crew of seven astronauts on 1Feb, 2003. It disintegrated along a track extending from California to Louisiana and observers along part of the track filmed the breakup of Columbia. Debris was recovered from Littlefield, Texas to Fort Polk, Louisiana, along a 567 statute mile track; the largest ever recorded debris field. The Columbia Accident Investigation Board (CAIB) concluded its investigation in August 2003, and released their findings in a report published in February 2004. NASA recognized the importance of capturing the lessons learned from the loss of Columbia and her crew and the Space Shuttle Program managers commissioned the Spacecraft Crew Survival Integrated Investigation Team (SCSIIT) to accomplish this. Their task was to perform a comprehensive analysis of the accident, focusing on factors and events affecting crew survival, and to develop recommendations for improving crew survival, including the design features, equipment, training and procedures intended to protect the crew. NASA released the Columbia Crew Survival Investigation Report in December 2008. Key personnel have been assembled to give you an overview of the Space Shuttle Columbia accident, the medical response, the medico-legal issues, the SCSIIT findings and recommendations and future NASA flight surgeon spacecraft accident response training. Educational Objectives: Set the stage for the Panel to address the

  17. Development of integrated, zero-G pneumatic transporter/rotating paddle incinerator/catalytic afterburner subsystem for processing human wastes on board spacecraft

    NASA Technical Reports Server (NTRS)

    Fields, S. F.; Labak, L. J.; Honegger, R. J.

    1974-01-01

    A four component system was developed which consists of a particle size reduction mechanism, a pneumatic waste transport system, a rotating-paddle incinerator, and a catalytic afterburner to be integrated into a six-man, zero-g subsystem for processing human wastes on board spacecraft. The study included the development of different concepts or functions, the establishment of operational specifications, and a critical evaluation for each of the four components. A series of laboratory tests was run, and a baseline subsystem design was established. An operational specification was also written in preparation for detailed design and testing of this baseline subsystem.

  18. Crystal growth of Cd1-xZnxTe by the traveling heater method in microgravity on board of Foton-M4 spacecraft

    NASA Astrophysics Data System (ADS)

    Borisenko, E. B.; Kolesnikov, N. N.; Senchenkov, A. S.; Fiederle, M.

    2017-01-01

    Cadmium zinc telluride crystals were grown using the traveling heater method (THM) under microgravity conditions on board of Foton-M4 spacecraft, and a reference crystal was grown on Earth under gravity conditions. Structure, chemical and phase compositions of these crystals, their optical characteristics and microhardness were compared. It can be concluded that the THM growth in microgravity has a positive effect on CZT crystals, since they have more homogeneous composition and their structural perfection is improved as compared with the crystals grown under terrestrial conditions, which results in improvement of electric and optical characteristics.

  19. Assured crew return vehicle

    NASA Technical Reports Server (NTRS)

    Cerimele, Christopher J. (Inventor); Ried, Robert C. (Inventor); Peterson, Wayne L. (Inventor); Zupp, George A., Jr. (Inventor); Stagnaro, Michael J. (Inventor); Ross, Brian P. (Inventor)

    1991-01-01

    A return vehicle is disclosed for use in returning a crew to Earth from low earth orbit in a safe and relatively cost effective manner. The return vehicle comprises a cylindrically-shaped crew compartment attached to the large diameter of a conical heat shield having a spherically rounded nose. On-board inertial navigation and cold gas control systems are used together with a de-orbit propulsion system to effect a landing near a preferred site on the surface of the Earth. State vectors and attitude data are loaded from the attached orbiting craft just prior to separation of the return vehicle.

  20. Fellow astronauts join Gemini 7 crew for preflight breakfast

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Fellow astronauts join the Gemini 7 prime crew for breakfeast in the Manned Spacecraft Operations Building, Merritt Island, on the day of the Gemini 7 launch. Clockwise around table, starting lower left, are Astronauts James A. Lovell Jr., Gemini 7 prime crew pilot; Walter M. Schirra Jr., Donald K. Slayton, MSC Assistant Director for Flight Crew Operations; Richard F. Gordon Jr., Gemini 8 backup crew pilot; Virgil I. Grissom, Charles Conrad Jr., and Frank Borman, Gemini 7 prime crew command pilot.

  1. ISS Update: Dream Chaser Spacecraft

    NASA Video Gallery

    NASA Public Affairs Officer Michael Curie talks with Cheryl McPhillips, Commercial Crew Program Partner Manager for the Sierra Nevada Corporation, the company developing the Dream Chaser spacecraft...

  2. Crew health

    NASA Technical Reports Server (NTRS)

    Billica, Roger D.

    1992-01-01

    Crew health concerns for Space Station Freedom are numerous due to medical hazards from isolation and confinement, internal and external environments, zero gravity effects, occupational exposures, and possible endogenous medical events. The operational crew health program will evolve from existing programs and from life sciences investigations aboard Space Station Freedom to include medical monitoring and certification, medical intervention, health maintenance and countermeasures, psychosocial support, and environmental health monitoring. The knowledge and experience gained regarding crew health issues and needs aboard Space Station Freedom will be used not only to verify requirements and programs for long duration space flight, but also in planning and preparation for Lunar and Mars exploration and colonization.

  3. Commercial Crew

    NASA Video Gallery

    Phil McAlister delivers a presentation by the Commercial Crew (CC) study team on May 25, 2010, at the NASA Exploration Enterprise Workshop held in Galveston, TX. The purpose of this workshop was to...

  4. AMO EXPRESS: A Command and Control Experiment for Crew Autonomy Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Stetson, Howard K.; Frank, Jeremy; Cornelius, Randy; Haddock, Angie; Wang, Lui; Garner, Larry

    2015-01-01

    NASA is investigating a range of future human spaceflight missions, including both Mars-distance and Near Earth Object (NEO) targets. Of significant importance for these missions is the balance between crew autonomy and vehicle automation. As distance from Earth results in increasing communication delays, future crews need both the capability and authority to independently make decisions. However, small crews cannot take on all functions performed by ground today, and so vehicles must be more automated to reduce the crew workload for such missions. NASA's Advanced Exploration Systems Program funded Autonomous Mission Operations (AMO) project conducted an autonomous command and control experiment on-board the International Space Station that demonstrated single action intelligent procedures for crew command and control. The target problem was to enable crew initialization of a facility class rack with power and thermal interfaces, and involving core and payload command and telemetry processing, without support from ground controllers. This autonomous operations capability is enabling in scenarios such as initialization of a medical facility to respond to a crew medical emergency, and representative of other spacecraft autonomy challenges. The experiment was conducted using the Expedite the Processing of Experiments for Space Station (EXPRESS) rack 7, which was located in the Port 2 location within the U.S Laboratory onboard the International Space Station (ISS). Activation and deactivation of this facility is time consuming and operationally intensive, requiring coordination of three flight control positions, 47 nominal steps, 57 commands, 276 telemetry checks, and coordination of multiple ISS systems (both core and payload). Utilization of Draper Laboratory's Timeliner software, deployed on-board the ISS within the Command and Control (C&C) computers and the Payload computers, allowed development of the automated procedures specific to ISS without having to certify

  5. Expedition-8 Crew Members Portrait

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This is a portrait of the Expedition-8 two man crew. Pictured left is Cosmonaut Alexander Y, Kaleri, Soyuz Commander and flight engineer; and Michael C. Foale (right), Expedition-8 Mission Commander and NASA ISS Science Officer. The crew posed for this portrait while training at the Gagarin Cosmonaut Training Center in Star City, Russia. The two were launched for the International Space Station (ISS) aboard a Soyuz TMA-3 spacecraft from the Baikonur Cosmodrome, Kazakhstan, along with European Space Agency (ESA) Astronaut Pedro Duque of Spain, on October 18, 2003.

  6. Backup Crew of the first manned Apollo mission practice water egress

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Backup crew for the first manned Apollo space flight practice water egress procedures with full scale boilerplate model of their spacecraft. Training took place at Ellington AFB, near the Manned Spacecraft Center, Houston. Crew members are Astronauts David R. Scott (top of spacecraft); Russell L. Schweickart (upper right); and James McDivitt (standing in hatch).

  7. Crew of the first manned Apollo mission practice water egress procedures

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Prime crew for the first manned Apollo mission practice water egress procedures with full scale boilerplate model of their spacecraft. Astronaut Edward H. White II rides life raft in the foreground. Astronaut Roger B. Chaffee sits in hatch of the boilerplate model of the spacecraft. Astronaut Virgil I. Grissom, third member of the crew, waits inside the spacecraft.

  8. The Development and Optimization of Techniques for Monitoring Water Quality on-Board Spacecraft Using Colorimetric Solid-Phase Extraction (C-SPE)

    SciTech Connect

    Hill, April Ann

    2007-12-01

    The main focus of this dissertation is the design, development, and ground and microgravity validation of methods for monitoring drinking water quality on-board NASA spacecraft using clorimetric-solid phase extraction (C-SPE). The Introduction will overview the need for in-flight water quality analysis and will detail some of the challenges associated with operations in the absence of gravity. The ability of C-SPE methods to meet these challenges will then be discussed, followed by a literature review on existing applications of C-SPE and similar techniques. Finally, a brief discussion of diffuse reflectance spectroscopy theory, which provides a means for analyte identification and quantification in C-SPE analyses, is presented. Following the Introduction, four research chapters are presented as separate manuscripts. Chapter 1 reports the results from microgravity testing of existing C-SPE methods and procedures aboard NASA's C-9 microgravity simulator. Chapter 2 discusses the development of a C-SPE method for determining the total concentration of biocidal silver (i.e., in both dissolved and colloidal forms) in water samples. Chapter 3 presents the first application of the C-SPE technique to the determination of an organic analyte (i.e., formaldehyde). Chapter 4, which is a departure from the main focus of the thesis, details the results of an investigation into the effect of substrate rotation on the kinetics involved in the antigen and labeling steps in sandwich immunoassays. These research chapters are followed by general conclusions and a prospectus section.

  9. Guidelines for developing spacecraft maximum allowable concentrations for Space Station contaminants

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The National Aeronautics and Space Administration (NASA) is preparing to launch a manned space station by the year 1996. Because of concerns about the health, safety, and functioning abilities of the crews, NASA has requested that the National Research Council (NRC) through the Board on Environmental Studies and Toxicology (BEST) provide advice on toxicological matters for the space-station program. The Subcommittee on Guidelines for Developing Spacecraft Maximum Allowable Concentrations for Space Station Contaminants was established by the Committee on Toxicology (COT) to address NASA's concerns. Spacecraft maximum allowable concentrations (SMAC's) are defined as the maximum concentrations of airborne substances (such as gas, vapor, or aerosol) that will not cause adverse health effects, significant discomfort, or degradation in crew performance.

  10. Expedition 5 Crew Interviews: Valery Korzun, Commander

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Expedition 5 Commander Valery Kozun is seen during a prelaunch interview. He gives details on the mission's goals and significance, his role in the mission and what his responsibilities will be as commander, what the crew exchange will be like (the Expedition 5 crew will replace the Expedition 4 crew on the International Space Station (ISS)), the daily life on an extended stay mission, the loading operations that will take place, the experiments he will be conducting on board, and the planned extravehicular activities (EVAs) scheduled for the mission. Kozun discusses the EVAs in greater detail and explains the significance of the Mobile Base System and the Crew Equipment Translation Aid (CETA) cart for the ISS. He also explains at some length the science experiments which will be conducted on board by the Expedition 5 crew members. Korzun also touches on how his previous space experience on Mir (including dealing with a very serious fire) will benefit the Expedition 5 mission.

  11. Commercial Crew Development Program Overview

    NASA Technical Reports Server (NTRS)

    Russell, Richard W.

    2011-01-01

    NASA's Commercial Crew Development Program is designed to stimulate efforts within the private sector that will aid in the development and demonstration of safe, reliable, and cost-effective space transportation capabilities. With the goal of delivery cargo and eventually crew to Low Earth Orbit (LEO) and the International Space Station (ISS) the program is designed to foster the development of new spacecraft and launch vehicles in the commercial sector. Through Space Act Agreements (SAAs) in 2011 NASA provided $50M of funding to four partners; Blue Origin, The Boeing Company, Sierra Nevada Corporation, and SpaceX. Additional, NASA has signed two unfunded SAAs with ATK and United Space Alliance. This paper will give a brief summary of these SAAs. Additionally, a brief overview will be provided of the released version of the Commercial Crew Development Program plans and requirements documents.

  12. An Alternative Approach to Human Servicing of Manned Earth Orbiting Spacecraft

    NASA Technical Reports Server (NTRS)

    Mularski, John; Alpert, Brian

    2011-01-01

    As manned spacecraft have grown larger and more complex, they have come to rely on spacewalks or Extravehicular Activities (EVA) for both mission success and crew safety. Typically these spacecraft maintain all of the hardware and trained personnel needed to perform an EVA on-board at all times. Maintaining this capability requires volume and up-mass for storage of EVA hardware, crew time for ground and on-orbit training, and on-orbit maintenance of EVA hardware . This paper proposes an alternative methodology to utilize launch-on-need hardware and crew to provide EVA capability for space stations in Earth orbit after assembly complete, in the same way that most people would call a repairman to fix something at their home. This approach would not only reduce ground training requirements and save Intravehicular Activity (IVA) crew time in the form of EVA hardware maintenance and on-orbit training, but would also lead to more efficient EVAs because they would be performed by specialists with detailed knowledge and training stemming from their direct involvement in the development of the EVA. The on-orbit crew would then be available to focus on the immediate response to the failure as well as the day-to-day operations of the spacecraft and payloads. This paper will look at how current ISS unplanned EVAs are conducted, including the time required for preparation, and offer alternatives for future spacecraft utilizing lessons learned from ISS. As this methodology relies entirely on the on-time and on-need launch of spacecraft, any space station that utilized this approach would need a robust transportation system including more than one launch vehicle capable of carrying crew. In addition the fault tolerance of the space station would be an important consideration in how much time was available for EVA preparation after the failure. Each future program would have to weigh the risk of on-time launch against the increase in available crew time for the main objective of

  13. Spacecraft Fire Suppression: Testing and Evaluation

    NASA Technical Reports Server (NTRS)

    Abbud-Madrid, Angel; McKinnon, J. Thomas; Delplanque, Jean-Pierre; Kailasanath, Kazhikathra; Gokoglu, Suleyman; Wu, Ming-Shin

    2004-01-01

    The objective of this project is the testing and evaluation of the effectiveness of a variety of fire suppressants and fire-response techniques that will be used in the next generation of spacecraft (Crew Exploration Vehicle, CEV) and planetary habitats. From the many lessons learned in the last 40 years of space travel, there is common agreement in the spacecraft fire safety community that a new fire suppression system will be needed for the various types of fire threats anticipated in new space vehicles and habitats. To date, there is no single fire extinguishing system that can address all possible fire situations in a spacecraft in an effective, reliable, clean, and safe way. The testing conducted under this investigation will not only validate the various numerical models that are currently being developed, but it will provide new design standards on fire suppression that can then be applied to the next generation of spacecraft extinguishment systems. The test program will provide validation of scaling methods by conducting small, medium, and large scale fires. A variety of suppression methods will be tested, such as water mist, carbon dioxide, and nitrogen with single and multiple injection points and direct or distributed agent deployment. These injection methods cover the current ISS fire suppression method of a portable hand-held fire extinguisher spraying through a port in a rack and also next generation spacecraft units that may have a multi-point suppression delivery system built into the design. Consideration will be given to the need of a crew to clean-up the agent and recharge the extinguishers in flight in a long-duration mission. The fire suppression methods mentioned above will be used to extinguish several fire scenarios that have been identified as the most relevant to spaceflight, such as overheated wires, cable bundles, and circuit boards, as well as burning cloth and paper. Further testing will be conducted in which obstructions and

  14. 46 CFR 35.05-1 - Officers and crews of tankships-T/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Officers and crews of tankships-T/ALL. 35.05-1 Section... Crews § 35.05-1 Officers and crews of tankships—T/ALL. No tankship of the United States shall be navigated unless she shall have in her service and on board such complement of officers and crew,...

  15. The Asteroid Belt Cycler (ABC) Concept: A Comprehensive Asteroid Belt Sample Return Campaign Enabled by Crewed Presence in Cislunar Space

    NASA Astrophysics Data System (ADS)

    Fries, M.; Graham, L.; John, K.; Hamilton, J.; McCubbin, F.; Niles, P.; Stansbery, E.; Welzenbach, L.

    2017-02-01

    ABC samples all asteroid classes in the asteroid belt with re-usable robotic sample return spacecraft, bringing samples to a crewed platform in cislunar space. The crew refit the SR spacecraft and carry samples to Earth inside the crewed vehicle.

  16. STS-69 crew outside Endeavour during TCDT

    NASA Technical Reports Server (NTRS)

    1995-01-01

    STS-69 crew members wear broad smiles as they pose for a group photograph outside the crew hatch of the Space Shuttle Endeavour. The crew is participating in the Terminal Countdown Demonstration Test (TCDT), a dress rehearsal for the launch targetd for Aug. 5. From left, are Mission Commander David M. Walker; Mission Specialists Michael L. Gernhardt and James H. Newman; Payload Commander James S. Voss and Pilot Kenneth D. Cockrell. Primary objectives of the mission are the deployment, retrieval and operation of the Wake Shield Facility (WSF) satellite on its second flight and the SPARTAN-201 spacecraft which is making its third flight.

  17. STS-58 Crew Insignia

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The STS-58 crew insignia depicts the Space Shuttle Columbia with a Spacelab module in its payload bay in orbit around Earth. The Spacelab and the lettering 'Spacelab Life Sciences II' highlight its primary mission. An Extended Duration Orbiter (EDO) support pallet is shown in the aft payload bay, stressing the length of the mission. The hexagonal shape of the patch depicts the carbon ring. Encircling the inner border of the patch is the double helix of DNA. Its yellow background represents the sun. Both medical and veterinary caducei are shown to represent the STS-58 life sciences experiments. The position of the spacecraft in orbit about Earth with the United States in the background symbolizes the ongoing support of the American people for scientific research.

  18. Spacecraft Thermal Management

    NASA Technical Reports Server (NTRS)

    Hurlbert, Kathryn Miller

    2009-01-01

    In the 21st century, the National Aeronautics and Space Administration (NASA), the Russian Federal Space Agency, the National Space Agency of Ukraine, the China National Space Administration, and many other organizations representing spacefaring nations shall continue or newly implement robust space programs. Additionally, business corporations are pursuing commercialization of space for enabling space tourism and capital business ventures. Future space missions are likely to include orbiting satellites, orbiting platforms, space stations, interplanetary vehicles, planetary surface missions, and planetary research probes. Many of these missions will include humans to conduct research for scientific and terrestrial benefits and for space tourism, and this century will therefore establish a permanent human presence beyond Earth s confines. Other missions will not include humans, but will be autonomous (e.g., satellites, robotic exploration), and will also serve to support the goals of exploring space and providing benefits to Earth s populace. This section focuses on thermal management systems for human space exploration, although the guiding principles can be applied to unmanned space vehicles as well. All spacecraft require a thermal management system to maintain a tolerable thermal environment for the spacecraft crew and/or equipment. The requirements for human rating and the specified controlled temperature range (approximately 275 K - 310 K) for crewed spacecraft are unique, and key design criteria stem from overall vehicle and operational/programatic considerations. These criteria include high reliability, low mass, minimal power requirements, low development and operational costs, and high confidence for mission success and safety. This section describes the four major subsystems for crewed spacecraft thermal management systems, and design considerations for each. Additionally, some examples of specialized or advanced thermal system technologies are presented

  19. Expedition Seven Launched Aboard Soyez Spacecraft

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Destined for the International Space Station (ISS), a Soyez TMA-1 spacecraft launches from the Baikonur Cosmodrome, Kazakhstan on April 26, 2003. Aboard are Expedition Seven crew members, cosmonaut Yuri I. Malenchenko, Expedition Seven mission commander, and Astronaut Edward T. Lu, Expedition Seven NASA ISS science officer and flight engineer. Expedition Six crew members returned to Earth aboard the Russian spacecraft after a 5 and 1/2 month stay aboard the ISS. Photo credit: NASA/Scott Andrews

  20. The Influence of Microbiology on Spacecraft Design and Controls: A Historical Perspective of the Shuttle and International Space Station Programs

    NASA Technical Reports Server (NTRS)

    Castro, Victoria A.; Bruce, Rebekah J.; Ott, C. Mark; Pierson, D. L.

    2006-01-01

    For over 40 years, NASA has been putting humans safely into space in part by minimizing microbial risks to crew members. Success of the program to minimize such risks has resulted from a combination of engineering and design controls as well as active monitoring of the crew, food, water, hardware, and spacecraft interior. The evolution of engineering and design controls is exemplified by the implementation of HEPA filters for air treatment, antimicrobial surface materials, and the disinfection regimen currently used on board the International Space Station. Data from spaceflight missions confirm the effectiveness of current measures; however, fluctuations in microbial concentrations and trends in contamination events suggest the need for continued diligence in monitoring and evaluation as well as further improvements in engineering systems. The knowledge of microbial controls and monitoring from assessments of past missions will be critical in driving the design of future spacecraft.

  1. The SATRAM Timepix spacecraft payload in open space on board the Proba-V satellite for wide range radiation monitoring in LEO orbit

    NASA Astrophysics Data System (ADS)

    Granja, Carlos; Polansky, Stepan; Vykydal, Zdenek; Pospisil, Stanislav; Owens, Alan; Kozacek, Zdenek; Mellab, Karim; Simcak, Marek

    2016-06-01

    The Space Application of Timepix based Radiation Monitor (SATRAM) is a spacecraft platform radiation monitor on board the Proba-V satellite launched in an 820 km altitude low Earth orbit in 2013. The is a technology demonstration payload is based on the Timepix chip equipped with a 300 μm silicon sensor with signal threshold of 8 keV/pixel to low-energy X-rays and all charged particles including minimum ionizing particles. For X-rays the energy working range is 10-30 keV. Event count rates can be up to 106 cnt/(cm2 s) for detailed event-by-event analysis or over 1011 cnt/(cm2 s) for particle-counting only measurements. The single quantum sensitivity (zero-dark current noise level) combined with per-pixel spectrometry and micro-scale pattern recognition analysis of single particle tracks enables the composition (particle type) and spectral characterization (energy loss) of mixed radiation fields to be determined. Timepix's pixel granularity and particle tracking capability also provides directional sensitivity for energetic charged particles. The payload detector response operates in wide dynamic range in terms of absorbed dose starting from single particle doses in the pGy level, particle count rate up to 106-10 /cm2/s and particle energy loss (threshold at 150 eV/μm). The flight model in orbit was successfully commissioned in 2013 and has been sampling the space radiation field in the satellite environment along its orbit at a rate of several frames per minute of varying exposure time. This article describes the design and operation of SATRAM together with an overview of the response and resolving power to the mixed radiation field including summary of the principal data products (dose rate, equivalent dose rate, particle-type count rate). The preliminary evaluation of response of the embedded Timepix detector to space radiation in the satellite environment is presented together with first results in the form of a detailed visualization of the mixed radiation

  2. Spacecraft Escape Capsule

    NASA Technical Reports Server (NTRS)

    Robertson, Edward A.; Charles, Dingell W.; Bufkin, Ann L.; Rodriggs, Liana M.; Peterson, Wayne; Cuthbert, Peter; Lee, David E.; Westhelle, Carlos

    2006-01-01

    A report discusses the Gumdrop capsule a conceptual spacecraft that would enable the crew to escape safely in the event of a major equipment failure at any time from launch through atmospheric re-entry. The scaleable Gumdrop capsule would comprise a command module (CM), a service module (SM), and a crew escape system (CES). The CM would contain a pressurized crew environment that would include avionic, life-support, thermal control, propulsive attitude control, and recovery systems. The SM would provide the primary propulsion and would also supply electrical power, life-support resources, and active thermal control to the CM. The CES would include a solid rocket motor, embedded within the SM, for pushing the CM away from the SM in the event of a critical thermal-protection-system failure or loss of control. The CM and SM would normally remain integrated with each other from launch through recovery, but could be separated using the CES, if necessary, to enable the safe recovery of the crew in the CM. The crew escape motor could be used, alternatively, as a redundant means of de-orbit propulsion for the CM in the event of a major system failure in the SM.

  3. Expedition 4 Crew Interviews: Yury I. Onufrienko

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Expedition 4 Commander Yury Onufrienko is seen during a prelaunch interview. He gives details on the mission's goals and significance, his role in the mission, what his responsibilities will be, what the crew exchange will be like (transferring the Expedition 4 crew in place of the Expedition 3 crew on the International Space Station (ISS)), the day-to-day life on an extended stay mission, the experiments he will be conducting on board, and what the S0 truss will mean to ISS. Onufrienko ends with his thoughts on the short-term and long-term future of the International Space Station.

  4. Expedition 4 Crew Interviews: Carl Walz

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Expedition 4 Flight Engineer Carl Walz is seen during a prelaunch interview. He gives details on the mission's goals and significance, his role in the mission, what his responsibilities will be, what the crew exchange will be like (transferring the Expedition 4 crew in place of the Expedition 3 crew on the International Space Station (ISS)), the day-to-day life on an extended stay mission, the experiments he will be conducting on board, and what the S0 truss will mean to ISS. Walz ends with his thoughts on the short-term and long-term future of the International Space Station.

  5. Expedition 4 Crew Interviews: Dan Bursch

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Expedition 4 Flight Engineer Dan Bursch is seen during a prelaunch interview. He gives details on the mission's goals and significance, his role in the mission, what his responsibilities will be, what the crew exchange will be like (transferring the Expedition 4 crew in place of the Expedition 3 crew on the International Space Station (ISS)), the day-to-day life on an extended stay mission, the experiments he will be conducting on board, and what the S0 truss will mean to ISS. Bursch ends with his thoughts on the short-term and long-term future of the International Space Station.

  6. Columbia Accident Investigation Board. Volume One

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Columbia Accident Investigation Board's independent investigation into the February 1, 2003, loss of the Space Shuttle Columbia and its seven-member crew lasted nearly seven months. A staff of more than 120, along with some 400 NASA engineers, supported the Board's 13 members. Investigators examined more than 30,000 documents, conducted more than 200 formal interviews, heard testimony from dozens of expert witnesses, and reviewed more than 3,000 inputs from the general public. In addition, more than 25,000 searchers combed vast stretches of the Western United States to retrieve the spacecraft's debris. In the process, Columbia's tragedy was compounded when two debris searchers with the U.S. Forest Service perished in a helicopter accident. This report concludes with recommendations, some of which are specifically identified and prefaced as 'before return to flight.' These recommendations are largely related to the physical cause of the accident, and include preventing the loss of foam, improved imaging of the Space Shuttle stack from liftoff through separation of the External Tank, and on-orbit inspection and repair of the Thermal Protection System. The remaining recommendations, for the most part, stem from the Board's findings on organizational cause factors. While they are not 'before return to flight' recommendations, they can be viewed as 'continuing to fly' recommendations, as they capture the Board's thinking on what changes are necessary to operate the Shuttle and future spacecraft safely in the mid- to long-term. These recommendations reflect both the Board's strong support for return to flight at the earliest date consistent with the overriding objective of safety, and the Board's conviction that operation of the Space Shuttle, and all human space-flight, is a developmental activity with high inherent risks.

  7. Crew Exploration Vehicle (CEV) (Orion) Occupant Protection

    NASA Technical Reports Server (NTRS)

    Currie-Gregg, Nancy J.; Gernhardt, Michael L.; Lawrence, Charles; Somers, Jeffrey T.

    2016-01-01

    Dr. Nancy J. Currie, of the NASA Engineering and Safety Center (NESC), Chief Engineer at Johnson Space Center (JSC), requested an assessment of the Crew Exploration Vehicle (CEV) occupant protection as a result of issues identified by the Constellation Program and Orion Project. The NESC, in collaboration with the Human Research Program (HRP), investigated new methods associated with occupant protection for the Crew Exploration Vehicle (CEV), known as Orion. The primary objective of this assessment was to investigate new methods associated with occupant protection for the CEV, known as Orion, that would ensure the design provided minimal risk to the crew during nominal and contingency landings in an acceptable set of environmental and spacecraft failure conditions. This documents contains the outcome of the NESC assessment. NASA/TM-2013-217380, "Application of the Brinkley Dynamic Response Criterion to Spacecraft Transient Dynamic Events." supercedes this document.

  8. Systems Modeling for Crew Core Body Temperature Prediction Postlanding

    NASA Technical Reports Server (NTRS)

    Cross, Cynthia; Ochoa, Dustin

    2010-01-01

    The Orion Crew Exploration Vehicle, NASA s latest crewed spacecraft project, presents many challenges to its designers including ensuring crew survivability during nominal and off nominal landing conditions. With a nominal water landing planned off the coast of San Clemente, California, off nominal water landings could range from the far North Atlantic Ocean to the middle of the equatorial Pacific Ocean. For all of these conditions, the vehicle must provide sufficient life support resources to ensure that the crew member s core body temperatures are maintained at a safe level prior to crew rescue. This paper will examine the natural environments, environments created inside the cabin and constraints associated with post landing operations that affect the temperature of the crew member. Models of the capsule and the crew members are examined and analysis results are compared to the requirement for safe human exposure. Further, recommendations for updated modeling techniques and operational limits are included.

  9. Development of Skylab experiment T-013 crew/vehicle disturbances

    NASA Technical Reports Server (NTRS)

    Conway, B. A.; Woolley, C. T.; Kurzhals, P. R.; Reynolds, R. B.

    1972-01-01

    A Skylab experiment to determine the characteristics and effects of crew-motion disturbances was developed. The experiment will correlate data from histories of specified astronaut body motions, the disturbance forces and torques produced by these motions, and the resultant spacecraft control system response to the disturbances. Primary application of crew-motion disturbance data will be to the sizing and design of future manned spacecraft control and stabilization systems. The development of the crew/vehicle disturbances experiment is described, and a mathematical model of human body motion which may be used for analysis of a variety of man-motion activities is derived.

  10. STS-114: Discovery Crew Arrival

    NASA Technical Reports Server (NTRS)

    2005-01-01

    George Diller of NASA Public Affairs narrates the STS-114 Crew arrival at Kennedy Space Center aboard a Gulf Stream aircraft. They were greeted by Center Director Jim Kennedy. Commander Eileen Collins introduced each of her crew members and gave a brief description of their roles in the mission. Mission Specialist 3, Andrew Thomas will be the lead crew member on the inspection on flight day 2; he is the intravehicular (IV) crew member that will help and guide Mission Specialists Souichi Noguchi and Stephen Robinson during their spacewalks. Pilot James Kelly will be operating the shuttle systems in flying the Shuttle; he will be flying the space station robotic arm during the second extravehicular activity and he will be assisting Mission Specialist Wendy Lawrence during the other two extravehicular activities; he will be assisting on the rendezvous on flight day three, and landing of the shuttle. Commander Collins also mentioned Pilot Kelly's recent promotion to Colonel by the United States Air Force. Mission Specialist 1, Souichi Noguchi from JAXA (The Japanese Space Agency) will be flying on the flight deck for ascent; he will be doing three spacewalks on day 5, 7, and 9; He will be the photo/TV lead for the different types of cameras on board to document the flight and to send back the information to the ground for both technical and public affairs reasons. Mission Specialist 5, Charles Camada will be doing the inspection on flight day 2 with Mission Specialist Thomas and Pilot Kelly; he will be transferring the logistics off the shuttle and onto the space station and from the space station back to the shuttle; He will help set up eleven lap tops on board. Mission Specialist 4, Wendy Lawrence will lead the transfer of logistics to the space station; she is the space station arm operator during extravehicular activities 1 and 3; she will be carrying the 6,000 pounds of external storage platform from the shuttle payload bay over to the space station; she is also

  11. Administrator Bolden Talks to Station Crew on 10th Anniversary

    NASA Video Gallery

    NASA Administrator Charlie Bolden talks with the Expedition 25 crew on board the International Space Station on November 2, marking the tenth anniversary of continuous human presence on the orbitin...

  12. 14 CFR 135.99 - Composition of flight crew.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Flight Operations § 135.99 Composition of flight crew. (a) No certificate holder may operate an aircraft with less than the minimum flight crew specified in the aircraft operating limitations or the Aircraft...

  13. 14 CFR 135.99 - Composition of flight crew.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Flight Operations § 135.99 Composition of flight crew. (a) No certificate holder may operate an aircraft with less than the minimum flight crew specified in the aircraft operating limitations or the Aircraft...

  14. 14 CFR 135.99 - Composition of flight crew.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Flight Operations § 135.99 Composition of flight crew. (a) No certificate holder may operate an aircraft with less than the minimum flight crew specified in the aircraft operating limitations or the Aircraft...

  15. 14 CFR 135.99 - Composition of flight crew.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Flight Operations § 135.99 Composition of flight crew. (a) No certificate holder may operate an aircraft with less than the minimum flight crew specified in the aircraft operating limitations or the Aircraft...

  16. 14 CFR 135.99 - Composition of flight crew.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Flight Operations § 135.99 Composition of flight crew. (a) No certificate holder may operate an aircraft with less than the minimum flight crew specified in the aircraft operating limitations or the Aircraft...

  17. 49 CFR 1242.56 - Engine crews and train crews (accounts XX-51-56 and XX-51-57).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 9 2011-10-01 2011-10-01 false Engine crews and train crews (accounts XX-51-56 and XX-51-57). 1242.56 Section 1242.56 Transportation Other Regulations Relating to Transportation (Continued) SURFACE TRANSPORTATION BOARD, DEPARTMENT OF TRANSPORTATION (CONTINUED) ACCOUNTS, RECORDS...

  18. On-Ground Measurements of Time-Varying Magnetic Fields On Board BepiColombo's Mercury Planetary Orbiter Spacecraft from a Solar Array Drive Mechanism

    NASA Astrophysics Data System (ADS)

    Junge, A.; Przyklenk, A.; Auster, H.-U.; Heyner, D.; D'Arcio, L. A.; Kempkens, K.

    2016-05-01

    The time-varying magnetic fields generated on ESA's BepiColombo Mercury Planetary Orbiter (MPO) spacecraft have been measured recently to assess their influence on the Mercury magnetometer (MERMAG) instrument.We describe the basic measurement setup and present as an example some early results from a Solar Array Drive Mechanism (SADM).

  19. Shared Problem Models and Crew Decision Making

    NASA Technical Reports Server (NTRS)

    Orasanu, Judith; Statler, Irving C. (Technical Monitor)

    1994-01-01

    The importance of crew decision making to aviation safety has been well established through NTSB accident analyses: Crew judgment and decision making have been cited as causes or contributing factors in over half of all accidents in commercial air transport, general aviation, and military aviation. Yet the bulk of research on decision making has not proven helpful in improving the quality of decisions in the cockpit. One reason is that traditional analytic decision models are inappropriate to the dynamic complex nature of cockpit decision making and do not accurately describe what expert human decision makers do when they make decisions. A new model of dynamic naturalistic decision making is offered that may prove more useful for training or aiding cockpit decision making. Based on analyses of crew performance in full-mission simulation and National Transportation Safety Board accident reports, features that define effective decision strategies in abnormal or emergency situations have been identified. These include accurate situation assessment (including time and risk assessment), appreciation of the complexity of the problem, sensitivity to constraints on the decision, timeliness of the response, and use of adequate information. More effective crews also manage their workload to provide themselves with time and resources to make good decisions. In brief, good decisions are appropriate to the demands of the situation and reflect the crew's metacognitive skill. Effective crew decision making and overall performance are mediated by crew communication. Communication contributes to performance because it assures that all crew members have essential information, but it also regulates and coordinates crew actions and is the medium of collective thinking in response to a problem. This presentation will examine the relation between communication that serves to build performance. Implications of these findings for crew training will be discussed.

  20. Microbiological Contamination of Spacecraft

    NASA Technical Reports Server (NTRS)

    Pierson, D. L.; Bruce, R. J.; Groves, T. O.; Novikova, N. D.; Viktorov, A. N.

    2000-01-01

    The International Space Station (ISS) Phase1 Program resulted in seven US astronauts residing aboard the Russian Space Station Mir between March 1995 and May 1998. Collaboration between U.S. and Russian scientists consisted of collection and analyses of samples from the crewmembers and the Mir and Shuttle environments before, during, and after missions that lasted from 75 to 209 days in duration. The effects of long-duration space flight on the microbial characteristics of closed life support systems and the interactions of microbes with the spacecraft environment and crewmembers were investigated. Air samples were collected using a Russian or U.S.-supplied sampler (SAS, RCS, or Burkard,) while surface samples were collected using contact slides (Hycon) or swabs. Mir recycled condensate and stored potable water sources were analyzed using the U.S.-supplied Water Experiment Kit. In-flight analysis consisted of enumeration of levels of bacteria and fungi. Amounts of microorganisms seen in the air and on surfaces were mostly within acceptability lin1its; observed temporal fluctuations in levels of microbes probably reflect changes in environmental conditions (e.g., humidity). All Mir galley hot water samples were within the standards set for Mir and the ISS. Microbial isolates were returned to Earth for identification of bacterial and fungal isolates. Crew samples (nose, throat, skin, urine, and feces) were analyzed using methods approved for the medical evaluations of Shuttle flight crews. No significant changes in crew microbiota were found during space flight or upon return relative to preflight results. Dissemination of microbes between the crew and environment was demonstrated by D A fingerprinting. Some biodegradation of spacecraft materials was observed. Accumulation of condensate allowed for the recovery of a wide range of bacteria and fungi as well as some protozoa and dust mites.

  1. STS-93: Crew Visit and Departure

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Live footage of the STS-93 crewmembers shows Commander Eileen M. Collins, Pilot Jeffrey S. Ashby, Mission Specialists Steven A. Hawley, Catherine G. Coleman, and Michel Tognini observing and speaking with the engineers about some installations. Footage also shows the crew boarding the T-38 jet and departing from the Shuttle Landing Facility (SLF).

  2. Crewed Space Vehicle Battery Safety Requirements

    NASA Technical Reports Server (NTRS)

    Jeevarajan, Judith A.; Darcy, Eric C.

    2014-01-01

    This requirements document is applicable to all batteries on crewed spacecraft, including vehicle, payload, and crew equipment batteries. It defines the specific provisions required to design a battery that is safe for ground personnel and crew members to handle and/or operate during all applicable phases of crewed missions, safe for use in the enclosed environment of a crewed space vehicle, and safe for use in launch vehicles, as well as in unpressurized spaces adjacent to the habitable portion of a space vehicle. The required provisions encompass hazard controls, design evaluation, and verification. The extent of the hazard controls and verification required depends on the applicability and credibility of the hazard to the specific battery design and applicable missions under review. Evaluation of the design and verification program results shall be completed prior to certification for flight and ground operations. This requirements document is geared toward the designers of battery systems to be used in crewed vehicles, crew equipment, crew suits, or batteries to be used in crewed vehicle systems and payloads (or experiments). This requirements document also applies to ground handling and testing of flight batteries. Specific design and verification requirements for a battery are dependent upon the battery chemistry, capacity, complexity, charging, environment, and application. The variety of battery chemistries available, combined with the variety of battery-powered applications, results in each battery application having specific, unique requirements pertinent to the specific battery application. However, there are basic requirements for all battery designs and applications, which are listed in section 4. Section 5 includes a description of hazards and controls and also includes requirements.

  3. Orion Crew Module Aerodynamic Testing

    NASA Technical Reports Server (NTRS)

    Murphy, Kelly J.; Bibb, Karen L.; Brauckmann, Gregory J.; Rhode, Matthew N.; Owens, Bruce; Chan, David T.; Walker, Eric L.; Bell, James H.; Wilson, Thomas M.

    2011-01-01

    The Apollo-derived Orion Crew Exploration Vehicle (CEV), part of NASA s now-cancelled Constellation Program, has become the reference design for the new Multi-Purpose Crew Vehicle (MPCV). The MPCV will serve as the exploration vehicle for all near-term human space missions. A strategic wind-tunnel test program has been executed at numerous facilities throughout the country to support several phases of aerodynamic database development for the Orion spacecraft. This paper presents a summary of the experimental static aerodynamic data collected to-date for the Orion Crew Module (CM) capsule. The test program described herein involved personnel and resources from NASA Langley Research Center, NASA Ames Research Center, NASA Johnson Space Flight Center, Arnold Engineering and Development Center, Lockheed Martin Space Sciences, and Orbital Sciences. Data has been compiled from eight different wind tunnel tests in the CEV Aerosciences Program. Comparisons are made as appropriate to highlight effects of angle of attack, Mach number, Reynolds number, and model support system effects.

  4. Quarantined Apollo 11 Crew Debriefing

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named 'Eagle'', carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. The recovery operation took place in the Pacific Ocean where Navy para-rescue men recovered the capsule housing the 3-man Apollo 11 crew. The crew was airlifted to safety aboard the U.S.S. Hornet, where they were quartered in a Mobile Quarantine Facility (MQF) which served as their home until they reached the NASA Manned Spacecraft Center (MSC) Lunar Receiving Laboratory in Houston, Texas. The three are seen here at the MSC, still inside the MQF, undergoing their first debriefing on Sunday, August 3, 1969. Behind the glass are (L-R): Edwin Aldrin, Michael Collins, and Neil Armstrong.

  5. Biological component of life support systems for a crew in long-duration space expeditions

    NASA Astrophysics Data System (ADS)

    Sychev, Vladimir N.; Levinskikh, Margarita A.; Podolsky, Igor G.

    Creation of effective life support systems (LSSs) is one of the main tasks of medico-biological support of long-duration space flight. Principles of development of such an LSS will be defined on the basis of number of parameters, including mass-overall and energetic limitations of interplanetary spacecraft, duration of expedition and crew size. It is obvious that including biological subsystems in LSS of long-duration interplanetary space flights will help to form a full-fledged environment for humans in the spacecraft. It would be an appropriate solution for long-term biological needs of humans and important for elimination of possible negative consequences of their long stay under artificial (abiogenous) environment. Experiments with higher plants, conducted on board "MIR" orbital complex and Russian segment of ISS, showed that plant organisms are capable of long-duration normal growth, full development and reproduction without deviations under real space flight environment. These results allow us to assume that greenhouses are potential candidates to be a biological subsystem to be included in the LSS for interplanetary space flight. Inclusion of greenhouse equipment in the spacecrafts will require a number of corrective actions in functional schemes of the existing LSS, i.e. it will lead to redistribution of material streams inside an LSS and increase in functional load of authorized systems. Furthermore, involvement of greenhouse in an LSS of an interplanetary spacecraft requires a number of technical tasks to be cleared. In the present review, we discuss the constructive, technological and mass-transfer characteristics of greenhouse as a component part of the LSS for crews of long-term interplanetary missions, in particular, Mars expedition.

  6. Space Station crew workload - Station operations and customer accommodations

    NASA Technical Reports Server (NTRS)

    Shinkle, G. L.

    1985-01-01

    The features of the Space Station which permit crew members to utilize work time for payload operations are discussed. The user orientation, modular design, nonstressful flight regime, in space construction, on board control, automation and robotics, and maintenance and servicing of the Space Station are examined. The proposed crew size, skills, and functions as station operator and mission specialists are described. Mission objectives and crew functions, which include performing material processing, life science and astronomy experiments, satellite and payload equipment servicing, systems monitoring and control, maintenance and repair, Orbital Maneuvering Vehicle and Mobile Remote Manipulator System operations, on board planning, housekeeping, and health maintenance and recreation, are studied.

  7. Commercial Crew Program Crew Safety Strategy

    NASA Technical Reports Server (NTRS)

    Vassberg, Nathan; Stover, Billy

    2015-01-01

    The purpose of this presentation is to explain to our international partners (ESA and JAXA) how NASA is implementing crew safety onto our commercial partners under the Commercial Crew Program. It will show them the overall strategy of 1) how crew safety boundaries have been established; 2) how Human Rating requirements have been flown down into programmatic requirements and over into contracts and partner requirements; 3) how CCP SMA has assessed CCP Certification and CoFR strategies against Shuttle baselines; 4) Discuss how Risk Based Assessment (RBA) and Shared Assurance is used to accomplish these strategies.

  8. Microbial contamination of spacecraft.

    PubMed

    Pierson, D L

    2001-06-01

    Spacecraft and space habitats supporting human exploration contain a diverse population of microorganisms. Microorganisms may threaten human habitation in many ways that directly or indirectly impact the health, safety, or performance of astronauts. The ability to produce and maintain spacecraft and space stations with environments suitable for human habitation has been established over 40 years of human space flight. An extensive database of environmental microbiological parameters has been provided for short-term (< 20 days) space flight by more than 100 missions aboard the Space Shuttle. The NASA Mir Program provided similar data for long-duration missions. Interestingly, the major bacterial and fungal species found in the Space Shuttle are similar to those encountered in the nearly 15-year-old Mir. Lessons learned from both the US and Russian space programs have been incorporated into the habitability plan for the International Space Station. The focus is on preventive measures developed for spacecraft, cargo, and crews. On-orbit regular housekeeping practices complete with visual inspections are essential, along with microbiological monitoring. Risks associated with extended stays on the Moon or a Mars exploration mission will be much greater than previous experiences because of additional unknown variables. The current knowledge base is insufficient for exploration missions, and research is essential to understand the effects of space flight on biological functions and population dynamics of microorganisms in spacecraft. Equally important is a better understanding of the immune response and of human-microorganism-environment interactions during long-term space habitation.

  9. Air Purification in Closed Environments: An Overview of Spacecraft Systems

    NASA Technical Reports Server (NTRS)

    Perry, Jay L.; LeVan, Douglas; Crumbley, Robert (Technical Monitor)

    2002-01-01

    The primary goal for a collective protection system and a spacecraft environmental control and life support system (ECLSS) are strikingly similar. Essentially both function to provide the occupants of a building or vehicle with a safe, habitable environment. The collective protection system shields military and civilian personnel from short-term exposure to external threats presented by toxic agents and industrial chemicals while an ECLSS sustains astronauts for extended periods within the hostile environment of space. Both have air quality control similarities with various aircraft and 'tight' buildings. This paper reviews basic similarities between air purification system requirements for collective protection and an ECLSS that define surprisingly common technological challenges and solutions. Systems developed for air revitalization on board spacecraft are discussed along with some history on their early development as well as a view of future needs. Emphasis is placed upon two systems implemented by the National Aeronautics and Space Administration (NASA) onboard the International Space Station (ISS): the trace contaminant control system (TCCS) and the molecular sieve-based carbon dioxide removal assembly (CDRA). Over its history, the NASA has developed and implemented many life support systems for astronauts. As the duration, complexity, and crew size of manned missions increased from minutes or hours for a single astronaut during Project Mercury to days and ultimately months for crews of 3 or more during the Apollo, Skylab, Shuttle, and ISS programs, these systems have become more sophisticated. Systems aboard spacecraft such as the ISS have been designed to provide long-term environmental control and life support. Challenges facing the NASA's efforts include minimizing mass, volume, and power for such systems, while maximizing their safety, reliability, and performance. This paper will highlight similarities and differences among air purification systems

  10. Surface, Water and Air Biocharacterization - A Comprehensive Characterization of Microorganisms and Allergens in Spacecraft Environment

    NASA Technical Reports Server (NTRS)

    Pierson, Duane L.; Ott, C. Mark; Cruz, Patricia; Buttner, Mark P.

