Sample records for bod cod ss

  1. Treatment of high organic content wastewater from food-processing industry with the French vertical flow constructed wetland system.

    PubMed

    Paing, J; Serdobbel, V; Welschbillig, M; Calvez, M; Gagnon, V; Chazarenc, F

    2015-01-01

    This study aimed at determining the treatment performances of a full-scale vertical flow constructed wetlands designed to treat wastewater from a food-processing industry (cookie factory), and to study the influence of the organic loading rate. The full-scale treatment plant was designed with a first vertical stage of 630 m², a second vertical stage of 473 m² equipped with a recirculation system and followed by a final horizontal stage of 440 m². The plant was commissioned in 2011, and was operated at different loading rates during 16 months for the purpose of this study. Treatment performances were determined by 24 hour composite samples. The mean concentration of the raw effluent was 8,548 mg.L(-1) chemical oxygen demand (COD), 4,334 mg.L(-1) biochemical oxygen demand (BOD5), and 2,069 mg.L(-1) suspended solids (SS). Despite low nutrients content with a BOD5/N/P ratio of 100/1.8/0.5, lower than optimum for biological degradation (known as 100/5/1), mean removal performances were very high with 98% for COD, 99% for BOD5 and SS for the two vertical stages. The increasing of the organic load from 50 g.m(-2).d(-1) COD to 237 g.m(-2).d(-1) COD (on the first stage) did not affect removal performances. The mean quality of effluent reached French standards (COD < 125 mg.L(-1), BOD5 < 25 mg.L(-1), SS < 35 mg.L(-1)).

  2. Treatment and utilization of septic tank effluent using vertical-flow constructed wetlands and vegetable hydroponics.

    PubMed

    Cui, Li-Hua; Luo, Shi-Ming; Zhu, Xi-Zhen; Liu, Ying-Hu

    2003-01-01

    Vertical flow constructed wetlands is a typical ecological sanitation system for sewage treatment. The removal rates for COD, BOD5, SS, TN, and TP were 60%, 80%, 74%, 49% and 79%, respectively, when septic tank effluent was treated by vertical flow filter. So the concentration of COD and BOD5 in the treated effluent could meet the quality standard for irrigation water. After that the treated effluent was used for hydroponic cultivation of water spinach and romaine lettuce, the removal efficiencies of the whole system for COD, BOD5, SS, TN and TP were 71.4%, 97.5%, 96.9%, 86.3%, and 87.4%, respectively. And it could meet the integrated wastewater discharge standard for secondary biological treatment plant. It was found that using treated effluent for hydroponic cultivation of vegetables could reduce the nitrate content in vegetables. The removal rates for total bacteria and coliform index by using vertical flow bed system with cinder substrate were 80%-90% and 85%-96%, respectively.

  3. Research on the sewage treatment in high altitude region based on Lhasa Sewage Treatment Plant

    NASA Astrophysics Data System (ADS)

    Xu, Jin; Li, Shuwen

    2017-12-01

    Sewage treatment is of great significance to enhance environmental quality, consolidate pollution prevention and ecological protection, and ensure sustainable economic and social development in high altitude region. However, there are numerous difficulties in sewage treatment due to the alpine climate, the relatively low economic development level, and the backward operation and management styles, etc. In this study, the characteristics of influent quality in the sewage treatment plant in Lhasa are investigated by analysing the influent BOD5/COD and BOD5/TN, comparing key indexes recorded from 2014 to 2016 with the hinterland. Results show that the concentration of influent COD, BOD5, NH3-N and SS in the Lhasa sewage treatment plant, in which the sewage belongs to low-concentration urban sewage, is smaller than that in the domestic sewage treatment plants in the mainland. The concentration ratio of BOD5/COD and BOD5/TN is below 0.4 and 4, which indicates that the biodegradation is poor and the carbon sources are in bad demand. The consequences obtained play a vital role in the design, operation and management of sewage treatment plants in high altitude region.

  4. [Total pollution features of urban runoff outlet for urban river].

    PubMed

    Luo, Hong-Bing; Luo, Lin; Huang, Gu; He, Qiang; Liu, Ping

    2009-11-01

    The urban stormwater runoff discharged to urban river, especially to rainfall source river, cannot be ignored. In this study, the Futian River watershed in Shenzhen city in a typical southern city of China is taken as the research object. In order to guide the pollution control for urban river, the eighteen rainfall events were monitored, and the total pollution features of the urban runoff outlet for this urban river were analyzed and discussed by using the process of pollutographs, the identifying to first flush, event mean concentration (EMC), etc. Results show that the concentrations of COD, SS, TN, TP and BOD5 are ten times more than the grade V of the environmental quality standards for surface water during the runoff time; the pollution caused by heavy metals (Cr, Ge, Cu, Hg and As) in runoff at a typical rainfall event is serious; the average and range of pollutant concentration at this runoff outlet in study area are evidently higher than at Shapingba in Chongqing city of China and at Silerwood in Canada, but are lower than at Shilipu in Wuhan city of China. The first flushes of COD, SS, BOD5, especially COD and SS, are evident, but the TN and TP are not. The average EMC of COD, TN, TP and BOD5 are 224.14, 571.15, 5.223, 2.04, 143.5 mg/L, respectively. To some extent, the EMC of COD is about two times of the value of the near cities, Macao and Zhuhai. The EMC of TN and TP are obviously higher than Beijing, Guangzhou and Shanghai. To compared with foreign counties, the EMC of the study area in Shenzhen is obviously much higher than the cities of Korean, USA and Canada. So the total pollution caused by the urban surface runoff in study area is serious and necessary to be treated.

  5. [Study on the characteristics of combined sewer overflow from the high density residential area in Shanghai].

    PubMed

    Li, He; Li, Tian

    2006-08-01

    The urban non-point pollution has become main pollution resource of urban water bodies of Shanghai. Character of combined sewer overflow from watershed SA in Shanghai was studied, and the correlation of influence factors to the EMCs of overflows was discussed. It is found that the EMCs of COD, BOD, SS, NH3-N, TN, TP are 614 mg/L, 208.5 mg/L, 684 mg/L, 17.6 mg/L, 29.8 mg/L, 3.0 mg/L respectively, and the values obtained herein are much higher than the documented data from other countries. From the probability plot of the EMCs, it is found that the BOD has the best fitness for lognormal distribution; and correlation between the EMCs of COD, SS and the ratio of antecedent dry weather time to rain duration is quite good.

  6. Coagulant from Leucaena leucocephala for Chromium Removal

    NASA Astrophysics Data System (ADS)

    Razak, N. H. Abd; Khairuddin, N.; Ismail, K. N.; Musa, M.

    2018-05-01

    This research investigated the effectiveness of leucaena leucocephala as a natural coagulant for chromium removal. Leucaena leucocephala is a permanent non-climbing shrub tree which is wild and abundant in Malaysia and commonly known as petai belalang. Coagulation experiment using jar test were performed where the effect of coagulant dosage and pH were examined. The parameters investigated were suspended solid (SS), chemical oxygen demand (COD), biological oxygen demand (BOD), turbidity and chromium content. The optimum of leucaena leucocephala coagulant dosage for removal of suspended solid, turbidity, COD, BOD and Chromium is at range 400-600 mg/L which yielded 45, 31.4, 38.5, 27.5 and 4.05% removal respectively. While the optimum pH is at pH 2-4 (acidic) which give 33.3, 26.8, 33.75, 31.4 and 14.06% removal of suspended solid, COD, BOD, turbidity and chromium content respectively. It is concluded that the leucaena leucocephala showed tremendous potential for chromium removal.

  7. Potential of organic filter materials for treating greywater to achieve irrigation quality: a review.

    PubMed

    Dalahmeh, Sahar S; Hylander, Lars D; Vinnerås, Björn; Pell, Mikael; Oborn, Ingrid; Jönsson, Håkan

    2011-01-01

    The objectives of this literature review were to: (i) evaluate the impact of greywater generated in rural communities, with the emphasis on Jordanian conditions, on soil, plant and public health and assess the need for treatment of this greywater before it is used for irrigation, and (ii) assess the potential of different types of organic by-products as carrier material in different filter units for removal of pollutants from greywater. Greywater with high BOD5, COD, high concentrations of SS, fat, oil and grease and high levels of surfactants is commonly found in rural areas in Jordan. Oxygen depletion, odour emission, hydrophobic soil phenomena, plant toxicity, blockage of piping systems and microbiological health risks are common problems associated with greywater without previous treatment. Organic by-products such as wood chips, bark, peat, wheat straw and corncob may be used as carrier material in so-called mulch filters for treating wastewater and greywater from different sources. A down-flow-mode vertical filter is a common setup used in mulch filters. Wastewaters with a wide range of SS, cBOD5 and COD fed into different mulch filters have been studied. The different mulch materials achieved SS removal ranging between 51 and 91%, a BOD5 reduction range of 55-99.9%, and COD removal of 51-98%. Most types of mulches achieved a higher organic matter removal than that achieved by an ordinary septic tank. Bark, peat and wood chips filters removed organic matter better than sand and trickling filters, under similar conditions. Release of filter material and increase in COD in the effluent was reported using some mulch materials. In conclusion, some mulch materials such as bark, peat and woodchips seem to have a great potential for treatment of greywater in robust, low-tech systems. They can be expected to be resilient in dealing with variable low and high organic loads and shock loads.

  8. Anaerobic treatment of wastewater with high suspended solids from a bulk drug industry using fixed film reactor (AFFR).

    PubMed

    Rao, A Gangagni; Naidu, G Venkata; Prasad, K Krishna; Rao, N Chandrasekhar; Mohan, S Venkata; Jetty, Annapurna; Sarma, P N

    2004-07-01

    Studies are carried out on the treatment of wastewater from a bulk drug industry using an anaerobic fixed film reactor (AFFR) designed and fabricated in the laboratory. The chemical oxygen demand (COD) and total dissolved solids (TDS) of the wastewater are found to be very high with low Biochemical oxygen demand (BOD) to COD ratio and high total suspended solid (TSS) concentration. Acclimatization of seed consortia and start up of the reactor is carried out by directly using the wastewater, which resulted in reducing the period of startup to 30 days. The reactor is studied at different organic loading rates (OLR) and it is found that the optimum OLR is 10 kg COD/m3/day. The wastewater under investigation, which is having considerable quantity of SS, is treated anaerobically without any pretreatment. The COD and BOD of the reactor outlet wastewater are monitored and reduction at steady state and optimum OLR is observed to be 60-70% of COD and 80-90% of BOD. The reactor is subjected to organic shock loads at two different OLR and it is observed that the reactor could withstand shocks and performance could be restored to normalcy at that OLR. The results obtained indicated that AFFR could be used efficiently for the treatment of wastewater from a bulk drug industry having high COD, TDS and TSS. Copyright 2003 Elsevier Ltd.

  9. Anaerobic treatment of wastewater with high suspended solids from a bulk drug industry using fixed film reactor (AFFR).

    PubMed

    Gangagni Rao, A; Venkata Naidu, G; Krishna Prasad, K; Chandrasekhar Rao, N; Venkata Mohan, S; Jetty, Annapurna; Sarma, P N

    2005-01-01

    Studies were carried out on the treatment of wastewater from a bulk drug industry using an anaerobic fixed film reactor (AFFR) designed and fabricated in the laboratory. The chemical oxygen demand (COD) and total dissolved solids (TDS) of the wastewater were found to be very high with low biochemical oxygen demand (BOD) to COD ratio and high total suspended solid (TSS) concentration. Acclimatization of seed consortia and startup of the reactor was carried out by directly using the wastewater, which resulted in reducing the period of startup to 30 days. The reactor was studied at different organic loading rates (OLR) and it was found that the optimum OLR was 10 kg COD/m(3)/day. The wastewater under investigation, which had a considerable quantity of SS, was treated anaerobically without any pretreatment. COD and BOD of the reactor outlet wastewater were monitored and at steady state and optimum OLR 60-70% of COD and 80-90% of BOD were removed. The reactor was subjected to organic shock loads at two different OLR and the reaction could withstand the shocks and performance could be restored to normalcy at that OLR. The results obtained indicated that AFFR could be used efficiently for the treatment of wastewater from a bulk drug industry having high COD, TDS and TSS.

  10. Vertical flow constructed wetlands for municipal wastewater and septage treatment in French rural area.

    PubMed

    Paing, J; Voisin, J

    2005-01-01

    This paper presents the purification performance of 20 wastewater treatment plants with vertical reed bed filters (Macrophyltres), built between 1998 and 2003 by SAS Voisin, for communities of between 150 and 1400 PE. The first stage vertical reed bed (directly fed with raw wastewater by intermittent feeding) achieved high removal of SS, BOD and COD (mean respectively 96%, 98%, 92%). The second stage permitted compliance easily with effluent standards (SS < 15 mg/l, BOD < 15 mg/l, COD < 90 mg/l and mean TKN < 10 mg/l). Performance was not significantly influenced by variations of organic and hydraulic load, nor by seasonal variations. Rigorous operation and maintenance were required to obtain optimal performances. Another application of vertical reed beds is the treatment of septage (sludge from individual septic tanks). The results obtained on two sites operating for 2 and 3 years are presented. The first site achieved complete treatment of septage (solid and liquid fraction), the second permitted a pre-treatment for co-treatment of percolate with wastewater.

  11. Increasing the capacity for treatment of chemical plant wastewater by replacing existing suspended carrier media with Kaldnes Moving Bed media at a plant in Singapore.

    PubMed

    Wessman, F G; Yan Yuegen, E; Zheng, Q; He, G; Welander, T; Rusten, B

    2004-01-01

    The Kaldnes biomedia K1, which is used in the patented Kaldnes Moving Bed biofilm process, has been tested along with other types of biofilm carriers for biological pretreatment of a complex chemical industry wastewater. The main objective of the test was to find a biofilm carrier that could replace the existing suspended carrier media and at the same time increase the capacity of the existing roughing filter-activated sludge plant by 20% or more. At volumetric organic loads of 7.1 kg COD/m3/d the Kaldnes Moving Bed process achieved much higher removal rates and much lower effluent concentrations than roughing filters using other carriers. The Kaldnes roughing stage achieved more than 85% removal of organic carbon and more than 90% removal of BOD5 at the tested organic load, which was equivalent to a specific biofilm surface area load of 24 g COD/m2/d. Even for the combined roughing filter-activated sludge process, the Kaldnes carriers outperformed the other carriers, with 98% removal of organic carbon and 99.6% removal of BOD5. The Kaldnes train final effluent concentrations were only 22 mg FOC/L and 7 mg BOD5/L. Based on the successful pilot testing, the full-scale plant was upgraded with Kaldnes Moving Bed roughing filters. During normal operation the upgraded plant has easily met the discharge limits of 100 mg COD/L and 50 mg SS/L. For the month of September 2002, with organic loads between 100 and 115% of the design load for the second half of the month, average effluent concentrations were as low as 9 mg FOC/L, 51 mg COD/L and 12 mg SS/L.

  12. Performance of hybrid subsurface constructed wetland system for piggery wastewater treatment.

    PubMed

    Zhang, X; Inoue, T; Kato, K; Harada, J; Izumoto, H; Wu, D; Sakuragi, H; Ietsugu, H; Sugawara, Y

    2016-01-01

    The objective of this study was to evaluate performance of a hybrid constructed wetland (CW) built for high organic content piggery wastewater treatment in a cold region. The system consists of four vertical and one horizontal flow subsurface CWs. The wetland was built in 2009 and water quality was monitored from the outset. Average purification efficiency of this system was 95±5, 91±7, 89±8, 70±10, 84±15, 90±6, 99±2, and 93±16% for biochemical oxygen demand (BOD5), chemical oxygen demand (COD), total carbon (TC), total nitrogen (TN), ammonium-N (NH4-N), total phosphorus (TP), total coliform (T. Coliform), and suspended solids (SS), respectively during August 2010-December 2013. Pollutant removal rate was 15±18 g m(-2) d(-1), 49±52 g m(-2) d(-1), 6±4 g m(-2) d(-1), 7±5 g m(-2) d(-1), and 1±1 g m(-2) d(-1) for BOD5, COD, TN, NH4-N, and TP, respectively. The removal efficiency of BOD5, COD, NH4-N, and SS improved yearly since the start of operation. With respect to removal of TN and TP, efficiency improved in the first three years but slightly declined in the fourth year. The system performed well during both warm and cold periods, but was more efficient in the warm period. The nitrate increase may be attributed to a low C/N ratio, due to limited availability of carbon required for denitrification.

  13. Characterization of Leachate at Simpang Renggam Landfill Site, Johor, Malaysia

    NASA Astrophysics Data System (ADS)

    Zailani, L. W. M.; Amdan, N. S. M.; Zin, N. S. M.

    2018-04-01

    Nowadays, the world facing a major problem in managed solid waste due to the increasing of solid waste. Malaysia, one of the country also involves in this matter which is 296 landfills are open to overcome this problem. Currently, the best alternative option to manage solid waste is by using landfilling method because it has low costing advantages. The disadvantage of landfill method, it might cause a pollution by producing leachate that will give an effect to the ground and surface water resources. This study focuses on analysing the leachate composition at Simpang Renggam Landfill(SRL) site for seven parameters such as COD, BOD, SS, turbidity, pH, BOD5/COD, and ammonia (NH3-N). All the data obtained were compared with previous researcher and Malaysia Environmental Quality Act 1974. From the result, SRL site was categorized as partially stabilized leachate with the parameter of BOD5/COD > 0.1. The SRL site is recommended to use a physical-chemical method for a better treatment because the leachate composition is classified as old leachate and aerated lagoon method are not satisfied to be used in treating the aging leachate at SRL site.

  14. Using remotely sensed imagery to estimate potential annual pollutant loads in river basins.

    PubMed

    He, Bin; Oki, Kazuo; Wang, Yi; Oki, Taikan

    2009-01-01

    Land cover changes around river basins have caused serious environmental degradation in global surface water areas, in which the direct monitoring and numerical modeling is inherently difficult. Prediction of pollutant loads is therefore crucial to river environmental management under the impact of climate change and intensified human activities. This research analyzed the relationship between land cover types estimated from NOAA Advanced Very High Resolution Radiometer (AVHRR) imagery and the potential annual pollutant loads of river basins in Japan. Then an empirical approach, which estimates annual pollutant loads directly from satellite imagery and hydrological data, was investigated. Six water quality indicators were examined, including total nitrogen (TN), total phosphorus (TP), suspended sediment (SS), Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), and Dissolved Oxygen (DO). The pollutant loads of TN, TP, SS, BOD, COD, and DO were then estimated for 30 river basins in Japan. Results show that the proposed simulation technique can be used to predict the pollutant loads of river basins in Japan. These results may be useful in establishing total maximum annual pollutant loads and developing best management strategies for surface water pollution at river basin scale.

  15. Non-biodegradable landfill leachate treatment by combined process of agitation, coagulation, SBR and filtration.

    PubMed

    Abood, Alkhafaji R; Bao, Jianguo; Du, Jiangkun; Zheng, Dan; Luo, Ye

    2014-02-01

    This study describes the complete treatment of non-biodegradable landfill leachate by combined treatment processes. The processes consist of agitation as a novel stripping method used to overcome the ammonia toxicity regarding aerobic microorganisms. The NH3-N removal ratio was 93.9% obtained at pH 11.5 and a gradient velocity (G) 150 s(-1) within a five-hour agitation time. By poly ferric sulphate (PFS) coagulation followed the agitation process; chemical oxygen demand (COD) and biological oxygen demand (BOD5) were removed at 70.6% and 49.4%, respectively at an optimum dose of 1200 mg L(-1) at pH 5.0. The biodegradable ratio BOD5/COD was improved from 0.18 to 0.31 during pretreatment step by agitation and PFS coagulation. Thereafter, the effluent was diluted with sewage at a different ratio before it was subjected to sequencing batch reactor (SBR) treatment. Up to 93.3% BOD5, 95.5% COD and 98.1% NH3-N removal were achieved by SBR operated under anoxic-aerobic-anoxic conditions. The filtration process was carried out using sand and carbon as a dual filter media as polishing process. The final effluent concentration of COD, BOD5, suspended solid (SS), NH3-N and total organic carbon (TOC) were 72.4 mg L(-1), 22.8 mg L(-1), 24.2 mg L(-1), 18.4 mg L(-1) and 50.8 mg L(-1) respectively, which met the discharge standard. The results indicated that a combined process of agitation-coagulation-SBR and filtration effectively eliminated pollutant loading from landfill leachate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Efficient performance and the microbial community changes of submerged anaerobic membrane bioreactor in treatment of sewage containing cellulose suspended solid at 25°C.

    PubMed

    Watanabe, Ryoya; Nie, Yulun; Takahashi, Shintaro; Wakahara, Shinichiro; Li, Yu-You

    2016-09-01

    Influence of cellulose as suspended solid (SS) on the performance of submerged anaerobic membrane bioreactor (SAnMBR) was evaluated at 25°C using two types of synthetic sewage (SS contained or not). During the 110days operation, COD and BOD removal, CH4 gas recovery and cellulose accumulation were investigated in detail. The influence of cellulose as SS in sewage on the SAnMBR performance was not significant at HRT longer than12h and 65-72% of the influent COD was recovered as methane gas at HRT of 12h. At HRT of 6h, the quality of effluent got worse and the accumulation of cellulose was found in reactor. 16S rRNA analysis revealed that the microbial diversity distribution including Archaea and Bacteria changed due to the addition of SS in sewage and specific microbe for cellulose degradation such as Proteobacteria was detected. Sludge in SAnMBR could acclimate to characteristics of sewage by self-adaptation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. [Pollution load and the first flush effect of BOD5 and COD in urban runoff of Wenzhou City].

    PubMed

    Wang, Jun; Bi, Chun-juan; Chen, Zhen-lou; Zhou, Dong

    2013-05-01

    Four typical rainfalls were monitored in two different research areas of Wenzhou Municipality. Concentrations of BOD5 and COD in six different urban runoffs were measured. In addition the event mean concentration (EMC), M (V) curve and BOD5/COD of pollutant were calculated. The results showed that concentrations of BOD5 and COD in different urban runoffs of Wenzhou ranged from ND to 69.21 mg x L(-1) and ND to 636 mg x L(-1). Concentrations of BOD5 and COD in different urban runoffs were decreasing over time, so it is greatly significant to manage the initial runoff for reducing organic pollution. Judged by EMC of BOD5 and COD in these five rainfalls, concentrations of pollutant in some urban runoffs were out of the integrated wastewater discharge standard. If these runoffs flowed into river, it would cause environmental pressure to the next level receiving water bodies. According to the M (V) curve, the first flush effect of COD in most urban runoffs was common; while the first flush effect of BOD5 was same as that of COD. The result also showed that organic pollution was serious at the beginning of runoff. The underlying surface type could affect the concentration of BOD5 and COD in urban runoff. While the results of BOD5/COD also suggested that biodegradation was considered as one of the effective ways to decrease the pollution load of organics in urban runoff, and the best management plans (BMPs) should be selected for various urban runoff types for the treatment of organic pollution.

  18. Characteristics and risks of secondary pollutants generation during compression and transfer of municipal solid waste in Shanghai.

    PubMed

    Wang, Xiaoyuan; Xie, Bing; Wu, Dong; Hassan, Muhammad; Huang, Changying

    2015-09-01

    The generation and seasonal variations of secondary pollutants were investigated during three municipal solid waste (MSW) compression and transfer in Shanghai, China. The results showed that the raw wastewater generated from three MSW transfer stations had pH of 4.2-6.0, COD 40,000-70,000mg/L, BOD5 15,000-25,000mg/L, ammonia nitrogen (NH3-N) 400-700mg/L, total nitrogen (TN) 600-1500mg/L, total phosphorus (TP) 50-200mg/L and suspended solids (SS) 1000-80,000mg/L. The pH, COD, BOD5 and NH3-N did not show regular change throughout the year while the concentration of TN, TP and SS were higher in summer and autumn. The animal and vegetable oil content was extremely high. The average produced raw wastewater of three transfer stations ranged from 2.3% to 8.4% of total refuse. The major air pollutants of H2S 0.01-0.17mg/m(3), NH3 0.75-1.8mg/m(3) in transfer stations, however, the regular seasonal change was not discovered. During the transfer process, the generated leachate in container had pH of 5.7-6.4, SS of 9120-32,475mg/L. The COD and BOD5 were 41,633-89,060mg/L and 18,116-34,130mg/L respectively, higher than that in the compress process. The concentration of NH3-N and TP were 587-1422mg/L and 80-216mg/L, respectively, and both increased during transfer process. H2S, VOC, CH4 and NH3 were 0.4-4mg/m(3), 7-19mg/m(3), 0-3.4% and 1-4mg/m(3), respectively. The PCA analysis showed that the production of secondary pollutants is closely related to temperature, especially CH4. Therefore, avoiding high temperature is a key means of reducing the production of gaseous pollutants. And above all else, refuse classification in source, deodorization and anti-acid corrosion are the important processes to control the secondary pollutants during compression and transfer of MSW. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Replacement of chemical oxygen demand (COD) with total organic carbon (TOC) for monitoring wastewater treatment performance to minimize disposal of toxic analytical waste.

    PubMed

    Dubber, Donata; Gray, Nicholas F

    2010-10-01

    Chemical oxygen demand (COD) is widely used for wastewater monitoring, design, modeling and plant operational analysis. However this method results in the production of hazardous wastes including mercury and hexavalent chromium. The study examined the replacement of COD with total organic carbon (TOC) for general performance monitoring by comparing their relationship with influent and effluent samples from 11 wastewater treatment plants. Biochemical oxygen demand (BOD5) was also included in the comparison as a control. The results show significant linear relationships between TOC, COD and BOD5 in settled (influent) domestic and municipal wastewaters, but only between COD and TOC in treated effluents. The study concludes that TOC can be reliably used for the generic replacement of both COD (COD=49.2+3.00*TOC) and BOD5 (BOD5=23.7+1.68*TOC) in influent wastewaters but only for COD (COD=7.25+2.99*TOC) in final effluents.

  20. [Hydrology and water quality of rainfall-runoff in combined sewerage system along Suzhou Creek in central Shanghai].

    PubMed

    Cheng, Jiang; Yang, Kai; Huang, Xiao-Fang; Lü, Yong-Peng

    2009-07-15

    In order to obtain the processes of hydrology and water quality of urban combined sewerage system (CSS) in highly urbanized region, the precipitation, discharge and pollutant concentration of four different intensity rainfall (light rain, moderate rain, heavy rain and storm) were measured from Jul. to Sep. 2007 in the Chendulu CSS along Suzhou Creek in Shanghai. The results show that the shapes of runoff graph are similar to rainfall graph, with a weaker fluctuation range and a 15-25 min delay between rainfall and runoff graph. Runoff coefficients of the four different rainfall are 0.33, 0.62, 0.67 and 0.73, respectively. The 30/30 first flush phenomenon is found in Chendulu CSS. The peak of pollutant concentration graph lags rainfall peak about 30-40 min. The pH and event mean concentration (EMC) of Cu, Zn, Cr, Cd, Pb and Ni totally measure up to environmental quality standards V for surface water of China besides COD, BOD5, NH4(+) -N and TP, and the EMC of COD, BOD5, NH4(+) -N and TP are 225.0-544.1, 31.5-98.9, 8.9-44.2 and 1.98-3.52 mg x L(-1), respectively. The rainfall-runoff pollutant concentration in Chendulu CSS is close to those of other foreign cites. At the confidence level of p < 0.01, good relationships exist between SS and COD, BOD5, NH4(+) -N and TP, respectively, and the average proportion of particulate organic pollutant and nutrient is 70.21%.

  1. [Research of input water ratio's impact on the quality of effluent water from hydrolysis reactor].

    PubMed

    Liang, Kang-Qiang; Xiong, Ya; Qi, Mao-Rong; Lin, Xiu-Jun; Zhu, Min; Song, Ying-Hao

    2012-11-01

    Based on high SS/BOD and low C/N ratio of waste water of municipal wastewater treatment plant, the structure of currently existing hydrolysis reactor was reformed to improve the influent quality. In order to strengthen the sludge hydrolysis and improve effluent water quality, two layers water distributors were set up so that the sludge hydrolysis zone was formed between the two layers distribution. For the purpose of the hydrolysis reactor not only plays the role of the primary sedimentation tank but also improves the effluent water biodegradability, input water ratios of the upper and lower water distributor in the experiment were changed to get the best input water ratio to guide the large-scale application of this sort hydrolysis reactor. Results show, four kinds of input water ratio have varying degrees COD and SS removal efficiency, however, input water ratio for 1 : 1 can substantially increase SCOD/COD ratio and VFA concentration of effluent water compared with the other three input water ratios. To improve the effluent biodegradability, input water ratio for 1 : 1 was chosen for the best input water ratio. That was the ratio of flow of upper distributor was 50%, and the ratio of the lower one was 50%, at this case it can reduce the processing burden of COD and SS for follow-up treatment, but also improve the biodegradability of the effluent.

  2. Relationships between water quality parameters in rivers and lakes: BOD5, COD, NBOPs, and TOC.

    PubMed

    Lee, Jaewoong; Lee, Seunghyun; Yu, Soonju; Rhew, Doughee

    2016-04-01

    Biological oxygen demand (BOD5) or chemical oxygen demand (COD) analysis is widely used to evaluate organic pollutants in water systems as well as the efficiency of wastewater treatment plants. However, both analysis methods have restrictions such as being insensitive, imprecise, time-consuming, and the production of chemical waste. Therefore, total organic carbon (TOC) analysis for organic pollutants has been considered for an alternative analysis instead of BOD5 or COD. Several studies have investigated the replacement of BOD5 or COD with TOC in wastewater samples; however, few studies have investigated the relationships between water quality parameters in rivers and lakes. Therefore, this study evaluated the relationships between BOD5, COD, or NBOPs and TOC by the analysis of national water quality monitoring data of rivers and lakes for 5 years. High correlation coefficients (r) of 0.87 and 0.66 between BOD5 and TOC (p < 0.05) were obtained for rivers and lakes, respectively, and strong correlation coefficients (r) of 0.93 and 0.75 were observed between COD and TOC (p < 0.05) for rivers and lakes, respectively. The correlation coefficient (r) between NBOPs and TOC was 0.93 for rivers and 0.72 for lakes. The coefficients of determination (R 2) were 0.75 and 0.44 between BOD5 and TOC for rivers and lakes as well as were 0.87 and 0.57 between COD and TOC for rivers and lakes, respectively. The coefficient of determination (R 2) between NBOPs and TOC was 0.73 for rivers and 0.52 for lakes.

  3. Prediction of biodegradability of aromatics in water using QSAR modeling.

    PubMed

    Cvetnic, Matija; Juretic Perisic, Daria; Kovacic, Marin; Kusic, Hrvoje; Dermadi, Jasna; Horvat, Sanja; Bolanca, Tomislav; Marin, Vedrana; Karamanis, Panaghiotis; Loncaric Bozic, Ana

    2017-05-01

    The study was aimed at developing models for predicting the biodegradability of aromatic water pollutants. For that purpose, 36 single-benzene ring compounds, with different type, number and position of substituents, were used. The biodegradability was estimated according to the ratio of the biochemical (BOD 5 ) and chemical (COD) oxygen demand values determined for parent compounds ((BOD 5 /COD) 0 ), as well as for their reaction mixtures in half-life achieved by UV-C/H 2 O 2 process ((BOD 5 /COD) t1/2 ). The models correlating biodegradability and molecular structure characteristics of studied pollutants were derived using quantitative structure-activity relationship (QSAR) principles and tools. Upon derivation of the models and calibration on the training and subsequent testing on the test set, 3- and 5-variable models were selected as the most predictive for (BOD 5 /COD) 0 and (BOD 5 /COD) t1/2 , respectively, according to the values of statistical parameters R 2 and Q 2 . Hence, 3-variable model predicting (BOD 5 /COD) 0 possessed R 2 =0.863 and Q 2 =0.799 for training set, and R 2 =0.710 for test set, while 5-variable model predicting (BOD 5 /COD) 1/2 possessed R 2 =0.886 and Q 2 =0.788 for training set, and R 2 =0.564 for test set. The selected models are interpretable and transparent, reflecting key structural features that influence targeted biodegradability and can be correlated with the degradation mechanisms of studied compounds by UV-C/H 2 O 2 . Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Non-biodegradable landfill leachate treatment by combined process of agitation, coagulation, SBR and filtration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abood, Alkhafaji R.; Thi Qar University, Nasiriyah; Bao, Jianguo, E-mail: bjianguo888@126.com

    2014-02-15

    Highlights: • A novel method of stripping (agitation) was investigated for NH{sub 3}-N removal. • PFS coagulation followed agitation process enhanced the leachate biodegradation. • Nitrification–denitrification achieved by changing operation process in SBR treatment. • A dual filter of carbon-sand is suitable as a polishing treatment of leachate. • Combined treatment success for the complete treatment of non-biodegradable leachate. - Abstract: This study describes the complete treatment of non-biodegradable landfill leachate by combined treatment processes. The processes consist of agitation as a novel stripping method used to overcome the ammonia toxicity regarding aerobic microorganisms. The NH{sub 3}-N removal ratio wasmore » 93.9% obtained at pH 11.5 and a gradient velocity (G) 150 s{sup −1} within a five-hour agitation time. By poly ferric sulphate (PFS) coagulation followed the agitation process; chemical oxygen demand (COD) and biological oxygen demand (BOD{sub 5}) were removed at 70.6% and 49.4%, respectively at an optimum dose of 1200 mg L{sup −1} at pH 5.0. The biodegradable ratio BOD{sub 5}/COD was improved from 0.18 to 0.31 during pretreatment step by agitation and PFS coagulation. Thereafter, the effluent was diluted with sewage at a different ratio before it was subjected to sequencing batch reactor (SBR) treatment. Up to 93.3% BOD{sub 5}, 95.5% COD and 98.1% NH{sub 3}-N removal were achieved by SBR operated under anoxic–aerobic–anoxic conditions. The filtration process was carried out using sand and carbon as a dual filter media as polishing process. The final effluent concentration of COD, BOD{sub 5}, suspended solid (SS), NH{sub 3}-N and total organic carbon (TOC) were 72.4 mg L{sup −1}, 22.8 mg L{sup −1}, 24.2 mg L{sup −1}, 18.4 mg L{sup −1} and 50.8 mg L{sup −1} respectively, which met the discharge standard. The results indicated that a combined process of agitation-coagulation-SBR and filtration effectively eliminated pollutant loading from landfill leachate.« less

  5. Estimating the Concentration and Biodegradability of Organic Matter in 22 Wastewater Treatment Plants Using Fluorescence Excitation Emission Matrices and Parallel Factor Analysis

    PubMed Central

    Yang, Liyang; Shin, Hyun-Sang; Hur, Jin

    2014-01-01

    This study aimed at monitoring the changes of fluorescent components in wastewater samples from 22 Korean biological wastewater treatment plants and exploring their prediction capabilities for total organic carbon (TOC), dissolved organic carbon (DOC), biochemical oxygen demand (BOD), chemical oxygen demand (COD), and the biodegradability of the wastewater using an optical sensing technique based on fluorescence excitation emission matrices and parallel factor analysis (EEM-PARAFAC). Three fluorescent components were identified from the samples by using EEM-PARAFAC, including protein-like (C1), fulvic-like (C2) and humic-like (C3) components. C1 showed the highest removal efficiencies for all the treatment types investigated here (69% ± 26%–81% ± 8%), followed by C2 (37% ± 27%–65% ± 35%), while humic-like component (i.e., C3) tended to be accumulated during the biological treatment processes. The percentage of C1 in total fluorescence (%C1) decreased from 54% ± 8% in the influents to 28% ± 8% in the effluents, while those of C2 and C3 (%C2 and %C3) increased from 43% ± 6% to 62% ± 9% and from 3% ± 7% to 10% ± 8%, respectively. The concentrations of TOC, DOC, BOD, and COD were the most correlated with the fluorescence intensity (Fmax) of C1 (r = 0.790–0.817), as compared with the other two fluorescent components. The prediction capability of C1 for TOC, BOD, and COD were improved by using multiple regression based on Fmax of C1 and suspended solids (SS) (r = 0.856–0.865), both of which can be easily monitored in situ. The biodegradability of organic matter in BOD/COD were significantly correlated with each PARAFAC component and their combinations (r = −0.598–0.613, p < 0.001), with the highest correlation coefficient shown for %C1. The estimation capability was further enhanced by using multiple regressions based on %C1, %C2 and C3/C2 (r = −0.691). PMID:24448170

  6. Performance of Multilevel Contact Oxidation in the Treatment of Wastewater from Automobile Painting Industry

    NASA Astrophysics Data System (ADS)

    Zhu, Tong; Zhu, Yufang; Fienko, Udo; Yuanhua, Xie; Kuo, Zhang

    2017-01-01

    A multilevel contact oxidation system was applied in a pilot-scale experiment to treat the automobile painting wastewater, which had poor biodegradability and contained high concentration of Chemical Oxygen Demand (COD). The wastewater used for this experiment study was the actual painting wastewater which had been pre-treated by the physic-chemical process, and its Biological Oxygen Demand (BOD5)/COD was less than 0.1,COD concentration was 800∼1500mg/L. The results showed that the multilevel contact oxidation system could efficiently degrade the COD of the painting wastewater. When the experimental system kept stable operation, the total removal rate of COD and suspended solid (SS) were 84% and 82.5% respectively with the Hydraulic Retention Time (HRT) of 8 hours. Meanwhile, this system had a strong ability to resist the impact of COD concentration change. The COD concentration of final treated wastewater was less than 500 mg/L, which could reach the factory discharge requirement for the paint shop. Besides, this system with simple structure was able to reduce the excess sludge production greatly, which would reduce much cost for the treatment of painting wastewater.

  7. Community onsite treatment of cold strong sewage in a UASB-septic tank.

    PubMed

    Al-Jamal, Wafa; Mahmoud, Nidal

    2009-02-01

    Two community onsite UASB-septic tanks namely R1 and R2 were operated under two different HRT (2 days for R1 and 4 days for R2) in parallel over a year and monitored over the cold half of the year. During the monitoring period, the sewage was characterised by a high COD(tot) of 905mg/l with a high fraction of COD(ss), viz. about 43.7%, and rather low temperature of 17.3 degrees C. The achieved removal efficiencies in R1 and R2 for COD(tot), COD(sus), COD(col), COD(dis), BOD(5) and TSS were "51%, 83%, 20%, 24%, 45% and 74%" and "54%, 87%, 10%, 28%, 49% and 78%", respectively. The difference in the removal efficiencies of those parameters in R1 and R2 is marginal and was only significant (p<0.05) for COD(sus). The sludge filling period of the reactors is expected to be 4-7 years. In view of that, the UASB-septic tank system is a robust and compact system as it can be adequately designed in Palestine at 2 days HRT.

  8. UV-catalytic treatment of spent caustic from ethene plant with hydrogen peroxide and ozone oxidation.

    PubMed

    Yu, Zheng-zhe; Sun, De-zhi; Li, Chang-hai; Shi, Peng-fei; Duan, Xiao-dong; Sun, Guo-rong; Liu, Jun-xin

    2004-01-01

    The performance of UV/H2O2, UV/O3 and UV/H2O2/O3 oxidation systems for treating spent caustic from an ethylene plant was investigated. In UV/H2O2 system, with the increase of H2O2 dosage, removal efficiencies of COD and the ratio of biochemical oxygen demand (BOD) to chemical oxygen demand (COD) of the effluent were increased and a better performance was obtained than the H2O2 system alone. In UV/H2O2 system, removal efficiency of COD reach 68% under the optimum condition, and BOD/COD ratio was significantly increased from 0.22 to 0.52. In UV/O3 system, with the increase of O3 dosage, removal efficiency of COD and BOD/COD ratio were increased, and a better performance was obtained than the O3 system alone. Under the optimum condition, removal efficiency of COD was 54%, and BOD/COD ratio was significantly increased from 0.22 to 0.48. In UV/H2O2/O3 system, COD removal efficiency was found to be 22.0% higher than UV/O3 system.

  9. Evaluation of multivariate linear regression and artificial neural networks in prediction of water quality parameters

    PubMed Central

    2014-01-01

    This paper examined the efficiency of multivariate linear regression (MLR) and artificial neural network (ANN) models in prediction of two major water quality parameters in a wastewater treatment plant. Biochemical oxygen demand (BOD) and chemical oxygen demand (COD) as well as indirect indicators of organic matters are representative parameters for sewer water quality. Performance of the ANN models was evaluated using coefficient of correlation (r), root mean square error (RMSE) and bias values. The computed values of BOD and COD by model, ANN method and regression analysis were in close agreement with their respective measured values. Results showed that the ANN performance model was better than the MLR model. Comparative indices of the optimized ANN with input values of temperature (T), pH, total suspended solid (TSS) and total suspended (TS) for prediction of BOD was RMSE = 25.1 mg/L, r = 0.83 and for prediction of COD was RMSE = 49.4 mg/L, r = 0.81. It was found that the ANN model could be employed successfully in estimating the BOD and COD in the inlet of wastewater biochemical treatment plants. Moreover, sensitive examination results showed that pH parameter have more effect on BOD and COD predicting to another parameters. Also, both implemented models have predicted BOD better than COD. PMID:24456676

  10. Evaluation of organic matter concentration in winery wastewater: a case study from Australia.

    PubMed

    Quayle, Wendy C; Fattore, Alison; Zandona, Roy; Christen, Evan W; Arienzo, Michele

    2009-01-01

    The 5-day biological oxygen demand (BOD(5)) remains a key indicator for proof of compliance with environmental regulators in the monitoring and management of winery effluent. Inter-conversion factors from alternative tests that are more rapid, accurate and simpler to perform have been determined that allow prediction of BOD(5) in winery wastewaters, generally, and at different stages of production and treatment. Mean values obtained from this dataset offer rule of thumb inter-conversion factors: BOD(5) = 0.7 Chemical Oxygen Demand (COD), BOD(5) = 2.3 Total Organic Carbon (TOC) and BOD(5) = 2.7 Dissolved Organic Carbon (DOC). Specific predictive linear relationships are also provided. Out of the relationships between BOD(5) vs COD, TOC and DOC, in winery wastewater, irrespective of vintage or non-vintage production periods and stage of treatment, TOC offered the most reliable prediction of BOD(5). Ethanol, glucose and fructose were evaluated in untreated wastewater as predictors of BOD(5) due to their high specificity in winery effluent. A significant relationship was determined between BOD(5) and (ethanol + glucose + fructose; R(2) = 0.64, n = 19; p<0.05), but relationships between BOD(5) and ethanol and BOD(5) vs (glucose + fructose) were weak (R(2) = 0.45 and 0.34; n = 19; p<0.05 respectively,). There was a very strong linear correlation (y = 0.9767x + 52.8; R(2) = 0.97; n = 23; p<0.05) in COD data in winery effluents when using a commercially available mercury free test kit compared with using a traditional COD test kit that contained mercury. This suggests that mercury free COD test kits could be used by the wine industry for organic pollution assessment with associated reductions to user and environmental risk, as well as reducing the costs of kit waste disposal.

  11. Electrocoagulation process to Chemical and Biological Oxygen Demand treatment from carwash grey water in Ahvaz megacity, Iran.

    PubMed

    Mohammadi, Mohammad Javad; Takdastan, Afshin; Jorfi, Sahand; Neisi, Abdolkazem; Farhadi, Majid; Yari, Ahmad Reza; Dobaradaran, Sina; Khaniabadi, Yusef Omidi

    2017-04-01

    In this work, we present the result of an electric coagulation process with iron and aluminum electrodes for removal of chemical and biological oxygen demand (COD and BOD) from grey water in different car washes of Ahvaz, Iran. Nowadays, one of the important dangerous that can contaminate water resources for drinking, agriculture and industrial is Car wash effluent [1,2]. In this study, initial COD and BOD concentration, pH of the solution, voltage power and reaction time was investigated. The concentration level of remaining COD and BOD in samples was measured, using DR/5000 UV-vis HACH spectrophotometer [3,4]. The effects of contact time, initial pH, electrical potential and voltage data on removal of COD and BOD were presented. Statistical analysis of the data was carried out using Special Package for Social Sciences (SPSS 16).

  12. Use of COD, TOC, and Fluorescence Spectroscopy to Estimate BOD in Wastewater.

    PubMed

    Christian, Evelyn; Batista, Jacimaria R; Gerrity, Daniel

    2017-02-01

      Common to all National Pollutant Discharge Elimination System (NPDES) permits in the United States is a limit on biochemical oxygen demand (BOD). Chemical oxygen demand (COD), total organic carbon (TOC), and fluorescence spectroscopy are also capable of quantifying organic content, although the mechanisms of quantification and the organic fractions targeted differ for each test. This study explores correlations between BOD5 and these alternate test procedures using facility influent, primary effluent, and facility effluent samples from a full-scale water resource recovery facility. Relative reductions of the water quality parameters proved to be strong indicators of their suitability as surrogates for BOD5. Suitable correlations were generally limited to the combined datasets for the three sampling locations or the facility effluent alone. COD exhibited relatively strong linear correlations with BOD5 when considering the three sample points (r = 0.985) and the facility effluent alone (r = 0.914), while TOC exhibited a suitable linear correlation with BOD5 in the facility effluent (r = 0.902). Exponential regressions proved to be useful for estimating BOD5 based on TOC or fluorescence (r > 0.95).

  13. [Characteristics and loads of key sources of pollutions discharged into Beishi River, Changzhou City].

    PubMed

    Li, Chun-Ping; Jiang, Jian-Guo; Chen, Ai-Mei; Wu, Jia-Ling; Fan, Xiu-Juan; Ye, Bin

    2010-11-01

    Choosing the Beishi river, Changzhou City as the study area, the sewage generation, pollutants characteristics and sewage discharge in catchment area of Beishi river were conducted, detailed investigated and monitored. After using pollution coefficients, the yearly loads of all sources of pollutions were calculated to determine the highest sewage. The results showed that: except pH, the high concentration of SS, COD, BOD5, ammonia nitrogen, TN and TP discharged from MSW collecting houses, MSW transfer stations, public toilets and dining in Changzhou city far exceeded the "Integrated Wastewater Discharge Standard" (GB 8978-1996) and "Effluent Discharged into the City Sewer Water Quality Standards" (CJ 3082-1999). Among which: the highest concentration of COD discharged from MSW transfer stations was up to 51 700 mg/L, while the ammonia nitrogen and TN were as high as 1 616 mg/L and 2 044 mg/L in the toilet wastewater. In addition to this, the ratio of wastewater discharged directly into the river through storm water pipe network was higher from MSW houses, MSW transfer stations, public toilets, dining and other waste in Changzhou city. The 125.2 t/a of COD and 40.53 t/a of BOD5 were the two highest concentrations of various sources of pollution. The highest annual polluting loads discharged into Beishi river is dining, followed by the sanitation facilities. Therefore, cutting pollution control of food and sanitation facilities along the river is particularly urgent.

  14. 40 CFR 439.52 - Effluent limitations attainable by the application of the best practicable control technology...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., kg) per day, must reflect not less than 74 percent reduction in the long-term average daily COD load... long-term average daily BOD5 or COD mass loading of the raw process wastewater (i.e., the base number..., calculation of the long-term average daily BOD5 or COD load in the influent to the wastewater treatment system...

  15. 40 CFR 439.52 - Effluent limitations attainable by the application of the best practicable control technology...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., kg) per day, must reflect not less than 74 percent reduction in the long-term average daily COD load... long-term average daily BOD5 or COD mass loading of the raw process wastewater (i.e., the base number..., calculation of the long-term average daily BOD5 or COD load in the influent to the wastewater treatment system...

  16. 40 CFR 439.52 - Effluent limitations attainable by the application of the best practicable control technology...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., kg) per day, must reflect not less than 74 percent reduction in the long-term average daily COD load... long-term average daily BOD5 or COD mass loading of the raw process wastewater (i.e., the base number..., calculation of the long-term average daily BOD5 or COD load in the influent to the wastewater treatment system...

  17. The monitoring of organic waste pollution in the sibelis river

    NASA Astrophysics Data System (ADS)

    Huda, Thorikul; Jannah, Wirdatul

    2017-03-01

    Has conducted monitoring of organic waste pollution in the River Sibelis of Tegal City of Central Java. Organic wastes that pollute River Sibelis can degrade the quality of well water along the river. Monitoring carried out in the upstream and downstream by chemical oxygen demand (COD) and biochemical oxygen demand (BOD) parameters. COD test methods by titration and the results are used to determine the test sample comparison with the volume of diluent required for analysts BOD. COD test results on the upstream and downstream Sibelis River respectively 58.13 mg/L and 73.97 mg / L so that the ratio of the test sample with diluent volume for BOD analysis is 20: 280 (Sawyer, 1978). BOD test principle is based on the reduction of dissolved oxygen zero day (DO0) and five days (DO5). The result of observation BOD samples at upstream and downstream Sibelis Rivers are 10.7212 mg / L and 5.3792 mg / L respectively. Quality control of BOD testing conducted with measurement accuracy and precision and obtained result are 85.36% and 0.27% respectively. The result of uncertainty measurement for BOD testing at upstream and downstream are ±0.4469 mg/L and ±0.22188 mg/L.

  18. Quantitative characterization of organic diffusion using an analytical diffusion-reaction model and its application to assessing BOD removal when treating municipal wastewater in a plug flow reactor.

    PubMed

    Fan, Chihhao; Kao, Chen-Fei; Liu, Yu-Hsi

    2017-09-15

    The present study aimed to derive an analytical formula to quantify the diffusion of organic contaminant in a biofilm. The experiments were conducted to investigate the BOD degradation under the conditions of influent COD concentration from 50 to 300 mg/L, COD:N:P ratios of 100:5:1 and 100:15:3, with and without auxiliary aeration. The BOD removal rate was around 73% for non-aerated influent COD of 50 mg/L with 1-h hydraulic retention time. The BOD removal rate increased as the influent loading and hydraulic retention time increased while the influent COD was no more than 150 mg/L. Without aeration, the removal rate dropped significantly when influent COD increased to the range no less than 200 mg/L, due to the fact that the BOD diffusive flux driven by the biomass uptake was not further enhanced by higher ambient organic loading. The diffusion coefficient was calculated to be 1.12 × 10 -6  m 2 /d with influent COD of 50 mg/L at COD:N:P ratio of 100:5:1 and 1 h hydraulic retention time and aeration, and the coefficient increased to 3.35 × 10 -6  m 2 /d as the influent COD concentration increased to 300 mg/L. The diffusion coefficient decreased to 4.09 × 10 -7  m 2 /d as the retention time increased to 3 h. The overall diffusion coefficients showed an increasing trend as the influent organic loading increased. The difference in diffusion coefficients between 1 and 2 h was apparently greater than that between 2 and 3 h, indicating a smaller overall diffusive flux due to a longer retention time. Further analysis revealed that BOD diffusion activity exhibited a declining trend as the wastewater travelled through the system. An analytical diffusion-reaction model was developed to characterize the diffusion behaviour, and applied to estimating the treatment efficiency for real domestic sewage. The result showed that the estimated effluent BOD concentrations were quite comparable to those from experimental measurements. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Fungi immobilization for landfill leachate treatment.

    PubMed

    Saetang, Jenjira; Babel, Sandhya

    2010-01-01

    This paper investigated treatment of landfill leachate collected from Nonthaburi landfill site, Thailand, by using immobilized white rot fungi, namely, Trametes versicolor BCC 8725 and Flavodon flavus BCC 17421. Effects of pH and co-substrates were investigated at different contact times. Three types of co-substrates as carbon source used in this study are glucose, corn starch and cassava. Treatment efficiency was evaluated based on color, BOD, and COD removal. Initial BOD and COD were found to be 5,600 and 34,560 mg/L, respectively. The optimum pH was found to be 4, the optimum co-substrate concentration (glucose, corn starch and cassava) was 3 g/L and the optimum contact time was 10 days for both types of fungi. Addition of glucose, corn starch and cassava as co-substrate at optimum conditions could remove 78, 74, and 66% of color, respectively for T. versicolor and 73, 68, and 60%, respectively, for F. flavus. Moreover, for T. versicolor, BOD and COD reduction of 69 and 57%, respectively, could be achieved at optimum conditions when using glucose as a co-substrate. For F. flavus, BOD and COD reduction of 66 and 52%, respectively were obtained when using glucose as a co-substrate. White rot fungi can be considered potentially useful in the treatment of landfill leachate as they can help in removing color, BOD and COD due to their biodegradative abilities.

  20. River water quality assessment using environmentric techniques: case study of Jakara River Basin.

    PubMed

    Mustapha, Adamu; Aris, Ahmad Zaharin; Juahir, Hafizan; Ramli, Mohammad Firuz; Kura, Nura Umar

    2013-08-01

    Jakara River Basin has been extensively studied to assess the overall water quality and to identify the major variables responsible for water quality variations in the basin. A total of 27 sampling points were selected in the riverine network of the Upper Jakara River Basin. Water samples were collected in triplicate and analyzed for physicochemical variables. Pearson product-moment correlation analysis was conducted to evaluate the relationship of water quality parameters and revealed a significant relationship between salinity, conductivity with dissolved solids (DS) and 5-day biochemical oxygen demand (BOD5), chemical oxygen demand (COD), and nitrogen in form of ammonia (NH4). Partial correlation analysis (r p) results showed that there is a strong relationship between salinity and turbidity (r p=0.930, p=0.001) and BOD5 and COD (r p=0.839, p=0.001) controlling for the linear effects of conductivity and NH4, respectively. Principal component analysis and or factor analysis was used to investigate the origin of each water quality parameter in the Jakara Basin and identified three major factors explaining 68.11 % of the total variance in water quality. The major variations are related to anthropogenic activities (irrigation agricultural, construction activities, clearing of land, and domestic waste disposal) and natural processes (erosion of river bank and runoff). Discriminant analysis (DA) was applied on the dataset to maximize the similarities between group relative to within-group variance of the parameters. DA provided better results with great discriminatory ability using eight variables (DO, BOD5, COD, SS, NH4, conductivity, salinity, and DS) as the most statistically significantly responsible for surface water quality variation in the area. The present study, however, makes several noteworthy contributions to the existing knowledge on the spatial variations of surface water quality and is believed to serve as a baseline data for further studies. Future research should therefore concentrate on the investigation of temporal variations of water quality in the basin.

  1. Anaerobic reactor/high rate pond combined technology for sewage treatment in the Mediterranean area.

    PubMed

    El Hafiane, F; El Hamouri, B

    2005-01-01

    Two high-rate, anaerobic/aerobic units were used to treat the sewage of the Institut Agronomique st Vétérinaire Hassan II (Morocco) campus in a 1,100 m2-plant designed for 1,500 e.p. and receiving 63 m3 per day. The anaerobic pre-treatment consisted of a two-step up-flow anaerobic reactor (TSUAR) comprising two reactors and one external settler all in series. The aerobic line, or post-treatment, consisted of a high-rate algal pond (HRAP) and one maturation pond in series. The system totalized a hydraulic retention time (HRT) of 9 days. A gravel filter (GF) was constructed behind the TSUAR to trap low-density particles. The TSUAR removed 80% of COD and 90% of SS within 48 h. Solids retention time in the reactors averaged 32 d with a specific sludge production of 0.28 g SS g(-1) COD removed. Almost 93% of the sludge evacuated from the settler was stabilized. Specific biogas production from both reactors was 0.25m3 kg(-1) COD removed. Used in this configuration, the HRAP lost its BOD removal activity and increased its nutrients and pathogens removal capabilities (tertiary treatment). Results showed that 85% of total nitrogen and 48% of total phosphorus were removed by the HRAP. Land area requirement of this combination was less than 1 m2 per capita and filtered final effluent was of excellent quality (COD, 82 mg/l; TKN, 8.3 mg/l; total P, 2.7 mg/l, faecal coliforms, 2.4 10(3)/100 ml and zero helminths eggs).

  2. Wastewater treatment of chemical laboratory using electro assisted-phytoremediation (EAPR)

    NASA Astrophysics Data System (ADS)

    Putra, Rudy Syah; Trahadinata, Gilang Ahmad; Latif, Arif; Solehudin, Mochamad

    2017-03-01

    The EAPR process using water hyacinth (Eichornia crassipes) on the wastewater treatment of chemical laboratory had been evaluated. The purpose of the EAPR process was to decrease the BOD, COD and heavy metal concentration in the wastewater. The effectiveness of the process on the wastewater treatment was evaluated using COD, BOD, and heavy metal (Pb, Cu) concentration, respectively. The result showed that the EAPR process decrease the COD, BOD, Pb and Cu in the 4 h of EAPR process. Those concentrations were met the water quality standard of class IV according to government regulation No. 82/2001 regarding the water quality management and water pollution control of the Republic of Indonesia.

  3. Application of iron nanaoparticles in landfill leachate treatment - case study: Hamadan landfill leachate.

    PubMed

    Kashitarash, Zahra Esfahani; Taghi, Samadi Mohammad; Kazem, Naddafi; Abbass, Afkhami; Alireza, Rahmani

    2012-12-27

    This study was performed with the objective of determining the efficiency of iron nanoparticles for reducing chemical oxygen demand (COD), 5-day biological oxygen demand (BOD5), total solids (TS) and color of Hamadan city landfill leachate. Experiments were performed in a batch reactor and the main effective factors of pH, reaction time and concentration of iron nanoparticles were investigated. The obtained data were analyzed with One-Way ANOVA statistical test and SPSS-13 software. Maximum removal efficiencies were 47.94%, 35%, 55.62% and 76.66% for COD, BOD5, TS and color, respectively (for 2.5 g/L iron nanoparticles dosage, pH = 6.5 and 10 min reaction time). The results showed that the removal of COD, BOD5 and color had reverse relationship with contact time and TS removal followed a direct relationship (P < 0.05). Iron nanoparticles could remove averagely 53% of leachate COD, BOD5, TS and color in a short contact time (10 min) increasing pH up to 6.5, increased the removal efficiency for COD, BOD5, TS and color and then removal efficiency decreased with increasing pH to 8.5. Increasing the dosage of nanoparticles to 2.5 g/L increased the efficiency of process. High compatibility and efficiency of this process was proven by landfill leachate pre-treatment or post-treatment, so this removal method may be recommended for municipal solid waste landfill leachate treatment plants.

  4. Application of iron nanaoparticles in landfill leachate treatment - case study: Hamadan landfill leachate

    PubMed Central

    2012-01-01

    This study was performed with the objective of determining the efficiency of iron nanoparticles for reducing chemical oxygen demand (COD), 5-day biological oxygen demand (BOD5), total solids (TS) and color of Hamadan city landfill leachate. Experiments were performed in a batch reactor and the main effective factors of pH, reaction time and concentration of iron nanoparticles were investigated. The obtained data were analyzed with One-Way ANOVA statistical test and SPSS-13 software. Maximum removal efficiencies were 47.94%, 35%, 55.62% and 76.66% for COD, BOD5, TS and color, respectively (for 2.5 g/L iron nanoparticles dosage, pH = 6.5 and 10 min reaction time). The results showed that the removal of COD, BOD5 and color had reverse relationship with contact time and TS removal followed a direct relationship (P < 0.05). Iron nanoparticles could remove averagely 53% of leachate COD, BOD5, TS and color in a short contact time (10 min) increasing pH up to 6.5, increased the removal efficiency for COD, BOD5, TS and color and then removal efficiency decreased with increasing pH to 8.5. Increasing the dosage of nanoparticles to 2.5 g/L increased the efficiency of process. High compatibility and efficiency of this process was proven by landfill leachate pre-treatment or post-treatment, so this removal method may be recommended for municipal solid waste landfill leachate treatment plants. PMID:23369361

  5. Fort Dix Remedial Investigation/Feasibility Study for 13 Sites, Final Technical Plan, Data Item A004

    DTIC Science & Technology

    1995-09-01

    39 oxygen demand (COD), TSS, total dissolved solids ( TDS ), nitrate/nitrite, sulfate, W0109314.M80 7133-04 5-4 SECTION 5 phosphateand alkalinity...TSS, TDS , BOD-5, COD, alkalinity, hardness, 38 and gross alpha, beta, and gamma radiation (Table 2). 39 W0109314.M80 12-2 7133-°4 SECTION 12 l...wells. Groundwater samples 28 will be analyzed for TCL VOCs, TCL SVOCs, TAL metals (nonfiltered and filtered) 29 TSS, TDS , BOD-5, COD, alkalinity

  6. 40 CFR 417.163 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... per 1,000 kg of anhydrous product) BOD5 0.10 0.05 COD 0.44 .22 TSS 0.01 .005 Surfactants 0.10 .05 Oil....05 COD 0.44 .22 TSS 0.01 .005 Surfactants 0.10 .005 Oil and grease 0.01 .005 pH (1) (1) 1 Within the... (kilograms per 1,000 kg of anhydrous product) BOD5 0.02. COD 0.07. TSS 0.002. Surfactants 0.02. Oil and...

  7. 40 CFR 417.163 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... per 1,000 kg of anhydrous product) BOD5 0.10 0.05 COD 0.44 .22 TSS 0.01 .005 Surfactants 0.10 .05 Oil....05 COD 0.44 .22 TSS 0.01 .005 Surfactants 0.10 .005 Oil and grease 0.01 .005 pH (1) (1) 1 Within the... (kilograms per 1,000 kg of anhydrous product) BOD5 0.02. COD 0.07. TSS 0.002. Surfactants 0.02. Oil and...

  8. 40 CFR 417.163 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... per 1,000 kg of anhydrous product) BOD5 0.10 0.05 COD 0.44 .22 TSS 0.01 .005 Surfactants 0.10 .05 Oil....05 COD 0.44 .22 TSS 0.01 .005 Surfactants 0.10 .005 Oil and grease 0.01 .005 pH (1) (1) 1 Within the... (kilograms per 1,000 kg of anhydrous product) BOD5 0.02. COD 0.07. TSS 0.002. Surfactants 0.02. Oil and...

  9. 40 CFR 417.163 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... per 1,000 kg of anhydrous product) BOD5 0.10 0.05 COD 0.44 .22 TSS 0.01 .005 Surfactants 0.10 .05 Oil....05 COD 0.44 .22 TSS 0.01 .005 Surfactants 0.10 .005 Oil and grease 0.01 .005 pH (1) (1) 1 Within the... (kilograms per 1,000 kg of anhydrous product) BOD5 0.02. COD 0.07. TSS 0.002. Surfactants 0.02. Oil and...

  10. 40 CFR 417.163 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... per 1,000 kg of anhydrous product) BOD5 0.10 0.05 COD 0.44 .22 TSS 0.01 .005 Surfactants 0.10 .05 Oil....05 COD 0.44 .22 TSS 0.01 .005 Surfactants 0.10 .005 Oil and grease 0.01 .005 pH (1) (1) 1 Within the... (kilograms per 1,000 kg of anhydrous product) BOD5 0.02. COD 0.07. TSS 0.002. Surfactants 0.02. Oil and...

  11. Treatment of low-strength soluble wastewater using an anaerobic baffled reactor (ABR).

    PubMed

    Gopala Krishna, G V T; Kumar, Pramod; Kumar, Pradeep

    2009-01-01

    Treatment of low-strength soluble wastewater (COD approximately 500 mg/L) was studied using an eight chambered anaerobic baffled reactor (ABR). At pseudo steady-state (PSS), the average total and soluble COD values (COD(T) and COD(S)) at 8h hydraulic retention time (HRT) were found to be around 50 and 40 mg/L, respectively, while at 10h HRT average COD(T) and COD(S) values were of the order of 47 and 37 mg/L, respectively. COD and BOD (3 day, 27 degrees C) removal averaged more than 90%. Effluent conformed to Indian standards laid down for BOD (less than 30 mg/L). Reactor effluent characteristics exhibited very low values of standard deviation indicating excellent reactor stability at PSS in terms of effluent characteristics. Based on mass balance calculations, more than 60% of raw wastewater COD was estimated to be recovered as CH(4) in the gas phase. Compartment-wise profiles indicated that most of the BOD and COD got reduced in the initial compartments only. Sudden drop in pH (7.8-6.7) and formation of volatile fatty acids (VFA) (53-85 mg/L) were observed in the first compartment due to acidogenesis and acetogenesis. The pH increased and VFA concentration decreased longitudinally down the reactor. Residence time distribution (RTD) studies revealed that the flow pattern in the ABR was neither completely plug-flow nor perfectly mixed. Observations from scanning electron micrographs (SEM) suggest that distinct phase separation takes place in an ABR.

