Sample records for boarding space shuttle

  1. KSC-03pd0840

    NASA Image and Video Library

    2003-03-26

    KENNEDY SPACE CENTER, FLA. - Steve Altemus, shuttle test director at KSC, provides expert information to the Columbia Accident Investigation Board. Over the course of two days, the Board's chairman, retired Navy Admiral Harold W. "Hal" Gehman Jr., and other board members have been hearing from experts discussing the role of the Kennedy Space Center in the Shuttle Program, Shuttle Safety and Debris Collection, Layout and Analysis and Forensic Metallurgy.

  2. KSC-03PD-0840

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. - Steve Altemus, shuttle test director at KSC, provides expert information to the Columbia Accident Investigation Board. Over the course of two days, the Board's chairman, retired Navy Admiral Harold W. 'Hal' Gehman Jr., and other board members have been hearing from experts discussing the role of the Kennedy Space Center in the Shuttle Program, Shuttle Safety and Debris Collection, Layout and Analysis and Forensic Metallurgy.

  3. KSC-03pd0839

    NASA Image and Video Library

    2003-03-26

    KENNEDY SPACE CENTER, FLA. - Appearing before the Columbia Accident Investigation Board are (left Michael Rudolphi, deputy director of NASA's Stennis Space Center in Bay St. Louis, Miss., and (right) Steve Altemus, shuttle test director at KSC. Over the course of two days, the Board's chairman, retired Navy Admiral Harold W. "Hal" Gehman Jr., and other board members have been hearing from experts discussing the role of the Kennedy Space Center in the Shuttle Program, Shuttle Safety and Debris Collection, Layout and Analysis and Forensic Metallurgy.

  4. KSC-03PD-0839

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. - Appearing before the Columbia Accident Investigation Board are (left Michael Rudolphi, deputy director of NASA's Stennis Space Center in Bay St. Louis, Miss., and (right) Steve Altemus, shuttle test director at KSC. Over the course of two days, the Board's chairman, retired Navy Admiral Harold W. 'Hal' Gehman Jr., and other board members have been hearing from experts discussing the role of the Kennedy Space Center in the Shuttle Program, Shuttle Safety and Debris Collection, Layout and Analysis and Forensic Metallurgy.

  5. KSC-03pd0837

    NASA Image and Video Library

    2003-03-26

    KENNEDY SPACE CENTER, FLA. - William Higgins, chief of Shuttle Processing Safety and Mission Assurance Division at KSC, talks to the Columbia Accident Investigation Board during its third public hearing, held in Cape Canaveral, Fla. Over the course of two days, the Board's chairman, retired Navy Admiral Harold W. "Hal" Gehman Jr., and other board members would hear from experts discussing the role of the Kennedy Space Center in the Shuttle Program, Shuttle Safety and Debris Collection, Layout and Analysis and Forensic Metallurgy.

  6. KSC-03PD-0837

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. - William Higgins, chief of Shuttle Processing Safety and Mission Assurance Division at KSC, talks to the Columbia Accident Investigation Board during its third public hearing, held in Cape Canaveral, Fla. Over the course of two days, the Board's chairman, retired Navy Admiral Harold W. 'Hal' Gehman Jr., and other board members would hear from experts discussing the role of the Kennedy Space Center in the Shuttle Program, Shuttle Safety and Debris Collection, Layout and Analysis and Forensic Metallurgy.

  7. KSC-03pd0836

    NASA Image and Video Library

    2003-03-25

    KENNEDY SPACE CENTER, FLA. - Retired Navy Admiral Harold W. "Hal" Gehman Jr., chairman of the Columbia Accident Investigation Board, and board member Dr. John Logsdon, director of the Space Policy Institute, George Washington University, listen to expert information about the role of the Kennedy Space Center in the Shuttle Program, Shuttle Safety and Debris Collection, Layout and Analysis and Forensic Metallurgy. This was the third public hearing of the board, which was held in Cape Canaveral, Fla.

  8. KSC-03PD-0836

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. - Retired Navy Admiral Harold W. 'Hal' Gehman Jr., chairman of the Columbia Accident Investigation Board, and board member Dr. John Logsdon, director of the Space Policy Institute, George Washington University, listen to expert information about the role of the Kennedy Space Center in the Shuttle Program, Shuttle Safety and Debris Collection, Layout and Analysis and Forensic Metallurgy. This was the third public hearing of the board, which was held in Cape Canaveral, Fla.

  9. U.S. Space Shuttle GPS navigation capability for all mission phases

    NASA Technical Reports Server (NTRS)

    Kachmar, Peter; Chu, William; Montez, Moises

    1993-01-01

    Incorporating a GPS capability on the Space Shuttle presented unique system integration design considerations and has led to an integration concept that has minimum impact on the existing Shuttle hardware and software systems. This paper presents the Space Shuttle GPS integrated design and the concepts used in implementing this GPS capability. The major focus of the paper is on the modifications that will be made to the navigation systems in the Space Shuttle General Purpose Computers (GPC) and on the Operational Requirements of the integrated GPS/GPC system. Shuttle navigation system architecture, functions and operations are discussed for the current system and with the GPS integrated navigation capability. The GPS system integration design presented in this paper has been formally submitted to the Shuttle Avionics Software Control Board for implementation in the on-board GPC software.

  10. KSC-03PD-0831

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. - The Columbia Accident Investigation Board (left) listens to Center Director Roy Bridges at the third public hearing of the Board, held in Cape Canaveral, Fla. Over the course of two days, the Board's chairman, retired Navy Admiral Harold W. 'Hal' Gehman Jr., and other board members would hear from experts discussing the role of the Kennedy Space Center in the Shuttle Program, Shuttle Safety and Debris Collection, Layout and Analysis and Forensic Metallurgy.

  11. KSC-03pd0831

    NASA Image and Video Library

    2003-03-25

    KENNEDY SPACE CENTER, FLA. - The Columbia Accident Investigation Board (left) listens to Center Director Roy Bridges at the third public hearing of the Board, held in Cape Canaveral, Fla. Over the course of two days, the Board's chairman, retired Navy Admiral Harold W. "Hal" Gehman Jr., and other board members would hear from experts discussing the role of the Kennedy Space Center in the Shuttle Program, Shuttle Safety and Debris Collection, Layout and Analysis and Forensic Metallurgy.

  12. KSC-03PD-0832

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. - Center Director Roy Bridges speaks at a meeting of the Columbia Accident Investigation Board in Cape Canaveral, Fla. Over the course of two days, the Board's chairman, retired Navy Admiral Harold W. 'Hal' Gehman Jr., and other board members would hear from experts discussing the role of the Kennedy Space Center in the Shuttle Program, Shuttle Safety and Debris Collection, Layout and Analysis and Forensic Metallurgy.

  13. KSC-03PD-0835

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. - The Columbia Accident Investigation Board gathers for its third public hearing, held in Cape Canaveral, Fla. Over the course of two days, the Board's chairman, retired Navy Admiral Harold W. 'Hal' Gehman Jr., and other board members would hear from experts discussing the role of the Kennedy Space Center in the Shuttle Program, Shuttle Safety and Debris Collection, Layout and Analysis and Forensic Metallurgy.

  14. KSC-03PD-0830

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. - Center Director Roy Bridges speaks at a meeting of the Columbia Accident Investigation Board in Cape Canaveral, Fla. Over the course of two days, the Board's chairman, retired Navy Admiral Harold W. 'Hal' Gehman Jr., and other board members would hear from experts discussing the role of the Kennedy Space Center in the Shuttle Program, Shuttle Safety and Debris Collection, Layout and Analysis and Forensic Metallurgy.

  15. KSC-03pd0830

    NASA Image and Video Library

    2003-03-25

    KENNEDY SPACE CENTER, FLA. - Center Director Roy Bridges speaks at a meeting of the Columbia Accident Investigation Board in Cape Canaveral, Fla. Over the course of two days, the Board's chairman, retired Navy Admiral Harold W. "Hal" Gehman Jr., and other board members would hear from experts discussing the role of the Kennedy Space Center in the Shuttle Program, Shuttle Safety and Debris Collection, Layout and Analysis and Forensic Metallurgy.

  16. KSC-03pd0835

    NASA Image and Video Library

    2003-03-25

    KENNEDY SPACE CENTER, FLA. - The Columbia Accident Investigation Board gathers for its third public hearing, held in Cape Canaveral, Fla. Over the course of two days, the Board's chairman, retired Navy Admiral Harold W. "Hal" Gehman Jr., and other board members would hear from experts discussing the role of the Kennedy Space Center in the Shuttle Program, Shuttle Safety and Debris Collection, Layout and Analysis and Forensic Metallurgy.

  17. KSC-03pd0832

    NASA Image and Video Library

    2003-03-25

    KENNEDY SPACE CENTER, FLA. - Center Director Roy Bridges speaks at a meeting of the Columbia Accident Investigation Board in Cape Canaveral, Fla. Over the course of two days, the Board's chairman, retired Navy Admiral Harold W. "Hal" Gehman Jr., and other board members would hear from experts discussing the role of the Kennedy Space Center in the Shuttle Program, Shuttle Safety and Debris Collection, Layout and Analysis and Forensic Metallurgy.

  18. KSC-03pd0833

    NASA Image and Video Library

    2003-03-25

    KENNEDY SPACE CENTER, FLA. - At the third public hearing of the Columbia Accident Investigation Board, held in Cape Canaveral, Fla., reporters listen intently to Center Director Roy Bridges (background, right). Board members are in the background, left. Over the course of two days, the Board's chairman, retired Navy Admiral Harold W. "Hal" Gehman Jr., and other board members would hear from experts discussing the role of the Kennedy Space Center in the Shuttle Program, Shuttle Safety and Debris Collection, Layout and Analysis and Forensic Metallurgy.

  19. KSC-03PD-0833

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. - At the third public hearing of the Columbia Accident Investigation Board, held in Cape Canaveral, Fla., reporters listen intently to Center Director Roy Bridges (background, right). Board members are in the background, left. Over the course of two days, the Board's chairman, retired Navy Admiral Harold W. 'Hal' Gehman Jr., and other board members would hear from experts discussing the role of the Kennedy Space Center in the Shuttle Program, Shuttle Safety and Debris Collection, Layout and Analysis and Forensic Metallurgy.

  20. KSC-03PD-0834

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. - Retired Navy Admiral Harold W. 'Hal' Gehman Jr., chairman of the Columbia Accident Investigation Board, checks his notes during the third public hearing of the board, held in Cape Canaveral, Fla. Over the course of two days, Gehman and other board members would hear from experts discussing the role of the Kennedy Space Center in the Shuttle Program, Shuttle Safety and Debris Collection, Layout and Analysis and Forensic Metallurgy.

  1. KSC-03pd0838

    NASA Image and Video Library

    2003-03-26

    KENNEDY SPACE CENTER, FLA. - The Columbia Accident Investigation Board gathers for a second day for its third public hearing, held in Cape Canaveral, Fla. Over the course of two days, the Board's chairman, retired Navy Admiral Harold W. "Hal" Gehman Jr., and other board members have been hearing from experts discussing the role of the Kennedy Space Center in the Shuttle Program, Shuttle Safety and Debris Collection, Layout and Analysis and Forensic Metallurgy.

  2. KSC-03pd0834

    NASA Image and Video Library

    2003-03-25

    KENNEDY SPACE CENTER, FLA. - Retired Navy Admiral Harold W. "Hal" Gehman Jr., chairman of the Columbia Accident Investigation Board, checks his notes during the third public hearing of the board, held in Cape Canaveral, Fla. Over the course of two days, Gehman and other board members would hear from experts discussing the role of the Kennedy Space Center in the Shuttle Program, Shuttle Safety and Debris Collection, Layout and Analysis and Forensic Metallurgy.

  3. KSC-03PD-0838

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. - The Columbia Accident Investigation Board gathers for a second day for its third public hearing, held in Cape Canaveral, Fla. Over the course of two days, the Board's chairman, retired Navy Admiral Harold W. 'Hal' Gehman Jr., and other board members have been hearing from experts discussing the role of the Kennedy Space Center in the Shuttle Program, Shuttle Safety and Debris Collection, Layout and Analysis and Forensic Metallurgy.

  4. A decade on board America's Space Shuttle

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Spectacular moments from a decade (1981-1991) of Space Shuttle missions, captured on film by the astronauts who flew the missions, are presented. First hand accounts of astronauts' experiences aboard the Shuttle are given. A Space Shuttle mission chronology featuring flight number, vehicle name, crew, launch and landing dates, and mission highlights is given in tabular form.

  5. NASA's Space Shuttle Columbia: Synopsis of the Report of the Columbia Accident Investigation Board

    NASA Technical Reports Server (NTRS)

    Smith, Marcia S.

    2003-01-01

    NASA's space shuttle Columbia broke apart on February 1, 2003 as it returned to Earth from a 16-day science mission. All seven astronauts aboard were killed. NASA created the Columbia Accident Investigation Board (CAIB), chaired by Adm. (Ret.) Harold Gehman, to investigate the accident. The Board released its report (available at [http://www.caib.us]) on August 26, 2003, concluding that the tragedy was caused by technical and organizational failures. The CAIB report included 29 recommendations, 15 of which the Board specified must be completed before the shuttle returns to flight status. This report provides a brief synopsis of the Board's conclusions, recommendations, and observations. Further information on Columbia and issues for Congress are available in CRS Report RS21408. This report will not be updated.

  6. Liquid Hydrogen Consumption During Space Shuttle Program

    NASA Technical Reports Server (NTRS)

    Partridge, Jonathan K.

    2011-01-01

    This slide presentation reviews the issue of liquid hydrogen consumption and the points of its loss in prior to the shuttle launch. It traces the movement of the fuel from the purchase to the on-board quantity and the loss that results in 54.6 of the purchased quantity being on board the Shuttle.

  7. Weight minimization of structural components for launch in space shuttle

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Gendy, Atef S.; Hopkins, Dale A.; Berke, Laszlo

    1994-01-01

    Minimizing the weight of structural components of the space station launched into orbit in a space shuttle can save cost, reduce the number of space shuttle missions, and facilitate on-orbit fabrication. Traditional manual design of such components, although feasible, cannot represent a minimum weight condition. At NASA Lewis Research Center, a design capability called CometBoards (Comparative Evaluation Test Bed of Optimization and Analysis Routines for the Design of Structures) has been developed especially for the design optimization of such flight components. Two components of the space station - a spacer structure and a support system - illustrate the capability of CometBoards. These components are designed for loads and behavior constraints that arise from a variety of flight accelerations and maneuvers. The optimization process using CometBoards reduced the weights of the components by one third from those obtained with traditional manual design. This paper presents a brief overview of the design code CometBoards and a description of the space station components, their design environments, behavior limitations, and attributes of their optimum designs.

  8. KSC-03pd0360

    NASA Image and Video Library

    2003-02-12

    KENNEDY SPACE CENTER, FLA. - Retired Navy Admiral Harold W. Gehman Jr. (second from right), chairman of the Columbia Accident Investigation Board, visits the Thermal Protection System shop and is briefed by Martin Wilson (left), the shop manager. Gehman and other members of the board are visiting sites at KSC to become familiar with the Shuttle launch process. The independent board is charged with determining what caused the destruction of the Space Shuttle Columbia and the loss of its seven-member crew on Feb. 1 during reentry.

  9. KSC-03pd0362

    NASA Image and Video Library

    2003-02-12

    KENNEDY SPACE CENTER, FLA. - Retired Navy Admiral Harold W. Gehman Jr. (third from left), chairman of the Columbia Accident Investigation Board, visits the Thermal Protection System shop and is briefed by Martin Wilson (second from left), the shop manager. Gehman and other members of the board are visiting sites at KSC to become familiar with the Shuttle launch process. The independent board is charged with determining what caused the destruction of the Space Shuttle Columbia and the loss of its seven-member crew on Feb. 1 during reentry.

  10. KSC-03pd0359

    NASA Image and Video Library

    2003-02-12

    KENNEDY SPACE CENTER, FLA. - Retired Navy Admiral Harold W. Gehman Jr. (second from left), chairman of the Columbia Accident Investigation Board, visits the Thermal Protection System shop and is briefed by Martin Wilson (second from right), the shop manager. Gehman and other members of the board are visiting sites at KSC to become familiar with the Shuttle launch process. The independent board is charged with determining what caused the destruction of the Space Shuttle Columbia and the loss of its seven-member crew on Feb. 1 during reentry.

  11. KSC-03pd0358

    NASA Image and Video Library

    2003-02-12

    KENNEDY SPACE CENTER, FLA. - Retired Navy Admiral Harold W. Gehman Jr. (left), chairman of the Columbia Accident Investigation Board, visits the Thermal Protection System shop and is briefed by Martin Wilson (right), the shop manager. Gehman and other members of the board are visiting sites at KSC to become familiar with the Shuttle launch process. The independent board is charged with determining what caused the destruction of the Space Shuttle Columbia and the loss of its seven-member crew on Feb. 1 during reentry.

  12. KSC-03pd0361

    NASA Image and Video Library

    2003-02-12

    KENNEDY SPACE CENTER, FLA. - Retired Navy Admiral Harold W. Gehman Jr. (center), chairman of the Columbia Accident Investigation Board, visits the Thermal Protection System shop and is briefed by Martin Wilson (pointing), the shop manager. Gehman and other members of the board are visiting sites at KSC to become familiar with the Shuttle launch process. The independent board is charged with determining what caused the destruction of the Space Shuttle Columbia and the loss of its seven-member crew on Feb. 1 during reentry.

  13. Safety in earth orbit study. Volume 2: Analysis of hazardous payloads, docking, on-board survivability

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Detailed and supporting analyses are presented of the hazardous payloads, docking, and on-board survivability aspects connected with earth orbital operations of the space shuttle program. The hazards resulting from delivery, deployment, and retrieval of hazardous payloads, and from handling and transport of cargo between orbiter, sortie modules, and space station are identified and analyzed. The safety aspects of shuttle orbiter to modular space station docking includes docking for assembly of space station, normal resupply docking, and emergency docking. Personnel traffic patterns, escape routes, and on-board survivability are analyzed for orbiter with crew and passenger, sortie modules, and modular space station, under normal, emergency, and EVA and IVA operations.

  14. Proceedings of the Shuttle-based Cometary Science Workshop: a Forum for the Presentation and Discussion of Possible Shuttle-based Experiments and Observations of Comets and Cometary-like Materials

    NASA Technical Reports Server (NTRS)

    Gary, G. A. (Editor); Clifton, K. S. (Editor)

    1976-01-01

    The prospects of cometary research from the space shuttle are examined. Topics include: the shuttle as research environment; on-board experiments at zero-gravity and release of gas and dust to simulate cometary phenomena; and cometary observations from space.

  15. BRESEX: On board supervision, basic architecture and preliminary aspects for payload and space shuttle interface

    NASA Technical Reports Server (NTRS)

    Bergamini, E. W.; Depaula, A. R., Jr.; Martins, R. C. D. O.

    1984-01-01

    Data relative to the on board supervision subsystem are presented which were considered in a conference between INPE and NASA personnel, with the purpose of initiating a joint effort leading to the implementation of the Brazilian remote sensing experiment - (BRESEX). The BRESEX should consist, basically, of a multispectral camera for Earth observation, to be tested in a future space shuttle flight.

  16. KENNEDY SPACE CENTER, FLA. - In the Columbia Debris Hangar, Shuttle Launch Director Mike Leinbach answers questions from the Stafford-Covey Return to Flight Task Group (SCTG). Chairing the task group are Richard O. Covey (fifth from left), former Space Shuttle commander, and Thomas P. Stafford, Apollo commander. Chartered by NASA Administrator Sean O’Keefe, the task group will perform an independent assessment of NASA’s implementation of the final recommendations by the Columbia Accident Investigation Board.

    NASA Image and Video Library

    2003-08-05

    KENNEDY SPACE CENTER, FLA. - In the Columbia Debris Hangar, Shuttle Launch Director Mike Leinbach answers questions from the Stafford-Covey Return to Flight Task Group (SCTG). Chairing the task group are Richard O. Covey (fifth from left), former Space Shuttle commander, and Thomas P. Stafford, Apollo commander. Chartered by NASA Administrator Sean O’Keefe, the task group will perform an independent assessment of NASA’s implementation of the final recommendations by the Columbia Accident Investigation Board.

  17. KENNEDY SPACE CENTER, FLA. - In the Columbia Debris Hangar, Shuttle Launch Director Mike Leinbach (left) talks to members of the Stafford-Covey Return to Flight Task Group (SCTG) about reconstruction efforts. Chairing the task group are Richard O. Covey (second from right), former Space Shuttle commander, and Thomas P. Stafford, Apollo commander. Chartered by NASA Administrator Sean O’Keefe, the task group will perform an independent assessment of NASA’s implementation of the final recommendations by the Columbia Accident Investigation Board.

    NASA Image and Video Library

    2003-08-05

    KENNEDY SPACE CENTER, FLA. - In the Columbia Debris Hangar, Shuttle Launch Director Mike Leinbach (left) talks to members of the Stafford-Covey Return to Flight Task Group (SCTG) about reconstruction efforts. Chairing the task group are Richard O. Covey (second from right), former Space Shuttle commander, and Thomas P. Stafford, Apollo commander. Chartered by NASA Administrator Sean O’Keefe, the task group will perform an independent assessment of NASA’s implementation of the final recommendations by the Columbia Accident Investigation Board.

  18. Columbia Accident Investigation Board. Volume One

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Columbia Accident Investigation Board's independent investigation into the February 1, 2003, loss of the Space Shuttle Columbia and its seven-member crew lasted nearly seven months. A staff of more than 120, along with some 400 NASA engineers, supported the Board's 13 members. Investigators examined more than 30,000 documents, conducted more than 200 formal interviews, heard testimony from dozens of expert witnesses, and reviewed more than 3,000 inputs from the general public. In addition, more than 25,000 searchers combed vast stretches of the Western United States to retrieve the spacecraft's debris. In the process, Columbia's tragedy was compounded when two debris searchers with the U.S. Forest Service perished in a helicopter accident. This report concludes with recommendations, some of which are specifically identified and prefaced as 'before return to flight.' These recommendations are largely related to the physical cause of the accident, and include preventing the loss of foam, improved imaging of the Space Shuttle stack from liftoff through separation of the External Tank, and on-orbit inspection and repair of the Thermal Protection System. The remaining recommendations, for the most part, stem from the Board's findings on organizational cause factors. While they are not 'before return to flight' recommendations, they can be viewed as 'continuing to fly' recommendations, as they capture the Board's thinking on what changes are necessary to operate the Shuttle and future spacecraft safely in the mid- to long-term. These recommendations reflect both the Board's strong support for return to flight at the earliest date consistent with the overriding objective of safety, and the Board's conviction that operation of the Space Shuttle, and all human space-flight, is a developmental activity with high inherent risks.

  19. Space Shuttle Program Primary Avionics Software System (PASS) Success Legacy - Quality and Reliability Date

    NASA Technical Reports Server (NTRS)

    Orr, James K.; Peltier, Daryl

    2010-01-01

    Thsi slide presentation reviews the avionics software system on board the space shuttle, with particular emphasis on the quality and reliability. The Primary Avionics Software System (PASS) provides automatic and fly-by-wire control of critical shuttle systems which executes in redundant computers. Charts given show the number of space shuttle flights vs time, PASS's development history, and other charts that point to the reliability of the system's development. The reliability of the system is also compared to predicted reliability.

  20. STS-93 Commander Collins and daughter prepare to board aircraft for return flight to Houston

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At the Skid Strip at the Cape Canaveral Air Station, Commander Eileen Collins and her daughter Bridget Youngs prepare to board an aircraft for their return flight to Houston following the completion of the STS-93 Space Shuttle mission. Landing occurred on runway 33 at KSC's Shuttle Landing Facility with main gear touchdown at 11:20:35 p.m. EDT on July 27. The mission's primary objective was to deploy the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. This was the 95th flight in the Space Shuttle program and the 26th for Columbia. The landing was the 19th consecutive Shuttle landing in Florida and the 12th night landing in Shuttle program history. On this mission, Collins became the first woman to serve as a Shuttle commander.

  1. STS-93 Commander Collins and daughter prepare to board aircraft for return flight to Houston

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At the Skid Strip at the Cape Canaveral Air Station, Commander Eileen Collins and her daughter, Bridget Youngs, prepare to board an aircraft for their return flight to Houston following the completion of the STS-93 Space Shuttle mission. Landing occurred on runway 33 at KSC's Shuttle Landing Facility on July 27 with main gear touchdown at 11:20:35 p.m. EDT. The mission's primary objective was to deploy the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. This was the 95th flight in the Space Shuttle program and the 26th for Columbia. The landing was the 19th consecutive Shuttle landing in Florida and the 12th night landing in Shuttle program history. On this mission, Collins became the first woman to serve as a Shuttle commander.

  2. Inventory behavior at remote sites

    NASA Technical Reports Server (NTRS)

    Lewis, William C., Jr.

    1987-01-01

    An operations research study was conducted concerning inventory behavior on the space station. Historical data from the Space Shuttle was used. The results demonstrated a high logistics burden if Space Shuttle reliability technology were to be applied without modification to space station design (which it was not). Effects of rapid resupply and on board repair capabilities on inventory behavior were investigated.

  3. Space shuttle propulsion systems on-board checkout and monitoring system development study (extension). Volume 2: Guidelines for for incorporation of the onboard checkout and monitoring function on the space shuttle

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Guidelines are presented for incorporation of the onboard checkout and monitoring function (OCMF) into the designs of the space shuttle propulsion systems. The guidelines consist of and identify supporting documentation; requirements for formulation, implementation, and integration of OCMF; associated compliance verification techniques and requirements; and OCMF terminology and nomenclature. The guidelines are directly applicable to the incorporation of OCMF into the design of space shuttle propulsion systems and the equipment with which the propulsion systems interface. The techniques and general approach, however, are also generally applicable to OCMF incorporation into the design of other space shuttle systems.

  4. KSC-2011-5640

    NASA Image and Video Library

    2011-07-21

    CAPE CANAVERAL, Fla. -- Space shuttle Atlantis' drag chute is illuminated as the spacecraft glides to a stop on Runway 15 at NASA's Kennedy Space Center in Florida for the last time. Securing the space shuttle fleet's place in history, Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board are STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. CAPE CANAVERAL, Fla. -- Xenons cast a halo of light on space shuttle Atlantis as the spacecraft approaches Runway 15 at NASA's Kennedy Space Center in Florida for the last time. Securing the space shuttle fleet's place in history, Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board are STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered more than 9,400 pounds of spare parts, equipment and supplies in the Raffaello multi-purpose logistics module that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Carl Winebarger

  5. Interface Circuit Board For Space-Shuttle Communications

    NASA Technical Reports Server (NTRS)

    Parrish, Brett T.

    1995-01-01

    Report describes interface electronic circuit developed to enable ground controllers to send commands and data via Ku-band radio uplink to multiple circuits connected to standard IEEE-488 general-purpose interface bus in space shuttle. Design of circuit extends data-throughput capability of communication system.

  6. NASA Contingency Shuttle Crew Support (CSCS) Medical Operations

    NASA Technical Reports Server (NTRS)

    Adams, Adrien

    2010-01-01

    The genesis of the space shuttle began in the 1930's when Eugene Sanger came up with the idea of a recyclable rocket plane that could carry a crew of people. The very first Shuttle to enter space was the Shuttle "Columbia" which launched on April 12 of 1981. Not only was "Columbia" the first Shuttle to be launched, but was also the first to utilize solid fuel rockets for U.S. manned flight. The primary objectives given to "Columbia" were to check out the overall Shuttle system, accomplish a safe ascent into orbit, and to return back to earth for a safe landing. Subsequent to its first flight Columbia flew 27 more missions but on February 1st, 2003 after a highly successful 16 day mission, the Columbia, STS-107 mission, ended in tragedy. With all Shuttle flight successes come failures such as the fatal in-flight accident of STS 107. As a result of the STS 107 accident, and other close-calls, the NASA Space Shuttle Program developed contingency procedures for a rescue mission by another Shuttle if an on-orbit repair was not possible. A rescue mission would be considered for a situation where a Shuttle and the crew were not in immediate danger, but, was unable to return to Earth or land safely. For Shuttle missions to the International Space Station (ISS), plans were developed so the Shuttle crew would remain on board ISS for an extended period of time until rescued by a "rescue" Shuttle. The damaged Shuttle would subsequently be de-orbited unmanned. During the period when the ISS Crew and Shuttle crew are on board simultaneously multiple issues would need to be worked including, but not limited to: crew diet, exercise, psychological support, workload, and ground contingency support

  7. Space shuttle propulsion systems on-board checkout and monitoring system development study (extension). Volume 1: Summary and technical results

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An analysis was conducted of the space shuttle propulsion systems to define the onboard checkout and monitoring function. A baseline space shuttle vehicle and mission were used to establish the techniques and approach for defining the requirements. The requirements were analyzed to formulate criteria for implementing the functions of preflight checkout, performance monitoring, fault isolation, emergency detection, display, data storage, postflight evaluation, and maintenance retest.

  8. Renewed Commitment to Excellence: An Assessment of the NASA Agency-Wide Applicability of the Columbia Accident Investigation Board Report

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Space Shuttle fleet has been grounded since the Columbia accident. As a result, 'Return to Flight' has become not just a phrase but a program and the global of virtually everyone associated with NASA. Even those who are not affiliated with the Shuttle Program are looking forward to the safe and successful completion of the next Shuttle mission. In this recovery process, NASA will be guided by the Report of the Columbia Accident Investigation Board (CAIB). The CAIB was an investigating body, convened by NASA Administrator O'Keefe the day of the Columbia accident, according to procedures established after the loss of Space Challenger.

  9. Post-Shuttle EVA Operations on ISS

    NASA Technical Reports Server (NTRS)

    West, William; Witt, Vincent; Chullen, Cinda

    2010-01-01

    The expected retirement of the NASA Space Transportation System (also known as the Space Shuttle ) by 2011 will pose a significant challenge to Extra-Vehicular Activities (EVA) on-board the International Space Station (ISS). The EVA hardware currently used to assemble and maintain the ISS was designed assuming that it would be returned to Earth on the Space Shuttle for refurbishment, or if necessary for failure investigation. With the retirement of the Space Shuttle, a new concept of operations was developed to enable EVA hardware (Extra-vehicular Mobility Unit (EMU), Airlock Systems, EVA tools, and associated support hardware and consumables) to perform ISS EVAs until 2015, and possibly beyond to 2020. Shortly after the decision to retire the Space Shuttle was announced, the EVA 2010 Project was jointly initiated by NASA and the One EVA contractor team. The challenges addressed were to extend the operating life and certification of EVA hardware, to secure the capability to launch EVA hardware safely on alternate launch vehicles, to protect for EMU hardware operability on-orbit, and to determine the source of high water purity to support recharge of PLSSs (no longer available via Shuttle). EVA 2010 Project includes the following tasks: the development of a launch fixture that would allow the EMU Portable Life Support System (PLSS) to be launched on-board alternate vehicles; extension of the EMU hardware maintenance interval from 3 years (current certification) to a minimum of 6 years (to extend to 2015); testing of recycled ISS Water Processor Assembly (WPA) water for use in the EMU cooling system in lieu of water resupplied by International Partner (IP) vehicles; development of techniques to remove & replace critical components in the PLSS on-orbit (not routine); extension of on-orbit certification of EVA tools; and development of an EVA hardware logistical plan to support the ISS without the Space Shuttle. Assumptions for the EVA 2010 Project included no more than 8 EVAs per year for ISS EVA operations in the Post-Shuttle environment and limited availability of cargo upmass on IP launch vehicles. From 2010 forward, EVA operations on-board the ISS without the Space Shuttle will be a paradigm shift in safely operating EVA hardware on orbit and the EVA 2010 effort was initiated to accommodate this significant change in EVA evolutionary history. 1

  10. STS-93 Mission Specialist Tognini and daughter prepare to board aircraft for return flight to Housto

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At the Skid Strip at the Cape Canaveral Air Station, Mission Specialist Michel Tognini of France, representing the Centre National d'Etudes Spatiales (CNES), and his daughter Tatinana prepare to board an aircraft for their return flight to Houston following the completion of the STS-93 Space Shuttle mission. Landing occurred on runway 33 at KSC's Shuttle Landing Facility on July 27 with main gear touchdown at 11:20:35 p.m. EDT. The mission's primary objective was to deploy the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. This was the 95th flight in the Space Shuttle program and the 26th for Columbia. The landing was the 19th consecutive Shuttle landing in Florida and the 12th night landing in Shuttle program history. On this mission, Eileen Collins became the first woman to serve as a Shuttle commander.

  11. STS-93 Mission Specialist Coleman and husband prepare to board aircraft for return flight to Houston

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At the Skid Strip at the Cape Canaveral Air Station, Mission Specialist Catherine G. Coleman (Ph.D.) and her husband, Josh Simpson, prepare to board an aircraft for their return flight to Houston following the completion of the STS-93 Space Shuttle mission. Landing occurred on runway 33 at KSC's Shuttle Landing Facility on July 27 with main gear touchdown at 11:20:35 p.m. EDT. The mission's primary objective was to deploy the Chandra X- ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. This was the 95th flight in the Space Shuttle program and the 26th for Columbia. The landing was the 19th consecutive Shuttle landing in Florida and the 12th night landing in Shuttle program history. On this mission, Eileen Collins became the first woman to serve as a Shuttle commander.

  12. Simplified APC for Space Shuttle applications. [Adaptive Predictive Coding for speech transmission

    NASA Technical Reports Server (NTRS)

    Hutchins, S. E.; Batson, B. H.

    1975-01-01

    This paper describes an 8 kbps adaptive predictive digital speech transmission system which was designed for potential use in the Space Shuttle Program. The system was designed to provide good voice quality in the presence of both cabin noise on board the Shuttle and the anticipated bursty channel. Minimal increase in size, weight, and power over the current high data rate system was also a design objective.

  13. KENNEDY SPACE CENTER, FLA. - The news media capture the words and images of the Return To Flight Task Group (RTFTG) which held its first public meeting at the Debus Center, KSC Visitor Complex. The group is co-chaired by former Shuttle commander Richard O. Covey and retired Air Force Lt. Gen. Thomas P. Stafford, who was an Apollo commander. The RTFTG was at KSC to conduct organizational activities, tour Space Shuttle facilities and receive briefings on Shuttle-related topics. The task group was chartered by NASA Administrator Sean O’Keefe to perform an independent assessment of NASA’s implementation of the final recommendations of the Columbia Accident Investigation Board.

    NASA Image and Video Library

    2003-08-07

    KENNEDY SPACE CENTER, FLA. - The news media capture the words and images of the Return To Flight Task Group (RTFTG) which held its first public meeting at the Debus Center, KSC Visitor Complex. The group is co-chaired by former Shuttle commander Richard O. Covey and retired Air Force Lt. Gen. Thomas P. Stafford, who was an Apollo commander. The RTFTG was at KSC to conduct organizational activities, tour Space Shuttle facilities and receive briefings on Shuttle-related topics. The task group was chartered by NASA Administrator Sean O’Keefe to perform an independent assessment of NASA’s implementation of the final recommendations of the Columbia Accident Investigation Board.

  14. Acoustic Emission Detection of Impact Damage on Space Shuttle Structures

    NASA Technical Reports Server (NTRS)

    Prosser, William H.; Gorman, Michael R.; Madaras, Eric I.

    2004-01-01

    The loss of the Space Shuttle Columbia as a result of impact damage from foam debris during ascent has led NASA to investigate the feasibility of on-board impact detection technologies. AE sensing has been utilized to monitor a wide variety of impact conditions on Space Shuttle components ranging from insulating foam and ablator materials, and ice at ascent velocities to simulated hypervelocity micrometeoroid and orbital debris impacts. Impact testing has been performed on both reinforced carbon composite leading edge materials as well as Shuttle tile materials on representative aluminum wing structures. Results of these impact tests will be presented with a focus on the acoustic emission sensor responses to these impact conditions. These tests have demonstrated the potential of employing an on-board Shuttle impact detection system. We will describe the present plans for implementation of an initial, very low frequency acoustic impact sensing system using pre-existing flight qualified hardware. The details of an accompanying flight measurement system to assess the Shuttle s acoustic background noise environment as a function of frequency will be described. The background noise assessment is being performed to optimize the frequency range of sensing for a planned future upgrade to the initial impact sensing system.

  15. Onboard experiment data support facility, task 1 report. [space shuttles

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The conceptual design and specifications are developed for an onboard experiment data support facility (OEDSF) to provide end to end processing of data from various payloads on board space shuttles. Classical data processing requirements are defined and modeled. Onboard processing requirements are analyzed. Specifications are included for an onboard processor.

  16. STS-114: Discovery Crew Arrival

    NASA Technical Reports Server (NTRS)

    2005-01-01

    George Diller of NASA Public Affairs narrates the STS-114 Crew arrival at Kennedy Space Center aboard a Gulf Stream aircraft. They were greeted by Center Director Jim Kennedy. Commander Eileen Collins introduced each of her crew members and gave a brief description of their roles in the mission. Mission Specialist 3, Andrew Thomas will be the lead crew member on the inspection on flight day 2; he is the intravehicular (IV) crew member that will help and guide Mission Specialists Souichi Noguchi and Stephen Robinson during their spacewalks. Pilot James Kelly will be operating the shuttle systems in flying the Shuttle; he will be flying the space station robotic arm during the second extravehicular activity and he will be assisting Mission Specialist Wendy Lawrence during the other two extravehicular activities; he will be assisting on the rendezvous on flight day three, and landing of the shuttle. Commander Collins also mentioned Pilot Kelly's recent promotion to Colonel by the United States Air Force. Mission Specialist 1, Souichi Noguchi from JAXA (The Japanese Space Agency) will be flying on the flight deck for ascent; he will be doing three spacewalks on day 5, 7, and 9; He will be the photo/TV lead for the different types of cameras on board to document the flight and to send back the information to the ground for both technical and public affairs reasons. Mission Specialist 5, Charles Camada will be doing the inspection on flight day 2 with Mission Specialist Thomas and Pilot Kelly; he will be transferring the logistics off the shuttle and onto the space station and from the space station back to the shuttle; He will help set up eleven lap tops on board. Mission Specialist 4, Wendy Lawrence will lead the transfer of logistics to the space station; she is the space station arm operator during extravehicular activities 1 and 3; she will be carrying the 6,000 pounds of external storage platform from the shuttle payload bay over to the space station; she is also in charge of the shuttle storage. Mission Specialist 2, Stephen Robinson is the flight engineer of the shuttle; he will be doing spacewalks with Mission Specialist Noguchi; he will set up the 11 lap top computers on board. Each crew member gave a brief message to the press. Commander Eileen later gave her final message and the crew walked back to the Astronaut Corps.

  17. KSC-98pc732

    NASA Image and Video Library

    1998-06-02

    KENNEDY SPACE CENTER, Fla. -- Startled by the thunderous roar of the Space Shuttle Discovery’s engines as it lifts off, birds hurriedly leave the Launch Pad 39A area for a more peaceful site. Liftoff time for the 91st Shuttle launch and last Shuttle-Mir mission was 6:06:24 p.m. EDT June 2. On board Discovery are Mission Commander Charles J. Precourt; Pilot Dominic L. Gorie; and Mission Specialists Wendy B. Lawrence, Franklin R. Chang-Diaz, Janet Lynn Kavandi and Valery Victorovitch Ryumin. The nearly 10-day mission will feature the ninth and final Shuttle docking with the Russian space station Mir, the first Mir docking for the Space Shuttle orbiter Discovery, the first on-orbit test of the Alpha Magnetic Spectrometer (AMS), and the first flight of the new Space Shuttle super lightweight external tank. Astronaut Andrew S. W. Thomas will be returning to Earth as an STS-91 crew member after living more than four months aboard Mir

  18. KSC-07pd2240

    NASA Image and Video Library

    2007-08-08

    KENNEDY SPACE CENTER, FLA. -- In the Operations and Checkout Building, STS-118 Pilot Charlie Hobaugh is ready after suitup to head for the launch pad and board Space Shuttle Endeavour. The STS-118 mission is the 22nd shuttle flight to the International Space Station. It will continue space station construction by delivering a third starboard truss segment, S5, and other payloads such as the SPACEHAB module and the external stowage platform 3. The 11-day mission may be extended to as many as 14 depending on the test of the Station-to-Shuttle Power Transfer System that will allow the docked shuttle to draw electrical power from the station and extend its visits to the orbiting lab. NASA/Kim Shiflett

  19. STS-99 Commander and Pilot for the SRTM Mission, Practice Flight in the Shuttle Training Aircraft

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The primary objective of the STS-99 mission was to complete high resolution mapping of large sections of the Earth's surface using the Shuttle Radar Topography Mission (SRTM), a specially modified radar system. This radar system produced unrivaled 3-D images of the Earth's Surface. The mission was launched at 12:31 on February 11, 2000 onboard the space shuttle Endeavour, and led by Commander Kevin Kregel. The crew was Pilot Dominic L. Pudwill Gorie and Mission Specialists Janet L. Kavandi, Janice E. Voss, Mamoru Mohri from the National Space Development Agency (Japanese Space Agency), and Gerhard P. J. Thiele from DARA (German Space Agency). This tape shows Commander Kregel and Pilot Gorie getting on board the Shuttle Training Aircraft and practicing approaches for the shuttle landing.

  20. KENNEDY SPACE CENTER, FLA. - The turbulent weather common to a Florida afternoon in the summer subsides into a serene canopy of cornflower blue, and a manmade "bird" takes flight. The Space Shuttle Discovery soars skyward from Launch Pad 39B on Mission STS-64 at 6:22:35 p.m. EDT, Sept. 9. On board are a crew of six: Commander Richard N. Richards; Pilot L. Blaine Hammond Jr.; and Mission Specialists Mark C. Lee, Carl J. Meade, Susan J. Helms and Dr. J.M. Linenger. Payloads for the flight include the Lidar In-Space Technology Experiment (LITE), the Shuttle Pointed Autonomous Research Tool for Astronomy-201 (SPARTAN-201) and the Robot Operated Material Processing System (ROMPS). Mission Specialists Lee and Meade also are scheduled to perform an extravehicular activity during the 64th Shuttle mission.

    NASA Image and Video Library

    1994-09-09

    KENNEDY SPACE CENTER, FLA. - The turbulent weather common to a Florida afternoon in the summer subsides into a serene canopy of cornflower blue, and a manmade "bird" takes flight. The Space Shuttle Discovery soars skyward from Launch Pad 39B on Mission STS-64 at 6:22:35 p.m. EDT, Sept. 9. On board are a crew of six: Commander Richard N. Richards; Pilot L. Blaine Hammond Jr.; and Mission Specialists Mark C. Lee, Carl J. Meade, Susan J. Helms and Dr. J.M. Linenger. Payloads for the flight include the Lidar In-Space Technology Experiment (LITE), the Shuttle Pointed Autonomous Research Tool for Astronomy-201 (SPARTAN-201) and the Robot Operated Material Processing System (ROMPS). Mission Specialists Lee and Meade also are scheduled to perform an extravehicular activity during the 64th Shuttle mission.

  1. KSC-2011-5814

    NASA Image and Video Library

    2011-07-21

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, NASA Administrator Charles Bolden, left, and Kennedy Space Center Director Bob Cabana join Kennedy employees in the Pledge of Allegiance at an employee appreciation event for the thousands of workers who have processed, launched and landed America's space shuttles for more than three decades. Following the successful STS-135 mission, space shuttle Atlantis was parked at the celebration site for photo opportunities. STS-135 secured the space shuttle fleet's place in history and brought a close to NASA's Space Shuttle Program. On board were STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered the Raffaello multi-purpose logistics module filled with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles, and also the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett

  2. Science, Space, and Shuttles: An Interview With Astronaut and AGU Member Piers Sellers

    NASA Astrophysics Data System (ADS)

    Kumar, Mohi

    2010-05-01

    On 14 May, NASA is scheduled to launch what will likely be the final mission for space shuttle Atlantis. This mission will deliver cargo and science payloads—including the Russian-built Mini Research Module (MRM 1)—to the International Space Station (ISS). On board the shuttle will be Piers Sellers, an AGU member. Born in 1955 in Crowborough, United Kingdom, Sellers completed his doctorate in biometeorology at UK's Leeds University in 1981. He became an AGU Fellow in 1996 for research on how the Earth's biosphere and atmosphere interact; that same year, he was selected as an astronaut candidate. He has since logged more than 559 hours in space on two shuttle missions. In the course of those missions, he spent almost 41 hours on six space walks.

  3. Return to Flight Task Group

    NASA Technical Reports Server (NTRS)

    2005-01-01

    It has been 29 months since Columbia was lost over East Texas in February 2003. Seven months after the accident, the Columbia Accident Investigation Board (CAIB) released the first volume of its final report, citing a variety of technical, managerial, and cultural issues within NASA and the Space Shuttle Program. To their credit, NASA offered few excuses, embraced the report, and set about correcting the deficiencies noted by the accident board. Of the 29 recommendations issued by the CAIB, 15 were deemed critical enough that the accident board believed they should be implemented prior to returning the Space Shuttle to flight. Some of these recommendations were relatively easy, most were straightforward, a few bordered on the impossible, and others were largely overcome by events, particularly the decision by the President to retire the Space Shuttle by 2010. The Return to Flight Task Group (RTF TG, or simply, the Task Group) was chartered by the NASA Administrator in July 2003 to provide an independent assessment of the implementation of the 15 CAIB return-to-flight recommendations. An important observation must be stated up-front: neither the CAIB nor the RTF TG believes that all risk can be eliminated from Space Shuttle operations; nor do we believe that the Space Shuttle is inherently unsafe. What the CAIB and RTF TG do believe, however, is that NASA and the American public need to understand the risks associated with space travel, and that NASA must make every reasonable effort to minimize such risk. Since the release of the CAIB report, NASA and the Space Shuttle Program expended enormous effort and resources toward correcting the causes of the accident and preparing to fly again. Relative to the 15 specific recommendations that the CAIB indicated should be implemented prior to returning to flight, NASA has met or exceeded most of them the Task Group believes that NASA met the intent of the CAIB for 12 of these recommendations. The remaining three recommendations were so challenging that NASA could not comply completely with the intent of the CAIB.

  4. Whitson prepares to close PMA2 hatch

    NASA Image and Video Library

    2007-11-04

    S120-E-008857 (4 Nov. 2007) --- Astronaut Peggy Whitson, Expedition 16 commander, prepares to close the hatch in the Pressurized Mating Adapter (PMA-2) of the International Space Station after the STS-120 crewmembers boarded Space Shuttle Discovery for their return trip home. Hatches were closed between the station and the shuttle at 2:03 p.m. (CST) on Nov. 4.

  5. KENNEDY SPACE CENTER, FLA. - Suzy Cunningham sings the national anthem to kick off Center Director Jim Kennedy’s first all-hands meeting conducted for employees. She is senior spaceport manager, NASA/Air Force Spaceport Planning and Customer Service Office. Making presentations were Dr. Woodrow Whitlow Jr., KSC deputy director; Tim Wilson, assistant chief engineer for Shuttle; and Bill Pickavance, vice president and deputy program manager, Florida operations, United Space Alliance. Representatives from the Shuttle program and contractor team were on hand to discuss the Columbia Accident Investigation Board report and where KSC stands in its progress toward return to flight.

    NASA Image and Video Library

    2003-09-17

    KENNEDY SPACE CENTER, FLA. - Suzy Cunningham sings the national anthem to kick off Center Director Jim Kennedy’s first all-hands meeting conducted for employees. She is senior spaceport manager, NASA/Air Force Spaceport Planning and Customer Service Office. Making presentations were Dr. Woodrow Whitlow Jr., KSC deputy director; Tim Wilson, assistant chief engineer for Shuttle; and Bill Pickavance, vice president and deputy program manager, Florida operations, United Space Alliance. Representatives from the Shuttle program and contractor team were on hand to discuss the Columbia Accident Investigation Board report and where KSC stands in its progress toward return to flight.

  6. Utilizing HDTV as Data for Space Flight

    NASA Technical Reports Server (NTRS)

    Grubbs, Rodney; Lindblom, Walt

    2006-01-01

    In the aftermath of the Space Shuttle Columbia accident February 1, 2003, the Columbia Accident Investigation Board recognized the need for better video data from launch, on-orbit, and landing to assess the status and safety of the shuttle orbiter fleet. The board called on NASA to improve its imagery assets and update the Agency s methods for analyzing video. This paper will feature details of several projects implemented prior to the return to flight of the Space Shuttle, including an airborne HDTV imaging system called the WB-57 Ascent Video Experiment, use of true 60 Hz progressive scan HDTV for ground and airborne HDTV camera systems, and the decision to utilize a wavelet compression system for recording. This paper will include results of compression testing, imagery from the launch of STS-114, and details of how commercial components were utilized to image the shuttle launch from an aircraft flying at 400 knots at 60,000 feet altitude. The paper will conclude with a review of future plans to expand on the upgrades made prior to return to flight.

  7. KSC-98pc684

    NASA Image and Video Library

    1998-06-02

    KENNEDY SPACE CENTER, Fla. -- The Space Coast's natural foliage frames the Space Shuttle Discovery and the reflection of the intense heat and light of its liftoff from Launch Pad 39A at 6:06:24 p.m. EDT June 2. On board Discovery are Mission Commander Charles J. Precourt; Pilot Dominic L. Gorie; and Mission Specialists Wendy B. Lawrence, Franklin R. Chang-Diaz, Janet Lynn Kavandi and Valery Victorovitch Ryumin. The nearly 10-day mission will feature the ninth and final Shuttle docking with the Russian space station Mir, the first Mir docking for the Space Shuttle orbiter Discovery, the first on-orbit test of the Alpha Magnetic Spectrometer (AMS), and the first flight of the new Space Shuttle super lightweight external tank. Astronaut Andrew S. W. Thomas will be returning to Earth as an STS-91 crew member after living more than four months aboard Mir

  8. KSC-98pc683

    NASA Image and Video Library

    1998-06-02

    KENNEDY SPACE CENTER, Fla. -- Tree branches frame the Space Shuttle Discovery as it lifts off from Launch Pad 39A at 6:06:24 p.m. EDT June 2 on its way to the Mir space station. On board Discovery are Mission Commander Charles J. Precourt; Pilot Dominic L. Gorie; and Mission Specialists Wendy B. Lawrence, Franklin R. Chang-Diaz, Janet Lynn Kavandi and Valery Victorovitch Ryumin. The nearly 10-day mission will feature the ninth and final Shuttle docking with the Russian space station Mir, the first Mir docking for the Space Shuttle orbiter Discovery, the first on-orbit test of the Alpha Magnetic Spectrometer (AMS), and the first flight of the new Space Shuttle super lightweight external tank. Astronaut Andrew S. W. Thomas will be returning to Earth as an STS-91 crew member after living more than four months aboard Mir

  9. KENNEDY SPACE CENTER, FLA. - The Stafford-Covey Return to Flight Task Group (SCTG) visits the Columbia Debris Hangar . Chairing the task group are Richard O. Covey (third from right), former Space Shuttle commander, and Thomas P. Stafford (fourth from right), Apollo commander. Chartered by NASA Administrator Sean O’Keefe, the task group will perform an independent assessment of NASA’s implementation of the final recommendations by the Columbia Accident Investigation Board.

    NASA Image and Video Library

    2003-08-05

    KENNEDY SPACE CENTER, FLA. - The Stafford-Covey Return to Flight Task Group (SCTG) visits the Columbia Debris Hangar . Chairing the task group are Richard O. Covey (third from right), former Space Shuttle commander, and Thomas P. Stafford (fourth from right), Apollo commander. Chartered by NASA Administrator Sean O’Keefe, the task group will perform an independent assessment of NASA’s implementation of the final recommendations by the Columbia Accident Investigation Board.

  10. KSC-03PD-1064

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, United Space Alliance employee Mike Cote installs Thermal Protection System tiles on a test panel. The test panel and sections of Space Shuttle orbiter Enterprise (OV-101) will be transferred to the Southwest Research Institute for testing after the tile installation is complete. The testing has been requested by the Columbia Accident Investigation Board. Sections of Enterprise were borrowed from the Smithsonian Institution's Air and Space Museum where the orbiter is being stored at the Washington Dulles International Airport. Enterprise was the first orbiter built in the Shuttle fleet and was used to conduct the Approach and Landing Test Program before the first powered Shuttle flight.

  11. KSC-03PD-1079

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, United Space Alliance employee Harrell Watts (right) installs Thermal Protection System tiles on a main landing gear door of Space Shuttle orbiter Enterprise (OV-101). Sections of Enterprise were borrowed from the Smithsonian Institution's Air and Space Museum where the orbiter is being stored at the Washington Dulles International Airport. Enterprise was the first orbiter built in the Shuttle fleet and was used to conduct the Approach and Landing Test Program before the first powered Shuttle flight. After the tile installation is complete, the sections will be transferred to the Southwest Research Institute for testing requested by the Columbia Accident Investigation Board.