    2009-01-01

    A Comprehensive Characterization of Microorganisms and Allergens in Spacecraft (SWAB) will use advanced molecular techniques to comprehensively evaluate microbes on board the space station, including pathogens (organisms that may cause disease). It also will track changes in the microbial community as spacecraft visit the station and new station modules are added. This study will allow an assessment of the risk of microbes to the crew and the spacecraft. Research Summary: Previous microbial analysis of spacecraft only identify microorganisms that will grow in culture, omitting greater than 90% of all microorganisms including pathogens such as Legionella (the bacterium which causes Legionnaires' disease) and Cryptosporidium (a parasite common in contaminated water) The incidence of potent allergens, such as dust mites, has never been systematically studied in spacecraft environments and microbial toxins have not been previously monitored. This study will use modern molecular techniques to identify microorganisms and allergens. Direct sampling of the ISS allows identification of the microbial communities present, and determination of whether these change or mutate over time. SWAB complements the nominal ISS environmental monitoring by providing a comparison of analyses from current media-based and advanced molecular-based technologies.

  11. Asteroid Crewed Segment Mission Lean Development

    NASA Technical Reports Server (NTRS)

    Gard, Joe; McDonald, Mark; Jermstad, Wayne

    2014-01-01

    The next generation of human spaceflight missions presents numerous challenges to designers that must be addressed to produce a feasible concept. The specific challenges of designing an exploration mission utilizing the Space Launch System and the Orion spacecraft to carry astronauts beyond earth orbit to explore an asteroid stored in a distant retrograde orbit around the moon will be addressed. Mission designers must carefully balance competing constraints including cost, schedule, risk, and numerous spacecraft performance metrics including launch mass, nominal landed mass, abort landed mass, mission duration, consumable limits and many others. The Asteroid Redirect Crewed Mission will be described along with results from the concurrent mission design trades that led to its formulation. While the trades presented are specific to this mission, the integrated process is applicable to any potential future mission. The following trades were critical in the mission formulation and will be described in detail: 1) crew size, 2) mission duration, 3) trajectory design, 4) docking vs grapple, 5) extravehicular activity tasks, 6) launch mass and integrated vehicle performance, 7) contingency performance, 8) crew consumables including food, clothing, oxygen, nitrogen and water, and 9) mission risk. The additional Orion functionality required to perform the Asteroid Redirect Crewed Mission and how it is incorporated while minimizing cost, schedule and mass impacts will be identified. Existing investments in the NASA technology portfolio were leveraged to provide the added functionality that will be beneficial to future exploration missions. Mission kits are utilized to augment Orion with the necessary functionality without introducing costly new requirements to the mature Orion spacecraft design effort. The Asteroid Redirect Crewed Mission provides an exciting early mission for the Orion and SLS while providing a stepping stone to even more ambitious missions in the future.

  12. Development of an integrated, zero-G pneumatic transporter/rotating-paddle incinerator/catalytic afterburner subsystem for processing human waste on board spacecraft

    NASA Technical Reports Server (NTRS)

    Fields, S. F.; Labak, L. J.; Honegger, R. J.

    1974-01-01

    A baseline laboratory prototype of an integrated, six man, zero-g subsystem for processing human wastes onboard spacecraft was investigated, and included the development of an operational specification for the baseline subsystem, followed by design and fabrication. The program was concluded by performing a series of six tests over a period of two weeks to evaluate the performance of the subsystem. The results of the tests were satisfactory, however, several changes in the design of the subsystem are required before completely satisfactory performance can be achieved.

  13. AMO EXPRESS: A Command and Control Experiment for Crew Autonomy Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Cornelius, Randy; Frank, Jeremy; Garner, Larry; Haddock, Angie; Stetson, Howard; Wang, Lui

    2015-01-01

    The Autonomous Mission Operations project is investigating crew autonomy capabilities and tools for deep space missions. Team members at Ames Research Center, Johnson Space Center and Marshall Space Flight Center are using their experience with ISS Payload operations and TIMELINER to: move earth based command and control assets to on-board for crew access; safely merge core and payload command procedures; give the crew single action intelligent operations; and investigate crew interface requirements.

  14. Advanced Technologies for Future Spacecraft Cockpits and Space-based Control Centers

    NASA Technical Reports Server (NTRS)

    Garcia-Galan, Carlos; Uckun, Serdar; Gregory, William; Williams, Kerry

    2006-01-01

    The National Aeronautics and Space Administration (NASA) is embarking on a new era of Space Exploration, aimed at sending crewed spacecraft beyond Low Earth Orbit (LEO), in medium and long duration missions to the Lunar surface, Mars and beyond. The challenges of such missions are significant and will require new technologies and paradigms in vehicle design and mission operations. Current roles and responsibilities of spacecraft systems, crew and the flight control team, for example, may not be sustainable when real-time support is not assured due to distance-induced communication lags, radio blackouts, equipment failures, or other unexpected factors. Therefore, technologies and applications that enable greater Systems and Mission Management capabilities on-board the space-based system will be necessary to reduce the dependency on real-time critical Earth-based support. The focus of this paper is in such technologies that will be required to bring advance Systems and Mission Management capabilities to space-based environments where the crew will be required to manage both the systems performance and mission execution without dependence on the ground. We refer to this concept as autonomy. Environments that require high levels of autonomy include the cockpits of future spacecraft such as the Mars Exploration Vehicle, and space-based control centers such as a Lunar Base Command and Control Center. Furthermore, this paper will evaluate the requirements, available technology, and roadmap to enable full operational implementation of onboard System Health Management, Mission Planning/re-planning, Autonomous Task/Command Execution, and Human Computer Interface applications. The technology topics covered by the paper include enabling technology to perform Intelligent Caution and Warning, where the systems provides directly actionable data for human understanding and response to failures, task automation applications that automate nominal and Off-nominal task execution based

  15. Expedition 3 Crew Interview: Frank Culbertson, Jr.

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Expedition 3 Commander Frank Culbertson is seen being interviewed before leaving to become part of the third resident crew on the International Space Station (ISS). He answers questions about his inspiration to become an astronaut and his career path. He discusses his expectations for life on the ISS and the experiments he will be performing while on board. Culbertson gives details on the spacewalks that will take place during the STS-105 mission (the mission carrying the Expedition 3 crew up to the ISS) and the unloading operations for the Multipurpose Logistics Module.

  16. Expedition 3 Crew Interview: Vladimir Dezhurov

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Expedition 3 Pilot Vladimir Dezhurov is seen being interviewed before leaving to become part of the third resident crew on the International Space Station (ISS). He answers questions about his inspiration to become an astronaut and his career path. He discusses his expectations for life on the ISS and the experiments he will be performing while on board. Dezhurov gives details on the spacewalks that will take place during the STS-105 mission (the mission carrying the Expedition 3 crew up to the ISS) and the unloading operations for the Multipurpose Logistics Module.

  17. Expedition 3 Crew Interview: Mikhail Turin

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Expedition 3 Flight Engineer Mikhail Turin is seen being interviewed before leaving to become part of the third resident crew on the International Space Station (ISS). He answers questions about his inspiration to become an astronaut and his career path. He discusses his expectations for life on the ISS and the experiments he will be performing while on board. Turin gives details on the spacewalks that will take place during the STS-105 mission (the mission carrying the Expedition 3 crew up to the ISS) and the unloading operations for the Multipurpose Logistics Module.

  18. Astronauts Stafford and Slayton visit Soviet Soyuz spacecraft

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Astronauts Thomas P. Stafford, left, NASA ASTP crew commander, and Donald K. Slayton, docking module pilot, visit the Soviet Soyuz spacecraft during the joint phase of the ASTP mission. They hold Soviet containers of borsh (beet soup) over which vodka labels have been pasted. This was the crew's way of toasting each other. The photo was taken in the Orbital Module portion of the Soviet Soyuz spacecraft. The hatch to the Soyuz Descent Vehicle is in center background.

  19. STS-109 Crew Training

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Footage shows the crew of STS-109 (Commander Scott Altman, Pilot Duane Carey, Payload Commander John Grunsfeld, and Mission Specialists Nancy Currie, James Newman, Richard Linnehan, and Michael Massimino) during various parts of their training. Scenes show the crew's photo session, Post Landing Egress practice, training in Dome Simulator, Extravehicular Activity Training in the Neutral Buoyancy Laboratory (NBL), and using the Virtual Reality Laboratory Robotic Arm. The crew is also seen tasting food as they choose their menus for on-orbit meals.

  20. Spacecraft 2000

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The objective of the Workshop was to focus on the key technology area for 21st century spacecraft and the programs needed to facilitate technology development and validation. Topics addressed include: spacecraft systems; system development; structures and materials; thermal control; electrical power; telemetry, tracking, and control; data management; propulsion; and attitude control.

  1. STS-103 crew take part in CEIT

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Payload Hazardous Servicing Facility, the STS-103 crew look over equipment to be used during their mission. The seven-member crew, taking part in a Crew Equipment Interface Test, are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly, and Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), Claude Nicollier of Switzerland, and Jean-Frangois Clervoy of France. Nicollier and Clervoy are with the European Space Agency. Mission STS-103 is a 'call-up' due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will not only replace gyroscopes, it will also replace a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. The scheduled launch date in October is under review.

  2. STS-103 crew take part in CEIT

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During a Crew Equipment Interface Test, members of the STS-103 crew check out new Multi-Layer Insulation (MLI) for the Hubble Space Telescope. The payload hardware is in the Payload Hazardous Servicing Facility. From left are Mission Specialists Claude Nicollier of Switzerland, Steven L. Smith, C. Michael Foale (Ph.D.), and John M. Grunsfeld (Ph.D.). Other members of the crew are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly, and Mission Specialist Jean-Frangois Clervoy of France. Nicollier and Clervoy are with the European Space Agency. Mission STS-103 is a 'call-up' due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will not only replace gyroscopes, it will also replace a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with the MLI. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. The scheduled launch date in October is under review.

  3. STS-103 crew take part in CEIT

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Payload Hazardous Servicing Facility, a member of the STS-103 crew checks out rib clamp to be used on the Shield Shell Replacement Fabric (SSRF) task on repair of the Hubble Space Telescope. The seven-member crew, taking part in a Crew Equipment Interface Test, are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly, and Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), Claude Nicollier of Switzerland, and Jean-Frangois Clervoy of France. Nicollier and Clervoy are with the European Space Agency. Mission STS-103 is a 'call-up' due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will not only replace gyroscopes, it will also replace a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. The scheduled launch date in October is under review.

  4. STS-103 crew take part in CEIT

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Payload Hazardous Servicing Facility, STS-103 Mission Specialist Steven L. Smith (right) and other members of the crew look over new Multi-Layer Insulation (MLI) intended for the Hubble Space Telescope. The seven-member crew, taking part in a Crew Equipment Interface Test, are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly, and Mission Specialists Smith, C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), Claude Nicollier of Switzerland, and Jean-Frangois Clervoy of France. Nicollier and Clervoy are with the European Space Agency. Mission STS-103 is a 'call-up' due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will not only replace gyroscopes, it will also replace a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with the MLI. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. The scheduled launch date in October is under review.

  5. The Apollo 11 Prime Crew

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Portrait of the prime crew of the Apollo 11 lunar landing mission. From left to right they are: Commander, Neil A. Armstrong, Command Module Pilot, Michael Collins, and Lunar Module Pilot, Edwin E. Aldrin Jr. On July 20th 1969 at 4:18 PM, EDT the Lunar Module 'Eagle' landed in a region of the Moon called the Mare Tranquillitatis, also known as the Sea of Tranquillity. After securing his spacecraft, Armstrong radioed back to earth: 'Houston, Tranquility Base here, the Eagle has landed'. At 10:56 p.m. that same evening and witnessed by a worldwide television audience, Neil Armstrong stepped off the 'Eagle's landing pad onto the lunar surface and said: 'That's one small step for a man, one giant leap for mankind.' He became the first human to set foot upon the Moon.

  6. Apollo 13 Crew on Deck

    NASA Technical Reports Server (NTRS)

    1970-01-01

    Commander Philip Eldredge Jerauld (at microphone), ship's chaplain for U.S.S. Iwo Jima, offers a prayer of thanks for the safe return of the Apollo 13 crew members soon after they arrived aboard the recovery ship. Standing in the center of the picture, from the left, are astronauts James A. Lovell Jr., Commander; Fred W. Haise Jr., Lunar Module Pilot; and John L. Swigert Jr., Command Module Pilot. The Apollo 13 Command Module 'Odyssey' splashed down at 12:07:44 p.m. (CST), April 17, 1970, to conclude safely a perilous space flight. The three astronauts were picked up by helicopter and flown to the U.S.S. Iwo Jima. Standing at left is Captain Leland E. Kirkemo, Commanding Officer of the U.S.S. Iwo Jima. Standing behind the chaplain, almost obscured, is Rear Admiral Donald C. Davis, Commanding Officer of Task Force 130, the Pacific Recovery Force for the Manned Spacecraft Missions.

  7. Wireless Crew Communication Feasibility Assessment

    NASA Technical Reports Server (NTRS)

    Archer, Ronald D.; Romero, Andy; Juge, David

    2016-01-01

    Ongoing discussions with crew currently onboard the ISS as well as the crew debriefs from completed ISS missions indicate that issues associated with the lack of wireless crew communication results in increased crew task completion times and lower productivity, creates cable management issues, and increases crew frustration.

  8. Crew Exploration Vehicle (CEV) Water Landing Simulation

    NASA Technical Reports Server (NTRS)

    Littell, Justin D.; Lawrence, Charles; Carney, Kelly S.

    2007-01-01

    Crew Exploration Vehicle (CEV) water splashdowns were simulated in order to find maximum acceleration loads on the astronauts and spacecraft under various landing conditions. The acceleration loads were used in a Dynamic Risk Index (DRI) program to find the potential risk for injury posed on the astronauts for a range of landing conditions. The DRI results showed that greater risks for injury occurred for two landing conditions; when the vertical velocity was large and the contact angle between the spacecraft and the water impact surface was zero, and when the spacecraft was in a toe down configuration and both the vertical and horizontal landing velocities were large. Rollover was also predicted to occur for cases where there is high horizontal velocity and low contact angles in a toe up configuration, and cases where there was a high horizontal velocity with high contact angles in a toe down configuration.

  9. STS-47 Crew Briefing

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The crew of STS-47, Commander Robert L. Gibson, Pilot Curtis L. Brown, Payload Commander Mark C. Lee, Mission Specialists N. Jan Davis, Jay Apt, and Mae C. Jemison, and Payload Specialist Mamoru Mohri answer questions from the press about the upcoming Endeavour mission and the crew's personal views of the mission.

  10. Crew Earth Observations

    NASA Technical Reports Server (NTRS)

    Runco, Susan

    2009-01-01

    Crew Earth Observations (CEO) takes advantage of the crew in space to observe and photograph natural and human-made changes on Earth. The photographs record the Earth's surface changes over time, along with dynamic events such as storms, floods, fires and volcanic eruptions. These images provide researchers on Earth with key data to better understand the planet.

  11. Exploring flight crew behaviour

    NASA Technical Reports Server (NTRS)

    Helmreich, R. L.

    1987-01-01

    A programme of research into the determinants of flight crew performance in commercial and military aviation is described, along with limitations and advantages associated with the conduct of research in such settings. Preliminary results indicate significant relationships among personality factors, attitudes regarding flight operations, and crew performance. The potential theoretical and applied utility of the research and directions for further research are discussed.

  12. Commercial Crew Medical Ops

    NASA Technical Reports Server (NTRS)

    Heinbaugh, Randall; Cole, Richard

    2016-01-01

    Provide commercial partners with: center insight into NASA spaceflight medical experience center; information relative to both nominal and emergency care of the astronaut crew at landing site center; a basis for developing and sharing expertise in space medical factors associated with returning crew.

  13. The Human as a System - Monitoring Spacecraft Net Habitable Volume throughout the Design Lifecycle

    NASA Technical Reports Server (NTRS)

    Szabo, Richard; Kallay, Anna; Twyford, Evan; Maida, Jim

    2007-01-01

    Spacecraft design has historically allocated specific volume and mass "not to exceed" requirements upon individual systems and their accompanying hardware (e.g., life support, avionics) early in their conceptual design in an effort to align the spacecraft with propulsion capabilities. If the spacecraft is too heavy or too wide for the launch stack - it does not get off the ground. This approach has predictably ended with the crew being allocated whatever open, pressurized volume remains. With the recent inauguration of a new human-rated spacecraft - NASA human factors personnel have found themselves in the unique position to redefine the human as a system from the very foundation of design. They seek to develop and monitor a "not to fall below" requirement for crew net habitable volume (NHV) - balanced against the "not to exceed" system volume requirements, with the spacecraft fitting the crew versus the crew having to fit inside the spacecraft.

  14. The X-38 Spacecraft Fault-Tolerant Avionics System

    NASA Technical Reports Server (NTRS)

    Kouba,Coy; Buscher, Deborah; Busa, Joseph

    2003-01-01

    In 1995 NASA began an experimental program to develop a reusable crew return vehicle (CRV) for the International Space Station. The purpose of the CRV was threefold: (i) to bring home an injured or ill crewmember; (ii) to bring home the entire crew if the Shuttle fleet was grounded; and (iii) to evacuate the crew in the case of an imminent Station threat (i.e., fire, decompression, etc). Built at the Johnson Space Center, were two approach and landing prototypes and one spacecraft demonstrator (called V201). A series of increasingly complex ground subsystem tests were completed, and eight successful high-altitude drop tests were achieved to prove the design concept. In this program, an unprecedented amount of commercial-off-the-shelf technology was utilized in this first crewed spacecraft NASA has built since the Shuttle program. Unfortunately, in 2002 the program was canceled due to changing Agency priorities. The vehicle was 80% complete and the program was shut down in such a manner as to preserve design, development, test and engineering data. This paper describes the X-38 V201 fault-tolerant avionics system. Based on Draper Laboratory's Byzantine-resilient fault-tolerant parallel processing system and their "network element" hardware, each flight computer exchanges information on a strict timescale to process input data, compare results, and issue voted vehicle output commands. Major accomplishments achieved in this development include: (i) a space qualified two-fault tolerant design using mostly COTS (hardware and operating system); (ii) a single event upset tolerant network element board, (iii) on-the-fly recovery of a failed processor; (iv) use of synched cache; (v) realignment of memory to bring back a failed channel; (vi) flight code automatically generated from the master measurement list; and (vii) built in-house by a team of civil servants and support contractors. This paper will present an overview of the avionics system and the hardware

  15. Internet Technology on Spacecraft

    NASA Technical Reports Server (NTRS)

    Rash, James; Parise, Ron; Hogie, Keith; Criscuolo, Ed; Langston, Jim; Powers, Edward I. (Technical Monitor)

    2000-01-01

    The Operating Missions as Nodes on the Internet (OMNI) project has shown that Internet technology works in space missions through a demonstration using the UoSAT-12 spacecraft. An Internet Protocol (IP) stack was installed on the orbiting UoSAT-12 spacecraft and tests were run to demonstrate Internet connectivity and measure performance. This also forms the basis for demonstrating subsequent scenarios. This approach provides capabilities heretofore either too expensive or simply not feasible such as reconfiguration on orbit. The OMNI project recognized the need to reduce the risk perceived by mission managers and did this with a multi-phase strategy. In the initial phase, the concepts were implemented in a prototype system that includes space similar components communicating over the TDRS (space network) and the terrestrial Internet. The demonstration system includes a simulated spacecraft with sample instruments. Over 25 demonstrations have been given to mission and project managers, National Aeronautics and Space Administration (NASA), Department of Defense (DoD), contractor technologists and other decisions makers, This initial phase reached a high point with an OMNI demonstration given from a booth at the Johnson Space Center (JSC) Inspection Day 99 exhibition. The proof to mission managers is provided during this second phase with year 2000 accomplishments: testing the use of Internet technologies onboard an actual spacecraft. This was done with a series of tests performed using the UoSAT-12 spacecraft. This spacecraft was reconfigured on orbit at very low cost. The total period between concept and the first tests was only 6 months! On board software was modified to add an IP stack to support basic IP communications. Also added was support for ping, traceroute and network timing protocol (NTP) tests. These tests show that basic Internet functionality can be used onboard spacecraft. The performance of data was measured to show no degradation from current

  16. Life Support and Habitation Systems: Crew Support and Protection for Human Exploration Missions Beyond Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.; McQuillan, Jeffrey

    2010-01-01

    Life Support and Habitation Systems (LSHS) is one of 10 Foundational Domains as part of the National Aeronautics and Space Administration s proposed Enabling Technology Development and Demonstration (ETDD) Program. LSHS will develop and mature technologies to sustain life on long duration human missions beyond Low Earth Orbit that are reliable, have minimal logistics supply and increase self-sufficiency. For long duration exploration missions, further closure of life support systems is paramount, including focus on key technologies for atmosphere revitalization, water recovery, waste management, thermal control and crew accommodation that recover additional consumable mass, reduce requirements for power, volume, heat rejection, crew involvement, and which have increased reliability and capability. Other areas of focus include technologies for radiation protection, environmental monitoring and fire protection. Beyond LEO, return to Earth will be constrained. The potability of recycled water and purity of regenerated air must be measured and certified aboard the spacecraft. Missions must be able to recover from fire events through early detection, use of non-toxic suppression agents, and operation of recovery systems that protect on-board Environmental Control and Life Support (ECLS) hardware. Without the protection of the Earth s geomagnetic field, missions beyond LEO must have improved radiation shielding and dosimetry, as well as warning systems to protect the crew against solar particle events. This paper will describe plans for the new LSHS Foundational Domain and mission factors that will shape its technology development portfolio.

  17. Crew Transportation Plan

    NASA Technical Reports Server (NTRS)

    Zeitler, Pamela S. (Compiler); Mango, Edward J.

    2013-01-01

    The National Aeronautics and Space Administration (NASA) Commercial Crew Program (CCP) has been chartered to facilitate the development of a United States (U.S.) commercial crew space transportation capability with the goal of achieving safe, reliable, and cost effective access to and from low Earth orbit (LEO) and the International Space Station (ISS) as soon as possible. Once the capability is matured and is available to the Government and other customers, NASA expects to purchase commercial services to meet its ISS crew rotation and emergency return objectives.

  18. STS-111 Crew Portrait

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Launched aboard the Space Shuttle Endeavor on June 6, 2002, these four astronauts comprised the prime crew for NASA's STS-111 mission. Astronaut Kenneth D. Cockrell (front right) was mission commander, and astronaut Paul S. Lockhart (front left) was pilot. Astronauts Philippe Perrin (rear left), representing the French Space Agency, and Franklin R. Chang-Diaz were mission specialists assigned to extravehicular activity (EVA) work on the International Space Station (ISS). In addition to the delivery and installation of the Mobile Base System (MBS), this crew dropped off the Expedition Five crew members at the orbital outpost, and brought back the Expedition Four trio at mission's end.

  19. STS-63 crew insignia

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Designed by the crew members, the crew patch depicts the Orbiter maneuving to rendezvous with Russia's Space Station Mir. The name is printed in Cyrillic on the side of the station. Visible in the Orbiter's payload bay are the commercial space laboratory Spacehab and the Shuttle Pointed Autonomous Research Tool for Astronomy (SPARTAN) satellite which are major payloads on the flight. The six points on the rising sun and the three stars are symbolic of the mission's Space Transportation System (STS) numerical designation. Flags of the United States and Russia at the bottom of the patch symbolize the cooperative operations of this mission. The crew will be flying aboard the space shuttle Discovery.

  20. STS-121 Crew Portrait

    NASA Technical Reports Server (NTRS)

    2006-01-01

    These seven astronauts take a break from training to pose for the STS-121 crew portrait. From the left are mission specialists Stephanie D. Wilson, and Michael E. Fossum, Commander Steven W. Lindsey, mission specialist Piers J. Sellers, pilot Mark E. Kelly; European Space Agency (ESA) astronaut and mission specialist Thomas Reiter of Germany; and mission specialist Lisa M. Nowak. The crew members are attired in training versions of their shuttle launch and entry suit. The crew, first ever to launch on Independence Day, tested new equipment and procedures to improve shuttle safety, as well as delivered supplies and made repairs to the space station.

  1. Press room of the Crew reception Area, Lunar Receivng Laboratory

    NASA Technical Reports Server (NTRS)

    1967-01-01

    Room 190 of the Support and Administrative Facilities, Crew Reception Area (CRA), Lunar Receiving Laboratory, Bldg 37, Manned Spacecraft Center, Houston, Texas. The room is a debriefing room which facilitates indirect contact with the astronauts and CRA medical staff during quarantine periods. Also called the press room.

  2. Flammability Configuration Analysis for Spacecraft Applications

    NASA Technical Reports Server (NTRS)

    Pedley, Michael D.

    2014-01-01

    Fire is one of the many potentially catastrophic hazards associated with the operation of crewed spacecraft. A major lesson learned by NASA from the Apollo 204 fire in 1966 was that ignition sources in an electrically powered vehicle should and can be minimized, but can never be eliminated completely. For this reason, spacecraft fire control is based on minimizing potential ignition sources and eliminating materials that can propagate fire. Fire extinguishers are always provided on crewed spacecraft, but are not considered as part of the fire control process. "Eliminating materials that can propagate fire" does not mean eliminating all flammable materials - the cost of designing and building spacecraft using only nonflammable materials is extraordinary and unnecessary. It means controlling the quantity and configuration of such materials to eliminate potential fire propagation paths and thus ensure that any fire would be small, localized, and isolated, and would self-extinguish without harm to the crew. Over the years, NASA has developed many solutions for controlling the configuration of flammable materials (and potentially flammable materials in commercial "off-the-shelf" hardware) so that they can be used safely in air and oxygen-enriched environments in crewed spacecraft. This document describes and explains these design solutions so payload customers and other organizations can use them in designing safe and cost-effective flight hardware. Proper application of these guidelines will produce acceptable flammability configurations for hardware located in any compartment of the International Space Station or other program crewed vehicles and habitats. However, use of these guidelines does not exempt hardware organizations of the responsibility for safety of the hardware under their control.

  3. Rationale and Methods for Archival Sampling and Analysis of Atmospheric Trace Chemical Contaminants On Board Mir and Recommendations for the International Space Station

    NASA Technical Reports Server (NTRS)

    Perry, J. L.; James, J. T.; Cole, H. E.; Limero, T. F.; Beck, S. W.

    1997-01-01

    Collection and analysis of spacecraft cabin air samples are necessary to assess the cabin air quality with respect to crew health. Both toxicology and engineering disciplines work together to achieve an acceptably clean cabin atmosphere. Toxicology is concerned with limiting the risk to crew health from chemical sources, setting exposure limits, and analyzing air samples to determine how well these limits are met. Engineering provides the means for minimizing the contribution of the various contaminant generating sources by providing active contamination control equipment on board spacecraft and adhering to a rigorous material selection and control program during the design and construction of the spacecraft. A review of the rationale and objectives for sampling spacecraft cabin atmospheres is provided. The presently-available sampling equipment and methods are reviewed along with the analytical chemistry methods employed to determine trace contaminant concentrations. These methods are compared and assessed with respect to actual cabin air quality monitoring needs. Recommendations are presented with respect to the basic sampling program necessary to ensure an acceptably clean spacecraft cabin atmosphere. Also, rationale and recommendations for expanding the scope of the basic monitoring program are discussed.

  4. Crew Exploration Vehicle (CEV) (Orion) Occupant Protection. Part 1; Appendices

    NASA Technical Reports Server (NTRS)

    Currie-Gregg, Nancy J.; Gernhardt, Michael L.; Lawrence, Charles; Somers, Jeffrey T.

    2016-01-01

    Dr. Nancy J. Currie, of the NASA Engineering and Safety Center (NESC), Chief Engineer at Johnson Space Center (JSC), requested an assessment of the Crew Exploration Vehicle (CEV) occupant protection as a result of issues identified by the Constellation Program and Orion Project. The NESC, in collaboration with the Human Research Program (HRP), investigated new methods associated with occupant protection for the Crew Exploration Vehicle (CEV), known as Orion. The primary objective of this assessment was to investigate new methods associated with occupant protection for the CEV, known as Orion, that would ensure the design provided minimal risk to the crew during nominal and contingency landings in an acceptable set of environmental and spacecraft failure conditions. This documents contains the appendices to the NESC assessment report. NASA/TM-2013-217380, Application of the Brinkley Dynamic Response Criterion to Spacecraft Transient Dynamic Events supersedes this document.

  5. STS-103 crew take part in CEIT

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Payload Hazardous Servicing Facility, members of the STS-103 crew look at some of the equipment to be used during their mission. The seven-member crew are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly, and Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), Claude Nicollier of Switzerland, and Jean-Frangois Clervoy of France. Nicollier and Clervoy are with the European Space Agency. Mission STS-103 is a 'call-up' due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will not only replace gyroscopes, it will also replace a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. The scheduled launch date in October is under review.

  6. STS-103 crew take part in CEIT

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During a Crew Equipment Interface Test, STS-103 Commander Curtis L. Brown Jr. (left) and Pilot Scott J. Kelly look at a replacement computer for the Hubble Space Telescope. The payload hardware is in the Payload Hazardous Servicing Facility. Other members of the crew are Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), Claude Nicollier of Switzerland, and Jean-Frangois Clervoy of France. Nicollier and Clervoy are with the European Space Agency. Mission STS-103 is a 'call-up' due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will not only replace gyroscopes, it will also replace a Fine Guidance Sensor and an older computer with the new enhanced model, an older data tape recorder with a solid state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. The scheduled launch date in October is under review.

  7. Potential Mission Scenarios Post Asteroid Crewed Mission

    NASA Technical Reports Server (NTRS)

    Lopez, Pedro, Jr.; McDonald, Mark A.

    2015-01-01

    A deep-space mission has been proposed to identify and redirect an asteroid to a distant retrograde orbit around the moon, and explore it by sending a crew using the Space Launch System and the Orion spacecraft. The Asteroid Redirect Crewed Mission (ARCM), which represents the third segment of the Asteroid Redirect Mission (ARM), could be performed on EM-3 or EM-4 depending on asteroid return date. Recent NASA studies have raised questions on how we could progress from current Human Space Flight (HSF) efforts to longer term human exploration of Mars. This paper will describe the benefits of execution of the ARM as the initial stepping stone towards Mars exploration, and how the capabilities required to send humans to Mars could be built upon those developed for the asteroid mission. A series of potential interim missions aimed at developing such capabilities will be described, and the feasibility of such mission manifest will be discussed. Options for the asteroid crewed mission will also be addressed, including crew size and mission duration.

  8. STS-103 crew take part in CEIT

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Payload Hazardous Servicing Facility, members of the STS-103 crew get instructions on use of rib clamps for the Shield Shell Replacement Fabric (SSRF) task on repair of the Hubble Space Telescope. The seven-member crew are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly, and Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), Claude Nicollier of Switzerland, and Jean-Frangois Clervoy of France. Nicollier and Clervoy are with the European Space Agency. Mission STS-103 is a 'call-up' due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will not only replace gyroscopes, it will also replace a Fine Guidance Sensor, an older computer with a new enhanced model, an older data tape recorder with a solid state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. The scheduled launch date in October is under review.

  9. STS-103 crew take part in CEIT

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Payload Hazardous Servicing Facility, some of the STS-103 crew look over lubrication devices to be used during their mission. The seven-member crew are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly, and Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), Claude Nicollier of Switzerland, and Jean-Frangois Clervoy of France. Nicollier and Clervoy are with the European Space Agency. Mission STS-103 is a 'call-up' due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will not only replace gyroscopes, it will also replace a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. The scheduled launch date in October is under review.

  10. Crew Transportation Operations Standards

    NASA Technical Reports Server (NTRS)

    Mango, Edward J.; Pearson, Don J. (Compiler)

    2013-01-01

    The Crew Transportation Operations Standards contains descriptions of ground and flight operations processes and specifications and the criteria which will be used to evaluate the acceptability of Commercial Providers' proposed processes and specifications.

  11. STS-95 crew approach van for ride to the launch pad

    NASA Technical Reports Server (NTRS)

    1998-01-01

    After leaving the Operations and Checkout Building, the STS-95 crew wave at well-wishers as they approach the Astrovan they will board for their trip to Launch Pad 39B. Leading the group is Mission Commander Curtis L. Brown Jr. (far right); Other crew members are (left to right) Mission Specialists Scott E. Parazynski , Stephen K. Robinson, Pilot Steven W. Lindsey, Mission Specialist Pedro Duque of Spain (hidden), with the European Space Agency (ESA), Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA), and Payload Specialist John H. Glenn Jr. Targeted for launch at 2 p.m. EST on Oct. 29, the mission is expected to last 8 days, 21 hours and 49 minutes, and return to KSC at 11:49 a.m. EST on Nov. 7. The STS-95 mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  12. Thermoelectric Outer Planets Spacecraft (TOPS)

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The research and advanced development work is reported on a ballistic-mode, outer planet spacecraft using radioisotope thermoelectric generator (RTG) power. The Thermoelectric Outer Planet Spacecraft (TOPS) project was established to provide the advanced systems technology that would allow the realistic estimates of performance, cost, reliability, and scheduling that are required for an actual flight mission. A system design of the complete RTG-powered outer planet spacecraft was made; major technical innovations of certain hardware elements were designed, developed, and tested; and reliability and quality assurance concepts were developed for long-life requirements. At the conclusion of its active phase, the TOPS Project reached its principal objectives: a development and experience base was established for project definition, and for estimating cost, performance, and reliability; an understanding of system and subsystem capabilities for successful outer planets missions was achieved. The system design answered long-life requirements with massive redundancy, controlled by on-board analysis of spacecraft performance data.

  13. Expedition 7 Crew Interview: Yuri Malenchenko

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Cosmonaut Yuri Malenchenko of Expedition Seven is seen during a pre-launch interview. He begins by telling why he wanted to become a cosmonaut. Malenchenko expresses his reaction about the news of the Space Shuttle Columbia accident, and how this mission will be different from other missions. He also expresses the challenges that face Malenchenko and Ed Lu such as the crew reduction from three to two, less supplies and no space shuttle flights. Malenchenko says that he will have to work on a compressed schedule, which will make the mission even more challenging. A description of the handover of Expedition Six is given. Malenchenko and Ed Lu will be cramped in a confined space on the Soyuz Spacecraft for two days before docking, and he talks about this experience. Lastly, Malenchenko gives his thoughts on how it will be to work with Ed Lu in space, and tells of Lu's trustworthiness and reliability as a fellow crew member.

  14. The Original Gemini 9 Prime Crew

    NASA Technical Reports Server (NTRS)

    1966-01-01

    The original Gemini 9 prime crew, astronauts Elliot M. See Jr. (left), command pilot, and Charles A. Bassett II, pilot, in space suits with their helmets on the table in front of them. On February 28, 1966 the prime crew for the Gemini 9 mission were killed when their twin seat T-38 trainer jet aircraft crashed into a building in which the Gemini spacecraft were being manufactured. They were on final approach to Lambert-Saint Louis Municipal Airport when bad weather conditions hampered pilot See's ability to make a good visual contact with the runway. Noticing the building at the last second as he came out of the low cloud cover, See went to full afterburner and attempted to nose-up the aircraft in an attempt to miss the building. He clipped it and his plane crashed.

  15. Cassini Spacecraft

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Jet Propulsion Research Lab (JPL) workers use a borescope to verify the pressure relief device bellow's integrity on a radioisotope thermoelectric generator (RTG) that has been installed on the Cassini spacecraft in the Payload Hazardous Servicing Facility. The activity is part of the mechanical and electrical verification testing of RTGs during prelaunch processing. RTGs use heat from the natural decay of plutonium to generate electrical power. The three RTGs on Cassini will enable the spacecraft to operate far from the Sun where solar power systems are not feasible. They will provide electrical power to Cassini on it seven year trip to the Saturnian system and during its four year mission at Saturn.

  16. Cabin crew stress factors examined.

    PubMed

    Barayan, O S

    1991-05-01

    The impact of reduced cockpit crew on the cabin crew in commercial airlines is examined. One hundred cabin crew members participated in a study to determine what stressors are present in contemporary transport aircraft, the extent of differences in rating context-related and task-related stressors, and the effect of peak versus normal periods of duty time on stress factors. Results indicate that under peak period conditions, context-related factors are more stressful than task-related factors. Recommendations to alleviate cabin crew stress factors include training to maximize crew knowledge and abilities, elevate cabin crew to the same status as cockpit crew, improve the cabin crew certification program, and expose cabin crew to cockpit crew procedures to foster better communication and enhance safety.

  17. Fault tolerant control of spacecraft

    NASA Astrophysics Data System (ADS)

    Godard

    Autonomous multiple spacecraft formation flying space missions demand the development of reliable control systems to ensure rapid, accurate, and effective response to various attitude and formation reconfiguration commands. Keeping in mind the complexities involved in the technology development to enable spacecraft formation flying, this thesis presents the development and validation of a fault tolerant control algorithm that augments the AOCS on-board a spacecraft to ensure that these challenging formation flying missions will fly successfully. Taking inspiration from the existing theory of nonlinear control, a fault-tolerant control system for the RyePicoSat missions is designed to cope with actuator faults whilst maintaining the desirable degree of overall stability and performance. Autonomous fault tolerant adaptive control scheme for spacecraft equipped with redundant actuators and robust control of spacecraft in underactuated configuration, represent the two central themes of this thesis. The developed algorithms are validated using a hardware-in-the-loop simulation. A reaction wheel testbed is used to validate the proposed fault tolerant attitude control scheme. A spacecraft formation flying experimental testbed is used to verify the performance of the proposed robust control scheme for underactuated spacecraft configurations. The proposed underactuated formation flying concept leads to more than 60% savings in fuel consumption when compared to a fully actuated spacecraft formation configuration. We also developed a novel attitude control methodology that requires only a single thruster to stabilize three axis attitude and angular velocity components of a spacecraft. Numerical simulations and hardware-in-the-loop experimental results along with rigorous analytical stability analysis shows that the proposed methodology will greatly enhance the reliability of the spacecraft, while allowing for potentially significant overall mission cost reduction.

  18. Liquid transfer demonstration on board Apollo 14 during transearth coast

    NASA Technical Reports Server (NTRS)

    Abdalla, K. L.; Otto, E. W.; Symons, E. P.; Petrash, D. A.

    1971-01-01

    The transfer of liquid from one container to another in a weightless environment was demonstrated by the crew of Apollo 14. A scale-model liquid-transfer system was used on board the spacecraft during the transearth coast period. The liquid transfer unit consisted of a surface tension baffled tank system containing two baffle designs. Liquid was transferred between tanks with a hand pump operated by the astronaut. The results showed that liquid was efficiently transferred to and from either baffled tank to within two percent of the design value residual liquid without reaching gas ingestion. The liquid-vapor interface in the receiver tank was positioned successfully with the gas located at the vent.

  19. Crew Activity Analyzer

    NASA Technical Reports Server (NTRS)

    Murray, James; Kirillov, Alexander

    2008-01-01

    The crew activity analyzer (CAA) is a system of electronic hardware and software for automatically identifying patterns of group activity among crew members working together in an office, cockpit, workshop, laboratory, or other enclosed space. The CAA synchronously records multiple streams of data from digital video cameras, wireless microphones, and position sensors, then plays back and processes the data to identify activity patterns specified by human analysts. The processing greatly reduces the amount of time that the analysts must spend in examining large amounts of data, enabling the analysts to concentrate on subsets of data that represent activities of interest. The CAA has potential for use in a variety of governmental and commercial applications, including planning for crews for future long space flights, designing facilities wherein humans must work in proximity for long times, improving crew training and measuring crew performance in military settings, human-factors and safety assessment, development of team procedures, and behavioral and ethnographic research. The data-acquisition hardware of the CAA (see figure) includes two video cameras: an overhead one aimed upward at a paraboloidal mirror on the ceiling and one mounted on a wall aimed in a downward slant toward the crew area. As many as four wireless microphones can be worn by crew members. The audio signals received from the microphones are digitized, then compressed in preparation for storage. Approximate locations of as many as four crew members are measured by use of a Cricket indoor location system. [The Cricket indoor location system includes ultrasonic/radio beacon and listener units. A Cricket beacon (in this case, worn by a crew member) simultaneously transmits a pulse of ultrasound and a radio signal that contains identifying information. Each Cricket listener unit measures the difference between the times of reception of the ultrasound and radio signals from an identified beacon

  20. Spacecraft architecture

    NASA Technical Reports Server (NTRS)

    Zefeld, V. V.

    1986-01-01

    Three requirements for a spacecraft interior are considered. Adequate motor activity in the anatomical-physiological sense results from attention to the anthropometric characteristics of humans. Analysis of work requirements is a prerequisite for the planning of adequate performance space. The requirements for cognitive activity are also elucidated. The importance of a well-designed interior during a long space flight is discussed.

  1. Evaluation of Cabin Crew Technical Knowledge

    NASA Technical Reports Server (NTRS)

    Dunbar, Melisa G.; Chute, Rebecca D.; Jordan, Kevin

    1998-01-01

    Accident and incident reports have indicated that flight attendants have numerous opportunities to provide the flight-deck crew with operational information that may prevent or essen the severity of a potential problem. Additionally, as carrier fleets transition from three person to two person flight-deck crews, the reliance upon the cabin crew for the transfer of this information may increase further. Recent research (Chute & Wiener, 1996) indicates that light attendants do not feel confident in their ability to describe mechanical parts or malfunctions of the aircraft, and the lack of flight attendant technical training has been referenced in a number of recent reports (National Transportation Safety Board, 1992; Transportation Safety Board of Canada, 1995; Chute & Wiener, 1996). The present study explored both flight attendant technical knowledge and flight attendant and dot expectations of flight attendant technical knowledge. To assess the technical knowledge if cabin crewmembers, 177 current flight attendants from two U.S. carriers voluntarily :ompleted a 13-item technical quiz. To investigate expectations of flight attendant technical knowledge, 181 pilots and a second sample of 96 flight attendants, from the same two airlines, completed surveys designed to capture each group's expectations of operational knowledge required of flight attendants. Analyses revealed several discrepancies between the present level of flight attendants.

  2. Crew-Aided Autonomous Navigation

    NASA Technical Reports Server (NTRS)

    Holt, Greg N.

    2015-01-01

    A sextant provides manual capability to perform star/planet-limb sightings and offers a cheap, simple, robust backup navigation source for exploration missions independent from the ground. Sextant sightings from spacecraft were first exercised in Gemini and flew as the lost-communication backup for all Apollo missions. This study characterized error sources of navigation-grade sextants for feasibility of taking star and planetary limb sightings from inside a spacecraft. A series of similar studies was performed in the early/mid-1960s in preparation for Apollo missions. This study modernized and updated those findings in addition to showing feasibility using Linear Covariance analysis techniques. The human eyeball is a remarkable piece of optical equipment and provides many advantages over camera-based systems, including dynamic range and detail resolution. This technique utilizes those advantages and provides important autonomy to the crew in the event of lost communication with the ground. It can also provide confidence and verification of low-TRL automated onboard systems. The technique is extremely flexible and is not dependent on any particular vehicle type. The investigation involved procuring navigation-grade sextants and characterizing their performance under a variety of conditions encountered in exploration missions. The JSC optical sensor lab and Orion mockup were the primary testing locations. For the accuracy assessment, a group of test subjects took sextant readings on calibrated targets while instrument/operator precision was measured. The study demonstrated repeatability of star/planet-limb sightings with bias and standard deviation around 10 arcseconds, then used high-fidelity simulations to verify those accuracy levels met the needs for targeting mid-course maneuvers in preparation for Earth reen.

  3. Crew of the first manned Apollo mission practice water egress procedures

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Prime crew for the first manned Apollo mission practice water egress procedures with full scale boilerplate model of their spacecraft. In the water at right is Astronaut Edward H. White (foreground) and Astronaut Roger B. Chaffee. In raft near the spacecraft is Astronaut Virgil I. Grissom. NASA swimmers are in the water to assist in the practice session that took place at Ellington AFB, near the Manned Spacecraft Center, Houston.

  4. Soyuz Spacecraft Transported to Launch Pad

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Soyuz TMA-3 spacecraft and its booster rocket (rear view) is shown on a rail car for transport to the launch pad where it was raised to a vertical launch position at the Baikonur Cosmodrome, Kazakhstan on October 16, 2003. Liftoff occurred on October 18th, transporting a three man crew to the International Space Station (ISS). Aboard were Michael Foale, Expedition-8 Commander and NASA science officer; Alexander Kaleri, Soyuz Commander and flight engineer, both members of the Expedition-8 crew; and European Space agency (ESA) Astronaut Pedro Duque of Spain. Photo Credit: 'NASA/Bill Ingalls'

  5. Soyuz Spacecraft Transported to Launch Pad

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Soyuz TMA-3 spacecraft and its booster rocket (front view) is shown on a rail car for transport to the launch pad where it was raised to a vertical launch position at the Baikonur Cosmodrome, Kazakhstan on October 16, 2003. Liftoff occurred on October 18th, transporting a three man crew to the International Space Station (ISS). Aboard were Michael Foale, Expedition-8 Commander and NASA science officer; Alexander Kaleri, Soyuz Commander and flight engineer, both members of the Expedition-8 crew; and European Space agency (ESA) Astronaut Pedro Duque of Spain. Photo Credit: 'NASA/Bill Ingalls'

  6. Assured Crew Return Vehicle

    NASA Technical Reports Server (NTRS)

    Stone, D. A.; Craig, J. W.; Drone, B.; Gerlach, R. H.; Williams, R. J.

    1991-01-01

    The developmental status is discussed regarding the 'lifeboat' vehicle to enhance the safety of the crew on the Space Station Freedom (SSF). NASA's Assured Crew Return Vehicle (ACRV) is intended to provide a means for returning the SSF crew to earth at all times. The 'lifeboat' philosophy is the key to managing the development of the ACRV which further depends on matrixed support and total quality management for implementation. The risk of SSF mission scenarios are related to selected ACRV mission requirements, and the system and vehicle designs are related to these precepts. Four possible ACRV configurations are mentioned including the lifting-body, Apollo shape, Discoverer shape, and a new lift-to-drag concept. The SCRAM design concept is discussed in detail with attention to the 'lifeboat' philosophy and requirements for implementation.