  12. Characterisation of raw sewage and performance assessment of primary settling tanks at Firle Sewage Treatment Works, Harare, Zimbabwe

    NASA Astrophysics Data System (ADS)

    Muserere, Simon Takawira; Hoko, Zvikomborero; Nhapi, Innocent

    The need for more stringent effluent discharge standards as prescribed by the Environmental Management Act 20:27 to protect the environment can be sustainably achieved with the aid of Activated Sludge Models. Thus, the researchers believe it is time to re-evaluate wastewater characteristics at Firle Sewage Treatment Works (STW) and make use of activated sludge simulators to address pollution challenges caused by the sewage plant. Therefore, this paper characterizes raw sewage and assesses settled and unsettled sewage in order to evaluate the performance of the primary treatment system and the suitability of the settled sewage for treatment by the subsequent Biological Nutrient Removal (BNR) system at Firle STW. Parameters studied included COD, BOD, TKN, TP, NH3, TSS, pH and Alkalinity. Composite samples were collected over a 9-day campaign period (27 June to 6 July 2012), hourly grab samples over 24 hrs and composite samples on 6 March 2012 which were then analysed in the lab in accordance with Standard Methods for the Examination of Water and Wastewater to support the City of Harare 2004-2012 lab historical records. Concentrations for unsettled sewage in mg/L were COD (527 ± 32), BOD (297 ± 83) TKN (19.0 ± 2.0), TP (18 ± 3), NH3 (24.0 ± 12.9), TSS (219 ± 57), while pH was 7.0 ± 0 and Alkalinity 266 ± 36 mg/L. For settled sewage the corresponding values in mg/L were COD (522 ± 15), BOD (324 ± 102), TKN (21.0 ± 3.0), TP (19.0 ± 2.0), NH3 (25.6 ± 11.2), TSS (250 ± 66), while pH was 7.0 ± 0 and Alkalinity 271 ± 17 mg/L. The plant design values for raw sewage are COD (650 mg/L), BOD (200 mg/L), TKN (40 mg/L) and TP (11 mg/L). Thus, COD and nitrogen were within the plant design range while BOD and TP were higher. Treatability of sewage in BNR systems is often inferred from the levels of critical parameters and also the ratios of TKN/COD and COD/TP. The wastewater average settled COD/BOD, COD/TP and TKN/COD ratio were 1.7 ± 0.5, 27.1 ± 3.1 and 0.04 ± 0.01 respectively and corresponding unsettled ratios were 1.8 ± 0.5, 30.77 ± 6.8 and 0.04 ± 0 respectively. Thus, treatability by the 3-stage BNR system appears highly feasible for nitrogen and is likely to be complex for phosphorous. Fractionation of COD, TP and TN is recommended to appropriately advise further steps to optimise the plant operations.

  13. Oxygen demand of aircraft and airfield pavement deicers and alternative freezing point depressants

    USGS Publications Warehouse

    Corsi, Steven R.; Mericas, Dean; Bowman, George

    2012-01-01

    Aircraft and pavement deicing formulations and other potential freezing point depressants were tested for biochemical oxygen demand (BOD) and chemical oxygen demand (COD). Propylene glycol-based aircraft deicers exhibited greater BOD5 than ethylene glycol-based aircraft deicers, and ethylene glycol-based products had lower degradation rates than propylene glycol-based products. Sodium formate pavement deicers had lower COD than acetate-based pavement deicers. The BOD and COD results for acetate-based pavement deicers (PDMs) were consistently lower than those for aircraft deicers, but degradation rates were greater in the acetate-based PDM than in aircraft deicers. In a 40-day testing of aircraft and pavement deicers, BOD results at 20°C (standard) were consistently greater than the results from 5°C (low) tests. The degree of difference between standard and low temperature BOD results varied among tested products. Freshwater BOD test results were not substantially different from marine water tests at 20°C, but glycols degraded slower in marine water than in fresh water for low temperature tests. Acetate-based products had greater percentage degradation than glycols at both temperatures. An additive component of the sodium formate pavement deicer exhibited toxicity to the microorganisms, so BOD testing did not work properly for this formulation. BOD testing of alternative freezing point depressants worked well for some, there was little response for some, and for others there was a lag in response while microorganisms acclimated to the freezing point depressant as a food source. Where the traditional BOD5 test performed adequately, values ranged from 251 to 1,580 g/kg. Where the modified test performed adequately, values of BOD28 ranged from 242 to 1,540 g/kg.

  14. [Comparison of ciliate diversity in biodisc reactors which purify industrial wastewater].

    PubMed

    Luna-Pabello, V M; Durán De Bazúa, C; Aladro-Lubel, M A

    1995-01-01

    The comparative study of the ciliate populations present in rotating biological reactors (biodiscs reactors) of 20 l working volume, treating three different wastewaters is the aim of this project. Wastewaters chosen were those of a maize mill, of a sugarcane/ethyl alcohol plant, and of a recycled paper mill. Its dissolved organic contents, measured as soluble chemical oxygen demand (COD) and five-day biochemical oxygen demand (BOD5), were 2040 mg COD/l and 585 mg BOD5/l for maize mill effluents (nejayote), 2000 mg COD/l and 640 mg BOD5/l for sugarcane/ethanol effluents (vinasses), and 960 mg COD/l and 120 mg BOD5/l for whitewaters of the paper industry. Results obtained indicate that ciliate proliferate in all chambers of reactors treating these wastewaters. The ciliates were more abundant in vinasses, followed by nejayote, and then whitewaters. Among protozoa, ciliates were present as follows: 19 species in total. Three of them were common for the three systems. Free swimming ciliates were in higher proportion than pedunculated ones. Its diversity was higher for the whitewaters system, next for nejayote, and the lesser, for vinasses, corroborating the fact that less polluted waters have higher organisms' diversity.

  15. Treatment of fruit-juice industry wastewater in a two-stage anaerobic hybrid (AH) reactor system followed by a sequencing batch reactor (SBR).

    PubMed

    Tawfik, A; El-Kamah, H

    2012-01-01

    This study has been carried out to assess the performance of a combined system consisting of an anaerobic hybrid (AH) reactor followed by a sequencing batch reactor (SBR) for treatment of fruit-juice industry wastewater at a temperature of 26 degrees C. Three experimental runs were conducted in this investigation. In the first experiment, a single-stage AH reactor was operated at a hydraulic retention time (HRT) of 10.2 h and organic loading rate (OLR) of 11.8 kg COD m(-3) d(-1). The reactor achieved a removal efficiency of 42% for chemical oxygen demand (COD), 50.8% for biochemical oxygen demand (BOD5), 50.3% for volatile fatty acids (VFA) and 56.4% for total suspended solids (TSS). In the second experiment, two AH reactors connected in series achieved a higher removal efficiency for COD (67.4%), BOD5 (77%), and TSS (71.5%) at a total HRT of 20 h and an OLR of 5.9 kg COD m(-3) d(-1). For removal of the remaining portions of COD, BOD5 and TSS from the effluent of the two-stage AH system, a sequencing batch reactor (SBR) was investigated as a post-treatment unit. The reactor achieved a substantial reduction in total COD, resulting in an average effluent concentration of 50 mg L(-1) at an HRT of 11 h and OLR of 5.3 kg COD m(-3) d(-1). Almost complete removal of total BOD5 and oil and grease was achieved, i.e. 10 mg L(-1) and 1.2 mg L(-1), respectively, remained in the final effluent of the SBR.

  16. Detoxification of olive mill wastewater by electrocoagulation and sedimentation processes.

    PubMed

    Khoufi, Sonia; Feki, Firas; Sayadi, Sami

    2007-04-02

    Olive mill wastewater (OMW) is characterised by its high suspended solids content (SS), high turbidity (NTU), chemical oxygen demand (COD) concentration up to 100 gl(-1) and toxic phenolic compounds concentration up to 10 gl(-1). This study examined the effect of a physico-electrochemical method to detoxify olive mill wastewater prior an anaerobic biotreatment process. The proposed pre-treatment process consisted in a preliminary electrocoagulation step in which most phenolic compounds were polymerised, followed by a sedimentation step. The BOD(5)/COD ratio of the electrocoagulated OMW increased from 0.33, initial value, to 0.58. Furthermore, the sedimentation step yielded the removal of 76.2%, 75% and 71% of phenolic compounds, turbidity and suspended solid, respectively, after 3 days of plain settling. The combination of electrocoagulation and sedimentation allowed a COD reduction and decoloration of about 43% and 90%, respectively. This pre-treatment decreases the inhibition of Vibrio fisheri luminescence by 66.4%. Continuous anaerobic biomethanization experiments conducted in parallel with raw OMW and electrocoagulated OMW before and after sedimentation at a loading rate of 6g COD l(-1)day(-1), proved that the final pre-treated OMW was bioconverted into methane at high yield while raw OMW was very toxic to anaerobic microorganisms.

  17. Anaerobic-aerobic treatment of purified terephthalic acid (PTA) effluent; a techno-economic alternative to two-stage aerobic process.

    PubMed

    Pophali, G R; Khan, R; Dhodapkar, R S; Nandy, T; Devotta, S

    2007-12-01

    This paper addresses the treatment of purified terephthalic acid (PTA) effluent using anaerobic and aerobic processes. Laboratory studies were carried out on flow proportionate composite wastewater generated from the manufacturing of PTA. An activated sludge process (ASP-two stage and single stage) and an upflow anaerobic fixed film fixed bed reactor (AFFFBR) were used, individually and in combination. The performance of a full-scale ETP under existing operating conditions was also studied. Full scale ETP studies revealed that the treatment of PTA effluent using a two-stage ASP alone does not meet treated effluent quality within the prescribed Indian Standards. The biomass produced in the two stage ASP was very viscous and fluffy and the sludge volume index (SVI) was very high (200-450 ml/g). However, pretreatment of PTA effluent using an upflow AFFFBR ensured substantial reduction in BOD (63%) and COD (62%) with recovery of biogas at 1.8-1.96 l/l effluent treated at a volumetric loading rate (VLR) 4-5 kg COD/m(3) d. The methane content in the biogas varied between 55% and 60%. The pretreated effluent from the upflow AFFFBR was then treated through a single stage ASP. The biomass produced in the ASP after anaerobic treatment had very good settlability (SVI: 75-90 ml/g) as compared to the two stage ASP and the treated effluent quality with respect to BOD, COD and SS was within the prescribed Indian Standards. The alternative treatment process comprising an upflow AFFFBR and a single stage ASP ensured net power saving of 257 kW and in addition generated 442 kW of power through the AFFFBR.

  18. Effect of biofilm and selective mixed culture on microbial fuel cell for the treatment of tempeh industrial wastewater

    NASA Astrophysics Data System (ADS)

    Arbianti, Rita; Surya Utami, Tania; Leondo, Vifki; Elisabeth; Andyah Putri, Syafira; Hermansyah, Heri

    2018-03-01

    Microbial Fuel Cell (MFC) provides a new alternative in the treatment of organic waste. MFC produces 50-90% less sludge to be disposed than other methods. MFC technology can utilize existing microorganisms in the waste as a catalyst to generate electricity and simultaneously also serves as a wastewater treatment unit itself. Tempeh wastewater is one of the abundant industrial wastewater which can be processed using MFC. Research using the selective mixed culture is very likely to do due to the good result on COD removals by adding mixed culture. Microorganisms in tempeh wastewater consist of bacteria gram positive and gram negative. This study focused on the aspects of waste treatment which is determined by decreased levels of COD and BOD. Variations in this study are the formation time of biofilm and the addition of selective gram. MFC operated for 50 hours. For a variation of biofilm formation, experiments were performed after incubation by replacing incubation substrates used in the formation of biofilms. Biofilm formation time in this study was 3 days, 5 days, 7 days and 14 days. Gram positive and gram negative bacteria were used in selective mixed culture experiments. Selective mixed culture added to the reactor by 1 mL and 5 mL. Selection of gram-positive or gram-negative bacteria carried by growing mixed culture on selective media. COD and BOD levels were measured in the wastewater before and after the experiment conducted in each variation. Biofilm formation optimum time is 7 days which decrease COD and BOD levels by 18.2% and 35.9%. The addition of gram negative bacteria decreases COD and BOD levels by 29.32% and 51.32%. Further research is needed in order to get a better result on decreasing levels of COD and BOD.

  19. 40 CFR 455.25 - New source performance standards (NSPS).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...(d), and subject to 455.20(a), must meet the following standards for BOD5, TSS, COD and pH: New... of daily values shall not exceed** COD 9.360 6.480 BOD5 5.328 1.1520 TSS 4.392 1.2960 pH * * * Within... concentrations listed in table 4 or table 5 of this part, as appropriate, of this subpart. [58 FR 50690, Sept. 28...

  20. 40 CFR 455.25 - New source performance standards (NSPS).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CFR 455.20(d), and subject to 455.20(a), must meet the following standards for BOD5, TSS, COD and pH...** Average of daily values shall not exceed** COD 9.360 6.480 BOD5 5.328 1.1520 TSS 4.392 1.2960 pH... concentrations listed in table 4 or table 5 of this part, as appropriate, of this subpart. [58 FR 50690, Sept. 28...

  1. 40 CFR 455.25 - New source performance standards (NSPS).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CFR 455.20(d), and subject to 455.20(a), must meet the following standards for BOD5, TSS, COD and pH...** Average of daily values shall not exceed** COD 9.360 6.480 BOD5 5.328 1.1520 TSS 4.392 1.2960 pH... concentrations listed in table 4 or table 5 of this part, as appropriate, of this subpart. [58 FR 50690, Sept. 28...

  2. Online total organic carbon (TOC) monitoring for water and wastewater treatment plants processes and operations optimization

    NASA Astrophysics Data System (ADS)

    Assmann, Céline; Scott, Amanda; Biller, Dondra

    2017-08-01

    Organic measurements, such as biological oxygen demand (BOD) and chemical oxygen demand (COD) were developed decades ago in order to measure organics in water. Today, these time-consuming measurements are still used as parameters to check the water treatment quality; however, the time required to generate a result, ranging from hours to days, does not allow COD or BOD to be useful process control parameters - see (1) Standard Method 5210 B; 5-day BOD Test, 1997, and (2) ASTM D1252; COD Test, 2012. Online organic carbon monitoring allows for effective process control because results are generated every few minutes. Though it does not replace BOD or COD measurements still required for compliance reporting, it allows for smart, data-driven and rapid decision-making to improve process control and optimization or meet compliances. Thanks to the smart interpretation of generated data and the capability to now take real-time actions, municipal drinking water and wastewater treatment facility operators can positively impact their OPEX (operational expenditure) efficiencies and their capabilities to meet regulatory requirements. This paper describes how three municipal wastewater and drinking water plants gained process insights, and determined optimization opportunities thanks to the implementation of online total organic carbon (TOC) monitoring.

  3. Removal of pharmaceutical residue in municipal wastewater by DAF (dissolved air flotation)-MBR (membrane bioreactor) and ozone oxidation.

    PubMed

    Choi, Miyoung; Choi, Dong Whan; Lee, Jung Yeol; Kim, Young Suk; Kim, Bun Su; Lee, Byoung Ho

    2012-01-01

    Growing attention is given to pharmaceutical residue in the water environment. It is known that pharmaceuticals are able to survive from a series of wastewater treatment processes. Concerns regarding pharmaceutical residues are attributed to the fact that they are being detected in water and sediment environment ubiquitously. Pharmaceutical treatment using a series of wastewater treatment processes of the DAF (dissolved air flotation)-MBR (membrane bioreactor)-ozone oxidation was conducted in the study. DAF, without addition of coagulant, could remove COD(cr) (chemical oxygen demand by Cr) up to over 70%, BOD 73%, SS 83%, T-N 55%, NH₄(+) 23%, and T-P 65% in influent of municipal wastewater. Average removal rates of water quality parameters by the DAF-MBR system were very high, e.g. COD(cr) 95.88%, BOD₅ 99.66%, COD(mn) (chemical oxygen demand by Mn) 93.63%, T-N 69.75%, NH₄-N 98.46%, T-P 78.23%, and SS 99.51%, which satisfy effluent water quality standards. Despite the high removal rate of the wastewater treatment system, pharmaceuticals were eliminated to be about 50-99% by the MBR system, depending on specific pharmaceuticals. Ibuprofen was well removed by MBR system up to over 95%, while removal rate of bezafibrate ranged between 50 and 90%. With over 5 mg/l of ozone oxidation, most pharmaceuticals which survived the DAF-MBR process were removed completely or resulted in very low survival rate within the range of few micrograms per litre. However, some pharmaceuticals such as bezafibrate and naproxen tended to be resistant to ozone oxidation.

  4. 40 CFR 417.165 - Standards of performance for new sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Surfactants 0.10 .05 Oil and grease 0.01 .005 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.10 0.05 COD 0.44 .22 TSS 0.01 .005 Surfactants 0.10 .05 Oil and grease 0.01 .005 pH (1) (1... units (kilograms per 1,000 kg of anhydrous product) BOD5 0.02. COD 0.07. TSS 0.002. Surfactants 0.02...

  5. 40 CFR 417.165 - Standards of performance for new sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Surfactants 0.10 .05 Oil and grease 0.01 .005 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.10 0.05 COD 0.44 .22 TSS 0.01 .005 Surfactants 0.10 .05 Oil and grease 0.01 .005 pH (1) (1... units (kilograms per 1,000 kg of anhydrous product) BOD5 0.02. COD 0.07. TSS 0.002. Surfactants 0.02...

  6. 40 CFR 417.165 - Standards of performance for new sources.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Surfactants 0.10 .05 Oil and grease 0.01 .005 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.10 0.05 COD 0.44 .22 TSS 0.01 .005 Surfactants 0.10 .05 Oil and grease 0.01 .005 pH (1) (1... units (kilograms per 1,000 kg of anhydrous product) BOD5 0.02. COD 0.07. TSS 0.002. Surfactants 0.02...

  7. 40 CFR 417.165 - Standards of performance for new sources.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Surfactants 0.10 .05 Oil and grease 0.01 .005 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.10 0.05 COD 0.44 .22 TSS 0.01 .005 Surfactants 0.10 .05 Oil and grease 0.01 .005 pH (1) (1... units (kilograms per 1,000 kg of anhydrous product) BOD5 0.02. COD 0.07. TSS 0.002. Surfactants 0.02...

  8. 40 CFR 417.165 - Standards of performance for new sources.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Surfactants 0.10 .05 Oil and grease 0.01 .005 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.10 0.05 COD 0.44 .22 TSS 0.01 .005 Surfactants 0.10 .05 Oil and grease 0.01 .005 pH (1) (1... units (kilograms per 1,000 kg of anhydrous product) BOD5 0.02. COD 0.07. TSS 0.002. Surfactants 0.02...

  9. Water Quality Assessment and Determining the Carrying Capacity of Pollution Load Batang Kuranji River

    NASA Astrophysics Data System (ADS)

    Dewata, I.; Adri, Z.

    2018-04-01

    This study aims to determine the water quality and carrying capacity of pollution load Batang Kuranji River in the headwaters, middle, and downstream. This research is descriptive quantitative parameters of pH, BOD, COD, TSS, and DOES Depictions of river water quality refer to RegulationNo.82/2001, while determination of carrying capacity of pollution load river refers to the Kep Men LHNo.10/2003.The result is Kuranji Batang River water quality upstream region included in either category who meet the quality standard first class ofPP82/2001. TSS concentrations at head waters of 21 mg/L, BOD1,6 mg/L, COD7,99mg/L and DO 7,845 mg/L. While the carrying capacity of pollution load river in upstream region included in both categories namely BOD of 4,4 kg/sec, COD 273,60 kg/sec, TSS906,00kg/sec, and DO parameters of 49.20 kg/sec. Middle region (point 2, 3, and 4) water quality Batang Kuranji River has exceeded the quality standard of 82/2001 for class II and class III. Meanwhile, carrying capacity of pollution load river in area included in ugly category. The calculation is done with application Qual2Kw show that carrying capacity of pollution load river of BOD -857.3 kg/sec, COD -777.40 kg/sec, TSS +9511.5 kg/sec, and DO +69.30 kg/sec.

  10. 40 CFR 417.153 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Surfactants 0.04 .02 Oil and grease 0.01 .005 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.02 0.01 COD 0.08 .04 TSS 0.04 .02 Surfactants 0.04 .02 Oil and grease 0.01 .005 pH (1) (1... per 1,000 kg of anhydrous product) BOD5 0.12 0.06 COD 0.50 .25 TSS 0.14 .07 Surfactants 0.20 .10 Oil...

  11. 40 CFR 417.153 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Surfactants 0.04 .02 Oil and grease 0.01 .005 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.02 0.01 COD 0.08 .04 TSS 0.04 .02 Surfactants 0.04 .02 Oil and grease 0.01 .005 pH (1) (1... per 1,000 kg of anhydrous product) BOD5 0.12 0.06 COD 0.50 .25 TSS 0.14 .07 Surfactants 0.20 .10 Oil...

  12. Characteristic of leachate at Alor Pongsu Landfill Site, Perak, Malaysia: A comparative study

    NASA Astrophysics Data System (ADS)

    Nor Farhana Zakaria, Siti; Aziz, Hamidi Abdul

    2018-04-01

    Leachate is a harmful by product generated from the landfill site. Leachate contains a high concentration of pollutant which can cause serious pollution to environmental. In this study, characteristics of leachate in Alor Pongsu Landfill Site (APLS) were monitored and analyzed according to the Standard Methods for the Examination of Water and Wastewater (2005). Composition in leachate at APLS was monitored for one year starting from January 2015 until January 2016. Nine parameters were monitored including color, chemical oxygen demand (COD), biological oxygen demand (BOD5), ammoniacal nitrogen (NH3-N), biodegradability ratio (BOD5/COD), temperature, dissolved oxygen (DO), total dissolved solid (TDS) and pH. Based on the analysis, Alor Pongsu Landfill leachate was categorized as stabilized landfill leachate by referring to the BOD5/COD < 0.1. Comparison with allowable discharge limits for leachate shows that most of parameters exceeded the standard discharge limitation. Thus, proper treatment is needed before leachate can be discharged to the environment.

  13. Characterization and treatment of Denizli landfill leachate using anaerobic hybrid/aerobic CSTR systems.

    PubMed

    Ağdağ, Osman Nuri

    2011-01-01

    Leachate generated in municipal solid waste landfill contains large amounts of organic and inorganic contaminants. In the scope of the study, characterization and anaerobic/aerobic treatability of leachate from Denizli (Turkey) Sanitary Landfill were investigated. Time-based fluctuations in characteristics of leachate were monitored during a one-year period. In characterization study; chemical oxygen demand (COD), biochemical oxygen demand (BOD) dissolved oxygen, temperature, pH, alkalinity, volatile fatty acids, total nitrogen, NH4-N, BOD5/COD ratio, suspended solid, inert COD, anaerobic toxicity assay and heavy metals concentrations in leachate were monitored. Average COD, BOD and NH4-N concentration in leachate were measured as 18034 mg/l, 11504 mg/l and 454 mg/l, respectively. Generally, pollution parameters in leachate were higher in summer and relatively lower in winter due to dilution by precipitation. For treatment of leachate, two different reactors, namely anaerobic hybrid and aerobic completely stirred tank reactor (CSTR) having effective volumes of 17.7 and 10.5 litres, respectively, were used. After 41 days of start-up period, leachate was loaded to hybrid reactor at 10 different organic loading rates (OLRs). OLR was increased by increasing COD concentrations. COD removal efficiency of hybrid reactor was carried out at a maximum of 91%. A percentage of 96% of residual COD was removed in the aerobic reactor. NH4-N removal rate in CSTR was quite high. In addition, high methane content was obtained as 64% in the hybrid reactor. At the end of the study, after 170 operation days, it can be said that the hybrid reactor and CSTR were very effective for leachate treatment.

  14. A full-scale biological treatment system application in the treated wastewater of pharmaceutical industrial park.

    PubMed

    Lei, Ge; Ren, Hongqiang; Ding, Lili; Wang, Feifei; Zhang, Xingsong

    2010-08-01

    A full-scale combined biological system is used for the treatment of treated wastewater discharged from a pharmaceutical industrial park. This treated water is rich in NH(4)(+)-N (average in 86.4 mg/L), low in COD/NH(4)(+)-N (average in 3.4) and low in BOD(5)/COD ratio (average in 0.24) with pH varying from 7.16 to 7.78. The final effluent of the combined treatment process was stably below 100mg/L COD and 20mg/L NH(4)(+)-N, separately, with organic loading rate of 4954 kg COD/d and 92.5 kg NH(4)(+)-N/d. It is found that the BOD(5)/COD ratio could be raised from 0.24 to 0.35, and the production of total VFAs account for 9.57% of the total COD via the treatment of hydrolysis/acidification. MBBR and oxidation ditch represent 35.4% and 60.7% of NH(4)(+)-N removal, 30.2% and 61.5% of COD removal, separately, of the total treatment process. PCR-DGGE is used for microbial community analysis of MBBR and oxidation ditch. (c) 2010. Published by Elsevier Ltd. All rights reserved.

  15. Treatment of oilfield produced water by anaerobic process coupled with micro-electrolysis.

    PubMed

    Li, Gang; Guo, Shuhai; Li, Fengmei

    2010-01-01

    Treatment of oilfield produced water was investigated using an anaerobic process coupled with micro-electrolysis (ME), focusing on changes in chemical oxygen demand (COD) and biodegradability. Results showed that COD exhibited an abnormal change in the single anaerobic system in which it increased within the first 168 hr, but then decreased to 222 mg/L after 360 hr. The biological oxygen demand (five-day) (BODs)/COD ratio of the water increased from 0.05 to 0.15. Hydrocarbons in the wastewater, such as pectin, degraded to small molecules during the hydrolytic acidification process. Comparatively, the effect of ME was also investigated. The COD underwent a slight decrease and the BOD5/COD ratio of the water improved from 0.05 to 0.17 after ME. Removal of COD was 38.3% under the idealized ME conditions (pH 6.0), using iron and active carbon (80 and 40 g/L, respectively). Coupling the anaerobic process with ME accelerated the COD removal ratio (average removal was 53.3%). Gas chromatography/mass spectrometry was used to analyze organic species conversion. This integrated system appeared to be a useful option for the treatment of water produced in oilfields.

  16. 40 CFR 417.166 - Pretreatment standards for new sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... be no discharge of waste water streams in which both the COD/BOD7 ratio exceeds 10.0 and the COD... Do. pH Do. (2) For fast turnaround operation of automated fill lines, the following values pertain...

  17. 40 CFR 417.166 - Pretreatment standards for new sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... pollutant property Pretreatment standard BOD5 No limitation. COD Do. TSS Do. Surfactants Do. Oil and grease... No limitation. COD Do. TSS Do. Surfactants Do. Oil and grease Do. pH Do. [40 FR 27455, June 30, 1975...

  18. 40 CFR 417.166 - Pretreatment standards for new sources.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... pollutant property Pretreatment standard BOD5 No limitation. COD Do. TSS Do. Surfactants Do. Oil and grease... No limitation. COD Do. TSS Do. Surfactants Do. Oil and grease Do. pH Do. [40 FR 27455, June 30, 1975...

  19. 40 CFR 417.166 - Pretreatment standards for new sources.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... pollutant property Pretreatment standard BOD5 No limitation. COD Do. TSS Do. Surfactants Do. Oil and grease... No limitation. COD Do. TSS Do. Surfactants Do. Oil and grease Do. pH Do. [40 FR 27455, June 30, 1975...

  20. 40 CFR 417.166 - Pretreatment standards for new sources.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... pollutant property Pretreatment standard BOD5 No limitation. COD Do. TSS Do. Surfactants Do. Oil and grease... No limitation. COD Do. TSS Do. Surfactants Do. Oil and grease Do. pH Do. [40 FR 27455, June 30, 1975...

  1. Partial characterization of an effluent produced by cooking of Jumbo squid (Dosidicus gigas) mantle muscle.

    PubMed

    Rosas-Romero, Zaidy G; Ramirez-Suarez, Juan C; Pacheco-Aguilar, Ramón; Lugo-Sánchez, Maria E; Carvallo-Ruiz, Gisela; García-Sánchez, Guillermina

    2010-01-01

    Jumbo squid (Dosidicus gigas) mantle muscle was cooked simulating industrial procedures (95 degrees C x 25 min, 1.2:5 muscle:water ratio). The effluent produced was analyzed for chemical and biochemical oxygen demands (COD and BOD(5), respectively), proximate analysis, flavor-related compounds (free amino acids, nucleotides and carbohydrates) and SDS-PAGE. The COD and BOD(5) exhibited variation among samplings (N=3) (27.4-118.5 g O(2)/L for COD and 11.3-26.7 g O(2)/L for BOD(5)). The effluent consisted of 1% total solids, 75% of which represented crude protein. Sixty percent of the total free amino acid content, which imparts flavor in squid species, corresponded to glutamic acid, serine, glycine, arginine, alanine, leucine and lysine. The nucleotide concentration followed this order, Hx>ADP>AMP>ATP>IMP>HxR. The variation observed in the present work was probably due to physiological maturity differences among the squid specimens (i.e., juvenile versus mature). Solids present in squid cooking effluent could be recovered and potentially used as flavor ingredients in squid-analog production by the food industry.

  2. Biodegradation of organics in landfill leachate by immobilized white rot fungi, Trametes versicolor BCC 8725.

    PubMed

    Saetang, Jenjira; Babel, Sandhya

    2012-12-01

    Immobilized Trametes versicolor BCC 8725 was evaluated for the biodegradation of the organic components of four different types of landfill leachate collected at different time periods and locations from the Nonthaburi landfill site of Thailand in batch treatment. The effects of carbon source, ammonia and organic loading on colour, biochemical oxygen demand (BOD) and chemical oxygen demand (COD) removal, and the reuse of immobilized fungi were investigated. It was found that fungi can remove 78% of colour, reduce BOD by 68% and reduce COD by 57% in leachate within 15 days at optimum conditions. Organic loading and ammonia were the factors that affected the biodegradation. When immobilized T versicolor on polyurethane foam (PUF) was subjected to repeated use for treatment over the course of three cycles, the decolourization efficiency of the first and the second cycle was very similar, whereas the third cycle was about 20% lower than the first cycle under similar conditions. The obtained removal of colour, BOD and COD indicates the effectiveness of fungi for leachate treatment with high organic loading and varied leachate characteristics.

  3. Treatment of landfill leachate using a combined stripping, Fenton, SBR, and coagulation process.

    PubMed

    Guo, Jin-Song; Abbas, Abdulhussain A; Chen, You-Peng; Liu, Zhi-Ping; Fang, Fang; Chen, Peng

    2010-06-15

    The leachate from Changshengqiao landfill (Chongqing, China) was characterized and submitted to a combined process of air stripping, Fenton, sequencing batch reactor (SBR), and coagulation. Optimum operating conditions for each process were identified. The performance of the treatment was assessed by monitoring the removal of organic matter (COD and BOD(5)) and ammonia nitrogen (NH(3)-N). It has been confirmed that air stripping (at pH 11.0 and aeration time 18h) effectively removed 96.6% of the ammonia. The Fenton process was investigated under optimum conditions (pH 3.0, FeSO(4).7H(2)O of 20 g l(-1) and H(2)O(2) of 20 ml l(-1)), COD removal of up to 60.8% was achieved. Biodegradability (BOD(5)/COD ratio) increased from 0.18 to 0.38. Thereafter the Fenton effluent was mixed with sewage at dilutions to a ratio of 1:3 before it was subjected to the SBR reactor; under the optimum aeration time of 20 h, up to 82.8% BOD(5) removal and 83.1% COD removal were achieved. The optimum coagulant (Fe(2)(SO(4))(3)) was a dosage of 800 mg l(-1) at pH of 5.0, which reduced COD to an amount of 280 mg l(-1). These combined processes were successfully employed and very effectively decreased pollutant loading. Crown Copyright 2010. Published by Elsevier B.V. All rights reserved.

  4. 40 CFR 417.156 - Pretreatment standards for new sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... be no discharge of waste water streams in which both the COD/BOD7 ratio exceeds 10.0 and the COD... when a high rate of wet scrubbing is in operation which produces more waste water than can be recycled... No limitations. COD Do. TSS Do. Surfactants Do. Oil and grease Do. pH Do. (3) For fast turnaround...

  5. Evaluation of Fenton and ozone-based advanced oxidation processes as mature landfill leachate pre-treatments.

    PubMed

    Cortez, Susana; Teixeira, Pilar; Oliveira, Rosário; Mota, Manuel

    2011-03-01

    Fenton treatment (Fe(2+)/H(2)O(2)) and different ozone-based Advanced Oxidation Processes (AOPs) (O(3), O(3)/OH(-) and O(3)/H(2)O(2)) were evaluated as pre-treatment of a mature landfill leachate, in order to improve the biodegradability of its recalcitrant organic matter for subsequent biological treatment. With a two-fold diluted leachate, at optimised experimental conditions (initial pH 3, H(2)O(2) to Fe(2+) molar ratio of 3, Fe(2+) dosage of 4 mmol L(-1), and reaction time of 40 min) Fenton treatment removed about 46% of chemical oxygen demand (COD) and increased the five-day biochemical oxygen demand (BOD(5)) to COD ratio (BOD(5)/COD) from 0.01 to 0.15. The highest removal efficiency and biodegradability was achieved by ozone at higher pH values, solely or combined with H(2)O(2). These results confirm the enhanced production of hydroxyl radical under such conditions. After the application for 60 min of ozone at 5.6 g O(3)h(-1), initial pH 7, and 400 mg L(-1) of hydrogen peroxide, COD removal efficiency was 72% and BOD(5)/COD increased from 0.01 to 0.24. An estimation of the operating costs of the AOPs processes investigated revealed that Fe(2+)/H(2)O(2) was the most economical system (8.2 € m(-3)g(-1) of COD removed) to treat the landfill leachate. This economic study, however, should be treated with caution since it does not consider the initial investment, prices at plant scale, maintenance and labour costs. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. The effect of landfill age on municipal leachate composition.

    PubMed

    Kulikowska, Dorota; Klimiuk, Ewa

    2008-09-01

    The influence of municipal landfill age on temporal changes in municipal leachate quality on the basis of elaboration of 4 years monitoring of leachate from landfill in Wysieka near Bartoszyce (Poland) is presented in this study. In leachate, concentrations of organic compounds (COD, BOD(5)), nutrients (nitrogen, phosphorus), mineral compounds, heavy metals and BTEX were investigated. It was shown that the principal pollutants in leachate were organics and ammonia - as landfill age increased, organics concentration (COD) in leachate decreased from 1,800 mg COD/l in the second year of landfill exploitation to 610 mg COD/l in the sixth year of exploitation and increase of ammonia nitrogen concentration from 98 mg N(NH)/l to 364 mg N(NH4) /l was observed. Fluctuation of other indexes (phosphorus, chlorides, calcium, magnesium, sulfate, dissolved solids, heavy metals, BTEX) depended rather on season of the year (seasonal variations) than landfill age. Moreover, the obtained data indicate that despite of short landfill's lifetime some parameters e.g. high pH (on average 7.84), low COD concentration (<2,000 mg COD/l), low BOD(5)/COD ratio (<0.4) and low heavy metal concentration, indicated that the landfill was characterized by methanogenic conditions already at the beginning of the monitoring period.

  7. Effects of three types of oil dispersants on biodegradation of dispersed crude oil in water surrounding two Persian gulf provinces.

    PubMed

    Zolfaghari-Baghbaderani, Azadeh; Emtyazjoo, Mozhgan; Poursafa, Parinaz; Mehrabian, Sedigheh; Bijani, Samira; Farkhani, Daryoush; Mirmoghtadaee, Parisa

    2012-01-01

    To determine the most effective and biodegradable dispersant of spilled oil in water surrounding two Persian Gulf provinces. This study compared the effects of three dispersants, Pars 1, Pars 2, and Gamlen OD4000 on removal of oil in two Persian Gulf provinces' water. Overall, 16 stations were selected. Using the Well method, the growth rate of isolated bacteria and fungi was identified. To specify the growth rate of microorganisms and their usage of oil in the presence of the above-mentioned dispersants, as exclusive sources of carbon, the bacteria were grown in culture medium for 28 days at 120 rpm, 30°C, and their optical density was measured by spectrophotometry. Then, we tested biological oxygen demand (BOD) and chemical oxygen demand (COD) in microorganisms. The highest growth rate was documented for the growth of microorganisms on either Pars 1 or Pars 2 dispersants or their mixtures with oil. However, the culture having microorganisms grown on Pars 1 had higher BOD and COD than the other two dispersants (9200 and 16800 versus 500 and 960, P < 0.05). Mixture of oil and Pars 2 as well as oil and Pars 1 dispersants showed the highest BODs and CODs, respectively. In the Bahregan province, microorganisms grown on Pars 2 had maximum amount of BOD and COD in comparison with Pars 1 and Gamlen dispersants (7100 and 15200 versus 6000 and 10560, P < 0.05). Pars 1 and Pars 2 were the most effective dispersants with highest degradability comparing Gamlen. In each region, the most suitable compound for removing oil spill from offshores with least secondary contamination should be investigated.

  8. Biodegradation of biodiesel fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, X.; Haws, R.; Wright, B.

    1995-12-31

    Biodiesel fuel test substances Rape Ethyl Ester (REE), Rape Methyl Ester (RME), Neat Rape Oil (NR), Say Methyl Ester (SME), Soy Ethyl Ester (SEE), Neat Soy Oil (NS), and proportionate combinations of RME/diesel and REE/diesel were studied to test the biodegradability of the test substances in an aerobic aquatic environment using the EPA 560/6-82-003 Shake Flask Test Method. A concurrent analysis of Phillips D-2 Reference Diesel was also performed for comparison with a conventional fuel. The highest rates of percent CO{sub 2} evolution were seen in the esterified fuels, although no significant difference was noted between them. Ranges of percentmore » CO{sub 2} evolution for esterified fuels were from 77% to 91%. The neat rape and neat soy oils exhibited 70% to 78% CO{sub 2} evolution. These rates were all significantly higher than those of the Phillips D-2 reference fuel which evolved from 7% to 26% of the organic carbon to CO{sub 2}. The test substances were examined for BOD{sub 5} and COD values as a relative measure of biodegradability. Water Accommodated Fraction (WAF) was experimentally derived and BOD{sub 5} and COD analyses were carried out with a diluted concentration at or below the WAF. The results of analysis at WAF were then converted to pure substance values. The pure substance BOD{sub 5} and COD values for test substances were then compared to a control substance, Phillips D-2 Reference fuel. No significant difference was noted for COD values between test substances and the control fuel. (p > 0.20). The D-2 control substance was significantly lower than all test substances for BCD, values at p << 0.01. RME was also significantly lower than REE (p < 0.05) and MS (p < 0.01) for BOD{sub 5} value.« less

  9. Effects of Three Types of Oil Dispersants on Biodegradation of Dispersed Crude Oil in Water Surrounding Two Persian Gulf Provinces

    PubMed Central

    Zolfaghari-Baghbaderani, Azadeh; Emtyazjoo, Mozhgan; Poursafa, Parinaz; Mehrabian, Sedigheh; Bijani, Samira; Farkhani, Daryoush; Mirmoghtadaee, Parisa

    2012-01-01

    Objective. To determine the most effective and biodegradable dispersant of spilled oil in water surrounding two Persian Gulf provinces. Methods. This study compared the effects of three dispersants, Pars 1, Pars 2, and Gamlen OD4000 on removal of oil in two Persian Gulf provinces' water. Overall, 16 stations were selected. Using the Well method, the growth rate of isolated bacteria and fungi was identified. To specify the growth rate of microorganisms and their usage of oil in the presence of the above-mentioned dispersants, as exclusive sources of carbon, the bacteria were grown in culture medium for 28 days at 120 rpm, 30°C, and their optical density was measured by spectrophotometry. Then, we tested biological oxygen demand (BOD) and chemical oxygen demand (COD) in microorganisms. Results. The highest growth rate was documented for the growth of microorganisms on either Pars 1 or Pars 2 dispersants or their mixtures with oil. However, the culture having microorganisms grown on Pars 1 had higher BOD and COD than the other two dispersants (9200 and 16800 versus 500 and 960, P < 0.05). Mixture of oil and Pars 2 as well as oil and Pars 1 dispersants showed the highest BODs and CODs, respectively. In the Bahregan province, microorganisms grown on Pars 2 had maximum amount of BOD and COD in comparison with Pars 1 and Gamlen dispersants (7100 and 15200 versus 6000 and 10560, P < 0.05). Conclusion. Pars 1 and Pars 2 were the most effective dispersants with highest degradability comparing Gamlen. In each region, the most suitable compound for removing oil spill from offshores with least secondary contamination should be investigated. PMID:22363352

  10. Use of advanced oxidation processes to improve the biodegradability of mature landfill leachates.

    PubMed

    de Morais, Josmaria Lopes; Zamora, Patricio Peralta

    2005-08-31

    Two advanced oxidative processes (Fe2+/H2O2/UV and H2O2/UV systems) were used for the pre-treatment of mature landfill leachate with the objective of improving its overall biodegradability, evaluated in terms of BOD5/COD ratio, up to a value compatible with biological treatment. At optimized experimental conditions (2000 mgL(-1) of H2O2 and 10 mgL(-1) of Fe2+ for the photo-Fenton system, and 3000 mgL(-1) of H2O2 for the H2O2/UV system), both methods showed suitability for partial removal of chemical oxygen demand (COD), total organic carbon (TOC) and color. The biodegradability was significantly improved (BOD5/COD from 0.13 to 0.37 or 0.42) which allowed an almost total removal of COD and color by a sequential activated sludge process. In addition, gel permeation chromatography (GPC) has showed a substantial agreement on the cleavage of large organic compound into smaller ones.

  11. Fermentation pre-treatment of landfill leachate for enhanced electron recovery in a microbial electrolysis cell.

    PubMed

    Mahmoud, Mohamed; Parameswaran, Prathap; Torres, César I; Rittmann, Bruce E

    2014-01-01

    Pre-fermentation of poorly biodegradable landfill leachate (BOD5/COD ratio of 0.32) was evaluated for enhanced current density (j), Coulombic efficiency (CE), Coulombic recovery (CR), and removal of organics (BOD5 and COD) in a microbial electrolysis cell (MEC). During fermentation, the complex organic matter in the leachate was transformed to simple volatile fatty acids, particularly succinate and acetate in batch tests, but mostly acetate in semi-continuous fermentation. Carbohydrate had the highest degree of fermentation, followed by protein and lipids. j, CE, CR, and BOD5 removal were much greater for an MEC fed with fermented leachate (23 A/m(3) or 16 mA/m(2), 68%, 17.3%, and 83%, respectively) compared to raw leachate (2.5 A/m(3) or 1.7 mA/m(2), 56%, 2.1%, and 5.6%, respectively). All differences support the value of pre-fermentation before an MEC for stabilization of BOD5 and enhanced electron recovery as current when treating a recalcitrant wastewater like landfill leachate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Effect of organic nitrogen concentration on the efficiency of trickling filters

    NASA Astrophysics Data System (ADS)

    Kopeć, Łukasz; Drewnowski, Jakub; Fernandez-Morales, F. J.

    2018-02-01

    The study was conducted in Poland at six selected wastewater treatment plants (WWTP) based on the trickling filters Bioclere® technology. The aim of the study was to find the relationship between the influent organic nitrogen concentration and the purification efficiency expressed as effluent COD concentration. In the tests performed, the COD to BOD5 relationship was close to 2 and the ratio of BOD5 to TN was lower than 4. The research indicated that this specific chemical composition of raw wastewater causes appearance of filamentous bacteria on the surface of trickling filter filling and strongly affect the effluent quality.

  13. Effect of sugar factory effluent on some physico-chemical properties of soils--a case study.

    PubMed

    Roy, Ratna P; Prasad, Jagdish; Joshi, A P

    2007-10-01

    The effect of irrigation by sugar factory effluent (spentwash) and the well water from adjoining area has been studied in Wardha district, Maharashtra. The effluent had high TDS (422-608 mgL(-1)), COD (1152-17680 mgL(-1)) and BOD(380-650 mgL(-1)) than well water (TDS 240 mgL(-1), COD 3.8 mgL(-1) and BOD 1.2 mgL(-1)). There found some nutrients, viz. N, P, K, Zn, Cu, Fe, Mn in surface layer of soil in different seasons. Heavy metals (Cd, Co, Cr, Ni, Pb) were found to be within the permissible limits.

  14. Using ozone to reduce recalcitrant compounds and to enhance biodegradability of pulp and paper effluents.

    PubMed

    Bijan, L; Mohseni, M

    2004-01-01

    The effect of ozone based oxidation on removing recalcitrant organic matter (ROM) and enhancing the biodegradability of alkaline bleach plant effluent was investigated. A bubble column ozonation tower was used in the study. The experiments were carried out at different temperatures (20 degrees C and 60 degrees C) and pH (9 and 11), with a number of biological and chemical parameters being monitored including BOD5, COD, TC, pH, color, and molecular weight distribution of organics (nominal cut off of 1,000 Da). Biodegradability of the effluent was determined based on BOD5/COD of the wastewater throughout the process. For all the experiments, ozonation enhanced the biodegradability of the effluent by 30-40%, which was associated with noticeable removal of ROM including high molecular weight (HMW) and color-causing organics by about 30% and 60%, respectively. While the biodegradability of HMW fraction increased by about 50%, there was no biodegradability improvement for low molecular weight (LMW) portion, which was originally readily biodegradable (with BOD5/COD of about 0.5). Statistical analysis of variance (ANOVA) revealed neither pH nor temperature played significant role on the ozonation process at 95% confidence level.

  15. The effectiveness of coagulation for water reclamation from a wastewater treatment plant that has a long hydraulic and sludge retention times: A case study.

    PubMed

    Cui, Xiaochun; Zhou, Dandan; Fan, Wei; Huo, Mingxin; Crittenden, John C; Yu, Zhisen; Ju, Pengfei; Wang, Yang

    2016-08-01

    Coagulation is a feasible process to reclaim municipal wastewater, however, the role of coagulation in removing effluent organic matter (EfOM) from underutilized wastewater treatment plants (WWTPs) has not been fully explored. We identified the characteristics of the EfOM from a typical underutilized WWTP (i.e., the ratio of actual capacity to design capacity is 50%-70%), and investigated the performance of coagulation on suspended solids (SS) and dissolved organic matter (DOM) removal. The effluent could even satisfy the highest national standard of China (Class 1 A) for WWTP effluent, as evaluated by the traditional parameters such as SS and chemical oxygen demand (COD). However, the DOM in the EfOM we studied contained considerable biomass-associated products (BAPs), which were dominated by proteins with a molecular weight of approximately 150 kDa. In addition, protein also dominated the DOM after coagulation. Fulvic acid and humic-like acid organics were poorly removed by either AlCl3 or polyaluminum chloride (PAC) coagulation, even with a dosage as high as 24 mg Al L(-1). Biodegradability was very poor, as the ratio of biological oxygen demand (BOD5) to COD was less than 0.17. After coagulation the typical BAPs, protein and polysaccharide, remained as high as 1.6 mg L(-1) and 1.2 mg L(-1) respectively. In this study we found coagulation was ineffective for removal of recalcitrant BAPs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Performance of a commercial industrial-scale UF-based process for treatment of oily wastewaters.

    PubMed

    Karhu, M; Kuokkanen, T; Rämö, J; Mikola, M; Tanskanen, J

    2013-10-15

    An evaluation was made of the performance of a commercial industrial-scale ultrafiltration (UF)-based process for treatment of highly concentrated oily wastewaters. Wastewater samples were gathered from two plants treating industrial wastewaters in 2008, and in 2011 (only from one of the plants), from three points of a UF-based treatment train. The wastewater samples were analyzed by measuring the BOD7, COD, TOC and total surface charge (TSC). The inorganic content and zeta potentials of the samples were analyzed and GC-FID/MS analyses were performed. The removal performances of BOD7, COD, TOC and TSC in 2008 and 2011 for both plants were very high. Initial concentrations of contaminants in 2011 were lower than in 2008, therefore the COD and TSC reductions were also lower in 2011 than three years before. Regardless of the high performance of UF-based processes in both plants, at times the residual concentrations were considerable. This could be explained by the high initial concentrations and also by the presence of the dissolved compounds that were characterized. Linear correlation was observed between COD and TOC, and between COD and TSC. The correlation between COD and TSC could be utilized for process control purposes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Treatment of automotive industry oily wastewater by electrocoagulation: statistical optimization of the operational parameters.

    PubMed

    GilPavas, Edison; Molina-Tirado, Kevin; Gómez-García, Miguel Angel

    2009-01-01

    An electrocoagulation process was used for the treatment of oily wastewater generated from an automotive industry in Medellín (Colombia). An electrochemical cell consisting of four parallel electrodes (Fe and Al) in bipolar configuration was implemented. A multifactorial experimental design was used for evaluating the influence of several parameters including: type and arrangement of electrodes, pH, and current density. Oil and grease removal was defined as the response variable for the statistical analysis. Additionally, the BOD(5), COD, and TOC were monitored during the treatment process. According to the results, at the optimum parameter values (current density = 4.3 mA/cm(2), distance between electrodes = 1.5 cm, Fe as anode, and pH = 12) it was possible to reach a c.a. 95% oils removal, COD and mineralization of 87.4% and 70.6%, respectively. A final biodegradability (BOD(5)/COD) of 0.54 was reached.

  18. Cost-effective treatment solutions for rural areas: design and operation of a new package treatment plant for single households.

    PubMed

    Daude, D; Stephenson, T

    2003-01-01

    The design approach and operation of a newly developed package plant treating domestic sewage from single households were evaluated. Combining submerged aerated filter (SAF) technology with jet aeration and incorporating both into a compact and shallow tank resulted in a cost-effective treatment solution. A trial unit was permanently installed at a rural site, serving a single household. Jet aeration proved to be the best aeration method for the shallow bioreactor design. Further trials revealed a 50% reduction in suspended solids (SS) through the use of a static effluent filter and found that annual plant maintenance was vital to sustain stable operating conditions. Despite high variations in influent conditions, the trial unit produced good effluent quality during steady-state operation. Average effluent BOD5, COD and SS values were 19.6 mg l(-1), 98 mg l(-1) and 32 mg l(-1) achieving overall removal efficiencies of 94.2%, 85.9% and 87.6% respectively. However, effluent ammonia nitrogen (NH4-N) levels were found to be inconsistent varying from 9 mg l(-1) to over 60 mg l(-1).

  19. Impact of wastewater from the rural commune of Jmaa Moulblad on the physico-chemical quality of the waters of the Grou River (Rabat region, Morocco)

    NASA Astrophysics Data System (ADS)

    Arifi, Karim; Tahri, Latifa; El Abid, Abdallah; Hefiane, Fatima Zahra; Elblidi, Souad; Yahyaoui, Ahmed; Fekhaoui, Mohammed

    2018-05-01

    The Grou River is one of the main rivers that feed the reservoir of the Sidi Mohammed Ben Abdellah (SMBA) dam in Morocco. However, this river is particularly threatened by the pollution problem. It is in this context that this study aims to study the effect of wastewater from the rural commune of Jmaa Moulblad on the physicochemical quality of the waters of this river. We analyzed 11 physicochemical parameters (T° of area, T° of water, pH, EC, mV, Sal, TDS, BOD, COD, SS and TOC), with a monthly frequency since the month of December 2014 until November 2015. The results obtained show a worrying situation of the state of this watercourse. To remedy this problem, we recommend pre-treatment of wastewater before discharge and the implementation of a management plan and sustainable management of the Grou River watershed.

  20. Pretreatment of bakery wastewater by coagulation-flocculation and dissolved air flotation.

    PubMed

    Liu, J C; Lien, C S

    2001-01-01

    The pretreatment of wastewater from a large-scale bakery was studied. In the coagulation-flocculation reaction, it was found that both alum and FeCl3 were effective in the jar tests. When at coagulant dosage of 90 to 100 mg/l, 55% of COD and 95 to 100% of SS could be removed. The optimum pH was at 6.0. In addition, the removal of SS was affected by pH more significantly, while the removal of COD was not affected in the pH range of 6.0 to 8.0. In the DAF experiments, 48.6% of COD and 69.8% of SS were removed in 10 min at a pressure of 4 kg/cm2, recycle ratio of 0.3 l/min, and pH of 6.0. Upon the addition of 100 mg/l of alum, the removal efficiency of COD did not increase while SS removal increased to 82.1%. It was found that 5-min flocculation time did improve the COD removal while it had little effect on SS removal. Flocculation for longer than 5 min did not enhance the flotation performance. Similar phenomena were observed when FeCl3 was used as the coagulant, except that flocculation had an insignificant effect on COD and SS removal. It was also found that FeCl3 was relatively more effective than alum. In summary, both coagulation-flocculation and DAF were efficient for the pretreatment. The advantages and disadvantages were discussed.

  1. Characterization and anaerobic treatment of the sanitary landfill leachate in Istanbul.

    PubMed

    Inanc, B; Calli, B; Saatci, A

    2000-01-01

    In this study, characterization and anaerobic treatability of leachate from Komurcuoda Sanitary Landfill located on the Asian part of Istanbul were investigated. Time based fluctuations in characteristics of leachate were monitored for an 8 month period. Samples were taken from a 200 m3 holding tank located at the lowest elevation of the landfill. COD concentrations have ranged between 18,800 and 47,800 mg/l while BOD5 between 6820 and 38,500 mg/L. COD and BOD5 values were higher in summer and lower in winter due to dilution by precipitation. On the other hand, it was quite interesting that such a dilution effect was not observed for ammonia. The highest ammonia concentration, 2690 mg/L was in November 1998. BOD5/COD ratio was larger than 0.7 for most samples indicating high biodegradability, and acidic phase of decomposition in the landfill. For anaerobic treatability, three different reactors, namely an upflow anaerobic sludge bed reactor, an anaerobic upflow filter and a hybrid bed reactor, were used. The anaerobic reactors were operated for more than 230 days and were continuing operation when this paper was prepared. Organic loading was increased gradually from 1.3 kg COD/m3.day to 8.2 kg COD/m3.day while hydraulic retention time was reduced from 2.4 days to 2.0 days. All the reactors showed similar performances against organic loadings with efficiencies between 80% and 90%. However the reactors have experienced high ammonia concentrations several times throughout the experimental period, and showed different inhibition levels. Anaerobic filter was the least affected reactor while UASB was the most. Hybrid bed reactor has exhibited a similar performance to anaerobic filter although not to the same degree.

  2. 40 CFR 417.175 - Standards of performance for new sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... COD 0.14 .07 TSS 0.02 .01 Surfactants 0.02 .01 Oil and grease 0.01 .05 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.02 0.01 COD 0.14 .07 TSS 0.02 .01 Surfactants 0.02 .01...

  3. 40 CFR 417.145 - Standards of performance for new sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... COD 0.08 .04 TSS 0.06 .03 Surfactants 0.04 .02 Oil and grease 0.02 .01 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.02 0.01 COD 0.08 .04 TSS 0.06 .03 Surfactants 0.04 .02...

  4. 40 CFR 417.185 - Standards of performance for new sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... COD 0.10 .05 TSS 0.02 .01 Surfactants 0.02 .01 Oil and grease 0.02 .01 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.02 0.01 COD 0.10 .05 TSS 0.02 .01 Surfactants 0.02 .01...

  5. 40 CFR 417.145 - Standards of performance for new sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... COD 0.08 .04 TSS 0.06 .03 Surfactants 0.04 .02 Oil and grease 0.02 .01 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.02 0.01 COD 0.08 .04 TSS 0.06 .03 Surfactants 0.04 .02...

  6. 40 CFR 417.195 - Standards of performance for new sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... COD 2.70 1.35 TSS 0.20 .10 Surfactants 0.40 .20 Oil and grease 0.04 .02 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.60 0.30 COD 2.70 1.35 TSS 0.20 .10 Surfactants 0.40 .20...

  7. 40 CFR 417.185 - Standards of performance for new sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... COD 0.10 .05 TSS 0.02 .01 Surfactants 0.02 .01 Oil and grease 0.02 .01 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.02 0.01 COD 0.10 .05 TSS 0.02 .01 Surfactants 0.02 .01...

  8. 40 CFR 417.175 - Standards of performance for new sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... COD 0.14 .07 TSS 0.02 .01 Surfactants 0.02 .01 Oil and grease 0.01 .05 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.02 0.01 COD 0.14 .07 TSS 0.02 .01 Surfactants 0.02 .01...

  9. 40 CFR 417.195 - Standards of performance for new sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... COD 2.70 1.35 TSS 0.20 .10 Surfactants 0.40 .20 Oil and grease 0.04 .02 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.60 0.30 COD 2.70 1.35 TSS 0.20 .10 Surfactants 0.40 .20...

  10. 40 CFR 417.175 - Standards of performance for new sources.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... COD 0.14 .07 TSS 0.02 .01 Surfactants 0.02 .01 Oil and grease 0.01 .05 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.02 0.01 COD 0.14 .07 TSS 0.02 .01 Surfactants 0.02 .01...

  11. 40 CFR 417.185 - Standards of performance for new sources.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... COD 0.10 .05 TSS 0.02 .01 Surfactants 0.02 .01 Oil and grease 0.02 .01 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.02 0.01 COD 0.10 .05 TSS 0.02 .01 Surfactants 0.02 .01...

  12. 40 CFR 417.195 - Standards of performance for new sources.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... COD 2.70 1.35 TSS 0.20 .10 Surfactants 0.40 .20 Oil and grease 0.04 .02 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.60 0.30 COD 2.70 1.35 TSS 0.20 .10 Surfactants 0.40 .20...

  13. 40 CFR 417.175 - Standards of performance for new sources.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... COD 0.14 .07 TSS 0.02 .01 Surfactants 0.02 .01 Oil and grease 0.01 .05 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.02 0.01 COD 0.14 .07 TSS 0.02 .01 Surfactants 0.02 .01...

  14. 40 CFR 417.145 - Standards of performance for new sources.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... COD 0.08 .04 TSS 0.06 .03 Surfactants 0.04 .02 Oil and grease 0.02 .01 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.02 0.01 COD 0.08 .04 TSS 0.06 .03 Surfactants 0.04 .02...

  15. 40 CFR 417.175 - Standards of performance for new sources.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... COD 0.14 .07 TSS 0.02 .01 Surfactants 0.02 .01 Oil and grease 0.01 .05 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.02 0.01 COD 0.14 .07 TSS 0.02 .01 Surfactants 0.02 .01...

  16. 40 CFR 417.195 - Standards of performance for new sources.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... COD 2.70 1.35 TSS 0.20 .10 Surfactants 0.40 .20 Oil and grease 0.04 .02 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.60 0.30 COD 2.70 1.35 TSS 0.20 .10 Surfactants 0.40 .20...

  17. 40 CFR 417.195 - Standards of performance for new sources.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... COD 2.70 1.35 TSS 0.20 .10 Surfactants 0.40 .20 Oil and grease 0.04 .02 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.60 0.30 COD 2.70 1.35 TSS 0.20 .10 Surfactants 0.40 .20...

  18. 40 CFR 417.135 - Standards of performance for new sources.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... COD 1.50 .75 TSS 0.04 .02 Surfactants 0.30 .15 Oil and grease 0.06 .03 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.30 0.15 COD 1.50 .75 TSS 0.04 .02 Surfactants 0.30 .15...

  19. 40 CFR 417.145 - Standards of performance for new sources.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... COD 0.08 .04 TSS 0.06 .03 Surfactants 0.04 .02 Oil and grease 0.02 .01 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.02 0.01 COD 0.08 .04 TSS 0.06 .03 Surfactants 0.04 .02...

  20. 40 CFR 417.145 - Standards of performance for new sources.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... COD 0.08 .04 TSS 0.06 .03 Surfactants 0.04 .02 Oil and grease 0.02 .01 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.02 0.01 COD 0.08 .04 TSS 0.06 .03 Surfactants 0.04 .02...

  1. 40 CFR 417.185 - Standards of performance for new sources.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... COD 0.10 .05 TSS 0.02 .01 Surfactants 0.02 .01 Oil and grease 0.02 .01 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.02 0.01 COD 0.10 .05 TSS 0.02 .01 Surfactants 0.02 .01...

  2. 40 CFR 417.185 - Standards of performance for new sources.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... COD 0.10 .05 TSS 0.02 .01 Surfactants 0.02 .01 Oil and grease 0.02 .01 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.02 0.01 COD 0.10 .05 TSS 0.02 .01 Surfactants 0.02 .01...

  3. 40 CFR 439.12 - Effluent limitations attainable by the application of the best practicable control technology...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... percent reduction in the long-term average daily BOD5 load of the raw (untreated) process wastewater, multiplied by a variability factor of 3.0. (1) The long-term average daily BOD5 load of the raw process... concentration value reflecting a reduction in the long-term average daily COD load in the raw (untreated...

  4. 40 CFR 439.12 - Effluent limitations attainable by the application of the best practicable control technology...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... percent reduction in the long-term average daily BOD5 load of the raw (untreated) process wastewater, multiplied by a variability factor of 3.0. (1) The long-term average daily BOD5 load of the raw process... concentration value reflecting a reduction in the long-term average daily COD load in the raw (untreated...

  5. Destroying chemical wastes in commercial-scale incinerators. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, J.W.; Cunningham, N.J.; Harris, J.C.

    1976-12-01

    Tests were conducted at Zimpro, Inc., Rothschild, Wisconsin, to determine the effectiveness of wet air oxidation for destruction of two selected aqueous industrial wastes: coke plant waste and Amiben (herbicide) manufacturing waste. A pilot scale facility was tested for the coke plant waste with less than 6g/1 total solids and 5.5 g/1 Biological Oxygen Demand (BOD5), chemical compounds such as cyanides, phenols and cresols were 99% destroyed; BOD5 and Chemical Oxygen Demand (COD) were reduced by about 90%. The concentration of quinoline was reduced by only 66%. Estimated costs for treating 2,120 cu m/day of coke waste were: $12.3 MMmore » capital investment and $9.90/cu m total operating cost. For the Amiben waste, with 55 g/1 total solids and 31 g/1 BOD5, the test showed greater than 99% destruction of the major organic waste components, dichloronitrobenzoic acids, with about 10% conversion to an intermediate degradation product, dichloronitrobenzene. The BOD5 and COD were reduced by 90% and 82%, respectively. Estimated costs for treating 151 cu m/day of Amiben waste were: $2.2 MM capital investment and $18.00/cu m total operating cost.« less

  6. Phytoremediation of palm oil mill secondary effluent (POMSE) by Chrysopogon zizanioides (L.) using artificial neural networks.

    PubMed

    Darajeh, Negisa; Idris, Azni; Fard Masoumi, Hamid Reza; Nourani, Abolfazl; Truong, Paul; Rezania, Shahabaldin

    2017-05-04

    Artificial neural networks (ANNs) have been widely used to solve the problems because of their reliable, robust, and salient characteristics in capturing the nonlinear relationships between variables in complex systems. In this study, ANN was applied for modeling of Chemical Oxygen Demand (COD) and biodegradable organic matter (BOD) removal from palm oil mill secondary effluent (POMSE) by vetiver system. The independent variable, including POMSE concentration, vetiver slips density, and removal time, has been considered as input parameters to optimize the network, while the removal percentage of COD and BOD were selected as output. To determine the number of hidden layer nodes, the root mean squared error of testing set was minimized, and the topologies of the algorithms were compared by coefficient of determination and absolute average deviation. The comparison indicated that the quick propagation (QP) algorithm had minimum root mean squared error and absolute average deviation, and maximum coefficient of determination. The importance values of the variables was included vetiver slips density with 42.41%, time with 29.8%, and the POMSE concentration with 27.79%, which showed none of them, is negligible. Results show that the ANN has great potential ability in prediction of COD and BOD removal from POMSE with residual standard error (RSE) of less than 0.45%.