  12. KSC-2011-5815

    NASA Image and Video Library

    2011-07-21

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, NASA Administrator Charles Bolden thanks the Kennedy work force for their dedication at an employee appreciation event for the thousands of workers who have processed, launched and landed America's space shuttles for more than three decades. Following the successful STS-135 mission, space shuttle Atlantis was parked at the celebration site for photo opportunities. STS-135 secured the space shuttle fleet's place in history and brought a close to NASA's Space Shuttle Program. On board were STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered the Raffaello multi-purpose logistics module filled with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles, and also the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett

  13. KSC-98pc687

    NASA Image and Video Library

    1998-06-02

    KENNEDY SPACE CENTER, Fla. -- Startled by the thunderous roar of the Space Shuttle Discovery’s engines as it lifts off, a bird hurriedly leaves the Launch Pad 39A area for a more peaceful site. Liftoff time for the 91st Shuttle launch and last Shuttle-Mir mission was 6:06:24 p.m. EDT June 2. On board Discovery are Mission Commander Charles J. Precourt; Pilot Dominic L. Gorie; and Mission Specialists Wendy B. Lawrence, Franklin R. Chang-Diaz, Janet Lynn Kavandi and Valery Victorovitch Ryumin. The nearly 10-day mission will feature the ninth and final Shuttle docking with the Russian space station Mir, the first Mir docking for the Space Shuttle orbiter Discovery, the first on-orbit test of the Alpha Magnetic Spectrometer (AMS), and the first flight of the new Space Shuttle super lightweight external tank. Astronaut Andrew S. W. Thomas will be returning to Earth as an STS-91 crew member after living more than four months aboard Mir

  14. KSC-2011-5700

    NASA Image and Video Library

    2011-07-21

    CAPE CANAVERAL, Fla. -- Xenon lights positioned on Runway 15 at the Shuttle Landing Facility reveal space shuttle Atlantis as it nears touchdown for the final time at NASA's Kennedy Space Center in Florida. Securing the space shuttle fleet's place in history, Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board are STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered in the Raffaello multi-purpose logistics module more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. STS-135 is the final mission in the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Chuck Tintera

  15. KSC-2011-5704

    NASA Image and Video Library

    2011-07-21

    CAPE CANAVERAL, Fla. -- Backlit by the xenon lights on Runway 15 at the Shuttle Landing Facility, space shuttle Atlantis nears touchdown for the final time at NASA's Kennedy Space Center in Florida. Securing the space shuttle fleet's place in history, Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board are STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered the Raffaello multi-purpose logistics module filled with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. STS-135 also was the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Chad Baumer

  16. KSC-2011-5701

    NASA Image and Video Library

    2011-07-21

    CAPE CANAVERAL, Fla. -- Space shuttle Atlantis creates its own xenon light show as in lands on Runway 15 at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Securing the space shuttle fleet's place in history, Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board are STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered in the Raffaello multi-purpose logistics module more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. STS-135 is the final mission in the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Chuck Tintera

  17. KSC-2011-5705

    NASA Image and Video Library

    2011-07-21

    CAPE CANAVERAL, Fla. -- Backlit by the xenon lights on Runway 15 at the Shuttle Landing Facility, space shuttle Atlantis nears touchdown for the final time at NASA's Kennedy Space Center in Florida. Securing the space shuttle fleet's place in history, Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board are STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered the Raffaello multi-purpose logistics module filled with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. STS-135 also was the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Chad Baumer

  18. KSC-2011-5697

    NASA Image and Video Library

    2011-07-21

    CAPE CANAVERAL, Fla. -- Xenon lights positioned on Runway 15 at the Shuttle Landing Facility reveal space shuttle Atlantis as it touches down for the final time at NASA's Kennedy Space Center in Florida. Securing the space shuttle fleet's place in history, Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board are STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered in the Raffaello multi-purpose logistics module more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. STS-135 is the final mission in the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Rusty Backer

  19. KSC-2011-5706

    NASA Image and Video Library

    2011-07-21

    CAPE CANAVERAL, Fla. -- Xenon lights positioned on Runway 15 at the Shuttle Landing Facility reveal space shuttle Atlantis as it nears touchdown for the final time at NASA's Kennedy Space Center in Florida. Securing the space shuttle fleet's place in history, Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board are STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered the Raffaello multi-purpose logistics module filled with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. STS-135 also was the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Chad Baumer

  20. KSC-2011-5716

    NASA Image and Video Library

    2011-07-21

    CAPE CANAVERAL, Fla. -- Backlit by the xenon lights on Runway 15 at the Shuttle Landing Facility, space shuttle Atlantis nears touchdown for the final time at NASA's Kennedy Space Center in Florida. Securing the space shuttle fleet's place in history, Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board are STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered the Raffaello multi-purpose logistics module filled with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. STS-135 also was the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kenny Allen

  1. KSC-98pc688

    NASA Image and Video Library

    1998-06-02

    KENNEDY SPACE CENTER, Fla. -- Some of Florida's natural foliage stands silent sentinel to the lift off of the Space Shuttle Discovery from Launch Pad 39A at 6:06:24 p.m. EDT June 2. On board Discovery are Mission Commander Charles J. Precourt; Pilot Dominic L. Gorie; and Mission Specialists Wendy B. Lawrence, Franklin R. Chang-Diaz, Janet Lynn Kavandi and Valery Victorovitch Ryumin. The nearly 10-day mission will feature the ninth and final Shuttle docking with the Russian space station Mir, the first Mir docking for the Space Shuttle orbiter Discovery, the first on-orbit test of the Alpha Magnetic Spectrometer (AMS), and the first flight of the new Space Shuttle super lightweight external tank. Astronaut Andrew S. W. Thomas will be returning to Earth as a STS-91 crew member after living more than four months aboard Mir

  2. Tryggvason and Robinson examine Discovery after landing

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-85 Payload Specialist and Canadian Space Agency astronaut Bjarni V. Tryggvason (left) and Mission Specialist Stephen K. Robinson examine the Space Shuttle orbiter Discovery after the space plane landed on Runway 33 at KSCs Shuttle Landing Facility Aug. 19 to complete the 11-day, 20-hour and 27-minute-long STS-85 mission. Also on board were Commander Curtis L. Brown, Jr., Pilot Kent V. Rominger, Payload Commander N. Jan Davis and Mission Specialist Robert L. Curbeam, Jr. During the 86th Space Shuttle mission, the crew deployed the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer to conduct research on the Earths middle atmosphere, retrieving it on flight day 9. The crew also conducted investigations with the Manipulator Flight Demonstration (MFD), Technology Applications and Science-1 (TAS- 1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments. This was the 39th landing at KSC in the history of the Space Shuttle program and the 11th touchdown for Discovery at the space center.

  3. Test-Analysis Correlation for Space Shuttle External Tank Foam Impacting RCC Wing Leading Edge Component Panels

    NASA Technical Reports Server (NTRS)

    Lyle, Karen H.

    2008-01-01

    The Space Shuttle Columbia Accident Investigation Board recommended that NASA develop, validate, and maintain a modeling tool capable of predicting the damage threshold for debris impacts on the Space Shuttle Reinforced Carbon-Carbon (RCC) wing leading edge and nosecap assembly. The results presented in this paper are one part of a multi-level approach that supported the development of the predictive tool used to recertify the shuttle for flight following the Columbia Accident. The assessment of predictive capability was largely based on test analysis comparisons for simpler component structures. This paper provides comparisons of finite element simulations with test data for external tank foam debris impacts onto 6-in. square RCC flat panels. Both quantitative displacement and qualitative damage assessment correlations are provided. The comparisons show good agreement and provided the Space Shuttle Program with confidence in the predictive tool.

  4. KSC-2011-5645

    NASA Image and Video Library

    2011-07-21

    CAPE CANAVERAL, Fla. -- Xenons light the way home for space shuttle Atlantis at NASA's Kennedy Space Center in Florida for the final time. Securing the space shuttle fleet's place in history, Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Main gear touchdown on the Shuttle Landing Facility's Runway 15 was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board are STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered more than 9,400 pounds of spare parts, equipment and supplies in the Raffaello multi-purpose logistics module that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Sandra Joseph

  5. KSC-2011-5632

    NASA Image and Video Library

    2011-07-21

    CAPE CANAVERAL, Fla. -- Xenon lights guide space shuttle Atlantis down on the Shuttle Landing Facility's Runway 15 at NASA's Kennedy Space Center in Florida for the final time. Securing the space shuttle fleet's place in history, Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board are STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered more than 9,400 pounds of spare parts, equipment and supplies in the Raffaello multi-purpose logistics module that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Frank Michaux

  6. KSC-2011-5644

    NASA Image and Video Library

    2011-07-21

    CAPE CANAVERAL, Fla. -- Xenons light the way home for space shuttle Atlantis at NASA's Kennedy Space Center in Florida for the final time. Securing the space shuttle fleet's place in history, Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Main gear touchdown on the Shuttle Landing Facility's Runway 15 was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board are STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered more than 9,400 pounds of spare parts, equipment and supplies in the Raffaello multi-purpose logistics module that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Sandra Joseph

  7. KSC-2011-5631

    NASA Image and Video Library

    2011-07-21

    CAPE CANAVERAL, Fla. -- Xenon lights guide space shuttle Atlantis down on the Shuttle Landing Facility's Runway 15 at NASA's Kennedy Space Center in Florida for the final time. Securing the space shuttle fleet's place in history, Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board are STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered more than 9,400 pounds of spare parts, equipment and supplies in the Raffaello multi-purpose logistics module that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Frank Michaux

  8. KSC-2011-5633

    NASA Image and Video Library

    2011-07-21

    CAPE CANAVERAL, Fla. -- Xenon lights guide space shuttle Atlantis down on the Shuttle Landing Facility's Runway 15 at NASA's Kennedy Space Center in Florida for the final time. Securing the space shuttle fleet's place in history, Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board are STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered more than 9,400 pounds of spare parts, equipment and supplies in the Raffaello multi-purpose logistics module that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Frank Michaux

  9. KSC-2011-5634

    NASA Image and Video Library

    2011-07-21

    CAPE CANAVERAL, Fla. -- Xenon lights guide space shuttle Atlantis down on the Shuttle Landing Facility's Runway 15 at NASA's Kennedy Space Center in Florida for the final time. Securing the space shuttle fleet's place in history, Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board are STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered more than 9,400 pounds of spare parts, equipment and supplies in the Raffaello multi-purpose logistics module that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Frank Michaux

  10. KSC-2011-5864

    NASA Image and Video Library

    2011-07-21

    CAPE CANAVERAL, Fla. -- Xenon lights positioned at the end of Runway 15 reveal that the drag chute has deployed behind space shuttle Atlantis to slow the shuttle as it lands for the last time at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Securing the space shuttle fleet's place in history, Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board are STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandy Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered the Raffaello multi-purpose logistics module filled with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. STS-135 also was the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Tom Farrar and Tony Gray

  11. KSC-2011-5724

    NASA Image and Video Library

    2011-07-21

    CAPE CANAVERAL, Fla. -- At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, the drag chute trailing space shuttle Atlantis is illuminated by the xenon lights on Runway 15 as the shuttle lands for the final time. Securing the space shuttle fleet's place in history, Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board are STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered the Raffaello multi-purpose logistics module filled with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. STS-135 also was the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kenny Allen

  12. KSC-2011-5863

    NASA Image and Video Library

    2011-07-21

    CAPE CANAVERAL, Fla. -- Xenon lights positioned at the end of Runway 15 reveal that the drag chute has deployed behind space shuttle Atlantis to slow the shuttle as it lands for the last time at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Securing the space shuttle fleet's place in history, Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board are STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandy Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered the Raffaello multi-purpose logistics module filled with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. STS-135 also was the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Tom Farrar and Tony Gray

  13. KENNEDY SPACE CENTER, FLA. - In the Columbia Debris Hangar, members of the Stafford-Covey Return to Flight Task Group (SCTG) look at tiles recovered. Chairing the task group are Richard O. Covey, former Space Shuttle commander, and Thomas P. Stafford (center), Apollo commander. Chartered by NASA Administrator Sean O’Keefe, the task group will perform an independent assessment of NASA’s implementation of the final recommendations by the Columbia Accident Investigation Board.

    NASA Image and Video Library

    2003-08-05

    KENNEDY SPACE CENTER, FLA. - In the Columbia Debris Hangar, members of the Stafford-Covey Return to Flight Task Group (SCTG) look at tiles recovered. Chairing the task group are Richard O. Covey, former Space Shuttle commander, and Thomas P. Stafford (center), Apollo commander. Chartered by NASA Administrator Sean O’Keefe, the task group will perform an independent assessment of NASA’s implementation of the final recommendations by the Columbia Accident Investigation Board.

  14. KENNEDY SPACE CENTER, FLA. - In the Columbia Debris Hangar, members of the Stafford-Covey Return to Flight Task Group (SCTG) inspect some of the debris. Chairing the task group are Richard O. Covey, former Space Shuttle commander, and Thomas P. Stafford (fourth from left), Apollo commander. Chartered by NASA Administrator Sean O’Keefe, the task group will perform an independent assessment of NASA’s implementation of the final recommendations by the Columbia Accident Investigation Board.

    NASA Image and Video Library

    2003-08-05

    KENNEDY SPACE CENTER, FLA. - In the Columbia Debris Hangar, members of the Stafford-Covey Return to Flight Task Group (SCTG) inspect some of the debris. Chairing the task group are Richard O. Covey, former Space Shuttle commander, and Thomas P. Stafford (fourth from left), Apollo commander. Chartered by NASA Administrator Sean O’Keefe, the task group will perform an independent assessment of NASA’s implementation of the final recommendations by the Columbia Accident Investigation Board.

  15. KSC-03PD-1065

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, United Space Alliance employees (from left) Harrell Watts, Lynn Wozniak, and Jason Levandusky install Thermal Protection System tiles on a main landing gear door of Space Shuttle orbiter Enterprise (OV-101). Sections of Enterprise were borrowed from the Smithsonian Institution's Air and Space Museum where the orbiter is being stored at the Washington Dulles International Airport. Enterprise was the first orbiter built in the Shuttle fleet and was used to conduct the Approach and Landing Test Program before the first powered Shuttle flight. After the tile installation is complete, the sections will be transferred to the Southwest Research Institute for testing requested by the Columbia Accident Investigation Board.

  16. KSC-03pd1065

    NASA Image and Video Library

    2003-04-11

    KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, United Space Alliance employees (from left) Harrell Watts, Lynn Wozniak, and Jason Levandusky install Thermal Protection System tiles on a main landing gear door of Space Shuttle orbiter Enterprise (OV-101). Sections of Enterprise were borrowed from the Smithsonian Institution's Air and Space Museum where the orbiter is being stored at the Washington Dulles International Airport. Enterprise was the first orbiter built in the Shuttle fleet and was used to conduct the Approach and Landing Test Program before the first powered Shuttle flight. After the tile installation is complete, the sections will be transferred to the Southwest Research Institute for testing requested by the Columbia Accident Investigation Board.

  17. KSC-03PD-1086

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, United Space Alliance employees (from left) Harrell Watts, Mike Cote, and Jason Levandusky install Thermal Protection System tiles on a main landing gear door of Space Shuttle orbiter Enterprise (OV-101). Sections of Enterprise were borrowed from the Smithsonian Institution's Air and Space Museum where the orbiter is being stored at the Washington Dulles International Airport. Enterprise was the first orbiter built in the Shuttle fleet and was used to conduct the Approach and Landing Test Program before the first powered Shuttle flight. After the tile installation is complete, the sections will be transferred to the Southwest Research Institute for testing requested by the Columbia Accident Investigation Board.

  18. KSC-03PD-1080

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, United Space Alliance employees (from left) John Kuhn, Mike Cote, and Tom Baggitt discuss the installation of Thermal Protection System tiles on a main landing gear door of Space Shuttle orbiter Enterprise (OV-101). Sections of Enterprise were borrowed from the Smithsonian Institution's Air and Space Museum where the orbiter is being stored at the Washington Dulles International Airport. Enterprise was the first orbiter built in the Shuttle fleet and was used to conduct the Approach and Landing Test Program before the first powered Shuttle flight. After the tile installation is complete, the sections will be transferred to the Southwest Research Institute for testing requested by the Columbia Accident Investigation Board.

  19. KSC-03PD-1085

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, United Space Alliance employees (from left) Mike Cote, Tom Baggitt, and Jason Levandusky install Thermal Protection System tiles on a main landing gear door of Space Shuttle orbiter Enterprise (OV-101). Sections of Enterprise were borrowed from the Smithsonian Institution's Air and Space Museum where the orbiter is being stored at the Washington Dulles International Airport. Enterprise was the first orbiter built in the Shuttle fleet and was used to conduct the Approach and Landing Test Program before the first powered Shuttle flight. After the tile installation is complete, the sections will be transferred to the Southwest Research Institute for testing requested by the Columbia Accident Investigation Board.

  20. KSC-03PD-1084

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, United Space Alliance employee Dave Sanborn (left) conducts a bond verification test on Thermal Protection System tiles installed on a main landing gear door of Space Shuttle orbiter Enterprise (OV-101). Sections of Enterprise were borrowed from the Smithsonian Institution's Air and Space Museum where the orbiter is being stored at the Washington Dulles International Airport. Enterprise was the first orbiter built in the Shuttle fleet and was used to conduct the Approach and Landing Test Program before the first powered Shuttle flight. After the tile installation is complete, the sections will be transferred to the Southwest Research Institute for testing requested by the Columbia Accident Investigation Board.

  1. KSC-2011-5813

    NASA Image and Video Library

    2011-07-21

    CAPE CANAVERAL, Fla. -- Space shuttle Atlantis and its employee entourage saunter along the towway from the Shuttle Landing Facility to the Orbiter Processing Facility at NASA's Kennedy Space Center in Florida. Atlantis' final return from space at 5:57 a.m. EDT concluded the STS-135 mission, secured the space shuttle fleet's place in history and brought a close to America's Space Shuttle Program. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board were STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered the Raffaello multi-purpose logistics module filled with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles, and also the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett

  2. KSC-2011-5808

    NASA Image and Video Library

    2011-07-21

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, the landing convoy vehicles line up to accompany space shuttle Atlantis from the Shuttle Landing Facility to an orbiter processing facility. Atlantis' final return from space at 5:57 a.m. EDT concluded the STS-135 mission, secured the space shuttle fleet's place in history and brought a close to America's Space Shuttle Program. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board were STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered the Raffaello multi-purpose logistics module filled with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles, and also the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett

  3. KSC-2011-5809

    NASA Image and Video Library

    2011-07-21

    CAPE CANAVERAL, Fla. -- Employees accompany space shuttle Atlantis as it is slowly towed from the Shuttle Landing Facility to an orbiter processing facility at NASA's Kennedy Space Center in Florida. Looming in the background is the 525-foot-tall Vehicle Assembly Building. Atlantis' final return from space at 5:57 a.m. EDT concluded the STS-135 mission, secured the space shuttle fleet's place in history and brought a close to America's Space Shuttle Program. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board were STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered the Raffaello multi-purpose logistics module filled with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles, and also the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett

  4. KSC-2011-5810

    NASA Image and Video Library

    2011-07-21

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, the landing convoy vehicles accompany space shuttle Atlantis as it is slowly towed from the Shuttle Landing Facility to an orbiter processing facility. Atlantis' final return from space at 5:57 a.m. EDT concluded the STS-135 mission, secured the space shuttle fleet's place in history and brought a close to America's Space Shuttle Program. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board were STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered the Raffaello multi-purpose logistics module filled with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles, and also the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett

  5. KSC-2011-5811

    NASA Image and Video Library

    2011-07-21

    CAPE CANAVERAL, Fla. -- Space shuttle Atlantis is reflected in the water along the towway from the Shuttle Landing Facility to the Orbiter Processing Facility at NASA's Kennedy Space Center in Florida. Atlantis' final return from space at 5:57 a.m. EDT concluded the STS-135 mission, secured the space shuttle fleet's place in history and brought a close to America's Space Shuttle Program. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board were STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered the Raffaello multi-purpose logistics module filled with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles, and also the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett

  6. KSC-2011-5812

    NASA Image and Video Library

    2011-07-21

    CAPE CANAVERAL, Fla. -- It is time for reflection at NASA's Kennedy Space Center in Florida as employees accompany space shuttle Atlantis as it is slowly towed from the Shuttle Landing Facility to an orbiter processing facility. Atlantis' final return from space at 5:57 a.m. EDT concluded the STS-135 mission, secured the space shuttle fleet's place in history and brought a close to America's Space Shuttle Program. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board were STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered the Raffaello multi-purpose logistics module filled with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles, and also the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett

  7. KSC-2011-5862

    NASA Image and Video Library

    2011-07-21

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, xenon lights positioned at the end of Runway 15 illuminate the Shuttle Landing Facility for space shuttle Atlantis' final return from space. Securing the space shuttle fleet's place in history, Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board are STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandy Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered the Raffaello multi-purpose logistics module filled with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. STS-135 also was the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Tom Farrar and Tony Gray

  8. KSC-2011-5858

    NASA Image and Video Library

    2011-07-21

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, xenon lights positioned at the end of Runway 15 illuminate the Shuttle Landing Facility for space shuttle Atlantis' final return from space. Securing the space shuttle fleet's place in history, Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board are STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandy Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered the Raffaello multi-purpose logistics module filled with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. STS-135 also was the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Tom Farrar and Tony Gray

  9. TVC actuator model. [for the space shuttle main engine

    NASA Technical Reports Server (NTRS)

    Baslock, R. W.

    1977-01-01

    A prototype Space Shuttle Main Engine (SSME) Thrust Vector Control (TVC) Actuator analog model was successfully completed. The prototype, mounted on five printed circuit (PC) boards, was delivered to NASA, checked out and tested using a modular replacement technique on an analog computer. In all cases, the prototype model performed within the recording techniques of the analog computer which is well within the tolerances of the specifications.

  10. STS-91 Launch of Discovery from Launch Pad 39-A

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Searing the early evening sky with its near sun-like rocket exhaust, the Space Shuttle Discovery lifts off from Launch Pad 39A at 6:06:24 p.m. EDT June 2 on its way to the Mir space station. On board Discovery are Mission Commander Charles J. Precourt; Pilot Dominic L. Gorie; and Mission Specialists Wendy B. Lawrence, Franklin R. Chang-Diaz, Janet Lynn Kavandi and Valery Victorovitch Ryumin. The nearly 10-day mission will feature the ninth and final Shuttle docking with the Russian space station Mir, the first Mir docking for the Space Shuttle orbiter Discovery, the first on-orbit test of the Alpha Magnetic Spectrometer (AMS), and the first flight of the new Space Shuttle super lightweight external tank. Astronaut Andrew S. W. Thomas will be returning to Earth as a STS-91 crew member after living more than four months aboard Mir.

  11. KSC-2011-2060

    NASA Image and Video Library

    2011-03-09

    CAPE CANAVERAL, Fla. - Space shuttle Discovery touches down on Runway 15 at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Landing was at 11:57 a.m. EST, completing the 13-day STS-133 mission to the International Space Station. Main gear touchdown was at 11:57:17 a.m., followed by nose gear touchdown at 11:57:28, and wheelstop at 11:58:14 a.m. On board are Commander Steve Lindsey, Pilot Eric Boe, and Mission Specialists Nicole Stott, Michael Barratt, Alvin Drew and Steve Bowen. Discovery and its six-member crew delivered the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, the dexterous humanoid astronaut helper, to the orbiting outpost. STS-133 was Discovery's 39th and final mission. This was the 133rd Space Shuttle Program mission and the 35th shuttle voyage to the space station. Photo credit: NASA/Kim Shiflett

  12. STS-91 Launch of Discovery from Launch Pad 39-A

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Some of Florida's natural foliage stands silent sentinel to the lift off of the Space Shuttle Discovery from Launch Pad 39A at 6:06:24 p.m. EDT June 2. On board Discovery are Mission Commander Charles J. Precourt; Pilot Dominic L. Gorie; and Mission Specialists Wendy B. Lawrence, Franklin R. Chang-Diaz, Janet Lynn Kavandi and Valery Victorovitch Ryumin. The nearly 10-day mission will feature the ninth and final Shuttle docking with the Russian space station Mir, the first Mir docking for the Space Shuttle orbiter Discovery, the first on-orbit test of the Alpha Magnetic Spectrometer (AMS), and the first flight of the new Space Shuttle super lightweight external tank. Astronaut Andrew S. W. Thomas will be returning to Earth as an STS-91 crew member after living more than four months aboard Mir.

  13. Shuttle mission simulator. Volume 2: Requirement report, volume 2, revision C

    NASA Technical Reports Server (NTRS)

    Burke, J. F.

    1973-01-01

    The requirements for space shuttle simulation which are discussed include: general requirements, program management, system engineering, design and development, crew stations, on-board computers, and systems integration. For Vol. 1, revision A see N73-22203, for Vol 2, revision A see N73-22204.

  14. KSC-2011-5714

    NASA Image and Video Library

    2011-07-21

    CAPE CANAVERAL, Fla. -- Xenon lights spotlight space shuttle Atlantis as the spacecraft nears touchdown for the last time on Runway 15 at NASA's Kennedy Space Center in Florida. Securing the space shuttle fleet's place in history, Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board are STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered the Raffaello multi-purpose logistics module filled with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. STS-135 also was the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kenny Allen

  15. KSC-2011-5713

    NASA Image and Video Library

    2011-07-21

    CAPE CANAVERAL, Fla. -- Xenon lights create a halo around space shuttle Atlantis as the spacecraft nears touchdown for the last time on Runway 15 at NASA's Kennedy Space Center in Florida. Securing the space shuttle fleet's place in history, Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board are STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered the Raffaello multi-purpose logistics module filled with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. STS-135 also was the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kenny Allen

  16. KSC-2011-5711

    NASA Image and Video Library

    2011-07-21

    CAPE CANAVERAL, Fla. -- Xenons cast a halo of light on space shuttle Atlantis as the spacecraft nears touchdown for the last time on Runway 15 at NASA's Kennedy Space Center in Florida. Securing the space shuttle fleet's place in history, Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board are STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered the Raffaello multi-purpose logistics module filled with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. STS-135 also was the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kenny Allen

  17. KSC-2011-5831

    NASA Image and Video Library

    2011-07-21

    CAPE CANAVERAL, Fla. -- Backlit by the xenon lights on Runway 15 at the Shuttle Landing Facility, space shuttle Atlantis nears touchdown for the final time at NASA's Kennedy Space Center in Florida. Securing the space shuttle fleet's place in history, Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board are STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered the Raffaello multi-purpose logistics module filled with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. It was the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Sandra Joseph and Kevin O'Connell

  18. KSC-2011-5840

    NASA Image and Video Library

    2011-07-21

    CAPE CANAVERAL, Fla. -- Backlit by the xenon lights on Runway 15 at the Shuttle Landing Facility, space shuttle Atlantis nears touchdown for the final time at NASA's Kennedy Space Center in Florida. Securing the space shuttle fleet's place in history, Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board are STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered the Raffaello multi-purpose logistics module filled with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. It was the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Sandra Joseph and Kevin O'Connell

  19. KSC-2011-5836

    NASA Image and Video Library

    2011-07-21

    CAPE CANAVERAL, Fla. -- Backlit by the xenon lights on Runway 15 at the Shuttle Landing Facility, space shuttle Atlantis nears touchdown for the final time at NASA's Kennedy Space Center in Florida. Securing the space shuttle fleet's place in history, Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board are STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered the Raffaello multi-purpose logistics module filled with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. It was the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Sandra Joseph and Kevin O'Connell

  20. KENNEDY SPACE CENTER, FLA. - The second International Microgravity Laboratory-2 (IML-2) is off to an ontime start as the Space Shuttle Columbia lifts off from Launch Pad 39A at 12:43:00 p.m. EDT. On board are a crew of seven and more than 80 investigations developed by more than 200 scientists from 13 countries. The IML-2 complement includes materials science, bioprocessing, space and radiation biology, and human physiology experiments that will be carried out over the course of the 14-day flight. The commander of Space Shuttle Mission STS-65 is Robert D. Cabana. James D. Halsell Jr. is the pilot; the payload commander is Richard J. Hieb; the three mission specialists are Carl E. Walz, Leroy Chiao and Donald A. Thomas. Dr. Chiaki Mukai, representing NASDA, the National Space Development Agency of Japan, is the payload specialist. Mukai becomes the first Japanese woman to fly into space.

    NASA Image and Video Library

    1994-07-08

    KENNEDY SPACE CENTER, FLA. - The second International Microgravity Laboratory-2 (IML-2) is off to an ontime start as the Space Shuttle Columbia lifts off from Launch Pad 39A at 12:43:00 p.m. EDT. On board are a crew of seven and more than 80 investigations developed by more than 200 scientists from 13 countries. The IML-2 complement includes materials science, bioprocessing, space and radiation biology, and human physiology experiments that will be carried out over the course of the 14-day flight. The commander of Space Shuttle Mission STS-65 is Robert D. Cabana. James D. Halsell Jr. is the pilot; the payload commander is Richard J. Hieb; the three mission specialists are Carl E. Walz, Leroy Chiao and Donald A. Thomas. Dr. Chiaki Mukai, representing NASDA, the National Space Development Agency of Japan, is the payload specialist. Mukai becomes the first Japanese woman to fly into space.

  1. STS-57 Pilot Duffy uses TDS soldering tool in SPACEHAB-01 aboard OV-105

    NASA Image and Video Library

    1993-07-01

    STS057-30-021 (21 June-1 July 1993) --- Astronaut Brian Duffy, pilot, handles a soldering tool onboard the Earth-orbiting Space Shuttle Endeavour. The Soldering Experiment (SE) called for a crew member to solder on a printed circuit board containing 45 connection points, then de-solder 35 points on a similar board. The SE was part of a larger project called the Tools and Diagnostic Systems (TDS), sponsored by the Space and Life Sciences Directorate at Johnson Space Center (JSC). TDS represents a group of equipment selected from the tools and diagnostic hardware to be supported by the International Space Station program. TDS was designed to demonstrate the maintenance of experiment hardware on-orbit and to evaluate the adequacy of its design and the crew interface. Duffy and five other NASA astronauts spent almost ten days aboard the Space Shuttle Endeavour in Earth-orbit supporting the SpaceHab mission, retrieving the European Retrievable Carrier (EURECA) and conducting various experiments.

  2. KSC-03PD-1082

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, United Space Alliance employees (from left) Dave Sanborn, Butch Lato, and Bill Brooks conduct a bond verification test on Thermal Protection System tiles newly installed on a main landing gear door of Space Shuttle orbiter Enterprise (OV-101). Sections of Enterprise were borrowed from the Smithsonian Institution's Air and Space Museum where the orbiter is being stored at the Washington Dulles International Airport. Enterprise was the first orbiter built in the Shuttle fleet and was used to conduct the Approach and Landing Test Program before the first powered Shuttle flight. After the tile installation is complete, the sections will be transferred to the Southwest Research Institute for testing requested by the Columbia Accident Investigation Board.

  3. KSC-2011-5629

    NASA Image and Video Library

    2011-07-21

    CAPE CANAVERAL, Fla. -- Xenon lights illuminate space shuttle Atlantis' unfurled drag chute as the vehicle rolls to a stop on the Shuttle Landing Facility's Runway 15 at NASA's Kennedy Space Center in Florida for the final. Securing the space shuttle fleet's place in history, Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board are STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered more than 9,400 pounds of spare parts, equipment and supplies in the Raffaello multi-purpose logistics module that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Jim Grossmann

  4. KSC-2011-5647

    NASA Image and Video Library

    2011-07-21

    CAPE CANAVERAL, Fla. -- Xenons light the way home as space shuttle Atlantis' iconic white frame appears over the Shuttle Landing Facility's Runway 15 at NASA's Kennedy Space Center in Florida for the last time. Securing the space shuttle fleet's place in history, Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board are STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered more than 9,400 pounds of spare parts, equipment and supplies in the Raffaello multi-purpose logistics module that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Sandra Joseph

  5. KSC-2011-5630

    NASA Image and Video Library

    2011-07-21

    CAPE CANAVERAL, Fla. -- Xenon lights illuminate space shuttle Atlantis' unfurled drag chute as the vehicle rolls to a stop on the Shuttle Landing Facility's Runway 15 at NASA's Kennedy Space Center in Florida for the final. Securing the space shuttle fleet's place in history, Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board are STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered more than 9,400 pounds of spare parts, equipment and supplies in the Raffaello multi-purpose logistics module that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Jim Grossmann

  6. KSC-2011-5646

    NASA Image and Video Library

    2011-07-21

    CAPE CANAVERAL, Fla. -- Xenons light the way home as space shuttle Atlantis' iconic white frame appears over the Shuttle Landing Facility's Runway 15 at NASA's Kennedy Space Center in Florida for the last time. Securing the space shuttle fleet's place in history, Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board are STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered more than 9,400 pounds of spare parts, equipment and supplies in the Raffaello multi-purpose logistics module that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Sandra Joseph

  7. KSC-2011-5628

    NASA Image and Video Library

    2011-07-21

    CAPE CANAVERAL, Fla. -- Xenon lights illuminate space shuttle Atlantis' unfurled drag chute as the vehicle rolls to a stop on the Shuttle Landing Facility's Runway 15 at NASA's Kennedy Space Center in Florida for the final. Securing the space shuttle fleet's place in history, Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board are STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered more than 9,400 pounds of spare parts, equipment and supplies in the Raffaello multi-purpose logistics module that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Jim Grossmann

  8. Space Shuttle Avionics: a Redundant IMU On-Board Checkout and Redundancy Management System

    NASA Technical Reports Server (NTRS)

    Mckern, R. A.; Brown, D. G.; Dove, D. W.; Gilmore, J. P.; Landey, M. E.; Musoff, H.; Amand, J. S.; Vincent, K. T., Jr.

    1972-01-01

    A failure detection and isolation philosophy applicable to multiple off-the-shelf gimbaled IMUs are discussed. The equations developed are implemented and evaluated with actual shuttle trajectory simulations. The results of these simulations are presented for both powered and unpowered flight phases and at operational levels of four, three, and two IMUs. A multiple system checkout philosophy is developed and simulation results presented. The final task develops a laboratory test plan and defines the hardware and software requirements to implement an actual multiple system and evaluate the interim study results for space shuttle application.

  9. KSC-2011-5825

    NASA Image and Video Library

    2011-07-21

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Atlantis dwarfs the employees monitoring its arrival into the empty bay of Orbiter Processing Facility-2. Once inside the processing facility, Atlantis will be prepared for future public display at Kennedy's Visitor Complex. Atlantis' final return from space at 5:57 a.m. EDT concluded the STS-135 mission, secured the space shuttle fleet's place in history and brought a close to America's Space Shuttle Program. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board were STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered the Raffaello multi-purpose logistics module filled with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles, and also the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett

  10. KSC-2011-5820

    NASA Image and Video Library

    2011-07-21

    CAPE CANAVERAL, Fla. -- Space shuttle Atlantis noses its way toward the open door of Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida. Once inside the processing facility, Atlantis will be prepared for future public display at Kennedy's Visitor Complex. Atlantis' final return from space at 5:57 a.m. EDT concluded the STS-135 mission, secured the space shuttle fleet's place in history and brought a close to America's Space Shuttle Program. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board were STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered the Raffaello multi-purpose logistics module filled with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles, and also the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett

  11. Navigation for space shuttle approach and landing using an inertial navigation system augmented by data from a precision ranging system or a microwave scan beam landing guidance system

    NASA Technical Reports Server (NTRS)

    Mcgee, L. A.; Smith, G. L.; Hegarty, D. M.; Merrick, R. B.; Carson, T. M.; Schmidt, S. F.

    1970-01-01

    A preliminary study has been made of the navigation performance which might be achieved for the high cross-range space shuttle orbiter during final approach and landing by using an optimally augmented inertial navigation system. Computed navigation accuracies are presented for an on-board inertial navigation system augmented (by means of an optimal filter algorithm) with data from two different ground navigation aids; a precision ranging system and a microwave scanning beam landing guidance system. These results show that augmentation with either type of ground navigation aid is capable of providing a navigation performance at touchdown which should be adequate for the space shuttle. In addition, adequate navigation performance for space shuttle landing is obtainable from the precision ranging system even with a complete dropout of precision range measurements as much as 100 seconds before touchdown.

  12. KSC-2011-5816

    NASA Image and Video Library

    2011-07-21

    CAPE CANAVERAL, Fla. -- A "towback" vehicle slowly pulls space shuttle Atlantis toward Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida. A purge unit that pumps conditioned air into a shuttle after landing is connected to Atlantis' aft end. Once inside the processing facility, Atlantis will be prepared for future public display at Kennedy's Visitor Complex. Atlantis' final return from space at 5:57 a.m. EDT concluded the STS-135 mission, secured the space shuttle fleet's place in history and brought a close to America's Space Shuttle Program. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board were STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered the Raffaello multi-purpose logistics module filled with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles, and also the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett

  13. KSC-2011-5817

    NASA Image and Video Library

    2011-07-21

    CAPE CANAVERAL, Fla. -- A "towback" vehicle slowly pulls space shuttle Atlantis toward Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida. A purge unit that pumps conditioned air into a shuttle after landing is connected to Atlantis' aft end. Once inside the processing facility, Atlantis will be prepared for future public display at Kennedy's Visitor Complex. Atlantis' final return from space at 5:57 a.m. EDT concluded the STS-135 mission, secured the space shuttle fleet's place in history and brought a close to America's Space Shuttle Program. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board were STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered the Raffaello multi-purpose logistics module filled with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles, and also the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett

  14. KSC-2011-5818

    NASA Image and Video Library

    2011-07-21

    CAPE CANAVERAL, Fla. -- A "towback" vehicle slowly pulls space shuttle Atlantis toward Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida. A purge unit that pumps conditioned air into a shuttle after landing is connected to Atlantis' aft end. Once inside the processing facility, Atlantis will be prepared for future public display at Kennedy's Visitor Complex. Atlantis' final return from space at 5:57 a.m. EDT concluded the STS-135 mission, secured the space shuttle fleet's place in history and brought a close to America's Space Shuttle Program. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board were STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered the Raffaello multi-purpose logistics module filled with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles, and also the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett

  15. KSC-2011-5827

    NASA Image and Video Library

    2011-07-21

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Atlantis is positioned between the work platforms of Orbiter Processing Facility-2 where it will be prepared for future public display at Kennedy's Visitor Complex. A purge unit that pumps conditioned air into a shuttle after landing is connected to Atlantis' aft end. Atlantis' final return from space at 5:57 a.m. EDT concluded the STS-135 mission, secured the space shuttle fleet's place in history and brought a close to America's Space Shuttle Program. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board were STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered the Raffaello multi-purpose logistics module filled with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles, and also the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett

  16. KSC-2011-5826

    NASA Image and Video Library

    2011-07-21

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Atlantis glides into position between the work platforms of Orbiter Processing Facility-2. A purge unit that pumps conditioned air into a shuttle after landing is connected to Atlantis' aft end. Once inside the processing facility, Atlantis will be prepared for future public display at Kennedy's Visitor Complex. Atlantis' final return from space at 5:57 a.m. EDT concluded the STS-135 mission, secured the space shuttle fleet's place in history and brought a close to America's Space Shuttle Program. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board were STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered the Raffaello multi-purpose logistics module filled with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles, and also the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett

  17. STS-66 Mission Highlights Resource Tape

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This video contains the mission highlights of the STS-66 Space Shuttle Atlantis Mission in November 1994. Astronauts included: Don McMonagle (Mission Commander), Kurt Brown, Ellen Ochoa (Payload Commander), Joe Tanner, Scott Parazynski, and Jean-Francois Clervoy (collaborating French astronaut). Footage includes: pre-launch suitup, entering Space Shuttle, countdown and launching of Shuttle, EVA activities (ATLAS-3, CRISTA/SPAS, SSBUV/A, ESCAPE-2), on-board experiments dealing with microgravity and its effects, protein crystal growth experiments, daily living and sleeping compartment footage, earthviews of various meteorological processes (dust storms, cloud cover, ocean storms), pre-landing and land footage (both from inside the Shuttle and from outside with long range cameras), and tracking and landing shots from inside Mission Control Center. Included is air-to-ground communication between Mission Control and the Shuttle. This Shuttle was the last launch of 1994.

  18. STS-66 mission highlights resource tape

    NASA Astrophysics Data System (ADS)

    1995-04-01

    This video contains the mission highlights of the STS-66 Space Shuttle Atlantis Mission in November 1994. Astronauts included: Don McMonagle (Mission Commander), Kurt Brown, Ellen Ochoa (Payload Commander), Joe Tanner, Scott Parazynski, and Jean-Francois Clervoy (collaborating French astronaut). Footage includes: pre-launch suitup, entering Space Shuttle, countdown and launching of Shuttle, EVA activities (ATLAS-3, CRISTA/SPAS, SSBUV/A, ESCAPE-2), on-board experiments dealing with microgravity and its effects, protein crystal growth experiments, daily living and sleeping compartment footage, earthviews of various meteorological processes (dust storms, cloud cover, ocean storms), pre-landing and land footage (both from inside the Shuttle and from outside with long range cameras), and tracking and landing shots from inside Mission Control Center. Included is air-to-ground communication between Mission Control and the Shuttle. This Shuttle was the last launch of 1994.

  19. KSC-99pp0986

    NASA Image and Video Library

    1999-07-28

    KENNEDY SPACE CENTER, FLA. -- STS-93 Commander Eileen Collins poses in front of the Space Shuttle orbiter Columbia following her textbook landing on runway 33 at the Shuttle Landing Facility. Main gear touchdown occurred at 11:20:35 p.m. EDT on July 27. On this mission, Collins became the first woman to serve as a Shuttle commander. Also on board were her fellow STS-93 crew members: Pilot Jeffrey S. Ashby and Mission Specialists Steven A. Hawley (Ph.D.), Catherine G. Coleman (Ph.D.) and Michel Tognini of France, with the Centre National d'Etudes Spatiales (CNES). The mission's primary objective was to deploy the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. This was the 95th flight in the Space Shuttle program and the 26th for Columbia. The landing was the 19th consecutive Shuttle landing in Florida and the 12th night landing in Shuttle program history

  20. Docking Offset Between the Space Shuttle and the International Space Station and Resulting Impacts to the Transfer of Attitude Reference and Control

    NASA Technical Reports Server (NTRS)

    Helms, W. Jason; Pohlkamp, Kara M.

    2011-01-01

    The Space Shuttle does not dock at an exact 90 degrees to the International Space Station (ISS) x-body axis. This offset from 90 degrees, along with error sources within their respective attitude knowledge, causes the two vehicles to never completely agree on their attitude, even though they operate as a single, mated stack while docked. The docking offset can be measured in flight when both vehicles have good attitude reference and is a critical component in calculations to transfer attitude reference from one vehicle to another. This paper will describe how the docking offset and attitude reference errors between both vehicles are measured and how this information would be used to recover Shuttle attitude reference from ISS in the event of multiple failures. During STS-117, ISS on-board Guidance, Navigation and Control (GNC) computers began having problems and after several continuous restarts, the systems failed. The failure took the ability for ISS to maintain attitude knowledge. This paper will also demonstrate how with knowledge of the docking offset, the contingency procedure to recover Shuttle attitude reference from ISS was reversed in order to provide ISS an attitude reference from Shuttle. Finally, this paper will show how knowledge of the docking offset can be used to speed up attitude control handovers from Shuttle to ISS momentum management. By taking into account the docking offset, Shuttle can be commanded to hold a more precise attitude which better agrees with the ISS commanded attitude such that start up transients with the ISS momentum management controllers are reduced. By reducing start-up transients, attitude control can be transferred from Shuttle to ISS without the use of ISS thrusters saving precious on-board propellant, crew time and minimizing loads placed upon the mated stack.

  1. KSC-2011-5855

    NASA Image and Video Library

    2011-07-21

    CAPE CANAVERAL, Fla. -- Xenon lights positioned at the end of Runway 15 spotlight space shuttle Atlantis as it nears touchdown for the last time at NASA's Kennedy Space Center in Florida. Securing the space shuttle fleet's place in history, Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board are STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandy Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered the Raffaello multi-purpose logistics module filled with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. STS-135 also was the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Tom Farrar and Tony Gray

  2. KSC-2011-5860

    NASA Image and Video Library

    2011-07-21

    CAPE CANAVERAL, Fla. -- Xenon lights positioned at the end of Runway 15 spotlight space shuttle Atlantis as it nears touchdown for the last time at NASA's Kennedy Space Center in Florida. Securing the space shuttle fleet's place in history, Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board are STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandy Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered the Raffaello multi-purpose logistics module filled with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. STS-135 also was the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Tom Farrar and Tony Gray

  3. KSC-2011-5856

    NASA Image and Video Library

    2011-07-21

    CAPE CANAVERAL, Fla. -- Xenon lights positioned at the end of Runway 15 spotlight space shuttle Atlantis as it nears touchdown for the last time at NASA's Kennedy Space Center in Florida. Securing the space shuttle fleet's place in history, Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board are STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandy Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered the Raffaello multi-purpose logistics module filled with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. STS-135 also was the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Tom Farrar and Tony Gray

  4. KENNEDY SPACE CENTER, FLA. - The Return To Flight Task Group (RTFTG) holds the first public meeting at the Debus Center, KSC Visitor Complex. Members and staff at the table, from left, are retired Navy Rear Adm. Walter H. Cantrell, David Raspet, retired Air Force Col. Gary S. Geyer, Dr. Kathryn Clark, Dr. Decatur B. Rogers, Dr. Dan L. Crippen, Dr. Walter Broadnax and astronaut Carlos Noriega. The RTFTG was at KSC to conduct organizational activities, tour Space Shuttle facilities and receive briefings on Shuttle-related topics. The task group was chartered by NASA Administrator Sean O’Keefe to perform an independent assessment of NASA’s implementation of the final recommendations of the Columbia Accident Investigation Board. The group is co-chaired by former Shuttle commander Richard O. Covey and retired Air Force Lt. Gen. Thomas P. Stafford, who was an Apollo commander.

    NASA Image and Video Library

    2003-08-07

    KENNEDY SPACE CENTER, FLA. - The Return To Flight Task Group (RTFTG) holds the first public meeting at the Debus Center, KSC Visitor Complex. Members and staff at the table, from left, are retired Navy Rear Adm. Walter H. Cantrell, David Raspet, retired Air Force Col. Gary S. Geyer, Dr. Kathryn Clark, Dr. Decatur B. Rogers, Dr. Dan L. Crippen, Dr. Walter Broadnax and astronaut Carlos Noriega. The RTFTG was at KSC to conduct organizational activities, tour Space Shuttle facilities and receive briefings on Shuttle-related topics. The task group was chartered by NASA Administrator Sean O’Keefe to perform an independent assessment of NASA’s implementation of the final recommendations of the Columbia Accident Investigation Board. The group is co-chaired by former Shuttle commander Richard O. Covey and retired Air Force Lt. Gen. Thomas P. Stafford, who was an Apollo commander.

  5. Analysis of water from the Space Shuttle and Mir Space Station by ion chromatography and capillary electrophoresis

    NASA Technical Reports Server (NTRS)

    Orta, D.; Mudgett, P. D.; Ding, L.; Drybread, M.; Schultz, J. R.; Sauer, R. L.

    1998-01-01

    Drinking water and condensate samples collected from the US Space Shuttle and the Russian Mir Space Station are analyzed routinely at the NASA-Johnson Space Center as part of an ongoing effort to verify water quality and monitor the environment of the spacecraft. Water quality monitoring is particularly important for the Mir water supply because approximately half of the water consumed is recovered from humidity condensate. Drinking water on Shuttle is derived from the fuel cells. Because there is little equipment on board the spacecraft for monitoring the water quality, samples collected by the crew are transported to Earth on Shuttle or Soyuz vehicles, and analyzed exhaustively. As part of the test battery, anions and cations are measured by ion chromatography, and carboxylates and amines by capillary electrophoresis. Analytical data from Shuttle water samples collected before and after several missions, and Mir condensate and potable recovered water samples representing several recent missions are presented and discussed. Results show that Shuttle water is of distilled quality, and Mir recovered water contains various levels of minerals imparted during the recovery processes as designed. Organic ions are rarely detected in potable water samples, but were present in humidity condensate samples.

  6. Space Shuttle Corrosion Protection Performance

    NASA Technical Reports Server (NTRS)

    Curtis, Cris E.

    2007-01-01

    The reusable Manned Space Shuttle has been flying into Space and returning to earth for more than 25 years. The launch pad environment can be corrosive to metallic substrates and the Space Shuttles are exposed to this environment when preparing for launch. The Orbiter has been in service well past its design life of 10 years or 100 missions. As part of the aging vehicle assessment one question under evaluation is how the thermal protection system and aging protective coatings are performing to insure structural integrity. The assessment of this cost resources and time. The information is invaluable when minimizing risk to the safety of Astronauts and Vehicle. This paper will outline a strategic sampling plan and some operational improvements made by the Orbiter Structures team and Corrosion Control Review Board.

  7. KSC-2011-5639

    NASA Image and Video Library

    2011-07-21

    CAPE CANAVERAL, Fla. -- Space shuttle Atlantis returns to Earth for the last time on Runway 15 at NASA's Kennedy Space Center in Florida just before sunrise. Atlantis touched down on Runway 15 at 5:57 a.m., bringing an end to the STS-135 mission and NASA's Space Shuttle Program. CAPE CANAVERAL, Fla. -- Xenons cast a halo of light on space shuttle Atlantis as the spacecraft approaches Runway 15 at NASA's Kennedy Space Center in Florida for the last time. Securing the space shuttle fleet's place in history, Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board are STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered more than 9,400 pounds of spare parts, equipment and supplies in the Raffaello multi-purpose logistics module that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Carl Winebarger

  8. STS-73 Liftoff - Across water with Blue Heron

    NASA Technical Reports Server (NTRS)

    1995-01-01

    A Great Blue Heron seems oblivious to the trememdous spectacle of light and sound generated by a Shuttle liftoff, as the Space Shuttle Columbia soars skyward from Launch Pad 39B. Columbia lifted off at 9:53:00 a.m. EDT, October 20. On board are a crew of seven and the U.S. Microgravity Laboratory-2

  9. KSC-99pp0991

    NASA Image and Video Library

    1999-07-28

    At the Skid Strip at the Cape Canaveral Air Station, Commander Eileen Collins and her daughter, Bridget Youngs, prepare to board an aircraft for their return flight to Houston following the completion of the STS-93 Space Shuttle mission. Landing occurred on runway 33 at KSC's Shuttle Landing Facility on July 27 with main gear touchdown at 11:20:35 p.m. EDT. The mission's primary objective was to deploy the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. This was the 95th flight in the Space Shuttle program and the 26th for Columbia. The landing was the 19th consecutive Shuttle landing in Florida and the 12th night landing in Shuttle program history. On this mission, Collins became the first woman to serve as a Shuttle commander

  10. KSC-99pp0990

    NASA Image and Video Library

    1999-07-28

    At the Skid Strip at the Cape Canaveral Air Station, Mission Specialist Michel Tognini of France, representing the Centre National d'Etudes Spatiales (CNES), and his daughter Tatinana prepare to board an aircraft for their return flight to Houston following the completion of the STS-93 Space Shuttle mission. Landing occurred on runway 33 at KSC's Shuttle Landing Facility on July 27 with main gear touchdown at 11:20:35 p.m. EDT. The mission's primary objective was to deploy the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. This was the 95th flight in the Space Shuttle program and the 26th for Columbia. The landing was the 19th consecutive Shuttle landing in Florida and the 12th night landing in Shuttle program history. On this mission, Eileen Collins became the first woman to serve as a Shuttle commander

  11. KSC-99pp0992

    NASA Image and Video Library

    1999-07-28

    At the Skid Strip at the Cape Canaveral Air Station, Mission Specialist Catherine G. Coleman (Ph.D.) and her husband, Josh Simpson, prepare to board an aircraft for their return flight to Houston following the completion of the STS-93 Space Shuttle mission. Landing occurred on runway 33 at KSC's Shuttle Landing Facility on July 27 with main gear touchdown at 11:20:35 p.m. EDT. The mission's primary objective was to deploy the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. This was the 95th flight in the Space Shuttle program and the 26th for Columbia. The landing was the 19th consecutive Shuttle landing in Florida and the 12th night landing in Shuttle program history. On this mission, Eileen Collins became the first woman to serve as a Shuttle commander

  12. KSC-99pp0993

    NASA Image and Video Library

    1999-07-28

    At the Skid Strip at the Cape Canaveral Air Station, Commander Eileen Collins and her daughter Bridget Youngs prepare to board an aircraft for their return flight to Houston following the completion of the STS-93 Space Shuttle mission. Landing occurred on runway 33 at KSC's Shuttle Landing Facility with main gear touchdown at 11:20:35 p.m. EDT on July 27. The mission's primary objective was to deploy the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. This was the 95th flight in the Space Shuttle program and the 26th for Columbia. The landing was the 19th consecutive Shuttle landing in Florida and the 12th night landing in Shuttle program history. On this mission, Collins became the first woman to serve as a Shuttle commander

  13. Shuttle Lesson Learned - Toxicology

    NASA Technical Reports Server (NTRS)

    James, John T.

    2010-01-01

    This is a script for a video about toxicology and the space shuttle. The first segment is deals with dust in the space vehicle. The next segment will be about archival samples. Then we'll look at real time on-board analyzers that give us a lot of capability in terms of monitoring for combustion products and the ability to monitor volatile organics on the station. Finally we will look at other issues that are about setting limits and dealing with ground based lessons that pertain to toxicology.

  14. Bursch poses next to BPS installed in a slot on Endeavour's middeck for return on STS-111 UF-2

    NASA Image and Video Library

    2002-06-07

    STS111-E-5026 (7 June 2002) --- Astronaut Daniel W. Bursch, who has been aboard the International Space Station (ISS) for the past six months, wastes little time in going to work on board the Space Shuttle Endeavour following linkup of the shuttle and station on June 7, 2002. Bursch, who will return home aboard Endeavour in a few days, is pictured at the Biomass Production System (BPS) on Endeavour's mid deck.

  15. A study of space shuttle energy management, approach and landing analysis

    NASA Technical Reports Server (NTRS)

    Morth, R.