  7. Airline Crew Training

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The discovery that human error has caused many more airline crashes than mechanical malfunctions led to an increased emphasis on teamwork and coordination in airline flight training programs. Human factors research at Ames Research Center has produced two crew training programs directed toward more effective operations. Cockpit Resource Management (CRM) defines areas like decision making, workload distribution, communication skills, etc. as essential in addressing human error problems. In 1979, a workshop led to the implementation of the CRM program by United Airlines, and later other airlines. In Line Oriented Flight Training (LOFT), crews fly missions in realistic simulators while instructors induce emergency situations requiring crew coordination. This is followed by a self critique. Ames Research Center continues its involvement with these programs.

  8. Expedition 5 Crew Interviews: Peggy Whitson

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Expedition 5 Flight Engineer Peggy Whitson is seen during a prelaunch interview. She gives details on the mission's goals and significance, her role in the mission, what her responsibilities will be, what the crew activities will be like (docking and undocking of two Progress unpiloted supply vehicles, normal space station maintenance tasks, conducting science experiments, installing the CETA (Crew and Equipment Translation) cart, and supporting the installation of the International Truss Structure S1 segment), the day-to-day life on an extended stay mission, the experiments she will be conducting on board, and what the S1 truss will mean to the International Space Station (ISS). Whitson ends with her thoughts on the short-term and long-term future of the ISS.

  9. Crew procedures development techniques

    NASA Technical Reports Server (NTRS)

    Arbet, J. D.; Benbow, R. L.; Hawk, M. L.; Mangiaracina, A. A.; Mcgavern, J. L.; Spangler, M. C.

    1975-01-01

    The study developed requirements, designed, developed, checked out and demonstrated the Procedures Generation Program (PGP). The PGP is a digital computer program which provides a computerized means of developing flight crew procedures based on crew action in the shuttle procedures simulator. In addition, it provides a real time display of procedures, difference procedures, performance data and performance evaluation data. Reconstruction of displays is possible post-run. Data may be copied, stored on magnetic tape and transferred to the document processor for editing and documentation distribution.

  10. STS-118 Crew Portrait

    NASA Technical Reports Server (NTRS)

    2007-01-01

    These seven astronauts take a break from training to pose for the STS-118 crew portrait. Pictured from the left are astronauts Richard A. 'Rick' Mastracchio, mission specialist; Barbara R. Morgan, mission specialist; Charles O. Hobaugh, pilot; Scott J. Kelly, commander; Tracy E. Caldwell, Canadian Space Agency's Dafydd R. 'Dave' Williams, and Alvin Drew Jr., all mission specialists. The crew members are attired in training versions of their shuttle launch and entry suits. The main objective of the STS-118 mission was to install the fifth Starboard (S5) truss segment on the International Space Station (ISS).

  11. Airborne particulate matter in spacecraft

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Acceptability limits and sampling and monitoring strategies for airborne particles in spacecraft were considered. Based on instances of eye and respiratory tract irritation reported by Shuttle flight crews, the following acceptability limits for airborne particles were recommended: for flights of 1 week or less duration (1 mg/cu m for particles less than 10 microns in aerodynamic diameter (AD) plus 1 mg/cu m for particles 10 to 100 microns in AD); and for flights greater than 1 week and up to 6 months in duration (0.2 mg/cu m for particles less than 10 microns in AD plus 0.2 mg/cu m for particles 10 to 100 microns in AD. These numerical limits were recommended to aid in spacecraft atmosphere design which should aim at particulate levels that are a low as reasonably achievable. Sampling of spacecraft atmospheres for particles should include size-fractionated samples of 0 to 10, 10 to 100, and greater than 100 micron particles for mass concentration measurement and elementary chemical analysis by nondestructive analysis techniques. Morphological and chemical analyses of single particles should also be made to aid in identifying airborne particulate sources. Air cleaning systems based on inertial collection principles and fine particle collection devices based on electrostatic precipitation and filtration should be considered for incorporation into spacecraft air circulation systems. It was also recommended that research be carried out in space in the areas of health effects and particle characterization.

  12. Microbial Contamination in the Spacecraft

    NASA Technical Reports Server (NTRS)

    Pierson, Duane L.

    2001-01-01

    Spacecraft and space habitats supporting human exploration contain a diverse population of microorganisms. Microorganisms may threaten human habitation in many ways that directly or indirectly impact the health, safety, or performance of astronauts. The ability to produce and maintain spacecraft and space stations with environments suitable for human habitation has been established over 40 years of human spaceflight. An extensive database of environmental microbiological parameters has been provided for short-term (< 20 days) spaceflight by more than 100 missions aboard the Space Shuttle. The NASA Mir Program provided similar data for long-duration missions. Interestingly, the major bacterial and fungal species found in the Space Shuttle are similar to those encountered in the nearly 15-year-old Mir. Lessons learned from both the US and Russian space programs have been incorporated into the habitability plan for the International Space Station. The focus is on preventive measures developed for spacecraft, cargo, and crews. On-orbit regular housekeeping practices complete with visual inspections are essential, along with microbiological monitoring. Risks associated with extended stays on the Moon or a Mars exploration mission will be much greater than previous experiences because of additional unknown variables. The current knowledge base is insufficient for exploration missions, and research is essential to understand the effects of spaceflight on biological functions and population dynamics of microorganisms in spacecraft.

  13. STS-95 crew participate in a SPACEHAB familiarization exercise

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-95 crew members get a briefing on equipment inside the SPACEHAB module from Chris Jaskolka of Boeing, second from left. Listening intently are crew members, from left, Payload Specialist Chiaki Mukai, representing the National Space Development Agency of Japan (NASDA); Mission Specialist Stephen K. Robinson; and Payload Specialist John H. Glenn Jr., who also is a senator from Ohio. STS-95 will feature a variety of research payloads, including the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Platform, the International Extreme Ultraviolet Hitchhiker, and experiments on space flight and the aging process. STS-95 is targeted for an Oct. 29 launch aboard the Space Shuttle Discovery.

  14. Passive Thrust Oscillation Mitigation for the CEV Crew Pallet System

    NASA Technical Reports Server (NTRS)

    Sammons, Matthew; Powell, Cory; Pellicciotti, Joseph; Buehrle, Ralph; Johnson, Keith

    2012-01-01

    The Crew Exploration Vehicle (CEV) was intended to be the next-generation human spacecraft for the Constellation Program. The CEV Isolator Strut mechanism was designed to mitigate loads imparted to the CEV crew caused by the Thrust Oscillation (TO) phenomenon of the proposed Ares I Launch Vehicle (LV). The Isolator Strut was also designed to be compatible with Launch Abort (LA) contingencies and landing scenarios. Prototype struts were designed, built, and tested in component, sub-system, and system-level testing. The design of the strut, the results of the tests, and the conclusions and lessons learned from the program will be explored in this paper.

  15. Crew Selection and Training

    NASA Technical Reports Server (NTRS)

    Helmreich, Robert L.

    1996-01-01

    This research addressed a number of issues relevant to the performance of teams in demanding environments. Initial work, conducted in the aviation analog environment, focused on developing new measures of performance related attitudes and behaviors. The attitude measures were used to assess acceptance of concepts related to effective teamwork and personal capabilities under stress. The behavioral measures were used to evaluate the effectiveness of flight crews operating in commercial aviation. Assessment of team issues in aviation led further to the evaluation and development of training to enhance team performance. Much of the work addressed evaluation of the effectiveness of such training, which has become known as Crew Resource Management (CRM). A second line of investigation was into personality characteristics that predict performance in challenging environments such as aviation and space. A third line of investigation of team performance grew out of the study of flight crews in different organizations. This led to the development of a theoretical model of crew performance that included not only individual attributes such as personality and ability, but also organizational and national culture. A final line of investigation involved beginning to assess whether the methodologies and measures developed for the aviation analog could be applied to another domain -- the performance of medical teams working in the operating room.

  16. STS-71 crew insignia

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The STS-71 crew patch design depicts the orbiter Atlantis in the process of the first international docking mission with the Russian Space Station Mir. The names of the 10 astronauts and cosmonauts who will fly aboard the orbiter are shown along the outer

  17. Crew Module Overview

    NASA Technical Reports Server (NTRS)

    Redifer, Matthew E.

    2011-01-01

    The presentation presents an overview of the Crew Module development for the Pad Abort 1 flight test. The presentation describes the integration activity from the initial delivery of the primary structure through the installation of vehicle subsystems, then to flight test. A brief overview of flight test results is given.

  18. Commercial Crew Launch America

    NASA Technical Reports Server (NTRS)

    Thon, Jeffrey S.

    2016-01-01

    This presentation is intended to discuss NASA's long term human exploration goals of our solar system. The emphasis will be on how our CCP (Commercial Crew Program) supports our space bound human exploration goals by encouraging commercial entities to perform missions to LEO (Low Earth Orbit), thus allowing NASA to focus on beyond LEO human exploration missions.

  19. John Glenn and rest of STS-95 crew exit Crew Transport Vehicle

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Following touchdown at 12:04 p.m. EST at the Shuttle Landing Facility, the mission STS-95 crew leave the Crew Transport Vehicle. Payload Specialist John H. Glenn Jr. (center), a senator from Ohio, shakes hands with NASA Administrator Daniel S. Goldin. At left is Center Director Roy Bridges. Other crew members shown are Pilot Steven W. Lindsey (far left) and, behind Glenn, Mission Specialists Scott E. Parazynski and Stephen K. Robinson, and Payload Specialist Chiaki Mukai, Ph.D., M.D., with the National Space Development Agency of Japan. Not seen are Mission Commander Curtis L. Brown Jr. and Mission Specialist Pedro Duque of Spain, with the European Space Agency (ESA). The STS-95 crew completed a successful mission, landing at the Shuttle Landing Facility at 12:04 p.m. EST, after 9 days in space, traveling 3.6 million miles. The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  20. Space Station crew safety - Human factors model

    NASA Technical Reports Server (NTRS)

    Cohen, M. M.; Junge, M. K.

    1984-01-01

    A model of the various human factors issues and interactions that might affect crew safety is developed. The first step addressed systematically the central question: How is this Space Station different from all other spacecraft? A wide range of possible issue was identified and researched. Five major topics of human factors issues that interacted with crew safety resulted: Protocols, Critical Habitability, Work Related Issues, Crew Incapacitation and Personal Choice. Second, an interaction model was developed that would show some degree of cause and effect between objective environmental or operational conditions and the creation of potential safety hazards. The intermediary steps between these two extremes of causality were the effects on human performance and the results of degraded performance. The model contains three milestones: stressor, human performance (degraded) and safety hazard threshold. Between these milestones are two countermeasure intervention points. The first opportunity for intervention is the countermeasure against stress. If this countermeasure fails, performance degrades. The second opportunity for intervention is the countermeasure against error. If this second countermeasure fails, the threshold of a potential safety hazard may be crossed.

  1. Autonomous spacecraft rendezvous and docking

    NASA Technical Reports Server (NTRS)

    Tietz, J. C.; Almand, B. J.

    1985-01-01

    A storyboard display is presented which summarizes work done recently in design and simulation of autonomous video rendezvous and docking systems for spacecraft. This display includes: photographs of the simulation hardware, plots of chase vehicle trajectories from simulations, pictures of the docking aid including image processing interpretations, and drawings of the control system strategy. Viewgraph-style sheets on the display bulletin board summarize the simulation objectives, benefits, special considerations, approach, and results.

  2. Autonomous spacecraft rendezvous and docking

    NASA Astrophysics Data System (ADS)

    Tietz, J. C.; Almand, B. J.

    A storyboard display is presented which summarizes work done recently in design and simulation of autonomous video rendezvous and docking systems for spacecraft. This display includes: photographs of the simulation hardware, plots of chase vehicle trajectories from simulations, pictures of the docking aid including image processing interpretations, and drawings of the control system strategy. Viewgraph-style sheets on the display bulletin board summarize the simulation objectives, benefits, special considerations, approach, and results.

  3. Getting a Crew into Orbit

    ERIC Educational Resources Information Center

    Riddle, Bob

    2011-01-01

    Despite the temporary setback in our country's crewed space exploration program, there will continue to be missions requiring crews to orbit Earth and beyond. Under the NASA Authorization Act of 2010, NASA should have its own heavy launch rocket and crew vehicle developed by 2016. Private companies will continue to explore space, as well. At the…

  4. Universal Controller for Spacecraft Mechanisms

    NASA Technical Reports Server (NTRS)

    Levanas, Greg; McCarthy, Thomas; Hunter, Don; Buchanan, Christine; Johnson, Michael; Cozy, Raymond; Morgan, Albert; Tran, Hung

    2006-01-01

    An electronic control unit has been fabricated and tested that can be replicated as a universal interface between the electronic infrastructure of a spacecraft and a brushless-motor (or other electromechanical actuator) driven mechanism that performs a specific mechanical function within the overall spacecraft system. The unit includes interfaces to a variety of spacecraft sensors, power outputs, and has selectable actuator control parameters making the assembly a mechanism controller. Several control topologies are selectable and reconfigurable at any time. This allows the same actuator to perform different functions during the mission life of the spacecraft. The unit includes complementary metal oxide/semiconductor electronic components on a circuit board of a type called rigid flex (signifying flexible printed wiring along with a rigid substrate). The rigid flex board is folded to make the unit fit into a housing on the back of a motor. The assembly has redundant critical interfaces, allowing the controller to perform time-critical operations when no human interface with the hardware is possible. The controller is designed to function over a wide temperature range without the need for thermal control, including withstanding significant thermal cycling, making it usable in nearly all environments that spacecraft or landers will endure. A prototype has withstood 1,500 thermal cycles between 120 and +85 C without significant deterioration of its packaging or electronic function. Because there is no need for thermal control and the unit is addressed through a serial bus interface, the cabling and other system hardware are substantially reduced in quantity and complexity, with corresponding reductions in overall spacecraft mass and cost.

  5. Human factors issues for interstellar spacecraft

    NASA Technical Reports Server (NTRS)

    Cohen, Marc M.; Brody, Adam R.

    1991-01-01

    Developments in research on space human factors are reviewed in the context of a self-sustaining interstellar spacecraft based on the notion of traveling space settlements. Assumptions about interstellar travel are set forth addressing costs, mission durations, and the need for multigenerational space colonies. The model of human motivation by Maslow (1970) is examined and directly related to the design of space habitat architecture. Human-factors technology issues encompass the human-machine interface, crew selection and training, and the development of spaceship infrastructure during transtellar flight. A scenario for feasible instellar travel is based on a speed of 0.5c, a timeframe of about 100 yr, and an expandable multigenerational crew of about 100 members. Crew training is identified as a critical human-factors issue requiring the development of perceptual and cognitive aids such as expert systems and virtual reality.

  6. Crew decision making under stress

    NASA Technical Reports Server (NTRS)

    Orasanu, J.

    1992-01-01

    Flight crews must make decisions and take action when systems fail or emergencies arise during flight. These situations may involve high stress. Full-missiion flight simulation studies have shown that crews differ in how effectively they cope in these circumstances, judged by operational errors and crew coordination. The present study analyzed the problem solving and decision making strategies used by crews led by captains fitting three different personality profiles. Our goal was to identify more and less effective strategies that could serve as the basis for crew selection or training. Methods: Twelve 3-member B-727 crews flew a 5-leg mission simulated flight over 1 1/2 days. Two legs included 4 abnormal events that required decisions during high workload periods. Transcripts of videotapes were analyzed to describe decision making strategies. Crew performance (errors and coordination) was judged on-line and from videotapes by check airmen. Results: Based on a median split of crew performance errors, analyses to date indicate a difference in general strategy between crews who make more or less errors. Higher performance crews showed greater situational awareness - they responded quickly to cues and interpreted them appropriately. They requested more decision relevant information and took into account more constraints. Lower performing crews showed poorer situational awareness, planning, constraint sensitivity, and coordination. The major difference between higher and lower performing crews was that poorer crews made quick decisions and then collected information to confirm their decision. Conclusion: Differences in overall crew performance were associated with differences in situational awareness, information management, and decision strategy. Captain personality profiles were associated with these differences, a finding with implications for crew selection and training.

  7. [Preliminary ergonomic assessment of the work sites and living conditions for the crew on board the new t/h Ignacy Daszyński series of merchant ships].

    PubMed

    Weclawik, Z

    1989-01-01

    The author describes the new merchant ship series B545-OT, built at the Szczecin shipyard. The preliminary appraisal of this vessel was made during the trial trip in November 1987. The experimented ship is a universal and very modern cargo boat, type B545-OT, which meets the requirements of the international conventions with respect to the prevention of sea pollution by ships. As regards its construction and equipment, the vessel complies with all conditions and international conventions on safety, as well as on health and environment protection. A control and actuation system centralized in the engine-room assures the functioning without a direct supervision. The automatic functioning of mechanisms is followed-up by means of a computed alarm system. The living-rooms, the recreation spaces, the cabins, which secure to the crew comfortable conditions on the ship, are built in a modern style. Less successfully was solved the placement of the kitchen, the dining-room and the larder on the upper deck, near the entrance to the engine-room, entailing thus the danger of steam penetration from the latter. The conditioned air assures in the cabins and living-rooms a temperature of +20 degrees C and a relative humidity of 40-60 per cent. The designers and builders have not used all the possibilities of lowering the intensity of noise.

  8. STS-112 Crew Interviews - Wolf

    NASA Technical Reports Server (NTRS)

    2002-01-01

    STS-112 Mission Specialist David Wolf is seen during this preflight interview, where he first answers questions on his career path and role models. Other questions cover mission goals, ISS (International Space Station) Expedition 5 spacecrew, crew training, the S1 Truss and its radiators, the MBS (Mobile Base Structure), his experience onboard Mir, and his EVAs (extravehicular activities) on the coming mission. The EVAs are the subject of several questions. Wolf discusses his crew members, and elsewhere discusses Pilot Pamela Melroy's role as an IV crew member during EVAs. In addition, Wolf answers questions on transfer operations, the SHIMMER experiment, and his thoughts on multinational crews and crew bonding.

  9. STS-120 Crew Portrait

    NASA Technical Reports Server (NTRS)

    2007-01-01

    These seven astronauts took a break from training to pose for the STS-120 crew portrait. Pictured from the left are astronauts Scott E. Parazynski, Douglas H. Wheelock, Stephanie D. Wilson, all mission specialists; George D. Zamka, pilot; Pamela A. Melroy, commander; Daniel M. Tani, Expedition 16 flight engineer; and Paolo A. Nespoli, mission specialist representing the European Space Agency (ESA). The crew members were attired in training versions of their shuttle launch and entry suits. Tani joined Expedition 16 as flight engineer after launching to the International Space Station (ISS) and is scheduled to return home on mission STS-122. STS-120 launched October 23, 2007 with the main objectives of installing the U.S. Node 2, Harmony, and the relocation and deployment of the P6 truss to its permanent location.

  10. STS-67 crew insignia

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Observation and remote exploration of the Universe in the ultraviolet wavelengths of light are the focus of the STS-67/ASTRO-2 mission, as depicted in the crew patch designed by the crew members. The insignia shows the ASTRO-2 telescopes in the Space Shuttle Endeavour's payload bay, orbiting high above Earth's atmosphere. The three sets of rays, diverging from the telescope on the patch atop the Instrument Pointing System (IPS), correspond to the three ASTRO-2 telescopes - the Hopkins Ultraviolet Telescope (HUT), The Ultraviolet Imaging Telescope (UIT), and the Wisconsin Ultraviolet Photo-Polarimeter Experiment (WUPPE). The telescopes are coaligned to simultaneously view the same astronomical object, as shown by the convergence of rays on the NASA symbol. This symbol also represents the excellence of the union of the NASA teams and the universality's in the exploration of the universe through astronomy. The celestial targets of ASTRO-2 include the observation of planets, stars and gala

  11. Determination of Realistic Fire Scenarios in Spacecraft

    NASA Technical Reports Server (NTRS)

    Dietrich, Daniel L.; Ruff, Gary A.; Urban, David

    2013-01-01

    This paper expands on previous work that examined how large a fire a crew member could successfully survive and extinguish in the confines of a spacecraft. The hazards to the crew and equipment during an accidental fire include excessive pressure rise resulting in a catastrophic rupture of the vehicle skin, excessive temperatures that burn or incapacitate the crew (due to hyperthermia), carbon dioxide build-up or accumulation of other combustion products (e.g. carbon monoxide). The previous work introduced a simplified model that treated the fire primarily as a source of heat and combustion products and sink for oxygen prescribed (input to the model) based on terrestrial standards. The model further treated the spacecraft as a closed system with no capability to vent to the vacuum of space. The model in the present work extends this analysis to more realistically treat the pressure relief system(s) of the spacecraft, include more combustion products (e.g. HF) in the analysis and attempt to predict the fire spread and limiting fire size (based on knowledge of terrestrial fires and the known characteristics of microgravity fires) rather than prescribe them in the analysis. Including the characteristics of vehicle pressure relief systems has a dramatic mitigating effect by eliminating vehicle overpressure for all but very large fires and reducing average gas-phase temperatures.

  12. TERRA Spacecraft

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Earth Observing System (EOS) is managed by NASA's Goddard Space Flight Center (GSFC), Greenbelt, MD, is the centerpiece of the Earth Science Enterprise (formerly called 'Mission to Planet Earth'), a long-term coordinated research effort to study the Earth as a global system. Terra was launched on December 18, 1999 aboard an ATLAS-IIAS launch vehicle from Vandenberg Air Force Base, CA. Terra is a near-polar orbiting spacecraft that will cross the equator at 10:30 am local time. Terra will collect data simultaneously from a complement of five instruments: CERES, MISR, and MODIS are proved by the US; MOPITT by Canada; and ASTER by Japan. Researchers around the world will use data from these instruments to study how the atmosphere, land, ocean, and life interact with each other on a global scale.

  13. Crew Skills and Training

    NASA Technical Reports Server (NTRS)

    Jones, Thomas; Burbank, Daniel C.; Eppler, Dean; Garrison, Robert; Harvey, Ralph; Hoffman, Paul; Schmitt, Harrison

    1998-01-01

    One of the major focus points for the workshop was the topic of crew skills and training necessary for the Mars surface mission. Discussions centered on the mix of scientific skills necessary to accomplish the proposed scientific goals, and the training environment that can bring the ground and flight teams to readiness. Subsequent discussion resulted in recommendations for specific steps to begin the process of training an experienced Mars exploration team.

  14. STS-112 Crew Portrait

    NASA Technical Reports Server (NTRS)

    2002-01-01

    JOHNSON SPACE CENTER, HOUSTON, TEXAS -- (STS112-S-002) These five astronauts and cosmonaut take a break from training to pose for the STS-112 crew portrait. Astronauts Pamela A. Melroy and Jeffrey S. Ashby, pilot and commander respectively, are in the cen ter of the photo. The mission specialists are from left to right, astronauts Sandra H. Magnus, David A. Wolf and Piers J. Sellers, and cosmonaut Fyodor Yurchikhin, who represents Rosaviakosmos.

  15. Flight Crew Health Maintenance

    NASA Technical Reports Server (NTRS)

    Gullett, C. C.

    1970-01-01

    The health maintenance program for commercial flight crew personnel includes diet, weight control, and exercise to prevent heart disease development and disability grounding. The very high correlation between hypertension and overweight in cardiovascular diseases significantly influences the prognosis for a coronary prone individual and results in a high rejection rate of active military pilots applying for civilian jobs. In addition to physical fitness the major items stressed in pilot selection are: emotional maturity, glucose tolerance, and family health history.

  16. STS-99 Crew Insignia

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The STS-99 crew members designed the flight insignia for the Shuttle Radar Topography Mission (SRTM), the most ambitious Earth mapping mission to date. Two radar anternas, one located in the Shuttle bay and the other located on the end of a 60-meter deployable mast, was used during the mission to map Earth's features. The goal was to provide a 3-dimensional topographic map of the world's surface up to the Arctic and Antarctic Circles. In the patch, the clear portion of Earth illustrates the radar beams penetrating its cloudy atmosphere and the unique understanding of the home planet that is provided by space travel. The grid on Earth reflects the mapping character of the SRTM mission. The patch depicts the Space Shuttle Endeavour orbiting Earth in a star spangled universe. The rainbow along Earth's horizon resembles an orbital sunrise. The crew deems the bright colors of the rainbow as symbolic of the bright future ahead because of human beings' venturing into space. The crew of six launched aboard the Space Shuttle Endeavor on February 11, 2000 and completed 222 hours of around the clock radar mapping gathering enough information to fill more than 20,000 CDs.

  17. Spacecraft Charging Technology, 1980

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The third Spacecraft Charging Technology Conference proceedings contain 66 papers on the geosynchronous plasma environment, spacecraft modeling, charged particle environment interactions with spacecraft, spacecraft materials characterization, and satellite design and testing. The proceedings is a compilation of the state of the art of spacecraft charging and environmental interaction phenomena.

  18. Orion Spacecraft Takes Shape

    NASA Video Gallery

    Technicians move the two halves of the Orion crew exploration vehicle's crew module into place to fuse them together at NASA's Michoud Assembly Facility in New Orleans, La. The Lockheed Martin Orio...

  19. A History of Spacecraft Environmental Control and Life Support Systems

    NASA Technical Reports Server (NTRS)

    Daues, Katherine R.

    2006-01-01

    A spacecraft's Environmental Control and Life Support (ECLS) system enables and maintains a habitable and sustaining environment for its crew. A typical ECLS system provides for atmosphere consumables and revitalization, environmental monitoring, pressure, temperature and humidity control, heat rejection (including equipment cooling), food and water supply and management, waste management, and fire detection and suppression. The following is a summary of ECLS systems used in United States (US) and Russian human spacecraft.

  20. Chromosomal aberrations in ISS crew members

    NASA Astrophysics Data System (ADS)

    Johannes, Christian; Goedecke, Wolfgang; Antonopoulos, Alexandra

    2012-07-01

    High energy radiation is a major risk factor in manned space missions. Astronauts and cosmonauts are exposed to ionising radiations of cosmic and solar origin, while on the Earth's surface people are well protected by the atmosphere and a deflecting magnetic field. There are now data available describing the dose and the quality of ionising radiation on-board of the International Space Station (ISS). Nonetheless, the effect of increased radiation dose on mutation rates of ISS crew members are hard to predict. Therefore, direct measurements of mutation rates are required in order to better estimate the radiation risk for longer duration missions. The analysis of chromosomal aberrations in peripheral blood lymphocytes is a well established method to measure radiation-induced mutations. We present data of chromosome aberration analyses from lymphocyte metaphase spreads of ISS crew members participating in short term (10-14 days) or long term (around 6 months) missions. From each subject we received two blood samples. The first sample was drawn about 10 days before launch and a second one within 3 days after return from flight. From lymphocyte cultures metaphase plates were prepared on glass slides. Giemsa stained and in situ hybridised metaphases were scored for chromosome changes in pre-flight and post-flight blood samples and the mutation rates were compared. Results obtained in chromosomal studies on long-term flight crew members showed pronounced inter-individual differences in the response to elevated radiation levels. Overall slight but significant elevations of typical radiation induced aberrations, i.e., dicentric chromosomes and reciprocal translocations have been observed. Our data indicate no elevation of mutation rates due to short term stays on-board the ISS.

  1. Crew Interface Analysis: Selected Articles on Space Human Factors Research, 1987 - 1991

    DTIC Science & Technology

    1993-07-01

    5 - O’Neal, Manahan • Process and Representation in Graphical Displays 10 - Gillan, Lewis, Rudisill • Designers’ Models of the Human...Automation, and Robotics), the Third Annual Workshop on Automation and Robotics, pp. 574-581. O’Neal, M. R. and Manahan , M. K. (1990) Spacecraft crew...CREW PROCEDURES FROM PAPER TO COMPUTERS Michael O’Neal and Meera Manahan Lockheed Engineering and Sciences Company Research directed by Marianne

  2. Two members of the STS-7 crew go over procedures in operating the RMS

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Two members of the STS-7 crew go over procedures in operating the remote manipulator system (RMS) in the JSC manipulator development facility (MDF). Dr. Sally K. Ride is one of the flight's mission specialists. Frederick H. Hauck is pilot for the crew. The station pictured is located on the aft flight deck of the actual spacecraft and the windows allow direct view of the long cargo bay. The MDF is locate in the Shuttle mockup and integration laboratory.

  3. The synergy of spacecraft electric propulsion and power

    NASA Astrophysics Data System (ADS)

    Bennett, Gary L.; Curran, Francis M.; Bankston, C. Perry; Brophy, John R.; Brandhorst, Henry W.

    1997-01-01

    The combination of spacecraft electrical power and on-board propulsion can consume as much as three-fourths of the mass of a spacecraft depending upon the mission. With the current emphasis on reducing costs (including launch vehicle costs) and on reducing the mass of future spacecraft it is apparent that the use of advanced spacecraft electrical power and on-board propulsion technologies must be employed. Some of the NASA-sponsored and other-sponsored technologies are examined showing how existing advanced power and propulsion technologies can be used to improve the performance of spacecraft. The synergistic effect of applying both advanced electrical power and advanced on-board propulsion technologies is specifically discussed.

  4. Micro-Inspector Spacecraft for Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Mueller, Juergen; Alkalai, Leon; Lewis, Carol

    2005-01-01

    NASA is seeking to embark on a new set of human and robotic exploration missions back to the Moon, to Mars, and destinations beyond. Key strategic technical challenges will need to be addressed to realize this new vision for space exploration, including improvements in safety and reliability to improve robustness of space operations. Under sponsorship by NASA's Exploration Systems Mission, the Jet Propulsion Laboratory (JPL), together with its partners in government (NASA Johnson Space Center) and industry (Boeing, Vacco Industries, Ashwin-Ushas Inc.) is developing an ultra-low mass (<3.0 kg) free-flying micro-inspector spacecraft in an effort to enhance safety and reduce risk in future human and exploration missions. The micro-inspector will provide remote vehicle inspections to ensure safety and reliability, or to provide monitoring of in-space assembly. The micro-inspector spacecraft represents an inherently modular system addition that can improve safety and support multiple host vehicles in multiple applications. On human missions, it may help extend the reach of human explorers, decreasing human EVA time to reduce mission cost and risk. The micro-inspector development is the continuation of an effort begun under NASA's Office of Aerospace Technology Enabling Concepts and Technology (ECT) program. The micro-inspector uses miniaturized celestial sensors; relies on a combination of solar power and batteries (allowing for unlimited operation in the sun and up to 4 hours in the shade); utilizes a low-pressure, low-leakage liquid butane propellant system for added safety; and includes multi-functional structure for high system-level integration and miniaturization. Versions of this system to be designed and developed under the H&RT program will include additional capabilities for on-board, vision-based navigation, spacecraft inspection, and collision avoidance, and will be demonstrated in a ground-based, space-related environment. These features make the micro

  5. TERRA Spacecraft

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Earth Observing System (EOS), managed by NASA's Goddard Space Flight Center (GSFC), Greenbelt, Maryland, is the centerpiece of the Earth Science Enterprise (formerly called "Mission to Planet Earth"), a long-term coordinated research effort to study the Earth as a global system. Terra was launched on December 18, 1999 aboard an ATLAS-IIAS launch vehicle from Vandenberg Air Force Base, California. Terra is a near-polar orbiting spacecraft that will cross the equator at 10:30 AM local time. Terra will collect data simultaneously from a complement of five instruments: CERES (Clouds and the Earth's Radiant Energy System), MISR (Multi-angle Imaging SpectroRadiometer) and MODIS (Moderate-resolution Imaging Spectroradiometer) are provided by the United States; MOPITT (Measurements Of Pollution In The Troposphere) by Canada; and ASTER (Advanced Spaceborne Thermal Emission and Reflection radiometer) by Japan. Researchers around the world will use data from these instruments to study how the atmosphere, land, ocean, and life interact with each other on a global scale. This interactive CD introduces Terra's overall objectives and its instruments, the new technologies developed for Terra, the launch of Terra, and its flight dynamics.

  6. Spacecraft -- Capsule Separation (Animation)

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Click on the image for Spacecraft -- Capsule Separation animation

    This animation shows the return capsule separating from the Stardust spacecraft.

  7. Crew appliance study

    NASA Technical Reports Server (NTRS)

    Proctor, B. W.; Reysa, R. P.; Russell, D. J.

    1975-01-01

    Viable crew appliance concepts were identified by means of a thorough literature search. Studies were made of the food management, personal hygiene, housekeeping, and off-duty habitability functions to determine which concepts best satisfy the Space Shuttle Orbiter and Modular Space Station mission requirements. Models of selected appliance concepts not currently included in the generalized environmental-thermal control and life support systems computer program were developed and validated. Development plans of selected concepts were generated for future reference. A shuttle freezer conceptual design was developed and a test support activity was provided for regenerative environmental control life support subsystems.

  8. Apollo 1 Prime Crew

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Portrait of the Apollo 1 prime crew for first manned Apollo space flight. From left to right are: Edward H. White II, Virgil I. 'Gus' Grissom, and Roger B. Chaffee. On January 27, 1967 at 5:31 p.m. CST (6:31 local time) during a routine simulated launch test onboard the Apollo Saturn V Moon rocket, an electrical short circuit inside the Apollo Command Module ignited the pure oxygen environment and within a matter of seconds all three Apollo 1 crewmembers perished.

  9. STS-63 crew portrait

    NASA Technical Reports Server (NTRS)

    1994-01-01

    With the United States and Russian flags in the background, five NASA astronauts and a Russian cosmonaut named to fly aboard the Space Shuttle Discovery for the the STS-63 mission pose for the flight crew portrait at JSC. Left to right (front row) are Janice E. Voss, mission specialist, Eileen M. Collins, pilot; James D. Wetherbee, mission commander; and Vladimir Titov of the Russian Space Agency, mission specialist. In the rear are Bernard A. Harris Jr., payload commander; and C. Michael Foale, mission specialist.

  10. STS-115 Crew Portrait

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These six astronauts take a break from training to pose for the STS-115 crew portrait. Astronauts Brent W. Jett, Jr. (right) and Christopher J. Ferguson, commander and pilot, respectively, flank the mission insignia. The mission specialists are, from left to right, astronauts Heidemarie M. Stefanyshyn-Piper, Joseph R. (Joe) Tanner, Daniel C. Burbank, and Steven G. MacLean, who represents the Canadian Space Agency. This mission continued the assembly of the International Space Station (ISS) with the installation of the truss segments P3 and P4.

  11. STS-39 Crew Portrait

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The STS-39 crew portrait includes 7 astronauts. Pictured are Charles L. Veach, mission specialist 5; Michael L. Coats, commander; Gregory J. Harbaugh, mission specialist 2; Donald R. McMonagle, mission specialist 4; L. Blaine Hammond, pilot; Richard J. Hieb, mission specialist 3; and Guion S. Buford, Jr., mission specialist 1. Launched aboard the Space Shuttle Discovery on April 28, 1991 at 7:33:14 am (EDT), STS-39 was a Department of Defense (DOD) mission. The primary unclassified payload included the Air Force Program 675 (AFP-675), the Infrared Background Signature Survey (IBSS), and the Shuttle Pallet Satellite II (SPAS II).

  12. Space Station Freedom crew training.

    PubMed

    Bobko, K J; Gibson, E G; Maroney, S A; Muccio, J D

    1990-01-01

    The nature of the Space Station Freedom Program presents an array of new and enhanced challenges which need to be addressed en route to developing an effective and affordable infrastructure for crew training. Such an infrastructure is essential for the safety and success of the program. The three major challenges that affect crew training are the long lifetime of the program (thirty years), the interdependence of successive increments, and the participation of the three International Partners (Canada, European Space Agency, and Japan) and a myriad of experimenters. This paper addresses these major challenges as they drive the development of a crew training capability and the actual conduct of crew training.

  13. Intelligent spacecraft module

    NASA Astrophysics Data System (ADS)

    Oungrinis, Konstantinos-Alketas; Liapi, Marianthi; Kelesidi, Anna; Gargalis, Leonidas; Telo, Marinela; Ntzoufras, Sotiris; Paschidi, Mariana

    2014-12-01

    The paper presents the development of an on-going research project that focuses on a human-centered design approach to habitable spacecraft modules. It focuses on the technical requirements and proposes approaches on how to achieve a spatial arrangement of the interior that addresses sufficiently the functional, physiological and psychosocial needs of the people living and working in such confined spaces that entail long-term environmental threats to human health and performance. Since the research perspective examines the issue from a qualitative point of view, it is based on establishing specific relationships between the built environment and its users, targeting people's bodily and psychological comfort as a measure toward a successful mission. This research has two basic branches, one examining the context of the system's operation and behavior and the other in the direction of identifying, experimenting and formulating the environment that successfully performs according to the desired context. The latter aspect is researched upon the construction of a scaled-model on which we run series of tests to identify the materiality, the geometry and the electronic infrastructure required. Guided by the principles of sensponsive architecture, the ISM research project explores the application of the necessary spatial arrangement and behavior for a user-centered, functional interior where the appropriate intelligent systems are based upon the existing mechanical and chemical support ones featured on space today, and especially on the ISS. The problem is set according to the characteristics presented at the Mars500 project, regarding the living quarters of six crew-members, along with their hygiene, leisure and eating areas. Transformable design techniques introduce spatial economy, adjustable zoning and increased efficiency within the interior, securing at the same time precise spatial orientation and character at any given time. The sensponsive configuration is

  14. STS-103 crew take part in CEIT in PHSF

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During a Crew Equipment Interface Test in the Payload Hazardous Servicing Facility, members of the STS-103 crew check out the Flight Support System (FSS)from above and below. The FSS is part of the primary payload on the mission to repair the Hubble Space Telescope. The seven-member crew comprises Commander Curtis L. Brown Jr., Pilot Scott J. Kelly, and Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D), Claude Nicollier of Switzerland, and Jean-Frangois Clervoy of France. Nicollier and Clervoy are with the European Space Agency. Mission STS-103 is a 'call-up' due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will not only replace gyroscopes, it will also replace a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. The scheduled launch date in October is under review.

  15. Airbag Landing Impact Performance Optimization for the Orion Crew Module

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; McKinney, John; Corliss, James M.

    2008-01-01

    This report will discuss the use of advanced simulation techniques to optimize the performance of the proposed Orion Crew Module airbag landing system design. The Boeing Company and the National Aeronautic and Space Administration s Langley Research Center collaborated in the analysis of the proposed airbag landing system for the next generation space shuttle replacement, the Orion spacecraft. Using LS-DYNA to simulate the Crew Module landing impacts, two main objectives were established and achieved: the investigation of potential methods of optimizing the airbag performance in order to reduce rebound on the anti-bottoming bags, lower overall landing loads, and increase overall Crew Module stability; and the determination of the Crew Module stability and load boundaries using the optimized airbag design, based on the potential Crew Module landing pitch angles and ground slopes in both the center of gravity forward and aft configurations. This paper describes the optimization and stability and load boundary studies and presents a summary of the results obtained and key lessons learned from this analysis.

  16. Handbook on astronaut crew motion disturbances for control system design. [in skylab

    NASA Technical Reports Server (NTRS)

    Kullas, M. C.

    1979-01-01

    The analyses and results pertinent to the characterization of the disturbances imparted to the Skylab vehicle by the T-013 crew motion experiments are summarized. Guidelines to help control system designers assess anticipated crew motion disturbances during the design cycle of a new manned spacecraft control system are provided. These guidelines, in conjunction with the T-013 characterizations outlined, begin with the control system conceptual design and conclude with preliminary expectations for pointing performance as affected by crew motions. Block diagrams to highlight the contents so that the reader can easily identify the information and data flow are used. These diagrams provide a handy cross reference of related topics.

  17. EMI from Spacecraft Docking Systems Spacecraft Charging - Plasma Contact Potentials

    NASA Technical Reports Server (NTRS)

    Norgard, John D.; Scully, Robert; Musselman, Randall

    2012-01-01

    The plasma contact potential of a visiting vehicle (VV), such as the Orion Service Module (SM), is determined while docking at the Orion Crew Exploration Vehicle (CEV). Due to spacecraft charging effects on-orbit, the potential difference between the CEV and the VV can be large at docking, and an electrostatic discharge (ESD) could occur at capture, which could degrade, disrupt, damage, or destroy sensitive electronic equipment on the CEV and/or VV. Analytical and numerical models of the CEV are simulated to predict the worst-case potential difference between the CEV and the VV when the CEV is unbiased (solar panels unlit: eclipsed in the dark and inactive) or biased (solar panels sunlit: in the light and active).

  18. Astronaut Frank Borman looks over the Gemini 7 spacecraft

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Astronaut Frank Borman, command pilot of the Gemini 7 prime crew, looks over the Gemini 7 spacecraft during weight and balance tests. The tests are conducted in the Pyrotechnic Installation Building, Merritt Island, Kennedy Space Center as part of preflight preparation.

  19. STS-101 Crew Interview / Scott Horowitz

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Live footage of a preflight interview with Pilot Scott J. Horowitz is seen. The interview addresses many different questions including why Horowitz became an astronaut, the events that led to his interest, any role models that he had, and his inspiration. Other interesting information that this one-on-one interview discusses is the reaction and reasons for the splitting-up of the objectives for STS-101 with STS-106. Horowitz also mentions the scheduled space-walk, docking with the International Space Station (ISS), the new glass cockpit of Atlantis, the repairs of equipment and change of the batteries. Horowitz also discusses his responsibilities during the space-walk, and docking of the spacecraft. He stresses that he will have an added challenge during the space-walk, his inability to see where he needs to place the Extravehicular Activities (EVA) crew.

  20. Deployable Crew Quarters

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo

    2008-01-01

    The deployable crew quarters (DCQ) have been designed for the International Space Station (ISS). Each DCQ would be a relatively inexpensive, deployable boxlike structure that is designed to fit in a rack bay. It is to be occupied by one crewmember to provide privacy and sleeping functions for the crew. A DCQ comprises mostly hard panels, made of a lightweight honeycomb or matrix/fiber material, attached to each other by cloth hinges. Both faces of each panel are covered with a layer of Nomex cloth and noise-suppression material to provide noise isolation from ISS. On Earth, the unit is folded flat and attached to a rigid pallet for transport to the ISS. On the ISS, crewmembers unfold the unit and install it in place, attaching it to ISS structural members by use of soft cords (which also help to isolate noise and vibration). A few hard pieces of equipment (principally, a ventilator and a smoke detector) are shipped separately and installed in the DCQ unit by use of a system of holes, slots, and quarter-turn fasteners. Full-scale tests showed that the time required to install a DCQ unit amounts to tens of minutes. The basic DCQ design could be adapted to terrestrial applications to satisfy requirements for rapid deployable emergency shelters that would be lightweight, portable, and quickly erected. The Temporary Early Sleep Station (TeSS) currently on-orbit is a spin-off of the DCQ.

  1. JOSE, Jupiter orbiting spacecraft: A systems study, volume 1

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A brief summary of the mechanical properties of Jupiter is presented along with an organizational outline of the entire JOSE program. Other aspects of the program described include: spacecraft design, mission trajectories, altitude control, propulsion subsystem, on-board power supply, spacecraft structures and environmental design considerations, and telemetry.

  2. The code of conduct for International Space Station crews.

    PubMed

    Farand, A

    2001-02-01

    On 15 September 2000 in Washington DC, the Multilateral Coordination Board (MCB), the highest-level cooperative body established by the Memoranda of Understanding (MOUs) pertaining to the International Space Station (ISS) Programme signed early in 1998 by NASA and each of the Cooperating Agencies designated by the other ISS Partners (i.e. the Russian Space Agency, ESA, the Government of Japan and the Canadian Space Agency), approved the Code of Conduct for International Space Station Crews. This document contains a set of standards agreed by all Partners to govern the conduct of ISS crew members, starting with the first expedition crew launched from Baikonur in Kazakhstan on 31 October 2000. These standards had been developed over the previous six months by teams of Agency officials, working in close consultation with the competent authorities of the Partner States.

  3. Fire Safety in the Low-Gravity Spacecraft Environment

    NASA Technical Reports Server (NTRS)

    Friedman, Robert

    1999-01-01

    Research in microgravity (low-gravity) combustion promises innovations and improvements in fire prevention and response for human-crew spacecraft. Findings indicate that material flammability and fire spread in microgravity are significantly affected by atmospheric flow rate, oxygen concentration, and diluent composition. This information can lead to modifications and correlations to standard material-assessment tests for prediction of fire resistance in space. Research on smoke-particle changes in microgravity promises future improvements and increased sensitivity of smoke detectors in spacecraft. Research on fire suppression by extinguishing agents and venting can yield new information on effective control of the rare, but serious fire events in spacecraft.

  4. Embedded Thermal Control for Spacecraft Subsystems Miniaturization

    NASA Technical Reports Server (NTRS)

    Didion, Jeffrey R.

    2014-01-01

    Optimization of spacecraft size, weight and power (SWaP) resources is an explicit technical priority at Goddard Space Flight Center. Embedded Thermal Control Subsystems are a promising technology with many cross cutting NSAA, DoD and commercial applications: 1.) CubeSatSmallSat spacecraft architecture, 2.) high performance computing, 3.) On-board spacecraft electronics, 4.) Power electronics and RF arrays. The Embedded Thermal Control Subsystem technology development efforts focus on component, board and enclosure level devices that will ultimately include intelligent capabilities. The presentation will discuss electric, capillary and hybrid based hardware research and development efforts at Goddard Space Flight Center. The Embedded Thermal Control Subsystem development program consists of interrelated sub-initiatives, e.g., chip component level thermal control devices, self-sensing thermal management, advanced manufactured structures. This presentation includes technical status and progress on each of these investigations. Future sub-initiatives, technical milestones and program goals will be presented.

  5. NASA Contingency Shuttle Crew Support (CSCS) Medical Operations

    NASA Technical Reports Server (NTRS)

    Adams, Adrien

    2010-01-01

    The genesis of the space shuttle began in the 1930's when Eugene Sanger came up with the idea of a recyclable rocket plane that could carry a crew of people. The very first Shuttle to enter space was the Shuttle "Columbia" which launched on April 12 of 1981. Not only was "Columbia" the first Shuttle to be launched, but was also the first to utilize solid fuel rockets for U.S. manned flight. The primary objectives given to "Columbia" were to check out the overall Shuttle system, accomplish a safe ascent into orbit, and to return back to earth for a safe landing. Subsequent to its first flight Columbia flew 27 more missions but on February 1st, 2003 after a highly successful 16 day mission, the Columbia, STS-107 mission, ended in tragedy. With all Shuttle flight successes come failures such as the fatal in-flight accident of STS 107. As a result of the STS 107 accident, and other close-calls, the NASA Space Shuttle Program developed contingency procedures for a rescue mission by another Shuttle if an on-orbit repair was not possible. A rescue mission would be considered for a situation where a Shuttle and the crew were not in immediate danger, but, was unable to return to Earth or land safely. For Shuttle missions to the International Space Station (ISS), plans were developed so the Shuttle crew would remain on board ISS for an extended period of time until rescued by a "rescue" Shuttle. The damaged Shuttle would subsequently be de-orbited unmanned. During the period when the ISS Crew and Shuttle crew are on board simultaneously multiple issues would need to be worked including, but not limited to: crew diet, exercise, psychological support, workload, and ground contingency support

  6. Spacecraft Water Exposure Guidelines (SWEGs)

    NASA Technical Reports Server (NTRS)

    James, John T.