  7. Lipid production from tapioca wastewater by culture of Scenedesmus sp. with simultaneous BOD, COD and nitrogen removal

    NASA Astrophysics Data System (ADS)

    Romaidi; Hasanudin, Muhammad; Kholifah, Khusnul; Maulidiyah, Alik; Putro, Sapto P.; Kikuchi, Akira; Sakaguchi, Toshifumi

    2018-05-01

    The use of microalgae to produce biodiesel or possibly remove nutrients from industrial wastewater has gained important attention during recent years due to their photosynthetic rate and its versatile nature to grow in various wastewater systems. In this study, a microalgae, Scenedesmus sp., was cultured to enhance the lipid production and nutrients removal from tapioca wastewater sample. To assess lipid production, Scenedesmus sp. was cultured in different concentration of tapioca wastewater sample (from 0 to 100 %), and nutrient removal including BOD, COD, NH4, NO2, NO3 level by Scenedesmus sp. was assessed in 100% of tapioca wastewater culture. After 8 days of culture, it was found out that 50% of tapioca wastewater sample resulted in highest concentration of lipid content than that of the other concentrations. The level of environment indicator as nutrient removal such as BOD, COD, NH4, NO2, NO3 were also decreased up to 74%, 72%, 95%, 91%, and 91%, respectively. The pH condition changed from initial condition acidic (pH: 4) to neutral or basic condition (pH: 7-8) as recommended in wastewater treatment system. This research provided a novel approach and achieved efficient simultaneous lipid production and nutrients removal from tapioca wastewater sample by Scenedesmus’s culture system.

  8. Treatment of pulp and paper industry bleaching effluent by electrocoagulant process.

    PubMed

    Sridhar, R; Sivakumar, V; Prince Immanuel, V; Prakash Maran, J

    2011-02-28

    The experiments were carried out in an electrocoagulation reactor with aluminum as sacrificial electrodes. The influence of electrolysis time, current density, pH, NaCl concentration, rotational speed of the stirrer and electrode distance on reduction of color, COD and BOD were studied in detail. From the experimental results, 15 mA/cm(2) current density, pH of 7, 1 g/l NaCl, 100 rpm, 28°C temperature and 3 cm electrode distance were found to be optimum for maximum reduction of color, COD and BOD. The reduction of color, COD and BOD under the optimum condition were found to be 94%, 90% and 87% respectively. The electrode energy consumption was calculated and found to be varied from 10.1 to 12.9 kWh/m(3) depending on the operating conditions. Under optimal operating condition such as 15 mA/cm(2) current density, pH of 7, 1 g/l NaCl, 100 rpm, 28°C temperature and 3 cm electrode distance, the operating cost was found to be 1.56 US $/m(3). The experimental results proved that the electrocoagulation is a suitable method for treating bleaching plant effluents for reuse. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Organic matter degradation in a greywater recycling system using a multistage moving bed biofilm reactor (MBBR).

    PubMed

    Saidi, Assia; Masmoudi, Khaoula; Nolde, Erwin; El Amrani, Btissam; Amraoui, Fouad

    2017-12-01

    Greywater is an important non-conventional water resource which can be treated and recycled in buildings. A decentralized greywater recycling system for 223 inhabitants started operating in 2006 in Berlin, Germany. High load greywater undergoes advanced treatment in a multistage moving bed biofilm reactor (MBBR) followed by sand filtration and UV disinfection. The treated water is used safely as service water for toilet flushing. Monitoring of the organic matter degradation was pursued to describe the degradation processes in each stage and optimize the system. Results showed that organic matter reduction was achieved for the most part in the first three reactors, whereas the highest reduction rate was observed in the third reactor in terms of COD (chemical oxygen demand), dissolved organic carbon and BOD 7 (biological oxygen demand). The results also showed that the average loading rate entering the system was 3.7 kg COD/d, while the removal rate was 3.4 kg COD/d in a total bioreactor volume of 11.7 m³. In terms of BOD, the loading rate was 2.8 kg BOD/d and it was almost totally removed. This system requires little space (0.15 m²/person) and maintenance work of less than one hour per month and it shows operational stability under peak loads.

  10. Adsorption studies on the removal of COD and BOD from treated sewage using activated carbon prepared from date palm waste.

    PubMed

    Nayl, Abd ElAziz A; Elkhashab, Reda A; El Malah, Tamer; Yakout, Sobhy M; El-Khateeb, Mohamed A; Ali, Mahmoud M S; Ali, Hazim M

    2017-10-01

    In this work, the adsorption of chemical oxygen demand (COD) and biological oxygen demand (BOD) from treated sewage with low-cost activated carbon prepared from date palm shell waste by chemical activation method was studied. Different parameters affecting the adsorption process such as carbon dose, pH, contact time, agitation rate, and temperature were studied. Adsorption equilibrium was attained after 150 min at pH 6.0 with agitation rate of 400 rpm at 25 °C. The results showed that COD removal percentage of 95.4 and 92.8% for BOD was obtained with carbon dosage of 0.1 g/100 ml of solution. The experimental batch equilibrium results follow linear, Langmuir, and Freundlich isotherm models. The experimental data was fitted to a pseudo-second-order kinetics model controlled by pore diffusion. Thermodynamic parameter values of ΔH 0 , ΔG 0 , and ΔS 0 were calculated. The obtained data indicated that the adsorption was spontaneous, endothermic nature and reflects an increased randomness and degree of disorderliness at the activated carbon/sewage interface during the adsorption process investigated in this study. Concentrations of different impurities were reduced to very small value by investigated adsorption process.

  11. Non-thermal plasma for air and water remediation.

    PubMed

    Hashim, Siti Aiasah; Samsudin, Farah Nadia Dayana Binti; Wong, Chiow San; Abu Bakar, Khomsaton; Yap, Seong Ling; Mohd Zin, Mohd Faiz

    2016-09-01

    A modular typed dielectric barrier discharge (DBD) device is designed and tested for air and water remediation. The module is made of a number of DBD tubes that can be arranged in series or parallel. Each of the DBD tubes comprises inner electrode enclosed with dielectric barrier and arranged as such to provide a gap for the passage of gases. Non-thermal plasma generated in the gap effectively creates gaseous chemical reactions. Its efficacy in the remediation of gas stream containing high NOx, similar to diesel emission and wastewater containing latex, are presented. A six tubes DBD module has successfully removed more than 80% of nitric oxide from the gas stream. In another arrangement, oxygen was fed into a two tubes DBD to generate ozone for treatment of wastewater. Samples of wastewater were collected from a treatment pond of a rubber vulcanization pilot plant. The water pollution load was evaluated by the chemical oxygen demand (COD) and biological oxygen demand (BOD5) values. Preliminary results showed some improvement (about 13%) on the COD after treatment and at the same time had increased the BOD5 by 42%. This results in higher BOD5/COD ratio after ozonation which indicate better biodegradability of the wastewater. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Physico-chemical, microbiological and ecotoxicological evaluation of a septic tank/Fenton reaction combination for the treatment of hospital wastewaters.

    PubMed

    Berto, Josiani; Rochenbach, Gisele Canan; Barreiros, Marco Antonio B; Corrêa, Albertina X R; Peluso-Silva, Sandra; Radetski, Claudemir Marcos

    2009-05-01

    Hospital wastewater is considered a complex mixture populated with pathogenic microorganisms. The genetic constitution of these microorganisms can be changed through the direct and indirect effects of hospital wastewater constituents, leading to the appearance of antibiotic multi-resistant bacteria. To avoid environmental contamination hospital wastewaters must be treated. The objective of this study was to evaluate the efficiency of hospital wastewater treated by a combined process of biological degradation (septic tank) and the Fenton reaction. Thus, after septic tank biodegradation, batch Fenton reaction experiments were performed in a laboratory-scale reactor and the effectiveness of this sequential treatment was evaluated by a physico-chemical/microbiological time-course analysis of COD, BOD(5), and thermotolerant and total coliforms. The results showed that after 120min of Fenton treatment BOD(5) and COD values decreased by 90.6% and 91.0%, respectively. The BOD(5)/COD ratio changed from 0.46 to 0.48 after 120min of treatment. Bacterial removal efficiency reached 100%, while biotests carried out with Scenedesmus subspicatus and Daphnia magna showed a significant decrease in the ecotoxicity of hospital wastewater after the sequential treatment. The use of this combined system would ensure that neither multi-resistant bacteria nor ecotoxic substances are released to the environment through hospital wastewater discharge.

  13. Simultaneously bio treatment of textiles and food industries effluent at difference ratios with the aid of e-beam radiation

    NASA Astrophysics Data System (ADS)

    Bakar, Khomsaton Abu; Selambakkannu, Sarala; Ting, Teo Ming; Shariff, Jamaliah

    2012-09-01

    The combination of irradiation and biological technique was used to study COD, BOD5 and colour removal of textiles effluent in the presence of food industry wastewater at two different ratios. Two biological treatment system, the first consisting a mix of unirradiated textile and food industry wastewater and the second a mix of irradiated textile wastewater and food industry wastewater were operated in parallel. The experiment was conducted by batch. For the first batch the ratio was use for textile wastewater and food industry wastewater in biological treatment was 1:1. Meanwhile, for the second batch the ratio used for textile wastewater and food industry wastewater in biological treatment was 1:2. The results obtained for the first and second batch varies from each other. After irradiation, COD reduce in textile wastewater for the both batches are roughly 29% - 33% from the unirradiated wastewater. But after undergoing the biological treatment the percentage of COD reduction for first batch and second batch was 62.1% and 80.7% respectively. After irradiation the BOD5 of textile wastewater reduced by 22.2% for the first batch and 55.1% for the second batch. But after biological treatment, the BOD5 value for the first batch was same as its initial, 36mg/l and 40.4mg/l for the second batch. Colour had decreased from 899.5 ADMI to 379.3 ADMI after irradiation and decrease to 109.3 after undergoes biological treatment for the first batch. Meantime for the batch two, colour had decreased from 1000.44 ADMI to 363.40 ADMI after irradiation and dropped to 79.20 ADMI after biological treatment. The experiment show that 1:2 ratio show better reduction on COD, BOD5 and colour, compared to the ratio of 1:1.

  14. Development of Water Quality Forecasting Models Based on the SOM-ANN on TMDL Unit Watershed in Nakdong River

    NASA Astrophysics Data System (ADS)

    KIM, M.; Kim, J.; Baek, J.; Kim, C.; Shin, H.

    2013-12-01

    It has being happened as flush flood or red/green tide in various natural phenomena due to climate change and indiscreet development of river or land. Especially, water being very important to man should be protected and managed from water quality pollution, and in water resources management, real-time watershed monitoring system is being operated with the purpose of keeping watch and managing on rivers. It is especially important to monitor and forecast water quality in watershed. A study area selected Nak_K as one site among TMDL unit watershed in Nakdong River. This study is to develop a water quality forecasting model connected with making full use of observed data of 8 day interval from Nakdong River Environment Research Center. When forecasting models for each of the BOD, DO, COD, and chlorophyll-a are established considering correlation of various water quality factors, it is needed to select water quality factors showing highly considerable correlation with each water quality factor which is BOD, DO, COD, and chlorophyll-a. For analyzing the correlation of the factors (reservoir discharge, precipitation, air temperature, DO, BOD, COD, Tw, TN, TP, chlorophyll-a), in this study, self-organizing map was used and cross correlation analysis method was also used for comparing results drawn. Based on the results, each forecasting model for BOD, DO, COD, and chlorophyll-a was developed during the short period as 8, 16, 24, 32 days at 8 day interval. The each forecasting model is based on neural network with back propagation algorithm. That is, the study is connected with self-organizing map for analyzing correlation among various factors and neural network model for forecasting of water quality. It is considerably effective to manage the water quality in plenty of rivers, then, it specially is possible to monitor a variety of accidents in water quality. It will work well to protect water quality and to prevent destruction of the environment becoming more and more serious before occurring.

  15. Anaerobic treatment of blended sugar industry and ethanol distillery wastewater through biphasic high rate reactor.

    PubMed

    Fito, Jemal; Tefera, Nurelegne; Kloos, Helmut; Van Hulle, Stijn W H

    2018-06-07

    This study aimed to investigate the physicochemical properties of sugar industry and ethanol distillery wastewater and the treatment of the blended wastewater through a two-stage anaerobic reactor. For this treatment, different initial chemical oxygen demand (COD) concentrations (5-20 g/L) and hydraulic retention times (HRTs) (2-10 days) were applied. The sugar industry effluent characteristics obtained in terms of organic matter (mg/L) were as follows: 5 days biochemical oxygen demand (BOD 5 ): 654.5-1,968; COD: 1,100-2,148.9; total solids (TS): 2,467-4,012 mg/L; and pH: 6.93-8.43. The ethanol distillery spent wash strengths obtained were: BOD 5 : 27,600-42,921 mg/L; COD: 126,000-167,534 mg/L; TS: 140,160-170,000 mg/L; and pH: 3.9-4.2. Maximum COD removal of 65% was obtained at optimum condition (initial COD concentration of 10 g/L and HRT of 10 days), and maximum color removal of 79% was recorded under similar treatment conditions. Hence, the performance of the two-stage anaerobic reactor for simultaneous removal of COD and color from high-strength blended wastewater is promising for scaling up in order to mitigate environmental problems of untreated effluent discharge.

  16. 40 CFR 417.156 - Pretreatment standards for new sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...: Pollutant or pollutant property Pretreatment standard BOD5 No limitations. COD Do. TSS Do. Surfactants Do... No limitations. COD Do. TSS Do. Surfactants Do. Oil and grease Do. pH Do. (3) For fast turnaround.... Surfactants Do. Oil and grease Do. pH Do. [40 FR 27454, June 30, 1975, as amended at 60 FR 33955, June 29...

  17. 40 CFR 417.156 - Pretreatment standards for new sources.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...: Pollutant or pollutant property Pretreatment standard BOD5 No limitations. COD Do. TSS Do. Surfactants Do... No limitations. COD Do. TSS Do. Surfactants Do. Oil and grease Do. pH Do. (3) For fast turnaround.... Surfactants Do. Oil and grease Do. pH Do. [40 FR 27454, June 30, 1975, as amended at 60 FR 33955, June 29...

  18. 40 CFR 417.156 - Pretreatment standards for new sources.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...: Pollutant or pollutant property Pretreatment standard BOD5 No limitations. COD Do. TSS Do. Surfactants Do... No limitations. COD Do. TSS Do. Surfactants Do. Oil and grease Do. pH Do. (3) For fast turnaround.... Surfactants Do. Oil and grease Do. pH Do. [40 FR 27454, June 30, 1975, as amended at 60 FR 33955, June 29...

  19. 40 CFR 417.156 - Pretreatment standards for new sources.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...: Pollutant or pollutant property Pretreatment standard BOD5 No limitations. COD Do. TSS Do. Surfactants Do... No limitations. COD Do. TSS Do. Surfactants Do. Oil and grease Do. pH Do. (3) For fast turnaround.... Surfactants Do. Oil and grease Do. pH Do. [40 FR 27454, June 30, 1975, as amended at 60 FR 33955, June 29...

  20. Biodegradation of textile wastewater: enhancement of biodegradability via the addition of co-substrates followed by phytotoxicity analysis of the effluent.

    PubMed

    Ceretta, María Belén; Durruty, Ignacio; Orozco, Ana Micaela Ferro; González, Jorge Froilán; Wolski, Erika Alejandra

    2018-05-01

    This work reports on the biodegradation of textile wastewater by three alternative microbial treatments. A bacterial consortium, isolated from a dyeing factory, showed significant efficacy in decolourizing wastewater (77.6 ± 3.0%); the decolourization rate was 5.80 ± 0.31 mg of azo dye·L -1 ·h -1 , without the addition of an ancillary carbon source (W). The degradation was 52% (measured as COD removal) and the products of the treatment showed low biodegradability (COD/BOD 5 = 4.2). When glucose was added to the wastewater, (W + G): the decolourization efficiency increased to 87.24 ± 2.5% and the decolourization rate significantly improved (25.67 ± 3.62 mg·L -1 ·h -1 ), although the COD removal efficiency was only 44%. Finally, the addition of starch (W + S) showed both a similar decolourization rate and efficiency to the W treatment, but a higher COD removal efficiency (72%). In addition, the biodegradability of the treated wastewater was considerably improved (COD/BOD 5 = 1.2) when starch was present. The toxicity of the degradation products was tested on Lactuca sativa seeds. In all treatments, toxicity was reduced with respect to the untreated wastewater. The W + S treatment gave the best performance.

  1. Sequencing batch reactor biofilm system for treatment of milk industry wastewater.

    PubMed

    Sirianuntapiboon, Suntud; Jeeyachok, Narumon; Larplai, Rarintorn

    2005-07-01

    A sequencing batch reactor biofilm (MSBR) system was modified from the conventional sequencing batch reactor (SBR) system by installing 2.7 m2 surface area of plastic media on the bottom of the reactor to increase the system efficiency and bio-sludge quality by increasing the bio-sludge in the system. The COD, BOD5, total kjeldahl nitrogen (TKN) and oil & grease removal efficiencies of the MSBR system, under a high organic loading of 1340 g BOD5/m3 d, were 89.3+/-0.1, 83.0+/-0.2, 59.4+/-0.8, and 82.4+/-0.4%, respectively, while they were only 87.0+/-0.2, 79.9+/-0.3, 48.7+/-1.7 and 79.3+/-10%, respectively, in the conventional SBR system. The amount of excess bio-sludge in the MSBR system was about 3 times lower than that in the conventional SBR system. The sludge volume index (SVI) of the MSBR system was lower than 100 ml/g under an organic loading of up to 1340 g BOD5/m3 d. However, the MSBR under an organic loading of 680 g BOD5/m3 d gave the highest COD, BOD5, TKN and oil & grease removal efficiencies of 97.9+/-0.0, 97.9+/-0.1, 79.3+/-1.0 and 94.8+/-0.5%, respectively, without any excess bio-sludge waste. The SVI of suspended bio-sludge in the MSBR system was only 44+/-3.4 ml/g under an organic loading of 680 g BOD5/m3 d.

  2. Management of wastewater from the vegetable dehydration industry in Egypt--a case study.

    PubMed

    El-Gohary, Fatma; El-Kamah, Hala; Abdel Wahaab, Rifaat; Mahmoud, Mohamed; Ibrahim, Hamdy A

    2012-01-01

    Management of wastewater from the vegetable dehydration industry was the subject of this study. A continuous monitoring programme for wastewater was carried out for almost four months. The characterization of the wastewater indicated that the vegetable dehydration wastewater contains moderate concentrations of organics, solids and nutrients. The wastewater was subjected to three different treatment processes, namely aerobic treatment, anaerobic treatment and chemical coagulation-flocculation treatment. For aerobic treatment, the removal of chemical oxygen demand (COD), biochemical oxygen demand (BOD5) and total suspended solids (TSS) was accomplished within 5 h, and no further reduction was observed after that, with the steady state COD and BOD5 removal efficiencies being 95% +/- 10% and 97% +/- 8%, respectively. For anaerobic treatment, the removal efficiencies for COD, BOD5 and TSS were 67-81%, 70-86% and 56-69%, respectively at hydraulic retention times (HRTs) of 5, 6 and 8 h. Chemical coagulation-flocculation treatment also achieved good results. The COD removal efficiency was 72%, 51% and 75% for ferric chloride (56 g/m3 of wastewater), lime (140 g/m3 of wastewater) and ferric chloride aided with lime (100 g/m3 for ferric chloride and 200 g/m3 for lime), respectively. The corresponding TSS removal values were 92% +/- 17%, 20% +/- 7% and 93% +/- 9%. Based on the available results and the seasonally operated mode of this industry in Egypt, the chemical coagulation-flocculation process is therefore considered to be moste applicable from a technical point of view and for the simplicity of operation and maintenance.

  3. Municipal landfill leachate characteristics and feasibility of retrofitting existing treatment systems with deammonification - A full scale survey.

    PubMed

    Mohammad-Pajooh, Ehsan; Weichgrebe, Dirk; Cuff, Graham

    2017-02-01

    Leachate characteristics, applied technologies and energy demand for leachate treatment were investigated through survey in different states of Germany. Based on statistical analysis of leachate quality data from 2010 to 2015, almost half of the contaminants in raw leachate satisfy direct discharge limits. Decrease in leachate pollution index of current landfills is mainly related to reduction in concentrations of certain heavy metals (Pb, Zn, Cd, Hg) and organics (biological oxygen demand (BOD 5 ), chemical oxygen demand (COD), and adsorbable organic halogen (AOX)). However, contaminants of concern remain COD, ammonium-nitrogen (NH 4 N) and BOD 5 with average concentrations in leachate of about 1850, 640, and 120 mg/L respectively. Concentrations of COD and NH 4 N vary seasonally, mainly due to temperature changes; concentrations during the first quarter of the year are mostly below the annual average value. Electrical conductivity (EC) of leachate may be used as a time and cost saving alternative to monitor sudden changes in concentration of these two parameters, due to high correlations of around 0.8 with both COD and NH 4 N values which are possibly due to low heavy metal concentrations in leachate. The decreased concentrations of heavy metals and BOD 5 favor the retrofitting of an existing biological reactor (nitrification/denitrification) with the deammonification process and post denitrification, as this lowers average annual operational cost (in terms of energy and external carbon source) and CO 2 emission by €25,850 and 15,855 kg CO 2,eq respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Kinetic of carbonaceous substrate in an upflow anaerobic sludge sludge blanket (UASB) reactor treating 2,4 dichlorophenol (2,4 DCP).

    PubMed

    Sponza, Delia Teresa; Uluköy, Ayşen

    2008-01-01

    The performance of an upflow anaerobic sludge blanket (UASB) reactor treating 2,4 dichlorophenol (2,4 DCP) was evaluated at different hydraulic retention times (HRTs) using synthetic wastewater in order to obtain the growth substrate (glucose-COD) and 2,4 DCP removal kinetics. Treatment efficiencies of the UASB reactor were investigated at different hydraulic retention times (2-20 h) corresponding to a food to mass (F/M) ratio of 1.2-1.92 g-COD g(-1) VSS day(-1). A total of 65-83% COD removal efficiencies were obtained at HRTs of 2-20 h. In all, 83% and 99% 2,4 DCP removals were achieved at the same HRTs in the UASB reactor. Conventional Monod, Grau Second-order and Modified Stover-Kincannon models were applied to determine the substrate removal kinetics of the UASB reactor. The experimental data obtained from the kinetic models showed that the Monod kinetic model is more appropriate for correlating the substrate removals compared to the other models for the UASB reactor. The maximum specific substrate utilization rate (k) (mg-COD mg(-1) SS day(-1)), half-velocity concentration (K(s)) (mg COD l(-1)), growth yield coefficient (Y) (mg mg(-1)) and bacterial decay coefficient (b) (day(-1)) were 0.954 mg-COD mg(-1) SS day(-1), 560.29 mg-COD l(-1), 0.78 mg-SS g(-1)-COD, 0.093 day(-1) in the Conventional Monod kinetic model. The second-order kinetic coefficient (k(2)) was calculated as 0.26 day(-1) in the Grau reaction kinetic model. The maximum COD removal rate constant (U(max)) and saturation value (K(B)) were calculated as 7.502 mg CODl(-1)day(-1) and 34.56 mg l(-1)day(-1) in the Modified Stover-Kincannon Model. The (k)(mg-2,4 DCP mg(-1) SS day(-1)), (K(s)) (mg 2,4 DCPl(-1)), (Y) (mg SS mg(-1) 2,4 DCP) and (k(d)) (day(-1)) were 0.0041 mg-2,4 DCP mg(-1) SS day(-1), 2.06 mg-COD l(-1), 0.0017 mg-SS mg(-1) 2,4 DCP and 3.1 x 10(-5) day(-1) in the Conventional Monod kinetic model for 2,4 DCP degradation. The second-order kinetic coefficient (k(2)) was calculated as 0.30 day(-1) in the Grau reaction kinetic model. The maximum 2,4 DCP removal rate constant (U(max)) and saturation value (K(B)) were calculated as 0.01 mg COD l(-1) day(-1) and 9.8 x 10(-3) mg l(-1) day(-1) in the Modified Stover-Kincannon model.

  5. 40 CFR 417.122 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... COD 4.05 1.35 TSS 0.09 .03 Surfactants 0.90 .30 Oil and grease 0.15 .05 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.90 0.30 COD 4.05 1.35 TSS 0.09 .03 Surfactants 0.90 .30...

  6. 40 CFR 417.122 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... COD 4.05 1.35 TSS 0.09 .03 Surfactants 0.90 .30 Oil and grease 0.15 .05 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.90 0.30 COD 4.05 1.35 TSS 0.09 .03 Surfactants 0.90 .30...

  7. Conventional and thermophilic aerobic treatability of high strength oily pet food wastewater using membrane-coupled bioreactors.

    PubMed

    Kurian, R; Acharya, C; Nakhla, G; Bassi, A

    2005-11-01

    Although thermophilic treatment systems have recently gained considerable interest, limited information exists on the comparative performances of membrane-coupled bioreactors (MBR) at thermophilic and conventional conditions. In this study aerobic MBRs operating at room temperature (20 degrees C) and at lower thermophilic range (45 degrees C) were investigated for the treatment of dissolved air flotation (DAF) pretreated pet food wastewater. The particular wastewater is characterized by oil and grease (O & G) concentrations as high as 6 g/L, COD of 51 g/L, BOD of 16 g/L and volatile fatty acid (VFA) of 8.3 g/L. The performances of the two systems in terms of COD, BOD and O & G removal at varying hydraulic retention time (HRT) are compared. COD removal efficiencies in the thermophilic MBR varied from 75% to 98% and remained constant at 94% in the conventional MBR. The O & G removal efficiencies were 66-86% and 98% in the thermophilic and conventional MBR, respectively. Interestingly, high concentrations of VFA were recorded, equivalent to 50-73% of total COD, in the thermophilic MBR effluent. The observed yield in the thermophilic MBR was 40% of that observed in the conventional MBR.

  8. Use of constructed wetland systems with Arundo and Sarcocornia for polishing high salinity tannery wastewater.

    PubMed

    Calheiros, Cristina S C; Quitério, Paula V B; Silva, Gabriela; Crispim, Luís F C; Brix, Hans; Moura, Sandra C; Castro, Paula M L

    2012-03-01

    Treatment of tannery wastewater is problematic due to high and variable concentrations of complex pollutants often combined with high salinity levels. Two series of horizontal subsurface flow constructed wetlands (CWs) planted with Arundo donax and Sarcocornia fruticosa were set up after a conventional biological treatment system operating at a tannery site. The aim of the CWs was polishing organics and nitrogen from the high salinity effluent (2.2-6.6 g Cl(-) L(-1)). Both plant species established and grew well in the CW. Arundo, however, had more vigorous growth and a higher capacity to take up nutrients. The CWs were efficient in removing COD and BOD(5) with removal efficiencies varying between 51 and 80% for COD (inlet: 68-425 mg L(-1)) and between 53 and 90% for BOD(5) (inlet: 16-220 mg L(-1)). Mass removal rates were up to 615 kg COD ha(-1) d(-1) and 363 BOD(5) kg ha(-1) d(-1). Removal efficiencies were 40-93% for total P, 31-89% for NH(4)(+) and 41-90% for Total Kjeldahl Nitrogen. CW systems planted with salt tolerant plant species are a promising solution for polishing saline secondary effluent from the tannery industry to levels fulfilling the discharge standards. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Impact of Leachate Discharge from Cipayung Landfill on Water Quality of Pesanggrahan River, Indonesia

    NASA Astrophysics Data System (ADS)

    Noerfitriyani, Eki; Hartono, Djoko M.; Moersidik, Setyo S.; Gusniani, Irma

    2018-03-01

    The landfill operation can cause environmental problems due to solid waste decomposition in the form of leachate. The evaluation of environmental impacts related with solid waste landfilling is needed to ensure that leachate discharge to water bodies does not exceed the standard limit to prevent contamination of the environment. This study aims to analyze the impact of leachate discharge from Cipayung Landfill on water quality of Pesanggrahan River. The data were analyzed based on leachate samples taken from influent and effluent treatment unit, and river water samples taken from upstream, stream at leachate discharge, and downstream. All samples were taken three times under rainy season condition from April to May 2017. The results show the average leachate quality temperature is 34,81 °C, TSS 72.33 mg/L, pH 7.83, BOD 3,959.63 mg/L, COD 6,860 mg/L, TN 373.33 mg/L, Hg 0.0016 mg/L. The BOD5/COD ratio 0.58 indicated that leachate characteristics was biodegradable and resemble intermediate landfill due to the mixing of young leachate and old leachate. The effluent of leachate treatment plant exceeds the leachate standard limit for BOD, COD, and TN parameters. Statistical results from independent T-test showed significant differences (p<0,05) between upstream and downstream influenced with leachate discharge for DO parameter.

  10. Role of UASBs in River Water Quality Conservation in India

    NASA Astrophysics Data System (ADS)

    Gali, Veeresh; Thakur, Manisha; Gupta, Ashok Kumar; Ganguly, Rajiv

    2018-03-01

    Appropriate low-cost treatment technologies are a prerequisite for sound management of natural water resources against pollution in developing countries. Among the existing technologies available, UASB is found to be economically viable for India when considering all factors including operation and maintenance cost and treatment efficiency. However, this technology suffers setbacks in meeting the effluent guidelines prescribed by the government of India. Post treatment is supplemental to this process to meet the effluent standards in terms of removal of organic matter, suspended solids, pathogens and nutrients. Recent stringent effluent guidelines notified by the Ministry of Environment, Forests and Climate Change, Government of India has further reduced the limits of BOD by 3 times, COD and TSS by 5 times, NH4-N and total Nitrogen by 10 times as compared to the previous guidelines. Fecal Coliforms has been specified as <100MPN/100mL. In this paper, the present scenario of UASB based STPs and their role in river conservation is reviewed against the backdrop of stringent effluent guidelines. The minimum removal rates of BOD, COD and TSS in these plants are around 42 - 44% and the average removal rates are reported to be 66%, 61% and 65% respectively. The enhanced removal of BOD (97%), COD (98%) and TSS has been reported in STPs in conjunction with post treatment facilities such as facultative aerated lagoons, aeration tanks and polishing ponds.

  11. Prediction of BOD, COD, and total nitrogen concentrations in a typical urban river using a fluorescence excitation-emission matrix with PARAFAC and UV absorption indices.

    PubMed

    Hur, Jin; Cho, Jinwoo

    2012-01-01

    The development of a real-time monitoring tool for the estimation of water quality is essential for efficient management of river pollution in urban areas. The Gap River in Korea is a typical urban river, which is affected by the effluent of a wastewater treatment plant (WWTP) and various anthropogenic activities. In this study, fluorescence excitation-emission matrices (EEM) with parallel factor analysis (PARAFAC) and UV absorption values at 220 nm and 254 nm were applied to evaluate the estimation capabilities for biochemical oxygen demand (BOD), chemical oxygen demand (COD), and total nitrogen (TN) concentrations of the river samples. Three components were successfully identified by the PARAFAC modeling from the fluorescence EEM data, in which each fluorophore group represents microbial humic-like (C1), terrestrial humic-like organic substances (C2), and protein-like organic substances (C3), and UV absorption indices (UV(220) and UV(254)), and the score values of the three PARAFAC components were selected as the estimation parameters for the nitrogen and the organic pollution of the river samples. Among the selected indices, UV(220), C3 and C1 exhibited the highest correlation coefficients with BOD, COD, and TN concentrations, respectively. Multiple regression analysis using UV(220) and C3 demonstrated the enhancement of the prediction capability for TN.

  12. Investigation of relationships between removals of tetracycline and degradation products and physicochemical parameters in municipal wastewater treatment plant.

    PubMed

    Topal, Murat; Uslu Şenel, Gülşad; Öbek, Erdal; Arslan Topal, E Işıl

    2016-05-15

    Determination of the effect of physicochemical parameters on the removal of tetracycline (TC) and degradation products is important because of the importance of the removal of antibiotics in Wastewater Treatment Plant (WWTP). Therefore, the purpose of this study was to investigate the relationships between removals of TC and degradation products and physicochemical parameters in Municipal Wastewater Treatment Plant (MWWTP). For this aim, (i) the removals of physicochemical parameters in a MWWTP located in Elazığ city (Turkey) were determined (ii) the removals of TC and degradation products in MWWTP were determined (iii) the relationships between removals of TC and degradation products and physicochemical parameters were investigated. TC, 4-epitetracycline (ETC), 4-epianhydrotetracycline (EATC), anhydrotetracycline (ATC), and physicochemical parameters (pH, temperature, electrical conductivity (EC), suspended solids (SS), BOD5, COD, total organic carbon (TOC), NH4(+)-N, NO2(-)-N, NO3(-)-N and O-PO4(-3)) were determined. The calculation of the correlation coefficients of relationships between the physicochemical parameters and TC, EATC, ATC showed that, among the investigated parameters, EATC and SS most correlated. The removals of other physicochemical parameters were not correlated with TC, EATC and ATC. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Sewage treatment in integrated system of UASB reactor and duckweed pond and reuse for aquaculture.

    PubMed

    Mohapatra, D P; Ghangrekar, M M; Mitra, A; Brar, S K

    2012-06-01

    The performance of a laboratory-scale upflow anaerobic sludge blanket (UASB) reactor and a duckweed pond containing Lemna gibba was investigated for suitability for treating effluent for use in aquaculture. While treating low-strength sewage having a chemical oxygen demand (COD) of typically less than 200 mg/L, with an increase in hydraulic retention time (HRT) from 10.04 to 33.49 h, COD removal efficiency of the UASB reactor decreased owing to a decrease in organic loading rate (OLR) causing poor mixing in the reactor. However, even at the lower OLR (0.475 kg COD/(m3 x d)), the UASB reactor gave a removal efficiency of 68% for COD and 74% for biochemical oxygen demand (BOD). The maximum COD, BOD, ammonia-nitrogen and phosphate removal efficiencies of the duckweed pond were 40.77%, 38.01%, 61.87% and 88.57%, respectively. Decreasing the OLR by increasing the HRT resulted in an increase in efficiency of the duckweed pond for removal of ammonia-nitrogen and phosphate. The OLR of 0.005 kg COD/(m2 x d) and HRT of 108 h in the duckweed pond satisfied aquaculture quality requirements. A specific growth rate of 0.23% was observed for tilapia fish fed with duckweed harvested from the duckweed pond. The economic analysis proved that it was beneficial to use the integrated system of a UASB reactor and a duckweed pond for treatment of sewage.

  14. Biochemical process of low level radioactive liquid simulation waste containing detergent

    NASA Astrophysics Data System (ADS)

    Kundari, Noor Anis; Putra, Sugili; Mukaromah, Umi

    2015-12-01

    Research of biochemical process of low level radioactive liquid waste containing detergent has been done. Thse organic liquid wastes are generated in nuclear facilities such as from laundry. The wastes that are cotegorized as hazard and poison materials are also radioactive. It must be treated properly by detoxification of the hazard and decontamination of the radionuclides to ensure that the disposal of the waste meets the requirement of standard quality of water. This research was intended to determine decontamination factor and separation efficiensies, its kinetics law, and to produce a supernatant that ensured the environmental quality standard. The radioactive element in the waste was thorium with activity of 5.10-5 Ci/m3. The radioactive liquid waste which were generated in simulation plant contains detergents that was further processed by aerobic biochemical process using SGB 103 bacteria in a batch reactor equipped with aerators. Two different concentration of samples were processed and analyzed for 212 hours and 183 hours respectively at a room temperature. The product of this process is a liquid phase called as supernatant and solid phase material called sludge. The chemical oxygen demand (COD), biological oxygen demand (BOD), suspended solid (SS), and its alpha activity were analyzed. The results show that the decontamination factor and the separation efficiency of the lower concentration samples are higher compared to the samples with high concentration. Regarding the decontamination factor, the result for 212 hours processing of waste with detergent concentration of 1.496 g/L was 3.496 times, whereas at the detergent concentration of 0.748 g/L was 15.305 times for 183 hours processing. In case of the separation efficiency, the results for both samples were 71.396% and 93.465% respectively. The Bacterial growth kinetics equation follow Monod's model and the decreasing of COD and BOD were first order with the rate constant of 0.01 hour-1.

  15. Biochemical process of low level radioactive liquid simulation waste containing detergent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kundari, Noor Anis, E-mail: nooranis@batan.go.id; Putra, Sugili; Mukaromah, Umi

    Research of biochemical process of low level radioactive liquid waste containing detergent has been done. Thse organic liquid wastes are generated in nuclear facilities such as from laundry. The wastes that are cotegorized as hazard and poison materials are also radioactive. It must be treated properly by detoxification of the hazard and decontamination of the radionuclides to ensure that the disposal of the waste meets the requirement of standard quality of water. This research was intended to determine decontamination factor and separation efficiensies, its kinetics law, and to produce a supernatant that ensured the environmental quality standard. The radioactive elementmore » in the waste was thorium with activity of 5.10{sup −5} Ci/m{sup 3}. The radioactive liquid waste which were generated in simulation plant contains detergents that was further processed by aerobic biochemical process using SGB 103 bacteria in a batch reactor equipped with aerators. Two different concentration of samples were processed and analyzed for 212 hours and 183 hours respectively at a room temperature. The product of this process is a liquid phase called as supernatant and solid phase material called sludge. The chemical oxygen demand (COD), biological oxygen demand (BOD), suspended solid (SS), and its alpha activity were analyzed. The results show that the decontamination factor and the separation efficiency of the lower concentration samples are higher compared to the samples with high concentration. Regarding the decontamination factor, the result for 212 hours processing of waste with detergent concentration of 1.496 g/L was 3.496 times, whereas at the detergent concentration of 0.748 g/L was 15.305 times for 183 hours processing. In case of the separation efficiency, the results for both samples were 71.396% and 93.465% respectively. The Bacterial growth kinetics equation follow Monod’s model and the decreasing of COD and BOD were first order with the rate constant of 0.01 hour{sup −1}.« less

  16. Chitosan based grey wastewater treatment--a statistical design approach.

    PubMed

    Thirugnanasambandham, K; Sivakumar, V; Prakash Maran, J; Kandasamy, S

    2014-01-01

    In this present study, grey wastewater was treated under different operating conditions such as agitation time (1-3 min), pH (2.5-5.5), chitosan dose (0.3-0.6g/l) and settling time (10-20 min) using response surface methodology (RSM). Four factors with three levels Box-Behnken response surface design (BBD) were employed to optimize and investigate the effect of process variables on the responses such as turbidity, BOD and COD removal. The results were analyzed by Pareto analysis of variance (ANOVA) and second order polynomial models were developed in order to predict the responses. Under the optimum conditions, experimental values such as turbidity (96%), BOD (91%) and COD (73%) removals are closely agreed with predicted values. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Relationship between land use and water quality in Pesanggrahan River

    NASA Astrophysics Data System (ADS)

    Effendi, Hefni; Muslimah, Sri; Ayu Permatasari, Prita

    2018-05-01

    Pesanggrahan River watershed has several activities such as residential and commercial area in its catchment area. The purpose of this study was to analyse water quality related to spatial land use in Pesanggrahan River using GIS Analysis. River water quality in some locations, did not meet water quality standard of class III. From pollution load estimation it was revealed that segment 2 (Bogor City) has the highest BOD, COD, and TSS of 15,043 kg/day, 25,619 kg/day, and 18,104 kg/day respectively. On the other hand, the most developed area in Pesanggrahan Watershed is located in segment 7 (24.5%). Hence, it can be concluded that although an area has a fairly small developed area, high urban activity can cause high BOD, COD, and TSS.

  18. 40 CFR 133.102 - Secondary treatment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... effluent quality attainable by secondary treatment in terms of the parameters—BOD5, SS and pH. All... permitting authority, in lieu of the parameter BOD5 and the levels of the effluent quality specified in... CBOD5 effluent quality provided: (i) The 30-day average shall not exceed 25 mg/l. (ii) The 7-day average...

  19. Optimization of the moving-bed biofilm sequencing batch reactor (MBSBR) to control aeration time by kinetic computational modeling: Simulated sugar-industry wastewater treatment.

    PubMed

    Faridnasr, Maryam; Ghanbari, Bastam; Sassani, Ardavan

    2016-05-01

    A novel approach was applied for optimization of a moving-bed biofilm sequencing batch reactor (MBSBR) to treat sugar-industry wastewater (BOD5=500-2500 and COD=750-3750 mg/L) at 2-4 h of cycle time (CT). Although the experimental data showed that MBSBR reached high BOD5 and COD removal performances, it failed to achieve the standard limits at the mentioned CTs. Thus, optimization of the reactor was rendered by kinetic computational modeling and using statistical error indicator normalized root mean square error (NRMSE). The results of NRMSE revealed that Stover-Kincannon (error=6.40%) and Grau (error=6.15%) models provide better fits to the experimental data and may be used for CT optimization in the reactor. The models predicted required CTs of 4.5, 6.5, 7 and 7.5 h for effluent standardization of 500, 1000, 1500 and 2500 mg/L influent BOD5 concentrations, respectively. Similar pattern of the experimental data also confirmed these findings. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Investigation of lab-scale horizontal subsurface flow constructed wetlands treating industrial cork boiling wastewater.

    PubMed

    Gomes, Arlindo C; Silva, Lúcia; Albuquerque, António; Simões, Rogério; Stefanakis, Alexandros I

    2018-09-01

    The feasibility and treatment efficiency of horizontal subsurface flow constructed wetlands (HSFCW) was assessed for the first time for cork boiling wastewater (CBW) through laboratory experiments. CBW is known for its high content of phenolic compounds, complex composition of biorecalcitrant and toxic nature. Two lab-scale units, one planted with Phragmites australis (CWP) and one unplanted (CWC), were used to evaluate the removals of COD, BOD, total phenolic compounds (TPh) and decolourization over a 2.5-years monitoring period under Mediterranean climatic conditions. Seven organic and hydraulic loading rates ranging from 2.6 to 11.5 g COD/m 2 /d and 5.7-9.1 L/m 2 /d were tested under average hydraulic retention time (HRT) of 5 ± 1 days required due to the CWB limited biodegradability (i.e., BOD 5 /COD of 0.19). Average removals of the CWP exceeded those of the CWC and reached 74.6%, 91.7% and 69.1% for COD, BOD 5 and TPh, respectively, with respective mass removals rates up to 7.0, 1.7 and 0.5 (in g/m 2 /d). Decolourization was limited to 35%, since it mainly depends on physical processes rather than biodegradation. CBW concentration of nine phenolic compounds ranged from 1.2 to 38.4 mg/L (for the syringic and ellagic acids, respectively) in the raw CBW, with respective removals in the CWP unit ranging from 41.8 to 76.3%, higher than those in the control unit. Despite CBW high concentration of TPhs (average of 116.3 mg/L), the HSFCW reached organic load removals higher than those of conventional biological treatment methods. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Photocatalytic pretreatment of oily wastewater from the restaurant by a vacuum ultraviolet/TiO2 system.

    PubMed

    Kang, Jian-xiong; Lu, Lu; Zhan, Wei; Li, Bo; Li, Dao-sheng; Ren, Yong-zheng; Liu, Dong-qi

    2011-02-15

    The present study aims at investigating the performance of a vacuum ultraviolet (VUV, 185 nm) and TiO(2) oxidation system for the pretreatment of oily wastewater from restaurant. The influence of irradiation time, pH, dissolved oxygen (DO), the dosage of TiO(2) and the initial chemical oxygen demand (COD) concentration on COD removal efficiency was ascertained and optimum process conditions for stable and effective operation were determined. Under the optimum conditions of irradiation 10 min, initial COD 3981 mg/L, TiO(2) 150 mg/L, pH 7.0 and flow rate of air 40 L/h, the process of VUV and TiO(2)/VUV achieved removal efficiencies of COD, BOD(5) and oil as 50±3%, 37±2%, 86±3%, and 63±3%, 43±2%, 70±3%, respectively. The biodegradability factor f(B) of the wastewater was determined as 1.56 which indicated that the VUV/TiO(2) process improved the biodegradability of the oily wastewater significantly. Results clearly indicate that VUV/TiO(2) photolysis tends to destruct parts of COD, BOD(5), and ammonia, as well as enhances the biodegradability of the oily wastewater simultaneously. Thus, this technique could be used as a pretreatment step for conventional biological treatment of oily wastewater. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Life Cycle Assessment for PC Blend 2 Aircraft Radome Depainter

    DTIC Science & Technology

    1996-09-01

    Trivalent chromium compounds are considerably less toxic than hexavalent forms and are neither irritating nor corrosive. 25. IRON (W) Ecosystem: Visibility...acquisition and combustion is a source of waterborne acid, ammonia, BOD, chromium , COD, dissolved solids, iron, lead, metal ion, oil, phenol...intermediates for DBE. Chromium , phenol, zinc, and COD process emissions come from petroleum refinery operations. The production of ammonia also produces

  3. Application of subsurface vertical flow constructed wetlands to reject water treatment in dairy wastewater treatment plant.

    PubMed

    Dąbrowski, Wojciech; Karolinczak, Beata; Gajewska, Magdalena; Wojciechowska, Ewa

    2017-01-01

    The paper presents the effects of applying subsurface vertical flow constructed wetlands (SS VF) for the treatment of reject water generated in the process of aerobic sewage sludge stabilization in the biggest dairy wastewater treatment plant (WWTP) in Poland. Two SS VF beds were built: bed (A) with 0.65 m depth and bed (B) with 1.0 m depth, planted with reeds. Beds were fed with reject water with hydraulic load of 0.1 m d -1 in order to establish the differences in treatment efficiency. During an eight-months research period, a high removal efficiency of predominant pollutants was shown: BOD 5 88.1% (A) and 90.5% (B); COD 84.5% (A) and 87.5% (B); TSS 87.6% (A) and 91.9% (B); TKN 82.4% (A) and 76.5% (B); N-NH 4 + 89.2% (A) and 85.7% (B); TP 30.2% (A) and 40.6% (B). There were not statistically significant differences in the removal efficiencies between bed (B) with 1.0 m depth and bed (A) with 0.65 m depth. The research indicated that SS VF beds could be successfully applied to reject water treatment in dairy WWTPs. The study proved that the use of SS VF beds in full scale in dairy WWTPs would result in a significant decrease in pollutants' load in reject water. In the analyzed case, decreasing the load of ammonia nitrogen was of greatest importance, as it constituted 58% of the total load treated in dairy WWTP and posed a hazard to the stability of the treatment process.

  4. Performance assessment of aquatic macrophytes for treatment of municipal wastewater

    PubMed Central

    2014-01-01

    The objective of the study was to evaluate the performance of three different aquatic macrophytes for treatment of municipal wastewater collected from Taxila (Pakistan). A physical model of treatment plant was constructed and was operated for six experimental runs with each species of macrophyte. Every experimental run consist of thirty days period. Regular monitoring of influent and effluent concentrations were made during each experimental run. For the treatment locally available macrophyte species i.e. water hyacinth, duckweed & water lettuce were selected to use. To evaluate the treatment performance of each macrophyte, BOD5, COD, and Nutrients (Nitrogen and Phosphorus) were monitored in effluent from model at different detention time of every experimental run after ensuring steady state conditions. The average reduction of effluent value of each parameter using water hyacinth were 50.61% for BOD5, 46.38% for COD, 40.34% for Nitrogen and 18.76% for Phosphorus. For duckweed the average removal efficiency for selected parameters were 33.43% for BOD5, 26.37% for COD, 17.59% for Nitrogen and 15.25% for Phosphorus and for Water Lettuce the average removal efficiency were 33.43% for BOD5, 26.37% for COD, 17.59% for Nitrogen and 15.25% for Phosphorus. The mechanisms of pollutant removal in this system include both aerobic and anaerobic microbiological conversions, sorption, sedimentation, volatilization and chemical transformations. The rapid growth of the biomass was measured within first ten days detention time. It was also observed that performance of macrophytes is influenced by variation of pH and Temperature. A pH of 6-9 and Temperature of 15-38°C is most favorable for treatment of wastewater by macrophytes. The option of macrophytes for treatment of Municipal sewage under local environmental conditions can be explored by further verifying the removal efficiency under variation of different environmental conditions. Also this is need of time that macrophyte system should be used for treatment of wastewater because their performance is comparable to conventional wastewater treatment plants and also the system has very low O&M costs. PMID:25089203

  5. Assessment of anthropogenic inputs in the surface waters of the southern coastal area of Sfax during spring (Tunisia, Southern Mediterranean Sea).

    PubMed

    Drira, Zaher; Kmiha-Megdiche, Salma; Sahnoun, Houda; Hammami, Ahmed; Allouche, Noureddine; Tedetti, Marc; Ayadi, Habib

    2016-03-15

    The coastal marine area of Sfax (Tunisia), which is well-known for its high productivity and fisheries, is also subjected to anthropogenic inputs from diverse industrial, urban and agriculture activities. We investigated the spatial distribution of physical, chemical and biogeochemical parameters in the surface waters of the southern coastal area of Sfax. Pertinent tracers of anthropogenic inputs were identified. Twenty stations were sampled during March 2013 in the vicinity of the coastal areas reserved for waste discharge. Phosphogypsum wastes dumped close to the beaches were the main source of PO4(3-), Cl(-) and SO4(2-) in seawater. The high content in total polyphenolic compounds was due to the olive oil treatment waste water released from margins. These inorganic and organic inputs in the surface waters were associated with elevated COD. The BOD5/COD (<0.5) and COD/BOD5 (>3) ratios highlighted a chemical pollution with organic load of a low biodegradability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Optimizing COD removal from greywater by photoelectro-persulfate process using Box-Behnken design: assessment of effluent quality and electrical energy consumption.

    PubMed

    Ahmadi, Mehdi; Ghanbari, Farshid

    2016-10-01

    Greywater (GW) is a potential source for water reuse in various applications. However, GW treatment is still a vital issue in water reuse in cases of environmental standards and risk to public health. This study investigates optimization and modeling of a hybrid process for COD removal from GW. Persulfate (PS) was simultaneously activated by electrogenerated ferrous ion (EC) and UV to generate sulfate radical. Photoelectro-persulfate (PEPS) was optimized by Box-Behnken design and the effects of four variables (pH, PS dosage, current density, and electrolysis time) were evaluated on COD removal. The results and several coefficients showed that the obtained model was acceptable for predicting the COD removal. Moreover, under optimum conditions (pH = 6.9, PS = 8.8 mM, current density = 2.0 mA/cm(2), and 49.3 min electrolysis time), BOD5, turbidity, TSS, phosphate, and UV254 were effectively removed and COD and BOD5 values reached to discharge standards. Different configurations of the processes were assessed for COD removal. The order of COD removal efficiency followed: PS < Fe(II) < UV/PS ≤ Fe(II)/PS < Fe(II)/PS/UV < electrocoagulation ≤ electrocoagulation/UV < electro-PS < PEPS. The monitoring PS concentration during 60 min reaction time in the aforesaid processes indicated that PEPS could remarkably activate PS. The solution pH was also monitored and related results revealed that the presence of PS during the 10 min first time decreased pH value while production of hydroxide ion at cathode increased pH significantly. Finally, the contribution of electrochemical process in the electrical energy consumption was far less than that of photolysis process in hybrid PEPS process.

  7. Ozonation and ultrafiltration for the treatment of olive mill wastewaters: effect of key operating conditions and integration schemes.

    PubMed

    Martins, Rui C; Ferreira, Ana M; Gando-Ferreira, Licínio M; Quinta-Ferreira, Rosa M

    2015-10-01

    With the objective of reaching suitable techniques for olive mill wastewater treatment, ozonation and ultrafiltration were studied individually and combined. A continuous reactor was run for the treatment of a phenolic mixture mimicking an actual olive mill wastewater (OMW) by ozonation. The effect of the main operating parameters was analysed (pH, liquid flow rate and ozone inlet concentration). The increase of pH and ozone dose improved ozonation efficiency. As expected, the highest residence time led to higher steady-state degradation (35 % of chemical oxygen demand (COD) abatement). Even if the rise on ozone inlet gas concentration was able to remove COD in a higher extent, it should be taken into consideration that with the lowest oxidant load (15 g O3/m(3)), the maximum steady-state biochemical oxygen demand (BOD5)/COD ratio was reached which would reduce the process costs. These operating conditions (pH 9, 1 mL/min of liquid flow rate and 15 g O3/m(3)) were applied to an actual OMW leading to 80 % of phenolic content abatement and 12 % of COD removal at the steady state. Regarding ultrafiltration, it was concluded that the best total phenolic content (TPh) and COD abatement results (55 and 15 %) are attained for pH 9 and using a transmembrane pressure drop of 1 bar. Among the integration schemes that were tested, ultrafiltration followed by ozonation was able to reach 93 and 20 % of TPh and COD depletion, respectively. Moreover, this sequence led to an effluent with a BOD5/COD ratio of about 0.55 which means that it likely can be posteriorly refined in a municipal wastewater treatment plant.

  8. 40 CFR 410.32 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (pounds per 1,000 lb) of product BOD5 1.4 0.7 COD 2.8 1.4 TSS 1.4 0.7 ph (1) (1) 1 Within the range 6.0 to... 8.9 4.6 COD 21.3 13.7 TSS 5.5 2.5 ph (1) (1) 1 Within the range 6.0 to 9.0 at all times. ...

  9. 40 CFR 417.152 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE... COD 0.15 .05 TSS 0.03 .01 Surfactants 0.06 .02 Oil and grease 0.015 .005 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.03 0.01 COD 0.15 .05 TSS 0.03 .01 Surfactants 0.06 .02...

  10. 40 CFR 417.152 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE... COD 0.15 .05 TSS 0.03 .01 Surfactants 0.06 .02 Oil and grease 0.015 .005 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.03 0.01 COD 0.15 .05 TSS 0.03 .01 Surfactants 0.06 .02...

  11. 40 CFR 410.32 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (pounds per 1,000 lb) of product BOD5 1.4 0.7 COD 2.8 1.4 TSS 1.4 0.7 ph (1) (1) 1 Within the range 6.0 to... 8.9 4.6 COD 21.3 13.7 TSS 5.5 2.5 ph (1) (1) 1 Within the range 6.0 to 9.0 at all times. ...

  12. 40 CFR 410.32 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (pounds per 1,000 lb) of product BOD5 1.4 0.7 COD 2.8 1.4 TSS 1.4 0.7 ph (1) (1) 1 Within the range 6.0 to... 8.9 4.6 COD 21.3 13.7 TSS 5.5 2.5 ph (1) (1) 1 Within the range 6.0 to 9.0 at all times. ...

  13. 40 CFR 410.32 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (pounds per 1,000 lb) of product BOD5 1.4 0.7 COD 2.8 1.4 TSS 1.4 0.7 ph (1) (1) 1 Within the range 6.0 to... 8.9 4.6 COD 21.3 13.7 TSS 5.5 2.5 ph (1) (1) 1 Within the range 6.0 to 9.0 at all times. ...

  14. Treatment of amoxicillin by O3/Fenton process in a rotating packed bed.

    PubMed

    Li, Mo; Zeng, Zequan; Li, Yingwen; Arowo, Moses; Chen, Jianfeng; Meng, Hong; Shao, Lei

    2015-03-01

    In this study, simulated amoxicillin wastewater was treated by the O3/Fenton process in a rotating packed bed (RPB) and the results were compared with the Fenton process and the O3 followed by Fenton (O3 + Fenton) process. The chemical oxygen demand (COD) removal rate and the ratio of 5-day biological oxygen demand to chemical oxygen demand (BOD5/COD) in the O3/Fenton process were approximately 17% and 26%, respectively, higher than those in the O3 + Fenton process with an initial pH of 3. The COD removal rate of the amoxicillin solution reached maximum at the Fe(II) concentration of 0.6 mM, temperature of 25 °C, rotation speed of 800 rpm and initial pH of 3. The BOD5/COD of the amoxicillin solution increased from 0 to 0.38 after the solution was treated by the O3/Fenton process. Analysis of the intermediates indicated that the pathway of amoxicillin degradation in the O3/Fenton process was similar to that in the O3 + Fenton process. Contrast experiment results showed that amoxicillin degradation was significantly intensified in the RPB. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Applicability of Fluorescence and Absorbance Spectroscopy to Estimate Organic Pollution in Rivers

    PubMed Central

    Knapik, Heloise Garcia; Fernandes, Cristovão Vicente Scapulatempo; de Azevedo, Júlio Cesar Rodrigues; do Amaral Porto, Monica Ferreira

    2014-01-01

    Abstract This article explores the applicability of fluorescence and absorbance spectroscopy for estimating organic pollution in polluted rivers. The relationship between absorbance, fluorescence intensity, dissolved organic carbon, biochemical oxygen demand (BOD), chemical oxygen demand (COD), and other water quality parameters were used to characterize and identify the origin and the spatial variability of the organic pollution in a highly polluted watershed. Analyses were performed for the Iguassu River, located in southern Brazil, with area about 2,700 km2 and ∼3 million inhabitants. Samples were collect at six monitoring sites covering 107 km of the main river. BOD, COD, nitrogen, and phosphorus concentration indicates a high input of sewage to the river. Specific absorbance at 254 and 285 nm (SUVA254 and A285/COD) did not show significant variation between sites monitored, indicating the presence of both dissolved compounds found in domestic effluents and humic and fulvic compounds derived from allochthonous organic matter. Correlations between BOD and tryptophan-like fluorescence peak (peak T2, r=0.7560, and peak T1, r=0.6949) and tyrosine-like fluorescence peak (peak B, r=0.7321) indicated the presence of labile organic matter and thus confirmed the presence of sewage in the river. Results showed that fluorescence and absorbance spectroscopy provide useful information on pollution in rivers from critical watersheds and together are a robust method that is simpler and more rapid than traditional methods employed by regulatory agencies. PMID:25469076

  16. Anaerobic/aerobic treatment of greywater via UASB and MBR for unrestricted reuse.

    PubMed

    Abdel-Shafy, Hussein I; Al-Sulaiman, Ahmed Makki; Mansour, Mona S M

    2015-01-01

    The aim of the present study was to investigate the efficiency of integrated up-flow anaerobic sludge blanket (UASB) as anaerobic system followed by membrane bioreactor (MBR) as aerobic system for the treatment of greywater for unrestricted reuse. Pilot-scale UASB and MBR units were installed and operated in the NRC, Egypt. Real raw greywater was subjected to UASB and the effluent was further treated with microfiltration MBR. The necessary trans-membrane pressure difference is applied by the water head above the membrane (gravity flow) without any energy input. The average characteristics of the raw greywater were 95, 392, 298, 10.45, 0.4, 118.5 and 28 mg/L for total suspended solids (TSS), chemical oxygen demand (COD), biochemical oxygen demand (BOD), total phosphates, nitrates, oil and grease, and total Kjeldahl nitrogen (TKN), respectively. The pH was 6.71. The UASB treatment efficiency reached 19.3, 57.8, 67.5 and 83.7% for TSS, COD, BOD5 and oil and grease, respectively. When the UASB effluent was further treated with MBR, the overall removal rate achieved 97.7, 97.8, 97.4 and 95.8% for the same parameters successively. The characteristics of the final effluent reached 2.5, 8.5, 6.1, 0.95, 4.6 and 2.3 mg/L for TSS, COD, BOD, phosphates, oil and grease and TKN, respectively. This final treated effluent could cope with the unrestricted water reuse of local Egyptian guidelines.

  17. Degradation and biodegradability improvement of the olive mill wastewater by peroxi-electrocoagulation/electrooxidation-electroflotation process with bipolar aluminum electrodes.

    PubMed

    Esfandyari, Yahya; Mahdavi, Yousef; Seyedsalehi, Mahdi; Hoseini, Mohammad; Safari, Gholam Hossein; Ghozikali, Mohammad Ghanbari; Kamani, Hossein; Jaafari, Jalil

    2015-04-01

    Olive mill wastewater is considered as one of the most polluting effluents of the food industry and constitutes a source of important environmental problems. In this study, the removal of pollutants (chemical oxygen demand (COD), biochemical oxygen demand (BOD5), polyphenols, turbidity, color, total suspended solids (TSS), and oil and grease) from olive oil mill processing wastewater by peroxi-electrocoagulation/electrooxidation-electroflotation process with bipolar aluminum electrodes was evaluated using a pilot continuous reactor. In the electrochemical unit, aluminum (Al), stainless steel, and RuO2/Ti plates were used. The effects of pH, hydrogen peroxide doses, current density, NaCl concentrations, and reaction times were studied. Under optimal conditions of pH 4, current density of 40 mA/m(2), 1000 mg/L H2O2, 1 g/L NaCl, and 30-min reaction time, the peroxi-electrochemical method yielded very effective removal of organic pollution from the olive mill wastewater diluted four times. The treatment process reduced COD by 96%, BOD5 by 93.6%, total, polyphenols by 94.4%, color by 91.4%, turbidity by 88.7, suspended solids by 97% and oil and grease by 97.1%. The biodegradability index (BOD5/COD) increased from 0.29 to 0.46. Therefore, the peroxi-electrocoagulation/electrooxidation-electroflotation process is considered as an effective and feasible process for pre-treating olive mill wastewater, making possible a post-treatment of the effluent in a biological system.

  18. Annual Electronics Manufacturing Seminar Proceedings (15th) Held in Ridgecrest, California on 20-22 February 1991

    DTIC Science & Technology

    1991-02-01

    the POTW. Remember, BOD/COD chemicals are biodegradable materi - als, organic food , that are commonly treated at POTWs. It is also possible to reduce BOD...Volume 1. Packaging , ASM International, Materials Park, OH, 1989, p. 740. 2. Engelmaier, W., in "Round Robin Reliability Evaluation of Small Diameter...adherent layer of a protective material such as tin or gold. Such is not the case for bare nickel. Here, no correlation of the aging to storage has been

  19. 40 CFR 417.122 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE... COD 4.05 1.35 TSS 0.09 .03 Surfactants 0.90 .30 Oil and grease 0.15 .05 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.90 0.30 COD 4.05 1.35 TSS 0.09 .03 Surfactants 0.90 .30...

  20. 40 CFR 417.122 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE... COD 4.05 1.35 TSS 0.09 .03 Surfactants 0.90 .30 Oil and grease 0.15 .05 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.90 0.30 COD 4.05 1.35 TSS 0.09 .03 Surfactants 0.90 .30...

  1. 40 CFR 417.122 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE... COD 4.05 1.35 TSS 0.09 .03 Surfactants 0.90 .30 Oil and grease 0.15 .05 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.90 0.30 COD 4.05 1.35 TSS 0.09 .03 Surfactants 0.90 .30...

  2. 40 CFR 417.155 - Standards of performance for new sources.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... COD 0.08 .04 TSS 0.04 .02 Surfactants 0.04 .02 Oil and grease 0.01 .005 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.02 0.01 COD 0.08 .04 TSS 0.04 .02 Surfactants 0.04 .02... Surfactants 0.20 .10 Oil and grease 0.04 .02 pH (1) (1) English units (pounds per 1,000 lb of anhydrous...

  3. On-site treatment of a motorway service area wastewater using a package sequencing batch reactor (SBR).

    PubMed

    Del Solar, J; Hudson, S; Stephenson, T

    2005-01-01

    A sequencing batch reactor (SBR) treating the effluent of a motorway service station in the south of England situated on a major tourist route was investigated. Wastewater from the kitchens, toilets and washrooms facilities was collected from the areas on each side of the motorway for treatment on-site. The SBR was designed for a population equivalent (p.e.) of 500, assuming an average flow of 100 m3/d, influent biochemical oxygen demand (BOD) of 300 mg/l, and influent suspended solids (SS) of 300 mg/l. Influent monitoring over 8 weeks revealed that the average flow was only 65 m3/d and the average influent BOD and SS were 480 mg/l and 473 mg/l respectively. This corresponded to a high sludge loading rate (F:M) of 0.42 d(-1) which accounted for poor performance. Therefore the cycle times were extended from 6 h to 7 h and effluent BOD improved from 79 to 27 mg/l.

  4. Constructed wetlands and waste stabilization ponds for small rural communities in the United Kingdom: a comparison of land area requirements, performance and costs.

    PubMed

    Mara, D D

    2006-07-01

    Land area requirements for secondary subsurface horizontal-flow constructed wetlands (CW) and primary and secondary facultative ponds with either unaerated or aerated rock filters were determined for three levels of effluent quality: that specified in the Urban Waste Water Treatment Directive (UWWTD) (< or = 25 mg filtered BOD l(-1) and < or = 150 mg SS l(-1) for waste stabilization ponds (WSP) effluents, and < or = 25 mg unfiltered BOD l(-1) for CW effluents (mean values); and two common requirements of the Environment Agency: < or = 40 mg BOD l(-1) and < or = 60 mg SS l(-1), and < or = 10 mg BOD l(-1), < or = 15 mg SS l(-1) and < or = 5 mg ammonia-N l(-1) (95-percentile values). A secondary CW requires 60 percent more land than a secondary facultative pond to produce an UWWTD-quality effluent, 38 percent more land than a secondary facultative pond and an unaerated rock filter to produce a 40/60 effluent and, were it to be used to produce a 10/15/5 effluent, it would require approximately 480 percent more land than a secondary facultative pond and an aerated rock filter. Its estimated 2005 cost is pound 1100-2600 p.e.(-1), whereas that of a primary facultative pond and rock filter is approximately pound 400 p.e.(-1). On the basis of land area requirements, performance and cost, facultative ponds and unaerated or aerated rock filters are to be preferred to secondary subsurface horizontal-flow constructed wetlands.