    1973-01-01

    The steering system of the space shuttle vehicle is presented for the several hundred miles of flight preceding landing. The guidance scheme is characterized by a spiral turn to dissipate excess potential energy (altitude) prior to a standard straight-in final approach. In addition, the system features pilot oriented control, drag brakes, phugoid damping, and a navigational capacity founded upon an inertial measurement unit and an on-board computer. Analytic formulas are used to calculate, represent, and insure the workability of the system's specifications

  16. Application of Non-Deterministic Methods to Assess Modeling Uncertainties for Reinforced Carbon-Carbon Debris Impacts

    NASA Technical Reports Server (NTRS)

    Lyle, Karen H.; Fasanella, Edwin L.; Melis, Matthew; Carney, Kelly; Gabrys, Jonathan

    2004-01-01

    The Space Shuttle Columbia Accident Investigation Board (CAIB) made several recommendations for improving the NASA Space Shuttle Program. An extensive experimental and analytical program has been developed to address two recommendations related to structural impact analysis. The objective of the present work is to demonstrate the application of probabilistic analysis to assess the effect of uncertainties on debris impacts on Space Shuttle Reinforced Carbon-Carbon (RCC) panels. The probabilistic analysis is used to identify the material modeling parameters controlling the uncertainty. A comparison of the finite element results with limited experimental data provided confidence that the simulations were adequately representing the global response of the material. Five input parameters were identified as significantly controlling the response.

  17. KSC-2011-5659

    NASA Image and Video Library

    2011-07-21

    CAPE CANAVERAL, Fla. -- Xenons cast a halo of light on space shuttle Atlantis as the spacecraft approaches Runway 15 at NASA's Kennedy Space Center in Florida for the last time. Securing the space shuttle fleet's place in history, Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board are STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered more than 9,400 pounds of spare parts, equipment and supplies in the Raffaello multi-purpose logistics module that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kevin O'Connell

  18. KSC-2011-5658

    NASA Image and Video Library

    2011-07-21

    CAPE CANAVERAL, Fla. -- Xenons cast a halo of light on space shuttle Atlantis as the spacecraft approaches Runway 15 at NASA's Kennedy Space Center in Florida for the last time. Securing the space shuttle fleet's place in history, Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board are STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered more than 9,400 pounds of spare parts, equipment and supplies in the Raffaello multi-purpose logistics module that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kevin O'Connell

  19. KSC-2011-5819

    NASA Image and Video Library

    2011-07-21

    CAPE CANAVERAL, Fla. -- A "towback" vehicle slowly pulls space shuttle Atlantis toward the open door of Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida. A purge unit that pumps conditioned air into a shuttle after landing is connected to Atlantis' aft end. Once inside the processing facility, Atlantis will be prepared for future public display at Kennedy's Visitor Complex. Atlantis' final return from space at 5:57 a.m. EDT concluded the STS-135 mission, secured the space shuttle fleet's place in history and brought a close to America's Space Shuttle Program. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board were STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered the Raffaello multi-purpose logistics module filled with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles, and also the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett

  20. KSC-2011-5821

    NASA Image and Video Library

    2011-07-21

    CAPE CANAVERAL, Fla. -- A "towback" vehicle slowly pulls space shuttle Atlantis toward the empty bay of Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida. A purge unit that pumps conditioned air into a shuttle after landing is connected to Atlantis' aft end. Once inside the processing facility, Atlantis will be prepared for future public display at Kennedy's Visitor Complex. Atlantis' final return from space at 5:57 a.m. EDT concluded the STS-135 mission, secured the space shuttle fleet's place in history and brought a close to America's Space Shuttle Program. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board were STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered the Raffaello multi-purpose logistics module filled with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles, and also the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett

  1. KSC-2011-5822

    NASA Image and Video Library

    2011-07-21

    CAPE CANAVERAL, Fla. -- With the assistance of a "towback" vehicle, space shuttle Atlantis inches its way into the empty bay of Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida. Once inside the processing facility, Atlantis will be prepared for future public display at Kennedy's Visitor Complex. Atlantis' final return from space at 5:57 a.m. EDT concluded the STS-135 mission, secured the space shuttle fleet's place in history and brought a close to America's Space Shuttle Program. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board were STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered the Raffaello multi-purpose logistics module filled with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles, and also the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett

  2. KSC-2011-5823

    NASA Image and Video Library

    2011-07-21

    CAPE CANAVERAL, Fla. -- Slowly and carefully, a "towback" vehicle pulls space shuttle Atlantis into the empty bay of Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida. Once inside the processing facility, Atlantis will be prepared for future public display at Kennedy's Visitor Complex. Atlantis' final return from space at 5:57 a.m. EDT concluded the STS-135 mission, secured the space shuttle fleet's place in history and brought a close to America's Space Shuttle Program. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board were STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered the Raffaello multi-purpose logistics module filled with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles, and also the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett

  3. KSC-2011-5824

    NASA Image and Video Library

    2011-07-21

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, employees in Orbiter Processing Facility-2 monitor the alignment of space shuttle Atlantis as it is towed into the empty bay. Once inside the processing facility, Atlantis will be prepared for future public display at Kennedy's Visitor Complex. Atlantis' final return from space at 5:57 a.m. EDT concluded the STS-135 mission, secured the space shuttle fleet's place in history and brought a close to America's Space Shuttle Program. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board were STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered the Raffaello multi-purpose logistics module filled with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles, and also the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett

  4. STS-70 Discovery launch before tower clear (fish eye view)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The fourth Space Shuttle flight of 1995 is off to an all-but- perfect start, as the Shuttle Discovery surges skyward from Launch Pad 39B at 9:41:55.078 a.m. EDT, July 13, 1995. On board for Discovery's 21st spaceflight are a crew of five: Commander Terence 'Tom' Henricks; Pilot Kevin R. Kregel; and Mission Specialists Nancy Jane Currie, Donald A. Thomas and Mary Ellen Weber. Primary objective of Mission STS-70 is to assure the continued readiness of NASA's Tracking and Data Relay Satellite (TDRS) communications network which links Earth-orbiting spacecraft -- including the Shuttle -- with the ground. The 70th Shuttle flight overall also marks the maiden flight of the new Block I Space Shuttle Main Engine configuration designed to increase engine performance as well as safety and reliability.

  5. Astronaut Medical Selection and Flight Medicine Care During the Shuttle ERA 1981 to 2011

    NASA Technical Reports Server (NTRS)

    Johnston, S.; Jennings, R.; Stepaniak, P.; Schmid, J.; Rouse, B.; Gray, G.; Tarver, B.

    2011-01-01

    The NASA Shuttle Program began with congressional budget approval in January 5, 1972 and the launch of STS-1 on April 12, 1981 and recently concluded with the landing of STS-135 on July 21, 2011. The evolution of the medical standards and care of the Shuttle Era Astronauts began in 1959 with the first Astronaut selection. The first set of NASA minimal medical standards were documented in 1977 and based on Air Force, Navy, Department of Defense, and the Federal Aviation Administration standards. Many milestones were achieved over the 30 years from 1977 to 2007 and the subsequent 13 Astronaut selections and 4 major expert panel reviews performed by the NASA Flight Medicine Clinic, Aerospace Medicine Board, and Medical Policy Board. These milestones of aerospace medicine standards, evaluations, and clinical care encompassed the disciplines of preventive, occupational, and primary care medicine and will be presented. The screening and retention standards, testing, and specialist evaluations evolved through periodic expert reviews, evidence based medicine, and Astronaut medical care experience. The last decade of the Shuttle Program saw the development of the International Space Station (ISS) with further Space medicine collaboration and knowledge gained from our International Partners (IP) from Russia, Canada, Japan, and the European Space Agencies. The Shuttle Program contribution to the development and implementation of NASA and IP standards and waiver guide documents, longitudinal data collection, and occupational surveillance models will be presented along with lessons learned and recommendations for future vehicles and missions.

  6. KENNEDY SPACE CENTER, FLA. - Martin Wilson, with United Space Alliance, describes an orbiter’s Thermal Protection System for members of the Stafford-Covey Return to Flight Task Group (SCTG). Handling some of the blanket insulation are Dr. Kathryn Clark and Joe Engle. Third from left is Richard Covey, former Space Shuttle commander, who is co-chair of the SCTG, along with Thomas P. Stafford, Apollo commander. Chartered by NASA Administrator Sean O’Keefe, the task group will perform an independent assessment of NASA’s implementation of the final recommendations by the Columbia Accident Investigation Board.

    NASA Image and Video Library

    2003-08-06

    KENNEDY SPACE CENTER, FLA. - Martin Wilson, with United Space Alliance, describes an orbiter’s Thermal Protection System for members of the Stafford-Covey Return to Flight Task Group (SCTG). Handling some of the blanket insulation are Dr. Kathryn Clark and Joe Engle. Third from left is Richard Covey, former Space Shuttle commander, who is co-chair of the SCTG, along with Thomas P. Stafford, Apollo commander. Chartered by NASA Administrator Sean O’Keefe, the task group will perform an independent assessment of NASA’s implementation of the final recommendations by the Columbia Accident Investigation Board.

  7. STARPAHC space-oriented medical evaluation. [telemedicine system

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Development of the STARPAHC telemedicine system is documented. Using STARPAHC assessment results and monitoring experience, on board and ground based flight medical system monitoring requirements and operational procedures were developed for use with the Space Transportation System during OFT and mature operation phases of the shuttle.

  8. KENNEDY SPACE CENTER, FLA. - The Stafford-Covey Return to Flight Task Group (SCTG) inspects debris in the Columbia Debris Hangar. At right is the model of the left wing that has been used during recovery operations. Chairing the task group are Richard O. Covey, former Space Shuttle commander, and Thomas P. Stafford (third from right, foreground), Apollo commander. Chartered by NASA Administrator Sean O’Keefe, the task group will perform an independent assessment of NASA’s implementation of the final recommendations by the Columbia Accident Investigation Board.

    NASA Image and Video Library

    2003-08-05

    KENNEDY SPACE CENTER, FLA. - The Stafford-Covey Return to Flight Task Group (SCTG) inspects debris in the Columbia Debris Hangar. At right is the model of the left wing that has been used during recovery operations. Chairing the task group are Richard O. Covey, former Space Shuttle commander, and Thomas P. Stafford (third from right, foreground), Apollo commander. Chartered by NASA Administrator Sean O’Keefe, the task group will perform an independent assessment of NASA’s implementation of the final recommendations by the Columbia Accident Investigation Board.

  9. G-38, G-39 and G-40: Art in space, a divergent exploration

    NASA Technical Reports Server (NTRS)

    Mcshane, J. W.

    1986-01-01

    The results of the Get Away Special (GAS) Arts-Science payload G-38, processed in orbit on board the Space Shuttle Challenger during mission 41-G STS 17, October 5 to 13, l984 are explained. The payload G-38 was created as a unified Arts-Science payload that simultaneously explored the process of vapor deposition in the vacuum and weightlessness of the shuttle environment and created a series of space sculptures utilizing this process. The purpose of the experiment was to test the sputter deposition process in space and to create five subtle spherical sculptures with metallic coatings of gold, silver, platinum and chrome.

  10. Space LOX vent system. [for space shuttle orbiter

    NASA Technical Reports Server (NTRS)

    Erickson, R. C.

    1975-01-01

    This is the final report summarizing the work completed under contract NAS8-26972. Concept selection, design, fabricating and testing of a prototype compact heat exchanger thermodynamic vent system are discussed. The system is designed to operate in a 2.7m (9 foot) spherical liquid oxygen tank with a heating rate of 32.2 - 35.2 watts (110-120 Btu/hr) and to control pressure to 310 + or - 13.8 kN/sq m (45 + or - 2.0 psia.) the design mission is of 2,590 ks (30 days) duration on board a space shuttle orbiter.

  11. Spacely's rockets: Personnel launch system/family of heavy lift launch vehicles

    NASA Technical Reports Server (NTRS)

    1991-01-01

    During 1990, numerous questions were raised regarding the ability of the current shuttle orbiter to provide reliable, on demand support of the planned space station. Besides being plagued by reliability problems, the shuttle lacks the ability to launch some of the heavy payloads required for future space exploration, and is too expensive to operate as a mere passenger ferry to orbit. Therefore, additional launch systems are required to complement the shuttle in a more robust and capable Space Transportation System. In December 1990, the Report of the Advisory Committee on the Future of the U.S. Space Program, advised NASA of the risks of becoming too dependent on the space shuttle as an all-purpose vehicle. Furthermore, the committee felt that reducing the number of shuttle missions would prolong the life of the existing fleet. In their suggestions, the board members strongly advocated the establishment of a fleet of unmanned, heavy lift launch vehicles (HLLV's) to support the space station and other payload-intensive enterprises. Another committee recommendation was that a space station crew rotation/rescue vehicle be developed as an alternative to the shuttle, or as a contingency if the shuttle is not available. The committee emphasized that this vehicle be designed for use as a personnel carrier, not a cargo carrier. This recommendation was made to avoid building another version of the existing shuttle, which is not ideally suited as a passenger vehicle only. The objective of this project was to design both a Personnel Launch System (PLS) and a family of HLLV's that provide low cost and efficient operation in missions not suited for the shuttle.

  12. An Overview of contributions of NASA Space Shuttle to Space Science and Engineering education

    NASA Astrophysics Data System (ADS)

    Lulla, Kamlesh

    2012-07-01

    This paper provides an indepth overview of the enormous contrbutions made by the NASA Space Shuttle Program to Space science and engineering education over the past thirty years. The author has served as one of the major contributors and editors of NASA book "Wings In Orbit: Scientific and Engineering Legacies of the Space Shuttle program" (NASA SP-2010-3409). Every Space Shuttle mission was an education mission: student involvement programs such as Get Away Specials housed in Shuttle payload allowed students to propose research and thus enrich their university education experience. School students were able to operate "EarthKAM" to learn the intricacies of orbital mechanics, earth viewing opportunities and were able to master the science and art of proposal writing and scientific collaboration. The purpose of this presentation is to introduce the global student and teaching community in space sciences and engineering to the plethora of educational resources available to them for engaging a wide variety of students (from early school to the undergraduate and graduate level and to inspire them towards careers in Space sciences and technologies. The volume "Wings In Orbit" book is one example of these ready to use in classroom materials. This paper will highlight the educational payloads, experiments and on-orbit classroom activities conducted for space science and engineering students, teachers and non-traditional educators. The presentation will include discussions on the science content and its educational relevance in all major disiciplines in which the research was conducted on-board the Space Shuttle.

  13. Sustaining Human Space Flight: From the Present to the Future

    NASA Technical Reports Server (NTRS)

    Russell, Rick

    2010-01-01

    This slide presentation reviews some of the efforts to ensure that human space flight continues in NASA. With the aging shuttle orbiter fleet, some actions have been taken to assure safe operations. Some of these are: (1) the formation of a Corrosion Control Review Board (CCRB) that will assess the extent and cause of corrosion to the shuttle, and provide short term and long term corrective actions, among other objectives, (2) a formalization of an aging vehicle assessment (AVA) as part of a certification for the Return-to-Flight, (3) an assessment of the age life of the materials in the space shuttle, and (4) the formation of the Aging Orbiter Working Group (AOWG). There are also slides with information about the International Space Station. There is also information about the need to update the Kennedy Space Center, to sustain a 21st century launch complex and the requirement to further the aim of commercial launch capability.

  14. STS-72 Liftoff viewed from left side of Pad 39B

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Space Shuttle Endeavour lights up the night sky as it thunders aloft from Launch Pad 39B. Liftoff of Mission STS- 72 occurred at 4:41:00.072 am EST, January 11, kicking off the 1996 Shuttle launch schedule. On board Endeavour are a crew of six: Commander Brian Duffy; Pilot Brent W. Jett; and Mission Specialists Dr. Daniel T. Barry, Leroy Chiao, Winston E. Scott, and Koichi Wakata, who represents the National Space Development Agency (NASDA) of Japan. During their planned nine-day mission, the crew will retrieve the Japanese Space Flyer Unit (SFU), deploy and later retrieve the Office of Aeronautics and Space Technology-Flyer (OAST- Flyer), and conduct two extravehicular activities (EVAs). STS-72 is the 74th Shuttle mission and the 10th flight of the orbiter Endeavour.

  15. Space Shuttle Navigation in the GPS Era

    NASA Technical Reports Server (NTRS)

    Goodman, John L.

    2001-01-01

    The Space Shuttle navigation architecture was originally designed in the 1970s. A variety of on-board and ground based navigation sensors and computers are used during the ascent, orbit coast, rendezvous, (including proximity operations and docking) and entry flight phases. With the advent of GPS navigation and tightly coupled GPS/INS Units employing strapdown sensors, opportunities to improve and streamline the Shuttle navigation process are being pursued. These improvements can potentially result in increased safety, reliability, and cost savings in maintenance through the replacement of older technologies and elimination of ground support systems (such as Tactical Air Control and Navigation (TACAN), Microwave Landing System (MLS) and ground radar). Selection and missionization of "off the shelf" GPS and GPS/INS units pose a unique challenge since the units in question were not originally designed for the Space Shuttle application. Various options for integrating GPS and GPS/INS units with the existing orbiter avionics system were considered in light of budget constraints, software quality concerns, and schedule limitations. An overview of Shuttle navigation methodology from 1981 to the present is given, along with how GPS and GPS/INS technology will change, or not change, the way Space Shuttle navigation is performed in the 21 5 century.

  16. Human Space Flight Plans Committee

    NASA Image and Video Library

    2009-08-11

    Bohdan Bejmuk, chair, Constellation program Standing Review Board, and former manager of the Boeing Space Shuttle and Sea Launch programs, right, asks a question during the final meeting of the Human Space Flight Review Committee as Dr. Wanda Austin, president and CEO, The Aerospace Corp., looks on at left, Wednesday, Aug. 12, 2009, in Washington. Photo Credit: (NASA/Paul E. Alers)

  17. KSC-95pc1013

    NASA Image and Video Library

    1995-07-13

    Startled birds scatter as the stillness of a summer morning is broken by a giant's roar. The Space Shuttle Discovery thundered into space from Launch Pad 39B at 9:41:55:078 a.m. EDT. STS-70 is the 70th Shuttle flight overall, the 21st for Discovery (OV-103), and the fourth Shuttle flight in 1995. On board for the nearly eight-day mission are a crew of five: Commander Terence "Tom" Henricks, Pilot Kevin R. Kregel, and Mission Specialists Nancy Jane Currie, Donald A. Thomas and Mary Ellen Weber. The crew's primary objective is to deploy the Tracking and Data Relay Satellite-G (TDRS-G), which will join a constellation of other TDRS spacecraft already on orbit

  18. Radiation Susceptibility Assessment of Off the Shelf (OTS) Hardware

    NASA Technical Reports Server (NTRS)

    Culpepper, William X.; Nicholson, Leonard L. (Technical Monitor)

    2000-01-01

    The reduction in budgets, shortening of schedules and necessity of flying near state of the art technology have forced projects and designers to utilize not only modern, non-space rated EEE parts but also OTS boards, subassemblies and systems. New instrumentation, communications, portable computers and navigation systems for the International Space Station, Space Shuttle, and Crew Return Vehicle are examples of the realization of this paradigm change at the Johnson Space Center. Because of this change, there has been a shift in the radiation assessment methodology from individual part testing using low energy heavy ions to board and box level testing using high-energy particle beams. Highlights of several years of board and system level testing are presented along with lessons learned, present areas of concern, insights into test costs, and future challenges.

  19. Columbia Accident Investigation Board Report. Volume 1

    NASA Technical Reports Server (NTRS)

    Gehman, Harold W., Jr.; Barry, John L.; Deal, Duane W.; Hallock, James N.; Hess, Kenneth W.; Hubbard, G. Scott; Logsdon, John M.; Osheroff, Douglas D.; Ride, Sally K.; Tetrault, Roger E.

    2003-01-01

    The Columbia Accident Investigation Board's independent investigation into the tragic February 1, 2003, loss of the Space Shuttle Columbia and its seven-member crew lasted nearly seven months and involved 13 Board members, approximately 120 Board investigators, and thousands of NASA and support personnel. Because the events that initiated the accident were not apparent for some time, the investigation's depth and breadth were unprecedented in NASA history. Further, the Board determined early in the investigation that it intended to put this accident into context. We considered it unlikely that the accident was a random event; rather, it was likely related in some degree to NASA's budgets, history, and program culture, as well as to the politics, compromises, and changing priorities of the democratic process. We are convinced that the management practices overseeing the Space Shuttle Program were as much a cause of the accident as the foam that struck the left wing. The Board was also influenced by discussions with members of Congress, who suggested that this nation needed a broad examination of NASA's Human Space Flight Program, rather than just an investigation into what physical fault caused Columbia to break up during re-entry. Findings and recommendations are in the relevant chapters and all recommendations are compiled in Chapter 11. Volume I is organized into four parts: The Accident; Why the Accident Occurred; A Look Ahead; and various appendices. To put this accident in context, Parts One and Two begin with histories, after which the accident is described and then analyzed, leading to findings and recommendations. Part Three contains the Board's views on what is needed to improve the safety of our voyage into space. Part Four is reference material. In addition to this first volume, there will be subsequent volumes that contain technical reports generated by the Columbia Accident Investigation Board and NASA, as well as volumes containing reference documentation and other related material.

  20. Bursch and Chang-Diaz install the BPS in a slot on Endeavour's middeck for return on STS-111 UF-2

    NASA Image and Video Library

    2002-06-07

    STS111-E-5023 (7 June 2002) --- Astronaut Daniel W. Bursch (left), who has been aboard the International Space Station (ISS) for the past six months, wastes little time in going to work on board the Space Shuttle Endeavour following linkup of the shuttle and station on June 7, 2002. Bursch, who will return home aboard Endeavour in a few days, shares a task with astronaut Franklin R. Chang-Diaz at the Biomass Production System (BPS) on Endeavour's mid deck.

  1. KSC-2011-4182

    NASA Image and Video Library

    2011-06-01

    CAPE CANAVERAL, Fla. -- Heat from space shuttle Endeavour's auxiliary power units (APUs), which provide hydraulic control, can be seen at the back of the shuttle, near the vertical tail. Endeavour landed for the final time on the Shuttle Landing Facility's Runway 15 at NASA's Kennedy Space Center in Florida, marking the 25th night landing of the Space Shuttle Program. Main gear touchdown was at 2:34:51 a.m. EDT, followed by nose gear touchdown at 2:35:04 a.m., and wheelstop at 2:35:36 a.m. On board are STS-134 Commander Mark Kelly, Pilot Greg H. Johnson, and Mission Specialists Mike Fincke, Drew Feustel, Greg Chamitoff and the European Space Agency's Roberto Vittori. STS-134 delivered the Alpha Magnetic Spectrometer-2 (AMS) and the Express Logistics Carrier-3 (ELC-3) to the International Space Station. AMS will help researchers understand the origin of the universe and search for evidence of dark matter, strange matter and antimatter from the station. ELC-3 carried spare parts that will sustain station operations once the shuttles are retired from service. STS-134 was the 25th and final flight for Endeavour, which has spent 299 days in space, orbited Earth 4,671 times and traveled 122,883,151 miles. Photo credit: NASA/Kenny Allen

  2. KSC-2011-4181

    NASA Image and Video Library

    2011-06-01

    CAPE CANAVERAL, Fla. -- Heat from space shuttle Endeavour's auxiliary power units (APUs), which provide hydraulic control, can be seen at the back of the shuttle, near the vertical tail. Endeavour landed for the final time on the Shuttle Landing Facility's Runway 15 at NASA's Kennedy Space Center in Florida, marking the 25th night landing of the Space Shuttle Program. Main gear touchdown was at 2:34:51 a.m. EDT, followed by nose gear touchdown at 2:35:04 a.m., and wheelstop at 2:35:36 a.m. On board are STS-134 Commander Mark Kelly, Pilot Greg H. Johnson, and Mission Specialists Mike Fincke, Drew Feustel, Greg Chamitoff and the European Space Agency's Roberto Vittori. STS-134 delivered the Alpha Magnetic Spectrometer-2 (AMS) and the Express Logistics Carrier-3 (ELC-3) to the International Space Station. AMS will help researchers understand the origin of the universe and search for evidence of dark matter, strange matter and antimatter from the station. ELC-3 carried spare parts that will sustain station operations once the shuttles are retired from service. STS-134 was the 25th and final flight for Endeavour, which has spent 299 days in space, orbited Earth 4,671 times and traveled 122,883,151 miles. Photo credit: NASA/Kenny Allen

  3. KSC-2011-4187

    NASA Image and Video Library

    2011-06-01

    CAPE CANAVERAL, Fla. -- Heat from space shuttle Endeavour's auxiliary power units (APUs), which provide hydraulic control, can be seen at the back of the shuttle, near the vertical tail. Endeavour landed for the final time on the Shuttle Landing Facility's Runway 15 at NASA's Kennedy Space Center in Florida, marking the 25th night landing of the Space Shuttle Program. Main gear touchdown was at 2:34:51 a.m. EDT, followed by nose gear touchdown at 2:35:04 a.m., and wheelstop at 2:35:36 a.m. On board are STS-134 Commander Mark Kelly, Pilot Greg H. Johnson, and Mission Specialists Mike Fincke, Drew Feustel, Greg Chamitoff and the European Space Agency's Roberto Vittori. STS-134 delivered the Alpha Magnetic Spectrometer-2 (AMS) and the Express Logistics Carrier-3 (ELC-3) to the International Space Station. AMS will help researchers understand the origin of the universe and search for evidence of dark matter, strange matter and antimatter from the station. ELC-3 carried spare parts that will sustain station operations once the shuttles are retired from service. STS-134 was the 25th and final flight for Endeavour, which has spent 299 days in space, orbited Earth 4,671 times and traveled 122,883,151 miles. Photo credit: NASA/Tom Farrar

  4. STS-93 Commander Collins poses in front of Columbia

    NASA Technical Reports Server (NTRS)

    1999-01-01

    STS-93 Commander Eileen Collins poses in front of the Space Shuttle orbiter Columbia following her textbook landing on runway 33 at the Shuttle Landing Facility. Main gear touchdown occurred at 11:20:35 p.m. EDT on July 27. On this mission, Collins became the first woman to serve as a Shuttle commander. Also on board were her fellow STS-93 crew members: Pilot Jeffrey S. Ashby and Mission Specialists Stephen A. Hawley (Ph.D.), Catherine G. Coleman (Ph.D.) and Michel Tognini of France, with the Centre National d'Etudes Spatiales (CNES). The mission's primary objective was to deploy the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. This was the 95th flight in the Space Shuttle program and the 26th for Columbia. The landing was the 19th consecutive Shuttle landing in Florida and the 12th night landing in Shuttle program history.

  5. MS Massimino and Newman on middeck after EVA 2

    NASA Image and Video Library

    2002-03-05

    STS109-E-5643 (5 March 2002) --- Astronauts Michael J. Massimino (left) and James H. Newman, mission specialists, are back on board the mid deck of the Space Shuttle Columbia during the second of five scheduled STS-109 space walks to perform servicing and upgrading of the Hubble Space Telescope (HST). The image was recorded with a digital still camera.

  6. KSC-2011-4183

    NASA Image and Video Library

    2011-06-01

    CAPE CANAVERAL, Fla. -- Xenon lights help lead space shuttle Endeavour home to NASA's Kennedy Space Center in Florida. Endeavour landed for the final time on the Shuttle Landing Facility's Runway 15, marking the 25th night landing of NASA's Space Shuttle Program. Main gear touchdown was at 2:34:51 a.m. EDT, followed by nose gear touchdown at 2:35:04 a.m., and wheelstop at 2:35:36 a.m. On board are STS-134 Commander Mark Kelly, Pilot Greg H. Johnson, and Mission Specialists Mike Fincke, Drew Feustel, Greg Chamitoff and the European Space Agency's Roberto Vittori. STS-134 delivered the Alpha Magnetic Spectrometer-2 (AMS) and the Express Logistics Carrier-3 (ELC-3) to the International Space Station. AMS will help researchers understand the origin of the universe and search for evidence of dark matter, strange matter and antimatter from the station. ELC-3 carried spare parts that will sustain station operations once the shuttles are retired from service. STS-134 was the 25th and final flight for Endeavour, which has spent 299 days in space, orbited Earth 4,671 times and traveled 122,883,151 miles. Photo credit: NASA/George Roberto

  7. KSC-2011-4184

    NASA Image and Video Library

    2011-06-01

    CAPE CANAVERAL, Fla. -- Xenon lights help lead space shuttle Endeavour home to NASA's Kennedy Space Center in Florida. Endeavour landed for the final time on the Shuttle Landing Facility's Runway 15, marking the 25th night landing of NASA's Space Shuttle Program. Main gear touchdown was at 2:34:51 a.m. EDT, followed by nose gear touchdown at 2:35:04 a.m., and wheelstop at 2:35:36 a.m. On board are STS-134 Commander Mark Kelly, Pilot Greg H. Johnson, and Mission Specialists Mike Fincke, Drew Feustel, Greg Chamitoff and the European Space Agency's Roberto Vittori. STS-134 delivered the Alpha Magnetic Spectrometer-2 (AMS) and the Express Logistics Carrier-3 (ELC-3) to the International Space Station. AMS will help researchers understand the origin of the universe and search for evidence of dark matter, strange matter and antimatter from the station. ELC-3 carried spare parts that will sustain station operations once the shuttles are retired from service. STS-134 was the 25th and final flight for Endeavour, which has spent 299 days in space, orbited Earth 4,671 times and traveled 122,883,151 miles. Photo credit: NASA/George Roberto

  8. KSC-2011-4236

    NASA Image and Video Library

    2011-06-01

    CAPE CANAVERAL, Fla. -- Xenon lights help lead space shuttle Endeavour home to NASA's Kennedy Space Center in Florida. Endeavour landed for the final time on the Shuttle Landing Facility's Runway 15, marking the 25th night landing of NASA's Space Shuttle Program. Main gear touchdown was at 2:34:51 a.m. EDT, followed by nose gear touchdown at 2:35:04 a.m., and wheelstop at 2:35:36 a.m. On board are STS-134 Commander Mark Kelly, Pilot Greg H. Johnson, and Mission Specialists Mike Fincke, Drew Feustel, Greg Chamitoff and the European Space Agency's Roberto Vittori. STS-134 delivered the Alpha Magnetic Spectrometer-2 (AMS) and the Express Logistics Carrier-3 (ELC-3) to the International Space Station. AMS will help researchers understand the origin of the universe and search for evidence of dark matter, strange matter and antimatter from the station. ELC-3 carried spare parts that will sustain station operations once the shuttles are retired from service. STS-134 was the 25th and final flight for Endeavour, which has spent 299 days in space, orbited Earth 4,671 times and traveled 122,883,151 miles. Photo credit: NASA/Sandra Joseph and Kevin O'Connell

  9. KSC-2011-4195

    NASA Image and Video Library

    2011-06-01

    CAPE CANAVERAL, Fla. -- Xenon lights help lead space shuttle Endeavour home to NASA's Kennedy Space Center in Florida. Endeavour landed for the final time on the Shuttle Landing Facility's Runway 15, marking the 25th night landing of NASA's Space Shuttle Program. Main gear touchdown was at 2:34:51 a.m. EDT, followed by nose gear touchdown at 2:35:04 a.m., and wheelstop at 2:35:36 a.m. On board are STS-134 Commander Mark Kelly, Pilot Greg H. Johnson, and Mission Specialists Mike Fincke, Drew Feustel, Greg Chamitoff and the European Space Agency's Roberto Vittori. STS-134 delivered the Alpha Magnetic Spectrometer-2 (AMS) and the Express Logistics Carrier-3 (ELC-3) to the International Space Station. AMS will help researchers understand the origin of the universe and search for evidence of dark matter, strange matter and antimatter from the station. ELC-3 carried spare parts that will sustain station operations once the shuttles are retired from service. STS-134 was the 25th and final flight for Endeavour, which has spent 299 days in space, orbited Earth 4,671 times and traveled 122,883,151 miles. Photo credit: NASA/Kevin O'Connell

  10. KSC-2011-4240

    NASA Image and Video Library

    2011-06-01

    CAPE CANAVERAL, Fla. -- Xenon lights help lead space shuttle Endeavour home to NASA's Kennedy Space Center in Florida. Endeavour landed for the final time on the Shuttle Landing Facility's Runway 15, marking the 25th night landing of NASA's Space Shuttle Program. Main gear touchdown was at 2:34:51 a.m. EDT, followed by nose gear touchdown at 2:35:04 a.m., and wheelstop at 2:35:36 a.m. On board are STS-134 Commander Mark Kelly, Pilot Greg H. Johnson, and Mission Specialists Mike Fincke, Drew Feustel, Greg Chamitoff and the European Space Agency's Roberto Vittori. STS-134 delivered the Alpha Magnetic Spectrometer-2 (AMS) and the Express Logistics Carrier-3 (ELC-3) to the International Space Station. AMS will help researchers understand the origin of the universe and search for evidence of dark matter, strange matter and antimatter from the station. ELC-3 carried spare parts that will sustain station operations once the shuttles are retired from service. STS-134 was the 25th and final flight for Endeavour, which has spent 299 days in space, orbited Earth 4,671 times and traveled 122,883,151 miles. Photo credit: NASA/Tom Farrar and Tony Gray

  11. KSC-2011-4238

    NASA Image and Video Library

    2011-06-01

    CAPE CANAVERAL, Fla. -- Xenon lights help lead space shuttle Endeavour home to NASA's Kennedy Space Center in Florida. Endeavour landed for the final time on the Shuttle Landing Facility's Runway 15, marking the 25th night landing of NASA's Space Shuttle Program. Main gear touchdown was at 2:34:51 a.m. EDT, followed by nose gear touchdown at 2:35:04 a.m., and wheelstop at 2:35:36 a.m. On board are STS-134 Commander Mark Kelly, Pilot Greg H. Johnson, and Mission Specialists Mike Fincke, Drew Feustel, Greg Chamitoff and the European Space Agency's Roberto Vittori. STS-134 delivered the Alpha Magnetic Spectrometer-2 (AMS) and the Express Logistics Carrier-3 (ELC-3) to the International Space Station. AMS will help researchers understand the origin of the universe and search for evidence of dark matter, strange matter and antimatter from the station. ELC-3 carried spare parts that will sustain station operations once the shuttles are retired from service. STS-134 was the 25th and final flight for Endeavour, which has spent 299 days in space, orbited Earth 4,671 times and traveled 122,883,151 miles. Photo credit: NASA/Tom Farrar and Tony Gray

  12. STS-96 Post Flight Presentation

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The Crew of STS-96 Discovery Shuttle, Commander Kent V. Rominger, Pilot Rick D. Husband, Mission Specialists Ellen Ochoa, Tamara E. Jernigan, Daniel T. Barry, Julie Payette, and Valery Ivanovich Tokarev, are shown narrating the mission highlights. Scenes include walk out to the transfer vehicle, and launch of the shuttle. Also presented are scenes of the start of the main engine, ignition of the solid rocket boosters, and the separation of the solid rocket boosters. Footage of Payette preparing the on-board camera equipment, while Barry and Jernigan perform routine checks of the equipment is seen. Also presented are various pictures of the shuttle in its orbit, the docking of the shuttle with the Mir International Space Station, and crewmembers during their space walk. Beautiful panoramic views of the Great Lake, Houston, and a combined view of Italy and Turkey are seen. The crew of Discovery is shown performing a juice ball experiment, tumbling, undocking, performing transfer operations, and deploying the STARSHINE educational satellite. The film ends with the reentry of the Discovery Space Shuttle into the Earth's atmosphere.

  13. STS-71 mission highlights resource tape

    NASA Astrophysics Data System (ADS)

    1995-09-01

    This video highlights the international cooperative Shuttle/Mir mission of the STS-71 flight. The STS-71 flightcrew consists of Cmdr. Robert Hoot' Gibson, Pilot Charles Precourt, and Mission Specialists Ellen Baker, Bonnie Dunbar, and Gregory Harbaugh. The Mir 18 flightcrew consisted of Cmdr. Vladamir Dezhurov, Flight Engineer Gennady Strekalov, and Cosmonaut-Research Dr. Norman Thagard. The Mir 18 crew consisted of Cmdr. Anatoly Solovyev and Flight Engineer Nikolai Budarin. The prelaunch, launch, shuttle in-orbit, and in-orbit rendezvous and docking of the Mir Space Station to the Atlantis Space Shuttle are shown. The Mir 19 crew accompanied the STS-71 crew and will replace the Mir 18 crew upon undocking from the Mir Space Station. Shown is on-board footage from the Mir Space Station of the Mir 18 crew engaged in hardware testing and maintenance, medical and physiological tests, and a tour of the Mir. A spacewalk by the two Mir 18 cosmonauts is shown as they performed maintenance of the Mir Space Station. After the docking between Atlantis and Mir is completed, several mid-deck physiological experiments are performed along with a tour of Atlantis. Dr Thagard remained behind with the Shuttle after undocking to return to Earth with reports from his Mir experiments and observations. In-cabin experiments included the IMAX Camera Systems tests and the Shuttle Amateur Radio Experiment-2 (SAREX-2). There is footage of the shuttle landing.

  14. STS-79 Liftoff of Shuttle Atlantis (front view portrait)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Space Shuttle Atlantis roars into the night from Launch Pad 39A. Liftoff on the 79th Shuttle mission occurred on time at 4:54:49 a.m. EDT, Sept. 16. The 10-day spaceflight will be highlighted by the fourth docking between the U.S. Space Shuttle and Russian Space Station Mir and the first in a series of crew exchanges aboard the station. Leading the STS-79 crew is Commander William F. Readdy. The pilot is Terrence W. Wilcutt, and the four mission specialists making the trip to Mir are Jay Apt, Thomas D. Akers, Carl E. Walz and John E. Blaha. Blaha will exchange places on Mir with U.S. astronaut Shannon W. Lucid, who will return to Earth with the STS-79 flight crew after a record- setting stay on the Russian station. STS-79 is the second Shuttle-Mir mission to carry a SPACEHAB module on board and the first to carry a double module. The STS-79 mission is part of the NASA/Mir program which is now into the Phase 1B portion, consisting of nine Shuttle-Mir docking flights and seven long- duration flights of U.S. astronauts aboard the station between early 1996 and late 1998.

  15. STS-79 Liftoff of Shuttle Atlantis (below SRB)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Space Shuttle Atlantis roars into the night from Launch Pad 39A. Liftoff on the 79th Shuttle mission occurred on time at 4:54:49 a.m. EDT, Sept. 16. The 10-day spaceflight will be highlighted by the fourth docking between the U.S. Space Shuttle and Russian Space Station Mir and the first in a series of crew exchanges aboard the station. Leading the STS-79 crew is Commander William F. Readdy. The pilot is Terrence W. Wilcutt, and the four mission specialists making the trip to Mir are Jay Apt, Thomas D. Akers, Carl E. Walz and John E. Blaha. Blaha will exchange places on Mir with U.S. astronaut Shannon W. Lucid, who will return to Earth with the STS-79 flight crew after a record- setting stay on the Russian station. STS-79 is the second Shuttle-Mir mission to carry a SPACEHAB module on board and the first to carry a double module. The STS-79 mission is part of the NASA/Mir program which is now into the Phase 1B portion, consisting of nine Shuttle-Mir docking flights and seven long- duration flights of U.S. astronauts aboard the station between early 1996 and late 1998.

  16. STS-79 Liftoff of Shuttle Atlantis (side view portrait)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Space Shuttle Atlantis roars into the night from Launch Pad 39A. Liftoff on the 79th Shuttle mission occurred on time at 4:54:49 a.m. EDT, Sept. 16. The 10-day spaceflight will be highlighted by the fourth docking between the U.S. Space Shuttle and Russian Space Station Mir and the first in a series of crew exchanges aboard the station. Leading the STS-79 crew is Commander William F. Readdy. The pilot is Terrence W. Wilcutt, and the four mission specialists making the trip to Mir are Jay Apt, Thomas D. Akers, Carl E. Walz and John E. Blaha. Blaha will exchange places on Mir with U.S. astronaut Shannon W. Lucid, who will return to Earth with the STS-79 flight crew after a record- setting stay on the Russian station. STS-79 is the second Shuttle-Mir mission to carry a SPACEHAB module on board and the first to carry a double module. The STS-79 mission is part of the NASA/Mir program which is now into the Phase 1B portion, consisting of nine Shuttle-Mir docking flights and seven long- duration flights of U.S. astronauts aboard the station between early 1996 and late 1998.

  17. STS-79 Liftoff of Shuttle Atlantis (front view landscape)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Space Shuttle Atlantis roars into the night from Launch Pad 39A. Liftoff on the 79th Shuttle mission occurred on time at 4:54:49 a.m. EDT, Sept. 16. The 10-day spaceflight will be highlighted by the fourth docking between the U.S. Space Shuttle and Russian Space Station Mir and the first in a series of crew exchanges aboard the station. Leading the STS-79 crew is Commander William F. Readdy. The pilot is Terrence W. Wilcutt, and the four mission specialists making the trip to Mir are Jay Apt, Thomas D. Akers, Carl E. Walz and John E. Blaha. Blaha will exchange places on Mir with U.S. astronaut Shannon W. Lucid, who will return to Earth with the STS-79 flight crew after a record- setting stay on the Russian station. STS-79 is the second Shuttle-Mir mission to carry a SPACEHAB module on board and the first to carry a double module. The STS-79 mission is part of the NASA/Mir program which is now into the Phase 1B portion, consisting of nine Shuttle-Mir docking flights and seven long- duration flights of U.S. astronauts aboard the station between early 1996 and late 1998.

  18. Multi-Tasking: First Shuttle Mission Since Columbia Combines Test Flight, Catch-Up ISS Supply and Maintenance

    NASA Technical Reports Server (NTRS)

    Morring, Frank, Jr.

    2005-01-01

    NASA's space shuttle fleet is nearing its return to flight with a complex mission on board Discovery that will combine tests of new hardware and procedures adopted in the wake of Columbia's loss with urgent repairs and resupply for the International Space Station. A seven-member astronaut crew has trained throughout most of the two-year hiatus in shuttle operations for the 13-day mission, shooting for a three-week launch window that opens May 15. The window, and much else about the STS-114 mission, is constrained by NASA's need to ensure it has fixed the ascent/debris problem that doomed Columbia and its crew as they attempted to reenter the atmosphere on Feb. 1, 2003. The window was selected so Discovery's ascent can be photographed in daylight with 107 different ground- and aircraft-based cameras to monitor the redesigned external tank for debris shedding. Fixed cameras and the shuttle crew will also photograph the tank in space after it has been jettisoned.

  19. NASA Engineering Excellence: A Case Study on Strengthening an Engineering Organization

    NASA Technical Reports Server (NTRS)

    Shivers, C. Herbert; Wessel, Vernon W.

    2006-01-01

    NASA implemented a system of technical authority following the Columbia Accident Investigation Board (CAE) report calling for independent technical authority to be exercised on the Space Shuttle Program activities via a virtual organization of personnel exercising specific technical authority responsibilities. After the current NASA Administrator reported for duty, and following the first of two planned "Shuttle Return to Flight" missions, the NASA Chief Engineer and the Administrator redirected the Independent Technical Authority to a program of Technical Excellence and Technical Authority exercised within the existing engineering organizations. This paper discusses the original implementation of technical authority and the transition to the new implementation of technical excellence, including specific measures aimed at improving safety of future Shuttle and space exploration flights.

  20. STS-70 Discovery launch startling the birds

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Startled birds scatter as the stillness of a summer morning is broken by a giant's roar. The Space Shuttle Discovery thundered into space from launch Pad 39-B at 9:41:55:078 a.m. EDT. STS-70 is the 70th Shuttle flight overall, the 21st for Discovery (OV- 103), and the fourth Shuttle flight in 1995. On board for the nearly eight-day mission are a crew of five: Commander Terence 'Tom' Hendricks; Pilot Kevin R. Kregel; and Mission Specialists Nancy Jane Currie, Donald A. Thomas and Mary Ellen Weber. The crew's primary objective is to deploy the Tracking and Data Relay Satellite-G (TDRS-G), which will join a constellation of other TDRS spacecraft already on orbit.

  1. STS-70 Discovery launch startled birds at ignition

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Startled birds scatter as the stillness of a summer morning is broken by a giant's roar. The Space Shuttle Discovery thundered into space from launch Pad 39-B at 9:41:55:078 a.m. EDT. STS-70 is the 70th Shuttle flight overall, the 21st for Discovery (OV- 103), and the fourth Shuttle flight in 1995. On board for the nearly eight-day mission are a crew of five: Commander Terence 'Tom' Hendricks; Pilot Kevin R. Kregel; and Mission Specialists Nancy Jane Currie, Donald A. Thomas and Mary Ellen Weber. The crew's primary objective is to deploy the Tracking and Data Relay Satellite-G (TDRS-G), which will join a constellation of other TDRS spacecraft already on orbit.

  2. TNT equivalency study for space shuttle (EOS). Volume 1: Management summary report

    NASA Technical Reports Server (NTRS)

    Wolfe, R. R.

    1971-01-01

    The existing TNT equivalency criterion for LO2/LH2 propellant is reevaluated. It addresses the static, on-pad phase of the space shuttle launch operations and was performed to determine whether the use of a TNT equivalency criterion lower than that presently used (60%) could be substantiated. The large quantity of propellant on-board the space shuttle, 4 million pounds, was considered of prime importance to the study. A qualitative failure analysis of the space shuttle (EOS) on the launch pad was made because it was concluded that available test data on the explosive yield of LO2/LH2 propellant was insufficient to support a reduction in the present TNT equivalency value, considering the large quantity of propellant used in the space shuttle. The failure analysis had two objectives. The first was to determine whether a failure resulting in the total release of propellant could occur. The second was to determine whether, if such a failure did occur, ignition could be delayed long enough to allow the degree of propellant mixing required to produce an explosion of 60% TNT equivalency since the explosive yield of this propellant is directly related to the quantities of LH2 and LO2 mixed at the time of the explosion.

  3. Space Shuttle Star Tracker Challenges

    NASA Technical Reports Server (NTRS)

    Herrera, Linda M.

    2010-01-01

    The space shuttle fleet of avionics was originally designed in the 1970's. Many of the subsystems have been upgraded and replaced, however some original hardware continues to fly. Not only fly, but has proven to be the best design available to perform its designated task. The shuttle star tracker system is currently flying as a mixture of old and new designs, each with a unique purpose to fill for the mission. Orbiter missions have tackled many varied missions in space over the years. As the orbiters began flying to the International Space Station (ISS), new challenges were discovered and overcome as new trusses and modules were added. For the star tracker subsystem, the growing ISS posed an unusual problem, bright light. With two star trackers on board, the 1970's vintage image dissector tube (IDT) star trackers track the ISS, while the new solid state design is used for dim star tracking. This presentation focuses on the challenges and solutions used to ensure star trackers can complete the shuttle missions successfully. Topics include KSC team and industry partner methods used to correct pressurized case failures and track system performance.

  4. Leadership issues with multicultural crews on the international space station: Lessons learned from Shuttle/Mir

    NASA Astrophysics Data System (ADS)

    Kanas, Nick; Ritsher, Jennifer

    2005-05-01

    In isolated and confined environments, two important leadership roles have been identified: the task/instrumental role (which focuses on work goals and operational needs), and the supportive/expressive role (which focuses on morale goals and emotional needs). On the International Space Station, the mission commander should be familiar with both of these aspects of leadership. In previous research involving a 135-day Mir space station simulation in Moscow and a series of on-orbit Mir space station missions during the Shuttle/Mir program, both these leadership roles were studied. In new analyses of the Shuttle/Mir data, we found that for crewmembers, the supportive role of the commander (but not the task role) related positively with crew cohesion. For mission control personnel on the ground, both the task and supportive roles of their leader were related positively to mission control cohesion. The implications of these findings are discussed in terms of leadership on board the International Space Station.

  5. Leadership issues with multicultural crews on the international space station: lessons learned from Shuttle/Mir.

    PubMed

    Kanas, Nick; Ritsher, Jennifer

    2005-01-01

    In isolated and confined environments, two important leadership roles have been identified: the task/instrumental role (which focuses on work goals and operational needs), and the supportive/expressive role (which focuses on morale goals and emotional needs). On the International Space Station, the mission commander should be familiar with both of these aspects of leadership. In previous research involving a 135-day Mir space station simulation in Moscow and a series of on-orbit Mir space station missions during the Shuttle/Mir program, both these leadership roles were studied. In new analyses of the Shuttle/Mir data, we found that for crewmembers, the supportive role of the commander (but not the task role) related positively with crew cohesion. For mission control personnel on the ground, both the task and supportive roles of their leader were related positively to mission control cohesion. The implications of these findings are discussed in terms of leadership on board the International Space Station. c2005 Elsevier Ltd. All rights reserved.

  6. Space shuttle propulsion systems on-board checkout and monitoring system development study

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Investigations on the fundamental space shuttle propulsion systems program are reported, with emphasis on in-depth reviews of preliminary drafts of the guidelines. The guidelines will be used to incorporate the onboard checkout and monitoring function into the basic design of the propulsion systems and associated interfacing systems. The analysis of checkout and monitoring requirements of the Titan 3 L expandable booster propulsion systems was completed, and the techniques for accomplishing the checkout and monitoring functions were determined. Updating results of the basic study of propulsion system checkout and monitoring is continuing.

  7. An experiment proposed and set up by the readers will be flying on board the Shuttle; these are the rules of the game; the experiments of others

    NASA Technical Reports Server (NTRS)

    Pazzano, P.; Masini, G.

    1982-01-01

    The 400th round trip ticket to space via the space shuttle is booked in the name of an Italian journal. Students from that country are offered an opportunity to propose an experiment for NASA's Get Away Special program. The dimensional characteristics of the container, as specified by NASA, are given as well as limitations of weight, volume, diameter, and height for the experiment. The types of experiments in the OSS-1 payload and their operation are described.

  8. Specifications for and preliminary design of a plant growth chamber for orbital experimental experiments

    NASA Technical Reports Server (NTRS)

    Sweet, H. C.; Simmonds, R. C.

    1976-01-01

    It was proposed that plant experiments be performed on board the space shuttle. To permit the proper execution of most tests, the craft must contain a plant growth chamber which is adequately designed to control those environmental factors which can induce changes in a plant's physiology and morphology. The various needs of, and environmental factors affecting, plants are identified. The permissilbe design, construction and performance limits for a plant-growth chamber are set, and tentative designs were prepared for units which are compatible with both the botanical requirements and the constraints imposed by the space shuttle.

  9. HST in Columbia's payload bay after repairs

    NASA Image and Video Library

    2002-03-09

    STS109-315-016 (8 March 2002) --- With five days of service and upgrade work on the Hubble Space Telescope (HST) behind them, the STS-109 crew members on board the Space Shuttle Columbia took an overall snapshot of the giant telescope in the shuttle's cargo bay. The seven-member crew completed the last of its five ambitious space walks early on March 8, 2002, with the successful installation of an experimental cooling system for Hubble’;s Near-Infrared Camera and Multi-Object Spectrometer (NICMOS). The NICMOS has been dormant since January 1999 when its original coolant ran out. The telescope received new solar array panels, markedly different in appearance from the replaced pair, on the mission's first two space walks earlier in the week.

  10. KSC-2011-5253

    NASA Image and Video Library

    2011-07-08

    CAPE CANAVERAL, Fla. -- Media from around the globe gather on the grounds of the Press Site at NASA's Kennedy Space Center in Florida to photograph and cover the prelaunch activities and lift off of space shuttle Atlantis on its STS-135 mission to the International Space Station. Satellite news trucks, trailers and automobiles can be seen in the parking lot. Atlantis began its final flight, with Commander Chris Ferguson, Pilot Doug Hurley and Mission Specialists Sandy Magnus and Rex Walheim on board, at 11:29 a.m. EDT July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts to the station. Also in Atlantis' payload bay is the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Jim Grossmann

  11. KSC-2011-4180

    NASA Image and Video Library

    2011-06-01

    CAPE CANAVERAL, Fla. -- Space shuttle Endeavour rolls to a stop on the Shuttle Landing Facility's Runway 15 at NASA's Kennedy Space Center in Florida for the final time. Heat from the shuttle's auxiliary power units (APUs), which provide hydraulic control, can be seen at the back of Endeavour, near the vertical tail. Main gear touchdown was at 2:34:51 a.m. EDT, followed by nose gear touchdown at 2:35:04 a.m., and wheelstop at 2:35:36 a.m. On board are STS-134 Commander Mark Kelly, Pilot Greg H. Johnson, and Mission Specialists Mike Fincke, Drew Feustel, Greg Chamitoff and the European Space Agency's Roberto Vittori. STS-134 delivered the Alpha Magnetic Spectrometer-2 (AMS) and the Express Logistics Carrier-3 (ELC-3) to the International Space Station. AMS will help researchers understand the origin of the universe and search for evidence of dark matter, strange matter and antimatter from the station. ELC-3 carried spare parts that will sustain station operations once the shuttles are retired from service. STS-134 was the 25th and final flight for Endeavour, which has spent 299 days in space, orbited Earth 4,671 times and traveled 122,883,151 miles. Photo credit: NASA/Kenny Allen

  12. An assessment of space shuttle flight software development processes

    NASA Technical Reports Server (NTRS)

    1993-01-01

    In early 1991, the National Aeronautics and Space Administration's (NASA's) Office of Space Flight commissioned the Aeronautics and Space Engineering Board (ASEB) of the National Research Council (NRC) to investigate the adequacy of the current process by which NASA develops and verifies changes and updates to the Space Shuttle flight software. The Committee for Review of Oversight Mechanisms for Space Shuttle Flight Software Processes was convened in Jan. 1992 to accomplish the following tasks: (1) review the entire flight software development process from the initial requirements definition phase to final implementation, including object code build and final machine loading; (2) review and critique NASA's independent verification and validation process and mechanisms, including NASA's established software development and testing standards; (3) determine the acceptability and adequacy of the complete flight software development process, including the embedded validation and verification processes through comparison with (1) generally accepted industry practices, and (2) generally accepted Department of Defense and/or other government practices (comparing NASA's program with organizations and projects having similar volumes of software development, software maturity, complexity, criticality, lines of code, and national standards); (4) consider whether independent verification and validation should continue. An overview of the study, independent verification and validation of critical software, and the Space Shuttle flight software development process are addressed. Findings and recommendations are presented.