    2008-01-01

    As the protection of crew health is a primary focus of the National Aeronautics and Space Administration, the Space and Life Sciences Directorate (SLSD) is vigilant in setting potable water limits for spaceflight that are health protective. Additional it is important that exposure limits not be set so stringently that water purification systems are unnecessarily over designed. With these considerations in mind, NASA has partnered with the National Research Council on Toxicology (NRCCOT) to develop spacecraft water exposure guidelines (SWEGs) for application in spaceflight systems. Based on documented guidance (NRC, 2000) NASA has established 28 SWEGs for chemical components that are particularly relevant to water systems on the International Space Station, the Shuttle and looking forward to Constellation.

  7. Spacecraft radiator systems

    NASA Technical Reports Server (NTRS)

    Anderson, Grant A. (Inventor)

    2012-01-01

    A spacecraft radiator system designed to provide structural support to the spacecraft. Structural support is provided by the geometric "crescent" form of the panels of the spacecraft radiator. This integration of radiator and structural support provides spacecraft with a semi-monocoque design.

  8. Contingent plan structures for spacecraft

    NASA Technical Reports Server (NTRS)

    Drummond, M.; Currie, K.; Tate, A.

    1987-01-01

    Most current AI planners build partially ordered plan structures which delay decisions on action ordering. Such structures cannot easily represent contingent actions. A representation which can is presented. The representation has some other useful features: it provides a good account of the causal structure of a plan, can be used to describe disjunctive actions, and it offers a planner the opportunity of even less commitment than the classical partial order on actions. The use of this representation is demonstrated in an on-board spacecraft activity sequencing problem. Contingent plan execution in a spacecraft context highlights the requirements for a fully disjunctive representation, since communication delays often prohibit extensive ground-based accounting for remotely sensed information and replanning on execution failure.

  9. STS-107 Crew Interviews: Ilan Ramon, Mission Specialist

    NASA Technical Reports Server (NTRS)

    2002-01-01

    STS-107 Mission Specialist Ilan Ramon is seen during this preflight interview, where he gives a quick overview of the mission before answering questions about his inspiration to become an astronaut and his career path. He outlines his role in the mission in general, and specifically in conducting on-board science experiments. He discusses the following instruments and sets of experiments in detail: CM2 (Combustion Module 2), FREESTAR (Fast Reaction Enabling Science Technology and Research), MEIDEX (Mediterranean Israeli Dust Experiment) and MGM (Mechanics of Granular Materials). Ramon also mentions on-board activities during launch and reentry, mission training and microgravity research. In addition, he touches on the dual work-shift nature of the mission, the use of crew members as research subjects including pre and postflight monitoring activities, the emphasis on crew safety during training and the value of international cooperation.

  10. Flight Crew Health Stabilization Program

    NASA Technical Reports Server (NTRS)

    Johnston, Smith L.

    2010-01-01

    This document establishes the policy and procedures for the HSP and is authorized through the Director, Johnson Space Center (JSC). This document delineates the medical operations requirements for the HSP. The HSP goals are accomplished through an awareness campaign and procedures such as limiting access to flight crewmembers, medical screening, and controlling flight crewmember activities. NASA's Human Space Flight Program uses strategic risk mitigation to achieve mission success while protecting crew health and safety. Infectious diseases can compromise crew health and mission success, especially in the immediate preflight period. The primary purpose of the Flight Crew Health Stabilization Program (HSP) is to mitigate the risk of occurrence of infectious disease among astronaut flight crews in the immediate preflight period. Infectious diseases are contracted through direct person-to-person contact, and through contact with infectious material in the environment. The HSP establishes several controls to minimize crew exposure to infectious agents. The HSP provides a quarantine environment for the crew that minimizes contact with potentially infectious material. The HSP also limits the number of individuals who come in close contact with the crew. The infection-carrying potential of these primary contacts (PCs) is minimized by educating them in ways to avoid infections and avoiding contact with the crew if they are or may be sick. The transmission of some infectious diseases can be greatly curtailed by vaccinations. PCs are strongly encouraged to maintain updated vaccinations.

  11. STS-71 preflight crew portrait

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Crew members for the STS-71 mission and the related Mir missions assembled for a crew portrait at JSC. In front are, left to right, Vladimir N. Dezhurov, Robert L. Gibson and Anatoliy Y. Solovyev, mission commanders for Mir-18, STS-71 and Mir-19, respecti

  12. Flight crew health stabilization program

    NASA Technical Reports Server (NTRS)

    Wooley, B. C.; Mccollum, G. W.

    1975-01-01

    The flight crew health stabilization program was developed to minimize or eliminate the possibility of adverse alterations in the health of flight crews during immediate preflight, flight, and postflight periods. The elements of the program, which include clinical medicine, immunology, exposure prevention, and epidemiological surveillance, are discussed briefly. No crewmember illness was reported for the missions for which the program was in effect.

  13. Cabin Air Quality On Board Mir and the International Space Station: A Comparison

    NASA Technical Reports Server (NTRS)

    Macatangay, Ariel; Perry, Jay L.

    2007-01-01

    The maintenance of the cabin atmosphere aboard spacecraft is critical not only to its habitability but also to its function. Ideally, air quality can be maintained by striking a proper balance between the generation and removal of contaminants. Both very dynamic processes, the balance between generation and removal can be difficult to maintain and control because the state of the cabin atmosphere is in constant evolution responding to different perturbations. Typically, maintaining a clean cabin environment on board crewed spacecraft and space habitats is the central function of the environmental control and life support (ECLS) system. While active air quality control equipment is deployed on board every vehicle to remove carbon dioxide, water vapor, and trace chemical components from the cabin atmosphere, perturbations associated with logistics, vehicle construction and maintenance, and ECLS system configuration influence the resulting cabin atmospheric quality. The air-quality data obtained from the International Space Station (ISS) and NASA-Mir programs provides a wealth of information regarding the maintenance of the cabin atmosphere aboard long-lived space habitats. A comparison of the composition of the trace chemical contaminant load is presented. Correlations between ground-based and in-flight operations that influence cabin atmospheric quality are identified and discussed, and observations on cabin atmospheric quality during the NASA-Mir expeditions and the International Space Station are explored.

  14. Crew Transportation Technical Management Processes

    NASA Technical Reports Server (NTRS)

    Mckinnie, John M. (Compiler); Lueders, Kathryn L. (Compiler)

    2013-01-01

    Under the guidance of processes provided by Crew Transportation Plan (CCT-PLN-1100), this document, with its sister documents, International Space Station (ISS) Crew Transportation and Services Requirements Document (CCT-REQ-1130), Crew Transportation Technical Standards and Design Evaluation Criteria (CCT-STD-1140), Crew Transportation Operations Standards (CCT STD-1150), and ISS to Commercial Orbital Transportation Services Interface Requirements Document (SSP 50808), provides the basis for a National Aeronautics and Space Administration (NASA) certification for services to the ISS for the Commercial Provider. When NASA Crew Transportation System (CTS) certification is achieved for ISS transportation, the Commercial Provider will be eligible to provide services to and from the ISS during the services phase.

  15. The STS-95 crew participates in a media briefing before returning to JSC

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The day after their return to Earth on board the orbiter Discovery, members of the STS-95 crew participate in a media briefing at the Kennedy Space Center Press Site Auditorium before returning to the Johnson Space Center in Houston, Texas. From left to right are Lisa Malone, moderator and chief of NASA Public Affairs' Media Services at Kennedy Space Center; Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist and Payload Commander Stephen K. Robinson; Mission Specialist Scott E. Parazynski; Mission Specialist Pedro Duque, with the European Space Agency (ESA); Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA); and Payload Specialist John H. Glenn Jr., a senator from Ohio and one of the original seven Project Mercury astronauts. The STS-95 mission ended with landing at Kennedy Space Center's Shuttle Landing Facility at 12:04 p.m. EST on Nov. 7. The mission included research payloads such as the Spartan-201 solar- observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as a SPACEHAB single module with experiments on space flight and the aging process.

  16. Crew Interviews: Treschev

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Sergei Treschev is a Cosmonaut of the Rocket Space Corporation Energia, (RSC), from Volynsky District, Lipetsk Region (Russia). He graduated from Moscow Energy Institute. After years of intense training with RSC Energia, he was selected as International Space Station (ISS) Increment 5 flight engineer. The Expedition-Five crew (two Russian cosmonauts and one American astronaut) will stay on the station for approximately 5 months. The Multipurpose Logistics Module, or MPLM, will carry experiment racks and three stowage and resupply racks to the station. The mission will also install a component of the Canadian Arm called the Mobile Base System (MBS) to the Mobile Transporter (MT) installed during STS-110. This completes the Canadian Mobile Servicing System, or MSS. The mechanical arm will now have the capability to "inchworm" from the U.S. Lab fixture to the MSS and travel along the Truss to work sites.

  17. STS-97 Crew Interview: Carlos Noriega, MS3

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The STS-97 Mission Specialist Carlos Noriega is seen being interviewed. He answers questions about his inspiration to become an astronaut, his career path, and his training. He gives details on the mission's goals and significance, its payload, the rendez-vous with the International Space Station (ISS), and what it will be like to work knowing there is already a crew on board the ISS.

  18. Taurus lightweight manned spacecraft Earth orbiting vehicle

    NASA Technical Reports Server (NTRS)

    Chase, Kevin A.; Vandersall, Eric J.; Plotkin, Jennifer; Travisano, Jeffrey J.; Loveless, Dennis; Kaczmarek, Michael; White, Anthony G.; Est, Andy; Bulla, Gregory; Henry, Chris

    1991-01-01

    The Taurus Lightweight Manned Spacecraft (LMS) was developed by students of the University of Maryland's Aerospace Engineering course in Space Vehicle Design. That course required students to design an Alternative Manned Spacecraft (AMS) to augment or replace the Space Transportation System and meet the following design requirements: (1) launch on the Taurus Booster being developed by Orbital Sciences Corporation; (2) 99.9 percent assured crew survival rate; (3) technology cutoff data of 1 Jan. 1991; (4) compatibility with current space administration infrastructure; and (5) first flight by May 1995. The Taurus LMS design meets the above requirements and represents an initial step towards larger and more complex spacecraft. The Taurus LMS has a very limited application when compared to the Space Shuttle, but it demonstrates that the U.S. can have a safe, reliable, and low cost space system. The Taurus LMS is a short mission duration spacecraft designed to place one man into low earth orbit (LEO). The driving factor for this design was the low payload carrying capabilities of the Taurus Booster--1300 kg to a 300 km orbit. The Taurus LMS design is divided into six major design sections. The human factors system deals with the problems of life support and spacecraft cooling. The propulsion section contains the abort system, the Orbital Maneuvering System (OMS), the Reaction Control System (RCS), and power generation. The thermal protection systems and spacecraft structure are contained in the structures section. The avionics section includes navigation, attitude determination, data processing, communication systems, and sensors. The mission analysis section was responsible for ground processing and spacecraft astrodynamics. The systems integration section pulled the above sections together into one spacecraft and addressed costing and reliability.

  19. Taurus Lightweight Manned Spacecraft Earth orbiting vehicle

    NASA Technical Reports Server (NTRS)

    Bosset, M.

    1991-01-01

    The Taurus Lightweight Manned Spacecraft (LMS) was developed by students of the University of Maryland's Aerospace Engineering course in Space Vehicle Design. That course required students to design an Alternative Manned Spacecraft (AMS) to augment or replace the Space Transportation System and meet the following design requirements: (1) launch on the Taurus Booster being developed by Orbital Sciences Corporation; (2) 99.9 percent assured crew survival rate; (3) technology cutoff date of 1 Jan. 1991; (4) compatibility with current space administration infrastructure; and (5) first flight by May 1995. The Taurus LMS design meets the above requirements and represents an initial step toward larger and more complex spacecraft. The Taurus LMS has a very limited application when compared to the space shuttle, but it demonstrates that the U.S. can have a safe, reliable, and low-cost space system. The Taurus LMS is a short mission duration spacecraft designed to place one man into low Earth orbit (LEO). The driving factor for this design was the low payload carrying capabilities of the Taurus Booster - 1300 kg to a 300-km orbit. The Taurus LMS design is divided into six major design sections. The Human Factors section deals with the problems of life support and spacecraft cooling. The Propulsion section contains the Abort System, the Orbital Maneuvering System (OMS), the Reaction Control System (RCS), and Power Generation. The thermal protection systems and spacecraft structure are contained in the Structures section. The Avionics section includes Navigation, Attitude Determination, Data Processing, Communication systems, and Sensors. The Mission Analysis section was responsible for ground processing and spacecraft astrodynamics. The Systems Integration Section pulled the above sections together into one spacecraft, and addressed costing and reliability.

  20. STS-69 Crew members display 'Dog Crew' patches

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Following their arrival at KSC's Shuttle Landing Facility, the five astronauts assigned to Space Shuttle Mission STS-69 display the unofficial crew patch for their upcoming spaceflight: the Dog Crew II patch. Mission Commander David M. Walker (center) and Payload Commander James S. Voss (second from right) previously flew together on Mission STS-53, the final dedicated Department of Defense flight on the Space Shuttle. A close comradery formed among Walker, Voss and the rest of the crew, and they dubbed themselves the 'dogs of war', with each of the STS-53 'Dog Crew' members assigned a 'dog tag' or nickname. When the STS-69 astronauts also became good buddies, they decided it was time for the Dog Crew II to be named. Walker's dog tag is Red Dog, Voss's is Dogface, Pilot Kenneth D. Cockrell (second from left) is Cujo, space rookie and Mission Specialist Michael L. Gernhardt (left) is Under Dog, and Mission Specialist James H. Newman (right) is Pluato. The Dog Crew II patch features a bulldog peering out from a doghouse shaped like the Space Shuttle and lists the five crew member's dog names. The five astronauts are scheduled to lift off on the fifth Shuttle flight of the year at 11:04 a.m. EDT, August 31, aboard the Space Shuttle Endeavour.

  1. Using Drained Spacecraft Propellant Tanks for Habitation

    NASA Technical Reports Server (NTRS)

    Thomas, Andrew S. W.

    2009-01-01

    A document proposes that future spacecraft for planetary and space exploration be designed to enable reuse of drained propellant tanks for occupancy by humans. This proposal would enable utilization of volume and mass that would otherwise be unavailable and, in some cases, discarded. Such utilization could enable reductions in cost, initial launch mass, and number of launches needed to build up a habitable outpost in orbit about, or on the surface of, a planet or moon. According to the proposal, the large propellant tanks of a spacecraft would be configured to enable crews to gain access to their interiors. The spacecraft would incorporate hatchways, between a tank and the crew volume, that would remain sealed while the tank contained propellant and could be opened after the tank was purged by venting to outer space and then refilled with air. The interior of the tank would be pre-fitted with some habitation fixtures that were compatible with the propellant environment. Electrical feed-throughs, used originally for gauging propellants, could be reused to supply electric power to equipment installed in the newly occupied space. After a small amount of work, the tank would be ready for long-term use as a habitation module.

  2. International Space Station Crew Restraint Design

    NASA Technical Reports Server (NTRS)

    Whitmore, M.; Norris, L.; Holden, K.

    2005-01-01

    With permanent human presence onboard the International Space Station (ISS), crews will be living and working in microgravity, dealing with the challenges of a weightless environment. In addition, the confined nature of the spacecraft environment results in ergonomic challenges such as limited visibility and access to the activity areas, as well as prolonged periods of unnatural postures. Without optimum restraints, crewmembers may be handicapped for performing some of the on-orbit tasks. Currently, many of the tasks on ISS are performed with the crew restrained merely by hooking their arms or toes around handrails to steady themselves. This is adequate for some tasks, but not all. There have been some reports of discomfort/calluses on the top of the toes. In addition, this type of restraint is simply insufficient for tasks that require a large degree of stability. Glovebox design is a good example of a confined workstation concept requiring stability for successful use. They are widely used in industry, university, and government laboratories, as well as in the space environment, and are known to cause postural limitations and visual restrictions. Although there are numerous guidelines pertaining to ventilation, seals, and glove attachment, most of the data have been gathered in a 1-g environment, or are from studies that were conducted prior to the early 1980 s. Little is known about how best to restrain a crewmember using a glovebox in microgravity. In 2004, The Usability Testing and Analysis Facility (UTAF) at the NASA Johnson Space Center completed development/evaluation of several design concepts for crew restraints to meet the various needs outlined above. Restraints were designed for general purpose use, for teleoperation (Robonaut) and for use with the Life Sciences Glovebox. All design efforts followed a human factors engineering design lifecycle, beginning with identification of requirements followed by an iterative prototype/test cycle. Anthropometric

  3. STS-112 Crew Training Clip

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Footage shows the crew of STS-112 (Jeffrey Ashby, Commander; Pamela Melroy, Pilot; David Wolf, Piers Sellers, Sandra Magnus, and Fyodor Yurchikhin, Mission Specialists) during several parts of their training. The video is arranged into short segments. In 'Topside Activities at the NBL', Wolf and Sellers are fitted with EVA suits for pool training. 'Pre-Launch Bailout Training in CCT II' shows all six crew members exiting from the hatch on a model of a shuttle orbiter cockpit. 'EVA Training in the VR Lab' shows a crew member training with a virtual reality simulator, interspersed with footage of Magnus, and Wolf with Melroy, at monitors. There is a 'Crew Photo Session', and 'Pam Melroy and Sandy Magnus at the SES Dome' also features a virtual reality simulator. The final two segments of the video involve hands-on training. 'Post Landing Egress at the FFT' shows the crew suiting up into their flight suits, and being raised on a harness, to practice rapelling from the cockpit hatch. 'EVA Prep and Post at the ISS Airlock' shows the crew assembling an empty EVA suit onboard a model of a module. The crew tests oxygen masks, and Sellers is shown on an exercise bicycle with an oxygen mask, with his heart rate monitored (not shown).

  4. STS-103 crew practice emergency egress in the slidewire basket

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the slidewire basket on Launch Pad 39B, STS-103 Mission Specialist Steven L. Smith reaches for the lever that will release the basket. With Smith is fellow crew member Mission Specialist Jean-Frangois Clervoy of France. The baskets are part of the emergency egress system for persons in the Shuttle vehicle or on the Rotating Service Structure. Seven slidewires extend from the orbiter access arm, with a netted, flatbottom basket suspended from each wire. The STS-103 crew are taking part in Terminal Countdown Demonstration Test (TCDT) activities in preparation for launch. The other crew members are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly, and Mission Specialists C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), and Claude Nicollier of Switzerland. Clervoy and Nicollier are with the European Space Agency. The TCDT provides the crew with the emergency egress training, opportunities to inspect their mission payloads in the orbiter's payload bay, and simulated countdown exercises. STS-103 is a 'call-up' mission due to the need to replace and repair portions of the Hubble Space Telescope, including the gyroscopes that allow the telescope to point at stars, galaxies and planets. The STS-103 crew will be replacing a Fine Guidance Sensor, an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The mission is targeted for launch Dec. 6 at 2:37 a.m. EST.

  5. STS-103 crew practice emergency egress in the slidewire basket

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the slidewire basket on Launch Pad 39B, STS-103 Mission Specialist C. Michael Foale (Ph.D.) gets ready to pull the lever, which will release the basket. With Foale are fellow crew members Mission Specialists Claude Nicollier of Switzerland and John M. Grunsfeld (Ph.D.). The baskets are part of the emergency egress system for persons in the Shuttle vehicle or on the Rotating Service Structure. Seven slidewires extend from the orbiter access arm, with a netted, flatbottom basket suspended from each wire. The STS-103 crew are taking part in Terminal Countdown Demonstration Test (TCDT) activities in preparation for launch. The other crew members taking part are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly, and Mission Specialists Steven L. Smith, and Jean-Frangois Clervoy of France. Clervoy and Nicollier are with the European Space Agency. The TCDT provides the crew with the emergency egress training, opportunities to inspect their mission payloads in the orbiter's payload bay, and simulated countdown exercises. STS-103 is a 'call-up' mission due to the need to replace and repair portions of the Hubble Space Telescope, including the gyroscopes that allow the telescope to point at stars, galaxies and planets. The STS-103 crew will be replacing a Fine Guidance Sensor, an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The mission is targeted for launch Dec. 6 at 2:37 a.m. EST.

  6. STS-112 crew leave the crew transport vehicle after landing

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- As the STS-112 crew leaves the crew transport vehicle, they are greeted by mission managers and guests. The crew, from left, are Mission Specialists David Wolf, Fyodor Yurchikhin and Sandra Magnus; Pilot Pamela Melroy; Piers Sellers (talking to Acting Deputy Director JoAnn Morgan) and Commander Jeffrey Ashby (talking to Launch Director Mike Leinbach). Morgan is also Director of External Relations and Business Development. The crew returned to KSC after completing a 4.5-million-mile journey to the International Space Station. Main gear touchdown occurred at 11:43:40 a.m. EDT; nose gear touchdown at 11:43:48 a.m.; and wheel stop at 11:44:35 a.m. Mission elapsed time was 10:19:58:44. Mission STS-112 expanded the size of the Station with the addition of the S1 truss segment. .

  7. Flight Crew Integration (FCI) ISS Crew Comments Database & Products Summary

    NASA Technical Reports Server (NTRS)

    Schuh, Susan

    2016-01-01

    This Crew Debrief Data provides support for design and development of vehicles, hardware, requirements, procedures, processes, issue resolution, lessons learned, consolidation and trending for current Programs; and much of the data is also used to support development of future Programs.

  8. Developing a Crew Time Model for Human Exploration Missions to Mars

    NASA Technical Reports Server (NTRS)

    Battfeld, Bryan; Stromgren, Chel; Shyface, Hilary; Cirillo, William; Goodliff, Kandyce

    2015-01-01

    Candidate human missions to Mars require mission lengths that could extend beyond those that have previously been demonstrated during crewed Lunar (Apollo) and International Space Station (ISS) missions. The nature of the architectures required for deep space human exploration will likely necessitate major changes in how crews operate and maintain the spacecraft. The uncertainties associated with these shifts in mission constructs - including changes to habitation systems, transit durations, and system operations - raise concerns as to the ability of the crew to complete required overhead activities while still having time to conduct a set of robust exploration activities. This paper will present an initial assessment of crew operational requirements for human missions to the Mars surface. The presented results integrate assessments of crew habitation, system maintenance, and utilization to present a comprehensive analysis of potential crew time usage. Destination operations were assessed for a short (approx. 50 day) and long duration (approx. 500 day) surface habitation case. Crew time allocations are broken out by mission segment, and the availability of utilization opportunities was evaluated throughout the entire mission progression. To support this assessment, the integrated crew operations model (ICOM) was developed. ICOM was used to parse overhead, maintenance and system repair, and destination operations requirements within each mission segment - outbound transit, Mars surface duration, and return transit - to develop a comprehensive estimation of exploration crew time allocations. Overhead operational requirements included daily crew operations, health maintenance activities, and down time. Maintenance and repair operational allocations are derived using the Exploration Maintainability and Analysis Tool (EMAT) to develop a probabilistic estimation of crew repair time necessary to maintain systems functionality throughout the mission.

  9. Crew Survivability After a Rapid Cabin Depressurization Event

    NASA Technical Reports Server (NTRS)

    Sargusingh, Miriam J.

    2012-01-01

    Anecdotal evidence acquired through historic failure investigations involving rapid cabin decompression (e.g. Challenger, Columbia and Soyuz 11) show that full evacuation of the cabin atmosphere may occur within seconds. During such an event, the delta-pressure between the sealed suit ventilation system and the cabin will rise at the rate of the cabin depressurization; potentially at a rate exceeding the capability of the suit relief valve. It is possible that permanent damage to the suit pressure enclosure and ventilation loop components may occur as the integrated system may be subjected to delta pressures in excess of the design-to pressures. Additionally, as the total pressure of the suit ventilation system decreases, so does the oxygen available to the crew. The crew may be subjected to a temporarily incapacitating, but non-lethal, hypoxic environment. It is expected that the suit will maintain a survivable atmosphere on the crew until the vehicle pressure control system recovers or the cabin has otherwise attained a habitable environment. A common finding from the aforementioned reports indicates that the crew would have had a better chance at surviving the event had they been in a protective configuration, that is, in a survival suit. Making use of these lessons learned, the Constellation Program implemented a suit loop in the spacecraft design and required that the crew be in a protective configuration, that is suited with gloves on and visors down, during dynamic phases of flight that pose the greatest risk for a rapid and uncontrolled cabin depressurization event: ascent, entry, and docking. This paper details the evaluation performed to derive suit pressure garment and ventilation system performance parameters that would lead to the highest probability of crew survivability after an uncontrolled crew cabin depressurization event while remaining in the realm of practicality for suit design. This evaluation involved: (1) assessment of stakeholder

  10. Apollo 14 prime crew during water egress training in the Gulf of Mexico

    NASA Technical Reports Server (NTRS)

    1970-01-01

    Members of the Apollo 14 crew train in the Gulf of Mexico for the water egress phase of their upcoming mission. They are in the raft waiting ascension to the Coast Guard hellicopter via the 'Billy Pugh' net. Manned Spacecraft Center swimmers assist in the water egress simulation.

  11. Operational Philosophy Concerning Manned Spacecraft Cabin Leaks

    NASA Technical Reports Server (NTRS)

    DeSimpelaere, Edward

    2011-01-01

    The last thirty years have seen the Space Shuttle as the prime United States spacecraft for manned spaceflight missions. Many lessons have been learned about spacecraft design and operation throughout these years. Over the next few decades, a large increase of manned spaceflight in the commercial sector is expected. This will result in the exposure of commercial crews and passengers to many of the same risks crews of the Space Shuttle have encountered. One of the more dire situations that can be encountered is the loss of pressure in the habitable volume of the spacecraft during on orbit operations. This is referred to as a cabin leak. This paper seeks to establish a general cabin leak response philosophy with the intent of educating future spacecraft designers and operators. After establishing a relative definition for a cabin leak, the paper covers general descriptions of detection equipment, detection methods, and general operational methods for management of a cabin leak. Subsequently, all these items are addressed from the perspective of the Space Shuttle Program, as this will be of the most value to future spacecraft due to similar operating profiles. Emphasis here is placed upon why and how these methods and philosophies have evolved to meet the Space Shuttle s needs. This includes the core ideas of: considerations of maintaining higher cabin pressures vs. lower cabin pressures, the pros and cons of a system designed to feed the leak with gas from pressurized tanks vs. using pressure suits to protect against lower cabin pressures, timeline and consumables constraints, re-entry considerations with leaks of unknown origin, and the impact the International Space Station (ISS) has had to the standard Space Shuttle cabin leak response philosophy. This last item in itself includes: procedural management differences, hardware considerations, additional capabilities due to the presence of the ISS and its resource, and ISS docking/undocking considerations with a

  12. On-Board Training for US Payloads

    NASA Technical Reports Server (NTRS)

    Murphy, Benjamin; Meacham, Steven (Technical Monitor)

    2001-01-01

    The International Space Station (ISS) crew follows a training rotation schedule that puts them in the United States about every three months for a three-month training window. While in the US, the crew receives training on both ISS systems and payloads. Crew time is limited, and system training takes priority over payload training. For most flights, there is sufficient time to train all systems and payloads. As more payloads are flown, training time becomes a more precious resource. Less training time requires payload developers (PDs) to develop alternatives to traditional ground training. To ensure their payloads have sufficient training to achieve their scientific goals, some PDs have developed on-board trainers (OBTs). These OBTs are used to train the crew when no or limited ground time is available. These lessons are also available on-orbit to refresh the crew about their ground training, if it was available. There are many types of OBT media, such as on-board computer based training (OCBT), video/photo lessons, or hardware simulators. The On-Board Training Working Group (OBTWG) and Courseware Development Working Group (CDWG) are responsible for developing the requirements for the different types of media.

  13. STS-116 Crew Portrait

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This is the STS-116 Crew Portrait. Pictured on the front row from left to right are: William Oefelein, pilot; Joan Higginbotham, mission specialist; and Mark Polansky, commander. On the back row, left to right, are: Robert Curbeam, Nicholas Patrick, Sunita Williams, and the European Space Agency's Christer Fuglesang, all mission specialists. Williams joined Expedition 14 in progress to serve as flight engineer aboard the International Space Station (ISS). Launched aboard the Space Shuttle Discovery on December 9, 2006, the seven delivered two high profile Marshall Space Flight Center (MSFC') payloads: The Lab-On-A Chip Application Development Portable Test System (LOCAD-PTS) and the Water Delivery System, a vital component of the Station's Oxygen Generation System. The primary mission objective was to deliver and install the P5 truss element. The P5 installation was conducted during the first of three space walks, and involved use of both the shuttle and station's robotic arms. The remainder of the mission included a major reconfiguration and activation of the ISS electrical and thermal control systems, as well as delivery of Zvezda Service Module debris panels, which will increase ISS protection from potential impacts of micro-meteorites and orbital debris.

  14. STS-112 Crew Portrait

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These 5 astronauts and cosmonaut, all members of the STS-112 mission, pose for a crew portrait. Pictured from left to right are: Astronauts Sandra H. Magnus, mission specialist; David A. Wolf, mission specialist; Pamela A. Melroy, pilot; Jeffrey S. Ashby, commander; Piers J. Sellers, mission specialist; and cosmonaut Fyodor Yurchikhin, mission specialist representing Rosaviakosmos. STS-112 launched aboard the Space Shuttle Atlantis October 7, 2002 for an 11-day mission completing three sessions of Extra Vehicular Activity(EVA). Its primary mission was to install the Starboard (S1) Integrated Truss Structure and Equipment Translation Aid (CETA) Cart to the ISS. The S1 truss provides structural support for the orbiting research facility's radiator panels, which use ammonia to cool the Station's complex power system. The S1 truss, attached to the S0 (S Zero) truss installed by the previous STS-110 mission, flows 637 pounds of anhydrous ammonia through three heat rejection radiators. The truss is 45-feet long, 15-feet wide, 10-feet tall, and weighs approximately 32,000 pounds. The CETA is the first of two human-powered carts that will ride along the railway on the ISS providing a mobile work platform for future extravehicular activities by astronauts.

  15. Holographic Weapons Sight as Crew Optical Alignment Sight

    NASA Technical Reports Server (NTRS)

    Merancy, Nujoud; Dehmlow, Brian; Brazzel, Jack P.

    2011-01-01

    Crew Optical Alignment Sights (COAS) are used by spacecraft pilots to provide a visual reference to a target spacecraft for lateral relative position during rendezvous and docking operations. NASA s Orion vehicle, which is currently under development, has not included a COAS in favor of automated sensors, but the crew office has requested such a device be added for situational awareness and contingency support. The current Space Shuttle COAS was adopted from Apollo heritage, weighs several pounds, and is no longer available for procurement which would make re-use difficult. In response, a study was conducted to examine the possibility of converting a commercially available weapons sight to a COAS for the Orion spacecraft. The device used in this study was the XPS series Holographic Weapon Sight (HWS) procured from L-3 EOTech. This device was selected because the targeting reticule can subtend several degrees, and display a graphic pattern tailored to rendezvous and docking operations. Evaluations of the COAS were performed in both the Orion low-fidelity mockup and rendezvous simulations in the Reconfigurable Operational Cockpit (ROC) by crewmembers, rendezvous engineering experts, and flight controllers at Johnson Space Center. These evaluations determined that this unit s size and mounting options can support proper operation and that the reticule visual qualities are as good as or better than the current Space Shuttle COAS. The results positively indicate that the device could be used as a functional COAS and supports a low-cost technology conversion solution.

  16. Communication indices of crew coordination

    NASA Technical Reports Server (NTRS)

    Kanki, B. G.; Lozito, S.; Foushee, H. C.

    1989-01-01

    The relationship between communication patterns and performance in 10 two-person flightcrews is explored with the aim of identifying speech variations which differentiate low- and high-error full mission simulator flights. Verbal data, transcribed from the videotaped performances, are treated as interactive sequences of speech events in which statements spoken by one crewmember are considered within the context of the other crewmember's prior and subsequent speech. Specific speech patterns characterized each crew, but the overriding findings included: a) marked homogeneity of patterns characterizing low-error crews, interpreted as the adoption of a standard form of communicating, and b) heterogeneity of patterns characterizing high-error crews, interpreted as the relative absence of a conventionalized form. Because conventions are regularities which confirm the expectations of those involved, predictability of crewmember behavior should be greater when standard conventions are followed. We conclude that such a practice can facilitate the coordination process and enhance crew performance.

  17. Commercial Crew Planning Status Forum

    NASA Video Gallery

    NASA presents an overview of common themes captured from industry responses provided to NASA's Commercial Crew Initiative Request for Information (RFI) published on May 21, 2010. The forum includes...

  18. Spacecraft propulsion: new methods.

    PubMed

    Alfvén, H

    1972-04-14

    Cosmic plasmas contain energy which may be tapped and used for spacecraft propulsion. The energy needed for launching a spacecraft could be supplied to it from the ground through a plasma channel in the atmosphere.

  19. Space Shuttle Wireless Crew Communications

    NASA Technical Reports Server (NTRS)

    Armstrong, R. W.; Doe, R. A.

    1982-01-01

    The design, development, and performance characteristics of the Space Shuttle's Wireless Crew Communications System are discussed. This system allows Space Shuttle crews to interface with the onboard audio distribution system without the need for communications umbilicals, and has been designed through the adaptation of commercially available hardware in order to minimize development time. Testing aboard the Space Shuttle Orbiter Columbia has revealed no failures or design deficiencies.

  20. Coordinated crew performance in commercial aircraft operations

    NASA Technical Reports Server (NTRS)

    Murphy, M. R.

    1977-01-01

    A specific methodology is proposed for an improved system of coding and analyzing crew member interaction. The complexity and lack of precision of many crew and task variables suggest the usefulness of fuzzy linguistic techniques for modeling and computer simulation of the crew performance process. Other research methodologies and concepts that have promise for increasing the effectiveness of research on crew performance are identified.

  1. ISS Crew Transportation and Services Requirements Document

    NASA Technical Reports Server (NTRS)

    Bayt, Robert L. (Compiler); Lueders, Kathryn L. (Compiler)

    2016-01-01

    The ISS Crew Transportation and Services Requirements Document (CCT-REQ-1130) contains all technical, safety, and crew health medical requirements that are mandatory for achieving a Crew Transportation System Certification that will allow for International Space Station delivery and return of NASA crew and limited cargo. Previously approved on TN23183.

  2. The Actual Gemini 9 Prime Crew

    NASA Technical Reports Server (NTRS)

    1966-01-01

    The Gemini 9 backup crew members are, Commander, Thomas P. Stafford and pilot Eugene A. Cernan. The back-up crew became the prime crew when on February 28, 1966 the prime crew for the Gemini 9 mission were killed when their twin seat T- 38 trainer jet aircraft crashed into a building during a landing approach in bad weather.

  3. Automation of crew procedures using multifunction display and control systems

    NASA Technical Reports Server (NTRS)

    Spiger, R. J.; Tonkin, M. H.

    1982-01-01

    A multifunction display and control system (MFDCS) design concept has been developed for the Orbiter spacecraft. The system provides for automation of crew procedures, fault prioritization, incorporation of checklists and procedures into the display and control system and system flexibility in response to mission variation, increased experience and advancing display and control technology. Hardware included in the system includes a multifunction keyboard using programmable legend switches, a medium size flat panel display for presentation of alphanumeric information and a color CRT for the display of schematic diagrams. The access schema for the multifunction display and control system preserves the single function capability of the present set of dedicated switches while also providing for automation of many of the checklists and procedures. A basic design feature of the system is the ability to change the relative level of automation and crew interaction without modifying the system hardware or basic software operating system.

  4. STS-95 crew participate in a SPACEHAB familiarization exercise

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-95 crew members (from left) Mission Specialist Scott E. Parazynski, Payload Specialist John H. Glenn Jr., Payload Specialist Chiaki Mukai (with camera) representing the National Space Development Agency of Japan (NASDA), and Pilot Steven Lindsey listen to Hideo Ishikawa of NASDA, who explains some of the flight equipment at SPACEHAB Payload Processing Facility, Cape Canaveral, Fla. The STS-95 crew is at KSC to look at the SPACEHAB module and the equipment that will fly with them on the Space Shuttle Endeavor, scheduled to launch Oct. 29, 1998. The mission includes research payloads such as the Spartan solar- observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  5. STS-95 crew participate in a SPACEHAB familiarization exercise

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-95 crew members (from left) Mission Specialists Scott E. Parazynski, Payload Specialist John H. Glenn Jr., Payload Specialist Chiaki Mukai, representing the National Space Development Agency of Japan (NASDA), and Pilot Steven W. Lindsey look over equipment that Hideo Ishikawa of NASDA has presented at SPACEHAB Payload Processing Facility, Cape Canaveral, Fla. The STS-95 crew is at KSC to look at the SPACEHAB module and the equipment that will fly with them on the Space Shuttle Discovery, scheduled to launch Oct. 29, 1998. The mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  6. Spacecraft Charging Technology, 1978

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The interaction of the aerospace environment with spacecraft surfaces and onboard, high voltage spacecraft systems operating over a wide range of altitudes from low Earth orbit to geosynchronous orbit is considered. Emphasis is placed on control of spacecraft electric potential. Electron and ion beams, plasma neutralizers material selection, and magnetic shielding are among the topics discussed.

  7. Building the future of WaferSat spacecraft for relativistic spacecraft

    NASA Astrophysics Data System (ADS)

    Brashears, Travis; Lubin, Philip; Rupert, Nic; Stanton, Eric; Mehta, Amal; Knowles, Patrick; Hughes, Gary B.

    2016-09-01

    Recently, there has been a dramatic change in the way space missions are viewed. Large spacecraft with massive propellant-filled launch stages have dominated the space industry since the 1960's, but low-mass CubeSats and low-cost rockets have enabled a new approach to space exploration. In recent work, we have built upon the idea of extremely low mass (sub 1 kg), propellant-less spacecraft that are accelerated by photon propulsion from dedicated directed-energy facilities. Advanced photonics on a chip with hybridized electronics can be used to implement a laser-based communication system on board a sub 1U spacecraft that we call a WaferSat. WaferSat spacecraft are equipped with reflective sails suitable for propulsion by directed-energy beams. This low-mass spacecraft design does not require onboard propellant, creating significant new opportunities for deep space exploration at a very low cost. In this paper, we describe the design of a prototype WaferSat spacecraft, constructed on a printed circuit board. The prototype is envisioned as a step toward a design that could be launched on an early mission into Low Earth Orbit (LEO), as a key milestone in the roadmap to interstellar flight. In addition to laser communication, the WaferSat prototype includes subsystems for power source, attitude control, digital image acquisition, and inter-system communications.

  8. Orion Spacecraft MMOD Protection Design and Assessment

    NASA Technical Reports Server (NTRS)

    Bohl, W.; Miller, J.; Deighton, K.; Yasensky, J.; Foreman C.; Christiansen, Eric; Hyde, J.; Nahra, H.

    2010-01-01

    The Orion spacecraft will replace the Space Shuttle Orbiter for American and international partner access to the International Space Station by 2015 and, afterwards, for access to the moon for initial sorties and later for extended outpost visits as part of the Constellation Exploration Initiative. This work describes some of the efforts being undertaken to ensure that the Constellation Program, Orion Crew Exploration Vehicle design will meet or exceed the stringent micrometeoroid and orbital debris (MMOD) requirements set out by NASA when exposed to the environments encountered with these missions. This paper will provide a brief overview of the approaches being used to provide MMOD protection to the Orion vehicle and to assess the spacecraft for compliance to the Constellation Program s MMOD requirements.

  9. Crew interface analysis: Selected articles on space human factors research, 1987 - 1991

    NASA Technical Reports Server (NTRS)

    Bagian, Tandi (Compiler)

    1993-01-01

    As part of the Flight Crew Support Division at NASA, the Crew Interface Analysis Section is dedicated to the study of human factors in the manned space program. It assumes a specialized role that focuses on answering operational questions pertaining to NASA's Space Shuttle and Space Station Freedom Programs. One of the section's key contributions is to provide knowledge and information about human capabilities and limitations that promote optimal spacecraft and habitat design and use to enhance crew safety and productivity. The section provides human factors engineering for the ongoing missions as well as proposed missions that aim to put human settlements on the Moon and Mars. Research providing solutions to operational issues is the primary objective of the Crew Interface Analysis Section. The studies represent such subdisciplines as ergonomics, space habitability, man-computer interaction, and remote operator interaction.

  10. Docking structure for spacecraft

    NASA Technical Reports Server (NTRS)

    Belew, R. R. (Inventor)

    1973-01-01

    A docking structure for a pair of spacecraft is described comprising a conical receptacle on the docking end of a first spacecraft that receives a mating conical projection on the docking end of the second spacecraft. The conical receptacle of the first spacecraft constitutes an exterior portion of a sealed gas-tight compartment. Pressurization of the sealed compartment causes the conical receptacle to extend toward the incoming conical projection of the second spacecraft. When the mating conical portions are latched together, the docking energy is absorbed by the compressed gas in the sealed compartment. Rebound forces are countered by a plurality of actuator cylinders supporting the conical receptacle.

  11. Large-Scale Spacecraft Fire Safety Tests

    NASA Technical Reports Server (NTRS)

    Urban, David; Ruff, Gary A.; Ferkul, Paul V.; Olson, Sandra; Fernandez-Pello, A. Carlos; T'ien, James S.; Torero, Jose L.; Cowlard, Adam J.; Rouvreau, Sebastien; Minster, Olivier; Toth, Balazs; Legros, Guillaume; Eigenbrod, Christian; Smirnov, Nickolay; Fujita, Osamu; Jomaas, Grunde

    2014-01-01

    . The first flight (Saffire-1) is scheduled for July 2015 with the other two following at six-month intervals. A computer modeling effort will complement the experimental effort. Although the experiment will need to meet rigorous safety requirements to ensure the carrier vehicle does not sustain damage, the absence of a crew removes the need for strict containment of combustion products. This will facilitate the first examination of fire behavior on a scale that is relevant to spacecraft fire safety and will provide unique data for fire model validation.

  12. Special Purpose Crew Restraints for Teleoperation

    NASA Technical Reports Server (NTRS)

    Whitmore, Mihriban; Holden, Kritina; Norris, Lena

    2004-01-01

    With permanent human presence onboard the International Space Station (ISS), and long duration space missions being planned for the moon and Mars, humans will be living and working in microgravity over increasingly long periods of time. In addition to weightlessness, the confined nature of a spacecraft environment results in ergonomic challenges such as limited visibility, and access to the activity area. These challenges can result in prolonged periods of unnatural postures for the crew, ultimately causing pain, injury, and loss of productivity. Determining the right set of human factors requirements and providing an ergonomically designed environment is crucial to mission success. While a number of general purpose restraints have been used on ISS (handrails, foot loops), experience has shown that these general purpose restraints may not be optimal, or even acceptable for some tasks that have unique requirements. For example, some onboard activities require extreme stability (e.g., glovebox microsurgery), and others involve the use of arm, torso and foot movements in order to perform the task (e-g. robotic teleoperation); standard restraint systems will not work in these situations. The Usability Testing and Analysis Facility (WAF) at the NASA Johnson Space Center began evaluations of crew restraints for these special situations by looking at NASAs Robonaut. Developed by the Robot Systems Technology Branch, Robonaut is a humanoid robot that can be remotely operated through a tetepresence control system by an operator. It was designed to perform work in hazardous environments (e.g., Extra Vehicular Activities). A Robonaut restraint was designed, modeled for the population, and ultimately tested onboard the KC-135 microgravity aircraft. While in microgravity, participants were asked to get in and out of the restraint from different locations, perform maximum reach exercises, and finally to teleoperate Robonaut while in the restraint. The sessions were videotaped

  13. An Analysis of Shuttle Crew Scheduling Violations

    NASA Technical Reports Server (NTRS)

    Bristol, Douglas

    2012-01-01

    From the early years of the Space Shuttle program, National Aeronautics and Space Administration (NASA) Shuttle crews have had a timeline of activities to guide them through their time on-orbit. Planners used scheduling constraints to build timelines that ensured the health and safety of the crews. If a constraint could not be met it resulted in a violation. Other agencies of the federal government also have scheduling constraints to ensure the safety of personnel and the public. This project examined the history of Space Shuttle scheduling constraints, constraints from Federal agencies and branches of the military and how these constraints may be used as a guide for future NASA and private spacecraft. This was conducted by reviewing rules and violations with regard to human aerospace scheduling constraints, environmental, political, social and technological factors, operating environment and relevant human factors. This study includes a statistical analysis of Shuttle Extra Vehicular Activity (EVA) related violations to determine if these were a significant producer of constraint violations. It was hypothesized that the number of SCSC violations caused by EVA activities were a significant contributor to the total number of violations for Shuttle/ISS missions. Data was taken from NASA data archives at the Johnson Space Center from Space Shuttle/ISS missions prior to the STS-107 accident. The results of the analysis rejected the null hypothesis and found that EVA violations were a significant contributor to the total number of violations. This analysis could help NASA and commercial space companies understand the main source of constraint violations and allow them to create constraint rules that ensure the safe operation of future human private and exploration missions. Additional studies could be performed to evaluate other variables that could have influenced the scheduling violations that were analyzed.

  14. Supporting Crewed Missions using LiAISON Navigation in the Earth-Moon System

    NASA Astrophysics Data System (ADS)

    Leonard, Jason M.