  5. Flocculent Settling of Food Wastes.

    PubMed

    Chowdhury, Mohammad Monirul Islam; Kim, Mingu; Haroun, Basem Mikhaeil; Nakhla, George; Keleman, Michael

    2016-07-01

    This study evaluated the flocculent settling in water and municipal wastewater (MWW) in a 10.6 ft deep column. A total of eight runs at three different testing conditions involving MWW alone, food waste (FW) alone, and FW in MWW (FW+MWW) were conducted. Total suspended solid (TSS), total BOD (TBOD), total COD (TCOD), total nitrogen (TN), and total phosphorous (TP) removal efficiencies after 3 hours of settling were 62%, 46%, 49%, 46% and 62% for FW, and 50%, 43%, 39%, 37% and 24% for MWW. Removal efficiencies of particulate COD (PCOD) and particulate BOD (PBOD) at the lowest surface overflow rate (SOR) of 1.1 m3/m2/hr corresponding to the longest settling time of 3 hours were 59% and 64% for FW, and 65% and 70% for FW with MWW samples. On the other hand, no significant variation between FW and FW with MWW was observed for PN removal after 3 hours of settling.

  6. Biopower generation from kitchen wastewater using a bioreactor.

    PubMed

    Khan, Abdul M; Naz, Shamsa

    2014-01-01

    This research provides a comparative study of the power output from mediator-less and mediator microbial fuel cells (MFCs) under aerobic and partially anaerobic conditions using kitchen wastewater (KWW) as a renewable energy source. The wastewater sample was subjected to different physical, chemical, biochemical, and microbial analysis. The chemical oxygen demand (COD), biochemical oxygen demand (BOD), and power output values were greater for the fermented samples than the non-fermented samples. The power output of samples was compared through the development of MFCs by using sand-salt bridge and agar-salt bridge. The H2 that was produced was converted to atomic hydrogen by using the nickel-coated zinc electrode. In addition, the power output was further enhanced by introducing air into the cathodic chamber, where oxygen reacts with the protons to form pure H2O. The study showed that the power output was increased with the increase in COD and BOD values.

  7. Biodegradation of Sewage Wastewater Using Autochthonous Bacteria

    PubMed Central

    Dhall, Purnima; Kumar, Rita; Kumar, Anil

    2012-01-01

    The performance of isolated designed consortia comprising Bacillus pumilus, Brevibacterium sp, and Pseudomonas aeruginosa for the treatment of sewage wastewater in terms of reduction in COD (chemical oxygen demand), BOD (biochemical oxygen demand) MLSS (mixed liquor suspended solids), and TSS (total suspended solids) was studied. Different parameters were optimized (inoculum size, agitation, and temperature) to achieve effective results in less period of time. The results obtained indicated that consortium in the ratio of 1 : 2 (effluent : biomass) at 200 rpm, 35°C is capable of effectively reducing the pollutional load of the sewage wastewaters, in terms of COD, BOD, TSS, and MLSS within the desired discharge limits, that is, 32 mg/L, 8 mg/L, 162 mg/L, and 190 mg/L. The use of such specific consortia can overcome the inefficiencies of the conventional biological treatment facilities currently operational in sewage treatment plants. PMID:22272181

  8. Some properties of a granular activated carbon-sequencing batch reactor (GAC-SBR) system for treatment of textile wastewater containing direct dyes.

    PubMed

    Sirianuntapiboon, Suntud; Sadahiro, Ohmomo; Salee, Paneeta

    2007-10-01

    Resting (living) bio-sludge from a domestic wastewater treatment plant was used as an adsorbent of both direct dyes and organic matter in a sequencing batch reactor (SBR) system. The dye adsorption capacity of the bio-sludge was not increased by acclimatization with direct dyes. The adsorption of Direct Red 23 and Direct Blue 201 onto the bio-sludge was almost the same. The resting bio-sludge showed higher adsorption capacity than the autoclaved bio-sludge. The resting bio-sludge that was acclimatized with synthetic textile wastewater (STWW) without direct dyes showed the highest Direct Blue 201, COD, and BOD(5) removal capacities of 16.1+/-0.4, 453+/-7, and 293+/-9 mg/g of bio-sludge, respectively. After reuse, the dye adsorption ability of deteriorated bio-sludge was recovered by washing with 0.1% sodium dodecyl sulfate (SDS) solution. The direct dyes in the STWW were also easily removed by a GAC-SBR system. The dye removal efficiencies were higher than 80%, even when the system was operated under a high organic loading of 0.36kgBOD(5)/m(3)-d. The GAC-SBR system, however, showed a low direct dye removal efficiency of only 57+/-2.1% with raw textile wastewater (TWW) even though the system was operated with an organic loading of only 0.083kgBOD(5)/m(3)-d. The dyes, COD, BOD(5), and total kjeldalh nitrogen removal efficiencies increased up to 76.0+/-2.8%, 86.2+/-0.5%, 84.2+/-0.7%, and 68.2+/-2.1%, respectively, when 0.89 g/L glucose (organic loading of 0.17kgBOD(5)/m(3)-d) was supplemented into the TWW.

  9. Coliforms removal in full-scale activated sludge plants in India.

    PubMed

    Kazmi, A A; Tyagi, V K; Trivedi, R C; Kumar, Arvind

    2008-05-01

    This paper investigates the removal of coliforms in full-scale activated sludge plants (ASP) operating in northern regions of India. Log2.2 and log2.4 removal were observed for total coliforms (TC) and fecal coliforms (FC), respectively. However, the effluent still contained a significant number of TC and FC which was greater than the permissible limit for unrestricted irrigation as prescribed by WHO. The observations also suggest that extended aeration (EA) process operating under high mixed liquor suspended solids (MLSS) and sludge retention time (SRT) is more efficient in the removal of coliforms. Further attempts have been made to establish the relationship between two key wastewater parameters, i.e. biochemical oxygen demand (BOD) and suspended solids (SS) with respect to fecal and TC. The relationships were observed to be linear with a good coefficient of correlation. The interrelationship of BOD and SS with coliforms manifest that improvement of the microbiological quality of wastewater could be linked with the removal of SS. Therefore, SS can serve as a regulatory tool in lieu of an explicit coliforms standard.

  10. Effect of recirculation on organic matter removal in a hybrid constructed wetland system.

    PubMed

    Ayaz, S C; Findik, N; Akça, L; Erdoğan, N; Kinaci, C

    2011-01-01

    This research project aimed to determine the technologically feasible and applicable wastewater treatment systems which will be constructed to solve environmental problems caused by small communities in Turkey. Pilot-scale treatment of a small community's wastewater was performed over a period of more than 2 years in order to show applicability of these systems. The present study involves removal of organic matter and suspended solids in serially operated horizontal (HFCW) and vertical (VFCW) sub-surface flow constructed wetlands. The pilot-scale wetland was constructed downstream of anaerobic reactors at the campus of TUBITAK-MRC. Anaerobically pretreated wastewater was introduced into this hybrid two-stage sub-surface flow wetland system (TSCW). Wastewater was first introduced into the horizontal sub-surface flow system and then the vertical flow system before being discharged. Recirculation of the effluent was tested in the system. When the recirculation ratio was 100%, average removal efficiencies for TSCW were 91 +/- 4% for COD, 83 +/- 10% for BOD and 96 +/- 3% for suspended solids with average effluent concentrations of 9 +/- 5 mg/L COD, 6 +/- 3 mg/L BOD and 1 mg/L for suspended solids. Comparing non-recirculation and recirculation periods, the lowest effluent concentrations were obtained with a 100% recirculation ratio. The effluent concentrations met the Turkish regulations for discharge limits of COD, BOD and TSS in each case. The study showed that a hybrid constructed wetland system with recirculation is a very effective method of obtaining very low effluent organic matter and suspended solids concentrations downstream of anaerobic pretreatment of domestic wastewaters in small communities.

  11. 40 CFR 417.42 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... COD 13.50 4.50 TSS 0.60 .20 Oil and grease 0.30 .10 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 4.50 1.50 COD 13.50 4.50 TSS 0.60 .20 Oil and grease 0.30 .10 pH (1) (1) 1 Within... CATEGORY Glycerine Concentration Subcategory § 417.42 Effluent limitations guidelines representing the...

  12. 40 CFR 417.42 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... COD 13.50 4.50 TSS 0.60 .20 Oil and grease 0.30 .10 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 4.50 1.50 COD 13.50 4.50 TSS 0.60 .20 Oil and grease 0.30 .10 pH (1) (1) 1 Within... CATEGORY Glycerine Concentration Subcategory § 417.42 Effluent limitations guidelines representing the...

  13. 40 CFR 417.42 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... COD 13.50 4.50 TSS 0.60 .20 Oil and grease 0.30 .10 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 4.50 1.50 COD 13.50 4.50 TSS 0.60 .20 Oil and grease 0.30 .10 pH (1) (1) 1 Within... CATEGORY Glycerine Concentration Subcategory § 417.42 Effluent limitations guidelines representing the...

  14. Bioelectricity generation using two chamber microbial fuel cell treating wastewater from food processing.

    PubMed

    Mansoorian, Hossein Jafari; Mahvi, Amir Hossein; Jafari, Ahmad Jonidi; Amin, Mohammad Mehdi; Rajabizadeh, Ahmad; Khanjani, Narges

    2013-05-10

    Electricity generation from microbial fuel cells which treat food processing wastewater was investigated in this study. Anaerobic anode and aerobic cathode chambers were separated by a proton exchange membrane in a two-compartment MFC reactor. Buffer solutions and food industry wastewater were used as electrolytes in the anode and cathode chambers, respectively. The produced voltage and current intensity were measured using a digital multimeter. Effluents from the anode compartment were tested for COD, BOD5, NH3, P, TSS, VSS, SO4 and alkalinity. The maximum current density and power production were measured 527mA/m(2) and 230mW/m(2) in the anode area, respectively, at operation organic loading (OLR) of 0.364g COD/l.d. At OLR of 0.182g COD/l.d, maximum voltage and columbic efficiency production were recorded 0.475V and 21%, respectively. Maximum removal efficiency of COD, BOD5, NH3, P, TSS, VSS, SO4 and alkalinity were 86, 79, 73, 18, 68, 62, 30 and 58%, respectively. The results indicated that catalysts and mediator-less microbial fuel cells (CAML-MFC) can be considered as a better choice for simple and complete energy conversion from the wastewater of such industries and also this could be considered as a new method to offset wastewater treatment plant operating costs. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. An integrated anaerobic digestion and UV photocatalytic treatment of distillery wastewater.

    PubMed

    Apollo, Seth; Onyango, Maurice S; Ochieng, Aoyi

    2013-10-15

    Anaerobic up-flow fixed bed reactor and annular photocatalytic reactor were used to study the efficiency of integrated anaerobic digestion (AD) and ultraviolet (UV) photodegradation of real distillery effluent and raw molasses wastewater (MWW). It was found that UV photodegradation as a stand-alone technique achieved colour removal of 54% and 69% for the distillery and MWW, respectively, with a COD reduction of <20% and a negligible BOD reduction. On the other hand, AD as a single treatment technique was found to be effective in COD and BOD reduction with efficiencies of above 75% and 85%, respectively, for both wastewater samples. However, the AD achieved low colour removal efficiency, with an increase in colour intensity of 13% recorded when treating MWW while a colour removal of 51% was achieved for the distillery effluent. The application of UV photodegradation as a pre-treatment method to the AD process reduced the COD removal and biogas production efficiency. However, an integration in which UV photodegradation was employed as a post-treatment to the AD process achieved high COD removal of above 85% for both wastewater samples, and colour removal of 88% for the distillery effluent. Thus, photodegradation can be employed as a post-treatment technique to an AD system treating distillery effluent for complete removal of the biorecalcitrant and colour imparting compounds. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Coupling biofiltration process and electrocoagulation using magnesium-based anode for the treatment of landfill leachate.

    PubMed

    Oumar, Dia; Patrick, Drogui; Gerardo, Buelna; Rino, Dubé; Ihsen, Ben Salah

    2016-10-01

    In this research paper, a combination of biofiltration (BF) and electrocoagulation (EC) processes was used for the treatment of sanitary landfill leachate. Landfill leachate is often characterized by the presence of refractory organic compounds (BOD/COD < 0.13). BF process was used as secondary treatment to remove effectively ammonia nitrogen (N-NH4 removal of 94%), BOD (94% removed), turbidity (95% removed) and phosphorus (more than 98% removed). Subsequently, EC process using magnesium-based anode was used as tertiary treatment. The best performances of COD and color removal from landfill leachate were obtained by applying a current density of 10 mA/cm(2) through 30 min of treatment. The COD removal reached 53%, whereas 85% of color removal was recorded. It has been proved that the alkalinity had a negative effect on COD removal during EC treatment. COD removal efficiencies of 52%, 41% and 27% were recorded in the presence of 1.0, 2.0 and 3.0 g/L of sodium bicarbonate (NaHCO3), respectively. Hydroxide ions produced at the cathode electrode reacted with the bicarbonate ions to form carbonates. The presence of bicarbonates in solution hampered the increase in pH, so that the precipitation of magnesium hydroxides could not take place to effectively remove organic pollutants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Comparison of coagulation pretreatment of produced water from natural gas well by polyaluminium chloride and polyferric sulphate coagulants.

    PubMed

    Zhai, Jun; Huang, Zejin; Rahaman, Md Hasibur; Li, Yue; Mei, Longyue; Ma, Hongpu; Hu, Xuebin; Xiao, Haiwen; Luo, Zhiyong; Wang, Kunping

    2017-05-01

    This study aimed to optimise coagulation pretreatment of the produced water (PW) collected from a natural gas field. Two coagulants, polyferric sulphate (PFS) and polyaluminium chloride (PACl), were applied separately for the organics, suspended solids (SS), and colour removal. Treatment performance at different coagulant dosages, initial pH values, stirring patterns, and the addition of cationic polyacrylamide (PAM) was investigated in jar tests. The optimal coagulation conditions were dosage of PACl 25 g/L or PFS 20 g/L with that of PAM 30 mg/L, initial pH of 11, and fast mixing of 1.5 min (for PACl) or 2 min (for PFS) at 250 rpm followed by slow mixing of 15 min at 50 rpm for both coagulants. PACl performed better than PFS to remove chemical oxygen demand (COD), total organic carbon (TOC), SS, and colour, and achieved a removal efficiency of 90.1%, 89.4%, 99.0%, and 99.9%, respectively, under the optimal condition; while PFS efficiency was 86.1%, 86.1%, 99.0%, and 98.2%, respectively. However, oil removal was higher in PFS coagulation compared to PACl and showed 98.9% and 95.3%, respectively. Biodegradability, ratio of the biological oxygen demand (five-day) (BOD 5 )/COD, of the PW after pretreatment increased from 0.08 to 0.32 for PFS and 0.43 for PACl. Zeta potential (Z-potential) analysis at the optimum coagulant dosage of PACl and PFS suggests that charge neutralisation was the predominant mechanism during coagulation. Better efficiency was observed at higher pH. The addition of PAM and starring pattern had a minor influence on the removal performance of both coagulants. The results suggest that PACl or PFS can be applied for the pretreatment of PW, which can provide substantial removal of carbon, oil, and colour, a necessary first step for subsequent main treatment units such as chemical oxidation or biological treatment.

  18. Integrated chemical treatment of municipal wastewater using waste hydrogen peroxide and ultraviolet light

    NASA Astrophysics Data System (ADS)

    Bhatti, Zulfiqar Ahmed; Mahmood, Qaisar; Raja, Iftikhar Ahmad; Malik, Amir Haider; Rashid, Naim; Wu, Donglei

    Dilemmas like water shortage, rapid industrialization, growing human population and related issues have seriously affected human health and environmental sustainability. For conservation and sustainable use of our water resources, innovative methods for wastewater treatment are continuously being explored. Advance Oxidation Processes (AOPs) show a promising approach to meet specific objectives of municipal wastewater treatment (MWW). The MWW samples were pretreated with Al 2(SO 4) 4·8H 2O (Alum) at different doses 4, 8, 12-50 mg/L to enhance the sedimentation. The maximum COD removal was observed at alum treatments in range of 28-32 mg/L without increasing total dissolved solids (TDS). TDS were found to increase when the alum dose was increased from 32-40 mg/L. In the present study, the optimum alum dose of 30 mg/L for 3 h of sedimentation and subsequent integrated H 2O 2/UV treatment was applied (using 2.5 mL/L of 40% waste H 2O 2 and 35% fresh H 2O 2 separately). Organic and inorganic pollutants, contributing towards chemical oxygen demand (COD), biological oxygen demand (BOD), turbidity and total dissolved solids were degraded by H 2O 2/UV. About 93% COD, 90% BOD and 83% turbidity reduction occurred when 40% waste H 2O 2 was used. When using fresh H 2O 2, 63% COD, 68% BOD and 86% turbidity reduction was detected. Complete disinfection of coliform bacteria occurred by using 40% H 2O 2/UV. The most interesting part of this research was to compare the effectiveness of waste H 2O 2 with fresh H 2O 2. Waste H 2O 2 generated from an industrial process of disinfection was found more effective in the treatment of MWW than fresh 35% H 2O 2.

  19. Effect of temperature on the treatment of domestic wastewater with a staged anaerobic fluidized membrane bioreactor.

    PubMed

    Yoo, R H; Kim, J H; McCarty, P L; Bae, J H

    2014-01-01

    A laboratory staged anaerobic fluidized membrane bioreactor (SAF-MBR) system was applied to the treatment of primary clarifier effluent from a domestic wastewater treatment plant with temperature decreasing from 25 to 10 °C. At all temperatures and with a total hydraulic retention time of 2.3 h, overall chemical oxygen demand (COD) and biochemical oxygen demand (BOD5) removals were 89% and 94% or higher, with permeate COD and BOD5 of 30 and 7 mg/L or lower, respectively. No noticeable negative effects of low temperature on organic removal were found, although a slight increase to 3 mg/L in volatile fatty acids concentrations in the effluent was observed. Biosolids production was 0.01-0.03 kg volatile suspended solids/kg COD, which is far less than that with aerobic processes. Although the rate of trans-membrane pressure at the membrane flux of 9 L/m(2)/h increased as temperature decreased, the SAF-MBR was operated for longer than 200 d before chemical cleaning was needed. Electrical energy potential from combustion of the total methane production (gaseous and dissolved) was more than that required for system operation.

  20. Combined coagulation-flocculation and sequencing batch reactor with phosphorus adjustment for the treatment of high-strength landfill leachate: experimental kinetics and chemical oxygen demand fractionation.

    PubMed

    El-Fadel, M; Matar, F; Hashisho, J

    2013-05-01

    The treatability of high-strength landfill leachate is challenging and relatively limited. This study examines the feasibility of treating high-strength landfill leachate (chemical oxygen demand [COD]: 7,760-11,770 mg/L, biochemical oxygen demand [BOD5]: 2,760-3,569 mg/L, total nitrogen [TN] = 980-1,160 mg/L) using a sequencing batch reactor (SBR) preceded by a coagulation-flocculation process with phosphorus nutritional balance under various mixing and aeration patterns. Simulations were also conducted to define kinetic parameters and COD fractionation. Removal efficiencies reached 89% for BOD5, 60% for COD, and 72% for TN, similar to and better than reported studies, albeit with a relatively lower hydraulic retention time (HRT) and solid retention time (SRT). The coupled experimental and simulation results contribute in filling a gap toward managing high-strength landfill leachate and providing guidelines for corresponding SBR applications. The treatability of high-strength landfill leachate, which is challenging and relatively limited, was demonstrated using a combined coagulation-flocculation with SBR technology and nutrient balance adjustment. The most suitable coagulant, kinetic design parameters, and COD fractionation were defined using coupled experimental and simulation results contributing in filling a gap toward managing high-strength leachate by providing guidelines for corresponding SBR applications and anticipating potential constraints related to the non-biodegradable COD fraction. In this context, while the combined coagulation-flocculation and SBR process improved removal efficiencies, posttreatment may be required for high-strength leachate, depending on discharge standards and ultimate usage of the treated leachate.

  1. 40 CFR 417.152 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... COD 0.15 .05 TSS 0.03 .01 Surfactants 0.06 .02 Oil and grease 0.015 .005 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.03 0.01 COD 0.15 .05 TSS 0.03 .01 Surfactants 0.06 .02... Surfactants 0.45 .15 Oil and grease 0.09 .03 pH (1) (1) English units (pounds per 1,000 lb of anhydrous...

  2. 40 CFR 417.152 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... COD 0.15 .05 TSS 0.03 .01 Surfactants 0.06 .02 Oil and grease 0.015 .005 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.03 0.01 COD 0.15 .05 TSS 0.03 .01 Surfactants 0.06 .02... Surfactants 0.45 .15 Oil and grease 0.09 .03 pH (1) (1) English units (pounds per 1,000 lb of anhydrous...

  3. UASB-septic tank as an alternative for decentralized wastewater treatment in Mexico.

    PubMed

    Santiago-Díaz, Ángel L; García-Albortante, Julisa; Salazar-Peláez, Mónica L

    2018-02-05

    The aim of this work was to evaluate the performance of a UASB-septic tank as a decentralized treatment of high-strength municipal wastewater under two different HRTs (48 and 72 h). Thus, a lab-scale (44.85 L) UASB-septic tank constituted by three compartments was operated under HRT 72 and 48 h. Removal efficiencies of total chemical oxygen demand (COD), biological oxygen demand (BOD 5 ) and suspended solids (SS) ranged from 60% to 80% for the first two parameters and from 70% to 90% for the last one. According to the statistical analysis, it was established that decreasing HRT from 72 to 48 h did not affect the performance of the UASB-septic tank; therefore, the latter HRT is recommended to be used for operation. In the first compartment, most of the organic matter removal was carried out, while the other two compartments served as polishing. Over the course of six months, the VS concentration and VS/TS ratio in sludge blanket decreased, indicating digestion and stabilization of the retained solids. Also, an increase of 4% in sludge volume was observed; thus, time for desludging would be approximately five years. Comparison of the UASB-septic tank and the UASB reactor showed that both systems had similar performance regarding effluent concentrations of organic matter and solids. Thus, under low volumetric organic load conditions (less than 20 mg COD/L h), the former is an attractive option for municipal wastewater treatment.

  4. Behaviour of a full-scale expanded bed reactor with overlaid anaerobic and aerobic zones for domestic wastewater treatment.

    PubMed

    Mendonça, N M; Siman, R R; Niciura, C L; Campos, J R

    2006-01-01

    This paper presents the behaviour of a full-scale expanded bed reactor (160 m3) with overlaid anaerobic and aerobic zones used for municipal wastewater treatment. The research was carried out in two experimental steps: anaerobic and anaerobic-aerobic conditions, and the experimental results presented in this paper refer to four months of reactor operation. In the anaerobic condition, after inoculation and 60 days of operation, the reactor treating 3.40 kg CODm(-3)d(-1) for thetaH of 2.69 h, reached mean removal efficiencies of 76% for BOD, 72% for COD, and 80% for TSS, when the effluent presented mean values of 225 mg.L(-1) of COD, 98 mg.L(-1) of BOD and 35 mg.L(-1) of TSS. Under these conditions, for nitrogen loading of 0.27 kgN.m(-3)d(-1), the reactor generated an effluent with mean N-org. of 8 mg.L(-1) and N-ammon. of 37 mg.L(-1), demonstrating high potential of ammonification. For the anaerobic-aerobic condition (118th day) the system was operated with thetaH of 5.38 h presented mean removal efficiencies of 84% for BOD, 79% for COD, 76% for TSS, and 30% for TKN. The reactor's operation time was less than two months, which was not long enough to reach nitrification. Regarding the obtained results, this research confirmed that this reactor is configured as a flexible and adequate alternative for the treatment of sewage, requiring relatively small area and only thetaH of 10 h that can be adjusted to the local circumstances.

  5. Prolonged aerobic degradation of shredded and pre-composted municipal solid waste: report from a 21-year study of leachate quality characteristics.

    PubMed

    Grisey, Elise; Aleya, Lotfi

    2016-01-01

    The objective of this study was to assess the degree of long-term waste maturation at a closed landfill (Etueffont, France) over a period of 21 years (1989-2010) through analysis of the physicochemical characteristics of leachates as well as biochemical oxygen demand (BOD), chemical oxygen demand (COD), and metal content in waste. The results show that the leachates, generated in two different sections (older and newer) of the landfill, have low organic, mineral, and metallic loads, as the wastes were mainly of household origin from a rural area where sorting and composting were required. Based on pH and BOD/COD assessments, leachate monitoring in the landfill's newer section showed a rapid decrease in the pollution load over time and an early onset of methanogenic conditions. The closing of the older of the two sections contributed to a significant decline for the majority of parameters, attributable to degradation and leaching. A gradual decreasing trend was observed after waste placement had ceased in the older section, indicating that degradation continued and the waste mass had not yet fully stabilized. At the end of monitoring, leachates from the two landfill linings contained typical old leachates in the maturation period, with a pH ≥ 7 and a low BOD/COD ratio indicating a low level of waste biodegradability. Age actually contributes to a gradual removal of organic, inorganic, and metallic wastes, but it is not the only driving factor behind advanced degradation. The lack of compaction and cover immediately after deposit extended the aerobic degradation phase, significantly reducing the amount of organic matter. In addition, waste shredding improved water infiltration into the waste mass, hastening removal of polluting components through percolation.

  6. The structure optimization of gas-phase surface discharge and its application for dye degradation

    NASA Astrophysics Data System (ADS)

    Ying, CAO; Jie, LI; Nan, JIANG; Yan, WU; Kefeng, SHANG; Na, LU

    2018-05-01

    A gas-phase surface discharge (GSD) was employed to optimize the discharge reactor structure and investigate the dye degradation. A dye mixture of methylene blue, acid orange and methyl orange was used as a model pollutant. The results indicated that the reactor structure of the GSD system with the ratio of tube inner surface area and volume of 2.48, screw pitch between a high-voltage electrode of 9.7 mm, high-voltage electrode wire diameter of 0.8 mm, dielectric tube thickness of 2.0 mm and tube inner diameter of 16.13 mm presented a better ozone (O3) generation efficiency. Furthermore, a larger screw pitch and smaller wire diameter enhanced the O3 generation. After the dye mixture degradation by the optimized GSD system, 73.21% and 50.74% of the chemical oxygen demand (COD) and total organic carbon removal rate were achieved within 20 min, respectively, and the biochemical oxygen demand (BOD) and biodegradability (BOD/COD) improved.

  7. Green dyeing process of modified cotton fibres using natural dyes extracted from Tamarix aphylla (L.) Karst. leaves.

    PubMed

    Baaka, Noureddine; Mahfoudhi, Adel; Haddar, Wafa; Mhenni, Mohamed Farouk; Mighri, Zine

    2017-01-01

    This research work involves an eco-friendly dyeing process of modified cotton with the aqueous extract of Tamarix aphylla leaves. During this process, the dyeing step was carried out on modified cotton by several cationising agents in order to improve its dyeability. The influence of the main dyeing conditions (dye bath pH, dyeing time, dyeing temperature, salt addition) on the performances of this dyeing process were studied. The dyeing performances of this process were appreciated by measuring the colour yield (K/S) and the fastness properties of the dyed samples. The effect of mordant type with different mordanting methods on dyeing quality was also studied. The results showed that mordanting gave deeper shades and enhanced fastness properties. In addition, environmental indicators (BOD 5 , COD and COD/BOD 5 ) were used to describe potential improvements in the biodegradability of the dyebath wastewater. Further, HPLC was used to identify the major phenolic compounds in the extracted dye.

  8. Performance and cost evaluation of constructed wetland for domestic waste water treatment.

    PubMed

    Deeptha, V T; Sudarsan, J S; Baskar, G

    2015-09-01

    Root zone treatment through constructed wetlands is an engineered method of purifying wastewater. The aim of the present research was to study the potential of wetland plants Phragmites and Typha in treatment of wastewater and to compare the cost of constructed wetlands with that of conventional treatment systems. A pilot wetland unit of size 2x1x0.9 m was constructed in the campus. 3x3 rows of plants were transplanted into the pilot unit and subjected to wastewater from the hostels and other campus buildings. The raw wastewater and treated wastewater were collected periodically and tested for Total nitrogen (TN),Total Phosphorous (TP), Biological Oxygen Demand (BOD), Chemical Oxygen Demand (COD). It was observed that this pilot unit reduced the concentrations of TN, TP, BOD and COD by 76, 73, 83 and 86%, respectively, on an average. Root zone system achieved standards for tertiary treatment with low operating costs, low maintenance costs, enhance the landscape, provide a natural habitat for birds, and did not emit any odour.

  9. Enhanced biological nutrients removal using an integrated oxidation ditch with vertical circle from wastewater by adding an anaerobic column.

    PubMed

    Wang, Shu-mei; Liu, Jun-xin

    2005-01-01

    Compared to conventional oxidation ditches, an integrated oxidation ditch with vertical circle (IODVC) has the characters of concise configuration, simple operation and maintenance, land saving and automatical sludge returning. By the utilization of vertical circulation, an aerobic zone and an anoxic zone can be unaffectedly formed in the IODVC. Therefore, COD and nitrogen can be efficiently removed. However, the removal efficiency of phosphorus was low in the IODVC. In the experiment described, a laboratory scale system to add an anaerobic column to the IODVC has been tested to investigate the removal of phosphorus from wastewater. The experimental results showed that the removal efficiency of TP with the anaerobic column was increased to 54.0% from 22.3% without the anaerobic column. After the acetic sodium was added into the influent as carbon sources, the mean TP removal efficency of 77.5% was obtained. At the same time, the mean removal efficiencies of COD, TN and NH3-N were 92.2%, 81.6% and 98.1%, respectively, at 12 h of HRT and 21-25 d of SRT. The optimal operational conditions in this study were as follows: recycle rate = 1.5-2.0, COD/TN > 6, COD/TP > 40, COD loading rate = 0.26-0.32 kgCOD/(kgSS x d), TN loading rate = 0.028-0.034 kgTN/(kgSS x d) and TP loading rate = 0.003-0.005 kgTP/(kgSS x d), respectively.

  10. A combined electrocoagulation-electrooxidation treatment for industrial wastewater.

    PubMed

    Linares-Hernández, Ivonne; Barrera-Díaz, Carlos; Bilyeu, Bryan; Juárez-GarcíaRojas, Pablo; Campos-Medina, Eduardo

    2010-03-15

    This study addresses the elimination of persistent organic compounds in industrial wastewater using a synergistic combination of electrocoagulation and electrooxidation. Electrocoagulation is a relatively quick process (30 min), which is very effective in removing colloidal and suspended particles, as seen in changes in coliforms, turbidity, and color and in the general absorbance by UV-vis spectroscopy. However, it is relatively ineffective in eliminating stable persistent organic compounds--in this work, only half of the COD was eliminated from wastewater and an oxidation peak in the cyclic voltammetry scan remained. Electrooxidation is very effective in breaking down organic compounds through oxidation as reflected in the elimination of COD, BOD(5), and oxidative peak in cyclic voltammetry, but requires so much time (21 h) that it has very limited practicality, especially when colloidal and suspended particles are present. Electrooxidative mineralization of electrocoagulated wastewater, in which most of the colloids and charged species have been removed, takes less than 2h. In the coupled technique, electrocoagulation quickly coagulates and removes the colloidal and suspended particles, as well as many charged species, then electrooxidation oxidizes the remaining organics. The coupled process eliminates COD, BOD(5), color, turbidity, and coliforms in a practical amount of time (2h). (c) 2009 Elsevier B.V. All rights reserved.

  11. Integrated ozone and biotreatment of pulp mill effluent and changes in biodegradability and molecular weight distribution of organic compounds.

    PubMed

    Bijan, Leila; Mohseni, Madjid

    2005-10-01

    The overall effectiveness of integrating ozonation with biological treatment on the biodegradability enhancement and recalcitrant organic matter (ROM) removal from pulp mill alkaline bleach plant effluent was investigated. Ozonation was performed in a semi-batch bubble column reactor at pH of 11 and 4.5. Batch biological treatment was conducted in shake flasks. Samples obtained during the treatments were monitored for BOD5, COD, TOC, and molecular weight distribution. At an ozone dosage of 0.7-0.8 mg O3/mL wastewater, integrated treatment showed about 30% higher TOC mineralization compared to individual ozonation or biotreatment. Ozone treatment enhanced the biodegradability of the effluent (monitored as 21% COD reduction and 13% BOD5 enhancement), allowing for a higher removal of pollutants. The conversion of high molecular weight (HMW) to low molecular weight (LMW) compounds was an important factor in the overall biodegradability enhancement of the alkaline effluent. The overall biodegradability of the LMW compounds did not change over the course of ozonation, but it increased from 5% to 50% (measured as COD removal) for the HMW portion. Ozonation at pH of 11 was more effective than that at pH of 4.5 in terms of generating more biodegradable compounds.

  12. Water Purification Characteristic of the Actual Constructed Wetland with Carex dispalata in a Cold Area

    NASA Astrophysics Data System (ADS)

    Tsuji, Morio; Yamada, Kazuhiro; Hiratsuka, Akira; Tsukada, Hiroko

    Carex dispalata, a native plant species applied in cold districts for water purification in constructed wetlands, has useful characteristics for landscape creation and maintenance. In this study, seasonal differences in purification ability were verified, along with comparison of frozen and non-frozen periods' performance. A wetland area was constructed using a “hydroponics method” and a “coir fiber based method”. Results show that the removal rates of BOD, SS, and Chl-a were high. On this constructed wetland reduces organic pollution, mainly phytoplankton, but the removal of nitrogen and phosphorus was insufficient. The respective mean values of influent and treated water during three years were 26.6 mg/L and 12.2 mg/L for BOD, and 27.9 mg/L and 7.5 mg/L for SS. The mean value of the BOD removal rate for the non-frozen period was 2.99 g/m2/d that for the frozen period was 1.86 g/m2/d. The removal rate followed the rise of the BOD load rate. The removal rate limits were about 4 g/m2/d during the frozen period and 15 g/m2/d during the non-frozen period. For operations, energy was unnecessary. The required working hours were about 20 h annually for all maintenance and management during operations.

  13. [Wastewater pollution characteristics from typical intensive pig farms in the Pearl River Delta and its ecological risk assessment].

    PubMed

    Li, Wen-Ying; Peng, Zhi-Ping; Yu, Jun-Hong; Huang, Ji-Chuan; Xu, Pei-Zhi; Yang, Shao-Hai

    2013-10-01

    Based on the wastewater quality investigation data from March 2009 to November 2011, wastewater qualities from typical intensive pig farms were assessed in the Pearl River Delta by single and comprehensive pollution index model. The results showed that key pollutants of piggery wastewater were fecal coliform (FC), total phosphorus (TP), chemical oxygen demand (COD) and biochemical oxygen demand (BOD), with their average mass concentrations of 1.98 x 10(9) CFU.L-1, 158.61 mg.L-1, 5 608.68 mg.L-1 and 1984.34 mg.L-1, respectively; key pollutants of biogas slurry were FC, TP, ammonia nitrogen (NH+4 -N) and suspended substance (SS), with their average mass concentrations of 8. 10 x 10(6) CFU.L-1, 81.76 mg.L-1, 476.24 mg.L-1 and 464.58 mg.L-1, respectively. Under the effect of wastewater pollutants, environment surrounding of typical intensive pig farms was seriously polluted, which decreased gradually from piggery wastewater to biogas slurry, and comprehensive pollution indices were 11.41, 6.91, 5.27, respectively. The risk analysis showed that the high-risk wastewater could never be discharged directly and irrigated crops. After the anaerobic treatment, FC, TP, NH+4 -N and SS were still strong factors with the potential ecological risk in the biogas slurry. In the long run, the ecological risk still exists for direct discharge or irrigation of them, and it is necessary to apply further treatment.

  14. Determining TOC in Waters

    ERIC Educational Resources Information Center

    Kehoe, Thomas J.

    1977-01-01

    The instrumental method for detecting total organic carbon (TOC) in water samples is detailed. The method's limitations are discussed and certain precautions that must be taken are emphasized. The subject of TOC versus COD and BOD is investigated and TOC is determined to be a valid indication of biological demand. (BT)

  15. 40 CFR 428.32 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS RUBBER MANUFACTURING POINT SOURCE CATEGORY Solution...) (1) English units (lb/1,000 lb of product) COD 5.91 3.94 BOD5 0.60 .40 TSS 0.98 .65 Oil and grease 0...

  16. Grey water treatment by the slanted soil system with unsorted soil media.

    PubMed

    Ushijima, Ken; Tanaka, Erina; Suzuki, Laís Yuko; Hijikata, Nowaki; Funamizu, Naoyuki; Ito, Ryusei

    2015-01-01

    This study evaluated the performance of unsorted soil media in the slanted soil treatment system, in terms of removal efficiency in suspended solids (SS), chemical oxygen demand (COD), linear alkylbenzene sulphonate (LAS) and Escherichia coli, and lifetime until clogging occurs. Unsorted soil performed longer lifetime until clogging than sorted fine soil. Removal of SS, COD, and LAS also performed same or better level in unsorted soil than fine soil. As reaction coefficients of COD and LAS were described as a function of the hydraulic loading rate, we can design a slanted soil system according to the expected hydraulic loading rate and the targeted level of COD or LAS in effluent. Regarding bacteria removal, unsorted soil performed sufficient reduction of E. coli for 5 weeks; however, the removal process occurred throughout all four chambers, while that of fine soil occurred in one to two chambers.

  17. Potential of tin (IV) chloride for treatment in Alor Pongsu as stabilized landfill leachate

    NASA Astrophysics Data System (ADS)

    Zainal, Sharifah Farah Fariza Syed; Aziz, Hamidi Abdul

    2017-10-01

    Leachate production from landfilling contributes crucial pollutants to the environment. This study examined the potential of tin (IV) chloride as coagulant that involved charge neutralization and sweep flocculation mechanisms. The negative charge of leachate is neutralized by adding tin (IV) chloride as cationic coagulant which resulted precipitation and swept most of the colloids and dissolved solids that entrapped in the settling as hydrous oxide floc. Parameters such as suspended solid (SS) content, color, and chemical oxygen demand (COD) were analyzed using standard jar test procedures. The best condition was observed at pH 8, with removal efficiencies of 75.99 %, 99.29 % and 98.36 % for COD, SS, and color, respectively. At optimum dosage, tin (IV) chloride successfully removed 98.40 % for color, 99.54 % for SS and 71.53 % for COD. These results indicated the satisfactory performance of tin (IV) chloride. Hence, tin (IV) chloride is a potential coagulant for the treatment of Alor Pongsu Landfill leachate.

  18. Low-cost adsorbent prepared from sewage sludge and corn stalk for the removal of COD in leachate.

    PubMed

    He, Ying; Liao, Xiaofeng; Liao, Li; Shu, Wei

    2014-01-01

    Sewage sludge (SS) with corn stalk (CS) was used to prepare SS-based activated carbon (SAC) by pyrolysis with ZnCl2. The effects of mixing ratio on surface area and pore size distribution, elemental composition, surface chemistry, and morphology were investigated. The results demonstrated that the addition of CS into SS samples improved the surface area (from 92 to 902 m(2)/g) and the microporosity (from 1.2 to 4.1%) of the adsorbents and, therefore, enhancing the adsorption performance. The removal of leachate chemical oxygen demand (COD) was also determined. It was found that the COD removal rate reached 85% at pH 4 with the SAC (90 wt% CS) dosage of 2% (g/mL) and an adsorption time of 40 min. The adsorption experimental data were fitted by both Langmuir and Freundlich adsorption isotherms. Long-chain alkanes and refractory organics were found in raw leachate, but could be removed by SAC largely.

  19. 40 CFR 428.33 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS RUBBER MANUFACTURING POINT SOURCE CATEGORY Solution Crumb...) English units (lb/1,000 lb of product) COD 3.12 2.08 BOD5 0.12 .08 TSS 0.24 .16 Oil and grease 0.12 .08 pH...

  20. 40 CFR 410.35 - New source performance standards (NSPS).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... GUIDELINES AND STANDARDS TEXTILE MILLS POINT SOURCE CATEGORY Low Water Use Processing Subcategory § 410.35... product BOD5 1.4 0.7 COD 2.8 1.4 TSS 1.4 0.7 pH (1) (1) 1 Within the range 6.0 to 9.0 at all times. Water...

  1. 40 CFR 410.35 - New source performance standards (NSPS).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... GUIDELINES AND STANDARDS TEXTILE MILLS POINT SOURCE CATEGORY Low Water Use Processing Subcategory § 410.35... product BOD5 1.4 0.7 COD 2.8 1.4 TSS 1.4 0.7 pH (1) (1) 1 Within the range 6.0 to 9.0 at all times. Water...

  2. Modeling BOD and COD removal from Palm Oil Mill Secondary Effluent in floating wetland by Chrysopogon zizanioides (L.) using response surface methodology.

    PubMed

    Darajeh, Negisa; Idris, Azni; Fard Masoumi, Hamid Reza; Nourani, Abolfazl; Truong, Paul; Sairi, Nor Asrina

    2016-10-01

    While the oil palm industry has been recognized for its contribution towards economic growth and rapid development, it has also contributed to environmental pollution due to the production of huge quantities of by-products from the oil extraction process. A phytoremediation technique (floating Vetiver system) was used to treat Palm Oil Mill Secondary Effluent (POMSE). A batch study using 40 L treatment tanks was carried out under different conditions and Response Surface Methodology (RSM) was applied to optimize the treatment process. A three factor central composite design (CCD) was used to predict the experimental variables (POMSE concentration, Vetiver plant density and time). An extraordinary decrease in organic matter as measured by BOD and COD (96% and 94% respectively) was recorded during the experimental duration of 4 weeks using a density of 30 Vetiver plants. The best and lowest final BOD of 2 mg/L was obtained when using 15 Vetiver plants after 13 days for low concentration POMSE (initial BOD = 50 mg/L). The next best result of BOD at 32 mg/L was obtained when using 30 Vetiver plants after 24 days for medium concentration POMSE (initial BOD = 175 mg/L). These results confirmed the validity of the model, and the experimental value was determined to be quite close to the predicted value, implying that the empirical model derived from RSM experimental design can be used to adequately describe the relationship between the independent variables and response. The study showed that the Vetiver system is an effective method of treating POMSE. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Diffusion of organic pollutants within a biofilm in porous media

    NASA Astrophysics Data System (ADS)

    Fan, Chihhao; Kao, Chen-Fei; Liu, You-Hsi

    2017-04-01

    The occurrence of aquatic pollution is an inevitable environmental impact resulting from human civilization and societal advancement. Either from the natural or anthropogenic sources, the aqueous contaminants enter the natural environment and aggravate its quality. To assure the aquatic environment quality, the attached-growth biological degradation is often applied to removing organic contaminants by introducing contaminated water into a porous media which is covered by microorganism. Additionally, many natural aquatic systems also form such similar mechanism to increase their self-purification capability. To better understand this transport phenomenon and degradation mechanism in the biofilm for future application, the mathematic characterization of organic contaminant diffusion within the biofilm requires further exploration. The present study aimed to formulate a mathematic representation to quantify the diffusion of the organic contaminant in the biofilm. The BOD was selected as the target contaminant. A series of experiments were conducted to quantify the BOD diffusion in the biofilm under the conditions of influent BOD variation from 50 to 300 mg/L, COD:N:P ratios of 100:5:1 and 100:15:3, with or without auxiliary aeration. For diffusion coefficient calculation, the boundary condition of zero diffusion at the interface between microbial phase and contact media was assumed. With the principle of conservation of mass, the removed contaminants equal those that diffuse into the biofilm, and eq 1 results, and the diffusion coefficient (i.e., eq 2) can be solved through calculus with equations from table of integral. ∂2Sf- Df ∂z2 = Rf (1) --(QSin--QSout)2Y--- Df = 2μmaxxf(Sb + Ks ln-Ks-) Sb+Ks (2) Using the obtained experimental data, the diffusion coefficient was calculated to be 2.02*10-6 m2/d with influent COD of 50 mg/L at COD:N:P ratio of 100:5:1 with aeration, and this coefficient increased to 6.02*10-6 m2/d as the influent concentration increased to 300 mg/L. Meanwhile, the diffusion coefficient decreased to 2.61*10-7 m2/d as the retention time increased to 3 hours. Generally, the variation in diffusion coefficients between different COD:N:P ratios exhibits similar pattern with a slight decrease for the ratio of 100:15:3. The difference in diffusion coefficients between 1 and 2 hours was apparently greater than that between 2 and 3 hours, implying the diffusion was a critical factor for contaminant removal for the treatment condition with retention time of 1 hour or less, because higher retention time leads to better microbial degradation due to sufficient contact time for biological reactions. For 1 hour retention time, the increase in diffusion coefficient becomes limited as the influent COD concentration was equal to or above 150 mg/L. These obtained diffusion coefficients were applied to estimating the treatment efficiency for real domestic sewage. The result was found that the estimated effluent BOD concentrations were quite comparable to that obtained through experimental measurements.

  4. Influence of ozonation on COD in stabilized landfill leachate: Case study at Alor Pongsu landfill site, Perak

    NASA Astrophysics Data System (ADS)

    Zakaria, Siti Nor Farhana; Aziz, Hamidi Abdul

    2017-10-01

    One of an anaerobic stabilized landfill leachate in Malaysia underwent ozonation process. The sample rich in chemical oxygen demand (COD) was collected from Alor Pongsu Landfill Site, Perak (APLS). This site has been operating since year 2000. The leachate also contains other pollutants that exceeded the standard discharge limit for wastewater effluents. The effectiveness of ozone (O3) dosage, pH variation, and reaction time during ozonation was evaluated to measure the performance of O3 and determine the maximum operational conditions for this treatment. The maximum removal efficiency for COD was 50% at an ozone dosage of 31 g/m3, natural of pH 8.5, and reaction time of 60 min. The biodegradability ratio (BOD5/COD) improved from 0.08 to 0.23 after treatment with O3. The ozonation method has enhanced the biodegradability ratio and resulted high percentage removal of COD. This improvement showed that oxidation has a great potential to remediate recalcitrant pollutant wastes, such as landfill leachate.

  5. Development and optimization of dark Fenton oxidation for the treatment of textile wastewaters with high organic load.

    PubMed

    Papadopoulos, A E; Fatta, D; Loizidou, M

    2007-07-31

    The examination of the effectiveness of the chemical oxidation using Fenton's reagent (H(2)O(2)/Fe(2+)) for the reduction of the organic content of wastewater generated from a textile industry has been studied. The experimental results indicate that the oxidation process leads to a reduction in the chemical oxygen demand (COD) concentration up to 45%. Moreover, the reduction is reasonably fast at the first stages of the process, since the COD concentration is decreased up to 45% within four hours and further treatment time does not add up to the overall decrease in the COD concentration (48% reduction within six hours). The maximum color removal achieved was 71.5%. In addition, the alterations observed in the organic matter during the development of the process, as indicated by the ratios of COD/TOC and BOD/COD and the oxidation state, show that a great part of the organic substances, which are not completely mineralized, are subjected to structural changes to intermediate organic by-products.

  6. Study on nitrogen removal enhanced by shunt distributing wastewater in a constructed subsurface infiltration system under intermittent operation mode.

    PubMed

    Li, Yinghua; Li, Haibo; Sun, Tieheng; Wang, Xin

    2011-05-15

    Subsurface wastewater infiltration system is an efficient and economic technology in treating small scattered sewage. The removal rates are generally satisfactory in terms of COD, BOD(5), TP and SS removal; while nitrogen removal is deficient in most of the present operating SWIS due to the different requirements for the presence of oxygen for nitrification and denitrification processes. To study the enhanced nitrogen removal technologies, two pilot subsurface wastewater infiltration systems were constructed in a village in Shenyang, China. The filled matrix was a mixture of 5% activated sludge, 65% brown soil and 30% coal slag in volume ratio for both systems. Intermittent operation mode was applied in to supply sufficient oxygen to accomplish the nitrification; meanwhile sewage was supplemented as the carbon source to the lower part in to denitrify. The constructed subsurface wastewater infiltration systems worked successfully under wetting-drying ratio of 1:1 with hydraulic loading of 0.081 m(3)/(m(2)d) for over 4 months. Carbon source was supplemented with shunt ratio of 1:1 and shunt position at the depth of 0.5m. The experimental results showed that intermittent operation mode and carbon source supplementation could significantly enhance the nitrogen removal efficiency with little influence on COD and TP removal. The average removal efficiencies for NH(3)-N and TN were 87.7 ± 1.4 and 70.1 ± 1.0%, increased by 12.5 ± 1.0 and 8.6 ± 0.7%, respectively. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Anaerobic treatability of high oil and grease rendering wastewater.

    PubMed

    Nakhla, George; Al-Sabawi, Mustafa; Bassi, Amerjeet; Liu, Victor

    2003-08-29

    This study evaluated the use of a new biosurfactant, BOD-Balance, derived from cactus for the treatment of oil-and-grease-laden rendering wastewater anaerobically. Batch laboratory experimental results and preliminary full-scale data are presented. The biosurfactant affected a significant increase in the COD degradation rate for the raw wastewater. However, after reduction of the oil and grease (O&G) by dissolved air flotation, the biosurfactant did not exhibit any advantages. Modeling of the data indicated that various COD fractions, i.e. both soluble and particulate as well as total COD at various testing conditions conformed well to both zero-order and first-order models. The biosurfactant affected a 164-238 and 164-247% increase in COD and particulate COD biodegradation rate for the raw wastewater. The reduction of O&G concentration to <800 mg/l increased total and soluble COD degradation rates by 106%. Results from the full-scale mesophilic anaerobic digestion system indicated that the addition of the biosurfactant at doses of 130-200 mg/l decreased O&G concentrations from 66,300 to 10,200 mg/l over a 2-month-period.

  8. Start-up of an UASB-septic tank for community on-site treatment of strong domestic sewage.

    PubMed

    Al-Shayah, Mohammad; Mahmoud, Nidal

    2008-11-01

    Two community on-site UASB-septic tanks were operated in parallel over a six months period under two different hydraulic retention times (HRT) of 2 days for R1 and 4 days for R2 at mean sewage temperature of 24 degrees C. The sewage was characterised by a high COD(tot) concentration of 1189 mg/L, with a large fraction of COD(sus), viz. 54%. The achieved removal efficiencies in R1 and R2 for COD(tot), COD(sus), BOD5 and TSS were "56%, 87%, 59% and 81%" and "58%, 90%, 60% and 82%" for both systems, respectively. R2 achieved a marginal but significant (p<0.05) better removal efficiencies of those parameters as compared to R1. The COD(col) and COD(dis) removals in R1 and R2 were respectively 31% and 20%, and 34% and 22%. The sludge accumulation was very low suggesting that the desludging frequency will be of several years. Accordingly, the reactor can be adequately designed at 2 days HRT.

  9. Application of constructed wetlands to the treatment of leachates from a municipal solid waste landfill in Ibadan, Nigeria.

    PubMed

    Aluko, Olufemi Oludare; Sridhar, M K C

    2005-06-01

    Leachates are wastewater generated principally from landfills and solid waste disposal sites. Leachates emanating from municipal wastes are a major source of surface and groundwater pollution worldwide. Globally, leachates have been implicated in low yield of farm produce, developmental anomalies, low birth weights, leukemia incidence, and other cancers in communities around the site. They have also been implicated in hazards to the environment, loss of biodiversity, and contamination of water sources. At Aba-Eku in Nigeria, leachates are being discharged into the Omi Stream without treatment. A study was conducted on a method of leachate treatment that passes the leachate through constructed wetlands using Ipomoea aquatica (Forsk), a locally available plant found close to the landfill site. The aim of the study was to evolve a sustainable and cost-effective method of treatment whose effluents can be discharged into the Omi Stream with no or minimal impact. The study was descriptive and analytical in design. Samples were collected and analyzed with standard methods for pH, suspended solids (SS), biochemical oxygen demand (BOD), chemical oxygen demand (COD), ammonia, nitrate, and trace metals. Raw leachates were turbid and amber in color and contained suspended solids (197.5 mg/L), ammonia (610.9 mg/L), lead (1.64 mg/L), iron (198.10 mg/L), and manganese (23.20 mg/L). When the leachates were passed through the constructed wetland with eight hours' detention time, effluents showed significant reductions in suspended solids (81.01 percent), BOD (86.03 percent), and ammonia (97.77 percent). The study shows that a constructed wetland is a feasible tool for the treatment of leachates before their disposal into the environment in Nigeria and can help safeguard environmental quality.

  10. Electrolytic treatment of Standard Malaysian Rubber process wastewater.

    PubMed

    Vijayaraghavan, Krishnan; Ahmad, Desa; Yazid, Ahmad Yuzri Ahmad

    2008-01-31

    A new method of Standard Malaysian Rubber (SMR) process wastewater treatment was developed based on in situ hypochlorous acid generation. The hypochlorous acid was generated in an undivided electrolytic cell consisting of two sets of graphite as anode and stainless sheets as cathode. The generated hypochlorous acid served as an oxidizing agent to destroy the organic matter present in the SMR wastewater. For an influent COD concentration of 2960 mg/L at an initial pH 4.5+/-0.1, current density 74.5 mA/cm(2), sodium chloride content 3% and electrolysis period of 75 min, resulted in the following residual values pH 7.5, COD 87 mg/L, BOD(5) 60 mg/L, TOC 65 mg/L, total chlorine 146 mg/L, turbidity 7 NTU and temperature 48 degrees C, respectively. In the case of 2% sodium chloride as an electrolyte for the above said operating condition resulted in the following values namely: pH 7.2, COD 165 mg/L, BOD(5) 105 mg/L, TOC 120 mg/L, total chlorine 120 mg/L, turbidity 27 NTU and temperature 53 degrees C, respectively. The energy requirement were found to be 30 and 46 Wh/L, while treating 24 L of SMR wastewater at 2 and 3% sodium chloride concentration at a current density 74.5 mA/cm(2). The observed energy difference was due to the improved conductivity at high sodium chloride content.

  11. Water Quality Characteristics of Sembrong Dam Reservoir, Johor, Malaysia

    NASA Astrophysics Data System (ADS)

    Mohd-Asharuddin, S.; Zayadi, N.; Rasit, W.; Othman, N.

    2016-07-01

    A study of water quality and heavy metal content in Sembrong Dam water was conducted from April - August 2015. A total of 12 water quality parameters and 6 heavy metals were measured and classified based on the Interim National Water Quality Standard of Malaysia (INWQS). The measured and analyzed parameter variables were divided into three main categories which include physical, chemical and heavy metal contents. Physical and chemical parameter variables were temperature, dissolved oxygen (DO), biochemical oxygen demand (BOD), chemical oxygen demand (COD), total suspended solid (TSS), turbidity, pH, nitrate, phosphate, ammonium, conductivity and salinity. The heavy metals measured were copper (Cu), lead (Pb), aluminium (Al), chromium (Cr), ferum (Fe) and zinc (Zn). According to INWQS, the water salinity, conductivity, BOD, TSS and nitrate level fall under Class I, while the Ph, DO and turbidity lie under Class IIA. Furthermore, values of COD and ammonium were classified under Class III. The result also indicates that the Sembrong Dam water are not polluted with heavy metals since all heavy metal readings recorded were falls far below Class I.

  12. The quality of raw water for drinking water unit in Jakarta-Indonesia

    NASA Astrophysics Data System (ADS)

    Sidabutar, Noni Valeria; Hartono, Djoko M.; Soesilo, Tri Edhi Budhi; Hutapea, Reynold C.

    2017-03-01

    Water problems, i.e quality, quantity, continuity of clean water faced by the mostly urban area. Jakarta also faces similar issues, because the needs of society higher than the number of water fulfilled by the government. Moreover, Jakarta's water quality does not meet the standard set by the Government and heavily polluted by anthropogenic activities along its rivers. This research employs a quantitative research approach with the mix-method. It examines the raw water quality status for drinking water in West Tarum Canalin 2011-2015. The research results show water quality with this research, using water quality of with the water categorized as heavily-polluted category based on the Ministry of Environment's Decree No 115/2003 regarding the Guidelines for Determination of Water Quality Status. This present research also shown the water quality (parameters pH, temperature, Dissolved Oxygen (DO), Chemical Oxygen Demand (COD), and Biochemical Oxygen Demand (BOD)) from Jatiluhur Dam to the intake drinking water unit. In thirteen points of sampling also, the results obtained the parameters DO, COD, and BOD are fluctuating and exceed the standard.

  13. [Wastewater from the condensation and drying section of ABS was pretreated by microelectrolysis].

    PubMed

    Lai, Bo; Qin, Hong-Ke; Zhou, Yue-Xi; Song, Yu-Dong; Cheng, Jia-Yun; Sun, Li-Dong

    2011-04-01

    Wastewater from the condensation and drying section of acrylonitrile-butadiene-styrene (ABS) resin plant was pretreated by the microelectrolysis, and the effect of the influent pH value on the pollution removal efficiency of the microelectrolysis was mainly studied. In order to study the electrochemical action of the microelectrolysis for the degradation of toxic refractory organic pollutants, two control experiments of activated carbon and iron were set up. The results showed that the TOC removal efficiencies were all fluctuated between 40% and 60% under the condition of different influent pH values. The microelectrolysis can decompose and transform the toxic refractory organic pollutants and increase the BOD5/COD ratio from 0.32 to 0.60, which increased the biodegradability of ABS resin wastewater significantly. When the pH value of influent was 4.0, the BOD5/COD ratio of effluent reached 0.71. The result of UV-vis spectra indicates that the removal efficiency of the organic nitrile was the highest with influent pH was 4.0. Therefore, the best influent pH value of microelectrolysis was 4.0.

  14. Anaerobic co-digestion of aircraft deicing fluid and municipal wastewater sludge.

    PubMed

    Zitomer, D; Ferguson, N; McGrady, K; Schilling, J

    2001-01-01

    At many airports, aircraft deicing fluid and precipitation mix, becoming aircraft deicing runoff having a 5-day biochemical oxygen demand (BOD5) of 10(2) to 10(6) mg/L. Publicly owned treatment works can be used for aerobic biological treatment; however, it may be more economical to use anaerobic digesters to codigest a mixture of aircraft deicing fluid and sludge. The objectives of this investigation were to determine benefits and appropriate propylene glycol aircraft deicing fluid loadings to anaerobic codigesters. Results demonstrate aircraft deicing fluid can be successfully codigested to produce methane; supernatant BOD5 and Kjeldahl nitrogen concentration were not higher in codigesters compared to a conventional digester. Aircraft deicing fluid loadings as high as 1.6 g chemical oxygen demand (COD)/L x d were sustainable in codigesters, whereas system fed only aircraft deicing fluid with nutrients and alkalinity achieved a loading of 0.65 g COD/L x d. The sludge used increased digester alkalinity and provided nitrogen, iron, nickel, cobalt, and biomass required for methanogenesis. The deicer provides organics for increased methane production.

  15. Monitoring and assessment of water quality of Tasik Cempaka, Bangi

    NASA Astrophysics Data System (ADS)

    Sabri, Nurul Ain Syahirah Mohamad; Abdullah, Md Pauzi; Mat, Sohif

    2014-09-01

    A study was carried out to determine the status of water quality of Tasik Cempaka which is a part of Sg. Air Itam, located near the Bangi industrial area. The study was carried out for eight months from May and to December 2013. Eight sampling stations were selected from upstream to downstream of Sg. Air Itam which represent the entire body of the lake water. There are 8 parameters measured and Water Quality Indices (WQI) was calculated and classified according to the National Water Quality Standard (NWQS). The physical and chemical parameters were temperature, pH, conductivity, dissolve oxygen (DO), total suspended solid (TSS), ammoniacal nitrogen (AN), chemical oxygen demand (COD) and biochemical oxygen demand (BOD). Among parameters that are affected by pollution is AN, COD and BOD. Classification by WQI shows that the average for all sampling was 54 (dry) and 52 (wet). Both are of class III according to National Water Quality Standard (NWQS) indicating slightly polluted. This is mainly due to drainage from Bangi Golf Resort and Bangi-Putrajaya Hotel. Other factors are activities around Sg. Air Itam such as municipal activities, settlements and manufacturing industries.

  16. Strategic enhancement of Desertifilum tharense MSAK01 on dairy wastewater: an integrated approach for remediation and biomass production

    NASA Astrophysics Data System (ADS)

    Khemka, Ankita; Saraf, Meenu

    2017-10-01

    The present study is an integrated approach to study the potential of Desertifilum tharense MSAK01 for treatment of dairy wastewater (DWW) and enrichment of biomass. The present research includes the experiment designed for treatment of DWW. The physical and chemical parameters of wastewater quality, such as nitrate, phosphate, chloride, sulphur, and hardness, were studied. The level of nitrate and phosphate in water bodies was reduced by 94 and 98% in the effluent, respectively. The level of BOD and COD, measure of organic contaminants, were reduced to 70% (BOD5, initial level of 1840 mg O2 L-1) and 56% (COD, initial level of 2470 mg O2 L-1). The second module of the experiment was designed for biochemical extractions by harvesting the biomass (algal strain) grown in DWW. The result of this study shows that algal strain D. tharense is not only an agent for mitigation of pollutant load, but it can also be used as potential source for lipid, protein and carbohydrate.

  17. [Urban non-point source pollution control by runoff retention and filtration pilot system].

    PubMed

    Bai, Yao; Zuo, Jian-E; Gan, Li-Li; Low, Thong Soon; Miao, Heng-Feng; Ruan, Wen-Quan; Huang, Xia

    2011-09-01

    A runoff retention and filtration pilot system was designed and the long-term purification effect of the runoff was monitored. Runoff pollution characters in 2 typical events and treatment effect of the pilot system were analyzed. The results showed that the runoff was severely polluted. Event mean concentrations (EMCs) of SS, COD, TN and TP in the runoff were 361, 135, 7.88 and 0.62 mg/L respectively. The runoff formed by long rain presented an obvious first flush effect. The first 25% flow contributed more than 50% of the total pollutants loading of SS, TP, DTP and PO4(3-). The pilot system could reduce 100% of the non-point source pollution if the volume of the runoff was less than the retention tank. Otherwise the overflow will be purification by the filtration pilot system and the removal rates of SS, COD, TN, TP, DTP and PO4(3-) reached 97.4% , 61.8%, 22.6%, 85.1%, 72.1%, and 85.2% respectively. The system was stable and the removal rate of SS, COD, TN, and TP were 98.6%, 65.4%, 55.1% and 92.6%. The whole system could effectively remove the non-point source pollution caused by runoff.

  18. Enhancing the biological degradability of sulfamethoxazole by ionizing radiation treatment in aqueous solution

    NASA Astrophysics Data System (ADS)

    Sági, Gyuri; Kovács, Krisztina; Bezsenyi, Anikó; Csay, Tamás; Takács, Erzsébet; Wojnárovits, László

    2016-07-01

    Changes of biodegradability and toxicity were followed up on aqueous solutions of sulfamethoxazole (SMX), during ionizing radiation treatment. The biodegradability of SMX (0.1 mmol dm-3) was specified by five-day biological oxygen demand (BOD5), using municipal activated sludge, and the results showed an improvement with applying only 0.4 kGy dose. BOD5 further increased with prolonged irradiation, indicating a conversion of SMX, a non-biodegradable compound, to biologically treatable substances. At 2.5 kGy dose, the BOD5/COD ratio increased from 0 to 0.16. The total organic carbon (TOC) content showed a decrease of only 15% at this point, thus high degree of mineralization is not necessary to make SMX digestible for the low concentrations of microorganisms used during BOD5 measurements. Increment in respiration inhibition of municipal activated sludge was observed with increasing the dose. The EC50 values showed a decrease of one order of magnitude when changing the dose from 0.4 kGy to 2.5 kGy. The increase of inhibition and formation of H2O2 showed a strong correlation.