  13. STS-110 M.S. Ross and Smith in M-113 personnel carrier during TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- With STS-110 Mission Specialists Jerry Ross (far left) and Steven Smith (third from left) on board, Commander Michael Bloomfield scatters dust as he practices driving the M-113 armored personnel carrier. The driving is part of Terminal Countdown Demonstration Test activities, which include emergency egress training and a simulated launch countdown. The TCDT is held at KSC prior to each Space Shuttle flight. Scheduled for launch April 4, the 11-day mission will feature Shuttle Atlantis docking with the International Space Station (ISS) and delivering the S0 truss, the centerpiece-segment of the primary truss structure that will eventually extend over 300 feet.

  14. A space system for high-accuracy global time and frequency comparison of clocks

    NASA Technical Reports Server (NTRS)

    Decher, R.; Allan, D. W.; Alley, C. O.; Vessot, R. F. C.; Winkler, G. M. R.

    1981-01-01

    A Space Shuttle experiment in which a hydrogen maser clock on board the Space Shuttle will be compared with clocks on the ground using two-way microwave and short pulse laser signals is described. The accuracy goal for the experiment is 1 nsec or better for the time transfer and 10 to the minus 14th power for the frequency comparison. A direct frequency comparison of primary standards at the 10 to the minus 14th power accuracy level is a unique feature of the proposed system. Both time and frequency transfer will be accomplished by microwave transmission, while the laser signals provide calibration of the system as well as subnanosecond time transfer.

  15. STS-95: Post Landing and Crew Walkaround of the Orbiter at the Shuttle Landing Facility

    NASA Technical Reports Server (NTRS)

    1998-01-01

    After landing, the STS-95 crew (Commander Curtis L. Brown, Pilot Steven W. Lindsey, Mission Specialists Scott E. Parazynski, Stephen K. Robinson, Pedro Duque, Payload Specialists Chiaki Mukai and the legendary John H. Glenn) descend from the Space Shuttle. Commander Brown congratulates the crew and team photos are taken. The crew does a walkaround inspection of the spacecraft, then boards the bus for departure from the facility.

  16. KSC-2011-2686

    NASA Image and Video Library

    2011-04-01

    CAPE CANAVERAL, Fla. - In the White Room of Launch Pad 39A at NASA's Kennedy Space Center in Florida, STS-134 Commander Mark Kelly prepares to board space shuttle Endeavour during the Terminal Countdown Demonstration Test (TCDT). Part of TCDT includes practicing the final hours of a real launch day when astronauts put on their launch-and-entry suits, ride to the pad in the Astrovan and strap into the shuttle. Endeavour's six crew members are targeted to launch April 19 at 7:48 p.m. EDT. They will deliver the Express Logistics Carrier-3, Alpha Magnetic Spectrometer-2 (AMS), a high-pressure gas tank, additional spare parts for the Dextre robotic helper and micrometeoroid debris shields to the International Space Station. This will be the final spaceflight for Endeavour. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Jim Grossmann

  17. KSC-2011-2689

    NASA Image and Video Library

    2011-04-01

    CAPE CANAVERAL, Fla. -- In the White Room of Launch Pad 39A at NASA's Kennedy Space Center in Florida, STS-134 Mission Specialist Michael Fincke prepares to board space shuttle Endeavour during the Terminal Countdown Demonstration Test (TCDT). Part of TCDT includes practicing the final hours of a real launch day when astronauts put on their launch-and-entry suits, ride to the pad in the Astrovan and strap into the shuttle. Endeavour's six crew members are targeted to launch April 19 at 7:48 p.m. EDT. They will deliver the Express Logistics Carrier-3, Alpha Magnetic Spectrometer-2 (AMS), a high-pressure gas tank, additional spare parts for the Dextre robotic helper and micrometeoroid debris shields to the International Space Station. This will be the final spaceflight for Endeavour. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Jim Grossmann

  18. STS-77 Shuttle Endeavour clears tower (front left)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    A flawless countdown culminates with an on-time liftoff as the Space Shuttle Endeavour lights up the morning sky. Endeavour was launched on Mission STS-77 from Pad 39B at 6:30:00 a.m. EDT, May 19. The fourth Shuttle mission of 1996 is devoted to the continuing effort to help open the commercial space frontier. Heading up the six-member crew is Commander John H. Casper. Curtis L. Brown Jr. is the pilot and there are four mission specialists on board: Daniel W. Bursch, Mario Runco Jr., Andrew S. W. Thomas and Marc Garneau, who represents the Canadian Space Agency. During the approximately 10-day mission, the astronauts will perform a variety of payload activities, including microgravity research aboard the SPACEHAB-4 module, deployment and retrieval of the Spartan 207 carrying the Inflatable Antenna Experiment (IAE) and deployment and rendezvous with the Passive Aerodynamically-Stabilized Magnetically-Damped Satellite (PAMS).

  19. KENNEDY SPACE CENTER, FLA. - In the RLV Hangar, Adm. Harold Gehman, chairman of the Columbia Investigation Accident Board, points to data on a chart. He and other board members are visiting as part of the ongoing investigation. Recovery efforts as of May 5 included 82,500 pieces of debris weighing 84,800 pounds, almost 40 percent of the total dry weight of the shuttle. About 25,000 personnel took part, utilizing almost 1.5 million total man-hours in the recovery effort and involving more than 130 federal, state and local agencies. The operation was also supported by more than 270 organizations that included businesses and volunteer groups.

    NASA Image and Video Library

    2003-05-15

    KENNEDY SPACE CENTER, FLA. - In the RLV Hangar, Adm. Harold Gehman, chairman of the Columbia Investigation Accident Board, points to data on a chart. He and other board members are visiting as part of the ongoing investigation. Recovery efforts as of May 5 included 82,500 pieces of debris weighing 84,800 pounds, almost 40 percent of the total dry weight of the shuttle. About 25,000 personnel took part, utilizing almost 1.5 million total man-hours in the recovery effort and involving more than 130 federal, state and local agencies. The operation was also supported by more than 270 organizations that included businesses and volunteer groups.

  20. KENNEDY SPACE CENTER, FLA. - Adm. Harold Gehman, far left, chairman of the Columbia Investigation Accident Board, looks at pieces of Columbia debris collected in the KSC RLV Hangar. Other members of the board accompanied him as part of the ongoing investigation. Recovery efforts as of May 5 included 82,500 pieces of debris weighing 84,800 pounds, almost 40 percent of the total dry weight of the shuttle. About 25,000 personnel took part, utilizing almost 1.5 million total man-hours in the recovery effort and involving more than 130 federal, state and local agencies. The operation was also supported by more than 270 organizations that included businesses and volunteer groups.

    NASA Image and Video Library

    2003-05-15

    KENNEDY SPACE CENTER, FLA. - Adm. Harold Gehman, far left, chairman of the Columbia Investigation Accident Board, looks at pieces of Columbia debris collected in the KSC RLV Hangar. Other members of the board accompanied him as part of the ongoing investigation. Recovery efforts as of May 5 included 82,500 pieces of debris weighing 84,800 pounds, almost 40 percent of the total dry weight of the shuttle. About 25,000 personnel took part, utilizing almost 1.5 million total man-hours in the recovery effort and involving more than 130 federal, state and local agencies. The operation was also supported by more than 270 organizations that included businesses and volunteer groups.

  1. STS-69 Liftoff across the water (landscape)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The fifth Space Shuttle flight of 1995 thunders aloft from Launch Pad 39A at 11:09:00.052 a.m. EDT, Sept. 7, 1995. On board the Space Shuttle Endeavour, making its ninth trip into space, are a crew of five, an assortment of experiments and two deployable scientific spacecraft: the Wake Shield Facility-2 (WSF-2) and the Spartan-201 free-flyer. The Wake Shield Facility-2 will fly free of the Shuttle for a period of time during the 11-day mission, during which it will generate an ultra-vacuum environment in space in which to grow thin semiconductor films for next- generation advanced electronics. The Spartan-201 free-flyer is a scientific research effort aimed at the investigation of the interaction between the sun and its outflowing wind of charged particles. Commanding the mission is David M. Walker; Kenneth D. Cockrell is the pilot; Michael L. Gernhardt and James H. Newman are mission specialists and James S. Voss is the payload commander. Also scheduled is an extravehicular activity, or spacewalk, by Voss and Gernhardt to rehearse space station activities as well as to evaluate space suit design modifications.

  2. KENNEDY SPACE CENTER, FLA. - On a tour of the Tile Shop, members of the Stafford-Covey Return to Flight Task Group (SCTG) learn about PU-tiles, part of an orbiter’s Thermal Protection System. At left is Martin Wilson, with United Space Alliance. Others (left to right) around the table are James Adamson, Dr. Kathryn Clark, William Wegner, Richard Covey and Joe Engle. Covey, former Space Shuttle commander, is co-chair of the SCTG, along with Thomas P. Stafford, Apollo commander. Chartered by NASA Administrator Sean O’Keefe, the task group will perform an independent assessment of NASA’s implementation of the final recommendations by the Columbia Accident Investigation Board.

    NASA Image and Video Library

    2003-08-06

    KENNEDY SPACE CENTER, FLA. - On a tour of the Tile Shop, members of the Stafford-Covey Return to Flight Task Group (SCTG) learn about PU-tiles, part of an orbiter’s Thermal Protection System. At left is Martin Wilson, with United Space Alliance. Others (left to right) around the table are James Adamson, Dr. Kathryn Clark, William Wegner, Richard Covey and Joe Engle. Covey, former Space Shuttle commander, is co-chair of the SCTG, along with Thomas P. Stafford, Apollo commander. Chartered by NASA Administrator Sean O’Keefe, the task group will perform an independent assessment of NASA’s implementation of the final recommendations by the Columbia Accident Investigation Board.

  3. STS-79 LIFTS OFF FROM PAD 39A

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Space Shuttle Atlantis roars into the night from Launch Pad 39A. Liftoff on the 79th Shuttle mission occurred on time at 4:54:49 a.m. EDT, Sept. 16. The 10-day spaceflight will be highlighted by the fourth docking between the U.S. Space Shuttle and Russian Space Station Mir and the first in a series of crew exchanges aboard the station. Leading the STS-79 crew is Commander William F. Readdy. The pilot is Terrence W. Wilcutt, and the four mission specialists making the trip to Mir are Jay Apt, Thomas D. Akers, Carl E. Walz and John E. Blaha. Blaha will exchange places on Mir with U.S. astronaut Shannon W. Lucid, who will return to Earth with the STS-79 flight crew after a record- setting stay on the Russian station. STS-79 is the second Shuttle-Mir mission to carry a SPACEHAB module on board and the first to carry a double module. The STS- 79 mission is part of the NASA/Mir program which is now into the Phase 1B portion, consisting of nine Shuttle-Mir docking flights and seven long- duration flights of U.S. astronauts aboard the station between early 1996 and late 1998.

  4. Enterprise - Free Flight after Separation from 747

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The Space Shuttle prototype Enterprise flies free of NASA's 747 Shuttle Carrier Aircraft (SCA) during one of five free flights carried out at the Dryden Flight Research Facility, Edwards, California in 1977 as part of the Shuttle program's Approach and Landing Tests (ALT). The tests were conducted to verify orbiter aerodynamics and handling characteristics in preparation for orbital flights with the Space Shuttle Columbia. A tail cone over the main engine area of Enterprise smoothed out turbulent airflow during flight. It was removed on the two last free flights to accurately check approach and landing characteristics. The Space Shuttle Approach and Landings Tests (ALT) program allowed pilots and engineers to learn how the Space Shuttle and the modified Boeing 747 Shuttle Carrier Aircraft (SCA) handled during low-speed flight and landing. The Enterprise, a prototype of the Space Shuttles, and the SCA were flown to conduct the approach and landing tests at the NASA Dryden Flight Research Center, Edwards, California, from February to October 1977. The first flight of the program consisted of the Space Shuttle Enterprise attached to the Shuttle Carrier Aircraft. These flights were to determine how well the two vehicles flew together. Five 'captive-inactive' flights were flown during this first phase in which there was no crew in the Enterprise. The next series of captive flights was flown with a flight crew of two on board the prototype Space Shuttle. Only three such flights proved necessary. This led to the free-flight test series. The free-flight phase of the ALT program allowed pilots and engineers to learn how the Space Shuttle handled in low-speed flight and landing attitudes. For these landings, the Enterprise was flown by a crew of two after it was released from the top of the SCA. The vehicle was released at altitudes ranging from 19,000 to 26,000 feet. The Enterprise had no propulsion system, but its first four glides to the Rogers Dry Lake runway provided realistic, in-flight simulations of how subsequent Space Shuttles would be flown at the end of an orbital mission. The fifth approach and landing test, with the Enterprise landing on the Edwards Air Force Base concrete runway, revealed a problem with the Space Shuttle flight control system that made it susceptible to Pilot-Induced Oscillation (PIO), a potentially dangerous control problem during a landing. Further research using other NASA aircraft, especially the F-8 Digital-Fly-By-Wire aircraft, led to correction of the PIO problem before the first orbital flight. The Enterprise's last free-flight was October 26, 1977, after which it was ferried to other NASA centers for ground-based flight simulations that tested Space Shuttle systems and structure.

  5. Enterprise - Free Flight after Separation from 747

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The Space Shuttle prototype Enterprise flies free after being released from NASA's 747 Shuttle Carrier Aircraft (SCA) during one of five free flights carried out at the Dryden Flight Research Center, Edwards, California in 1977, as part of the Shuttle program's Approach and Landing Tests (ALT). The tests were conducted to verify orbiter aerodynamics and handling characteristics in preparation for orbital flights with the Space Shuttle Columbia. A tail cone over the main engine area of Enterprise smoothed out turbulent airflow during flight. It was removed on the two last free flights to accurately check approach and landing characteristics. The Space Shuttle Approach and Landings Tests (ALT) program allowed pilots and engineers to learn how the Space Shuttle and the modified Boeing 747 Shuttle Carrier Aircraft (SCA) handled during low-speed flight and landing. The Enterprise, a prototype of the Space Shuttles, and the SCA were flown to conduct the approach and landing tests at the NASA Dryden Flight Research Center, Edwards, California, from February to October 1977. The first flight of the program consisted of the Space Shuttle Enterprise attached to the Shuttle Carrier Aircraft. These flights were to determine how well the two vehicles flew together. Five 'captive-inactive' flights were flown during this first phase in which there was no crew in the Enterprise. The next series of captive flights was flown with a flight crew of two on board the prototype Space Shuttle. Only three such flights proved necessary. This led to the free-flight test series. The free-flight phase of the ALT program allowed pilots and engineers to learn how the Space Shuttle handled in low-speed flight and landing attitudes. For these landings, the Enterprise was flown by a crew of two after it was released from the top of the SCA. The vehicle was released at altitudes ranging from 19,000 to 26,000 feet. The Enterprise had no propulsion system, but its first four glides to the Rogers Dry Lake runway provided realistic, in-flight simulations of how subsequent Space Shuttles would be flown at the end of an orbital mission. The fifth approach and landing test, with the Enterprise landing on the Edwards Air Force Base concrete runway, revealed a problem with the Space Shuttle flight control system that made it susceptible to Pilot-Induced Oscillation (PIO), a potentially dangerous control problem during a landing. Further research using other NASA aircraft, especially the F-8 Digital-Fly-By-Wire aircraft, led to correction of the PIO problem before the first orbital flight. The Enterprise's last free-flight was October 26, 1977, after which it was ferried to other NASA centers for ground-based flight simulations that tested Space Shuttle systems and structure.

  6. Space shuttle main engine controller assembly, phase C-D. [with lagging system design and analysis

    NASA Technical Reports Server (NTRS)

    1973-01-01

    System design and system analysis and simulation are slightly behind schedule, while design verification testing has improved. Input/output circuit design has improved, but digital computer unit (DCU) and mechanical design continue to lag. Part procurement was impacted by delays in printed circuit board, assembly drawing releases. These are the result of problems in generating suitable printed circuit artwork for the very complex and high density multilayer boards.

  7. KSC-2011-4185

    NASA Image and Video Library

    2011-06-01

    CAPE CANAVERAL, Fla. -- Xenon lights illuminate space shuttle Endeavour's unfurled drag chute as the vehicle rolls to a stop on the Shuttle Landing Facility's Runway 15 at NASA's Kennedy Space Center in Florida for the final time. Main gear touchdown was at 2:34:51 a.m. EDT, followed by nose gear touchdown at 2:35:04 a.m., and wheelstop at 2:35:36 a.m. On board are STS-134 Commander Mark Kelly, Pilot Greg H. Johnson, and Mission Specialists Mike Fincke, Drew Feustel, Greg Chamitoff and the European Space Agency's Roberto Vittori. STS-134 delivered the Alpha Magnetic Spectrometer-2 (AMS) and the Express Logistics Carrier-3 (ELC-3) to the International Space Station. AMS will help researchers understand the origin of the universe and search for evidence of dark matter, strange matter and antimatter from the station. ELC-3 carried spare parts that will sustain station operations once the shuttles are retired from service. STS-134 was the 25th and final flight for Endeavour, which has spent 299 days in space, orbited Earth 4,671 times and traveled 122,883,151 miles. Photo credit: NASA/George Roberto

  8. KSC-2011-4178

    NASA Image and Video Library

    2011-06-01

    CAPE CANAVERAL, Fla. -- Xenon lights illuminate space shuttle Endeavour's unfurled drag chute as the vehicle rolls to a stop on the Shuttle Landing Facility's Runway 15 at NASA's Kennedy Space Center in Florida for the final time. Main gear touchdown was at 2:34:51 a.m. EDT, followed by nose gear touchdown at 2:35:04 a.m., and wheelstop at 2:35:36 a.m. On board are STS-134 Commander Mark Kelly, Pilot Greg H. Johnson, and Mission Specialists Mike Fincke, Drew Feustel, Greg Chamitoff and the European Space Agency's Roberto Vittori. STS-134 delivered the Alpha Magnetic Spectrometer-2 (AMS) and the Express Logistics Carrier-3 (ELC-3) to the International Space Station. AMS will help researchers understand the origin of the universe and search for evidence of dark matter, strange matter and antimatter from the station. ELC-3 carried spare parts that will sustain station operations once the shuttles are retired from service. STS-134 was the 25th and final flight for Endeavour, which has spent 299 days in space, orbited Earth 4,671 times and traveled 122,883,151 miles. Photo credit: NASA/Kenny Allen

  9. KSC-2011-4235

    NASA Image and Video Library

    2011-06-01

    CAPE CANAVERAL, Fla. -- Endeavour touches down on the Shuttle Landing Facility's Runway 15 at NASA's Kennedy Space Center in Florida for the final time marking the 25th night landing of NASA's Space Shuttle Program. Main gear touchdown was at 2:34:51 a.m. EDT, followed by nose gear touchdown at 2:35:04 a.m., and wheelstop at 2:35:36 a.m. On board are STS-134 Commander Mark Kelly, Pilot Greg H. Johnson, and Mission Specialists Mike Fincke, Drew Feustel, Greg Chamitoff and the European Space Agency's Roberto Vittori. STS-134 delivered the Alpha Magnetic Spectrometer-2 (AMS) and the Express Logistics Carrier-3 (ELC-3) to the International Space Station. AMS will help researchers understand the origin of the universe and search for evidence of dark matter, strange matter and antimatter from the station. ELC-3 carried spare parts that will sustain station operations once the shuttles are retired from service. STS-134 was the 25th and final flight for Endeavour, which has spent 299 days in space, orbited Earth 4,671 times and traveled 122,883,151 miles. Photo credit: NASA/Sandra Joseph and Kevin O'Connell

  10. KSC-2011-4176

    NASA Image and Video Library

    2011-06-01

    CAPE CANAVERAL, Fla. -- Xenon lights illuminate space shuttle Endeavour's unfurled drag chute as the vehicle rolls to a stop on the Shuttle Landing Facility's Runway 15 at NASA's Kennedy Space Center in Florida for the final time. Main gear touchdown was at 2:34:51 a.m. EDT, followed by nose gear touchdown at 2:35:04 a.m., and wheelstop at 2:35:36 a.m. On board are STS-134 Commander Mark Kelly, Pilot Greg H. Johnson, and Mission Specialists Mike Fincke, Drew Feustel, Greg Chamitoff and the European Space Agency's Roberto Vittori. STS-134 delivered the Alpha Magnetic Spectrometer-2 (AMS) and the Express Logistics Carrier-3 (ELC-3) to the International Space Station. AMS will help researchers understand the origin of the universe and search for evidence of dark matter, strange matter and antimatter from the station. ELC-3 carried spare parts that will sustain station operations once the shuttles are retired from service. STS-134 was the 25th and final flight for Endeavour, which has spent 299 days in space, orbited Earth 4,671 times and traveled 122,883,151 miles. Photo credit: NASA/Tony Gray

  11. KSC-2011-4194

    NASA Image and Video Library

    2011-06-01

    CAPE CANAVERAL, Fla. -- Space shuttle Endeavour rolls to a stop on the Shuttle Landing Facility's Runway 15 at NASA's Kennedy Space Center in Florida for the final time. Main gear touchdown was at 2:34:51 a.m. EDT, followed by nose gear touchdown at 2:35:04 a.m., and wheelstop at 2:35:36 a.m. On board are STS-134 Commander Mark Kelly, Pilot Greg H. Johnson, and Mission Specialists Mike Fincke, Drew Feustel, Greg Chamitoff and the European Space Agency's Roberto Vittori. STS-134 delivered the Alpha Magnetic Spectrometer-2 (AMS) and the Express Logistics Carrier-3 (ELC-3) to the International Space Station. AMS will help researchers understand the origin of the universe and search for evidence of dark matter, strange matter and antimatter from the station. ELC-3 carried spare parts that will sustain station operations once the shuttles are retired from service. STS-134 was the 25th and final flight for Endeavour, which has spent 299 days in space, orbited Earth 4,671 times and traveled 122,883,151 miles. Photo credit: NASA/Kevin O'Connell

  12. KSC-2011-4177

    NASA Image and Video Library

    2011-06-01

    CAPE CANAVERAL, Fla. -- Space shuttle Endeavour's drag chute is reflected on the vehicle's tail end as it rolls to a stop on the Shuttle Landing Facility's Runway 15 at NASA's Kennedy Space Center in Florida for the final time. Main gear touchdown was at 2:34:51 a.m. EDT, followed by nose gear touchdown at 2:35:04 a.m., and wheelstop at 2:35:36 a.m. On board are STS-134 Commander Mark Kelly, Pilot Greg H. Johnson, and Mission Specialists Mike Fincke, Drew Feustel, Greg Chamitoff and the European Space Agency's Roberto Vittori. STS-134 delivered the Alpha Magnetic Spectrometer-2 (AMS) and the Express Logistics Carrier-3 (ELC-3) to the International Space Station. AMS will help researchers understand the origin of the universe and search for evidence of dark matter, strange matter and antimatter from the station. ELC-3 carried spare parts that will sustain station operations once the shuttles are retired from service. STS-134 was the 25th and final flight for Endeavour, which has spent 299 days in space, orbited Earth 4,671 times and traveled 122,883,151 miles. Photo credit: NASA/Tony Gray

  13. KSC-2011-4175

    NASA Image and Video Library

    2011-06-01

    CAPE CANAVERAL, Fla. -- Xenon lights illuminate space shuttle Endeavour's unfurled drag chute as the vehicle rolls to a stop on the Shuttle Landing Facility's Runway 15 at NASA's Kennedy Space Center in Florida for the final time. Main gear touchdown was at 2:34:51 a.m. EDT, followed by nose gear touchdown at 2:35:04 a.m., and wheelstop at 2:35:36 a.m. On board are STS-134 Commander Mark Kelly, Pilot Greg H. Johnson, and Mission Specialists Mike Fincke, Drew Feustel, Greg Chamitoff and the European Space Agency's Roberto Vittori. STS-134 delivered the Alpha Magnetic Spectrometer-2 (AMS) and the Express Logistics Carrier-3 (ELC-3) to the International Space Station. AMS will help researchers understand the origin of the universe and search for evidence of dark matter, strange matter and antimatter from the station. ELC-3 carried spare parts that will sustain station operations once the shuttles are retired from service. STS-134 was the 25th and final flight for Endeavour, which has spent 299 days in space, orbited Earth 4,671 times and traveled 122,883,151 miles. Photo credit: NASA/Tony Gray

  14. KSC-2011-4191

    NASA Image and Video Library

    2011-06-01

    CAPE CANAVERAL, Fla. -- Space shuttle Endeavour rolls to a stop on the Shuttle Landing Facility's Runway 15 at NASA's Kennedy Space Center in Florida for the final time. Main gear touchdown was at 2:34:51 a.m. EDT, followed by nose gear touchdown at 2:35:04 a.m., and wheelstop at 2:35:36 a.m. On board are STS-134 Commander Mark Kelly, Pilot Greg H. Johnson, and Mission Specialists Mike Fincke, Drew Feustel, Greg Chamitoff and the European Space Agency's Roberto Vittori. STS-134 delivered the Alpha Magnetic Spectrometer-2 (AMS) and the Express Logistics Carrier-3 (ELC-3) to the International Space Station. AMS will help researchers understand the origin of the universe and search for evidence of dark matter, strange matter and antimatter from the station. ELC-3 carried spare parts that will sustain station operations once the shuttles are retired from service. STS-134 was the 25th and final flight for Endeavour, which has spent 299 days in space, orbited Earth 4,671 times and traveled 122,883,151 miles. Photo credit: NASA/Kevin O'Connell

  15. KSC-2011-4193

    NASA Image and Video Library

    2011-06-01

    CAPE CANAVERAL, Fla. -- Space shuttle Endeavour rolls to a stop on the Shuttle Landing Facility's Runway 15 at NASA's Kennedy Space Center in Florida for the final time. Main gear touchdown was at 2:34:51 a.m. EDT, followed by nose gear touchdown at 2:35:04 a.m., and wheelstop at 2:35:36 a.m. On board are STS-134 Commander Mark Kelly, Pilot Greg H. Johnson, and Mission Specialists Mike Fincke, Drew Feustel, Greg Chamitoff and the European Space Agency's Roberto Vittori. STS-134 delivered the Alpha Magnetic Spectrometer-2 (AMS) and the Express Logistics Carrier-3 (ELC-3) to the International Space Station. AMS will help researchers understand the origin of the universe and search for evidence of dark matter, strange matter and antimatter from the station. ELC-3 carried spare parts that will sustain station operations once the shuttles are retired from service. STS-134 was the 25th and final flight for Endeavour, which has spent 299 days in space, orbited Earth 4,671 times and traveled 122,883,151 miles. Photo credit: NASA/Kevin O'Connell

  16. KSC-2011-4174

    NASA Image and Video Library

    2011-06-01

    CAPE CANAVERAL, Fla. -- Streams of smoke trail from the main landing gear tires as space shuttle Endeavour touches down on the Shuttle Landing Facility's Runway 15 at NASA's Kennedy Space Center in Florida for the final time. Main gear touchdown was at 2:34:51 a.m. EDT, followed by nose gear touchdown at 2:35:04 a.m., and wheelstop at 2:35:36 a.m. On board are STS-134 Commander Mark Kelly, Pilot Greg H. Johnson, and Mission Specialists Mike Fincke, Drew Feustel, Greg Chamitoff and the European Space Agency's Roberto Vittori. STS-134 delivered the Alpha Magnetic Spectrometer-2 (AMS) and the Express Logistics Carrier-3 (ELC-3) to the International Space Station. AMS will help researchers understand the origin of the universe and search for evidence of dark matter, strange matter and antimatter from the station. ELC-3 carried spare parts that will sustain station operations once the shuttles are retired from service. STS-134 was the 25th and final flight for Endeavour, which has spent 299 days in space, orbited Earth 4,671 times and traveled 122,883,151 miles. Photo credit: NASA/Tony Gray

  17. KSC-2011-4188

    NASA Image and Video Library

    2011-06-01

    CAPE CANAVERAL, Fla. -- Xenon lights illuminate space shuttle Endeavour's unfurled drag chute as the vehicle rolls to a stop on the Shuttle Landing Facility's Runway 15 at NASA's Kennedy Space Center in Florida for the final time. Main gear touchdown was at 2:34:51 a.m. EDT, followed by nose gear touchdown at 2:35:04 a.m., and wheelstop at 2:35:36 a.m. On board are STS-134 Commander Mark Kelly, Pilot Greg H. Johnson, and Mission Specialists Mike Fincke, Drew Feustel, Greg Chamitoff and the European Space Agency's Roberto Vittori. STS-134 delivered the Alpha Magnetic Spectrometer-2 (AMS) and the Express Logistics Carrier-3 (ELC-3) to the International Space Station. AMS will help researchers understand the origin of the universe and search for evidence of dark matter, strange matter and antimatter from the station. ELC-3 carried spare parts that will sustain station operations once the shuttles are retired from service. STS-134 was the 25th and final flight for Endeavour, which has spent 299 days in space, orbited Earth 4,671 times and traveled 122,883,151 miles. Photo credit: NASA/Tom Farrar

  18. KSC-2011-4192

    NASA Image and Video Library

    2011-06-01

    CAPE CANAVERAL, Fla. -- Space shuttle Endeavour rolls to a stop on the Shuttle Landing Facility's Runway 15 at NASA's Kennedy Space Center in Florida for the final time. Main gear touchdown was at 2:34:51 a.m. EDT, followed by nose gear touchdown at 2:35:04 a.m., and wheelstop at 2:35:36 a.m. On board are STS-134 Commander Mark Kelly, Pilot Greg H. Johnson, and Mission Specialists Mike Fincke, Drew Feustel, Greg Chamitoff and the European Space Agency's Roberto Vittori. STS-134 delivered the Alpha Magnetic Spectrometer-2 (AMS) and the Express Logistics Carrier-3 (ELC-3) to the International Space Station. AMS will help researchers understand the origin of the universe and search for evidence of dark matter, strange matter and antimatter from the station. ELC-3 carried spare parts that will sustain station operations once the shuttles are retired from service. STS-134 was the 25th and final flight for Endeavour, which has spent 299 days in space, orbited Earth 4,671 times and traveled 122,883,151 miles. Photo credit: NASA/Kevin O'Connell

  19. Enterprise Separates from 747 SCA for First Tailcone off Free Flight

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The Space Shuttle prototype Enterprise rises from NASA's 747 Shuttle Carrier Aircraft (SCA) to begin a powerless glide flight back to NASA's Dryden Flight Research Center, Edwards, California, on its fourth of the five free flights in the shuttle program's Approach and Landing Tests (ALT), 12 October 1977. The tests were carried out at Dryden to verify the aerodynamic and control characteristics of the orbiters in preparation for the first space mission with the orbiter Columbia in April 1981. The Space Shuttle Approach and Landings Tests (ALT) program allowed pilots and engineers to learn how the Space Shuttle and the modified Boeing 747 Shuttle Carrier Aircraft (SCA) handled during low-speed flight and landing. The Enterprise, a prototype of the Space Shuttles, and the SCA were flown to conduct the approach and landing tests at the NASA Dryden Flight Research Center, Edwards, California, from February to October 1977. The first flight of the program consisted of the Space Shuttle Enterprise attached to the Shuttle Carrier Aircraft. These flights were to determine how well the two vehicles flew together. Five 'captive-inactive' flights were flown during this first phase in which there was no crew in the Enterprise. The next series of captive flights was flown with a flight crew of two on board the prototype Space Shuttle. Only three such flights proved necessary. This led to the free-flight test series. The free-flight phase of the ALT program allowed pilots and engineers to learn how the Space Shuttle handled in low-speed flight and landing attitudes. For these landings, the Enterprise was flown by a crew of two after it was released from the top of the SCA. The vehicle was released at altitudes ranging from 19,000 to 26,000 feet. The Enterprise had no propulsion system, but its first four glides to the Rogers Dry Lake runway provided realistic, in-flight simulations of how subsequent Space Shuttles would be flown at the end of an orbital mission. The fifth approach and landing test, with the Enterprise landing on the Edwards Air Force Base concrete runway, revealed a problem with the Space Shuttle flight control system that made it susceptible to Pilot-Induced Oscillation (PIO), a potentially dangerous control problem during a landing. Further research using other NASA aircraft, especially the F-8 Digital-Fly-By-Wire aircraft, led to correction of the PIO problem before the first orbital flight. The Enterprise's last free-flight was October 26, 1977, after which it was ferried to other NASA centers for ground-based flight simulations that tested Space Shuttle systems and structure.

  20. Science Data Report for the Optical Properties Monitor (OPM) Experiment

    NASA Technical Reports Server (NTRS)

    Wilkes, D. R.; Zwiener, J. M.; Carruth, Ralph (Technical Monitor)

    2001-01-01

    This science data report describes the Optical Properties Monitor (OPM) experiment and the data gathered during its 9-mo exposure on the Mir space station. Three independent optical instruments made up OPM: an integrating sphere spectral reflectometer, vacuum ultraviolet spectrometer, and a total integrated scatter instrument. Selected materials were exposed to the low-Earth orbit, and their performance monitored in situ by the OPM instruments. Coinvestigators from four NASA Centers, five International Space Station contractors, one university, two Department of Defense organizations, and the Russian space company, Energia, contributed samples to this experiment. These materials included a number of thermal control coatings, optical materials, polymeric films, nanocomposites, and other state-of-the-art materials. Degradation of some materials, including aluminum conversion coatings and Beta cloth, was greater than expected. The OPM experiment was launched aboard the Space Shuttle on mission STS-81 in January 1997 and transferred to the Mir space station. An extravehicular activity (EVA) was performed in April 1997 to attach the OPM experiment to the outside of the Mir/Shuttle Docking Module for space environment exposure. OPM was retrieved during an EVA in January 1998 and was returned to Earth on board the Space Shuttle on mission STS-89.

  1. STS-111 crew exits O&C building on way to LC-39A

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- The STS-111 and Expedition 5 crews hurry from the Operations and Checkout Building for a second launch attempt aboard Space Shuttle Endeavour. From front to back are Pilot Paul Lockhart and Commander Kenneth Cockrell; astronaut Peggy Whitson; Expedition 5 Commander Valeri Korzun (RSA) and cosmonaut Sergei Treschev (RSA); and Mission Specialists Philippe Perrin (CNES) and Franklin Chang-Diaz. This mission marks the 14th Shuttle flight to the Space Station and the third Shuttle mission this year. Mission STS-111 is the 18th flight of Endeavour and the 110th flight overall in NASA's Space Shuttle program. On mission STS-111, astronauts will deliver the Leonardo Multi-Purpose Logistics Module, the Mobile Base System (MBS), and the Expedition Five crew to the Space Station. During the seven days Endeavour will be docked to the Station, three spacewalks will be performed dedicated to installing MBS and the replacement wrist-roll joint on the Station's Canadarm2 robotic arm. Endeavour will also carry the Expedition 5 crew, who will replace Expedition 4 on board the Station. Expedition 4 crew members will return to Earth with the STS-111 crew. Liftoff is scheduled for 5:22 p.m. EDT from Launch Pad 39A.

  2. STS-111 crew exits the O&C Building before launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - The STS-111 and Expedition 5 crews eagerly exit from the Operations and Checkout Building for launch aboard Space Shuttle Endeavour. It is the second launch attempt in six days. From front to back are Pilot Paul Lockhart and Commander Kenneth Cockrell; astronaut Peggy Whitson; Expedition 5 Commander Valeri Korzun (RSA) and cosmonaut Sergei Treschev (RSA); and Mission Specialists Philippe Perrin (CNES) and Franklin Chang-Diaz. This mission marks the 14th Shuttle flight to the Space Station and the third Shuttle mission this year. Mission STS-111 is the 18th flight of Endeavour and the 110th flight overall in NASA's Space Shuttle program. On mission STS-111, astronauts will deliver the Leonardo Multi-Purpose Logistics Module, the Mobile Base System (MBS), and the Expedition Five crew to the Space Station. During the seven days Endeavour will be docked to the Station, three spacewalks will be performed dedicated to installing MBS and the replacement wrist-roll joint on the Station's Canadarm2 robotic arm. Endeavour will also carry the Expedition 5 crew, who will replace Expedition 4 on board the Station. Expedition 4 crew members will return to Earth with the STS-111 crew. Liftoff is scheduled for 5:22 p.m. EDT from Launch Pad 39A.

  3. KSC-2011-5248

    NASA Image and Video Library

    2011-07-08

    CAPE CANAVERAL, Fla. -- Media from around the globe gather on the grounds of the Press Site at NASA's Kennedy Space Center in Florida to photograph and cover the prelaunch activities and lift off of space shuttle Atlantis on its STS-135 mission to the International Space Station. Satellite news trucks, trailers and automobiles can be seen in the parking lot. In the background is the Operations and Support Building II where VIPs are able to watch the launch from its upper balcony. Atlantis began its final flight, with Commander Chris Ferguson, Pilot Doug Hurley and Mission Specialists Sandy Magnus and Rex Walheim on board, at 11:29 a.m. EDT July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts to the station. Also in Atlantis' payload bay is the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Jim Grossmann

  4. KSC-2011-5247

    NASA Image and Video Library

    2011-07-08

    CAPE CANAVERAL, Fla. -- Media from around the globe gather on the grounds of the Press Site at NASA's Kennedy Space Center in Florida to photograph and cover the prelaunch activities and lift off of space shuttle Atlantis on its STS-135 mission to the International Space Station. Seen towering above is the massive Vehicle Assembly Building. Satellite news trucks, trailers and automobiles can be seen in the parking lot with the massive Vehicle Assembly Building towering above. Atlantis began its final flight, with Commander Chris Ferguson, Pilot Doug Hurley and Mission Specialists Sandy Magnus and Rex Walheim on board, at 11:29 a.m. EDT July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts to the station. Also in Atlantis' payload bay is the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Jim Grossmann

  5. KSC-2011-5256

    NASA Image and Video Library

    2011-07-08

    CAPE CANAVERAL, Fla. -- Media from around the globe gather at the NASA News Center at NASA Kennedy Space Center's Press Site in Florida to photograph and cover the prelaunch activities and lift off of space shuttle Atlantis on its STS-135 mission to the International Space Station. Satellite news trucks, trailers and automobiles can be seen in the parking lot with the massive Vehicle Assembly Building towering above. Atlantis began its final flight, with Commander Chris Ferguson, Pilot Doug Hurley and Mission Specialists Sandy Magnus and Rex Walheim on board, at 11:29 a.m. EDT July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts to the station. Also in Atlantis' payload bay is the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Jim Grossmann

  6. KSC-2011-4179

    NASA Image and Video Library

    2011-06-01

    CAPE CANAVERAL, Fla. -- Xenon lights illuminate space shuttle Endeavour's unfurled drag chute as the vehicle rolls to a stop on the Shuttle Landing Facility's Runway 15 at NASA's Kennedy Space Center in Florida for the final time. Heat from the shuttle's auxiliary power units (APUs), which provide hydraulic control, can be seen at the back of Endeavour, near the vertical tail. Main gear touchdown was at 2:34:51 a.m. EDT, followed by nose gear touchdown at 2:35:04 a.m., and wheelstop at 2:35:36 a.m. On board are STS-134 Commander Mark Kelly, Pilot Greg H. Johnson, and Mission Specialists Mike Fincke, Drew Feustel, Greg Chamitoff and the European Space Agency's Roberto Vittori. STS-134 delivered the Alpha Magnetic Spectrometer-2 (AMS) and the Express Logistics Carrier-3 (ELC-3) to the International Space Station. AMS will help researchers understand the origin of the universe and search for evidence of dark matter, strange matter and antimatter from the station. ELC-3 carried spare parts that will sustain station operations once the shuttles are retired from service. STS-134 was the 25th and final flight for Endeavour, which has spent 299 days in space, orbited Earth 4,671 times and traveled 122,883,151 miles. Photo credit: NASA/Kenny Allen

  7. KSC-2011-5234

    NASA Image and Video Library

    2011-07-08

    CAPE CANAVERAL, Fla. -- Media from around the globe gather on the grounds of the Press Site at NASA's Kennedy Space Center in Florida to photograph and cover the prelaunch activities and lift off of space shuttle Atlantis on its STS-135 mission to the International Space Station. Dozens of satellite news vehicles can be seen in the parking lot while the massive Vehicle Assembly Building towers above in the background. Atlantis began its final flight, with Commander Chris Ferguson, Pilot Doug Hurley and Mission Specialists Sandy Magnus and Rex Walheim on board, at 11:29 a.m. EDT July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts to the station. Also in Atlantis' payload bay is the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Jim Grossmann

  8. KSC-2011-5237

    NASA Image and Video Library

    2011-07-08

    CAPE CANAVERAL, Fla. -- Media from around the globe gather on the grounds of the Press Site at NASA's Kennedy Space Center in Florida to photograph and cover the prelaunch activities and lift off of space shuttle Atlantis on its STS-135 mission to the International Space Station. Dozens of satellite news vehicles can be seen in the parking lot with the massive Vehicle Assembly Building towering above. Atlantis began its final flight, with Commander Chris Ferguson, Pilot Doug Hurley and Mission Specialists Sandy Magnus and Rex Walheim on board, at 11:29 a.m. EDT July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts to the station. Also in Atlantis' payload bay is the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Jim Grossmann

  9. KSC-2011-5235

    NASA Image and Video Library

    2011-07-08

    CAPE CANAVERAL, Fla. -- Media from around the globe gather on the grounds of the Press Site at NASA's Kennedy Space Center in Florida to photograph and cover the prelaunch activities and lift off of space shuttle Atlantis on its STS-135 mission to the International Space Station. Dozens of satellite news vehicles can be seen in the parking lot while the massive Vehicle Assembly Building towers above in the background. Atlantis began its final flight, with Commander Chris Ferguson, Pilot Doug Hurley and Mission Specialists Sandy Magnus and Rex Walheim on board, at 11:29 a.m. EDT July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts to the station. Also in Atlantis' payload bay is the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Jim Grossmann

  10. HAL/S - The programming language for Shuttle

    NASA Technical Reports Server (NTRS)

    Martin, F. H.

    1974-01-01

    HAL/S is a higher order language and system, now operational, adopted by NASA for programming Space Shuttle on-board software. Program reliability is enhanced through language clarity and readability, modularity through program structure, and protection of code and data. Salient features of HAL/S include output orientation, automatic checking (with strictly enforced compiler rules), the availability of linear algebra, real-time control, a statement-level simulator, and compiler transferability (for applying HAL/S to additional object and host computers). The compiler is described briefly.

  11. Test and Analysis Correlation of Form Impact onto Space Shuttle Wing Leading Edge RCC Panel 8

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Lyle, Karen H.; Gabrys, Jonathan; Melis, Matthew; Carney, Kelly

    2004-01-01

    Soon after the Columbia Accident Investigation Board (CAIB) began their study of the space shuttle Columbia accident, "physics-based" analyses using LS-DYNA were applied to characterize the expected damage to the Reinforced Carbon-Carbon (RCC) leading edge from high-speed foam impacts. Forensic evidence quickly led CAIB investigators to concentrate on the left wing leading edge RCC panels. This paper will concentrate on the test of the left-wing RCC panel 8 conducted at Southwest Research Institute (SwRI) and the correlation with an LS-DYNA analysis. The successful correlation of the LS-DYNA model has resulted in the use of LS-DYNA as a predictive tool for characterizing the threshold of damage for impacts of various debris such as foam, ice, and ablators onto the RCC leading edge for shuttle return-to-flight.

  12. Heroes and Legends Ribbon Cutting Ceremony

    NASA Image and Video Library

    2016-11-11

    Former space shuttle astronaut Dan Brandenstein, chairman of the Astronaut Scholarship Foundation board of directors, speaks to guests during the opening of the Heroes and Legends attraction at the Kennedy Space Center Visitor Complex. The new facility includes the U.S. Astronaut Hall of Fame and looks back to the pioneering efforts of Mercury, Gemini and Apollo. It sets the stage by providing the background and context for space exploration and the legendary men and women who pioneered the nation's journey into space.

  13. A Review of Microgravity Levels on Ten OARE Shuttle Missions

    NASA Technical Reports Server (NTRS)

    McPherson, Kevin M.

    1998-01-01

    The Orbital Acceleration Research Experiment (OARE) is an accelerometer package with nano-g sensitivity and on-orbit bias calibration capabilities. The OARE consists of a three axis miniature electrostatic accelerometer (MESA), a full in-flight bias and scale factor calibration station, and an on-board microprocessor for experiment control and data storage. Originally designed to measure and record the aerodynamic acceleration environment of the NASA Space Shuttles during re-entry, the OARE has been used on ten shuttle missions to measure the quasi-steady acceleration environment (<1 Hz) of the Orbiter while in low-Earth orbit. The effects on the quasi-steady acceleration environment from Orbiter systems, Orbiter attitude, Orbiter altitude, and crew activity are well understood as a result of these ten shuttle missions. This knowledge of the quasi-steady acceleration realm has direct application to understanding the quasi-steady acceleration environment expected for the International Space Station (ISS). This paper will summarize the more salient aspects of this quasi-steady acceleration knowledge base.

  14. An Overview of Spray-On Foam Insulation Applications on the Space Shuttle's External Tank: Foam Applications and Foam Shedding Mechanisms

    NASA Technical Reports Server (NTRS)

    Sullivan, Roy M.; Lerch, Bradley A.; Rogers, Patrick R.; Sparks, Scotty S.

    2006-01-01

    The Columbia Accident Investigation Board (CAIB) concluded that the cause of the tragic loss of the Space Shuttle Columbia and its crew was a breach in the thermal protection system on the leading edge of the left wing. The breach was initiated by a piece of insulating foam that separated from the left bipod ramp of the External Tank and struck the wing in the vicinity of the lower half of Reinforced Carbon-Carbon panel No. 8 at 81.9 seconds after launch. The CAIB conclusion has spawned numerous studies to identify the cause of and factors influencing foam shedding and foam debris liberation from the External Tank during ascent. The symposium on the Thermo-mechanics and Fracture of Space Shuttle External Tank Spray-On Foam Insulation is a collection of presentations that discuss the physics and mechanics of the ET SOFI with the objective of improving analytical and numerical methods for predicting foam thermo-mechanical and fracture behavior. This keynote presentation sets the stage for the presentations contained in this symposium by introducing the audience to the various types of SOFI applications on the Shuttle s External Tank and by discussing the various mechanisms that are believed to be the cause of foam shedding during the Shuttle s ascent to space

  15. Enterprise - Free Flight after Separation from 747

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The Space Shuttle prototype Enterprise flies free after being released from NASA's 747 Shuttle Carrier Aircraft (SCA) over Rogers Dry Lake during the second of five free flights carried out at the Dryden Flight Research Center, Edwards, California, as part of the Shuttle program's Approach and Landing Tests (ALT) in 1977. The tests were conducted to verify orbiter aerodynamics and handling characteristics in preparation for orbital flights with the Space Shuttle Columbia. A tail cone over the main engine area of Enterprise smoothed out turbulent airflow during flight. It was removed on the two last free flights to accurately check approach and landing characteristics. A series of test flights during which Enterprise was taken aloft atop the SCA, but was not released, preceded the free flight tests. The Space Shuttle Approach and Landings Tests (ALT) program allowed pilots and engineers to learn how the Space Shuttle and the modified Boeing 747 Shuttle Carrier Aircraft (SCA) handled during low-speed flight and landing. The Enterprise, a prototype of the Space Shuttles, and the SCA were flown to conduct the approach and landing tests at the NASA Dryden Flight Research Center, Edwards, California, from February to October 1977. The first flight of the program consisted of the Space Shuttle Enterprise attached to the Shuttle Carrier Aircraft. These flights were to determine how well the two vehicles flew together. Five 'captive-inactive' flights were flown during this first phase in which there was no crew in the Enterprise. The next series of captive flights was flown with a flight crew of two on board the prototype Space Shuttle. Only three such flights proved necessary. This led to the free-flight test series. The free-flight phase of the ALT program allowed pilots and engineers to learn how the Space Shuttle handled in low-speed flight and landing attitudes. For these landings, the Enterprise was flown by a crew of two after it was released from the top of the SCA. The vehicle was released at altitudes ranging from 19,000 to 26,000 feet. The Enterprise had no propulsion system, but its first four glides to the Rogers Dry Lake runway provided realistic, in-flight simulations of how subsequent Space Shuttles would be flown at the end of an orbital mission. The fifth approach and landing test, with the Enterprise landing on the Edwards Air Force Base concrete runway, revealed a problem with the Space Shuttle flight control system that made it susceptible to Pilot-Induced Oscillation (PIO), a potentially dangerous control problem during a landing. Further research using other NASA aircraft, especially the F-8 Digital-Fly-By-Wire aircraft, led to correction of the PIO problem before the first orbital flight. The Enterprise's last free-flight was October 26, 1977, after which it was ferried to other NASA centers for ground-based flight simulations that tested Space Shuttle systems and structure.

  16. KSC-2011-5243

    NASA Image and Video Library

    2011-07-08

    CAPE CANAVERAL, Fla. -- A media event was held for the Multi-Purpose Crew Vehicle (MPCV) that was on display in a tent on the grounds of the Press Site at NASA's Kennedy Space Center in Florida during launch activities for space shuttle Atlantis' STS-135 mission to the International Space Station. The MPCV is based on the Orion design requirements for traveling beyond low Earth orbit and will serve as the exploration vehicle that will carry the crew to space, provide emergency abort capability, sustain the crew during the space travel, and provide safe re-entry from deep space return velocities. Atlantis began its final flight, with Commander Chris Ferguson, Pilot Doug Hurley and Mission Specialists Sandy Magnus and Rex Walheim on board, at 11:29 a.m. EDT July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts to the station. Also in Atlantis' payload bay is the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Jim Grossmann

  17. Mission Specialists Dan Barry and Koichi Wakata play Japanese game "GO"

    NASA Image and Video Library

    1996-02-06

    STS072-315-034 (11-20 Jan. 1996) --- During off-duty time aboard the Space Shuttle Endeavour, astronauts Daniel T. Barry (left) and Koichi Wakata join on the middeck for an in-space version of a Japanese game called "Go". Because of microgravity, the usual rock-like pieces that are moved about on the board by each player had to give way to tiny stick-on pieces. Wakata represents Japan's National Space Development Agency (NASDA).

  18. System Report for the Optical Properties Monitor (OPM) Experiment

    NASA Technical Reports Server (NTRS)

    Hummer, L.

    2001-01-01

    This systems report describes how the Optical Properties Monitor (OPM) experiment was developed. Pertinent design parameters are discussed, along with mission information and system requirements to successfully complete the mission. Environmental testing was performed on the OPM to certify it for spaceflight. This testing included vibration, thermal vacuum, electromagnetic interference and conductance, and toxicity tests. Instrument and monitor subsystem performances, including the reflectometer, vacuum ultraviolet, total integrated scatter, atomic oxygen monitor, irradiance monitor, and molecular contamination monitor during the mission are discussed. The OPM experiment was launched aboard the Space Shuttle on mission STS-81 in January 1997 and transferred to the Mir space station. An extravehicular activity (EVA) was performed in April 1997 to attach the OPM experiment to the outside of the Mir/Shuttle Docking Module for space environment exposure. The OPM conducted in situ measurements of a number of material samples. These data may be found in the OPM Science Report. OPM was retrieved during an EVA in January 1998 and was returned to Earth on board the Space Shuttle on mission STS-89.

  19. Comparison of Commercial EMI Test Techniques to NASA EMI Test Techniques

    NASA Astrophysics Data System (ADS)

    Smith, Valerie

    2000-11-01

    This systems report describes how the Optical Properties Monitor (OPM) experiment was developed. Pertinent design parameters are discussed, along with mission information and system requirements to successfully complete the mission. Environmental testing was performed on the OPM to certify it for spaceflight. This testing included vibration, thermal vacuum, electromagnetic interference and conductance, and toxicity tests. Instrument and monitor subsystem performances, including the reflectometer, vacuum ultraviolet, total integrated scatter, atomic oxygen monitor, irradiance monitor, and molecular contamination monitor during the mission are discussed. The OPM experiment was launched aboard the Space Shuttle on mission STS-81 in January 1997 and transferred to the Mir space station. An extravehicular activity (EVA) was performed in April 1997 to attach the OPM experiment to the outside of the Mir/Shuttle Docking Module for space environment exposure. The OPM conducted in situ measurements of a number of material samples. These data may be found in the OPM Science Report. OPM was retrieved during an EVA in January 1998 and was returned to Earth on board the Space Shuttle on mission STS-89.

  20. STS-94 Columbia Landing at KSC (drag chute deploy)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Space Shuttle orbiter Columbia touches down on Runway 33 at KSCs Shuttle Landing Facility at 6:46:34 a.m. EDT with Mission Commander James D. Halsell Jr. and Pilot Susan L. Still at the controls to complete the STS-94 mission. Also on board are Mission Specialist Donald A. Thomas, Mission Specialist Michael L. Gernhardt, Payload Commander Janice Voss, and Payload Specialists Roger K. Crouch and Gregory T. Linteris. During the Microgravity Science Laboratory-1 (MSL-1) mission, the Spacelab module was used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station while the flight crew conducted combustion, protein crystal growth and materials processing experiments. This mission was a reflight of the STS-83 mission that lifted off from KSC in April of this year. That space flight was cut short due to indications of a faulty fuel cell. This was Columbias 11th landing at KSC and the 38th landing at the space center in the history of the Shuttle program.

  1. Vibration Analysis of the Space Shuttle External Tank Cable Tray Flight Data With and Without PAL Ramp

    NASA Technical Reports Server (NTRS)

    Walker, Bruce E.; Panda, Jayanta; Sutliff, Daniel L.