    Crewed navigation in certain regions of the Earth-Moon system provides a unique challenge due to the unstable dynamics and observation geometry relative to standard Earth-based tracking systems. The focus of this thesis is to advance the understanding of navigation precision in the Earth-Moon system, analyzing the observability of navigation data types frequently used to navigate spacecraft, and to provide a better understanding of the influence of a crewed vehicle disturbance model for future manned missions in the Earth-Moon system. In this research, a baseline for navigation performance of a spacecraft in a Lagrange point orbit in the Earth-Moon system is analyzed. Using operational ARTEMIS tracking data, an overlap analysis of the reconstructed ARTEMIS trajectory states is conducted. This analysis provides insight into the navigation precision of a spacecraft traversing a Lissajous orbit about the Earth-Moon L1 point. While the ARTEMIS analysis provides insight into the navigation precision using ground based tracking methods, an examination of the benefits of introducing Linked Autonomous Interplanetary Satellite Orbit Navigation (LiAISON) is investigated. This examination provides insight into the benefits and disadvantages of LiAISON range and range-rate measurements for trajectories in the Earth-Moon system. In addition to the characterization of navigation precision for spacecraft in the Earth-Moon system, an analysis of the uncertainty propagation for noisy crewed vehicles and quiet robotic spacecraft is given. Insight is provided on the characteristics of uncertainty propagation and how it is correlated to the instability of the Lagrange point orbit. A crewed vehicle disturbance model is provided based on either Gaussian or Poisson assumptions. The natural tendency for the uncertainty distribution in a Lagrange point orbit is to align with the unstable manifold after a certain period of propagation. This behavior is influenced directly by the unstable

  15. DMSP Spacecraft Charging in Auroral Environments

    NASA Technical Reports Server (NTRS)

    Colson, Andrew; Minow, Joseph

    2011-01-01

    The Defense Meteorological Satellite Program (DMSP) spacecraft are a series of low-earth orbit (LEO) satellites whose mission is to observe the space environment using the precipitating energetic particle spectrometer (SSJ/4-5). DMSP satellites fly in a geosynchronous orbit at approx.840 km altitude which passes through Earth s ionosphere. The ionosphere is a region of partially ionized gas (plasma) formed by the photoionization of neutral atoms and molecules in the upper atmosphere of Earth. For satellites in LEO, such as DMSP, the plasma density is usually high and the main contributors to the currents to the spacecraft are the precipitating auroral electrons and ions from the magnetosphere as well as the cold plasma that constitutes the ionosphere. It is important to understand how the ionosphere and auroral electrons can accumulate surface charges on satellites because spacecraft charging has been the cause of a number of significant anomalies for on-board instrumentation on high altitude spacecraft. These range from limiting the sensitivity of measurements to instrument malfunction depending on the magnitude of the potential difference over the spacecraft surface. Interactive Data Language (IDL) software was developed to process SSJ/4-5 electron and ion data and to create a spectrogram of the particles number and energy fluxes. The purpose of this study is to identify DMSP spacecraft charging events and to present a preliminary statistical analysis. Nomenclature

  16. Asteroid Redirect Crewed Mission Nominal Design and Performance

    NASA Technical Reports Server (NTRS)

    Condon, Gerald; williams, Jacob

    2014-01-01

    In 2010, the President announced that, in 2025, the U.S. intended to launch a human mission to an asteroid [1]. This announcement was followed by the idea of a Capability Driven Framework (CDF) [2], which is based on the idea of evolving capabilities from less demanding to more demanding missions to multiple possible destinations and with increased flexibility, cost effectiveness and sustainability. Focused missions, such as a NASA inter-Center study that examined the viability and implications of sending a crew to a Near Earth Asteroid (NEA) [3], provided a way to better understand and evaluate the utility of these CDF capabilities when applied to an actual mission. The long duration of the NEA missions were contrasted with a concept described in a study prepared for the Keck Institute of Space Studies (KISS) [4] where a robotic spacecraft would redirect an asteroid to the Earth-Moon vicinity, where a relatively short duration crewed mission could be conducted to the captured asteroid. This mission concept was included in the National Aeronautics and Space Administration (NASA) fiscal year 2014 budget request, as submitted by the NASA Administrator [5]. NASA studies continued to examine the idea of a crewed mission to a captured asteroid in the Earth-Moon vicinity. During this time was an announcement of NASA's Asteroid Grand Challenge [6]. Key goals for the Asteroid Grand Challenge are to locate, redirect, and explore an asteroid, as well as find and plan for asteroid threats. An Asteroid Redirect Mission (ARM) study was being conducted, which supports this Grand Challenge by providing understanding in how to execute an asteroid rendezvous, capture it, and redirect it to Earth-Moon space, and, in particular, to a distant retrograde orbit (DRO). Subsequent to the returning of the asteroid to a DRO, would be the launch of a crewed mission to rendezvous with the redirected asteroid. This report examines that crewed mission by assessing the Asteroid Redirect Crewed

  17. Crew-Centered Operations: What HAL 9000 Should Have Been

    NASA Technical Reports Server (NTRS)

    Korsmeyer, David J.; Clancy, Daniel J.; Crawford, James M.; Drummond, Mark E.

    2005-01-01

    To date, manned space flight has maintained the locus of control for the mission on the ground. Mission control performs tasks such as activity planning, system health management, resource allocation, and astronaut health monitoring. Future exploration missions require the locus of control to shift to on-board due light speed constraints and potential loss of communication. The lunar campaign must begin to utilize a shared control approach to validate and understand the limitations of the technology allowing astronauts to oversee and direct aspects of operation that require timely decision making. Crew-centered Operations require a system-level approach that integrates multiple technologies together to allow a crew-prime concept of operations. This paper will provide an overview of the driving mission requirements, highlighting the limitations of existing approaches to mission operations and identifying the critical technologies necessary to enable a crew-centered mode of operations. The paper will focus on the requirements, trade spaces, and concepts for fulfillment of this capability. The paper will provide a broad overview of relevant technologies including: Activity Planning and Scheduling; System Monitoring; Repair and Recovery; Crew Work Practices.

  18. AMO EXPRESS: A Command and Control Experiment for Crew Autonomy Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Stetson, Howard K.; Haddock, Angie T.; Frank, Jeremy; Cornelius, Randy; Wang, Lui; Garner, Larry

    2015-01-01

    NASA is investigating a range of future human spaceflight missions, including both Mars-distance and Near Earth Object (NEO) targets. Of significant importance for these missions is the balance between crew autonomy and vehicle automation. As distance from Earth results in increasing communication delays, future crews need both the capability and authority to independently make decisions. However, small crews cannot take on all functions performed by ground today, and so vehicles must be more automated to reduce the crew workload for such missions. NASA's Advanced Exploration Systems Program funded Autonomous Mission Operations (AMO) project conducted an autonomous command and control experiment on-board the International Space Station that demonstrated single action intelligent procedures for crew command and control. The target problem was to enable crew initialization of a facility class rack with power and thermal interfaces, and involving core and payload command and telemetry processing, without support from ground controllers. This autonomous operations capability is enabling in scenarios such as initialization of a medical facility to respond to a crew medical emergency, and representative of other spacecraft autonomy challenges. The experiment was conducted using the Expedite the Processing of Experiments for Space Station (EXPRESS) rack 7, which was located in the Port 2 location within the U.S Laboratory onboard the International Space Station (ISS). Activation and deactivation of this facility is time consuming and operationally intensive, requiring coordination of three flight control positions, 47 nominal steps, 57 commands, 276 telemetry checks, and coordination of multiple ISS systems (both core and payload). Utilization of Draper Laboratory's Timeliner software, deployed on-board the ISS within the Command and Control (C&C) computers and the Payload computers, allowed development of the automated procedures specific to ISS without having to certify

  19. A Comparison of Photocatalytic Oxidation Reactor Performance for Spacecraft Cabin Trace Contaminant Control Applications

    NASA Technical Reports Server (NTRS)

    Perry, Jay L.; Frederick, Kenneth R.; Scott, Joseph P.; Reinermann, Dana N.

    2011-01-01

    Photocatalytic oxidation (PCO) is a maturing process technology that shows potential for spacecraft life support system application. Incorporating PCO into a spacecraft cabin atmosphere revitalization system requires an understanding of basic performance, particularly with regard to partial oxidation product production. Four PCO reactor design concepts have been evaluated for their effectiveness for mineralizing key trace volatile organic com-pounds (VOC) typically observed in crewed spacecraft cabin atmospheres. Mineralization efficiency and selectivity for partial oxidation products are compared for the reactor design concepts. The role of PCO in a spacecraft s life support system architecture is discussed.

  20. STS-30 Magellan spacecraft processing at Kennedy Space Center (KSC) SAEF-2

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Clean-suited technicians attach mobility castors (ground handling cart) to Magellan spacecraft in the Space Assembly and Encapsulation Facility 2 (SAEF-2) at the Kennedy Space Center (KSC). The castors will allow the spacecraft to be moved within the clean room of the SAEF-2 planetary spacecraft checkout facility. The spacecraft has just been hoisted from the transport trailer of the Payload Environmental Transportation System (PETS). Magellan, destined for unprecedented studies of Venusian topographic features, will be deployed by the crew of NASA's STS-30 mission in April 1989. View provided by KSC with alternate number KSC-88PC-1086.

  1. STS-103 crew take part in CEIT in OPF 1

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Orbiter Processing Facility (OPF) bay 1, STS-103 crew members check out equipment to be used on planned Extravehicular Activities (EVAs) on the mission for repair of the Hubble Space Telescope. They are taking part in a Crew Equipment Interface Test (CEIT) at KSC. From left are Mission Specialists C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), Claude Nicollier of Switzerland, and Steven L. Smith. Other crew members at KSC for the CEIT are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly, and Jean-Frangois Clervoy of France. Nicollier and Clervoy are with the European Space Agency. Mission STS-103 is a 'call-up' due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will not only replace gyroscopes, it will also replace a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. The scheduled launch date in October is under review.

  2. Circuit Boards on Rover 2

    NASA Technical Reports Server (NTRS)

    2003-01-01

    April 15, 2003Prelaunch at Kennedy Space Center

    In the Payload Hazardous Servicing Facility, technicians remove one of the circuit boards on the Mars Exploration Rover 2 (MER-2). To gain access to the spacecraft, its lander petals were reopened and its solar panels deployed. A concern arose during prelaunch testing regarding how the spacecraft interprets signals sent from its main computer to peripherals in the cruise stage, lander and small deep space transponder. The MER Mission consists of two identical rovers set to launch in June 2003. The problem will be fixed on both rovers.

  3. The Miniature Autonomous Extravehicular Robotic Camera (MiniAERCam) for Spacecraft Inspection and Remote

    NASA Technical Reports Server (NTRS)

    Mitchell, Jennifer D.; Fredericksn, S.

    2004-01-01

    AERCam is a nano-satellite class free-flying spacecraft with a full suite of avionics, propulsion, navigation, and communications. 1) 3 major development programs, one ending in DTO of protoflight unit, other two ending in ground demonstrations with integrated hardware and software. 2) Incremental increase in capability to reduce crew workload, provide better inspection capability. 3) Two crew evaluations and 4) Significant technology advancement.

  4. Readiness for First Crewed Flight

    NASA Technical Reports Server (NTRS)

    Schaible, Dawn M.

    2011-01-01

    The NASA Engineering and Safety Center (NESC) was requested to develop a generic framework for evaluating whether any given program has sufficiently complete and balanced plans in place to allow crewmembers to fly safely on a human spaceflight system for the first time (i.e., first crewed flight). The NESC assembled a small team which included experts with experience developing robotic and human spaceflight and aviation systems through first crewed test flight and into operational capability. The NESC team conducted a historical review of the steps leading up to the first crewed flights of Mercury through the Space Shuttle. Benchmarking was also conducted with the United States (U.S.) Air Force and U.S. Navy. This report contains documentation of that review.

  5. Expedition 7 Crew Training Clip

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This video shows the Expedition 7 crew of the International Space Station (ISS) during various training activities prior to launch. The crew consisted of Commander Yuri Malenchenko and Flight Engineer Ed Lu. At the virtual reality lab, the two astronauts work at a control panel, with Lu operating a joystick and speaking on earphones. Another section of the video shows Lu and Malenchenko inputting data into laptop computers, Lu testing an intercom and a video camera, and Lu using a machine to analyze blood samples from the crew. At the neutral buoyancy lab, the astronauts are helped in suit-up. The attachment of their gloves is shown. The video ends with Lu and Malenchenko lowered into a pool on a platform.

  6. STS-105 Mission Crew Portrait

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This is the portrait of the astronaut and cosmonaut crewmembers comprising the STS-105 mission. The base crew (bottom center), left to right, are pilot Frederick W. (Rich) Sturckow, Mission Specialists Patrick G. Forester and Daniel T. Barry, and Commander Scott J. Horowitz. The upper right group are the International Space Station (ISS) Expedition Three crew, (left to right) Cosmonaut Mikhail Tyurin, flight engineer; Astronaut Frank L. Culbertson, Jr., commander; and Cosmonaut Vladimir N. Dezhurov, flight engineer. The upper left group are the ISS Expedition Two crew, (left to right) Astronaut James S. Voss, commander; Cosmonaut Yury V. Usachev, flight engineer; and Astronaut Susan J. Helms, flight engineer. The STS-105 was the 11th ISS assembly flight and launched on August 19, 2001 aboard the Space Shuttle Orbiter Discovery.

  7. Spacecraft Doppler Tracking as a Xylophone Detector

    NASA Technical Reports Server (NTRS)

    Tinto, Massimo

    1996-01-01

    We discuss spacecraft Doppler tracking in which Doppler data recorded on the ground are linearly combined with Doppler measurements made on board a spacecraft. By using the four-link radio system first proposed by Vessot and Levine, we derive a new method for removing from the combined data the frequency fluctuations due to the Earth troposphere, ionosphere, and mechanical vibrations of the antenna on the ground. Our method provides also for reducing by several orders of magnitude, at selected Fourier components, the frequency fluctuations due to other noise sources, such as the clock on board the spacecraft or the antenna and buffeting of the probe by non-gravitational forces. In this respect spacecraft Doppler tracking can be regarded as a xylophone detector. Estimates of the sensitivities achievable by this xylophone are presented for two tests of Einstein's theory of relativity: searches for gravitational waves and measurements of the gravitational red shift. This experimental technique could be extended to other tests of the theory of relativity, and to radio science experiments that rely on high-precision Doppler measurements.

  8. STS-107 Crew Interviews: Laurel Clark, Mission Specialist

    NASA Technical Reports Server (NTRS)

    2002-01-01

    STS-107 Mission Specialist 4 Laurel Clark is seen during this preflight interview, where she gives a quick overview of the mission before answering questions about her inspiration to become an astronaut and her career path. Clark outlines her role in the mission in general, and specifically in conducting onboard science experiments. She discusses the following suite of experiments and instruments in detail: ARMS (Advanced Respiratory Monitoring System) and the European Space Agency's Biopack. Clark also mentions on-board activities and responsibilities during launch and reentry, mission training, and microgravity research. In addition, she touches on the use of crew members as research subjects including pre and postflight monitoring activities, the emphasis on crew safety and the value of international cooperation.

  9. STS-107 Crew Interviews: Michael Anderson, Mission Specialist

    NASA Technical Reports Server (NTRS)

    2002-01-01

    STS-107 Mission Specialist 3 and Payload Commander Michael Anderson is seen during this preflight interview, where he gives a quick overview of the mission before answering questions about his inspiration to become an astronaut and his career path. He outlines his role in the mission in general, and specifically in conducting onboard science experiments. He discusses the following instruments and sets of experiments in detail: CM2 (Combustion Module 2), FREESTAR (Fast Reaction Enabling Science Technology and Research, MEIDEX (Mediterranean Israeli Dust Experiment) and MGM (Mechanics of Granular Materials). Anderson also mentions on-board activities and responsibilities during launch and reentry, mission training, and microgravity research. In addition, he touches on the dual work-shift nature of the mission, the use of crew members as research subjects including pre and postflight monitoring activities, the emphasis on crew safety during training and the value of international cooperation.

  10. STS-107 Crew Interviews: Michael Anderson, Mission Specialist

    NASA Astrophysics Data System (ADS)

    2002-06-01

    STS-107 Mission Specialist 3 and Payload Commander Michael Anderson is seen during this preflight interview, where he gives a quick overview of the mission before answering questions about his inspiration to become an astronaut and his career path. He outlines his role in the mission in general, and specifically in conducting onboard science experiments. He discusses the following instruments and sets of experiments in detail: CM2 (Combustion Module 2), FREESTAR (Fast Reaction Enabling Science Technology and Research, MEIDEX (Mediterranean Israeli Dust Experiment) and MGM (Mechanics of Granular Materials). Anderson also mentions on-board activities and responsibilities during launch and reentry, mission training, and microgravity research. In addition, he touches on the dual work-shift nature of the mission, the use of crew members as research subjects including pre and postflight monitoring activities, the emphasis on crew safety during training and the value of international cooperation.

  11. Spacecraft Design Considerations for Piloted Reentry and Landing

    NASA Technical Reports Server (NTRS)

    Stroud, Kenneth J.; Klaus, David M.

    2006-01-01

    With the end of the Space Shuttle era anticipated in this decade and the requirements for the Crew Exploration Vehicle (CEV) now being defined, an opportune window exists for incorporating 'lessons learned' from relevant aircraft and space flight experience into the early stages of designing the next generation of human spacecraft. This includes addressing not only the technological and overall mission challenges, but also taking into account the comprehensive effects that space flight has on the pilot, all of which must be balanced to ensure the safety of the crew. This manuscript presents a unique and timely overview of a multitude of competing, often unrelated, requirements and constraints governing spacecraft design that must be collectively considered in order to ensure the success of future space exploration missions.

  12. Soyuz-TM-based interim Assured Crew Return Vehicle (ACRV) for the Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Semenov, Yu. P.; Babkov, Oleg I.; Timchenko, Vladimir A.; Craig, Jerry W.

    1993-01-01

    The concept of using the available Soyuz-TM Assured Crew Return Vehicle (ACRV) spacecraft for the assurance of the safety of the Space Station Freedom (SSF) crew after the departure of the Space Shuttle from SSF was proposed by the NPO Energia and was accepted by NASA in 1992. The ACRV will provide the crew with the capability to evacuate a seriously injured/ill crewmember from the SSF to a ground-based care facility under medically tolerable conditions and with the capability for a safe evacuation from SSF in the events SSF becomes uninhabitable or the Space Shuttle flights are interrupted for a time that exceeds SSF ability for crew support and/or safe operations. This paper presents the main results of studies on Phase A (including studies on the service life of ACRV; spacecraft design and operations; prelaunch processing; mission support; safety, reliability, maintenance and quality and assurance; landing, and search/rescue operations; interfaces with the SSF and with Space Shuttle; crew accommodation; motion of orbital an service modules; and ACRV injection by the Expendable Launch Vehicles), along with the objectives of further work on the Phase B.

  13. STS-88 crew goes through Crew Equipment Interface Testing

    NASA Technical Reports Server (NTRS)

    1998-01-01

    -- In the Orbiter Processing Facility Bay 1, STS-88 Mission Specialists Sergei Krikalev (left), a cosmonaut from Russia; and Jerry L. Ross examine equipment that will be aboard Space Shuttle Endeavour. Launch of mission STS-88 is targeted for Dec. 3, 1998. The STS-88 crew members are participating in a Crew Equipment Interface Test (CEIT), familiarizing themselves with the orbiter's midbody and crew compartments. Other crew members are Commander Robert D. Cabana, Pilot Frederick W. 'Rick' Sturckow and Mission Specialists Nancy J. Currie and James H. Newman. STS- 88 will be the first Space Shuttle launch for assembly of the International Space Station (ISS). The primary payload is the Unity connecting module which will be mated to the Russian-built Zarya control module, expected to be already on orbit after a November launch from Russia. The first major U.S.-built component of ISS, Unity will serve as a connecting passageway to living and working areas of the space station. Unity has two attached pressurized mating adapters (PMAs) and one stowage rack installed inside. PMA-1 provides the permanent connection point between Unity and Zarya; PMA-2 will serve as a Space Shuttle docking port. Zarya is a self-supporting active vehicle, providing propulsive control capability and power during the early assembly stages. It also has fuel storage capability.

  14. STS-88 crew goes through Crew Equipment Interface Testing

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Clad in their blue flight suits, STS-88 Mission Specialists (from left) Sergei Krikalev, a cosmonaut from Russia; Jerry L. Ross; and James H. Newman examine equipment from a toolbox that will be on the Space Shuttle Endeavour during their flight. Talking to Ross is Wayne Wedlake of United Space Alliance at Johnson Space Center, while Henry Thacker (facing camera), of Flight Crew Systems at KSC, looks on. Launch of mission STS-88 is targeted for Dec. 3, 1998. The STS-88 crew members are participating in a Crew Equipment Interface Test (CEIT) in the Orbiter Processing Facility Bay 1 to familiarize themselves with the orbiter's midbody and crew compartments. STS-88 will be the first Space Shuttle launch for assembly of the International Space Station (ISS). The primary payload is the Unity connecting module which will be mated to the Russian-built Zarya control module, expected to be already on orbit after a November launch from Russia. The first major U.S.-built component of ISS, Unity will serve as a connecting passageway to living and working areas of the space station. Unity has two attached pressurized mating adapters (PMAs) and one stowage rack installed inside. PMA-1 provides the permanent connection point between Unity and Zarya; PMA-2 will serve as a Space Shuttle docking port. Zarya is a self-supporting active vehicle, providing propulsive control capability and power during the early assembly stages. It also has fuel storage capability.

  15. STS-88 crew goes through Crew Equipment Interface Testing

    NASA Technical Reports Server (NTRS)

    1998-01-01

    -- In the Orbiter Processing Facility Bay 1, STS-88 Mission Specialists (left to right) Jerry L. Ross; Sergei Krikalev, a cosmonaut from Russia; and James H. Newman examine equipment that will be on the Space Shuttle Endeavour during their upcoming flight. Launch of Mission STS-88 is targeted for Dec. 3, 1998. The STS-88 crew members are participating in a Crew Equipment Interface Test (CEIT), familiarizing themselves with the orbiter's midbody and crew compartments. Other crew members are Commander Robert D. Cabana, Pilot Frederick W. 'Rick' Sturckow and Mission Specialist Nancy J. Currie. STS-88 will be the first Space Shuttle launch for assembly of the International Space Station (ISS). The primary payload is the Unity connecting module which will be mated to the Russian-built Zarya control module, expected to be already on orbit after a November launch from Russia. The first major U.S.-built component of ISS, Unity will serve as a connecting passageway to living and working areas of the space station. Unity has two attached pressurized mating adapters (PMAs) and one stowage rack installed inside. PMA-1 provides the permanent connection point between Unity and Zarya; PMA-2 will serve as a Space Shuttle docking port. Zarya is a self-supporting active vehicle, providing propulsive control capability and power during the early assembly stages. It also has fuel storage capability.

  16. Assured crew return capability Crew Emergency Return Vehicle (CERV) avionics

    NASA Technical Reports Server (NTRS)

    Myers, Harvey Dean

    1990-01-01

    The Crew Emergency Return Vehicle (CERV) is being defined to provide Assured Crew Return Capability (ACRC) for Space Station Freedom. The CERV, in providing the standby lifeboat capability, would remain in a dormat mode over long periods of time as would a lifeboat on a ship at sea. The vehicle must be simple, reliable, and constantly available to assure the crew's safety. The CERV must also provide this capability in a cost effective and affordable manner. The CERV Project philosophy of a simple vehicle is to maximize its useability by a physically deconditioned crew. The vehicle reliability goes unquestioned since, when needed, it is the vehicle of last resort. Therefore, its systems and subsystems must be simple, proven, state-of-the-art technology with sufficient redundancy to make it available for use as required for the life of the program. The CERV Project Phase 1'/2 Request for Proposal (RFP) is currently scheduled for release on October 2, 1989. The Phase 1'/2 effort will affirm the existing project requirements or amend and modify them based on a thorough evaluation of the contractor(s) recommendations. The system definition phase, Phase 2, will serve to define CERV systems and subsystems. The current CERV Project schedule has Phase 2 scheduled to begin October 1990. Since a firm CERV avionics design is not in place at this time, the treatment of the CERV avionics complement for the reference configuration is not intended to express a preference with regard to a system or subsystem.

  17. STS-70 crew on their way to Launch Pad 39B for TCDT

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The STS-70 flight crew walks out of the Operations and Checkout Building on their way to Launch Pad 39B to participate in the Terminal Countdown Demonstration Test (TCDT) for that mission. As they depart to board their Astrovan, Mission Commander Terence 'Tom' Henricks (front right) holds up a Buckeye nut to signify that this is the Buckeye crew. Pilot Kevin R. Kregel (front left) is the only STS-70 crew member who is not a native of Ohio, but was recently bestowed with honorary citizenship by the governor of that state. Mission Specialist Mary Ellen Weber is behind Kregel, followed by Mission Specialists Nancy Jane Currie and Donald A. Thomas. With the crew aboard the Space Shuttle Discovery, the TCDT simulated a final launch countdown until just beofre orbiter main engine ignition.

  18. Spacecraft camera image registration

    NASA Technical Reports Server (NTRS)

    Kamel, Ahmed A. (Inventor); Graul, Donald W. (Inventor); Chan, Fred N. T. (Inventor); Gamble, Donald W. (Inventor)

    1987-01-01

    A system for achieving spacecraft camera (1, 2) image registration comprises a portion external to the spacecraft and an image motion compensation system (IMCS) portion onboard the spacecraft. Within the IMCS, a computer (38) calculates an image registration compensation signal (60) which is sent to the scan control loops (84, 88, 94, 98) of the onboard cameras (1, 2). At the location external to the spacecraft, the long-term orbital and attitude perturbations on the spacecraft are modeled. Coefficients (K, A) from this model are periodically sent to the onboard computer (38) by means of a command unit (39). The coefficients (K, A) take into account observations of stars and landmarks made by the spacecraft cameras (1, 2) themselves. The computer (38) takes as inputs the updated coefficients (K, A) plus synchronization information indicating the mirror position (AZ, EL) of each of the spacecraft cameras (1, 2), operating mode, and starting and stopping status of the scan lines generated by these cameras (1, 2), and generates in response thereto the image registration compensation signal (60). The sources of periodic thermal errors on the spacecraft are discussed. The system is checked by calculating measurement residuals, the difference between the landmark and star locations predicted at the external location and the landmark and star locations as measured by the spacecraft cameras (1, 2).

  19. STS-88 crew goes through Crew Equipment Interface Testing

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Inside the payload bay of Space Shuttle orbiter Endeavour, workers and STS-88 crew members on a movable work platform or bucket move closer to the rear of the orbiter's crew compartment. While Endeavour is being prepared for flight inside Orbiter Processing Facility Bay 1, the STS-88 crew members are participating in a Crew Equipment Interface Test (CEIT) to familiarize themselves with the orbiter's midbody and crew compartments. A KSC worker (left) maneuvers the platform to give Mission Specialists Jerry L. Ross and James H. Newman (right) a closer look. Looking on is Wayne Wedlake of United Space Alliance at Johnson Space Center. Targeted for liftoff on Dec. 3, 1998, STS-88 will be the first Space Shuttle launch for assembly of the International Space Station (ISS). The primary payload is the Unity connecting module which will be mated to the Russian-built Zarya control module, expected to be already on orbit after a November launch from Russia. After the mating, Ross and Newman are scheduled to perform three spacewalks to connect power, data and utility lines and install exterior equipment. The first major U.S.-built component of ISS, Unity will serve as a connecting passageway to living and working areas of the space station. Unity has two attached pressurized mating adapters (PMAs) and one stowage rack installed inside. PMA-1 provides the permanent connection point between Unity and Zarya; PMA-2 will serve as a Space Shuttle docking port. Zarya is a self-supporting active vehicle, providing propulsive control capability and power during the early assembly stages. It also has fuel storage capability.

  20. Galactic cosmic ray radiation levels in spacecraft on interplanetary missions

    NASA Technical Reports Server (NTRS)

    Shinn, J. L.; Nealy, J. E.; Townsend, L. W.; Wilson, J. W.; Wood, J.S.

    1994-01-01

    Using the Langley Research Center Galactic Cosmic Ray (GCR) transport computer code (HZETRN) and the Computerized Anatomical Man (CAM) model, crew radiation levels inside manned spacecraft on interplanetary missions are estimated. These radiation-level estimates include particle fluxes, LET (Linear Energy Transfer) spectra, absorbed dose, and dose equivalent within various organs of interest in GCR protection studies. Changes in these radiation levels resulting from the use of various different types of shield materials are presented.

  1. Monitoring of Crew Activity with FAMOS

    NASA Astrophysics Data System (ADS)

    Wolf, L.; Cajochen, C.; Bromundt, V.

    2007-10-01

    The success of long duration space missions, such as manned missions to Mars, depends on high and sustained levels of vigilance and performance of astronauts and operators working in the technology rich environment of a spacecraft. Experiment 'Monitoring of Crew Activity with FAMOS' was set up to obtain operational experience with complimentary methods / technologies to assess the alertness / sleepiness status of selected AustroMars crewmembers on a daily basis. We applied a neurobehavioral test battery consisting of 1) Karolinska Sleepiness Scale KSS, 2) Karolinska Drowsiness Test KDT, 3) Psychomotor Vigilance Task PVT, combined with 4) left eye video recordings with an early prototype of the FAMOS Fatigue Monitoring System headset currently being developed by Sowoon Technologies (CH), and 5) Actiwatches that were worn continuously. A test battery required approximately 15 minutes and was repeated up to 4 times daily by 2 to 4 subjects. Here we present the data analysis of methods 1, 2, 3, and 5, while data analysis of method 4 is still in progress.

  2. STS-107 Crew Choice Television Highlights

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The STS-107 flight day highlights begin with a shot inside the flight deck of the Space Shuttle Columbia where Commander Rick Husband, Pilot William McCool, and Mission Specialists David Brown and Kalpana Chawla are seated. The actual liftoff of the Space Shuttle Columbia is shown with Mission Specialists Michael Anderson and Laurel Clark, and Payload Specialist Ilan Ramon seated on the middeck of the spacecraft. Mission Specialist David Brown exits his seat to take pictures of the external tank while Michael Anderson also prepares to take photographs. A beautiful shot of the orbiter flying over Egypt is presented. A view of the Spacehab Research Double Module is shown where crystals are growing in microgravity. Laurel Clark is also shown working on the Bioreactor experiment. Michael Anderson is shown performing various breathing experiments in space. This video shows the last flight of STS-107 during ascent as the crew is seated in the flight deck and middeck of the Space Shuttle Columbia.

  3. STS-95 crew members take part in the CEIT for their mission

    NASA Technical Reports Server (NTRS)

    1998-01-01

    During Crew Equipment Interface Test (CEIT), STS-95 crew members watch as workers move the Spartan payload inside the Multi- Payload Processing Facility. At far right is Mission Specialist Scott E. Parazynski. The CEIT gives astronauts an opportunity for a hands-on look at the payloads and equipment with which they will be working on orbit. The launch of the STS-95 mission is scheduled for Oct. 29, 1998. The mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  4. A personal airbag system for the Orion Crew Exploration Vehicle

    NASA Astrophysics Data System (ADS)

    Do, Sydney; de Weck, Olivier

    2012-12-01

    Airbag-based methods for crew impact attenuation have been highlighted as a potential simple, lightweight means of enabling safe land-landings for the Orion Crew Exploration Vehicle, and the next generation of ballistic shaped spacecraft. To investigate the feasibility of this concept during a nominal 7.62 m/s Orion landing, a full-scale personal airbag system 24% lighter than the Orion baseline has been developed, and subjected to 38 drop tests on land. Through this effort, the system has demonstrated the ability to maintain the risk of injury to an occupant during a 7.85 m/s, 0° impact angle land-landing to within the NASA specified limit of 0.5%. In accomplishing this, the personal airbag system concept has been proven to be feasible. Moreover, the obtained test results suggest that by implementing anti-bottoming airbags to prevent direct contact between the system and the landing surface, the system performance during landings with 0° impact angles can be further improved, by at least a factor of two. Additionally, a series of drop tests from the nominal Orion impact angle of 30° indicated that severe injury risk levels would be sustained beyond impact velocities of 5 m/s. This is a result of the differential stroking of the airbags within the system causing a shearing effect between the occupant seat structure and the spacecraft floor, removing significant stroke from the airbags.

  5. Orbiter Crew Compartment Integration-Stowage

    NASA Technical Reports Server (NTRS)

    Morgan, L. Gary

    2007-01-01

    This viewgraph presentation describes the Orbiter Crew Compartment Integration (CCI) stowage. The evolution of orbiter crew compartment stowage volume is also described, along with photographs presented of the on-orbit volume stowage capacity.

  6. Discussion meeting on Gossamer spacecraft (ultralightweight spacecraft)

    NASA Technical Reports Server (NTRS)

    Brereton, R. G. (Editor)

    1980-01-01

    Concepts, technology, and application of ultralightweight structures in space are examined. Gossamer spacecraft represented a generic class of space vehicles or structures characterized by a low mass per unit area (approximately 50g/m2). Gossamer concepts include the solar sail, the space tether, and various two and three dimensional large lightweight structures that were deployed or assembled in space. The Gossamer Spacecraft had a high potential for use as a transportation device (solar sail), as a science instrument (reflecting or occulting antenna), or as a large structural component for an enclosure, manned platform, or other human habitats. Inflatable structures were one possible building element for large ultralightweight structures in space.

  7. Crew quarters for Space Station

    NASA Technical Reports Server (NTRS)

    Mount, F. E.

    1989-01-01

    The only long-term U.S. manned space mission completed has been Skylab, which has similarities as well as differences to the proposed Space Station. With the exception of Skylab missions, there has been a dearth of experience on which to base the design of the individual Space Station Freedom crew quarters. Shuttle missions commonly do not have sleep compartments, only 'sleeping arrangements'. There are provisions made for each crewmember to have a sleep restraint and a sleep liner, which are attached to a bulkhead or a locker. When the Shuttle flights began to have more than one working shift, crew quarters became necessary due to noise and other disturbances caused by crew task-related activities. Shuttle missions that have planned work shifts have incorporated sleep compartments. To assist in gaining more information and insight for the design of the crew quarters for the Space Station Freedom, a survey was given to current crewmembers with flight experience. The results from this survey were compiled and integrated with information from the literature covering space experience, privacy, and human-factors issues.

  8. The STS-93 crew look over orbiter Columbia's main engine

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Members of the STS-93 crew look over the Space Shuttle Columbia's main engine in the Space Shuttle Main Engine Facility as they listen to Al Strainer, with United Space Alliance. From left, the crew members are Mission Specialist Michel Tognini of France, who represents the Centre National d'Etudes Spatiales (CNES), Pilot Jeffrey S. Ashby, Mission Specialist Steven A. Hawley, and Commander Eileen Collins. At the far right is Matt Gaetjens, with the Vehicle Integration Test Team. The fifth crew member (not shown) is Mission Specialist Catherine G. Coleman. STS-93, scheduled to launch July 9, has the primary mission of the deployment of the Chandra X-ray Observatory. Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe.

  9. STS-95 crew member Curtis Brown talks with reporters

    NASA Technical Reports Server (NTRS)

    1998-01-01

    At Launch Pad 39-B, STS-95 Mission Commander Curtis L. Brown (center, with microphone) responds to questions about the mission and training from reporters during a brief break from the Terminal Countdown Demonstration Test (TCDT). Amused with his answer are other crew members (from left) Mission Specialist Scott E. Parazynski, Mission Specialist Stephen K. Robinson, who also serves as Payload Commander, Pilot Steven W. Lindsey, (Brown), Mission Specialist Pedro Duque of Spain, representing the European Space Agency (ESA), Chiaki Mukai, representing the National Space Development Agency of Japan (NASDA), and Payload Specialist John H. Glenn Jr., senator from Ohio. The crew were at the pad for emergency egress training after the break. The TCDT also involves mission familiarization activities and a simulated main engine cut-off exercise. The STS-95 mission, targeted for liftoff on Oct. 29, includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Following the TCDT, the crew will be returning to Houston for final flight preparations.

  10. Space station crew safety: Human factors interaction model

    NASA Technical Reports Server (NTRS)

    Cohen, M. M.; Junge, M. K.

    1985-01-01

    A model of the various human factors issues and interactions that might affect crew safety is developed. The first step addressed systematically the central question: How is this space station different from all other spacecraft? A wide range of possible issue was identified and researched. Five major topics of human factors issues that interacted with crew safety resulted: Protocols, Critical Habitability, Work Related Issues, Crew Incapacitation and Personal Choice. Second, an interaction model was developed that would show some degree of cause and effect between objective environmental or operational conditions and the creation of potential safety hazards. The intermediary steps between these two extremes of causality were the effects on human performance and the results of degraded performance. The model contains three milestones: stressor, human performance (degraded) and safety hazard threshold. Between these milestones are two countermeasure intervention points. The first opportunity for intervention is the countermeasure against stress. If this countermeasure fails, performance degrades. The second opportunity for intervention is the countermeasure against error. If this second countermeasure fails, the threshold of a potential safety hazard may be crossed.

  11. Crew Exploration Vehicle Launch Abort System Flight Test Overview

    NASA Technical Reports Server (NTRS)

    Williams-Hayes, Peggy S.

    2007-01-01

    The Constellation program is an organization within NASA whose mission is to create the new generation of spacecraft that will replace the Space Shuttle after its planned retirement in 2010. In the event of a catastrophic failure on the launch pad or launch vehicle during ascent, the successful use of the launch abort system will allow crew members to escape harm. The Flight Test Office is the organization within the Constellation project that will flight-test the launch abort system on the Orion crew exploration vehicle. The Flight Test Office has proposed six tests that will demonstrate the use of the launch abort system. These flight tests will be performed at the White Sands Missile Range in New Mexico and are similar in nature to the Apollo Little Joe II tests performed in the 1960s. An overview of the launch abort system flight tests for the Orion crew exploration vehicle is given. Details on the configuration of the first pad abort flight test are discussed. Sample flight trajectories for two of the six flight tests are shown.

  12. Station Crew Opens Dragon's Hatch

    NASA Video Gallery

    The hatch between the newly arrived SpaceX Dragon spacecraft and the Harmony module of the International Space Station was opened by NASA Astronaut Don Pettit at 5:53 am EDT as the station flew 253...

  13. Expedition 28 Crew Lands Safely

    NASA Video Gallery

    Expedition 28 Commander Andrey Borisenko and Flight Engineers Alexander Samokutyaev and Ron Garan land their Soyuz TMA-21 spacecraft in Kazakhstan. Russian recovery teams were on hand to help the c...

  14. Novel Material for Future Spacecrafts

    NASA Technical Reports Server (NTRS)

    Sen, Subbayu; Cothran, Ernestine

    2005-01-01

    Outside earth's protective magnetosphere crew members and sensitive equipment need to be protected against two primary radiation sources, namely Galactic Cosmic Rays (GCR) and Solar Energetic Particles (SEP). For planetary missions, this combination of radiation particles could result in doses that are higher than the allowable level currently permitted for low-earth orbit manned missions. This SBIR project aims to develop a multifunctional and lightweight composite material that not only provides sufficient radiation shielding but also provides sufficient structural integrity to be considered as a spacecraft material. This presentation will discuss the deep space radiation problem and the material based solutions being proposed by BAE SYS scientists to overcome this problem. The presentation will focus on the initiative taken by BAE SYS scientists to proactively engage and team with experts at NASA, small business, and other federal laboratories to develop and test a dual phase composite material. The presentation will also highlight the potential benefits to our customer, NASA and also to BAE SYS.

  15. Crew Scheduling of Space Operations Squadrons (SOPS)

    DTIC Science & Technology

    1993-11-01

    total number of midnight-shifs crew i works per cycle; OS total number of off-shifts crew i has per cycle; where DSt , NSi, SSt, MS&, and OSj e z + and i...the cycle length. Since each day-shift is worked by exactly one crew, then X DS1 = CL. (2-9) i-l Since crew schedules are equivalent, DSI = DS2

  16. Relative orbit control of collocated geostationary spacecraft

    NASA Astrophysics Data System (ADS)

    Rausch, Raoul R.

    A relative orbit control concept for collocated geostationary spacecraft is presented. One chief spacecraft, controlled from the ground, is responsible for the orbit determination and control of the remaining vehicles. Any orbit relative to the chief is described in terms of equinoctial orbit element differences and a linear mapping is employed for quick transformation from relative orbit measurements to orbit element differences. It is demonstrated that the concept is well-suited for spacecraft that are collocated using eccentricity-inclination vector separation and this formulation still allows for the continued use of well established and currently employed stationkeeping schemes, such as the Sun-pointing-perigee strategy. The relative approach allows to take determinisitc thruster cross-coupling effects in the computation of stationkeeping corrections into account. The control cost for the proposed concept is comparable to ground-based stationkeeping. A relative line-of-sight constraint between spacecraft separated in longitude is also considered and an algorithm is developed to provide enforcement options. The proposed on-board control approach maintains the deputy spacecraft relative orbit, is competitive in terms of propellant consumption, allows enforcement of a relative line-of-sight constraint and offers increased autonomy and flexibility for future missions.

  17. Expedition 6 Crew Interviews: Nikolai Budarin FEI (Flight Engineer 1)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Expedition 6 Flight Engineer Nikolai Budarin is seen during a prelaunch interview. He provides details on the mission's goals and significance, his role in the mission, what his responsibilities will be, what the crew activities will be like (docking of a Progress unpiloted supply vehicle, maintaining the space station, conducting science experiments and performing one spacewalk), the day-to-day life on an extended stay mission, and the experiments he will be conducting on board. Budarin also discusses how his previous experiences on mir space missions will help him and ends his thoughts on how valuable the International Space Station has proven.

  18. 46 CFR 45.125 - Crew passageways.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Crew passageways. 45.125 Section 45.125 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES GREAT LAKES LOAD LINES Conditions of Assignment § 45.125 Crew passageways. The vessel must have means for protection of the crew from...

  19. 46 CFR 122.420 - Crew training.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Crew training. 122.420 Section 122.420 Shipping COAST... PASSENGERS OR WITH OVERNIGHT ACCOMMODATIONS FOR MORE THAN 49 PASSENGERS OPERATIONS Crew Requirements § 122.420 Crew training. (a) The owner, charterer, master, or managing operator shall instruct each...

  20. 30 CFR 250.606 - Crew instructions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Crew instructions. 250.606 Section 250.606... OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Well-Workover Operations § 250.606 Crew instructions. Prior to engaging in well-workover operations, crew members shall be instructed in the...

  1. 30 CFR 250.1621 - Crew instructions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Crew instructions. 250.1621 Section 250.1621... OPERATIONS IN THE OUTER CONTINENTAL SHELF Sulphur Operations § 250.1621 Crew instructions. Prior to engaging in well-completion or well-workover operations, crew members shall be instructed in the...

  2. 29 CFR 788.15 - Multiple crews.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Multiple crews. 788.15 Section 788.15 Labor Regulations... EMPLOYEES ARE EMPLOYED § 788.15 Multiple crews. In many cases an employer who operates a sawmill or concentration yard will be supplied with logs or other forestry products by several crews of persons who...

  3. 30 CFR 250.506 - Crew instructions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Crew instructions. 250.506 Section 250.506... OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Well-Completion Operations § 250.506 Crew instructions. Prior to engaging in well-completion operations, crew members shall be instructed in the...

  4. 46 CFR 185.420 - Crew training.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Crew training. 185.420 Section 185.420 Shipping COAST...) OPERATIONS Crew Requirements § 185.420 Crew training. (a) The owner, charterer, master or managing operator... duties listed in the station bill required by § 185.514 of this part. (b) Training conducted on a...

  5. Spacecraft Thermal Control

    NASA Technical Reports Server (NTRS)

    Birur, Gajanana C.; Siebes, Georg; Swanson, Theodore D.; Powers, Edward I. (Technical Monitor)

    2001-01-01

    Thermal control of the spacecraft is typically achieved by removing heat from the spacecraft parts that tend to overheat and adding heat to the parts that tend get too cold. The equipment on the spacecraft can get very hot if it is exposed to the sun or have internal heat generation. The pans also can get very cold if they are exposed to the cold of deep space. The spacecraft and instruments must be designed to achieve proper thermal balance. The combination of the spacecraft's external thermal environment, its internal heat generation (i.e., waste heat from the operation of electrical equipment), and radiative heat rejection will determine this thermal balance. It should also be noted that this is seldom a static situation, external environmental influences and internal heat generation are normally dynamic variables which change with time. Topics discussed include thermal control system components, spacecraft mission categories, spacecraft thermal requirements, space thermal environments, thermal control hardware, launch and flight operations, advanced technologies for future spacecraft,

  6. The electrification of spacecraft

    NASA Technical Reports Server (NTRS)

    Akishin, A. I.; Novikov, L. S.

    1985-01-01

    Physical and applied aspects of the electrification of space vehicles and natural celestial objects are discussed, the factors resulting in electrification of spacecraft are analyzed, and methods of investigating various phenomena associated with this electrification and ways of protecting spacecraft against the influence of static electricity are described. The booklet is intended for the general reader interested in present day questions of space technology.

  7. Docking system for spacecraft

    NASA Technical Reports Server (NTRS)

    Kahn, Jon B. (Inventor)

    1988-01-01

    A mechanism is disclosed for the docking of a spacecraft to a space station where a connection for transfer of personnel and equipment is desired. The invention comprises an active docking structure on a spacecraft and a passive docking structure on the station. The passive structure includes a docking ring mounted on a tunnel structure fixed to the space station. The active structure includes a docking ring carried by an actuator-attenuator devices, each attached at one end to the ring and at its other end in the spacecraft payload bay. The devices respond to command signals for moving the docking ring between a stowed position in the spacecraft to a deployed position suitable for engagement with the docking ring. The devices comprise means responsive to signals of sensed loadings to absorb impact energy and retraction means for drawing the coupled spacecraft and station into final docked configuration and moving the tunnel structure to a berthed position in the spacecraft. Latches couple the spacecraft and space station upon contact of the docking rings and latches establish a structural tie between the spacecraft when retracted.

  8. SOHO Mission Interruption Joint NASA/ESA Investigation Board

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Contact with the SOlar Heliospheric Observatory (SOHO) spacecraft was lost in the early morning hours of June 25, 1998, Eastern Daylight Time (EDT), during a planned period of calibrations, maneuvers, and spacecraft reconfigurations. Prior to this the SOHO operations team had concluded two years of extremely successful science operations. A joint European Space Agency (ESA)/National Aeronautics and Space Administration (NASA) engineering team has been planning and executing recovery efforts since loss of contact with some success to date. ESA and NASA management established the SOHO Mission Interruption Joint Investigation Board to determine the actual or probable cause(s) of the SOHO spacecraft mishap. The Board has concluded that there were no anomalies on-board the SOHO spacecraft but that a number of ground errors led to the major loss of attitude experienced by the spacecraft. The Board finds that the loss of the SOHO spacecraft was a direct result of operational errors, a failure to adequately monitor spacecraft status, and an erroneous decision which disabled part of the on-board autonomous failure detection. Further, following the occurrence of the emergency situation, the Board finds that insufficient time was taken by the operations team to fully assess the spacecraft status prior to initiating recovery operations. The Board discovered that a number of factors contributed to the circumstances that allowed the direct causes to occur. The Board strongly recommends that the two Agencies proceed immediately with a comprehensive review of SOHO operations addressing issues in the ground procedures, procedure implementation, management structure and process, and ground systems. This review process should be completed and process improvements initiated prior to the resumption of SOHO normal operations.