  19. Cassava Stillage Treatment by Thermophilic Anaerobic Continuously Stirred Tank Reactor (CSTR)

    NASA Astrophysics Data System (ADS)

    Luo, Gang; Xie, Li; Zou, Zhonghai; Zhou, Qi

    2010-11-01

    This paper assesses the performance of a thermophilic anaerobic Continuously Stirred Tank Reactor (CSTR) in the treatment of cassava stillage under various organic loading rates (OLRs) without suspended solids (SS) separation. The reactor was seeded with mesophilic anaerobic granular sludge, and the OLR increased by increments to 13.80 kg COD/m3/d (HRT 5d) over 80 days. Total COD removal efficiency remained stable at 90%, with biogas production at 18 L/d (60% methane). Increase in the OLR to 19.30 kg COD/m3/d (HRT 3d), however, led to a decrease in TCOD removal efficiency to 79% due to accumulation of suspended solids and incomplete degradation after shortened retention time. Reactor performance subsequently increased after OLR reduction. Alkalinity, VFA and pH levels were not significantly affected by OLR variation, indicating that no additional alkaline or pH adjustment is required. More than half of the SS in the cassava stillage could be digested in the process when HRT was 5 days, which demonstrated the suitability of anaerobic treatment of cassava stillage without SS separation.

  20. Coagulation-flocculation sequential with Fenton or Photo-Fenton processes as an alternative for the industrial textile wastewater treatment.

    PubMed

    GilPavas, Edison; Dobrosz-Gómez, Izabela; Gómez-García, Miguel Ángel

    2017-04-15

    In this study, the industrial textile wastewater was treated using a chemical-based technique (coagulation-flocculation, C-F) sequential with an advanced oxidation process (AOP: Fenton or Photo-Fenton). During the C-F, Al 2 (SO 4 ) 3 was used as coagulant and its optimal dose was determined using the jar test. The following operational conditions of C-F, maximizing the organic matter removal, were determined: 700 mg/L of Al 2 (SO 4 ) 3  at pH = 9.96. Thus, the C-F allowed to remove 98% of turbidity, 48% of Chemical Oxygen Demand (COD), and let to increase in the BOD 5 /COD ratio from 0.137 to 0.212. Subsequently, the C-F effluent was treated using each of AOPs. Their performances were optimized by the Response Surface Methodology (RSM) coupled with a Box-Behnken experimental design (BBD). The following optimal conditions of both Fenton (Fe 2+ /H 2 O 2 ) and Photo-Fenton (Fe 2+ /H 2 O 2 /UV) processes were found: Fe 2+ concentration = 1 mM, H 2 O 2 dose = 2 mL/L (19.6 mM), and pH = 3. The combination of C-F pre-treatment with the Fenton reagent, at optimized conditions, let to remove 74% of COD during 90 min of the process. The C-F sequential with Photo-Fenton process let to reach 87% of COD removal, in the same time. Moreover, the BOD 5 /COD ratio increased from 0.212 to 0.68 and from 0.212 to 0.74 using Fenton and Photo-Fenton processes, respectively. Thus, the enhancement of biodegradability with the physico-chemical treatment was proved. The depletion of H 2 O 2 was monitored during kinetic study. Strategies for improving the reaction efficiency, based on the H 2 O 2 evolution, were also tested. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. 40 CFR 419.13 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...), the Regional Administrator may substitute TOC as a parameter in lieu of COD Effluent limitations for TOC shall be based on effluent data from the plant correlating TOC to BOD5. If in the judgment of the Regional Administrator, adequate correlation data are not available, the effluent limitations for TOC shall...

  2. 75 FR 39735 - Mandatory Reporting of Greenhouse Gases From Magnesium Production, Underground Coal Mines...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-12

    ... Available Monitoring Methods BOD 5 5-day biochemical oxygen demand CAA Clean Air Act CBI confidential... carbon dioxide CO 2 e CO 2 -equivalent COD chemical oxygen demand DOC Degradable organic carbon EIA... of ventilation systems by the Mine Safety and Health Administration (MSHA) are subject to 40 CFR part...

  3. 40 CFR 419.36 - Standards of performance for new sources (NSPS).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... grease 6.6 3.5 Phenolic compounds 0.158 .077 Ammonia as N 23.4 10.7 Sulfide 0.140 0.063 Total chromium 0...) BOD5 7.7 4.1 TSS 5.2 3.3 COD 1 47.0 24.0 Oil and grease 2.4 1.3 Phenolic compounds 0.056 0.027 Ammonia...

  4. 40 CFR 455.22 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) PESTICIDE CHEMICALS Organic Pesticide... not exceed— COD 13.000 9.0000 BOD5 7.400 1.6000 TSS 6.100 1.8000 Organic pesticide chemicals .010... ingredients. For organic pesticide chemicals—metric units: Kilogram/1,000 kg of organic pesticide chemicals...

  5. 40 CFR 455.22 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) PESTICIDE CHEMICALS Organic Pesticide... not exceed— COD 13.000 9.0000 BOD5 7.400 1.6000 TSS 6.100 1.8000 Organic pesticide chemicals .010... ingredients. For organic pesticide chemicals—metric units: Kilogram/1,000 kg of organic pesticide chemicals...

  6. 40 CFR 455.22 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) PESTICIDE CHEMICALS Organic Pesticide... not exceed— COD 13.000 9.0000 BOD5 7.400 1.6000 TSS 6.100 1.8000 Organic pesticide chemicals .010... ingredients. For organic pesticide chemicals—metric units: Kilogram/1,000 kg of organic pesticide chemicals...

  7. 40 CFR 417.143 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 0.06 .03 Surfactants 0.04 .02 Oil and grease 0.02 .01 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.02 0.01 COD 0.10 .05 TSS 0.06 .03 Surfactants 0.04 .02 Oil and grease 0...

  8. 40 CFR 417.123 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 0.02 .01 Surfactants 0.20 .10 Oil and grease 0.04 .02 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.20 0.10 COD 0.90 .48 TSS 0.02 .01 Surfactants 0.20 .10 Oil and grease 0...

  9. 40 CFR 417.113 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 0.02 .01 Surfactants 0.20 .10 Oil and grease 0.04 .02 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.20 0.10 COD 0.90 .45 TSS 0.02 .01 Surfactants 0.20 .10 Oil and grease 0...

  10. 40 CFR 417.133 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 0.04 .02 Surfactants 0.30 .15 Oil and grease 0.06 .03 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.30 0.15 COD 1.50 .75 TSS 0.04 .02 Surfactants 0.30 .15 Oil and grease 0...

  11. 40 CFR 417.133 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 0.04 .02 Surfactants 0.30 .15 Oil and grease 0.06 .03 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.30 0.15 COD 1.50 .75 TSS 0.04 .02 Surfactants 0.30 .15 Oil and grease 0...

  12. 40 CFR 417.193 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... TSS 0.20 .10 Surfactants 0.40 .10 Oil and grease 0.04 .02 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.60 0.30 COD 2.70 1.35 TSS 0.20 .10 Surfactants 0.40 .10 Oil and...

  13. 40 CFR 417.193 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... TSS 0.20 .10 Surfactants 0.40 .10 Oil and grease 0.04 .02 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.60 0.30 COD 2.70 1.35 TSS 0.20 .10 Surfactants 0.40 .10 Oil and...

  14. 40 CFR 417.123 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 0.02 .01 Surfactants 0.20 .10 Oil and grease 0.04 .02 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.20 0.10 COD 0.90 .48 TSS 0.02 .01 Surfactants 0.20 .10 Oil and grease 0...

  15. 40 CFR 417.113 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 0.02 .01 Surfactants 0.20 .10 Oil and grease 0.04 .02 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.20 0.10 COD 0.90 .45 TSS 0.02 .01 Surfactants 0.20 .10 Oil and grease 0...

  16. 40 CFR 417.173 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 0.02 .01 Surfactants 0.02 .01 Oil and grease 0.01 .01 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.02 0.01 COD 0.14 .07 TSS 0.02 .01 Surfactants 0.02 .01 Oil and grease 0...

  17. 40 CFR 417.183 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 0.02 .01 Surfactants 0.02 .01 Oil and grease 0.02 .01 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.02 0.01 COD 0.10 .05 TSS 0.02 .01 Surfactants 0.02 .01 Oil and grease 0...

  18. 40 CFR 417.93 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 0.09 .03 Surfactants 0.09 .03 Oil and grease 0.21 .07 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.07 0.02 COD 0.27 .09 TSS 0.09 .03 Surfactants 0.09 .03 Oil and grease 0...

  19. 40 CFR 417.103 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 0.04 .02 Surfactants 0.36 .18 Oil and grease 0.08 .04 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.30 0.19 COD 1.10 .55 TSS 0.04 .02 Surfactants 0.36 .18 Oil and grease 0...

  20. 40 CFR 417.143 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 0.06 .03 Surfactants 0.04 .02 Oil and grease 0.02 .01 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.02 0.01 COD 0.10 .05 TSS 0.06 .03 Surfactants 0.04 .02 Oil and grease 0...

  1. 40 CFR 417.93 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 0.09 .03 Surfactants 0.09 .03 Oil and grease 0.21 .07 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.07 0.02 COD 0.27 .09 TSS 0.09 .03 Surfactants 0.09 .03 Oil and grease 0...

  2. 40 CFR 417.103 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 0.04 .02 Surfactants 0.36 .18 Oil and grease 0.08 .04 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.30 0.19 COD 1.10 .55 TSS 0.04 .02 Surfactants 0.36 .18 Oil and grease 0...

  3. 40 CFR 417.183 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 0.02 .01 Surfactants 0.02 .01 Oil and grease 0.02 .01 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.02 0.01 COD 0.10 .05 TSS 0.02 .01 Surfactants 0.02 .01 Oil and grease 0...

  4. 40 CFR 417.173 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 0.02 .01 Surfactants 0.02 .01 Oil and grease 0.01 .01 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.02 0.01 COD 0.14 .07 TSS 0.02 .01 Surfactants 0.02 .01 Oil and grease 0...

  5. 40 CFR 417.173 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 0.02 .01 Surfactants 0.02 .01 Oil and grease 0.01 .01 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.02 0.01 COD 0.14 .07 TSS 0.02 .01 Surfactants 0.02 .01 Oil and grease 0...

  6. 40 CFR 417.193 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... TSS 0.20 .10 Surfactants 0.40 .10 Oil and grease 0.04 .02 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.60 0.30 COD 2.70 1.35 TSS 0.20 .10 Surfactants 0.40 .10 Oil and...

  7. 40 CFR 417.193 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... TSS 0.20 .10 Surfactants 0.40 .10 Oil and grease 0.04 .02 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.60 0.30 COD 2.70 1.35 TSS 0.20 .10 Surfactants 0.40 .10 Oil and...

  8. 40 CFR 417.183 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 0.02 .01 Surfactants 0.02 .01 Oil and grease 0.02 .01 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.02 0.01 COD 0.10 .05 TSS 0.02 .01 Surfactants 0.02 .01 Oil and grease 0...

  9. 40 CFR 417.143 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 0.06 .03 Surfactants 0.04 .02 Oil and grease 0.02 .01 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.02 0.01 COD 0.10 .05 TSS 0.06 .03 Surfactants 0.04 .02 Oil and grease 0...

  10. 40 CFR 417.183 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 0.02 .01 Surfactants 0.02 .01 Oil and grease 0.02 .01 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.02 0.01 COD 0.10 .05 TSS 0.02 .01 Surfactants 0.02 .01 Oil and grease 0...

  11. 40 CFR 417.183 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 0.02 .01 Surfactants 0.02 .01 Oil and grease 0.02 .01 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.02 0.01 COD 0.10 .05 TSS 0.02 .01 Surfactants 0.02 .01 Oil and grease 0...

  12. 40 CFR 417.143 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 0.06 .03 Surfactants 0.04 .02 Oil and grease 0.02 .01 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.02 0.01 COD 0.10 .05 TSS 0.06 .03 Surfactants 0.04 .02 Oil and grease 0...

  13. 40 CFR 417.173 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 0.02 .01 Surfactants 0.02 .01 Oil and grease 0.01 .01 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.02 0.01 COD 0.14 .07 TSS 0.02 .01 Surfactants 0.02 .01 Oil and grease 0...

  14. 40 CFR 417.193 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... TSS 0.20 .10 Surfactants 0.40 .10 Oil and grease 0.04 .02 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.60 0.30 COD 2.70 1.35 TSS 0.20 .10 Surfactants 0.40 .10 Oil and...

  15. 40 CFR 417.173 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 0.02 .01 Surfactants 0.02 .01 Oil and grease 0.01 .01 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.02 0.01 COD 0.14 .07 TSS 0.02 .01 Surfactants 0.02 .01 Oil and grease 0...

  16. 40 CFR 417.143 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 0.06 .03 Surfactants 0.04 .02 Oil and grease 0.02 .01 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.02 0.01 COD 0.10 .05 TSS 0.06 .03 Surfactants 0.04 .02 Oil and grease 0...

  17. Wet air oxidation induced enhanced biodegradability of distillery effluent.

    PubMed

    Malik, S N; Saratchandra, T; Tembhekar, P D; Padoley, K V; Mudliar, S L; Mudliar, S N

    2014-04-01

    The present study reports the feasibility of Wet Air Oxidation (WAO) as a pretreatment option for enhanced biodegradation of complex distillery effluent. Initially, the distillery effluent was pretreated by WAO at different process conditions (pressure, temperature and time) to facilitate enhancement in the biodegradability index (BI = BOD5: COD ratio). The biodegradability of WAO pretreated effluent was evaluated by subjecting it to aerobic biodegradation and anaerobic followed by aerobic biodegradation. Aerobic biodegradation of pretreated effluent with enhanced biodegradability index (BI = 0.4-0.8) showed enhanced COD reduction of up to 67.7%, whereas the untreated effluent (BI = 0.17) indicated poor COD reduction of only 22.5%. Anaerobic followed by aerobic biodegradation of pretreated effluent has shown up to 87.9% COD reduction, while the untreated effluent has shown only 43.1% COD reduction. Bio-kinetic parameters also confirmed the increased rate of bio-oxidation at enhanced BIs. The results indicate that the WAO pretreatment facilitates enhanced bio-oxidation/bio-degradation of complex effluents like the distillery spent wash. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Cod Fractions In Mechanical-Biological Wastewater Treatment Plant

    NASA Astrophysics Data System (ADS)

    Płuciennik-Koropczuk, Ewelina; Jakubaszek, Anita; Myszograj, Sylwia; Uszakiewicz, Sylwia

    2017-03-01

    The paper presents results of studies concerning the designation of COD fraction in the raw, mechanically treated and biologically treated wastewater. The test object was a wastewater treatment plant with the output of over 20,000 PE. The results were compared with data received in the ASM models. During investigation following fractions of COD were determined: dissolved non-biodegradable SI, dissolved easily biodegradable SS, in organic suspension slowly degradable XS and in organic suspension non-biodegradable XI. Methodology for determining the COD fraction was based on the guidelines ATV-A 131. The real percentage of each fraction in total COD in raw wastewater are different from data received in ASM models.

  19. Combination of ozonation, activated carbon, and biological aerated filter for advanced treatment of dyeing wastewater for reuse.

    PubMed

    Zou, Xiao-Ling

    2015-06-01

    Laboratorial scale experiments were performed to investigate and evaluate the performance and removal characteristics of organics, color, and genotoxicity by an integrated process including ozonation, activated carbon (AC), and biological aerated filter (BAF) for recycling biotreated dyeing wastewater (BTDW) collected from a cotton textile factory. Influent chemical oxygen demand (COD) in the range of 156 - 252 mg/L, 5-day biochemical oxygen demand (BOD5) of 13.5 - 21.7 mg/L, and color of 58 - 76° were observed during the 20-day continuous operation. Outflows with average COD of 43 mg/L, BOD5 of 6.6 mg/L, and color of 5.6° were obtained after being decontaminated by the hybrid system with ozone dosage of 0.25 mg O3applied/mg COD0, 40 min ozonation contact time, 30 min hydraulic retention time (HRT) for AC treatment, and 2.5 h HRT for BAF treatment. More than 82 % of the genotoxicity of BTDW was eliminated in the ozonation unit. The genotoxicity of the BAF effluent was less than 1.33 μg 4-nitroquinoline-N-oxide/L. Ozonation could change the organics molecular structures, destroy chromophores, increase the biodegradability, and obviously reduce the genotoxicity of BTDW. Results showed that the combined process could guarantee water reuse with high quality.

  20. Integrated catalytic wet air oxidation and biological treatment of wastewater from Vitamin B 6 production

    NASA Astrophysics Data System (ADS)

    Kang, Jianxiong; Zhan, Wei; Li, Daosheng; Wang, Xiaocong; Song, Jing; Liu, Dongqi

    This study investigated the feasibility of coupling a catalytic wet air oxidation (CWAO), with CuO/Al 2O 3 as catalyst, and an anaerobic/aerobic biological process to treat wastewater from Vitamin B 6 production. Results showed that the CWAO enhanced the biodegradability (BOD 5/COD) from 0.10 to 0.80. The oxidized effluents with COD of 10,000 mg l -1 was subjected to subsequent continuous anaerobic/aerobic oxidation, and 99.3% of total COD removal was achieved. The quality of the effluent obtained met the discharge standards of water pollutants for pharmaceutical industry Chemical Synthesis Products Category (GB21904-2008), and thereby it implies that the integrated CWAO and anaerobic/aerobic biological treatment may offer a promising process to treat wastewater from Vitamin B 6 production.

  1. Start-up, steady state performance and kinetic evaluation of a thermophilic integrated anaerobic-aerobic bioreactor (IAAB).

    PubMed

    Chan, Yi Jing; Chong, Mei Fong; Law, Chung Lim

    2012-12-01

    Thermophilic treatment of palm oil mill effluent (POME) was studied in a novel integrated anaerobic-aerobic bioreactor (IAAB). The IAAB was subjected to a program of steady-state operation over a range of organic loading rate (OLR)s, up to 30 g COD/L day in order to evaluate its treatment capacity. The thermophilic IAAB achieved high chemical oxygen demand (COD), biochemical oxygen demand (BOD) and total suspended solids (TSS) removal efficiencies of more than 99% for OLR up to 18.5 g COD/L day. High methane yield of 0.32 LCH(4) (STP)/g COD(removed) with compliance of the final treated effluent to the discharge limit were achieved. This is higher than that of the mesophilic system due to the higher maximum specific growth rate (μ(max)) of the thermophilic microorganisms. Besides, coupling the model of Grau second order model (anaerobic system) with the model of Monod (aerobic system) will completely define the IAAB system. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. The use of waterworks sludge for the treatment of vegetable oil refinery industry wastewater.

    PubMed

    Basibuyuk, M; Kalat, D G

    2004-03-01

    Water treatment works using coagulation/flocculation in the process stream will generate a waste sludge. This sludge is termed as ferric, alum, or lime sludge based on which coagulant was primarily used. The works in Adana, Turkey uses ferric chloride. The potential for using this sludge for the treatment of vegetable oil refinery industry wastewater by coagulation has been investigated. The sludge acted as a coagulant and excellent oil and grease, COD and TSS removal efficiencies were obtained. The optimum conditions were a pH of 6 and a sludge dose of 1100 mg SS l(-1). The efficiency of sludge was also compared with alum and ferric chloride for the vegetable oil refinery wastewater. At doses of 1300-1900 mg SS l(-1), the sludge was as effective as ferric chloride and alum at removing oil and grease, COD, and TSS. In addition, various combinations of ferric chloride and waterworks sludge were also examined. Under the condition of 12.5 mg l(-1) fresh ferric chloride and 1000 mg SS l(-1) sludge dose, 99% oil and grease 99% TSS and 83% COD removal efficiencies were obtained.

  3. 40 CFR 419.16 - Standards of performance for new sources (NSPS).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (kilograms per cubic meter of flow) BOD5 11.8 6.3 TSS 8.3 4.9 COD 1 61.0 32 Oil and grease 3.6 1.9 Phenolic... 21.7 11.2 Oil and grease 1.3 0.70 Phenolic compounds 0.031 0.016 Ammonia as N 1.0 0.45 Sulfide 0.027...

  4. EFFECT OF AERATION BASIN CONFIGURATION ON BULKING AT LOW ORGANIC LOADING

    EPA Science Inventory

    Continuous-flow laboratory-scale activated sludge units were operated on domestic sewage at low F/M. In CSTR units at the F/M range of 0.05-0.25 g COD removed/g TMLVSS, day, bulking did not occur with a weak (BOD(5) = 139 mg/L) sewage feed and TMLSS = 1.5 g/L. Supplementation of ...

  5. 40 CFR 417.142 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... anhydrous product) BOD5 0.03 0.01 COD 0.15 .05 TSS 0.09 .03 Surfactants 0.06 .02 Oil and grease 0.03 .01 pH... .03 Surfactants 0.06 .02 Oil and grease 0.03 .01 pH (1) (1) 1 Within the range 6.0 to 9.0. [39 FR...

  6. 40 CFR 417.142 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... anhydrous product) BOD5 0.03 0.01 COD 0.15 .05 TSS 0.09 .03 Surfactants 0.06 .02 Oil and grease 0.03 .01 pH... .03 Surfactants 0.06 .02 Oil and grease 0.03 .01 pH (1) (1) 1 Within the range 6.0 to 9.0. [39 FR...

  7. 40 CFR 417.142 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... anhydrous product) BOD5 0.03 0.01 COD 0.15 .05 TSS 0.09 .03 Surfactants 0.06 .02 Oil and grease 0.03 .01 pH... .03 Surfactants 0.06 .02 Oil and grease 0.03 .01 pH (1) (1) 1 Within the range 6.0 to 9.0. [39 FR...

  8. 40 CFR 417.142 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... anhydrous product) BOD5 0.03 0.01 COD 0.15 .05 TSS 0.09 .03 Surfactants 0.06 .02 Oil and grease 0.03 .01 pH... .03 Surfactants 0.06 .02 Oil and grease 0.03 .01 pH (1) (1) 1 Within the range 6.0 to 9.0. [39 FR...

  9. 40 CFR 417.142 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... anhydrous product) BOD5 0.03 0.01 COD 0.15 .05 TSS 0.09 .03 Surfactants 0.06 .02 Oil and grease 0.03 .01 pH... .03 Surfactants 0.06 .02 Oil and grease 0.03 .01 pH (1) (1) 1 Within the range 6.0 to 9.0. [39 FR...

  10. Effects of titanium dioxide mediated dairy waste activated sludge deflocculation on the efficiency of bacterial disintegration and cost of sludge management.

    PubMed

    Godvin Sharmila, V; Kavitha, S; Rajashankar, K; Yeom, Ick Tae; Rajesh Banu, J

    2015-12-01

    This investigation explores the influence of titanium dioxide (TiO2) in deflocculating (removal of extracellular polymeric substance - EPS) the sludge and subsequent biomass disintegration by bacterial pretreatment. The EPS removed at an optimized TiO2 dosage of 0.03g/g of SS of TiO2 and a solar radiation exposure time of 15min to enhance the subsequent bacterial disintegration. The outcomes of the bacterial pretreatment reveal SS reduction and COD solubilization for the deflocculated (EPS removed and bacterially pretreated) sludge was observed to be 22.8% and 22.9% which was comparatively greater than flocculated (raw sludge inoculated with bacteria) and control (raw) sludge. The higher methane production potential of about 0.43(gCOD/gVSS) was obtained in deflocculated sludge than the flocculated (0.20gCOD/gVSS) and control (0.073gCOD/gVSS). Economic assessment of this study provides a net profit of about 131.9USD/Ton in deflocculated sludge. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Enhanced leachate recirculation and stabilization in a pilot landfill bioreactor in Taiwan.

    PubMed

    Huang, Fu-Shih; Hung, Jui-Min; Lu, Chih-Jen

    2012-08-01

    This study focused on the treatment of municipal solid waste (MSW) by modification and recirculation of leachate from a simulated landfill bioreactor. Hydrogen peroxide was added to recirculated leachate to maintain a constant oxygen concentration as the leachate passed again through the simulated landfill bioreactor. The results showed that leachate recirculation increased the dissolved oxygen concentration in the test landfill bioreactor. Over a period of 405 days, the biochemical oxygen demand (BOD(5)) in the collected leachate reduced by 99.7%, whereas the chemical oxygen demand (COD) reduced by 96%. The BOD(5)/COD ratio at the initial stage of 0.9 improved to 0.09 under aerobic conditions (leachate recirculation with added hydrogen peroxide) compared with the anaerobic test cell 0.11 (leachate recirculation alone without hydrogen peroxide). The pH increased from 5.5 to 7.6, and the degradation rate of organic carbon was 93%. Leachate recirculation brings about the biodegradation of MSW comparatively faster than the conventional landfill operation. The addition of a constant concentration of hydrogen peroxide was found to further increase the biodegradation. This increased biodegradation rate ultimately enables an MSW landfill to reach a stable state sooner and free up the land for further reuse.

  12. The feasibility of using combined TiO2 photocatalysis oxidation and MBBR process for advanced treatment of biologically pretreated coal gasification wastewater.

    PubMed

    Xu, Peng; Han, Hongjun; Hou, Baolin; Zhuang, Haifeng; Jia, Shengyong; Wang, Dexin; Li, Kun; Zhao, Qian

    2015-01-01

    The study examined the feasibility of using combined heterogeneous photocatalysis oxidation (HPO) and moving bed biofilm reactor (MBBR) process for advanced treatment of biologically pretreated coal gasification wastewater (CGW). The results indicated that the TOC removal efficiency was significantly improved in HPO. Gas chromatography-mass spectrometry (GC-MS) analysis indicated that the HPO could be employed to eliminate bio-refractory and toxic compounds. Meanwhile, the BOD5/COD of the raw wastewater was increased from 0.08 to 0.49. Furthermore, in the integration of TiO2 photocatalysis oxidation and MBBR process, the effluent of COD, BOD5, TOC, NH4(+)-N and TN were 22.1 mg/L, 1.1 mg/L, 11.8 mg/L, 4.1mg/L and 13.7 mg/L, respectively, which all met class-I criteria of the Integrated Wastewater Discharge Standard (GB18918-2002, China). The total operating cost was 2.8CNY/t. Therefore, there is great potential for the combined system in engineering applications as a final treatment for biologically pretreated CGW. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Water quality of Cisadane River based on watershed segmentation

    NASA Astrophysics Data System (ADS)

    Effendi, Hefni; Ayu Permatasari, Prita; Muslimah, Sri; Mursalin

    2018-05-01

    The growth of population and industrialization combined with land development along river cause water pollution and environmental deterioration. Cisadane River is one of the river in Indonesia where urbanization, industrialization, and agricultural are extremely main sources of pollution. Cisadane River is an interesting case for investigating the effect of land use to water quality and comparing water quality in every river segment. The main objectives with this study were to examine if there is a correlation between land use and water quality in Cisadane River and there is a difference in water quality between the upstream section of Cisadane River compared with its downstream section. This study compared water quality with land use condition in each segment of river. Land use classification showed that river segment that has more undeveloped area has better water quality compared to river segment with developed area. in general, BOD and COD values have increased from upstream to downstream. However, BOD and COD values do not show a steady increase in each segment Water quality is closely related to the surrounding land use.Therefore, it can not be concluded that the water quality downstream is worse than in the upstream area.

  14. Water quality study of Sunter River in Jakarta, Indonesia

    NASA Astrophysics Data System (ADS)

    Martinus, Y.; Astono, W.; Hendrawan, D.

    2018-01-01

    Sunter River flows in the city of Jakarta with the designation of river water for agricultural purposes, and can be utilized for urban business and hydroelectric power industry. This study aims to determine the Sunter River water quality based on physical and chemical parameters. Water sampling was conducted 2 times which done in April and May with 5 sampling stations for measuring. The samples was analayzed in the laboratory according SNI methods for parameters BOD, COD, PO4 3-, NO3, Oil & Grease and Detergents. The quality status of Sunter River is determined by the Pollutant Index method. The results show that the water quality of Sunter River is influenced by organic parameter as dominant pollutant with COD concentration ranging from 48 mg/l - 182.4 mg/l and BOD concentration ranging from 14.69 mg/L - 98.91 mg/L. The Pollution Index calculation results show that the water quality status of Sunter River is moderate polluted with IP 6.47. The source of pollutants generally comes from the urban drainage channels, tributaries, and slaughtering industry. The results of this study expected to be use by the government to improve the water quality of Sunter River for better environment.

  15. Cleaner production options for reducing industrial waste: the case of batik industry in Malang, East Java-Indonesia

    NASA Astrophysics Data System (ADS)

    Sirait, M.

    2018-01-01

    The aim of this research is to conduct cleaner production options for improving the environmental performance during the production of batik industry, the case of UKM batik, Malang, East Java. Batik industry is one of small and medium textile industry which has contribution to economic growth in Malang. However, during production the batik, it generates wastewater that has potential to decrease the environmental performance. Wastewater from Celaket batik industry has BOD, COD, TSS, and pH level is far larger than the threshold of water quality standard as a result of use chemical substance during the dyes processing. In order to prevent generating wastewater, this study utilized cleaner production options, such as substitution of input material.Substitution of input material for dyes process was implemented by replacement chemical dyes (e.g.indigosol, nafthol, rapid) with natural dyes (e.g. Indigofero Tintoria). Modifying of technology/equipment was conducted by developing wastewater treatment equipment to reduce waste of batik production. The implementation of this strategy was carried out by changing input material from chemical dyes with natural dyes. The CP uptake could reduce significantly the environmental impact in term of reduction of COD, BOD, and TSS.

  16. Effect of water depth on the removal of organic matter in horizontal subsurface flow constructed wetlands.

    PubMed

    Aguirre, Paula; Ojeda, Esther; García, Joan; Barragán, Jesús; Mujeriego, Rafael

    2005-01-01

    The objective of this article is to evaluate the effect of water depth on organic matter removal efficiency in horizontal subsurface flow constructed wetlands (SSFs). Experiments were carried out in a pilot plant comprising eight parallel SSF of almost equal surface area (54-56 m2 each) and treating urban wastewater. Each SSF differs from the others in the aspect ratio or the size of the granular medium or the water depth. During a period of two years, the shallow SSFs (0.27 m water depth) removed more chemical oxygen demand (COD) (72-81%), biochemical oxygen demand (BOD)5 (72-85%), ammonia (35-56%), and dissolved reactive phosphorus (DRP) (8-23%) than deep SSFs (0.5 m water depth) (59-64% for COD; 51-57% for BOD5; 18-29% for ammonia; and 0-7% for DRP). Experiments carried out during the summer indicated that sulphate reduction accounted for a clearly higher organic matter removal in the deep SSFs than in the shallow ones. Denitrification seemed to be a significant mechanism for organic matter removal to occur in shallow SSFs. The results suggest that the relative contribution of different metabolic pathways varies with depth.

  17. Water quality improvement of treated wastewater by intermittent soil percolation.

    PubMed

    Castillo, G; Mena, M P; Dibarrart, F; Honeyman, G

    2001-01-01

    Our research aimed to evaluate intermittent soil infiltration of treated sewage for reuse in the north of Chile. Aerated lagoon effluent was infiltrated in columns packed with native soils (sandy-lime, lime-gravel and limey-sand). Columns were operated for more than a year under different cycles of filling and drying, depths and load pressures depending on soil characteristics. The efficiency of the system was determined through influent-effluent microbiological indicators level (faecal coliforms, E. coli, Salmonella spp, MS2 phage, and protozoan cysts), physicochemical characterisation (TOC, COD, BOD, nitrogen), and hydraulic flow measurement. Results showed: (a) high reduction of enteric bacteria (5-7 log10), some inactivation of phage (2-4 log10) and complete removal of intestinal cyst; (b) stable removal of organic matter (80-90% reduction of TOC, COD, BOD); and (c) partial ammonia reduction through adsorption and nitrification with denitrification mainly occurring in sandy soil. Preliminary data from pilot plant working in the field showed better results that those obtained in the laboratory especially removal of microbiological indicators. Microbiological quality of effluent met Class A regulations for agricultural reuse (WHO, 1989) and the system looks like an attractive alternative to cope with water shortage in the region.

  18. Polishing of POME by Chlorella sp. in suspended and immobilized system

    NASA Astrophysics Data System (ADS)

    Lahin, F. A.; Sarbatly, R.; Suali, E.

    2016-06-01

    The effect of using suspended and immobilized growth of Chlorella sp. to treat POME was studied. Cotton and nylon ropes were used as the immobilization material in a rotating microalgae biofilm reactor. The result showed that POME treated in suspended growth system was able to remove 81.9% and 55.5% of the total nitrogen (TN) and total phosphorus (TP) respectively. Whereas the immobilized system showed lower removal of 77.22% and 53.02% for TN and TP. Lower performance of immobilized microalgae is due to the limited light penetration and supply of CO2 inside the immobilization materials. The rotating microalgae biofilm reactor was able to reduce the biochemical oxygen demand (BOD) to 90 mg/L and chemical oxygen demand (COD) to 720 mg/L. Higher BOD and COD reading were obtained in suspended growth due to the presence of small number of microalgae cell in the samples. This study shows that suspended growth system is able to remove higher percentages of nitrogen and phosphorus. However, an efficient separation method such as membrane filtration is required to harvest the cultivated microalgae cell to avoid organic matter release into water bodies.

  19. Drawer compacted sand filter: a new and innovative method for on-site grey water treatment.

    PubMed

    Assayed, Almoayied; Chenoweth, Jonathan; Pedley, Steven

    2014-01-01

    In this paper, results ofa new sand filter design were presented. The drawer compacted sand filter (DCSF) is a modified design for a sand filter in which the sand layer is broken down into several layers, each of which is 10 cm high and placed in a movable drawer separated by a 10 cm space. A lab-scale DCSF was designed and operated for 330 days fed by synthetic grey water. The response of drawer sand filters to variable hydraulic and organic loading rates (HLR and OLR) in terms of biological oxygen demand (BODs), chemical oxygen demand (COD), total suspended solids (TSS), pH, electrical conductivity and Escherichia coli reductions were evaluated. The HLR was studied by increasing from 72 to 142 L m(-2) day(-1) and OLR was studied by increasing it from 23 to 30 g BOD5 m(-2) day(-1) while keeping the HLR constant at 142 L m(-2) day(-1). Each loading regime was applied for 110 days. Results showed that DCSF was able to remove >90% of organic matter and total suspended solids for all doses. No significant difference was noticed in terms of overall filter efficiency between different loads for all parameters. Significant reduction in BOD5 and COD (P < .05) was noticed after water was drained through the third drawer in all tested loads. The paper concludes that DCSF would be appropriate for use in dense urban areas as its footprint is small and is appropriate for a wide range of users because of its convenience and low maintenance requirements.

  20. Effects of changing hydraulic and organic loading rates on pollutant reduction in bark, charcoal and sand filters treating greywater.

    PubMed

    Dalahmeh, Sahar S; Pell, Mikael; Hylander, Lars D; Lalander, Cecilia; Vinnerås, Björn; Jönsson, Håkan

    2014-01-01

    Greywater flows and concentrations vary greatly, thus evaluation and prediction of the response of on-site treatment filters to variable loading regimes is challenging. The performance of 0.6 m × 0.2 m (height × diameter) filters of bark, activated charcoal and sand in reduction of biochemical oxygen demand (BOD5), chemical oxygen demand (COD), total nitrogen (Tot-N) and total phosphorus (Tot-P) under variable loading regimes was investigated and modelled. During seven runs, the filters were fed with synthetic greywater at hydraulic loading rates (HLR) of 32-128 L m(-2) day(-1) and organic loading rates (OLR) of 13-76 g BOD5 m(-2) day(-1). Based on the changes in HLR and OLR, the reduction in pollutants was modelled using multiple linear regression. The models showed that increasing the HLR from 32 to 128 L m(-2) day(-1) decreased COD reduction in the bark filters from 74 to 40%, but increased COD reduction in the charcoal and sand filters from 76 to 90% and 65 to 83%, respectively. Moreover, the models showed that increasing the OLR from 13 to 76 g BOD5 m(-2) day(-1) enhanced the pollutant reduction in all filters except for Tot-P in the bark filters, which decreased slightly from 81 to 73%. Decreasing the HLR from 128 to 32 L m(-2) day(-1) enhanced the pollutant reduction in all filters, but decreasing the OLR from 76 to 14 g BOD5 m(-2) day(-1) detached biofilm and decreased the Tot-N and Tot-P reduction in the bark and sand filters. Overall, the bark filters had the capacity to treat high OLR, while the charcoal filters had the capacity to treat high HLR and high OLR. Both bark and charcoal filters had higher capacity than sand filters in dealing with high and variable loads. Bark seems to be an attractive substitute for sand filters in settings short in water and its effluent would be valuable for irrigation, while charcoal filters should be an attractive alternative for settings both rich and short in water supply and when environmental eutrophication has to be considered. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Reduction of pollutants and disinfection of industrial wastewater by an integrated system of copper electrocoagulation and electrochemically generated hydrogen peroxide.

    PubMed

    Barrera-Díaz, Carlos E; Frontana-Uribe, Bernardo A; Roa-Morales, Gabriela; Bilyeu, Bryan W

    2015-01-01

    The objective of this study was to evaluate the effect of copper electrocoagulation and hydrogen peroxide on COD, color, turbidity, and bacterial activity in a mixed industry wastewater. The integrated system of copper electrocoagulation and hydrogen peroxide is effective at reducing the organic and bacterial content of industrial wastewater. The copper electrocoagulation alone reduces COD by 56% in 30 min at pH 2.8, but the combined system reduces COD by 78%, biochemical oxygen demand (BOD5) by 81%, and color by 97% under the same conditions. Colloidal particles are flocculated effectively, as shown by the reduction of zeta potential and the 84% reduction in turbidity and 99% reduction in total solids. Additionally, the total coliforms, fecal coliforms, and bacteria are all reduced by 99%. The integrated system is effective and practical for the reduction of both organic and bacterial content in industrial wastewater.

  2. Wet air oxidation pretreatment of biomethanated distillery effluent: mapping pretreatment efficiency in terms color, toxicity reduction and biogas generation.

    PubMed

    Sarat Chandra, T; Malik, S N; Suvidha, G; Padmere, M L; Shanmugam, P; Mudliar, S N

    2014-04-01

    The effluents from molasses-based distilleries after biomethanation are beset with problems of intensified dark brown color, high residual COD, low biodegradability index (BOD/COD ratio <0.2) and toxicity issues for possible land application as a potential fertilizer. Wet air oxidation (WAO) pretreatment of biomethanated distillery effluent resulted in substantial enhancement in the biodegradability index (BI) (up to 0.8). WAO pretreated effluent on anaerobic digestion indicated favorable biogas generation with methane content up to 64% along with concomitant COD reduction up to 54.75%. The HPLC analysis indicated that the pretreatment facilitated degradation of major color containing compounds-namely melanoidins, up to 97.8%. The pretreated effluent with enhanced biodegradability along with substantially reduced color also indicated positive effect on seed germination (up to 100%), implying toxicity reduction of the effluent post WAO pretreatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Removal of High -Concentration and Refractory Organic Matter from Diosgenin Manufacture Wastewater : a case study of a demonstration project in Hubei Province, P R China

    NASA Astrophysics Data System (ADS)

    Bao, J.; Wang, L.

    2009-12-01

    Wastewater from diosgenin manufacture is dark brown (3,500 ~4,000 times of the chroma) and acidic(pH=0.8~1.5)with high concentration of organic matter(COD=25,000~38,000 mg/L)and poor biodegradability(BOD5/COD= 0.25~0.30). It is highly toxic to biota due to the water-soluble saponin, tannins and pectin. Therefore removal of the organic matter is of great importance before the discharge of the wastewater into the environment. Here we presented a set of data from a demonstration project in Hubei province, P R China with an improved technics. This technics, focusing on the treatment of diosgenin wastewater, included hydrolytic acidification, internal electrolysis, neutralization, aerating-improved Up-flow Anaerobic Sludge Bed (UASB) and bio-contact oxidation treatment in sequence to remove the organic matter. After 60 days of starting-up, the water quality from hydrolytic acidification reactor was greatly improved. The effluent became clear, indicating the obvious removal of suspended solids in the water; the ratio of BOD/COD increased to 0.44, suggesting an significant increase of biodegradability; the content of volatile fatty acid (VFA) increased from 22.6 mmol/L to 86.8 mmol/L and the volume loading of COD reached 9.48 kg COD/(m3d). Basically at this stage the removal efficiency of COD was stabilized at 25%. Further treatment was conducted on the effluent from hydrolytic acidification reactor through the Improved UASB Reactor after the internal electrolysis and neutralization. The Improved UASB Reactor can start up at room temperature with an influent of 1,500 mg/L COD and inflow rate of 50(m3/d). Then, temperature was increased gradually to 38 oC (± 2 oC) to optimize the growth of the mesophilic anaerobes in the reactor. The content of VFA of the effluent was controlled below 8 mmol/L to guarantee the pH in the range of 6.8~7.2. After 150 days of debugging, the COD of the influent to UASB increased to 9,600 mg/L, hydraulic retaining time (HRT) was around 70 hrs , the volume loading and the removal efficiency of COD reached 3.42 kg COD/(m3.d) and 75% respectively. Bio-contact oxidation process dealt with the effluent from the Improved UASB at room temperature. The HRT was 54 hrs and dissolved oxygen was controlled between 2 to 4 mg/L. Currently, the COD volume loading reached 1.05 kg COD/(m3.d) and the removal efficiency of COD was over 90%. The total removal efficiencies of COD and color were over 99% and 98% respectively in the overall process. The pH, color and COD content of the final effluent were 7, about 200 mg/L and 50 times of the chroma respectively. All these indexes met the criteria of “The National Discharge Standard of Industry Water Pollutants for Sapogenin”(GB 20425-2006). This work was supported by National Key Technologies R&D Program No. 2006BAB04A14-2), the Hubei Provincial Science and Technology Department (No. 2006AA305A05) and Wuhan Science and Technology Bureau (20066002101).

  4. Bilateral waste-water land-treatment research by China and the US EPA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leach, L.E.; Duan, Z.B.; Wang, S.T.

    1991-01-01

    The study was conducted to evaluate the rapid infiltration (R.I.) method of land treatment as a partial solution to wastewater treatment and reuse for the 0.45 billion cu m/yr (15.75 billion cu ft/yr) of safe irrigation water needed by the year 2000. Chinese environmental scientists and water supply managers are considering the use of the technology for diluting high concentrations of nitrate in the ground water while simultaneously recharging severely overdrafted aquifers. The wastewater used in the study contained synthetic organic compounds found on EPA's list of priority pollutants. During the development of EPA's Land Treatment Design Manuals, research wasmore » terminated before a thorough evaluation of the treatability of these compounds could be completed. Therefore, during the study, an evaluation of R.I. systems ability to treat selected priority pollutants as well as fecal coliform bacteria was carried out in the interest of RSKERL's research objectives. Even though the research was focused on operations to optimize the removal of various nitrogen species from primary effluent, the normal wastewater parameters of BOD, COD, SS, Total - P, and TOC were also studied. The volatile organic compounds most prominent in the wastewater, dichloroethene, dichloroethane, chloroform and carbon tetrachloride were also evaluated for treatability in the cooperative study.« less

  5. 40 CFR 417.92 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) BOD5 0.09 0.02 COD 0.40 .09 TSS 0.15 .03 Surfactants 0.15 .03 Oil and grease 0.25 .07 pH (1) (1... Surfactants 0.15 .03 Oil and grease 0.25 .07 pH (1) (1) 1 Within the range 6.0 to 9.0. [39 FR 13372, Apr. 12...

  6. 40 CFR 417.192 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) BOD5 2.10 0.70 COD 9.90 3.30 TSS 0.60 .20 Surfactants 1.50 .50 Oil and grease 0.06 .50 pH (1) (1... Surfactants 1.50 .50 Oil and grease 0.06 .50 pH (1) (1) 1 Within the range 6.0 to 9.0. [39 FR 13372, Apr. 12...

  7. 40 CFR 417.172 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) BOD5 0.03 0.01 COD 0.21 .07 TSS 0.03 .01 Surfactants 0.03 .01 Oil and grease 0.015 .005 pH (1) (1... Surfactants 0.03 .01 Oil and grease 0.015 .005 pH (1) (1) 1 Within the range 6.0 to 9.0. [39 FR 13372, Apr. 12...

  8. 40 CFR 417.182 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) BOD5 0.03 0.01 COD 0.15 .05 TSS 0.03 .01 Surfactants 0.03 .01 Oil and grease 0.03 .01 pH (1) (1... Surfactants 0.03 .01 Oil and grease 0.03 .01 pH (1) (1) 1 Within the range 6.0 to 9.0. [39 FR 13372, Apr. 12...

  9. 40 CFR 417.182 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) BOD5 0.03 0.01 COD 0.15 .05 TSS 0.03 .01 Surfactants 0.03 .01 Oil and grease 0.03 .01 pH (1) (1... Surfactants 0.03 .01 Oil and grease 0.03 .01 pH (1) (1) 1 Within the range 6.0 to 9.0. [39 FR 13372, Apr. 12...

  10. 40 CFR 417.192 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) BOD5 2.10 0.70 COD 9.90 3.30 TSS 0.60 .20 Surfactants 1.50 .50 Oil and grease 0.06 .50 pH (1) (1... Surfactants 1.50 .50 Oil and grease 0.06 .50 pH (1) (1) 1 Within the range 6.0 to 9.0. [39 FR 13372, Apr. 12...

  11. 40 CFR 417.132 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) BOD5 0.90 0.30 COD 4.05 1.35 TSS 0.09 .03 Surfactants 0.90 .30 Oil and grease 0.15 .05 pH (1) (1... Surfactants 0.90 .30 Oil and grease 0.15 .05 pH (1) (1) 1 Within the range 6.0 to 9.0. [39 FR 13372, Apr. 12...

  12. 40 CFR 417.132 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) BOD5 0.90 0.30 COD 4.05 1.35 TSS 0.09 .03 Surfactants 0.90 .30 Oil and grease 0.15 .05 pH (1) (1... Surfactants 0.90 .30 Oil and grease 0.15 .05 pH (1) (1) 1 Within the range 6.0 to 9.0. [39 FR 13372, Apr. 12...

  13. 40 CFR 417.112 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) BOD5 0.90 0.30 COD 3.05 1.35 TSS 0.09 .03 Surfactants 0.90 .30 Oil and grease 0.10 .05 pH (1) (1... Surfactants 0.90 .30 Oil and grease 0.10 .05 pH (1) (1) 1 Within the range 6.0 to 9.0. [39 FR 13372, Apr. 12...

  14. 40 CFR 417.112 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) BOD5 0.90 0.30 COD 3.05 1.35 TSS 0.09 .03 Surfactants 0.90 .30 Oil and grease 0.10 .05 pH (1) (1... Surfactants 0.90 .30 Oil and grease 0.10 .05 pH (1) (1) 1 Within the range 6.0 to 9.0. [39 FR 13372, Apr. 12...

  15. 40 CFR 417.92 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) BOD5 0.09 0.02 COD 0.40 .09 TSS 0.15 .03 Surfactants 0.15 .03 Oil and grease 0.25 .07 pH (1) (1... Surfactants 0.15 .03 Oil and grease 0.25 .07 pH (1) (1) 1 Within the range 6.0 to 9.0. [39 FR 13372, Apr. 12...

  16. 40 CFR 417.102 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) BOD5 0.90 0.30 COD 4.05 1.35 TSS 0.09 .03 Surfactants 0.90 .30 Oil and grease 0.15 .05 pH (1) (1... Surfactants 0.90 .30 Oil and grease 0.10 .05 pH (1) (1) 1 Within the range 6.0 to 9.0. [39 FR 13372, Apr. 12...

  17. 40 CFR 417.172 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) BOD5 0.03 0.01 COD 0.21 .07 TSS 0.03 .01 Surfactants 0.03 .01 Oil and grease 0.015 .005 pH (1) (1... Surfactants 0.03 .01 Oil and grease 0.015 .005 pH (1) (1) 1 Within the range 6.0 to 9.0. [39 FR 13372, Apr. 12...

  18. 40 CFR 417.102 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) BOD5 0.90 0.30 COD 4.05 1.35 TSS 0.09 .03 Surfactants 0.90 .30 Oil and grease 0.15 .05 pH (1) (1... Surfactants 0.90 .30 Oil and grease 0.10 .05 pH (1) (1) 1 Within the range 6.0 to 9.0. [39 FR 13372, Apr. 12...

  19. 40 CFR 417.172 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) BOD5 0.03 0.01 COD 0.21 .07 TSS 0.03 .01 Surfactants 0.03 .01 Oil and grease 0.015 .005 pH (1) (1... Surfactants 0.03 .01 Oil and grease 0.015 .005 pH (1) (1) 1 Within the range 6.0 to 9.0. [39 FR 13372, Apr. 12...

  20. 40 CFR 417.192 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) BOD5 2.10 0.70 COD 9.90 3.30 TSS 0.60 .20 Surfactants 1.50 .50 Oil and grease 0.06 .50 pH (1) (1... Surfactants 1.50 .50 Oil and grease 0.06 .50 pH (1) (1) 1 Within the range 6.0 to 9.0. [39 FR 13372, Apr. 12...

  1. 40 CFR 417.182 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) BOD5 0.03 0.01 COD 0.15 .05 TSS 0.03 .01 Surfactants 0.03 .01 Oil and grease 0.03 .01 pH (1) (1... Surfactants 0.03 .01 Oil and grease 0.03 .01 pH (1) (1) 1 Within the range 6.0 to 9.0. [39 FR 13372, Apr. 12...

  2. 40 CFR 417.172 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) BOD5 0.03 0.01 COD 0.21 .07 TSS 0.03 .01 Surfactants 0.03 .01 Oil and grease 0.015 .005 pH (1) (1... Surfactants 0.03 .01 Oil and grease 0.015 .005 pH (1) (1) 1 Within the range 6.0 to 9.0. [39 FR 13372, Apr. 12...

  3. 40 CFR 417.182 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) BOD5 0.03 0.01 COD 0.15 .05 TSS 0.03 .01 Surfactants 0.03 .01 Oil and grease 0.03 .01 pH (1) (1... Surfactants 0.03 .01 Oil and grease 0.03 .01 pH (1) (1) 1 Within the range 6.0 to 9.0. [39 FR 13372, Apr. 12...

  4. 40 CFR 417.192 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) BOD5 2.10 0.70 COD 9.90 3.30 TSS 0.60 .20 Surfactants 1.50 .50 Oil and grease 0.06 .50 pH (1) (1... Surfactants 1.50 .50 Oil and grease 0.06 .50 pH (1) (1) 1 Within the range 6.0 to 9.0. [39 FR 13372, Apr. 12...

  5. 40 CFR 417.182 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) BOD5 0.03 0.01 COD 0.15 .05 TSS 0.03 .01 Surfactants 0.03 .01 Oil and grease 0.03 .01 pH (1) (1... Surfactants 0.03 .01 Oil and grease 0.03 .01 pH (1) (1) 1 Within the range 6.0 to 9.0. [39 FR 13372, Apr. 12...

  6. 40 CFR 417.192 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) BOD5 2.10 0.70 COD 9.90 3.30 TSS 0.60 .20 Surfactants 1.50 .50 Oil and grease 0.06 .50 pH (1) (1... Surfactants 1.50 .50 Oil and grease 0.06 .50 pH (1) (1) 1 Within the range 6.0 to 9.0. [39 FR 13372, Apr. 12...

  7. 40 CFR 417.172 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) BOD5 0.03 0.01 COD 0.21 .07 TSS 0.03 .01 Surfactants 0.03 .01 Oil and grease 0.015 .005 pH (1) (1... Surfactants 0.03 .01 Oil and grease 0.015 .005 pH (1) (1) 1 Within the range 6.0 to 9.0. [39 FR 13372, Apr. 12...

  8. Physicochemical assessment of industrial textile effluents of Punjab (India)

    NASA Astrophysics Data System (ADS)

    Bhatia, Deepika; Sharma, Neeta Raj; Kanwar, Ramesh; Singh, Joginder

    2018-06-01

    Urbanization and industrialization are generating huge quantities of untreated wastewater leading to increased water pollution and human diseases in India. The textile industry is one of the leading polluters of surface water and consumes about 200-270 tons of water to produce 1 ton of textile product. The primary objective of the present study was to investigate the pollution potential of textile industry effluent draining into Buddha Nallah stream located in Ludhiana, Punjab (India), and determine the seasonal variation in physicochemical parameters (pH, water temperature, total dissolved solids, total suspended solids, biochemical oxygen demand (BOD) and chemical oxygen demand (COD) of Buddha Nallah water. During summer months, for Site 1 and Site 2, the value of pH was in the alkaline range of 8.78 ± 0.47 and 8.51 ± 0.41, respectively. The values of pH in the rainy season were found to be in the range of 7.38 ± 0.58 and 7.11 ± 0.59 for Site 1 and Site 2, respectively. In the autumn and winter seasons, the average pH values were found to be in the range of 8.58 ± 1.40 and 8.33 ± 0.970, respectively. The maximum mean temperature in summer was recorded as 41.16 ± 4.99 °C, and lowest mean temperature in winter was recorded as 39.25 ± 2.25 °C at Site 2. The suspended solids were found to be highest (143.5 ± 75.01 and 139.66 ± 71.87 mg/L) in autumn for both the sites and lowest (86.50 + 15.10 mg/L) in the rainy season for Site 1. The values of BOD and COD of the textile effluent of both sites during all the seasons ranged from 121-580 to 240-990 mg/L, respectively, much higher than WHO water quality standard of 30 mg/L for BOD and 250 mg/L for COD. The present study deals with the collection of textile industry effluent and its characterization to find out the physicochemical load being drained by the effluent generated from textile industries, on the natural wastewater streams.

  9. Application of H2O and UV/H2O2 processes for enhancing the biodegradability of reactive black 5 dye.

    PubMed

    Kalpana, S Divya; Kalyanaraman, Chitra; Gandhi, N Nagendra

    2011-07-01

    Leather processing is a traditional activity in India during which many organic and inorganic chemicals are added while part of it is absorbed by the leather, the remaining chemicals are discharged along with the effluent. The effluent contains both easily biodegradable and not easily biodegradable synthetic organics like dyes, syntans. Easily biodegradable organics are removed in the existing biological treatment units whereas synthetic organics present in the wastewater are mostly adsorbed over the microbes. As the tannery effluent contains complex chemicals, it is difficult to ascertain the degradation of specific pollutants. To determine the increase in the biodegradability, one of the complex and synthetic organic chemical like dye used in the tanning operation was selected for Advanced Oxidation Process (AOPs) treatment for cleaving complex organics and its subsequent treatment in aerobic process. In the present study, Reactive Black 5 Dye used in the tanning operation was selected for Hydrogen Peroxide (H2O2) and UV/H2O2 pre-treatment for different operating conditions like pH, contact time and different volume of H2O2. A comparison was made between the untreated, Hydrogen Peroxide (H2O2) and UV/H2O2 treated effluent in order to ascertain the influence of AOP on the improvement of biodegradability of effluent. An increase in the BOD5/COD ratio from 0.21 to 0.435 was achieved in the UV/H2O2 pre-treatment process. This pre-treated effluent was further subjected to aerobic process. Biochemical Oxygen Demand (BOD5) and Chemical Oxygen Demand (COD) removal efficiency of the UV/H2O2 pre-treated dye solution in the aerobic process was found to be 86.39% and 77.82% when compared to 52.43% of BOD5 and 51.55% of COD removal efficiency without any pre-treatment. Hence from these results, to increase the biodegradability of Reactive Black 5 dye pre-treatment methods like H2O2 and UV/H2O2 can be used prior to biological treatment process.

  10. Optimization of Wastewater of Batik Buaran Pekalongan by Using Photocatalytic Membrane Bioreactor

    NASA Astrophysics Data System (ADS)

    Arifan, Fahmi; Nugraheni, FS; Lianandaya, Niken Elsa

    2018-02-01

    The purpose of this study is to determine the final COD concentration reduction by changing COD and MLSS concentration on the performance of submerged membrane bioreactor (MBRs) as a waste treatment of Batik in Buaran Pekalongan. The method is covers the process of seeding, the acclimatization process and the main process. Description of the process that we take an active mud from IPLT Buaran Pekalongan, then we analyze the sludge MLSS, MLVSS, COD, BOD, and TSS. After that we enter the active sludge in the bath nursery that has been given aerator (a tool for aeration) and made provision in the form of NPK nutrients and glucose at a ratio of 1:10. Activated sludge from the acclimatization process is inserted into the MBRs (membrane bioreactor submerged) that is equipped with an aerator. Then prepare influent(waste to be lowered concentration of COD). How, liquid waste of Batik Pekalongan Buaran COD diluted concentration of 10,000 mg / l and 15,000 mg / l, and then inserted in influent tub. After that liquid waste of Batik Buaran Pekalongan influent flowed into Photocatalytic Membrane Bioreactor, of MPB effluent flowed into the tub (result).

  11. Characterization of domestic graywater and graywater solids.

    PubMed

    Sievers, Jan Christian; Londong, Jörg

    2018-03-01

    The knowledge of loads and concentrations is fundamental for the design of graywater treatment units, but the data on the characteristics of graywater and in particular graywater solids are weak. As general design values regarding graywater treatment facilities are not available for Germany, the objective of this article is to elaborate the characteristics of graywater and graywater solids. This paper describes the results of six sampling campaigns carried out on graywater systems in the German cities Berlin, Lübeck and Kiel. All graywater samples were collected proportional to the flow and the graywater solids were gathered separately. The collected data include graywater volumes and characteristics regarding the organic pollution (chemical oxygen demand (COD), 5-day biochemical oxygen demand (BOD 5 )) and nutrients (total nitrogen (TN), total phosphorus (TP)). The graywater volume fluctuated depending on the location. The specific average flow was 68 litre per inhabitant per day (L/inh.d). Inhabitant-specific loads of 49.3 gCOD t /inh·d, 28 gBOD 5 /inh.d, 1 gTN t /inh.d and 0.38 gTP t /inh.d (subscript 't' = total) were found. Information about the composition of graywater solids in terms of quantity and quality is seriously lacking. Therefore, graywater solids were examined with respect to organic matter (COD) and nutrients (TN, TP). The contribution of graywater solids with particle sizes over 200 microns in relation to the total inhabitant-specific load was approximately 3-8% depending on the parameter. The qualitative and quantitative characteristics of the investigated graywater fractions may serve as a base for the estimation of design values.

  12. Comparative bacterial degradation and detoxification of model and kraft lignin from pulp paper wastewater and its metabolites

    NASA Astrophysics Data System (ADS)

    Abhishek, Amar; Dwivedi, Ashish; Tandan, Neeraj; Kumar, Urwashi

    2017-05-01

    Continuous discharge of lignin containing colored wastewater from pulp paper mill into the environment has resulted in building up their high level in various aquatic systems. In this study, the chemical texture of kraft lignin in terms of pollution parameters (COD, TOC, BOD, etc.) was quite different and approximately twofold higher as compared to model lignin at same optical density (OD 3.7 at 465 nm) and lignin content (2000 mg/L). For comparative bacterial degradation and detoxification of model and kraft lignin two bacteria Citrobacter freundii and Serratia marcescens were isolated, screened and applied in axenic and mixed condition. Bacterial mixed culture was found to decolorize 87 and 70 % model and kraft lignin (2000 mg/L), respectively; whereas, axenic culture Citrobacter freundii and Serratia marcescens decolorized 64, 60 % model and 50, 55 % kraft lignin, respectively, at optimized condition (34 °C, pH 8.2, 140 rpm). In addition, the mixed bacterial culture also showed the removal of 76, 61 % TOC; 80, 67 % COD and 87, 65 % lignin from model and kraft lignin, respectively. High pollution parameters (like TOC, COD, BOD, sulphate) and toxic chemicals slow down the degradation of kraft lignin as compared to model lignin. The comparative GC-MS analysis has suggested that the interspecies collaboration, i.e., each bacterial strain in culture medium has cumulative enhancing effect on growth, and degradation of lignin rather than inhibition. Furthermore, toxicity evaluation on human keratinocyte cell line after bacterial treatment has supported the degradation and detoxification of model and kraft lignin.

  13. Self-monitoring of water quality in sewer systems using absorbance of ultraviolet and visible light.

    PubMed

    Ruban, G; Ruperd, Y; Laveau, B; Lucas, E

    2001-01-01

    Continuous pollution measurement is interesting to optimize the operation of sanitary facilities as well as to minimize the stormwater discharges. An experimental study was carried out for the determination of Suspended Solids (SS) and Chemical Oxygen Demand (COD) concentrations in combined sewers using ultraviolet and visible absorbances. The maintenance of the measurement system requires six hours a month for the cleaning of the hydraulic feeding system and adjustment of the optical device. The feeding system developed increased the representativeness and reliability of the pollution measurement, but needs to be validated on other measurement sites. The determination of SS concentrations from visible absorbances requires 2 calibration curves for dry and rainy weather respectively. The corresponding accuracies appear satisfactory when compared with the results of standard sampling/laboratory analysis. The accuracy of COD determination from ultraviolet absorbance is less satisfactory, but could perhaps be improved taking into account another parameter. Then the optical measurement of SS and COD is interesting to determine average or long term pollution loads, for example the yearly impact of urban stormwater discharges. With this kind of continuous and on-line measurement, it is possible to react with short delay to unexpected phenomena which could damage the environment or water treatment efficiency.

  14. Catalytic ozonation-biological coupled processes for the treatment of industrial wastewater containing refractory chlorinated nitroaromatic compounds*

    PubMed Central

    Li, Bing-zhi; Xu, Xiang-yang; Zhu, Liang

    2010-01-01

    A treatability study of industrial wastewater containing chlorinated nitroaromatic compounds (CNACs) by a catalytic ozonation process (COP) with a modified Mn/Co ceramic catalyst and an aerobic sequencing batch reactor (SBR) was investigated. A preliminary attempt to treat the diluted wastewater with a single SBR resulted in ineffective removal of the color, ammonia, total organic carbon (TOC) and chemical oxygen demand (COD). Next, COP was applied as a pretreatment in order to obtain a bio-compatible wastewater for SBR treatment in a second step. The effectiveness of the COP pretreatment was assessed by evaluating wastewater biodegradability enhancement (the ratio of biology oxygen demand after 5 d (BOD5) to COD), as well as monitoring the evolution of TOC, carbon oxidation state (COS), average oxidation state (AOS), color, and major pollutant concentrations with reaction time. In the COP, the catalyst preserved its catalytic properties even after 70 reuse cycles, exhibiting good durability and stability. The performance of SBR to treat COP effluent was also examined. At an organic loading rate of 2.0 kg COD/(m3·d), with hydraulic retention time (HRT)=10 h and temperature (30±2) °C, the average removal efficiencies of NH3-N, COD, BOD5, TOC, and color in a coupled COP/SBR process were about 80%, 95.8%, 93.8%, 97.6% and 99.3%, respectively, with average effluent concentrations of 10 mg/L, 128 mg/L, 27.5 mg/L, 25.0 mg/L, and 20 multiples, respectively, which were all consistent with the national standards for secondary discharge of industrial wastewater into a public sewerage system (GB 8978-1996). The results indicated that the coupling of COP with a biological process was proved to be a technically and economically effective method for treating industrial wastewater containing recalcitrant CNACs. PMID:20205304

  15. Behaviour of molecular weight distribution for the liquid fraction of pig slurry treated by anaerobic digestion.

    PubMed

    Rodríguez, D C; Belmonte, M; Peñuela, G; Campos, J L; Vidal, G

    2011-01-01

    Pig slurry was treated in an upflow anaerobic sludge blanket (UASB) reactor. To maintain a stable operation, the organic loading rate (OLR) applied to the system was increased stepwise by decreasing the dilution ratio of the pig slurry. Finally, during the last operational stage, no dilution was applied to the influent. The reactor maintained a soluble chemical oxygen demand (CODs) removal efficiency of 82% when OLRs lower than 1.73 g CODs l(-1) d(-1) were applied, although its efficiency fell to 55% when operated at 2.48 g CODs l(-1) d(-1). System performance was not affected by the presence of free ammonia (concentrations up to 375 mg NH3 l(-1)). The distribution of the different molecular weight fractions changed significantly during anaerobic digestion. Proteins contained in the fractions higher than 10,000 Daltons are less degraded than those belonging to the lower fractions. An important percentage of both COD and BOD5 in the effluent were observed in the lowest fraction, probably caused by the presence of volatile fatty acids (VFA).