    2008-01-01

    External Tank Cable Tray vibration data for three successive Space Shuttle flights were analyzed to assess response to buffet and the effect of removal of the Protuberance Air Loads (PAL) ramp. Waveform integration, spectral analysis, cross-correlation analysis and wavelet analysis were employed to estimate vibration modes and temporal development of vibration motion from a sparse array of accelerometers and an on-board system that acquired 16 channels of data for approximately the first 2 min of each flight. The flight data indicated that PAL ramp removal had minimal effect on the fluctuating loads on the cable tray. The measured vibration frequencies and modes agreed well with predicted structural response.

  2. Vibration Analysis of the Space Shuttle External Tank Cable Tray Flight Data with and without PAL Ramp

    NASA Technical Reports Server (NTRS)

    Walker, B. E.; Panda, B. E.; Sutliff, D. L.

    2008-01-01

    External Tank Cable Tray vibration data for three successive Space Shuttle flights were analyzed to assess response to buffet and the effect of removal of the Protuberance Air Loads (PAL) ramp. Waveform integration, spectral analysis, cross-correlation analysis and wavelet analysis were employed to estimate vibration modes and temporal development of vibration motion from a sparse array of accelerometers and an on-board system that acquired 16 channels of data for approximately the first two minutes of each flight. The flight data indicated that PAL ramp removal had minimal effect on the fluctuating loads on the cable tray. The measured vibration frequencies and modes agreed well with predicted structural response.

  3. Sonic Booms in Atmospheric Turbulence (SonicBAT) Testing

    NASA Image and Video Library

    2017-08-22

    NASA pilots board an F-18 jet prior to take off from the agency's Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Several flights a day have been taking place the week of Aug. 21, 2017 to measure the effects of sonic booms. It is part of NASA's Sonic Booms in Atmospheric Turbulence, or SonicBAT II Program. NASA at Kennedy is partnering with the agency's Armstrong Flight Research Center in California, Langley Research Center in Virginia, and Space Florida for a program in which F-18 jets will take off from the Shuttle Landing Facility and fly at supersonic speeds while agency researchers measure the effects of low-altitude turbulence caused by sonic booms.

  4. Sonic Booms in Atmospheric Turbulence (SonicBAT) Testing

    NASA Image and Video Library

    2017-08-22

    A NASA pilot boards an F-18 jet prior to take off from the agency's Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Several flights a day have been taking place the week of Aug. 21, 2017 to measure the effects of sonic booms. It is part of NASA's Sonic Booms in Atmospheric Turbulence, or SonicBAT II Program. NASA at Kennedy is partnering with the agency's Armstrong Flight Research Center in California, Langley Research Center in Virginia, and Space Florida for a program in which F-18 jets will take off from the Shuttle Landing Facility and fly at supersonic speeds while agency researchers measure the effects of low-altitude turbulence caused by sonic booms.

  5. KSC-97pc140

    NASA Image and Video Library

    1997-01-12

    Greeted by cheers from wellwishers at KSC and eager for their venture into space on the fifth Shuttle-Mir docking mission, the STS-81 astronauts depart the Operations and Checkout Building and board the Astrovan for their 25-minute trip to Launch Pad 39B. Leading the six-member crew is Mission Commander Michael A. Baker, followed by Pilot Brent W. Jett, Jr. Behind them are Mission Specialists John M. Grunsfeld, Jerry Linenger, Peter J. K. "Jeff" Wisoff, and Marsha S. Ivins. Once at the pad, they will take their positions in the crew cabin of the Space Shuttle Atlantis to await a liftoff during a seven-minute window that will open at 4:27 a.m. EST, January 12

  6. KSC-08pd3184

    NASA Image and Video Library

    2008-10-14

    CAPE CANAVERAL, Fla. – A videographer captures the dramatic sunset on Launch Pad 39A at NASA's Kennedy Space Center in Florida. Space shuttle Atlantis is on the pad. Atop the fixed service structure at right is the 80-foot tall lightning mast that helps provide lightning protection for the shuttle on the pad. Atlantis’ October target launch date for the STS-125 Hubble Space Telescope servicing mission was delayed after a device on board Hubble used in the storage and transmission of science data to Earth shut down on Sept. 27. Replacing the broken device will be added to Atlantis’ servicing mission to the telescope. In the interim, Atlantis will be rolled back to the Vehicle Assembly Building until a new target launch date can be set for the mission in 2009. Photo credit: NASA/Troy Cryder

  7. KSC-08pd3183

    NASA Image and Video Library

    2008-10-14

    CAPE CANAVERAL, Fla. – Launch Pad 39A at NASA's Kennedy Space Center in Florida is silhouetted against a sunset sky. Space shuttle Atlantis is on the pad. Atop the fixed service structure at right is the 80-foot tall lightning mast that helps provide lightning protection for the shuttle on the pad. Atlantis’ October target launch date for the STS-125 Hubble Space Telescope servicing mission was delayed after a device on board Hubble used in the storage and transmission of science data to Earth shut down on Sept. 27. Replacing the broken device will be added to Atlantis’ servicing mission to the telescope. In the interim, Atlantis will be rolled back to the Vehicle Assembly Building until a new target launch date can be set for the mission in 2009. Photo credit: NASA/Troy Cryder

  8. Columbia Crew Survival Investigation Report

    NASA Technical Reports Server (NTRS)

    2009-01-01

    NASA commissioned the Columbia Accident Investigation Board (CAIB) to conduct a thorough review of both the technical and the organizational causes of the loss of the Space Shuttle Columbia and her crew on February 1, 2003. The accident investigation that followed determined that a large piece of insulating foam from Columbia s external tank (ET) had come off during ascent and struck the leading edge of the left wing, causing critical damage. The damage was undetected during the mission. The CAIB's findings and recommendations were published in 2003 and are available on the web at http://caib.nasa.gov/. NASA responded to the CAIB findings and recommendations with the Space Shuttle Return to Flight Implementation Plan. Significant enhancements were made to NASA's organizational structure, technical rigor, and understanding of the flight environment. The ET was redesigned to reduce foam shedding and eliminate critical debris. In 2005, NASA succeeded in returning the space shuttle to flight. In 2010, the space shuttle will complete its mission of assembling the International Space Station and will be retired to make way for the next generation of human space flight vehicles: the Constellation Program. The Space Shuttle Program recognized the importance of capturing the lessons learned from the loss of Columbia and her crew to benefit future human exploration, particularly future vehicle design. The program commissioned the Spacecraft Crew Survival Integrated Investigation Team (SCSIIT). The SCSIIT was asked to perform a comprehensive analysis of the accident, focusing on factors and events affecting crew survival, and to develop recommendations for improving crew survival for all future human space flight vehicles. To do this, the SCSIIT investigated all elements of crew survival, including the design features, equipment, training, and procedures intended to protect the crew. This report documents the SCSIIT findings, conclusions, and recommendations.

  9. Renewing solar science: The solar maximum repair mission

    NASA Technical Reports Server (NTRS)

    Neal, V.

    1985-01-01

    The purpose of the Solar Maximum Repair Mission is to restore the operational capacity of the satellite by replacing the attitude control system module and servicing two of the scientific instruments on board. The mission will demonstrate the satellite servicing capacity of the Space Shuttle for the first time.

  10. First Shuttle/747 Captive Flight

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The Space Shuttle prototype Enterprise rides smoothly atop NASA's first Shuttle Carrier Aircraft (SCA), NASA 905, during the first of the shuttle program's Approach and Landing Tests (ALT) at the Dryden Flight Research Center, Edwards, California, in 1977. During the nearly one year-long series of tests, Enterprise was taken aloft on the SCA to study the aerodynamics of the mated vehicles and, in a series of five free flights, tested the glide and landing characteristics of the orbiter prototype. In this photo, the main engine area on the aft end of Enterprise is covered with a tail cone to reduce aerodynamic drag that affects the horizontal tail of the SCA, on which tip fins have been installed to increase stability when the aircraft carries an orbiter. The Space Shuttle Approach and Landings Tests (ALT) program allowed pilots and engineers to learn how the Space Shuttle and the modified Boeing 747 Shuttle Carrier Aircraft (SCA) handled during low-speed flight and landing. The Enterprise, a prototype of the Space Shuttles, and the SCA were flown to conduct the approach and landing tests at the NASA Dryden Flight Research Center, Edwards, California, from February to October 1977. The first flight of the program consisted of the Space Shuttle Enterprise attached to the Shuttle Carrier Aircraft. These flights were to determine how well the two vehicles flew together. Five 'captive-inactive' flights were flown during this first phase in which there was no crew in the Enterprise. The next series of captive flights was flown with a flight crew of two on board the prototype Space Shuttle. Only three such flights proved necessary. This led to the free-flight test series. The free-flight phase of the ALT program allowed pilots and engineers to learn how the Space Shuttle handled in low-speed flight and landing attitudes. For these landings, the Enterprise was flown by a crew of two after it was released from the top of the SCA. The vehicle was released at altitudes ranging from 19,000 to 26,000 feet. The Enterprise had no propulsion system, but its first four glides to the Rogers Dry Lake runway provided realistic, in-flight simulations of how subsequent Space Shuttles would be flown at the end of an orbital mission. The fifth approach and landing test, with the Enterprise landing on the Edwards Air Force Base concrete runway, revealed a problem with the Space Shuttle flight control system that made it susceptible to Pilot-Induced Oscillation (PIO), a potentially dangerous control problem during a landing. Further research using other NASA aircraft, especially the F-8 Digital-Fly-By-Wire aircraft, led to correction of the PIO problem before the first orbital flight. The Enterprise's last free-flight was October 26, 1977, after which it was ferried to other NASA centers for ground-based flight simulations that tested Space Shuttle systems and structure.

  11. Earth Observations taken by the STS-109 crew

    NASA Image and Video Library

    2002-03-05

    STS109-719-076 (1-12 March 2002) --- The astronauts on board the Space Shuttle Columbia took this 70mm picture featuring part of the eastern sea board. The oblique view looks northward from South Florida to the southern Appalachians. Most of the southeastern United States appears in crisp, clear air in the wake of a cold front that has pushed well off the mainland. Only a few jet stream and low-level clouds remain over South Florida and Gulf Stream.

  12. KSC-97PC1052

    NASA Image and Video Library

    1997-07-17

    KENNEDY SPACE CENTER, FLA. -- With its drag chute deployed, the Space Shuttle Orbiter Columbia touches down on Runway 33 at KSC’s Shuttle Landing Facility at 6:46:34 a.m. EDT with Mission Commander James D. Halsell Jr. and Pilot Susan L. Still at the controls to complete the STS-94 mission. Also on board are Mission Specialist Donald A. Thomas, Mission Specialist Michael L. Gernhardt , Payload Commander Janice Voss, and Payload Specialists Roger K. Crouch and Gregory T. Linteris. Mission elapsed time for STS-94 was 15 days,16 hours, 44 seconds. During the Microgravity Science Laboratory-1 (MSL-1) mission, the Spacelab module was used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station while the flight crew conducted combustion, protein crystal growth and materials processing experiments. This mission was a reflight of the STS-83 mission that lifted off from KSC in April of this year. That space flight was cut short due to indications of a faulty fuel cell. This was Columbia’s 11th landing at KSC and the 38th landing at the space center in the history of the Shuttle program

  13. KSC-97PC1049

    NASA Image and Video Library

    1997-07-17

    KENNEDY SPACE CENTER, FLA. -- With its drag chute deployed, the Space Shuttle Orbiter Columbia touches down on Runway 33 at KSC’s Shuttle Landing Facility at 6:46:34 a.m. EDT with Mission Commander James D. Halsell Jr. and Pilot Susan L. Still at the controls to complete the STS-94 mission. Also on board are Mission Specialist Donald A. Thomas, Mission Specialist Michael L. Gernhardt , Payload Commander Janice Voss, and Payload Specialists Roger K. Crouch and Gregory T. Linteris. Mission elapsed time for STS-94 was 15 days,16 hours, 44 seconds. During the Microgravity Science Laboratory-1 (MSL-1) mission, the Spacelab module was used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station while the flight crew conducted combustion, protein crystal growth and materials processing experiments. This mission was a reflight of the STS-83 mission that lifted off from KSC in April of this year. That space flight was cut short due to indications of a faulty fuel cell. This was Columbia’s 11th landing at KSC and the 38th landing at the space center in the history of the Shuttle program

  14. KSC-97PC1045

    NASA Image and Video Library

    1997-07-17

    KENNEDY SPACE CENTER, FLA. -- With its drag chute deployed, the Space Shuttle Orbiter Columbia touches down on Runway 33 at KSC’s Shuttle Landing Facility at 6:46:34 a.m. EDT with Mission Commander James D. Halsell Jr. and Pilot Susan L. Still at the controls to complete the STS-94 mission. Also on board are Mission Specialist Donald A. Thomas, Mission Specialist Michael L. Gernhardt , Payload Commander Janice Voss, and Payload Specialists Roger K. Crouch and Gregory T. Linteris. Mission elapsed time for STS-94 was 15 days,16 hours, 44 seconds. During the Microgravity Science Laboratory-1 (MSL-1) mission, the Spacelab module was used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station while the flight crew conducted combustion, protein crystal growth and materials processing experiments. This mission was a reflight of the STS-83 mission that lifted off from KSC in April of this year. That space flight was cut short due to indications of a faulty fuel cell. This was Columbia’s 11th landing at KSC and the 38th landing at the space center in the history of the Shuttle program

  15. KSC-97PC1051

    NASA Image and Video Library

    1997-07-17

    KENNEDY SPACE CENTER, FLA. -- With its drag chute deployed, the Space Shuttle Orbiter Columbia touches down on Runway 33 at KSC’s Shuttle Landing Facility at 6:46:34 a.m. EDT with Mission Commander James D. Halsell Jr. and Pilot Susan L. Still at the controls to complete the STS-94 mission. Also on board are Mission Specialist Donald A. Thomas, Mission Specialist Michael L. Gernhardt , Payload Commander Janice Voss, and Payload Specialists Roger K. Crouch and Gregory T. Linteris. Mission elapsed time for STS-94 was 15 days,16 hours, 44 seconds. During the Microgravity Science Laboratory-1 (MSL-1) mission, the Spacelab module was used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station while the flight crew conducted combustion, protein crystal growth and materials processing experiments. This mission was a reflight of the STS-83 mission that lifted off from KSC in April of this year. That space flight was cut short due to indications of a faulty fuel cell. This was Columbia’s 11th landing at KSC and the 38th landing at the space center in the history of the Shuttle program

  16. KSC-2011-4189

    NASA Image and Video Library

    2011-06-01

    CAPE CANAVERAL, Fla. -- Vapor trails follow space shuttle Endeavour as it approaches Runway 15 on the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida for the final time. A vapor trail, known as a contrail, is a cloud of water vapor that condenses and freezes around the small particles in aircraft exhaust. Main gear touchdown was at 2:34:51 a.m. EDT, followed by nose gear touchdown at 2:35:04 a.m., and wheelstop at 2:35:36 a.m. On board are STS-134 Commander Mark Kelly, Pilot Greg H. Johnson, and Mission Specialists Mike Fincke, Drew Feustel, Greg Chamitoff and the European Space Agency's Roberto Vittori. STS-134 delivered the Alpha Magnetic Spectrometer-2 (AMS) and the Express Logistics Carrier-3 (ELC-3) to the International Space Station. AMS will help researchers understand the origin of the universe and search for evidence of dark matter, strange matter and antimatter from the station. ELC-3 carried spare parts that will sustain station operations once the shuttles are retired from service. STS-134 was the 25th and final flight for Endeavour, which has spent 299 days in space, orbited Earth 4,671 times and traveled 122,883,151 miles. Photo credit: NASA/Kevin O'Connell

  17. KSC-2011-4172

    NASA Image and Video Library

    2011-06-01

    CAPE CANAVERAL, Fla. -- A vapor trail follows space shuttle Endeavour as it approaches Runway 15 on the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida for the final time. A vapor trail, known as a contrail, is a cloud of water vapor that condenses and freezes around the small particles in aircraft exhaust. Main gear touchdown was at 2:34:51 a.m. EDT, followed by nose gear touchdown at 2:35:04 a.m., and wheelstop at 2:35:36 a.m. On board are STS-134 Commander Mark Kelly, Pilot Greg H. Johnson, and Mission Specialists Mike Fincke, Drew Feustel, Greg Chamitoff and the European Space Agency's Roberto Vittori. STS-134 delivered the Alpha Magnetic Spectrometer-2 (AMS) and the Express Logistics Carrier-3 (ELC-3) to the International Space Station. AMS will help researchers understand the origin of the universe and search for evidence of dark matter, strange matter and antimatter from the station. ELC-3 carried spare parts that will sustain station operations once the shuttles are retired from service. STS-134 was the 25th and final flight for Endeavour, which has spent 299 days in space, orbited Earth 4,671 times and traveled 122,883,151 miles. Photo credit: NASA/Chuck Tintera

  18. KSC-2011-4190

    NASA Image and Video Library

    2011-06-01

    CAPE CANAVERAL, Fla. -- Vapor trails follow space shuttle Endeavour as it approaches Runway 15 on the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida for the final time. A vapor trail, known as a contrail, is a cloud of water vapor that condenses and freezes around the small particles in aircraft exhaust. Main gear touchdown was at 2:34:51 a.m. EDT, followed by nose gear touchdown at 2:35:04 a.m., and wheelstop at 2:35:36 a.m. On board are STS-134 Commander Mark Kelly, Pilot Greg H. Johnson, and Mission Specialists Mike Fincke, Drew Feustel, Greg Chamitoff and the European Space Agency's Roberto Vittori. STS-134 delivered the Alpha Magnetic Spectrometer-2 (AMS) and the Express Logistics Carrier-3 (ELC-3) to the International Space Station. AMS will help researchers understand the origin of the universe and search for evidence of dark matter, strange matter and antimatter from the station. ELC-3 carried spare parts that will sustain station operations once the shuttles are retired from service. STS-134 was the 25th and final flight for Endeavour, which has spent 299 days in space, orbited Earth 4,671 times and traveled 122,883,151 miles. Photo credit: NASA/Kevin O'Connell

  19. KSC-2011-4186

    NASA Image and Video Library

    2011-06-01

    CAPE CANAVERAL, Fla. -- A vapor trail follows space shuttle Endeavour as it approaches Runway 15 on the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida for the final time. A vapor trail, known as a contrail, is a cloud of water vapor that condenses and freezes around the small particles in aircraft exhaust. Main gear touchdown was at 2:34:51 a.m. EDT, followed by nose gear touchdown at 2:35:04 a.m., and wheelstop at 2:35:36 a.m. On board are STS-134 Commander Mark Kelly, Pilot Greg H. Johnson, and Mission Specialists Mike Fincke, Drew Feustel, Greg Chamitoff and the European Space Agency's Roberto Vittori. STS-134 delivered the Alpha Magnetic Spectrometer-2 (AMS) and the Express Logistics Carrier-3 (ELC-3) to the International Space Station. AMS will help researchers understand the origin of the universe and search for evidence of dark matter, strange matter and antimatter from the station. ELC-3 carried spare parts that will sustain station operations once the shuttles are retired from service. STS-134 was the 25th and final flight for Endeavour, which has spent 299 days in space, orbited Earth 4,671 times and traveled 122,883,151 miles. Photo credit: NASA/Tom Joseph

  20. KSC-2011-5246

    NASA Image and Video Library

    2011-07-08

    CAPE CANAVERAL, Fla. -- Media from around the globe gather on the grounds of the Press Site at NASA's Kennedy Space Center in Florida to photograph and cover the prelaunch activities and lift off of space shuttle Atlantis on its STS-135 mission to the International Space Station. Seen towering above is the massive Vehicle Assembly Building. Dozens of satellite news vehicles and trailers can be seen in the parking lot. In the background is the Turn Basin where NASA's Pegasus barge delivered the final external tank for the mission. Atlantis began its final flight, with Commander Chris Ferguson, Pilot Doug Hurley and Mission Specialists Sandy Magnus and Rex Walheim on board, at 11:29 a.m. EDT July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts to the station. Also in Atlantis' payload bay is the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Jim Grossmann

  1. KSC-2011-5245

    NASA Image and Video Library

    2011-07-08

    CAPE CANAVERAL, Fla. -- Media from around the globe gather on the grounds of the Press Site at NASA's Kennedy Space Center in Florida to photograph and cover the prelaunch activities and lift off of space shuttle Atlantis on its STS-135 mission to the International Space Station. Seen towering above is the massive Vehicle Assembly Building. Dozens of satellite news vehicles and trailers can be seen in the parking lot. In the background is the Turn Basin where NASA's Pegasus barge delivered the final external tank for the mission. Atlantis began its final flight, with Commander Chris Ferguson, Pilot Doug Hurley and Mission Specialists Sandy Magnus and Rex Walheim on board, at 11:29 a.m. EDT July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts to the station. Also in Atlantis' payload bay is the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Jim Grossmann

  2. KSC-07pd3645

    NASA Image and Video Library

    2007-12-15

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A at NASA's Kennedy Space Center, a wiring board has been set up for the tanking test on space shuttle Atlantis' external tank set for Dec. 18. The test wiring has been spliced into an electrical harness in the aft main engine compartment connected with the engine cut-off, or ECO, sensor system. The attached wiring leads to the interior of the mobile launcher platform where the time domain reflectometry, or TDR, test equipment is located. Photo credit: NASA/Kim Shiflett

  3. KSC-96pc1124

    NASA Image and Video Library

    1996-09-26

    KENNEDY SPACE CENTER, FLA. -- A KSC fire truck stands on alert as the STS-79 Space Shuttle Atlantis hurtles down Runway 15 of KSC's Shuttle Landing Facility, its drag chute billowing behind it. Atlantis touched down at 8:13:15 a.m. EDT, September 26. On board is U.S. astronaut Shannon W. Lucid, who has been living and working on the Russian Space Station Mir for about six months. Lucid has spent 188 days in space from launch aboard Atlantis in March to her return today, establishing a U.S. record for long-duration spaceflight as well as representing the longest spaceflight for a woman. Succeeding Lucid on Mir is U.S. astronaut John E. Blaha, who embarked to Mir with the STS-79 crew. The commander of Mission STS-79 is William F. Readdy; Terrence W. Wilcutt is the pilot, and the three mission specialists are Jay Apt, Thomas D. Akers and Carl E. Walz

  4. KSC-02pd0769

    NASA Image and Video Library

    2002-05-27

    KENNEDY SPACE CENTER, FLA. - At the KSC Shuttle Landing Facility, STS-111 Mission Specialist Philippe Perrin, with the French Space Agency, waits for the rest of the crew before departing for Crew Quarters. The crew has arrived to prepare for launch. Mission STS-111, known as Utilization Flight 2, is carrying supplies and equipment to the International Space Station. The payload includes the Multi-Purpose Logistics Module Leonardo, the Mobile Base System, which will be installed on the Mobile Transporter to complete the Canadian Mobile Servicing System, or MSS, and a replacement wrist/roll joint for Canadarm 2. The mechanical arm will then have the capability to "inchworm" from the U.S. Lab Destiny to the MSS and travel along the truss to work sites. Also on board will be Expedition 5, traveling to the Station on Space Shuttle Endeavour as the replacement crew for Expedition 4, who will return to Earth aboard the orbiter. Launch is scheduled for May 30, 2002

  5. First results on GlioLab/GlioSat Precursors Missions

    NASA Astrophysics Data System (ADS)

    Cappelletti, Chantal; Notarangelo, Angelo; Demoss, Darrin; Carella, Massimo

    2012-07-01

    Since 2009 GAUSS group is involved in a joint collaboration with Morehead State University (MSU) Space Science Center and IRCCS Casa Sollievo della Sofferenza (CSS) research labs with the aim to design a biomedical project in order to investigate if the combined effects of microgravity conditions and ionizing radiation increase or decrease the survival rate of cancer cells. The biological sample consists of Glioblastoma cancer cell line ANGM-CSS. Glioblastoma is a kind of cancer that can be treated after surgery only by radiotherapy using ionizing radiation. This treatment, anyway, results in a very low survival rate. This project uses different university space platforms: a CubeLab, named GlioLab, on board the International Space Station and the university microsatellite UniSat-5 designed by GAUSS. In addition a GlioLab/GlioSat precursor experiment has already flown two times with the Space Shuttle during the missions STS-134 and STS-135. The phase 0 or the precursor of GlioLab uses a COTS system, named Liquid Mixing Apparatus (LMA), to board the biological samples inside the Space Shuttle for thirty day . The LMA allows to board liquids inside a vial but is not equipped with environment control system. After landing the samples were investigated by researchers at CSS in Italy and at MSU in Kentucky. This paper deals with the experimental set up and the results obtained during the STS-134 and STS-135 missions and with the new evidences on the behavior of this kind of cancer. In particular the results obtained on the DNA analysis give a confirmation of the original idea of GLioLab/Gliosat project justifying the development of the two systems.

  6. Human factors in space station architecture 1: Space station program implications for human factors research

    NASA Technical Reports Server (NTRS)

    Cohen, M. M.

    1985-01-01

    The space station program is based on a set of premises on mission requirements and the operational capabilities of the space shuttle. These premises will influence the human behavioral factors and conditions on board the space station. These include: launch in the STS Orbiter payload bay, orbital characteristics, power supply, microgravity environment, autonomy from the ground, crew make-up and organization, distributed command control, safety, and logistics resupply. The most immediate design impacts of these premises will be upon the architectural organization and internal environment of the space station.

  7. Spacelab-1: An early space station for science and technology

    NASA Technical Reports Server (NTRS)

    Knott, K.; Feuerbacher, B.; Chappell, C. R.

    1982-01-01

    The scientific capabilities of the Spacelab manned pallet are reviewed, together with the implications of an expansion of the research effectiveness with a free-flying platform. The premier Spacelab flight will carry out earth observations with a metric camera and SAR, atmospheric studies will be performed with imaging spectrometers, and space plasma physics will be examined by injecting particle beams or VLF waves into the near-Shuttle environment. Radiance and spectrum data will be gathered of the sun and UV and X ray information will be recorded from the stars. Experimentation will also be carried out for on-board crystal growth, metallurgy, and glassy material production, as well as the response of biological systems to zero-g conditions and hard space radiation. The telemetry, time, crewmember participation, and on-board controls required for Spacelab operations are outlined. Missions for a space platform for studying the atmosphere/space interface are described.

  8. Casper at control board

    NASA Image and Video Library

    1996-06-25

    STS077-372-019 (19-29 May 1996) --- Astronaut John H. Casper, commander, holds his finger on the power kill switch on the Spacehab 4 Module aboard the Earth-orbiting Space Shuttle Endeavour. Casper and five other astronauts spent almost ten days aboard Endeavour in support of the Spacehab 4 mission and a number of other payloads.

  9. STS-114 Flight Day 10 Highlights

    NASA Technical Reports Server (NTRS)

    2005-01-01

    On Flight Day 10 of the STS-114 mission the International Space Station (ISS) is seen in low lighting while the Space Station Remote Manipulator System (SSRMS), also known as Canadarm 2 grapples the Raffaello Multipurpose Logistics Module (MPLM) in preparation for its undocking the following day. Members of the shuttle crew (Commander Eileen Collins, Pilot James Kelly, Mission Specialists Soichi Noguchi, Stephen Robinson, Andrew Thomas, Wendy Lawrence, and Charles Camarda) and the Expedition 11 crew (Commander Sergei Krikalev and NASA ISS Science Officer and Flight Engineer John Phillips) of the ISS read statements in English and Russian in a ceremony for astronauts who gave their lives. Interview segments include one of Collins, Robinson, and Camarda, wearing red shirts to commemorate the STS-107 Columbia crew, and one of Collins and Noguchi on board the ISS, which features voice over from an interpreter translating questions from the Japanese prime minister. The video also features a segment showing gap fillers on board Discovery after being removed from underneath the orbiter, and another segment which explains an experimental plug for future shuttle repairs being tested onboard the mid deck.

  10. Theories and models of the biology of the cell in space--an introduction

    NASA Technical Reports Server (NTRS)

    Cogoli, A.; Cogoli-Greuter, M.

    1994-01-01

    The World Space Congress 1992 took place after two Spacelab flights with important biological payloads on board, the SLS-1 (June 1991) and IML-1 (January 1992) missions respectively. Interesting experiments were carried out in 1991 also on the Shuttle middeck and on the sounding rocket MASER 4. The highlights of the investigations on these missions together with the results of relevant ground-based research were presented at the symposium.

  11. Effect of Clouds on Optical Imaging of the Space Shuttle During the Ascent Phase: A Statistical Analysis Based on a 3D Model

    NASA Technical Reports Server (NTRS)

    Short, David A.; Lane, Robert E., Jr.; Winters, Katherine A.; Madura, John T.

    2004-01-01

    Clouds are highly effective in obscuring optical images of the Space Shuttle taken during its ascent by ground-based and airborne tracking cameras. Because the imagery is used for quick-look and post-flight engineering analysis, the Columbia Accident Investigation Board (CAIB) recommended the return-to-flight effort include an upgrade of the imaging system to enable it to obtain at least three useful views of the Shuttle from lift-off to at least solid rocket booster (SRB) separation (NASA 2003). The lifetimes of individual cloud elements capable of obscuring optical views of the Shuttle are typically 20 minutes or less. Therefore, accurately observing and forecasting cloud obscuration over an extended network of cameras poses an unprecedented challenge for the current state of observational and modeling techniques. In addition, even the best numerical simulations based on real observations will never reach "truth." In order to quantify the risk that clouds would obscure optical imagery of the Shuttle, a 3D model to calculate probabilistic risk was developed. The model was used to estimate the ability of a network of optical imaging cameras to obtain at least N simultaneous views of the Shuttle from lift-off to SRB separation in the presence of an idealized, randomized cloud field.

  12. Space Shuttle Columbia and Fukushima Nuclear Plant, Similarities and Differences in Organizational Accidents and Lessons Learned

    NASA Astrophysics Data System (ADS)

    Mitsui, Masami; Takeuchi, Nobuo; Kawada, Yasuhiro; Kobayashi, Royoji; Nogami, Manami; Miki, Masami

    2013-09-01

    When records of success are accumulating, we should be most alert to maintain the safety culture we labored to establish and nurture.Space Shuttle Columbia Accident in 2002 and Fukushima Nuclear Power Station Accident in 2011 are seemingly unrelated. But, by studying the accident reports issued after these accidents, the authors found that the organizational causes that led to the accidents were surprisingly similar. The causes of these accidents were rooted in the history and culture of the respective organizations.In this paper, the authors will discuss differences and similarities in these two accidents based on the reports submitted by the accident investigation boards of these two accidents. This will be followed by the lessons learned the authors derived.

  13. Shuttle radiation dose measurements in the International Space Station orbits

    NASA Technical Reports Server (NTRS)

    Badhwar, Gautam D.

    2002-01-01

    The International Space Station (ISS) is now a reality with the start of a permanent human presence on board. Radiation presents a serious risk to the health and safety of the astronauts, and there is a clear requirement for estimating their exposures prior to and after flights. Predictions of the dose rate at times other than solar minimum or solar maximum have not been possible, because there has been no method to calculate the trapped-particle spectrum at intermediate times. Over the last few years, a tissue-equivalent proportional counter (TEPC) has been flown at a fixed mid-deck location on board the Space Shuttle in 51.65 degrees inclination flights. These flights have provided data that cover the expected changes in the dose rates due to changes in altitude and changes in solar activity from the solar minimum to the solar maximum of the current 23rd solar cycle. Based on these data, a simple function of the solar deceleration potential has been derived that can be used to predict the galactic cosmic radiation (GCR) dose rates to within +/-10%. For altitudes to be covered by the ISS, the dose rate due to the trapped particles is found to be a power-law function, rho(-2/3), of the atmospheric density, rho. This relationship can be used to predict trapped dose rates inside these spacecraft to +/-10% throughout the solar cycle. Thus, given the shielding distribution for a location inside the Space Shuttle or inside an ISS module, this approach can be used to predict the combined GCR + trapped dose rate to better than +/-15% for quiet solar conditions.

  14. KSC-2012-3034a

    NASA Image and Video Library

    2012-05-23

    CAPE CANAVERAL, Fla. – Engineers board a NASA Railroad train in preparation for its departure from the NASA Railroad Yard at NASA’s Kennedy Space Center in Florida. The train is headed for the Florida East Coast Railway interchange in Titusville, Fla., where the train’s helium tank cars, a liquid oxygen tank car, and a liquid hydrogen dewar or tank car will be transferred for delivery to the SpaceX engine test complex outside McGregor, Texas. The railroad cars were needed in support of the Space Shuttle Program but currently are not in use by NASA following the completion of the program in 2011. Originally, the tankers belonged to the U.S. Bureau of Mines. At the peak of the shuttle program, there were approximately 30 cars in the fleet. About half the cars were returned to the bureau as launch activity diminished. Five tank cars are being loaned to SpaceX and repurposed to support their engine tests in Texas. Eight cars previously were shipped to California on loan to support the SpaceX Falcon 9 rocket launches from Space Launch Complex-4 on Vandenberg Air Force Base. SpaceX already has three helium tank cars previously used for the shuttle program at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  15. STS-94 Columbia Landing at KSC (main gear touchdown)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    With its drag chute deployed, the Space Shuttle Orbiter Columbia touches down on Runway 33 at KSCs Shuttle Landing Facility at 6:46:34 a.m. EDT with Mission Commander James D. Halsell Jr. and Pilot Susan L. Still at the controls to complete the STS-94 mission. Also on board are Mission Specialist Donald A. Thomas, Mission Specialist Michael L. Gernhardt , Payload Commander Janice Voss, and Payload Specialists Roger K. Crouch and Gregory T. Linteris. Mission elapsed time for STS-94 was 15 days,16 hours, 44 seconds. During the Microgravity Science Laboratory-1 (MSL-1) mission, the Spacelab module was used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station while the flight crew conducted combustion, protein crystal growth and materials processing experiments. This mission was a reflight of the STS-83 mission that lifted off from KSC in April of this year. That space flight was cut short due to indications of a faulty fuel cell. This was Columbias 11th landing at KSC and the 38th landing at the space center in the history of the Shuttle program.

  16. STS-94 Columbia Landing at KSC (side view with sunrise)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    With its drag chute deployed, the Space Shuttle Orbiter Columbia touches down on Runway 33 at KSCs Shuttle Landing Facility at 6:46:34 a.m. EDT with Mission Commander James D. Halsell Jr. and Pilot Susan L. Still at the controls to complete the STS-94 mission. Also on board are Mission Specialist Donald A. Thomas, Mission Specialist Michael L. Gernhardt , Payload Commander Janice Voss, and Payload Specialists Roger K. Crouch and Gregory T. Linteris. Mission elapsed time for STS-94 was 15 days,16 hours, 44 seconds. During the Microgravity Science Laboratory-1 (MSL-1) mission, the Spacelab module was used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station while the flight crew conducted combustion, protein crystal growth and materials processing experiments. This mission was a reflight of the STS-83 mission that lifted off from KSC in April of this year. That space flight was cut short due to indications of a faulty fuel cell. This was Columbias 11th landing at KSC and the 38th landing at the space center in the history of the Shuttle program.

  17. Chandra X-ray Observatory

    NASA Astrophysics Data System (ADS)

    Elvis, M.; Murdin, P.

    2002-10-01

    Launched on 23 July 1999 on board the SpaceShuttle Columbia from Cape Canaveral, the ChandraX-ray Observatory is the first x-ray astronomytelescope to match the 1/2 arcsecond imagingpower and the 0.1% spectral resolving power ofoptical telescopes. Chandra is named afterSubramanian Chandrasekhar, known as Chandra, andauthor of the Chandrasekhar limit. Chandra hasbeen extremely successful and produc...

  18. Microgravity

    NASA Image and Video Library

    1993-04-06

    The Thermal Enclosure System (TES) provides thermal control for protein crystal growth experiments. The TES, housed in two middeck lockers on board the Space Shuttle, contains four Vapor Diffusion Apparatus (VDA) trays. Each can act as either a refrigerator or an incubator and its temperature can be controlled to within one-tenth degree C. The first flight of the TES was during USMP-2 (STS-62).

  19. Advanced Liquid Feed Experiment

    NASA Astrophysics Data System (ADS)

    Distefano, E.; Noll, C.

    1993-06-01

    The Advanced Liquid Feed Experiment (ALFE) is a Hitchhiker experiment flown on board the Shuttle of STS-39 as part of the Space Test Payload-1 (STP-1). The purpose of ALFE is to evaluate new propellant management components and operations under the low gravity flight environment of the Space Shuttle for eventual use in an advanced spacecraft feed system. These components and operations include an electronic pressure regulator, an ultrasonic flowmeter, an ultrasonic point sensor gage, and on-orbit refill of an auxiliary propellant tank. The tests are performed with two transparent tanks with dyed Freon 113, observed by a camera and controlled by ground commands and an on-board computer. Results show that the electronic pressure regulator provides smooth pressure ramp-up, sustained pressure control, and the flexibility to change pressure settings in flight. The ultrasonic flowmeter accurately measures flow and detects gas ingestion. The ultrasonic point sensors function well in space, but not as a gage during sustained low-gravity conditions, as they, like other point gages, are subject to the uncertainties of propellant geometry in a given tank. Propellant transfer operations can be performed with liquid-free ullage equalization at a 20 percent fill level, gas-free liquid transfer from 20-65 percent fill level, minimal slosh, and can be automated.

  20. KSC-02pd0847

    NASA Image and Video Library

    2002-05-30

    KENNEDY SPACE CENTER, FLA. -- In the Press Site auditorium, space agency officials participate in a media briefing following the launch scrub of Space Shuttle mission STS-111. From left are NASA Administrator Sean O'Keefe, French Space Agency President Dr. Alain Bensoussan, and Canadian Space Agency President Dr. Marc Garneau. STS-111 is the second Utilization Flight to the International Space Station, carrying the Multi-Purpose Logistics Module Leonardo, the Mobile Base System (MBS), and a replacement wrist/roll joint for the Canadarm 2. Also on board will be the Expedition Five crew who will replace Expedition Four on the Station. Launch is rescheduled for May 31 at 7:22 p.m. EDT

  1. STS-94 Columbia Landing at KSC

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Space Shuttle orbiter Columbia glides in for a touchdown on Runway 33 at KSCs Shuttle Landing Facility at approximately 6:46 a.m. EDT with Mission Commander James D. Halsell Jr. and Pilot Susan L. Still at the controls to complete the STS-94 mission. Also on board are Mission Specialist Donald A. Thomas, Mission Specialist Michael L. Gernhardt, Payload Commander Janice Voss, and Payload Specialists Roger K.Crouch and Gregory T. Linteris. During the Microgravity Science Laboratory-1 (MSL-1) mission, the Spacelab module was used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station while the flight crew conducted combustion, protein crystal growth and materials processing experiments. This mission was a reflight of the STS-83 mission that lifted off from KSC in April of this year. That space flight was cut short due to indications of a faulty fuel cell.

  2. KSC-08pd3113

    NASA Image and Video Library

    2008-10-13

    CAPE CANAVERAL, Fla. – On Launch Pad 39A at NASA's Kennedy Space Center in Florida, the rotating service structure is open, revealing space shuttle Atlantis on the pad for the STS-125 mission, the fifth and final shuttle servicing mission for NASA’s Hubble Space Telescope. On the RSS, the payload canister is in position at the payload changeout room to receive the Hubble hardware. The payload comprises four carriers holding various equipment for the mission. The hardware will be transported back to Kennedy’s Payload Hazardous Servicing Facility where it will be stored until a new target launch date can be set for Atlantis’ STS-125 mission in 2009. Atlantis’ October target launch date was delayed after a device on board Hubble used in the storage and transmission of science data to Earth shut down on Sept. 27. Replacing the broken device will be added to Atlantis’ servicing mission to the telescope. Photo credit: NASA/Tim Jacobs

  3. STS-94 Columbia Landing at KSC (before main gear touchdown)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Space Shuttle orbiter Columbia glides in for a touchdown on Runway 33 at KSCs Shuttle Landing Facility at approximately 6:46 a.m. EDT with Mission Commander James D. Halsell Jr. and Pilot Susan L. Still at the controls to complete the STS-94 mission. Also on board are Mission Specialist Donald A. Thomas, Mission Specialist Michael L. Gernhardt, Payload Commander Janice Voss, and Payload Specialists Roger K.Crouch and Gregory T. Linteris. During the Microgravity Science Laboratory-1 (MSL-1) mission, the Spacelab module was used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station while the flight crew conducted combustion, protein crystal growth and materials processing experiments. This mission was a reflight of the STS-83 mission that lifted off from KSC in April of this year. That space flight was cut short due to indications of a faulty fuel cell.

  4. Heroes and Legends Ribbon Cutting Ceremony

    NASA Image and Video Library

    2016-11-11

    Boeing Vice President and General Manager John Elbon addresses the crowd gathered for the grand opening of the Heroes and Legends attraction at the Kennedy Space Center Visitor Complex. Boeing is sponsoring the new attraction. Seated, to the left, is former space shuttle astronaut Dan Brandenstein, chairman of the Astronaut Scholarship Foundation board of directors. The new facility includes the U.S. Astronaut Hall of Fame and looks back to the pioneering efforts of Mercury, Gemini and Apollo. It sets the stage by providing the background and context for space exploration and the legendary men and women who pioneered the nation's journey into space.

  5. KSC-00pd1262

    NASA Image and Video Library

    2000-09-08

    KENNEDY SPACE CENTER, Fla. -- Columns of flame spew from the solid rocket boosters hurling Space Shuttle Atlantis toward space on mission STS-106. The on-time liftoff occurred at 8:45:47 a.m. EDT for the start of an 11-day mission to the International Space Station. While on board, the seven-member crew will perform support tasks, transfer supplies and prepare the living quarters in the newly arrived Zvezda Service Module. The first long-duration crew, dubbed “Expedition One,” is due to arrive at the Station in late fall. Landing of Atlantis is targeted for 4:45 a.m. EDT on Sept. 19

  6. KSC00pd1262

    NASA Image and Video Library

    2000-09-08

    KENNEDY SPACE CENTER, Fla. -- Columns of flame spew from the solid rocket boosters hurling Space Shuttle Atlantis toward space on mission STS-106. The on-time liftoff occurred at 8:45:47 a.m. EDT for the start of an 11-day mission to the International Space Station. While on board, the seven-member crew will perform support tasks, transfer supplies and prepare the living quarters in the newly arrived Zvezda Service Module. The first long-duration crew, dubbed “Expedition One,” is due to arrive at the Station in late fall. Landing of Atlantis is targeted for 4:45 a.m. EDT on Sept. 19

  7. Preliminary design of an auxiliary power unit for the space shuttle: Component and system configuration screening analysis

    NASA Technical Reports Server (NTRS)

    Binsley, R. L.; Maddox, J. P.; Marcy, R. D.; Siegler, R. S.; Spies, R.

    1971-01-01

    The auxiliary power unit (APU) for the space shuttle is required to provide hydraulic and electrical power on board the booster and orbiter vehicles. Five systems and their associated components, which utilize hot gas turbines to supply horsepower at gearbox output pads, were studied. Hydrogen-oxygen and storable propellants were considered for the hot gas supply. All APU's were required to be self-contained with respect to dissipating internally generated heat. These five systems were evaluated relative to a consistent criteria. The system supplied with high pressure gaseous hydrogen and oxygen was recommended as the best approach. It included a two-stage pressure-compounded partial-admission turbine, a propellant conditioning system with recuperation, a control system, and a gearbox. The gearbox output used was 240 hp. At the close of the study a 400 hp level was considered more appropriate for meeting the prime shuttle vehicle needs, and an in-depth analysis of the system at the 400 hp output level was recommended.

  8. KSC-08pd3124

    NASA Image and Video Library

    2008-10-15

    CAPE CANAVERAL, Fla. – On Launch Pad 39A on NASA's Kennedy Space Center in Florida, workers ensure the doors of the payload canister are closed. Space shuttle Atlantis’ HST payload for the STS-125 mission was moved from the shuttle into the canister. The payload comprises four carriers holding various equipment for the mission. The hardware will be transported back to Kennedy’s Payload Hazardous Servicing Facility where it will be stored until a new target launch date can be set for Atlantis’ STS-125 mission in 2009. Atlantis’ October target launch date was delayed after a device on board Hubble used in the storage and transmission of science data to Earth shut down on Sept. 27. Replacing the broken device will be added to Atlantis’ servicing mission to the telescope. Photo credit: NASA/Kim Shiflett

  9. KSC-08pd3123

    NASA Image and Video Library

    2008-10-15

    CAPE CANAVERAL, Fla. – On Launch Pad 39A on NASA's Kennedy Space Center in Florida, a worker oversees the closing of the doors on the payload canister. Space shuttle Atlantis’ HST payload for the STS-125 mission was moved from the shuttle into the canister. The payload comprises four carriers holding various equipment for the mission. The hardware will be transported back to Kennedy’s Payload Hazardous Servicing Facility where it will be stored until a new target launch date can be set for Atlantis’ STS-125 mission in 2009. Atlantis’ October target launch date was delayed after a device on board Hubble used in the storage and transmission of science data to Earth shut down on Sept. 27. Replacing the broken device will be added to Atlantis’ servicing mission to the telescope. Photo credit: NASA/Kim Shiflett

  10. Investigations of Shuttle Main Landing Gear Door Environmental Seals

    NASA Technical Reports Server (NTRS)

    Finkbeiner, Joshua; Dunlap, Pat; Steinetz, Bruce; DeMango, Jeff; Newswander, Daniel

    2005-01-01

    The environmental seals for the main landing gear doors of the Shuttle Orbiters were raised by the Columbia Accident Investigation Board as a potential safety concern. Inspections of seals installed on the Shuttle Discovery revealed that they were permanently deformed and no longer met certified seal compression requirements. Replacement of the seals led to the inability to fully close the main landing gear doors. Johnson Space Center requested that Glenn Research Center conduct tests on the main landing gear door environmental seals to assist in installing the seals in a manner to allow the main landing gear doors to fully close. Further testing was conducted to fill out the seal performance database. Results from the testing indicated that the method of bonding the seals was important in reducing seal loads on the main landing gear doors. Also, the replacement seals installed in Shuttle Discovery were found to have leakage performance sufficient to meet the certification requirements.

  11. International Space Station (ISS)

    NASA Image and Video Library

    2000-12-05

    Astronaut Joseph R. Tanner, STS-97 mission specialist, is seen during a session of Extravehicular Activity (EVA), performing work on the International Space Station (ISS). Part of the Remote Manipulator System (RMS) arm and a section of the newly deployed solar array panel are in the background. The primary objective of the STS-97 mission was the delivery, assembly, and activation of the U.S. electrical power system on board the ISS. The electrical power system, which is built into a 73-meter (240-foot) long solar array structure consists of solar arrays, radiators, batteries, and electronics. The entire 15.4-metric ton (17-ton) package is called the P6 Integrated Truss Segment and is the heaviest and largest element yet delivered to the station aboard a space shuttle. The electrical system will eventually provide the power necessary for the first ISS crews to live and work in the U.S. segment. The STS-97 crew of five launched aboard the Space Shuttle Orbiter Endeavor on November 30, 2000 for an 11 day mission.

  12. The Ruggedized STD Bus Microcomputer - A low cost computer suitable for Space Shuttle experiments

    NASA Technical Reports Server (NTRS)

    Budney, T. J.; Stone, R. W.

    1982-01-01

    Previous space flight computers have been costly in terms of both hardware and software. The Ruggedized STD Bus Microcomputer is based on the commercial Mostek/Pro-Log STD Bus. Ruggedized PC cards can be based on commercial cards from more than 60 manufacturers, reducing hardware cost and design time. Software costs are minimized by using standard 8-bit microprocessors and by debugging code using commercial versions of the ruggedized flight boards while the flight hardware is being fabricated.

  13. KSC-98pc1465

    NASA Image and Video Library

    1998-10-28

    The day before the launch of mission STS-95, the Press Site was inundated with 40 trailers, 75 trucks and RVs, 8 stages and 8 risers to accommodate the 3,750 media requests to cover the launch and return to space of John H. Glenn Jr., a senator from Ohio. Glenn flew aboard Friendship 7 in February 1962, and was the first American to orbit the Earth. Glenn is one of a crew of seven on board Space Shuttle Discovery for the nine-day mission

  14. Space Shuttle capabilities, constraints, and cost

    NASA Technical Reports Server (NTRS)

    Lee, C. M.

    1980-01-01

    The capabilities, constraints, and costs of the Space Transportation System (STS), which combines reusable and expendable components, are reviewed, and an overview of the current planning activities for operating the STS in an efficient and cost-effective manner is presented. Traffic forecasts, performance constraints and enhancements, and potential new applications are discussed. Attention is given to operating costs, pricing policies, and the steps involved in 'getting on board', which includes all the interfaces between NASA and the users necessary to come to launch service agreements.

  15. Shuttle-era experiments in the area of plasma flow interactions with bodies in space

    NASA Technical Reports Server (NTRS)

    Samir, U.; Stone, N. H.

    1980-01-01

    A new experimental approach is discussed that can be adopted for studies in the area of plasma flow interactions with bodies in space. The potential use of the Space Shuttle/Orbiter as a near-earth plasma laboratory for studies in space plasma physics and particularly in solar system plasmas is discussed. This new experimental approach holds great promise for studies in the supersonic and sub-Alfvenic flow regime which has applications to the motion of natural satellites around their mother planets in the solar-system (e.g., the satellite Io around the planet Jupiter). A well conceived experimental and theoretical program can lead to a better physical understanding regarding the validity and range of applicability of using gasdynamic, kinetic, and fluid approaches in describing collisionless plasma flow interactions with bodies in a variety of flow regimes. In addition to the above scientific aspects of the program, significant technological advances can be achieved regarding the interaction of space probes in planetary atmospheres/ionospheres and the reliability of using various plasma diagnostic devices on board spacecraft and large space platforms.

  16. International Space Station (ISS)

    NASA Image and Video Library

    2002-06-11

    The STS-111 mission, the 14th Shuttle mission to visit the International Space Station (ISS), was launched on June 5, 2002 aboard the Space Shuttle Orbiter Endeavour. On board were the STS-111 and Expedition Five crew members. Astronauts Kerneth D. Cockrell, commander; Paul S. Lockhart, pilot; and mission specialists Franklin R. Chang-Diaz and Philippe Perrin were the STS-111 crew members. Expedition Five crew members included Cosmonaut Valeri G. Korzun, commander; Astronaut Peggy A. Whitson and Cosmonaut Sergei Y. Treschev, flight engineers. Three space walks enabled the STS-111 crew to accomplish the delivery and installation of the Mobile Remote Servicer Base System (MBS), an important part of the Station's Mobile Servicing System that allows the robotic arm to travel the length of the Station, which is necessary for future construction tasks. In this photograph, Astronaut Philippe Perrin, representing CNES, the French Space Agency, participates in the second scheduled EVA. During the space walk, Perrin and Chang-Diaz attached power, data, and video cables from the ISS to the MBS, and used a power wrench to complete the attachment of the MBS onto the Mobile Transporter (MT).

  17. International Space Station (ISS)

    NASA Image and Video Library

    2002-06-09

    The STS-111 mission, the 14th Shuttle mission to visit the International Space Station (ISS), was launched on June 5, 2002 aboard the Space Shuttle Orbiter Endeavour. On board were the STS-111 and Expedition Five crew members. Astronauts Kerneth D. Cockrell, commander; Paul S. Lockhart, pilot, and mission specialists Franklin R. Chang-Diaz and Philippe Perrin were the STS-111 crew members. Expedition Five crew members included Cosmonaut Valeri G. Korzun, commander, Astronaut Peggy A. Whitson and Cosmonaut Sergei Y. Treschev, flight engineers. Three space walks enabled the STS-111 crew to accomplish the delivery and installation of the Mobile Remote Servicer Base System (MBS), an important part of the Station's Mobile Servicing System that allows the robotic arm to travel the length of the Station, which is necessary for future construction tasks; the replacement of a wrist roll joint on the Station's robotic arm; and the task of unloading supplies and science experiments from the Leonardo multipurpose Logistics Module, which made its third trip to the orbital outpost. In this photograph, the Space Shuttle Endeavour, back dropped by the blackness of space, is docked to the pressurized Mating Adapter (PMA-2) at the forward end of the Destiny Laboratory on the ISS. A portion of the Canadarm2 is visible on the right and Endeavour's robotic arm is in full view as it is stretched out with the S0 (S-zero) Truss at its end.

  18. International Space Station (ISS)

    NASA Image and Video Library

    2002-06-09

    The STS-111 mission, the 14th Shuttle mission to visit the International Space Station (ISS), was launched on June 5, 2002 aboard the Space Shuttle Orbiter Endeavour. On board were the STS-111 and Expedition Five crew members. Astronauts Kerneth D. Cockrell, commander; Paul S. Lockhart, pilot, and mission specialists Franklin R. Chang-Diaz and Philippe Perrin were the STS-111 crew members. Expedition Five crew members included Cosmonaut Valeri G. Korzun, commander, Astronaut Peggy A. Whitson and Cosmonaut Sergei Y. Treschev, flight engineers. Three space walks enabled the STS-111 crew to accomplish mission objectives: The delivery and installation of the Mobile Remote Servicer Base System (MBS), an important part of the Station's Mobile Servicing System that allows the robotic arm to travel the length of the Station, which is necessary for future construction tasks; the replacement of a wrist roll joint on the Station's robotic arm; and the task of unloading supplies and science experiments from the Leonardo multipurpose Logistics Module, which made its third trip to the orbital outpost. In this photograph, the Space Shuttle Endeavour, back dropped by the blackness of space, is docked to the pressurized Mating Adapter (PMA-2) at the forward end of the Destiny Laboratory on the ISS. Endeavour's robotic arm is in full view as it is stretched out with the S0 (S-zero) Truss at its end.