  9. STS-30 Magellan spacecraft processing at Kennedy Space Center (KSC) SAEF-2

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Magellan spacecraft is hoisted from the transport trailer of the Payload Environmental Transportation System (PETS) to the floor of the clean room in the Space Assembly and Encapsulation Facility 2 (SAEF-2) at Kennedy Space Center (KSC). Clean-suited technicians guide Magellan into place. The spacecraft, destined for unprecedented studies of Venusian topographic features, will be deployed by the crew of NASA's STS-30 mission in April 1989. View provided by KSC with alternate number KSC-88PC-1084.

  10. Performance Testing of a Photocatalytic Oxidation Module for Spacecraft Cabin Atmosphere Revitalization

    NASA Technical Reports Server (NTRS)

    Perry, Jay L.; Abney, Morgan B.; Frederick, Kenneth R.; Scott, Joseph P.; Kaiser, Mark; Seminara, Gary; Bershitsky, Alex

    2011-01-01

    Photocatalytic oxidation (PCO) is a candidate process technology for use in high volumetric flow rate trace contaminant control applications in sealed environments. The targeted application for PCO as applied to crewed spacecraft life support system architectures is summarized. Technical challenges characteristic of PCO are considered. Performance testing of a breadboard PCO reactor design for mineralizing polar organic compounds in a spacecraft cabin atmosphere is described. Test results are analyzed and compared to results reported in the literature for comparable PCO reactor designs.

  11. Miniature Robotic Spacecraft for Inspecting Other Spacecraft

    NASA Technical Reports Server (NTRS)

    Fredrickson, Steven; Abbott, Larry; Duran, Steve; Goode, Robert; Howard, Nathan; Jochim, David; Rickman, Steve; Straube, Tim; Studak, Bill; Wagenknecht, Jennifer; Lemke, Matthew; Wade, Randall; Wheeler, Scott; Baggerman, Clinton

    2004-01-01

    A report discusses the Miniature Autonomous Extravehicular Robotic Camera (Mini AERCam)-- a compact robotic spacecraft intended to be released from a larger spacecraft for exterior visual inspection of the larger spacecraft. The Mini AERCam is a successor to the AERCam Sprint -- a prior miniature robotic inspection spacecraft that was demonstrated in a space-shuttle flight experiment in 1997. The prototype of the Mini AERCam is a demonstration unit having approximately the form and function of a flight system. The Mini AERCam is approximately spherical with a diameter of about 7.5 in. (.19 cm) and a weight of about 10 lb (.4.5 kg), yet it has significant additional capabilities, relative to the 14-in. (36-cm), 35-lb (16-kg) AERCam Sprint. The Mini AERCam includes miniaturized avionics, instrumentation, communications, navigation, imaging, power, and propulsion subsystems, including two digital video cameras and a high-resolution still camera. The Mini AERCam is designed for either remote piloting or supervised autonomous operations, including station keeping and point-to-point maneuvering. The prototype has been tested on an air-bearing table and in a hardware-in-the-loop orbital simulation of the dynamics of maneuvering in proximity to the International Space Station.

  12. Surviving Atmospheric Spacecraft Breakup

    NASA Technical Reports Server (NTRS)

    Szewczyk, Nathaniel J.; Conley, Catharine A.

    2003-01-01

    In essence, to survival a spacecraft breakup an animal must not experience a lethal event. Much as with surviving aircraft breakup, dissipation of lethal forces via breakup of the craft around the organism is likely to greatly increase the odds of survival. As spacecraft can travel higher and faster than aircraft, it is often assumed that spacecraft breakup is not a survivable event. Similarly, the belief that aircraft breakup or crashes are not survivable events is still prevalent in the general population. As those of us involved in search and rescue know, it is possible to survive both aircraft breakup and crashes. Here we make the first report of an animal, C. elegans, surviving atmospheric breakup of the spacecraft supporting it and discuss both the lethal events these animals had to escape and the implications implied for search and rescue following spacecraft breakup.

  13. Current LISA Spacecraft Design

    NASA Technical Reports Server (NTRS)

    Merkowitz, S. M.; Castellucci, K. E.; Depalo, S. V.; Generie, J. A.; Maghami, P. G.; Peabody, H. L.

    2009-01-01

    The Laser Interferometer Space Antenna (LISA) mission. a space based gravitational wave detector. uses laser metrology to measure distance fluctuations between proof masses aboard three spacecraft. LISA is unique from a mission design perspective in that the three spacecraft and their associated operations form one distributed science instrument. unlike more conventional missions where an instrument is a component of an individual spacecraft. The design of the LISA spacecraft is also tightly coupled to the design and requirements of the scientific payload; for this reason it is often referred to as a "sciencecraft." Here we describe some of the unique features of the LISA spacecraft design that help create the quiet environment necessary for gravitational wave observations.

  14. Technology for small spacecraft

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This report gives the results of a study by the National Research Council's Panel on Small Spacecraft Technology that reviewed NASA's technology development program for small spacecraft and assessed technology within the U.S. government and industry that is applicable to small spacecraft. The panel found that there is a considerable body of advanced technology currently available for application by NASA and the small spacecraft industry that could provide substantial improvement in capability and cost over those technologies used for current NASA small spacecraft. These technologies are the result of developments by commercial companies, Department of Defense agencies, and to a lesser degree NASA. The panel also found that additional technologies are being developed by these same entities that could provide additional substantial improvement if development is successfully completed. Recommendations for future technology development efforts by NASA across a broad technological spectrum are made.

  15. Current LISA Spacecraft Design

    NASA Technical Reports Server (NTRS)

    Merkowitz, Stephen

    2008-01-01

    The Laser Interferometer Space Antenna (LISA) mission, a space based gravitational wave detector, uses laser metrology to measure distance fluctuations between proof masses aboard three spacecraft. LISA is unique from a mission design perspective in that three spacecraft and their associated operations form one distributed science instrument, unlike more conventional missions where an instrument is a component of an individual spacecraft. The design of the LiSA spacecraft is also tightly coupled to the design and requirements of the scientific payload; for this reason it is often referred to as a "sciencecraft." A detailed discussion will be presented that describes the current spacecraft design and mission architecture needed to meet the LISA science requirements.

  16. STS-112 crew during Crew Equipment Interface Test

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - During a Crew Equipment Interface Test, STS-112 Mission Specialist Piers Sellers looks at the engine on Atlantis, the designated orbiter for the mission. On the 15th assembly flight to the International Space Station, Atlantis and crew will be ferrying the S1 Integrated Truss Structure. The S1 truss is the first starboard (right-side) truss segment, whose main job is providing structural support for the radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communications systems, external experiment positions and other subsystems. The S1 truss will be attached to the S0 truss. STS-112 is currently scheduled for launch Aug. 22, 2002.

  17. A combustion products analyzer for contingency use during thermodegradation events on spacecraft

    NASA Technical Reports Server (NTRS)

    Wilson, Steve; Limero, Thomas F.; Beck, Steve W.; James, John T.

    1993-01-01

    The Toxicology Laboratory at JSC and Exidyne Instrumentation Technologies (EIT) have developed a prototype Combustion Products Analyzer (CPA) to monitor, in real time, combustion products from a thermodegradation event on board spacecraft. The CPA monitors the four gases that are the most hazardous compounds (based on the toxicity potential and quantity produced) likely to be released during thermodegradation of synthetic materials: hydrogen fluoride (HF), hydrogen chloride (HCl), hydrogen cyanide (HCN), and carbon monoxide (CO). The levels of these compounds serve as markers to assist toxicologists in determining when the cabin atmosphere is safe for the crew to breathe following the contingency event. The CPA is a hand-held, battery-operated instrument containing four electrochemical sensors, one for each target gas, and a pump for drawing air across the sensors. The sensors are unique in their small size and zero-g compatibility. The immobilized electrolytes in each sensor permit the instrument to function in space and eliminate the possibility of electrolye leaks. The sample inlet system is equipped with a particulate filter that prevents clogging from airborne particulate matter. The CPA has a large digital display for gas concentrations and warming signals for low flow and low battery conditions. The CPA has flown on 13 missions beginning with STS 41 in Oct. 1990. Current efforts include the development of a microprocessor, an improved carbon monoxide sensor, and a ground-based test program to evaluate the CPA during actual thermodegradation of selected materials.

  18. STS-88 crew goes through Crew Equipment Interface Testing

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Orbiter Processing Facility Bay 1, STS-88 Commander Robert D. Cabana makes a visual inspection of the windows on Space Shuttle orbiter Endeavour. The STS-88 crew members are participating in a Crew Equipment Interface Test (CEIT), familiarizing themselves with the orbiter's midbody and crew compartments. Targeted for liftoff on Dec. 3, 1998, STS-88 will be the first Space Shuttle launch for assembly of the International Space Station (ISS). The primary payload is the Unity connecting module which will be mated to the Russian-built Zarya control module, expected to be already on orbit after a November launch from Russia. The first major U.S.-built component of ISS, Unity will serve as a connecting passageway to living and working areas of the space station. Unity has two attached pressurized mating adapters (PMAs) and one stowage rack installed inside. PMA-1 provides the permanent connection point between Unity and Zarya; PMA-2 will serve as a Space Shuttle docking port. Zarya is a self-supporting active vehicle, providing propulsive control capability and power during the early assembly stages. It also has fuel storage capability.

  19. STS-88 crew goes through Crew Equipment Interface Testing

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Inside the payload bay of orbiter Endeavour in the Orbiter Processing Facility Bay 1, STS-88 Mission Specialists Jerry L. Ross (left) and James H. Newman (right foreground) get a close look at the Orbiter Docking System. The STS-88 crew members are participating in a Crew Equipment Interface Test (CEIT), familiarizing themselves with the orbiter's midbody and crew compartments. Targeted for liftoff on Dec. 3, 1998, STS-88 will be the first Space Shuttle launch for assembly of the International Space Station (ISS). The primary payload is the Unity connecting module which will be mated to the Russian-built Zarya control module, expected to be already on orbit after a November launch from Russia. While on orbit during STS-88, Unity will be latched atop the Orbiter Docking System in the forward section of Endeavour's payload bay for the mating of the two modules. After the mating, Ross and Newman are scheduled to perform three spacewalks to connect power, data and utility lines and install exterior equipment. The first major U.S.-built component of ISS, Unity will serve as a connecting passageway to living and working areas of the space station. Unity has two attached pressurized mating adapters (PMAs) and one stowage rack installed inside. PMA-1 provides the permanent connection point between Unity and Zarya; PMA-2 will serve as a Space Shuttle docking port. Zarya is a self-supporting active vehicle, providing propulsive control capability and power during the early assembly stages. It also has fuel storage capability.

  20. STS-88 crew goes through Crew Equipment Interface Testing

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Space Station Processing Facility, STS-88 Mission Specialists Sergei Krikalev, a Russian cosmonaut, and Jerry L. Ross check out equipment on the Unity connecting module, primary payload on the mission. The STS-88 crew members are participating in a Crew Equipment Interface Test (CEIT), familiarizing themselves with the orbiter's midbody and crew compartments. Scheduled for launch on Dec. 3, 1998, STS-88 will be the first Space Shuttle launch for the International Space Station. The Unity connecting module will be mated to the Russian-built Zarya control module, already on orbit after a November launch. Unity will have two Pressurized Mating Adapters (PMAs) attached and 1 stowage rack installed inside. PMA-1 will connect U.S. and Russian elements; PMA-2 will provide a Shuttle docking location. Eventually, Unity's six ports will provide connecting points for the Z1 truss exterior framework, U.S. lab, airlock, cupola, Node 3, and the Multi-Purpose Logistics Module, as well as the control module. Zarya is a self-supporting active vehicle, providing propulsive control capability and power through the early assembly stages. It provides fuel storage capability and a rendezvous and docking capability to the Service Module.

  1. STS-88 crew goes through Crew Equipment Interface Testing

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Inside the payload bay of Space Shuttle orbiter Endeavour in Orbiter Processing Facility Bay 1, STS-88 Mission Specialists Jerry L. Ross (crouching at left) and James H. Newman (far right) get a close look at equipment. Looking on is Wayne Wedlake (far left), with United Space Alliance at Johnson Space Center, and a KSC worker (behind Newman) who is operating the movable work platform or bucket. The STS-88 crew members are participating in a Crew Equipment Interface Test (CEIT), familiarizing themselves with the orbiter's midbody and crew compartments. Targeted for liftoff on Dec. 3, 1998, STS-88 will be the first Space Shuttle launch for assembly of the International Space Station (ISS). The primary payload is the Unity connecting module which will be mated to the Russian-built Zarya control module, expected to be already on orbit after a November launch from Russia. After the mating, Ross and Newman are scheduled to perform three spacewalks to connect power, data and utility lines and install exterior equipment. The first major U.S.-built component of ISS, Unity will serve as a connecting passageway to living and working areas of the space station. Unity has two attached pressurized mating adapters (PMAs) and one stowage rack installed inside. PMA-1 provides the permanent connection point between Unity and Zarya; PMA-2 will serve as a Space Shuttle docking port. Zarya is a self-supporting active vehicle, providing propulsive control capability and power during the early assembly stages. It also has fuel storage capability.

  2. STS-88 crew goes through Crew Equipment Interface Testing

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Inside Space Shuttle orbiter Endeavour in the Orbiter Processing Facility Bay 1, workers James Neilhouse (left) and Melissa Groening (right) watch while STS-88 Mission Specialists James H. Newman (second from left) and Sergei Krikalev, a Russian cosmonaut, check overhead equipment. STS-88 crew members are participating in a Crew Equipment Interface Test (CEIT), familiarizing themselves with the orbiter's midbody and crew compartments. Targeted for liftoff on Dec. 3, 1998, STS-88 will be the first Space Shuttle launch for assembly of the International Space Station (ISS). The primary payload is the Unity connecting module which will be mated to the Russian-built Zarya control module, expected to be already on orbit after a November launch from Russia. The first major U.S.-built component of ISS, Unity will serve as a connecting passageway to living and working areas of the space station. Unity has two attached pressurized mating adapters (PMAs) and one stowage rack installed inside. PMA-1 provides the permanent connection point between Unity and Zarya; PMA-2 will serve as a Space Shuttle docking port. Zarya is a self-supporting active vehicle, providing propulsive control capability and power during the early assembly stages. It also has fuel storage capability.

  3. STS-88 crew goes through Crew Equipment Interface Testing

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Orbiter Processing Facility Bay 1, STS-88 Commander Robert D. Cabana watches from inside Space Shuttle orbiter Endeavour as worker Tracey Hackett cleans the outside of a window. The STS-88 crew members are participating in a Crew Equipment Interface Test (CEIT), familiarizing themselves with the orbiter's midbody and crew compartments. Targeted for liftoff on Dec. 3, 1998, STS-88 will be the first Space Shuttle launch for assembly of the International Space Station (ISS). The primary payload is the Unity connecting module which will be mated to the Russian-built Zarya control module, expected to be already on orbit after a November launch from Russia. The first major U.S.-built component of ISS, Unity will serve as a connecting passageway to living and working areas of the space station. Unity has two attached pressurized mating adapters (PMAs) and one stowage rack installed inside. PMA-1 provides the permanent connection point between Unity and Zarya; PMA-2 will serve as a Space Shuttle docking port. Zarya is a self-supporting active vehicle, providing propulsive control capability and power during the early assembly stages. It also has fuel storage capability.

  4. STS-88 crew goes through Crew Equipment Interface Testing

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Space Station Processing Facility, STS-88 Mission Specialists Sergei Krikalev (left), a Russian cosmonaut; James H. Newman (center); and Jerry L. Ross conduct a sharp-edge inspection of the Unity connecting module, which is the primary payload on their upcoming mission. The STS-88 crew members are participating in a Crew Equipment Interface Test (CEIT), familiarizing themselves with the orbiter's midbody and crew compartments. Targeted for liftoff on Dec. 3, 1998, STS-88 will be the first Space Shuttle launch for assembly of the International Space Station (ISS). The primary payload is the Unity connecting module which will be mated to the Russian-built Zarya control module, expected to be already on orbit after a November launch from Russia. The first major U.S.-built component of ISS, Unity will serve as a connecting passageway to living and working areas of the space station. Unity has two attached pressurized mating adapters (PMAs) and one stowage rack installed inside. PMA-1 provides the permanent connection point between Unity and Zarya; PMA-2 will serve as a Space Shuttle docking port. Zarya is a self-supporting active vehicle, providing propulsive control capability and power during the early assembly stages. It also has fuel storage capability.

  5. STS-88 crew goes through Crew Equipment Interface Testing

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Inside the Orbiter Processing Facility Bay 1, STS-88 Mission Specialists Sergei Krikalev (left), a Russian cosmonaut; and James H. Newman look over equipment for their upcoming flight. The STS-88 crew members are participating in a Crew Equipment Interface Test (CEIT), familiarizing themselves with the orbiter's midbody and crew compartments. Targeted for liftoff on Dec. 3, 1998, STS-88 will be the first Space Shuttle launch for assembly of the International Space Station (ISS). The primary payload is the Unity connecting module which will be mated to the Russian-built Zarya control module, expected to be already on orbit after a November launch from Russia. The first major U.S.- built component of ISS, Unity will serve as a connecting passageway to living and working areas of the space station. Unity has two attached pressurized mating adapters (PMAs) and one stowage rack installed inside. PMA-1 provides the permanent connection point between Unity and Zarya; PMA-2 will serve as a Space Shuttle docking port. Zarya is a self-supporting active vehicle, providing propulsive control capability and power during the early assembly stages. It also has fuel storage capability.

  6. STS-88 crew goes through Crew Equipment Interface Testing

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Orbiter Processing Facility Bay 1, STS-88 Pilot Frederick W. Sturckow makes a visual inspection of windows on the Space Shuttle orbiter Endeavour. The STS-88 crew members are participating in a Crew Equipment Interface Test (CEIT), familiarizing themselves with the orbiter's midbody and crew compartments. Targeted for launch on Dec. 3, 1998, STS-88 will be the first Space Shuttle launch for assembly of the International Space Station (ISS). The primary payload is the Unity connecting module which will be mated to the Russian-built Zarya control module, expected to be already on orbit after a November launch from Russia. The first major U.S.-built component of ISS, Unity will serve as a connecting passageway to living and working areas of the space station. Unity has two attached pressurized mating adapters (PMAs) and one stowage rack installed inside. PMA-1 provides the permanent connection point between Unity and Zarya; PMA-2 will serve as a Space Shuttle docking port. Zarya is a self-supporting active vehicle, providing propulsive control capability and power during the early assembly stages. It also has fuel storage capability.

  7. STS-103 crew pose in front of Pad 39B

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During Terminal Countdown Demonstration Test (TDCT) activities at Launch Pad 39B, the STS-103 crew pose in front of the flame trench, which is situated underneath the Mobile Launcher Platform holding Space Shuttle Discovery. Standing left to right are Mission Specialists Claude Nicollier of Switzerland, who is with the European Space Agency (ESA), C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), Pilot Scott J. Kelly, Commander Curtis L. Brown Jr., and Mission Specialists Jean-Frangois Clervoy of France, also with ESA, and Steven L. Smith. One of the solid rocket boosters and the external tank that are attached to Discovery can be seen in the photo. The flame trench is made of concrete and refractory brick, and contains an orbiter flame deflector on one side and solid rocket booster flame deflector on the other. The deflectors protect the flame trench floor and pad surface from the intense heat of launch. The TCDT provides the crew with emergency egress training, opportunities to inspect their mission payloads in the orbiter's payload bay, and simulated countdown exercises. STS-103 is a 'call-up' mission due to the need to replace and repair portions of the Hubble Space Telescope, including the gyroscopes that allow the telescope to point at stars, galaxies and planets. The STS-103 crew will be replacing a Fine Guidance Sensor, an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The mission is targeted for launch Dec. 6 at 2:37 a.m. EST.

  8. AMO EXPRESS: A Command and Control Experiment for Crew Autonomy

    NASA Technical Reports Server (NTRS)

    Stetson, Howard K.; Frank, Jeremy; Cornelius, Randy; Haddock, Angie; Wang, Lui; Garner, Larry

    2015-01-01

    NASA is investigating a range of future human spaceflight missions, including both Mars-distance and Near Earth Object (NEO) targets. Of significant importance for these missions is the balance between crew autonomy and vehicle automation. As distance from Earth results in increasing communication delays, future crews need both the capability and authority to independently make decisions. However, small crews cannot take on all functions performed by ground today, and so vehicles must be more automated to reduce the crew workload for such missions. NASA's Advanced Exploration Systems Program funded Autonomous Mission Operations (AMO) project conducted an autonomous command and control demonstration of intelligent procedures to automatically initialize a rack onboard the International Space Station (ISS) with power and thermal interfaces, and involving core and payload command and telemetry processing, without support from ground controllers. This autonomous operations capability is enabling in scenarios such as a crew medical emergency, and representative of other spacecraft autonomy challenges. The experiment was conducted using the Expedite the Processing of Experiments for Space Station (EXPRESS) rack 7, which was located in the Port 2 location within the U.S Laboratory onboard the International Space Station (ISS). Activation and deactivation of this facility is time consuming and operationally intensive, requiring coordination of three flight control positions, 47 nominal steps, 57 commands, 276 telemetry checks, and coordination of multiple ISS systems (both core and payload). The autonomous operations concept includes a reduction of the amount of data a crew operator is required to verify during activation or de-activation, as well as integration of procedure execution status and relevant data in a single integrated display. During execution, the auto-procedures provide a step-by-step messaging paradigm and a high level status upon termination. This

  9. Composite Crew Module: Primary Structure

    NASA Technical Reports Server (NTRS)

    Kirsch, Michael T.

    2011-01-01

    In January 2007, the NASA Administrator and Associate Administrator for the Exploration Systems Mission Directorate chartered the NASA Engineering and Safety Center to design, build, and test a full-scale crew module primary structure, using carbon fiber reinforced epoxy based composite materials. The overall goal of the Composite Crew Module project was to develop a team from the NASA family with hands-on experience in composite design, manufacturing, and testing in anticipation of future space exploration systems being made of composite materials. The CCM project was planned to run concurrently with the Orion project's baseline metallic design within the Constellation Program so that features could be compared and discussed without inducing risk to the overall Program. This report discusses the project management aspects of the project including team organization, decision making, independent technical reviews, and cost and schedule management approach.

  10. Manned Mars mission crew factors

    NASA Technical Reports Server (NTRS)

    Santy, Patricia A.

    1986-01-01

    Crew factors include a wide range of concerns relating to the human system and its role in a Mars mission. There are two important areas which will play a large part in determining the crew for a Mars mission. The first relates to the goals and priorities determined for such a vast endeavor. The second is the design of the vehicle for the journey. The human system cannot be separated from the other systems in that vehicle. In fact it will be the human system which drives the development of many of the technical breakthroughs necessary to make a Mars mission successful. As much as possible, the engineering systems must adapt to the needs of the human system and its individual components.

  11. Apollo 13 crew arrive on prime recovery ship U.S.S. Iwo Jima

    NASA Technical Reports Server (NTRS)

    1970-01-01

    Rear Admiral Donald C. Davis, Commanding Officer of Task Force 130, the Pacific Recovery Forces for the Manned Spacecraft Missions, welcomes the Apollo 13 crew aboard the prime recovery ship U.S.S. Iwo Jima following splashdown and recovery operations in the South Pacific. The crewmen (from left) Astronauts Fred W. Haise Jr., lunar module pilot; John L. Swigert Jr., command module pilot; and James A. Lovell Jr., commander, were transported by helicopter to the ship following a smooth splashdown only about four miles from the Iwo Jima. The Apollo 13 spacecraft splashed down at 12:07:44 p.m., April 17, 1970.

  12. Spacecraft Docking System

    NASA Technical Reports Server (NTRS)

    Ghofranian, Siamak (Inventor); Chuang, Li-Ping Christopher (Inventor); Motaghedi, Pejmun (Inventor)

    2016-01-01

    A method and apparatus for docking a spacecraft. The apparatus comprises elongate members, movement systems, and force management systems. The elongate members are associated with a docking structure for a spacecraft. The movement systems are configured to move the elongate members axially such that the docking structure for the spacecraft moves. Each of the elongate members is configured to move independently. The force management systems connect the movement systems to the elongate members and are configured to limit a force applied by the each of the elongate members to a desired threshold during movement of the elongate members.

  13. Crew interface specifications preparation for in-flight maintenance and stowage functions

    NASA Technical Reports Server (NTRS)

    Parker, F. W.; Carlton, B. E.

    1972-01-01

    The findings and data products developed during the Phase 2 crew interface specification study are presented. Five new NASA general specifications were prepared: operations location coding system for crew interfaces; loose equipment and stowage management requirements; loose equipment and stowage data base information requirements; spacecraft loose equipment stowage drawing requirements; and inflight stowage management data requirements. Additional data was developed defining inflight maintenance processes and related data concepts for inflight troubleshooting, remove/repair/replace and scheduled maintenance activities. The process of maintenance task and equipment definition during spacecraft design and development was also defined and related data concepts were identified for futher development into formal NASA specifications during future follow-on study phases of the contract.

  14. Potential Spacecraft-to-Spacecraft Radio Observations with EJSM: Wave of the Future? (Invited)

    NASA Astrophysics Data System (ADS)

    Marouf, E. A.; Tortora, P.; Asmar, S. W.; Folkner, W. M.; Hinson, D.; Iess, L.; Linscott, I. R.; Lorenz, R. D.; Mueller-Wodarg, I. C.

    2010-12-01

    Future active radio observations of planetary and satellite atmospheres and surfaces could significantly benefit form the presence of two or more spacecraft in orbit around a target object. Traditionally, radio occultation and bistatic surface scattering experiments have been conducted using a single spacecraft operating in the Downlink (DL) configuration, with the spacecraft transmitting and at least one Earth-based station receiving. The configuration has the advantage of using powerful ground-based receivers for down-conversion, digitization, and digital recording of large bandwidth data for later off-line processing and analysis. It has the disadvantage of an available free-space signal-to-noise ratio (SNR) limited by the relatively small carrier power (10-20 W) a spacecraft can practically transmit. Recent technological advances in designing small-mass and small-power spacecraft-based digital receivers capable of on-board signal processing could open the door for significant performance improvement compared with the DL configuration. For example, with two spacecraft in orbit instead of one, the smaller distance D between the two spacecraft compared with the distance to Earth can boost achievable free-space SNR by one to three orders of magnitude, depending on D. In addition, richer variability in observation geometry can be captured using spacecraft-to-spacecraft (SC-to-SC) radio occultations and surface scattering. By their nature, traditional DL occultations are confined to the morning and evening terminators. Availability of on-board processing capability also opens the door for conducting Uplink (UL) occultation and bistatic observations, where very large power (> 20 kW) can be transmitted from an Earth-based station, potentially boasting achievable free-space SNR by orders of magnitude, comparable to the SC-to-SC case and much higher than the DL case. The Europa Jupiter System Mission (EJSM) will likely be the first planetary mission to benefit from the

  15. Spacecraft dielectric material properties and spacecraft charging

    NASA Technical Reports Server (NTRS)

    Frederickson, A. R.; Wall, J. A.; Cotts, D. B.; Bouquet, F. L.

    1986-01-01

    The physics of spacecraft charging is reviewed, and criteria for selecting and testing semiinsulating polymers (SIPs) to avoid charging are discussed and illustrated. Chapters are devoted to the required properties of dielectric materials, the charging process, discharge-pulse phenomena, design for minimum pulse size, design to prevent pulses, conduction in polymers, evaluation of SIPs that might prevent spacecraft charging, and the general response of dielectrics to space radiation. SIPs characterized include polyimides, fluorocarbons, thermoplastic polyesters, poly(alkanes), vinyl polymers and acrylates, polymers containing phthalocyanine, polyacene quinones, coordination polymers containing metal ions, conjugated-backbone polymers, and 'metallic' conducting polymers. Tables summarizing the results of SIP radiation tests (such as those performed for the NASA Galileo Project) are included.

  16. Spaceborne Global Positioning System for Spacecraft

    NASA Technical Reports Server (NTRS)

    Dougherty, Lamar F. (Inventor); Niles, Frederick A. (Inventor); Wennersten, Miriam D. (Inventor)

    2001-01-01

    The spaceborne Global Positioning System receiver provides navigational solutions and is designed for use in low Earth orbit. The spaceborne GPS receiver can determine the orbital position of a spacecraft using any of the satellites wi thin the GPS constellation. It is a multiple processor system incorporating redundancy by using a microcontroller to handle the closure of tracking loops for acquired GPS satellites, while a separate microprocessor computes the spacecraft navigational solution and handles other tasks within the receiver. 'Me spaceborne GPS receiver can use either microcontroller or the microprocessor to close the satellite tracking loops. The use of microcontroller provides better tracking performance of acquired GPS satellites. The spaceborne GPS receiver utilizes up to seven separate GPS boards, with each board including its own set of correlators, down-converters and front-end components. The spaceborne GPS receiver also includes telemetry and time-marking circuitry. The spaceborne GPS receiver communicates with other spacecraft systems through a variety of interfaces and can be software-configured to support several different mission profiles.

  17. On the anticritical temperature for spacecraft charging

    NASA Astrophysics Data System (ADS)

    Lai, Shu T.; Tautz, Maurice

    2008-11-01

    In recent years, evidence has been found for the existence of a critical temperature for the onset of spacecraft charging to high voltages. High-voltage charging affects scientific instruments on board and is related to spacecraft anomalies. However, less attention has been given to low-voltage charging which can also affect scientific experiments on board and is relevant to surface chemistry. There also can exist an anticritical temperature for low-voltage spacecraft surface charging. Ambient electrons at very low temperatures tend to cause negative surface charging, albeit at low voltages, and as the electron temperature increases, the charging ceases at a critical value depending on the surface material. We present the theory and numerical results of anticritical temperatures for typical surface materials in Maxwellian space plasmas. The change in anticritical temperature due to a low-incident-energy enhancement of the electron backscatter yield, consistent with recent measurements, is discussed. Approximate expressions for the anticritical temperature upper limits are given on the basis of Taylor expansions at low temperature of the charging onset equation. It is shown that that the existence of the anticritical temperature slightly modifies the possible triple-root configurations in the flux-voltage characteristic curve for a material. The surface charging effect of a Maxwellian plasma with flux components spanning the anticritical and critical temperatures is considered. A comparison with an empirical low-voltage charging curve is given.

  18. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants. Volume 5

    NASA Technical Reports Server (NTRS)

    2008-01-01

    To protect space crews from air contaminants, NASA requested that the National Research Council (NRC) provide guidance for developing spacecraft maximum allowable concentrations (SMACs) and review NASA's development of exposure guidelines for specific chemicals. The NRC convened the Committee on Spacecraft Exposure Guidelines to address this task. The committee published Guidelines for Developing Spacecraft Maximum Allowable Concentrations for Space Station Contaminants (NRC 1992). The reason for the review of chemicals in Volume 5 is that many of them have not been examined for more than 10 years, and new research necessitates examining the documents to ensure that they reflect current knowledge. New knowledge can be in the form of toxicologic data or in the application of new approaches for analysis of available data. In addition, because NASA anticipates longer space missions beyond low Earth orbit, SMACs for 1,000-d exposures have also been developed.

  19. STS-46 EURECA spacecraft during processing at Astrotech Space Operation

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-46 Atlantis, Orbiter Vehicle (OV) 104, European Retrievable Carrier 1L (EURECA-1L) undergoes preflight assembly and checkout by German aerospace workers at the Astrotech Space Operations spacecraft processing facility in Titusville, Florida. The clean-suited workers operate an overhead crane holding the high-precision thermostat (HPT) experiment which will be mounted on the EURECA-1L spacecraft on the right. Designed and built by an international contractor team lead by the German firm MBB / ERNO, the spacecraft is scheduled for deployment from OV-104's payload bay (PLB) during STS-46. European Space Agency (ESA) is sponsoring EURECA-1L, a free-flying reusable research platform that will be deployed and retrieved at a later date by another Shuttle crew. View provided by the Kennedy Space Center (KSC) with alternate number KSC-91PC-1959.

  20. Apollo Master Spacecraft Specification

    NASA Technical Reports Server (NTRS)

    1963-01-01

    The ultimate objective of this project is to land men on the surface of the moon and return the men safely to earth. The objective of this document is to define the design approaches and operational techniques for transporting a three-man crew to the moon and returning them to earth.

  1. Apollo 8 prime crew seen during water egress training in Gulf of Mexico

    NASA Technical Reports Server (NTRS)

    1968-01-01

    Astronaut James A. Lovell Jr., command module pilot of the Apollo 8 prime crew, in special net being hoisted up to a U.S. Coast Guard helicopter during water egress training in the Gulf of Mexico. Awaiting his turn for helicopter pickup is Astronaut William A. Andors (in raft), lunar module pilot. A team of Manned Spacecraft Center (MSC) swimmers assited with the training exercise.

  2. Apollo 8 prime crew seen during water egress training in Gulf of Mexico

    NASA Technical Reports Server (NTRS)

    1968-01-01

    The prime crew of the Apollo 8 mission in life raft awaiting pickup by U.S. Coast Guard helicopter during water egress training in the Gulf of Mexico. They had just egressed Apollo Boilerplate 1102A, at left. Inflated bags were used to upright the boilerplate. Left to right, are Astronauts William A. Anders, lunar module pilot; James A. Lovell Jr., command module pilot; and Frank Borman, commander. A team of Manned Spacecraft Center (MSC) swimmers assisted with the training exercise.

  3. Crew of the first manned Apollo mission practice water egress procedures

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Prime crew for the first manned Apollo mission relax in a life raft during water egress training in the Gulf of Mexico with a full scale boilerplate model of their spacecraft. Left to right, are Astronauts Roger B. Chaffee, pilot, Virgil I. Grissom, command pilot, and Edward H. White II (facing camera), senior pilot. In background is the 'Duchess', a yacht owned by La Porte businessman Paul Barkley and provided by him as a press boat for newsmen covering the training.

  4. Apollo 13 crew arrive on prime recovery ship U.S.S. Iwo Jima

    NASA Technical Reports Server (NTRS)

    1970-01-01

    Apollo 13 crew arrive on prime recovery ship U.S.S. Iwo Jima following splashdown and recovery operations in the South Pacific. Exiting the helicopter which made the pick-up some four miles from the Iwo Jima are (from left) Astronauts Fred W. Haise Jr., lunar module pilot; James A. Lovell Jr., commander; and John L. Swigert Jr., command module pilot. The Apollo 13 spacecraft splashed down at 12:07:44 p.m., April 17, 1970.

  5. Apollo 12 crew welcomed aboard U.S.S. Hornet by Rear Admiral Donald David

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Rear Admiral Donald C. David, Commander, Manned Spacecraft Recovery Force, Pacific, welcomes the crew of the Apollo 12 lunar landing mission aboard the U.S.S. Hornet, prime recovery vessel for the mission. A color guard was also on hand for the welcoming ceremonies. Inside the Mobile Quarantine Facility are (left to right) Astronauts Charles Conrad Jr., commander; Richard F. Gordon Jr., command module pilot; and Alan L. Bean, lunar module pilot.

  6. NASA Crew Launch Vehicle Overview

    NASA Technical Reports Server (NTRS)

    Dumbacher, Daniel L.

    2006-01-01

    The US. Vision for Space Exploration, announced January 2004, outlines the National Aeronautics and Space Administration s (NASA) strategic goals and objectives. These include: 1) Flying the Shuttle as safely as possible until its retirement, not later than 2010. 2) Bringing a new Crew Exploration Vehicle (CEV) into service as soon as possible after Shuttle retirement. 3) Developing a balanced overall program of science, exploration, and aeronautics at NASA, consistent with the redirection of the human spaceflight program to focus on exploration. 4) Completing the International Space Station (ISS) in a manner consistent with international partner commitments and the needs of human exploration. 5) Encouraging the pursuit of appropriate partnerships with the emerging commercial space sector. 6) Establishing a lunar return program having the maximum possible utility for later missions to Mars and other destinations. Following the confirmation of the new NASA Administrator in April 2005, the Agency commissioned a team of aerospace subject matter experts from government and industry to perform the Exploration Systems Architecture Study (ESAS), which provided in-depth information for selecting the follow-on launch vehicle designs to enable these goals, The ESAS team analyzed a number of potential launch systems, with a focus on: (1) a human-rated launch vehicle for crew transport and (2) a heavy lift launch vehicle (HLLV) to carry cargo. After several months of intense study utilizing technical performance, budget, and schedule objectives, the results showed that the optimum architecture to meet the challenge of safe, reliable crew transport is a two-stage variant of the Space Shuttle propulsion system - utilizing the reusable Solid Rocket Booster (SRB) as the first stage, along with a new upper stage that uses a derivative of the RS-25 Space Shuttle Main Engine to deliver 25 metric tons to low-Earth orbit. The CEV that this new Crew Launch Vehicle (CLV) lofts into space

  7. Unusual spacecraft materials

    NASA Technical Reports Server (NTRS)

    Post, Jonathan V.

    1990-01-01

    For particularly innovative space exploration missions, unusual requirements are levied on the structural components of the spacecraft. In many cases, the preferred solution is the utilization of unusual materials. This trend is forecast to continue. Several hypothetic examples are discussed.

  8. Spacecraft Fire Safety

    NASA Technical Reports Server (NTRS)

    Margle, Janice M. (Editor)

    1987-01-01

    Fire detection, fire standards and testing, fire extinguishment, inerting and atmospheres, fire-related medical science, aircraft fire safety, Space Station safety concerns, microgravity combustion, spacecraft material flammability testing, and metal combustion are among the topics considered.

  9. Surviving atmospheric spacecraft breakup

    NASA Technical Reports Server (NTRS)

    Szewczyk, Nathaniel J.; McLamb, William

    2005-01-01

    Spacecraft travel higher and faster than aircraft, making breakup potentially less survivable. As with aircraft breakup, the dissipation of lethal forces via spacecraft breakup around an organism is likely to greatly increase the odds of survival. By employing a knowledge of space and aviation physiology, comparative physiology, and search-and-rescue techniques, we were able to correctly predict and execute the recovery of live animals following the breakup of the space shuttle Columbia. In this study, we make what is, to our knowledge, the first report of an animal, Caenorhabditis elegans, surviving the atmospheric breakup of the spacecraft that was supporting it and discuss both the lethal events these animals had to escape and the implications for search and rescue following spacecraft breakup.

  10. Quick spacecraft charging primer

    SciTech Connect

    Larsen, Brian Arthur

    2014-03-12

    This is a presentation in PDF format which is a quick spacecraft charging primer, meant to be used for program training. It goes into detail about charging physics, RBSP examples, and how to identify charging.

  11. Spacecraft Charge as a Source of Electrical Power for Spacecraft

    DTIC Science & Technology

    1988-11-01

    Progress in Astronautics and Aeronautics.47: Spacecraft Charging by3Maanetospheric Plasmas : 15-30, 1976. Nicholson, Dwight R...34 Spacecraft Charging Investigation: A Joint Research and Technology Program," Progress in Astronautics and Astronautics . 47: Spacecraft Charging by... Magnetospheric Plasmas : 3-14, 1976. l Massaro, N.J. and others. "A Charging Model for Three-Axis Stabilized Spacecraft ,"

  12. Viking lander spacecraft battery

    NASA Technical Reports Server (NTRS)

    Newell, D. R.

    1976-01-01

    The Viking Lander was the first spacecraft to fly a sterilized nickel-cadmium battery on a mission to explore the surface of a planet. The significant results of the battery development program from its inception through the design, manufacture, and test of the flight batteries which were flown on the two Lander spacecraft are documented. The flight performance during the early phase of the mission is also presented.

  13. Internet Access to Spacecraft

    NASA Technical Reports Server (NTRS)

    Rash, James; Parise, Ron; Hogie, Keith; Criscuolo, Ed; Langston, Jim; Jackson, Chris; Price, Harold; Powers, Edward I. (Technical Monitor)

    2000-01-01

    The Operating Missions as Nodes on the Internet (OMNI) project at NASA's Goddard Space flight Center (GSFC), is demonstrating the use of standard Internet protocols for spacecraft communication systems. This year, demonstrations of Internet access to a flying spacecraft have been performed with the UoSAT-12 spacecraft owned and operated by Surrey Satellite Technology Ltd. (SSTL). Previously, demonstrations were performed using a ground satellite simulator and NASA's Tracking and Data Relay Satellite System (TDRSS). These activities are part of NASA's Space Operations Management Office (SOMO) Technology Program, The work is focused on defining the communication architecture for future NASA missions to support both NASA's "faster, better, cheaper" concept and to enable new types of collaborative science. The use of standard Internet communication technology for spacecraft simplifies design, supports initial integration and test across an IP based network, and enables direct communication between scientists and instruments as well as between different spacecraft, The most recent demonstrations consisted of uploading an Internet Protocol (IP) software stack to the UoSAT- 12 spacecraft, simple modifications to the SSTL ground station, and a series of tests to measure performance of various Internet applications. The spacecraft was reconfigured on orbit at very low cost. The total period between concept and the first tests was only 3 months. The tests included basic network connectivity (PING), automated clock synchronization (NTP), and reliable file transfers (FTP). Future tests are planned to include additional protocols such as Mobile IP, e-mail, and virtual private networks (VPN) to enable automated, operational spacecraft communication networks. The work performed and results of the initial phase of tests are summarized in this paper. This work is funded and directed by NASA/GSFC with technical leadership by CSC in arrangement with SSTL, and Vytek Wireless.

  14. Orbital spacecraft resupply technology

    NASA Technical Reports Server (NTRS)

    Eberhardt, R. N.; Tracey, T. R.; Bailey, W. J.

    1986-01-01

    The resupplying of orbital spacecraft using the Space Shuttle, Orbital Maneuvering Vehicle, Orbital Transfer Vehicle or a depot supply at a Space Station is studied. The governing factor in fluid resupply designs is the system size with respect to fluid resupply quantities. Spacecraft propellant management for tankage via diaphragm or surface tension configurations is examined. The capabilities, operation, and application of adiabatic ullage compression, ullage exchange, vent/fill/repressurize, and drain/vent/no-vent fill/repressurize, which are proposed transfer methods for spacecraft utilizing tankage configurations, are described. Selection of the appropriate resupply method is dependent on the spacecraft design features. Hydrazine adiabatic compression/detonation, liquid-free vapor venting to prevent freezing, and a method for no-vent liquid filling are analyzed. Various procedures for accurate measurements of propellant mass in low gravity are evaluated; a system of flowmeters with a PVT system was selected as the pressurant solubility and quantity gaging technique. Monopropellant and bipropellant orbital spacecraft consumable resupply system tanks which resupply 3000 lb of hydrazine and 7000 lb of MMH/NTO to spacecraft on orbit are presented.

  15. Gemini 9-A spacecraft touches down in the Atlantic at end of mission

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Gemini 9-A space flight is concluded as the Gemini 9 spacecraft touches down in the Atlantic. In this view its parachute is still deployed as the spacecraft hits the water (34117); Astronauts Thomas Stafford (right) and Eugene Cernan wave to the crowd aboard the aircraft carrier U.S.S. Wasp as they emerge from their Gemini 9 capsule. John C. Stonesifer (far right), with the Manned Spacecraft Center's Landing and Recovery Division, was on board to greet the astronauts (34118).

  16. STS-88 crew goes through Crew Equipment Interface Testing

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Lowered on a movable work platform or bucket inside the payload bay of orbiter Endeavour, STS-88 Mission Specialists Jerry L. Ross (far right) and James H. Newman (second from right) get a close look at the Orbiter Docking System. At left is the bucket operator and Wayne Wedlake, with United Space Alliance at Johnson Space Center. The STS-88 crew members are in Orbiter Processing Facility Bay 1 to participate in a Crew Equipment Interface Test (CEIT) to familiarize themselves with the orbiter's midbody and crew compartments. Targeted for liftoff on Dec. 3, 1998, STS-88 will be the first Space Shuttle launch for assembly of the International Space Station (ISS). The primary payload is the Unity connecting module which will be mated to the Russian-built Zarya control module, expected to be already on orbit after a November launch from Russia. While on orbit during STS-88, Unity will be latched atop the Orbiter Docking System in the forward section of Endeavour's payload bay for the mating of the two modules. After the mating, Ross and Newman are scheduled to perform three spacewalks to connect power, data and utility lines and install exterior equipment. The first major U.S.-built component of ISS, Unity will serve as a connecting passageway to living and working areas of the space station. Unity has two attached pressurized mating adapters (PMAs) and one stowage rack installed inside. PMA-1 provides the permanent connection point between Unity and Zarya; PMA-2 will serve as a Space Shuttle docking port. Zarya is a self-supporting active vehicle, providing propulsive control capability and power during the early assembly stages. It also has fuel storage capability.

  17. STS-88 crew goes through Crew Equipment Interface Testing

    NASA Technical Reports Server (NTRS)

    1998-01-01

    As the bucket operator (left) lowers them into the open payload bay of the orbiter Endeavour, STS-88 Mission Specialists Jerry L. Ross (second from left) and James H. Newman (second from right) do a sharp-edge inspection. At their right is Wayne Wedlake, with United Space Alliance at Johnson Space Center. Below them is the Orbiter Docking System, the remote manipulator system arm and a tunnel into the payload bay. The STS-88 crew members are participating in a Crew Equipment Interface Test (CEIT), familiarizing themselves with the orbiter's midbody and crew compartments. Targeted for liftoff on Dec. 3, 1998, STS-88 will be the first Space Shuttle launch for assembly of the International Space Station (ISS). The primary payload is the Unity connecting module which will be mated to the Russian-built Zarya control module, expected to be already on orbit after a November launch from Russia. After the mating, Ross and Newman are scheduled to perform three spacewalks to connect power, data and utility lines and install exterior equipment. The first major U.S.-built component of ISS, Unity will serve as a connecting passageway to living and working areas of the space station. Unity has two attached pressurized mating adapters (PMAs) and one stowage rack installed inside. PMA-1 provides the permanent connection point between Unity and Zarya; PMA-2 will serve as a Space Shuttle docking port. Zarya is a self-supporting active vehicle, providing propulsive control capability and power during the early assembly stages. It also has fuel storage capability.

  18. STS-26 crew trains in JSC crew compartment trainer (CCT) shuttle mockup

    NASA Technical Reports Server (NTRS)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) George D. Nelson trains in the crew compartment trainer (CCT) located in JSC's Shuttle Mockup and Integration Laboratory Bldg 9A. Nelson, wearing new (navy blue) partial pressure suit (launch and entry suit (LES)) and helmet, is strapped into his launch and entry station on the CCT middeck. During Crew Station Review (CSR) #3, the crew donned the new partial pressure suits and checked out crew escape system (CES) configurations to evaluate crew equipment and procedures related to emergency egress methods and proposed crew escape options.