  16. Use of Fenton reaction for the treatment of leachate from composting of different wastes.

    PubMed

    Trujillo, Daniel; Font, Xavier; Sánchez, Antoni

    2006-11-02

    The oxidation of leachate coming from the composting of two organic wastes (wastewater sludge and organic fraction of municipal solid wastes) using the Fenton's reagent was studied using different ratios [Fe(2+)]/[COD](0) and maintaining a ratio [H(2)O(2)]/[COD](0) equal to 1. The optimal conditions for Fenton reaction were found at a ratio [Fe(2+)]/[COD](0) equal to 0.1. Both leachates were significantly oxidized under these conditions in terms of COD removal (77 and 75% for leachate from wastewater sludge composting and leachate from organic fraction of municipal solid wastes, respectively) and BOD(5) removal (90 and 98% for leachate from wastewater sludge composting and leachate from organic fraction of municipal solid wastes, respectively). Fenton's reagent was found to oxidize preferably biodegradable organic matter of leachate. In consequence, a decrease in the biodegradability of leachates was observed after Fenton treatment for both leachates. Nevertheless, Fenton reaction proved to be a feasible technique for the oxidation of the leachate under study, and it can be considered a suitable treatment for this type of wastewaters.

  17. Colour and organic removal of biologically treated coffee curing wastewater by electrochemical oxidation method.

    PubMed

    Bejankiwar, Rajesh S; Lokesh, K S; Gowda, T P Halappa

    2003-05-01

    The treatment of biologically treated wastewater of coffee-curing industry by the electrochemical oxidation using steel anode was investigated. Bench-scale experiments were conducted for activated sludge process on raw wastewater and the treated effluents were further treated by electrochemical oxidation method for its colour and organic content removal. The efficiency of the process was determined in terms of removal percentage of COD, BOD and colour during the course of reaction. Several operating parameters like time, pH and current density were examined to ascertain their effects on the treatment efficiency. Steel anode was found to be effective for the COD and colour removal with anode efficiency of 0.118 kgCOD x h(-1) x A(-1) x m(-2) and energy consumption 20.61 kWh x kg(-1) of COD at pH 9. The decrease in pH from 9 to 3 found to increase the anode efficiency from 0.118 kgCOD x h(-1) x A(-1) x m(-2) to 0.144 kWh x kg(-1) of COD while decrease the energy consumption from 20.61 kWh x kg(-1) of COD to 12.86 kWh x kg(-1) of COD. The pH of 5 was considered an ideal from the present treatment process as it avoids the addition of chemicals for neutralization of treated effluents and also economical with respect to energy consumption. An empirical relation developed for relationship between applied current density and COD removal efficiency showed strong predictive capability with coefficient of determination of 96.5%.

  18. [Treatment of Urban Runoff Pollutants by a Multilayer Biofiltration System].

    PubMed

    Wang, Xiao-lu; Zuo, Jian-e; Gan, Li-li; Xing, Wei; Miao, Heng-feng; Ruan, Wen-quan

    2015-07-01

    In order to control the non-point source pollution from road runoff in Wuxi City effectively, a multilayer biofiltration system was designed to remove a variety of pollutants according to the characteristics of road runoff in Wuxi, and the experimental research was carried out to study the effect on rainwater pollution purification. The results show that the system has a good performance on removing suspended solids (SS), organic pollutant (COD), nitrogen and phosphorus: all types of multilayer biofiltration systems have a high removal rate for SS, which can reach 90%. The system with activated carbon (GAC) has higher removal rates for COD and phosphorus. The system with zeolite (ZFM) has a relatively better removal efficiency for nitrogen. The addition of wood chips in the system can significantly improve the system efficiency for nitrogen removal. Between the two configurations of layered and distributed wood chips, configurations of distributed wood chips reach higher COD, phosphorus and nitrogen pollutants removal efficiencies since they can reduce the release of wood chips dissolution.

  19. 40 CFR 417.93 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY Oleum... 0.09 .03 Surfactants 0.09 .03 Oil and grease 0.21 .07 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.07 0.02 COD 0.27 .09 TSS 0.09 .03 Surfactants 0.09 .03 Oil and grease 0...

  20. 40 CFR 417.93 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY Oleum... 0.09 .03 Surfactants 0.09 .03 Oil and grease 0.21 .07 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.07 0.02 COD 0.27 .09 TSS 0.09 .03 Surfactants 0.09 .03 Oil and grease 0...

  1. 40 CFR 417.113 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY SO3... 0.02 .01 Surfactants 0.20 .10 Oil and grease 0.04 .02 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.20 0.10 COD 0.90 .45 TSS 0.02 .01 Surfactants 0.20 .10 Oil and grease 0...

  2. 40 CFR 417.133 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY... 0.04 .02 Surfactants 0.30 .15 Oil and grease 0.06 .03 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.30 0.15 COD 1.50 .75 TSS 0.04 .02 Surfactants 0.30 .15 Oil and grease 0...

  3. 40 CFR 417.123 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY Sulfamic... 0.02 .01 Surfactants 0.20 .10 Oil and grease 0.04 .02 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.20 0.10 COD 0.90 .48 TSS 0.02 .01 Surfactants 0.20 .10 Oil and grease 0...

  4. 40 CFR 417.133 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY... 0.04 .02 Surfactants 0.30 .15 Oil and grease 0.06 .03 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.30 0.15 COD 1.50 .75 TSS 0.04 .02 Surfactants 0.30 .15 Oil and grease 0...

  5. 40 CFR 417.133 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY... 0.04 .02 Surfactants 0.30 .15 Oil and grease 0.06 .03 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.30 0.15 COD 1.50 .75 TSS 0.04 .02 Surfactants 0.30 .15 Oil and grease 0...

  6. 40 CFR 417.113 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY SO3... 0.02 .01 Surfactants 0.20 .10 Oil and grease 0.04 .02 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.20 0.10 COD 0.90 .45 TSS 0.02 .01 Surfactants 0.20 .10 Oil and grease 0...

  7. 40 CFR 417.123 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY Sulfamic... 0.02 .01 Surfactants 0.20 .10 Oil and grease 0.04 .02 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.20 0.10 COD 0.90 .48 TSS 0.02 .01 Surfactants 0.20 .10 Oil and grease 0...

  8. 40 CFR 417.123 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY Sulfamic... 0.02 .01 Surfactants 0.20 .10 Oil and grease 0.04 .02 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.20 0.10 COD 0.90 .48 TSS 0.02 .01 Surfactants 0.20 .10 Oil and grease 0...

  9. 40 CFR 417.113 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY SO3... 0.02 .01 Surfactants 0.20 .10 Oil and grease 0.04 .02 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.20 0.10 COD 0.90 .45 TSS 0.02 .01 Surfactants 0.20 .10 Oil and grease 0...

  10. 40 CFR 417.93 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY Oleum... 0.09 .03 Surfactants 0.09 .03 Oil and grease 0.21 .07 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.07 0.02 COD 0.27 .09 TSS 0.09 .03 Surfactants 0.09 .03 Oil and grease 0...

  11. Performance of innovative textile biofilters for domestic wastewater treatment.

    PubMed

    Spychała, Marcin; Błazejewski, Ryszard; Nawrot, Tadeusz

    2013-01-01

    Two types of geotextile, TS 50 and TC/PP 300, were investigated as experimental filters. The raw wastewater, pre-treated in a septic tank, was intermittently dosed and filtered under hydrostatic pressure. At the beginning, the filter reactor comprised nine filters made of geotextiles (of three types: TS 10, TS 50 and TC/PP 300). At the end of the start-up period the TS 10 filters were removed due to their high outflow instability. After four months of working, the hydraulic capacities of the remaining filters were: 3.23 cm3/cm2/d for TS 50 and 4.14 cm3/cm2/d for TC/PP 300. The efficiencies of COD and BOD5 removal were similar for both types of geotextile (COD: 64%, BOD5: 80%). A small but statistically significant difference between ammonium nitrogen removal was observed (40% for TS 50 and 35% for TC/PP 300), most probably due to their different structure. Biological removal of P(tot) was relatively poor and similar for both geotextile types. The mean concentration of matter accumulated on the geotextiles was over one order of magnitude higher than conventional activated sludge concentrations. During the last weeks of the experiments the values of basic pollution indicators in the effluent were lower than the maximum permissible values (according to Polish law).

  12. Prediction analysis of effluent removal in a septic sludge treatment plant: a biomimetics engineering approach.

    PubMed

    Chun, Ting Sie; Malek, M A; Ismail, Amelia Ritahani

    2014-09-20

    Effluent discharge from septic tanks is affecting the environment in developing countries. The most challenging issue facing these countries is the cost of inadequate sanitation, which includes significant economic, social, and environmental burdens. Although most sanitation facilities are evaluated based on their immediate costs and benefits, their long-term performance should also be investigated. In this study, effluent quality-namely, the biological oxygen demand (BOD), chemical oxygen demand (COD), and total suspended solid (TSS)-was assessed using a biomimetics engineering approach. A novel immune network algorithm (INA) approach was applied to a septic sludge treatment plant (SSTP) for effluent-removal predictive modelling. The Matang SSTP in the city of Kuching, Sarawak, on the island of Borneo, was selected as a case study. Monthly effluent discharges from 2007 to 2011 were used for training, validating, and testing purposes using MATLAB 7.10. The results showed that the BOD effluent-discharge prediction was less than 50% of the specified standard after the 97(th) month of operation. The COD and TSS effluent removals were simulated at the 85(th) and the 121(st) months, respectively. The study proved that the proposed INA-based SSTP model could be used to achieve an effective SSTP assessment and management technique.

  13. Disinfection and reduction of organic load of sewage water by electron beam radiation

    NASA Astrophysics Data System (ADS)

    Maruthi, Y. Avasn; Das, N. Lakshmana; Hossain, Kaizar; Sarma, K. S. S.; Rawat, K. P.; Sabharwal, S.

    2011-09-01

    The efficacy of electron beam radiation for the disinfection and reduction of organic load of sewage water was assessed with ILU-6 Accelerator at Radiation Technology Development Division of the Bhabha Atomic Research Centre, Mumbai India. The current problem on environmental health in relation to water pollution insists for the safe disposal of sewage water. In general, sewage water comprises heterogeneous organic based chemicals as well as pathogens. EB treatment of the wastewater has found to be very effective in reducing the pathogens as well as organic load. EB dose of 1.5 kGy was sufficient for complete elimination of total coli forms. The experimental results elucidated the reduction of biological oxygen demand—BOD (35 and 51.7%) in both inlet and outlet sewage samples. Similarly reduction of chemical oxygen demand—COD was observed (37.54 and 52.32%) in both sewage samples with respect to increase in irradiation doses (0.45-6 kGy). The present study demonstrated the potential of ionizing radiation for disinfection of sewage and to increase the water quality of the wastewater by decreasing BOD and COD. So, the irradiation sewage water can find its application either in agriculture for irrigation, in industry for cooling purpose and some selected domestic purposes.

  14. Effect of hot acid hydrolysis and hot chlorine dioxide stage on bleaching effluent biodegradability.

    PubMed

    Gomes, C M; Colodette, J L; Delantonio, N R N; Mounteer, A H; Silva, C M

    2007-01-01

    The hot acid hydrolysis followed by chlorine dioxide (A/D*) and hot chlorine dioxide (D*) technologies have proven very useful for bleaching of eucalyptus kraft pulp. Although the characteristics and biodegradability of effluents from conventional chlorine dioxide bleaching are well known, such information is not yet available for effluents derived from hot acid hydrolysis and hot chorine dioxide bleaching. This study discusses the characteristics and biodegradability of such effluents. Combined whole effluents from the complete sequences DEpD, D*EpD, A/D*EpD and ADEpD, and from the pre-bleaching sequences DEp, D*Ep, A/D*Ep and ADEp were characterized by quantifying their colour, AOX and organic load (BOD, COD, TOC). These effluents were also evaluated for their treatability by simulation of an activated sludge system. It was concluded that treatment in the laboratory sequencing batch reactor was efficient for removal of COD, BOD and TOC of all effluents. However, colour increased after biological treatment, with the greatest increase found for the effluent produced using the AD technology. Biological treatment was less efficient at removing AOX of effluents from the sequences with D*, A/D* and AD as the first stages, when compared to the reference D stage; there was evidence of the lower treatability of these organochlorine compounds from these sequences.

  15. Proposing of an aerated water treatment plant for reducing water pollution problem in Losari Beach after reclamation

    NASA Astrophysics Data System (ADS)

    Suryani, Sri; Maharani, Hamzah, Muhammad Alimuddin

    2017-01-01

    Losari Beach is the most important site in Makassar. It lies at the west side of Makassar city. This place is known as the place where people are relaxed and gathering with friends or family after working, and now it becomes the icon of Makassar city. As the biggest city in eastern Indonesia, Makassar grows very fast. We can find constructions for building hospitals, shopping malls, bussines activities, and residences everywhere. The most important construction activities that will effect Losari Beach is the reclamation to build the Center Point of Indonesia that takes an area of 157 hectares and it is located at the west side of Losari Beach. In the last research presented in 9th International Conference on Marine Technology (October 2014) using surface-water modeling system (SMS) software showed that reclamation will significantly increase concentrations of BOD and COD (± 7 mg/L for BOD and 6.2 mg/L for COD). This condition will cause Losari Beach becomes very polluted. A probable solution to overcome this problem is to clean the wastewater before introducing to the sea. This paper will describe the type of the wastewater treatment plant that can be used to solve the water pollution problem in Losari Beach.

  16. Characteristics of Leachate and Their Effect on Shallow Groundwater Quality (Case Study : TPA Cipayung, Depok)

    NASA Astrophysics Data System (ADS)

    Widiastuti, Atika; Hartono, Djoko M.; Moersidik, Setyo S.; Gusniani, Irma

    2018-03-01

    The problems arising from landfill activity is leaked leachate that is not absorbed well into leachate stabilization pond which furthermore contaminates shallow groundwater around landfill, include Cipayung landfill. The aims of this study is to determine the characteristics of leachate and their effect on shallow groundwater quality around landfill based on temperature, pH, Total Suspended Solids (TSS), Biological Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Total Nitrogen (TN), Mercury (Hg), and fecal coliform. Data were analyzed based on leachate samples at influent point, effluent point, and 7 sampling points of residents’s well with distance variation every 100 meters within 300 meters radius having leachate stabilization pond as benchmark. According to the standard of Indonesia’s Ministry of Environment and Forestry law No. 59 of 2016, the results showed that leachate quality was still above the standard of BOD, COD, and Total Nitrogen parameters; 4178.0 mg/L, 70556.0 mg/L and 373.3 mg/L for influent point, and 3142.0 mg/L, 9055.2 mg/L, and 350 mg/L for the effluent point. Pollution Index of shallow groundwater is between lightly and moderately contaminated. This study showed that the further the distance between sampling point and leachate stabilization pond is, the lower the Polution Index is.

  17. Leachate composition and toxicity assessment: an integrated approach correlating physicochemical parameters and toxicity of leachates from MSW landfill in Delhi.

    PubMed

    Gupta, Anshu; Paulraj, R

    2017-07-01

    Landfills are considered the most widely practiced method for disposal of municipal solid waste (MSW) and 95% of the total MSW collected worldwide is disposed of in landfills. Leachate produced from MSW landfills may contain a number of pollutants and pose a potential environmental risk for surface as well as ground water. In the present study, chemical analysis and toxicity assessment of landfill leachate have been carried out. Leachate samples were collected from Ghazipur landfill site, New Delhi. Leachates were characterized by measuring the concentration of heavy metals (Pb, Cu, Cr and Ni), 5-day biochemical oxygen demand (BOD 5 ), chemical oxygen demand (COD), pH, electrical conductivity and SO 4 2 -. For toxicity testing of leachate, Triticum aestivum (wheat) was selected and testing was done in a time- and dose-dependent manner using the crude leachate. Median lethal concentration after 24 and 48 h of exposure was observed. The main objective of this study was to evaluate toxicity of MSW landfill leachate and establish a possible correlation between the measured physicochemical parameters and resultant toxicity. Statistical analysis showed that toxicity was dependent on the concentration of heavy metals (Pb, Cu), conductivity, and organic matter (COD and BOD5).

  18. Assessment of the efficiency and economic viability of various methods of treatment of sanitary landfill leachate.

    PubMed

    Gupta, S K; Singh, Gurdeep

    2007-12-01

    This study assesses the efficiency of various physico-chemical, biological and other tertiary methods for treating leachate. An evaluation study on the treatability of the leachate from methane phase bed (MPB) reactor indicated that at an optimum hydraulic retention time of 6 days, the efficiency of the reactor in terms of biological oxygen demand (BOD) and chemical oxygen demand (COD) removal was 91.29 and 82.69%, respectively. Recycling of the treated leachate through the municipal solid waste layers in the leachate recycling unit (LRU) resulted in a significant increase in the biodegradation of organics present in the leachate. Optimum BOD and COD removal efficiencies were achieved at the third recycle; additional recycling of the leachate did not produce any significant improvement. Physico-chemical treatment of the leachate demonstrated that alum and lime (Option 2) were more economical than coagulants lime and MgCO(3). A cost analysis of the economics of the various treatments revealed that the alternative treatment consisting of a MPB bed followed by a LRU and aerated lagoon is the most cost-effective treatment. However, the alternative consisting of a MPB followed by the LRU and a soil column, which is slightly more costly, would be the most appropriate treatment when adequate land is readily available.

  19. [Printing and dyeing wastewater treatment using combined process of anaerobic bioreactor and MBR].

    PubMed

    Zheng, Xiang; Liu, Jun-xin

    2004-09-01

    This paper describes a labor-scale experiment for printing and dyeing wastewater treatment of woolen mill using a combined process of an anaerobic reactor and a membrane bioreactor (MBR). The experimental results showed that when the concentration of COD, BOD5 and color in the influent were 128-321 mg/L, 36-95 mg/L and 40-70 dilution times (DT), the average concentrations of COD, BOD5, color and turbidity in the effluent were 36.9 mg/L, 3.7 mg/L, 21 DT and 0.24 NTU, respectively, and the corresponding removal rates were 80.3%, 95%, 59% and 99.3%, respectively. A new integrated membrane bioreactor by gravity drain of liquid level in the bioreactor was developed in this study. It not only lessens suction pump for effluent and controlling unit comparing to the traditional integrated membrane bioreactor, but also has the characters of high and continuous flux, concise configuration and simple operation and maintenance. According to the experimental results, the air flow rate through the membrane module is a significant factor to affect the flux rate and cake layer deposited on the membrane. With application of optimal air flow rate, it is effective to reduce membrane fouling and maintain high flux rate.

  20. Analysis of nitrogenous and algal oxygen demand in effluent from a system of aerated lagoons followed by polishing pond.

    PubMed

    Khorsandi, Hassan; Alizadeh, Rahimeh; Tosinejad, Horiyeh; Porghaffar, Hadi

    2014-01-01

    In this descriptive-analytical study, nitrogenous and algal oxygen demand were assessed for effluent from a system of facultative partially mixed lagoons followed by the polishing pond using 120 grab samples over 1 year. Filtered and non-filtered samples of polishing pond effluent were tested in the presence and absence of a nitrification inhibitor. Effective factors, including 5-day biochemical and chemical oxygen demand (BOD and COD), total suspended solids (TSS), dissolved oxygen, chlorophyll A, and temperature, were measured using standard methods for water and wastewater tests. The results were analyzed using repeated measures analysis of variance with SPSS version 16. Findings show that the annual mean of the total 5-day BOD in the effluent from the polishing pond consisted of 44.92% as the algal carbonaceous biochemical oxygen demand (CBOD), 43.61% as the nitrogenous biochemical oxygen demand (NBOD), and 11.47% as the soluble CBOD. According to this study, the annual mean ratios of algal COD and 5-day algal CBOD to TSS were 0.8 and 0.37, respectively. As the results demonstrate, undertaking quality evaluation of the final effluent from the lagoons without considering nitrogenous and algal oxygen demand would undermine effluent quality assessment and interpretation of the performance of the wastewater treatment plant.

  1. Land Use Land Cover Changes in Detection of Water Quality: A Study Based on Remote Sensing and Multivariate Statistics.

    PubMed

    Hua, Ang Kean

    2017-01-01

    Malacca River water quality is affected due to rapid urbanization development. The present study applied LULC changes towards water quality detection in Malacca River. The method uses LULC, PCA, CCA, HCA, NHCA, and ANOVA. PCA confirmed DS, EC, salinity, turbidity, TSS, DO, BOD, COD, As, Hg, Zn, Fe, E. coli , and total coliform. CCA confirmed 14 variables into two variates; first variate involves residential and industrial activities; and second variate involves agriculture, sewage treatment plant, and animal husbandry. HCA and NHCA emphasize that cluster 1 occurs in urban area with Hg, Fe, total coliform, and DO pollution; cluster 3 occurs in suburban area with salinity, EC, and DS; and cluster 2 occurs in rural area with salinity and EC. ANOVA between LULC and water quality data indicates that built-up area significantly polluted the water quality through E. coli , total coliform, EC, BOD, COD, TSS, Hg, Zn, and Fe, while agriculture activities cause EC, TSS, salinity, E. coli , total coliform, arsenic, and iron pollution; and open space causes contamination of turbidity, salinity, EC, and TSS. Research finding provided useful information in identifying pollution sources and understanding LULC with river water quality as references to policy maker for proper management of Land Use area.

  2. Experimental investigation of oily wastewater treatment using combined membrane systems.

    PubMed

    Salahi, A; Mohammadi, T

    2010-01-01

    Investigations were carried out for purification of oily wastewater by a combined of ultrafiltration/reverse osmosis (UF/RO) processes. Laboratory-scale UF using polysulfone (PS) and polyacrylonitrile (PAN) membranes were employed with typical oily wastewater collected from API unit of Tehran refinery. The PAN membrane showed higher rejection, more permeation flux and less fouling resistance than the PS membrane. Both membranes produced permeate with oil and grease contents generally less than 5 ppm. Rejection of chemical oxygen demand (COD) and biological oxygen demand (BOD5) were found to be 65% for UF treatment. In this work, Hermia's models were used to investigate the fouling mechanism involved in UF of the oily wastewater. The results showed that the best fit to experimental data corresponds to the cake layer formation model followed by the intermediate blocking model for both the UF membranes. For further treatment of the UF permeates, RO was applied using a thin film composite polyamide membrane. The rejection of COD, BOD5 and total dissolved solid (TDS) after UF/RO treatment increased up to 98%, 98% and 95%, respectively. The results showed that the final permeate has very high quality and even better than that is currently introduced to the cooling towers in Tehran refinery.

  3. Electrochemical treatment of cork boiling wastewater with a boron-doped diamond anode.

    PubMed

    Fernandes, Annabel; Santos, Diana; Pacheco, Maria José; Ciríaco, Lurdes; Simões, Rogério; Gomes, Arlindo C; Lopes, Ana

    2015-01-01

    Anodic oxidation at a boron-doped diamond anode of cork boiling wastewater was successfully used for mineralization and biodegradability enhancement required for effluent discharge or subsequent biological treatment, respectively. The influence of the applied current density (30-70 mA/cm2) and the background electrolyte concentration (0-1.5 g/L Na2SO4) on the performance of the electrochemical oxidation was investigated. The supporting electrolyte was required to achieve conductivities that enabled anodic oxidation at the highest current intensities applied. The results indicated that pollutant removal increased with the applied current density, and after 8 h, reductions greater than 90% were achieved for COD, dissolved organic carbon, total phenols and colour. The biodegradability enhancement was from 0.13 to 0.59 and from 0.23 to 0.72 for the BOD/COD ratios with BOD of 5 and 20 days' incubation period, respectively. The tests without added electrolyte were performed at lower applied electrical charges (15 mA/cm2 or 30 V) with good organic load removal (up to 80%). For an applied current density of 30 mA/cm2, there was a minimum of electric conductivity of 1.9 mS/cm (corresponding to 0.75 g/L of Na2SO4), which minimized the specific energy consumption.

  4. Effect of intermittent aeration strategies on treatment performance and microbial community of an IFAS reactor treating municipal waste water.

    PubMed

    Singh, Nitin Kumar; Bhatia, Akansha; Kazmi, Absar Ahmad

    2017-11-01

    This study investigated the effect of various intermittent aeration (IA) cycles on organics and nutrient removal, and microbial communities in an integrated fixed-film activated sludge (IFAS) reactor treating municipal waste water. Average effluent biological oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids, total nitrogen (TN) and total phosphorus (TP) values were noted as 20, 50, 30, 12 and 1.5 mgL -1 , respectively, in continuous aeration mode. A total of four operational conditions (run 1, continuous aeration; run 2, 150/30 min aeration on/off time; run 3, 120/60 min aeration on/off time and run 4, 90/60 min aeration on/off time) were investigated in IFAS reactor assessment. Among the all examined IA cycles, IA phase 2 gave the maximum COD and BOD removals with values recorded as 97% and 93.8%, respectively. With respect to nutrient removal (TN and TP), IA phase 1 was found to be optimum. Pathogen removal efficiency of present system was recorded as 90-95% during the three phases. With regard to settling characteristics, pilot showed poor settling during IA schedules, which was also evidenced by high sludge volume index values. Overall, IA could be used as a feasible way to improve the overall performance of IFAS system.

  5. Performance evaluation of a large sewage treatment plant in Brazil, consisting of an upflow anaerobic sludge blanket reactor followed by activated sludge.

    PubMed

    Saliba, Pollyane Diniz; von Sperling, Marcos

    2017-10-01

    The objective of this study was to evaluate the behaviour of a system comprising an upflow anaerobic sludge blanket reactor followed by activated sludge to treat domestic sewage. The Betim Central sewage treatment plant, Brazil, was designed to treat a mean influent flow of 514 L/s. The study consisted of statistical treatment of monitoring data from the treatment plant covering a period of 4 years. This work presents the concentrations and removal efficiencies of the main constituents in each stage of the treatment process, and a mass balance of chemical oxygen demand (COD) and nitrogen. The results highlight the good overall performance of the system, with high mean removal efficiencies: BOD (biochemical oxygen demand) (94%), COD (91%), ammonia (72%) and total suspended solids (92%). As expected, this system was not effective for the removal of nutrients, since it was not designed for this purpose. The removal of Escherichia coli (99.83%) was higher than expected. There was no apparent influence of operational and design parameters on the effluent quality in terms of organic matter removal, with the exceptions of the BOD load upstream of the aeration tank and the sludge age in the unit. Results suggest that this system is well suited for the treatment of domestic sewage.

  6. Estimation of both optical and nonoptical surface water quality parameters using Landsat 8 OLI imagery and statistical techniques

    NASA Astrophysics Data System (ADS)

    Sharaf El Din, Essam; Zhang, Yun

    2017-10-01

    Traditional surface water quality assessment is costly, labor intensive, and time consuming; however, remote sensing has the potential to assess surface water quality because of its spatiotemporal consistency. Therefore, estimating concentrations of surface water quality parameters (SWQPs) from satellite imagery is essential. Remote sensing estimation of nonoptical SWQPs, such as chemical oxygen demand (COD), biochemical oxygen demand (BOD), and dissolved oxygen (DO), has not yet been performed because they are less likely to affect signals measured by satellite sensors. However, concentrations of nonoptical variables may be correlated with optical variables, such as turbidity and total suspended sediments, which do affect the reflected radiation. In this context, an indirect relationship between satellite multispectral data and COD, BOD, and DO can be assumed. Therefore, this research attempts to develop an integrated Landsat 8 band ratios and stepwise regression to estimate concentrations of both optical and nonoptical SWQPs. Compared with previous studies, a significant correlation between Landsat 8 surface reflectance and concentrations of SWQPs was achieved and the obtained coefficient of determination (R2)>0.85. These findings demonstrated the possibility of using our technique to develop models to estimate concentrations of SWQPs and to generate spatiotemporal maps of SWQPs from Landsat 8 imagery.

  7. Electrochemical Treatment of Textile Dye Wastewater by Mild Steel Anode.

    PubMed

    Bhavya, J G; Rekha, H B; Murthy, Usha N

    2014-04-01

    This paper presents the results of the treatment of textile dye wastewater generated from a textile processing industry by electrochemical method. Experiments were conducted at current densities of 12, 24 and 48 A/m2 using mild steel as anode and cathode. During the various stages of electrolysis, parameters such as COD, color and BOD5 were determined in order to know the feasibility of electrochemical treatment. It was observed that increasing the electrolysis time and increased current density bring down the concentration of pollutants. Also COD removal rate and energy consumption during the electrolysis were calculated and presented in this paper. The present study proves the effectiveness of electrochemical treatment using MS as anode for TDW oxidation.

  8. Winery wastewater treatment by combination of Cryptococcus laurentii and Fenton's reagent.

    PubMed

    Santos, Cátia; Lucas, Marco S; Dias, Albino A; Bezerra, Rui M F; Peres, José A; Sampaio, Ana

    2014-12-01

    Winery wastewaters (WW) have high levels of organic matter, resulting in high COD and BOD and suspended solids. This paper studies the combination of biological and chemical processes in WW treatment. Among 10 yeast isolates, Filobasidium sp. (AGG 577) and Cryptococcus laurentii (AGG 726) were selected due to their superior performance in COD removal. During WW degradation, COD and total polyphenols (TPP) content removal of 89-90% for Filobasidium sp. and 90-93% for C. laurentii were obtained. However, despite similar degradation efficiency for both yeasts, COD kinetics and pH evolution during treatment reveals that C. laurentii presents a faster response than Filobasidium sp. The toxicity (inhibition of Vibrio fischeri luminescence) of C. laurentii treated WW decreases to an inhibition value below 2.5%. However, treated WW exceeds the legal limits, making necessary an additional treatment. In this case, the selection of Fenton's reagent as a chemical final polish step process is a good compromise between efficiency and lower practical complexity. The best results for both COD and TPP removal were obtained with H2O2 initial concentration of 39.2mM and a H2O2:Fe(2+) molar ratio of 15:1. The combined C. laurentii - Fenton's reagent treatment of WW achieved a total reduction of 98% and 96%, for COD and TPP, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Treatment and Energy Valorisation of an Agro-Industrial Effluent in Upflow Anaerobic Sludge Reactor (UASB)

    NASA Astrophysics Data System (ADS)

    Martins, Ramiro; Boaventura, Rui; Paulista, Larissa

    2017-12-01

    The accelerated growth of the population brings with it an increase in the generation of agro-industrial effluents. The inadequate discharge of these effluents significantly affects the quality of water resources. In this way, it becomes important to invest in treatment processes for agro-industrial effluents, particularly low-cost ones. In this context, the present study includes the design and construction of an UASB reactor and optimization of the anaerobic digestion treatment of the raw effluent from sweet chestnut production in the agro-industrial company Sortegel. The efficiency of the system was evaluated through the determination / monitoring of oxygen chemical oxygen demand (COD), biochemical oxygen demand (BOD5), total suspended solids (TSS), biogas production rate and quality (% methane). The reactor was fed for 25 weeks and operated under mesophilic conditions (temperature 30-40 °C). Different values were tested for the hydraulic retention time (HRT) and volumetric flow rate (VF): 0.66 days (VF=1509 L.m-3.d-1); 1.33 days (VF=755 L.m-3.d-1); 2.41 d days (VF=415 L.m-3.d-1). The average COD removal efficiency reached values of 69%, 82% and 75%, respectively, and simultaneously the associated BOD5 removal efficiency was 84%, 91% and 70%. As regards TSS, removal values were 78%, 94% and 63%. In addition, high methane production rates were obtained, between 2500 and 4800 L CH4.kg-1 COD removed d-1. For all the hydraulic retention times tested, high concentrations of methane in the biogas were recorded: 66-75%, 70% and 75% for HRT of 0.66, 1.33 and 2.41 days, respectively.

  10. 40 CFR 417.103 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY Air-SO3... 0.04 .02 Surfactants 0.36 .18 Oil and grease 0.08 .04 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.30 0.19 COD 1.10 .55 TSS 0.04 .02 Surfactants 0.36 .18 Oil and grease 0...

  11. 40 CFR 417.153 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY... Surfactants 0.04 .02 Oil and grease 0.01 .005 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.02 0.01 COD 0.08 .04 TSS 0.04 .02 Surfactants 0.04 .02 Oil and grease 0.01 .005 pH (1) (1...

  12. 40 CFR 417.153 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY... Surfactants 0.04 .02 Oil and grease 0.01 .005 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.02 0.01 COD 0.08 .04 TSS 0.04 .02 Surfactants 0.04 .02 Oil and grease 0.01 .005 pH (1) (1...

  13. 40 CFR 417.103 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY Air-SO3... 0.04 .02 Surfactants 0.36 .18 Oil and grease 0.08 .04 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.30 0.19 COD 1.10 .55 TSS 0.04 .02 Surfactants 0.36 .18 Oil and grease 0...

  14. 40 CFR 417.103 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY Air-SO3... 0.04 .02 Surfactants 0.36 .18 Oil and grease 0.08 .04 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.30 0.19 COD 1.10 .55 TSS 0.04 .02 Surfactants 0.36 .18 Oil and grease 0...

  15. Environmentally Acceptable Lubricants

    DTIC Science & Technology

    2011-11-30

    CO2 >60% ASTM D-5864 Shake flask test CO2 >60% EPA 560/6-82-003 BODIS test BOD/COD >60% ISO 10708 Hydrocarbon degradability CEC test Infrared...several criteria proposed over the past few years to describe the point at which chemicals are no longer taken up in the body and bioaccumulated (Arnot...conducted by an approved third -party laboratory. The OSPAR protocols for methods for the testing of chemicals used in the offshore oil industry are

  16. Biological Pilot Plant Study at Radford Army Ammunition Plant

    DTIC Science & Technology

    1976-10-01

    amount of organics applied to the rotating bio- logical disc system was substantially incre sed when the hy- draulic loading was increased from 2 GPD/ft... organic loading, therefore, the effluent organic con- centrations increased significantly. The increase in effluent BOD and COD after May 13th are...provided some additional organic removal while the third and fourth stages began providing an increased amount of organic removal. The first stage soluble

  17. 40 CFR 417.43 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... TSS 0.20 .10 Oil and grease 0.08 .04 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.80 0.40 COD 2.40 1.20 TSS 0.20 .10 Oil and grease 0.08 .04 pH (1) (1) 1 Within the range 6... Glycerine Concentration Subcategory § 417.43 Effluent limitations guidelines representing the degree of...

  18. 40 CFR 133.102 - Secondary treatment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... (3) The 30-day average percent removal shall not be less than 85 percent. (c) pH. The effluent values for pH shall be maintained within the limits of 6.0 to 9.0 unless the publicly owned treatment works... effluent quality attainable by secondary treatment in terms of the parameters—BOD5, SS and pH. All...

  19. 40 CFR 133.102 - Secondary treatment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... (3) The 30-day average percent removal shall not be less than 85 percent. (c) pH. The effluent values for pH shall be maintained within the limits of 6.0 to 9.0 unless the publicly owned treatment works... effluent quality attainable by secondary treatment in terms of the parameters—BOD5, SS and pH. All...

  20. Grey water biodegradability.

    PubMed

    Ghunmi, Lina Abu; Zeeman, Grietje; Fayyad, Manar; van Lier, Jules B

    2011-02-01

    Knowing the biodegradability characteristics of grey water constituents is imperative for a proper design and operation of a biological treatment system of grey water. This study characterizes the different COD fractions of dormitory grey water and investigates the effect of applying different conditions in the biodegradation test. The maximum aerobic and anaerobic biodegradability and conversion rate for the different COD fractions is determined. The results show that, on average, dormitory grey water COD fractions are 28% suspended, 32% colloidal and 40% dissolved. The studied factors incubation time, inoculum addition and temperature are influencing the determined biodegradability. The maximum biodegradability and biodegradation rate differ between different COD fractions, viz. COD(ss), COD(col) and COD(diss). The dissolved COD fraction is characterised by the lowest degradation rate, both for anaerobic and aerobic conditions. The maximum biodegradability for aerobic and anaerobic conditions is 86 and 70% respectively, whereas the first order conversion rate constant, k₂₀, is 0.119 and 0.005 day⁻¹, respectively. The anaerobic and aerobic conversion rates in relation to temperature can be described by the Arrhenius relation, with temperature coefficients of 1.069 and 1.099, respectively.

  1. The Effectiveness of Organic Pollutants Removal in Constructed Wetland with Horizontal Sub-Surface Flow / Efektywność Usuwania Zanieczyszczeń Organicznych W Oczyszczalni Hydrofitowej

    NASA Astrophysics Data System (ADS)

    Jakubaszek, Anita; Sadecka, Zofia

    2015-03-01

    This paper presents the results of the research work related to the removal efficiency from wastewater organic pollutants and suspended solids at HSSF (horizontal subsurface flow) constructed wetland. The average effectiveness defined as loss of value COD in wastewater has reached 77%, for BOD5 - 80% and TOC - 82%. The effect of seasonal temperature changes and the period of plant vegetation and rest on the effectiveness of wastewater treatment were also analyzed. The results of the presented research showed a decrease in the efficiency of removing organic pollutants from wastewater and suspended solids in the autumn and winter. During the vegetation the object in Małyszyn has been characterized by the effectiveness of wastewater treatment at the level of 78% for COD, 82% for BOD5, and in the non-vegetation period the effectiveness has decreased up to 75% for COD and 74% for BOD5. During the plants growth the total suspension was removed in 88%, whereas during the plants rest efficiency of removing lowered to 69%. W pracy przedstawiono wyniki badań dotyczące efektywności usuwania ze ścieków zanieczyszczeń organicznych w oczyszczalni hydrofitowej. Średnia skuteczność oczyszczania wyrażona jako obniżenie wartości ChZT w ściekach była na poziomie 77%, dla BZT5 80%, a dla OWO 82%. Analizowano również wpływ sezonowych zmian temperatury oraz okresu wegetacji i spoczynku roślin na skuteczność oczyszczania ścieków. Wyniki badań wykazały obniżenie efektywności usuwania zanieczyszczeń organicznych ze ścieków wyrażonych przez ChZT i BZT5 oraz zawiesiny ogólnej w okresie jesienno-zimowym. W okresie wegetacyjnym obiekt w Małyszynie charakteryzował się efektywnością oczyszczania ścieków na poziomie: 78% dla ChZT, 82% dla BZT5, a w sezonie pozawegetacyjnym skuteczność uległa obniżeniu do 75% w przypadku ChZT oraz 74% dla BZT5. Zawiesina ogólna w okresie wegetacji trzciny usuwana była w 88%, a w okresie powegetacyjnym w 69%.

  2. High-strength wastewater treatment in a pure oxygen thermophilic process: 11-year operation and monitoring of different plant configurations.

    PubMed

    Collivignarelli, M C; Bertanza, G; Sordi, M; Pedrazzani, R

    2015-01-01

    This research was carried out on a full-scale pure oxygen thermophilic plant, operated and monitored throughout a period of 11 years. The plant treats 60,000 t y⁻¹ (year 2013) of high-strength industrial wastewaters deriving mainly from pharmaceuticals and detergents production and landfill leachate. Three different plant configurations were consecutively adopted: (1) biological reactor + final clarifier and sludge recirculation (2002-2005); (2) biological reactor + ultrafiltration: membrane biological reactor (MBR) (2006); and (3) MBR + nanofiltration (since 2007). Progressive plant upgrading yielded a performance improvement chemical oxygen demand (COD) removal efficiency was enhanced by 17% and 12% after the first and second plant modification, respectively. Moreover, COD abatement efficiency exhibited a greater stability, notwithstanding high variability of the influent load. In addition, the following relevant outcomes appeared from the plant monitoring (present configuration): up to 96% removal of nitrate and nitrite, due to denitrification; low-specific biomass production (0.092 kgVSS kgCODremoved⁻¹), and biological treatability of residual COD under mesophilic conditions (BOD5/COD ratio = 0.25-0.50), thus showing the complementarity of the two biological processes.

  3. Anaerobic treatment of complex chemical wastewater in a sequencing batch biofilm reactor: process optimization and evaluation of factor interactions using the Taguchi dynamic DOE methodology.

    PubMed

    Venkata Mohan, S; Chandrasekhara Rao, N; Krishna Prasad, K; Murali Krishna, P; Sreenivas Rao, R; Sarma, P N

    2005-06-20

    The Taguchi robust experimental design (DOE) methodology has been applied on a dynamic anaerobic process treating complex wastewater by an anaerobic sequencing batch biofilm reactor (AnSBBR). For optimizing the process as well as to evaluate the influence of different factors on the process, the uncontrollable (noise) factors have been considered. The Taguchi methodology adopting dynamic approach is the first of its kind for studying anaerobic process evaluation and process optimization. The designed experimental methodology consisted of four phases--planning, conducting, analysis, and validation connected sequence-wise to achieve the overall optimization. In the experimental design, five controllable factors, i.e., organic loading rate (OLR), inlet pH, biodegradability (BOD/COD ratio), temperature, and sulfate concentration, along with the two uncontrollable (noise) factors, volatile fatty acids (VFA) and alkalinity at two levels were considered for optimization of the anae robic system. Thirty-two anaerobic experiments were conducted with a different combination of factors and the results obtained in terms of substrate degradation rates were processed in Qualitek-4 software to study the main effect of individual factors, interaction between the individual factors, and signal-to-noise (S/N) ratio analysis. Attempts were also made to achieve optimum conditions. Studies on the influence of individual factors on process performance revealed the intensive effect of OLR. In multiple factor interaction studies, biodegradability with other factors, such as temperature, pH, and sulfate have shown maximum influence over the process performance. The optimum conditions for the efficient performance of the anaerobic system in treating complex wastewater by considering dynamic (noise) factors obtained are higher organic loading rate of 3.5 Kg COD/m3 day, neutral pH with high biodegradability (BOD/COD ratio of 0.5), along with mesophilic temperature range (40 degrees C), and low sulfate concentration (700 mg/L). The optimization resulted in enhanced anaerobic performance (56.7%) from a substrate degradation rate (SDR) of 1.99 to 3.13 Kg COD/m3 day. Considering the obtained optimum factors, further validation experiments were carried out, which showed enhanced process performance (3.04 Kg COD/m3-day from 1.99 Kg COD/m3 day) accounting for 52.13% improvement with the optimized process conditions. The proposed method facilitated a systematic mathematical approach to understand the complex multi-species manifested anaerobic process treating complex chemical wastewater by considering the uncontrollable factors. Copyright (c) 2005 Wiley Periodicals, Inc.

  4. Long Term Trend Analysis and Assessment of Water Quality in the Penchala River, Malaysia

    NASA Astrophysics Data System (ADS)

    Chow, M. F.; Haris, H. B.; Mohd Sidek, L. B.

    2014-12-01

    Rapid urban expansion produces negative impacts on the natural environment, especially river water quality. Studies assessing long term changes of water quality have been recognized as a key tool for understanding ongoing processes in watersheds and for providing an essential background for evaluation of rapid changes within industrialized and populated urban areas. Unfortunately, only limited studies are available for developing countries such as Malaysia. Thus, a long term study was conducted to evaluate water quality trends at Pencala river basin that has undergone extensive land use changes related to industrial, agricultural and urban activities. Fifteen physical and chemical variables were analysed in river water samples collected every month over a period of 13 years, between 1997 and 2009. The trend study was performed using the Mann-Kendall Seasonal test and the Sen's Slope estimator. Results revealed that most water quality parameters showed a downward trend for yearly average concentration. The water quality index (WQI) for Pencala River was improved from Class V to Class IV, according to National Water Quality Standards for Malaysia. BOD, COD, NH3-N and SS show trends toward decreasing concentrations over time. The improvements seen in water quality appear to be the result of improved wastewater treatment and other water quality improvement efforts achieved through government initiative. Continued long-term and high frequency monitoring is necessary to establish plans and policies for effective water resources management.

  5. [Environmental effects of combined sewage detention tank in central Shanghai].

    PubMed

    Cheng, Jiang; Lü, Yong-peng; Huang, Xiao-fang; Guo, Sheng

    2009-08-15

    Through measuring the processes of precipitation, discharge and pollutant concentration over 20 times from 2006 to 2008 in Chendulu combined sewerage system (CSS) along Suzhou Creek in central Shanghai, the environmental effects of Chendulu combined sewage detention tank (CSDT), the first running CSDT in China, were studied. The results show that CSDT could improve CSS discharge capacity effectively with promoted interception ratio from 3.87 to 6.90-9.92. The mean annual combined sewer overflow (CSO) reduction and reduction rate are 9.10 x 10(4) m3 and 9.00%, respectively, and those of sanitary waste discharged directly to Suzhou Creek in non-rain-weather are 8.37 x 10(4) m(3) and 100% , respectively. The mean annual pollutants decrease rate of COD, BOD5, SS, NH4+ -N and TP of CSO are 13.76%, 19.69%, 15.29%, 18.24% and 15.10%, respectively, and those CSO pollutants decrease 41.21 t, 12.37 t, 50.10 t, 2.12 t and 0.29 t annually, respectively. The CSDT also could decrease sanitary waste discharged to Suzhou Creek totally, and those decreased pollutants are 20.75 t, 4.87 t, 14.90 t, 4.49 t and 0.30 t annually, respectively. The analysis shows that the CSDT design standard, running models and rainfall characteristics are the important influencing factors to realize the environmental effects of CSDT.

  6. Contribution of different sources to the pollution of wet weather flows in combined sewers.

    PubMed

    Gromaire, M C; Garnaud, S; Saad, M; Chebbo, G

    2001-02-01

    Experiments performed on "Marais" catchment, in central Paris, aimed to follow up the quality of wet weather flows from the entry to the exit of a combined sewer network. SS, VSS, COD, BOD5, Cd, Cu, Pb, Zn concentrations were measured for an important number of rain events in roof, yard, street runoff, as well as in dry and wet weather flows at the catchment outlet. Mass entry-exit totals, at the scale of the catchment, were calculated over 31 rain events in order to evaluate the contribution of different types of runoff, of sanitary sewage and of sewer sediments to the total wet weather pollutant loads at the catchment outlet. The erosion of in-sewer pollutant stocks was found to be the main source of particles and of organic matter in wet weather flows, whereas heavy metal loads mainly originated from roof runoff, due to the corrosion of metallic roofs. Particles eroded inside the sewer during rain events were found to be quite different from the particles constituting the main part of sewer sediments: they are organic and biodegradable, with rather important settling velocities and seem to accumulate during dry weather periods. A change of the chemical form of heavy metals was noticed during the transport in the sewer and it is suspected that a fraction of the dissolved metals from the runoff is adsorbed on sewer sediments.

  7. Treatment of textile wastewater by submerged membrane bioreactor: In vitro bioassays for the assessment of stress response elicited by raw and reclaimed wastewater.

    PubMed

    Friha, Inès; Bradai, Mohamed; Johnson, Daniel; Hilal, Nidal; Loukil, Slim; Ben Amor, Fatma; Feki, Firas; Han, Junkuy; Isoda, Hiroko; Sayadi, Sami

    2015-09-01

    The performance of a pilot-scale membrane bioreactor (MBR) system for the treatment of textile wastewater was investigated. The MBR was continuously operated for 7 months. Very high treatment efficiencies were achieved (color, 100%; chemical oxygen demand (COD), 98%; biochemical oxygen demand (BOD5), 96%; suspended solids (SS), 100%). Furthermore, the MBR treatment efficiency was analyzed from a toxicological-risk assessment point of view, via different In vitro bioassays using Caco-2 cells, a widely used cell model in toxicological studies. Results showed that MBR treatment significantly reduced the raw textile wastewater (RTWW) cytotoxicity on Caco-2 cells by 53% for a hydraulic retention time (HRT) of 2 days. Additionally, the RTWW-induced disruption in the barrier function (BF) of the Caco-2 cell monolayer was also significantly reduced after MBR treatment under a HRT of 2 days (no disruption of BF was observed). Moreover, the effect of RTWW and treated wastewater on stress response was investigated using different stress genes: AHSA1, HSPD1, HSPA1A, HSPA5 and HSPA8. The cell exposure to RTWW significantly increased the expression of all used stress genes; interestingly, the treated wastewater (HRT 2 days) did not show any significant modulation of the stress genes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Comparison of laboratory-scale thermophilic biofilm and activated sludge processes integrated with a mesophilic activated sludge process.

    PubMed

    Suvilampi, J; Lehtomäki, A; Rintala, J

    2003-07-01

    A combined thermophilic-mesophilic wastewater treatment was studied using a laboratory-scale thermophilic activated sludge process (ASP) followed by mesophilic ASP or a thermophilic suspended carrier biofilm process (SCBP) followed by mesophilic ASP, both systems treating diluted molasses (dilution factor 1:500 corresponding GF/A-filtered COD (COD(filt)) of 1900+/-190 mgl(-1)). With hydraulic retention times (HRTs) of 12-18 h the thermophilic ASP and thermophilic SCBP removed 60+/-13% and 62+/-7% of COD(filt), respectively, with HRT of 8 h the removals were 48+/-1% and 69+/-4%. The sludge volume index (SVI) was notably lower in the thermophilic SCBP (measured from suspended sludge) than in the thermophilic ASP. Under the lowest HRT the mesophilic ASP gave better performance (as SVI, COD(filt), and COD(tot) removals) after the thermophilic SCBP than after the thermophilic ASP. Measured sludge yields were low (less than 0.1 kg suspended solids (SS) kg COD(filt removed)(-1)) in all processes. Both thermophilic treatments removed 80-85% of soluble COD (COD(sol)) whereas suspended COD (COD(susp)) and colloidal COD (COD(col)) were increased. Both mesophilic post-treatments removed all COD(col) and most of the COD(susp) from the thermophilic effluents. In conclusion, combined thermophilic-mesophilic treatment appeared to be easily operable and produced high effluent quality.

  9. Removal of steroid estrogens from municipal wastewater in a pilot scale expanded granular sludge blanket reactor and anaerobic membrane bioreactor

    PubMed Central

    Ito, Ayumi; Mensah, Lawson; Cartmell, Elise; Lester, John N.

    2016-01-01

    Anaerobic treatment of municipal wastewater offers the prospect of a new paradigm by reducing aeration costs and minimizing sludge production. It has been successfully applied in warm climates, but does not always achieve the desired outcomes in temperate climates at the biochemical oxygen demand (BOD) values of municipal crude wastewater. Recently the concept of ‘fortification' has been proposed to increase organic strength and has been demonstrated at the laboratory and pilot scale treating municipal wastewater at temperatures of 10–17°C. The process treats a proportion of the flow anaerobically by combining it with primary sludge from the residual flow and then polishing it to a high effluent standard aerobically. Energy consumption is reduced as is sludge production. However, no new treatment process is viable if it only addresses the problems of traditional pollutants (suspended solids – SS, BOD, nitrogen – N and phosphorus – P); it must also treat hazardous substances. This study compared three potential municipal anaerobic treatment regimes, crude wastewater in an expanded granular sludge blanket (EGSB) reactor, fortified crude wastewater in an EGSB and crude wastewater in an anaerobic membrane bioreactor. The benefits of fortification were demonstrated for the removal of SS, BOD, N and P. These three systems were further challenged with the removal of steroid estrogens at environmental concentrations from natural indigenous sources. All three systems removed these compounds to a significant degree, confirming that estrogen removal is not restricted to highly aerobic autotrophs, or aerobic heterotrophs, but is also a faculty of anaerobic bacteria. PMID:26212345

  10. 40 CFR 417.132 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE...) BOD5 0.90 0.30 COD 4.05 1.35 TSS 0.09 .03 Surfactants 0.90 .30 Oil and grease 0.15 .05 pH (1) (1... Surfactants 0.90 .30 Oil and grease 0.15 .05 pH (1) (1) 1 Within the range 6.0 to 9.0. [39 FR 13372, Apr. 12...

  11. 40 CFR 417.112 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE...) BOD5 0.90 0.30 COD 3.05 1.35 TSS 0.09 .03 Surfactants 0.90 .30 Oil and grease 0.10 .05 pH (1) (1... Surfactants 0.90 .30 Oil and grease 0.10 .05 pH (1) (1) 1 Within the range 6.0 to 9.0. [39 FR 13372, Apr. 12...

  12. 40 CFR 417.132 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE...) BOD5 0.90 0.30 COD 4.05 1.35 TSS 0.09 .03 Surfactants 0.90 .30 Oil and grease 0.15 .05 pH (1) (1... Surfactants 0.90 .30 Oil and grease 0.15 .05 pH (1) (1) 1 Within the range 6.0 to 9.0. [39 FR 13372, Apr. 12...

  13. 40 CFR 417.112 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE...) BOD5 0.90 0.30 COD 3.05 1.35 TSS 0.09 .03 Surfactants 0.90 .30 Oil and grease 0.10 .05 pH (1) (1... Surfactants 0.90 .30 Oil and grease 0.10 .05 pH (1) (1) 1 Within the range 6.0 to 9.0. [39 FR 13372, Apr. 12...

  14. 40 CFR 417.132 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE...) BOD5 0.90 0.30 COD 4.05 1.35 TSS 0.09 .03 Surfactants 0.90 .30 Oil and grease 0.15 .05 pH (1) (1... Surfactants 0.90 .30 Oil and grease 0.15 .05 pH (1) (1) 1 Within the range 6.0 to 9.0. [39 FR 13372, Apr. 12...

  15. 40 CFR 417.102 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE...) BOD5 0.90 0.30 COD 4.05 1.35 TSS 0.09 .03 Surfactants 0.90 .30 Oil and grease 0.15 .05 pH (1) (1... Surfactants 0.90 .30 Oil and grease 0.10 .05 pH (1) (1) 1 Within the range 6.0 to 9.0. [39 FR 13372, Apr. 12...

  16. 40 CFR 417.102 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE...) BOD5 0.90 0.30 COD 4.05 1.35 TSS 0.09 .03 Surfactants 0.90 .30 Oil and grease 0.15 .05 pH (1) (1... Surfactants 0.90 .30 Oil and grease 0.10 .05 pH (1) (1) 1 Within the range 6.0 to 9.0. [39 FR 13372, Apr. 12...

  17. 40 CFR 417.92 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE...) BOD5 0.09 0.02 COD 0.40 .09 TSS 0.15 .03 Surfactants 0.15 .03 Oil and grease 0.25 .07 pH (1) (1... Surfactants 0.15 .03 Oil and grease 0.25 .07 pH (1) (1) 1 Within the range 6.0 to 9.0. [39 FR 13372, Apr. 12...

  18. 40 CFR 417.92 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE...) BOD5 0.09 0.02 COD 0.40 .09 TSS 0.15 .03 Surfactants 0.15 .03 Oil and grease 0.25 .07 pH (1) (1... Surfactants 0.15 .03 Oil and grease 0.25 .07 pH (1) (1) 1 Within the range 6.0 to 9.0. [39 FR 13372, Apr. 12...

  19. 40 CFR 417.92 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE...) BOD5 0.09 0.02 COD 0.40 .09 TSS 0.15 .03 Surfactants 0.15 .03 Oil and grease 0.25 .07 pH (1) (1... Surfactants 0.15 .03 Oil and grease 0.25 .07 pH (1) (1) 1 Within the range 6.0 to 9.0. [39 FR 13372, Apr. 12...

  20. 40 CFR 417.102 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE...) BOD5 0.90 0.30 COD 4.05 1.35 TSS 0.09 .03 Surfactants 0.90 .30 Oil and grease 0.15 .05 pH (1) (1... Surfactants 0.90 .30 Oil and grease 0.10 .05 pH (1) (1) 1 Within the range 6.0 to 9.0. [39 FR 13372, Apr. 12...

  1. 40 CFR 417.112 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE...) BOD5 0.90 0.30 COD 3.05 1.35 TSS 0.09 .03 Surfactants 0.90 .30 Oil and grease 0.10 .05 pH (1) (1... Surfactants 0.90 .30 Oil and grease 0.10 .05 pH (1) (1) 1 Within the range 6.0 to 9.0. [39 FR 13372, Apr. 12...

  2. 40 CFR 417.162 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 0.015 .005 Surfactants 0.39 .13 Oil and grease 0.015 .005 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.60 0.20 COD 1.80 .60 TSS 0.015 .005 Surfactants 0.39 .13 Oil and....15. TSS 0.002. Surfactants 0.04. Oil and grease 0.002. pH Within the range 6.0 to 9.0. English units...

  3. 40 CFR 417.162 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 0.015 .005 Surfactants 0.39 .13 Oil and grease 0.015 .005 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.60 0.20 COD 1.80 .60 TSS 0.015 .005 Surfactants 0.39 .13 Oil and....15. TSS 0.002. Surfactants 0.04. Oil and grease 0.002. pH Within the range 6.0 to 9.0. English units...

  4. 40 CFR 417.162 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 0.015 .005 Surfactants 0.39 .13 Oil and grease 0.015 .005 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.60 0.20 COD 1.80 .60 TSS 0.015 .005 Surfactants 0.39 .13 Oil and....15. TSS 0.002. Surfactants 0.04. Oil and grease 0.002. pH Within the range 6.0 to 9.0. English units...

  5. 40 CFR 417.162 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 0.015 .005 Surfactants 0.39 .13 Oil and grease 0.015 .005 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.60 0.20 COD 1.80 .60 TSS 0.015 .005 Surfactants 0.39 .13 Oil and....15. TSS 0.002. Surfactants 0.04. Oil and grease 0.002. pH Within the range 6.0 to 9.0. English units...

  6. 40 CFR 417.162 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 0.015 .005 Surfactants 0.39 .13 Oil and grease 0.015 .005 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.60 0.20 COD 1.80 .60 TSS 0.015 .005 Surfactants 0.39 .13 Oil and....15. TSS 0.002. Surfactants 0.04. Oil and grease 0.002. pH Within the range 6.0 to 9.0. English units...

  7. Batch leachate treatment using stirred electrocoagulation reactor with variation of residence time and stirring rate

    NASA Astrophysics Data System (ADS)

    Sitorus, I. S.; Astono, W.; Iswanto, B.

    2018-01-01

    This study aims to reduce pollutant levels of the leachate by electrocoagulation method using a stirred electrocoagulation reactor as the electrochemical water treatment. The release of active coagulants as metallic ions took place in the anode, while in the cathode, the electrolysis reaction in the form of hydrogen gas dischargeoccurred. The source of wastewater is Waste Water Treatment Plant inlet III of Bantar Gebang, Bekasi. Some parameters were analyzed in this research, i.e., Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD), NH3, NO3 -, NO2 -, N-total, and organic substances as well as the microorganism growth before and after electrocoagulation, with variations of detention time (seconds) of 10, 20, 120, 600 and rapid mixing conditions (rpm) of 60, 100 and 200. The results show that the greater the rapid mixing speed and the detention time of electrolysis, the higher the removal of contaminants in liquid waste. The optimum condition of electrocoagulation was encountered at 200 rpm rapid mixing with 600 seconds of processing time. The removal efficiencies of electrocoagulation method for each parameter are TSS of 46.80%, BOD5 of 71.33%, COD of 73.77%, Pb of 62.5%,and NH3-N of 57.92%,whereas the pH value has been increased from 8.03 to 8.95. The electrocoagulation method can reduce levels of pollutants, complying with the environmental standards.

  8. Using full-scale duckweed ponds as the finish stage for swine waste treatment with a focus on organic matter degradation.

    PubMed

    Mohedano, R A; Costa, R H R; Hofmann, S M; Belli Filho, P

    2014-01-01

    The rapid increase in the number of swine has caused pronounced environmental impacts worldwide, especially on water resources. As an aggregate, smallholdings have an important role in South American pork production, contributing to the net diffusion of pollution. Thus, duckweed ponds have been successfully used for swine waste polishing, mainly for nutrient removal. Few studies have been carried out to assess organic matter degradation in duckweed ponds. Hence, the present study evaluated the efficiency of two full-scale duckweed ponds for organic matter reduction of swine waste on small pig farms. Duckweed ponds, in series, received the effluent after an anaerobic biodigester and storage pond, with a flow rate of 1 m(3) day(-1). After 1 year of monitoring, an improvement in effluent quality was observed, with a reduction in biochemical oxygen demand (BOD) and total chemical oxygen demand (tCOD), respectively, of 94.8 and 96.7%, operating at a loading rate of approximately 27 kgBOD ha(-1) day(-1) and 131 kgCOD ha(-1) day(-1). Algae inhibition due to duckweed coverage was strongly observed in the pond effluent, where chlorophyll a and turbidity remained below 25 μg L(-1) and 10 NTU. Using the study conditions described herein, duckweed ponds were shown to be a suitable technology for swine waste treatment, contributing to the environmental sustainability of rural areas.

  9. Treatment and potential reuse of greywater from schools: a pilot study.

    PubMed

    Alsulaili, Abdalrahman D; Hamoda, Mohamed F; Al-Jarallah, Rawa; Alrukaibi, Duaij

    2017-05-01

    This study presented performance data on a low cost and easy maintenance pilot system for on-site treatment and reuse of water collected from wash sinks and fountains, as major sources of greywater (GW) at schools. Various treatment options were studied including screening, sand filtration, chlorination, and UV disinfection operated at different flow rates. Results showed that filtration operated at low rates is very effective in total suspended solids (TSS) removal, while UV proved to be more effective than chlorination for reduction of biochemical oxygen demand (BOD), chemical oxygen demand (COD), and total coliforms. Removal efficiencies up to 63%, 30% and 20% were obtained for TSS, COD and BOD, respectively and reductions of log TC (CFU/100 ml) from 6.5 to 2 were obtained at a filtration rate of 14 m 3 /d·m 2 . Treated effluent satisfied WHO standards for reclaimed water reuse in landscape irrigation and toilet flushing. The filtration-UV system is robust, showing the best and most reliable performance for low and high strength GW treatment even under a 10-fold increase in flow rate. A 5 m 3 /d pilot plant was developed for schools having 500 students and detailed cost-benefit analysis indicated a net saving value, a surplus of $1,600 per year, and pay back after 6 years and 11 months.

  10. Effective method of treatment of effluents from production of bitumens under basic pH conditions using hydrodynamic cavitation aided by external oxidants.

    PubMed

    Boczkaj, Grzegorz; Gągol, Michał; Klein, Marek; Przyjazny, Andrzej

    2018-01-01

    Utilization of cavitation in advanced oxidation processes (AOPs) is a promising trend in research on treatment of industrial effluents. The paper presents the results of investigations on the use of hydrodynamic cavitation aided by additional oxidation processes (O 3 /H 2 O 2 /Peroxone) to reduce the total pollution load in the effluent from the production of bitumens. A detailed analysis of changes in content of volatile organic compounds (VOCs) for all processes studied was also performed. The studies revealed that the most effective treatment process involves hydrodynamic cavitation aided by ozonation (40% COD reduction and 50% BOD reduction). The other processes investigated (hydrodynamic cavitation+H 2 O 2 , hydrodynamic cavitation+Peroxone and hydrodynamic cavitation alone) ensure reduction of COD by 20, 25 and 13% and reduction of BOD by 49, 32 and 18%, respectively. The results of this research revealed that most of the VOCs studied are effectively degraded. The formation of byproducts is one of the aspects that must be considered in evaluation of the AOPs studied. This work confirmed that furfural is one of the byproducts whose concentration increased during treatment by hydrodynamic cavitation alone as well as hydrodynamic cavitation aided by H 2 O 2 as an external oxidant and it should be controlled during treatment processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Nitrogen removal on recycling water process of wastewater treatment plant effluent using subsurface horizontal wetland with continuous feed

    NASA Astrophysics Data System (ADS)

    Tazkiaturrizki, T.; Soewondo, P.; Handajani, M.