  19. Engineering and simulation of life sciences Spacelab experiments

    NASA Technical Reports Server (NTRS)

    Johnston, R. S.; Bush, W. H. Jr; Rummel, J. A.; Alexander, W. C.

    1979-01-01

    The third in a series of Spacelab Mission Development tests was conducted at the Johnson (correction of Johnston) Space Center as a part of the development of Life Sciences experiments for the Space Shuttle era. The latest test was a joint effort of the Ames Research and Johnson Space Centers and utilized animals and men for study. The basic objective of this test was to evaluate the operational concepts planned for the Space Shuttle life science payloads program. A three-man crew (Mission Specialist and two Payload Specialists) conducted 26 experiments and 12 operational tests, which were selected for this 7-day mission simulation. The crew lived on board a simulated Orbiter/Spacelab mockup 24 hr a day. The Orbiter section contained the mid deck crew quarters area, complete with sleeping, galley and waste management provisions. The Spacelab was identical in geometry to the European Space Agency Spacelab design, complete with removable rack sections and stowage provisions. Communications between the crewmen and support personnel were configured and controlled as currently planned for operational shuttle flights. For this test a Science Operations Remote Center was manned at the Ames Research Center and was managed by simulated Mission Control and Payload Operation Control Centers at the Johnson Space Center. This paper presents the test objectives, description of the facilities and test program, and the results of this test.

  20. Telemetry Boards Interpret Rocket, Airplane Engine Data

    NASA Technical Reports Server (NTRS)

    2009-01-01

    For all the data gathered by the space shuttle while in orbit, NASA engineers are just as concerned about the information it generates on the ground. From the moment the shuttle s wheels touch the runway to the break of its electrical umbilical cord at 0.4 seconds before its next launch, sensors feed streams of data about the status of the vehicle and its various systems to Kennedy Space Center s shuttle crews. Even while the shuttle orbiter is refitted in Kennedy s orbiter processing facility, engineers constantly monitor everything from power levels to the testing of the mechanical arm in the orbiter s payload bay. On the launch pad and up until liftoff, the Launch Control Center, attached to the large Vehicle Assembly Building, screens all of the shuttle s vital data. (Once the shuttle clears its launch tower, this responsibility shifts to Mission Control at Johnson Space Center, with Kennedy in a backup role.) Ground systems for satellite launches also generate significant amounts of data. At Cape Canaveral Air Force Station, across the Banana River from Kennedy s location on Merritt Island, Florida, NASA rockets carrying precious satellite payloads into space flood the Launch Vehicle Data Center with sensor information on temperature, speed, trajectory, and vibration. The remote measurement and transmission of systems data called telemetry is essential to ensuring the safe and successful launch of the Agency s space missions. When a launch is unsuccessful, as it was for this year s Orbiting Carbon Observatory satellite, telemetry data also provides valuable clues as to what went wrong and how to remedy any problems for future attempts. All of this information is streamed from sensors in the form of binary code: strings of ones and zeros. One small company has partnered with NASA to provide technology that renders raw telemetry data intelligible not only for Agency engineers, but also for those in the private sector.

  1. MSFC (TES) Thermal Enclosure System

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Thermal Enclosure System (TES) provides thermal control for protein crystal growth experiments. The TES, housed in two middeck lockers on board the Space Shuttle, contains four Vapor Diffusion Apparatus (VDA) trays. Each can act as either a refrigerator or an incubator and its temperature can be controlled to within one-tenth degree C. The first flight of the TES was during USMP-2 (STS-62).

  2. Definition Research Study

    NASA Technical Reports Server (NTRS)

    Marmo, F. F.; Pressman, J.

    1973-01-01

    Data were complied on the physical behavior and characteristics of plasma gas and/or dust in the context of how they relate to the self-contamination of manned orbiting vehicles. A definition is given of a systematic experimental program designed to yield the required empirical data on the plasma, neutral gas, and/or the particulate matter surrounding the orbiting vehicles associated with shuttle missions. Theoretical analyses were completed on the behavior of materials to be released from the orbiting or subsatellite shuttle vehicles. The results were used to define some general experimental design recommendations directly applicable to the space shuttle program requirement. An on-board laser probe technique is suggested for measuring the dynamic behavior, inventory, and physical characteristics of particulates in the vicinity of an orbiting spacecraft. Laser probing of cometary photodissociation is also assessed.

  3. X-SAR: The X-band synthetic aperture radar on board the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Werner, Marian U.

    1993-01-01

    The X-band synthetic aperture radar (X-SAR) is the German/Italian contribution to the NASA/JPL Shuttle Radar Lab missions as part of the preparation for the Earth Observation System (EOS) program. The Shuttle Radar Lab is a combination of several radars: an L-band (1.2 GHz) and a C-band (5.3 GHz) multipolarization SAR known as SIR-C (Shuttle Imaging Radar); and an X-band (9.6 GHz) vertically polarized SAR which will be operated synchronously over the same target areas to deliver calibrated multifrequency and multipolarization SAR data at multiple incidence angles from space. A joint German/Italian project office at DARA (German Space Agency) is responsible for the management of the X-SAR project. The space hardware has been developed and manufactured under industrial contract by Dornier and Alenia Spazio. Besides supporting all the technical and scientific tasks, DLR, in cooperation with ASI (Agencia Spaziale Italiano) is responsible for mission operation, calibration, and high precision SAR processing. In addition, DLR developed an airborne X-band SAR to support the experimenters with campaigns to prepare for the missions. The main advantage of adding a shorter wavelength (3 cm) radar to the SIR-C radars is the X-band radar's weaker penetration into vegetation and soil and its high sensitivity to surface roughness and associated phenomena. The performance of each of the three radars is comparable with respect to radiometric and geometric resolution.

  4. KSC-02pd0846

    NASA Image and Video Library

    2002-05-30

    KENNEDY SPACE CENTER, FLA. -- In the Press Site auditorium, space agency officials participate in a media briefing following the launch scrub of Space Shuttle mission STS-111. From left are NASA/JSC Public Affairs Officer Kyle Herring, NASA Administrator Sean O'Keefe, French Space Agency President Dr. Alain Bensoussan, and Canadian Space Agency President Dr. Marc Garneau. STS-111 is the second Utilization Flight to the International Space Station, carrying the Multi-Purpose Logistics Module Leonardo, the Mobile Base System (MBS), and a replacement wrist/roll joint for the Canadarm 2. Also on board will be the Expedition Five crew who will replace Expedition Four on the Station. Launch is rescheduled for May 31 at 7:22 p.m. EDT

  5. STS-103 Mission Specialist Grunsfeld and his family DEPART PAFB for Houston

    NASA Technical Reports Server (NTRS)

    1999-01-01

    STS-103 Mission Specialist John M. Grunsfeld (Ph.D.), with his wife, Carol, and their children, smiles for the camera on the runway at Patrick Air Force Base in Cocoa Beach, Fla. The STS-103 crew and their families are preparing to board an airplane that will return them to their home base at the Johnson Space Center in Houston following the successful completion of their mission. Discovery landed in darkness the previous evening, Dec. 27, on runway 33 at KSC's Shuttle Landing Facility at 7:00:47 p.m. EST. This was the first time that a Shuttle crew spent the Christmas holiday in space. The other STS-103 crew members are Commander Curtis L. Brown Jr.; Pilot Scott J. Kelly; and Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), Claude Nicollier of Switzerland and Jean-Frangois Clervoy of France. The STS-103 mission accomplished outfitting the Hubble Space Telescope with six new gyroscopes, six new voltage/temperature improvement kits, a new onboard computer, a new solid state recorder and new data transmitter, a new fine guidance sensor along with new insulation on parts of the orbiting telescope. This was the 96th flight in the Space Shuttle program and the 27th for the orbiter Discovery.

  6. STS-103 crew members and their families pose for a portrait before DEPARTing

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The STS-103 crew pose for a group portrait with their families and loved ones on the runway at Patrick Air Force Base in Cocoa Beach, Fla. They are preparing to board an airplane that will return them to their home base at the Johnson Space Center in Houston following the successful completion of their mission. From left to right, the crew members are Mission Specialists John M. Grunsfeld (Ph.D.), C. Michael Foale (Ph.D.), Claude Nicollier of Switzerland, Jean-Frangois Clervoy of France, and Steven L. Smith; Pilot Scott J. Kelly; and Commander Curtis L. Brown Jr. Discovery landed in darkness the previous evening, Dec. 27, on runway 33 at KSC's Shuttle Landing Facility at 7:00:47 p.m. EST. This was the first time that a Shuttle crew spent the Christmas holiday in space. The STS-103 mission accomplished outfitting the Hubble Space Telescope with six new gyroscopes, six new voltage/temperature improvement kits, a new onboard computer, a new solid state recorder and new data transmitter, a new fine guidance sensor along with new insulation on parts of the orbiting telescope. This was the 96th flight in the Space Shuttle program and the 27th for the orbiter Discovery.

  7. STS-103 Mission Specialist Foale and his family DEPART PAFB for Houston

    NASA Technical Reports Server (NTRS)

    1999-01-01

    STS-103 Mission Specialist C. Michael Foale (Ph.D.) holds one of his children on the runway at Patrick Air Force Base in Cocoa Beach, Fla., as his wife, Rhonda, looks on. The STS-103 crew and their families are preparing to board an airplane that will return them to their home base at the Johnson Space Center in Houston following the successful completion of their mission. Discovery landed in darkness the previous evening, Dec. 27, on runway 33 at KSC's Shuttle Landing Facility at 7:00:47 p.m. EST. This was the first time that a Shuttle crew spent the Christmas holiday in space. The other STS-103 crew members are Commander Curtis L. Brown Jr.; Pilot Scott J. Kelly; and Mission Specialists Steven L. Smith, John M. Grunsfeld (Ph.D.), Claude Nicollier of Switzerland and Jean-Frangois Clervoy of France. The STS-103 mission accomplished outfitting the Hubble Space Telescope with six new gyroscopes, six new voltage/temperature improvement kits, a new onboard computer, a new solid state recorder and new data transmitter, a new fine guidance sensor along with new insulation on parts of the orbiting telescope. This was the 96th flight in the Space Shuttle program and the 27th for the orbiter Discovery.

  8. STS-103 Payload Commander Smith and his wife DEPART PAFB for Houston

    NASA Technical Reports Server (NTRS)

    1999-01-01

    STS-103 Payload Commander Steven L. Smith and his wife, Peggy, smile for the camera on the runway at Patrick Air Force Base in Cocoa Beach, Fla. The STS-103 crew and their families are preparing to board an airplane that will return them to their home base at the Johnson Space Center in Houston following the successful completion of their mission. Discovery landed in darkness the previous evening, Dec. 27, on runway 33 at KSC's Shuttle Landing Facility at 7:00:47 p.m. EST. This was the first time that a Shuttle crew spent the Christmas holiday in space. The other STS-103 crew members are Commander Curtis L. Brown Jr.; Pilot Scott J. Kelly; and Mission Specialists C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), Claude Nicollier of Switzerland and Jean-Frangois Clervoy of France. The STS-103 mission accomplished outfitting the Hubble Space Telescope with six new gyroscopes, six new voltage/temperature improvement kits, a new onboard computer, a new solid state recorder and new data transmitter, a new fine guidance sensor along with new insulation on parts of the orbiting telescope. This was the 96th flight in the Space Shuttle program and the 27th for the orbiter Discovery.

  9. STS-103 Pilot Kelly and MS Clervoy and Smith DEPART PAFB for Houston

    NASA Technical Reports Server (NTRS)

    1999-01-01

    STS-103 Pilot Scott J. Kelly holds his daughter as he talks to Mission Specialists and fellow crew members Jean-Frangois Clervoy of France and Steven L. Smith on the runway at Patrick Air Force Base in Cocoa Beach, Fla. The STS-103 crew and their families are preparing to board an airplane that will return them to their home base at the Johnson Space Center in Houston following the successful completion of their mission. Discovery landed in darkness the previous evening, Dec. 27, on runway 33 at KSC's Shuttle Landing Facility at 7:00:47 p.m. EST. This was the first time that a Shuttle crew spent the Christmas holiday in space. The other STS-103 crew members are Commander Curtis L. Brown Jr. and Mission Specialists C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), and Claude Nicollier of Switzerland. The STS-103 mission accomplished outfitting the Hubble Space Telescope with six new gyroscopes, six new voltage/temperature improvement kits, a new onboard computer, a new solid state recorder and new data transmitter, a new fine guidance sensor along with new insulation on parts of the orbiting telescope. This was the 96th flight in the Space Shuttle program and the 27th for the orbiter Discovery.

  10. KSC-06pd1908

    NASA Image and Video Library

    2006-08-24

    KENNEDY SPACE CENTER, FLA. - On NASA Kennedy Space Center's Shuttle Landing Facility, STS-115 Commander Brent Jett boards the Shuttle Training Aircraft to practice landing the shuttle. STA practice is part of launch preparations. The STA is a Grumman American Aviation-built Gulf Stream II jet that was modified to simulate an orbiter’s cockpit, motion and visual cues, and handling qualities. In flight, the STA duplicates the orbiter’s atmospheric descent trajectory from approximately 35,000 feet altitude to landing on a runway. Because the orbiter is unpowered during re-entry and landing, its high-speed glide must be perfectly executed the first time. Mission STS-115 is scheduled to lift off about 4:30 p.m. Aug. 27. The crew will deliver and install the P3/P4 segment to the port side of the integrated truss system on the International Space Station. The truss includes a new set of photovoltaic solar arrays. When unfurled to their full length of 240 feet, the arrays will provide additional power for the station in preparation for the delivery of international science modules over the next two years. The mission is expected to last 11 days and includes three scheduled spacewalks. Photo credit: NASA/Kim Shiflett

  11. Fuel cell technology program contract summary report

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A fuel cell technology program which was established to advance the state-of-the-art of hydrogen-oxygen fuel cells using the P and WA PC8B technology as the base is reported. The major tasks of this program consisted of (1) fuel cell system studies of a space shuttle powerplant conceptual design (designated engineering model -1, EM-1) supported by liaison with the space shuttle prime contractors; (2) component and subsystem technology advancement and; (3) a demonstrator powerplant test. Fuel cell system studies, with the EM-1 as the focal point of design activities, included determination of voltage regulation, specific reactant consumption, weight, voltage level and performance characteristics. These studies provided the basis for coordination activities with the space shuttle vehicle prime contractor. Interface information, on-board checkout and in-flight monitoring requirements, and development cost data were also provided as part of this activity. Even though the two vehicles primes had different voltage requirements (115 volts in one case and 28 volts in the other), it was concluded that either option could be provided in the fuel cell power system by the electrical hook-up of the cells in the stack.

  12. KSC-2011-1873

    NASA Image and Video Library

    2011-02-26

    CAPE CANAVERAL, Fla. -- Crew members on board Liberty Star, one of NASA's solid rocket booster retrieval ships, haul in the massive parachute from the right spent booster from space shuttle Discovery's final launch. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Frank Michaux

  13. KSC-2011-1874

    NASA Image and Video Library

    2011-02-26

    CAPE CANAVERAL, Fla. -- Crew members on board Liberty Star, one of NASA's solid rocket booster retrieval ships, haul in the massive parachute from the right spent booster from space shuttle Discovery's final launch. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Frank Michaux

  14. NASA Imaging for Safety, Science, and History

    NASA Technical Reports Server (NTRS)

    Grubbs, Rodney; Lindblom, Walt; Bowerman, Deborah S. (Technical Monitor)

    2002-01-01

    Since its creation in 1958 NASA has been making and documenting history, both on Earth and in space. To complete its missions NASA has long relied on still and motion imagery to document spacecraft performance, see what can't be seen by the naked eye, and enhance the safety of astronauts and expensive equipment. Today, NASA is working to take advantage of new digital imagery technologies and techniques to make its missions more safe and efficient. An HDTV camera was on-board the International Space Station from early August, to mid-December, 2001. HDTV cameras previously flown have had degradation in the CCD during the short duration of a Space Shuttle flight. Initial performance assessment of the CCD during the first-ever long duration space flight of a HDTV camera and earlier flights is discussed. Recent Space Shuttle launches have been documented with HDTV cameras and new long lenses giving clarity never before seen with video. Examples and comparisons will be illustrated between HD, highspeed film, and analog video of these launches and other NASA tests. Other uses of HDTV where image quality is of crucial importance will also be featured.

  15. Space shuttle electromagnetic environment experiment. Phase A: Definition study

    NASA Technical Reports Server (NTRS)

    Haber, F.; Showers, R. M.; Taheri, S. H.; Forrest, L. A., Jr.; Kocher, C.

    1974-01-01

    A program is discussed which develops a concept for measuring the electromagnetic environment on earth with equipment on board an orbiting space shuttle. Earlier work on spaceborne measuring experiments is reviewed, and emissions to be expected are estimated using, in part, previously gathered data. General relations among system parameters are presented, followed by a proposal on spatial and frequency scanning concepts. The methods proposed include a nadir looking measurement with small lateral scan and a circularly scanned measurement looking tangent to the earth's surface at the horizon. Antenna requirements are given, assuming frequency coverage from 400 MHz to 40 GHz. For the low frequency range, 400-1000 MHz, a processed, thinned array is proposed which will be more fully analyzed in the next phase of the program. Preliminary hardware and data processing requirements are presented.

  16. STS-111 Onboard Photo of Endeavour Docking With PMA-2

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The STS-111 mission, the 14th Shuttle mission to visit the International Space Station (ISS), was launched on June 5, 2002 aboard the Space Shuttle Orbiter Endeavour. On board were the STS-111 and Expedition Five crew members. Astronauts Kerneth D. Cockrell, commander; Paul S. Lockhart, pilot, and mission specialists Franklin R. Chang-Diaz and Philippe Perrin were the STS-111 crew members. Expedition Five crew members included Cosmonaut Valeri G. Korzun, commander, Astronaut Peggy A. Whitson and Cosmonaut Sergei Y. Treschev, flight engineers. Three space walks enabled the STS-111 crew to accomplish mission objectives: The delivery and installation of the Mobile Remote Servicer Base System (MBS), an important part of the Station's Mobile Servicing System that allows the robotic arm to travel the length of the Station, which is necessary for future construction tasks; the replacement of a wrist roll joint on the Station's robotic arm; and the task of unloading supplies and science experiments from the Leonardo multipurpose Logistics Module, which made its third trip to the orbital outpost. In this photograph, the Space Shuttle Endeavour, back dropped by the blackness of space, is docked to the pressurized Mating Adapter (PMA-2) at the forward end of the Destiny Laboratory on the ISS. Endeavour's robotic arm is in full view as it is stretched out with the S0 (S-zero) Truss at its end.

  17. Image Analysis via Fuzzy-Reasoning Approach: Prototype Applications at NASA

    NASA Technical Reports Server (NTRS)

    Dominguez, Jesus A.; Klinko, Steven J.

    2004-01-01

    A set of imaging techniques based on Fuzzy Reasoning (FR) approach was built for NASA at Kennedy Space Center (KSC) to perform complex real-time visual-related safety prototype tasks, such as detection and tracking of moving Foreign Objects Debris (FOD) during the NASA Space Shuttle liftoff and visual anomaly detection on slidewires used in the emergency egress system for Space Shuttle at the launch pad. The system has also proved its prospective in enhancing X-ray images used to screen hard-covered items leading to a better visualization. The system capability was used as well during the imaging analysis of the Space Shuttle Columbia accident. These FR-based imaging techniques include novel proprietary adaptive image segmentation, image edge extraction, and image enhancement. Probabilistic Neural Network (PNN) scheme available from NeuroShell(TM) Classifier and optimized via Genetic Algorithm (GA) was also used along with this set of novel imaging techniques to add powerful learning and image classification capabilities. Prototype applications built using these techniques have received NASA Space Awards, including a Board Action Award, and are currently being filed for patents by NASA; they are being offered for commercialization through the Research Triangle Institute (RTI), an internationally recognized corporation in scientific research and technology development. Companies from different fields, including security, medical, text digitalization, and aerospace, are currently in the process of licensing these technologies from NASA.

  18. Receiver Design, Performance Analysis, and Evaluation for Space-Borne Laser Altimeters and Space-to-Space Laser Ranging Systems

    NASA Technical Reports Server (NTRS)

    Davidson, Frederic M.; Sun, Xiaoli; Field, Christopher T.

    1996-01-01

    This progress report consists of two separate reports. The first one describes our work on the use of variable gain amplifiers to increase the receiver dynamic range of space borne laser altimeters such as NASA's Geoscience Laser Altimeter Systems (GLAS). The requirement of the receiver dynamic range was first calculated. A breadboard variable gain amplifier circuit was made and the performance was fully characterized. The circuit will also be tested in flight on board the Shuttle Laser Altimeter (SLA-02) next year. The second report describes our research on the master clock oscillator frequency calibration for space borne laser altimeter systems using global positioning system (GPS) receivers.

  19. A study of the potential impacts of space utilization

    NASA Technical Reports Server (NTRS)

    Cheston, T. S.; Chafer, C. M.; Chafer, S. B.; Webb, D. C.; Stadd, C. A.

    1979-01-01

    Because the demand for comprehensive impact analysis of space technologies will increase with the use of space shuttles, the academic social sciences/humanities community was surveyed in order to determine their interests in space utilization, to develop a list of current and planned courses, and to generate a preliminary matrix of relevant social sciences. The academic scope/focus of a proposed social science space-related journal was identified including the disciplines which should be represented in the editorial board/reviewer system. The time and funding necessary to develop a self-sustaining journal were assessed. Cost income, general organizational structure, marking/distribution and funding sources were analyzed. Recommendations based on the survey are included.

  20. Analysis of Waves in Space Plasma (WISP) near field simulation and experiment

    NASA Technical Reports Server (NTRS)

    Richie, James E.

    1992-01-01

    The WISP payload scheduler for a 1995 space transportation system (shuttle flight) will include a large power transmitter on board at a wide range of frequencies. The levels of electromagnetic interference/electromagnetic compatibility (EMI/EMC) must be addressed to insure the safety of the shuttle crew. This report is concerned with the simulation and experimental verification of EMI/EMC for the WISP payload in the shuttle cargo bay. The simulations have been carried out using the method of moments for both thin wires and patches to stimulate closed solids. Data obtained from simulation is compared with experimental results. An investigation of the accuracy of the modeling approach is also included. The report begins with a description of the WISP experiment. A description of the model used to simulate the cargo bay follows. The results of the simulation are compared to experimental data on the input impedance of the WISP antenna with the cargo bay present. A discussion of the methods used to verify the accuracy of the model is shown to illustrate appropriate methods for obtaining this information. Finally, suggestions for future work are provided.

  1. A review of the liquid metal diffusion data obtained from the space shuttle endeavour mission STS-47 and the space shuttle columbia mission STS-52

    NASA Astrophysics Data System (ADS)

    Shirkhanzadeh, Morteza

    Accurate data of liquid-phase solute diffusion coefficients are required to validate the condensed -matter physics theories. However, the required data accuracy to discriminate between com-peting theoretical models is 1 to 2 percent(1). Smith and Scott (2) have recently used the measured values of diffusion coefficients for Pb-Au in microgravity to validate the theoretical values of the diffusion coefficients derived from molecular dynamics simulations and several Enskog hard sphere models. The microgravity data used was obtained from the liquid diffusion experiments conducted on board the Space Shuttle Endeavour (mission STS-47) and the Space Shuttle Columbia (mission STS-52). Based on the analysis of the results, it was claimed that the measured values of diffusion coefficients were consistent with the theoretical results and that the data fit a linear relationship with a slope slightly greater than predicted by the molecular dynamics simulations. These conclusions, however, contradict the claims made in previous publications (3-5) where it was reported that the microgravity data obtained from the shuttle experiments fit the fluctuation theory (D proportional to T2). A thorough analysis of data will be presented to demonstrate that the widely-reported micro-gravity results obtained from shuttle experiments are not reliable and sufficiantly accurate to discriminate between competing theoretical models. References: 1. J.P. Garandet, G. Mathiak, V. Botton, P. Lehmann and A. Griesche, Int. J. Thermophysics, 25, 249 (2004). 2.P.J. Scott and R.W. Smith, J. Appl. Physics 104, 043706 (2008). 3. R.W. Smith, Microgravity Sci. Technol. XI (2) 78-84 (1998). 4.Smith et al, Ann. N.Y. Acad. Sci. 974:56-67 (2002) (retracted). 5.R.A. Herring et al, J. Jpn. Soc. Microgravity Appl., Vol.16, 234-244 (1999).

  2. Radio Frequency (RF) Attenuation Measurements of the Space Shuttle Vehicle

    NASA Technical Reports Server (NTRS)

    Scully, R. C.; Kent, B. M.; Kempf, D. R.; Johnk, R. T.

    2006-01-01

    Following the loss of Columbia, the Columbia Accident Investigation Board (CAIB) provided recommendations to be addressed prior to Return To Flight (RTF). As a part of CAIB Recommendation 3.4.1 - Ground Based Imagery, new C-band and X-band radars were added to the array of ground-based radars and cameras already in-situ at Kennedy Space Center. Because of higher power density considerations and new operating frequencies, the team of Subject Matter Experts (SMEs) assembled to investigate the technical details of introducing the new radars recommended a series of radio frequency (RF) attenuation tests be performed on the Space Shuttle vehicle to establish the attenuation of the vehicle outer mold line structure with respect to its external RF environment. Because of time and complex logistical constraints, it was decided to split the test into two separate efforts. The first of these would be accomplished with the assistance of the Air Force Research Laboratory (AFRL), performing RF attenuation measurements on the aft section of OV-103 (Discovery) while in-situ in Orbiter Processing Facility (OPF) 3, located at Kennedy Space Center. The second would be accomplished with the assistance of the National Institute of Standards and Technology (NIST) and the electromagnetic interference (EMI) laboratory out of the Naval Air Warfare Center, Patuxent River, Maryland (PAX River), performing RF attenuation measurements on OV-105 (Endeavour) in-situ inside the Space Shuttle Landing Facility (SLF) hangar, also located at Kennedy Space Center. This paper provides a summary description of these efforts and their results.

  3. Media blitz of mission STS-95 fills grounds around Press Site

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The day before the launch of mission STS-95, the Press Site was inundated with 40 trailers, 75 trucks and RVs, 8 stages and 8 risers to accommodate the 3,750 media requests to cover the launch and return to space of John H. Glenn Jr., a senator from Ohio. Glenn flew aboard Friendship 7 in February 1962, and was the first American to orbit the Earth. Glenn is one of a crew of seven on board Space Shuttle Discovery for the nine-day mission.

  4. KSC-06pd0250

    NASA Image and Video Library

    2006-02-08

    KENNEDY SPACE CENTER, FLA. - A Beechcraft Starship aircraft precedes the takeoff of the Virgin Atlantic GlobalFlyer from NASA Kennedy Space Center’s Shuttle Landing Facility. Photographers on board the Beachcraft will capture the historic event from the air. Pilot Steve Fossett is attempting a record-breaking solo flight, non-stop without refueling, to surpass the current record for the longest flight of any aircraft. This is the second attempt in two days after a fuel leak was detected Feb. 7. The actual launch time was 7:22 a.m. Feb. 8.

  5. Attitude sensor package

    NASA Technical Reports Server (NTRS)

    Aceti, R.; Trischberger, M.; Underwood, P. J.; Pomilia, A.; Cosi, M.; Boldrini, F.

    1993-01-01

    This paper describes the design, construction, testing, and successful flight of the Attitude Sensor Package. The payload was assembled on a standard HITCHHIKER experiment mounting plate, and made extensive use of the carrier's power and data handling capabilities. The side mounted HITCHHIKER version was chosen, since this configuration provided the best viewing conditions for the instruments. The combustion was successfully flown on board Space Shuttle Columbia (STS-52), in October 1992. The payload was one of the 14 experiments of the In-Orbit Technology Demonstration Program (Phase 1) of the European Space Agency.

  6. Materials Science Laboratory

    NASA Technical Reports Server (NTRS)

    Jackson, Dionne

    2005-01-01

    The NASA Materials Science Laboratory (MSL) provides science and engineering services to NASA and Contractor customers at KSC, including those working for the Space Shuttle. International Space Station. and Launch Services Programs. These services include: (1) Independent/unbiased failure analysis (2) Support to Accident/Mishap Investigation Boards (3) Materials testing and evaluation (4) Materials and Processes (M&P) engineering consultation (5) Metrology (6) Chemical analysis (including ID of unknown materials) (7) Mechanical design and fabrication We provide unique solutions to unusual and urgent problems associated with aerospace flight hardware, ground support equipment and related facilities.

  7. MEA/A-1 experiment 81F01 conducted on STS-7 flight, June 1983. Containerless processing of glass forming melts

    NASA Technical Reports Server (NTRS)

    Day, D. E.; Ray, C. S.

    1983-01-01

    The space processing of containerless, glassforming melts on board the space shuttle flight STS-7 is investigated. Objectives include; (1) obtain quantitative evidence for the supression of heterogeneous nucleation/crystallization, (2) study melt homogenization without gravity driven convection, (3) procedural development for bubble free, high purity homogeneous melts inmicro-g, (4) comparative analysis of melts on Earth and in micro g, and (5) assess the apparatus for processing multicomponent, glass forming melts in a low gravity environment.

  8. STS-69 launch view across water and trees (landscape)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The tranquil beauty of a wildlife refuge serves as a lush backdrop to the drama of a Space Shuttle surging skyward atop a pillar of flame. The Shuttle Endeavour lifted off from Launch Pad 39A at 11:09:00.052 a.m. EDT, Sept. 7, 1995. Only a small portion of the 140,000 acres occupied by the Kennedy Space Center has been developed to support space operations; most of the land is pristine and untouched by man, and is managed by the U.S. Fish and Wildlife Service as a wildlife refuge. On board Endeavour are a crew of five and a payload complement that includes two deployable free-flyers, the Wake Shield Facility-2 and the Spartan-201. David M. Walker is the mission commander; Kenneth D. Cockrell is the pilot; James S. Voss is the payload commander; and the two mission specialists are Michael L. Gernhardt and James H. Newman. The 11-day flight also is scheduled to include an extravehicular activity by Gernhardt and Newman.

  9. STS-69 launch view thru trees

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The tranquil beauty of a wildlife refuge serves as a lush backdrop to the drama of a Space Shuttle surging skyward atop a pillar of flame. The Shuttle Endeavour lifted off from Launch Pad 39A at 11:09:00.052 a.m. EDT, Sept. 7, 1995. Only a small portion of the 140,000 acres occupied by the Kennedy Space Center has been developed to support space operations; most of the land is pristine and untouched by man, and is managed by the U.S. Fish and Wildlife Service as a wildlife refuge. On board Endeavour are a crew of five and a payload complement that includes two deployable free-flyers, the Wake Shield Facility-2 and the Spartan-201. David M. Walker is the mission commander; Kenneth D. Cockrell is the pilot; James S. Voss is the payload commander; and the two mission specialists are Michael L. Gernhardt and James H. Newman. The 11-day flight also is scheduled to include an extravehicular activity by Gernhardt and Newman.

  10. KSC-08pd3114

    NASA Image and Video Library

    2008-10-13

    CAPE CANAVERAL, Fla. – On Launch Pad 39A at NASA's Kennedy Space Center in Florida, the rotating service structure is open, revealing space shuttle Atlantis on the pad for the STS-125 mission, the fifth and final shuttle servicing mission for NASA’s Hubble Space Telescope. On the RSS, the payload canister is in position at the payload changeout room to receive the Hubble hardware. High winds, however, have delayed the transfer. The payload comprises four carriers holding various equipment for the mission. The hardware will be transported back to Kennedy’s Payload Hazardous Servicing Facility where it will be stored until a new target launch date can be set for Atlantis’ STS-125 mission in 2009. Atlantis’ October target launch date was delayed after a device on board Hubble used in the storage and transmission of science data to Earth shut down on Sept. 27. Replacing the broken device will be added to Atlantis’ servicing mission to the telescope. Photo credit: NASA/Tim Jacobs

  11. KSC-08pd3115

    NASA Image and Video Library

    2008-10-13

    CAPE CANAVERAL, Fla. – On Launch Pad 39A at NASA's Kennedy Space Center in Florida, the rotating service structure is open, revealing space shuttle Atlantis on the pad for the STS-125 mission, the fifth and final shuttle servicing mission for NASA’s Hubble Space Telescope. On the RSS, the payload canister is in position at the payload changeout room to receive the Hubble hardware. High winds, however, have delayed the transfer. The payload comprises four carriers holding various equipment for the mission. The hardware will be transported back to Kennedy’s Payload Hazardous Servicing Facility where it will be stored until a new target launch date can be set for Atlantis’ STS-125 mission in 2009. Atlantis’ October target launch date was delayed after a device on board Hubble used in the storage and transmission of science data to Earth shut down on Sept. 27. Replacing the broken device will be added to Atlantis’ servicing mission to the telescope. Photo credit: NASA/Tim Jacobs

  12. STS-69 launch view with trees and birds

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The tranquil beauty of a wildlife refuge serves as a lush backdrop to the drama of a Space Shuttle surging skyward atop a pillar of flame. The Shuttle Endeavour lifted off from Launch Pad 39A at 11:09:00.052 a.m. EDT, Sept. 7, 1995. Only a small portion of the 140,000 acres occupied by the Kennedy Space Center has been developed to support space operations; most of the land is pristine and untouched by man, and is managed by the U.S. Fish and Wildlife Service as a wildlife refuge. On board Endeavour are a crew of five and a payload complement that includes two deployable free-flyers, the Wake Shield Facility-2 and the Spartan-201. David M. Walker is the mission commander; Kenneth D. Cockrell is the pilot; James S. Voss is the payload commander; and the two mission specialists are Michael L. Gernhardt and James H. Newman. The 11-day flight also is scheduled to include an extravehicular activity by Gernhardt and Newman.

  13. KSC-2009-2049

    NASA Image and Video Library

    2009-03-15

    CAPE CANAVERAL, Fla. – The STS-119 crew members pause for photos before boarding the Astrovan to take them to Launch Pad 39A at NASA's Kennedy Space Center in Florida for launch of space shuttle Discovery to the International Space Station. From left are Mission Specialists Koichi Wakata, John Phillips, Richard Arnold, Steve Swanson and Joseph Acaba, Pilot Tony Antonelli and Commander Lee Archambault. Wakata represents the Japan Aerospace Exploration Agency and will remain on the International Space Station, replacing Expedition 18 Flight Engineer Sandra Magnus, who returns to Earth with the STS-119 crew. Liftoff of Discovery is scheduled for 7:43 p.m. EDT on March 15. An earlier launch attempt March 11 was scrubbed at 2:36 p.m. due to a gaseous hydrogen leak from the external tank at the Ground Umbilical Carrier Plate during tanking. A seven-inch quick disconnect and two seals were replaced. The STS-119 mission is the 28th to the space station and the 125th space shuttle flight. Discovery will deliver the final pair of power-generating solar array wings and the S6 truss segment. Installation of S6 will signal the station's readiness to house a six-member crew for conducting increased science. Photo credit: NASA/Kim Shiflett

  14. STS-112 Crew Interviews - Magnus

    NASA Technical Reports Server (NTRS)

    2002-01-01

    STS-112 Mission Specialist 2 Sandra H. Magnus is seen during a prelaunch interview. She answers questions about her inspiration to become an astronaut and her career path. She gives details on the mission's goals, the most significant of which will be the installation of the S-1 truss structure on the International Space Station (ISS). The installation, one in a series of truss extending missions, will be complicated and will require the use of the robotic arm as well as extravehicular activity (EVA) by astronauts. Magnus also describes her function in the performance of transfer operations. Brief descriptions are given of experiments on board the ISS as well as on board the Shuttle.

  15. KSC-01pp1473

    NASA Image and Video Library

    2001-08-10

    KENNEDY SPACE CENTER, Fla. -- -- Space Shuttle Discovery lifts off Launch Pad 39A with a crew of seven on board. Flames from the solid rocket boosters and external tank are drawn away by a flame trench below while water jets flood the area to help suppress the deafening sound. A rainbird can be seen to the left of the white solid rocket booster. In the background is the Atlantic Ocean. Liftoff of Discovery on mission STS-105 occurred at 5:10:14 p.m. EDT. Besides the Shuttle crew of four, Discovery carries the Expedition Three crew who will replace Expedition Two on the Space Station. The mission includes the third flight of an Italian-built Multi-Purpose Logistics Module delivering additional scientific racks, equipment and supplies for the Space Station and the Early Ammonia Servicer (EAS) tank. The EAS, which will be attached to the Station during two spacewalks, contains spare ammonia for the Station’s cooling system. The three-member Expedition Two crew will be returning to Earth aboard Discovery after a five-month stay on the Station

  16. Mine-Resistant Ambush-Protection vehicles

    NASA Image and Video Library

    2014-02-13

    CAPE CANAVERAL, Fla. – One of four new emergency egress vehicles, called Mine-Resistant Ambush-Protection, or MRAP, vehicles sits near space shuttle-era M-113 vehicles at the Maintenance and Operations Facility at NASA’s Kennedy Space Center in Florida. The MRAPs arrived from the U.S. Army Red River Depot in Texarkana, Texas in December 2013. The vehicles were processed in and then transported to the Rotation, Processing and Surge Facility near the Vehicle Assembly Building for temporary storage. The Ground Systems Development and Operations Program at Kennedy led the efforts to an emergency egress vehicle that future astronauts could quickly use to leave the Launch Complex 39 area in case of an emergency. During crewed launches of NASA’s Space Launch System and Orion spacecraft, the MRAP will be stationed by the slidewire termination area at the pad. In case of an emergency, the crew will ride a slidewire to the ground and immediately board the MRAP for safe egress from the pad. The new vehicles replace the M-113 vehicles that were used during the Space Shuttle Program. Photo credit: NASA/Kim Shiflett

  17. Introduction of the Space Shuttle Columbia Accident, Investigation Details, Findings and Crew Survival Investigation Report

    NASA Technical Reports Server (NTRS)

    Chandler, Michael

    2010-01-01

    As the Space Shuttle Program comes to an end, it is important that the lessons learned from the Columbia accident be captured and understood by those who will be developing future aerospace programs and supporting current programs. Aeromedical lessons learned from the Accident were presented at AsMA in 2005. This Panel will update that information, closeout the lessons learned, provide additional information on the accident and provide suggestions for the future. To set the stage, an overview of the accident is required. The Space Shuttle Columbia was returning to Earth with a crew of seven astronauts on 1Feb, 2003. It disintegrated along a track extending from California to Louisiana and observers along part of the track filmed the breakup of Columbia. Debris was recovered from Littlefield, Texas to Fort Polk, Louisiana, along a 567 statute mile track; the largest ever recorded debris field. The Columbia Accident Investigation Board (CAIB) concluded its investigation in August 2003, and released their findings in a report published in February 2004. NASA recognized the importance of capturing the lessons learned from the loss of Columbia and her crew and the Space Shuttle Program managers commissioned the Spacecraft Crew Survival Integrated Investigation Team (SCSIIT) to accomplish this. Their task was to perform a comprehensive analysis of the accident, focusing on factors and events affecting crew survival, and to develop recommendations for improving crew survival, including the design features, equipment, training and procedures intended to protect the crew. NASA released the Columbia Crew Survival Investigation Report in December 2008. Key personnel have been assembled to give you an overview of the Space Shuttle Columbia accident, the medical response, the medico-legal issues, the SCSIIT findings and recommendations and future NASA flight surgeon spacecraft accident response training. Educational Objectives: Set the stage for the Panel to address the investigation, medico-legal issues, the Spacecraft Crew Survival Integrated Investigation Team report and training for accident response.

  18. STS-73 Liftoff - close up front view left hand side

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Space Shuttle Columbia blasts off on the 72nd Shuttle flight. The second U.S. Microgravity Laboratory (USML-2) mission began with a liftoff from Launch Pad 39B at 9:53:00 a.m. EDT, October 20. On board are a crew of seven; Mission Commander Kenneth D. Bowersox; Pilot Kent V. Rominger; Payload Commander Kathryn C. Thornton; Mission Specialists Michael E. Lopez-Alegria and Catherine G. Coleman; and Payload Specialists Fred W. Leslie and Albert Sacco Jr. During the nearly 16-day flight of Mission STS- 73, the crew will work around the clock on a diverse assortment of USML-2 experiments located in a Spacelab module in Columbia's payload bay. USML-2 builds on the foundation of its predecessor, USML-1, which ranks as one of NASA's most successful science missions. Fields of study include fluid physics, materials science, biotechnology, combustion science and commercial space processing technologies.

  19. STS-76 liftoff - left side close up

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The chase to catch up with the Russian Space Station Mir gets under way with an on-time liftoff, as the Space Shuttle Atlantis hurtles skyward from Launch Pad 39B at 3:13:04 a.m. EST, March 22. On board for Mission STS-76 -- also the 76th Shuttle flight - - are a crew of six: Mission Commander Kevin P. Chilton; Pilot Richard A. Searfoss; Payload Commander Ronald M. Sega; and Mission Specialists Michael Richard 'Rich' Clifford, Linda M. Godwin, and Shannon W. Lucid. During the course of the planned nine-day flight, Atlantis will rendezvous and dock with Mir for athe third time. Lucid will transfer to the station for an approximately four-and-a-half month stay, becoming the first American woman to live on Mir. In addition, Godwin and Clifford will perform an extravehicular activity later in the mission, the first around the mated Atlantis-Mir assembly.

  20. STS-76 liftoff - right side view from across marsh

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The chase to catch up with the Russian Space Station Mir gets under way with an on-time liftoff, as the Space Shuttle Atlantis hurtles skyward from Launch Pad 39B at 3:13:04 a.m. EST, March 22. On board for Mission STS-76 -- also the 76th Shuttle flight - - are a crew of six: Mission Commander Kevin P. Chilton; Pilot Richard A. Searfoss; Payload Commander Ronald M. Sega; and Mission Specialists Michael Richard 'Rich' Clifford, Linda M. Godwin, and Shannon W. Lucid. During the course of the planned nine-day flight, Atlantis will rendezvous and dock with Mir for athe third time. Lucid will transfer to the station for an approximately four-and-a-half month stay, becoming the first American woman to live on Mir. In addition, Godwin and Clifford will perform an extravehicular activity later in the mission, the first around the mated Atlantis-Mir assembly.

  1. STS-76 liftoff - right side close up

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The chase to catch up with the Russian Space Station Mir gets under way with an on-time liftoff, as the Space Shuttle Atlantis hurtles skyward from Launch Pad 39B at 3:13:04 a.m. EST, March 22. On board for Mission STS-76 -- also the 76th Shuttle flight - - are a crew of six: Mission Commander Kevin P. Chilton; Pilot Richard A. Searfoss; Payload Commander Ronald M. Sega; and Mission Specialists Michael Richard 'Rich' Clifford, Linda M. Godwin, and Shannon W. Lucid. During the course of the planned nine-day flight, Atlantis will rendezvous and dock with Mir for athe third time. Lucid will transfer to the station for an approximately four-and-a-half month stay, becoming the first American woman to live on Mir. In addition, Godwin and Clifford will perform an extravehicular activity later in the mission, the first around the mated Atlantis-Mir assembly.

  2. STS-76 liftoff - right side view from Pad 39B

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The chase to catch up with the Russian Space Station Mir gets under way with an on-time liftoff, as the Space Shuttle Atlantis hurtles skyward from Launch Pad 39B at 3:13:04 a.m. EST, March 22. On board for Mission STS-76 -- also the 76th Shuttle flight - - are a crew of six: Mission Commander Kevin P. Chilton; Pilot Richard A. Searfoss; Payload Commander Ronald M. Sega; and Mission Specialists Michael Richard 'Rich' Clifford, Linda M. Godwin, and Shannon W. Lucid. During the course of the planned nine-day flight, Atlantis will rendezvous and dock with Mir for athe third time. Lucid will transfer to the station for an approximately four-and-a-half month stay, becoming the first American woman to live on Mir. In addition, Godwin and Clifford will perform an extravehicular activity later in the mission, the first around the mated Atlantis-Mir assembly.

  3. Software Certification and Software Certificate Management Systems

    NASA Technical Reports Server (NTRS)

    Denney, Ewen; Fischer, Bernd

    2005-01-01

    Incremental certification and re-certification of code as it is developed and modified is a prerequisite for applying modem, evolutionary development processes, which are especially relevant for NASA. For example, the Columbia Accident Investigation Board (CAIB) report 121 concluded there is "the need for improved and uniform statistical sampling, audit, and certification processes". Also, re-certification time has been a limiting factor in making changes to Space Shuttle code close to launch time. This is likely to be an even bigger problem with the rapid turnaround required in developing NASA s replacement for the Space Shuttle, the Crew Exploration Vehicle (CEV). Hence, intelligent development processes are needed which place certification at the center of development. If certification tools provide useful information, such as estimated time and effort, they are more likely to be adopted. The ultimate impact of such a tool will be reduced effort and increased reliability.

  4. Elastic-Plastic Nonlinear Response of a Space Shuttle External Tank Stringer. Part 1; Stringer-Feet Imperfections and Assembly

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Song, Kyongchan; Elliott, Kenny B.; Raju, Ivatury S.; Warren, Jerry E.

    2012-01-01

    Elastic-plastic, large-deflection nonlinear stress analyses are performed for the external hat-shaped stringers (or stiffeners) on the intertank portion of the Space Shuttle s external tank. These stringers are subjected to assembly strains when the stringers are initially installed on an intertank panel. Four different stringer-feet configurations including the baseline flat-feet, the heels-up, the diving-board, and the toes-up configurations are considered. The assembly procedure is analytically simulated for each of these stringer configurations. The location, size, and amplitude of the strain field associated with the stringer assembly are sensitive to the assumed geometry and assembly procedure. The von Mises stress distributions from these simulations indicate that localized plasticity will develop around the first eight fasteners for each stringer-feet configuration examined. However, only the toes-up configuration resulted in high assembly hoop strains.

  5. STS-85 crew walks out of the O&C Building during TCDT

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The STS-85 flight crew walks out of the Operations and Checkout (O&C) Building during Terminal Countdown Demonstration Test (TCDT) activities for that mission to board the Astrovan for the ride to the Space Shuttle Discovery on Launch Pad 39A. Waving to the crowd is Commander Curtis L. Brown, Jr. (right). Directly behind him are Payload Commander N. Jan Davis and Mission Specialist Stephen K. Robinson. Pilot Kent V. Rominger (to Browns right) is leading the second row, followed by Payload Specialist Bjarni V. Tryggvason and Mission Specialist Robert L. Curbeam, Jr. The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-2 (CRISTA-SPAS-2). Other payloads on the 11- day mission include the Manipulator Flight Demonstration (MFD), and Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments.

  6. Tracking and data relay satellite system (TDRSS) - A worldwide view from space

    NASA Technical Reports Server (NTRS)

    Macoughtry, W. O.; Harris, D. W.

    1983-01-01

    The development, performance levels, and operational use of the TDRSS satellite system are outlined. The TDRSS spacecraft were conceived in the mid-1960s by NASA as a means of using GEO-positioned satellites to eliminate existing ground stations. The main ground terminal becomes Goddard Space Flight Center, through which users other than the Shuttle can also gain access. The TDRSS functions as a relay vehicle, with very little on-board processing except for status reports inserted into the data stream. Use of the TDRSS system by nonNASA agencies currently costs $110/min for forwards, return, and tracking, $24/min for forward service alone, and $8/min for return service only. The spacecraft can store data on board and dump it to the ground station during the limited hours of operation.

  7. KSC-2011-1875

    NASA Image and Video Library

    2011-02-26

    CAPE CANAVERAL, Fla. -- A crew member on Liberty Star, one of NASA's solid rocket booster retrieval ships, monitors the progress as the massive parachute from the right spent booster from space shuttle Discovery's final launch is hauled on board. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Frank Michaux

  8. KSC-08pd1811

    NASA Image and Video Library

    2008-06-23

    CAPE CANAVERAL, Fla. – A Senate field hearing held at the Canaveral Port Authority and chaired by Florida Sen. Bill Nelson focuses on workforce related challenges at NASA's Kennedy Space Center and potential solutions to mitigate the transition's effects on the community. The hearing examined issues surrounding the retirement of the space shuttle and the transition to the new Orion/Ares system. At the table are community representatives Lynda Weatherman, president and CEO of the Economic Development Commission of Florida's Space Coast; Lisa Rice, president of the Brevard Workforce Development Board Inc.; Randy Berridge, president of the Florida High Tech Corridor Council; and Steve Kohler, president of Space Florida. NASA Administrator Michael Griffin is seated at right. Photo credit: NASA/Kim Shiflett

  9. Improving Performance of the System Safety Function at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Kiessling, Ed; Tippett, Donald D.; Shivers, Herb

    2004-01-01

    The Columbia Accident Investigation Board (CAIB) determined that organizational and management issues were significant contributors to the loss of Space Shuttle Columbia. In addition, the CAIB observed similarities between the organizational and management climate that preceded the Challenger accident and the climate that preceded the Columbia accident. To prevent recurrence of adverse organizational and management climates, effective implementation of the system safety function is suggested. Attributes of an effective system safety program are presented. The Marshall Space Flight Center (MSFC) system safety program is analyzed using the attributes. Conclusions and recommendations for improving the MSFC system safety program are offered in this case study.

  10. IIaO ultraviolet and nuclear emulsion films responses to orbital flights on STS-3, STS-7, STS-8, and STS-40

    NASA Technical Reports Server (NTRS)

    Hammond, E. C., Jr.; Peters, K. A.; Blake, S. M.; Bailey, Y.; Johnson, D.; Robancho, S.; Stober, A.

    1992-01-01

    Two types of film were flown on STS-40 space shuttle mission in June 1991. The IIaO special purpose ultraviolet film showed continued desensitization because of various thermal and cosmic ray interactions. The films were exposed to the space orbital environment for 9 days. There were several built-in launch pad delays of the shuttle mission. However, there was adequate monitoring of the temperature variations on board the shuttle that allowed for adequate knowledge of the thermal film history. This IIaO film was flown on the ASTRO I mission and is currently slated for use with the ASTRO II mission. A 50 micron thick IIIford Nuclear emulsion film was also placed on a 175 micron polyester base. The exposure to space produced several cosmic ray interactions that were analyzed and measured using Digital Image Processing techniques. This same nuclear emulsion film was flown on STS-8 and produced a similar number of cosmic ray and thermal interactions. From previous experiments of film using various laboratory electromagnetic radiation sources (e.g., alpha, beta, and neutron particles), we have been able to infer the possible oribtal interactions of both IIaO and nuclear emulsion films. The characteristic responses of IIaO on STS-40 compared favorably to the results obtained from previous STS-7 and STS-8 gas can experiments. The results indicate sufficient evidence correlating increased density on the film with possible cosmic ray, thermal and shuttle out gassing interactions.

  11. The calibration and flight test performance of the space shuttle orbiter air data system

    NASA Technical Reports Server (NTRS)

    Dean, A. S.; Mena, A. L.

    1983-01-01

    The Space Shuttle air data system (ADS) is used by the guidance, navigation and control system (GN&C) to guide the vehicle to a safe landing. In addition, postflight aerodynamic analysis requires a precise knowledge of flight conditions. Since the orbiter is essentially an unpowered vehicle, the conventional methods of obtaining the ADS calibration were not available; therefore, the calibration was derived using a unique and extensive wind tunnel test program. This test program included subsonic tests with a 0.36-scale orbiter model, transonic and supersonic tests with a smaller 0.2-scale model, and numerous ADS probe-alone tests. The wind tunnel calibration was further refined with subsonic results from the approach and landing test (ALT) program, thus producing the ADS calibration for the orbital flight test (OFT) program. The calibration of the Space Shuttle ADS and its performance during flight are discussed in this paper. A brief description of the system is followed by a discussion of the calibration methodology, and then by a review of the wind tunnel and flight test programs. Finally, the flight results are presented, including an evaluation of the system performance for on-board systems use and a description of the calibration refinements developed to provide the best possible air data for postflight analysis work.

  12. Space Shuttle Projects Overview to Columbia Air Forces War College

    NASA Technical Reports Server (NTRS)

    Singer, Jody; McCool, Alex (Technical Monitor)

    2000-01-01

    This paper presents, in viewgraph form, a general overview of space shuttle projects. Some of the topics include: 1) Space Shuttle Projects; 2) Marshall Space Flight Center Space Shuttle Projects Office; 3) Space Shuttle Propulsion systems; 4) Space Shuttle Program Major Sites; 5) NASA Office of Space flight (OSF) Center Roles in Space Shuttle Program; 6) Space Shuttle Hardware Flow; and 7) Shuttle Flights To Date.

  13. Spacelab to Space Station; Proceedings of the International Symposium on Spacelab 1 - Results, Implications and Perspectives, Naples and Capri, Italy, June 11-16, 1984

    NASA Technical Reports Server (NTRS)

    Napolitano, L. G. (Editor)

    1985-01-01

    Consideration is given to the scientific objectives of the Spacelab program, a review of data obtained during the STS-9/Spacelab 1 mission on board the Shuttle, and the coordination of future Spacelab research among participating European nations. Among the specific fields of study covered by Spacelab 1 were space plasma physics, materials and fluid sciences and technology, astronomy and solar physics, and atmospheric physics and earth observations. Consideration is also given to the legal aspects of space manufacturing activities, the role of private industry in space-based manufacturing ventures, plant production and breeding in space, and the development of remote sensing systems for use in a microgravity environment.