  19. STS-26 crew trains in JSC crew compartment trainer (CCT) shuttle mockup

    NASA Technical Reports Server (NTRS)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) George D. Nelson trains in the crew compartment trainer (CCT) located in JSC's Shuttle Mockup and Integration Laboratory Bldg 9A. Nelson, wearing new (navy blue) partial pressure suit (launch and entry suit (LES)) and helmet, peers out the open CCT side hatch and prepares to deploy inflatable slide. Technicians observe the activity from scaffolding on either side of the hatch. During Crew Station Review (CSR) #3, the crew donned the new partial pressure suits and checked out crew escape system (CES) configurations to evaluate crew equipment and procedures related to emergency egress methods and proposed crew escape options.

  20. STS-26 crew trains in JSC crew compartment trainer (CCT) shuttle mockup

    NASA Technical Reports Server (NTRS)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, crewmembers sit on flight deck of the crew compartment trainer (CCT) shuttle mockup. Pilot Richard O. Covey (left) at pilot station controls and Mission Specialist (MS) John M. Lounge (center) and MS David C. Hilmers on aft flight deck are wearing the new (navy blue) partial pressure suits (launch and entry suits (LESs)). During Crew Station Review (CSR) #3, the crew donned the new partial pressure suits and checked out crew escape system (CES) configurations to evaluate crew equipment and procedures related to emergency egress methods and proposed crew escape options. CCT shuttle mockup is located in JSC's Shuttle Mockup and Integration Laboratory Bldg 9A.

  1. STS-26 crew trains in JSC crew compartment trainer (CCT) shuttle mockup

    NASA Technical Reports Server (NTRS)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, Commander Frederick H. Hauck tests cushion outside the crew compartment trainer (CCT) side hatch. Hauck, wearing new (navy blue) partial pressure suit (launch and entry suit (LES)) and helmet, tumbles out CCT side hatch onto cushion as technicians look on. During Crew Station Review (CSR) #3, the crew donned the new partial pressure suits and checked out crew escape system (CES) configurations to evaluate crew equipment and procedures related to emergency egress methods and proposed crew escape options. CCT is located in JSC's Shuttle Mockup and Integration Laboratory Bldg 9A.

  2. Assured crew return vehicle post landing configuration design and test

    NASA Technical Reports Server (NTRS)

    Anderson, Loren A.; Armitage, Pamela Kay

    1992-01-01

    The 1991-1992 senior Mechanical and Aerospace Engineering Design class continued work on the post landing configurations for the Assured Crew Return Vehicle (ACRV) and the Emergency Egress Couch (EEC). The ACRV will be permanently docked to Space Station Freedom, fulfilling NASA's commitment of Assured Crew Return Capability in the event of an accident or illness aboard Space Station Freedom. The EEC provides medical support and a transportation surface for an incapacitated crew member. The objective of the projects was to give the ACRV Project Office data to feed into their feasibility studies. Four design teams were given the task of developing models with dynamically and geometrically scaled characteristics. Groups one and two combined effort to design a one-fifth scale model of the Apollo Command Module derivative, an on-board flotation system, and a lift attachment point system. This model was designed to test the feasibility of a rigid flotation and stabilization system and to determine the dynamics associated with lifting the vehicle during retrieval. However, due to priorities, it was not built. Group three designed a one-fifth scale model of the Johnson Space Center (JSC) benchmark configuration, the Station Crew Return Alternative Module (SCRAM) with a lift attachment point system. This model helped to determine the flotation and lifting characteristics of the SCRAM configuration. Group four designed a full scale EEC with changeable geometric and dynamic characteristics. This model provided data on the geometric characteristics of the EEC and on the placement of the CG and moment of inertia. It also gave the helicopter rescue personnel direct input to the feasibility study.

  3. Assured crew return vehicle post landing configuration design and test

    NASA Astrophysics Data System (ADS)

    Anderson, Loren A.; Armitage, Pamela Kay

    The 1991-1992 senior Mechanical and Aerospace Engineering Design class continued work on the post landing configurations for the Assured Crew Return Vehicle (ACRV) and the Emergency Egress Couch (EEC). The ACRV will be permanently docked to Space Station Freedom, fulfilling NASA's commitment of Assured Crew Return Capability in the event of an accident or illness aboard Space Station Freedom. The EEC provides medical support and a transportation surface for an incapacitated crew member. The objective of the projects was to give the ACRV Project Office data to feed into their feasibility studies. Four design teams were given the task of developing models with dynamically and geometrically scaled characteristics. Groups one and two combined effort to design a one-fifth scale model of the Apollo Command Module derivative, an on-board flotation system, and a lift attachment point system. This model was designed to test the feasibility of a rigid flotation and stabilization system and to determine the dynamics associated with lifting the vehicle during retrieval. However, due to priorities, it was not built. Group three designed a one-fifth scale model of the Johnson Space Center (JSC) benchmark configuration, the Station Crew Return Alternative Module (SCRAM) with a lift attachment point system. This model helped to determine the flotation and lifting characteristics of the SCRAM configuration. Group four designed a full scale EEC with changeable geometric and dynamic characteristics. This model provided data on the geometric characteristics of the EEC and on the placement of the CG and moment of inertia. It also gave the helicopter rescue personnel direct input to the feasibility study.

  4. Analysis of Crew Fatigue in AIA Guantanamo Bay Aviation Accident

    NASA Technical Reports Server (NTRS)

    Rosekind, Mark R.; Gregory, Kevin B.; Miller, Donna L.; Co, Elizabeth L.; Lebacqz, J. Victor; Statler, Irving C. (Technical Monitor)

    1994-01-01

    Flight operations can engender fatigue, which can affect flight crew performance, vigilance, and mood. The National Transportation Safety Board (NTSB) requested the NASA Fatigue Countermeasures Program to analyze crew fatigue factors in an aviation accident that occurred at Guantanamo Bay, Cuba. There are specific fatigue factors that can be considered in such investigations: cumulative sleep loss, continuous hours of wakefulness prior to the incident or accident, and the time of day at which the accident occurred. Data from the NTSB Human Performance Investigator's Factual Report, the Operations Group Chairman's Factual Report, and the Flight 808 Crew Statements were analyzed, using conservative estimates and averages to reconcile discrepancies among the sources. Analysis of these data determined the following: the entire crew displayed cumulative sleep loss, operated during an extended period of continuous wakefulness, and obtained sleep at times in opposition to the circadian disposition for sleep, and that the accident occurred in the afternoon window of physiological sleepiness. In addition to these findings, evidence that fatigue affected performance was suggested by the cockpit voice recorder (CVR) transcript as well as in the captain's testimony. Examples from the CVR showed degraded decision-making skills, fixation, and slowed responses, all of which can be affected by fatigue; also, the captain testified to feeling "lethargic and indifferent" just prior to the accident. Therefore, the sleep/wake history data supports the hypothesis that fatigue was a factor that affected crewmembers' performance. Furthermore, the examples from the CVR and the captain's testimony support the hypothesis that the fatigue had an impact on specific actions involved in the occurrence of the accident.

  5. STS-30 Magellan spacecraft is unpacked at Kennedy Space Center (KSC) SAEF-2

    NASA Technical Reports Server (NTRS)

    1989-01-01

    At the Kennedy Space Center (KSC) inside the Space Assembly and Encapsulation Facility 2 (SAEF-2) (planetary checkout facility), the cover of the Payload Environmental Transportation System (PETS) is removed so that the Magellan spacecraft can be hoisted from the PETS trailer to the clean room floor. Clean-suited technicians guide the cover above plastic-wrapped spacecraft using rope. The spacecraft, destined for unprecedented studies of the Venusian topographic features, is to be deployed by the crew of NASA STS-30 mission in April 1989. View provided by KSC with alternate number KSC-88PC-1083.

  6. Scheme of rendezvous mission to lunar orbital station by spacecraft launched from Earth

    NASA Astrophysics Data System (ADS)

    Murtazin, R. F.

    2016-05-01

    In recent years, great experience has been accumulated in manned flight astronautics for rendezvous in near-Earth orbit. During flights of Apollo spacecraft with crews that landed on the surface of the Moon, the problem of docking a landing module launched from the Moon's surface with the Apollo spacecraft's command module in a circumlunar orbit was successfully solved. A return to the Moon declared by leading space agencies requires a scheme for rendezvous of a spacecraft launched from an earth-based cosmodromee with a lunar orbital station. This paper considers some ballistic schemes making it possible to solve this problem with minimum fuel expenditures.

  7. Hazards by meteoroid Impacts onto operational spacecraft

    NASA Astrophysics Data System (ADS)

    Landgraf, M.; Jehn, R.; Flury, W.

    Operational spacecraft in Earth orbit or on interplanetary trajectories are exposed to high-velocity particles that can cause damage to sensitive on-board instrumentation. In general there are two types of hazard: direct destruction of functional elements by impacts, and indirect disturbance of instruments by the generated impact plasma. The latter poses a threat especially for high-voltage instrumentation and electronics. While most meteoroids have sizes in the order of a few micrometre, and typical masses of 10-15 kg, the most dangerous population with sizes in the millimetre and masses in the milligramme range exhibits still substantial impact fluxes in the order of 2 × 10-11 m-2 s-1 . This level of activity can by significantly elevated during passages of the spacecraft through cometary trails, which on Earth cause events like the well-known Leonid and Perseid meteor streams. The total mass flux of micrometeoroids onto Earth is about 107 kg yr-1 , which is about one order of magnitude less than the estimated mass flux of large objects like comets and asteroids with individual masses above 105 kg. In order to protect spacecraft from the advert effects of meteoroid impacts, ESA performs safety operations on its spacecraft during meteor streams, supported by real-time measurements of the meteor activity. A summary of past and future activities is given.

  8. Disinfectants for spacecraft applications - An overview

    NASA Technical Reports Server (NTRS)

    Koenig, David W.; Mallary, Laura L.; Pierson, Duane L.

    1991-01-01

    The review of disinfectants for use on manned missions emphasizes the need for contamination control to prevent the detrimental effects of bacteria growth on crew health. Microbial control is possible by means of biocides, but the selected product has to meet stringent toxicity requirements for the small environments in spacecraft. The testing and evaluation is described of four biocide candidates: hydrogen peroxide, quaternary ammonium compounds, iodine, and glutaraldehyde. The effectiveness of the disinfectants are analyzed in terms of the ability to treat typical microbial counts from Skylab missions in a closed environment. It is shown that many biocide candidates are not compatible with the ECLSS, water-recovery management, and air-revitalization subsystems of the Space Station Freedom. The use of hydrogen peroxide is proposed with a secondary stronger agent for microbial spills from biological experiments.

  9. A plan for spacecraft automated rendezvous

    NASA Technical Reports Server (NTRS)

    Deaton, A. W.; Lomas, J. J.; Mullins, L. D.

    1992-01-01

    An automated rendezvous approach has been developed that utilizes advances in technology to reduce real-time/near real-time flight operations support personnel to an acceptable level that is near the minimum without jeopardizing the success of the mission. The on-board flight targeting uses a rule-based system to select the pursuit vehicle phasing orbits and uses precise navigation updates from the pursuit/target spacecraft made possible by the global positioning system receivers/processors on both spacecraft to adjust the phasing orbits and achieve rendezvous. The ascent-to-orbit targeting for the pursuit vehicle has been successfully decoupled from the on-orbit orbit transfer phasing targeting. Typical launch window data have been developed for the heavy lift launch vehicle and cargo transfer vehicle for a Space Station Freedom rendezvous mission.

  10. ISS Crew Transportation and Services Requirements Document

    NASA Technical Reports Server (NTRS)

    Lueders, Kathryn L. (Compiler)

    2015-01-01

    Under the guidance of processes provided by Crew Transportation Plan (CCT-PLN-1100), this document with its sister documents, Crew Transportation Technical Management Processes (CCT-PLN-1120), Crew Transportation Technical Standards and Design Evaluation Criteria (CCT-STD-1140), and Crew Transportation Operations Standards (CCT-STD-1150), and International Space Station (ISS) to Commercial Orbital Transportation Services Interface Requirements Document (SSP 50808), provides the basis for a National Aeronautics and Space Administration (NASA) certification for services to the ISS for the Commercial Provider. When NASA Crew Transportation System (CTS) certification is achieved for ISS transportation, the Commercial Provider will be eligible to provide services to and from the ISS during the services phase of the NASA Commercial Crew Program (CCP).

  11. Estimating the Reliability of a Soyuz Spacecraft Mission

    NASA Technical Reports Server (NTRS)

    Lutomski, Michael G.; Farnham, Steven J., II; Grant, Warren C.

    2010-01-01

    Once the US Space Shuttle retires in 2010, the Russian Soyuz Launcher and Soyuz Spacecraft will comprise the only means for crew transportation to and from the International Space Station (ISS). The U.S. Government and NASA have contracted for crew transportation services to the ISS with Russia. The resulting implications for the US space program including issues such as astronaut safety must be carefully considered. Are the astronauts and cosmonauts safer on the Soyuz than the Space Shuttle system? Is the Soyuz launch system more robust than the Space Shuttle? Is it safer to continue to fly the 30 year old Shuttle fleet for crew transportation and cargo resupply than the Soyuz? Should we extend the life of the Shuttle Program? How does the development of the Orion/Ares crew transportation system affect these decisions? The Soyuz launcher has been in operation for over 40 years. There have been only two loss of life incidents and two loss of mission incidents. Given that the most recent incident took place in 1983, how do we determine current reliability of the system? Do failures of unmanned Soyuz rockets impact the reliability of the currently operational man-rated launcher? Does the Soyuz exhibit characteristics that demonstrate reliability growth and how would that be reflected in future estimates of success? NASA s next manned rocket and spacecraft development project is currently underway. Though the projects ultimate goal is to return to the Moon and then to Mars, the launch vehicle and spacecraft s first mission will be for crew transportation to and from the ISS. The reliability targets are currently several times higher than the Shuttle and possibly even the Soyuz. Can these targets be compared to the reliability of the Soyuz to determine whether they are realistic and achievable? To help answer these questions this paper will explore how to estimate the reliability of the Soyuz Launcher/Spacecraft system, compare it to the Space Shuttle, and its

  12. Advanced crew procedures development techniques

    NASA Technical Reports Server (NTRS)

    Arbet, J. D.; Benbow, R. L.; Mangiaracina, A. A.; Mcgavern, J. L.; Spangler, M. C.; Tatum, I. C.

    1975-01-01

    The development of an operational computer program, the Procedures and Performance Program (PPP), is reported which provides a procedures recording and crew/vehicle performance monitoring capability. The PPP provides real time CRT displays and postrun hardcopy of procedures, difference procedures, performance, performance evaluation, and training script/training status data. During post-run, the program is designed to support evaluation through the reconstruction of displays to any point in time. A permanent record of the simulation exercise can be obtained via hardcopy output of the display data, and via magnetic tape transfer to the Generalized Documentation Processor (GDP). Reference procedures data may be transferred from the GDP to the PPP.

  13. STS-41D Crew Portrait

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The crew assigned to the STS-41D mission included (seated left to right) Richard M. (Mike) Mullane, mission specialist; Steven A. Hawley, mission specialist; Henry W. Hartsfield, commander; and Michael L. (Mike) Coats, pilot. Standing in the rear are Charles D. Walker, payload specialist; and Judith A. (Judy) Resnik, mission specialist. Launched aboard the Space Shuttle Discovery August 30, 1984 at 8:41:50 am (EDT), the STS-41D mission deployed three satellites: the Satellite Business System SBS-D; the SYCOM IV-2 (also known as LEASAT-2); and the TELSTAR.

  14. STS-107 Crew Training Clip

    NASA Astrophysics Data System (ADS)

    2002-06-01

    The STS-107 is a Multidiscipline Microgravity and Earth Science Research Mission to conduct international scientific investigations in orbit. The crew consists of Payload Specialist Ilan Ramon, Commander Rick Husband, Pilot William McCool, and Mission Specialists David Brown, Laurel Clark, Michael Anderson, and Kalpana Chawla. The crewmembers are shown getting suited in the Pre-Launch Ingress and Egress training area. The other areas of training include Payload Experiment in Fixed Base/Spacehab, Mist Experiment Combustion Module 2, Phab 4 Experiment in CCT Mid-deck and Payload Experiment Demo-Protein Crystal Growth.

  15. STS-121 crew visits SSC

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Astronauts Steve Lindsey (left), Stephanie Wilson, Lisa Nowak and Piers Sellers meet with employees at NASA Stennis Space Center. The crewmembers on NASA's space shuttle mission STS-121, which launched July 4, 2006, thanked SSC's workers for their dedication and safe work history. `We feel blessed that you are a part of the NASA family,' Wilson said. All four expressed gratitude for the reliability of the space shuttle's main engines, which helped propel the STS-121 crew into orbit on their 13-day mission.

  16. The crew exploration vehicle (CEV) and the next generation of human spaceflight

    NASA Astrophysics Data System (ADS)

    Raftery, Michael; Fox, Todd

    2007-06-01

    Announced in January 2004, NASA's “Vision for Space Exploration” describes an ambitious series of missions, including a plan to return humans to the moon before the end of the next decade as well as eventual crewed missions to Mars. To accomplish these missions, NASA is developing “Constellation Systems”, a system of systems that will create the required vehicles, systems, and infrastructure. The first vehicle produced for Constellation Systems will be the Crew Exploration Vehicle (CEV). The CEV is a spacecraft designed to affordably, reliably, and safely transfer crew from the Earth's surface to destinations beyond. Since Constellation Systems relies on a flexible, modular architecture to accomplish different missions, the CEV will be a very versatile vehicle. Initially, it will be used to transfer crew and cargo to and from the International Space Station. By the end of the next decade, it will transfer four astronauts from the Earth's surface, dock with the Earth Departure Stage for the trip to a Lunar Orbit, then maintain itself autonomously there while the crew explores the surface below. The CEV design utilizes experience and technology from previous programs like Apollo and the Space Shuttle, but combines that with modern materials, manufacturing techniques, and avionics. This paper explores the requirements and design factors which drove the definition of the vehicle configuration.

  17. Mechanical Design of Spacecraft

    NASA Technical Reports Server (NTRS)

    1962-01-01

    In the spring of 1962, engineers from the Engineering Mechanics Division of the Jet Propulsion Laboratory gave a series of lectures on spacecraft design at the Engineering Design seminars conducted at the California Institute of Technology. Several of these lectures were subsequently given at Stanford University as part of the Space Technology seminar series sponsored by the Department of Aeronautics and Astronautics. Presented here are notes taken from these lectures. The lectures were conceived with the intent of providing the audience with a glimpse of the activities of a few mechanical engineers who are involved in designing, building, and testing spacecraft. Engineering courses generally consist of heavily idealized problems in order to allow the more efficient teaching of mathematical technique. Students, therefore, receive a somewhat limited exposure to actual engineering problems, which are typified by more unknowns than equations. For this reason it was considered valuable to demonstrate some of the problems faced by spacecraft designers, the processes used to arrive at solutions, and the interactions between the engineer and the remainder of the organization in which he is constrained to operate. These lecture notes are not so much a compilation of sophisticated techniques of analysis as they are a collection of examples of spacecraft hardware and associated problems. They will be of interest not so much to the experienced spacecraft designer as to those who wonder what part the mechanical engineer plays in an effort such as the exploration of space.

  18. Docking mechanism for spacecraft

    NASA Technical Reports Server (NTRS)

    Lange, Gregory A. (Inventor); Mcmanamen, John P. (Inventor); Schliesing, John A. (Inventor)

    1989-01-01

    A system is presented for docking a space vehicle to a space station where a connecting tunnel for in-flight transfer of personnel is required. Cooperable coupling mechanisms include docking rings on the space vehicle and space station. The space station is provided with a tunnel structure, a retraction mechanism, and a docking ring. The vehicle coupling mechanism is designed to capture the station coupling mechanism, arrest relative spacecraft motions while limiting loads to acceptable levels, and then realign the spacecraft for final docking and tunnel interconnection. The docking ring of the space vehicle coupling mechanism is supported by linear attentuator actuator devices, each of which is controlled by a control system which receives loading information signals and attenuator stroke information signals from each device and supplies output signals for controlling its linear actuation to attenuate impact loading or to realign the spacecraft for final docking and tunnel interconnection. The retraction mechanism is used to draw the spacecraft together after initial contact and coupling. Tunnel trunnions, cooperative with the latches on the space vehicle constitute the primary structural tie between the spacecraft in final docked configuration.

  19. STS-95 crew members participate in a SPACEHAB familiarization exercise

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Inside the SPACEHAB training module, STS-95 Mission Specialist Scott Parazynski, M.D., helps adjust connections for the mesh cap and the Respiratory Inductance Plethysmograph (RIP) suit worn by Payload Specialist John Glenn, who is a senator from Ohio. The cap and suit, which Glenn will wear on the mission, are part of the equipment that will be used to seek to improve the quality of sleep for future astronauts. The STS-95 crew are participating in SPACEHAB familiarization at the SPACEHAB Payload Processing Facility, Cape Canaveral. The mission, scheduled to launch Oct. 29, includes research payloads such as the Spartan solar- observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  20. STS-95 crew members participate in a SPACEHAB familiarization exercise

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Inside the SPACEHAB training module, STS-95 Mission Specialist Scott Parazynski, M.D., helps with connections on the mesh cap worn by Payload Specialist John Glenn, who is a senator from Ohio. Glenn is also wearing the Respiratory Inductance Plethysmograph (RIP) suit he will wear on the mission to monitor respiration. The cap and suit are part of the equipment that will be used to seek to improve the quality of sleep for future astronauts. The STS-95 crew are participating in SPACEHAB familiarization at the SPACEHAB Payload Processing Facility, Cape Canaveral. The mission, scheduled to launch Oct. 29, includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  1. The STS-93 crew look over orbiter Columbia's main engine

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Space Shuttle Main Engine Facility, , STS-93 crew members listen to Site Director Dan Hausman, with Rocketdyne, while looking over the main engine of the Space Shuttle Columbia. From left, they are Pilot Jeffrey S. Ashby, Mission Specialists Michel Tognini of France, who represents the Centre National d'Etudes Spatiales (CNES), and Mission Specialist Catherine G. Coleman, Commander Eileen Collins and Mission Specialist Steven A. Hawley. STS-93, scheduled to launch July 9 aboard Space Shuttle Columbia, has the primary mission of the deployment of the Chandra X-ray Observatory. Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe.

  2. The STS-93 crew look over orbiter Columbia's main engine

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Space Shuttle Main Engine Facility, the STS-93 crew poses in the nozzle of Space Shuttle Columbia's main engine. From left, they are Mission Specialist Michel Tognini of France, who represents the Centre National d'Etudes Spatiales (CNES), Commander Eileen Collins, Mission Specialist Catherine G. Coleman, Pilot Jeffrey S. Ashby, and Mission Specialist Steven A. Hawley. STS-93, scheduled to launch July 9 aboard Space Shuttle Columbia, has the primary mission of the deployment of the Chandra X-ray Observatory. Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe.

  3. STS-95 crew members participate in a SPACEHAB familiarization

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-95 crew members look over the Osteoporosis Experiment in Orbit (OSTEO) during a SPACEHAB familiarization tour and briefing in the SPACEHAB Payload Processing Facility in Cape Canaveral. Seated from left are Mission Specialist Scott E. Parazynski, Payload Specialist Chiaki Mukai of the National Space Development Agency of Japan (NASDA), and Payload Specialist John H. Glenn Jr., who also is a senator from Ohio. Standing, from left, are STS-95 Commander Curtis L. Brown and Canadian Space Agency representative Duncan Burnside. STS-95 will feature a variety of research payloads, including the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Platform, the International Extreme Ultraviolet Hitchhiker, and experiments on space flight and the aging process. STS-95 is targeted for an Oct. 29 launch aboard the Space Shuttle Discovery.

  4. 46 CFR 92.20-10 - Location of crew spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Location of crew spaces. 92.20-10 Section 92.20-10... CONSTRUCTION AND ARRANGEMENT Accommodations for Officers and Crew § 92.20-10 Location of crew spaces. (a) Crew... the crew spaces may be below the deepest load line. (b) There must be no direct communication,...

  5. 46 CFR 92.20-10 - Location of crew spaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Location of crew spaces. 92.20-10 Section 92.20-10... CONSTRUCTION AND ARRANGEMENT Accommodations for Officers and Crew § 92.20-10 Location of crew spaces. (a) Crew... the crew spaces may be below the deepest load line. (b) There must be no direct communication,...

  6. 46 CFR 92.20-10 - Location of crew spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Location of crew spaces. 92.20-10 Section 92.20-10... CONSTRUCTION AND ARRANGEMENT Accommodations for Officers and Crew § 92.20-10 Location of crew spaces. (a) Crew... the crew spaces may be below the deepest load line. (b) There must be no direct communication,...

  7. 29 CFR 780.331 - Crew leaders and labor contractors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Crew leaders and labor contractors. 780.331 Section 780.331... 13(a)(6) Statutory Provisions § 780.331 Crew leaders and labor contractors. (a) Whether a crew leader... contractor. A crew leader who merely assembles a crew and brings them to the farm to be supervised and...

  8. 46 CFR 92.20-10 - Location of crew spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Location of crew spaces. 92.20-10 Section 92.20-10... CONSTRUCTION AND ARRANGEMENT Accommodations for Officers and Crew § 92.20-10 Location of crew spaces. (a) Crew... the crew spaces may be below the deepest load line. (b) There must be no direct communication,...

  9. 46 CFR 92.20-10 - Location of crew spaces.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Location of crew spaces. 92.20-10 Section 92.20-10... CONSTRUCTION AND ARRANGEMENT Accommodations for Officers and Crew § 92.20-10 Location of crew spaces. (a) Crew... the crew spaces may be below the deepest load line. (b) There must be no direct communication,...

  10. Degradation of Spacecraft Materials

    NASA Technical Reports Server (NTRS)

    Dever, Joyce; Banks, Bruce; deGroh, Kim; Miller, Sharon

    2004-01-01

    This chapter includes descriptions of specific space environmental threats to exterior spacecraft materials. The scope will be confined to effects on exterior spacecraft surfaces, and will not, therefore, address environmental effects on interior spacecraft systems, such as electronics. Space exposure studies and laboratory simulations of individual and combined space environemntal threats will be summarized. A significant emphasis is placed on effects of Earth orbit environments, because the majority of space missions have been flown in Earth orbits which have provided a significant amount of data on materials effects. Issues associated with interpreting materials degradation results will be discussed, and deficiencies of ground testing will be identified. Recommendations are provided on reducing or preventing space environmental degradation through appropriate materials selection.

  11. Spacecraft servicing demonstration plan

    NASA Technical Reports Server (NTRS)

    Bergonz, F. H.; Bulboaca, M. A.; Derocher, W. L., Jr.

    1984-01-01

    A preliminary spacecraft servicing demonstration plan is prepared which leads to a fully verified operational on-orbit servicing system based on the module exchange, refueling, and resupply technologies. The resulting system can be applied at the space station, in low Earth orbit with an orbital maneuvering vehicle (OMV), or be carried with an OMV to geosynchronous orbit by an orbital transfer vehicle. The three phase plan includes ground demonstrations, cargo bay demonstrations, and free flight verifications. The plan emphasizes the exchange of multimission modular spacecraft (MMS) modules which involves space repairable satellites. Three servicer mechanism configurations are the engineering test unit, a protoflight quality unit, and two fully operational units that have been qualified and documented for use in free flight verification activity. The plan balances costs and risks by overlapping study phases, utilizing existing equipment for ground demonstrations, maximizing use of existing MMS equipment, and rental of a spacecraft bus.

  12. Standardized Spacecraft Onboard Interfaces

    NASA Technical Reports Server (NTRS)

    Smith, Joseph F.; Plummer, Chris; Plancke, Patrick

    2003-01-01

    The Consultative Committee for Space Data Systems (CCSDS), an international organization of national space agencies, is branching out to provide new standards to enhanced reuse of onboard spacecraft equipment and software. These Spacecraft Onboard Interface (SOIF) standards will be, in part, based on the well-known Internet protocols. This paper will provide a description of the SOIF work by describing three orthogonal views: the Services View that describes data communications services, the Interoperability view shows how to exchange data and messages between different spacecraft elements, and the Protocol view, that describes the SOIF protocols and services. We will also provide a description of the present state of the services that will be provided to SOIF users, and are the basis of the utility of these standards.

  13. Overview of Orion Crew Module and Launch Abort Vehicle Dynamic Stability

    NASA Technical Reports Server (NTRS)

    Owens, Donald B.; Aibicjpm. Vamessa V.

    2011-01-01

    With the retirement of the Space Shuttle, NASA is designing a new spacecraft, called Orion, to fly astronauts to low earth orbit and beyond. Characterization of the dynamic stability of the Orion spacecraft is important for the design of the spacecraft and trajectory construction. Dynamic stability affects the stability and control of the Orion Crew Module during re-entry, especially below Mach = 2.0 and including flight under the drogues. The Launch Abort Vehicle is affected by dynamic stability as well, especially during the re-orientation and heatshield forward segments of the flight. The dynamic stability was assessed using the forced oscillation technique, free-to-oscillate, ballistic range, and sub-scale free-flight tests. All of the test techniques demonstrated that in heatshield-forward flight the Crew Module and Launch Abort Vehicle are dynamically unstable in a significant portion of their flight trajectory. This paper will provide a brief overview of the Orion dynamic aero program and a high-level summary of the dynamic stability characteristics of the Orion spacecraft.

  14. Revamping Spacecraft Operational Intelligence

    NASA Technical Reports Server (NTRS)

    Hwang, Victor

    2012-01-01

    The EPOXI flight mission has been testing a new commercial system, Splunk, which employs data mining techniques to organize and present spacecraft telemetry data in a high-level manner. By abstracting away data-source specific details, Splunk unifies arbitrary data formats into one uniform system. This not only reduces the time and effort for retrieving relevant data, but it also increases operational visibility by allowing a spacecraft team to correlate data across many different sources. Splunk's scalable architecture coupled with its graphing modules also provide a solid toolset for generating data visualizations and building real-time applications such as browser-based telemetry displays.

  15. Intelligent Data Visualization for Cross-Checking Spacecraft System Diagnosis

    NASA Technical Reports Server (NTRS)

    Ong, James C.; Remolina, Emilio; Breeden, David; Stroozas, Brett A.; Mohammed, John L.

    2012-01-01

    Any reasoning system is fallible, so crew members and flight controllers must be able to cross-check automated diagnoses of spacecraft or habitat problems by considering alternate diagnoses and analyzing related evidence. Cross-checking improves diagnostic accuracy because people can apply information processing heuristics, pattern recognition techniques, and reasoning methods that the automated diagnostic system may not possess. Over time, cross-checking also enables crew members to become comfortable with how the diagnostic reasoning system performs, so the system can earn the crew s trust. We developed intelligent data visualization software that helps users cross-check automated diagnoses of system faults more effectively. The user interface displays scrollable arrays of timelines and time-series graphs, which are tightly integrated with an interactive, color-coded system schematic to show important spatial-temporal data patterns. Signal processing and rule-based diagnostic reasoning automatically identify alternate hypotheses and data patterns that support or rebut the original and alternate diagnoses. A color-coded matrix display summarizes the supporting or rebutting evidence for each diagnosis, and a drill-down capability enables crew members to quickly view graphs and timelines of the underlying data. This system demonstrates that modest amounts of diagnostic reasoning, combined with interactive, information-dense data visualizations, can accelerate system diagnosis and cross-checking.

  16. Short rendezvous missions for advanced Russian human spacecraft

    NASA Astrophysics Data System (ADS)

    Murtazin, Rafail F.; Budylov, Sergey G.

    2010-10-01

    The two-day stay of crew in a limited inhabited volume of the Soyuz-TMA spacecraft till docking to ISS is one of the most stressful parts of space flight. In this paper a number of possible ways to reduce the duration of the free flight phase are considered. The duration is defined by phasing strategy that is necessary for reduction of the phase angle between the chaser and target spacecraft. Some short phasing strategies could be developed. The use of such strategies creates more comfortable flight conditions for crew thanks to short duration and additionally it allows saving spacecraft's life support resources. The transition from the methods of direct spacecraft rendezvous using one orbit phasing (first flights of " Vostok" and " Soyuz" vehicles) to the currently used methods of two-day rendezvous mission can be observed in the history of Soviet manned space program. For an advanced Russian human rated spacecraft the short phasing strategy is recommended, which can be considered as a combination between the direct and two-day rendezvous missions. The following state of the art technologies are assumed available: onboard accurate navigation; onboard computations of phasing maneuvers; launch vehicle with high accuracy injection orbit, etc. Some operational requirements and constraints for the strategies are briefly discussed. In order to provide acceptable phase angles for possible launch dates the experience of the ISS altitude profile control can be used. As examples of the short phasing strategies, the following rendezvous missions are considered: direct ascent, short mission with the phasing during 3-7 orbits depending on the launch date (nominal or backup). For each option statistical modeling of the rendezvous mission is fulfilled, as well as an admissible phase angle range, accuracy of target state vector and addition fuel consumption coming out of emergency is defined. In this paper an estimation of pros and cons of all options is conducted.

  17. STS-112 crew during Crew Equipment Interface Test

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- During a Crew Equipment Interface Test, STS-112 Mission Specialist Piers Sellers (foreground) points to an engine line on Atlantis, the designated orbiter for the mission, while Commander Jeffrey Ashby (behind) looks on. STS-112 is the 15th assembly flight to the International Space Station and will be ferrying the S1 Integrated Truss Structure. The S1 truss is the first starboard (right-side) truss segment, whose main job is providing structural support for the radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communications systems, external experiment positions and other subsystems. The S1 truss will be attached to the S0 truss. STS-112 is currently scheduled for launch Aug. 22, 2002.

  18. STS-112 crew during Crew Equipment Interface Test

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - During a Crew Equipment Interface Test, STS-112 Pilot Pamela Melroy (left) and Mission Specialist David Wolf (right) look at equipment pointed out by a technician in the payload bay of Atlantis. STS-112 is the 15th assembly flight to the International Space Station and will be ferrying the S1 Integrated Truss Structure. The S1 truss is the first starboard (right-side) truss segment, whose main job is providing structural support for the radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communications systems, external experiment positions and other subsystems. The S1 truss will be attached to the S0 truss. STS-112 is currently scheduled for launch Aug. 22, 2002 .

  19. STS-74 crew talk with recovery convoy crew after landing

    NASA Technical Reports Server (NTRS)

    1995-01-01

    On Runway 33 of KSC's Shuttle Landing Facility, STS-74 Commander Kenneth D. Cameron (left) and Mission Specialists Jerry L. Ross and Chris A. Hadfield chat with KSC recovery convoy crew member Shawn Greenwell, a runway measurement engineer. Cameron guided the orbiter Atlantis to the 27th end-of-mission landing at KSC in Shuttle program history, with main gear touchdown occuring at 12:01:27 p.m. EST. STS-74 marked the second docking of the U.S. Space Shuttle to the Russian Space Station Mir; Atlantis also was flown for the first docking earlier this year and its next mission, STS-76 in 1996, will be the third docking flight.

  20. STS-112 crew during Crew Equipment Interface Test

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- During a Crew Equipment Interface Test, STS-112 Mission Specialist Piers Sellers (left) points to an engine line on Atlantis, the designated orbiter for the mission, while Commander Jeffrey Ashby (right) looks on. STS-112 is the 15th assembly flight to the International Space Station and will be ferrying the S1 Integrated Truss Structure. The S1 truss is the first starboard (right-side) truss segment, whose main job is providing structural support for the radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communications systems, external experiment positions and other subsystems. The S1 truss will be attached to the S0 truss. STS-112 is currently scheduled for launch Aug. 22, 2002.

  1. STS-112 crew during Crew Equipment Interface Test

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- During a Crew Equipment Interface Test, STS-112 Pilot Pamela Melroy checks out the windshield on Atlantis, the designated orbiter for the mission. STS-112 is the 15th assembly flight to the International Space Station and will be ferrying the S1 Integrated Truss Structure. The S1 truss is the first starboard (right-side) truss segment, whose main job is providing structural support for the radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communications systems, external experiment positions and other subsystems. The S1 truss will be attached to the S0 truss. STS-112 is currently scheduled for launch Aug. 22, 2002.

  2. STS-112 crew during Crew Equipment Interface Test

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- Accompanied by a technician, STS-112 Pilot Pamela Melroy (left) and Mission Specialist David Wolf (right) look at the payload and equipment in the bay of Atlantis during a Crew Equipment Interface Test at KSC. STS-112 is the 15th assembly flight to the International Space Station and will be ferrying the S1 Integrated Truss Structure. The S1 truss is the first starboard (right-side) truss segment, whose main job is providing structural support for the radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communications systems, external experiment positions and other subsystems. The S1 truss will be attached to the S0 truss. STS-112 is currently scheduled for launch Aug. 22, 2002 .

  3. STS-112 crew during Crew Equipment Interface Test

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- During a Crew Equipment Interface Test, STS-112 Mission Specialist Fyodor Yurchikhin looks at Atlantis, the designated orbiter for the mission. Yurchikhin is with the Russian Space Agency. STS-112 is the 15th assembly flight to the International Space Station and will be ferrying the S1 Integrated Truss Structure. The S1 truss is the first starboard (right-side) truss segment, whose main job is providing structural support for the radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communications systems, external experiment positions and other subsystems. The S1 truss will be attached to the S0 truss. STS-112 is currently scheduled for launch Aug. 22, 2002.

  4. Asteroid Redirect Crewed Mission Space Suit and EVA System Maturation

    NASA Technical Reports Server (NTRS)

    Bowie, Jonathan; Buffington, Jesse; Hood, Drew; Kelly, Cody; Naids, Adam; Watson, Richard

    2015-01-01

    The Asteroid Redirect Crewed Mission (ARCM) requires a Launch/Entry/Abort (LEA) suit capability and short duration Extra Vehicular Activity (EVA) capability from the Orion spacecraft. For this mission, the pressure garment selected for both functions is the Modified Advanced Crew Escape Suit (MACES) with EVA enhancements and the life support option that was selected is the Exploration Portable Life Support System (PLSS) currently under development for Advanced Exploration Systems (AES). The proposed architecture meets the ARCM constraints, but much more work is required to determine the details of the suit upgrades, the integration with the PLSS, and the tools and equipment necessary to accomplish the mission. This work has continued over the last year to better define the operations and hardware maturation of these systems. EVA simulations were completed in the Neutral Buoyancy Lab (NBL) and interfacing options were prototyped and analyzed with testing planned for late 2014. This paper discusses the work done over the last year on the MACES enhancements, the use of tools while using the suit, and the integration of the PLSS with the MACES.

  5. STS-95 crew greet media after arriving at KSC

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-95 Mission Commander Curtis L. Brown Jr. (at microphone) greets the media at the Shuttle Landing Facility after the crew's arrival aboard T-38 jets (in the background) to make final preparations for their launch, targeted for liftoff at 2 p.m. on Oct. 29. The other crew members are (left to right) Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA), Mission Specialist Stephen K. Robinson, Pilot Steven W. Lindsey, Mission Specialist Pedro Duque, with the European Space Agency (ESA), and Payload Specialist John H. Glenn Jr., senator from Ohio. Missing is Mission Specialist Scott E. Parazynski, who was delayed in the flight from Texas. The STS-95 mission includes research payloads such as the Spartan solar- observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. The mission is expected to last 8 days, 21 hours and 49 minutes, and return to KSC on Nov. 7.

  6. STS-95 crew greet media after arriving at KSC

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Seen from behind, STS-95 Mission Commander Curtis L. Brown Jr. (at microphone) greets the media at the Shuttle Landing Facility after the crew's arrival aboard T-38 jets to make final preparations for their launch, targeted for liftoff at 2 p.m. on Oct. 29. The crew members are (left to right) Mission Specialist Stephen K. Robinson, Payload Specialist John H. Glenn Jr., senator from Ohio, Brown, Mission Specialist Pedro Duque, with the European Space Agency (ESA), Pilot Steven W. Lindsey, and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA). Missing is Mission Specialist Scott E. Parazynski, who was delayed in the flight from Texas. The STS-95 mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. The mission is expected to last 8 days, 21 hours and 49 minutes, and return to KSC on Nov. 7.

  7. The STS-93 crew look over orbiter Columbia's main engine

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Space Shuttle Main Engine Facility, STS-93 crew members listen to Site Director Dan Hausman, with Rocketdyne, while looking over the main engine of the Space Shuttle Columbia. From left, they are Mission Specialist Steven A. Hawley, Commander Eileen Collins and Pilot Jeffrey S. Ashby. Other crew members (not shown) are Mission Specialist Michel Tognini of France, who represents the Centre National d'Etudes Spatiales (CNES), and Mission Specialist Catherine G. Coleman. STS-93, scheduled to launch July 9 aboard Space Shuttle Columbia, has the primary mission of the deployment of the Chandra X-ray Observatory. Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe.

  8. Measured Spacecraft Dynamic Effects on Atmospheric Science Instruments

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Gell, David A.; Lay, Richard R.

    1997-01-01

    On September 1991, NASA launched the Upper Atmosphere Research Satellite. In addition to its atmospheric science mission, spacecraft dynamic effects on science measurements were analyzed. The investigation included two in-flight experiments to determine how each on-board instrument, subsystem and environmental disturbance contributed to the spacecraft dynamic response and how these disturbances affected science measurements. Three case studies are presented which show the impact of spacecraft dynamic response on science measurements. In the first case, correlation of independent atmospheric meridional wind measurements taken by two instruments with the spacecraft dynamic response demonstrated that excessive vibration (exceeding instrument pointing requirements) resulted in wind measurement disagreement. In the second case, solar array disturbances produced a spacecraft response signature on radiometer measurements. The signature explicitly demonstrated that if an instrument has sufficient spatial and temporal resolution, spacecraft dynamic response could impact measurements. In the final case, correlation of an instrument's fine sun sensor data and CO2 measurements demonstrated the effect of temporal and spatial sampling resolution and active pointing control on science measurements. The sun sensor had a frequency modulated characteristic due to spacecraft vibration and the periodic scanning of another instrument which was not present on the CO2 measurements.

  9. STS-86: Flight Crew Departing from the Skid Strip at Cape Canaveral Air Station after Mission Completion

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The crew (Commander James D. Wetherbee, Pilot Michael J. Bloomfield, Mission Specialists Vladimar G. Titov, Scott E. Parazynski, Jean-Loup J.M. Chretien, Wendy B. Lawrence, and David A. Wolf) are shown speaking to the press as they board a small plane for departure after their return from the space mission.

  10. Unmanned spacecraft for research

    NASA Technical Reports Server (NTRS)

    Graves, C. D.

    1972-01-01

    The applications of unmanned spacecraft for research purposes are discussed. Specific applications of the Communication and Navigation satellites and the Earth Observations satellites are described. Diagrams of communications on world-wide basis using synchronous satellites are developed. Photographs of earth resources and geology obtained from space vehicles are included.

  11. Spacecraft Environmental Anomalies Handbook

    DTIC Science & Technology

    1989-08-01

    engineering solutions for mitigating the effects of environmental anomalies have been developed. Among the causes o, spacecraft anomalies are surface...have been discovered after years of investig!:tion, and engineering solutions for mitigating the effccts of environmental anomalies have been developed...23 * 6.4.3 Fauth Tolerant Solutions .............................................................................. 23 6.4.4. Methods

  12. Analysis of spacecraft data

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Support was provided for the maintenance and modifications of software for the production and detailed analysis of data from the DE-A spacecraft and new software developed for this end. Software for the analysis of the data from the Spacelab Experimental Particle Accelerator (SEPAC) was also developed.

  13. Spacecraft attitude sensor

    NASA Technical Reports Server (NTRS)

    Davidson, A. C.; Grant, M. M. (Inventor)

    1973-01-01

    A system for sensing the attitude of a spacecraft includes a pair of optical scanners having a relatively narrow field of view rotating about the spacecraft x-y plane. The spacecraft rotates about its z axis at a relatively high angular velocity while one scanner rotates at low velocity, whereby a panoramic sweep of the entire celestial sphere is derived from the scanner. In the alternative, the scanner rotates at a relatively high angular velocity about the x-y plane while the spacecraft rotates at an extremely low rate or at zero angular velocity relative to its z axis to provide a rotating horizon scan. The positions of the scanners about the x-y plane are read out to assist in a determination of attitude. While the satellite is spinning at a relatively high angular velocity, the angular positions of the bodies detected by the scanners are determined relative to the sun by providing a sun detector having a field of view different from the scanners.

  14. Plug-and-Play Environmental Monitoring Spacecraft Subsystem

    NASA Technical Reports Server (NTRS)

    Patel, Jagdish; Brinza, David E.; Tran, Tuan A.; Blaes, Brent R.

    2011-01-01

    A Space Environment Monitor (SEM) subsystem architecture has been developed and demonstrated that can benefit future spacecraft by providing (1) real-time knowledge of the spacecraft state in terms of exposure to the environment; (2) critical, instantaneous information for anomaly resolution; and (3) invaluable environmental data for designing future missions. The SEM architecture consists of a network of plug-and- play (PnP) Sensor Interface Units (SIUs), each servicing one or more environmental sensors. The SEM architecture is influenced by the IEEE Smart Transducer Interface Bus standard (IEEE Std 1451) for its PnP functionality. A network of PnP Spacecraft SIUs is enabling technology for gathering continuous real-time information critical to validating spacecraft health in harsh space environments. The demonstrated system that provided a proof-of-concept of the SEM architecture consisted of three SIUs for measurement of total ionizing dose (TID) and single event upset (SEU) radiation effects, electromagnetic interference (EMI), and deep dielectric charging through use of a prototype Internal Electro-Static Discharge Monitor (IESDM). Each SIU consists of two stacked 2X2 in. (approximately 5X5 cm) circuit boards: a Bus Interface Unit (BIU) board that provides data conversion, processing and connection to the SEM power-and-data bus, and a Sensor Interface Electronics (SIE) board that provides sensor interface needs and data path connection to the BIU.

  15. Astronaut Crippen prepares to join crew in training

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Astronaut Robert L. Crippen, 41-G crew commander, prepares to join his crew for training in the mockup and integration laboratory at JSC. Astronaut David C. Leestma, 41-G mission specialist, left, will join the crew in training.

  16. 76 FR 71057 - Agency Information Collection Activities: Crew's Effects Declaration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-16

    ... SECURITY U.S. Customs and Border Protection Agency Information Collection Activities: Crew's Effects... approval in accordance with the Paperwork Reduction Act: Crew's Effects Declaration (CBP Form 1304). This... concerning the following information collection: Title: Crew's Effects Declaration. OMB Number:...

  17. 76 FR 56213 - Agency Information Collection Activities: Crew's Effects Declaration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-12

    ... SECURITY U.S. Customs and Border Protection Agency Information Collection Activities: Crew's Effects... and other Federal agencies to comment on an information collection requirement concerning the Crew's... concerning the following information collection: Title: Crew's Effects Declaration. OMB Number:...