    2018-01-01

    Recycling water is a generic term for water reclamation and reuse to solve the scarcity of water. Constructed wetlands have been recognized as providing many benefits for wastewater treatment including water supply and control by recycling water. This research aims to find the best condition to significantly remove nitrogen using constructed wetland for recycling water of Bojongsoang Waste Water Treatment Plan (WWTP) effluent. Using media of soil, sand, gravel, and vegetation (Typha latifolia and Scirpus grossus) with an aeration system, BOD and COD parameters have been remarkably reduced. On the contrary, the removal efficiency for nitrogen is only between 50-60%. Modifications were then conducted by three step of treatment, i.e., Step I is to remove BOD/COD using Typha latifolia with an aeration system, Step II is todecrease nitrogen using Scirpus grossus with/without aeration, and Step III isto complete the nitrogen removal with denitrification process by Glycine max without aeration. Results of the research show that the nitrogen removal has been successfully increased to a high efficiency between 80-99%. The combination of aeration system and vegetation greatly affects the nitrogen removal. The vegetation acts as the organic nitrogen consumer (plant uptake) for amino acids, nitrate, and ammonium as nutrition, as well as theoxygen supplier to the roots so that aerobic microsites are formed for ammonification microorganisms.

  12. A pilot-scale study on PVA gel beads based integrated fixed film activated sludge (IFAS) plant for municipal wastewater treatment.

    PubMed

    Kumar Singh, Nitin; Singh, Jasdeep; Bhatia, Aakansha; Kazmi, A A

    2016-01-01

    In the present study, a pilot-scale reactor incorporating polyvinyl alcohol gel beads as biomass carrier and operating in biological activated sludge mode (a combination of moving bed biofilm reactor (MBBR) and activated sludge) was investigated for the treatment of actual municipal wastewater. The results, during a monitoring period of 4 months, showed effective removal of chemical oxygen demand (COD), biological oxygen demand (BOD) and NH3-N at optimum conditions with 91%, ∼92% and ∼90% removal efficiencies, respectively. Sludge volume index (SVI) values of activated sludge varied in the range of 25-72 mL/g, indicating appreciable settling characteristics. Furthermore, soluble COD and BOD in the effluent of the pilot plant were reduced to levels well below discharge limits of the Punjab Pollution Control Board, India. A culture dependent method was used to enrich and isolate abundant heterotrophic bacteria in activated sludge. In addition to this, 16S rRNA genes analysis was performed to identify diverse dominant bacterial species in suspended and attached biomass. Results revealed that Escherichia coli, Pseudomonas sp. and Nitrosomonas communis played a significant role in biomass carrier, while Acinetobactor sp. were dominant in activated sludge of the pilot plant. Identification of ciliated protozoa populations rendered six species of ciliates in the plant, among which Vorticella was the most dominant.

  13. Phytoremediation of wastewater toxicity using water hyacinth (Eichhornia crassipes) and water lettuce (Pistia stratiotes).

    PubMed

    Victor, Kouamé Kouamé; Séka, Yapoga; Norbert, Kouadio Kouakou; Sanogo, Tidou Abiba; Celestin, Atsé Boua

    2016-10-02

    This paper elucidates the phytoremediation potential of water hyacinth and water lettuce on the reduction of wastewater toxicity. Acute toxicity tests were performed in an aquarium with a population of Sarotherodon melanotheron, contaminated by different concentrations of wastewaters before and after phytoremediation with Eichhornia crassipes and Pistia stratiotes. Lethal concentrations (LC50) of the fish's population obtained during 24 hours of exposures were determined. COD, BOD, ammonium, TKN and PO4(3-) concentrations in wastewaters were of 1850.29, 973.33, 38.34, 61.49 and 39.23 mg L(-1), respectively, for each plant. Phytoremediation reduced 58.87% of ammonium content, 50.04% of PO4(3-), 82.45% of COD and 84.91% of BOD. After 15 days of the experiment, metal contents in treated wastewaters decreased from 6.65 to 97.56% for water hyacinth and 3.51 to 93.51% for water lettuce tanks. Toxicity tests showed that the mortality of fish exposed increased with increase in concentration of pollutants in wastewaters and the time of exposure. Therefore, the highest value of LC50 was recorded for fish subjected to 3 hours of exposure (16.37%). The lowest rate was obtained after an exposure of 20 to 24 hours (5.85%). After phytoremediation, the effluents purified by Eichhornia crassipes can maintain the fish life beyond 24 hours of exposure.

  14. Land use, climate parameters and water quality changes at surroundings of Code River, Indonesia

    NASA Astrophysics Data System (ADS)

    Muryanto; Suntoro; Gunawan, T.; Setyono, P.

    2018-03-01

    Regional development of an area has the potential of adverse impact on land use, vegetation, or green space. The reduction of green open space is known to contribute to global warming. According to the Intergovernmental Panel on Climate Change (IPCC), global warming has become a serious and significant phenomenon in human life. It affects not only ecological environment but also social and cultural environment. Global warming is a rise in global annual temperature due to, one of which, greenhouse gases. The purpose of this research is to determine the effects of land use change on water pollution and climate parameters at Code river. The results showed that Code River is experiencing land use conversion. Rice field was the most extensively reduced land use, by 467.496 ha. Meanwhile, the other land uses, namely plantation, grass, and forest, were reduced by 111.475 ha, 31.218 ha, and 1.307 ha, respectively. The least converted land use was bushed, whose decreased 0.403 ha. The land use conversion in the study area deteriorated the water quality of river, as proven by the increasing trend of COD and BOD from 2012 to 2016. The COD from 2012 to 2016 was 14, 16.6, 18.7, 22.5, and 22.8 ppm, respectively. Meanwhile, the BOD from the same observation years was 6, 7.2, 8.9, 9.3, and 10.3 ppm, respectively.

  15. Simulation of Constructed Wetland in treating Wastewater using Fuzzy Logic Technique

    NASA Astrophysics Data System (ADS)

    Sudarsan, J. S.; Subramani, Sheekha; Rajan, Rajitha J.; Shah, Isha; Nithiyanantham, S.

    2018-04-01

    Constructed wetlands act as a natural alternative to conventional methods of wastewater treatment. CW are found effective in wastewater containing inorganic matter, organic matter, toxic compounds, metals, nitrogen, phosphorous, heavy metals, organic chemicals, and pathogens. The treatment efficiency by the adaptation of CWs in treatment process is achieved by a complex interaction between plants, microorganisms, soil matrix and substances in the wastewater. Constructed wetland treatment systems are engineered systems designed in such a manner that it could take advantages of those processes occurring in natural wetlands in treating the wastewater concerned, but in a more controlled environment. Petrochemical wastewater was the type of wastewater taken for the study. Characteristics of petrochemical wastewater mainly oil, Biological Oxygen Demand (BOD) and Chemical oxygen demand (COD) were selected for treatment in constructed wetland as they are predominant in petrochemical wastewater. The conventional methods followed in the treatment are chemical and biological treatment. In this study, a fuzzy model for water quality assessment has been developed and water quality index value was obtained. The experiment conducted and further analysis using fuzzy logic indicated that interpretation of certain imprecise data can be improved within fuzzy inference system (FIS). Based on the analysis, we could observe that Typha sp contained wetland cell showed greater efficiency in removal of parameters such as COD and BOD than Phragmites sp. wetland cell.

  16. Biodegradation and kinetics of organic compounds and heavy metals in an artificial wetland system (AWS) by using water hyacinths as a biological filter.

    PubMed

    Rodríguez-Espinosa, P F; Mendoza-Pérez, J A; Tabla-Hernandez, J; Martínez-Tavera, E; Monroy-Mendieta, M M

    2018-01-02

    The objective of the present study was to investigate the ability of water hyacinth (Eichhornia crassipes) to absorb organic compounds (potassium hydrogen phthalate, sodium tartrate, malathion, 2,4-dichlorophenoxy acetic acid (2,4-D), and piroxicam). For the aforementioned purpose, an artificial wetland system (AWS) was constructed and filled with water hyacinth collected from the Valsequillo Reservoir, Puebla, Mexico. Potassium hydrogen phthalate and sodium tartrate were measured in terms of chemical oxygen demand (COD) and biological oxygen demand (BOD). The present study indicated that the water hyacinths absorbed nearly 1.8-16.6 g of COD kg -1 dm (dry mass of water hyacinth), while the absorbance efficiency of BOD was observed to be 45.8%. The results also indicated that the maximum absorbance efficiency of malathion, 2,4-D, and piroxicam was observed to be 67.6%, 58.3%, and 99.1%, respectively. The kinetics of organic compounds fitted different orders as malathion followed a zeroth-order reaction, while 2,4-D and piroxicam followed the first-order reactions. Preliminary assessment of absorption of heavy metals by the water hyacinth in the AWS was observed to be (all values in mg g -1 ) 7 (Ni), 13.4 (Cd), 16.3 (Pb), and 17.5 (Zn) of dry biomass, thus proving its feasibility to depurate wastewater.

  17. Toxicity and genotoxicity of hospital laundry wastewaters treated with photocatalytic ozonation.

    PubMed

    Kern, Deivid I; Schwaickhardt, Rômulo de O; Mohr, Geane; Lobo, Eduardo A; Kist, Lourdes T; Machado, Ênio L

    2013-01-15

    The aim of the present study was to assess the efficiency of advanced oxidative processes based on photocatalytic ozonation (O(3), UV, UV/O(3), UV/O(3)/Fe(2+) 50 mg L(-1) and 150 mg L(-1)) in the treatment of hospital laundry wastewaters. The analysis of the investigated wastewater revealed high chemical oxygen demand (COD - 3343.8 mg L(-1)), biochemical oxygen demand (BOD(5) - 1906.4 mg L(-1)), total Kjeldahl nitrogen (TKN - 79.8 mg L(-1)) and Daphnia magna toxicity (EC50=1.73). Genotoxic effects were also detected for Allium cepa. Reductions of some parameters occurred after photocatalytic ozonation. The UV/O(3)/Fe(2+) 150 mg L(-1) method was more efficient in reducing COD (59.1%), BOD(5) (50.3%) and TKN (86.8%). There was significant reduction (p<0.05) in D. magna toxicity, O(3) (EC50=47.3%), UV (EC50=50.6%) and UV/O(3)/Fe(2+) 150 mg L(-1) (EC50=45.4%) processes. Normalization of the mitotic index and reduction of micronucleated cells were observed in A. cepa after the treatments. Results demonstrate that these methods were efficient in the degradation of hospital laundry wastewaters, representing a thriving alternative for the removal of pollutants that cause toxicity and genotoxicity. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Decomposition and biodegradability enhancement of textile wastewater using a combination of electron beam irradiation and activated sludge process.

    PubMed

    Mohd Nasir, Norlirubayah; Teo Ming, Ting; Ahmadun, Fakhru'l-Razi; Sobri, Shafreeza

    2010-01-01

    The research conducted a study on decomposition and biodegradability enhancement of textile wastewater using a combination of electron beam irradiation and activated sludge process. The purposes of this research are to remove pollutant through decomposition and to enhance the biodegradability of textile wastewater. The wastewater is treated using electron beam irradiation as a pre-treatment before undergo an activated sludge process. As a result, for non-irradiated wastewater, the COD removal was achieved to be between 70% and 79% after activated sludge process. The improvement of COD removal efficiency increased to 94% after irradiation of treated effluent at the dose of 50 kGy. Meanwhile, the BOD(5) removal efficiencies of non-irradiated and irradiated textile wastewater were reported to be between 80 and 87%, and 82 and 99.2%, respectively. The maximum BOD(5) removal efficiency was achieved at day 1 (HRT 5 days) of the process of an irradiated textile wastewater which is 99.2%. The biodegradability ratio of non-irradiated wastewater was reported to be between 0.34 and 0.61, while the value of biodegradability ratio of an irradiated wastewater increased to be between 0.87 and 0.96. The biodegradability enhancement of textile wastewater is increased with increasing the doses. Therefore, an electron beam radiation holds a greatest application of removing pollutants and also on enhancing the biodegradability of textile wastewater.

  19. Biodegradability of Chlorophenols in Surface Waters from the Urban Area of Buenos Aires.

    PubMed

    Gallego, A; Laurino Soulé, J; Napolitano, H; Rossi, S L; Vescina, C; Korol, S E

    2018-04-01

    Biodegradability of 2-Chlorophenol (2-CP), 3-Chlorophenol (3-CP), 4-Chlorophenol (4-CP), 2,4-Dichlorophenol (2,4-DCP) and 2,4,6 Trichlorophenol (2,4,6-TCP) has been tested in surface waters in the urban area of Buenos Aires. Samples were taken from the La Plata River and from the Reconquista and Matanza-Riachuelo basins, with a total amount of 18 sampling points. Water quality was established measuring chemical oxygen demand (COD), biochemical oxygen demand (BOD 5 ), and both Escherichia coli and Enterococcus counts. Biodegradability was carried out by a respirometric method, using a concentration of 20 mg L -1 of chlorophenol, and the surface water as inoculum. Chlorophenols concentration in the same water samples were simultaneously measured by a solid phase microextraction (SPME) procedure followed by gas chromatography-mass spectrometry (GC-MS). 2,4-DCP was the most degradable compound followed by 2,4,6-TCP, 4-CP, 3-CP and 2-CP. Biodegradability showed no correlation with compound concentration. At most sampling points the concentration was below the detection limit for all congeners. Biodegradability does not correlate even with COD, BOD 5 , or fecal contamination. Biodegradability assays highlighted information about bacterial exposure to contaminants that parameters routinely used for watercourse characterization do not reveal. For this reason, they might be a helpful tool to complete the characterization of a site.

  20. Hazardous Waste Minimization Assessment: Fort Carson, CO

    DTIC Science & Technology

    1991-01-01

    microorganisms ( bacteria , fungi, etc.) to decompose and/or bioaccumulate the contaminants in wastes. As a HAZMIN technique, treatment, unlike source...Water is analyzed for fecal coliform bacteria , residual chlorine, 5-day biochemical oxygen demand (BOD5), suspended solids (SS), chemical oxygen demand...manufacturer Kinsbursky Bros. Supply (714) 738-8516 North Lemon Street Recycler, Spent batteries X Anaheim, CA 92801 Lubrication Co. of America (213

  1. Assessing the relationship between water quality parameters and changes in landuse patterns in the Upper Manyame River, Zimbabwe

    NASA Astrophysics Data System (ADS)

    Kibena, J.; Nhapi, I.; Gumindoga, W.

    For the past 30 years, the increases in population pressure and external influences, such as economic growth, have accelerated the demand for land within the Upper Manyame River catchment in Zimbabwe which has caused substantial changes in landuse. The general objective of this research was to assess the impacts of landuse activities on the water quality of the Upper Manyame River which drains the rural and urbanised part of the catchment up to flow gauging station C21. Landcover data for the month of April in years of 1984, 1995, 2003 and 2011 were acquired from available Landsat TM and ETM images and were classified through the maximum likelihood digital image classification using the supervised classification approach. The status of water quality of the Upper Manyame River was also assessed through analyses of historical concentrations and pollution loads for TP, DO, COD, NH3-N, SS, Pb, NO3, BOD5, EC, PO4-P and TN at the Environmental Management Agency (EMA) gauging station CR21 sampling point for 1996, 2000/1 and 2008/9. Water quality of 15 monitoring sites comprising 25 water quality parameters were monitored monthly from January to June 2012. These locations were selected to reflect a wide array of landuse for both the dry and wet seasons. The results indicated that there was an increase in pollution load from 1995 to 2012; for TP from 130 kg/day to 376 kg/d, and for TN from 290 kg/day to 494 kg/d. This indicates high pollution levels which have severe impacts on downstream users and also severe sewage contamination. Significant deviations occurred in DO (0.1-6.8) mg/L, COD (11-569) mg/L, BOD5 (5-341) mg/L, PO4-P (0.01-4.45) mg/L, NH3-N (0.001-6.800) mg/L and EC (38-642) μS/cm. Hydrologic Response Unit and buffer analysis were used to determine the dominant landuse which contributes to a certain water quality. Results of digital image classification indicate that woodland/forest, grassland and bareland decreased between years 1984 to 2011 by 24.0%, 22.6% and 31.7% respectively. This was mainly due to expansion or increase of agriculture and urban areas by 24.4% and 41.6% respectively over the same time period. It was concluded that settlements and agricultural areas are the ones mainly affecting the water quality in Upper Manyame River with a Pearson's Correlation Coefficient of r = 0.97 for COD and r = 0.78 for TSS respectively. It was also observed that the water quality status of the Upper Manyame River and its tributaries is very poor and the level of pollution generally increases from upstream to downstream. The results obtained provided baseline information which may be used in the development of appropriate water quality management systems in the catchment. Thus the study recommended a combined programme of point source control and landuse modification.

  2. Effect of NaCl induced floc disruption on biological disintegration of sludge for enhanced biogas production.

    PubMed

    Kavitha, S; Kaliappan, S; Adish Kumar, S; Yeom, Ick Tae; Rajesh Banu, J

    2015-09-01

    In the present study, the influence of NaCl mediated bacterial disintegration of waste activated sludge (WAS) was evaluated in terms of disintegration and biodegradability of WAS. Floc disruption was efficient at 0.03 g/g SS of NaCl, promoting the shifts of extracellular proteins and carbohydrates from inner layers to extractable--soluble layers (90 mg/L), respectively. Outcomes of sludge disintegration reveal that the maximum solubilization achieved was found to be 23%, respectively. The model elucidating the parameter evaluation, explicates that floc disrupted--bacterially disintegrated sludge (S3) showed superior biodegradability of about 0.23 (gCOD/gCOD) than the bacterially disintegrated (S2) and control (S3) sludges of about 0.13 (gCOD/gCOD) and 0.05 (gCOD/gCOD), respectively. Cost evaluation of the present study affords net profits of approximately 2.5 USD and -21.5 USD in S3 and S2 sludge. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. [Research on pollution load of sediments in storm sewer in Beijing district].

    PubMed

    Li, Hai-Yan; Xu, Bo-Ping; Xu, Shang-Ling; Cui, Shuang

    2013-03-01

    Based on the investigation of sewer sediments in Xi Cheng district in Beijing, scour-release pollution load in one rainfall from sewer sediments was studied by monitoring the pollutants in the run-off of manhole's section. It was shown that the contribution of scour-release pollutants from sewer sediments to sewer outflow was obvious. The contribution rate of the sediments pollution load to runoff outflow in the 84 m pipeline in one rainfall (9 Jul., 2010) was as follows: TN 8.5%, TP 8.2%, COD 18.3%, SS 7.7%, respectively. And the pollutant contribution rate in the 295 m pipeline in another rainfall (4 Aug., 2010) was TN 23.12%, TP 60.01%, COD 33.78%, SS 31.89%. Therefore, it is important to control the pollution from sewer sediments for the improvement of water environment.

  4. Potential Water Reuse for High Strength Fruit and Vegetable Processor Wastewater with an MBR.

    PubMed

    Moore, Adam W; Zytner, Richard G; Chang, Sheng

      High strength food processing wastewater from two processing plants was studied to determine the effectiveness of an aerobic membrane bioreactor (MBR) to reduce BOD, TSS and nutrients below municipal sewer discharge limits. The MBR comprised a 20 L lab-scale reactor combined with a flat sheet, ultrafiltration membrane module. The parameters studied included the operational flux, solids and hydraulic retention times and recirculation ratio with regards to nitrification/denitrification. The MBR system provided excellent removal efficiency at 97% COD, 99% BOD, 99.9% TSS, 90% TKN, and 60% TP for both processing plants, which eliminated the surcharges, allowing the firms to stay competitive. Effluent reuse tests showed that activated carbon proved effective in removing color from the MBR permeate, while UV treatment was able to achieve a 5 log reduction in bacteriophage. Overall, these treatment successes show the potential for water reuse in the agrifood sector.

  5. Detecting Long-term Trend of Water Quality Indices of Dong-gang River, Taiwan Using Quantile Regression

    NASA Astrophysics Data System (ADS)

    Yang, D.; Shiau, J.

    2013-12-01

    ABSTRACT BODY: Abstract Surface water quality is an essential issue in water-supply for human uses and sustaining healthy ecosystem of rivers. However, water quality of rivers is easily influenced by anthropogenic activities such as urban development and wastewater disposal. Long-term monitoring of water quality can assess whether water quality of rivers deteriorates or not. Taiwan is a population-dense area and heavily depends on surface water for domestic, industrial, and agricultural uses. Dong-gang River is one of major resources in southern Taiwan for agricultural requirements. The water-quality data of four monitoring stations of the Dong-gang River for the period of 2000-2012 are selected for trend analysis. The parameters used to characterize water quality of rivers include biochemical oxygen demand (BOD), dissolved oxygen (DO), suspended solids (SS), and ammonia nitrogen (NH3-N). These four water-quality parameters are integrated into an index called river pollution index (RPI) to indicate the pollution level of rivers. Although widely used non-parametric Mann-Kendall test and linear regression exhibit computational efficiency to identify trends of water-quality indices, limitations of such approaches include sensitive to outliers and estimations of conditional mean only. Quantile regression, capable of identifying changes over time of any percentile values, is employed in this study to detect long-term trend of water-quality indices for the Dong-gang River located in southern Taiwan. The results show that Dong-gang River 4 stations from 2000 to 2012 monthly long-term trends in water quality.To analyze s Dong-gang River long-term water quality trends and pollution characteristics. The results showed that the bridge measuring ammonia Long-dong, BOD5 measure in that station on a downward trend, DO, and SS is on the rise, River Pollution Index (RPI) on a downward trend. The results form Chau-Jhou station also ahowed simialar trends .more and more near the upstrean Hing-she station raise vivestok Sing-She stations are that ammonia on a upward trend, BOD5 no significant change in trend, DO, and SS is on the rise, river pollution index (RPI) a slight downward trend. Dong-gang River Basin , but the progress of sewer construction in slow. To reduce pollation in this river effort shoul be made regulatory reform on livestock waste control and acceleration of sewer construction. Keywords: quantile regression analysis, BOD5, RPI

  6. Tertiary treatment of landfill leachates by adsorption.

    PubMed

    Marañón, Elena; Castrillón, Leonor; Fernández-Nava, Yoland; Fernández-Méndez, Alejandro; Fernández-Sánchez, Arcadio

    2009-08-01

    The leachates produced at the municipal solid waste (MSW) landfill of Asturias (Spain) were submitted to a biological treatment consisting of a pressurized nitrification-denitrification process followed by ultrafiltration. The effluent from this treatment plant has a high chemical oxygen demand : biochemical oxygen demand (COD : BOD( 5)) ratio (about 25 : 1). The COD values of the effluent are above the discharge limits permitted by current legislation and therefore require a final treatment. In the present study, adsorption was investigated as a possible post-treatment. Three activated carbons (Organosorb 10, Organosorb 10MB and Filtracarb CC65/1240) were selected and equilibrium and column data were obtained. The best results were obtained with Organosorb 10MB, although adsorption capacities obtained were low and equilibrium was unfavourable. Adsorption capacities ranged between 150 and 157 mg COD g(-1) for an activated carbon dosage of 1 mg L(-1) and between 13.3 and 18.4 mg COD g(-1) for a dosage of 20 mg L(-1). As regards colour, adsorption capacities ranged between 145 and 175 UPtCo g(-1) for the lower dosage and between 16 and 29 UPtCo g(-1) for the higher dosage. Removal efficiency increased with the dosage of activated carbon employed, obtaining maximum COD and colour removals of 63 and 45%, respectively, for a dosage of 20 mg L(-1) after 5 h contact time.

  7. Longitudinal data analysis in support of functional stability concepts for leachate management at closed municipal landfills

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibbons, Robert D., E-mail: rdg@uchicago.edu; Morris, Jeremy W.F., E-mail: jmorris@geosyntec.com; Prucha, Christopher P., E-mail: cprucha@wm.com

    2014-09-15

    Highlights: • Longitudinal data analysis using a mixed-effects regression model. • Dataset consisted of a total of 1402 samples from 101 closed municipal landfills. • Target analytes and classes generally showed predictable degradation trends. • Validates historical studies focused on macro organic indicators such as BOD. • BOD can serve as “gateway” indicator for planning leachate management. - Abstract: Landfill functional stability provides a target that supports no environmental threat at the relevant point of exposure in the absence of active control systems. With respect to leachate management, this study investigates “gateway” indicators for functional stability in terms of themore » predictability of leachate characteristics, and thus potential threat to water quality posed by leachate emissions. Historical studies conducted on changes in municipal solid waste (MSW) leachate concentrations over time (longitudinal analysis) have concentrated on indicator compounds, primarily chemical oxygen demand (COD) and biochemical oxygen demand (BOD). However, validation of these studies using an expanded database and larger constituent sets has not been performed. This study evaluated leachate data using a mixed-effects regression model to determine the extent to which leachate constituent degradation can be predicted based on waste age or operational practices. The final dataset analyzed consisted of a total of 1402 samples from 101 MSW landfills. Results from the study indicated that all leachate constituents exhibit a decreasing trend with time in the post-closure period, with 16 of the 25 target analytes and aggregate classes exhibiting a statistically significant trend consistent with well-studied indicators such as BOD. Decreasing trends in BOD concentration after landfill closure can thus be considered representative of trends for many leachate constituents of concern.« less

  8. Environmental Assessment Addressing the Integrated Control of Nuisance Species at Grand Forks Air Force Base, North Dakota

    DTIC Science & Technology

    2013-04-01

    different non-target invertebrates (GFAFB 2003e). A study examining the non-target effects of Bti on stream invertebrate communities and fish (Lacy and...Factor), BOD (Biochemical Oxygen Demand), COD (Chemical Oxygen Demand), EC50 (50% effect concentration), ED 50 (50% effect dose), I.M. (intramuscular...loss of oxygen may cause fish suffocation. Therefore, treat only 1/3 to 1/2 of the water body area at one time and wait 14 days between treatments

  9. Landfill leachate treatment by an experimental subsurface flow constructed wetland in tropical climate countries.

    PubMed

    Ujang, Z; Soedjono, E; Salim, M R; Shutes, R B

    2005-01-01

    Municipal leachate was treated in an experimental unit of constructed wetlands of subsurface flow type. The parameters studied were organics (BOD and COD), solids and heavy metals (Zn, Ni, Cu, Cr and Pb). Using two types of emergent plants of Scirpus globulosus and Eriocaulon sexangulare, more than 80% removal was achieved for all the parameters. E. sexangulare removed organics and heavy metals better than Scirpus globulosus. A higher concentration of heavy metals in the influent did not change the removal efficiency.

  10. 40 CFR 439.15 - New source performance standards (NSPS).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 250.0 102.0 Phenol 0.05 0.02 Benzene 0.05 0.02 Toluene 0.06 0.02 Xylenes 0.03 0.01 n-Hexane 0.03 0.02... monthly average 1 BOD5 267 111 TSS 472 166 COD 1675 856 Ammonia (as N) 84.1 29.4 Acetone 0.5 0.2 4-methyl-2-pentanone 0.5 0.2 Isobutyraldehyde 1.2 0.5 n-Amyl acetate 1.3 0.5 n-Butyl acetate 1.3 0.5 Ethyl...

  11. 40 CFR 439.15 - New source performance standards (NSPS).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 250.0 102.0 Phenol 0.05 0.02 Benzene 0.05 0.02 Toluene 0.06 0.02 Xylenes 0.03 0.01 n-Hexane 0.03 0.02... average 1 BOD5 267 111 TSS 472 166 COD 1675 856 Ammonia (as N) 84.1 29.4 Acetone 0.5 0.2 4-methyl-2-pentanone 0.5 0.2 Isobutyraldehyde 1.2 0.5 n-Amyl acetate 1.3 0.5 n-Butyl acetate 1.3 0.5 Ethyl acetate 1.3...

  12. 40 CFR 439.15 - New source performance standards (NSPS).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 250.0 102.0 Phenol 0.05 0.02 Benzene 0.05 0.02 Toluene 0.06 0.02 Xylenes 0.03 0.01 n-Hexane 0.03 0.02... monthly average 1 BOD5 267 111 TSS 472 166 COD 1675 856 Ammonia (as N) 84.1 29.4 Acetone 0.5 0.2 4-methyl-2-pentanone 0.5 0.2 Isobutyraldehyde 1.2 0.5 n-Amyl acetate 1.3 0.5 n-Butyl acetate 1.3 0.5 Ethyl...

  13. 40 CFR 439.15 - New source performance standards (NSPS).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 250.0 102.0 Phenol 0.05 0.02 Benzene 0.05 0.02 Toluene 0.06 0.02 Xylenes 0.03 0.01 n-Hexane 0.03 0.02... monthly average 1 BOD5 267 111 TSS 472 166 COD 1675 856 Ammonia (as N) 84.1 29.4 Acetone 0.5 0.2 4-methyl-2-pentanone 0.5 0.2 Isobutyraldehyde 1.2 0.5 n-Amyl acetate 1.3 0.5 n-Butyl acetate 1.3 0.5 Ethyl...

  14. Combined thermo-chemo-sonic disintegration of waste activated sludge for biogas production.

    PubMed

    Kavitha, S; Yukesh Kannah, R; Yeom, Ick Tae; Do, Khac-Uan; Banu, J Rajesh

    2015-12-01

    In the present study, there was an investigation about the impact of a new combined thermo-chemo-sonic disintegration of waste activated sludge (WAS) on biodegradability. The outcome of sludge disintegration reveals that maximum Suspended Solids (SS) reduction and Chemical Oxygen Demand (COD) solubilization effectuated at a specific energy input of 5290.5kJ/kgTS, and was found to be 20%, 16.4%, 15% and 27%, 22%, and 20%, respectively for the three alkalis (NaOH, KOH, and Ca(OH)2). The conversion coefficient of the Volatile Suspended Solids (VSS) to product Soluble COD (SCOD), calculated by nonlinear regression modeling, was found to be 0.5530gSCOD/gVSS, 0.4587gSCOD/gVSS, and 0.4195gSCOD/gVSS for NaOH, KOH, and Ca(OH)2, respectively. In the biodegradability studies, the parameter evaluation provides an estimate of parameter uncertainty and correlation, and elucidates that there is no significant difference in biodegradability (0.413gCOD/gCOD, 0.367gCOD/gCOD, and 0.342gCOD/gCOD) for three alkalis (NaOH, KOH, and Ca(OH)2). Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Advanced wastewater treatment simplified through research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Souther, R.H.

    A waste water treatment plant was built based on results of a small-scale pilot plant study, conducted largely in a search for efficiency as well as economy. Results were that 98 percent carbonaceous BOD (BOD/sub C/) and nitrogenous BOD (BOD/sub N/) were removed in a simplified, low-cost, single-stage advanced treatment process surpassing even some of the most sophisticated advanced complex waste treatment methods. The single-stage process treats domestic waste alone or combined with very high amounts of textile, electroplating, chemical, food, and other processing industrial wastewater. The process removed 100 percent of the sulfides above 98 percent of NH/sub 3/-N,more » over 90 percent of COD and phenols; chromium was converted from highly toxic hexavalent CrVI to nearly nontoxic trivalent chrome (CrIII). A pH up to 12 may be tolerated if no free hydroxyl (OH) ions are present. Equalization ponds, primary settling tanks, trickling filters, extra nitrogen removal tanks, carbon columns, and chemical treatment are not required. Color removal is excellent with clear effluent suitable for recycling after chlorination to water supply lakes. The construction cost of the single-stage advanced treatment plant is surprisingly low, about /sup 1///sub 2/ to /sup 1///sub 6/ as much as most conventional ineffective complex plants. This simplified, innovative process developed in independent research at Guilford College is considered by some a breakthrough in waste treatment efficiency and economy. (MU)« less

  16. Effect of White Charcoal on COD Reduction in Wastewater Treatment

    NASA Astrophysics Data System (ADS)

    Pijarn, Nuchanaporn; Butsee, Manipa; Buakul, Kanokwan; Seng, Hasan; Sribuarai, Tinnphat; Phonprasert, Pongtep; Taneeto, Kla; Atthameth, Prasertsil

    2017-06-01

    The objective of this study is to compare the COD reduction in wastewater between using coconut shell and coconut spathe white charcoal from Khlong Wat NongPra-Ong, Krathumbaen, SamutSakhon province, Thailand. The waste water samples were collected using composite sampling method. The experimental section can be divided into 2 parts. The first part was study the optimum of COD adsorption time using both white charcoals. The second part was study the optimum amount of white charcoal for chemical oxygen demand (COD) reduction. The pre-treatment of wastewater was examined in parameters include temperature, alkalinity (pH), conductivity, turbidity, suspended solid (SS), total dissolved solid (TDS), and COD. The results show that both white charcoals can reduce COD of wastewater. The pH of pre-treatment wastewater had pH 9 but post-treatment wastewaters using both white charcoals have pH 8. The COD of pre-treatment wastewater had COD as 258 mg/L but post-treatment wastewater using coconut shell white charcoal had COD steady at 40 mg/L in 30 min and the amount of white charcoals 4 g. The COD of post-treatment wastewater using coconut spathe white charcoal had COD steady at 71 mg/L in 30 min and the amount of white charcoals 4 g. Therefore comparison of COD reduction between coconut shell white charcoal versus coconut spathe white charcoal found that the coconut shell white charcoal had efficiency for COD reduction better than coconut spathe white charcoal.

  17. Organics, sulfates and ammonia removal from acrylic fiber manufacturing wastewater using a combined Fenton-UASB (2 phase)-SBR system.

    PubMed

    Li, Jin; Luan, Zhaokun; Yu, Lian; Ji, Zhongguang

    2011-11-01

    A combined Fenton-UASB (2 phase)-SBR system was employed to treat acrylic fiber manufacturing wastewater. The Chemical Oxygen Demand (COD) removal and effluent Biochemical Oxygen Demand (BOD) to COD were 65.5% and 0.529%, respectively, with the optimal Fenton conditions: ferrous was 300 mg/L; hydrogen peroxide was 500 mg/L; pH was 3.0; reaction time was 2.0 h. In two-phase UASB reactor, mesophilic operation (35±0.5 °C) was performed with hydraulic retention time (HRT) varied between 28 and 40 h. The results showed that with the HRT not less than 38 h, COD and sulfate removal were 65% and 75%, respectively. The greatest sizes of granule formed in the sulfate-reducing and methane-producing phases were 5 and 2 mm, respectively. Sulfate-reducing bacteria (SRB) accounted for 35% in the sulfate-reducing phase while methane-producing archaea (MPA) accounted for 72% in the methane-producing phase. During the SBR process, shortcut nitrification was achieved by temperature control of 30 °C. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Treatment of crystallized-fruit wastewater by UV-A LED photo-Fenton and coagulation-flocculation.

    PubMed

    Rodríguez-Chueca, Jorge; Amor, Carlos; Fernandes, José R; Tavares, Pedro B; Lucas, Marco S; Peres, José A

    2016-02-01

    This work reports the treatment of crystallized-fruit effluents, characterized by a very low biodegradability (BOD5/COD <0.19), through the application of a UV-A LED photo-Fenton process. Firstly, a Box-Behnken design of Response Surface Methodology was applied to achieve the optimal conditions for the UV-A LED photo-Fenton process, trying to maximize the efficiency by saving chemicals and time. Under the optimal conditions ([H2O2] = 5459 mg/L; [Fe(3+)] = 286 mg/L; time >180 min), a COD removal of 45, 64 and 74% was achieved after 360 min, using an irradiance of 23, 70 and 85 W/m(2) respectively. Then a combination of UV-A LED photo-Fenton with coagulation-flocculation-decantation attained a higher COD removal (80%), as well as almost total removal of turbidity (99%) and total suspended solids (95%). Subsequent biodegradability of treated effluents increased, allowing the application of a biological treatment step after the photochemical/CFD with 85 W/m(2). Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Assessment of pesticides removal using two-stage Integrated Aerobic Treatment Plant (IATP) by Bacillus sp. isolated from agricultural field.

    PubMed

    Geed, S R; Shrirame, B S; Singh, R S; Rai, B N

    2017-10-01

    The biodegradation of synthetic wastewater containing Atrazine, Malathion and Parathion was studied in two stage Integrated Aerobic Treatment Plant using Bacillus sp. (consortia) isolated from agricultural field. The influent stream containing these pesticides with initial COD of 1232mg/L were fed to first reactor and treated effluent of first reactor was fed to second reactor. The maximum removal of pesticides in IATP was found to be greater than 90%. The various process parameters such as pH, DO, Redox potential and BOD 5 /COD were monitored during the treatment. The degradation of pesticides and its metabolites in the treated effluent were confirmed by GC-MS. Kinetic parameters such as first order rate constant (K obs ), cell yield (Y X/C ) and decay coefficients (K dp ) were evaluated and found to be 0.00425 per hr, 0.696mg of COD/mg MLSS and 0.0010 per hr respectively. This integrated process was found more effective than physico-chemical treatment of pesticides. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Marine Structural Steel Toughness Data Bank. Volume 3

    DTIC Science & Technology

    1991-08-28

    Headings: Break? Did specimen fracture completely? CODIc Critical COD CODi Initial COD CVN Energy Charpy V Energy Crack lgth Crack Length Curve Curve...BS5762 -Standard Year Test Temp CODIc degC mm -30 0.57 -30 0.68 -30 . 1.26 not rporw(continued) Main Stutua To n ssDta:an Material BS4360 Gr50D Page...Initial JI. . . .. ._I. . . Maximum 1, ]max * Tearing Modulus ......... Standard Method ~P S5762 -Standard Year_______________ Test Tcmp CODIc degC mm

  1. Comparison of the performance of MBBR and SBR systems for the treatment of anaerobic reactor biowaste effluent.

    PubMed

    Comett-Ambriz, I; Gonzalez-Martinez, S; Wilderer, P

    2003-01-01

    Anaerobic reactor biowaste effluent was treated with biofilm and activated sludge sequencing batch reactors to compare the performance of both systems. The treatment targets were organic carbon removal and nitrification. The pilot plant was operated in two phases. During the first phase, it was operated like a Moving Bed Biofilm Reactor (MBBR) with the Natrix media, with a specific surface area of 210 m2/m3. The MBBR was operated under Sequencing Batch Reactor (SBR) modality with three 8-hour cycles per day over 70 days. During the second phase of the experiment, the pilot plant was operated over 79 days as a SBR. In both phases the influent was fed to the reactor at a flow rate corresponding to a Hydraulic Retention Time (HRT) of 4 days. Both systems presented a good carbon removal for this specific wastewater. The Chemical Oxygen Demand (COD) total removal was 53% for MBBR and 55% for SBR. MBBR offered a higher dissolved COD removal (40%) than SBR (30%). The limited COD removal achieved is in agreement with the high COD to BOD5 ratio (1/3) of the influent wastewater. In both systems a complete nitrification was obtained. The different efficiencies in both systems are related to the different biomass concentrations.

  2. Removal of refractory contaminants in municipal landfill leachate by hydrogen, oxygen and palladium: a novel approach of hydroxyl radical production.

    PubMed

    Yu, Yingjian; Chen, Zhulei; Guo, Zhiyuan; Liao, Zhuwei; Yang, Lie; Wang, Jia; Chen, Zhuqi

    2015-04-28

    Municipal solid waste (MSW) leachate contains various refractory pollutants that pose potential threats to both surface water and groundwater. This paper established a novel catalytic oxidation process for leachate treatment, in which OH is generated in situ by pumping both H2 and O2 in the presence of Pd catalyst and Fe(2+). Volatile fatty acids in the leachate were removed almost completely by aeration and/or mechanical mixing. In this approach, a maximum COD removal of 56.7% can be achieved after 4h when 200mg/L Fe(2+) and 1250mg/L Pd/Al2O3 (pH 3.0) are used as catalysts. After oxidation, the BOD/COD ratio in the proposed process increased from 0.03 to 0.25, indicating that the biodegradability of the leachate was improved. By comparing the efficiency on COD removal and economical aspect of the proposed Pd-based in-situ process with traditional Fenton, electro-Fenton and UV-Fenton for leachate treatments, the proposed Pd-based in-situ process has potential economic advantages over other advanced oxidation processes while the COD removal efficiency was maintained. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Improving alachlor biodegradability by ferrate oxidation.

    PubMed

    Zhu, Jian-Hang; Yan, Xi-Luan; Liu, Ye; Zhang, Bao

    2006-07-31

    Alachlor can be recalcitrant when present at high concentrations in wastewater. Ferrate oxidation was used as a pretreatment to improve its biodegradability and was evaluated by monitoring alachlor elimination and removal of COD(Cr) (chemical oxygen demand determined by potassium dichromate) during the oxidation process up to a value compatible with biological treatment. Ferrate oxidation resulted in elimination of alachlor followed by degradation of its intermediates. High pH suppressed alachlor removal and COD(Cr) removal due to the low redox potential of ferrate ions. Although alachlor can be totally eliminated within 10 min under optimized conditions (alachlor, 40 mg l(-1); ferrate:alachlor molar ratio, 2; and pH 7.0), its complete mineralization cannot be achieved by ferrate oxidation alone. Alachlor solution treated by ferrate for 10 min inhibited an up-flow biotreatment with activated sludge. The biodegradability of ferrate-pretreated solution improved when the treatment was increased to 20 min, at the point of which BOD(5)/COD(Cr) ratio of the treated solution was increased to 0.87 from 0.35 after 10 min treatment. Under optimized conditions, ferrate oxidation for 20 min resulted in total elimination of alachlor, partial removal of COD(Cr) and the ferrate-treated solution could be effectively treated by the up-flow activated sludge process.

  4. The use of Moringa oleifera seed as a natural coagulant for wastewater treatment and heavy metals removal

    NASA Astrophysics Data System (ADS)

    Shan, Tan Chu; Matar, Manaf Al; Makky, Essam A.; Ali, Eman N.

    2017-06-01

    Moringa oleifera (MO) is a multipurpose tree with considerable potential and its cultivation is currently being actively promoted in many developing countries. Seeds of this tropical tree contain water-soluble, positively charged proteins that act as an effective coagulant for water and wastewater treatment. Based on this, water quality of "Sungai baluk" river was examined before and after the treatment using MO seed. MO seed exhibited high efficiency in the reduction and prevention of the bacterial growth in both wastewater and "Sungai baluk" river samples. The turbidity was removed up to 85-94% and dissolved oxygen (DO) was improved from 2.58 ± 0.01 to 4.00 ± 0.00 mg/L. The chemical oxygen demand (COD) and biological oxygen demand (BOD) were increased after the treatment from 99.5 ± 0.71 to 164.0 ± 2.83 mg/L for COD and from 48.00 ± 0.42 to 76.65 ± 2.33 mg/L for BOD, respectively. Nevertheless, there was no significant alteration of pH, conductivity, salinity and total dissolved solid after the treatment. Heavy metals such as Fe were fully eliminated, whereas Cu and Cd were successfully removed by up to 98%. The reduction of Pb was also achieved by up to 78.1%. Overall, 1% of MO seed cake was enough to remove heavy metals from the water samples. This preliminary laboratory result confirms the great potential of MO seed in wastewater treatment applications.

  5. Effects of aeration frequency on leachate quality and waste in simulated hybrid bioreactor landfills.

    PubMed

    Ko, Jae Hac; Ma, Zeyu; Jin, Xiao; Xu, Qiyong

    2016-12-01

    Research has been conducted to investigate the effects of daily aeration frequency on leachate quality and waste settlement in simulated hybrid landfill bioreactors. Four laboratory-scale reactors were constructed and operated for about 10 months to simulate different bioreactor operations, including one anaerobic bioreactor and three hybrid bioreactors with different aeration frequencies (one, two, and four times per day). Chemical oxygen demand (COD) and biochemical oxygen demand (BOD 5 ) reduced more than 96% of the initial concentrations in all aerated bioreactors. The differences of COD and BOD 5 reductions among tested aeration frequencies were relatively small. For ammonia nitrogen, the higher aeration frequency (two or four times per day) resulted in the quicker reduction. Overall, the concentrations of heavy metals (Cr, Co, Cu, Mn, Ni, and Zn) decreased over time except Cd and Pb. The reduction of redox-sensitive metal concentrations (Mn, Co, Ni, and Cu) was greater in aerated bioreactors than in anaerobic bioreactor. Settlement of municipal solid waste (MSW) was enhanced with higher frequency of aeration events (four times per day). In recent years, hybird bioreactor landfill technology has gained a lot of attention. Appropriate aeration rate is crucial for hybrid bioreactor operation, but few studies have been done and different results were obtained. Research was conducted to investigate the effects of daily aeration frequency on leachate quality and waste settlement. Results indicated that aeration can effectively accelerate waste stabilization and remove organic carbon concentration and total nitrogen in the leachate.

  6. Investigation of the biotransformation of pentachlorophenol and pulp paper mill effluent decolorisation by the bacterial strains in a mixed culture.

    PubMed

    Singh, Shail; Chandra, R; Patel, D K; Reddy, M M K; Rai, Vibhuti

    2008-09-01

    Mixed culture of two bacterial strains Bacillus sp. and Serratia marcescens showed potential pentachlorophenol (PCP) degradation and decolorisation of pulp paper mill effluent. The physico-chemical quality of pulp paper mill effluent has been analyzed after 168 h incubation period degraded by mixed culture. The study revealed that it has decreased high load of BOD, COD, TS, TDS, TSS, sulphate, phosphate, total nitrogen, total phenols, metals and different salts (i.e. chloride, sodium, nitrate, potassium) at 168 h incubation period. PCP degradation in pulp paper mill effluent was confirmed by HPLC analysis. Mixed culture was found to degrade PCP up to (94%) present in pulp paper mill effluent with 1% glucose and 0.5% peptone (w/v) at 30+/-1 degrees C, pH 8.0+/-0.2 at 120 rpm in 168 h incubation period. The simultaneous release of chloride ion up to 1,200 mg/l at 168 h emphasized the bacterial dechlorination in the medium. The pulp paper mill effluent degradation was also supported by decline in pH, AOX (absorbable organic halides), color, D.O., BOD, COD and PCP. The analysis of pulp paper mill effluent degradation products by GC-MS analysis revealed the formation of low molecular weight compound like 2-chlorophenol (RT=3.8 min) and tetrachlorohydroquinone (RT=11.86 min) from PCP extracted degraded sample. Further, mixed culture may be used for bioremediation of PCP containing pulp paper mill waste in the environment.

  7. Spatial and temporal changes of water quality, and SWAT modeling of Vosvozis river basin, North Greece.

    PubMed

    Boskidis, Ioannis; Gikas, Georgios D; Pisinaras, Vassilios; Tsihrintzis, Vassilios A

    2010-09-01

    The results of an investigation of the quantitative and qualitative characteristics of Vosvozis river in Northern Greece is presented. For the purposes of this study, three gaging stations were installed along Vosvozis river, where water quantity and quality measurements were conducted for the period August 2005 to November 2006. Water discharge, temperature, pH, dissolved oxygen (DO) and electrical conductivity (EC) were measured in situ using appropriate equipment. The collected water samples were analyzed in the laboratory for the determination of nitrate, nitrite and ammonium nitrogen, total Kjeldalh nitrogen (TKN), orthophosphate (OP), total phosphorus (TP), COD, and BOD. Agricultural diffuse sources provided the major source of nitrate nitrogen loads during the wet period. During the dry period (from June to October), the major nutrient (N, P) and COD, BOD sources were point sources. The trophic status of Vosvozis river during the monitoring period was determined as eutrophic, based on Dodds classification scheme. Moreover, the SWAT model was used to simulate hydrographs and nutrient loads. SWAT was validated with the measured data. Predicted hydrographs and pollutographs were plotted against observed values and showed good agreement. The validated model was used to test eight alternative scenarios concerning different cropping management approaches. The results of these scenarios indicate that nonpoint source pollution is the prevailing type of pollution in the study area. The SWAT model was found to satisfactorily simulate processes in ephemeral river basins and is an effective tool in water resources management.

  8. Kinetics of ozone-initiated oxidation of textile dye, Amaranth in aqueous systems.

    PubMed

    Dachipally, Purnachandar; Jonnalagadda, Sreekanth B

    2011-01-01

    The ozone facilitated oxidation mechanism of water soluble azo anionic dye, amaranth (Am) was investigated monitoring the depletion kinetics of the dye spectrometrically at 521 nm. The oxidation kinetics of the dye by ozone was studied under semi-batch conditions, by bubbling ozone enriched oxygen through the aqueous reaction mixture of dye, as function of flow rate, ionic strength, [O(3)] and pH variations. With excess concentration of ozone and other reagents and low [amaranth], reaction followed pseudo-first-order kinetics with respect to the dye. Added neutral salts had marginal effect on the reaction rate and the variation of pH from 7 to 2 and 7 to 12 exerted only small increases in the reaction rate suggesting molecular ozone possibly is the principle reactive species in oxidation of dye. The reaction order with respect ozone was near unity and it varied slightly with pH and flow rate variations. The overall second-order rate constant for the reaction was (105 ± 4) M(-1) min(-1). The main oxidation products immediately after amaranth decolorization were identified. The reaction mechanism and overall rate law were proposed. After spiking the seawater, river water and wastewaters with Amaranth dye, the reaction rates and trends in BOD and COD under control and natural conditions were investigated. The rate of depletion of the dye in natural waters was relatively lower, but the ozonation process significantly decreased both the BOD and COD levels.

  9. Integrating retention soil filters into urban hydrologic models - Relevant processes and important parameters

    NASA Astrophysics Data System (ADS)

    Bachmann-Machnik, Anna; Meyer, Daniel; Waldhoff, Axel; Fuchs, Stephan; Dittmer, Ulrich

    2018-04-01

    Retention Soil Filters (RSFs), a form of vertical flow constructed wetlands specifically designed for combined sewer overflow (CSO) treatment, have proven to be an effective tool to mitigate negative impacts of CSOs on receiving water bodies. Long-term hydrologic simulations are used to predict the emissions from urban drainage systems during planning of stormwater management measures. So far no universally accepted model for RSF simulation exists. When simulating hydraulics and water quality in RSFs, an appropriate level of detail must be chosen for reasonable balancing between model complexity and model handling, considering the model input's level of uncertainty. The most crucial parameters determining the resultant uncertainties of the integrated sewer system and filter bed model were identified by evaluating a virtual drainage system with a Retention Soil Filter for CSO treatment. To determine reasonable parameter ranges for RSF simulations, data of 207 events from six full-scale RSF plants in Germany were analyzed. Data evaluation shows that even though different plants with varying loading and operation modes were examined, a simple model is sufficient to assess relevant suspended solids (SS), chemical oxygen demand (COD) and NH4 emissions from RSFs. Two conceptual RSF models with different degrees of complexity were assessed. These models were developed based on evaluation of data from full scale RSF plants and column experiments. Incorporated model processes are ammonium adsorption in the filter layer and degradation during subsequent dry weather period, filtration of SS and particulate COD (XCOD) to a constant background concentration and removal of solute COD (SCOD) by a constant removal rate during filter passage as well as sedimentation of SS and XCOD in the filter overflow. XCOD, SS and ammonium loads as well as ammonium concentration peaks are discharged primarily via RSF overflow not passing through the filter bed. Uncertainties of the integrated simulation of the sewer system and RSF model mainly originate from the model parameters of the hydrologic sewer system model.

  10. Treatment of septic tank effluents by a full-scale capillary seepage soil biofiltration system.

    PubMed

    Fan, Chihhao; Chang, Fang-Chih; Ko, Chun-Han; Teng, Chia-Ji; Chang, Tzi-Chin; Sheu, Yiong-Shing

    2009-03-01

    The purpose of this study is to evaluate the efficiency of septic tank effluent treatment by an underground capillary seepage soil biofiltration system in a suburban area of Taipei, Taiwan. In contrast to traditional subsurface wastewater infiltration systems, capillary seepage soil biofiltration systems initially draw incoming influent upwards from the distribution pipe by capillary and siphonage actions, then spread influent throughout the soil biofiltration bed. The underground capillary seepage soil biofiltration system consists of a train of underground treatment units, including one wastewater distribution tank, two capillary seepage soil biofiltration units in series, and a discharge tank. Each capillary seepage soil biofiltration unit contains one facultative digestion tank and one set of biofiltration beds. At the flow rate of 50 m3/day, average influent concentrations of biochemical oxygen demand (BOD), suspended solid (SS), ammonia nitrogen (NH3-N), and total phosphates (TP), were 36.15 mg/L, 29.14 mg/L, 16.05 mg/L, and 1.75 mg/L, respectively. After 1.5 years of system operation, the measured influent and effluent results show that the treatment efficiencies of the soil biofiltration system for BOD, SS, NH3-N, TP, and total coliforms are 82.96%, 60.95%, 67.17%, 74.86%, and 99.99%, respectively.

  11. Microbial Communities and Their Performances in Anaerobic Hybrid Sludge Bed-Fixed Film Reactor for Treatment of Palm Oil Mill Effluent under Various Organic Pollutant Concentrations

    PubMed Central

    Meesap, Kanlayanee; Boonapatcharoen, Nimaradee; Techkarnjanaruk, Somkiet; Chaiprasert, Pawinee

    2012-01-01

    The anaerobic hybrid reactor consisting of sludge and packed zones was operated with organic pollutant loading rates from 6.2 to 8.2 g COD/L day, composed mainly of suspended solids (SS) and oil and grease (O&G) concentrations between 5.2 to 10.2 and 0.9 to 1.9 g/L, respectively. The overall process performance in terms of chemical oxygen demands (COD), SS, and O&G removals was 73, 63, and 56%, respectively. When the organic pollutant concentrations were increased, the resultant methane potentials were higher, and the methane yield increased to 0.30 L CH4/g CODremoved. It was observed these effects on the microbial population and activity in the sludge and packed zones. The eubacterial population and activity in the sludge zone increased to 6.4 × 109 copies rDNA/g VSS and 1.65 g COD/g VSS day, respectively, whereas those in the packed zone were lower. The predominant hydrolytic and fermentative bacteria were Pseudomonas, Clostridium, and Bacteroidetes. In addition, the archaeal population and activity in the packed zone were increased from to 9.1 × 107 copies rDNA/g VSS and 0.34 g COD-CH4/g VSS day, respectively, whereas those in the sludge zone were not much changed. The most represented species of methanogens were the acetoclastic Methanosaeta, the hydrogenotrophic Methanobacterium sp., and the hydrogenotrophic Methanomicrobiaceae. PMID:22927723

  12. Paper for Publication in IOP: Conference Series Leachate Treatment using three Years Aged Lysimetric Bioreactor Models

    NASA Astrophysics Data System (ADS)

    Hartono, Djoko M.; Andari Kristanto, Gabriel; Gusniani Sofian, Irma; Fauzan, Ahmad; Mahdiana, Ghanis

    2018-03-01

    This study was conducted as a response to address the problem of land availability for Cipayung landfill that no longer able to accommodate waste generation Depok City and to protect water pollution in receiving water body. Law No. 8/2008 explained that local governments and cities are required to create a sanitary landfill as a final waste processing system to replace open dumping that had been done by almost all the final processing of waste in cities in Indonesia. Sanitary landfill is the final waste processing system that works best and is environmentally friendly. The sanitary landfill will generate leachate. Leachate is the result of precipitation, evaporation, surface runoff, water infiltration into the waste, and also including the water contained in the waste. The purpose of this study was to determine the utilization of leachate generated by three years aged reactor.This study use a modeling tools as bioreactor landfill tank or so called lysimetric, that made of the polymer material that susceptible to high heat and pressure. This bioreactor landfill tank has a diameter of 0.83 m, with a surface area of 0.54 m2 and a height of 2.02 m, with the examination duration of 115 days. This tank consists of several layer, such as sand layer, solid waste layer, water layer and piping system. These layer has 3 year aged. The In this research, leachate recirculation in bioreactor landfills was conducted with waste layered loading systems with percolation system. This research has been conducted since the beginning of 2016, sampling, field measurement and analysis of leachate and waste quality carried out for approximately 115 days of field measurements.Several parameter were measured such as pH, BOD, COD, nitrate, nitrite and TSS. From the analysis of the leachate quality parameters of pH, BOD, COD, nitrite, TSS, showed a reduction in the concentration of the three reactors. The concentration of parameters measured at the initial stage until the final stage, showed a reduction in the concentration of the parameters, even reaching 90% reduction for BOD (biological oxygen demand), COD, (chemical oxygen demand) nitrite, and TSS (total solid suspended) parameters. So it can be concluded that the recirculation of leachate of the sanitary landfill can reduce the concentration of pollutants in the leachate that will be discharged into water bodies, thereby reducing the pollution of the receiving water body. This research is funding by PUPT Kemristekdikti and DRPM UI

  13. Nitrogen and COD removal from domestic and synthetic wastewater in subsurface-flow constructed wetlands.

    PubMed

    Collison, R S; Grismer, M E

    2013-09-01

    Comparisons of the performance of constructed-wetland systems (CWs) for treating domestic wastewater in the laboratory and field may use pathogen-free synthetic wastewater to avoid regulatory health concerns. However, little to no data are available describing the relative treatment efficiencies of CWs to both actual and synthetic domestic wastewaters so as to enable such comparison. To fill this gap, treatment performances with respect to organics (chemical organic demand; COD) and nitrogen (ammonium and nitrate) removal from domestic (septic tank) and a similar-strength synthetic wastewater under planted and non-planted subsurface-flow CWs are determined. One pair of CWs was planted with cattails in May 2008, whereas the adjacent system was non-planted. Collected septic tank or synthesized wastewater was allowed to gravity feed each CWs, and effluent samples were collected and tested for COD and nitrogen species regularly during four different periods over six months. Overall, statistically significant greater removal of COD (-12%) and nitrogen (-5%) occurred from the synthetic as compared with the domestic wastewater from the planted and non-planted CWs. Effluent BOD5/COD ratios from the synthetic wastewater CWs averaged nearly twice that from the domestic wastewater CWs (0.17 vs 0.10), reflecting greater concentrations of readily degraded compounds. That removal fractions were consistent across the mid-range loading rates to the CWs suggests that the synthetic wastewater can be used in testing laboratory CWs with reasonable success in application of their results to the field.

  14. Simultaneous wastewater treatment and biogas production using integrated anaerobic baffled reactor granular activated carbon from baker's yeast wastewater.

    PubMed

    Pirsaheb, Meghdad; Mohamadi, Samira; Rahmatabadi, Sama; Hossini, Hooshyar; Motteran, Fabrício

    2017-08-30

    In this study, simultaneous degradation of organic matter and color removal from food processing industries wastewater using an integrated anaerobic baffled reactor granular activated carbon (IABRGAC) was investigated. Theretofore, effective parameters such as hydraulic retention time (HRT) and granular activated carbon (GAC) filling ratio were studied. The bioreactor was operated at 3, 4 and 5 d of HRT and GAC filling ratio of 20%, 35% and 50%. To analyze and optimize the independent operating variables, response surface methodology was applied. Operating condition was optimized for HRT (4 d) and GAC filling ratio (50%). Better COD (94.6%) and BOD (93.7%) removal efficiency occurred with loading COD of 15,000 mg/L, with diminished wastewater color around 54% and turbidity to 54 NTU. In addition, methane production, methane yielding rate (Y m ) and specific methanogenic activity (SMA) test in an integrated system were investigated. The system IABRGAC was able to generate a volumetric rate about 0.31 and 0.44 L/g COD removed d at the experimental condition. The Y m was between 0.31 and 0.44 L/g COD removed .d and SMA was between 0.13 and 0.38 g COD/g volatile suspended solid. Based on results it can be concluded that the IABRGAC to be a successful pretreatment for highstrength wastewater before discharging the final effluent to sewerage and aerobic treating processes.

  15. Application of integrated ozone biological aerated filters and membrane filtration in water reuse of textile effluents.

    PubMed

    He, Yaozhong; Wang, Xiaojun; Xu, Jinling; Yan, Jinli; Ge, Qilong; Gu, Xiaoyang; Jian, Lei

    2013-04-01

    A combined process including integrated ozone-BAFs (ozone biological aerated filters) and membrane filtration was first applied for recycling textile effluents in a cotton textile mill with capacity of 5000 m(3)/d. Influent COD (chemical oxygen demand) in the range of 82-120 mg/L, BOD5 (5-day biochemical oxygen demand) of 12.6-23.1 mg/L, suspended solids (SSs) of 38-52 mg/L and color of 32-64° were observed during operation. Outflows with COD≤45 mg/L, BOD5≤7.6 mg/L, SS≤15 mg/L, color≤8° were obtained after being decontaminated by ozone-BAF with ozone dosage of 20-25 mg/L. Besides, the average removal rates of PVA (polyvinyl alcohol) and UV254 were 100% and 73.4% respectively. Permeate water produced by RO (reverse osmosis) could be reused in dyeing and finishing processes, while the RO concentrates could be discharged directly under local regulations with COD≤100 mg/L, BOD5≤21 mg/L, SS≤52 mg/L, color≤32°. Results showed that the combined process could guarantee water reuse with high quality, and solve the problem of RO concentrate disposal. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Breakdown of food waste by anaerobic fermentation and non-oxygen producing photosynthesis using a photosynthetic bacterium.

    PubMed

    Mekjinda, N; Ritchie, R J

    2015-01-01

    Large volumes of food waste are produced by restaurants, hotels, etc generating problems in its collection, processing and disposal. Disposal as garbage increases the organic matter in landfills and leachates. The photosynthetic bacterium Rhodopseudomonas palustris (CGA 009) easily broke down food waste. R. palustris produces H2 under anaerobic conditions and digests a very wide range of organic compounds. R. palustris reduced BOD by ≈70% and COD by ≈33%, starch, ammonia, nitrate, was removed but had little effect on reducing sugar or the total phosphorus, lipid, protein, total solid in a 7-day incubation. R. palustris produced a maximum of 80ml H2/g COD/day. A two-stage anaerobic digestion using yeast as the first stage, followed by a R. palustris digestion was tested but production of H2 was low. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Advanced treatment of biologically pretreated coal gasification wastewater by a novel integration of heterogeneous Fenton oxidation and biological process.

    PubMed

    Xu, Peng; Han, Hongjun; Zhuang, Haifeng; Hou, Baolin; Jia, Shengyong; Xu, Chunyan; Wang, Dexin

    2015-04-01

    Laboratorial scale experiments were conducted in order to investigate a novel system integrating heterogeneous Fenton oxidation (HFO) with anoxic moving bed biofilm reactor (ANMBBR) and biological aerated filter (BAF) process on advanced treatment of biologically pretreated coal gasification wastewater (CGW). The results indicated that HFO with the prepared catalyst (FeOx/SBAC, sewage sludge based activated carbon (SBAC) which loaded Fe oxides) played a key role in eliminating COD and COLOR as well as in improving the biodegradability of raw wastewater. The surface reaction and hydroxyl radicals (OH) oxidation were the mechanisms for FeOx/SBAC catalytic reaction. Compared with ANMBBR-BAF process, the integrated system was more effective in abating COD, BOD5, total phenols (TPs), total nitrogen (TN) and COLOR and could shorten the retention time. Therefore, the integrated system was a promising technology for engineering applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Research on leachate recirculation from different types of landfills

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Qi; Matsufuji, Yasushi; Dong Lu

    2006-07-01

    Landfills can produce a great amount of leachate containing highly concentrated organic matter. This is especially true for the initial leachate from landfilled municipal solid wastes (MSW) that generally has concentrations of COD{sub Cr} and BOD{sub 5} up to 80,000 and 50,000 mg/L, respectively. The leachate could be disposed by means of recirculating technique, which decomposes the organics through the action of proliferating microorganisms and thereby purifies the leachate, and simultaneously accelerates organic decomposition through water saturation control. Data from experimental results indicated that leachate recirculating could reduce the organic concentration considerably, with a maximum reduction rate of COD{sub Cr}more » over 95%; and, using a semi-aerobic process, NH{sub 3}-N concentration of treated leachate could be under 10 mg/L. In addition, the organic concentration in MSW decreased greatly.« less

  19. Effect of persulfate and persulfate/H₂O₂ on biodegradability of an anaerobic stabilized landfill leachate.

    PubMed

    Hilles, Ahmed H; Abu Amr, Salem S; Hussein, Rim A; Arafa, Anwar I; El-Sebaie, Olfat D

    2015-10-01

    The current study investigated the effects of S2O8(2-) and S2O8(2-)/H2O2 oxidation processes on the biodegradable characteristics of an anaerobic stabilized leachate. Total COD removal efficiency was found to be 46% after S2O8(2-) oxidation (using 4.2 g S2O8(2-)/1g COD0, at pH 7, for 60 min reaction time and at 350 rpm shaking speed), and improved to 81% following S2O8(2-)/H2O2 oxidation process (using 5.88 g S2O8(2-) dosage, 8.63 g H2O2 dosage, at pH 11 and for 120 min reaction time at 350 rpm). Biodegradability in terms of BOD5/COD ratio of the leachate enhanced from 0.09 to 0.1 and to 0.17 following S2O8(2-) and S2O8(2-)/H2O2 oxidation processes, respectively. The fractions of COD were determined before and after each oxidation processes (S2O8(2-) and S2O8(2-)/H2O2). The fraction of biodegradable COD(bi) increased from 36% in raw leachate to 57% and 68% after applying S2O8(2-) and S2O8(2-)/H2O2 oxidation, respectively. As for soluble COD(s), its removal efficiency was 39% and 78% following S2O8(2-) and S2O8(2-)/H2O2 oxidation, respectively. The maximum removal for particulate COD was 94% and was obtained after 120 min of S2O8(2-)/H2O2 oxidation. As a conclusion, S2O8(2-)/H2O2 oxidation could be an efficient method for improving the biodegradability of anaerobic stabilized leachate. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Characterization of selected municipal solid waste components to estimate their biodegradability.