  14. STS-111 Onboard Photo of Endeavour Docking With PMA-2

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The STS-111 mission, the 14th Shuttle mission to visit the International Space Station (ISS), was launched on June 5, 2002 aboard the Space Shuttle Orbiter Endeavour. On board were the STS-111 and Expedition Five crew members. Astronauts Kerneth D. Cockrell, commander; Paul S. Lockhart, pilot, and mission specialists Franklin R. Chang-Diaz and Philippe Perrin were the STS-111 crew members. Expedition Five crew members included Cosmonaut Valeri G. Korzun, commander, Astronaut Peggy A. Whitson and Cosmonaut Sergei Y. Treschev, flight engineers. Three space walks enabled the STS-111 crew to accomplish the delivery and installation of the Mobile Remote Servicer Base System (MBS), an important part of the Station's Mobile Servicing System that allows the robotic arm to travel the length of the Station, which is necessary for future construction tasks; the replacement of a wrist roll joint on the Station's robotic arm; and the task of unloading supplies and science experiments from the Leonardo multipurpose Logistics Module, which made its third trip to the orbital outpost. In this photograph, the Space Shuttle Endeavour, back dropped by the blackness of space, is docked to the pressurized Mating Adapter (PMA-2) at the forward end of the Destiny Laboratory on the ISS. A portion of the Canadarm2 is visible on the right and Endeavour's robotic arm is in full view as it is stretched out with the S0 (S-zero) Truss at its end.

  15. ELITE S2 - A Facility for Quantitative Human Movement Analysis on Board the ISS

    NASA Astrophysics Data System (ADS)

    Neri, Gianluca; Mascetti, Gabriele; Zolesi, Valfredo

    2014-11-01

    This paper describes the activities for utilization and control of ELITE S2 on board the International Space Station (ISS). ELITE S2 is a payload of the Italian Space Agency (ASI) for quantitative human movement analysis in weightlessness. Within the frame of a bilateral agreement with NASA, ASI has funded a number of facilities, enabling different scientific experiments on board the ISS. ELITE S2 has been developed by the ASI contractor Kayser Italia, delivered to the Kennedy Space Center in 2006 for pre-flight processing, launched in 2007 by the Space Shuttle Endeavour (STS-118), integrated in the U.S. lab and used during the Increments 16/17 (2008) and 33/34 (2012/2013). The ELITE S2 flight segment comprises equipment mounted into an Express Rack and a number of stowed items to be deployed for experiment performance (video cameras and accessories). The ground segment consists in a User Support Operations Center (based at Kayser Italia) enabling real-time payload control and a number of User Home Bases (located at the ASI and PIs premises), for the scientific assessment of the experiment performance. Two scientific protocols on reaching and cognitive processing have been successfully performed in eight sessions involving three ISS crewmembers: IMAGINE 2 and MOVE.

  16. KSC-99pp1473

    NASA Image and Video Library

    1999-12-19

    Space Shuttle Discovery hurtles through clouds of smoke and steam in its successful launch on mission STS-103. Liftoff occurred at 7:50 p.m. EST from Launch Pad 39B. On board are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly and Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), Claude Nicollier of Switzerland and Jean-François Clervoy of France. Nicollier and Clervoy are with the European Space Agency. STS-103 is a Hubble Servicing Mission, with three planned space walks designed to install new equipment and replace old. The primary objective is to replace the gyroscopes that make up the three Rate Sensor Units. Extravehicular activities include installing a new computer, changing out one of the Fine Guidance Sensors, replacing a tape recorder with a new solid state recorder, and installing a voltage/temperature improvement kit, and begin repairing the insulation on the telescope's outer surface. After the 7-day, 21-hour mission, Discovery is targeted to land at KSC Monday, Dec. 27, at about 5:24 p.m. EST. This is the 27th flight of Discovery and the 96th mission in the Space Shuttle Program. It is the third launch at Kennedy Space Center in 1999

  17. KSC-2009-4569

    NASA Image and Video Library

    2009-04-01

    JOHNSON SPACE CENTER, Houston – STS128-S-001 -- The STS-128 patch symbolizes the 17A mission and represents the hardware, people and partner nations that contribute to the flight. The Space Shuttle Discovery is shown in the orbit configuration with the Multi Purpose Logistics Module (MPLM) Leonardo in the payload bay. Earth and the International Space Station wrap around the Astronaut Office symbol reminding us of the continuous human presence in space. The names of the STS-128 crew members border the patch in an unfurled manner. Included in the names is the expedition crew member who will launch on STS-128 and remain on board ISS, replacing another Expedition crew member who will return home with STS-128. The banner also completes the Astronaut Office symbol and contains the U.S. and Swedish flags representing the countries of the STS-128 crew. The NASA insignia design for Space Shuttle flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the form of illustrations by the various news media. When and if there is any change in this policy, which we do not anticipate, it will be publicly announced.

  18. STS-111/Endeavour/ISS UF2 Pre-Launch Activities: Launch with Playbacks

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This video of the preflight preparations for and launch of Space Shuttle Endeavour on STS-111 begins with a view of Endeavour on the launch pad. Additional launch pad views leading up to liftoff are interspersed with footage from the Firing Room at Kennedy Space Center, the crew's prelaunch activities, and inspection of the crew members in the White Room before boarding Endeavour. The crew is introduced by a narrator during the preflight banquet and suiting up, and a later clip shows them departing to the launch site. The crew consists of Commander Kenneth Cockrell, Pilot Paul Lockhart, Mission Specialists Philippe Perrin and Franklin Chang-Diaz, and the Expedition 5 crew of the International Space Station (ISS) (Commander Valery Korzun and Flight Engineers Peggy Whitsun and Sergei Treschev). The nozzles on Endeavour's Space Shuttle Main Engine (SSME) are swiveled before liftoff, and the launch is shown past the separation of the solid rocket boosters. After a brief clip from the Mission Control Center at Johnson Space Center, the following launch replays are shown: Beach Tracker, VAB, Pad A, Tower 1, UCS-15, Grandstand, Cocoa Beach DOAMS, Playalinda DOAMS, UCS-23, and OTV-070.

  19. Shuttle Laser Altimeter (SLA): A pathfinder for space-based laser altimetry and lidar

    NASA Technical Reports Server (NTRS)

    Bufton, Jack; Blair, Bryan; Cavanaugh, John; Garvin, James

    1995-01-01

    The Shuttle Laser Altimeter (SLA) is a Hitchhiker experiment now being integrated for first flight on STS-72 in November 1995. Four Shuttle flights of the SLA are planned at a rate of about a flight every 18 months. They are aimed at the transition of the Goddard Space Flight Center airborne laser altimeter and lidar technology to low Earth orbit as a pathfinder for operational space-based laser remote sensing devices. Future alser altimeter sensors such as the Geoscience Laser Altimeter System (GLAS), an Earth Observing System facility instrument, and the Multi-Beam Laser Altimeter (MBLA), the land and vegetation laser altimeter for the NASA TOPSAT (Topography Satellite) Mission, will utilize systems and approaches being tested with SLA. The SLA Instrument measures the distance from the Space Shuttle to the Earth's surface by timing the two-way propagation of short (approximately 10 na noseconds) laser pulses. laser pulses at 1064 nm wavelength are generated in a laser transmitter and are detected by a telescope equipped with a silicon avalanche photodiode detector. The SLA data system makes the pulse time interval measurement to a precision of about 10 nsec and also records the temporal shape of the laser echo from the Earth's surface for interpretation of surface height distribution within the 100 m diam. sensor footprint. For example, tree height can be determined by measuring the characteristic double-pulse signature that results from a separation in time of laser backscatter from tree canopies and the underlying ground. This is accomplished with a pulse waveform digitizer that samples the detector output with an adjustable resolution of 2 nanoseconds or wider intervals in a 100 sample window centered on the return pulse echo. The digitizer makes the SLA into a high resolution surface lidar sensor. It can also be used for cloud and atmospheric aerosol lidar measurements by lengthening the sampling window and degrading the waveform resolution. Detailed test objectives for the STS-72 mission center on the acquisition of sample data sets for land topography and vegetation height, waveform digitizer performance, and verification of data acquisition algorithms. The operational concept of SLA is illustrated in Fig. 1 where a series of 100 m footprints stretch in a profile of Earth surface topography along the nadir track of the Space Shuttle. The location of SLA as a dual canister payload on the Hitchhiker Bridge Assembly in Bay 12 of the Space Shuttle Endeavor can also be noted in this figure. Full interpretation of the SLA range measurement data set requires a 1 m knowledge of the Orbiter trajectory and better than 0.1 deg knowledge of Orbiter pointing angle. These ancillary data sets will be acquired during the STS-72 mission with an on-board Global Positioning System (GPS) receiver, K-band range and range-rate tracking of the Orbiter through TDRSS, and use of on-board inertial measurement units and star trackers. Integration and interpretation of all these different data sets as a pathfinder investigation for accurate determination of Earth surface elevation is the overall science of the SLA investigation.

  20. KSC-98pc1464

    NASA Image and Video Library

    1998-10-23

    On a normal day of activity prior to the launch of mission STS-95, the parking lot (foreground), plus the grandstand and buildings at the Press Site (beyond and to the right), are easily located from the air. The view gives no indication of the media frenzy the launch would generate with the return to space of John H. Glenn Jr., a senator from Ohio, whose first flight was aboard Friendship 7 in February 1962, and the first American to orbit the Earth. Glenn is one of a crew of seven on board Space Shuttle Discovery for the nine-day mission

  1. KSC-08pd3185

    NASA Image and Video Library

    2008-10-14

    CAPE CANAVERAL, Fla. – The deep-red sunset sky puts Launch pad 39A in silhouette. Space shuttle Atlantis is on the pad. Atlantis’ October target launch date for the STS-125 Hubble Space Telescope servicing mission was delayed after a device on board Hubble used in the storage and transmission of science data to Earth shut down on Sept. 27. Replacing the broken device will be added to Atlantis’ servicing mission to the telescope. In the interim, Atlantis will be rolled back to the Vehicle Assembly Building until a new target launch date can be set for the mission in 2009. Photo credit: NASA/Troy Cryder

  2. Measurement of Critical Contact Angle in a Microgravity Space Experiment

    NASA Technical Reports Server (NTRS)

    Concus, P.; Finn, R.; Weislogel, M.

    1998-01-01

    Mathematical theory predicts that small changes in container shape or in contact angle can give rise to large shifts of liquid in a microgravity environment. This phenomenon was investigated in the Interface Configuration Experiment on board the USML-2 Space Shuttle flight. The experiment's "double proboscis" containers were designed to strike a balance between conflicting requirements of sizable volume of liquid shift (for ease of observation) and abruptness of the shift (for accurate determination of critical contact angle). The experimental results support the classical concept of macroscopic contact angle and demonstrate the role of hysteresis in impeding orientation toward equilibrium.

  3. Measurement of Critical Contact Angle in a Microgravity Space Experiment

    NASA Technical Reports Server (NTRS)

    Concus, P.; Finn, R.; Weislogel, M.

    1998-01-01

    Mathematical theory predicts that small changes in container shape or in contact angle can give rise to large shifts of liquid in a microgravity environment. This phenomenon was investigated in the Interface Configuration Experiment on board the USMT,2 Space Shuttle flight. The experiment's "double proboscis" containers were designed to strike a balance between conflicting requirements of sizable volume of liquid shift (for ease of observation) and abruptness of the shift (for accurate determination of critical contact angle). The experimental results support the classical concept of macroscopic contact angle and demonstrate the role of hysteresis in impeding orientation toward equilibrium.

  4. Development of a COTS Mass Storage Unit for the Space Readiness Coherent Lidar Experiment

    NASA Technical Reports Server (NTRS)

    Liggin, Karl; Clark, Porter

    1999-01-01

    The technology to develop a Mass Storage Unit (MSU) using commercial-off-the-shelf (COTS) hard drives is an on-going challenge to meet the Space Readiness Coherent Lidar Experiment (SPARCLE) program requirements. A conceptual view of SPARCLE's laser collecting atmospheric data from the shuttle is shown in Figure 1. The determination to develop this technology required several in depth studies before an actual COTS hard drive was selected to continue this effort. Continuing the development of the MSU can, and will, serve future NASA programs that require larger data storage and more on-board processing.

  5. Multi-level Simulation of a Real Time Vibration Monitoring System Component

    NASA Technical Reports Server (NTRS)

    Robertson, Bryan A.; Wilkerson, Delisa

    2005-01-01

    This paper describes the development of a custom built Digital Signal Processing (DSP) printed circuit board designed to implement the Advanced Real Time Vibration Monitoring Subsystem proposed by Marshall Space Flight Center (MSFC) Transportation Directorate in 2000 for the Space Shuttle Main Engine Advanced Health Management System (AHMS). This Real Time Vibration Monitoring System (RTVMS) is being developed for ground use as part of the AHMS Health Management Computer-Integrated Rack Assembly (HMC-IRA). The HMC-IRA RTVMS design contains five DSPs which are highly interconnected through individual communication ports, shared memory, and a unique communication router that allows all the DSPs to receive digitized data fiom two multi-channel analog boards simultaneously. This paper will briefly cover the overall board design but will focus primarily on the state-of-the-art simulation environment within which this board was developed. This 16-layer board with over 1800 components and an additional mezzanine card has been an extremely challenging design. Utilization of a Mentor Graphics simulation environment provided the unique board and system level simulation capability to ascertain any timing or functional concerns before production. By combining VHDL, Synopsys Software and Hardware Models, and the Mentor Design Capture Environment, multiple simulations were developed to verify the RTVMS design. This multi-level simulation allowed the designers to achieve complete operability without error the first time the RTVMS printed circuit board was powered. The HMC-IRA design has completed all engineering and deliverable unit testing. P

  6. iss050e033912

    NASA Image and Video Library

    2017-01-21

    iss050e033912 (01/21/2017) --- A soccer ball originally packed onto space shuttle Challenger in 1986 is now orbiting the Earth on board the International Space Station, 31 years later. The soccer ball was signed and presented to NASA astronaut Ellison Onizuka by soccer players – including his daughter – from Clear Lake High School, near NASA’s Johnson Space Center. Onizuka was one of seven astronauts on board Challenger on Jan. 28, 1986, when it exploded shortly after liftoff. Following the accident, the ball was recovered and returned to the high school, where it has been on display for the past three decades. Its history had begun to fade into obscurity when Principal Karen Engle learned of its origin. Soon after, astronaut Shane Kimbrough, whose son attends Clear Lake High School, offered to carry up a memento on the school’s behalf, and she had the idea to send the soccer ball into space. Kimbrough snapped this photo of the ball floating in front of the station’s Cupola window in advance of Challenger anniversary and NASA’s Day of Remembrance.

  7. KSC-02pd1299

    NASA Image and Video Library

    2002-09-11

    KENNEDY SPACE CENTER, FLA. - On board the Freedom Star, one of the Shuttle Rocket Booster retrieval ships, workers with United Space Alliance help finalize the rescue of a lobster diver in distress after their return to port Sept. 11. The ship was on a certification exercise and near the location of a lobster diving boat that radioed the U.S. Coast Guard for help when one of the divers experienced difficulty breathing on his return to the surface. Hearing the call for help, the captain of the Freedom Star offered to help. On board the ship was a dive team, including a diver medical technician, Andy Fish, who are trained to assist in case of a dive accident during a retrieval mission. Fish stayed with the diver in the recompression chamber aboard the Freedom Star until the ship reached Port Canaveral where a KSC Occupational Health doctor waited. The diver was stabilized and taken to Florida Hospital.

  8. Use of an adaptable cell culture kit for performing lymphocyte and monocyte cell cultures in microgravity

    NASA Technical Reports Server (NTRS)

    Hatton, J. P.; Lewis, M. L.; Roquefeuil, S. B.; Chaput, D.; Cazenave, J. P.; Schmitt, D. A.

    1998-01-01

    The results of experiments performed in recent years on board facilities such as the Space Shuttle/Spacelab have demonstrated that many cell systems, ranging from simple bacteria to mammalian cells, are sensitive to the microgravity environment, suggesting gravity affects fundamental cellular processes. However, performing well-controlled experiments aboard spacecraft offers unique challenges to the cell biologist. Although systems such as the European 'Biorack' provide generic experiment facilities including an incubator, on-board 1-g reference centrifuge, and contained area for manipulations, the experimenter must still establish a system for performing cell culture experiments that is compatible with the constraints of spaceflight. Two different cell culture kits developed by the French Space Agency, CNES, were recently used to perform a series of experiments during four flights of the 'Biorack' facility aboard the Space Shuttle. The first unit, Generic Cell Activation Kit 1 (GCAK-1), contains six separate culture units per cassette, each consisting of a culture chamber, activator chamber, filtration system (permitting separation of cells from supernatant in-flight), injection port, and supernatant collection chamber. The second unit (GCAK-2) also contains six separate culture units, including a culture, activator, and fixation chambers. Both hardware units permit relatively complex cell culture manipulations without extensive use of spacecraft resources (crew time, volume, mass, power), or the need for excessive safety measures. Possible operations include stimulation of cultures with activators, separation of cells from supernatant, fixation/lysis, manipulation of radiolabelled reagents, and medium exchange. Investigations performed aboard the Space Shuttle in six different experiments used Jurkat, purified T-cells or U937 cells, the results of which are reported separately. We report here the behaviour of Jurkat and U937 cells in the GCAK hardware in ground-based investigations simulating the conditions expected in the flight experiment. Several parameters including cell concentration, time between cell loading and activation, and storage temperature on cell survival were examined to characterise cell response and optimise the experiments to be flown aboard the Space Shuttle. Results indicate that the objectives of the experiments could be met with delays up to 5 days between cell loading into the hardware and initial in flight experiment activation, without the need for medium exchange. Experiment hardware of this kind, which is adaptable to a wide range of cell types and can be easily interfaced to different spacecraft facilities, offers the possibility for a wide range of experimenters successfully and easily to utilise future flight opportunities.

  9. The Use of LS-DYNA in the Columbia Accident Investigation and Return to Flight Activities

    NASA Technical Reports Server (NTRS)

    Gabrys, Jonathan; Schatz, Josh; Carney, Kelly; Melis, Matthew; Fasanella, Edwin L.; Lyle, Karen H.

    2004-01-01

    During the launch of the Space Shuttle Columbia on January 16, 2003, foam originating from the external tank impacted the shuttle's left wing 81 seconds after lift-off. Then on February 1st, Space Shuttle Columbia broke-up during re-entry. In the weeks that followed, the Columbia Accident Investigation Board had formed various teams to investigate every aspect of the tragedy. One of these teams was the Impact Analysis Team, which was asked to investigate the foam impact on the wing leading edge. This paper will describe the approach and methodology used by the team to support the accident investigation, and more specifically the use of LS-DYNA for analyzing the foam impact event. Due to the success of the analytical predictions, the impact analysis team has also been asked to support Return to Flight activities. These activities will analyze a far broader range of impact events, but not with just foam and not only on the wing leading edge. The debris list has expanded and so have the possible impact locations. This paper will discuss the Return to Flight activities and the use of LS-DYNA to support them.

  10. The National Aeronautics and Space Administration Nondestructive Evaluation Program for Safe and Reliable Operations

    NASA Technical Reports Server (NTRS)

    Generazio, Ed

    2005-01-01

    The National Aeronautics and Space Administration (NASA) Nondestructive Evaluation (NDE) Program is presented. As a result of the loss of seven astronauts and the Space Shuttle Columbia on February 1, 2003, NASA has undergone many changes in its organization. NDE is one of the key areas that are recognized by the Columbia Accident Investigation Board (CAIB) that needed to be strengthened by warranting NDE as a discipline with Independent Technical Authority (iTA). The current NASA NDE system and activities are presented including the latest developments in inspection technologies being applied to the Space Transportation System (STS). The unfolding trends and directions in NDE for the future are discussed as they apply to assuring safe and reliable operations.

  11. KSC-99pp0641

    NASA Image and Video Library

    1999-06-07

    At the Cape Canaveral Air Station Skid Strip, STS-96 crew members and their families board a plane to return to the Johnson Space Center in Houston, Texas. From left are the son, Ivan, and wife, Irina, of Mission Specialist Valery Ivanovich Tokarev (carrying a duffel bag); and Mission Specialist Ellen Ochoa, holding her son, Wilson Miles-Ochoa. Other crew members also returning are Commander Kent V. Rominger, Pilot Rick D. Husband, and Mission Specialists Tamara E. Jernigan (Ph.D.), Daniel Barry (M.D., Ph.D.) and Julie Payette (with the Canadian Space Agency). After a successful 10-day mission to the International Space Station aboard Space Shuttle Discovery, the crew landed June 6 at 2:02:43 a.m. EDT, in the 11th night landing at KSC

  12. Space shuttle requirements/configuration evolution

    NASA Technical Reports Server (NTRS)

    Andrews, E. P.

    1991-01-01

    Space Shuttle chronology; Space Shuttle comparison; Cost comparison; Performance; Program ground rules; Sizing criteria; Crew/passenger provisions; Space Shuttle Main Engine (SSME) characteristics; Space Shuttle program milestones; and Space Shuttle requirements are outlined. This presentation is represented by viewgraphs.

  13. Thermal mathematical modeling and system simulation of Space Shuttle less subsystem

    NASA Technical Reports Server (NTRS)

    Chao, D. C.; Battley, H. H.; Gallegos, J. J.; Curry, D. M.

    1984-01-01

    Applications, validation tests, and upgrades of the two- and three-dimensional system level thermal mathematical system simulation models (TMSSM) used for thermal protection system (TPS) analyses are described. The TMSSM were developed as an aid to predicting the performance requirements and configurations of the Shuttle wing leading edge (WLE) and nose cone (NC) TPS tiles. The WLE and its structure were subjected to acoustic, thermal/vacuum, and air loads tests to simulate launch, on-orbit, and re-entry behavior. STS-1, -2 and -5 flight data led to recalibration of on-board instruments and raised estimates of the thermal shock at the NC and WLE. Baseline heating data are now available for the design of future TPS.

  14. STS-112 M.S. Magnus in white room before launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - -- In the White Room at Launch Pad 39B, STS-112 Mission Specialist Sandra H. Magnus, Ph.D., receives assistance with her spacesuit before boarding Space Shuttle Atlantis. Liftoff is schedued for 3:46 p.m. EDT. Along with a crew of six, Atlantis will carry the S1 Integrated Truss Structure and the Crew and Equipment Translation Aid (CETA) Cart A to the International Space Station (ISS). The CETA is the first of two human-powered carts that will ride along the ISS railway, providing mobile work platforms for future spacewalking astronauts. On the 11-day mission, three spacewalks are planned to attach the S1 truss.

  15. STS-112 M.S. Sellers in white room before launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - -- In the White Room at Launch Pad 39B, STS-112 Mission Specialist Piers J. Sellers, Ph.D., receives assistance with his spacesuit before boarding Space Shuttle Atlantis. Liftoff is schedued for 3:46 p.m. EDT. Along with a crew of six, Atlantis will carry the S1 Integrated Truss Structure and the Crew and Equipment Translation Aid (CETA) Cart A to the International Space Station (ISS). The CETA is the first of two human-powered carts that will ride along the ISS railway, providing mobile work platforms for future spacewalking astronauts. On the 11-day mission, three spacewalks are planned to attach the S1 truss.

  16. Optical information processing at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Reid, Max B.; Bualat, Maria G.; Cho, Young C.; Downie, John D.; Gary, Charles K.; Ma, Paul W.; Ozcan, Meric; Pryor, Anna H.; Spirkovska, Lilly

    1993-01-01

    The combination of analog optical processors with digital electronic systems offers the potential of tera-OPS computational performance, while often requiring less power and weight relative to all-digital systems. NASA is working to develop and demonstrate optical processing techniques for on-board, real time science and mission applications. Current research areas and applications under investigation include optical matrix processing for space structure vibration control and the analysis of Space Shuttle Main Engine plume spectra, optical correlation-based autonomous vision for robotic vehicles, analog computation for robotic path planning, free-space optical interconnections for information transfer within digital electronic computers, and multiplexed arrays of fiber optic interferometric sensors for acoustic and vibration measurements.

  17. KSC-98pc503

    NASA Image and Video Library

    1998-04-17

    KENNEDY SPACE CENTER, FLA. -- The Space Shuttle Columbia surges skyward from Launch Pad 39B at 2:19 p.m. EDT Apr. 17 to begin the nearly 17-day STS-90 Neurolab mission. The launch was delayed 24 hours due to difficulty with a network signal processor, which was replaced Apr. 16, on the orbiter. The crew members on-board include Commander Richard Searfoss, Pilot Scott Altman, Mission Specialists Richard Linnehan, D.V.M., Dafydd (Dave) Williams, M.D., with the Canadian Space Agency, and Kathryn (Kay) Hire; and Payload Specialists Jay Buckey, M.D., and James Pawelczyk, Ph.D. Investigations during the Neurolab mission will focus on the effects of microgravity on the nervous system

  18. STS-112 M.S. Wolf in white room before launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - -- In the White Room at Launch Pad 39B, STS-112 Mission Specialist David A. Wolf, M.D., receives assistance with his spacesuit before boarding Space Shuttle Atlantis. Liftoff is schedued for 3:46 p.m. EDT. Along with a crew of six, Atlantis will carry the S1 Integrated Truss Structure and the Crew and Equipment Translation Aid (CETA) Cart A to the International Space Station (ISS). The CETA is the first of two human-powered carts that will ride along the ISS railway, providing mobile work platforms for future spacewalking astronauts. On the 11-day mission, three spacewalks are planned to attach the S1 truss.

  19. International Space Station (ISS)

    NASA Image and Video Library

    2002-06-05

    Aboard the Space Shuttle Orbiter Endeavour, the STS-111 mission was launched on June 5, 2002 at 5:22 pm EDT from Kennedy's launch pad. On board were the STS-111 and Expedition Five crew members. Astronauts Kenneth D. Cockrell, commander; Paul S. Lockhart, pilot, and mission specialists Franklin R. Chang-Diaz and Philippe Perrin were the STS-111 crew members. Expedition Five crew members included Cosmonaut Valeri G. Korzun, commander, Astronaut Peggy A. Whitson and Cosmonaut Sergei Y. Treschev, flight engineers. Three space walks enabled the STS-111 crew to accomplish mission objectives: the delivery and installation of a new platform for the ISS robotic arm, the Mobile Base System (MBS) which is an important part of the Station's Mobile Servicing System allowing the robotic arm to travel the length of the Station; the replacement of a wrist roll joint on the Station's robotic arm; and unloading supplies and science experiments from the Leonardo Multi-Purpose Logistics Module, which made its third trip to the orbital outpost. Landing on June 19, 2002, the 14-day STS-111 mission was the 14th Shuttle mission to visit the ISS.

  20. Backstop: Shuttle Will Fly with Outstanding Waivers; New Oversight Eases Conflicts on Safety

    NASA Technical Reports Server (NTRS)

    Morring, Frank, Jr.

    2005-01-01

    he space shuttle Discovery is carrying some 300 waivers to technical specifications as it enters the home stretch of its planned return to flight next month. There were about 6,000 waivers in place when Columbia crashed. Shuttle managers say they are working to reduce the number of waivers remaining by fixing the problems they highlight, a change prompted by the Columbia Accident Investigation Board. In the wake of the accident, NASA has heeded the CAWS recommendation that waivers be the responsibility of an "independent technical authority" (ITA), rather than the shuttle program itself. To carry out the recommendation of the CAIB-which found an inherent conflict of interest in having the same managers make decisions about cost, schedule and safety-then-Administrator Sean O'Keefe designated the agency's chief engineer as the formal ITA. He is responsible for setting, maintaining and granting waivers across the agency. In mid-January, Fred Gregory, then O'Keefe's deputy and now his acting replacement, launched the ITA within NASA under Chief Engineer Rex Geveden, the former program manager on the Gravity Probe B experiment.

  1. KSC-02pd0815

    NASA Image and Video Library

    2002-05-30

    KENNEDY SPACE CENTER, FLA. - On Launch Pad 39A at 2:48 a.m. EDT, the Rotating Service Structure (left) begins rolling back from Space Shuttle Endeavour to allow launch preparations. At the lower left corner is seen the driver of one of the motor-driven trucks that move along circular twin rails installed flush with the pad surface. Endeavour rests on the Mobile Launcher Platform that straddles the flame trench below. The trench is 490 feet long, 58 feet wide and 40 feet high. STS-111 is the second Utilization Flight to the International Space Station, carrying the Multi-Purpose Logistics Module Leonardo, the Mobile Base System (MBS), and a replacement wrist/roll joint for the Canadarm 2. Also onboard Space Shuttle Endeavour is the Expedition 5 crew who will replace Expedition 4 on board the Station. The MBS will be installed on the Mobile Transporter to complete the Canadian Mobile Servicing System, or MSS. The mechanical arm will then have the capability to "inchworm" from the U.S. Lab Destiny to the MSS and travel along the truss to work sites. Expedition 4 crew members will return to Earth with the STS-111 crew on Endeavour. Launch is scheduled at 7:44 p.m. EDT, May 30, 2002

  2. STS-128 patch Pathd

    NASA Image and Video Library

    2009-04-14

    STS128-S-001 (April 2009) --- The STS-128 patch symbolizes the 17A mission and represents the hardware, people and partner nations that contribute to the flight. The Space shuttle Discovery is shown in the orbit configuration with the Multi-Purpose Logistics Module (MPLM) Leonardo in the payload bay. Earth and the International Space Station wrap around the Astronaut Office symbol reminding us of the continuous human presence in space. The names of the STS-128 crew members border the patch in an unfurled manner. Included in the names is the expedition crew member who will launch on STS-128 and remain on board ISS, replacing another Expedition crew member who will return home with STS-128. The banner also completes the Astronaut Office symbol and contains the U.S. and Swedish flags representing the countries of the STS-128 crew. The NASA insignia design for space shuttle flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the forms of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, the change will be publicly announced. Photo credit: NASA

  3. Alumina Based 500 C Electronic Packaging Systems and Future Development

    NASA Technical Reports Server (NTRS)

    Chen, Liang-Yu

    2012-01-01

    NASA space and aeronautical missions for probing the inner solar planets as well as for in situ monitoring and control of next-generation aeronautical engines require high-temperature environment operable sensors and electronics. A 96% aluminum oxide and Au thick-film metallization based packaging system including chip-level packages, printed circuit board, and edge-connector is in development for high temperature SiC electronics. An electronic packaging system based on this material system was successfully tested and demonstrated with SiC electronics at 500 C for over 10,000 hours in laboratory conditions previously. In addition to the tests in laboratory environments, this packaging system has more recently been tested with a SiC junction field effect transistor (JFET) on low earth orbit through the NASA Materials on the International Space Station Experiment 7 (MISSE7). A SiC JFET with a packaging system composed of a 96% alumina chip-level package and an alumina printed circuit board mounted on a data acquisition circuit board was launched as a part of the MISSE7 suite to International Space Station via a Shuttle mission and tested on the orbit for eighteen months. A summary of results of tests in both laboratory and space environments will be presented. The future development of alumina based high temperature packaging using co-fired material systems for improved performance at high temperature and more feasible mass production will also be discussed.

  4. An Overview of the Space Shuttle Orbiter's Aging Aircraft Program

    NASA Technical Reports Server (NTRS)

    Russell, Richard W.

    2007-01-01

    The Space Shuttle Orbiter has well exceeded its original design life of 10 years or 100 missions. The Orbiter Project Office (OPO) has sponsored several activities to address aging vehicle concerns, including a Corrosion Control Review Board (CCRB), a mid-life certification program, and most recently the formation of the Aging Orbiter Working Group (AOWG). The AOWG was chartered in 2004 as a proactive group which provides the OPO oversight for aging issues such as corrosion, non-destructive inspection, non-metallics, wiring and subsystems. The core team consists of mainly representatives from the Materials and Processes Problem Resolution Team (M&P PRT) and Safety and Mission Assurance (S&MA). Subsystem engineers and subject matter experts are called in as required. The AOWG has functioned by forming issues based sub-teams. Examples of completed sub-teams include adhesives, wiring and wing leading edge metallic materials. Current sub-teams include Composite Over-Wrapped Pressure Vessels (COPV), elastomeric materials and mechanisms.

  5. KSC-98pc775

    NASA Image and Video Library

    1998-06-25

    KENNEDY SPACE CENTER, FLA. -- NASA's Huey UH-1 helicopter lands at the Shuttle Landing Facility to pick up Kennedy Space Center (KSC) Security personnel who operate the Forward Looking Infrared Radar (FLIR) installed on board. The helicopter has also been outfitted with a portable global positioning satellite (GPS) system to support Florida's Division of Forestry as they fight the brush fires which have been plaguing the state as a result of extremely dry conditions and lightning storms. The FLIR includes a beach ball-sized infrared camera that is mounted on the helicopter's right siderail and a real-time television monitor and recorder installed inside. While the FLIR collects temperature data and images, the GPS system provides the exact coordinates of the fires being observed and transmits the data to the firefighters on the ground. KSC's security team routinely uses the FLIR equipment prior to Shuttle launch and landing activities to ensure that the area surrounding the launch pad and runway are clear of unauthorized personnel. KSC's Base Operations Contractor, EG&G Florida, operates the NASA-owned helicopter

  6. STS-88 Pilot Sturckow and Mission Specialist Currie arrive for launch

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Pilot Frederick W. 'Rick' Sturckow and Mission Specialist Nancy J. Currie walk across the landing strip at the Shuttle Landing Facility after exiting the T-38 jet aircraft behind them that brought them to KSC. They join other crew members Mission Commander Robert D. Cabana, Mission Specialist Jerry L. Ross, Mission Specialist James H. Newman and Mission Specialist Sergei Konstantinovich Krikalev, a Russian cosmonaut, for pre-launch preparations for mission STS-88 aboard Space Shuttle Endeavour. The scheduled time of launch is 3:56 a.m. EST on Dec. 3 from Launch Pad 39A. The mission is the first U.S. launch for the International Space Station. Endeavour carries the Unity connecting module which the crew will be mating with the Russian- built Zarya control module already in orbit. In addition to Unity, two small replacement electronics boxes are on board for possible repairs to Zarya batteries. Endeavour is expected to land at KSC at 10:17 p.m. on Monday, Dec. 14.

  7. Measurement of LET distribution and dose equivalent on board the space shuttle STS-65

    NASA Technical Reports Server (NTRS)

    Hayashi, T.; Doke, T.; Kikuchi, J.; Takeuchi, R.; Hasebe, N.; Ogura, K.; Nagaoka, S.; Kato, M.; Badhwar, G. D.

    1996-01-01

    Space radiation dosimetry measurements have been made on board the Space Shuttle STS-65 in the Second International Microgravity Laboratory (IML-2). In these measurements, three kinds of detectors were used; one is a newly developed active detector telescope called "Real-time Radiation Monitoring Device (RRMD)" utilizing silicon semi-conductor detectors and others are conventional detectors of thermoluminescence dosimeters (TLDs) and CR-39 plastic track detectors. Using the RRMD detector, the first attempt of real-time monitoring of space radiation has been achieved successfully for a continuous period of 251.3 h, giving the temporal variations of LET distribution, particle count rates, and rates of absorbed dose and dose equivalent. The RRMD results indicate that a clear enhancement of the number of trapped particles is seen at the South Atlantic Anomaly (SAA) without clear enhancement of dose equivalent, while some daily periodic enhancements of dose equivalent due to high LET particles are seen at the lower geomagnetic cutoff regions for galactic cosmic ray particles (GCRs). Therefore, the main contribution to dose equivalent is seen to be due to GCRs in this low altitude mission (300 km). Also, the dose equivalent rates obtained by TLDs and CR-39 ranged from 146.9 to 165.2 microSv/day and the average quality factors from 1.45 to 1.57 depending on the locations and directions of detectors inside the Space-lab at this highly protected orbit for space radiation with a small inclination (28.5 degrees) and a low altitude (300 km). The LET distributions obtained by two different detectors, RRMD and CR-39, are in good agreement in the region of 15-200 keV/mm and difference of these distributions in the regions of LET < 15 keV/mm and LET > 200 keV/mm can be explained by considering characteristics of CR-39 etched track formation especially for the low LET tracks.

  8. Measurement of LET distribution and dose equivalent on board the space shuttle STS-65.

    PubMed

    Hayashi, T; Doke, T; Kikuchi, J; Takeuchi, R; Hasebe, N; Ogura, K; Nagaoka, S; Kato, M; Badhwar, G D

    1996-11-01

    Space radiation dosimetry measurements have been made on board the Space Shuttle STS-65 in the Second International Microgravity Laboratory (IML-2). In these measurements, three kinds of detectors were used; one is a newly developed active detector telescope called "Real-time Radiation Monitoring Device (RRMD)" utilizing silicon semi-conductor detectors and others are conventional detectors of thermoluminescence dosimeters (TLDs) and CR-39 plastic track detectors. Using the RRMD detector, the first attempt of real-time monitoring of space radiation has been achieved successfully for a continuous period of 251.3 h, giving the temporal variations of LET distribution, particle count rates, and rates of absorbed dose and dose equivalent. The RRMD results indicate that a clear enhancement of the number of trapped particles is seen at the South Atlantic Anomaly (SAA) without clear enhancement of dose equivalent, while some daily periodic enhancements of dose equivalent due to high LET particles are seen at the lower geomagnetic cutoff regions for galactic cosmic ray particles (GCRs). Therefore, the main contribution to dose equivalent is seen to be due to GCRs in this low altitude mission (300 km). Also, the dose equivalent rates obtained by TLDs and CR-39 ranged from 146.9 to 165.2 microSv/day and the average quality factors from 1.45 to 1.57 depending on the locations and directions of detectors inside the Space-lab at this highly protected orbit for space radiation with a small inclination (28.5 degrees) and a low altitude (300 km). The LET distributions obtained by two different detectors, RRMD and CR-39, are in good agreement in the region of 15-200 keV/mm and difference of these distributions in the regions of LET < 15 keV/mm and LET > 200 keV/mm can be explained by considering characteristics of CR-39 etched track formation especially for the low LET tracks.

  9. KSC-99pp1474

    NASA Image and Video Library

    1999-12-19

    Turning night into day for a few moments while belching clouds of smoke and steam, Space Shuttle Discovery hurtles into the black sky on mission STS-103. The successful liftoff occurred at 7:50 p.m. EST from Launch Pad 39B. On board are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly and Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), Claude Nicollier of Switzerland and Jean-François Clervoy of France. Nicollier and Clervoy are with the European Space Agency. STS-103 is a Hubble Servicing Mission, with three planned space walks designed to install new equipment and replace old. The primary objective is to replace the gyroscopes that make up the three Rate Sensor Units. Extravehicular activities include installing a new computer, changing out one of the Fine Guidance Sensors, replacing a tape recorder with a new solid state recorder, and installing a voltage/temperature improvement kit, and begin repairing the insulation on the telescope's outer surface. After the 7-day, 21-hour mission, Discovery is targeted to land at KSC Monday, Dec. 27, at about 5:24 p.m. EST. This is the 27th flight of Discovery and the 96th mission in the Space Shuttle Program. It is the third launch at Kennedy Space Center in 1999

  10. Columbia Accident Investigation Board Report. Volume Six

    NASA Technical Reports Server (NTRS)

    Barry, J. L.; Gehmann, H. W.; Deal, D. W.; Hallock, J. N.; Hess, K. W.

    2003-01-01

    In the course of its inquiry into the February 1, 2003 destruction of the Space Shuttle Columbia, the Columbia Accident Investigation Board conducted a series of public hearings at Houston, Texas; Cape Canaveral, Florida; and Washington, DC. Testimony from these hearings was recorded and then transcribed. This appendix, Volume VI of the Report, is a compilation of those transcripts. Contents: Transcripts of Board Public Hearings; Appendix H.1 March 6, 2003 Houston, Texas; Appendix H.2 March 17, 2003 Houston, Texas; Appendix H.3 March 18, 2003 Houston, Texas; Appendix H. 4 March 25, 2003 Cape Canaveral, Florida; Appendix H.5 March 26, 2003 Cape Canaveral, Florida; Appendix H.6 April 7, 2003 Houston, Texas; Appendix H.7 April 8, 2003 Houston, Texas; Appendix H.8 April 23, 2003 Houston, Texas; Appendix H.9 May 6, 2003 Houston, Texas; Appendix H.10 June 12, 2003 Washington, DC.

  11. Probabilistic risk assessment of the Space Shuttle. Phase 3: A study of the potential of losing the vehicle during nominal operation. Volume 5: Auxiliary shuttle risk analyses

    NASA Technical Reports Server (NTRS)

    Fragola, Joseph R.; Maggio, Gaspare; Frank, Michael V.; Gerez, Luis; Mcfadden, Richard H.; Collins, Erin P.; Ballesio, Jorge; Appignani, Peter L.; Karns, James J.

    1995-01-01

    Volume 5 is Appendix C, Auxiliary Shuttle Risk Analyses, and contains the following reports: Probabilistic Risk Assessment of Space Shuttle Phase 1 - Space Shuttle Catastrophic Failure Frequency Final Report; Risk Analysis Applied to the Space Shuttle Main Engine - Demonstration Project for the Main Combustion Chamber Risk Assessment; An Investigation of the Risk Implications of Space Shuttle Solid Rocket Booster Chamber Pressure Excursions; Safety of the Thermal Protection System of the Space Shuttle Orbiter - Quantitative Analysis and Organizational Factors; Space Shuttle Main Propulsion Pressurization System Probabilistic Risk Assessment, Final Report; and Space Shuttle Probabilistic Risk Assessment Proof-of-Concept Study - Auxiliary Power Unit and Hydraulic Power Unit Analysis Report.

  12. All quiet at Press Site before media blitz of mission STS-95

    NASA Technical Reports Server (NTRS)

    1998-01-01

    On a normal day of activity prior to the launch of mission STS- 95, the parking lot (foreground), plus the grandstand and buildings at the Press Site (beyond and to the right), are easily located from the air. The view gives no indication of the media frenzy the launch would generate with the return to space of John H. Glenn Jr., a senator from Ohio, whose first flight was aboard Friendship 7 in February 1962, and the first American to orbit the Earth. Glenn is one of a crew of seven on board Space Shuttle Discovery for the nine-day mission.

  13. Brazil's remote sensing activities in the Eighties

    NASA Technical Reports Server (NTRS)

    Raupp, M. A.; Pereiradacunha, R.; Novaes, R. A.

    1985-01-01

    Most of the remote sensing activities in Brazil have been conducted by the Institute for Space Research (INPE). This report describes briefly INPE's activities in remote sensing in the last years. INPE has been engaged in research (e.g., radiance studies), development (e.g., CCD-scanners, image processing devices) and applications (e.g., crop survey, land use, mineral resources, etc.) of remote sensing. INPE is also responsible for the operation (data reception and processing) of the LANDSATs and meteorological satellites. Data acquisition activities include the development of CCD-Camera to be deployed on board the space shuttle and the construction of a remote sensing satellite.

  14. TDRS-A - The pioneering payload

    NASA Technical Reports Server (NTRS)

    Browning, R. K.

    1983-01-01

    The first launch of a Tracking Data Relay Satellite (TDRS-A) on board the Shuttle Orbiter 'Challenger' of the Space Transportation System (STS) provided many pioneering events as a payload/user. The TDRS-A was launched as a payload of the STS as well as a payload of the Inertial Upper Stage (IUS) on April 4, 1983. This paper traces the payload processing flow of the TDRS-A from its arrival at the Kennedy Space Center (KSC), through its launch on Challenger and its trans-orbit flight on the IUS to geosynchronous orbit. The TDRS-A, as a customer/user of these launch systems, is examined and reviewed and lessons learned are noted.

  15. Monitoring Of The Middle Atmosphere: Grille Spectrometer Experiment Results On Board SPACELAB 1 And Scientific Program Of ATLAS 1 Mission

    NASA Astrophysics Data System (ADS)

    Papineau, N.; Camy-Peyret, C.; Ackerman, Marcel E.

    1989-10-01

    Measurements of atmospheric trace gases have been performed during the first Spacelab mission on board the Space Shuttle. The principle of the observations is infrared absorption spectroscopy using the solar occultation technique. Infrared absorption spectra of NO, CO, CO2, NO2, N20, CH4 and H2O have been recorded using the Grille spectrometer developped by ONERA and IASB. From the observed spectra, vertical profiles for these molecules have been derived. The present paper summarizes the main results and compares them with computed vertical profiles from a zonally averaged model of the middle atmosphere. The scientific objectives of the second mission, Atlas 1, planned for 1990 are also presented.

  16. KENNEDY SPACE CENTER, FLA. -- From left, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik, United Space Alliance (USA) Director of Orbiter Operations Patty Stratton, and NASA Space Shuttle Program Manager William Parsons view the underside of Shuttle Discovery in Orbiter Processing Facility Bay 3. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- From left, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik, United Space Alliance (USA) Director of Orbiter Operations Patty Stratton, and NASA Space Shuttle Program Manager William Parsons view the underside of Shuttle Discovery in Orbiter Processing Facility Bay 3. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  17. STS-36 Atlantis, OV-104, crew eats preflight breakfast at KSC O and C Bldg

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-36 crewmembers eat preflight breakfast at Kennedy Space Center (KSC) Operations and Checkout (O and C) Building before boarding Atlantis, Orbiter Vehicle (OV) 104. Sitting around table (left to right) are Mission Specialist (MS) Pierre J. Thuot, Pilot John H. Casper, Commander John O. Creighton, MS David C. Hilmers, and MS Richard M. Mullane. A cake decorated with the STS-36 mission insignia and a shuttle model with a floral arrangement are in the center of the table.

  18. Scenes from the STS-89/Mir 24 welcome ceremony

    NASA Image and Video Library

    1998-03-04

    S89-E-5175 (24 Jan 1998) --- This Electronic Still Camera (ESC) image shows astronaut Bonnie J. Dunbar, payload commander, shortly after Shuttle/Mir docking activities began. "Deja-vu" may have come to the mind of Dunbar as she boarded Russia's Mir Space Station. Dunbar was a member of the STS-71 crew -- the first United States aggregation to visit Mir -- along with cosmonaut Anatoliy Y. Solovyev, Mir-24 commander. The ESC view was taken at 22:37:23 GMT, on January 24, 1998.

  19. Earth Observations taken by the STS-109 crew

    NASA Image and Video Library

    2002-03-10

    STS109-E-6003 (10 March 2002) --- The astronauts on board the Space Shuttle Columbia took this digital picture featuring a well-defined subtropical cyclone. The view looks southwestward over the Tasman Sea (between Australia and New Zealand). According to meteorologists studying the STS-109 photo collection, such circulations are recognized as hybrids, lacking the tight banding and convection of tropical cyclones, and the strong temperature contrast and frontal boundaries of polar storms. The image was recorded with a digital still camera.

  20. Accident Case Study of Organizational Silence Communication Breakdown: Shuttle Columbia, Mission STS-107

    NASA Technical Reports Server (NTRS)

    Rocha, Rodney

    2011-01-01

    This report has been developed by the National Aeronautics and Space Administration (NASA) ESMD Risk and Knowledge Management team. This document provides a point-in-time, cumulative, summary of key lessons learned derived from the official Columbia Accident Investigation Board (CAIB). Lessons learned invariably address challenges and risks and the way in which these areas have been addressed. Accordingly the risk management thread is woven throughout the document. This report is accompanied by a video that will be sent at request

  1. Onboard experiment data support facility. Task 2 report: Definition of onboard processing requirements

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The onboard experiment data support facility (OEDSF) will provide data processing support to various experiment payloads on board the space shuttle. The OEDSF study will define the conceptual design and generate specifications for an OEDSF which will meet the following objectives: (1) provide a cost-effective approach to end-to-end processing requirements, (2) service multiple disciplines (3) satisfy user needs, (4) reduce the amount and improve the quality of data collected, stored and processed, and (5) embody growth capacity.

  2. KENNEDY SPACE CENTER, FLA. -- NASA and United Space Alliance (USA) Space Shuttle program managers attend a briefing, part of activities during a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC. Starting third from left are NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik, USA Vice President and Space Shuttle Program Manager Howard DeCastro, NASA Space Shuttle Program Manager William Parsons, and USA Associate Program Manager of Ground Operations Andy Allen.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- NASA and United Space Alliance (USA) Space Shuttle program managers attend a briefing, part of activities during a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC. Starting third from left are NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik, USA Vice President and Space Shuttle Program Manager Howard DeCastro, NASA Space Shuttle Program Manager William Parsons, and USA Associate Program Manager of Ground Operations Andy Allen.

  3. KENNEDY SPACE CENTER, FLA. -- From left, NASA Deputy Program Manager of the Space Shuttle Program Michael Wetmore, United Space Alliance (USA) Vice President and Space Shuttle Program Manager Howard DeCastro, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik, and a USA technician examine cold plates in Orbiter Processing Facility Bay 2. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- From left, NASA Deputy Program Manager of the Space Shuttle Program Michael Wetmore, United Space Alliance (USA) Vice President and Space Shuttle Program Manager Howard DeCastro, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik, and a USA technician examine cold plates in Orbiter Processing Facility Bay 2. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  4. KENNEDY SPACE CENTER, FLA. -- From left, United Space Alliance (USA) Deputy Space Shuttle Program Manager of Operations Loren Shriver, USA Associate Program Manager of Ground Operations Andy Allen, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik, and USA Vice President and Space Shuttle Program Manager Howard DeCastro examine a tile used in the Shuttle's Thermal Protection System (TPS) in KSC's TPS Facility. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- From left, United Space Alliance (USA) Deputy Space Shuttle Program Manager of Operations Loren Shriver, USA Associate Program Manager of Ground Operations Andy Allen, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik, and USA Vice President and Space Shuttle Program Manager Howard DeCastro examine a tile used in the Shuttle's Thermal Protection System (TPS) in KSC's TPS Facility. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  5. KSC-08pd3156

    NASA Image and Video Library

    2008-10-15

    CAPE CANAVERAL, Fla. – On NASA's Kennedy Space Center in Florida, the canister with space shuttle Atlantis’ Hubble Space Telescope payload inside heads for the open doors of the Canister Rotation Facility. The payload comprises four carriers holding various equipment for the mission. After rotation to horizontal, the canister will be transported back to Kennedy’s Payload Hazardous Servicing Facility where the hardware will be stored until a new target launch date can be set for Atlantis’ STS-125 mission in 2009. Atlantis’ October target launch date was delayed after a device on board Hubble used in the storage and transmission of science data to Earth shut down on Sept. 27. Replacing the broken device will be added to Atlantis’ servicing mission to the telescope Photo credit: NASA/Tim Jacobs

  6. KSC-08pd3157

    NASA Image and Video Library

    2008-10-15

    CAPE CANAVERAL, Fla. – On NASA's Kennedy Space Center in Florida, the canister with space shuttle Atlantis’ Hubble Space Telescope payload inside roll through the open doors of the Canister Rotation Facility. The payload comprises four carriers holding various equipment for the mission. After rotation to horizontal, the canister will be transported back to Kennedy’s Payload Hazardous Servicing Facility where the hardware will be stored until a new target launch date can be set for Atlantis’ STS-125 mission in 2009. Atlantis’ October target launch date was delayed after a device on board Hubble used in the storage and transmission of science data to Earth shut down on Sept. 27. Replacing the broken device will be added to Atlantis’ servicing mission to the telescope Photo credit: NASA/Tim Jacobs

  7. KSC-08pd3186

    NASA Image and Video Library

    2008-10-14

    CAPE CANAVERAL, Fla. – As the sunset faces behind Launch Pad 39A at NASA's Kennedy Space Center in Florida, lights on the rotating and fixed service structures take over the luminescence in the night. Space shuttle Atlantis is on the pad. Atlantis’ October target launch date for the STS-125 Hubble Space Telescope servicing mission was delayed after a device on board Hubble used in the storage and transmission of science data to Earth shut down on Sept. 27. Replacing the broken device will be added to Atlantis’ servicing mission to the telescope. In the interim, Atlantis will be rolled back to the Vehicle Assembly Building until a new target launch date can be set for the mission in 2009. Photo credit: NASA/Troy Cryder

  8. KSC-08pd3155

    NASA Image and Video Library

    2008-10-15

    CAPE CANAVERAL, Fla. – On NASA's Kennedy Space Center in Florida, the canister with space shuttle Atlantis’ Hubble Space Telescope payload inside heads toward the Canister Rotation Facility. The payload comprises four carriers holding various equipment for the mission. After rotation to horizontal, the canister will be transported back to Kennedy’s Payload Hazardous Servicing Facility where the hardware will be stored until a new target launch date can be set for Atlantis’ STS-125 mission in 2009. Atlantis’ October target launch date was delayed after a device on board Hubble used in the storage and transmission of science data to Earth shut down on Sept. 27. Replacing the broken device will be added to Atlantis’ servicing mission to the telescope Photo credit: NASA/Tim Jacobs

  9. KSC-08pd3153

    NASA Image and Video Library

    2008-10-15

    CAPE CANAVERAL, Fla. – On NASA's Kennedy Space Center in Florida, the canister with space shuttle Atlantis’ Hubble Space Telescope payload inside makes its way to the Canister Rotation Facility. The payload comprises four carriers holding various equipment for the mission. After rotation to horizontal, the canister will be transported back to Kennedy’s Payload Hazardous Servicing Facility where the hardware will be stored until a new target launch date can be set for Atlantis’ STS-125 mission in 2009. Atlantis’ October target launch date was delayed after a device on board Hubble used in the storage and transmission of science data to Earth shut down on Sept. 27. Replacing the broken device will be added to Atlantis’ servicing mission to the telescope Photo credit: NASA/Tim Jacobs

  10. KSC-08pd3158

    NASA Image and Video Library

    2008-10-15

    CAPE CANAVERAL, Fla. – On NASA's Kennedy Space Center in Florida, the canister with space shuttle Atlantis’ Hubble Space Telescope payload arrives inside the Canister Rotation Facility. The payload comprises four carriers holding various equipment for the mission. After rotation to horizontal, the canister will be transported back to Kennedy’s Payload Hazardous Servicing Facility where the hardware will be stored until a new target launch date can be set for Atlantis’ STS-125 mission in 2009. Atlantis’ October target launch date was delayed after a device on board Hubble used in the storage and transmission of science data to Earth shut down on Sept. 27. Replacing the broken device will be added to Atlantis’ servicing mission to the telescope Photo credit: NASA/Tim Jacobs

  11. KSC-08pd3182

    NASA Image and Video Library

    2008-10-14

    CAPE CANAVERAL, Fla. – On Launch Pad 39A at NASA's Kennedy Space Center in Florida, the rising moon stands out alongside the rotating and fixed service structures around space shuttle Atlantis. At left is the 300,000-gallon water tower used for sound suppression during liftoffs. Atlantis’ October target launch date for the STS-125 Hubble Space Telescope servicing mission was delayed after a device on board Hubble used in the storage and transmission of science data to Earth shut down on Sept. 27. Replacing the broken device will be added to Atlantis’ servicing mission to the telescope. In the interim, Atlantis will be rolled back to the Vehicle Assembly Building until a new target launch date can be set for the mission in 2009. Photo credit: NASA/Troy Cryder

  12. KSC-08pd3154

    NASA Image and Video Library

    2008-10-15

    CAPE CANAVERAL, Fla. – On NASA's Kennedy Space Center in Florida, the canister with space shuttle Atlantis’ Hubble Space Telescope payload inside heads toward the Canister Rotation Facility. The payload comprises four carriers holding various equipment for the mission. After rotation to horizontal, the canister will be transported back to Kennedy’s Payload Hazardous Servicing Facility where the hardware will be stored until a new target launch date can be set for Atlantis’ STS-125 mission in 2009. Atlantis’ October target launch date was delayed after a device on board Hubble used in the storage and transmission of science data to Earth shut down on Sept. 27. Replacing the broken device will be added to Atlantis’ servicing mission to the telescope Photo credit: NASA/Tim Jacobs

  13. KSC-08pd3152

    NASA Image and Video Library

    2008-10-15

    CAPE CANAVERAL, Fla. – On NASA's Kennedy Space Center in Florida, the canister with space shuttle Atlantis’ Hubble Space Telescope payload inside makes its way to the Canister Rotation Facility. The payload comprises four carriers holding various equipment for the mission. After rotation to horizontal, the canister will be transported back to Kennedy’s Payload Hazardous Servicing Facility where the hardware will be stored until a new target launch date can be set for Atlantis’ STS-125 mission in 2009. Atlantis’ October target launch date was delayed after a device on board Hubble used in the storage and transmission of science data to Earth shut down on Sept. 27. Replacing the broken device will be added to Atlantis’ servicing mission to the telescope Photo credit: NASA/Tim Jacobs

  14. KSC-99pp1477

    NASA Image and Video Library

    1999-12-19

    KENNEDY SPACE CENTER, FLA. -- As if spawned by the clouds of smoke and steam below, the Space Shuttle Discovery shoots into the night sky on mission STS-103. The brilliant light creates a reflection of the launch in the water nearby. Liftoff occurred at 7:50 p.m. EST from Launch Pad 39B. On board are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly and Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), Claude Nicollier of Switzerland and Jean-François Clervoy of France. Nicollier and Clervoy are with the European Space Agency. STS-103 is a Hubble Servicing Mission, with three planned space walks designed to install new equipment and replace old. The primary objective is to replace the gyroscopes that make up the three Rate Sensor Units. Extravehicular activities include installing a new computer, changing out one of the Fine Guidance Sensors, replacing a tape recorder with a new solid state recorder, and installing a voltage/temperature improvement kit, and begin repairing the insulation on the telescope's outer surface. After the 7-day, 21-hour mission, Discovery is expected to land at KSC Monday, Dec. 27, at about 5:24 p.m. EST. This is the 27th flight of Discovery and the 96th mission in the Space Shuttle Program. It is the third launch at Kennedy Space Center in 1999

  15. Toward a history of the space shuttle. An annotated bibliography

    NASA Technical Reports Server (NTRS)

    Launius, Roger D. (Compiler); Gillette, Aaron K. (Compiler)

    1992-01-01

    This selective, annotated bibliography discusses those works judged to be most essential for researchers writing scholarly studies on the Space Shuttle's history. A thematic arrangement of material concerning the Space Shuttle will hopefully bring clarity and simplicity to such a complex subject. Subjects include the precursors of the Space Shuttle, its design and development, testing and evaluation, and operations. Other topics revolve around the Challenger accident and its aftermath, promotion of the Space Shuttle, science on the Space Shuttle, commercial uses, the Space Shuttle's military implications, its astronaut crew, the Space Shuttle and international relations, the management of the Space Shuttle Program, and juvenile literature. Along with a summary of the contents of each item, judgments have been made on the quality, originality, or importance of some of these publications. An index concludes this work.