  18. 77 FR 40892 - Agency Information Collection Activities: Crew Member's Declaration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-11

    ... SECURITY U.S. Customs and Border Protection Agency Information Collection Activities: Crew Member's... other Federal agencies to comment on an information collection requirement concerning the Crew Member's... CBP is soliciting comments concerning the following information collection: Title: Crew...

  19. Space-station crew-safety requirements

    NASA Technical Reports Server (NTRS)

    Witcofski, R. D.

    1983-01-01

    Baseline rescue and survival concepts for future space station crews are described. Preliminary studies are being carried out to identify potential threats to crew safety and means to counteract the dangers. Significant factors being considered include the type of threat, the warning time, the number of crewmembers, strategies for protection of the crew (including life-support measures redundancy), and the dependence of space station crews on ground personnel. Attention is being given to the impact of safety devices on the space station geometry and cost, as well as the equipment necessary to maintain the crew in a psychological status positive enough to cope with emergencies. Typical threats would be fire, crewmember illness or injury, and abandonment of the station. A Shuttle launch could take up to 12 days, while equipping the space station with an emergency return capsule would permit return on the same day as the capsule was occupied.

  20. Crew Transportation System Design Reference Missions

    NASA Technical Reports Server (NTRS)

    Mango, Edward J.

    2015-01-01

    Contains summaries of potential design reference mission goals for systems to transport humans to andfrom low Earth orbit (LEO) for the Commercial Crew Program. The purpose of this document is to describe Design Reference Missions (DRMs) representative of the end-to-end Crew Transportation System (CTS) framework envisioned to successfully execute commercial crew transportation to orbital destinations. The initial CTS architecture will likely be optimized to support NASA crew and NASA-sponsored crew rotation missions to the ISS, but consideration may be given in this design phase to allow for modifications in order to accomplish other commercial missions in the future. With the exception of NASA’s mission to the ISS, the remaining commercial DRMs are notional. Any decision to design or scar the CTS for these additional non-NASA missions is completely up to the Commercial Provider. As NASA’s mission needs evolve over time, this document will be periodically updated to reflect those needs.

  1. Expedition 6 Crew Interviews: Ken Bowersox CDR

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Expedition 6 Commander Ken Bowersox is seen during a prelaunch interview. He gives details on the mission's goals and significance, his role in the mission, what his responsibilities will be as commander, what the crew exchange will be like (transferring the Expedition 6 crew in place of the Expedition 5 crew on the International Space Station (ISS)) and what day-to-day life on an extended stay mission is like. Bowersox also discusses in some detail the planned extravehicular activities (EVAs), the anticipated use of the robot arms in installing the P1 truss and the on-going science experiments which will be conducted by the Expedition 6 crew. He touches on challenges posed by a late change in the crew roster. Bowersox ends with his thoughts on the value on the ISS in fostering international cooperation.

  2. STS-112 Crew Interviews: Ashby

    NASA Technical Reports Server (NTRS)

    2002-01-01

    STS-112 Mission Commander Jeffrey Ashby is seen during this preflight interview, answering questions about his inspiration in becoming an astronaut and his career path and provides an overview of the mission. Ashby outlines his role in the mission in general, and specifically during the docking and extravehicular activities (EVAs). He describes the payload (S1 truss) and the importance that the S1 truss will have in the development of the International Space Station (ISS). Ashby discusses the delivery and installation of the S1 truss scheduled to be done in the planned EVAs in some detail. He touches on the use and operation of the Canadarm 2 robotic arm in this process and outlines what supplies will be exchanged with the resident crew of the ISS during transfer activities. He ends with his thoughts on the value of the ISS in fostering international cooperation.

  3. STS-112 Crew Interviews: Yurchikhin

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A preflight interview with mission specialist Fyodor Yurchikhin is presented. He worked for a long time in Energia in the Russian Mission Control Center (MCC). Yurchikhin discusses the main goal of the STS-112 flight, which is to install the Integrated Truss Assembly S1 (Starboard Side Thermal Radiator Truss) on the International Space Station. He also talks about the three space walks required to install the S1. After the installation of S1, work with the bolts and cameras are performed. Yurchikhin is involved in working with nitrogen and ammonia jumpers. He expresses the complexity of his work, but says that he and the other crew members are ready for the challenge.

  4. Biomedical Wireless Ambulatory Crew Monitor

    NASA Technical Reports Server (NTRS)

    Chmiel, Alan; Humphreys, Brad

    2009-01-01

    A compact, ambulatory biometric data acquisition system has been developed for space and commercial terrestrial use. BioWATCH (Bio medical Wireless and Ambulatory Telemetry for Crew Health) acquires signals from biomedical sensors using acquisition modules attached to a common data and power bus. Several slots allow the user to configure the unit by inserting sensor-specific modules. The data are then sent real-time from the unit over any commercially implemented wireless network including 802.11b/g, WCDMA, 3G. This system has a distributed computing hierarchy and has a common data controller on each sensor module. This allows for the modularity of the device along with the tailored ability to control the cards using a relatively small master processor. The distributed nature of this system affords the modularity, size, and power consumption that betters the current state of the art in medical ambulatory data acquisition. A new company was created to market this technology.

  5. STS-128 crew visits Stennis

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Astronauts C.J. Sturckow (seated, left) and Pat Forrester (seated, right) sign autographs during their Oct. 7 visit to Stennis Space Center. The astronauts visited the rocket engine testing facility to thank Stennis employees for contributions to their recent STS-128 space shuttle mission. All three of the main engines used on the mission were tested at Stennis. Sturckow served as commander for the STS-128 flight; Forrester was a mission specialist. During a 14-day mission aboard space shuttle discovery, the STS-128 crew delivered equipment and supplies to the International Space Station, including science and storage racks, a freezer to store research samples, a new sleeping compartment and an exercise treadmill. The mission featured three spacewalks to replace experiments and install new equipment at the space station.

  6. STS-109 Crew Interviews - Altman

    NASA Technical Reports Server (NTRS)

    2002-01-01

    STS-109 crew Commander Scott D. Altman is seen during a prelaunch interview. He answers questions about his inspiration to become an astronaut and his career path. He gives details on the mission's goals and significance, which are all related to maintenance of the Hubble Space Telescope (HST). After the Columbia Orbiter's rendezvous with the HST, extravehicular activities (EVA) will be focused on several important tasks which include: (1) installing the Advanced Camera for Surveys; (2) installing a cooling system on NICMOS (Near Infrared Camera Multi-Object Spectrometer); (3) repairing the reaction wheel assembly; (4) installing additional solar arrays; (5) augmenting the power control unit; (6) working on the HST's gyros. The reaction wheel assembly task, a late addition to the mission, may necessitate the abandonment of one or more of the other tasks, such as the gyro work.

  7. Cultural Variability in Crew Discourse

    NASA Technical Reports Server (NTRS)

    Fischer, Ute

    1999-01-01

    Four studies were conducted to determine features of effective crew communication in response to errors during flight. Study One examined whether US captains and first officers use different communication strategies to correct errors and problems on the flight deck, and whether their communications are affected by the two situation variables, level of risk and degree of face-threat involved in challenging an error. Study Two was the cross-cultural extension of Study One and involved pilots from three European countries. Study Three compared communication strategies of female and male air carrier pilots who were matched in terms of years and type of aircraft experience. The final study assessed the effectiveness of the communication strategies observed in Study One.

  8. STS-66 Official Crew insignia

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Designed by the crew members, the STS-66 emblem depicts the Space Shuttle Atlantis launching into Earth orbit to study global environmental change. The payload for the Atmospheric Laboratory for Applications and Science (ATLAS-3) and complimentary experiments are part of a continuing study of the atmosphere and the Sun's influence on it. The Space Shuttle is trailed by gold plumes representing the astronaut symbol and is superimposed over the Earth, much of which is visible from the flight's high inclination orbit. Sensitive instruments aboard the ATLAS pallet in the Shuttle payload bay and on the free-flying Cryogenic Infrared Spectrometers and Telescopes for the Atmospheric-Shuttle Pallet Satellite (CHRISTA-SPAS) will gaze down on Earth and toward the Sun, illustrated by the stylized sunrise and visible spectrum.

  9. Benefits of a Single-Person Spacecraft for Weightless Operations

    NASA Technical Reports Server (NTRS)

    Griffin, Brand Norman

    2012-01-01

    Historically, less than 20 percent of crew time related to extravehicular activity (EVA) is spent on productive external work. For planetary operations space suits are still the logical choice; however for safe and rapid access to the weightless environment, spacecraft offer compelling advantages. FlexCraft, a concept for a single-person spacecraft, enables any-time access to space for short or long excursions by different astronauts. For the International Space Station (ISS), going outside is time-consuming, requiring pre-breathing, donning a fitted space suit, and pumping down an airlock. For each ISS EVA this is between 12.5 and 16 hours. FlexCraft provides immediate access to space because it operates with the same cabin atmosphere as its host. Furthermore, compared to the space suit pure oxygen environment, a mixed gas atmosphere lowers the fire risk and allows use of conventional materials and systems. For getting to the worksite, integral propulsion replaces hand-over-hand translation or having another crew member operate the robotic arm. This means less physical exertion and more time at the work site. Possibly more important, in case of an emergency, FlexCraft can return from the most distant point on ISS in less than a minute. The one-size-fits-all FlexCraft means no on-orbit inventory of parts or crew time required to fit all astronauts. With a shirtsleeve cockpit, conventional displays and controls are used, there is no suit trauma and because the work is not strenuous, no rest days are required. Furthermore, there is no need to collect hand tools because manipulators are equipped with force multiplying end-effectors that can deliver the precise torque for the job. FlexCraft is an efficient solution for asteroid exploration allowing all crew to use one vehicle with no risk of contamination. And, because FlexCraft is a vehicle, its design offers better radiation and micro-meteoroid protection than space suits.

  10. Large Scale Experiments on Spacecraft Fire Safety

    NASA Technical Reports Server (NTRS)

    Urban, David; Ruff, Gary A.; Minster, Olivier; Fernandez-Pello, A. Carlos; Tien, James S.; Torero, Jose L.; Legros, Guillaume; Eigenbrod, Christian; Smirnov, Nickolay; Fujita, Osamu; Cowlard, Adam J.; Rouvreau, Sebastien; Toth, Balazs; Jomaas, Grunde

    2012-01-01

    Full scale fire testing complemented by computer modelling has provided significant knowhow about the risk, prevention and suppression of fire in terrestrial systems (cars, ships, planes, buildings, mines, and tunnels). In comparison, no such testing has been carried out for manned spacecraft due to the complexity, cost and risk associated with operating a long duration fire safety experiment of a relevant size in microgravity. Therefore, there is currently a gap in knowledge of fire behaviour in spacecraft. The entire body of low-gravity fire research has either been conducted in short duration ground-based microgravity facilities or has been limited to very small fuel samples. Still, the work conducted to date has shown that fire behaviour in low-gravity is very different from that in normal gravity, with differences observed for flammability limits, ignition delay, flame spread behaviour, flame colour and flame structure. As a result, the prediction of the behaviour of fires in reduced gravity is at present not validated. To address this gap in knowledge, a collaborative international project, Spacecraft Fire Safety, has been established with its cornerstone being the development of an experiment (Fire Safety 1) to be conducted on an ISS resupply vehicle, such as the Automated Transfer Vehicle (ATV) or Orbital Cygnus after it leaves the ISS and before it enters the atmosphere. A computer modelling effort will complement the experimental effort. Although the experiment will need to meet rigorous safety requirements to ensure the carrier vehicle does not sustain damage, the absence of a crew removes the need for strict containment of combustion products. This will facilitate the possibility of examining fire behaviour on a scale that is relevant to spacecraft fire safety and will provide unique data for fire model validation. This unprecedented opportunity will expand the understanding of the fundamentals of fire behaviour in spacecraft. The experiment is being

  11. Large Scale Experiments on Spacecraft Fire Safety

    NASA Technical Reports Server (NTRS)

    Urban, David L.; Ruff, Gary A.; Minster, Olivier; Toth, Balazs; Fernandez-Pello, A. Carlos; T'ien, James S.; Torero, Jose L.; Cowlard, Adam J.; Legros, Guillaume; Eigenbrod, Christian; Smirnov, Nickolay; Fujita, Osamu; Rouvreau, Sebastien; Jomaas, Grunde

    2012-01-01

    Full scale fire testing complemented by computer modelling has provided significant know how about the risk, prevention and suppression of fire in terrestrial systems (cars, ships, planes, buildings, mines, and tunnels). In comparison, no such testing has been carried out for manned spacecraft due to the complexity, cost and risk associated with operating a long duration fire safety experiment of a relevant size in microgravity. Therefore, there is currently a gap in knowledge of fire behaviour in spacecraft. The entire body of low-gravity fire research has either been conducted in short duration ground-based microgravity facilities or has been limited to very small fuel samples. Still, the work conducted to date has shown that fire behaviour in low-gravity is very different from that in normal-gravity, with differences observed for flammability limits, ignition delay, flame spread behaviour, flame colour and flame structure. As a result, the prediction of the behaviour of fires in reduced gravity is at present not validated. To address this gap in knowledge, a collaborative international project, Spacecraft Fire Safety, has been established with its cornerstone being the development of an experiment (Fire Safety 1) to be conducted on an ISS resupply vehicle, such as the Automated Transfer Vehicle (ATV) or Orbital Cygnus after it leaves the ISS and before it enters the atmosphere. A computer modelling effort will complement the experimental effort. Although the experiment will need to meet rigorous safety requirements to ensure the carrier vehicle does not sustain damage, the absence of a crew removes the need for strict containment of combustion products. This will facilitate the possibility of examining fire behaviour on a scale that is relevant to spacecraft fire safety and will provide unique data for fire model validation. This unprecedented opportunity will expand the understanding of the fundamentals of fire behaviour in spacecraft. The experiment is being

  12. Spacecraft Robustness to Orbital Debris: Guidelines & Recommendations

    NASA Astrophysics Data System (ADS)

    Heinrich, S.; Legloire, D.; Tromba, A.; Tholot, M.; Nold, O.

    2013-09-01

    The ever increasing number of orbital debris has already led the space community to implement guidelines and requirements for "cleaner" and "safer" space operations as non-debris generating missions and end of mission disposal in order to get preserved orbits rid of space junks. It is nowadays well-known that man-made orbital debris impacts are now a higher threat than natural micro-meteoroids and that recent events intentionally or accidentally generated so many new debris that may initiate a cascade chain effect known as "the Kessler Syndrome" potentially jeopardizing the useful orbits.The main recommendations on satellite design is to demonstrate an acceptable Probability of Non-Penetration (PNP) with regard to small population (<5cm) of MMOD (Micro-Meteoroids and Orbital Debris). Compliance implies to think about spacecraft robustness as redundancies, segregations and shielding devices (as implemented in crewed missions but in a more complex mass - cost - criticality trade- off). Consequently the need is non-only to demonstrate the PNP compliance requirement but also the PNF (probability of Non-Failure) per impact location on all parts of the vehicle and investigate the probabilities for the different fatal scenarios: loss of mission, loss of spacecraft (space environment critical) and spacecraft fragmentation (space environment catastrophic).The recent THALES experience known on ESA Sentinel-3, of increasing need of robustness has led the ALTRAN company to initiate an internal innovative working group on those topics which conclusions may be attractive for their prime manufacturer customers.The intention of this paper is to present a status of this study : * Regulations, requirements and tools available * Detailed FMECA studies dedicated specifically to the MMOD risks with the introduction of new of probability and criticality classification scales. * Examples of design risks assessment with regard to the specific MMOD impact risks. * Lessons learnt on

  13. Launch strategy for manned spacecraft: Improving safety or increasing of launch mass?

    NASA Astrophysics Data System (ADS)

    Murtazin, Rafail; Petrov, Nikolay; Ulybyshev, Yuri

    2011-09-01

    Traditionally the launch mass of a crew vehicle with a launch abort system (LAS) should be in compliance with the ultimate launch vehicle (LV) payload mass capability. The LAS is used to provide crew safety in the case of LV failure. An additional propellant for the LV (that exceeds the mass of propellant required for the injection into a nominal orbit) may contribute to crew safety in the case of LV failures. Currently rescue strategies used to provide emergency landing or splashdown along the ground track (for a spacecraft with a low lift-to-drag ratio ( L/D), such as the Soyuz descent capsule) or landing on a back-up runway located near the flight path (for spacecraft with a high L/D, such as the Buran or Space Shuttle Orbiter). The advanced Russian human spacecraft with a low L/D that delivers crew to the International Space Station is designed to launch from the new Vostochny launch site. Major part of the LV ground track will pass over the Pacific Ocean. It means that any rescue operation will be challenging and complex. The paper explores possible launch abort strategies when an additional LV propellant is used. The optimal strategy is to provide a controlled abort landing into specified areas. The number and size of the areas should be minimal in order to minimize search-and-rescue time. A qualitative comparison between the traditional and proposed strategies is shortly discussed.

  14. Development of Large-Scale Spacecraft Fire Safety Experiments

    NASA Technical Reports Server (NTRS)

    Ruff, Gary A.; Urban, David; Fernandez-Pello, A. Carlos; T'ien, James S.; Torero, Jose L.; Legros, Guillaume; Eigenbrod, Christian; Smirnov, Nickolay; Fujita, Osamu; Cowlard, Adam J.; Rouvreau, Sebastien; Minster, Olivier; Toth, Balazs; Jomaas, Grunde

    2013-01-01

    The status is presented of a spacecraft fire safety research project that is under development to reduce the uncertainty and risk in the design of spacecraft fire safety systems by testing at nearly full scale in low-gravity. Future crewed missions are expected to be more complex and longer in duration than previous exploration missions outside of low-earth orbit. This will increase the challenge of ensuring a fire-safe environment for the crew throughout the mission. Based on our fundamental uncertainty of the behavior of fires in low-gravity, the need for realistic scale testing at reduced gravity has been demonstrated. To address this gap in knowledge, a project has been established under the NASA Advanced Exploration Systems Program under the Human Exploration and Operations Mission directorate with the goal of substantially advancing our understanding of the spacecraft fire safety risk. Associated with the project is an international topical team of fire experts from other space agencies who conduct research that is integrated into the overall experiment design. The experiments are under development to be conducted in an Orbital Science Corporation Cygnus vehicle after it has undocked from the ISS. Although the experiment will need to meet rigorous safety requirements to ensure the carrier vehicle does not sustain damage, the absence of a crew removes the need for strict containment of combustion products. The tests will be fully automated with the data downlinked at the conclusion of the test before the Cygnus vehicle reenters the atmosphere. A computer modeling effort will complement the experimental effort. The international topical team is collaborating with the NASA team in the definition of the experiment requirements and performing supporting analysis, experimentation and technology development. The status of the overall experiment and the associated international technology development efforts are summarized.

  15. Crew Launch Vehicle (CLV) Upper Stage Configuration Selection Process

    NASA Technical Reports Server (NTRS)

    Davis, Daniel J.; Coook, Jerry R.

    2006-01-01

    The Crew Launch Vehicle (CLV), a key component of NASA's blueprint for the next generation of spacecraft to take humans back to the moon, is being designed and built by engineers at NASA s Marshall Space Flight Center (MSFC). The vehicle s design is based on the results of NASA's 2005 Exploration Systems Architecture Study (ESAS), which called for development of a crew-launch system to reduce the gap between Shuttle retirement and Crew Exploration Vehicle (CEV) Initial Operating Capability, identification of key technologies required to enable and significantly enhance these reference exploration systems, and a reprioritization of near- and far-term technology investments. The Upper Stage Element (USE) of the CLV is a clean-sheet approach that is being designed and developed in-house, with element management at MSFC. The USE concept is a self-supporting cylindrical structure, approximately 115' long and 216" in diameter, consisting of the following subsystems: Primary Structures (LOX Tank, LH2 Tank, Intertank, Thrust Structure, Spacecraft Payload Adaptor, Interstage, Forward and Aft Skirts), Secondary Structures (Systems Tunnel), Avionics and Software, Main Propulsion System, Reaction Control System, Thrust Vector Control, Auxiliary Power Unit, and Hydraulic Systems. The ESAS originally recommended a CEV to be launched atop a four-segment Space Shuttle Main Engine (SSME) CLV, utilizing an RS-25 engine-powered upper stage. However, Agency decisions to utilize fewer CLV development steps to lunar missions, reduce the overall risk for the lunar program, and provide a more balanced engine production rate requirement prompted engineers to switch to a five-segment design with a single Saturn-derived J-2X engine. This approach provides for single upper stage engine development for the CLV and an Earth Departure Stage, single Reusable Solid Rocket Booster (RSRB) development for the CLV and a Cargo Launch Vehicle, and single core SSME development. While the RSRB design has

  16. STS-111 crew exits the O&C Building before launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - The STS-111 and Expedition 5 crews eagerly exit from the Operations and Checkout Building for launch aboard Space Shuttle Endeavour. It is the second launch attempt in six days. From front to back are Pilot Paul Lockhart and Commander Kenneth Cockrell; astronaut Peggy Whitson; Expedition 5 Commander Valeri Korzun (RSA) and cosmonaut Sergei Treschev (RSA); and Mission Specialists Philippe Perrin (CNES) and Franklin Chang-Diaz. This mission marks the 14th Shuttle flight to the Space Station and the third Shuttle mission this year. Mission STS-111 is the 18th flight of Endeavour and the 110th flight overall in NASA's Space Shuttle program. On mission STS-111, astronauts will deliver the Leonardo Multi-Purpose Logistics Module, the Mobile Base System (MBS), and the Expedition Five crew to the Space Station. During the seven days Endeavour will be docked to the Station, three spacewalks will be performed dedicated to installing MBS and the replacement wrist-roll joint on the Station's Canadarm2 robotic arm. Endeavour will also carry the Expedition 5 crew, who will replace Expedition 4 on board the Station. Expedition 4 crew members will return to Earth with the STS-111 crew. Liftoff is scheduled for 5:22 p.m. EDT from Launch Pad 39A.

  17. STS-111 crew exits O&C building on way to LC-39A

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- The STS-111 and Expedition 5 crews hurry from the Operations and Checkout Building for a second launch attempt aboard Space Shuttle Endeavour. From front to back are Pilot Paul Lockhart and Commander Kenneth Cockrell; astronaut Peggy Whitson; Expedition 5 Commander Valeri Korzun (RSA) and cosmonaut Sergei Treschev (RSA); and Mission Specialists Philippe Perrin (CNES) and Franklin Chang-Diaz. This mission marks the 14th Shuttle flight to the Space Station and the third Shuttle mission this year. Mission STS-111 is the 18th flight of Endeavour and the 110th flight overall in NASA's Space Shuttle program. On mission STS-111, astronauts will deliver the Leonardo Multi-Purpose Logistics Module, the Mobile Base System (MBS), and the Expedition Five crew to the Space Station. During the seven days Endeavour will be docked to the Station, three spacewalks will be performed dedicated to installing MBS and the replacement wrist-roll joint on the Station's Canadarm2 robotic arm. Endeavour will also carry the Expedition 5 crew, who will replace Expedition 4 on board the Station. Expedition 4 crew members will return to Earth with the STS-111 crew. Liftoff is scheduled for 5:22 p.m. EDT from Launch Pad 39A.

  18. STS-111 crew exits O&C building on way to LC-39A

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- The STS-111 and Expedition 5 crews head for the Astrovan to take them to Launch Pad 39A and the second launch attempt aboard Space Shuttle Endeavour. From left to right, front to back, are Mission Specialists Philippe Perrin (CNES) and Franklin Chang-Diaz; Expedition 5 Commander Valeri Korzun, astronaut Peggy Whitson and cosmonaut Sergei Treschev; Pilot Paul Lockhart and Commander Kenneth Cockrell. This mission marks the 14th Shuttle flight to the Space Station and the third Shuttle mission this year. Mission STS-111 is the 18th flight of Endeavour and the 110th flight overall in NASA's Space Shuttle program. On mission STS-111, astronauts will deliver the Leonardo Multi-Purpose Logistics Module, the Mobile Base System (MBS), and the Expedition Five crew to the Space Station. During the seven days Endeavour will be docked to the Station, three spacewalks will be performed dedicated to installing MBS and the replacement wrist-roll joint on the Station's Canadarm2 robotic arm. Endeavour will also carry the Expedition 5 crew, who will replace Expedition 4 on board the Station. Expedition 4 crew members will return to Earth with the STS-111 crew. Liftoff is scheduled for 5:22 p.m. EDT from Launch Pad 39A.

  19. STS-92 Meal - Suit up - Depart O&C - Launch Discovery On Orbit - Landing - Crew Egress

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The video begins with the introduction of the crew of Space Shuttle Discovery on STS-92, at their customary pre-flight meal. The crew consists of Commander Brian Duffy, Pilot Pamela Melroy, and Mission Specialists Leroy Chiao, William McArthur, Peter "Jeff" Wisoff, Michael Lopez-Alegria, and Koichi Wakata. The introduction and suit-up of the astronauts, and their departure in the Astrovan are shown at a quick pace. The video shows in detail the seating of the crew and each astronaut's final preparations in the White Room prior to boarding. Views of Discovery's night launch include: SLF Convoy, Beach Tracker, VAB, Pad Perimeter, Tower-1, UCS-15, Press Site, UCS-23, OTV-61, OTV-70, OTV-71, and the In-Cabin Ascent Camera. While in orbit, the Discovery orbiter docks with the International Space Station (ISS). The docking is shown in a series of still images. The video includes clips from four extravehicular activities (EVAs). The crew members who performed the EVAs comment on them while speaking to Mission Control. During the EVAs, the Z1 Truss and an antenna are attached to the ISS. The crew members on the fourth EVA test jet packs. Views of landing include: TV-1, TV-2, TV-3, LRO-1, and HUD.

  20. Small Mercury Ion Clock for On-board Spacecraft Navigation

    NASA Technical Reports Server (NTRS)

    Prestage, John D.; Chung, Sang; Le, Thanh; Hamell, R.; Maleki, Lute; Tjoelker, Robert

    2004-01-01

    I.Small Ion Clock Approach and Heritage: a) No lasers, uwave cavities, cryogenics, atomic beams, etc. b) Ions are electrically shuttled between separate optical and microwave traps. II. Each trap is optimized for its task: quadrupole for optical state selection; multi-pole for microwave clock. a) Very good stability shown in USNO. Timescale running "open loop." III. "Open loop" operation means no self-measurements of frequency offsets: (Zeeman, ion temperature,... etc.) a) Fewer parts and procedures, produces stable output continuously. IV. Ion clock is not so sensitive to temperature fluctuations a) Measured u:nshielded temperature coefficient of few 10(exp -15) per C. b) No bulky temperature isolation needed.

  1. Spacecraft On-Board Information Extraction Computer (SOBIEC)

    NASA Technical Reports Server (NTRS)

    Eisenman, David; Decaro, Robert E.; Jurasek, David W.

    1994-01-01

    The Jet Propulsion Laboratory is the Technical Monitor on an SBIR Program issued for Irvine Sensors Corporation to develop a highly compact, dual use massively parallel processing node known as SOBIEC. SOBIEC couples 3D memory stacking technology provided by nCUBE. The node contains sufficient network Input/Output to implement up to an order-13 binary hypercube. The benefit of this network, is that it scales linearly as more processors are added, and it is a superset of other commonly used interconnect topologies such as: meshes, rings, toroids, and trees. In this manner, a distributed processing network can be easily devised and supported. The SOBIEC node has sufficient memory for most multi-computer applications, and also supports external memory expansion and DMA interfaces. The SOBIEC node is supported by a mature set of software development tools from nCUBE. The nCUBE operating system (OS) provides configuration and operational support for up to 8000 SOBIEC processors in an order-13 binary hypercube or any subset or partition(s) thereof. The OS is UNIX (USL SVR4) compatible, with C, C++, and FORTRAN compilers readily available. A stand-alone development system is also available to support SOBIEC test and integration.

  2. Method for deploying multiple spacecraft

    NASA Technical Reports Server (NTRS)

    Sharer, Peter J. (Inventor)

    2007-01-01

    A method for deploying multiple spacecraft is disclosed. The method can be used in a situation where a first celestial body is being orbited by a second celestial body. The spacecraft are loaded onto a single spaceship that contains the multiple spacecraft and the spacecraft is launched from the second celestial body towards a third celestial body. The spacecraft are separated from each other while in route to the third celestial body. Each of the spacecraft is then subjected to the gravitational field of the third celestial body and each of the spacecraft assumes a different, independent orbit about the first celestial body. In those situations where the spacecraft are launched from Earth, the Sun can act as the first celestial body, the Earth can act as the second celestial body and the Moon can act as the third celestial body.

  3. NASA Now: EPOXI Flyby Spacecraft

    NASA Video Gallery

    Close Encounters of the Comet Kind: In this installment of NASA Now, you’ll meet spacecraft pilot and engineer Steven Wissler, who talks about the challenges of flying a spacecraft remotely from ...

  4. Spacecraft Images Comet Target's Jets

    NASA Video Gallery

    The Deep Impact spacecraft's High- and Medium-Resolution Imagers (HRI and MRI) have captured multiple jets turning on and off while the spacecraft is 8 million kilometers (5 million miles) away fro...

  5. STS-112 Crew Interviews - Magnus

    NASA Technical Reports Server (NTRS)

    2002-01-01

    STS-112 Mission Specialist 2 Sandra H. Magnus is seen during a prelaunch interview. She answers questions about her inspiration to become an astronaut and her career path. She gives details on the mission's goals, the most significant of which will be the installation of the S-1 truss structure on the International Space Station (ISS). The installation, one in a series of truss extending missions, will be complicated and will require the use of the robotic arm as well as extravehicular activity (EVA) by astronauts. Magnus also describes her function in the performance of transfer operations. Brief descriptions are given of experiments on board the ISS as well as on board the Shuttle.

  6. CCSDS Spacecraft Monitor and Control Service Framework

    NASA Technical Reports Server (NTRS)

    Merri, Mario; Schmidt, Michael; Ercolani, Alessandro; Dankiewicz, Ivan; Cooper, Sam; Thompson, Roger; Symonds, Martin; Oyake, Amalaye; Vaughs, Ashton; Shames, Peter

    2004-01-01

    This CCSDS paper presents a reference architecture and service framework for spacecraft monitoring and control. It has been prepared by the Spacecraft Monitoring and Control working group of the CCSDS Mission Operations and Information Management Systems (MOIMS) area. In this context, Spacecraft Monitoring and Control (SM&C) refers to end-to-end services between on- board or remote applications and ground-based functions responsible for mission operations. The scope of SM&C includes: 1) Operational Concept: definition of an operational concept that covers a set of standard operations activities related to the monitoring and control of both ground and space segments. 2) Core Set of Services: definition of an extensible set of services to support the operational concept together with its information model and behaviours. This includes (non exhaustively) ground systems such as Automatic Command and Control, Data Archiving and Retrieval, Flight Dynamics, Mission Planning and Performance Evaluation. 3) Application-layer information: definition of the standard information set to be exchanged for SM&C purposes.

  7. N° 28-1998: SOHO spacecraft contacted

    NASA Astrophysics Data System (ADS)

    Contact has been re-established with the ESA/NASA Solar and Heliospheric Observatory (SOHO) following six weeks of silence. Signals sent yesterday through the NASA Deep Space Network (DSN) station at Canberra, Australia, were answered at 22:51 GMT in the form of bursts of signal lasting from 2 to 10 seconds. These signals were recorded both by the NASA DSN station and the ESA Perth station. Contact is being maintained through the NASA DSN stations at Goldstone (California), Canberra and Madrid (Spain). Although the signals are intermittent and do not contain any data information, they show that the spacecraft is still capable of receiving and responding to ground commands. The slow process of regaining control of the spacecraft and restoring it to an operational attitude will commence immediately, with attempts to initiate data transmissions in order to perform an initial assessment of the spacecraft on-board conditions. Radio contact with SOHO, a joint mission of the European Space Agency and NASA, was interrupted on 25 June (see ESA press releases N°24,25 and 26-98). More information on SOHO, including mission status reports is available on the Internet at http://sohowww.estec.esa.nl or via the new ESA science website: http://sci.esa.int

  8. NASA Medical Response to Human Spacecraft Accidents

    NASA Technical Reports Server (NTRS)

    Patlach, Robert

    2010-01-01

    Manned space flight is risky business. Accidents have occurred and may occur in the future. NASA's manned space flight programs, with all their successes, have had three fatal accidents, one at the launch pad and two in flight. The Apollo fire and the Challenger and Columbia accidents resulted in a loss of seventeen crewmembers. Russia's manned space flight programs have had three fatal accidents, one ground-based and two in flight. These accidents resulted in the loss of five crewmembers. Additionally, manned spacecraft have encountered numerous close calls with potential for disaster. The NASA Johnson Space Center Flight Safety Office has documented more than 70 spacecraft incidents, many of which could have become serious accidents. At the Johnson Space Center (JSC), medical contingency personnel are assigned to a Mishap Investigation Team. The team deploys to the accident site to gather and preserve evidence for the Accident Investigation Board. The JSC Medical Operations Branch has developed a flight surgeon accident response training class to capture the lessons learned from the Columbia accident. This presentation will address the NASA Mishap Investigation Team's medical objectives, planned response, and potential issues that could arise subsequent to a manned spacecraft accident. Educational Objectives are to understand the medical objectives and issues confronting the Mishap Investigation Team medical personnel subsequent to a human space flight accident.

  9. Science Goal Driven Observing and Spacecraft Autonomy

    NASA Technical Reports Server (NTRS)

    Koratkar, Amuradha; Grosvenor, Sandy; Jones, Jeremy; Wolf, Karl

    2002-01-01

    Spacecraft autonomy will be an integral part of mission operations in the coming decade. While recent missions have made great strides in the ability to autonomously monitor and react to changing health and physical status of spacecraft, little progress has been made in responding quickly to science driven events. For observations of inherently variable targets and targets of opportunity, the ability to recognize early if an observation will meet the science goals of a program, and react accordingly, can have a major positive impact on the overall scientific returns of an observatory and on its operational costs. If the onboard software can reprioritize the schedule to focus on alternate targets, discard uninteresting observations prior to downloading, or download a subset of observations at a reduced resolution, the spacecraft's overall efficiency will be dramatically increased. The science goal monitoring (SGM) system is a proof-of-concept effort to address the above challenge. The SGM will have an interface to help capture higher level science goals from the scientists and translate them into a flexible observing strategy that SGM can execute and monitor. We are developing an interactive distributed system that will use on-board processing and storage combined with event-driven interfaces with ground-based processing and operations, to enable fast re-prioritization of observing schedules, and to minimize time spent on non-optimized observations.

  10. Exploration Spacecraft and Space Suit Internal Atmosphere Pressure and Composition

    NASA Technical Reports Server (NTRS)

    Lange, Kevin; Duffield, Bruce; Jeng, Frank; Campbell, Paul

    2005-01-01

    The design of habitat atmospheres for future space missions is heavily driven by physiological and safety requirements. Lower EVA prebreathe time and reduced risk of decompression sickness must be balanced against the increased risk of fire and higher cost and mass of materials associated with higher oxygen concentrations. Any proposed increase in space suit pressure must consider impacts on space suit mass and mobility. Future spacecraft designs will likely incorporate more composite and polymeric materials both to reduce structural mass and to optimize crew radiation protection. Narrowed atmosphere design spaces have been identified that can be used as starting points for more detailed design studies and risk assessments.

  11. Fine Pointing of Military Spacecraft

    DTIC Science & Technology

    2007-03-01

    better spacecraft control . In the early 1990s, researchers introduced nonlinear adaptive control techniques to estimate on- orbit spacecraft inertia...general form, the resulting regression model used in the control signal requires several pages to express for three-dimensional spacecraft rotational...a reference trajectory that addresses system lead/lag when applying the assumed control to a spacecraft with modeling errors, disturbances and

  12. Expanded life-cycle analysis to optimize spacecraft life support system design

    NASA Astrophysics Data System (ADS)

    Russell, James F.

    The life-cycle of a human space mission begins with the conceptual design and ends with the return or disposal of the spacecraft. A major component of the spacecraft is the environmental control and life support system (ECLSS) that supports the crew. Historically, conceptual designs of ECLSS focused on launch costs; however, current missions with longer timelines have meaningful life cycle costs beyond launch costs. To reduce these costs, the author proposed an expanded life cycle analysis to optimize designs while meeting the somewhat contradictory goals for success and safety. Expanding the life cycle analysis of ECLSS, is particularly important, because space-habitat-maintenance has been anecdotally reported as taking time away from science activities on the International Space Station (ISS). To understand this potential issue, the author examined ISS crew time use and different approaches to ECLSS design. An analysis of ISS crew time use determined that each crew member spent at least 1.8 hours per day performing ISS maintenance tasks. Regardless of the confounding causal mechanisms, crew time spent on habitat maintenance on Skylab and ISS exceeded that estimated by design, thus reducing crew time allotted to perform other tasks, although not necessarily science. Upon further examination, analysis of ECLSS maintenance revealed that operational crew time estimates for the ISS mission design were low by an order of magnitude. A review of the literature indicates this work is the first time that design estimates were compared quantitatively to operational time and shown to be less for ECLSS. Based on these findings, Skylab and ISS missions were oversubscribed due to a mismatch between maintenance and operational time requirements. This mismatch most likely occurred, because only part of operational crew time was considered. Even with the inclusion of operational crew time, the ECLSS design for ISS may not have changed, but the ISS-equivalent case study indicated

  13. Effects of arcing due to spacecraft charging on spacecraft survival

    NASA Technical Reports Server (NTRS)

    Rosen, A.; Sanders, N. L.; Ellen, J. M., Jr.; Inouye, G. T.

    1978-01-01

    A quantitative assessment of the hazard associated with spacecraft charging and arcing on spacecraft systems is presented. A literature survey on arc discharge thresholds and characteristics was done and gaps in the data and requirements for additional experiments were identified. Calculations of coupling of arc discharges into typical spacecraft systems were made and the susceptibility of typical spacecraft to disruption by arc discharges was investigated. Design guidelines and recommended practices to reduce or eliminate the threat of malfunction and failures due to spacecraft charging/arcing were summarized.

  14. Multipurpose Crew Restraints for Long Duration Space Flights

    NASA Technical Reports Server (NTRS)

    Whitmore, Mihriban; Baggerman, Susan; Ortiz, M. R.; Hua, L.; Sinnott, P.; Webb, L.

    2004-01-01

    With permanent human presence onboard the International Space Station (ISS), a crew will be living and working in microgravity, interfacing with their physical environment. Without optimum restraints and mobility aids (R&MA' s), the crewmembers may be handicapped for perfonning some of the on-orbit tasks. In addition to weightlessness, the confined nature of a spacecraft environment results in ergonomic challenges such as limited visibility and access to the activity area and may cause prolonged periods of unnatural postures. Thus, determining the right set of human factors requirements and providing an ergonomically designed environment are crucial to astronauts' well-being and productivity. The purpose of this project is to develop requirements and guidelines, and conceptual designs, for an ergonomically designed multi-purpose crew restraint. In order to achieve this goal, the project would involve development of functional and human factors requirements, design concept prototype development, analytical and computer modeling evaluations of concepts, two sets of micro gravity evaluations and preparation of an implementation plan. It is anticipated that developing functional and design requirements for a multi-purpose restraint would facilitate development of ergonomically designed restraints to accommodate the off-nominal but repetitive tasks, and minimize the performance degradation due to lack of optimum setup for onboard task performance. In addition, development of an ergonomically designed restraint concept prototype would allow verification and validation of the requirements defined. To date, we have identified "unique" tasks and areas of need, determine characteristics of "ideal" restraints, and solicit ideas for restraint and mobility aid concepts. Focus group meetings with representatives from training, safety, crew, human factors, engineering, payload developers, and analog environment representatives were key to assist in the development of a restraint

  15. Analysis of Opportunities for Intercalibration Between Two Spacecraft. Chapter 1

    NASA Technical Reports Server (NTRS)

    Roithmayr, Carlos M.; Speth, Paul W.

    2012-01-01

    There is currently a strong interest in obtaining highly accurate measurements of solar radiation reflected by Earth. For example, the Traceable Radiometry Underpinning Terrestrial- and Helio- Studies (TRUTHS) satellite mission has been under consideration in Europe for several years, and planning is now under way for the Climate Absolute Radiance and Refractivity Observatory (CLARREO) spacecraft in the United States. Such spacecraft will provide measurements whose high accuracy is traceable to SI standards; these measurements will be useful as a reference for calibrating similar instruments on board other spacecraft. Hence, analysis of opportunities for intercalibration between two spacecraft plays an important role in the planning of future missions. In order for intercalibration to take place, the measurements obtained from two spacecraft must have similar viewing geometry and be taken within a few minutes of one another. Viewing geometry is characterized in terms of viewing zenith angle, solar zenith angle, and relative azimuth angle. Opportunities for intercalibration are greater in number and longer in duration if the sensor with high accuracy can be aimed at points on the surface of the Earth other than the nadir or sub-satellite point. Analysis of intercalibration over long periods is rendered tractable by making several simplifying assumptions regarding orbital motions of the two spacecraft about Earth, as well as Earth s orbit about the Sun. The shape of the Earth is also considered. A geometric construction called a tent is introduced to facilitate analysis. It is helpful to think of an intercalibration opportunity as the passage of one spacecraft through a tent that has a fixed shape and moves with the spacecraft whose measurements are to be calibrated. Selection of points on Earth s surface as targets for measurement is discussed, as is aiming the boresight of a steerable instrument. Analysis results for a pair of spacecraft in typical low Earth orbits

  16. Feasibility Study of an Airbag-Based Crew Impact Attenuation System for the Orion MPCV

    NASA Technical Reports Server (NTRS)

    Do, Sydney; deWeck, Olivier

    2011-01-01

    Airbag-based methods for crew impact attenuation have been highlighted as a potential lightweight means of enabling safe land-landings for the Orion Multi-Purpose Crew Vehicle, and the next generation of ballistic shaped spacecraft. To investigate the performance feasibility of this concept during a nominal 7.62m/s Orion landing, a full-scale personal airbag system 24% lighter than the Orion baseline has been developed, and subjected to 38 drop tests on land. Through this effort, the system has demonstrated the ability to maintain the risk of injury to an occupant during a 7.85m/s, 0 deg. impact angle land-landing to within the NASA specified limit of 0.5%. In accomplishing this, the airbag-based crew impact attenuation concept has been proven to be feasible. Moreover, the obtained test results suggest that by implementing anti-bottoming airbags to prevent direct contact between the system and the landing surface, the system performance during landings with 0 deg impact angles can be further improved, by at least a factor of two. Additionally, a series of drop tests from the nominal Orion impact angle of 30 deg indicated that severe injury risk levels would be sustained beyond impact velocities of 5m/s. This is a result of the differential stroking of the airbags within the system causing a shearing effect between the occupant seat structure and the spacecraft floor, removing significant stroke from the airbags.

  17. Aerospace Vehicle Design, Spacecraft Section. Final Project Reports. Volume 2; Project Groups 6-8

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Three groups of student engineers in an aerospace vehicle design course present their designs for a vehicle that can be used to resupply the Space Station Freedam and provide emergency crew return to earth capability. The vehicle's requirements include a lifetime that exceeds six years, low cost, the capability for withstanding pressurization, launch, orbit, and reentry hazards, and reliability. The vehicle's subsystems are structures, communication and command data systems, attitude and articulation control, life support and crew systems, power and propulsion, reentry and recovery systems, and mission management, planning, and costing. Special attention is given to spacecraft communications.

  18. The NASA Commercial Crew Program (CCP) Mission Assurance Process

    NASA Technical Reports Server (NTRS)

    Canfield, Amy

    2016-01-01

    In 2010, NASA established the Commercial Crew Program in order to provide human access to the International Space Station and low earth orbit via the commercial (non-governmental) sector. A particular challenge to NASA has been how to determine the commercial providers transportation system complies with Programmatic safety requirements. The process used in this determination is the Safety Technical Review Board which reviews and approves provider submitted Hazard Reports. One significant product of the review is a set of hazard control verifications. In past NASA programs, 100 percent of these safety critical verifications were typically confirmed by NASA. The traditional Safety and Mission Assurance (SMA) model does not support the nature of the Commercial Crew Program. To that end, NASA SMA is implementing a Risk Based Assurance (RBA) process to determine which hazard control verifications require NASA authentication. Additionally, a Shared Assurance Model is also being developed to efficiently use the available resources to execute the verifications. This paper will describe the evolution of the CCP Mission Assurance process from the beginning of the Program to its current incarnation. Topics to be covered include a short history of the CCP; the development of the Programmatic mission assurance requirements; the current safety review process; a description of the RBA process and its products and ending with a description of the Shared Assurance Model.

  19. Identification of Crew-Systems Interactions and Decision Related Trends

    NASA Technical Reports Server (NTRS)

    Jones, Sharon Monica; Evans, Joni K.; Reveley, Mary S.; Withrow, Colleen A.; Ancel, Ersin; Barr, Lawrence

    2013-01-01

    NASA Vehicle System Safety Technology (VSST) project management uses systems analysis to identify key issues and maintain a portfolio of research leading to potential solutions to its three identified technical challenges. Statistical data and published safety priority lists from academic, industry and other government agencies were reviewed and analyzed by NASA Aviation Safety Program (AvSP) systems analysis personnel to identify issues and future research needs related to one of VSST's technical challenges, Crew Decision Making (CDM). The data examined in the study were obtained from the National Transportation Safety Board (NTSB) Aviation Accident and Incident Data System, Federal Aviation Administration (FAA) Accident/Incident Data System and the NASA Aviation Safety Reporting System (ASRS). In addition, this report contains the results of a review of safety priority lists, information databases and other documented references pertaining to aviation crew systems issues and future research needs. The specific sources examined were: Commercial Aviation Safety Team (CAST) Safety Enhancements Reserved for Future Implementation (SERFIs), Flight Deck Automation Issues (FDAI) and NTSB Most Wanted List and Open Recommendations. Various automation issues taxonomies and priority lists pertaining to human factors, automation and flight design were combined to create a list of automation issues related to CDM.

  20. Habitability design for spacecraft

    NASA Technical Reports Server (NTRS)

    Franklin, G. C.

    1978-01-01

    Habitability is understood to mean those spacecraft design elements that involve a degree of comfort, quality or necessities to support man in space. These elements are environment, architecture, mobility, clothing, housekeeping, food and drink, personal hygiene, off-duty activities, each of which plays a substantial part in the success of a mission. Habitability design for past space flights is discussed relative to the Mercury, Gemini, Apollo, and Skylab spacecraft, with special emphasis on an examination of the Shuttle Orbiter cabin design from a habitability standpoint. Future projects must consider the duration and mission objectives to meet their habitability requirements. Larger ward rooms, improved sleeping quarters and more complete hygiene facilities must be provided for future prolonged space flights