    PubMed

    Bayard, R; Benbelkacem, H; Gourdon, R; Buffière, P

    2018-06-15

    Biological treatments of Residual Municipal Solid Waste (RMSW) allow to divert biodegradable materials from landfilling and recover valuable alternative resources. The biodegradability of the waste components needs however to be assessed in order to design the bioprocesses properly. The present study investigated complementary approaches to aerobic and anaerobic biotests for a more rapid evaluation. A representative sample of residual MSW was collected from a Mechanical Biological Treatment (MBT) plant and sorted out into 13 fractions according to the French standard procedure MODECOM™. The different fractions were analyzed for organic matter content, leaching behavior, contents in biochemical constituents (determined by Van Soest's acid detergent fiber method), Biochemical Oxygen Demand (BOD) and Bio-Methane Potential (BMP). Experimental data were statistically treated by Principal Components Analysis (PCA). Cumulative oxygen consumption from BOD tests and cumulative methane production from BMP tests were found to be positively correlated in all waste fractions. No correlation was observed between the results from BOD or BMP bioassays and the contents in cellulose-like, hemicelluloses-like or labile organic compounds. No correlation was observed either with the results from leaching tests (Soluble COD). The contents in lignin-like compounds, evaluated as the non-extracted RES fraction in Van Soest's method, was found however to impact negatively the biodegradability assessed by BOD or BMP tests. Since cellulose, hemicelluloses and lignin are the polymers responsible for the structuration of lignocellulosic complexes, it was concluded that the structural organization of the organic matter in the different waste fractions was more determinant on biodegradability than the respective contents in individual biopolymers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Remediation of a winery wastewater combining aerobic biological oxidation and electrochemical advanced oxidation processes.

    PubMed

    Moreira, Francisca C; Boaventura, Rui A R; Brillas, Enric; Vilar, Vítor J P

    2015-05-15

    Apart from a high biodegradable fraction consisting of organic acids, sugars and alcohols, winery wastewaters exhibit a recalcitrant fraction containing high-molecular-weight compounds as polyphenols, tannins and lignins. In this context, a winery wastewater was firstly subjected to a biological oxidation to mineralize the biodegradable fraction and afterwards an electrochemical advanced oxidation process (EAOP) was applied in order to mineralize the refractory molecules or transform them into simpler ones that can be further biodegraded. The biological oxidation led to above 97% removals of dissolved organic carbon (DOC), chemical oxygen demand (COD) and 5-day biochemical oxygen demand (BOD5), but was inefficient on the degradation of a bioresistant fraction corresponding to 130 mg L(-1) of DOC, 380 mg O2 L(-1) of COD and 8.2 mg caffeic acid equivalent L(-1) of total dissolved polyphenols. Various EAOPs such as anodic oxidation with electrogenerated H2O2 (AO-H2O2), electro-Fenton (EF), UVA photoelectro-Fenton (PEF) and solar PEF (SPEF) were then applied to the recalcitrant effluent fraction using a 2.2 L lab-scale flow plant containing an electrochemical cell equipped with a boron-doped diamond (BDD) anode and a carbon-PTFE air-diffusion cathode and coupled to a photoreactor with compound parabolic collectors (CPCs). The influence of initial Fe(2+) concentration and current density on the PEF process was evaluated. The relative oxidative ability of EAOPs increased in the order AO-H2O2 < EF < PEF ≤ SPEF. The SPEF process using an initial Fe(2+) concentration of 35 mg L(-1), current density of 25 mA cm(-2), pH of 2.8 and 25 °C reached removals of 86% on DOC and 68% on COD after 240 min, regarding the biologically treated effluent, along with energy consumptions of 45 kWh (kg DOC)(-1) and 5.1 kWh m(-3). After this coupled treatment, color, odor, COD, BOD5, NH4(+), NO3(-) and SO4(2-) parameters complied with the legislation targets and, in addition, a total dissolved polyphenols content of 0.35 mg caffeic acid equivalent L(-1) was found. Respirometry tests revealed low biodegradability enhancement along the SPEF process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Role of H2O2 in the fluctuating patterns of COD (chemical oxygen demand) during the treatment of palm oil mill effluent (POME) using pilot scale triple frequency ultrasound cavitation reactor.

    PubMed

    Manickam, Sivakumar; Abidin, Norhaida binti Zainal; Parthasarathy, Shridharan; Alzorqi, Ibrahim; Ng, Ern Huay; Tiong, Timm Joyce; Gomes, Rachel L; Ali, Asgar

    2014-07-01

    Palm oil mill effluent (POME) is a highly contaminating wastewater due to its high chemical oxygen demand (COD) and biochemical oxygen demand (BOD). Conventional treatment methods require longer residence time (10-15 days) and higher operating cost. Owing to this, finding a suitable and efficient method for the treatment of POME is crucial. In this investigation, ultrasound cavitation technology has been used as an alternative technique to treat POME. Cavitation is the phenomenon of formation, growth and collapse of bubbles in a liquid. The end process of collapse leads to intense conditions of temperature and pressure and shock waves which assist various physical and chemical transformations. Two different ultrasound systems i.e. ultrasonic bath (37 kHz) and a hexagonal triple frequency ultrasonic reactor (28, 40 and 70 kHz) of 15 L have been used. The results showed a fluctuating COD pattern (in between 45,000 and 60,000 mg/L) while using ultrasound bath alone, whereas a non-fluctuating COD pattern with a final COD of 27,000 mg/L was achieved when hydrogen peroxide was introduced. Similarly for the triple frequency ultrasound reactor, coupling all the three frequencies resulted into a final COD of 41,300 mg/L compared to any other individual or combination of two frequencies. With the possibility of larger and continuous ultrasonic cavitational reactors, it is believed that this could be a promising and a fruitful green process engineering technique for the treatment of POME. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Submerged anaerobic membrane bioreactor (SAnMBR) performance on sewage treatment: removal efficiencies, biogas production and membrane fouling.

    PubMed

    Chen, Rong; Nie, Yulun; Ji, Jiayuan; Utashiro, Tetsuya; Li, Qian; Komori, Daisuke; Li, Yu-You

    2017-09-01

    A submerged anaerobic membrane reactor (SAnMBR) was employed for comprehensive evaluation of sewage treatment at 25 °C and its performance in removal efficiency, biogas production and membrane fouling. Average 89% methanogenic degradation efficiency as well as 90%, 94% and 96% removal of total chemical oxygen demand (TCOD), biochemical oxygen demand (BOD) and nonionic surfactant were obtained, while nitrogen and phosphorus were only subjected to small removals. Results suggest that SAnMBRs can effectively decouple organic degradation and nutrients disposal, and reserve all the nitrogen and phosphorus in the effluent for further possible recovery. Small biomass yields of 0.11 g mixed liquor volatile suspended solids (MLVSS)/gCOD were achieved, coupled to excellent methane production efficiencies of 0.338 NLCH 4 /gCOD, making SAnMBR an attractive technology characterized by low excess sludge production and high bioenergy recovery. Batch tests revealed the SAnMBR appeared to have the potential to bear a high food-to-microorganism ratio (F/M) of 1.54 gCOD/gMLVSS without any inhibition effect, and maximum methane production rate occurred at F/M 0.7 gCOD/gMLVSS. Pore blocking dominated the membrane fouling behaviour at a relative long hydraulic retention time (HRT), i.e. >12 hours, while cake layer dominated significantly at shorter HRTs, i.e. <8 hours.

  4. Degradation and decoloration of textiles wastewater by electron beam irradiation: Effect of energy, current and absorbed dose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakar, Khomsaton Abu; Zulkafli,; Hashim, Siti A'aisah

    2014-09-03

    In this study, electron beam accelerator (EB) was used to treat textiles wastewater from Rawang Industrial Park, Selangor. The objectives were to determine effective energy, beam current and absorbed dose required for decoloration and degradation of the textiles effluent. The textiles effluent was irradiated in a batch with various energy of 1MeV to 3MeV at constant beam current of 30mA. It was observed that removal of color and COD increases with higher beam energy. The EB energy of 1MeV effectively to removed 58% color and 19% COD. For textile effluent sample irradiated at fix energy of 1MeV and 3Mev butmore » at different beam current 10mA, 20mA and 30mA. It was observed that removal of color and COD increases with the increased of beam current at each energy. However removal of color was significantly better at 1Mev as compared to 3Mev. In the case of textiles effluent, irradiated at doses of 17, 20,25,30, 35, 100 and 200kGy using 30 kW power of EB (1Mev, 30mA), results shows removal of BOD{sub 5}, COD and color were in the range 9%-33%, 14%-38% and 43%-78% respectively.« less

  5. Anaerobic treatment of distillery spent wash - a study on upflow anaerobic fixed film bioreactor.

    PubMed

    Acharya, Bhavik K; Mohana, Sarayu; Madamwar, Datta

    2008-07-01

    Anaerobic digestion of wastewater from a distillery industry having very high COD (1,10,000-1,90,000 mg/L) and BOD (50,000-60,000 mg/L) was studied in a continuously fed, up flow fixed film column reactor using different support materials such as charcoal, coconut coir and nylon fibers under varying hydraulic retention time and organic loading rates. The seed consortium was prepared by enrichment with distillery spent wash in a conventional type reactor having working capacity of 3 L and was used for charging the anaerobic column reactor. Amongst the various support materials studied the reactor having coconut coir could treat distillery spent wash at 8d hydraulic retention time with organic loading rate of 23.25 kg COD m(-3)d(-1) leading to 64% COD reduction with biogas production of 7.2 m3 m(-3)d(-1) having high methane yield without any pretreatment or neutralization of the distillery spent wash. This study indicates fixed film biomethanation of distillery spent wash using coconut coir as the support material appears to be a cost effective and promising technology for mitigating the problems caused by distillery effluent.

  6. Constructed wetland mesocosms for the treatment of diluted sugarcane molasses stillage from ethanol production using Pontederia sagittata.

    PubMed

    Olguín, Eugenia J; Sánchez-Galván, Gloria; González-Portela, Ricardo E; López-Vela, Melissa

    2008-08-01

    Sugarcane molasses stillage contains a very high concentration of organic matter and toxic/recalcitrant compounds. Its improper disposal has become a global problem and there is very scanty information about its treatment using phytotechnologies. This work aimed at evaluating the performance of subsurface flow constructed wetlands (SSF CWs) mesocosms planted with Pontederia sagittata and operating at two hydraulic retention times (HRTs), compared to an unplanted SSF CWs, for the treatment of diluted stillage subjected to no pre-treatment apart from an adjustment to pH 6.0. CWs were fed with very high surface COD loading rates (i.e. 47.26 and 94.83gCOD/m(2)d). The planted CWs were able to remove COD in the range of 80.24-80.62%, BOD(5) in the range of 82.20-87.31%, TKN in the range of 73.42-76.07%, nitrates from 56-58.74% and sulfates from 68.58-69.45%, depending on the HRT. Phosphate and potassium were not removed. It was concluded that this type of CWs is a feasible option for the treatment of diluted stillage.

  7. Artificial neural network modelling of a large-scale wastewater treatment plant operation.

    PubMed

    Güçlü, Dünyamin; Dursun, Sükrü

    2010-11-01

    Artificial Neural Networks (ANNs), a method of artificial intelligence method, provide effective predictive models for complex processes. Three independent ANN models trained with back-propagation algorithm were developed to predict effluent chemical oxygen demand (COD), suspended solids (SS) and aeration tank mixed liquor suspended solids (MLSS) concentrations of the Ankara central wastewater treatment plant. The appropriate architecture of ANN models was determined through several steps of training and testing of the models. ANN models yielded satisfactory predictions. Results of the root mean square error, mean absolute error and mean absolute percentage error were 3.23, 2.41 mg/L and 5.03% for COD; 1.59, 1.21 mg/L and 17.10% for SS; 52.51, 44.91 mg/L and 3.77% for MLSS, respectively, indicating that the developed model could be efficiently used. The results overall also confirm that ANN modelling approach may have a great implementation potential for simulation, precise performance prediction and process control of wastewater treatment plants.

  8. Performances and nitrification properties of biological aerated filters with zeolite, ceramic particle and carbonate media.

    PubMed

    Qiu, Liping; Zhang, Shoubin; Wang, Guangwei; Du, Mao'an

    2010-10-01

    The performance and nitrification properties of three BAFs, with ceramic, zeolite and carbonate media, respectively, were investigated to evaluate the feasibility of employing these materials as biological aerated filter media. All three BAFs shown a promising COD and SS removal performance, while influent pH was 6.5-8.1, air-liquid ratio was 5:1 and HRT was 1.25-2.5 h, respectively. Ammonia removal in BAFs was inhibited when organic and ammonia nitrogen loading were increased, but promoted effectively with the increase pH value. Zeolite and carbonate were more suitable for nitrification than ceramic particle when influent pH below 6.5. It is feasible to employ these media in BAF and adequate bed volume has to be supplied to satisfy the requirement of removal COD, SS and ammonia nitrogen simultaneously in a biofilter. The carbonate with a strong buffer capacity is more suitable to treat the wastewater with variable or lower pH. Copyright 2010 Elsevier Ltd. All rights reserved.

  9. Treatment of segregated black/grey domestic wastewater using constructed wetlands in the Mediterranean basin: the zer0-m experience.

    PubMed

    Masi, F; El Hamouri, B; Abdel Shafi, H; Baban, A; Ghrabi, A; Regelsberger, M

    2010-01-01

    Concerns about water shortage and pollution have received increased attention over the past few years, especially in developing countries with warm climate. In order to help local water management in these countries, the Euro-Mediterranean Regional Programme (MEDA) has financed the Zer0-m project (E-mail: www.zer0-m.org). As a part of this project, several constructed wetland (CW) pilot systems with different pre-treatments have been implemented in four Technological Demonstration Centres in Egypt, Morocco, Tunisia and Turkey. The aim of this research was to establish appropriate designs for treatment of segregated domestic black (BW) and grey water (GW). We tested several different multistage CW configurations, consisting of horizontal and vertical subsurface flow CW for secondary treatment and free water systems as tertiary stage. CW removal efficiencies of TSS, COD, BOD(5), N-NH(4)(+), N-NO(3)(-), N(tot), total coliforms (TC) were evaluated for each of the implemented systems. The results from this study demonstrate the potential of CWs as a suitable technology for treating segregated domestic wastewater. A very efficient COD reduction (up to 98%) and nitrification (92-99%) was achieved for BW and GW in all systems. CW effluent concentrations were below 15 mg/L for BOD(5), 1 mg/L for N-NO(3)(-) and 0.5 mg/L for N-NH(4)(+) together with acceptable TC counts. Based on these results, we suggest adopting the design parameters used in this study for the treatment of segregated wastewater in the Mediterranean area.

  10. Impact of city effluents on water quality of Indus River: assessment of temporal and spatial variations in the southern region of Khyber Pakhtunkhwa, Pakistan.

    PubMed

    Khan, Ilham; Khan, Azim; Khan, Muhammad Sohail; Zafar, Shabnam; Hameed, Asma; Badshah, Shakeel; Rehman, Shafiq Ur; Ullah, Hidayat; Yasmeen, Ghazala

    2018-04-04

    The impact of city effluents on water quality of Indus River was assessed in the southern region of Khyber Pakhtunkhwa, Pakistan. Water samples were collected in dry (DS) and wet (WS) seasons from seven sampling zones along Indus River and the physical, bacteriological, and chemical parameters determining water quality were quantified. There were marked temporal and spatial variations in the water quality of Indus River. The magnitude of pollution was high in WS compared with DS. The quality of water varied across the sampling zones, and it greatly depended upon the nature of effluents entering the river. Water samples exceeded the WHO permissible limits for pH, EC, TDS, TS, TSS, TH, DO, BOD, COD, total coliforms, Escherichia coli, Ca 2+ , Mg 2+ , NO 3 - , and PO 4 2- . Piper analysis indicated that water across the seven sampling zones along Indus River was alkaline in nature. Correlation analyses indicated that EC, TDS, TS, TH, DO, BOD, and COD may be considered as key physical parameters, while Na + , K + , Ca 2+ , Mg 2+ , Cl - , F - , NO 3 - , PO 4 2- , and SO 4 2- as key chemical parameters determining water quality, because they were strongly correlated (r > 0.70) with most of the parameters studied. Cluster analysis indicated that discharge point at Shami Road is the major source of pollution impairing water quality of Indus River. Wastewater treatment plants must be installed at all discharge points along Indus River for protecting the quality of water of this rich freshwater resource in Pakistan.

  11. Synthetic olive mill wastewater treatment by Fenton's process in batch and continuous reactors operation.

    PubMed

    Esteves, Bruno M; Rodrigues, Carmen S D; Madeira, Luís M

    2017-11-04

    Degradation of total phenol (TPh) and organic matter, (expressed as total organic carbon TOC), of a simulated olive mill wastewater was evaluated by the Fenton oxidation process under batch and continuous mode conditions. A mixture of six phenolic acids usually found in these agro-industrial wastewaters was used for this purpose. The study focused on the optimization of key operational parameters of the Fenton process in a batch reactor, namely Fe 2+ dosage, hydrogen peroxide concentration, pH, and reaction temperature. On the assessment of the process efficiency, > 99% of TPh and > 56% of TOC removal were attained when [Fe 2+ ] = 100 ppm, [H 2 O 2 ] = 2.0 g/L, T = 30 °C, and initial pH = 5.0, after 300 min of reaction. Under those operational conditions, experiments on a continuous stirred-tank reactor (CSTR) were performed for different space-time values (τ). TOC and TPh removals of 47.5 and 96.9%, respectively, were reached at steady-state (for τ = 120 min). High removal of COD (> 75%) and BOD 5 (> 70%) was achieved for both batch and CSTR optimum conditions; analysis of the BOD 5 /COD ratio also revealed an increase in the effluent's biodegradability. Despite the high removal of lumped parameters, the treated effluent did not met the Portuguese legal limits for direct discharge of wastewaters into water bodies, which indicates that coupled chemical-biological process may be the best solution for real olive mill wastewater treatment.

  12. Phosphorus loads from different urban storm runoff sources in southern China: a case study in Wenzhou City.

    PubMed

    Zhou, Dong; Bi, Chun-Juan; Chen, Zhen-Lou; Yu, Zhong-Jie; Wang, Jun; Han, Jing-Chao

    2013-11-01

    Storm runoff from six types of underlying surface area during five rainfall events in two urban study areas of Wenzhou City, China was investigated to measure phosphorus (P) concentrations and discharge rates. The average event mean concentrations (EMCs) of total phosphorus (TP), total dissolved phosphorus (TDP), and particulate phosphorus (PP) ranged from 0.02 to 2.5 mg · L(-1), 0.01 to 0.48 mg · L(-1), and 0.02 to 2.43 mg · L(-1), respectively. PP was generally the dominant component of TP in storm runoff, while the major form of P varied over time, especially in roof runoff, where TDP made up the largest portion in the latter stages of runoff events. Both TP and PP concentrations were positively correlated with pH, total suspended solids (TSS), and biochemical oxygen demand (BOD)/chemical oxygen demand (COD) concentrations (p<0.01), while TDP was positively correlated with BOD/COD only (p<0.01). In addition, the EMCs of TP and PP were negatively correlated with maximum rainfall intensity (p<0.05), while the EMCs of TDP positively correlated with the antecedent dry weather period (p<0.05). The annual TP emission fluxes from the two study areas were 367.33 and 237.85 kg, respectively. Underlying surface type determined the TP and PP loadings in storm runoff, but regional environmental conditions affected the export of TDP more significantly. Our results indicate that the removal of particles from storm runoff could be an effective measure to attenuate P loadings to receiving water bodies.

  13. Natural leathers from natural materials: progressing toward a new arena in leather processing.

    PubMed

    Saravanabhavan, Subramani; Thanikaivelan, Palanisamy; Rao, Jonnalagadda Raghava; Nair, Balachandran Unni; Ramasami, Thirumalachari

    2004-02-01

    Globally, the leather industry is currently undergoing radical transformation due to pollution and discharge legislations. Thus, the leather industry is pressurized to look for cleaner options for processing the raw hides and skins. Conventional methods of pre-tanning, tanning and post-tanning processes are known to contribute more than 98% of the total pollution load from the leather processing. The conventional method of the tanning process involves the "do-undo" principle. Furthermore, the conventional methods employed in leather processing subject the skin/ hide to a wide variation in pH (2.8-13.0). This results in the emission of huge amounts of pollution loads such as BOD, COD, TDS, TS, sulfates, chlorides and chromium. In the approach illustrated here, the hair and flesh removal as well as fiber opening have been achieved using biocatalysts at pH 8.0, pickle-free natural tanning employing vegetable tannins, and post-tanning using environmentally friendly chemicals. Hence, this process involves dehairing, fiber opening, and pickle-free natural tanning followed by ecofriendly post-tanning. It has been found that the extent of hair removal and opening up of fiber bundles is comparable to that of conventionally processed leathers. This has been substantiated through scanning electron microscopic analysis and softness measurements. Performance of the leathers is shown to be on par with conventionally chrome-tanned leathers through physical and hand evaluation. The process also exhibits zero metal (chromium) discharge and significant reduction in BOD, COD, TDS, and TS loads by 83, 69, 96, and 96%, respectively. Furthermore, the developed process seems to be economically viable.

  14. The effect of landfill leachate composition on organics and nitrogen removal in an activated sludge system with bentonite additive.

    PubMed

    Wiszniowski, J; Surmacz-Górska, J; Robert, D; Weber, J-V

    2007-10-01

    A pre-denitrification activated sludge system (AS) without internal recycle was used in lab-scale studies of landfill leachate treatment. A bentonite supplement at a ratio of 1:4 (mineral : biomass) was used to ensure high sludge settling levels and to serve as a micro-organisms carrier. The system was operated within different parameters such as hydraulic retention time (HRT), ammonia loading rate (ALR) or external recycle ratio, which was adapted to treat varying leachate concentrations of COD and ammonia, ranging from 1020 to 2680 mgO(2)l(-1) and 400-890 mgNH(4)-Nl(-1) respectively. The nitrification was complete and ammonia oxidation reached 99%; this was obtained while the ALR did not exceed 0.09 g NH(4)(+)-Ng(-1)MLVSS d(-1) and HRT was not lower than 1 day (in the aeration reactor). The performance of denitrification was successfully improved by controlling the external recycle rate, when the BOD(5)/N ratio in the raw leachate was 4.1. Consequently, N-removal of up to 80% was achieved. A 10-fold decrease in the denitrification rate was obtained at a BOD(5)/N ratio of 0.5. The efficiency of COD removal varied significantly from 36% to 84%. The positive effect of bentonite addition was determined and is discussed based on preliminary studies. The experiments were carried out in fill-and-draw activated sludge with bentonite; the biomass ratio was 1:2. The activated sludge with bentonite was fed with a synthetic high ammonia and organic-free medium.

  15. Post-treatment of secondary wastewater treatment plant effluent using a two-stage fluidized bed bioreactor system

    PubMed Central

    2013-01-01

    The aim of this study was to investigate the performance of a two-stage fluidized bed reactor (FBR) system for the post-treatment of secondary wastewater treatment plant effluents (Shahrak Gharb, Tehran, Iran). The proposed treatment scheme was evaluated using pilot-scale reactors (106-L of capacity) filled with PVC as the fluidized bed (first stage) and gravel for the filtration purpose (second stage). Aluminum sulfate (30 mg/L) and chlorine (1 mg/L) were used for the coagulation and disinfection of the effluent, respectively. To monitor the performance of the FBR system, variation of several parameters (biochemical oxygen demand (BOD5), chemical oxygen demand (COD), turbidity, total phosphorous, total coliform and fecal coliform) were monitored in the effluent wastewater samples. The results showed that the proposed system could effectively reduce BOD5 and COD below 1.95 and 4.06 mg/L, respectively. Turbidity of the effluent could be achieved below 0.75 NTU, which was lower than those reported for the disinfection purpose. The total phosphorus was reduced to 0.52 mg/L, which was near the present phosphorous standard for the prevention of eutrophication process. Depending on both microorganism concentration and applied surface loading rates (5–10 m/h), about 35 to 75% and 67 to 97% of coliform were removed without and with the chlorine addition, respectively. Findings of this study clearly confirmed the efficiency of the FBR system for the post-treatment of the secondary wastewater treatment plant effluents without any solid problem during the chlorination. PMID:24499570

  16. Overview of the state of the art of constructed wetlands for decentralized wastewater management in Brazil.

    PubMed

    Machado, A I; Beretta, M; Fragoso, R; Duarte, E

    2017-02-01

    Conventional wastewater treatment plants (WWTPs) commonly require large capital investments as well as operation and maintenance costs. Constructed wetlands (CWs) appear as a cost-effective treatment, since they can remove a broad range of contaminants by a combination of physical, chemical and biological processes with a low cost. Therefore, CWs can be successfully applied for decentralized wastewater treatment in regions with low population density and/or with large land availability as Brazil. The present work provides a review of thirty nine studies developed on CWs implemented in Brazil to remove wastewater contaminants. Brazil current sanitation data is also considered to evaluate the potential role of CWs as decentralized wastewater treatment. Performance of CWs was evaluated according to (i) type of wetland system, (ii) different support matrix (iii) vegetation species and (iv) removal efficiency of chemical oxygen demand (COD), biological oxygen demand (BOD 5 ), nitrogen (N), and phosphorus (P). The reviewed CWs in overall presented good efficiencies, whereas H-CWs achieved the highest removals for P, while the higher results for N were attained on VF-CW and for COD and BOD 5 on HF-CW. Therefore, was concluded that CWs are an interesting solution for decentralized wastewater treatment in Brazil since it has warm temperatures, extensive radiation hours and available land. Additionally, the low percentage of population with access to the sewage network in the North and Northeast regions makes these systems especially suitable. Hence, the further implementation of CW is encouraged by the authors in regions with similar characteristics as Brazil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Treatment and decolorization of biologically treated Palm Oil Mill Effluent (POME) using banana peel as novel biosorbent.

    PubMed

    Mohammed, Rafie Rushdy; Chong, Mei Fong

    2014-01-01

    Palm Oil Mill Effluent (POME) treatment has always been a topic of research in Malaysia. This effluent that is extremely rich in organic content needs to be properly treated to minimize environmental hazards before it is released into watercourses. The main aim of this work is to evaluate the potential of applying natural, chemically and thermally modified banana peel as sorbent for the treatment of biologically treated POME. Characteristics of these sorbents were analyzed with BET surface area and SEM. Batch adsorption studies were carried out to remove color, total suspended solids (TSS), chemical oxygen demand (COD), tannin and lignin, and biological oxygen demand (BOD) onto natural banana peel (NBP), methylated banana peel (MBP), and banana peel activated carbon (BPAC) respectively. The variables of pH, adsorbent dosage, and contact time were investigated in this study. Maximum percentage removal of color, TSS, COD, BOD, and tannin and lignin (95.96%, 100%, 100%, 97.41%, and 76.74% respectively) on BPAC were obtained at optimized pH of 2, contact time of 30 h and adsorbent dosage of 30 g/100 ml. The isotherm data were well described by the Redlich-Peterson isotherm model with correlation coefficient of more than 0.99. Kinetic of adsorption was examined by Langergren pseudo first order, pseudo second order, and second order. The pseudo second order was identified to be the governing mechanism with high correlation coefficient of more than 0.99. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Performance Study of Ceramic Filter Module in Recirculated Aquaculture System (RAS)

    NASA Astrophysics Data System (ADS)

    Ng, L. Y.; Ng, C. Y.

    2017-06-01

    The growth of world population has led to significant increase in seafood demand over the world. Aquaculture has been widely accepted by many countries to increase the seafood production owing to the decline of natural seafood resources. The aquaculture productivity, however, is directly linked to the pond water quality. In this study, attempts were made to employ ceramic micro-filter to improve the pond water quality through filtration processes. There were two batches of filtration processes, short term (1 hour) and long term (48 hours). Significant improvements on real pond water quality were recorded through the short term microfiltration process, which reduced turbidity (96%), total suspended solids (TSS) (80%), biochemical oxygen demand (BOD) (72%), chemical oxygen demand (COD) (55%), ammonia (60%), nitrate (96%) and phosphorus (83%). The long term filtration process also showed high efficiency in the removal of solid particle and organic matters. The results showed that all of the parameters were successfully reduced to acceptable ranges (turbidity<80 NTU, TSS<400 mg/L, BOD<5 mg/L, COD<70 mg/L, phosphate<3 mg/L and ammonia<0.05 mg/L) for fish culturing activity. Based on current study, there was a drastic increase in nitrate content after 24 hours due to the nitrification process by regenerated bacteria in the filtered pond water. Current study showed that the microfiltration using ceramic micro-filter has high potential to be used in recirculating aquaculture system throughout the aquaculture activities in order to maintain the pond water quality, thus, increase the survival rate of cultured species.

  19. A voltammetric electronic tongue as tool for water quality monitoring in wastewater treatment plants.

    PubMed

    Campos, Inmaculada; Alcañiz, Miguel; Aguado, Daniel; Barat, Ramón; Ferrer, José; Gil, Luis; Marrakchi, Mouna; Martínez-Mañez, Ramón; Soto, Juan; Vivancos, José-Luis

    2012-05-15

    The use of a voltammetric electronic tongue as tool for the prediction of concentration levels of certain water quality parameters from influent and effluent wastewater from a Submerged Anaerobic Membrane Bioreactor pilot plant applied to domestic wastewater treatment is proposed here. The electronic tongue consists of a set of noble (Au, Pt, Rh, Ir, and Ag) and non-noble (Ni, Co and Cu) electrodes that were housed inside a stainless steel cylinder which was used as the body of the electronic tongue system. As a previous step an electrochemical study of the response of the ions sulphate, orthophosphate, acetate, bicarbonate and ammonium was carried out in water using the electrodes contained in the electronic tongue. The second part of the work was devoted to the application of the electronic tongue to the characterization of the influent and effluent waters from the wastewater treatment plant. Partial Least Squares analysis was used to obtain a correlation between the data from the tongue and the pollution parameters measured in the laboratory such as soluble chemical oxygen demand (CODs), soluble biological oxygen demand (BODs), ammonia (NH(4)-N), orthophosphate (PO(4)-P), Sulphate (SO(4)-S), acetic acid (HAC) and alkalinity (Alk). A total of 28 and 11 samples were used in the training and the validation steps, respectively, for both influent and effluent water samples. The electronic tongue showed relatively good predictive power for the determination of BOD, COD, NH(4)-N, PO(4)-P, SO(4)-S, and Alk. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. A comparison of refuse attenuation in laboratory and field scale lysimeters.

    PubMed

    Youcai, Zhao; Luochun, Wang; Renhua, Hua; Dimin, Xu; Guowei, Gu

    2002-01-01

    For this study, small and middle scale laboratory lysimeters, and a large scale field lysimeter in situ in Shanghai Refuse Landfill, with refuse weights of 187,600 and 10,800,000 kg, respectively, were created. These lysimeters are compared in terms of leachate quality (pH, concentrations of COD, BOD and NH3-N), refuse composition (biodegradable matter and volatile solid) and surface settlement for a monitoring period of 0-300 days. The objectives of this study were to explore both the similarities and disparities between laboratory and field scale lysimeters, and to compare degradation behaviors of refuse at the intensive reaction phase in the different scale lysimeters. Quantitative relationships of leachate quality and refuse composition with placement time show that degradation behaviors of refuse seem to depend heavily on the scales of the lysimeters and the parameters of concern, especially in the starting period of 0-6 months. However, some similarities exist between laboratory and field lysimeters after 4-6 months of placement because COD and BOD concentrations in leachate in the field lysimeter decrease regularly in a parallel pattern with those in the laboratory lysimeters. NH3-N, volatile solid (VS) and biodegradable matter (BDM) also gradually decrease in parallel in this intensive reaction phase for all scale lysimeters as refuse ages. Though the concrete data are different among the different scale lysimeters, it may be considered that laboratory lysimeters with sufficient scale are basically applicable for a rough simulation of a real landfill, especially for illustrating the degradation pattern and mechanism. Settlement of refuse surface is roughly proportional to the initial refuse height.

  1. Vertical Subsurface Flow (VSSF) constructed wetland for domestic wastewater treatment

    NASA Astrophysics Data System (ADS)

    Perdana, M. C.; Sutanto, H. B.; Prihatmo, G.

    2018-04-01

    Vertical Subsurface Flow Constructed Wetland (VSSF) is appraised to become an alternative solution for treating domestic wastewater effectively and efficiently. The system which imitates the natural wetland concept is able to reduce organic material and nutrients in wastewater; therefore, it will be more feasible to be discharged to the environment. This study aimed to compare which species is more recommended to be applied for reducing organic material and nutrients in domestic wastewater. This experimental study applied four treatments, i.e 1) control (unplanted), 2) single species Iris pseudacorus, 3) single species Echinodorus palaefolius, and 4) combination (Iris pseudacorus and Echinodorus palaefolius) with three days of retention time. The application of those plants aims for holding the role in increasing wastewater quality and adding aesthetic impression at once. The plants were planted on VSSF media, in relatively same of weight and size to compare their effectiveness in decreasing organic and inorganic load. The parameters measured pervade TDS, pH, BOD5, COD, Nitrate, and Phosphate. The plants’ condition was also observed during and after the system worked. The result showed that the best average value of effectiveness for each of parameters: COD by combination treatment (50.76%), BOD5 by single I. pseudacorus (30.15%), Nitrate by single E. palaefolius (58.06%), Phosphate by single E. palaefolius (99.5%), and TDS by E.palaefolius (3.25%). The result showed that there was a significant difference of Nitrate and Phosphate reduction between control and three other treatments, while pH parameter showed non-significant change among them. In term of performance, I.pseudacorus seemed showed a preferable achievement.

  2. Coliform MPN counts of municipal raw sewage and sewage treatment plant in relation to the water of Buckingham Canal at Kalpakkam (Tamil Nadu, India).

    PubMed

    Kumar, A Yudhistra; Reddy, M Vikram

    2008-01-01

    Most Probable Number (MPN) of Total Coliforms (TC) and Faecal Coliforms (FC), and the physicochemical variables - temperature, Dissolved Oxygen (D.O.), Biochemical Oxygen Demand (B.O.D.), Chemical Oxygen Demand (C.O.D.), nitrates, phosphates and chlorides of municipal raw sewage and that of aeration tank and secondary clarifier of the Sewage Treatment Plant (STP), in relation to water at the treated sewage out-fall point, down-stream and up-stream of the Buckingham Canal at Kalpakkam were analyzed. Total Coliform and Faecal Coliform MPN counts were higher, 170 and 70/100 mL respectively in the raw sewage. However, the counts of the former in the aeration tank though remained similar, that of FC decreased to 50/100 mL; both of the counts further decreased to 30 and 44/100 mL respectively, in the secondary clarifier and were 110 and 23/100 mL, respectively at the treated sewage out-fall point in the canal. Total coliforms MPN was more than 18 times less in the water at the up-stream than that of the treated sewage out-fall point in the canal. Interestingly MPN of the FC in the up-stream water was nil while it was 8/100 mL in the canal's down-stream point. It is concluded that the FC, B.O.D., C.O.D., nitrates, phosphates and chlorides decreased and the D.O. increased in the treated-sewage due to the treatment of raw sewage through the STP.

  3. An investigation of anthraquinone dye biodegradation by immobilized Aspergillus flavus in fluidized bed bioreactor.

    PubMed

    Andleeb, Saadia; Atiq, Naima; Robson, Geoff D; Ahmed, Safia

    2012-06-01

    Biodegradation and biodecolorization of Drimarene blue K(2)RL (anthraquinone) dye by a fungal isolate Aspergillus flavus SA2 was studied in lab-scale immobilized fluidized bed bioreactor (FBR) system. Fungus was immobilized on 0.2-mm sand particles. The reactor operation was carried out at room temperature and pH 5.0 in continuous flow mode with increasing concentrations (50, 100, 150, 200, 300, 500 mg l(-1)) of dye in simulated textile effluent on the 1st, 2nd, 5th, 8th, 11th, and 14th days. The reactors were run on fill, react, settle, and draw mode, with hydraulic retention time (HRT) of 24-72 h. Total run time for reactor operation was 17 days. The average overall biological oxygen demand (BOD), chemical oxygen demand (COD), and color removal in the FBR system were up to 85.57%, 84.70%, and 71.3%, respectively, with 50-mg l(-1) initial dye concentration and HRT of 24 h. Reductions in BOD and COD levels along with color removal proved that the mechanism of biodecolorization and biodegradation occurred simultaneously. HPLC and LC-MS analysis identified phthalic acid, benzoic acid, 1, 4-dihydroxyanthraquinone, 2,3-dihydro-9,10-dihydroxy-1,4-anthracenedione, and catechol as degradation products of Drimarene blue K(2)RL dye. Phytotoxicity analysis of bioreactor treatments provided evidence for the production of less toxic metabolites in comparison to the parent dye. The present fluidized bed bioreactor setup with indigenously isolated fungal strain in its immobilized form is efficiently able to convert the parent toxic dye into less toxic by-products.

  4. [Use of macroalgae for the evaluation of organic pollution in the Preto river, northwest of São Paulo State].

    PubMed

    Necchi Júnior, O; Branco, H Z; Dip, M R

    1994-01-01

    The Preto River, located in the northwest of São Paulo State, receives a total wastewater load of 15.150 kg DBO day-1, from which 13.685 kg DBO day-1 (90.5%) corresponds to domestic sewage, and the city of São José do Rio Preto contributes with 12.400 kg DBO day-1 (90% of domestic sewage). During the period from August 1990 through January 1991, monthly sampling was carried out to evaluate the use of macroalgae as bioindicator of organic pollution. Five sampling sites were established along the main river and the following variables were analised: temperature, conductance, turbidity, dissolved oxygen, BOD, COD, total and fecal coliforms, and composition and abundance of macroalgal communities. Data were submitted to analysis of variance, correlation coefficient, cluster analysis (four different approaches) and converted to biological indices (species deficit, relative pollution, saprobity, diversity and uniformity indices). A wide range in water quality was found (particularly for conductance, oxygen, BOD and COD) among the sampling sites, which were classified into three groups (polluted, moderately polluted and unpolluted/weakly polluted). As regards the occurrence and abundance of macroalgae the Rhodophyta were found only in unpolluted or weakly polluted sites, whereas Cyanophyta occurred mostly under high pollution load; the Chlorophyta species were observed under a wide range of conditions. Among the biological indices, saprobity was the most sensitive and correlated to all water variables and the other indices. Cluster analyses showed that the composition of macroalgal communities was consistent with the levels of organic pollution in the Preto River.

  5. Longitudinal data analysis in support of functional stability concepts for leachate management at closed municipal landfills.

    PubMed

    Gibbons, Robert D; Morris, Jeremy W F; Prucha, Christopher P; Caldwell, Michael D; Staley, Bryan F

    2014-09-01

    Landfill functional stability provides a target that supports no environmental threat at the relevant point of exposure in the absence of active control systems. With respect to leachate management, this study investigates "gateway" indicators for functional stability in terms of the predictability of leachate characteristics, and thus potential threat to water quality posed by leachate emissions. Historical studies conducted on changes in municipal solid waste (MSW) leachate concentrations over time (longitudinal analysis) have concentrated on indicator compounds, primarily chemical oxygen demand (COD) and biochemical oxygen demand (BOD). However, validation of these studies using an expanded database and larger constituent sets has not been performed. This study evaluated leachate data using a mixed-effects regression model to determine the extent to which leachate constituent degradation can be predicted based on waste age or operational practices. The final dataset analyzed consisted of a total of 1402 samples from 101 MSW landfills. Results from the study indicated that all leachate constituents exhibit a decreasing trend with time in the post-closure period, with 16 of the 25 target analytes and aggregate classes exhibiting a statistically significant trend consistent with well-studied indicators such as BOD. Decreasing trends in BOD concentration after landfill closure can thus be considered representative of trends for many leachate constituents of concern. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Characteristics of sludge developed under different loading conditions during UASB reactor start-up and granulation.

    PubMed

    Ghangrekar, M M; Asolekar, S R; Joshi, S G

    2005-03-01

    Sludge characteristics available inside the reactor are of vital importance to maximize advantages of UASB reactor. The organic loading rate and sludge loading rate applied during start-up are among the important parameters to govern the sludge characteristics. Effects of these loading rates on the characteristics of the sludge developed are evaluated in six laboratory scale UASB reactors. The sludge characteristics considered are VSS/SS ratio of the sludge, sludge volume index, specific gravity, settling velocity and metal contents of the sludge developed under different loading rates. The experimental results indicate that, for developing good characteristics sludge, during primary start-up from flocculent inoculum sludge, organic loading rate and sludge loading rate should be in the range of 2.0-4.5 kg COD/m3 d and 0.1-0.25 kg COD/kg VSS d, respectively (chemical oxygen demand, COD). Proper sludge granulation and higher COD removal efficiency will be achieved by these loading rates.

  7. Assessment of sanitary landfill leachate characterizations and its impacts on groundwater at Alexandria.

    PubMed

    Hassan, Ahmed Hossam; Ramadan, Mohamed Hassan

    2005-01-01

    The total amount of solid waste generated in Alexandria is 2820 tons/d which increases to 3425 tons/day during summer. In the past, 77% of the collected solid wastes was open dumped. The open dumping sites did not have the minimum requirements for pollution control. Following the exacerbation of the problem, the Alexandria Governorate contracted a company to carry out the solid waste management. The contracted company transferred 75% of the daily generated solid wastes to a new constructed sanitary lanfill. The site receives a daily average of 1910 tons. The landfilling is performed by trench method in the form of cells. The produced leachate is discharged into two lined aerated lagoons. The biogas formed from biodegradation of landfilled solid wastes is burned and the produced heat is used for drying the lagoons leachate. The remaining residues are relandfilled. The study aims at assessment of the solid waste sanitary landfill leachate characterization and its impacts on the groundwater. The analysis of the collected data confirms that leachates from the landfill are severely contaminated with organics, salts, and heavy metals. The fluctuations in concentration levels of the different parameters were attributed to aging and thickness of waste layers, stage of decomposition, and re-landfilling of the concentrated residues from the drying lagoons. The concentrations of NH4-N (600 mg/l) indicated that the process of stabilization was still in the initial stages and attributed to the compaction process. The high BOD5 results (28,833 mg/l) indicated that the process of stabilization was in the initial stages which were very slow. The high COD results (45,240 mg/l) can be attributed to the compaction of the wastes which also retards the degradation of the solid wastes. The BOD and COD values indicated clearly severe contamination. The BOD5/COD ratio measured in the current study (0.64) indicated that the leachate of the present study was biodegradable and unstabilized, and required time and favourable conditions for anaerobic biodegradation. Heavy metals were lower compared with what have been observed in other countries. Re-landfilling of the residue after drying the leachate in lagoons and the short time of biodegradation in the landfill site were factors which effected the high strength of most of the parameters concentrations of the leachate. Assessment of groundwater contamination through piezometer wells around the active cells indicated that there was no contamination from the leachate to the groundwater surrounding the site. The study recommended emphasizing the importance of adjusting the biodegradation factors, the monitoring program, the prohibition of disposing heavy metals, determination of the leachate generation rate, and treatment of leachate.

  8. Optimization aspects of the biological nitrogen removal process in a full-scale twin sequencing batch reactor (SBR) system in series treating landfill leachate.

    PubMed

    Remmas, Nikolaos; Ntougias, Spyridon; Chatzopoulou, Marianna; Melidis, Paraschos

    2018-03-29

    Despite the fact that biological nitrogen removal (BNR) process has been studied in detail in laboratory- and pilot-scale sequencing batch reactor (SBR) systems treating landfill leachate, a limited number of research works have been performed in full-scale SBR plants regarding nitrification and denitrification. In the current study, a full-scale twin SBR system in series of 700 m 3 (350 m 3 each) treating medium-age landfill leachate was evaluated in terms of its carbon and nitrogen removal efficiency in the absence and presence of external carbon source, i.e., glycerol from biodiesel production. Both biodegradable organic carbon and ammonia were highly oxidized [biochemical oxygen demand (BOD 5 ) and total Kjehldahl nitrogen (TKN) removal efficiencies above 90%], whereas chemical oxygen demand (COD) removal efficiency was slightly above 40%, which is within the range reported in the literature for pilot-scale SBRs. As the consequence of the high recalcitrant organic fraction of the landfill leachate, dissimilatory nitrate reduction was restricted in the absence of crude glycerol, although denitrification was improved by electron donor addition, resulting in TN removal efficiencies above 70%. Experimental data revealed that the second SBR negligibly contributed to BNR process, since carbon and ammonia oxidation completion was achieved in the first SBR. On the other hand, the low VSS/SS ratio, due to the lack of primary sedimentation, highly improved sludge settleability, resulting in sludge volume indices (SVI) below 30 mL g -1 .

  9. Municipal solid waste landfill leachate treatment by fenton, photo-fenton and fenton-like processes: Effect of some variables

    PubMed Central

    2012-01-01

    Advanced oxidation processes like Fenton and photo-Fenton have been effectively applied to oxidize the persistent organic compounds in solid waste leachate and convert them to unharmful materials and products. However, there are limited data about application of Fenton-like process in leachate treatment. Therefore, this study was designed with the objective of treating municipal landfill leachate by Fenton, Fenton-like and photo–Fenton processes to determine the effect of different variables, by setting up a pilot system. The used leachate was collected from a municipal unsanitary landfill in Qaem-Shahr in the north of Iran. Fenton and Fenton-like processes were conducted by Jar-test method. Photo-Fenton process was performed in a glass photo-reactor. In all processes, H2O2 was used as the oxidant. FeSO4.7H2O and FeCl3.6H2O were used as reagents. All parameters were measured based on standard methods. The results showed that the optimum concentration of H2O2 was equal to 5 g/L for the Fenton-like process and 3 g/L for the Fenton and photo-Fenton processes. The optimum ratio of H2O2: Fe+2/Fe+3 were equal to 8:1 in all processes. At optimum conditions, the amount of COD removal was 69.6%, 65.9% and 83.2% in Fenton, Fenton-like and photo–Fenton processes, respectively. In addition, optimum pH were 3, 5 and 3 and the optimum contact time were 150, 90 and 120 minutes, for Fenton, Fenton-like and photo–Fenton processes, respectively. After all processes, the biodegradability (BOD5/COD ratio) of the treated leachate was increased compared to that of the raw leachate and the highest increase in BOD5/COD ratio was observed in the photo-Fenton process. The efficiency of the Fenton-like process was overally less than Fenton and photo-Fenton processes, meanwhile the Fenton-like process was at higher pH and did not show problems. PMID:23369204

  10. Resilience and reliability of compact vertical-flow treatment wetlands designed for tropical climates.

    PubMed

    Lombard-Latune, R; Pelus, L; Fina, N; L'Etang, F; Le Guennec, B; Molle, P

    2018-06-10

    Most of the tropical areas have sanitation problems to contend with. The French system of vertical-flow treatment wetlands (FS-VFTW) fed with raw wastewater could be a good water and sludge management solution. The purpose-adapted tropical design can reduce area requirement to below 1 m 2 /population equivalents (p.e.). The Taupinière FS-VFTW on Martinique Island was built according to this design, with one stage but with a saturated layer at the bottom of the filter and a simplified trickling filter (TF) added for further treatment to meet the high performances targeted. Unsaturated/saturated vertical-flow filters (US/S FS-VFTW) have shown improved performances on total nitrogen, carbon and suspended solids removal in temperate climates, but the performances in tropical conditions remain unknown. Here, we report on real-world-operation in the French Overseas Territories (FOT), the reliability and performances of this VFCW tropical-design. The system experienced loading conditions ranging from 30% to 165% of nominal carbonaceous biological oxygen demand (BOD 5 ), as well as tropical rainstorms that brought over 7 times the nominal hydraulic load. Over a period of 3 years, 29 campaigns collected 24-h flow-proportional samples at each treatment stage (raw wastewater, FS-VFTW outlet, TF outlet). When applied loads were close to nominal values, the US/S FS-VFTW itself guarantees 85/90/60/50% removal and 125/25/40/50 mg/L at the outlet for chemical oxygen demand (COD)/total suspended solids (TSS)/total Kjeldahl nitrogen (TKN)/total nitrogen (TN), respectively. By comparison with US/S systems in mainland France, it appears that the warmer tropical-climate temperatures facilitate both nitrification and denitrification kinetics. Performances in overload conditions confirm that the US/S FS-VFTW remains robust and reliable although COD and TKN removal are impacted, especially after strong tropical rain events. By adding a simple compact trickling filter to a US/S FS-VFTW, the treatment system delivers high-level performances (>95% removal for BOD 5 , COD, TSS and TKN) at less than 1 m 2 /p.e. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Comparison of the efficiencies of attached- versus suspended-growth SBR systems in the treatment of recycled paper mill wastewater.

    PubMed

    Muhamad, Mohd Hafizuddin; Sheikh Abdullah, Siti Rozaimah; Abu Hasan, Hassimi; Abd Rahim, Reehan Adnee

    2015-11-01

    The complexity of residual toxic organics from biologically treated effluents of pulp and paper mills is a serious concern. To date, it has been difficult to choose the best treatment technique because each of the available options has advantages and drawbacks. In this study, two different treatment techniques using laboratory-scale aerobic sequencing batch reactors (SBRs) were tested with the same real recycled paper mill effluent to evaluate their treatment efficiencies. Two attached-growth SBRs using granular activated carbon (GAC) with and without additional biomass and a suspended-growth SBR were used in the treatment of real recycled paper mill effluent at a chemical oxygen demand (COD) level in the range of 800-1300 mg/L, a fixed hydraulic retention time of 24 h and a COD:N:P ratio of approximately 100:5:1. The efficiency of this biological treatment process was studied over a 300-day period. The six most important wastewater quality parameters, namely, chemical oxygen demand (COD), turbidity, ammonia (expressed as NH3-N), phosphorus (expressed as PO4(3)-P), colour, and suspended solids (SS), were measured to compare the different treatment techniques. It was determined that these processes were able to almost completely and simultaneously eliminate COD (99%) and turbidity (99%); the removals of NH3-N (90-100%), PO4(3)-P (66-78%), colour (63-91%), and SS (97-99%) were also sufficient. The overall performance results confirmed that an attached-growth SBR system using additional biomass on GAC is a promising configuration for wastewater treatment in terms of performance efficiency and process stability under fluctuations of organic load. Hence, this hybrid system is recommended for the treatment of pulp and paper mill effluents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Regeneration and reuse of iron catalyst for Fenton-like reactions.

    PubMed

    Cao, Guo-min; Sheng, Mei; Niu, Wen-feng; Fei, Yu-lei; Li, Dong

    2009-12-30

    Fenton and Fenton-like reactions employed for oxidative treatment of a typical industrial wastewater generate a large amount of ferric hydroxide sludge which has to be properly disposed at a high cost. This paper presents a simple and cost-effective method for recovering the iron catalyst from the iron hydroxide sludge for oxidative treatment of industrial wastewaters. The sludge was dewatered, dried and baked at 350-400 degrees C for 20-30 min; the residual solids were dissolved in sulfuric acid to form the reusable catalyst for Fenton and Fenton-like reactions. The recovered catalyst was highly effective for the oxidative pretreatment of a fine chemical wastewater to improve its biodegradability; the resulting COD removal and BOD(5)/COD ratio of the treated stream remained nearly unchanged during the time period when the regenerated catalyst was reused six times. The simple and effective catalyst regeneration method will make Fenton and Fenton-like oxidation a more cost-effective wastewater treatment alternative.

  13. Performance evaluation of a full-scale innovative swine waste-to-energy system.

    PubMed

    Xu, Jiele; Adair, Charles W; Deshusses, Marc A

    2016-09-01

    Intensive monitoring was carried out to evaluate the performance of a full-scale innovative swine waste-to-energy system at a commercial swine farm with 8640 heads of swine. Detailed mass balances over each unit of the system showed that the system, which includes a 7600m(3) anaerobic digester, a 65-kW microturbine, and a 4200m(3) aeration basin, was able to remove up to 92% of the chemical oxygen demand (COD), 99% of the biological oxygen demand (BOD), 77% of the total nitrogen (TN), and 82% of the total phosphorous (TP) discharged into the system as fresh pig waste. The overall biogas yield based on the COD input was 64% of the maximum theoretical, a value that indicates that even greater environmental benefits could be obtained with process optimization. Overall, the characterization of the materials fluxes in the system provides a greater understanding of the fate of organics and nutrients in large scale animal waste management systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Rainwater utilization and storm pollution control based on urban runoff characterization.

    PubMed

    Zhang, Mulan; Chen, Hao; Wang, Jizhen; Pan, Gang

    2010-01-01

    The characteristics of urban runoffs and their impact on rainwater utilization and storm pollution control were investigated in three different functional areas of Zhengzhou City, China. The results showed that in the same rain event the pollutant loads (chemical oxygen demand (COD) and total suspended solids (TSS)) in the sampling areas were in the order of industrial area > commercial area > residential area, and within the same area the COD and TSS concentrations of road runoffs were higher than those of roof runoffs. The first flush effects in roof and road runoffs were observed, hence the initial rainwater should be treated separately to reduce rainwater utilization cost and control storm pollution. The initial roof rainfall of 2 mm in residential area, 5 mm in commercial area and 10 mm in industrial area, and the initial road rainfall of 4 mm in residential area and all the road rainfall in commercial and industrial areas should be collected and treated accordingly before direct discharge or utilization. Based on the strong correlation between COD and TSS (R2, 0.87-0.95) and the low biodegradation capacity (biochemical oxygen demand BOD5/COD < 0.3), a sedimentation process and an effective filtration system composed of soil and slag were designed to treat the initial rainwater, which could remove over 90% of the pollutant loads. The above results may help to develop better rainwater utilization and pollution control strategies for cities with water shortages.

  15. Pulsed corona discharge for improving treatability of coking wastewater.

    PubMed

    Liu, Ming; Preis, Sergei; Kornev, Iakov; Hu, Yun; Wei, Chao-Hai

    2018-02-01

    Coking wastewater (CW) contains toxic and macromolecular substances that inhibit biological treatment. The refractory compounds remaining in biologically treated coking wastewater (BTCW) provide chemical oxygen demand (COD) and color levels that make it unacceptable for reuse or disposal. Gas-phase pulsed corona discharge (PCD) utilizing mostly hydroxyl radicals and ozone as oxidants was applied to both raw coking wastewater (RCW) and BTCW wastewater as a supplemental treatment. The energy efficiency of COD, phenol, thiocyanate and cyanide degradation by PCD was the subject of the research. The cost-effective removal of intermediate oxidation products with addition of lime was also studied. The energy efficiency of oxidation was inversely proportional to the pulse repetition frequency: lower frequency allows more effective utilization of ozone at longer treatment times. Oxidative treatment of RCW showed the removal of phenol and thiocyanate at 800 pulses per second from 611 to 227mg/L and from 348 to 86mg/L, respectively, at 42kWh/m 3 delivered energy, with substantial improvement in the BOD 5 /COD ratio (from 0.14 to 0.43). The COD and color of BTCW were removed by 30% and 93%, respectively, at 20kWh/m 3 , showing energy efficiency for the PCD treatment exceeding that of conventional ozonation by a factor of 3-4. Application of lime appeared to be an effective supplement to the PCD treatment of RCW, degrading COD by about 28% at an energy input of 28kWh/m 3 and the lime dose of 3.0kg/m 3 . The improvement of RCW treatability is attributed to the degradation of toxic substances and fragmentation of macromolecular compounds. Copyright © 2017. Published by Elsevier B.V.

  16. [Application of Micro-aerobic Hydrolysis Acidification in the Pretreatment of Petrochemical Wastewater].

    PubMed

    Zhu, Chen; Wu, Chang-yong; Zhou, Yue-xi; Fu, Xiao-yong; Chen, Xue-min; Qiu, Yan-bo; Wu, Xiao-feng

    2015-10-01

    Micro-aerobic hydrolysis acidification technology was applied in the reconstruction of ananaerobic hydrolysis acidification tank in a north petrochemical wastewater treatment plant. After put into operation, the monitoring results showed that the average removal rate of COD was 11.7% when influent COD was 490.3-673.2 mg x L(-1), hydraulic retention time (HRT) was 24 and the dissolved oxygen (DO) was 0.2-0.35 mg x L(-1). In addition, the BOD5/COD value was increased by 12.4%, the UV254 removal rate reached 11.2%, and the VFA concentration was increased by 23.0%. The relative molecular weight distribution (MWD) results showed that the small molecule organic matter (< 1 x 10(3)) percentage was increased from 59.5% to 82.1% and the high molecular organic matter ( > 100 x 10(3)) percentage was decreased from 31.8% to 14.0% after micro-aerobic hydrolysis acidification. The aerobic biodegradation batch test showed that the degradation of petrochemical wastewater was significantly improved by the pretreatment of micro-aerobic hydrolysis acidification. The COD of influent can be degraded to 102.2 mg x L(-1) by 48h aerobic treatment while the micro-aerobic hydrolysis acidification effluent COD can be degraded to 71.5 mg x L(-1) on the same condition. The effluent sulfate concentration of micro-aerobic hydrolysis acidification tank [(930.7 ± 60.1) mg x L(-1)] was higher than that of the influent [(854.3 ± 41.5) mg x L(-1)], indicating that sulfate reducing bacteria (SRB) was inhibited. The toxic and malodorous gases generation was reduced with the improvement of environment.

  17. Quantitative and qualitative characteristics of grey water for reuse requirements and treatment alternatives: the case of Jordan.

    PubMed

    Ghunmi, Lina Abu; Zeeman, Grietje; van Lier, Jules; Fayyed, Manar

    2008-01-01

    The objective of this work is to assess the potentials and requirements for grey water reuse in Jordan. The results revealed that urban, rural and dormitory grey water production rate and concentration of TS, BOD(5), COD and pathogens varied between 18-66 L cap(-1)d(-1), 848-1,919, 200-1,056, and 560-2,568 mg L(-1) and 6.9E2-2.7E5 CFU mL(-1), respectively. The grey water compromises 64 to 85% of the total water flow in the rural and urban areas. Storing grey water is inevitable to meet reuse requirements in terms of volume and timing. All the studied grey waters need treatment, in terms of solids, BOD(5), COD and pathogens, before storage and reuse. Storage and physical treatment, as a pretreatment step should be avoided, since it produces unstable effluents and non-stabilized sludge. However, extensive biological treatment can combine storage and physical treatments. Furthermore, a batch-fed biological treatment system combining anaerobic and aerobic processes copes with the fluctuations in the hydrographs and pollutographs as well as the present nutrients. The inorganic content of grey water in Jordan is about drinking water quality and does not need treatment. Moreover, the grey water SAR values were 3-7, revealing that the concentrations of monovalent and divalent cations comply with agricultural demand in Jordan. The observed patterns in the hydrographs and pollutographs showed that the hydraulic load could be used for the design of both physical and biological treatment units for dormitories and hotels. For family houses the hydraulic load was identified as the key design parameter for physical treatment units and the organic load is the key design parameter for biological treatment units. Copyright IWA Publishing 2008.

  18. Synthesis and characterization of ZnO:TiO2 nano composites thin films deposited on glass substrate by sol-gel spray coating technique

    NASA Astrophysics Data System (ADS)

    Sutanto, Heri; Nurhasanah, Iis; Hidayanto, Eko; Wibowo, Singgih; Hadiyanto

    2015-12-01

    In this work, (ZnO)x:(TiO2)1-x nano composites thin films, with x = 1, 0.75, 0.5, 0.25, and 0, have been prepared by sol-gel spray coating technique onto glass substrate. Pure TiO2 and ZnO thin films were synthesized from titanium isopropoxide-based and zinc acetate-based precursor solutions, respectively, whereas the composite films were obtained from the mixture of these solutions at the specific % vol ratios. The properties and performance of nano composite ZnO, TiO2 and ZnO:TiO2 thin films at different composition have been investigated. Ultraviolet - Visible (UV-Vis) Spectrophotometer and Scanning Electron Microscopy (SEM) were employed in order to get morphology and transmittance of thin films. Testing the ability of photocatalytic activity of obtained films was conducted on photodegradation of methylene blue (MB) dye and organic pollutants of wastewater under a 30 watt UV light irradiation, then testing BOD, COD and TPC were conducted. Using the Tauc model, the band-gap energy decreased from 3.12 eV to 3.02 eV for the sample with x = 1 and 0, respectively. This decrease occured along with the replacement of percentage of ZnO by TiO2 on the films. This decrease also reduced the minimum energy that required for electron excitation. Obtained thin films had nanoscale roughness level with range 3.64 to 17.30 nm. The film with x= 0 has the biggest removal percentage on BOD, COD and TPC mesurements with percentage 54.82%, 62.73% and 99.88%, respectively.

  19. Evaluation of decentralized treatment of sewage employing Upflow Septic Tank/Baffled Reactor (USBR) in developing countries.

    PubMed

    Sabry, Tarek

    2010-02-15

    A new concept for a low-cost modified septic tank, named Upflow Septic Tank/Baffled Reactor (USBR), was constructed and tested in a small village in Egypt. During almost one year of continuous operation and monitoring, this system was found to have very satisfactory removal results, where the average results of COD, BOD, and TSS removal efficiencies were 84%, 81%, and 89%, respectively, and the results of the experiment proved that the second compartment (Anaerobic Baffled Reactor) was the main treatment unit in removing the pollutants during the start-up period and at the very early steady-state stage. However, after this period and during the steady-state operation conditions, the second compartment served as a polishing step. Also, it was observed that the USBR system was not affected by the imposed shock loads at the peak flow and organic periods. The results showed that the system is slightly influenced by the drop in the temperature. Decreasing in BOD and COD removal by factor of 9% was observed, when temperature decreases from the average of 35 degrees C in summer time (for the first 127 days) to the average of 22 degrees C in winter time (between day 252 and day 280). Whereas, the TSS removals were not affected by the drop in temperature. The results of the sewage flow variations during one year of operation were compared with Goodrich Formula to see the applicability of this equation in rural developing countries. MAIN FINDING OF THE WORK: The Upflow Septic Tank/Baffled Reactor system could become a promising alternative to the conventional treatment plants in rural developing countries.

  20. Effect of circulation on wastewater treatment by Lemna gibba and Lemna minor (floating aquatic macrophytes).

    PubMed

    Demirezen Yilmaz, Dilek; Akbulut, Hatice

    2011-01-01

    In this study, laboratory tests were performed in order to examine growth characteristics of floating aquatic macrophytes (Lemna gibba and Lemna minor) in the presence of wastewater with circulation. The results showed that circulation of the waste water enhanced the kinetics of the process, as compared to the control systems. However, prolonged application of high circulation level had a different effect. In the presence of circulation with aquatic plants, there was additional 85.3-88.2% for BODs and 59.6-66.8% for COD decreases in the water quality indicators. In this study, the effectiveness of L. gibba and L. minor with circulation addition for the removal of four heavy metals (Pb, Ni, Mn, and Cu) from waste water was also investigated. Results from analysis confirmed the accumulation of different metals within the plant and a corresponding decrease of metals in the waste water. At the end of the study of circulation, L. gibba provided the metal removal for Cu, Pb, Ni, and Mn in the waste water as the ratio of 57%, 60%, 60%, and 62%, respectively. In this context, the best results were obtained when the action of L. gibba and L. minor plants, was combined with that of circulation. It is shown that in the presence of L. gibba and L. minor plants that are supplemented with circulation, the national standards of biochemical oxygen demand (BOD5) 27-33 mgL(-1) and chemical oxygen demand (COD) 62-78 mgL(-1) for L. minor and L. gibba, respectively, were reached after treatment. The new results can be used for design calculations regarding expected removal of pollutants by aquatic floating plants.

Top