  16. KENNEDY SPACE CENTER, FLA. -- United Space Alliance (USA) technicians demonstrate the construction of a thermal blanket used in the Shuttle's thermal protection system for USA Vice President and Space Shuttle Program Manager Howard DeCastro (second from left) and NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (right). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- United Space Alliance (USA) technicians demonstrate the construction of a thermal blanket used in the Shuttle's thermal protection system for USA Vice President and Space Shuttle Program Manager Howard DeCastro (second from left) and NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (right). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  17. KENNEDY SPACE CENTER, FLA. -- From left, a United Space Alliance (USA) technician discusses aspects of Shuttle processing performed in the Solid Rocket Booster (SRB) Assembly and Refurbishment Facility (ARF) with USA Vice President and Space Shuttle Program Manager Howard DeCastro and NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- From left, a United Space Alliance (USA) technician discusses aspects of Shuttle processing performed in the Solid Rocket Booster (SRB) Assembly and Refurbishment Facility (ARF) with USA Vice President and Space Shuttle Program Manager Howard DeCastro and NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  18. KENNEDY SPACE CENTER, FLA. -- In Orbiter Processing Facility Bay 1, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (left) and United Space Alliance (USA) Vice President and Space Shuttle Program Manager Howard DeCastro (right) are briefed by a USA technician (center) on Shuttle processing in the payload bay of orbiter Atlantis. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- In Orbiter Processing Facility Bay 1, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (left) and United Space Alliance (USA) Vice President and Space Shuttle Program Manager Howard DeCastro (right) are briefed by a USA technician (center) on Shuttle processing in the payload bay of orbiter Atlantis. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  19. KENNEDY SPACE CENTER, FLA. -- United Space Alliance (USA) Vice President and Space Shuttle Program Manager Howard DeCastro (left) and NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (third from left) watch as a USA technician (right) creates a tile for use in the Shuttle's Thermal Protection System (TPS). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- United Space Alliance (USA) Vice President and Space Shuttle Program Manager Howard DeCastro (left) and NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (third from left) watch as a USA technician (right) creates a tile for use in the Shuttle's Thermal Protection System (TPS). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  20. KENNEDY SPACE CENTER, FLA. -- From left, a United Space Alliance (USA) technician briefs NASA Deputy Program Manager of the Space Shuttle Program Michael Wetmore, USA Vice President and Space Shuttle Program Manager Howard DeCastro, and NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik on the use of cold plates in Orbiter Processing Facility Bay 2. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- From left, a United Space Alliance (USA) technician briefs NASA Deputy Program Manager of the Space Shuttle Program Michael Wetmore, USA Vice President and Space Shuttle Program Manager Howard DeCastro, and NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik on the use of cold plates in Orbiter Processing Facility Bay 2. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  1. A study of the radiation environment on board the space shuttle flight STS-57

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Atwell, W.; Benton, E. V.; Frank, A. L.; Keegan, R. P.; Dudkin, V. E.; Karpov, O. N.; Potapov, V.; Akopova, A. B.; Magradze, N. V.

    1995-01-01

    A joint NASA-Russian study of the radiation environment inside a SPACEHAB 2 locker on space shuttle flight STS-57 was conducted. The shuttle flew in a nearly circular orbit of 28.5 deg inclination and 462 km altitude. The locker carried a charged particle spectrometer, a tissue equivalent proportional counter (TEPC), and two area passive detectors consisting of combined NASA plastic nuclear track detectors (PNTD's) and thermoluminescent detectors (TLD's), and Russian nuclear emulsions, PNTD's, and TLD's. All the detector systems were shielded by the same shuttle mass distribution. This makes possible a direct comparison of the various dose measurement techniques. In addition, measurements of the neutron energy spectrum were made using the proton recoil technique. The results show good agreement between the integral LET spectrum of the combined galactic and trapped particles using the tissue equivalent proportional counter and track detectors between about 15 keV/micron and 200 keV/micron. The LET spectrum determined from nuclear emulsions was systematically lower by about 50%, possibly due to emulsion fading. The results show that the TEPC measured an absorbed dose 20% higher than TLD's, due primarily to an increased TEPC response to neutrons and a low sensitivity of TLD's to high LET particles under normal processing techniques. There is a significant flux of high energy neutrons that is currently not taken into consideration in dose equivalent calculations. The results of the analysis of the spectrometer data will be reported separately.

  2. The influence of microgravity and spaceflight on columella cell ultrastructure in starch-deficient mutants of Arabidopsis

    NASA Technical Reports Server (NTRS)

    Guisinger, M. M.; Kiss, J. Z.

    1999-01-01

    The ultrastructure of root cap columella cells was studied by morphometric analysis in wild-type, a reduced-starch mutant, and a starchless mutant of Arabidopsis grown in microgravity (F-microgravity) and compared to ground 1g (G-1g) and flight 1g (F-1g) controls. Seedlings of the wild-type and reduced-starch mutant that developed during an experiment on the Space Shuttle (both the F-microgravity samples and the F-lg control) exhibited a decreased starch content in comparison to the G-1g control. These results suggest that some factor associated with spaceflight (and not microgravity per se) affects starch metabolism. Elevated levels of ethylene were found during the experiments on the Space Shuttle, and analysis of ground controls with added ethylene demonstrated that this gas was responsible for decreased starch levels in the columella cells. This is the first study to use an on-board centrifuge as a control when quantifying starch in spaceflight-grown plants. Furthermore, our results show that ethylene levels must be carefully considered and controlled when designing experiments with plants for the International Space Station.

  3. KSC-08pd0258

    NASA Image and Video Library

    2008-02-10

    KENNEDY SPACE CENTER, FLA. -- The solid rocket booster retrieval ship Freedom Star tows one of the boosters retrieved after the launch of space shuttle Atlantis' STS-122 mission. The space shuttle's solid rocket booster casings and associated flight hardware are recovered at sea. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about 6 by 9 nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters. The pilot chutes and main parachutes are the first items to be brought on board. With the chutes and frustum recovered, attention turns to the boosters. The ship's tow line is connected and the booster is returned to the Port and, after transfer to a position alongside the ship, to Hangar AF at Cape Canaveral Air Force Station. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/Jack Pfaller

  4. KSC-08pd0260

    NASA Image and Video Library

    2008-02-10

    KENNEDY SPACE CENTER, FLA. -- The solid rocket booster retrieval ship Freedom Star tows one of the boosters, retrieved after the launch of space shuttle Atlantis' STS-122 mission, toward Port Canaveral. The space shuttle's solid rocket booster casings and associated flight hardware are recovered at sea. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about 6 by 9 nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters. The pilot chutes and main parachutes are the first items to be brought on board. With the chutes and frustum recovered, attention turns to the boosters. The ship's tow line is connected and the booster is returned to the Port and, after transfer to a position alongside the ship, to Hangar AF at Cape Canaveral Air Force Station. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/Jack Pfaller

  5. KSC-08pd0259

    NASA Image and Video Library

    2008-02-10

    KENNEDY SPACE CENTER, FLA. -- Spectators watch as the solid rocket booster retrieval ship Freedom Star tows one of the boosters, retrieved after the launch of space shuttle Atlantis' STS-122 mission, toward Port Canaveral. The space shuttle's solid rocket booster casings and associated flight hardware are recovered at sea. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about 6 by 9 nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters. The pilot chutes and main parachutes are the first items to be brought on board. With the chutes and frustum recovered, attention turns to the boosters. The ship's tow line is connected and the booster is returned to the Port and, after transfer to a position alongside the ship, to Hangar AF at Cape Canaveral Air Force Station. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/Jack Pfaller

  6. KSC-08pd0261

    NASA Image and Video Library

    2008-02-10

    KENNEDY SPACE CENTER, FLA. -- The solid rocket booster retrieval ship Freedom Star tows toward Port Canaveral one of the boosters, retrieved after the launch of space shuttle Atlantis' STS-122 mission, toward Port Canaveral. The space shuttle's solid rocket booster casings and associated flight hardware are recovered at sea. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about 6 by 9 nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters. The pilot chutes and main parachutes are the first items to be brought on board. With the chutes and frustum recovered, attention turns to the boosters. The ship's tow line is connected and the booster is returned to the Port and, after transfer to a position alongside the ship, to Hangar AF at Cape Canaveral Air Force Station. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/Jack Pfaller

  7. Shuttle Atlantis in Mate-Demate Device Being Loaded onto SCA-747 for Return to Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This photo shows a night view of the orbiter Atlantis being loaded onto one of NASA's Boeing 747 Shuttle Carrier Aircraft (SCA) at the Dryden Flight Research Center, Edwards, California. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  8. KSC-05PD-0028

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. Tugboats maneuver the barge carrying the newly redesigned External Tank, designated for use on Return to Flight mission STS-114, toward the dock at the Launch Complex 39 Area Turn Basin at Kennedy. The barge arrived after an approximately 900-mile journey at sea from the Michoud Assembly Facility in New Orleans. It left the facility Dec. 31 on the Pegasus, NASAs specially designed barge, towed by Solid Rocket Booster retrieval ship Liberty Star. At Port Canaveral, the barge was then hooked up to the tugs for the last part of the journey. Next, the External Tank will be off-loaded from the barge and transported to the Vehicle Assembly Building for its final checkout and mating to the twin Solid Rocket Boosters and orbiter Discovery. NASA and Lockheed Martin Corp. spent nearly two years modifying the 15-story, bronze-colored tank to make it safer for liftoff. Among dozens of changes is a redesigned forward bipod fitting -- a design that meets the recommendation of the Columbia Accident Investigation Board to reduce the risk to the Space Shuttle from falling debris during ascent. STS-114 is targeted for a launch opportunity beginning in May. The seven-member Discovery crew will fly to the International Space Station primarily to test and evaluate new procedures for flight safety, including Space Shuttle inspection and repair techniques.

  9. KSC-02pd0818

    NASA Image and Video Library

    2002-05-30

    KENNEDY SPACE CENTER, FLA. -- After rollback of the Rotating Service Structure in the early morning hours, Space Shuttle Endeavour sits bathed in light on its Mobile Launcher Platform on Launch Pad 39A. Seen extending to the cockpit area of Endeavour is the orbiter access arm. At the end of the arm is the White Room, an environmental chamber. Below, on either side of Endeavour's tail, are the tail service masts that support fluid, gas and electrical requirements of the orbiter's liquid oxygen and liquid hydrogen aft T-0 umbilicals. STS-111 is the second Utilization Flight to the International Space Station, carrying the Multi-Purpose Logistics Module Leonardo, the Mobile Base System (MBS), and a replacement wrist/roll joint for the Canadarm 2. Also onboard Space Shuttle Endeavour is the Expedition 5 crew who will replace Expedition 4 on board the Station. The MBS will be installed on the Mobile Transporter to complete the Canadian Mobile Servicing System, or MSS. The mechanical arm will then have the capability to "inchworm" from the U.S. Lab Destiny to the MSS and travel along the truss to work sites. Expedition 4 crew members will return to Earth with the STS-111 crew on Endeavour. Launch is scheduled for 7:44 p.m. EDT, May 30, 2002

  10. Automatic maintenance payload on board of a Mexican LEO microsatellite

    NASA Astrophysics Data System (ADS)

    Vicente-Vivas, Esaú; García-Nocetti, Fabián; Mendieta-Jiménez, Francisco

    2006-02-01

    Few research institutions from Mexico work together to finalize the integration of a technological demonstration microsatellite called Satex, aiming the launching of the first ever fully designed and manufactured domestic space vehicle. The project is based on technical knowledge gained in previous space experiences, particularly in developing GASCAN automatic experiments for NASA's space shuttle, and in some support obtained from the local team which assembled the México-OSCAR-30 microsatellites. Satex includes three autonomous payloads and a power subsystem, each one with a local microcomputer to provide intelligent and dedicated control. It also contains a flight computer (FC) with a pair of full redundancies. This enables the remote maintenance of processing boards from the ground station. A fourth communications payload depends on the flight computer for control purposes. A fifth payload was decided to be developed for the satellite. It adds value to the available on-board computers and extends the opportunity for a developing country to learn and to generate domestic space technology. Its aim is to provide automatic maintenance capabilities for the most critical on-board computer in order to achieve continuous satellite operations. This paper presents the virtual computer architecture specially developed to provide maintenance capabilities to the flight computer. The architecture is periodically implemented by software with a small amount of physical processors (FC processors) and virtual redundancies (payload processors) to emulate a hybrid redundancy computer. Communications among processors are accomplished over a fault-tolerant LAN. This allows a versatile operating behavior in terms of data communication as well as in terms of distributed fault tolerance. Obtained results, payload validation and reliability results are also presented.

  11. KENNEDY SPACE CENTER, FLA. -- From left, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik and United Space Alliance (USA) Vice President and Space Shuttle Program Manager Howard DeCastro are briefed on the properties of the tile used in the Shuttle's Thermal Protection System (TPS) by USA Manager of the TPS Facility Martin Wilson (right). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- From left, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik and United Space Alliance (USA) Vice President and Space Shuttle Program Manager Howard DeCastro are briefed on the properties of the tile used in the Shuttle's Thermal Protection System (TPS) by USA Manager of the TPS Facility Martin Wilson (right). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  12. KENNEDY SPACE CENTER, FLA. -- NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (top) discusses the inner workings of Shuttle Atlantis in Orbiter Processing Facility Bay 1 with a United Space Alliance (USA) technician (bottom). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (top) discusses the inner workings of Shuttle Atlantis in Orbiter Processing Facility Bay 1 with a United Space Alliance (USA) technician (bottom). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  13. KENNEDY SPACE CENTER, FLA. -- NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (right) discusses a speed brake on Shuttle Discovery in Orbiter Processing Facility Bay 3 with a United Space Alliance (USA) technician (left). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (right) discusses a speed brake on Shuttle Discovery in Orbiter Processing Facility Bay 3 with a United Space Alliance (USA) technician (left). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  14. STS-102 Photo-op/Suit-up/Depart O&C/Launch Discovery On Orbit/Landing/Crew Egress

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The spacecrews of STS-102 and the Expedition 1 and 2 crews of the International Space Station (ISS) are seen in this video, which presents an overview of their activities. The crew consists of Commander Jim Wetherbee, Pilot James Kelly, and Mission Specialists Andrew Thomas, and Paul Richards. The sections of the video include: Photo-op, Suit-up, Depart O&C, Ingress, Launch with Playbacks, On-orbit, Landing with Playbacks, and Crew Egress & Departs. The prelaunch activities are explained by two narrators, and the crew members are assisted in the White Room just before boarding the Space Shuttle Discovery. Isolated views of the shuttle's launch include: VAB, PAD-B, DLTR-3, UCS-23 Tracker, PATRICK IGOR, UCS-10 Tracker, Grandstand, Tower-1, OTV-160, OTV-170, OTV-171, and On-board Camera. The video shows two extravehicular activities (EVAs) to perform work on the ISS, one by astronauts Helms and Voss from Expedition 2, and another by Richards and Thomas. The attachment of the Leonardo Multipurpose Logistics Module, a temporary resupply module, is shown in a series of still images. The on-orbit footage also includes a view of the Nile River, and a crew exhange ceremony between Expedition 1 (Commander Yuri Gidzenko, Flight Engineer Sergei Krikalev) and Expedition 2 (Commander Yury Usachev, Flight Engineers James Voss, Susan Helms). Isolated views of the landing at Kennedy Space Center include: North Runway Camera, VAB, Tower-1, Mid-field, Midfield IR, Tower-2, and UCS-12 IR. The Crew Transfer Vehicle (CTV) for unloading the astronauts is shown, administrators greet the crew upon landing, and Commander Wetherbee gives a briefing.

  15. KENNEDY SPACE CENTER, FLA. -- From front row left, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik and NASA Space Shuttle Program Manager William Parsons are trained on the proper use of the Emergency Life Support Apparatus (ELSA). NASA and United Space Alliance (USA) Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- From front row left, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik and NASA Space Shuttle Program Manager William Parsons are trained on the proper use of the Emergency Life Support Apparatus (ELSA). NASA and United Space Alliance (USA) Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  16. KENNEDY SPACE CENTER, FLA. -- From left, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik and NASA Space Shuttle Program Manager William Parsons each don an Emergency Life Support Apparatus (ELSA) during training on the proper use of the escape devices. NASA and United Space Alliance (USA) Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- From left, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik and NASA Space Shuttle Program Manager William Parsons each don an Emergency Life Support Apparatus (ELSA) during training on the proper use of the escape devices. NASA and United Space Alliance (USA) Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  17. The Columbia Accident Investigation and The NASA Glenn Ballistic Impact Laboratory Contributions Supporting NASA's Return to Flight

    NASA Technical Reports Server (NTRS)

    Melis, Matthew E.

    2007-01-01

    On February 1, 2003, the Space Shuttle Columbia broke apart during reentry, resulting in loss of the vehicle and its seven crewmembers. For the next several months, an extensive investigation of the accident ensued involving a nationwide team of experts from NASA, industry, and academia, spanning dozens of technical disciplines. The Columbia Accident Investigation Board (CAIB), a group of experts assembled to conduct an investigation independent of NASA, concluded in August, 2003 that the most likely cause of the loss of Columbia and its crew was a breach in the left wing leading edge Reinforced Carbon-Carbon (RCC) thermal protection system initiated by the impact of thermal insulating foam that had separated from the orbiters external fuel tank 81 seconds into the mission's launch. During reentry, this breach allowed superheated air to penetrate behind the leading edge and erode the aluminum structure of left wing, which ultimately led to the breakup of the orbiter. The findings of the CAIB were supported by ballistic impact tests, which simulated the physics of External Tank Foam impact on the RCC wing leading edge material. These tests ranged from fundamental material characterization tests to full-scale Orbiter Wing Leading Edge tests. Following the accident investigation, NASA spent the next 18 months focused on returning the shuttle safely to flight. In order to fully evaluate all potential impact threats from the many debris sources on the Space Shuttle during ascent, NASA instituted a significant impact testing program. The results from these tests led to the validation of high-fidelity computer models, capable of predicting actual or potential Shuttle impact events, were used in the certification of STS-114, NASA s Return to Flight Mission, as safe to fly. This presentation will provide a look into the inner workings of the Space Shuttle and a behind the scenes perspective on the impact analysis and testing done for the Columbia Accident Investigation and NASA's Return to Flight programs. In addition, highlights from recent Shuttle missions are presented.

  18. Characterization of Space Shuttle External Tank Thermal Protection System (TPS) Materials in Support of the Columbia Accident Investigation

    NASA Technical Reports Server (NTRS)

    Wingard, Charles D.

    2004-01-01

    NASA suffered the loss of the seven-member crew of the Space Shuttle Columbia on February 1, 2003 when the vehicle broke apart upon re-entry to the Earth's atmosphere. The final report of the Columbia Accident Investigation Board (CAIB) determined that the accident was caused by a launch ascent incident-a suitcase-sized chunk of insulating foam on the Shuttle's External Tank (ET) broke off, and moving at almost 500 mph, struck an area of the leading edge of the Shuttle s left wing. As a result, one or more of the protective Reinforced Carbon-Carbon (RCC) panels on the wing leading edge were damaged. Upon re-entry, superheated air approaching 3,000 F breached the wing damage and caused the vehicle breakup and loss of crew. The large chunk of insulating foam that broke off during the Columbia launch was determined to come from the so-called bipod ramp area where the Shuttle s orbiter (containing crew) is attached to the ET. Underneath the foam in the bipod ramp area is a layer of TPS that is a cork-filled silicone rubber composite. In March 2003, the NASA Marshall Space Flight Center (MSFC) in Huntsville, Alabama received cured samples of the foam and composite for testing from the Michoud Assembly Facility (MAF) in New Orleans, Louisiana. The MAF is where the Shuttle's ET is manufactured. The foam and composite TPS materials for the ET have been well characterized for mechanical property data at the super-cold temperatures of the liquid oxygen and hydrogen fuels used in the ET. However, modulus data on these materials is not as well characterized. The TA Instruments 2980 Dynamic Mechanical Analyzer (DMA) was used to determine the modulus of the two TPS materials over a range of -145 to 95 C in the dual cantilever bending mode. Multi-strain, fixed frequency DMA tests were followed by multi-frequency, fixed strain tests to determine the approximate bounds of linear viscoelastic behavior for the two materials. Additional information is included in the original extended abstract.

  19. Shuttle Discovery Landing at Palmdale, California, Maintenance Facility

    NASA Technical Reports Server (NTRS)

    1995-01-01

    NASA Dryden Flight Research Center pilot Tom McMurtry lands NASA's Shuttle Carrier Aircraft with Space Shuttle Discovery attached at Rockwell Aerospace's Palmdale, California, facility about 1:00 p.m. Pacific Daylight Time (PDT). There for nine months of scheduled maintenance, Discovery and the 747 were completing a two-day flight from Kennedy Space Center, Florida, that began at 7:04 a.m. Eastern Standard Time on 27 September and included an overnight stop at Salt Lake City International Airport, Utah. At the conclusion of this mission, Discovery had flown 21 shuttle missions, totaling more than 142 days in orbit. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  20. Shuttle Discovery Being Unloaded from SCA-747 at Palmdale, California, Maintenance Facility

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Space Shuttle Discovery being unloaded from NASA's Boeing 747 Shuttle Carrier Aircraft (SCA) at Rockwell Aerospace's Palmdale facility for nine months of scheduled maintenance. Discovery and the 747 were completing a two-day flight from Kennedy Space Center, Florida, that began at 7:04 a.m. Eastern Standard Time on 27 September and included an overnight stop at Salt Lake City International Airport, Utah. At the conclusion of this mission, Discovery had flown 21 shuttle missions, totaling more than 142 days in orbit. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  1. Shuttle Enterprise Mated to 747 SCA for Delivery to Smithsonian

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The Space Shuttle Enterprise atop the NASA 747 Shuttle Carrier Aircraft as it leaves NASA's Dryden Flight Research Center, Edwards, California. The Enterprise, first orbiter built, was not spaceflight rated and was used in 1977 to verify the landing, approach, and glide characteristics of the orbiters. It was also used for engineering fit-checks at the shuttle launch facilities. Following approach and landing tests in 1977 and its use as an engineering vehicle, Enterprise was donated to the National Air and Space Museum in Washington, D.C. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  2. Servicing Mission 4 and the Extraordinary Science of the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Wiseman, Jennifer J.

    2012-01-01

    Just two years ago, NASA astronauts performed a challenging and flawless final Space Shuttle servicing mission to the orbiting Hubble Space Telescope. With science instruments repaired on board and two new ones installed, the observatory. is more powerful now than ever before. I will show the dramatic highlights of the servicing mission and present some of the early scientific results from the refurbished telescope. Its high sensitivity and multi-wavelength capabilities are revealing the highest redshift galaxies ever seen, as well as details of the cosmic web of intergalactic medium, large scale structure formation, solar system bodies, and stellar evolution. Enlightening studies of dark matter, dark energy, and exoplanet atmospheres add to the profound contributions to astrophysics that are being made with Hubble, setting a critical stage for future observatories such as the James Webb Space Telescope.

  3. Review of the Space Applications program, 1974

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The purpose of this review is to provide the participants in the National Aeronautics and Space Administration/National Academy of Engineers' Summer Study in Applications a concise overview of the NASA Applications Program as it stands in 1974. The review covers the accomplishments of the various discipline-oriented programs that make up the total Applications Program, discusses the program plan for the 1975 to 1980 period, and examines the anticipated spaceflight capabilities of the 1980's. NASA has requested the National Academy of Engineers to conduct through its Space Applications Board a comprehensive study of the future Space Applications Program encompassing the following: (1) the Applications Program in general, with particular emphasis on practical approaches, including assessment of the socio-economic benefits and (2) how the broad comprehensive program envisioned above influences, or is influenced by, the shuttle system, the principal space transport system of the 1980's.

  4. Medical support and technology for long-duration space missions

    NASA Technical Reports Server (NTRS)

    Furukawa, S.; Nicogossian, A.; Buchanan, P.; Pool, S. L.

    1982-01-01

    The current philosophy and development directions being taken towards realization of medical systems for use on board space stations are discussed. Data was gained on the performance of physical examinations, venipuncture and blood flow, blood smear and staining, white blood cell differential count, throat culture swab and colony count, and microscopy techniques during a 28-day period of the Skylab mission. It is expected that the advent of Shuttle flights will rapidly increase the number of persons in space, create a demand for in-space rather than on-earth medical procedures, and necessitate treatments for disorders without the provision for an early return to earth. Attention is being given to pressurized environment and extravehicular conditions of treatment, the possibilities of the use of the OTV for moving injured or ill crewmembers to other space stations, and to isolation of persons with communicable diseases from station crews.

  5. Observations of the Earth's magnetic field from the shuttle: Using the Spartan carrier as a magnetic survey tool

    NASA Technical Reports Server (NTRS)

    Webster, W. J., Jr.

    1986-01-01

    The shuttle-deployed and recovered Spartan shows promise as an inexpensive and simple support module for potential field measurements. The results of a preliminary engineering study on the applications of the Spartan carrier to magnetic measurements shows: (1) Extension of the mission duration to as long as 7 days is feasible but requires more reconfiguration of the internal systems; (2) On-board recording of Global Positioning System signals will provide position determination with an accuracy consistent with the most severe requirements; and (3) Making Spartan a magnetically clean spacecraft is straight forward but requires labor-intensive modifications to both the data and power systems. As a magnetic survey tool, Spartan would allow surveys at regularly spaced intervals and could make quick-reaction surveys at times of instability in the secular variation.

  6. Shuttle in Mate-Demate Device being Loaded onto SCA-747

    NASA Technical Reports Server (NTRS)

    1991-01-01

    At NASA's Ames-Dryden Flight Research Facility (later redesignated Dryden Flight Research Center), Edwards, California, technicians begin the task of mounting the Space Shuttle Atlantis atop NASA's 747 Shuttle Carrier Aircraft (NASA #911) for the ferry flight back to the Kennedy Space Center, Florida, following its STS-44 flight 24 November - 1 December 1991. Post-flight servicing of the orbiters, and the mating operation, is carried out at Dryden at the Mate-Demate Device (MDD), the large gantry-like structure that hoists the spacecraft to various levels during post-space flight processing and attachment to the 747. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  7. Automatic Sprout Grower

    NASA Technical Reports Server (NTRS)

    Sauer, Richard L.; Scheld, H. W.; Magnuson, J. W.

    1989-01-01

    Self-contained seed-sprouting system provides environment for sprouting seeds quickly and easily. Sprouting container standard 6-oz package for dehydrated food and drink mixes in Space Shuttle. About 4 g of dry alfalfa or radish seeds vacuum-sealed in each cup, like freeze-dried foods. Sixteen cups suspended in tray. Air-and-water inlet tube links each cup to system of tubes and solenoid valves alternately furnish air and water and remove stale air. Peristaltic pump supplies water from vinyl medical-fluid bag. Small diaphragm pump supplies and exhausts air. Small circuit board times movements of air and water. Kit offers advantages to home gardeners. Apartment dwellers use it for steady production of homegrown sprouts even though they have no garden space.

  8. KSC-08pd3131

    NASA Image and Video Library

    2008-10-15

    CAPE CANAVERAL, Fla. – On NASA's Kennedy Space Center in Florida, the canister with space shuttle Atlantis’ HST payload inside rolls past the Vehicle Assembly Building, behind it. The payload comprises four carriers holding various equipment for the mission. The hardware will be transported back to Kennedy’s Payload Hazardous Servicing Facility where it will be stored until a new target launch date can be set for Atlantis’ STS-125 mission in 2009. Atlantis’ October target launch date was delayed after a device on board Hubble used in the storage and transmission of science data to Earth shut down on Sept. 27. Replacing the broken device will be added to Atlantis’ servicing mission to the telescope. Photo credit: NASA/Tim Jacobs

  9. Space Shuttle orbiter modifications to support Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Segert, Randall; Lichtenfels, Allyson

    1992-01-01

    The Space Shuttle will be the primary vehicle to support the launch, assembly, and maintenance of the Space Station Freedom (SSF). In order to accommodate this function, the Space Shuttle orbiter will require significant modifications. These modifications are currently in development in the Space Shuttle Program. The requirements for the planned modifications to the Space Shuttle orbiter are dependent on the design of the SSF. Therefore, extensive coordination is required with the Space Station Freedom Program (SSFP) in order to identify requirements and resolve integration issues. This paper describes the modifications to the Space Shuttle orbiter required to support SSF assembly and operations.

  10. The potential impact of the space shuttle on space benefits to mankind

    NASA Technical Reports Server (NTRS)

    Rattinger, I.

    1972-01-01

    The potential impact of the space shuttle on space benefits to mankind is discussed. The space shuttle mission profile is presented and the capabilities of the spacecraft to perform various maneuvers and operations are described. The cost effectiveness of the space shuttle operation is analyzed. The effects upon technological superiority and national economics are examined. Line drawings and artist concepts of space shuttle configurations are included to clarify the discussion.

  11. STS-68 747 SCA Ferry Flight Takeoff for Delivery to Kennedy Space Center, Florida

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Space Shuttle Columbia, atop NASA's 747 Shuttle Carrier Aircraft (SCA), taking off for the Kennedy Space Center shortly after its landing on 12 October 1994, at Edwards, California, to complete mission STS-68. Columbia was being ferried from the Kennedy Space Center, Florida, to Air Force Plant 42, Palmdale, California, where it will undergo six months of inspections, modifications, and systems upgrades. The STS-68 11-day mission was devoted to radar imaging of Earth's geological features with the Space Radar Laboratory. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  12. Enterprise - First Tailcone Off Free Flight

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The Space Shuttle prototype Enterprise flies free after being released from NASA's 747 Shuttle Carrier Aircraft (SCA) to begin a powerless glide flight back to NASA's Dryden Flight Research Center, Edwards, California, on its fourth of the five free flights in the Shuttle program's Approach and Landing Tests (ALT), 12 October 1977. The tests were carried out at Dryden to verify the aerodynamic and control characteristics of the orbiters in preperation for the first space mission with the orbiter Columbia in April 1981. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  13. Shuttle Columbia Post-landing Tow - with Reflection in Water

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A rare rain allowed this reflection of the Space Shuttle Columbia as it was towed 16 Nov. 1982, to the Shuttle Processing Area at NASA's Ames-Dryden Flight Research Facility (from 1976 to 1981 and after 1994, the Dryden Flight Research Center), Edwards, California, following its fifth flight in space. Columbia was launched on mission STS-5 11 Nov. 1982, and landed at Edwards Air Force Base on concrete runway 22. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines withtwo solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. MartinMarietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  14. 14 CFR 1214.101 - Eligibility for flight of a non-U.S. government reimbursable payload on the Space Shuttle.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    .... government reimbursable payload on the Space Shuttle. 1214.101 Section 1214.101 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT General Provisions Regarding Space Shuttle... non-U.S. government reimbursable payload on the Space Shuttle. To be eligible for flight on the Space...

  15. 14 CFR 1214.101 - Eligibility for flight of a non-U.S. government reimbursable payload on the Space Shuttle.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    .... government reimbursable payload on the Space Shuttle. 1214.101 Section 1214.101 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT General Provisions Regarding Space Shuttle... non-U.S. government reimbursable payload on the Space Shuttle. To be eligible for flight on the Space...

  16. 14 CFR 1214.101 - Eligibility for flight of a non-U.S. government reimbursable payload on the Space Shuttle.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    .... government reimbursable payload on the Space Shuttle. 1214.101 Section 1214.101 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT General Provisions Regarding Space Shuttle... non-U.S. government reimbursable payload on the Space Shuttle. To be eligible for flight on the Space...

  17. KENNEDY SPACE CENTER, FLA. -- A United Space Alliance (USA) technician (center) discusses aspects of Shuttle processing performed in the Solid Rocket Booster (SRB) Assembly and Refurbishment Facility (ARF) with NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (right). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- A United Space Alliance (USA) technician (center) discusses aspects of Shuttle processing performed in the Solid Rocket Booster (SRB) Assembly and Refurbishment Facility (ARF) with NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (right). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  18. 48 CFR 1828.371 - Clauses for cross-waivers of liability for Space Shuttle services, Expendable Launch Vehicle (ELV...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... of liability for Space Shuttle services, Expendable Launch Vehicle (ELV) launches, and Space Station... of liability for Space Shuttle services, Expendable Launch Vehicle (ELV) launches, and Space Station activities. (a) In agreements covering Space Shuttle services, certain ELV launches, and Space Station...

  19. 48 CFR 1828.371 - Clauses for cross-waivers of liability for Space Shuttle services, Expendable Launch Vehicle (ELV...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... of liability for Space Shuttle services, Expendable Launch Vehicle (ELV) launches, and Space Station... of liability for Space Shuttle services, Expendable Launch Vehicle (ELV) launches, and Space Station activities. (a) In agreements covering Space Shuttle services, certain ELV launches, and Space Station...

  20. Parking Lot and Public Viewing Area for STS-4 Landing

    NASA Technical Reports Server (NTRS)

    1982-01-01

    This aerial photo shows the large crowd of people and vehicles that assembled to watch the landing of STS-4 at Edwards Air Force Base in California in July 1982. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  1. Dose measurements in space by the Hungarian Pille TLD system.

    PubMed

    Apathy, I; Deme, S; Feher, I; Akatov, Y A; Reitz, G; Arkhanguelski, V V

    2002-10-01

    Exposure of crew, equipment, and experiments to the ambient space radiation environment in low Earth orbit poses one of the most significant problems to long-term space habitation. Accurate dose measurement has become increasingly important during the assembly (extravehicular activity (EVA)) and operation of space stations such as on Space Station Mir. Passive integrating detector systems such as thermoluminescent dosemeters (TLDs) are commonly used for dosimetry mapping and personal dosimetry on space vehicles. The well-known advantages of passive detector systems are their independence of power supply, small dimensions, high sensitivity, good stability, wide measuring range, resistance to environmental effects, and relatively low cost. Nevertheless, they have the general disadvantage that for evaluation purposes they need a laboratory or large--in mass and power consumption--terrestrial equipment, and consequently they cannot provide time-resolved dose data during long-term space flights. KFKI Atomic Energy Research Institute (KFKI AEKI) has developed and manufactured a series of thermoluminescent dosemeter systems for measuring cosmic radiation doses in the 10 microGy to 10 Gy range, consisting of a set of bulb dosemeters and a compact, self-contained, TLD reader suitable for on-board evaluation of the dosemeters. By means of such a system, highly accurate measurements were carried out on board the Salyut-6, -7 and Mir Space Stations as well as on the Space Shuttle. A detailed description of the system is given and the comprehensive results of these measurements are summarised. c2002 Elsevier Science Ltd. All rights reserved.

  2. Planned development of the space shuttle vehicle

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Information pertaining to the planned development of the space shuttle vehicle is presented. The package contains: (1) President's statement; (2) Dr. Fletcher's statement; (3) space shuttle fact sheet; (4) important reasons for the space shuttle.

  3. An Onboard ISS Virtual Reality Trainer

    NASA Technical Reports Server (NTRS)

    Miralles, Evelyn

    2013-01-01

    Prior to the retirement of the Space Shuttle, many exterior repairs on the International Space Station (ISS) were carried out by shuttle astronauts, trained on the ground and flown to the Station to perform these specific repairs. With the retirement of the shuttle, this is no longer an available option. As such, the need for ISS crew members to review scenarios while on flight, either for tasks they already trained for on the ground or for contingency operations has become a very critical issue. NASA astronauts prepare for Extra-Vehicular Activities (EVA) or Spacewalks through numerous training media, such as: self-study, part task training, underwater training in the Neutral Buoyancy Laboratory (NBL), hands-on hardware reviews and training at the Virtual Reality Laboratory (VRLab). In many situations, the time between the last session of a training and an EVA task might be 6 to 8 months. EVA tasks are critical for a mission and as time passes the crew members may lose proficiency on previously trained tasks and their options to refresh or learn a new skill while on flight are limited to reading training materials and watching videos. In addition, there is an increased need for unplanned contingency repairs to fix problems arising as the Station ages. In order to help the ISS crew members maintain EVA proficiency or train for contingency repairs during their mission, the Johnson Space Center's VRLab designed an immersive ISS Virtual Reality Trainer (VRT). The VRT incorporates a unique optical system that makes use of the already successful Dynamic On-board Ubiquitous Graphics (DOUG) software to assist crew members with procedure reviews and contingency EVAs while on board the Station. The need to train and re-train crew members for EVAs and contingency scenarios is crucial and extremely demanding. ISS crew members are now asked to perform EVA tasks for which they have not been trained and potentially have never seen before. The Virtual Reality Trainer (VRT) provides an immersive 3D environment similar to the one experienced at the VRLab crew training facility at the NASA Johnson Space Center. VRT bridges the gap by allowing crew members to experience an interactive, 3D environment to reinforce skills already learned and to explore new work sites and repair procedures outside the Station.

  4. Earth Observatory Satellite system definition study. Report 6: Space shuttle interfaces/utilization

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An analysis was conducted to determine the compatibility of the Earth Observatory Satellite (EOS) with the space shuttle. The mechanical interfaces and provisions required for a launch or retrieval of the EOS by the space shuttle are summarized. The space shuttle flight support equipment required for the operation is defined. Diagrams of the space shuttle in various configurations are provised to show the mission capability with the EOS. The subjects considered are as follows: (1) structural and mechanical interfaces, (2) spacecraft retention and deployment, (3) spacecraft retrieval, (4) electrical interfaces, (5) payload shuttle operations, (6) shuttle mode cost analysis, (7) shuttle orbit trades, and (8) safety considerations.

  5. STS Challenger Mated to 747 SCA for Initial Delivery to Florida

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The Space Shuttle orbiter Challenger atop NASA's Boeing 747 Shuttle Carrier Aircraft (SCA), NASA 905, after leaving the Dryden Flight Research Center, Edwards, California, for the ferry flight that took the orbiter to the Kennedy Space Center in Florida for its first launch. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  6. STS-35 Leaves Dryden on 747 Shuttle Carrier Aircraft (SCA) Bound for Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The first rays of the morning sun light up the side of NASA's Boeing 747 Shuttle Carrier Aircraft (SCA) as it departs for the Kennedy Space Center, Florida, with the orbiter from STS-35 attached to its back. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  7. 14 CFR § 1214.101 - Eligibility for flight of a non-U.S. government reimbursable payload on the Space Shuttle.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    .... government reimbursable payload on the Space Shuttle. § 1214.101 Section § 1214.101 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT General Provisions Regarding Space Shuttle... non-U.S. government reimbursable payload on the Space Shuttle. To be eligible for flight on the Space...

  8. KENNEDY SPACE CENTER, FLA. -- United Space Alliance (USA) Vice President and Space Shuttle Program Manager Howard DeCastro (left) and NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (center) are briefed on the use of a cold plate in Orbiter Processing Facility Bay 2 by a USA technician (right). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- United Space Alliance (USA) Vice President and Space Shuttle Program Manager Howard DeCastro (left) and NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (center) are briefed on the use of a cold plate in Orbiter Processing Facility Bay 2 by a USA technician (right). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  9. MIE Lidar proposed for the German Space Shuttle Mission D2

    NASA Technical Reports Server (NTRS)

    Renger, W.; Endemann, M.; Quenzel, H.; Werner, C.

    1986-01-01

    Firm plans for a second German Spacelab mission (D2-mission), originally scheduled for late 1988 is basically a zero-g mission, but will also include earth observation experiments. On board the D2-facility will allow performance of a number of different measurements with the goal to obtain performance data (cloud top heights, height of the planetary boundary layer, optical thickness, and cloud base height of thin and medium thick clouds, ice/water phase discriminatin for clouds, tropopause height, tropaspheric height, tropospheric aerosols, and stratospheric aerosols.

  10. Embedded expert system for space shuttle main engine maintenance

    NASA Technical Reports Server (NTRS)

    Pooley, J.; Thompson, W.; Homsley, T.; Teoh, W.; Jones, J.; Lewallen, P.

    1987-01-01

    The SPARTA Embedded Expert System (SEES) is an intelligent health monitoring system that directs analysis by placing confidence factors on possible engine status and then recommends a course of action to an engineer or engine controller. The technique can prevent catastropic failures or costly rocket engine down time because of false alarms. Further, the SEES has potential as an on-board flight monitor for reusable rocket engine systems. The SEES methodology synergistically integrates vibration analysis, pattern recognition and communications theory techniques with an artificial intelligence technique - the Embedded Expert System (EES).

  11. KENNEDY SPACE CENTER, FLA. -- United Space Alliance (USA) Manager of the Thermal Protection System (TPS) Facility Martin Wilson (right) briefs NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (left) on the properties of a thermal blanket used in the Shuttle's TPS. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- United Space Alliance (USA) Manager of the Thermal Protection System (TPS) Facility Martin Wilson (right) briefs NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (left) on the properties of a thermal blanket used in the Shuttle's TPS. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  12. KENNEDY SPACE CENTER, FLA. -- NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (left) discusses some of the working parts inside the nose of Shuttle Discovery in Orbiter Processing Facility Bay 3 with a United Space Alliance (USA) technician (back to camera). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (left) discusses some of the working parts inside the nose of Shuttle Discovery in Orbiter Processing Facility Bay 3 with a United Space Alliance (USA) technician (back to camera). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  13. Shuttle Enterprise Mated to 747 SCA in Flight

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The Space Shuttle Enterprise, the nation's prototype space shuttle orbiter, departed NASA's Dryden Flight Research Center, Edwards, California, at 11:00 a.m., 16 May 1983, on the first leg of its trek to the Paris Air Show at Le Bourget Airport, Paris, France. Carried by the huge 747 Shuttle Carrier Aircraft (SCA), the first stop for the Enterprise was Peterson AFB, Colorado Springs, Colorado. Piloting the 747 on the Europe trip were Joe Algranti, Johnson Space Center Chief Pilot, Astronaut Dick Scobee, and NASA Dryden Chief Pilot Tom McMurtry. Flight engineers for that portion of the flight were Dryden's Ray Young and Johnson Space Center's Skip Guidry. The Enterprise, named after the spacecraft of Star Trek fame, was originally carried and launched by the 747 during the Approach and Landing Tests (ALT) at Dryden Flight Research Center. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  14. Shuttle Enterprise Mated to 747 SCA on Ramp

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The Space Shuttle Enterprise, the nation's prototype space shuttle orbiter, before departing NASA's Dryden Flight Research Center, Edwards, California, at 11:00 a.m., 16 May 1983, on the first leg of its trek to the Paris Air Show at Le Bourget Airport, Paris, France. Seen here atop the huge 747 Shuttle Carrier Aircraft (SCA), the first stop for the Enterprise was Peterson AFB, Colorado Springs, Colorado. Piloting the 747 on the Europe trip were Joe Algranti, Johnson Space Center Chief Pilot, Astronaut Dick Scobee, and NASA Dryden Chief Pilot Tom McMurtry. Flight engineers for that portion of the flight were Dryden's Ray Young and Johnson Space Center's Skip Guidry. The Enterprise, named after the spacecraft of Star Trek fame, was originally carried and launched by the 747 during the Approach and Landing Tests (ALT) at Dryden Flight Research Center. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  15. KSC-2011-6479

    NASA Image and Video Library

    2011-08-13

    CAPE CANAVERAL, Fla. -- NASA’s Space Shuttle Program Launch Integration Manager Mike Moses speaks to current and former space shuttle workers and their families during the “We Made History! Shuttle Program Celebration,” Aug. 13, at the Kennedy Space Center Visitor Complex, Fla. The event was held to honor shuttle workers’ dedication to the agency’s Space Shuttle Program and to celebrate 30 years of space shuttle achievements. The event featured food, music, entertainment, astronaut appearances, educational activities, giveaways, and Starfire Night Skyshow. Photo credit: Gianni Woods

  16. KSC-2011-6488

    NASA Image and Video Library

    2011-08-13

    CAPE CANAVERAL, Fla. -- Three-time space shuttle astronaut Charles D. "Sam" Gemar signs autographs and takes photos with space shuttle workers and their families at the “We Made History! Shuttle Program Celebration,” Aug. 13, at the Kennedy Space Center Visitor Complex, Fla. The event was held to honor shuttle workers’ dedication to NASA’s Space Shuttle Program and to celebrate 30 years of space shuttle achievements. The event featured food, music, entertainment, astronaut appearances, educational activities, giveaways, and Starfire Night Skyshow. Photo credit: Jim Grossmann

  17. Tethered Satellite System Contingency Investigation Board

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Tethered Satellite System (TSS-1) was launched aboard the Space Shuttle Atlantis (STS-46) on July 31, 1992. During the attempted on-orbit operations, the Tethered Satellite System failed to deploy successfully beyond 256 meters. The satellite was retrieved successfully and was returned on August 6, 1992. The National Aeronautics and Space Administration (NASA) Associate Administrator for Space Flight formed the Tethered Satellite System (TSS-1) Contingency Investigation Board on August 12, 1992. The TSS-1 Contingency Investigation Board was asked to review the anomalies which occurred, to determine the probable cause, and to recommend corrective measures to prevent recurrence. The board was supported by the TSS Systems Working group as identified in MSFC-TSS-11-90, 'Tethered Satellite System (TSS) Contingency Plan'. The board identified five anomalies for investigation: initial failure to retract the U2 umbilical; initial failure to flyaway; unplanned tether deployment stop at 179 meters; unplanned tether deployment stop at 256 meters; and failure to move tether in either direction at 224 meters. Initial observations of the returned flight hardware revealed evidence of mechanical interference by a bolt with the level wind mechanism travel as well as a helical shaped wrap of tether which indicated that the tether had been unwound from the reel beyond the travel by the level wind mechanism. Examination of the detailed mission events from flight data and mission logs related to the initial failure to flyaway and the failure to move in either direction at 224 meters, together with known preflight concerns regarding slack tether, focused the assessment of these anomalies on the upper tether control mechanism. After the second meeting, the board requested the working group to complete and validate a detailed integrated mission sequence to focus the fault tree analysis on a stuck U2 umbilical, level wind mechanical interference, and slack tether in upper tether control mechanism and to prepare a detailed plan for hardware inspection, test, and analysis including any appropriate hardware disassembly.

  18. Tethered Satellite System Contingency Investigation Board

    NASA Astrophysics Data System (ADS)

    1992-11-01

    The Tethered Satellite System (TSS-1) was launched aboard the Space Shuttle Atlantis (STS-46) on July 31, 1992. During the attempted on-orbit operations, the Tethered Satellite System failed to deploy successfully beyond 256 meters. The satellite was retrieved successfully and was returned on August 6, 1992. The National Aeronautics and Space Administration (NASA) Associate Administrator for Space Flight formed the Tethered Satellite System (TSS-1) Contingency Investigation Board on August 12, 1992. The TSS-1 Contingency Investigation Board was asked to review the anomalies which occurred, to determine the probable cause, and to recommend corrective measures to prevent recurrence. The board was supported by the TSS Systems Working group as identified in MSFC-TSS-11-90, 'Tethered Satellite System (TSS) Contingency Plan'. The board identified five anomalies for investigation: initial failure to retract the U2 umbilical; initial failure to flyaway; unplanned tether deployment stop at 179 meters; unplanned tether deployment stop at 256 meters; and failure to move tether in either direction at 224 meters. Initial observations of the returned flight hardware revealed evidence of mechanical interference by a bolt with the level wind mechanism travel as well as a helical shaped wrap of tether which indicated that the tether had been unwound from the reel beyond the travel by the level wind mechanism. Examination of the detailed mission events from flight data and mission logs related to the initial failure to flyaway and the failure to move in either direction at 224 meters, together with known preflight concerns regarding slack tether, focused the assessment of these anomalies on the upper tether control mechanism. After the second meeting, the board requested the working group to complete and validate a detailed integrated mission sequence to focus the fault tree analysis on a stuck U2 umbilical, level wind mechanical interference, and slack tether in upper tether control mechanism and to prepare a detailed plan for hardware inspection, test, and analysis including any appropriate hardware disassembly.

  19. Shuttle Discovery Overflight of Edwards Enroute to Palmdale, California, Maintenance Facility

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Space Shuttle Discovery overflies the Rogers Dry Lakebed, California, on 28 September 1995, at 12:50 p.m. Pacific Daylight Time (PDT) atop NASA's 747 Shuttle Carrier Aircraft (SCA). On its way to Rockwell Aerospace's Palmdale facility for nine months of scheduled maintenance, Discovery and the 747 were completing a two-day flight from Kennedy Space Center, Florida, that began at 7:04 a.m. Eastern Standard Time on 27 September and included an overnight stop at Salt Lake City International Airport, Utah. At the conclusion of this mission, Discovery had flown 21 shuttle missions, totaling more than 142 days in orbit. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  20. Shuttle Columbia Mated to 747 SCA with Crew

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The crew of NASA's 747 Shuttle Carrier Aircraft (SCA), seen mated with the Space Shuttle Columbia behind them, are from viewers left: Tom McMurtry, pilot; Vic Horton, flight engineer; Fitz Fulton, command pilot; and Ray Young, flight engineer. The SCA is used to ferry the shuttle between California and the Kennedy Space Center, Florida, and other destinations where ground transportation is not practical. The NASA 747 has special support struts atop the fuselage and internal strengthening to accommodate the additional weight of the orbiters. Small vertical fins have also been added to the tips of the horizontal stabilizers for additional stability due to air turbulence on the control surfaces caused by the orbiters. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

Top